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ABSTRACT 

Environment pollution and energy supply are among the huge problems which threaten 

the world, especially in industrialised countries.  Several studies have considered how to 

exploit waste materials as renewable substrates for various industries to obtain different 

products.  Some wastes from the aquatic food industry contain a considerable amount of 

the N-acetylglucosamine (NAG) polymer chitin, which has potential as a substrate for 

the solventogenic clostridia in the acetone-butanol-ethanol fermentation.  Development 

of an effective process will, however, depend on a detailed understanding of the 

mechanism and control of chitin hydrolysis and NAG metabolism.    

Clostridium beijerinckii NCIMB 8052 was shown to exhibit chitinase activity and to be 

able to grown on NAG.  The predominant mechanism for uptake of sugars and sugar 

derivatives in the clostridia is the phosphoenolpyruvate (PEP)-dependent 

phosphotransferase system (PTS).  Extracts of C.beijerinckii grown on NAG exhibited a 

phosphotransferase activity for NAG which was also present in extracts of cells grown 

on glucose, consistent with the observation that glucose did not repress utilization of 

NAG in media containing both substrates.  Genomic analysis has identified genes 

encoding a putative nag-pts that belongs to the glucose family of PTS permeases.  Two 

divergent genes encode the IIA and IICB domains of the PTS, and are associated with a 

gene encoding a putative transcriptional antiterminator.  These genes were found to be 

expressed in cells growing on NAG or glucose, but not glucitol.  The role of the putative 

nag-pts genes in NAG uptake was confirmed by functional analysis.  An artificial NAG 

operon was constructed in which the nag-pts genes were in series and expression of the 

operon in Escherichia coli mutants provided evidence for the ability of the PTS to 

transport and phosphorylate NAG and glucose, but not mannose.            
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1. Introduction 

In the last few years, both environmental pollution and energy supply have 

become huge problems which threaten the world, especially in the industrial 

countries, due to the accumulation of wastes from a range of sources.  One of 

these wastes, produced by the aquatic food industry, consists of a large amount of 

chitin polymer.  Several studies have considered how to exploit these materials 

for use as a renewable raw substrate to obtain different products for various 

industries (Demirbas, 2011).  The biofuel industry is considered to be one of the 

attractive industries in this area, using biological fermentation as a renewable 

energy technology to produce chemical solvents from several raw materials.  A 

large number of natural materials containing carbohydrate are being considered as 

suitable carbon sources for replacement of petroleum fuels.  However, for the 

development of this industry, it is necessary to understand the nature of the 

microorganisms and the mechanism and utilization of sugars derived, in order to 

obtain effective microbial biocatalysts (Arantes and Saddler, 2010).  Chitin, 

which is a homopolymer of N-acetylglucosamine, has considerable potential as a 

cheap carbon substrate for the solventogenic clostridia in the acetone-butanol-

ethanol (ABE) industry. 

1.1.  Carbohydrates  

Carbohydrates are the most abundant biomaterial in nature, they are an important 

energy source for both macroorganisms and microorganisms, and they play an 

important role as raw materials in various industries (Harvey and Ferrier, 2011).  

Chemically the carbohydrates and their sugar derivatives are an attractive raw 

material for several industries.  For example, the food industry uses a huge 

amount of starch, mono and oligo-saccharides.  In addition, carbohydrates are also 

used in the textile industries which are dependent on cellulose as a raw material.  

Moreover, some saccharides are important in medical industries, especially in the 

production of antibiotics, vitamin C and certain intravenous solutions.  The basic 

structure of carbohydrate consists of carbon, hydrogen and oxygen atoms.  

Chemically the saccharides are classified into three main divisions, according to 
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many factors, such as their degree of polymerization, molecular size and type of 

bonds (α or β) (El Khadem, 1988). 

i. Monosaccharides and disaccharides contain a single sugar unit or two sugar units.  

Examples are glucose, fructose and galactose (monosaccharides), and sucrose, 

lactose and maltose (disaccharides).  In addition there are sugar alcohols such as 

sorbitol, mannitol, lactitol, xylitol, erythritol and maltitol.  Amino sugars are also 

considered as monosaccharides in which one hydroxyl group has been replaced 

by an amino group, for example in D-glucosamine, D-galactosamine, D-

mannosamine, N-acetylglucosamine and N-acetylgalactosamine (Stoker, 2011; 

Cummings and Stephen, 2007).    

ii. Oligo-saccharides contain a chain from three to ten monosaccharide units, for 

example malto-oligosaccharides (α-glucans), including maltodextrins and non-α-

glucans such as raffinose, stachyose, fructo- and galacto- oligosaccharides, 

polydextrose, and inulin.  The oligosaccharides are commonly found in food and 

can be used in various  applications,  such as an enhancement to nutrition, and in 

the medical industry as an inhibitor of dental plaque formation (Cummings and 

Stephen, 2007; Hou, 2005)   

iii. Polysaccharides contain ten or more monosaccharides in a chain.  In this group 

there is starch (amylose, amylopectin and modified starches), and non-starch 

polymers such as arabinoxylans, β-glucan, glucomannans, plant gums and 

hydrocolloids (Cummings and Stephen, 2007).  Polysaccharides can be composed 

of a chain of one type of monosaccharide (homo-glycans, such as glycogen) or 

can be formed from multiple sugar constituents (hetero-glycans, such as murein, 

which can be found in the bacterial cell wall structure).  Polysaccharides are 

found naturally in the structure of bacteria, plants and animals.  Cellulose, which 

is the principal component in plant cell walls, is considered to be the most 

abundant molecule in nature.  Chitin which is a polymer of N-acetylglucosamine 

is considered the second most abundant molecule after cellulose and it is a 

widespread component of plants and the cell walls of microorganisms such as 

fungi, and crustaceans ( oolman and   hm, 2005).       
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1.2. Fermentation  

In biotechnology, fermentation processing is known as a microbial bioconversion of 

sugar substrate (energy source) to produce desirable biochemical products which 

can be used commercially.  Many  microorganisms, such as Clostridium species, 

Enterobacteriaceae (Escherichia coli, Klebsiella and Proteus species), 

Streptococcus faecalis, Staphylococcus aureus and Bacillus subtilis, are capable of 

fermenting a variety of substrates anaerobically to produce a range of products  

(Boumba et al.,  2008).  The development of fermentation technology usually 

depends on understanding the structure of the fermentable substrate and the relevant 

uptake mechanisms involved, along with the genetic characterization of the 

microorganisms (Lee, 2006).  In biological fermentations microbial growth is 

dependent on many factors such as temperature, oxygen, pH and carbon source 

availability.  Many microorganisms have the ability to take up one carbon source 

preferentially in the presence of others,  and then utilize the other substrates only 

after the preferred one is expended (Bruckner and Titgemeyer, 2002).   

This study is related to one of the largest industrial-scale fermentations known: the 

acetone-butanol-ethanol (ABE) fermentation.  The ABE industry was successful in 

the early part of the 20
th

 century, and then declined for economic reasons, due to the 

rise of the petroleum industry.  However, recently, ABE fermentation is once again 

attracting attention as a renewable process, due to potential interest in butanol as a 

biofuel, as described later.   

1.3. History and development of acetone-butanol-ethanol (ABE) fermentation 

Butanol production by anaerobic bacteria was first observed in 1862 by French 

microbiologist Louis Pasteur when he isolated an anaerobic Vibrion butyrique.  This 

strain was subsequently identified as Clostridium butyricum (Sauer et al.,  1993).  At 

the beginning of the 20
th

 century, butanol was recognised to be a precursor of 

butadiene which could be used in the production of synthetic rubber, as a substitute 

for natural rubber which was in high demand (Dürre, 1998).  In 1909, the English 

company Strange and Graham Ltd. built the first factory for butanol production and 

employed W. H. Perkin, C. Weizmann, A. Fernbach, and M.  Schoen, to establish 

the butanol industry.  Weizmann isolated a variety of microorganisms between 1912 

and 1914, one of which had the ability to degrade many kinds of starch substrate and 
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produce high yields of butanol and acetone.  This strain was called BY, and was 

later renamed as Clostridium acetobutylicum (Awang et al.,  1988). 

During the First World War, ABE fermentation played an important role, due to 

increasing demand from the British army for acetone for the manufacture of 

explosives, and that led to the large scale development of the fermentation process.  

Acetone, in that period, was used in the manufacture of cordite, a smokeless 

gunpowder used as a propellant for cartridges and shells (David and David, 1986). 

At the end of the war the demand for acetone decreased.  However, the automobile 

industry in the USA was increasing, and this also had a positive effect on the ABE 

fermentation industry, as butanol was used as a starting material to produce butyl 

acetate for use as a quick-drying paint for cars (Rose, 1961), and the butanol 

industry became distributed around the world.  For instance, Peoria (Illinois) was the 

largest plant at that time.  In the meantime, research focused on improving a new 

strain able to utilize maize mash as a raw material for the fermentation and a variety 

of strains were isolated from many sources, although none of them achieved the 

same result as the original Weizmann strain (Hastings, 1971).  In the 1930s, the 

abundance of cheap molasses played a role in development of ABE fermentation 

technology as it became an alternative raw material, rather than maize mash.  In 

1932 molasses was used for the first time as a commercial substrate by Commercial 

Solvents Corporation (CSC) (Jones and Keis, 1995).  Between 1936 and 1940 

research made significant progress in this area and a new strain called Clostridium 

saccharo-acetobutylicum was isolated.  This strain was capable of using molasses as 

a cheap raw material as a carbon source at a sugar concentration of about 6% with 

approximately 30% solvent yield.  The strain prototype was recorded in the 

Northern Regional Research Laboratory (NRRL) culture collection in 1945 as 

NRRL B591.  This was used as the main industrial strain for fermentation of 

molasses by CSC in the USA and new plants belonging to Commercial Solvents 

Great Britain (CS-GB) in Britain.  In 1938 a new strain was patented by CSC and it 

was named Clostridium saccharo-butyl-acetonicum-liquefaciens.  This strain, 

lodged with NRRL in 1946 as NRRL B643, helped to improve the ABE 

fermentation process, giving higher yields of about 30-33% conversion to solvent 

from 6.5% sugar in a shorter fermentation time.  Additional strains were isolated 

later that gave a higher concentration of solvents, among which was a strain named 
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Clostridium granulobacter acetobutylicum (Shaheen et al., , 2000).  A number of 

ABE fermentation factories were established  around the world, for example in 

South Africa, Japan, Egypt, Russia, China, Brazil and Formosa (Taiwan) (Jones and 

Woods, 1986).  The CSC decided to build a fermentation plant at Bromborough in 

the UK for ethanol and butanol production as a joint enterprise with the Distillers 

Corporation Ltd, and CS-GB plant as an operator.  The Second World War led to 

further improvement in the acetone industry through isolation of strains capable of 

degrading molasses as a raw material to produce more solvent (Jones and Keis, 

1995).  However, the growth of the petrochemical industry in the middle of the last 

century contributed significantly to the demise of the ABE fermentation industry 

because of the orientation of the world towards oil products (Dürre, 2008).  

Acetone-butanol production plants closed down, particularly in the western world 

although, the fermentation process was continued in South Africa and Russia until 

the 1980s and in China and Egypt, until more recently (Zverlov et al.,  2006).  In 

addition, there were some significant obstacles that affected the economics of  the 

ABE fermentation, such as the high cost of substrate, low yield productivity, due to 

the toxicity of the solvents, and the cost of recovery of the products (Gapes, 2000).  

Since the 1980s, research has been focused on improvement of the ABE 

fermentation process by understanding the principles of physiological and genetic 

behaviour in clostridia, in addition to investigating the use of low cost fermentable 

materials such as agricultural and domestic organic waste (Gheshlaghi et al.,  2009).  

These and other challenges in re-establishing the ABE fermentation have been 

summarized by Green (2011), as shown in (Table 1).   
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Table 1: The barriers and proposed solutions for ABE fermentation, (Green, 2011) 

 

 

 

 

 

 

 

 

Problems Solutions 

High feedstock cost significantly increases 

operating costs.   

Transition towards cheaper (and more 

sustainable) feedstock such as wastes and 

agricultural residues.   

Low butanol yield increases recovery 

costs.  Low yields also reduce sugar 

loadings and increase water usage.   

Develop improved microbes with improved 

solvent yields and/or develop methods for in 

situ product removal to alleviate end product 

tolerance. 

Low butanol yield increases feedstock 

costs. 

Develop improved microbes with higher 

butanol yields and/or develop microbes with 

higher butanol: solvent ratios. 

Low volumetric solvent productivities 

increase capital and operating costs. 

Develop continuous fermentation processes 

that reduce down-time and increase 

volumetric productivity. 

Solvent recovery using conventional 

distillation is energy intensive and 

relatively expensive. 

Develop low energy methods for solvent 

recovery and purification. 

Recovery can also be improved by 

improving the solvent yield. 

High water usage is not sustainable and 

increases the cost of effluent treatment. 

Recycle process water back through the 

fermentation. 
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1.4. Industrial applications of solvents (acetone, butanol and ethanol) 

Acetone (Figure 1) is one of the commercial solvents used in resins and lacquers.  It 

is also common in film coating compositions and can be used in chemical extraction 

applications to extract fats, oils and waxes from the natural material.  In medical 

applications, uses of acetone include extracting B-vitamin complex, antibiotics, 

some enzymes and alkaloids (Cheremisinoff and Archer, 2003).  Butanol is an 

important commercial liquid in many industries, such as production of plasticizers, 

lacquers, coatings, detergents and brake fluids (Kharkwal et al.,  2009).  Ethanol is a 

minor product of the ABE fermentation and used in many industries such as the 

manufacturing and construction sectors, and also in the medical sector in some 

medicine ingredients and for sterilizing purposes  (Clean Fuels Development 

Coalition, 2003). 

 

 

Fig 1: The chemical formulae of acetone, butanol and ethanol. 

 

1.5. Biofuel  

Biofuel is one of the sustainable energy sources derived from natural materials such 

as biomass and biological waste via biotechnology applications.  Biofuel can be 

used for different purposes but is mainly used as a substitute for oil-based 

transportation fuels (Demirbas, 2009).  Interest in the biofuel industry has increased 

recently because of economic considerations (the price of crude oil and limited 

fossil fuel reserves), and environmental aspects, such as  carbon dioxide pollution 

and global warming (Dürre, 2008).  Currently, the biofuel industry is receiving 

considerable attention as a renewable energy source, for example in the European 

Union (EU) (Demirbas, 2011).  There are many types of biological energy sources, 
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including bioethanol, biodiesel, biogas, bio-oil, biohydrogen and vegetable oil, and 

most of them can be obtained from several different wastes.  For example biodiesel, 

which is a clear yellow liquid and a suitable fuel for diesel engines, similar to 

petroleum diesel, can be obtained from various wastes such as animal fat (sheep 

tallow, beef tallow and poultry oil) or some vegetable oils (rapeseed oil, canola oil, 

soybean oil, sunflower oil, palm oil and used cooking oil).  Biodiesel is considered 

to be much safer than petroleum diesel as it is nonflammable and nonexplosive.  

Environmentally, biodiesel also has lower toxicity during burning, when compared 

with petroleum diesel, and is more degradable compared to oil waste (Demirbas, 

2009).   

Bioethanol is also a renewable biofuel that can be used in transportation, after some 

modification to vehicle engines.  Ethanol can also be used to blend with gasoline to 

increase the volume of the production.  In general, since 2004, the production of 

biofuel  has risen and the number of plants has also increased around the world (US, 

Europe, Brazil, China, India, Thailand, Canada, Russia, and South Africa) using 

different sources as fermentable raw materials, especially agriculture wastes or 

sugar and corn crops (Kecebas and Alkan 2009; Prabhakar and Elder; 2009; 

Hammerschlag, 2006).  Bioethanol can be also produced from other 

polysaccharides, including lignocellulosic biomass, which is an abundant feedstock.  

However, the biodegradation of these structurally complex materials is one of the 

obstacles to producing large amounts of bioethanol at reasonable cost.  Thus, the 

development of  industrial microorganisms engineered to utilize these raw materials 

is considered to be one of the desirable scientific solutions (Cardona and Sanchez, 

2007).     

Biobutanol, which can be obtained from fermentation processing, has been 

described recently as a commercially attractive product for transportation purposes.  

Butanol burning releases more energy compared to ethanol.  Moreover, there are a 

number of advantages which make bio-butanol a more attractive biofuel than 

bioethanol.  For example, biobutanol has a lower vapor pressure and hygroscopy 

and in addition, can be combined with gasoline and biodiesel to be used without any 

modification of the engine.  In the future, biobutanol could be used for aviation 

engines which may allow bio-butanol production to increase to 94 billion gallons 

per annum by 2020 (Kraemer et al., 2010; Green, 2011; http://www.butanol.com).  
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The interest in the biofuel industry has led to a greater focus on developments to 

improve microbial performance, particularly with respect to the solventogenic 

clostridia. 

 

1.6. Solventogenic clostridia 

 Clostridia are described morphologically as rod-shaped cells; Gram-positive 

staining (especially in the early stages of growth) and having cell walls consisting of 

a multilayer of peptidoglycan.  The majority of clostridia are known as strictly 

anaerobic bacteria.  The clostridia species are capable of forming heat-stable 

endospores with increased resistance against heat, radiation, dehydration and 

oxygen (Dürre, 2005).  Clostridia are found in soils as a natural habitat and also in 

animal intestines (Carlos et al., 2005).  Clostridia contain low G + C DNA, and are 

members of the group referred to as firmicutes, together with many other genera 

such as Bacillus, Staphylococcus, Streptococcus and Listeria (Euzeby, 1997; Vos, 

2009; Bahl and Dürre, 2001).  For clostridia, the 16S rRNA sequence has become an 

accepted technique for defining species.  Solvent forming strains including those 

mentioned earlier have been shown to belong to four species; Clostridium 

acetobutylicum, Clostridium beijerinckii, Clostridium saccharoperbutylacetonicum, 

and Clostridium saccharobutylicum (Keis et al., 2001).  As shown first for 

Clostridium acetobutylicum, solvent production by clostridia occurs in two stages.  

Firstly, in the exponential growth phase, the principal products are acids, acetate and 

butyrate, along with hydrogen and carbon dioxide.  In the second stage, solvent 

production is activated to produce acetone, butanol and ethanol, while the growth 

slows and the cells may eventually form endospores (Green, 2011).  Some 

clostridial species produce isopropanol rather than acetone, including some strains 

of C.beijerinckii.  The ability of many species of solventogenic clostridia to utilize a 

variety of carbohydrate sources leads to the possibility that a range of fermentable 

substrates can be used as raw materials for biofuel production.   

Generally, in clostridia, the majority of sugars can be transported into the cell via a 

specific mechanism called the phosphoenolpyruvate (PEP) dependent 

phosphotransferase system (PTS) (Hutkins and Kashket, 1986; Mitchell et al.,  

1991).  The anaerobic metabolic routes for carbohydrate substrates are known, but 
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some aspects of regulation still have to be determined.  C.acetobutylicum and 

C.beijerinckii strains utilize the glycolysis route of the Embden-Meyerhof-Parnas 

pathway (Rogers and Gottschalk, 1993), as shown in Figure 2.  The metabolic 

production of acetone, butanol and ethanol in clostridia, therefore, starts with the 

uptake of the sugar substrate through the cell membrane, in many cases by the PTS 

then degradation to pyruvate.  The enzyme ferredoxin-pyruvate oxidoreductase 

converts the pyruvate to acetyl-CoA with the release of hydrogen and CO2.  Then 

acetyl-CoA may be converted into several end-products.  Butanol production is 

obtained by conversion of acetyl CoA to acetoacetyl-CoA, 3-hydroxybutyryl-CoA, 

crotonyl-CoA and butyryl-CoA.  Then the butyryl-CoA is converted to 

butyraldehyde which, in turn, is reduced to butanol (Mitchell, 1998;  Dürre, 1998).   
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Fig 2: Metabolic route for carbohydrate fermentation by clostridia (Papoutsakis, 2008). 
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1.7. The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system 

(PTS) in bacteria 

The phosphotransferase system (PTS) was initially described in the bacterium E coli 

as a transport system for sugar uptake.  The PTS contains a number of proteins 

which have been described as Enzyme Ι, HPr (heat-stable, histidine-

phosphorylatable protein) and Enzyme ΙΙ (Saier, 2001).  Kundig et al., .  (1964) 

described the phosphotransferase system in E.coli as a transport mechanism for 

several carbon sources such as glucose, mannose, and some amino sugars such as N-

acetylmannosamine, glucosamine and N-acetylglucosamine.  The PTS has 

subsequently been found in a range of bacteria, both Gram-positive and Gram-

negative including clostridia (Deutscher et al.,  2006).  The PEP dependent 

phosphotransferase system is one of the most important mechanisms for sugar 

uptake across the cell membrane in anaerobic bacteria, but is also found in some 

strictly aerobic genera (Romano et al.,  1979).  The PTS involves a phosphoryl 

transfer chain (Figure 3), which functions to phosphorylate the substrate as it is 

translocated into the cell (Deutscher et al.,  2006).  Practically, the PTS can be 

measured by detection of the PEP-dependent  phosphorylation activity on the 

substrate, using cell-free extracts (Mitchell, 1998).   

 

a) Enzyme I [EI]  

 

Enzyme I has been reported as an autophosphorylated enzyme in the presence of 

Mg
2+

, and this is considered to be the first step in operation of the transport system.  

Enzyme I is encoded by the ptsI gene in the pts operon in a variety of bacteria 

(Postma et al.,  1993).  The phosphate is then transferred from Enzyme Ι to the 

general phosphocarrier protein HPr.  Enzyme I has been purified from a variety of 

bacterial species such as E.coli (Dooijewaard et al.,  1979; Waygood and Steeves, 

1980), Salmonella typhimurium (Weigel et al.,  1982) Streptococcus faecalis (Alpert 

et al.,  1985) and Mycoplasma (Ullah and Cirillo, 1976).   
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b)  Phosphocarrier HPr protein  

 

HPr is the second protein in the phosphoryl transfer chain of the phosphotransferase 

system.  HPr has been described as a transfer protein which can pass the phosphoryl 

group from Enzyme Ι to Enzyme II (Singh et al.,  2008).  This protein is small, 

approximately 90 amino acids with a molecular mass of 9 to 10 kDa.  In the 

phosphotransfer chain, HPr is phosphorylated on the residue His 15 and then passes 

the phosphoryl group to Enzyme ΙΙ (Postma et al.,  1993).  The ptsH gene encoding 

HPr has been identified in many bacteria, and it appears that the expression of both 

genes ptsI and ptsH is increased in the presence of different PTS sugars (Tanaka et 

al., 2008; Tangney et al.,  2003).  It has been reported that the preference for 

glucose, which is considered the most effective sugar in the majority of these 

bacteria, can be due partly to an induction of the expression of these genes (De 

Reuse and Danchin, 1988; Stulke et al., 1997; Viana et al.,  2000).  Usually in 

bacteria, the ptsI and ptsH genes are linked together in an operon ptsHI, but this is 

not the case in clostridial species such as Clostridium acetobutylicum, C.  

perfringens and C.  tetani (Tangney and Mitchell, 2004) nor in  C.beijerinckii (Lee 

and Blaschek, 2001), or in Mycoplasma capricolum (Zhu et al.,  1993) and 

Streptomyces coelicolor (Parche et al.,  1999).   
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Fig 3: The organization of the phosphotransferase system (PTS) in bacteria, showing 

transfer of the phosphoryl group from the general Enzyme Ι and HPr proteins to Enzyme ΙΙ-

specific domains and then to the sugar substrate.       
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c) Enzyme II [EII]  

 

The [EII] complex consists of different hydrophilic and hydrophobic domains EΙΙA, 

EΙΙB, EΙΙC and in some cases EΙΙD.  Each of these may be included in different 

polypeptides and distributed functionally on individual proteins, or found together in 

different combinations within one or more proteins.  The complex accepts the 

phosphoryl group from the donor HPr, and phosphorylates the substrate as it is 

transported across the membrane into the cytoplasm (Deutscher et al.,  2006).  The 

EΙΙA domain receives the phosphoryl group from the donor P~HPr on a histidyl 

residue [P~EΙΙA] and then passes the phosphoryl group to EΙΙB, on a histidyl residue 

in the case of the mannose family, or on a cysteyl residue in all other PTS families.  

The sugar can then be translocated and enters the cytoplasm through the membrane 

(Deutscher et al.,  2006).  In addition, phosphotransferases belonging to the mannose 

family have the additional hydrophobic EΙΙD domain (Saier et al.,  2005), which also 

contributes to the translocation of the substrate.  In general, all EΙΙ domains (A, B and 

C) are required to make up a functional PTS, although in some PTS’s an EΙΙA domain 

is absent and thus the EΙΙA domain must be provided from another system to 

complete the PTS chain.  For example, in B.subtilis the phosphotransferases 

belonging to the glucose and sucrose families include nine pairs of EΙΙCB domains, 

but only five EΙΙA domains are encoded in the genome.  This indicates that an EΙΙA 

domain can functionally phosphorylate more than one EΙΙB domain in the glucose 

and sucrose families  (Reizer et al.,  1999).   

 

1.8. The PEP-phosphotransferase system in clostridia 

It is reported that solventogenic clostridia strains depend on the PTS as a transport 

mechanism for uptake of many carbohydrates, as shown in Table 1 (Mitchell and 

Tangney, 2005).  The PTS plays a key role in sugar utilization in C.acetobutylicum 

and C.beijerinckii, while it appears to be less important in others such as 

C.thermocellum (Mitchell, 1998).  In vitro, studies have shown that the clostridial 

PTS is functionally equivalent to those in other bacteria.  Therefore, the soluble cell 

extract of C.beijerinckii (formerly C.acetobutylicum) NCIMB 8052 has been shown 

to complement membranes from E.coli, B.subtilis and C.pasteurianum, or vice 
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versa, for glucose phosphorylation (Mitchell et al.,  1991).  Also, EΙ and HPr from 

C.beijerinckii appeared to be of a similar size to these proteins from other bacteria 

(Mitchell et al.,  1991): approximately 63 kDa for enzyme I (Hu and Saier, 2002; 

Postma et al.,  1993) and 10 kDa for HPr (Postma et al.,  1993).  Genome 

sequencing has further shown the relationships between the clostridial PTS and the 

PTS from other bacteria with regards to the Enzyme ΙΙ domain structures.  

C.acetobutylicum, with genome size of 4.13 Mb, has 30 PTS genes, including 13 

complete saccharolytic PT-systems (Barabote and Saier, 2005).  In 

C.acetobutylicum ATCC 824, some of the PT- systems have been characterized with 

respect to their sugar substrates, such as the gene systems for the sucrose PTS and 

maltose PTS which were identified and named as enzyme ΙΙ
Scr

 and ΙΙ
Mal

 respectively 

(Tangney and Mitchell, 2000; Tangney et al., 2001).  In the same strain, PTS 

activity has also been recorded for cellobiose, fructose, glucose, lactose and 

mannitol (Hutkins and Kashket, 1986; Tangney and Mitchell, 2007; Yu et al., 2007; 

Mitchell and Tangney, 2005).  Currently, gene expression analysis is proving 

helpful in characterizing PTS activity during growth on a variety of substrates and 

providing more understanding of the gene functions relating to the PT- system and 

its domains (Servinsky et al.,  2010).   

 

 

 

Table 1: Examples of transport mechanisms in solventogenic clostridia (Mitchell and 

Tangney, 2005). 

Organism PTS 

C.acetobutylicum glucose, mannitol, cellobiose, fructose, lactose, maltose, 

sucrose 

C.beijerinckii glucose, fructose, lactose, sucrose, glucitol, mannitol 

C.butyricum fructose 

C.thermocellum fructose, mannitol 
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1.9. Clostridium beijerinckii  

This project is focused on C.beijerinckii NCIMB 8052 which was formerly known 

as C.acetobutylicum (Keis et al., 2001).  The potential industrial importance of 

Clostridium beijerinckii for utilizing several carbohydrate sources, including waste 

materials, and producing low cost solvents means that  attention needs to be given to 

understanding the biochemistry and genetics of sugar uptake mechanisms, which 

can lead to improving industrial production of these solvents (Ezeji and Blaschek, 

2008).  Several studies have found that the phosphoenolpyruvate (PEP)-dependent 

phosphotransferase system plays a dominant role in the uptake of a variety of 

carbohydrates in the model strain Clostridium beijerinckii NCIMB 8052 (Saier and 

Reizer, 1992; Tangney et al., 1998b). 

  

The genome size of Clostridium beijerinckii NCIMB 8052 is 6.0 Mb, which is 

considerably larger than that of Clostridium acetobutylicum ATCC 824, by 

approximately 50% (Nolling et al.,  2001).  The sequencing data of the Clostridium 

beijerinckii NCIMB 8052 genome was completed by the Joint Genome Institute 

(JGI), DOE, USA  and published in 2007 (http://genome.jgi-

psf.org/clobe/clobe.home.html), and it was noted that 47 sets of genes are involved 

in the PT-system although only 42 encode a complete PTS (Shi et al., 2010). These 

include genes encoding members of all seven PTS families, as represented in Figure 

4.   

PTS activity has been demonstrated in C. beijerinckii for several sugar substrates 

(Tangney and Mitchell, 2005).  The glucitol and sucrose systems have been 

characterised both genetically and biochemically (Tangney et al., 1998a; Tangney et 

al., 1998b; Reid et al., 1999), but the function of the other system has not been 

identified.  Shi et al.  (2010) examined the nine systems belonging to the mannose/ 

fructose/sorbose family and concluded that they were all fructose translocating 

systems.  However, their conclusions were based only on sequence analysis of the 

ΙΙB domains and no functional characterization of the systems was reported.  

Compared with other solventogenic bacteria, interest in C. beijerinckii has increased 

due to the capability of the strain to produce the highest concentration of butanol.  

The mutant strain of C.beijerinckii NCIMB 8052, known as C.beijerinckii BA101, 

http://genome.jgi-psf.org/clobe/clobe.home.html
http://genome.jgi-psf.org/clobe/clobe.home.html
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recorded the highest production of butanol, estimated at approximately 17-21g/L 

(Annous and Blaschek, 1991; Formanek et al., 1997), and therefore provides several 

advantages in the butanol industry.  For example, it has the capability to utilise 

several carbon sources and it has been experimentally established that it is suitable 

for genetic modification in order to increase the solvent production (Formanek et al., 

1997).   
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Fig 4: Phylogenetic tree of C.beijerinckii PTS ΙΙC domains (Courtesy of W.J. Mitchell).  

The tree shows the ΙΙC domains of the phosphotransferase of C. beijerinckii (Cbe) and 

C.acetobutylicum (*Cac), which are grouped in branches representing the different PTS 

families.  
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1.10. Carbon catabolite repression 

Carbon catabolite repression (CCR) in Gram positive or Gram negative bacteria is 

known as a regulatory mechanism controlling carbohydrate uptake and metabolism.  

In general, bacteria show a sequential utilization of carbohydrates to select the 

preferred carbon substrate from a mixture of different carbon sources (Bruckner and 

Titgemeyer, 2002).  For instance, in the case of the presence of different carbon 

sources in the medium, then the transport and metabolic system required for 

utilizing one of these substrates will often not be synthesised, due to repression by 

the favourable carbon source (frequently glucose) in the growth medium.  This 

global regulation mechanism is dependent on specific proteins, such as the 

catabolite repression control (Crc) protein in Pseudomonas (Aranda-Olmedo et al.,  

2005; Hester et al., 2000) or the catabolite control protein (CcpA) in low-GC Gram-

positive bacteria (Deutscher et al.,  2006).   

 

In firmicutes, the principal global mechanism of CCR by which glucose represses 

the metabolism of other carbon sources is dependent on the phosphocarrier HPr 

protein which is considered as an important regulator of carbon catabolite 

mechanism in gram positive bacteria.  The phosphorylation of the HPr protein does 

not only occur from PEP at His-15 during PTS activity, it can be also 

phosphorylated by an ATP-dependent protein kinase on a seryl residue (ser-46).  

When phosphorylated at ser 46, the HPr protein binds to the catabolite control 

protein CcpA which is a transcriptional regulator that is considered as a co-repressor 

in carbon catabolite repression (Stülke and Hillen, 2000).  The CcpA/HPr (ser-P) 

complex then binds to specific sites known as catabolite responsive elements (cre’s) 

to control gene expression.  Phosphorylation of the serine residue on HPr also 

inhibits phosphorylation at His-15 therefore controlling PTS activity, in conditions 

of high energy metabolism in firmicutes (Galinier et al.,  1998, Reizer et al.,  1998, 

Kravanja et al.,  1999, Mijakovic et al.,  2002).  In specific cases, HPr 

phosphorylated on His-15 can also play a role in CCR, for example, in regulation of 

the glycerol kinase enzyme in enterococci and other firmicutes (Charrier et al.,  

1997).   
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These mechanisms of CCR have been studied in detail in some of the low-GC 

Gram-positive bacteria such as bacilli, staphylococci, and lactobacilli.  For 

clostridia, it is commonly found that they can utilize different carbon sources in the 

growth media, and that the preferred carbon source (glucose) is utilized first.  

Although different systems show different characteristics with respect to regulation, 

genes concerned with utilization of mannitol, sucrose, maltose and lactose in C. 

acetobutylicum are associated with cre sequences, implying that they are regulated 

by a PTS-dependent mechanism (Behrens et al., 2001; Tangney and Mitchell, 2005; 

Tangney et al., 2001; Yu et al., 2007).  Also, HPr kinase activity has been shown in 

C.acetobutylicum as a sensor enzyme for catabolite repression, and the catabolite 

control protein (CcpA) was also identified in the same bacterium as a carbon 

regulation protein (Tangney et al.,  2003).  Recently, it was observed that CcpA 

plays an important role in C.acetobutylicum as a repressor of xylose and arabinose 

metabolism (Ren et al.,  2012).  It is clear that carbon catabolite repression plays an 

important role in clostridial cells during sugar utilization, and this regulation 

mechanism seems to be related to the PTS as is the case in other bacteria (Deutscher 

et al., 2006; Tangney and Mitchell, 2005).  It has been shown that C.beijerinckii 

displays a preference for glucose over other sugars (Tangney et al., 1998a; Mitchell, 

1996; Reid et al., 1999).  However, although it may be assumed that the 

mechanisms are similar, there have been no detailed studies of catabolite repression 

in this strain.  

 

The PTS also plays an important role in the regulation of carbohydrate uptake and 

metabolism through the PTS regulation domains (PRDs), which are found as 

components of transcriptional regulators and antiterminators.  Antiterminators have 

been found in both Gram positive and Gram negative bacteria, although DNA-

binding transcriptional regulators appear to be present only in Grame-positives 

(Stulke et al.,  1998).  Antiterminators bind to mRNA at a sequence known as a 

ribonucleic antiterminator (RAT), which overlaps with a transcriptional terminator 

upstream of the regulated gene(s).  Binding to the RAT stabilizes its secondary 

structure, and prevents the terminator from forming, therefore allowing expression 

of the downstream genes.  Antiterminators are involved in regulation of expression 

of genes encoding phosphotransferase systems, and their activity is controlled by 
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PTS-depending phosphorylation.  One P D is phosphorylated by the EΙΙB domain 

of the associated PTS, and this inhibits the antiterminator activity.  The second PRD 

is phosphorylated by HPr (His-P), and this activates the antiterminator (Figure 5).  

In the absence of substrate of the PTS, the inhibitory phosphorylation inactivates the 

antiterminator protein, the transcriptional terminator forms and gene expression is 

prevented (Langbein et al.,  1999).  In the presence of the substrate,  the phosphoryl 

group will transfer from EΙΙB to the substrate rather than the antiterminator PRD 

domain, resulting in activation of the antiterminator and expression of the controlled 

genes (Tortosa et al.,  2001).   Induction therefore occurs in response to the substrate 

of the system.  The second (activating) phosphorylation of the antiterminator can be 

prevented in the presence of a good carbon source such as glucose, since phosphate 

from HPr (His-P) will be used to support its uptake.  The result will be repression of 

the expression of genes involved in uptake of the alternative sugar. 

   

In Gram negative bacteria this mechanism was first reported in E.coli by 

demonstrating the PTS-dependent uptake of β-glucosides controlled by the bgl 

operon under the control of the antiterminator BglG (Schnetz et al.,  1987).  Related 

antiterminator proteins such as SacT and LicT in B.subtilis have been found in Gram 

positive bacteria and they are collectively referred to as the BglG family (Stülke and 

Hillen, 2000).  An antiterminator AbgG was also studied in Clostridium 

longisporum and shown to be involved in regulation of the abgA and abgF genes 

encoding a β-glucoside PTS and a hydrolase gene (Brown and Thomson, 1998).  In 

C.acetobutylicum the proteins ScrT and GlcT belong to the antiterminator family 

and are associated with operons encoding the sucrose and glucose PTS respectively 

(Tangney and Mitchell, 2000; Mitchell and Tangney, 2005; Tangney and Mitchell, 

2007).  
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Fig 5: The mechanism of induction of genes dependent on an antiterminator containing two 

PRD domains (adapted from Mitchell and Tangney, 2005). 

A. In the absence of substrate of the associated PTS, the antiterminator is phosphorylated 

on both domains and is inactive.  The regulated genes are therefore not induced.  

B. In the presence of the PTS substrate, phosphate from EΙΙB passes to the substrate, not 

to the antiterminator.  The antiterminator is then active, and the regulated genes 

encoding the EΙΙA, EΙΙB and EΙΙC domains of the PTS are induced. 
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1.11. Waste as a sustainable resource 

Nowadays, the hazard of waste is one of the huge problems facing natural life.  

Waste has been defined as any materials or substrates which lead to changes in the 

ecosystem.  Generally, wastes are classified into many types, depending on the 

natural source or industries which generate them.  This classification includes; 

municipal, hazardous, industrial, medical, universal, construction and demolition, 

radioactive, mining, and agricultural wastes.  The hazards associated with wastes 

include human diseases, air pollution and groundwater contamination (Pichtel, 

2005).  Moving wastes elsewhere is not the final solution to avoid the risks.  Thus, 

biotechnological applications have attracted considerable attention as a potentially 

effective solution for waste disposal while also providing economical energy 

sources and environmentally acceptable products (van Wyk, 2001).  Agricultural 

waste is a cheap feedstock containing a high content of organic compounds which 

can be used anaerobically as fermentable substrates to produce biofuel (Blaschek et 

al.,  2010).  Several clostridial strains show a high capability to utilize many kinds 

of agricultural residues to produce ethanol, acetone and butanol, as shown in Table 

2.  Genetic characterization and modification are required to understand and 

improve the production potential of clostridial strains, especially those strains which 

are amenable to modification, such as Clostridium beijerinckii (Milne et al.,  2011).   

   

Table 2: Examples of agriculture wastes used as fermentable materials by some clostridia 

species.  

Substrate Strain Reference 

Maize Clostridium beijerinckii  Mu et al., , (2011) 

Corn Stover  Clostridium phytofermentans  Jin et al., , (2012) 

Oil Palm  Clostridium butyricum  Ibrahim et al., , 

(2012) 

Wheat  Clostridium beijerinckii Liu et al., , (2010) 

Cassava Clostridium saccharoperbutylacetonicum Thang et al., , (2010) 

Grain plant Clostridium acetobutylicum Ni and Sun, (2009) 
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1.12. Chitin as a cheap substrate 

One of the most critical issues in the ABE fermentation industry is identification of 

a low cost substrate.  A number of studies have investigated the use of various raw 

materials in the production of butanol, for instance, molasses, whey permeate, and 

corn (Ezeji and Blaschek, 2008; Ezeji et al., 2007; Jones and Woods, 1986; Qureshi 

et al., 2008).  Recently, alternative polysaccharides have been evaluated as potential 

substrates for ABE fermentation; these include cellulose, xylan, starch and pectin, 

which are natural energy sources.  Clostridia can utilize these materials by means of 

extracellular enzymes or enzyme complexes to degrade them to simple molecules 

that can be easily absorbed by the cell (Mitchell, 1998).  The present study focuses 

on utilization of chitin as a cheap and abundant substrate in nature, with emphasis 

on utilization of the degradation product N-acetylglucosamine.  Chitin (β-1, 4 linked 

N-acetylglucosamine) is the most widespread polymer on earth, after cellulose, and 

is found as a major component in insects, crustaceans, plants, and fungi 

(Chomphunuch et al.,  2010).  Many industries, such as aquatic food and agriculture, 

lead to production of a huge amount of chitin waste which is estimated at 100 billion 

tons annually including crustaceans, insects and fungi (Tharanathan and Kittur, 

2003).  In 2005 the annual worldwide production of marine food (shrimp and 

prawns) was estimated at 6, 091, 896 tons and 40-50% of the total was discarded as 

waste.  The total amount of chitin in this waste was around 40% in addition to other 

compounds such as calcium carbonate and lipid residues (Xu et al.,  2008).  This is 

often considered to be a real burden on the environment because the chitin polymer 

is very difficult to degrade (Hayes et al., 2008a, b).  Several organisms can  produce  

chitinase enzymes, including viruses (Hawtin et al.,  1995), bacteria (Chigaleĭchik et 

al.,  1976) and fungi  (Kuranda and Robbins, 1991).  Chitinase enzymes (endo or 

exo chitinase) have been classified into two glycosyl hydrolase families (GH18 and 

GH19) according to amino acid sequence homology  (Li and Greene, 2010).  The 

importance of chitinase lies in it is ability to biodegrade  chitin into N-

acetylglucosamine, which can be used as a carbon source by many bacteria (Dahiya 

et al.,  2006), including solventogenic bacteria. 
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1.13. N-acetylglucosamine uptake and metabolism  

 As mentioned before, N-acetylglucosamine is the monomer of chitin (Figure 6), and 

is therefore widespread as a component of bacterial cell walls, fungi and algae, and 

is also found in plants and animals.  N-acetylglucosamine can be utilized as a good 

carbon source for growth of several bacteria (Cottrell and Kirchman, 2000, 

Bhatnagar and Sillanpaa, 2009).   

 

         Fie 6: The chemical structure of chitin containing the N-acetylglucosamine monomer 

(Bhatnagar and Sillanpaa, 2009) 

 

The mechanism of N-acetylglucosamine phosphorylation in E.coli was shown to be 

dependent on the PTS (Curtis and Epstein, 1975; White, 1970).  The nag operon in 

E.coli (Figure 7) has been identified and includes the nagE gene encoding the PTS, 

and the nag A, B, C and D genes (Peri et al.,  1990, Plumbridge, 1989).   

 

                              nag E                nag B                          nag A                        nag C                   nag D               

 

 

      Fig 7: Organization of the nag operon in E.coli (Alvarez-Añorve et al.,  2005) 

 

 The product of each one of these genes has a specific function during N-

acetylglucosamine utilization (Figure 8).  The first step is uptake of NAG by the 

product of the nagE gene, a specific PTS-enzyme ΙΙ containing B, C and A domains.  

The product of NAG uptake and phosphorylation, N-acetylglucosamine 6-

phosphate, is then converted to glucosamine 6-phosphate by NagA and then 
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deaminated to fructose 6-phosphate by NagB.  Fructose 6-P can then be metabolised 

by glycolysis (Jones-Mortimer and Kornberg, 1980; Lengeler, 1980).  The nagC 

gene encodes a repressor (Plumbridge, 1996), but the function of the nagD gene has 

not yet been defined (Sohanpal et al.,  2004).     

 

 

 

 

 

      Fig 8: Metabolic route of N-acetylglucosamine by E.coli initiated by the PT-system 

(Plumbridge, 2001), after glycolysis step the route of N-acetylglucosamine metabolism 

involved the EMP-pathway as shown previously in Figure 2  
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A few studies have reported N-acetylglucosamine uptake by a phosphotransferase 

system in other bacteria including Bacillus subtilis (Bertram et al.,  2011; Mobley et 

al.,  1982), Staphylococcus aureus (Imada et al.,  1977), Vibrio furnissii (Bassler et 

al.,  1991),  Streptomyces olivaceoviridis (Wang et al.,  2002) and Caulobacter 

crescentus (Eisenbeis et al.,  2008).  N-acetylglucosamine metabolism was also 

studied by Alice et al., (2003) in Bacillus sphaericus.  This bacterium cannot use 

sugars as carbon sources for growth.  However, an operon was identified which 

contained the genes encoding Enzyme Ι and HPr of the PTS along with enzymes 

involved in N-acetylglucosamine metabolism (Figure 9).  Inactivating of the ptsH 

gene resulted in loss of the ability to grow on Nag, suggesting that uptake of this 

substrate was PTS-dependant, but the gene(s) encoding sugar-specific components 

of a Nag-PTS were not identified.  

 

 

         nag A                             orf2                               nag B                      ptsH                     ptsI                       

 

 

 

Fig 9: nag genes encoding Nag enzymes in Bacillus sphaericus (Alice et al.,  2003).  The 

operon encodes the PTS proteins Enzyme Ι and HPr, and the enzyme NAG-6-phosphate 

deacetylase and glucosamine-6- phosphate deaminase.  The function of orf2 is unknown.  

 

 

 

 

 

 

 

 

 

 

 



 
29 

 

1.14. Aims of the Study 

As mentioned before in 1.12, chitin-containing wastes could serve as cheap 

substrates for ABE fermentation.  Effective exploitation of these materials in the 

fermentation will depend on an understanding of chitin hydrolysis and utilization of 

N-acetylglucosamine by the solventogenic clostridia.  This study focuses on the 

Clostridium beijerinckii NCIMB 8052 strain and aims to investigate the ability of 

this bacterium to hydrolyse chitin and utilize N-acetylglucosamine and to understand 

the molecular basis of this ability.  The study focused particularly on the physiology 

and genetics of the metabolism of the amino-sugar N-acetylglucosamine, by 

demonstrating the activity of a phosphotransferase system, identifying a putative 

gene system which is potentially involved with this activity and cloning the genes in 

order to verify their function.   
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2. Materials and Methods  

2.1  Bacterial strains  

 

Clostridium beijerinckii NCIMB 8052 was obtained from the National Collection of 

Industrial and Marine Bacteria (NCIMB), and Clostridium acetobutylicum ATCC 

824 came from Dr. Philippe Soucaille in Toulouse.  Spore suspension of both strains 

was stored at 4°C in sterile distilled water.  The competent Escherichia coli cells 

(One Shot® TOP10) were obtained from Invitrogen, and the cells were stored at -

70°C and used as the host strain for cloning experiments.  The E.coli mutants used 

in this project for N-acetylglucosamine gene characterization were E.coli BW25113 

(nagE mutant) from the Keio knockout collection (Baba et al.,  2006) and E.coli 

ZSC113 genotype (gpt-2 mpt-2glk-7strA) (Curtis and Epstein, 1975).   

 

2.2  Buffers and solutions 

 

The composition and description of buffers and solutions used in this project are 

either described within the specific sections or listed in Appendix 2. 

 

2.3  Growth media and chemicals 

 

Reinforced Clostridial Medium (RCM) was obtained from Oxoid.  The synthetic 

Reinforced Clostridial Medium (sRCM) had the same composition as RCM, except 

that it did not contain soluble starch, glucose and agar, compared with the RCM 

medium.  Clostridial Basal Medium (CBM) contained  (per litre): carbon source 10 

g; casein hydrolysate 4 g; MgSO4.7H2O 0.2 g; MnSO4.4H2O 10 mg; FeSO4.7H2O 

10 mg; p-aminobenzoic acid 1 mg; thiamine HCl 1 mg; d-biotin 2 µg; KH2PO4 0.5 g 

and K2HPO4 0.5 g.  The phosphates were sterilized separately as a ×10 concentrate 

and then added to the medium after autoclaving and cooling down.  In the case of N-

acetylglucosamine as the carbon source, it was made up as ×10 concentrate and 

sterilized by filtration and then added to sterile media immediately before 

inoculation.   
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E.coli strains were grown in Luria Broth (LB broth) medium which contained (per 

litre): tryptone 10 g; yeast extract 5 g and sodium chloride 5 g (Bertani, et a.,  1951).  

The fermentation phenotype was examined using Difco MacConkey agar base, 

which was sugar free and contained (per liter): peptone 17 g; proteose peptone 3 g; 

bile salts 1.5 g; sodium chloride 5 g; neutral red 0.03 g; crystal violet 0.001 g and  

agar 13.5 g.  N-acetylglucosamine was added into the medium as required after filter 

sterilization, but glucose or mannose were added before autoclaving.  The final pH 

was about 7.1.  Where required, ampicillin or kanamycin was added to the media at 

a concentration of 50 µg/ml.    

 

2.4  Preparation of clostridial starter cultures   

 

A volume of 0.5-1 ml of spore suspension was placed in a heating block at 80°C for 

10 min and then cooled and inoculated into a starter culture of 20 ml of RCM.  The 

cells were incubated in strictly anaerobic conditions for 24 h at 37°C, under an 

atmosphere of N2-H2-CO2 (80:10:10) in an anaerobic cabinet (Don Whitley Macs-

MG-500 Anaerobic Station) (Yu et al.,  2007).  After 24 h, samples were streaked 

onto a RCM plate and incubated in an aerobic atmosphere for 24 h.  Gram stains 

were also carried out in order to confirm that the cultures were not contaminated.  

  

2.5   Preparation of Clostridium beijerinckii NCIMB 8052 spores  

 

C.beijerinckii NCIMB 8052 spores were grown in an overnight starter culture as 

described in section 2.4, and then inoculated into 500 ml of synthetic Reinforced 

Clostridial Medium (sRCM).  The culture was incubated under anaerobic conditions 

at 37°C for approximately four weeks.  The culture was transferred into two 250 ml 

centrifuge bottles under sterile conditions and then centrifuged at 12,000 g/15 min/ 

4°C.  The supernatants were removed, and the pellets were resuspended in 200 ml 

sterile distilled water and washed three times by centrifugation.  Finally, the 

combined spore pellet was resuspended in approximately 100 ml of sterile distilled 

water and transferred into sterile bottles and stored at 4°C. 
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2.6.  Preparation of colloidal chitin  

 

Colloidal chitin was prepared according to Lingappa and Lockwood (1961) by 

taking 25 ml of concentrated hydrochloric acid and adding it to a conical flask 

containing 6.25 g of chitin and incubating at room temperature (23-25°C) for 1-2 

hours.  The mixture was transferred carefully in a chemical fume hood into a conical 

flask containing 500 ml distilled water at 4°C, and incubated overnight at room 

temperature (23-25°C).  After that, the supernatant was removed and replaced by 50 

mM potassium phosphate buffer (pH7) and then the suspension was centrifuged at 

12000 g for 20 min in order to remove as much as possible of the hydrochloric acid.  

Resuspension and washing of the chitin was repeated three times.  In the final step, 

the supernatant was removed and the colloidal chitin was washed again with 

distilled water, three times, under the same conditions.  The resultant colloidal chitin 

obtained was filtered through 110 mm Whatman filter paper and then transferred 

into a sterile bottle containing 250 ml of 50 mM potassium phosphate buffer per litre 

(pH7) and stored at 4°C. 

 

2.6.1.Chitinase assay 

 

 Initially chitinase activity was detected by streaking bacteria on CBM plates 

containing 2% (v/v) colloidal chitin and incubating at 37°C in the anaerobic cabinet 

for 48 h.  The bacteria were also streaked on plates containing CM-chitin RBV 

solution (carboxy-methyl chitin Remazol brilliant violet) obtained from Loewe 

Biochemicals.  The plates contained a 1:1 ratio of CM-chitin RBV and synthetic 

RCM and were incubated at 37°C in the anaerobic cabinet for 24h.  Also, in other 

plates the chitinase enzyme activity was estimated by using a 1:1:1 ratio of CM-

chitin RBV, 1% agarose in distilled water and 50 mM potassium phosphate buffer 

pH7.  Cell culture supernatants were concentrated by placing them in dialysis 

membranes surrounded by polyethylene glycol PEG (Sigma), and incubating at 4°C.   

100 µl of the 10 × concentrated culture supernatant (100 ml of supernatant 

concentrated to 10 ml) obtained from separate 100 ml CBM cultures containing 10 

mM NAG, 10 mM glucose and 2% chitin, were placed in small wells on the plate, 

which was incubated aerobically at 37°C for 24 h.  The chitinase enzyme which 
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used as a control was purified from Streptomyces griseus and obtained from Sigma 

(C6137-5UN).      

In the same concentrated supernatant, chitinase activity was also estimated using 

silica gel thin-layer chromatography (TLC) (Tanaka et al., 1999).  A reaction 

mixture was prepared in an Eppendorf tube containing 100 µl of colloidal chitin and 

100 µl of concentrated culture supernatant and was incubated with shaking at 37°C 

for 24 h.  In this assay, the control contained 100 µl distilled water rather than crude 

extract.  1 µl of the reaction mixture was applied to a silica gel plate approximately 

5×20 cm and then the plate was transferred to the TLC tank containing n-butanol-

methanol, 25% ammonia solution and distilled water (5:4:2:1[vol/vol/vol/vol]), 

respectively.  Sugars were detected by heating the plate using a dry heater at 

approximately 180°C for 3-5 min, until the bands appeared.   

 

2.7.  Growth and utilization of N-acetylglucosamine and glucose by C.beijerinckii  

 

Utilization of N-acetylglucosamine and glucose by C. beijerinckii NCIMB 8052 was 

determined by growing cells on two types of growth media, sRCM and CBM.  1 ml 

of a starter culture (section 2.4) was inoculated into 100 ml of sRCM or CBM 

containing 10 g/L of N-acetylglucosamine or glucose, as an intermediate culture.    

The cells were then taken from the intermediate culture and inoculated into the 

experimental culture, the amount of cells depending on growth density (OD600) in 

the medium.  The experimental culture contained N-acetylglucosamine or glucose or 

both, depending on the experimental conditions.  Growth was measured as optical 

density at 600 nm; when OD was ≥ 0.5, then the sample was diluted 1:1 (v/v) with 

10% formalin before the measurement was taken.   

 

  The concentration of N-acetylglucosamine and glucose in the growth media was 

measured by taking 1 ml from the medium and centrifuging in a microfuge at 

13,000 rpm for 10 min.  The supernatant was then removed to another tube and 

stored at -20 °C until analysed.  The technique used for analyzing the sample was 

high-performance liquid chromatography [HPLC] (Tanaka et al.,  2001); the 

columns used were a Dionex Carbopac PA-1 Guard column 4×80 mm, and Dionex 
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Carbopac PA-1column 4×250 mm.  The instruments used were; Dionex PED 

(Pulsed Electrochemical Detector) with gold electrode, Dionex DX300 APG 

(Advanced Gradient Pump), Gilson 234 Autoinjector with 20µl loop, Dionex Eluent 

Degas module and Hewlett Packard Chemstation data handling (HP3365). 

 

2.8.  Preparation of cell-free extracts  

 

From an overnight starter culture, cell-free extracts of C.beijerinckii were prepared 

from a 500 ml CBM culture containing 10 g/L N-acetylglucosamine or glucose.  

Cell samples were collected and harvested in the late exponential phase and 

centrifuged at 12,000 g for 15 min at 4°C.  The supernatant was removed and the 

cells were washed twice and resuspended in 50 mM potassium phosphate buffer (pH 

7).  The final cell pellet was resuspended in buffer containing 1 mM DTT and 5 mM 

MgCl2 at a concentration of 4 ml/g.  Preparation of the extract was carried out by 

two passages through a French pressure cell at 20,000 lbf in
-2

 (138MPa).  The 

extract was then transferred into Eppendorf tubes and centrifuged at 12,000 g for 15 

min at 4°C to remove the cell debris.  The supernatants, which were the crude cell-

free extract were collected from each Eppendorf tube and combined in another tube, 

flash-frozen in liquid nitrogen, and stored at -70°C (Tangney and Mitchell, 2007).  

The same procedure was followed in order to prepare extracts of E.coli strains 

grown in LB medium containing N-acetylglucosamine. 

 

The crude extract was further fractionated into soluble extract and the membrane 

extract by ultracentrifugation (BECKMAN TL-100) for two hours at 65,000 rpm 

(230,000 g) and 4°C.  After the first centrifugation the supernatant was removed to 

another tube, while the pellet was washed with 50 mM potassium phosphate buffer 

(pH7) containing 5 mM of MgCl2 and 1 mM DTT.  The two fractions were 

centrifuged for another two hours under the same conditions as before.  The 

supernatant, which formed the cytoplasm fraction, was placed into another tube and 

aliquoted and flash-frozen in liquid nitrogen, while the pellet membrane fraction 

was resuspended in 1/10 volume of the original crude extract and then flash-frozen 

in liquid nitrogen.  All the samples were stored at -70°C. 
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2.9.  Protein estimation in cell extracts   

 

The protein concentration of extracts was determined colorimetrically (OD310-390) 

using a microbiuret method, as described by Zamenhof (1957).  Aliquots of 20 µl of 

sample were mixed with 0.24 ml of 40% sodium hydroxide [NaOH].  The reaction 

mixture was incubated in a water bath for 15min.  After incubation, 0.68 ml of 

distilled water was added and then vortexed for approximately 30sec.  63 µl of 1% 

copper sulphate [CuSO4] was added and mixed by vortexing.  The absorbance was 

read at 310 and 390 nm against a water blank.  For measuring the final concentration 

of protein in the sample, the difference of OD310 ــ  OD390 was used and related to a 

protein standard curve (Bovine serum albumin BSA), which was prepared each time 

the protein assay was carried out.   

 

2.10.  Assay of sugar phosphorylation by cell-free extracts 

 

Sugar phosphorylation activity was assayed, as described by Mitchell et al., 

(1991).The standard mixture in 1 ml volume contained 714 µl of 50 mM potassium 

phosphate buffer (pH 7.0), 10 µl of 0.2 M DTT, 5 µl of 1M MgCl2, 30 µl of 0.4 M 

potassium fluoride [KF], 20 µl of 50 mM phosphoenolpyruvate (PEP) or adenosine 

triphosphate (ATP) and 200 µl of crude cell extract.  The control consisted of the 

same reaction mixture without PEP or ATP.  The mixture was incubated for 3-4 min 

in a water bath at 37°C, then 21 µl of 
14

C-NAG or 
14

C-glucose (9.5mM, 1mCi/m 

mole) was added to the reaction mixture.  Samples (150 µl) were taken at time 

intervals from the mixture, and added to 2 ml of 1% (w/v) BaBr2 in 80% (v/v) 

ethanol solution, to precipitate the sugar phosphate.  The precipitate was collected by 

filtration through a glass fibre disc (Whatman GF/F paper) and after filtration, the 

filter was washed with 5 ml of 80% ethanol and dried for 15 min under a heat lamp.  

After that, the discs were transferred into leak-proof scintillation tubes and 4 ml of 

scintillation fluid was added.  The phosphorylated sugar was measured as 

radioactivity, by liquid scintillation counting in a 1900 CA Tri-Carb analyser.  Sugar 

solutions used as inhibitors for some assays consisted of 0.1 M of non-radiolabelled 

N-acetylglucosamine, chitobiose or glucose, 100 µl of which was added immediately 

before the labeled sugar was added to the reaction mixture.  In some experiments, in 
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order to use both cell membrane and soluble extract, 20 µl of membrane fraction and 

200 µl of cytoplasmic fraction were used in the reaction mixture, instead of crude 

cell extract.  When these additions were made, the volume of 50 mM potassium 

phosphate buffer (pH 7.0) was reduced, so that the total volume remained at 1 ml.  

The blank of each experiment was prepared by taking 10.5 µl of the 
14

C-NAG or 

14
C-glucose and adding to the 490 µl of 50 mM phosphate buffer pH 7.  An amount 

of 150 µl was taken and filtered as a normal sample, while 20 µl of the mixture was 

added directly on the filter paper.  The result obtained from the scintillation counter 

for each sample was corrected by deducting the average of the filtered blanks and 

then converted to n moles using the equation: 

 

( 
         

                       
   , 

 

since the 20 µl contained 4 nmoles of labelled sugar. Where appropriate, the amount 

was converted to nmoles/mg protein by estimating the amount of protein in the 

extract, and therefore in each sample.  

 

2.11. Bioinformatics analysis  

 

Gene and protein sequence comparisons involving the N-acetylglucosamine PTS 

domains in C.beijerinckii (Cbei4532, Cbei 4533) and the putative antiterminator 

(Cbei 4534) were carried out using BLAST available at the National Center of 

Biotechnology Information (NCBI) (http://blast.ncbi.nlm.nih.gov/Blast).   

 

2.12. Cloning of putative N-acetylglucosamine PTS genes.   

 

2.12.1.  Primers 

Primers were designed (Table 2) for amplification of different genes encoding the 

components of the putative C.beijerinckii NAG-PTS (Cbei4532, Cbei4533) and 

associated regulatory gene (Cbei4534).  The length of the primers was designed to 

be approximately 20 nucleotides.  The primers were purchased from MWG 

Eurofins, and were dissolved in water at a concentration of 100 pmoles/µl and 

stored at -20°C. 

http://blast.ncbi.nlm.nih.gov/Blast
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Table 2:  Primers used for cloning of Cbei4532, Cbei4533, and Cbei4534.  Where indicated 

by underlining, primers included a restriction site for SalΙ or XbaΙ.  T7-promoter, M13 Fwd 

and M13 rev primers were used for analysis of the gene orientation. 

 

 

2.12.2.  PCR reaction  

 

The whole gene system Cbei4532, Cbei4533 and Cbei4534 was amplified and 

cloned by using the StrataClone PCR cloning kit (Agilent), and in the PCR reaction 

the Easy-A High-Fidelity Strata gene (Agilent) was used.  The genes Cbei4532 and 

Cbei4533 were also amplified and cloned separately, and the PCR reaction was 

carried out using Pfu DNA polymerase (Fermentas EP0571).  500 µl of the reaction 

buffer [5× buffer] was prepared by using: 250 µl [10× Easy-A reaction buffer or 10× 

Pfu buffer with MgSO4]; 20 µl of 100 mM dNTP mix [dATP, dGTP, dTTP and 

dCTP, 5µl of each] and 230 µl of sterilized deionised water.  The PCR reaction 

mixture (50 µl) contained: 36.5 µl of sterilized deionised water; 10 µl of Pfu 5× 

buffer; 1 µl of forward primer; 1 µl of reverse primer and 1 µl of C.beijerinckii 

NCIMB 8052 DNA template.  The PCR mixture was heated at 95°C in a thermal 

cycler for 4min and then the reaction was started by adding 0.5 µl of the DNA 

polymerase enzyme.  The program used in the PCR reaction consisted of 30 reaction 

cycles of 95°C for 1 min; annealing temperature for 1 min; 72°C for 3 min, and  

then a final extension at 72°C for 10 min.  The melting temperature of the primers 

was calculated according to the primer sequences, using the formula [4× (G+C) + 

Name 5’-3’ Sequence GC 

(%) 

Purpose and 

restriction sites 

Lab 

reference 

number 

Cb4532-Fwd CATTTAGGGATATAACAATC 30.0% Cloning 429 

Cb4532-Rev ACAGTCGACATATCATCAATCTCTTTTCC 37.9% Cloning 431 

Cb4533-Fwd ACAGTCGACAAGGAAGTGACTGTTCCTG 50.0% Cloning 428 

Cb4533-Rev ACATCTAGACTAGCAATGCATATAGAGAG 37.0% Cloning 430 

Cb4534-Fwd TCAGATGATAAGTGATTTGC 35.0% Cloning 516 

T7-promoter TAATACGACTCACTATAGGG 40.0% Gene Orientation 371 

M13-Fwd GTAAAACGACGGCCAGTG 55.6% Gene Orientation 373 

M13-Rev CAGGAAACAGCTATGACC 55.6% Gene Orientation 374 
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2× (A+T)] and then the annealing temperature was calculated [Tm -5].  After the 

reaction was completed the PCR product was stored at 4°C.  

 

2.12.3. Detection of the PCR product 

 

The quality of the PCR product was examined by agarose gel electrophoresis.  

Bioline Agarose gel powder 1% (w/v), was dissolved in 1×Tris-acetate EDTA 

buffer [TAE buffer] by heating, and 1 µl of 10 mg/ml ethidium bromide was added 

to the 1% agarose (60-100 ml).  5 µl of sample was mixed with 2 µl of Fermentas 

6× DNA loading buffer, containing: 10 mM Tris-HCl pH 7.6; 0.03% bromophenol 

blue; 0.03% cyanol FF; 60% glycerol and 60 mM EDTA, and loaded into the gel.   

5 µl of hyperladder I (Bioline) was added alongside the samples.  The gel was run 

by electrophoresis at 80 V for 1-2h under 1×TAE buffer and then the bands were 

detected under UV light.    

 

2.12.4.  Cloning of the Cbei 4532 and Cbei 4533 genes 

 

The Fermentas Life Science JET
TM

 PCR cloning kit K1232 was used to clone the 

Cbei 4532 and Cbei 4533 genes.  The kit provided a cloning vector pJET1.2/blunt, 

designed to accept blunt-ended PCR products from 6 bp to 10 kb (Appendix 1).  The 

pJET1.2 cloning protocol was carried out using 10µl 2× reaction buffer; 2 µl PCR 

product; 1 µl pJET1.2/blunt cloning vector (50 ng/µl) and 1 µl T4 DNA ligase, and 

then the total volume was made up to 20 µl by adding 6 µl water, nuclease-free, in a 

micro tube.  The mixture was vortexed and centrifuged for 3-5 sec and then the 

ligation mixture was incubated at room temperature for 5 min.  2.5 µl of the mixture 

was transferred into a tube containing 40 µl E.coli TOP 10 competent cells 

(Invitrogen).  After that the mixture was incubated on ice for 15 min.  The tube was 

then transferred into a water bath at 42°C for 30 sec.  After incubation, the tube was 

incubated again on ice for 2 min.  250 µl of SOC medium containing; 2% (w/v) 

tryptone; 0.5% (w/v) yeast extract; 8.6 mM NaCl; 2.5 mM KCl; 20 mM MgSO4 and 

20 mM glucose was added to the tube and then the mixture was incubated on a 

shaker (100 rpm) at 37°C for 1h.  Samples of 20 µl to 50 µl were taken from the 
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mixture and spread onto LB agar medium containing 50 µg/ml ampicillin, and then 

incubated at 37°C overnight. 

 

2.13.  Cloning of the putative nag operon containing Cbei 4532, Cbei 4533 and 

Cbei 4534 genes  

 

The StrataClone PCR cloning kit (Agilent) vector (Appendix 1) was used with the 

purpose of cloning all three genes Cbei 4532, Cbei 4533 and Cbei 4534.  The PCR 

reaction and detection was carried out as described in (2.12.2), (2.12.3) respectively, 

while the High Fidelity Easy-A was used in order to amplify the genes.  The cloning 

protocol was carried out by adding into an Eppendorf tube 3 µl StrataClone cloning 

buffer, 2 µl of PCR product 50 ng and 1 µl StrataClone vector mix Amp/Kan.  Then 

the reaction mixture was incubated at room temperature for 5 min then placed on 

ice.  1 µl from the reaction mixture was added to the cloning tube containing 

StrataClone SoloPack competent cells and mixed gently.  The tube was then 

incubated on ice for 30 min and then the cells were heat shocked at 42°C for 90 sec.  

The mixture was replaced on ice again for 3 min.  800 µl of LB medium was added 

to the reaction mixture and incubated with shaking at 37 °C for 1 h.  50 µl and 100 

µl were placed on separate LB agar plates containing 50 µg/ml ampicillin and 

incubated overnight at 37°C.  The cells obtained after overnight incubation were 

screened for investigation purposes.   

 

2.14. Screening of colonies for presence of insert   

 

The colonies of E.coli obtained from the cloning stage were transferred to fresh LB 

plates containing the same concentration of ampicillin in a grid pattern and then 

incubated at 37°C overnight.  The colonies were then screened by picking and 

resuspending them in Eppendorf tubes containing 20 µl of sterile deionised water 

and heating at 100°C for 10 min.  The tubes were immediately transferred to ice for 

3 min, and then centrifuged at 13,000 g for 3 min.  The supernatant was used as a 

DNA template in a PCR screening reaction. 
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PCR screening was carried out as follows: 25 µl of 2× Biomix buffer containing 

ultra-stable Taq DNA polymerase (Bioline) was added into a micro tube with 1 µl of 

forward primer, 1 µl of reverse primer, 2 µl of DNA template and 21 µl of sterile 

deionized water to make the volume up to 50 µl.  The PCR was carried out as 

described previously, in section 2.12.2.   

 

2.15. Screening of colonies for orientation of the insert 

 

The gene orientation was investigated in the same way as described for the PCR 

screening reaction, but the difference was in the primers used.  Different primer 

combinations were used in separate reaction tubes.  The reaction mixture contained 

1 µl of a cloning primer, either forward or reverse, and 1 µl of either T7 promoter 

primer or M13-Fwd or M13-Rev primer, all of which anneal to the cloning vector.  

The pattern of products obtained was used to deduce the orientation of the cloned 

insert within the vector.    

     

2.16. Preparation of miniprep plasmid 

 

Plasmids were prepared by inoculating cells into 10 ml of LB broth containing 

50µg/ml ampicillin and incubating on a shaker at 37°C, overnight.  4 ml of cells 

were centrifuged at 13,000 g for 10 min and the supernatant was removed carefully.  

The cell pellet was stored at -20 °C until required for plasmid purification.          

Plasmids were purified using a Gene JET
TM

 Plasmid Miniprep kit Fermentas K0501.  

The purification steps were carried out by resuspending the cell pellet in 250 µl of 

resuspension solution and then vortexing to make sure that all cells were 

resuspended completely.  250 µl of lysis solution was added into the tube and mixed 

gently by inverting the tube 4-6 times until the solution became clear.  350 µl of 

neutralization solution was added immediately and mixed thoroughly and carefully 

by inverting the tube 4-6 times.  The mixture was then centrifuged at 13,000 g for 5 

min to precipitate the cell debris and chromosomal DNA.  After that, the supernatant 

was transferred carefully, by pipetting, into a Gene JET
TM

 spin column and then the 

spin column was centrifuged at 13,000 g for 1min.  The liquid in the collection tube 

was removed and then the column was replaced again into the collection tube.  500 
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µl of washing solution (diluted with ethanol) was added into the spin column, and 

centrifuged at 13,000 g for 1 min.  After that, the liquid was removed and the 

column replaced back into the collection tube, and the washing step was repeated 

using 500 µl of wash solution.  The wash solution was removed and then the column 

was centrifuged again for an additional 1min to remove the residual liquid. 

The Gene JET
TM

 spin column was finally transferred into a sterile Eppendorf tube 

and then 50 µl of elution buffer was added into the centre of the column.  The tube 

was incubated at room temperature for 2 min and centrifuged for 2 min.  The 

column was removed and the Eppendorf tube which contained the purified plasmid 

DNA was stored at -20°C. 

  

2.17.  Large-scale plasmid DNA preparation  

 

To obtain a larger quantity of DNA, plasmids were purified using the Qiagen Midi-

kit, which gives an expected DNA yield of up to 250 µg from 25-35 ml of culture.  

The protocol was followed by growing transformed E.coli cells in 10 ml of LB broth 

containing 50 µg/ml ampicillin at 37°C, by shaking overnight.  2 ml from the 

overnight culture was taken and inoculated into 100 ml of LB containing the same 

concentration of ampicillin and incubated overnight.  50 ml of overnight culture was 

centrifuged at 6000 rpm for 10 min, at 4°C.  The supernatant was removed and then 

4  ml of resuspension buffer P1 was added to the cell pellet and vortexed.  After 

that, 4 ml of lysis buffer P2 was added and the mixture was incubated at room 

temperature for 5 min.  After incubation, 4 ml of neutralization buffer P3 was added 

and the mixture was then incubated on ice for 15 min.  The mixture was transferred 

to a centrifuge tube and centrifuged at 20,000 rpm for 30 min at 4 °C.  The 

supernatant was transferred into a 15 ml centrifuge tube and centrifuged again at 

7500 rpm for 10 min at 4°C.  During the centrifugation time, 4 ml of the 

equilibration buffer QBT was added into a purification column and then, after it had 

passed through, the supernatant was added into the purification column in order to 

isolate the plasmid DNA.  The column was then washed twice, by adding 10 ml of 

the washing buffer, QC.  The column was transferred into a 15 ml centrifuge tube 

and 5 ml of elution buffer, QF, was added and the eluate collected.  3.5  ml of 100% 

isopropanol was added and then vortexed.  The mixture was centrifuged at 6000 rpm 
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for 1h at 4 °C.  The supernatant was removed gently and then 2 ml of 70% ethanol 

was added to the tube, and it was centrifuged again for 45 min at 6000 rpm at 4 °C.  

The supernatant obtained was removed carefully and 50 µl of deionized water was 

added to the tube and the pellet was dissolved by pipetting and then stored at -20 °C.   

 

2.18.  Determination of DNA concentration and preparation for sequencing  

 

After the plasmid DNA was screened using gel electrophoresis, the DNA 

concentration was determined by taking 1µl of DNA sample in a sterile Eppendorf 

tube and adding 399 µl of 1× TE buffer; in this case the Dilution Factor [DF] was 

400 [DF=Total volume/volume of DNA].  The absorbance of DNA was measured 

using a UV spectrometer at 260 nm, using TE as a blank.  At this wave length, the 

concentration of DNA is given by: absorbance of 1.0 = 50 µg/ml of DNA.  The 

original absorbance was calculated [Abs × DF] and the DNA concentration obtained 

by multiplying ×50.  Then, according to the concentration, the sample was diluted to 

a final concentration of 50 ng/µl, using sterile deionized water, and then sent for 

sequencing to Beckman Coulter Genomics.    

 

2.19. Transformation of plasmid into E.coli mutants (BW25113 nagE and ZSC113)  

 

The E.coli BW25113 nagE mutant was inoculated into 10 ml LB broth medium 

containing 50 µg/ml kanamycin and then incubated overnight by shaking at 37°C.   

1 ml of overnight culture was transferred into 100 ml of LB broth containing the 

same kanamycin concentration and then incubated on a shaker at 37°C for 

approximately 3 h until the OD600 of cells reached 0.4-0.6.  A volume of 50 ml of 

culture was incubated on ice for 10 min and then transferred into a centrifuge tube 

and centrifuged for 15 min at 4000 rpm at 4 °C.  The supernatant was completely 

removed and 10 ml of 0.1 M CaCl2 solution was added to the tube to resuspend the 

pellet and then the tube was placed on ice for 2-3 min.  After that, the tube was 

centrifuged at 4000 g at 4 °C for 10 min and then the supernatant was completely 

removed.  The pellet was resuspended in 2 ml 0.1 M CaCl2 solution and placed on 

ice.  200 µl of the cell suspension was taken in an Eppendorf tube and 2 µl of 

plasmid was added.  The mixture was mixed gently and then incubated on ice for 30 
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min.  After that the cells were shocked by heating in a water bath at 42 °C for 

exactly 90 sec and then immediately placed on ice for 3 min.  A volume of 800 µl of 

LB broth was added to the mixture and then incubated on a shaker at 37 °C for 1 h.  

After that, 100 µl and 50 µl of the cell suspension were spread onto separate LB 

plates containing 50 µg/ml each of ampicillin and kanamycin and the plates were 

incubated at 37 °C overnight. 

    

2.20. Examination of the phenotype of E.coli strains  

 

The phenotype characterization for the nagE mutant strain and transformants was 

monitored by the fermentation of N-acetylglucosamine [0.1% to 1%] on 

MacConkey agar plates with or without antibiotics.  Control plates contained no 

sugar.  Plates were dried in an oven at 50°C for 20 min before the cells were 

streaked on the plates and incubated at 37°C for up to 48 hours.  In order to examine 

the phenotype of the ZSC113 mutant and transformants the same process was 

carried out but the N-acetylglucosamine was replaced with glucose or mannose.  

 

2.21. Construction of an artificial Cbei 4532 - Cbei 4533 operon 

 

For digestion and ligation, the plasmids carrying Cbei 4532 and Cbei 4533 were 

purified, as mentioned in section 2.17, using the Qiagen Midi-kit.  After the DNA 

sequence was confirmed, the protocol was followed, as described in the next 

sections.  The strategy for construction of the artificial operon is summarised in 

Figure 9 of Appendix A.   

 

 

2.21.1.  Restriction digests  

 

For DNA digestion FastDigest (Fermentas Life Science) enzymes SaΙΙ, XbaΙ, Xhol, 

BglII and BamHl were used to digest recombinant plasmids carrying the genes.  For 

the Cbei 4533 gene, SaΙΙ was used with either XbaΙ or XhoΙ in double digestion, and 

for the Cbei 4532 gene, SaΙΙ and Xhol were used in double digestion.  Digests were 

carried out in 20 µl volumes in Eppendorf tubes.  Digests contained 2 µl of 10× 
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FastDigest green buffer, 2 µl of 1µg/µl DNA sample and 1 µl of each required 

FastDigest enzyme, and the volume was made up to 20 µl with nuclease-free water.  

The reaction mixture was gently mixed and centrifuged briefly before being 

incubated in a heating block at 37°C for 30 min.  The 10× FastDigest green buffer 

can be used as an electrophoresis loading buffer; thus, all 20 µl of the reaction 

mixture were loaded directly onto an agarose gel and electrophoresed at 80V for 1h.   

   

2.21.2.  Gel extraction  

 

The required restriction fragment of DNA was purified from the gel using the 

GeneJET Gel Extraction kit (Fermentas Life Sciences).  A gel slice containing the 

DNA was cut out using a sterile razor blade and the gel slice was placed in a pre-

weighed 1.5 ml sterile Eppendorf tube.  The tube was weighed again after adding 

the gel slice and the difference in weight was recorded as the weight of the gel slice.  

A volume of 1:1 (volume: weight) of the binding buffer was added into the tube 

(e.g.  368 µl of binding buffer was added to 368 mg of 1% gel agarose slice).  The 

gel mixture was incubated in a heating block at 60°C for 10 min and the tube was 

mixed by inversion every 2 min, to facilitate the melting process.  After ensuring 

that the gel was completely dissolved, the gel solution obtained was transferred to 

the GeneJET purification column and centrifuged at 13,000 rpm for 1 min.  The 

liquid was removed and the column was placed back into the same collection tube.  

700 µl of washing buffer was added into the purification column and centrifuged for 

1 min, the liquid was then removed and the column was replaced into the same 

collection tube.  The empty purification column was centrifuged again for an 

additional 1 min to completely remove the residual washing buffer.  Then the 

column was transferred into a sterile Eppendorf tube and 50 µl of elution buffer was 

added to the centre of the purification column membrane and centrifuged for 1 min.  

The purification column was removed and the purified DNA was stored at -20 °C.   

 

2.21.3.  Ligation of DNA fragments and isolation of recombinant plasmid  

 

In the ligation procedure, linear DNA fragments were joined together using a 

Rapid DNA Ligation Kit (Fermentas Life Sciences).  In an Eppendorf tube, 3 µl of 
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the linearized DNA was added, together with 1 µl vector (3:1 ratio of amount of 

DNA), 4 µl of 5 × rapid ligation buffer and 1 µl of T4 DNA ligase, and then the 

reaction mixture was made up to 20 µl with nuclease-free water.  The mixture was 

vortexed briefly and then was incubated at room temperature for 5 min and stored 

at 4°C.  The ligation mixture (5µl) was transformed into E.coli TOP 10 competent 

cells as described in section 2.12.4.  After the transformed cells were isolated on 

LB plates containing 50 µg/ml ampicillin the plasmid was purified by the Midi-

prep method, as mentioned previously in section 2.17, and screened by PCR to 

confirm the presence of the Cbei 4532 and Cbei 4533 genes. 

 

2.21.4. Transfer of the artificial operon to pUC18 vector 

 

Following characterization of the clone carrying both Cbei 4532 and Cbei 4533, 

the plasmid was digested with XbaΙ and BglΙΙ section (2.21.1) and the required 

fragment was gel purified as described in section 2.21.2.  The purified fragment 

was then ligated into PUC18 which had been digested with XbaΙ and BamHΙ and 

gel purified.  Isolated recombinant plasmid which contained both genes was 

transformed into E.coli TOP10 cells and the clones isolated on LB plates 

containing 50 µg/ml ampicillin.  Plasmid was isolated from a selected clone and 

was purified using the large-scale plasmid purification kit (section 2.17), and used 

to transform E.coli mutants.  Then the vector containing Cbei 4532 and Cbei 4533 

genes was cloned into E.coli mutants as described in (2.12.4).  

 

 

2.22.  Ribonucleic acid [RNA] extraction 

 

2.22.1.  Isolation of RNA from growth cultures 

 

C. beijerinckii NCIMB 8052 spores were inoculated into 20 ml of RCM starter 

culture and incubated anaerobically, overnight.  1 ml of the starter culture was 

inoculated into 100 ml of CBM containing one or more carbon source, at a 

concentration of 10 mM.  The media were incubated anaerobically at 37°C, 

overnight.  After the cell density (OD650nm) had been measured, aliquots of this 
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culture were inoculated into another CBM culture containing the same sugar(s) and 

incubated under the same conditions.  Samples for RNA isolation were taken during 

the exponential growth phase, (which was OD600 nm around 0.4 to 0.6).  750 µl of 

culture was placed into a 1.5 ml Eppendorf tube and then 750 µl of RNA 

stabilization reagent (Qiagen) was added and the mixture was incubated at room 

temperature for 10 min.  The mixture was then centrifuged at 13,000 g for 3min.  

The supernatant was carefully removed with a sterile pipette tip and the pellet was 

immediately transferred into liquid nitrogen and then stored at -70°C.   

 

2.22.2.  RNA purification 

 

The RNA was purified using the RNeasy-mini kit (Qiagen).  The RNA purification 

protocol was carried out by adding 10 µl of β-mercaptoethanol to 1ml of RLT 

buffer, and the lysozyme buffer was prepared as 10 ml TE buffer (30mM Tris-HCl, 

1mM EDTA, pH 8.0) containing 15 mg/ml lysozyme and 20 µl of Qiagen proteinase 

K.  After the pellet had thawed on ice, the purification was initiated by adding 200 

µl of lysis buffer to the cell pellet and carefully resuspending by pipetting several 

times.  The mixture was incubated for 12 min at room temperature and during this 

incubation time, it was vortexed for 10 sec, every 2 min.  700 µl of RLT buffer 

containing mercaptoethanol was added and the tube was vortexed vigorously.   

500 µl of ethanol [96%] was added to the mixture and mixed carefully by pipetting.  

700 µl of the mixture was transferred into an RNeasy column tube and centrifuged 

for 15 sec at 11,000 rpm and the supernatant was removed.  This step was repeated 

using the remaining 700 µl from the mixture and then the supernatant was removed 

again.  700 µl of RW1 solution was added to the column and centrifuged at 11,000 

rpm for 15 sec, to wash the spin column membrane.  The RNeasy column was then 

placed in an Eppendorf tube and 500 µl of RPE buffer was added and the column 

and the tube were centrifuged at 11,000 rpm for 15 sec.  Then the liquid was 

removed and the collection tube was placed again into the tube and the previous step 

was repeated by centrifuging for 2 min.  The RNeasy column was finally placed into 

a new 1.5 ml Eppendorf tube and 40 µl of RNase-free water was added directly to 

the column membrane and centrifuged at 11,000 rpm for 1 min, to elute the RNA.  
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Then the tube containing the RNA was transferred directly into liquid nitrogen and 

stored at -70°C.   

 

2.22.3.  Determination of RNA concentration   

 

The RNA concentration was determined by taking 1 µl of  the RNA sample in a 

sterile Eppendorf tube and adding 399 µl of 1× TE buffer; in this case the Dilution 

Factor [DF] was 400 [DF=Total volume/volume of RNA].  The absorbance of RNA 

was measured using a UV spectrometer at 260 nm.  At this wavelength, the 

concentration of RNA is given by: absorbance of 1.0 = 40 µg/ml of RNA.  The 

original absorbance was calculated [Abs × DF] and the RNA concentration obtained 

by multiplying ×40.  TE buffer was used as a blank in the spectrophotometer. 

 

2.23. Slot-blot hybridization  

 

2.23.1.   Preparation and examination of DIG-labeled probes 

 

The digoxigenin used to label  the DNA nucleotides was digoxigenin11-dUTP 

(Roche Diagnostics GmbH) (Glick and Pasternak, 1998) Primers were designed for 

amplification of 250-350 bp of internal regions of the target genes Cbei4532, 

Cbei4533, Cbei4534 and Cbei0751, as a control.  From the gene sequences, the 

primer lengths were designed to be approximately 20 nucleotides, as shown in Table 

3.  The dig-labeled probes were produced by using Biomix (Bioline) for the PCR 

reaction.  The reaction mixtures contained 25 µl of 2×buffer; 1 µl of forward primer; 

1 µl of reverse primer; 2 µl of C.beijerinckii DNA template; 2 µl of digoxygenin-11-

dUTP and 19 µl of sterile deionized water.  After 30 cycles of PCR reaction, as 

described previously in section 2.12.2, the samples were loaded onto an agarose gel 

and electrophoresed at 80V for around 1 hour and then the bands were detected 

under UV light.   
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             Table 3: Primer sequencing for hybridization probes  

 

Name 5’-3’ Sequence GC (%) Lab reference 

number  

Cb4532-Dig-Fwd CATTGCTTCAGCTTTTATGC 40% 506 

Cb4532-Dig-Rev ACAATAGCTTCACCAAATGC 40% 507 

Cb4533-Dig-Fwd TTAGTTGCACCTATAACTGG 40% 504 

Cb4533-Dig-Rev ATGTTTGTAACAAGGACTGG 40% 505 

Cb4534-Dig-Fwd GTTTCCGTAAACATGAATGG 40% 502 

Cb4534-Dig-Rev AGCTTACCTGAATTTCTAGC 40% 503 

Cb0751-Dig-Fwd ACAATGCTTGATACGTATGG 40% 510 

Cb0751-Dig-Rev TATGCAATGCTGCTGTACC 40% 511 

 

The examination of dig-labeled probes was carried out by preparing five-fold serial 

dilutions (1:5) (v/v) of the probes.  From each dilution, 1 µl was transferred onto a 

nylon membrane as a dot.  The membrane was fixed under UV light for 2 min.  

After that, the membrane was transferred into 10 ml blocking buffer solution and 

incubated for 45 min by shaking at room temperature.  After incubation, the anti-dig 

fragment tube (Anti-Digoxigenin-AP Fab fragments – Roche Diagnostics GmbH) 

was centrifuged at 13,000 rpm for 5 min and then 1 µl of anti-dig was added into the 

blocking buffer and incubated again for 30 min, under the same conditions.  The 

membrane was then washed at room temperature with Dig-1 buffer (pH 8.5) three 

times for 15 min, with shaking.  This was followed by a wash with Dig-4 buffer (pH 

9.5) with shaking, for 15 min.  The detection steps were then carried out by 

transferring the nylon membrane (approximately 4×5 cm) to a plastic acetate sheet 

(cellulose acetate polymer film); 600 µl of CDP star chemiluminescent substrate 

solution (Sigma) was added to wet the membrane completely, and then the 

membrane was covered by another plastic acetate sheet and the sheets, including the 

membrane, were placed in a X-ray cassette.  After that, in the dark room, an X-ray 

film (Lumi-Film Chemiluminescent Detection Film 7.1 × 9.4 inches, 18 × 24 cm) 

was placed on top of the acetate sheets and left for 15 min.  The film was then 

placed in developer solution (GBX developer/replenisher - Sigma) for 30 sec-1 min 

until the spots appeared.  Then the X-ray film was washed with water for 1 min, and 



 
50 

 

finally, it was rinsed using fixer solution (GBX fixer/replenisher – Sigma) and then 

washed again with water.   

 

2.23.2.  Slot-Blotting 

RNA was diluted to 50 ng/µl with sterile deionized water, and the samples were 

heated at 70°C for 10 min before being directly transferred onto ice and left for 

3min.  In the meantime, the blotting apparatus was prepared and cleaned using 

RNase Zap.  Two pieces of Whatman paper were cut as a background for the 

blotting apparatus wells (Minifold ΙΙ- Schleicher and Schuell, Inc.  Keeno, N.H.  

SRC 072/0) and used to cover the bottom of the wells.  A suitable size of nylon 

membrane, depending on the number of samples, was placed in the blotting 

apparatus and the membrane was washed with RNase-free water.  Amounts of 10µl 

from 500 ng/µl RNA sample were loaded into the blotting apparatus wells, and after 

approximately 5 min the nylon membrane was removed and fixed under UV light 

for 1-2 min.     

  

2.23.3.  Hybridization  

After the RNA had been fixed to the nylon membrane, the membrane was 

transferred to a hybridization tube containing 10 ml of hybridization buffer and then 

pre- incubated at 60°C.  During this time, the probe was prepared by taking 1.5 µl of 

the probe PCR product and adding it to 18.5 µl of sterile deionized water, and then 

heating at 95°C for 10 min.  After that, the tube was immediately placed on ice and 

left for 3 min and then centrifuged for 15 sec at 13,000 rpm.  After 30min 

incubation, the total volume of the probe solution was added into the hybridization 

tube, which was then replaced into the incubator and left overnight.  After 

incubation, the membrane was washed in two steps, using a high salt concentration 

buffer [2×SSC] and a low salt concentration buffer [0.2×SSC].  It was washed three 

times for 15 min at 60°C with 2×SSC, and then twice with 0.2×SSC for 15min, at 

60°C.  After this stringent washing, the membrane was placed in a blocking buffer 

and treated and analysed as described in section 2.23.1.    
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PART 1 

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

CHITIN HYDROLYSIS AND N-ACETYLGLUCOSAMINE 

UTILIZATION BY CLOSTRIDIUM BEIJERINCKII 
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3. RESULTS 

 

3.1.  Chitinase assay  

Sugars are known as an energy source for bacterial growth in their environment, in 

order to produce the requirements for all of the biosynthetic processes.  However, 

the purpose in this experiment was to examine the ability of Clostridium beijerinckii 

to produce a chitinase enzyme which can degrade colloidal chitin.  Cells were first 

streaked on plates containing 2% (v/v) of colloidal chitin in 100 ml CBM agar and 

incubated anaerobically at 37 °C for 48 h.  In the same way, the cells were also 

streaked on plates containing CM-Chitin RBV solution (Carboxy-methyl Chitin 

Remazol Brilliant Violet) as colorimetric detection of chitinase activity.   

 

As shown in Figure 1 (A, B), C.beijerinckii can produce chitinase and degrade 

colloidal chitin and CM-chitin RBV, as can be seen by the zones of hydrolysis 

surrounding the streaks of bacterial growth.  Also, the chitinase activity of culture 

supernatants was examined on a plate containing CM-chitin RBV stain.  The plate 

was divided into sectors, containing 100 µl of concentrated supernatant from culture 

grown on chitin, NAG or glucose, or chitinase enzyme, as a control.  The results in 

Figure 2 show a clear zone around samples from chitin or NAG cultures, but not for 

the glucose culture supernatant, in comparison with the chitinase enzyme control.  

This indicates the potential capability of the strain for utilizing chitin by producing 

chitinase enzyme(s).   

 

In another experiment, chitin hydrolysis by C. beijerinckii was determined using a 

Thin Layer Chromatography technique (TLC) as described in section 2.6.1.  Thus, 

1µl of samples of 2% chitin, 1mg/ml chitobiose and 1mg/ml NAG was spotted on 

the plate and used as markers.  The same amount of sample (1 µl) was taken from 

each of the following: a mixture containing colloidal chitin with chitinase enzyme, 

as a control; colloidal chitin with concentrated culture supernatant obtained from a 

chitin growth culture, and colloidal chitin with non-concentrated supernatant.  These 

samples were added to the TLC plate after incubating at 37 °C for 24h.        
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As shown in Figure 3, the chitobiose and N-acetylglucosamine were separated and 

moved to specific positions, depending on their chemical polarity.  The chitinase 

enzyme from S.griseus had degraded chitin to chitobiose and N-acetylglucosamine. 

The concentrated C.beijerinckii culture supernatant showed the ability to degrade 

the colloidal chitin with some formation of NAG and chitobiose, but it also appeared 

that higher oligomers of Nag were present in the mixture.  The non-concentrated 

supernatant sample also caused some degradation of the chitin, but not to the same 

extent as for the concentrated supernatant, since no chitobiose or Nag could be 

detected.  Therefore, the results confirmed the earlier demonstration of the ability of 

C. beijerinckii to hydrolyse colloidal chitin.    

 

  

 
(Fig 1. a)     

      

Fig 1: (a) Chitin hydrolysis zone formed by Clostridium beijerinckii grown on CBM agar 

containing 2% colloidal chitin.          

                

 
(Fig 1. b) 

(b) Chitin hydrolysis zone formed by Clostridium beijerinckii grown on CM-Chitin RBV 

agar containing 2% colloidal chitin. 
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Fig 2: Hydrolysis of CM-RBV chitin by C.beijerinckii culture supernatants (1) 

concentrated supernatant from culture grown on NAG; (2) concentrated supernatant from 

culture grown on chitin; (3) chitinase enzyme from Streptomyces griseus as a control;  (4) 

nothing was added as a control; (5) concentrated supernatant from culture grown on 

glucose. 

 

 

 

 
Fig 3: Analysis of chitin degradation by TLC.  The plate contained (1) undegraded chitin, 

(2) chitobiose, (3) N-acetylglucosamine, (4) digest with chitinase enzyme from 

Streptomyces griseus as a control, (5) digest with concentrated cell supernatant from 

C.beijerinckii culture grown on chitin, (6) digest with non-concentrated cell supernatant 

from C.beijerinckii culture grown on chitin. 
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3.2. N-acetylglucosamine utilization by Clostridium beijerinckii. 

 

After the capability of C. beijerinckii for hydrolysis of colloidal chitin had been 

demonstrated, in the following experiments the study was focused on the 

metabolism of the monomer of chitin (N-acetylglucosamine), with a view to 

assessing the potential for fermentation of chitin-containing waste materials for the 

production of butanol.  The utilization of N-acetylglucosamine was studied in 

several stages, using different clostridial growth media.  The effect of glucose on N-

acetylglucosamine utilization was also studied, in order to investigate whether the 

two sugars can be co-utilized or whether one, which is usually glucose, may repress 

the utilization of the other (Mitchell, 1996).  A measure of this effect can be 

obtained by following sugar consumption in the bacterial growth culture.   

 

3.2.1.Utilization of N-acetylglucosamine by C.beijerinckii grown on Synthetic 

Reinforced Clostridial Medium [RCM] and Clostridial Basal Medium [CBM]. 

 

Initially, N-acetylglucosamine utilization by C. beijerinckii was followed by growing 

cells on both sRCM and CBM containing 30 mM and 15 mM N-acetylglucosamine 

respectively as a fermentable carbon source.  The growth was followed by 

measuring the optical density of the culture at 650 nm and samples of the 

supernatant were collected for sugar analysis.  Figures 4 and 5 respectively, show 

that growth in the two media was accompanied by N-acetylglucosamine utilization 

during the exponential phase, indicating that N-acetylglucosamine can be used as a 

carbon source by C. beijerinckii in both growth media, sRCM or CBM, and it was 

completely exhausted within 25 h.   
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Fig 4: N-acetylglucosamine utilization by Clostridium beijerinckii in sRCM containing N-

acetylglucosamine as a fermentable carbon source. 

 

 

 

 

 
Fig 5: N-acetylglucosamine utilization by Clostridium beijerinckii in CBM containing N-

acetylglucosamine as a fermentable carbon source. 
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3.2.2.  The effect of the presence of glucose on N-acetylglucosamine utilization 

 

As mentioned before, glucose is considered to be the preferred sugar by the majority 

of chemoheterotrophic microorganisms.  Therefore, the effect of glucose on 

utilization of NAG was examined.  Cells pre-grown in the presence of either glucose 

or NAG were washed with the same medium used for growth, but without sugar, 

before being inoculated into the experimental cultures containing both glucose and 

N-acetylglucosamine.  The bacterial growth and sugar levels were determined, as 

described in the previous experiment.   

In the experiment with sRCM culture containing 20 mM of N-acetylglucosamine 

and glucose, with cells pre-grown on either N-acetylglucosamine (Figure 6) or 

glucose (Figure 7), the data show that, during the exponential phase, a small amount 

of sugar utilization was associated with cell growth.  However, in both cases, the 

cells appeared to utilize both N-acetylglucosamine and glucose together, at the same 

time, which indicates that no repression was effective on N-acetylglucosamine 

uptake in the presence of glucose.   

The same result was obtained when 10 mM of N-acetylglucosamine and 5 mM of 

glucose were combined in a CBM culture with pre-growth on either N-

acetylglucosamine (Figure 8) or glucose (Figure 9), in that the cells were clearly 

utilizing N-acetylglucosamine while glucose was present in the culture.  Therefore, 

the presence of glucose did not prevent N-acetylglucosamine utilization, irrespective 

of the culture medium.   

 



 
59 

 

 

Fig 6: Growth of Clostridium beijerinckii in sRCM containing 20 mM N-acetylglucosamine 

and 20mM glucose: pre-grown on N-acetylglucosamine. 

 

 

Fig 7: Growth of Clostridium beijerinckii in sRCM containing 20 mM N-acetylglucosamine 

and 20mM glucose: pre-grown on glucose. 
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Fig 8: Growth of Clostridium beijerinckii in CBM containing 10 mM N-acetylglucosamine 

and 5 mM glucose: pre-grown on N-acetylglucosamine. 

 

 

 

Fig 9: Growth of Clostridium beijerinckii in CBM containing 10 mM N-acetylglucosamine 

and 5 mM glucose: pre-grown on glucose. 
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PART 2 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

PHOSPHOTRANSFERASE SYSTEM FOR  

N-ACETYLGLUCOSAMINE 
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3.3. Determination of N-acetylglucosamine PTS activity in Clostridium 

beijerinckii cells grown on N-acetylglucosamine.   

 

 It has been suggested that the uptake system of N-acetylglucosamine in C. 

beijerinckii is dependent on a PTS belonging to the glucose subfamily.  As shown in 

section 1.9. (Figure 4) there are many PT-systems involved in sugar uptake in 

C.beijerinckii.  The glucose subfamily is defined as one branch of these systems and 

it is likely that the NAG-PTS is a member of this branch.  The previous results of 

the growth experiments showed that the enzymes required for N-acetylglucosamine 

utilization were expressed in both media tested, and also indicated that glucose did 

not prevent NAG utilization. In this experiment the PTS activity for N-

acetylglucosamine was determined in extracts of cells grown on N-

acetylglucosamine or glucose in the presence of phosphoenolpyruvate (PEP) or 

without it.  

The initial results showed that, in the presence of PEP, N-acetylglucosamine was 

phosphorylated, while in the incubation without PEP, which was used as a control, 

no phosphorylation had occurred (Figure 10).  Therefore, the extract of cells grown 

on N-acetylglucosamine showed N-acetylglucosamine PTS activity.   

 

 

Fig 10: N-acetylglucosamine phosphorylation by extract of C.beijerinckii cells grown on N-

acetylglucosamine with PEP, and without PEP, as a control. 
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In an additional experiment, under the same reaction conditions, the N-

acetylglucosamine PTS activity was examined over a longer incubation time.  It was 

shown that the additional time did not result in much increase in the amount of sugar 

phosphorylation occurring (Figure 11-A).  Furthermore, this experiment also 

compared the activity of the N-acetylglucosamine PTS in a cell-free extract prepared 

from cells grown on glucose (Figure 11-B).  Very little difference was shown in the 

phosphorylation activity for these extracts, demonstrating that the N-

acetylglucosamine PTS is present in cells grown on either N-acetylglucosamine or 

glucose.   

 

 
 

Fig11: Comparison of N-acetylglucosamine phosphorylation by extracts of C.beijerinckii 

cells grown on N-acetylglucosamine and glucose.  (A) N-acetylglucosamine; (B) glucose.  

Experiments were done in the presence of PEP, and without PEP, as a control.   

 

 
 

3.3.1. The effect of glucose and chitobiose on N-acetylglucosamine   PTS activity  

 

 

After demonstrating the presence of N-acetylglucosamine PTS activity and 

identifying the appropriate incubation time for assay of the system in cell-free 

extracts, the next experiment was designed to study the effect of glucose and 

chitobiose on N-acetylglucosamine phosphorylation.  In the presence of 10 mM 

glucose, the N-acetylglucosamine PTS activity was strongly inhibited for both 

extracts, as shown in Figures 12 and 13. 
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Fig 12:  Effect of glucose on N-acetylglucosamine phosphorylation by an extract of 

C.beijerinckii cells grown on 10 mM N-acetylglucosamine.  Experiments were done in the 

presence and absence of PEP and 10 mM glucose.  

 

 

Fig 13: Effect of glucose on N-acetylglucosamine phosphorylation by an extract of 

C.beijerinckii cells grown on 10 mM glucose.  Experiments were done in the presence and 

absence of PEP and 10 mM glucose. 
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On the other hand, a concentration of 1mM of glucose did not result in any inhibition 

of the N-acetylglucosamine phosphorylation in either of the cell-free extracts, as 

shown in Figures 14 and 15.   Therefore, it appeared that the N-acetylglucosamine 

PTS may have a relatively low affinity for glucose.  The effect of 10 mM chitobiose 

on N-acetylglucosamine phosphorylation was also studied (Figure 16) and the result 

was showed no inhibitory effect.  It is likely that, if chitobiose is taken up by 

C.beijerinckii via a PTS, then this would occur via a system belonging to the lactose-

diacetylchitobiose family, as shown in the phylogenetic tree in section 1.9.  Since 

glucose, but not chitobiose, was shown to be an inhibitor of N-acetylglucosamine 

phosphorylation, it seems that the N-acetylglucosamine PTS belongs to the glucose 

subfamily.   

 

 

 
Fig 14: Effect of glucose on N-acetylglucosamine phosphorylation by an extract of 

C.beijerinckii cells grown on N-acetylglucosamine.  Experiments were done in the presence 

and absence of PEP and 1 mM glucose. 
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Fig 15: Effect of glucose on N-acetylglucosamine phosphorylation by an extract of 

C.beijerinckii cells grown on glucose.   Experiments were done in the presence and absence 

of PEP and 1 mM glucose. 

 

 

 

Fig 16: Effect of chitobiose on N-acetylglucosamine phosphorylation by an extract of 

C.beijerinckii cells grown on N-acetylglucosamine.  Experiments were done in the presence 

and absence of PEP and 10 mM chitobiose. 
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3.3.2. ATP-dependent phosphorylation of N-acetylglucosamine and glucose   

 

 

As mentioned above, extracts of C.beijerinckii grown on either N-acetylglucosamine 

or glucose showed PTS activity for N-acetylglucosamine.  However, the cells may 

potentially use another uptake mechanism, such as an ATP–dependent 

phosphorylation mechanism in order to utilize the sugar by an alternative non-

phosphotransferase route (Mitchell, 1998).  ATP-dependent phosphorylation of N-

acetylglucosamine activity was therefore measured using N-acetylglucosamine and 

glucose cell-free extracts (Figures 17 and 18, respectively).  As shown, in the 

presence of ATP there was no phosphorylation of the amino sugar, while activity 

was observed in the presence of PEP, which again demonstrates the presence of the 

PTS.  This result indicates that there is nothing in the extracts that can use ATP to 

phosphorylate the N-acetylglucosamine substrate, while in the same extracts 

phosphorylation could be supported by PEP.  

 

 

 

Fig 17: N-acetylglucosamine phosphorylation by an extract of C.beijerinckii cells grown on 

N-acetylglucosamine in the presence of ATP or PEP.  Incubation without PEP or ATP was 

used as a control.  
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Fig 18: N-acetylglucosamine phosphorylation by an extract of C.beijerinckii cells grown on 

glucose in the presence of ATP or PEP.  Incubation without PEP or ATP was used as a 

control.  

 

 

 

3.3.3. Fractionation and reconstitution of the N-acetylglucosamine PTS 

 

As indicated before, the PT-system in bacteria consists of a number of proteins 

which are required for sugar uptake and phosphorylation.  The EΙ and HPr proteins 

are cytoplasmic proteins, and the Enzyme ΙΙ complex consists of EΙΙA, EΙΙB and 

EΙΙC domains.  The EΙΙC domain is considered as membrane protein and EΙΙA and 

EΙΙB domains may be contained within cytoplasmic proteins or may be joined to the 

EΙΙC domain as hydrophilic membrane-bound domains.  To further investigate 

whether both soluble extract and membrane proteins are necessary for activity, in 

this experiment the cell fractions were prepared by growing the cells in CBM 

medium containing either N-acetylglucosamine or glucose and then the membranes 

and soluble fraction (cytoplasm) were separated.  The N-acetylglucosamine PTS 

activity was measured using cell membranes only or soluble extract only (Figure 

19), and the phosphorylation system was found to be inactivated, due to absence of a 

complete phosphoryl transfer chain.  However, in the presence of both the soluble 

extract and cell membranes, the activity of the N-acetylglucosamine PTS was 

observed again, which indicates that a functional phosphoryl transfer chain had been 

reconstituted.  The same experiment was carried out using extracts of cells grown on 
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glucose (Figure 20), and the same result was recorded.  This clearly shows the 

functional correlation between a complete PTS phosphoryl transfer chain and N-

acetylglucosamine phosphorylation activity.   

 

Fig 19:  Fractionation and reconstitution of the PTS in extracts from C.beijerinckii cells 

grown on N-acetylglucosamine.  Experiments were done using membrane only, soluble 

extract only or membrane with soluble extract, with PEP and without PEP as a control. 

 

Fig 20: Fractionation and reconstitution of the PTS in extracts from C.beijerinckii cells 

grown on 10 mM glucose.   Experiments were done using membrane only, soluble extract 

only or membrane with soluble extract. 
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3.3.4. N-acetylglucosamine phosphorylation by reconstituted PTS with membrane 

and soluble extract from cells grown on N-acetylglucosamine or glucose. 

By following N-acetylglucosamine phosphorylation in extracts of cells grown on N-

acetylglucosamine or glucose, the previous results obtained have demonstrated that 

both soluble and membrane proteins were required to form a complete chain during 

N-acetylglucosamine phosphorylation.  Since extracts of cells grown on both N-

acetylglucosamine and glucose showed the same behaviour, it was of interest to 

examine the effects of combining the membranes and soluble fractions of the 

different extracts. It is clear that the activity of N-acetylglucosamine 

phosphorylation was observed in the presence of both soluble extract from the 

glucose-grown cells and membranes from N-acetylglucosamine-grown cells (Figure 

21).  Also, the opposite experiment was carried out, using membranes from glucose 

grown cells and soluble extract from the N-acetylglucosamine grown cells.  This 

combination also showed N-acetylglucosamine PTS activity (Figure 22).  Therefore, 

the results indicate that the domains of the N-acetylglucosamine PTS are all present 

and that both the glucose soluble extract and membranes contained all the domains 

required for N-acetylglucosamine phosphorylation in combination with either 

membranes or soluble fraction of the N-acetylglucosamine extract, Theses domains 

maybe part of the Nag-PTS, or alternatively other PTS’s expressed constitutively in 

C.beijerinkii.    

 

Fig 21: N-acetylglucosamine phosphorylation by reconstituted PTS with membranes from 

N-acetylglucosamine-grown cells and soluble extract from glucose-grown cells.  

Experiments were carried out with PEP and without PEP as a control. 
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Fig 22: N-acetylglucosamine phosphorylation by reconstituted PTS with membranes from 

glucose-grown cells and soluble extract from N-acetylglucosamine-grown cells.  

Experiments were carried out with PEP and without PEP as a control. 

 

3.3.5.  The effect of N-acetylglucosamine on glucose phosphorylation by extracts of 

cells grown on glucose and N-acetylglucosamine. 

 

The previous experiments were designed to demonstrate the existence of a N-

acetylglucosamine PTS in C.beijerinckii, and to investigate its characteristics.  The 

study was next extended to examine glucose PTS activity in C.beijerinckii extracts 

prepared from cells grown on N-acetylglucosamine or glucose.  As shown in Figure 

23, in the presence of PEP glucose was phosphorylated by extracts of cells grown 

on N-acetylglucosamine, while 10mM N-acetylglucosamine inhibited the activity.  

In the second experiment as shown in Figure 24, in which the extract of cells grown 

on glucose was used, similar activity was observed and 10 mM of N-

acetylglucosamine again inhibited the glucose phosphorylation.  These results were 

consistent with the inhibitory effect of glucose on N-acetylglucosamine 

phosphorylation for both cell-free extracts, and suggest a competitive relationship 

between N-acetylglucosamine and glucose.  
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Fig 23: Effect of N-acetylglucosamine on glucose phosphorylation an extract of            

C.beijerinckii cells grown on N-acetylglucosamine.  Experiments were done in the  

presence and absence of PEP and 10 mM N-acetylglucosamine.  

 

      

Fig 24: Effect of N-acetylglucosamine on glucose phosphorylation by a cell-free-extract of 

C.beijerinckii grown on glucose.  Experiments were done in the presence and absence of 

PEP and 10 mM N-acetylglucosamine.  
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By comparing the results obtained for both N-acetylglucosamine phosphorylation 

and glucose phosphorylation, it is clear that N-acetylglucosamine can be 

phosphorylated by glucose extract and also glucose can be phosphorylated by N-

acetylglucosamine extract.  This may indicate that glucose and N-acetylglucosamine 

can be utilized by the same PT-system or by independent systems that are capable of 

phosphorylating both of them.  Either possibility is consistent with the phylogenetic 

tree of PTS domains in Section 1.9, which suggested that the NAG- PTS belongs to 

the glucose subfamily.   

In the next part of the research, bioinformatics data was collected in an attempt to 

identify the N-acetylglucosamine PTS in C.beijerinckii and to compare the proteins 

of this system with other proteins which have the same functional role either in 

Gram positive or Gram negative bacteria.   Expression of genes encoding the 

putative N-acetylglucosamine PTS was then examined in cells growing on media 

containing different carbon sources.                
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3.4. Identification of putative nag-pts  genes in C.beijerinckii  

 

The results described previously demonstrated that the PTS is used as a transport 

system for N-acetylglucosamine by C.beijerinckii cells.  It was also observed that 

the system was able to phosphorylate glucose.  However, it has been found that the 

C.beijerinckii strain has 42 PTS’s three of which are in the phylogenetic glucose 

branch that includes systems known to be involved in uptake of N-

acetylglucosamine in other bacteria. 

To identify the similarity between the amino acid sequence of potential N-

acetylglucosamine PTS proteins in C.beijerinckii and characterized NAG-PTS 

proteins from other bacteria, a bioinformatics analysis was carried out.  This was 

done using the BLAST facility at the National Centre of Biotechnology Information 

(NCBI) database (Altschul et al.,  1997).   

One PTS, encoded by the Cbei 4532 (EΙΙCB) and Cbei 4533 (EΙΙA) genes, has been 

annotated as an N-acetylglucosamine PTS.  The relationship between these proteins 

in C.beijerinckii and the NAG-PTS proteins in B.subtilis and E.coli was therefore 

investigated.  As shown in Table 1, for the Cbei 4532 the percentage identity of 

amino acids was 43% and 45% respectively when compared to the E.coli K12 

NagE protein (EΙΙCBA) and B.subtilis NagP (EΙΙCB).  For Cbei 4533, the 

percentage identity with NagE protein was 45%.  Since Cbei 4533 contains only the 

(EΙΙA) domain, an alignment with NagP is not possible.  In addition, Figure 25a, b 

shows the protein sequence alignment between the C.beijerinckii NAG-PTS protein 

either the Cbei 4532 (EΙΙCB) or Cbei 4533 (EΙΙA) compared with E.coli K12 NagE 

protein (EΙΙCBA).  

By comparison, the product of the Cbei 0751 gene, which is a ΙΙCBA protein that 

also belongs to the glucose subfamily, showed 37% and 39% identity to NagE and 

NagP respectively.  In addition, the third member of glucose subfamily encoded by 

Cbei 4982 (ΙΙA) and Cbei 4983 (ΙΙCB), showed 38% and 35% identity when 

compared to the E.coli K12 NagE protein (EΙΙCBA), while 33% identity showed 

between Cbei 4983 (ΙΙCB) and B.subtilis NagP (EΙΙCB). 
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Since the products of the Cbei 4532 and Cbei 4533 genes are most closely related to 

NagE and NagP, it seems that these genes are likely to be the nag-pts genes of 

C.beijerinckii.  These genes are arranged divergently in the C.beijerinckii genome,  

Table 1: Comparison of N-acetylglucosamine PTS proteins in C.beijerinckii with those in 

E.coli K12 and B.subtilis. 

 

 

 

 

 

 

 

alongside a gene Cbei 4534 that encodes a putative transcriptional antiterminator 

(Figure 25c).  Comparison with other antiterminators showed between 30 and 35% 

identity with the LicT (Schnetz et al.,  1996) and SacY antiterminator proteins  

from B.subtilis (Idelson and Amster-Choder, 1998), and the BglG transcriptional 

antiterminator protein in E.coli K12 (Blattner et al., 1997).  These antiterminators 

are all associated with regulation of pts genes, so it appears that the Cbei 4534 

protein may be involved in regulation of the putative nag-pts genes in 

C.beijerinckii.  Having identified likely nag-pts genes in C.beijerinckii, the next 

step would be to characterize these genes by following their expression under 

different growth conditions and by examining their function via cloning and 

complementation of an E.coli NAG-PTS mutant.   

 

 

 

Gene name  Identity percentage 

E.coli K12 Nag E B.subtilis  Nag P 

Cbei 4532 43% 45% 

Cbei 4533 45% * 

Cbei 0751 37% 39% 

Cbei 4982 38% * 

Cbei 4983 35% 33% 

* No comparison possible.  
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Fig 25a: Protein alignments between C.beijerinkii putative EΙΙBC domains and E.coli K12 

NagE specific PTS enzyme: IIC, IIB, and IIA domains, the black shadow shows the 

similarity between amino acids in both proteins. 

 

Fig 25b: Protein homologue alignments between C.beijerinkii putative EΙΙA domain and 

E.coli K12 NagE specific PTS enzyme: IIC, IIB, and IIA domains, the amino acids that are 

identical are shown in black shadow in both proteins. 

 

 

 

 

 

  

 

Fig 25c: The organization of genes related to the putative N-acetylglucosamine PT-system, 

Cbei 4532, Cbei 4533 and Cbei 4534, compared with the specific NagE gene in E.coli K12.  

Cbei 4534 encodes a putative anti-terminator protein which probably regulates expression 

of Cbei 4532 and Cbei 4533 (http://www.ncbi.nlm.nih.gov/gene?term=Cbei_4532). 
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3.5. Slot-Blotting and Hybridization  

 

According to the bioinformatics data obtained in the previous section (3.4), it was 

suggested that the PTS Enzymes ΙΙBC and ΙΙA encoded by Cbei 4532 and Cbei 4533 

are involved in N-acetylglucosamine uptake in C.beijerinckii.  In this section, a 

hybridization technique was used in order to examine the expression of these genes 

and of Cbei 4534 and Cbei 0751 in C.beijerinckii.  The expression of these genes 

was examined by hybridization using labelled hybridization probes specific for each 

gene.  

Cells were grown in CBM containing one of several sugar substrates. N-

acetylglucosamine, glucose, both N-acetylglucosamine and glucose or glucitol, 

which is a substrate of a PTS that has been characterized and found to belong to 

another family of the PTS phylogenetic tree (Tangney et al., 1998a).  After the RNA 

was prepared from exponentially growing cells, 3µl of each RNA sample was 

screened by electrophoresis to make sure that it was of the required quality, as 

shown in Figure 26.   

 

 

Fig 26: RNA purification from C.beijerinckii cells.  Cultures were grown on CBM 

containing (1) N- acetylglucosamine, (2) glucose, (3) N-acetylglucosamine and glucose and 

(4) glucitol. 
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3.5.1. Preparation of Hybridization probes  

 

 Hybridization probes directed against the selected genes were prepared by 

designing internal primers for PCR amplification.  The gene segments were then 

amplified by a PCR reaction, using C.beijerinckii DNA as template and digoxigenin 

to label the PCR products.  The labelled samples were screened by gel 

electrophoresis with expected PCR product sizes of 420 bp for Cbei 4532, 350 bp 

for Cbei 4533, 500 bp for Cbei 4534, and 350 bp for Cbei 0751.  The DIG-labelled 

PCR product appeared heavier than the unlabelled bands, indicating that the 

digoxigenin had been incorporated into the PCR amplified DNA products and thus 

that the probes should be suitable for hybridization (Figures 27 and 28).    

 

 

Fig 27: Gel electrophoresis screening of PCR-amplification of hybridization probes.  (1) Cbei 

4532, (2) Cbei 4533 and (3) Cbei 4534.  The labeled bands indicated by arrows were shown 

by bigger size compared with unlabeled bands (a, b, c).   

 

Fig 28: Gel electrophoresis screening for PCR-amplification of hybridization probe for Cbei 

0751.  The DIG-labelled PCR product is shown on the gel.  
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Further tests on the DIG-labelled probes were carried out.  The probes were detected 

using dot blots on a nylon membrane by following the protocol indicated in 

Materials and Methods Sections 2.23.1.  Five- fold serial dilutions were prepared for 

each probe in sterile deionized water, and 1µl samples were applied to the 

membrane.  As demonstrated in Figure 29, the probes showed a high sensitivity 

starting from the original undiluted sample to the fourth dilution, which confirmed 

that the probes could be used in the hybridization experiments.   

 

 

Fig 29: Dot blot of DIG-labeled probes for Cbei 4532, Cbei 4533, Cbei 4534 and Cbei 

0751 at different concentrations. Starting from the highest concentration which is the first 

dilution (1) to the lowest concentration (5), each dilution was ×5.  

 

3.5.2. Expression of the Cbei 4532, Cbei 4533 and Cbei 4534 genes on a medium 

containing N-acetylglucosamine or glucose.   

  

In order to detect the expression of the putative N-acetylglucosamine PTS genes, 

samples were taken from a culture growing on N-acetylglucosamine or glucose 

during the exponential phase.  After purifying the RNA, the hybridization 

experiment was carried out for all N-acetylglucosamine PTS genes, using DIG-

labeled DNA products (DNA probes) with the RNA samples.  The experiment 

indicated that mRNA corresponding to the gene Cbei 4532 was present in both the 

samples (Figure 30).  Similarly, hybridization was also detected for the other genes 

Cbei 4533 (Figure 31) and Cbei 4534 (Figure 32).  Thus, these results indicate that 

the Cbei 4532, Cbei 4533 and Cbei 4534 genes were induced during growth on N-

acetylglucosamine or glucose.  The results were also consistent with the results 

recorded in the PTS assays, which showed the presence of Nag PTS activity in cells 
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grown on both N-acetylglucosamine and glucose.  Therefore, the next experiment 

was designed to examine the expression of these genes by isolating an RNA sample 

from a growth culture containing N-acetylglucosamine and glucose in the same 

medium.   

 

 

Fig 30: Slot blotting and hybridization of RNA sample, for Cbei 4532.  Cells were grown 

on N-acetylglucosamine (Duplicate) or glucose in separate cultures.  Each sample 

contained 500ng RNA applied to the membrane. samples were applied to the gel. 

 

 

 

Fig 31: Slot blotting and hybridization of RNA sample, for Cbei 4533.  Cells were grown 

on N-acetylglucosamine (Duplicate) or glucose in separate cultures.  Each sample 

contained 500 ng RNA applied to the membrane.  

 

 

Fig 32: Slot blotting and hybridization of RNA sample, for Cbei 4534.  Cells were grown 

on N-acetylglucosamine (Duplicate) or glucose in separate cultures.  Each sample 

contained 500 ng RNA applied to the membrane.  
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3.5.3. Expression of the Cbei 4532, Cbei 4533 and Cbei 0751genes in a medium 

containing N-acetylglucosamine, glucose, or N-acetylglucosamine with glucose.   

 

According to the previous result, the genes Cbei 4532, Cbei 4533 and Cbei 4534 

which encoded EΙΙBC, EΙΙA and an antiterminator were expressed in cultures 

growing either in a medium containing N-acetylglucosamine or a medium 

containing glucose.  In the next experiment, the analysis was extended to cultures 

growing in a medium containing both glucose and N-acetylglucosamine, and 

expression of the Cbei 0751 was also investigated.  The Cbei 0751 gene is believed 

to encode a protein of the glucose PTS, which may be involved in glucose uptake 

only,  and using the Cbei 0751 gene in this experiment as a control could potentially 

clarify its function.  As already described in the previous section, the results shown 

in Figures 33 and 34 clearly showed that the genes Cbei 4532 and Cbei 4533 were 

expressed during growth on N-acetylglucosamine or glucose; in addition an apparent 

high degree of expression was shown in the sample from a culture containing both 

N-acetylglucosamine and glucose.  The Cbei 0751 gene was also expressed in the 

presence of glucose and N-acetylglucosamine with glucose, while no expression or 

very low expression was demonstrated in the N-acetylglucosamine sample, as 

shown in Figure 35. This implies that the PTS which it encodes cannot be involved 

in N-acetylglucosamine uptake.    

These results obtained verified that the genes Cbei 4532 and Cbei 4533 were 

expressed in the presence of either N-acetylglucosamine or glucose, or both.  

Therefore, there is no evidence that their expression is repressed by glucose.  This 

pattern of expression is consistent with the results obtained previously in the growth 

curves in which glucose and N-acetylglucosamine were utilized together, thus 

showing the apparent absence of repression of N-acetylglucosamine uptake by 

glucose.   
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Fig 33: Slot blotting and hybridization of RNA sample, for Cbei 4532.  Cells were grown 

on N-acetylglucosamine, glucose and N-acetylglucosamine with glucose in the same 

culture.  Each sample contained 500 ng RNA applied to the membrane. 

 

 

 

 

Fig 34: Slot blotting and hybridization of RNA sample, for Cbei 4533.  Cells were grown 

on N-acetylglucosamine, glucose and N-acetylglucosamine with glucose in the same 

culture.  Each sample contained 500 ng RNA applied to the membrane. 

 

 

 

Fig 35: Slot blotting and hybridization of RNA sample, for Cbei 0751.  Cells were grown 

on N-acetylglucosamine, glucose and N-acetylglucosamine with glucose in the same 

culture.  Each sample contained 500 ng RNA applied to the membrane. 
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3.5.4. Expression of the Cbei 4532, and Cbei 4533 genes in a medium containing 

N-acetylglucosamine, glucose,  N-acetylglucosamine with glucose or glucitol.  

    

The previous experiments confirmed that all the genes suggested as being related to 

N-acetylglucosamine utilization were expressed in the presence of N-

acetylglucosamine.  However, they were also expressed during growth in a culture 

containing glucose as the only carbon source, and in the presence of both sugars, 

suggesting that glucose did not repress expression of the genes.  It was therefore of 

interest to examine expression during growth on an alternative substrate such as 

glucitol,  which is a substrate of a PTS that belongs to another family of the PTS 

phylogenetic tree (Tangney et al.,  1998a).  Thus, RNA prepared from a culture 

grown on glucitol was used in a series of hybridization experiments.   

As shown in Figures 36 and 37, it is clear that, the Cbei 4532 and Cbei 4533 genes 

were expressed during growth in media containing N-acetylglucosamine and/or 

glucose.  However, there was no expression of these genes during growth on 

glucitol.   

Since bioinformatics and gene expression analysis of the Cbei 4532 and Cbei 4533 

genes provided evidence that they are involved in  N-acetylglucosamine uptake, the 

next step was to clone and characterize the genes  in an Escherichia coli mutant 

(nagE) with an inactivated N-acetylglucosamine PTS (Baba et al., 2006).    
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Fig 36:  Slot blotting and hybridization of RNA sample, for Cbei 4532.  Cells grown on N-    

acetylglucosamine, glucose, N-acetylglucosamine with glucose in the same growth culture, 

and glucitol as a control.  Each sample contained 500 ng RNA applied to the membrane. 

 

 

 

 

 

Fig 37: Slot blotting and hybridization of RNA sample, for Cbei 4533.  Cells grown on N-

acetylglucosamine, glucose, N-acetylglucosamine with glucose in the same growth culture, 

and glucitol as a control.  Each sample contained 500 ng RNA applied to the membrane. 
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CLONING AND CHARACTRIZATION OF THE PUTATIVE N-
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3.6. Cloning of the genes encoding the PT-System  

 

As demonstrated in the previous part, the putative genes assumed to be involved in 

the N-acetylglucosamine PTS were expressed in the presence of N-

acetylglucosamine or glucose but not glucitol, and it was also shown that the 

presence of both sugars in the same growth culture gave a high degree of expression 

for both genes, Cbei 4532 and Cbei 4533.  In order to verify the function of these 

genes, this part of the research was designed to clone and characterize them in a 

nagE mutant strain of E.coli with an inactivated N-acetylglucosamine 

phosphotransferase system. 

In Clostridium beijerinckii NCIMB 8052 the completed genome is estimated to be 

6,000, 632 bp.  However, it was suggested that there are 42 PTSs encoded by this 

genome and the putative N-acetylglucosamine PT-system appears to be encoded by 

two genes in the opposite orientation in the genome (Figure 38).   

The Cbei 4532 gene (1437 bp) encodes a PTS protein including EΙΙC and EΙΙB 

domains, and the, Cbei 4533 gene (489 bp), encodes a PTS EΙΙA domain.  

Therefore, it is expected that both genes Cbei 4532 and Cbei 4533 will be required 

to encode a functional PTS.  These pts genes are adjacent to Cbei 4534 encoding a 

putative antiterminator which is likely to be involved in regulation of their 

expression.  

 

 

 

 

  

Fig 38: The organization of genes related to the putative N-acetylglucosamine PT-system, 

Cbei 4532, Cbei 4533 and Cbei 4534.  Cbei 4534 encodes a putative anti-terminator protein 

which probably regulates expression of Cbei 4532 and Cbei 4533 

(http://www.ncbi.nlm.nih.gov/gene?term=Cbei_4532). 
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3.6.1. Cloning of the putative nag operon (Cbei 4532 – 4534)  

 

The first attempt at cloning was carried out by cloning the whole gene fragment 

expected to encode the N-acetylglucosamine PTS domains EΙΙCB and EΙΙA and the 

putative transcriptional antiterminator.  All domains (Cbei 4532 – 4534) were 

amplified together using primers Cbei 4532-Rev and Cbei 4534-Fwd, as described 

in Materials and Methods (Section 2.11.1), and then the PCR product (Figure 39) 

was cloned using the StrataClone vector (Agilent Technologies) as described in 

Appendix 1.  The colonies obtained were screened by the methods described in 

section 2.13.  As shown in Figure 40, three clones were isolated which contained the 

expected insert of size 3600 bp.  Then the gene orientation was determined, by 

amplifying with Cbei 4532-Rev and either the M13-Rev primer or the M13-Fwd 

primer.  For colony (1) a product was obtained with M13-Rev primer and the Cbei 

4532-Rev primer indicating that the genes had been successfully cloned in the 

vector under the control of the lac promoter (Figure 41).  However, no product was 

obtained with M13-Fwd primer and Cbei 4532-Rev as would be expected for this 

orientation.  The other two clones did not show any products.  Following that, the 

plasmid was purified using Miniprep plasmid purification, as described previously 

in Materials and Methods section 2.16.   

 

Fig 39: PCR product for the operon Cbei 4532 - 4534 generated by Easy-A cloning enzyme 

with a product size of approximately 3600 bp.  
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Fig 40: Screening of E.coli clones containing Cbei 4532 - 4534.  Approximately 70 clones 

were screened and the figure shows only the three colonies which produced a PCR product 

of around 3600 bp in lanes 1, 2 and 3, while the negative samples do not show any bands in 

other lanes.  

 

 

 

Fig 41: Determination of gene orientation of Cbei 4532 – 4534 for colony 1.  Orientation 

was determined by using Cbei 4532-Rev and M13-Rev primer (R) or M13-Fwd primer (F).  

No bands were shown with other clones.    
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3.6.2.Transformation into nagE mutant  

 

The successful cloning of genes Cbei 4532, 4533 and Cbei 4534 in one vector, 

which could encode all  the domains required for the N-acetylglucosamine PTS  and 

the transcriptional antiterminator, allowed for the possibility of screening for a 

functional PTS by complementation of a Nag-PTS mutant of E.coli for Nag 

fermentation.  First, the nagE mutant was streaked onto MacConkey agar plates in 

order to determine its phenotype in the presence of different concentrations of N-

acetylglucosamine.  These plates contained 1%, 0.5%, 0.25%, 0.1% and no N-

acetylglucosamine.  Figure 42 shows that, at a concentration of 1%, the mutant 

fermented the N-acetylglucosamine, thus producing acid, which led to a decrease in 

the pH, shown by red/pink colonies.  However, when the concentration of N-

acetylglucosamine was decreased the cells could not utilize the lower concentration 

of N-acetylglucosamine.  Under these conditions, the nitrogen sources in the medium 

were used, producing ammonia, which led to an increase in the pH of the medium 

and the colonies, appeared as dark yellow.  From these results, it seems that the nagE 

mutant could utilize N-acetylglucosamine at the highest concentration tested (1%) 

while it was not capable of using the lower concentrations, 0.5% or below.  

Therefore, an N-acetylglucosamine concentration of 0.5% was chosen as the 

standard concentration for the complementation experiments.   
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Fig 42: Fermentation of N-acetylglucosamine on MacConkey agar by the E.coli nagE 

mutant BW25113.  The plates contained the following concentrations of NAG: 

                    (1) 1% NAG.    (2) 0.5% NAG.   (3) 0.25% NAG.    (4) 0.1% NAG.  (5) No NAG. 
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Following transformation of the nagE mutant with plasmid isolated from colony 1, 

clones were isolated on LB agar containing ampicillin and then transferred on to 

MacConkey agar containing 0.5% N-acetylglucosamine.  The results obtained 

showed that the cells could ferment the available N-acetylglucosamine, as shown in 

Figure 43, while no fermentation activity was shown in the plates containing 0.1% 

N-acetylglucosamine or without N-acetylglucosamine, as observed in Figures 44 and 

45 respectively.  In the meantime, since the untransformed cells could not grow in 

the presence of ampicillin, the transformed cells were compared with the 

untransformed mutant, on a plate without the antibiotic, and containing 0.5 % N-

acetylglucosamine.  High fermentation activity was shown by the transformed cells 

compared with the untransformed mutant (Figure 46), which clearly shows the 

effect of the putative C.beijerinckii N-acetylglucosamine PTS on the mutant.  

However, the transformed were able to ferment the N-acetylglucosamine for 

approximately 24 h and then lost the fermentation ability.  The experiment was 

repeated by re-transforming E.coli cells using the same plasmid, and selecting again 

on LB plates containing ampicillin. These colonies were screened again on 

MacConkey agar   containing 0.5% N-acetylglucosamine, and the same result of 

unstable fermentation was shown.  The reason for this is unknown, but may be due 

to the mechanism of regulation of expression of the nag-pts genes, which are 

possibly under the control of an antiterminator which may not function properly in 

E.coli.  Nevertheless, the result showed that the putative C.beijerinkii nag-pts genes 

potentially do code for an N-acetylglucosamine-PTS.  Therefore, for further 

verification, in the next step, the genes Cbei 4532 and Cbei 4533 were cloned as an 

artificial operon which could be expressed in E.coli without the need for the putative 

antiterminator product of the Cbei 4534 gene.   
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Fig 43: Fermentation of NAG by E.coli nagE mutant transformed by plasmid containing 

Cbei 4532-4534.   The MacConkey agar contained 0.5% N-acetylglucosamine and 50 µg/ml 

ampicillin, untransformed cells as a control.   

 

 

Fig 44: Fermentation of NAG by E.coli nagE mutant transformed by plasmid containing 

Cbei 4532-4534.  The MacConkey agar contained 0.1% N-acetylglucosamine and 50 µg/ml 

ampicillin, untransformed cells as a control.   

 

 

Fig 45: Culture of E.coli nagE mutant transformed by plasmid containing Cbei 4532-4534 

on MacConkey agar. The medium contained 50 µg/ml ampicillin but no N-

acetylglucosamine, untransformed cells as a control.   
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Fig 46: Fermentation of NAG by E.coli nagE mutant transformed by plasmid containing 

Cbei 4532-4534.   The MacConkey agar contained 0.5% N-acetylglucosamine without 

ampicillin, untransformed cells as a control.    

 

3.6.3.  Cloning of the Cbei 4532 gene 

 

The previous experiment showed that the putative NAG-PTS operon, including 

genes encoding the domains EΙΙCB, EΙΙA and the suspected transcriptional 

antiterminator, Cbei 4534, were cloned successfully under lac promoter control.  

Furthermore, by transforming the plasmid into a nagE mutant, it appeared that the 

mutant became capable of fermenting N-acetylglucosamine which suggested that the 

function of these genes was for utilizing N-acetylglucosamine.  However, due to 

instability of the fermentation phenotype, another attempt to clone the Cbei 4532 

and Cbei 4533 genes was carried out, but this time in a way that would result in the 

genes being in the same orientation.  The strategy involved was to clone both genes 

in the same vector (pJET 1.2 blunt) separately, and then recombine them in a single 

vector in the same orientation. Both of genes would then form an artificial operon, 

which could be transferred to a vector in which they could be expressed.  During the 

procedure, the Cbei 4532 (EΙΙCB) clone was tested by transforming into the nagE 

mutant and screening on MacConkey agar plates containing different concentrations 

of N-acetylglucosamine.    

Untransformed 

nagE mutant 

Transformed 

nagE mutant 



 
96 

 

 

Fig 47: PCR product for Cbei 4532 gene generated by Pfu polymerase by product size  

(1599 bp). 

 

In order to clone the Cbei 4532 gene, the pJet 1.2/blunt (Fermentas Life Science 

JET
TM

 cloning kit K1232) vector was used.  This vector has a size of 2,974 bp.  A 

PCR product containing the Cbei 4532 gene was generated by Pfu DNA 

polymerase, using primers Cbei 4532-Fwd and Cbei 4532-Rev, as described in the 

Materials and Methods chapter (2.11.1).  The PCR amplification of the gene gave a 

product of the expected size 1599 bp, as shown in Figure 47.  The gene was then 

cloned into the pJET 1.2/blunt vector and the mixture was transformed into E.coli 

TOP10, plated on LB plates containing 50µg/ml ampicillin and incubated overnight 

at 37°C.  The colonies were transferred onto fresh LB agar plates containing the 

same amount of ampicillin, in order to obtain stock colonies and incubated again at 

37 °C overnight.  From the colonies grown, the DNA was extracted, as described in 

Materials and Methods, section 2.12.1, and screened by PCR screening, as shown in 

Figure 48.  The screening result showed bands from different colonies (4 from 70 

clones screened) with the same size as the cloned Cbei 4532 gene, which indicated 

that the DNA fragment was successfully inserted into the pJet 1.2/blunt vector.   
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Fig 48: Screening of E.coli clones containing Cbei 4532.  The figure shows the colonies 

screened and the cloned product of 1599 bp was obtained in lanes 2, 4, 12 and 25, while the 

negative samples do not shown any band in other lanes. 

 

3.6.4.  Determination of gene orientation of Cbei 4532 clones  

 

In order to find out the orientation of the Cbei 4532 DNA fragment in the vector, 

PCR was performed as described in Materials and Methods, Section 2.14.  The T7 

promoter primer was used either with Cbei 4532-Fwd primer or with Cbei 4532-Rev 

primer.  As shown in Figure 49 ( a, b), the band that appeared was obtained from the 

PCR which contained Cbei 4532-Rev primer and T7 promoter primer, indicating 

that the Cbei 4532 gene had been cloned under control of the T7 promoter in the 

vector.  Since it would have been useful to obtain clones in which the Cbei 4532 

gene was under control of the lac promoter in the vector, in order to allow 

expression in the nagE mutant, the cloning procedure was repeated twice and more 

clones were screened.  However, in all cases, the same result was obtained, and only 

clones with Cbei 4532 under control of the T7 promoter were isolated.     
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Fig 49 a: Determination of gene orientation of Cbei 4532 clones (2, 4) determined by using 

Cbei 4532-Fwd (F) and Cbei 4532-Rev (R) with T7 promoter primer. 

 

 

 

Fig 49 b: Determination of gene orientation of Cbei 4532 clones (12, 25) determined by 

using Cbei 4532-Fwd (F) and Cbei 4532-Rev (R) primers with T7 promoter primer. 
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3.6.5. Plasmid purification of Cbei 4532 clones  

 

The plasmids from the recombinant cells obtained in the cloning stage were purified 

using the gene JET plasmid Miniprep kit, and then screened using gel 

electrophoresis, which indicated that the plasmid was purified successfully.  

Nevertheless, for sequencing purposes the plasmid was purified in a higher yield, 

using the Qiagen Midi-kit, as described in Materials and Methods, Section 2.17, and 

then screened, also using gel electrophoresis.  Plasmids 2 and 25 were sent for 

sequencing to Beckman Coulter Genomics and the correctness of the sequence of 

the cloned gene was confirmed as 100% identity, as shown in Appendix 1.   

 

3.6.6.Transformation of Cbei 4532 plasmid into nagE mutant 

 

 

After the Cbei 4532 gene was cloned successfully, the plasmids 2 and 25 were 

transformed into the E.coli nagE mutant BW25113, and the fermentation 

phenotype with different concentrations of N-acetylglucosamine was examined as 

described previously, in section 3.6.2.   

As shown in Figure 50, the mutant transformed with the Cbei 4532 gene which 

provided the domains EΙΙCB behaved in the same way as the mutant before 

transformation; that is fermentation positive phenotype was obtained at a 

concentration of 1% NAG and negative phenotype at lower concentrations.  It was 

possible that the gene Cbei 4532 was not expressed under the T7 promoter control.  

However, even if some leaky expression did take place, the protein encoded by 

Cbei 4532 contains only the EΙΙC and EΙΙB domains of the PTS, and lacks a EΙΙA 

domain.  Fermentation of N-acetylglucosamine could therefore be dependent on a 

compatible ΙΙA domain being present in the E.coli strain.  

 



 
100 

 

              

 

              

 

Fig 50: Fermentation of N-acetylglucosamine on MacConkey agar by an E.coli nagE 

mutant transformed with plasmid carrying the Cbei 4532 gene.  The plates contained the 

following concentration of NAG: 

(1) 1% NAG.    (2) 0.5% NAG.   (3) 0.1% NAG.   (4) No-NAG.  

 

3.6.7. Cloning of the Cbei 4533 gene 

 

Since insertion of the Cbei 4532 gene clone into the E.coli nagE mutant did not 

result in a positive fermentation phenotype, it was decided to proceed with cloning 

of the Cbei 4533 gene.    

The concept of this experiment was to clone the Cbei 4533 gene and then join it to 

the Cbei 4532 gene in order to design an artificial operon containing both genes in 

the same orientation, thus providing the required domains for PTS activity, EΙΙCB 

and EΙΙA together.  This artificial operon could then be tested for complementation 

of the E.coli N-acetylglucosamine mutant, as in the previous experiment.   
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The gene Cbei 4533 was cloned using the same vector and procedure as described 

for Cbei 4532.  The Pfu PCR product generated using primers Cbei 4533-Fwd and 

Cbei 4533-Rev had a size around 600 bp (expected size 649 bp), as shown in Figure 

51.  The PCR product was then cloned into TOP10 E.coli competent cells and the 

clones were screened for presence of the inserted gene (Figure 52), and then the 

gene orientation was determined using the T7 promoter primer with the Cbei 4533 

Fwd and Cbei 4533 Rev primers (Figure 53).  Two clones were found to be under 

T7 promoter control, since a PCR product was obtained with the reverse cloning 

primer and another two were under control of the lac promoter, since a PCR product 

was obtained with the forward cloning primer.  Finally, plasmids were purified by 

the same protocols used previously for clones of Cbei 4532 and screened by gel 

electrophoresis, and all four plasmids were sent for sequencing.  All sequences gave 

100% match to the sequences of the Cbei 4533 gene, as shown in Appendix 1. 

 

 

Fig 51: PCR product for Cbei 4533 gene generated by Pfu polymerase.   
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Fig 52: Screening of E.coli clones containing Cbei 4533.  The figure shows 8 colonies 

screened and the cloned product was obtained in lanes 6, 8, 15 and 20, with product size 

around 600 bp, while the empty lanes contained unsuccessfully cloned samples.   

 

 

 

Fig 53: Determination of gene orientation of Cbei 4533 clones (6, 8, 15, and 20) 

determined by using Cbei 4533-Fwd (F) and Cbei 4533-Rev (R) primers with T7 promoter 

primer. 
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3.7. Recombination of the Cbei 4532 and Cbei 4533 genes  

 

As demonstrated in the previous experiments, the Cbei 4532 and Cbei 4533 genes 

were successfully cloned in the pJET 1.2 blunt vector.  Following verification of the 

sequences of the cloned genes, the vectors containing the Cbei 4532 and Cbei 4533 

genes were restriction digested as described in Material and Methods section 2.21.1.  

The vector carrying the Cbei 4532 gene was double digested with SaΙΙ and XhoI to 

release the gene on a DNA fragment of around 1600 bp (Figure 54), which was 

purified as shown in Figure 55.   

 

  

 

Figure 54: The Cbei4532 DNA fragment restricted from the pJET 1.2 blunt vector using SalI 

and XhoI.  Plasmid was digested with (1) SalI, (2, 3) SalI and XhoΙ.  (4) Undigested pJET 

1.2 blunt plasmid containing Cbei4532 as a control. 
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Figure 55: Purification of Cbei4532 SalΙ - XhoI DNA fragment. 

 

In a similar procedure, the pJET 1.2 blunt vector containing the Cbei4533 gene was 

double – digested with SalI and XhoI.  Then the fragment carrying Cbei 4532 could 

be inserted.  As shown in Figure 56, when the plasmid was cut with Sall and Xbal, a 

fragment of approximately 600 bp was released, confirming the presence of the 

Cbei 4533 insert.  Digestion with either SalΙ or XhoΙ (not shown) resulted in a 

single product of around 3500 bp, while the double digest produced a similar 

product as expected.  After purifying the double – digested Cbei 4533 vector, as 

shown in Figure 57, it was used for ligation with the DNA fragment containing 

Cbei4532, as described in Materials and Methods (2.21.3), to obtain a product 

carrying both C.beijerinkii nag-pts genes.  A sample of the ligation mixture was 

analysed by agarose gel electrophoresis (Figure 58). 
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Figure 56: Restriction of the pJET1.2 blunt vector containing Cbei4533 gene (1) SalΙ with 

XbaΙ, showing  the Cbei 4533 gene fragment of approximately 600 bp, (2) SalΙ (3) SalΙ and 

XhoΙ.  

 

 

Figure 57: Purification of the pJET 1.2 blunt Cbei4533 vector after double digestion with 

restriction enzymes SalI and XhoI. 

 

 

1 2 3 

5000 

4000 

3000 

5000 

4000 

3000 

400 

600 



 
106 

 

 

Figure 58: pJET 1.2 blunt vector, including the Cbei4532 and Cbei4533 genes after ligation. 

 

 

The recombinant was transformed into E.coli TOP10 competent cells, and plasmid 

was purified from a single colony using the large-scale midiprep protocol, as 

described in Materials and Methods (2.17).  To verify that the purified plasmid 

contained both genes, it was screened by PCR using different combinations of the 

gene specific forward and reverse primers. As shown in Figure 59, the products 

obtained were approximately 2100 bp for the whole fragment containing the Cbei 

4532 and Cbei 4533 genes, 1600 bp for the Cbei 4532 gene and 600 bp for the Cbei 

4533 gene. 
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Figure 59: PCR analysis of pJET 1.2 blunt containing Cbei4533 and Cbei4532 genes.  

Primers used were (1) Cbei4532-Fwd and Cbei4533- Rev.   (2) Cbei4532-Fwd and 

Cbei4532-Rev.   (3) Cbei4533-Fwd and Cbei4533-Rev. 

 

After the PCR screening had confirmed that the Cbei4532 and Cbei4533 genes 

were ligated together, the plasmid containing both genes was restricted by BglII and 

Xbal enzymes in order to cut the genes out in one fragment.  As shown in Figure 60, 

the genes Cbei 4532-4533 were removed in one fragment of approximate size 2100 

bp.  The fragment obtained was purified and concentrated, as shown in Figure 61. 

 

 

Figure 60: Removal of Cbei4532 and Cbei4533 from the pJET 1.2 blunt vector by 

restriction digestion.  (1) Unrestricted plasmid; (2, 3) BglΙΙ and Xbal. 
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Figure 61: The purified fragment containing Cbei4532 and Cbei4533 after restriction from 

the pJET 1.2 blunt vector. 

 

After the Cbei 4532-4533 plasmid had been restricted by BglII and XbaΙ and 

purified, plasmid pUC18 was digested by XbaΙ and BamHΙ enzymes, as shown in 

Figure 62, in order to allow insertion of the Cbei 4532-4533 gene fragment with 

expression of the genes under control of the lac promoter.  Following ligation, the 

mixture was transformed directly into E.coli TOP10 competent cells.  As an 

additional step, the unmodified pUC18 vector was also transformed into E.coli TOP 

10 competent cells in order to isolate the plasmid for use as a control in subsequent 

experiments.  Plasmids were purified by the large-scale procedure and screened by 

gel electrophoresis, as shown in Figure 63.    

 

 

Figure 62: Restriction digestion of pUC18 plasmid. (1) Uncut plasmid.  (2) After restriction 

by Xbal.   (3) After restriction by BamHI.  (4)  After restriction by XbaI and BamHl.   
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Figure 63: Preparation of plasmids from E.coli TOP10.   (1) pUC18 vector.  (2) pUC18 

vector containing Cbei4532 and Cbei4533 genes.   

 

3.8. Functional characterization of the Cbei4532 and Cbei4533 genes. 

 The pUC18 plasmid carrying the Cbei4532 and Cbei4533 genes and also non-

recombinant pUC18 were transformed into the E.coli nagE mutant BW25113, as 

described in Materials and Methods (2.19), and plated on MacConkey agar 

containing 0.5% of N-acetylglucosamine and 50 µg/ml ampicillin.  As shown in 

Figure 64, the transformed cells which contained Cbei4532 and Cbei4533 showed a 

positive fermentation phenotype, and this phenotype was stable for more than 48h 

at 37°C.  On the other hand, cells transformed with the pUC18 vector without the 

Cbei4532 and Cbei4533 genes did not show any fermentation activity as 

demonstrated on the same plate.  It is clear that these results reflected the function 

of these genes, Cbei4532 and Cbei4533, to encode a N-acetylglucosamine PTS 

allowing uptake and phosphorylation of the amino sugar by the nagE mutant.   

As a confirmation test, both the complemented and control strains were inoculated 

into LB broth medium containing 0.5% N-acetylglucosamine and 50 µg/ml 

ampicillin, and then growth and sugar utilization was followed, as described in 

Materials and Methods 2.6.3.  The results shown in Figure 65 indicate that the cells 

containing the Cbei 4532 and Cbei 4533 genes were able to utilize the available N-

1 2 
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acetylglucosamine in the medium, while little or no utilization was recorded by the 

cells transformed with pUC18 only.  This confirmed the conclusion based on the 

fermentation phenotype that the genes Cbei4532 and Cbei4533 encoded for N-

acetylglucosamine uptake.   

In addition, a PTS activity assay was carried out using extracts prepared from the 

recombinant and control E.coli nagE strains, as described in Materials and Methods 

2.9.  As the results show in Figure 66, PTS activity was observed in the extract of 

cells containing the Cbei4532 and Cbei4533 genes while no activity was seen in the 

extract of cells containing pUC18 only.  These results were clearly compatible with 

the previous results demonstrating utilization of N-acetylglucosamine by the 

recombinant strain, and provided further evidence that the Cbei4532 and Cbei4533 

genes encode a N-acetylglucosamine PTS.   

 

 

 

 

 

Figure 64: Fermentation phenotype of transformed E.coli nagE mutant on MacConkey agar 

containing 0.5% N-acetylglucosamine and 50 µg/ml ampicillin.  Cells were transformed 

with pUC 18 carrying the Cbei4532 and Cbei4533 genes, and non-recombinant pUC 18 as 

a control.   

 

 

Control pUC18  

nagE mutant including the genes Cbei 

4532 and Cbei 4533.  
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Figure 65: N-acetylglucosamine utilization by transformed E.coli nagE mutant in LB broth.  

Cells were transformed with recombinant pUC18 plasmid carrying the Cbei4532 and 

Cbei4533 genes (recombinant) and non-recombinant pUC18, as a control. 

 

 

Figure 66: PTS activity assay for extracts of transformed E.coli nagE mutant.  Cells were 

transformed by pUC18 plasmid carrying the Cbei4532 and Cbei4533 genes (recombinant) 

and non-recombinant pUC18 as a control. All assays contained PEP. No activity was 

observed for either extract in the absence of PEP. 
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3.9. Characterization of the C.beijerinckii N-acetylglucosamine PTS.   

 

Cloning of the genes encoding the C.beijerinckii N-acetylglucosamine PTS allowed 

for further examination of the properties of the phosphotransferase system.  

Therefore, the recombinant pUC18 vector carrying Cbei 4532 and Cbei 4533 was 

transformed into E.coli mutant ZSC113 with inactivated glucokinase (encoded by 

glk), and glucose and mannose phosphotransferase activities (encoded by ptsG and 

ptsM respectively) (Curtis and Epstein, 1975).  The mutant is therefore unable to 

phosphorylate glucose or mannose, and gives a negative fermentation phenotype for 

these sugars on MacConkey agar.  Transformants were selected and streaked on a 

MacConkey agar plate containing 0.5% glucose and 50 µg/ml ampicillin.  The same 

transformed E.coli ZSC113 mutant was also streaked on a MacConkey agar plate 

containing 0.5% mannose and 50 µg/ml ampicillin.   

The result in Figure 67 shows considerable fermentation activity on glucose while no 

fermentation activity was observed when the mutant was transformed by the control 

pUC18 plasmid. On the other hand, no fermentation of mannose was observed for 

either strain (Figure 68).  These results demonstrated that the PTS encoded by Cbei 

4532 and Cbei 4533 can transport and phosphorylate glucose, but not mannose as a 

substrate.    

In addition, a glucose PTS activity assay was also carried out using extracts prepared 

from the recombinant and control E.coli ZSC113 strains, by the same method 

described in Materials and Methods 2.9.  As shown by the results in Figure 69, 

glucose PTS activity was observed in the extract of cells containing the Cbei4532 and 

Cbei4533 genes, while no activity was seen in the extract of cells containing pUC18 

only.  It was therefore demonstrated that in addition to phosphorylating N-

acetylglucosamine the PTS encoding by Cbei4532 and Cbei4533 was also capable of 

phosphorylating glucose. 

To confirm that both N-acetylglucosamine and glucose were recognised by the same 

PTS, as had been observed in assays using C.beijerinckii crude extracts (chapter 3), 

the effect of 10 mM glucose on N-acetylglucosamine phosphorylation was examined 
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using the extract of the nagE recombinant strain (Figure 70).  The inhibitory effect of 

glucose was consistent with this conclusion.     

 

 

 

Figure 67: Fermentation phenotype of transformants of E.coli ZSC113 grown on 

MacConkey agar containing 0.5% glucose and 50µg/ml ampicillin.  Cells were transformed 

with pUC18 carrying the Cbei 4532 and Cbei 4533 genes, and non-recombinant pUC18 as a 

control. 

 

 

 

 

 

Figure 68: Fermentation phenotype of transformed of E.coli ZSC113 grown on 

MacConkey agar containing 0.5% mannose and 50µg/ml ampicillin.  Cells were 

transformed with pUC18 plasmid carrying the Cbei 4532 and Cbei 4533 genes, and non-

recombinant pUC18 as a control. 
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E.coli ZSC113 including the Cbei 

4532 and Cbei 4533 genes.  

Control pUC18  

E.coli ZSC113 including the Cbei 

4532 and Cbei 4533 genes.  
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Fig 69:  Glucose PTS activity assay for extracts of transformed E.coli ZSC113.  Cells were 
transformed by pUC18 carrying the Cbei4532 and Cbei4533 genes (recombinant) and non-

recombinant pUC18 as a control. No activity was observed for the control extract in the 

absence of PEP.    

 

Fig 70: The inhibitory effect of 10 mM glucose on N-acetylglucosamine PTS activity in 

extract of an E.coli nagE recombinant.  Cells were transformed by pUC18 carrying the 

Cbei4532 and Cbei4533 genes.  N-acetylglucosamine PTS activity was assayed with and 

without adding 10 mM glucose.  No activity was observed in the absence of PEP.    
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4. Discussion  

Recently, biotechnology applications have supported many processes around the 

world, proving successful in several areas such as health, environmental and 

industrial applications.  The biofuel industry has been considered an attractive 

branch of biotechnology, due to the environmental and economic advantages, and 

the fact that it uses renewable energy sources.  The majority of waste products 

consist of several carbohydrates, which can be used as a sustainable fermentable 

carbon source for clostridia to produce the chemicals acetone and butanol.  N-

acetylglucosamine is a carbon source that is widely prevalent in environmental 

waste as a monomer of chitin.  Understanding the molecular basis of chitin 

hydrolysis and utilization of N-acetylglucosamine and the factors which control 

these activities will give a clearer view of the potential for both N-

acetylglucosamine and chitin utilization by solventogenic clostridia.  This may lead 

to improving the ABE industry in the future by enabling it to use the biomass 

containing N-acetylglucosamine as a raw material.   

A variety of transport systems have been identified for sugar transport in bacteria.  

However, the PTS is the only transport system which uses phosphoenolpyruvate 

(PEP) as an energy source, and is considered as an important mechanism of sugar 

uptake to support bacterial growth.  The majority of solventogenic clostridia depend 

on the phosphotransferase system (PTS) for the utilization of different sugars 

including glucose, which is usually used as a preferred carbon source that can 

regulate the metabolism of other sugars.  For example, it was shown by Tangney et 

al., (2001) that when C.acetobutylicum ATCC 824 was grown in a culture 

containing maltose, the strain was capable of utilizing the sugar as a carbon source, 

accumulating it by the PT- transport system.  However, the presence of glucose in 

the same growth culture led to inhibition of maltose uptake, and the cells started to 

utilize the maltose only after the preferred glucose was used up.  The same 

regulatory pattern was also shown in C.acetobutylicum ATCC 824 for utilization of 

sucrose and lactose (Tangney and Mitchell, 2000; Yu et al.,  2007).  The effect of 

glucose on utilization of some carbon sources by C.beijerinckii has also been 
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demonstrated.  For example, it was reported that in a growth culture containing  

both glucose and glucitol, the presence of glucose led to prevention of glucitol 

uptake (Mitchell, 1996; Tangney et al.,  1998a).  Glucose has therefore been shown 

to exert regulation and control over the metabolism of several alternative carbon 

sources in the solventogenic clostridia.   

In this study, the results established showed clearly that N-acetylglucosamine can 

be utilized as a carbon source by C.beijerinckii cells depending on PTS activity.  

However, when the cells were grown in the presence of both N-acetylglucosamine 

and glucose, in the same growth culture, it was observed that glucose did not have 

an inhibitory effect, and that N-acetylglucosamine and glucose were utilized 

together, at the same time.  Furthermore, the same results were obtained by using 

different concentrations of sugars or after pre-growing the cells in cultures 

containing either glucose or N-acetylglucosamine.  In a parallel study, the same 

behaviour was observed for C.acetobutylicum cells growing in Reinforced 

Clostridial Medium (RCM) and Clostridial Basal Medium (CBM) containing N-

acetylglucosamine and glucose as carbon sources.  The C.acetobutylicum strain 

showed the same capability as C.beijerinckii to utilize N-acetylglucosamine only or 

N-acetylglucosamine and glucose in the same growth culture (Appendix 4).  It is 

therefore clear that both these solventogenic clostridia are capable of co-utilizing N-

acetylglucosamine and glucose when these are available in the same growth culture, 

which indicates that genes concerned with N-acetylglucosamine utilization must be 

expressed in the presence of glucose.  The co-utilization of  N-acetylglucosamine 

and glucose was also shown by Imada et al.,  (1977) who grew S.aureus mutant 

209P in separate cultures containing glucosamine with glucose and N-

acetylglucosamine with glucose.  The result showed that the glucosamine uptake 

was inhibited in presence of glucose, while no inhibition effect was reported for N-

acetylglucosamine utilization.   

Although PTS activity for N-acetylglucosamine has not been reported previously in 

the clostridia, N-acetylglucosamine phosphotransferase systems have been 

described in other bacteria such as E.coli (Plumbridge, 1990), Bacillus subtilis         

(Bertram et al.,  2011; Mobley et al.,  1982), Staphylococcus aureus (Imada et al.,  

1977), Streptomyces olivaceoviridis (Wang et al., 2002) and Caulobacter 
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crescentus (Eisenbeis et al.,  2008). Investigation of the mechanism of N-

acetylglucosamine uptake by C.beijerinckii revealed the presence of a 

phosphotransferase system involved in its uptake and phosphorylation.  The 

dependence of the phosphorylation of N-acetylglucosamine on 

phosphoenolpyruvate (PEP) was determined in an extract of cells grown on N-

acetylglucosamine.  It was shown that N-acetylglucosamine can be phosphorylated 

in the presence of PEP, which indicates that the transport mechanism of N-

acetylglucosamine by C.beijerinckii involves PTS activity.  Since no 

phosphorylation was observed in the presence of ATP, the PT-system is likely to be 

the only system for N-acetylglucosamine uptake, and N-acetylglucosamine can 

therefore be added to the list of sugars that are known substrates of the PTS in the 

clostridia.  However, not all sugars are transported by the PTS as described in the 

Introduction (1.8).  For example, Mitchell, (1996) studied galactose uptake and 

metabolism in C.beijerinckii, and found that phosphorylation was dependent on 

ATP rather than PEP.  Similarly, a non-PTS route for uptake of xylose and 

arabinose is used by both C.acetobutylicum and C.beijerinckii   (Servinsky et al.,  

2010; Gu et al.,  2010). 

Like other phosphotransferase systems, the N-acetylglucosamine PTS in 

C.beijerinckii was shown to require both soluble and membrane-bound proteins.  

These proteins were apparently present in extracts of cells grown on glucose, which 

were found to be able to phosphorylate N-acetylglucosamine.  Therefore, it has 

been clearly shown that glucose does not repress synthesis of the N-

acetylglucosamine PTS, consistent with the growth studies.  The presence of 

unlabeled glucose in the N-acetylglucosamine phosphotransferase reaction mixture 

resulted in inhibition of the N-acetylglucosamine PTS activity, suggesting that the 

N-acetylglucosamine PTS could also recognize glucose as a substrate.  PEP-

dependent glucose phosphorylation activity was also found to be inhibited by 

unlabeled N-acetylglucosamine, which can be considered as further evidence for 

overlapping substrate specificity of the phosphotransferase(s) responsible for N-

acetylglucosamine and glucose phosphorylation in C.beijerinckii.  The results imply 

that the N-acetylglucosamine PTS of C.beijerinckii is a member of the glucose 

family rather than the lactose-diacetylchitobiose family which includes systems that 
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transport chitobiose, particularly since no inhibitory effect was seen on the N-

acetylglucosamine PTS activity by adding unlabeled chitobiose.  This is most likely 

because the C.beijerinckii N-acetylglucosamine PTS does not recognize chitobiose 

as a substrate.  This result was concurs with the study by Keyhani and Roseman 

(1997), which showed that chitobiose PTS also belongs to the lactose/chitobiose 

branch but not to glucose.  Similar behaviour was also recently shown in a study of 

Ralstonia eutropha, in which the N-acetylglucosamine PTS can transport glucose 

across the cell membrane (Raberg et al.,  2012).    

On the basis of bioinformatics analysis and sequence comparison, a set of three 

genes was identified as having a potential role in N-acetylglucosamine uptake by 

C.beijerinckii. Cbei 4532 encodes for EΙΙCB domains, Cbei 4533 encodes for an 

EΙΙA domain and Cbei 4534 encodes a putative transcriptional antiterminator of the 

BglG family that may be involved in controlling the expression of the other two 

genes.  As reported in the results, these three genes were expressed during growth 

in the presence of N-acetylglucosamine or glucose, but not glucitol.  Also, it was 

found that the Cbei 4532 and Cbei 4533 genes were expressed at an apparently high 

level during growth in a culture containing both N-acetylglucosamine and glucose, 

which might indicate that the presence of glucose in the growth culture containing 

N-acetylglucosamine played a role in stimulating the genes responsible for the N-

acetylglucosamine PTS.  This reflects an unusual situation for glucose, which, in 

clostridia, acts as an inhibitory regulator for other saccharides, such as lactose, 

maltose and sucrose.   

In the second half of the project, the function of the putative nag genes (Cbei 4532 

and Cbei 4533) was investigated by cloning them into the E.coli nagE mutant 

BW25113, in which the N-acetylglucosamine PTS uptake system is inactivated due 

to a transposon insertion.  This strain showed a negative fermentation phenotype on 

MacConkey agar containing N-acetylglucosamine at a concentration of 0.5% or 

lower, meaning that any N-acetylglucosamine PTS activity could be identified by 

complementation of the fermentation phenotype.  As a first attempt, these genes 

were functionally characterized by cloning the entire putative nag operon (Cbei 

4532, Cbei 4533 and Cbei 4534).  The recombinant cells showed fermentation 

activity but this appeared to be unstable and was limited to around 24h, at 37°C.  
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This could be because of the complex mechanisms of regulation of expression of 

the genes, which would be expected to depend on the status of the putative 

antiterminator Cbei 4534.  Actually, at this stage, it is not clear whether the 

regulation would operate correctly in E.coli.  Therefore, an alternative strategy was 

adopted, which involved cloning the Cbei 4532 and Cbei 4533 genes as an artificial 

operon under control of an E.coli promoter.  The artificial operon containing Cbei 

4532 and Cbei 4533 in the pUC18 vector showed a strong complementation of 

nagE BW25113 cells in the presence of 0.5% N-acetylglucosamine, and the 

fermentation phenotype was stable for more than 48h.  The recombinant strain was 

also shown to be able to utilize N-acetylglucosamine when grown in LB broth, and 

extract showed PTS activity for N-acetylglucosamine.  The Cbei 4532 and Cbei 

4533 genes were also shown to complement a glucose and mannose negative E.coli 

mutant ZSC113 (Curtis and Epstein, 1975) for fermentation of glucose but not 

mannose.  This demonstrated that the N-acetylglucosamine PTS of C.beijerinckii 

was also able to take up and phosphorylate glucose, but not mannose.  However, in 

this study it was found that a gene encoding a putative glucose PTS (Cbei 0751) 

could not complemented BW25113 indicating that this PTS does not transport N-

acetylglucosamine.   

The divergent pattern of gene organization seen for Cbei 4532 (EΙΙCB) and Cbei 

4533 (EΙΙA) encoding the N-acetylglucosamine PTS in C.beijerinckii is unusual but 

not unique.  A similar organization is found for the putative N-acetylglucosamine 

PTS genes in C.acetobutylicum (Cac 1353 – Cac 1354).  Although these genes have 

not been characterized in detail, the gene products show homology to the 

corresponding proteins in C.beijerinckii.  Cac 1353 and Cbei 4532 show 45% 

identity, while Cac 1354 and Cbei 4533 show 53% identity.  The arrangement of 

the N-acetylglucosamine PTS genes in the clostridia is different from that in other 

bacteria.  In fact, a considerable diversity of N-acetylglucosamine PTS genes 

organization has been observed in different bacteria, as shown in Figure 71.  In 

E.coli the nagE gene encodes all the PTS domains, EΙΙCBA, is clustered with the 

genes nagB, which encodes glucosamine-6-phosphate deaminase and nagA, which 

encodes N-acetylglucosamine-6-phosphate deacetylase.  On the basis of sequence 

analysis, the corresponding genes in C.beijerinckii are suggested to be Cbei 4564 
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and Cbei 4562 respectively, while the Cbei 4563 encodes as a GntR family 

transcriptional regulator.  The bioinformatics analysis also showed  that the putative 

nagA and nagB genes in C.acetobutylicum has the same function and encodes by  

N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate 

deaminase, respectively. These genes could be regulated by the transcriptional 

antiterminator Cac 0189, as shown in Figure 71.  

It was found that the expression of nagE and nagAB genes in E.coli is regulated by 

the product of nagC, as described in the Introduction (1.13) (Alvarez-Añorve et al.,  

2005).    In another study Bertram et al.,  (2011) characterized the genes involved 

with the N-acetylglucosamine PTS in B.subtilis and it was shown that the nagP 

gene, encoding specific PTS EΙΙBC domains, was associated with nagA and nagB 

genes and the gene nagR which acts as a regulator gene for the N-

acetylglucosamine PTS operon.   

In a comparable recent study, the N-acetylglucosamine PTS of Ralstonia eutropha 

H16 was identified by Kaddor and Steinbüchel, (2011).  In the mutant strain 

Ralstonia eutropha G
+
1, the N-acetylglucosamine PTS operon was characterized, 

and the genes identified were nagF encoding EΙ, HPr and EΙΙA, nagE encoding 

EΙΙCB domains, nagA (N-acetylglucosamine-6-phosphate deacetylase), nagB 

(glucosamine-6-phosphate deaminase) and zyf1 (glucose-6-phosphate 

dehydrogenase), while nagR encoded a regulator gene for the operon (Raberg et al.,  

2012).  Sequence analysis for the Cbei 4532 (EΙΙCB N-acetylglucosamine domains 

PTS) in C.beijerinckii and the corresponding proteins in other bacteria shown in 

figure 71, indicates a considerable amino acid identity in the range from 40% to 

45%.   

An interesting gene arrangement has been found in B. sphaericus, which has an 

operon containing the ptsHI genes which encode HPr and EΙ proteins, together with 

nagA and nagB genes encoding N-acetylglucosamine-6-phosphate deacetylase and 

glucosamine-6-phosphate deaminase respectively, while no information was 

reported for genes encoding the PTS membrane domains in this strain (Alice et al.,  

2003). 
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Fig 71:  Comparison of the gene arrangement of the N-acetylglucosamine PTS in 

C.beijerinckii and different Gram-positive and Gram-negative bacteria; the putative genes 

in C.acetobutylicum ATCC 824, and the nag genes in E.coli K12, B.subtilis and Ralstonia 

eutropha G
+
1are shown.  
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Induction of expression of the C.beijerinckii N-acetylglucosamine PTS genes is 

most likely controlled by a specific transcriptional mechanism involving putative 

antiterminator encoded by Cbei 4534.  The regulatory signals for an antiterminator 

would be expected to be in the region between the Cbei 4532 and Cbei 4533 genes. 

Protein sequence analysis for Cbei 4534 showed between 30-35% identity to the 

antiterminator proteins BglG in E.coli (Blattner et al., 1997), and LicT (Schnetz et 

al.,  1996) and SacY (Idelson and Amster-Choder, 1998)  in B.subtilis, and ScrT in 

C.acetobutylicum (Tangney and Mitchell., 2000).   However, a greater identity of 

51% is shown by Cbei 4534 and the equivalent protein Cac 1355 from 

C.acetobutylicum which is associated with the putative nag operon in that strain.   

Although it is not clear at least at this stage why the N-acetylglucosamine PTS of 

C.beijerinckii should be induced during growth on both N-acetylglucosamine and 

glucose the fact that glucose is a substrate of the PTS provides an explanation for 

the mechanism by which the induction occurs.  As described in the Introduction 

(1.10), antiterminator proteins are regulated by phosphorylation of PRD domains 

and are activated by dephosphorylation of a PRD as a result of uptake and 

phosphorylation of the substrate of the associated PTS.  Therefore, if both N-

acetylglucosamine and glucose are substrates of the system, it would be expected 

that both will cause it to be induced.  Induction of expression of Cbei 4532 and Cbei 

4533 on a culture of C.beijerinckii growing on glucose has also been observed by 

Wang et al., .  (2012).  This study provided a global analysis of gene expression in 

C.beijerinckii using RNA sequencing technology, it was found that the Cbei 4532 

and Cbei 4533 genes were the most highly expressed genes of the PTS glucose 

family under the culture conditions, particularly in the exponential phase.  

Interestingly, Servinsky et al., (2010) also observed induction of the Cac 1353 and 

Cac 1354 genes in cells grown on glucose.  However, in these studies no 

information on expression during growth on N-acetylglucosamine was provided for 

comparison.  

In this study the result obtained by gene characterization confirmed that, in 

C.beijerinckii, the Cbei 4532 and Cbei 4533 genes encode a phosphotransferase 

system responsible for N-acetylglucosamine uptake, consisting of two proteins 

carrying EΙΙCB and EΙΙA domains respectively.  It was also observed that the N-
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acetylglucosamine PTS system was able to support glucose phosphorylation and 

uptake confirming that the system belongs to the glucose subfamily as suggested at 

the beginning of this study.  It is possible that other transport systems may have the 

ability to transport N-acetylglucosamine even if it is not their primary substrate. 

This possibility could potentially be investigated by constructing mutants using the 

ClosTron mutagenesis technology (Heap et al.,  2009; Heap et al.,  2010).  If the 

Cbei 4532 or Cbei 4533 genes were knocked out, the N-acetylglucosamine PTS 

would be inactivated and if it is the only PTS for N-acetylglucosamine then the 

mutant should be unable to grow.  Similarly, if the putative antiterminator product 

of Cbei 4534 is required for expression of the N-acetylglucosamine PTS genes, 

inactivation of this gene should have the same effect.  During this work, a ClosTron 

plasmid designed to inactivate Cbei 4532 was introduced into C.beijerinckii cells, 

but no mutants were isolated within the time available.  Further attempts to isolate 

mutants are justified in terms of understanding whether C.beijerinckii is absolutely 

dependent on the Cbei 4532, Cbei 4533 and Cbei 4534 genes for uptake and 

metabolism of N-acetylglucosamine.  

 While this study focused on N-acetylglucosamine uptake and metabolism, effective 

exploitation of chitin-containing biomass materials will depend in addition on an 

understanding of hydrolysis of chitin itself.  In the course of the project it was 

shown that C.beijerinckii was capable of hydrolysing colloidal chitin and chitinase 

activity was shown to be present in culture fluid.  Although studies of chitin 

degradation by solventogenic clostridia are rare, Reguera and Leschine, (2001) 

showed the capability of several clostridia species to produce chitinase enzyme, 

including C.cellobioparum, C.cellulolyticum, C.longisporum, C.hungatei, 

C.populeti, C.cellulovorans and C.phytofermentans, while no activity was observed 

for C.hungatei, C.lentocellum, C.papyrosolvens, C.papyrosolvens and 

C.thermocellum strans.   

 

Factors controlling expression of chitinase activity by C.beijerinckii were not 

investigated in detail.  However, the presence of chitinase activity in the 

concentrated supernatant obtained from cells grown on N-acetylglucosamine 

sugessts that the presence of N-acetylglucosamine induced the chitinase gene(s) as 



 
125 

 

has been shown in both Streptomyces thermoviolaceus and Streptomyces lividans 

(Tsujibo et al.,  1998).  On the other hand, culture grown on glucose did not show 

chitinase activity.  Repression of chitinase gene expression in the presence of 

glucose has been reported in Streptomyces plicatus, S.thermoviolaceus and S. 

lividans (Ni and Westpheling., 1997; Delic et al.,  1992; Tsujibo et al.,  1998).   

 

The C.beijerinckii NCIMB 8052 genome contains at least four genes which are 

predicted to be related to chitinase activity Cbei 2826, Cbei 2830, Cbei 2831 and 

Cbei 3353.  The function and expression of these genes could provide a clear future 

view for the regulation of the N-acetylglucosamine uptake and chitinase activity in 

this strain.  Characterization of chitin hydrolysis and the mechanism of N-

acetylglucosamine uptake together can potentially provide a full understanding of 

the potential of chitin as a fermentable substrate for the biofuel industry.  

 

The environmental and economic aspects have created a widespread interest in 

several fields of science, due to their direct impact on communities.  Several studies 

have been focused on different types of waste and their potential for use as cheap 

and sustainable substrate for the ABE industry.  The wide abundance of chitin as a 

homopolymer of N-acetylglucosamine in natural wastes could provide an 

advantageous opportunity to exploit this biomass as cheap raw materials for several 

biotechnology industries, and the chitinase enzyme(s) might be considered as a 

secondary product beside solvents which could also be used in biological industries.  

It is particularly important that the chitin wastes can be fully reused as its 

persistence in the environment can cause pollution.  The industrial and 

environmental concerns should be sufficient to justify continued investigation of 

chitin utilization by C.beijerinckii and related solventogenic clostridia.   
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TAATATATTTATATTAGTCCATTTATTATATTAGTGAGTTATGAAATGTAGCAGATTCTTAGGAATCTGC 

TTTCTATTTATATCTTAAGATTTCTTAAATCTGTGCTTTACAATAAATAATATATTAAGCTATTATTAAT 

ATATTAGATTTATATGGTTTAAAAGAATCATAATAGATACTAACGGCTAAAAATAAGTAAAGTATTTAAA 

TAATAAGGTTAATGATAGAATCGTTTTATAAGATTAATAATGTCATTTATATTTTCTAAATAATGTATTA 

ATTCAGATGATAAGTGATTTGCTAAAGATTAGAAAGTTCTATAAATAATAAAAAGGGTGGTCATATGAGT 

AAAATTATTGATCCAGCAACGATAATAAAATCCTATAACAACAATATAGTTTCCGTAAACATGAATGGAA 

AGGAAAGAATACTTTTTGCAAAGGGAATTGGATTCGGTAGAAAGTCTGGAGATACCATTGAAAAGGGTAC 

TGAGGTTGAAAAGATATTTGTTATTGAAGATGAGGATAACCTAAGAAACTTTAAACAAGTAATCGAAAAT 

GTTGATGAAGAATTTTTTGTGCTATGCGAAAAGATGATATCATATGTTGCAAATGAATTAAAGGAAAATT 

TGGATGAGAGAATACACGTTGCATTAGTAGATCATTTAAATTTTGCAGTGAAAAGGCTTTCGGACAAAGA 

GGAAATAGAGAATCCATTTCTTATGGAAATTAGAGCATTATATCCACAAGAATACTCGTTAGCAGAAAAA 

GTTGCGGAAGTTTTACAAAATGAAAAAAAGGTAAAAATTCCAGAAGGAGAAATTGGATTCATAGCATTAC 

ATATCCATTCTGCTAGAAATTCAGGTAAGCTATCCAATACTATAAAGAATACACATTTGATAAACTCAAT 

AATTGAATACGTAGAAGCAAAAACTGAAATAAAAATAGACAAAACATCATTAGATTATGCCAGATTTCTC 

ACACATTTGAGATTTGCAATTAAAAGAATTTTAGATGACATATCTATTGAAAATGACTTTATAAAAGAAA 

TAAAATCAAAATATAAATTATCATATAAAGTATCTAAGGGTGTAGCAAAAATATTAGTTTTAAAGCTAGA 

AAAGAAAGTTTCAGATGATGAAATAGCATATCTAGCAATGCATATAGAGAGATTTAGAAAAGCTACAATA 

AAACTCTAATTAAAATGGCTAACATATTAATAAAAACATGTTAGCCATTTTTTTTTTATAAAGTAAAAGT 

AATTACTTCATCTTCTCCAGCAACAACTTCTTTATCAATATTTGAATTTAAATCCTTGATTATATCCATG 

TTTGTAACAAGGACTGGAGTGACCAAAGAAAAACCTTTTCCTAAAATAAAATCCCTATCTATTTTTATAA 

TTGGAGTACCAGCTTTAACTTTAGTTCCAGCTTTAGCTAATTGTTCAAAACCTTCACCATTTAAAGAAAC 

AGTATCGATACCTATATGAACTAATAACTCAGCTCCATTATCAAGAGTAATTGCAAATGCATGCTTTGTA 

TTAAATACTAATGTTAAGGTTCCGTCAGCAGGTGAAACTACTGTATCTCCAGTAGTATCTATTGCAAGCC 

CGTCTCCAGCCATTTTTTCTGCAAAAACTTTATCTGGTACTTTTGATAAATCTATTGTTTTACCAGTTAT 

AGGTGCAACTAATTTTGCTTCTTTATTTGAGTCCTTTGAATTTTTCTTAAAAAAATTAAACATACTTAAT 

ATTCCCGATTAAACAGGAACAGTCACTTCCTTTCATTCTGTTATTTATTGGTAATAAAAAAGCATAAGTT 

TCCGAATTACGCAAACTTATGCCTGATTAAACAGTAACACATTTATGTACTAATTATATTATTTCATACA 

ATTAGTGTCAACAATAAAAAAATAAAAAAGGGTATTGACTATAGAATAAAAATAGAATAATATGAGTGTA 

TAAGAATACGATCTTTGGCGTGTAACCGATTAAATCAGGGCATTAGCTGAAAGGGATAATATAATTTATC 

CTTTTCAGCTTTTTTATTTGCTGAAAAGGATACATGTCCATAAGAATTATAATGCATTTAGGGATATAAC 

AATCCTTAAAATAAATTTTATTAATTATTATGGAAGGGGAATTATATTATTATGATGAAGTATTTACAAA 

AATTAGGAAAATCCTTAATGCTTCCAGTAGCTTGTTTACCCGTTGCAAGTATTTTAATGGGTCTTGGTTA 

TTGGCTTGACCCTACAGGCTGGGGAGCAAATAACATTGCTTCAGCTTTTATGCTAAAAGCAGGTAGTGCT 

TTAATTGACAATATGGGAATTTTGTTTGCAATTGGTGTAGGTGTAGGAATGTCAGATGATAATGACGGTA 

CAGCAGGACTTGCAGGACTTGTTTCATGGCTTATGATTACAACATTATTATCTACAGGAGCTGTAGCAAT 

GTTTAAGGGAATTGATGTTAAAGAGGTAGCGCCAGCATTCGCTAAAACTCAAACACAATTTATTGGTATT 

TTATCAGGTTTAATAGGTGCAGCCTGTTATAACAGATTTAAAAGTGTTAAATTACCAGATGCATTGGGAT 

TCTTTAGTGGAAAAAGATGTGTCGCAATTGTAACCGCAGCATATTCAATAGTTGCATCTATAGTATTATT 

CTTTGCATGGCCTCTTATTTATGGTGCATTAGTAGCATTTGGTGAAGCTATTGTATCAACAGGTGCAGTT 

GGATCTGGTATTTATGCATTCTTCAATAGATTATTAATACCATTTGGTCTTCACCATGCATTAAACTCAG 

TATTCTGGTTTGATGTAGCTGGAATTAACGACCTTGGTAACTTCTGGTCAGGTAAAGGAACACAAGGAGT 

AACTGGTATGTATATGACTGGATTCTTCCCAGTAATGATGTTTGGATTACCAGCAGGAGCATTAGCTATG 

TACCATACAGCTAAAGATAAGAAGAAGAAAGCGGTATATGGTTTATTATTAGCAGCAGCAATATCTTCAT 

TCTTCACAGGTGTTACAGAACCATTAGAATTTGCATTTATGTTCTTAGCTCCAGGTTTATATGTTCTTCA 

TGCTGGATTAACAGGAATTTCAGCATTTGTATGTACATTATTACCAGTAAGAGCTGGATTTAACTTTAGT 

GCTGGATTTGTAGATTGGTTCTTAAGTTTCAAAGCTCCTATGGCAGAAAATCCAATAATGTTAATCCCAA 

TAGGTTTAGTATTTGCAGTAATCTATTATGTAACATTCCGTTTTGCAATTACAAAATTTAATTTAAAGAC 

ACCTGGTAGGGAAGATGATGATGCTGAAGAACTAAATGTAAAACTTGCGAATAATGATTATACTCAAGTG 

GCAGCTGTAATATTAAAGGGTGTTGGAGGAAAAGAAAACGTAGTATCTATAGATAATTGTGTAACTAGAT 

TACGTTTAGAAATTAAAGATCAAGCTGCTGTAGATGAAAAAGTTATTAAATCAGCAGGTGTATCTGGAAT 

AATAAGACCAGGAAAAACAAGCGTACAAGTTGTTGTAGGAACACAGGTGCAATTTGTAGCAGATGAATTT 

AAAAAATTATGTAAGTAAATTTGAAGATCAATAATTAGATTAGGAAAATTATCTGATTAATAAATTAAGA 

ATATTTAAAAATGTGGAAAAGAGATTGATGATATAAGAAATTAAGTTTTATATCAGACTCTTTTCCATTT 

TTTTTGTATGCTTTAAGGCTTTTTTTTAATTTACTTAAAGTTTATAATATCTAATGTATAAATTTATTTG 

GTGGTGAAAATATGGAATACATAAATGAGATTAATATAAATGAAGCAGTTATTCATATATTAGATAGTAA 

TGGGGAAGAACCTATTTTAAACGAGTATAGTTTGGAATTAAATGAAGATATATATTTTTTCTTACATAAA 

CATTTAGAAAAGTGTTTTAAGGATGAAGAACTTAAATATGGAAAGTTTAATCCAGAAAGAAACATAGTTA 

AAGAAGTATCC  
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Figure1: Sequence of the Cbei 4534, Cbei 4533 and Cbei 4532 genes and annealing positions 

of primers used in this study.  The sequence of the minus strand of the chromosome is 

shown, with Cbei 4534 and Cbei 4532 in forward orientation and Cbei 4533 in reverse 

orientation.   
 

         Amplification primers for gene cloning.  
      

            Primers for Dig-labelling and primers for sequencing.    
 

            Cbei 4534 forward orientation 
 

             Cbei 4533 reverse orientation 

                          

            Cbei 4532 forward orientation 
 

 For some primers, indicated by (*), the primer sequence is the reverse complement of 

the sequence highlighted Primer 4532 Dig-rev was also used in sequencing of the 

gene.  
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Query  1     ATGATGAAGTATTTACAAAAATTAGGAAAATCCTTAATGCTTCCAGTAGCTTGTTTACCC  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  68    ATGATGAAGTATTTACAAAAATTAGGAAAATCCTTAATGCTTCCAGTAGCTTGTTTACCC  127 

 

Query  61    GTTGCAAGTATTTTAATGGGTCTTGGTTATTGGCTTGACCCTACAGGCTGGGGAGCAAAT  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  128   GTTGCAAGTATTTTAATGGGTCTTGGTTATTGGCTTGACCCTACAGGCTGGGGAGCAAAT  187 

 

Query  121   AACATTGCTTCAGCTTTTATGCTAAAAGCAGGTAGTGCTTTAATTGACAATATGGGAATT  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  188   AACATTGCTTCAGCTTTTATGCTAAAAGCAGGTAGTGCTTTAATTGACAATATGGGAATT  247 

 

Query  181   TTGTTTGCAATTGGTGTAGGTGTAGGAATGTCAGATGATAATGACGGTACAGCAGGACTT  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  248   TTGTTTGCAATTGGTGTAGGTGTAGGAATGTCAGATGATAATGACGGTACAGCAGGACTT  307 

 

Query  241   GCAGGACTTGTTTCATGGCTTATGATTACAACATTATTATCTACAGGAGCTGTAGCAATG  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  308   GCAGGACTTGTTTCATGGCTTATGATTACAACATTATTATCTACAGGAGCTGTAGCAATG  367 

 

Query  301   TTTAAGGGAATTGATGTTAAAGAGGTAGCGCCAGCATTCGCTAAAACTCAAACACAATTT  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  368   TTTAAGGGAATTGATGTTAAAGAGGTAGCGCCAGCATTCGCTAAAACTCAAACACAATTT  427 

 

Query  361   ATTGGTATTTTATCAGGTTTAATAGGTGCAGCCTGTTATAACAGATTTAAAAGTGTTAAA  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  428   ATTGGTATTTTATCAGGTTTAATAGGTGCAGCCTGTTATAACAGATTTAAAAGTGTTAAA  487 

 

Query  421   TTACCAGATGCATTGGGATTCTTTAGTGGAAAAAGATGTGTCGCAATTGTAACCGCAGCA  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  488   TTACCAGATGCATTGGGATTCTTTAGTGGAAAAAGATGTGTCGCAATTGTAACCGCAGCA  547 

 

Query  481   TATTCAATAGTTGCATCTATAGTATTATTCTTTGCATGGCCTCTTATTTATGGTGCATTA  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  548   TATTCAATAGTTGCATCTATAGTATTATTCTTTGCATGGCCTCTTATTTATGGTGCATTA  607 

 

Query  541   GTAGCATTTGGTGAAGCTATTGTATCAACAGGTGCAGTTGGATCTGGTATTTATGCATTC  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  608   GTAGCATTTGGTGAAGCTATTGTATCAACAGGTGCAGTTGGATCTGGTATTTATGCATTC  667 

 

Query  601   TTCAATAGATTATTAATACCATTTGGTCTTCACCATGCATTAAACTCAGTATTCTGGTTT  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  668   TTCAATAGATTATTAATACCATTTGGTCTTCACCATGCATTAAACTCAGTATTCTGGTTT  727 

 

Query  661   GATGTAGCTGGAATTAACGACCTTGGTAACTTCTGGTCAGGTAAAGGAACACAAGGAGTA  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  728   GATGTAGCTGGAATTAACGACCTTGGTAACTTCTGGTCAGGTAAAGGAACACAAGGAGTA  787 

 

Query  721   ACTGGTATGTATATGACTGGATTCTTCCCAGTAATGATGTTTGGATTACCAGCAGGAGCA  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  788   ACTGGTATGTATATGACTGGATTCTTCCCAGTAATGATGTTTGGATTACCAGCAGGAGCA  847 

 

Query  781   TTAGCTATGTACCATACAGCTAAAGATAAGAAGAAGAAAGCGGTATATGGTTTATTATTA  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  848   TTAGCTATGTACCATACAGCTAAAGATAAGAAGAAGAAAGCGGTATATGGTTTATTATTA  907 
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Query  841   GCAGCAGCAATATCTTCATTCTTCACAGGTGTTACAGAACCATTAGAATTTGCATTTATG  900 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  908   GCAGCAGCAATATCTTCATTCTTCACAGGTGTTACAGAACCATTAGAATTTGCATTTATG  967 

 

Query  901   TTCTTAGCTCCAGGTTTATATGTTCTTCATGCTGGATTAACAGGAATTTCAGCATTTGTA  960 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  968   TTCTTAGCTCCAGGTTTATATGTTCTTCATGCTGGATTAACAGGAATTTCAGCATTTGTA  1027 

 

Query  961   TGTACATTATTACCAGTAAGAGCTGGATTTAACTTTAGTGCTGGATTTGTAGATTGGTTC  1020 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1028  TGTACATTATTACCAGTAAGAGCTGGATTTAACTTTAGTGCTGGATTTGTAGATTGGTTC  1087 

 

Query  1021  TTAAGTTTCAAAGCTCCTATGGCAGAAAATCCAATAATGTTAATCCCAATAGGTTTAGTA  1080 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1088  TTAAGTTTCAAAGCTCCTATGGCAGAAAATCCAATAATGTTAATCCCAATAGGTTTAGTA  1147 

 

Query  1081  TTTGCAGTAATCTATTATGTAACATTCCGTTTTGCAATTACAAAATTTAATTTAAAGACA  1140 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1148  TTTGCAGTAATCTATTATGTAACATTCCGTTTTGCAATTACAAAATTTAATTTAAAGACA  1207 

 

Query  1141  CCTGGTAGGGAAGATGATGATGCTGAAGAACTAAATGTAAAACTTGCGAATAATGATTAT  1200 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1208  CCTGGTAGGGAAGATGATGATGCTGAAGAACTAAATGTAAAACTTGCGAATAATGATTAT  1267 

 

Query  1201  ACTCAAGTGGCAGCTGTAATATTAAAGGGTGTTGGAGGAAAAGAAAACGTAGTATCTATA  1260 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1268  ACTCAAGTGGCAGCTGTAATATTAAAGGGTGTTGGAGGAAAAGAAAACGTAGTATCTATA  1327 

 

Query  1261  GATAATTGTGTAACTAGATTACGTTTAGAAATTAAAGATCAAGCTGCTGTAGATGAAAAA  1320 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1328  GATAATTGTGTAACTAGATTACGTTTAGAAATTAAAGATCAAGCTGCTGTAGATGAAAAA  1387 

 

Query  1321  GTTATTAAATCAGCAGGTGTATCTGGAATAATAAGACCAGGAAAAACAAGCGTACAAGTT  1380 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1388  GTTATTAAATCAGCAGGTGTATCTGGAATAATAAGACCAGGAAAAACAAGCGTACAAGTT  1447 

 

Query  1381  GTTGTAGGAACACAGGTGCAATTTGTAGCAGATGAATTTAAAAAATTATGTAAGTAA  1437 

             ||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1448  GTTGTAGGAACACAGGTGCAATTTGTAGCAGATGAATTTAAAAAATTATGTAAGTAA  1504 

 

 

 

Figure 2: Sequence alignment of Cbei 4532 Fwd strand with the genome sequence.  The 

sequence was derived from two reactions using the p.JET1.2 forward sequencing primer and 

primer seq2 Fwd.  

 

(Query): The plasmid sequence. 

   (Sbjct): The genomic sequence.  
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Query  1     CATATCATCAATCTCTTTTCACATTTTTAAATATTCTTAATTTATTAATCAGATAATTTT  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1     CATATCATCAATCTCTTTTCACATTTTTAAATATTCTTAATTTATTAATCAGATAATTTT  60 

 

Query  61    CCTAATCTAATTATTGATCTTCAAATTTACTTACATAATTTTTTAAATTCATCTGCTACA  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  61    CCTAATCTAATTATTGATCTTCAAATTTACTTACATAATTTTTTAAATTCATCTGCTACA  120 

 

Query  121   AATTGCACCTGTGTTCCTACAACAACTTGTACGCTTGTTTTTCCTGGTCTTATTATTCCA  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  121   AATTGCACCTGTGTTCCTACAACAACTTGTACGCTTGTTTTTCCTGGTCTTATTATTCCA  180 

 

Query  181   GATACACCTGCTGATTTAATAACTTTTTCATCTACAGCAGCTTGATCTTTAATTTCTAAA  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  181   GATACACCTGCTGATTTAATAACTTTTTCATCTACAGCAGCTTGATCTTTAATTTCTAAA  240 

 

Query  241   CGTAATCTAGTTACACAATTATCTATAGATACTACGTTTTCTTTTCCTCCAACACCCTTT  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  241   CGTAATCTAGTTACACAATTATCTATAGATACTACGTTTTCTTTTCCTCCAACACCCTTT  300 

 

Query  301   AATATTACAGCTGCCACTTGAGTATAATCATTATTCGCAAGTTTTACATTTAGTTCTTCA  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  301   AATATTACAGCTGCCACTTGAGTATAATCATTATTCGCAAGTTTTACATTTAGTTCTTCA  360 

 

Query  361   GCATCATCATCTTCCCTACCAGGTGTCTTTAAATTAAATTTTGTAATTGCAAAACGGAAT  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  361   GCATCATCATCTTCCCTACCAGGTGTCTTTAAATTAAATTTTGTAATTGCAAAACGGAAT  420 

 

Query  421   GTTACATAATAGATTACTGCAAATACTAAACCTATTGGGATTAACATTATTGGATTTTCT  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  421   GTTACATAATAGATTACTGCAAATACTAAACCTATTGGGATTAACATTATTGGATTTTCT  480 

 

Query  481   GCCATAGGAGCTTTGAAACTTAAGAACCAATCTACAAATCCAGCACTAAAGTTAAATCCA  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  481   GCCATAGGAGCTTTGAAACTTAAGAACCAATCTACAAATCCAGCACTAAAGTTAAATCCA  540 

 

Query  541   GCTCTTACTGGTAATAATGTACATACAAATGCTGAAATTCCTGTTAATCCAGCATGAAGA  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  541   GCTCTTACTGGTAATAATGTACATACAAATGCTGAAATTCCTGTTAATCCAGCATGAAGA  600 

 

Query  601   ACATATAAACCTGGAGCTAAGAACATAAATGCAAATTCTAATGGTTCTGTAACACCTGTG  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  601   ACATATAAACCTGGAGCTAAGAACATAAATGCAAATTCTAATGGTTCTGTAACACCTGTG  660 

 

Query  661   AAGAATGAAGATATTGCTGCTGCTAATAATAAACCATATACCGCTTTCTTCTTCTTATCT  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  661   AAGAATGAAGATATTGCTGCTGCTAATAATAAACCATATACCGCTTTCTTCTTCTTATCT  720 

 

Query  721   TTAGCTGTATGGTACATAGCTAATGCTCCTGCTGGTAATCCAAACATCATTACTGGGAAG  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  721   TTAGCTGTATGGTACATAGCTAATGCTCCTGCTGGTAATCCAAACATCATTACTGGGAAG  780 

 

Query  781   AATCCAGTCATATACATACCAGTTACTCCTTGTGTTCCTTTACCTGACCAGAAGTTACCA  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  781   AATCCAGTCATATACATACCAGTTACTCCTTGTGTTCCTTTACCTGACCAGAAGTTACCA  840 

 

Query  841   AGGTCGTTAATTCCAGCTACATCAAACCAGAATACTGAGTTTAATGCATGGTGAAGACCA  900 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  841   AGGTCGTTAATTCCAGCTACATCAAACCAGAATACTGAGTTTAATGCATGGTGAAGACCA  900 
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Query  901   AATGGTATTAATAATCTATTGAAGAATGCATAAATACCAGATCCAACTGCACCTGTTGAT  960 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  901   AATGGTATTAATAATCTATTGAAGAATGCATAAATACCAGATCCAACTGCACCTGTTGAT  960 

 

Query  961   ACAATAGCTTCACCAAATGCTACTAATGCACCATAAATAAGAGGCCATGCAAAGAATAAT  1020 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  961   ACAATAGCTTCACCAAATGCTACTAATGCACCATAAATAAGAGGCCATGCAAAGAATAAT  1020 

 

Query  1021  ACTATAGATGCAACTATTGAATATGCTGCGGTTACAATTGCGACACATCTTTTTCCACTA  1080 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1021  ACTATAGATGCAACTATTGAATATGCTGCGGTTACAATTGCGACACATCTTTTTCCACTA  1080 

 

Query  1081  AAGAATCCCAATGCATCTGGNAATTTAACACTTTTAAATCTGTTATAACAGGCTGCACCT  1140 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1081  AAGAATCCCAATGCATCTGGNAATTTAACACTTTTAAATCTGTTATAACAGGCTGCACCT  1140 

 

Query  1141  ATTAAACCTGATAAAATACCAATAAATTGTGTTTGAGTTTTAGCGAATGCTGGCGCTACC  1200 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1141  ATTAAACCTGATAAAATACCAATAAATTGTGTTTGAGTTTTAGCGAATGCTGGCGCTACC  1200 

 

Query  1201  TCTTTAACATCAATTCCCTTAAACATTGCTACAGCTCCTGTAGATAATAATGTTGTAATC  1260 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1201  TCTTTAACATCAATTCCCTTAAACATTGCTACAGCTCCTGTAGATAATAATGTTGTAATC  1260 

 

Query  1261  ATAAGCCATGAAACAAGTCCTGCAAGTCCTGCTGTACCGTCATTATCATCTGACATTCCT  1320 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1261  ATAAGCCATGAAACAAGTCCTGCAAGTCCTGCTGTACCGTCATTATCATCTGACATTCCT  1320 

 

Query  1321  ACACCTACACCAATTGCAAACAAAATTCCCATATTGTCAATTAAAGCACTACCTGCTTTT  1380 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1321  ACACCTACACCAATTGCAAACAAAATTCCCATATTGTCAATTAAAGCACTACCTGCTTTT  1380 

 

Query  1381  AGCATAAAAGCTGAAGCAATGTTATTTGCTCCCCAGCCTGTAGGGTCAAGCCAATAACCA  1440 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1381  AGCATAAAAGCTGAAGCAATGTTATTTGCTCCCCAGCCTGTAGGGTCAAGCCAATAACCA  1440 

 

Query  1441  AGACCCATTAAAATACTTGCAACGGGTAAACAAGCTACTGGAAGCATTAAGGATTTTCCT  1500 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1441  AGACCCATTAAAATACTTGCAACGGGTAAACAAGCTACTGGAAGCATTAAGGATTTTCCT  1500 

 

Query  1501  AATTTTTGTAAATACTTCATCAT  1523 

             ||||||||||||||||||||||| 

Sbjct  1501  AATTTTTGTAAATACTTCATCAT  1523 

 

 

Figure 3: Sequence alignment of Cbei 4532 reverse strand with the genome sequence.  The 

sequence was derived from two reactions using the p.JET1.2 reverse sequencing primer and 

primer seq2 Rev. 

 

(Query): The plasmid sequence. 

   (Sbjct): The genomic sequence.  
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Query  76   ATGTTTAATTTTTTTAAGAAAAATTCAAAGGACTCAAATAAAGAAGCAAAATTAGTTGCA  135 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1    ATGTTTAATTTTTTTAAGAAAAATTCAAAGGACTCAAATAAAGAAGCAAAATTAGTTGCA  60 

 

Query  136  CCTATAACTGGTAAAACAATAGATTTATCAAAAGTACCAGATAAAGTTTTTGCAGAAAAA  195 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  61   CCTATAACTGGTAAAACAATAGATTTATCAAAAGTACCAGATAAAGTTTTTGCAGAAAAA  120 

 

Query  196  ATGGCTGGAGACGGGCTTGCAATAGATACTACTGGAGATACAGTAGTTTCACCTGCTGAC  255 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  121  ATGGCTGGAGACGGGCTTGCAATAGATACTACTGGAGATACAGTAGTTTCACCTGCTGAC  180 

 

Query  256  GGAACCTTAACATTAGTATTTAATACAAAGCATGCATTTGCAATTACTCTTGATAATGGA  315 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  181  GGAACCTTAACATTAGTATTTAATACAAAGCATGCATTTGCAATTACTCTTGATAATGGA  240 

 

Query  316  GCTGAGTTATTAGTTCATATAGGTATCGATACTGTTTCTTTAAATGGTGAAGGTTTTGAA  375 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  241  GCTGAGTTATTAGTTCATATAGGTATCGATACTGTTTCTTTAAATGGTGAAGGTTTTGAA  300 

 

Query  376  CAATTAGCTAAAGCTGGAACTAAAGTTAAAGCTGGTACTCCAATTATAAAAATAGATAGG  435 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  301  CAATTAGCTAAAGCTGGAACTAAAGTTAAAGCTGGTACTCCAATTATAAAAATAGATAGG  360 

 

Query  436  GATTTTATTTTAGGAAAAGGTTTTTCTTTGGTCACTCCAGTCCTTGTTACAAACATGGAT  495 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  361  GATTTTATTTTAGGAAAAGGTTTTTCTTTGGTCACTCCAGTCCTTGTTACAAACATGGAT  420 

 

Query  496  ATAATCAAGGATTTAAATTCAAATATTGATAAAGAAGTTGTTGCTGGAGAAGATGAAGTA  555 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  421  ATAATCAAGGATTTAAATTCAAATATTGATAAAGAAGTTGTTGCTGGAGAAGATGAAGTA  480 

 

Query  556  ATTACTTTTACTTTATAA  573 

            |||||||||||||||||| 

Sbjct  481  ATTACTTTTACTTTATAA  498 

 

 

 

Figure 4: Sequence alignment of Cbei 4533 forward strand with the genome sequence.  The 

sequence was derived from reactions using the p.JET1.2 forward sequencing primer and primer 

seq2 Rev.  

 

(Query): The plasmid sequence. 

  (Sbjct): The genomic sequence.  
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Query  140  TTATAAAGTAAAAGTAATTACTTCATCTTCTCCAGCAACAACTTCTTTATCAATATTTGA  199 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1    TTATAAAGTAAAAGTAATTACTTCATCTTCTCCAGCAACAACTTCTTTATCAATATTTGA  60 

 

Query  200  ATTTAAATCCTTGATTATATCCATGTTTGTAACAAGGACTGGAGTGACCAAAGAAAAACC  259 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  61   ATTTAAATCCTTGATTATATCCATGTTTGTAACAAGGACTGGAGTGACCAAAGAAAAACC  120 

 

Query  260  TTTTCCTAAAATAAAATCCCTATCTATTTTTATAATTGGAGTACCAGCTTTAACTTTAGT  319 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  121  TTTTCCTAAAATAAAATCCCTATCTATTTTTATAATTGGAGTACCAGCTTTAACTTTAGT  180 

 

Query  320  TCCAGCTTTAGCTAATTGTTCAAAACCTTCACCATTTAAAGAAACAGTATCGATACCTAT  379 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  181  TCCAGCTTTAGCTAATTGTTCAAAACCTTCACCATTTAAAGAAACAGTATCGATACCTAT  240 

 

Query  380  ATGAACTAATAACTCAGCTCCATTATCAAGAGTAATTGCAAATGCATGCTTTGTATTAAA  439 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  241  ATGAACTAATAACTCAGCTCCATTATCAAGAGTAATTGCAAATGCATGCTTTGTATTAAA  300 

 

Query  440  TACTAATGTTAAGGTTCCGTCAGCAGGTGAAACTACTGTATCTCCAGTAGTATCTATTGC  499 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  301  TACTAATGTTAAGGTTCCGTCAGCAGGTGAAACTACTGTATCTCCAGTAGTATCTATTGC  360 

 

Query  500  AAGCCCGTCTCCAGCCATTTTTTCTGCAAAAACTTTATCTGGTACTTTTGATAAATCTAT  559 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  361  AAGCCCGTCTCCAGCCATTTTTTCTGCAAAAACTTTATCTGGTACTTTTGATAAATCTAT  420 

 

Query  560  TGTTTTACCAGTTATAGGTGCAACTAATTTTGCTTCTTTATTTGAGTCCTTTGAATTTTT  619 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  421  TGTTTTACCAGTTATAGGTGCAACTAATTTTGCTTCTTTATTTGAGTCCTTTGAATTTTT  480 

 

Query  620  CTTAAAAAAATTAAACAT  637 

            |||||||||||||||||| 

Sbjct  481  CTTAAAAAAATTAAACAT  498 

 

 

 

 

 

Figure 5: Sequence alignment of Cbei 4533 reverse strand with the genome sequence.  The 

sequence was derived from tow reactions.  The sequence was derived from reactions using the 

p.JET1.2 reverse sequencing primer and primer seq2 Rev.  

 

 

(Query): The plasmid sequence. 

   (Sbjct): The genomic sequence.  
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 PTS system N-acetylglucosamine-specific transporter subunit IIBC [Clostridium beijerinckii NCIMB 

8052] 

locus_tag "Cbei_4532" 
 

        1 mmkylqklgk slmlpvaclp vasilmglgy wldptgwgan gsalidnmgi niasafmlka                                                                                           

       61 lfaigvgvgm sddndgtagl aglvswlmit tllstgavam fkgidvkeva pafaktqtqf 

      121 igilsgliga acynrfksvk lpdalgffsg krcvaivtaa ysivasivlf fawpliygal 

      181 vafgeaivst gavgsgiyaf fnrllipfgl hhalnsvfwf dvagindlgn fwsgkgtqgv 

      241 tgmymtgffp vmmfglpaga lamyhtakdk kkkavyglll aaaissfftg vteplefafm 

      301 flapglyvlh agltgisafv ctllpvragf nfsagfvdwf lsfkapmaen pimlipiglv 

      361 faviyyvtfr faitkfnlkt pgredddaee lnvklanndy tqvaavilkg vggkenvvsi 

      421 dncvtrlrle ikdqaavdek viksagvsgi irpgktsvqv vvgtqvqfva defkklck 

 

PTS system glucose subfamily transporter subunit IIA [Clostridium beijerinckii NCIMB 8052] 

locus_tag "Cbei_4533" 

     

        1 mfnffkknsk dsnkeaklva pitgktidls kvpdkvfaek magdglaidt tgdtvvspad 

       61 gtltlvfntk hafaitldng aellvhigid tvslngegfe qlakagtkvk agtpiikidr 

      121 dfilgkgfsl vtpvlvtnmd iikdlnsnid kevvagedev itftl 

 
 

Transcriptional antiterminator BglG [Clostridium beijerinckii NCIMB 8052] 

locus_tag "Cbei_4534" 

       

        1 mskiidpati iksynnnivs vnmngkeril fakgigfgrk sgdtiekgte vekifviede 

       61 dnlrnfkqvi envdeeffvl cekmisyvan elkenlderi hvalvdhlnf avkrlsdkee 

      121 ienpflmeir alypqeysla ekvaevlqne kkvkipegei gfialhihsa rnsgklsnti 

      181 knthlinsii eyveakteik idktsldyar flthlrfaik rilddisien dfikeiksky 

      241 klsykvskgv akilvlklek kvsddeiayl amhierfrka tikl 

 
PTS system glucose subfamily transporter subunit IIA [Clostridium beijerinckii NCIMB 8052] 

locus_tag "Cbei_0751" 

        1 mkdkvfgvlq rvgrsfmlpi ailpvaglfl gigesftnkt mldtygitgl igpgtfvnal 

       61 lsvmndagni vfenlplifa igvaigmskk erevaalaag iaflimhasi gamikihggt 

      121 eallsgaste vlgiislqmg vfggiivglg taalhnryyk ielpqvlsff ggtrfvpiic 

      181 sivylivgil mfyiwppvqg aiykvgnivl assyagtwvy glmerllipf glhhvfylpf 

      241 wqtavggtaq vgdkviegaq niffaelgtp githfsvsat rfmsgkfplm ifglpgaala 

      301 mykcakpekr kavgglllsa altsmltgit epieftflfv apvlygihcv laglaymlmh 

      361 mlgvgvgmtf sggfidlflf gilqgnakts wilivivgiv yfvvyyllft flikkldlkt 

      421 pgredsgevk lytrsdleak kndqnenade lsamicrglg gknnisdvdc cvtrlrctvh 

      481 nselvnegll kqtgasgifh kgvgvqimyg prvtviksnl edylvtapdk edtgyaiikk 

      541 esekdtekgi ekkvqgkvis tvilnspltg eakdlsevpd evfasrimgd gavvvpsdgn 

      601 viapadgvis fvfpskhalg ltttdglell ihigidtvkl dkkafetyve egdkvqagdk 

      661 ilsfdlefik nnapsiaspc ictalnsnqk vrllktgdik agealiavda fe 
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Phosphotransferase system IIC component, possibly N-acetylglucosamine-specific [Clostridium 

acetobutylicum ATCC 824] 

 

locus_tag "Cac_1353" 

 
        1 mgvtnkllaa cqklgkslmt piavlpaagl llrlgqpdll niswmmaagn gifnnlamif 

       61 aigiavgfae enngvaglsa avgyfvltnv atsfnkhidm gvlggiivgi lagnlynkyk 

      121 strlpdflgf fggrrlvpil tslcslvlgl isglvwpaiq nvinafgnsv shagvvgsfi 

      181 ygllnrllip iglhhvlntl fwfqfgtfks asgkivtgdl hrffaldkta gtymtgffpi 

      241 mmfalpaacl amisaakken rkkvsgmllg iaftafltgv tepieflfmf lapvlyvvha 

      301 vltglsmait salgiksgft fsagfvdyim nfnistkpil livigilyai iyyflflfti 

      361 kkfnlptpgr mddlddlddl ddlddlddld eepentpkik sspsknstle ekavgileai 

      421 gnknniqsld acvtrirltv kdgskvdepk lkklgatgim klddknfqiv vgttadiiat 

      481 hikeiikk 

 

 

PTS system transporter subunit IIA [Clostridium acetobutylicum ATCC 824] 

 

locus_tag "Cac_1354" 
      

        1 mlgffkknce liapasgkvl dlsevpdkvf seklvgdgva ielssdtiva pangelsllf 

       61 ktfhafgitl esgveilvhi gidtvklegk gfeplveqge tvkvgqpiik vdrefikeqg 

      121 fslitpvlit npelvtdiey isgidvdagn hklftyklk 

 

BglG family transcriptional antiterminator [Clostridium acetobutylicum ATCC 824] 

 

locus_tag "Cac_C1355" 
 

 

        1 mknstgdfki ikvlnnnvlf vlqnnkekil fergigfgkk iddlisadth vekvfsiene 

       61 nnsntfkqlv stvntniigi ceeiismisk elnenlneki hisltdhisf tlkrllsndt 

      121 iqnpflieta tlyktefela kkavkmleek tnieipedev gfialhihsa rkkgelsnti 

      181 kyaflsntii efiedeldit idkhsidyar fithlrftie riinsspikn ellnaikhay 

      241 pesyklsski cklledelhk kvvedetayl vmhieriknn tkgsilk 

 

 

 

ScrT [Clostridium acetobutylicum ATCC 824] 

 

locus “AF205034_1"    
      

        1 mvikkilnns avttiddatr iekvimgkgi afqkkpgdil neekiekifs ienqnenlkf 

       61 qsliseipie hikvseniis yakrkldvkf dehiyisltd hlsfafrrys kgikiknnml 

      121 wdikriykke ynigmwavey ikgelgikmd edeagfialh iidaslnesm dntiniteii 

      181 dgilniikyf fsiefneddm sydrllthlk yfaqrvvsrk naideeeksf leivktnyke 

      241 ayrcvgkiks fieknydyev kggeivyltl hvqrvisslr dk 
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Fused N-acetyl glucosamine specific PTS enzyme: IIC, IIB, and IIA components [Escherichia coli K-

12  MG1655] 

locus_tag "b0679 - nagE” 

       

        1 mnilgffqrl gralqlpiav lpvaalllrf gqpdllnvaf iaqaggaifd nlalifaigv 

       61 asswskdsag aaalagavgy fvltkamvti npeinmgvla giitglvgga aynrwsdikl 

      121 pdflsffggk rfvpiatgff clvlaaifgy vwppvqhaih aggewivsag algsgifgfi 

      181 nrlliptglh qvlntiawfq igeftnaagt vfhgdinrfy agdgtagmfm sgffpimmfg 

      241 lpgaalamyf aapkerrpmv ggmllsvavt afltgvtepl eflfmflapl lyllhalltg 

      301 islfvatllg ihagfsfsag aidyalmynl paasqnvwml lvmgviffai yfvvfslvir 

      361 mfnlktpgre dkedeivtee ansnteeglt qlatnyiaav ggtdnlkaid acitrlrltv 

      421 adsarvndtm ckrlgasgvv klnkqtiqvi vgakaesigd amkkvvargp vaaasaeatp 

      481 ataapvakpq avpnavsiae lvspitgdvv aldqvpdeaf askavgdgva vkptdkivvs 

      541 paagtivkif ntnhafclet ekgaeivvhm gidtvalegk gfkrlveega qvsagqpile 

      601 mdldylnana rsmispvvcs niddfsglii kaqghivagq tplyeikk 

 

PTS system N-acetylglucosamine-specific transporter subunit IICB [Bacillus subtilis str.168] gene  

locus_tag"BSU07700 - nagP” 

      

        1 mlsflqklgk sfmlpiavlp avgiilalgr edvfnipfvy qagtavfdhl plifaigiai 

       61 giskdsngaa glsgaisylm ldaatktidk tnnmavfggi iagliagyty nrfkdtklpe 

      121 ylgffsgrrl vpiltaiiti ilagifgvvw ppiqscinsf gewmlglggi gagifglfnr 

      181 lliplglhhv lnnifwfqfg eyngvtgdla rffakdptag tymtgffpim mfglpaacla 

      241 mvvtakpskr katagmmigf altafitgit epiefafmfl spllyavhav ltglslfivn 

      301 wlgirsgfsf sagaidyvls ygiaekplll llvgicyaav yfivfyvlik alnlktpgre 

      361 dddvdevlde ntvqdvneni mlkglggken lqtidhcatr lrltvkdtal vdeallkkag 

      421 akgvvksggq svqviigpnv efaaeelraa vk 

 

Transcriptional antiterminator of the bgl operon [Escherichia coli str.  K-12 substr.  MG1655] 

gene"bglG" 

ACCESSION   NP_418179 

       

        1 mnmqitkiln nnvvvviddq qrekvvmgrg igfqkrager inssgiekey alsshelngr 

       61 lsellshipl evmatcdrii slaqerlgkl qdsiyisltd hcqfaikrfq qnvllpnpll 

      121 wdiqrlypke fqlgeealti idkrlgvqlp kdevgfiamh lvsaqmsgnm edvagvtqlm 

      181 remlqlikfq fslnyqeesl syqrlvthlk flswrileha sindsdeslq qavkqnypqa 

      241 wqCacriaif iglqyqrkis paeimflain iervrkeh 
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Transcriptional antiterminator [Bacillus subtilis]  

ACCESSION   CAA82194 

gene "Lic T" 

       

        1 mkiakvinnn visvvneqgk elvvmgrgla fqkksgddvd eariekvftl dnkdvsekfk 

       61 tllydipiec mevseeiisy aklqlgkkln dsiyvsltdh infaiqrnqk gldiknallw 

      121 etkrlykdef aigkealvmv knktgvslpe deagfialhi vnaelneemp niinitkvmq 

      181 eilsivkyhf kiefneeslh yyrfvthlkf faqrlfngth mesqddflld tvkekyhray 

      241 ectkkiqtyi ereyehklts dellyltihi ervvkqa 

 

 

Transcriptional antiterminator [Bacillus subtilis]  

ACCESSION   YP_003868150 

gene"sacY" 

       

        1 mkikrilnhn aivvkdqnee killgagiaf dkkkndivdp skiektfvrk dtadykqfee 

       61 iletlpedhi qiseqiisha ekelnikine rihvafsdhl sfaierlsng mviknpllne 

      121 ikvlypkefq iglwaralik eklgihipdd eigniamhih tarnnagdmt qtldittmir 

      181 diieiieiql ainivedtis yerlvthlrf aiqhikages iyeldaemid iikekfkdaf 

      241 lcalsigtfv kkeygfefpe kelcyiamhi qrfyqrsvar 

 

 

PTS system glucose subfamily transporter subunit IIA [Clostridium beijerinckii NCIMB 8052] 

locus_tag "Cbei_4982" 

       

        1 mfsklfkkkn diviyspikg kivdisevpd pvfsdkimge giavipedni icspvngyva 

       61 qifktkhail lkssddleii ihigletvnl ngegfevlin egdevttgkk likvdfefmk 

      121 nkgintiipv viinhadrni ikyfgdkqtg aeimkisq 

 

 

 

 

PTS system glucose-like transporter subunit IIB [Clostridium beijerinckii NCIMB 8052] 

locus_tag "Cbei_4983" 

       

        1 mtntsyfskf qqlgkvlmtp ililpiagil mgigsaflsp svmktmpflq mpffklffsl 

       61 lkssgsivfn nlpaifaisi tigyakkekg iaalsaflgy mvmnvtmsal linlgkinpd 

      121 kllvgqsnil gvptvdtgvf ggiivgfliv ylhnkyynis lppvlsifsg tkfvpmvsii 

      181 gslilglals vvwpfiqgil ielsilikns gaygsmiygl aerallpfgl hhfvylpfff 

      241 tslggsmeig gkvvegavni yqaqlatpge mfnidvtrfa mngkviesmf glpgaalamy 

      301 kcakperkkv iggfflaavi paffsgitep iefaflfvap alygihaifa gtaylvtyll 

      361 qinipgsaaf ggpflsfifn gimqsdkgsh wifvpivgvi yfclyyfsfk faikkwdlkt 

      421 pgreleedse eisvvsssnt iindivdalg gknniksvda cftrlrvsvn dmsmvkddni 

      481 wkklgangvv kvkdgvqviy gakadvyktq vrdllgme 
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phosphotransferase II ABC, N-acetylglucosamine-specific [Ralstonia eutropha H16] 

gene "nagE" 

locus_tag "H16_A0312" 

       

        1 mkmdllprvq rlgatlmlpi avlpvaglll rlgqpdvfdi klmaeagnav fanlallfai 

       61 gvavgfardn ngaaalagti gylvlttvlk tidksldmgv lagivagava gglynryrnv 

      121 alppylgffs gkrfvpivta lcclllgivl ayawapvqag inaagawltt agsagalvfg 

      181 llnrlllvtg lhhlintlaw fvfgnyadpa tgaavsgdlh ryfagdpgag lfmtgffpvm 

      241 mfglpaacla myhetpparr alvggmlfsm altsfltgit epiefsfmfl apvlyglhal 

      301 mtglsmalch aldirlgftf sagaidyvlg yglssrgwla iplglayalv yyglfrffir 

      361 rfnlltpgrd evvpvaaagg aaqpaagsva qqyvealggp anlvvvdact trlrlnvadi 

      421 gavseprlka lgvrgvlkrp pnvvqvvigp qaeqvagdir avlqqapqat avvaaapava 

      481 tqasvpaaga fdpawwidal ggaaniasvg vvaltrlrvv vrerarvrad hlagsqlmwi 

      541 gddtahiafg haadghaaaf eralqampt 

 

 

Figure 6: Sequences of proteins used in alignments comparative in this study.  
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Hyperladder I 

 

 

Hyperladder IV 

 

 

 

 

Figure 7: DNA profile of Bioline hyperladders.  
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Figure 8: Vectors used in this study: 

A. pJet 1.2/blunt vector (Fermentas).  

B. StrataClone vector. 

C. pUC 18 vector.  
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Figure 9: Restriction and digestion strategy for cloning of Cbei 4532 and Cbei 4533  

as an artificial operon.   
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1) 3, 5 Dinitrosalicylic acid solution (DNS) /250 ml: 

 

- 3, 5 Dinitrosalicylic acid 0.25g. 

- Sodium potassium tartrate (Rochelle salt) 75g. 

- Sodium hydroxide (2M in 50 ml distilled water). 

 

2) Phosphate buffer : 

 

- 0.5M dipotassium hydrogen phosphate K2HPO4. 

- 0.5 M potassium dihydrogen phosphate KH2PO4. 

- Solutions were mixed to achieve pH 7.0 

 

3) Pfu DNA polymerase (5×) buffer/500µl. 

 

- 5µl of 100 mM Deoxyadenosine triphosphate (dATP). 

- 5µl of 100 mM Deoxyguanosine triphosphate (dGTP). 

- 5µl of 100 mM Deoxythymidine triphosphate (dTTP). 

- 5µl of 100 mM Deoxycytidine triphosphate (dCTP). 

- 250 µl (10×) Pfu buffer with MgSO4. 

- 230 µl Deionized water. 

 

4) (20×) saline-sodium citrate (SSC) buffer/L 

 

- 3M sodium chloride (NaCl) 

- 0.3M sodium acetate trihydrate (CH3COONa.3H2O) 

- 100µl Diethylpyrocarbonate (DEPC).   

 

5) (2×) saline-sodium citrate (SSC) buffer/L 

 

- 10 × diluted from 20× saline-sodium citrate (SSC) buffer. 

- 1ml of 1% Sodium dodecyl sulfate (SDS). 

 

6) (0.2×) saline-sodium citrate (SSC) buffer/L 

 

- 100 × diluted from 20× saline-sodium citrate (SSC) buffer. 

- 1ml of 1% sodium dodecyl sulfate (SDS). 
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7) Dig 1 buffer/L  

 

- 0.1 M Tris HCl.   

- 1M sodium chloride (NaCl). 

- 0.2% Tween 80. 

- pH 8.5 

 

8) Dig 4 buffer/L  

 

- 0.1 M Tris HCl.   

- 1M sodium chloride (NaCl). 

- 0.2% Tween 80. 

- pH 9.5 

 

9) Easy hybridization buffer/50 ml 

 

- 6M Urea 

- (6×) saline-sodium citrate (SSC) (15 ml of 20× SSC). 

- 2.5 ml of 1% sodium dodecyl sulfate (SDS).   

- 50mM Tris HCl. 

- pH 7.5 

 

10) Blocking buffer/100 ml 

 

- 100 mM maleic acid. 

- 1 M sodium chloride (NaCl). 

- pH 8. 

- 0.3% Tween 80. 

- 0.5% casein.   

- 0.1% Diethylpyrocarbonate (DEPC). 
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Figure 10: Protein standard curve 
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Figure 11: N-acetylglucosamine utilization by Clostridium acetobutylicum in RCM (A) and 

CBM (B), containing N-acetylglucosamine as a fermentable carbon source. 

 

 

 

Figure 12: Growth and sugar utilization by Clostridium acetobutylicum in RCM (A,B) and 

CBM (C,D) containing N-acetylglucosamine and glucose: (A), (C) pre-grown on N-

acetylglucosamine and (B), (D)  pre-grown on glucose.  
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