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A B S T R A C T

Most reservoirs, such as carbonate reservoirs not only have structural hetero-

geneities (e.g. complexly shaped geobodies or fractures). But they also have dis-

tributed wettabilities and are mixed- to oil-wet. The interplay of structural and

wettability heterogeneities impacts sweep efficiency and oil recovery. Choosing

the appropriate Improved Oil Recovery (IOR) or Enhanced Oil Recovery (EOR)

technique based on adequate predictions of oil recovery requires a sound un-

derstanding of the fundamental controls on fluid flow in mixed- to oil-wet and

structurally complex rocks. The underlying multiphase flow processes are mod-

elled with physically robust flow functions, i.e. relative permeability and cap-

illary pressure functions. Obtaining these flow functions is a challenging task,

especially when three fluid phases coexist, such as during Water-Alternating-

Gas (WAG) injection. In this work we use pore-network modelling, a reliable and

physically based simulation tool, to predict three-phase flow functions. We have

developed a new three-phase flow pore-network model for rocks with arbitrary

wettability, which allows us to analyse the fundamental multi-phase displace-

ment processes. Unlike other models, our model combines three main features:

(I) A novel thermodynamic criterion for formation and collapse of oil layers that

strongly depends on the fluid spreading behaviour and the rock wettability. The

model hence captures film/layer flow of oil accurately, which impacts, in partic-

ular, the oil relative permeability at low oil saturation and hence the accurate pre-

diction of residual oil. (II) Multiple displacement chains, where injection of one

phase at the inlet triggers a chain of interface displacements throughout the net-

work. This allows accurate modelling of the mobilization of disconnected phase

clusters that arise during higher order (WAG) floods. (III) The model takes as

input realistic 3D pore-networks extracted from pore-space reconstruction meth-

ods and Computed Tomography (CT) images, preserving both topology and pore

shape of the rock. The model comprises a constrained set of parameters that can

be tuned to mimic the wetting state of a given reservoir. We have validated
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our model against available experimental data for a range of wettabilities. We

demonstrate the importance of film and layer flow for the continuity of the var-

ious phases during subsequent WAG cycles and for the residual oil saturations.

A sensitivity analysis has been carried out with the full 3D model to predict

three-phase relative permeabilities and residual oil saturations for WAG cycles

under various wetting conditions with different flood end-points and for differ-

ent rock types. This revealed a wide range of three-phase relative permeabilities

and residual saturations. The pore-scale generated three-phase flow functions

have then been used in a heterogeneous reservoir model. Here we demonstrate

their impact on the sweep efficiency after gas injection and WAG for a range of

realistic wettability scenarios. We show that the uncertainty in flow functions

can be as big as the geological uncertainty in a reservoir model that was history

matched for an extended waterflood.
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1
I N T R O D U C T I O N

Commonly, oil field development comprises three main stages: (1) Primary re-

covery where hydrocarbons are recovered by using the reservoir natural energy

as drive mechanisms (e.g. water drive, solution gas drive, gas cap drive and

gravity drainage), which moves the hydrocarbons towards the production wells.

However, at some point the hydrocarbons become immobile. This could be, for

example, because the reservoir pressure drops as a result of production of hy-

drocarbons. (2) Secondary recovery where the reservoir pressure is maintained

by injecting fluids, commonly water, into the reservoir. Water flooding helps to

sweep the oil towards the production wells, creating regions where two phases,

oil and water, coexist and oil can be trapped. When water breaks through at

production wells and the water cut is high, further oil production may not be

economical. Hence it can become necessary to implement a new development

technique to increase the oil production rate and decrease water production.

(3) Tertiary recovery comprises a range of Enhanced Oil Recovery (EOR) meth-

ods, which can be applied to further improve oil production. The main idea

behind these methods is to mobilise trapped oil, i.e. reduce the residual oil sat-

uration, and transport it to the production wells. Examples of EOR techniques

include steam injection, polymer flooding, and Water-Alternating-Gas (WAG) in-

jection. The selection of a specific EOR technique requires an accurate prediction

of incremental oil recovery for the given field.

WAG injection is an EOR technique that has already been implemented success-

fully in many oil fields (Christensen et al., 2001) and is increasingly considered

for some Middle East carbonate fields to improve the oil recovery (Kalam et al.,

2011). WAG injection can improve oil recovery by contacting unswept zones in

the reservoir and increasing the microscopic sweep efficiency in the three-phase

1
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regions. Three-phase regions are generated during WAG injection because two

fluids, water and gas, with different physical properties are injected (Fig. 1.1).

Although there is field and experimental evidence that WAG is a viable EOR

scheme, the exact microscopic mechanism that leads to improvement in oil re-

covery during WAG is still not well understood. Many factors still need to be

considered for successful implementation of WAG injection. Jackson et al. (1985)

found that the wetting state of the reservoir has a major influence on the WAG

flood performance and a careful selection of the WAG ratio is required. The most

popular WAG ratio in field applications is 1:1 (Christensen et al., 2001). Maintain-

ing this ratio may be challenging due to limited gas availability. Christensen et al.

(2001) carried out a review for 59 oil fields where the WAG injection was applied,

mostly as a tertiary recovery technique. The dates when WAG was started in

these fields ranges from 1957 to 1996. Miscible WAG injection was implemented

in the majority of the fields (47) whereas only a few fields (10) used immiscible

WAG injection (Fig. 1.2a). 88% of the reviewed projects were onshore and the re-

maining 12% were offshore. WAG injection has been implemented in clastic and

carbonate reservoirs (Fig. 1.2b). The typical increase in oil recovery due to WAG

injection commenced was around 5% with some fields reporting an increase in

oil recovery of up to 20%. Hydrocarbon gas and CO2 were the most common

gases that were injected during WAG (Fig. 1.2c).

3 phases (gas-oil-water)

2 phase (gas-oil)

2 phase (oil-water)

unswept oil

injector producer

Figure 1.1: Conceptual model of WAG injection. Water and gas are injected through
same well, generating two- and three-phase region.
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(a) (b)

(c)

Figure 1.2: Summary of WAG injection for 59 oil fields between 1957 and 1996 by Chris-
tensen et al. (2001): (a) Distribution of miscible and immiscible WAG (b) Dis-
tribution of rock types. (c) Distribution of injection gases.

Despite the encouraging results of WAG injection for improving oil recovery,

the intrinsic physical mechanisms of three-phase flow that control this process

are still not well understood. Fundamentally, the physical processes which gov-

ern the simultaneous movement of these phases occur at the pore space. Yet

being able to accurately model these physical processes at the continuum-scale,

i.e. for the reservoir, is paramount to making well informed decisions about the

success or failure of implementing WAG for a given field. Holm et al. (2010)

have shown that subtle changes in wettability at the pore-scale during three-

phase flow impact the macro-scale displacement patterns fundamentally. Thus,

it is crucial to analyse the displacement processes at the pore-scale in order to

predict their consequences at the macro-scale, especially when all three phases

coexist in one region of the reservoir or even in a single pore. We point out that
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WAG enhanced oil recovery is not the only application of three-phase flow. For

example, if CO2 is used as the injected gas, it can get sequestered during this

process (Qi et al., 2008, 2009). Other applications could also include groundwater

remediation strategies such as steam injection during non-aqueous phase liquid

contamination (e.g. Falta et al., 1992a,b).

Accurate prediction of oil recovery during WAG, or three-phase flow in gen-

eral, at the field scale requires flow functions, i.e. relative permeabilities and

capillary pressures, and fluid saturations. These are the up-scaled expressions of

the displacement physics at the pore scale. It is extremely difficult, time consum-

ing and expensive to measure relative permeabilities and capillary pressures for

three-phase flow in a laboratory setting. Results are also very uncertain at low

oil saturations (Oak, 1990), where accurate predictions are needed because the

corresponding (trapped) oil is targeted during WAG injection. Furthermore, there

is an infinite number of scenarios (fluid arrangements and displacement paths)

of a three-phase system. This renders the reliable experimental determination

of flow functions for three-phase displacements highly challenging. Hence, em-

pirical correlations are frequently used to predict the relative permeabilities and

capillary pressures based on available two-phase data (Stone, 1970, 1973; Baker,

1988; Blunt, 2000; Juanes and Patzek, 2004).

However, empirical models often have little or no physical basis and, thus, the

prediction could differ from one model to the other and they may also be signif-

icantly different from relative permeabilities determined in laboratory measure-

ments, Fig. 1.3, (Blunt, 2000). These empirical models also have some important

limitations: most empirical models have been developed for water-wet systems

and fail to capture oil flow at very low saturation.

For water-wet system, when the oil saturation reaches below approximately

So = Sorw during gas injection, it was observed that the oil relative permeability

is proportional to the oil saturation squared, quadratic behaviour kro ∝ S2
o (Fig.

1.4), where, So denotes oil saturation, Sorw denotes residual oil during waterflood-

ing and kro denotes oil relative permeability. The quadratic behaviour kro ∝ S2
o

can be explained as follows: during gas injection (after primary drainage or wa-

terflood), gas displaces oil from the pore space. However, oil is not removed

completely from the pore space but it remains in the pore corners as layers sep-

arating water residing in the corners, and gas in the center of the pore. At low
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oil saturations, the drainage of oil results from these oil layers. Hence, the oil

saturation is proportional to the oil layers area and the oil relative permeability

is calculated using the hydrodynamic conductance of oil layers, which is propor-

tional to the square of the area occupied by the oil layers. Therefore, kro ∝ S2
o

(Blunt, 2000).

Figure 1.3: Cross-plot of experimental and predicted three-phase relative permeabili-
ties using different empirical models. Data are obtained by predictions us-
ing three empirical models: saturation-weighted interpolation is denoted by
the crosses (Baker, 1988), saturation-weighted interpolation including layer
drainage is denoted by the circles (Blunt, 2000), and Stone I is denoted by
the triangles (Stone, 1970). In general, these models overestimate three-phase
oil relative permeability. The layer model and Stone I give better predictions
than saturation-weighted interpolation. However, they still differ from the
measurements by a factor 10 for some points. Taken from Blunt (2000).

In the last two decades, network modelling, a physically-based simulation

tool, has been proposed as an alternative approach to predict the two- and three-

phase relative permeabilities and capillary pressures functions. This method uses

CT imaging (Dunsmuir et al., 1991; Spanne et al., 1994; Coles et al., 1998) of

core samples to construct 3D digital rocks. Alternatively, 2D thin sections can be

used by different reconstruction methods (commonly, process-based algorithms

(Bakke and Øren, 1997; Øren and Bakke, 2003) and statistical methods (Wu et al.,

2006; Okabe and Blunt, 2007)) to obtain a 3D digital rock, from which a network

of pore bodies connected by pore throats can be extracted (Jiang et al., 2007;

Dong and Blunt, 2009). The network is then used to simulate the flooding se-

quence that occurs in the real reservoir. During these simulations, it is possible

to compute the relative permeabilities, kr, and capillary pressures, Pc. Fig. 1.5

summarises the common approaches used to obtain the relative permeabilities
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Figure 1.4: Oil relative permeabilities for a water-wet sandstone from Oak (1990). The
three-phase data are denoted by symbols for different gas-water injection
ratios. The solid line and the dashed line denote the two-phase experimental
data of oil-water and gas-oil at connate water, respectively. A possible oil
layer drainage regime is indicated by a quadratic fit to the data at low oil
saturation (Blunt, 2000).

and capillary pressure either from digital rock or pore-network modelling or by

using experimental data.

Note that the 3D digital rocks can be employed directly to simulate fluid flow

using for examples the Lattice-Boltzmann method (Chen and Doolen, 1998; Pan

et al., 2004) and finite element-finite volume simulation method for modelling

single-phase fluid flow (Zaretskiy et al., 2010). However, the current computa-

tional power is not capable of simulating multi-phase flow in a representative

pore volume, especially for digital rocks that represent heterogeneous rocks,

such as carbonates containing micro-pores, large vugs and fractures. The net-

work modelling approach is able to overcome such limitations (Jiang et al., 2012).
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Figure 1.5: Different workflows to obtain relative permeabilities and capillary pressures
of two- and three-phase flow starting from core sample.

1.1 objectives and aims

The main objective of this work is to develop a state-of-the-art, physically-based

pore-network model that is capable of computing reliable three-phase flow func-

tions. The new pore-network model will be implemented into a computer soft-

ware to provide a tool that can be used by researchers for academics and industry

involved in three-phase flow processes. The main aims of developing this model

are:

1. Overcome some of the limitations of three-phase empirical models. These

limitations are: (a) Empirical models have been developed for water-wet

systems, but the wettability of real reservoir rocks often ranges from mixed-

to oil-wet. Our new model is developed for rocks with arbitrary wettability.

(b) Empirical models fail to capture the flow of oil at very low oil saturation.

Here, flow is controlled by film and layer flow. Our new model is able to

capture the film and layer flow adequately.

2. Model the three-phase physics at the pore-scale accurately. We use a novel

thermodynamic criterion introduced by van Dijke et al. (2004a, 2007) to

accurately model pore-scale film and layer flow during three-phase flow.
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Additionally, we model the movement of disconnected phase clusters by

multiple displacements, which has been observed by micromodel experi-

ments to control residual oil.

3. Derive physically consistent capillary pressure and relative permeability

functions for two- and three-phase flow and use them in field-scale simu-

lations of WAG injection.

The new pore-network model can be employed to "predict" three-phase flow

functions, which can be used to simulate three-phase EOR technique, including

but not limited to WAG injection, at the field-scale. Here we state the key objec-

tives of this work at the field-scale:

1. Compare pore-scale generated three-phase flow functions with empirical

three-phase flow functions for predicting field-scale oil recovery during

tertiary gas injection in oil reservoirs.

2. Study the efficiency of WAG injection in reservoirs of different wettability,

using three-phase flow functions which have been derived from our new

pore-network model.

3. Explore the impact of pore-scale wettability compared to the impact of

geological uncertainty for predicting field-scale oil recovery during WAG.

In summary, we have developed an advanced three-phase pore-network model

that incorporates the most important three-phase physics at the pore level. This

enables us to investigate different effects at the pore scale and to overcome the

aforementioned limitations of empirical three-phase flow models. The pore-scale

generated three-phase flow functions have been used in a synthetic but realistic

reservoir model for which we demonstrate their impact on sweep efficiency after

gas injection and WAG for a range of realistic wettability scenarios. In the follow-

ing sections, we describe briefly the pore-network modelling. Then, we state the

basic displacement processes that occur at the pore scale and must be captured

in a pore-network model. After that, we review the most well-known three-phase

pore-network models and present their contributions in understanding the three-

phase flow in porous media and their limitations. Finally, we summarize the

structure of this thesis.
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1.2 pore-network modelling

In network modelling, the pore space of porous medium is represented by a

network of pore bodies (nodes) connected by pore throats (bonds), Fig. 1.6. The

network is usually extracted from 3D images of the pore space (Bakke and Øren,

1997; Øren and Bakke, 2003; Al-Kharusi and Blunt, 2007; Jiang et al., 2007). Ef-

fective properties are assigned to these nodes and bonds. Additionally, different

shapes are assigned to these pores and throats to enable to model the multi-

phase physics (e.g. wetting films or layers at the pore corners) at the pore scale.

Structure of pore space, including realistic pore shape characterisation, will be

presented in detail in chapter 3.

(a) (b)

Figure 1.6: Different networks consisting of the same number of pore bodies. (a) A struc-
tured network (regular cubic lattice). (b) An unstructured network. Red de-
notes pore bodies and gray denotes pore throats. In the context of network
modelling, pore bodies are refereed as nodes and pore throats as bonds. Note
that the size of pore throats and pore bodies are not scaled.

The pore-network model is used to simulate the flooding sequence that occurs

in the real reservoir. Initially, the pore-network is completely filled by water. The

network is then flooded with oil up to irreducible water saturation to mimic oil

migration into the reservoir, during primary drainage. This represents the ini-

tial state of the reservoir. Then, the network wettability is changed, modelling

the alteration of the reservoir wettability during ageing (Kovscek et al., 1993).

After that, the imbibition process is performed to model reservoir production

during waterflooding. Finally, gas is injected (tertiary gas injection) in the net-

work to model oil production in the reservoir during gas injection. This flooding
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sequence is often simulated to obtain the flow properties, e.g. relative permeabil-

ities and capillary pressures. To predict such properties, accurate description of

the multiphase flow at pore level is essential.

At the equilibrium conditions in a three-phase system, oil, water and gas could

coexist in one pore. An important feature of three-phase physics is the ability

of one fluid to spread over the other in the presence of a third fluid in the

system, expressed by the spreading coefficient. This feature has a crucial impact

in determining the fluid configurations in the network pores, and hence the

three-phase flow. For example, a fluid can be present as a layer between the

other two phases if only its spreading coefficient is zero or positive, discussed

in chapter 2. Capturing oil films and layers flow is crucial for more accurate

prediction of oil relative permeability and residual oil (Piri and Blunt, 2005a,b).

In a three-phase system, the wetting order of the phases in the presence of

a solid surface is controlled by three-phase contact angle between each of the

three fluid pairs when the three phases coexist. The wetting order defines the

three phases as: wetting phase, intermediate phase and non-wetting phase. In

petroleum systems, three general wetting orders are possible (from most to least

wetting): water-oil-gas, oil-water-gas and oil-gas-water. Further discussion about

three-phase system will be described in chapter 2.

1.3 pore-scale displacements

In pore-network modelling fluid invasion is often based on the Invasion Perco-

lation (IP) algorithm where one phase displaces another phase by quasi-static

pore-scale displacement rules. This may cause clusters of connected fluid phases

to break up and merge, thus resulting in new fluid distributions. There are two

types of IP (Knackstedt et al., 2000): (a) Non-Trapping Invasion Percolation (NTIP)

where the defending phase is infinitely compressible and thus it can be displaced

from any accessible pore. (b) Trapping Invasion Percolation (TIP) where the de-

fending phase is incompressible, implying that it can be trapped by the invading

phase. The latter is commonly used in pore-network modelling.

There are three main types of displacements at the pore-scale which all have

been observed in the micromodel experiments (Lenormand et al., 1983): (1) piston-
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like displacement, (2) snap-off, (3) pore-body filling. They are described briefly

in the following.

1.3.1 Piston-like displacement

This event occurs when the invading phase from an adjacent pore body dis-

places the bulk of the defending phase from a throat (Fig. 1.7). In a pore with

angular cross-section, the invading phase may not displace the defending phase

completely. For example in a water-wet system, oil could invade a water-filled

pore during drainage, displacing water from the centre of the pore. Some water

may be left in corners of the pore as films. This displacement also may involve

the formation of oil layers in the subsequent floods, as explained in section 4.4.

Formation of these films and layers plays a crucial role in maintaining phase con-

nectivity within the network. Therefore, intensive studies have been conducted

to develop an accurate model that can predict where these layers form during

three-phase flow (Fenwick and Blunt, 1998a,b; van Dijke et al., 2004a; Piri and

Blunt, 2005a,b; van Dijke et al., 2007). We discuss the pore occupancies arising

from this type of displacement in chapter 4.

wetting phasenon-wetting phase

Figure 1.7: Piston-like displacement where wetting phase occupies a pore body displace
non-wetting phase from a throat.

1.3.2 Snap-off displacement

Snap-off displacement occurs when the wetting phase, surrounding the non-

wetting phase in a pore or throat, displaces the non-wetting phase from the

same pore or throat. Mohanty et al. (1987) referred to snap-off as a choke-off dis-
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placement (Fig. 1.8) where films of water, surrounding oil in a pore constriction

or throat, start to swell until they break the oil-neck meniscus, an arc meniscus,

forming two new head menisci, or main menisci during a water flood in a water-

wet pore. Eventually, the throat becomes filled completely by water. This process

results in disconnection of the oil phase, which may contribute to the entrap-

ment by forming disconnected clusters that are completely surrounded by water

clusters. The stability of the arc meniscus depends on the local pore geometry

and surface wettability of the pore, as will be shown in section 4.4.2.

Figure 1.8: Choke-off or snap-off displacement in a throat (Mohanty et al., 1987).

1.3.3 Pore-body filling displacement

Pore Body Filling (PBF) occurs when the wetting phase in the centre of a pore

body is displaced by the non-wetting phase of the neighbouring throats (Fig.

4.14). The capillary entry pressure is controlled by the inscribed radius of the

pore-body and the number of adjoining throats that can contribute to the dis-

placement of the defending phase from the pore-body. If only one neighbouring

throat accommodates the defending phase, then PBF becomes a normal piston-

like displacement.
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Figure 1.9: Pore-body filling events. I1 and I2 denote one or two throats occupied by a
non-wetting phase (e.g. oil), resepectively (Lenormand and Zarcone, 1984).

1.4 three-phase pore-scale models

Fatt (1956) pioneered the use of network model to represent porous media. Since

then, a wide range of network models were developed to study different flow

processes in porous media. However, these studies were limited to single- and

two-phase flow until 1984 when the first three-phase network model was in-

troduced (Heiba et al., 1984). In the following we will review the most known

three-phase network model:

Heiba et al. (1984) introduced the first three-phase network model by extend-

ing a previous two-phase model (Heiba et al., 1983) to calculate relative perme-

abilities and capillary pressures. The porous medium was represented by a Bethe

tree or Cayley network. Each pore was able to accommodate one fluid only at

any given time. Six basic types of displacements, o→w, o→g, w→o, w→g, g→w

and g→o, where labels o, w, and g stand for oil, water, and gas respectively,

were implemented. Displacement was controlled by the local capillary pressure.

It was assumed that gas is the least wetting phase, oil is the intermediate wetting

phase and water is the most wetting phase. It was found that the gas and water

relative permeabilities were functions of their own saturations. Oil iso relative

permeability curves (isoperms) were found to be strongly curved, suggesting

that the oil relative permeability was not a function of its own saturation. It was

further concluded that three-phase relative permeabilities at given saturation are

dependent on saturation paths, i.e. the saturation history, of the system.

Soll and Celia (1993) developed a capillary-dominated two-phase and three-

phase network model. The porous media were represented by regular 2D and
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3D networks, which consisted of pore bodies that were connected by pore throats.

Every pore could accommodate one fluid as well as wetting layers of a different

phase. The effect of gravity was incorporated by modifying the local capillary

pressures whereas the viscous forces were ignored. The model was able to cal-

culate the capillary pressure-saturation. The model was used to simulate micro-

model experiments (Soll et al., 1993). For two-phase flow, the predicted capillary

pressures were in good agreement with the measured values. For three-phase

flow, the model could not match the measured three-phase capillary pressure

values. The model was not used to compute three-phase relative permeabilities.

Øren et al. (1994) developed a two-dimensional network model to study im-

miscible gas injection into residual oil after waterflooding, i.e. tertiary gas injec-

tion, for spreading and non-spreading oil in strongly water-wet systems. The

pore throats were rectangular ducts and the pore bodies were spherical pores.

The authors gave a detailed description of the pore level displacement mecha-

nisms which included a double drainage mechanisms where gas connected to

the inlet displaces trapped oil that displaces water connected to the outlet. This

allowed immobile oil to connect to continuous oil and thus increase the oil re-

covery. Oil recoveries computed by the model were in good agreement with

measured values from the micromodel experiments (Øren and Pinczewski, 1991;

Øren et al., 1992). The model confirmed the importance of oil spreading films in

improving the recovery of waterflood residual oil for positive spreading systems.

There were no relative permeabilities computed from the model.

Pereira et al. (1996) and Pereira (1999) developed a numerical simulation model

to describe three-phase, drainage dominated, fluid flow in strongly water- and

oil-wet systems, considering both capillary and viscous forces. Pores and throats

were assumed to be lenticular in cross-section, so wetting and spreading lay-

ers can be present. The pore-scale displacement mechanisms were based on the

work by Øren and Pinczewski (1995). Simulated fluid recoveries closely matched

the corresponding experimental fluid recoveries of Øren et al. (1992) and Øren

et al. (1994). A large difference in oil recovery was observed for spreading and

non-spreading systems. The model confirmed that the displacement of the in-

termediate wetting phase is dependent on the saturation history of the displace-

ment. No relative permeabilities were calculated in this work.
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Mani and Mohanty (1997, 1998) developed a pore-network model to study

the effect of spreading coefficients on three-phase flow through porous media

in water-wet systems. A three-dimensional cubic lattice was used to represent

the porous medium. Simulation of larger systems was enabled by re-injection of

fluids produced at the outlet into the inlet of the network. Capillary-controlled

immiscible gas injection into a porous medium, initially saturated with water

and oil, was simulated. The following three displacement events were consid-

ered during gas invasion: (1) Direct water drainage where gas connected to the

inlet displaces water connected to the outlet. (2) Direct oil drainage where gas

connected to the inlet displaces oil connected to the outlet. (3) Double drainage

where gas connected to the inlet displaces trapped oil that displaces water con-

nected to the outlet. It was found that the direct water drainage event was pre-

ferred over double drainage when the spreading coefficient was highly nega-

tive. The residual oil saturation to gas invasion, starting after a waterflood, was

higher for a system with negative spreading coefficient because of the absence

of oil layers. The water relative permeability in two-phase and three-phase sys-

tems was found to be a function of its own saturation and was independent of

the spreading coefficient and saturation history. The gas relative permeability

curves, for positive spreading coefficient systems, were very similar to gas-oil

drainage curves. This agrees with the common assumptions made in empiri-

cal models that the gas relative permeability is a function of its own saturation

only. However, this assumption broke down for systems with negative spread-

ing coefficient, in which the gas relative permeability was dependent on the im-

posed oil-water capillary pressure, the saturation history and its own saturation.

For systems with negative spreading coefficient, the oil relative permeability re-

mained zero throughout the process, if there were no connected oil paths present

at the start of the gas injection. For similar initial conditions, in a system with

positive spreading coefficient, the oil relative permeability started at zero and

then increased, albeit that the oil saturation decreased, because oil is connected

through films in gas-filled paths. This suggested that the oil relative permeabil-

ity was a function of the oil saturation, the imposed oil-water capillary pressure,

the spreading coefficient, and the saturation history.

Fenwick and Blunt (1998a,b) developed a network model that was able to cal-

culate relative permeability, capillary pressure and oil recovery for water-wet
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media. The porous medium was presented by a cubic lattice of pores connected

by throats. All the pores and throats had equilateral triangular cross-sections to

allow for corner films and layers to exist. The authors used the model to ad-

dress two unique aspects of three-phase flow: (1) Formation of the oil layers

sandwiched between water corner films and gas in the centre of the pore. Such

oil layers were observed in micromodel experiments (Chatzis et al., 1988; Øren

et al., 1992; Soll et al., 1993; Øren and Pinczewski, 1994). These oil layers allow

oil to drain to low saturation during gas flood. In order to model these layers, an

approximate analytical model of oil layers conductance was introduced, which

was used to compute oil relative permeability in the layer drainage regime. (2) A

three-phase displacement involves changes in two independent saturations. This

leads to infinite number of saturation paths which potentially have different rela-

tive permeability and oil recoveries. A self-consistency procedure was presented

to allow the network model to find relative permeabilities for the correspond-

ing saturation path, produced by a one-dimensional Buckley-Leverett simulator.

Drainage through connected oil layers was observed to cause the high oil re-

covery during gas injection. These oil layers were found to be on the order of

microns in thickness and can be present in systems with negative spreading co-

efficient. At low oil and water saturation, oil relative permeability was found to

vary as a quadratic function of oil saturation (as in Fig. 1.4). This finding was

consistent with experimental results (Grader and O’Meara Jr., 1988; Sahni et al.,

1998).

Laroche et al. (1999a,b) developed a two-dimensional regular lattice network

model to study the impact of small-scale wettability heterogeneities on gas injec-

tion efficiency. The network model consists of cylindrical pore bodies, intercon-

nected by pore throats of triangular cross-section. The authors used the model

to simulate imbibition-drainage events and flow through films, as observed in

micromodel experiments (Laroche, 1998). In the experiments, the initial spread-

ing coefficient was positive, suggesting that oil was spreading. The capillary

number of the experiment indicated that the displacements were capillary dom-

inated. The authors found that gas injection has higher efficiency in uniformly

oil-wet systems, compared to water-wet systems. This was because oil films in

uniformly oil-wet systems had higher conductivity than oil layers in water-wet

systems. Additionally, in uniformly oil-wet systems gas was blocked by water
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that occupied large pores, giving a more uniform gas front. In non-uniformly

oil-wet system, gas preferred to invade the oil-wet regions because the pathways

in these regions exhibited less resistance to gas invasion compared to the water-

wet regions. In the water-wet regions, the high connectivity of water increases

the resistance to flow.

Hui and Blunt (2000a,b) developed a mixed-wet model comprising a capillary

bundle of horizontally aligned pores. All pores had the same length and cross-

section (equilateral triangular) but had different cross-sectional sizes. The model

incorporated wettability alteration by changing the wettability of all of the pore

surfaces in contact with the oil after primary drainage. Ten different fluid config-

urations were considered in a single pore to calculate the capillary pressure for

all possible displacements. Oil and water layer formation and collapse was anal-

ysed. The authors introduced approximate expressions for fluid conductance to

compute the three-phase relative permeabilities. Initially, the network was as-

sumed to be water-saturated. Three floods were simulated: primary drainage,

waterflooding and gas injection. The effect of wettability on three-phase flow

was studied as well. For water-wet systems, there was good agreement with the

theoretical and experimental results (Fenwick and Blunt, 1998a; Sahni et al., 1998;

Dicarlo et al., 2000) particularly with respect to the quadratic oil layer drainage

regime (as in Fig. 1.4) and the effect of spreading coefficient. Oil forms layers

during gas injection, which help it to drain to very low saturation. It was found

that the relative permeability of the intermediate-wetting phase, for different

wetting systems, depends on its own saturation and on initial oil saturation at

the beginning of gas injection.

Lerdahl et al. (2000) reconstructed a 3D Berea sandstone, using the process

based reconstruction technique developed by Bakke and Øren (1997). The recon-

structed pore space was translated to a pore network. This model was the first to

simulate three-phase flow in a realistic pore network. However, the model was

limited to water-wet systems. The model was used to compute the two-phase

and three-phase relative permeabilities. The predicted relative permeabilities

were in agreement with experimental data (Oak, 1990). The theory that three-

phase relative permeabilities of the wetting phase (water) and nonwetting phase

(gas) are independent of the saturation history, whereas recovery and relative
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permeability of the intermediate phase (oil) is strongly dependent on the satura-

tion history was confirmed in the simulations.

Larsen et al. (2000) used a network model based on the work of Fenwick and

Blunt (1998a,b) to simulate three-phase immiscible WAG injection processes in

micromodel experiments. The network model was a regular cubic lattice which

consisted of pore bodies (nodes) and throats (bonds). The pore sizes were calcu-

lated based on the inscribed radius of their cross-sections, which were assumed

to be squares. Four possible fluid combinations were allowed to be present in

a single pore: water; water and oil; water and gas; oil, water and gas. An itera-

tive procedure, similar to the self-consistency procedure of Fenwick and Blunt

(1998a,b) was used, to link the pore-scale, providing the relative permeabilities,

and field-scale, providing the saturation paths.

van Dijke et al. (2000, 2001a,b) developed a capillary bundle model of cylindri-

cal tubes for non-spreading and spreading oil in mixed-wet and fractionally-wet

systems. A fraction of pores is assumed to be strongly water-wet and the re-

maining pores are oil wet. The porous medium was assumed to be completely

accessible. Consistent linear relationships were introduced for the cosines of the

gas-oil and gas-water contact angles as a function of the oil-water contact an-

gles, when all three interfacial tensions and cosine angles of oil-water are given.

These linear relationships will be presented in detail in chapter 2 and they will be

used in our new network model. The saturation space was divided into regions

based on saturation dependencies of the corresponding relative permeabilities.

The number of these regions depends on the interfacial tensions, the range of

the pore sizes, and the degree of wettability of the pores. In each region there

was only one phase for which the relative permeability depended on more than

one phase saturation. This phase is called the intermediate-wetting phase. For

the remaining two phases, the relative permeabilities, depended on their own

saturation.

van Dijke et al. (2004b, 2006) developed a regular three-dimensional three-

phase network model for different wettability systems. The network consists of

throats with a circular cross-section. Films and layers were incorporated by spec-

ifying threshold values for the corresponding contact angles at which they form.

These films and layers are only notional, i.e. there are no volumes associated

with them. Hence they are not involved in the saturation or conductance calcula-

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



1.4 three-phase pore-scale models 19

tion but they are incorporated when detecting the continuity of different phases

and computing relative permeabilities. In our new model, as will be discussed

in chapter 3, these films and layers have volumes based on the precise shape

of the pore cross-section. Therefore they contribute to both saturation and con-

ductance (i.e., relative permeability) calculations. It was assumed that pores can

be filled by more than one fluid. Gravitational effects were also included. A key

feature of the model by van Dijke et al. (2004b, 2006) was the implementation

of multiple displacements. This is an extension of the double displacement pro-

cess discussed by Øren and Pinczewski (1995) and Fenwick and Blunt (1998b).

Multiple displacements occur when the injection of one fluid at the inlet of a net-

work model triggers a chain of displacements that involves disconnected clusters

of oil, water or gas, which span a connected displacement path from the inlet

to the outlet. Such displacement mechanisms were observed in micromodel ex-

periments (Sohrabi et al., 2000, 2001, 2004). This is an important feature when

wetting films are absent as the latter reduces the phase connectivity and forms

disconnected clusters that can be mobilised only by multiple displacements. The

model was used to simulate the micromodel experiments of higher WAG floods

for water-wet, oil-wet and mixed-wet systems (Sohrabi et al., 2000, 2001, 2004).

The comparisons with the experiments were based on oil recovery and three-

phase fluid distributions for the oil-wet WAG micromodel experiments, although

the oil recovery was different (Fig. 1.10). The importance of the multiple displace-

ments mechanism for predicting trapping and remobilisation of gas and oil was

apparent throughout the simulations. We will use the same experimental data

to validate our model in chapter 5.

Svirsky et al. (2007) used the model of van Dijke et al. (2004b, 2006) to predict

the experimental three-phase relative permeability data for water-wet systems.

They used experimental data for water-wet Berea sandstone of Oak (1990). The

network was anchored to the two-phase relative permeability and capillary pres-

sure by tuning the relevant network parameters and then simulating the gas

injection to generate three-phase relative permeability. A reasonable prediction

was achieved. The model was used to examine the behaviour of the flow func-

tions for two different combinations of interfacial tensions, so-called immiscible

and near miscible cases, and different wetting conditions. Immiscible and near

miscible cases generated two different saturation paths, which was attributed
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(a) (b)

Figure 1.10: Oil saturation after the three WAG floods starting with water injection for
oil-wet system obtained by (a) Micromodel experiment (Sohrabi et al., 2004)
(b) Pore-network simulation (van Dijke et al., 2006).

to the presence and absence of oil-spreading layers. It was observed that for

different combinations of interfacial tensions, the corresponding relative perme-

abilities are identical along identical saturation paths.

Piri and Blunt (2005a,b) developed a 3D pore-network model for capillary

dominated processes. The model was able to take as input the equivalent net-

work extracted from a real pore space, comprising a network of pores connected

by throats. Circular, square, or triangular cross-sections were assigned to each

pore, or throat, of the network based on the shape factor that matches the

real pore shape (Mason and Morrow, 1991). Wettability alteration, wetting films,

spreading layers of the intermediate-wet phase and hysteresis were incorporated

in the model. The model included a very detailed description of the fluid config-

urations for two- and three-phase flow. Double displacements, layer formation

and layer collapse were also implemented. Experimental data for three-phase

relative permeability for a water-wet Berea sandstone (Oak, 1990), was used to

validate the model. A good match between predicted and measured relative per-

meabilities was observed. More rigorous approach was then used to track the

saturation paths of the experiments, point by point, by injecting small slugs of

oil, water and gas. However, the model overpredicted the relative permeability

of the intermediate wetting phase (oil). This was attributed to the simple geo-

metric criterion that was used to model the formation and collapse of oil layers.

It was found that the oil relative permeability is very sensitive to the oil layer

conductance (Fig. 1.11). Simulations were ran using secondary and tertiary gas

injections. The oil relative permeability during tertiary gas injection was found
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to be lower than in the secondary case. This was because oil-water capillary pres-

sure was low during tertiary gas injection. This leads to thinner and less stable

oil layers compared to secondary gas injection. An approximate quadratic equa-

tion was obtained for the oil relative permeability at low oil saturation (see Fig.

1.4) during secondary gas injection. This was interpreted as oil layers dominat-

ing flow at low saturation. Two wetting systems, oil- and water-wet, were used

to study the effects of wettability on relative permeabilities. Different two-phase

and three-phase relative permeabilities were obtained for different wetting sys-

tems.

Figure 1.11: Sensitiviy of oil relative permeability to oil layer conductance (Piri and
Blunt, 2005b) by comparing measured and predicted three-phase oil relative
permeabilities for the experiments by Oak (1990). The dotted line denotes
the the predicted relative permeability by Piri and Blunt (2005b), the solid
line was obtained by multiplying the oil conductance by a constant factor of
0.08 and the dashed line was obtained by multiplying the oil conductance
by a constant factor of 0.001.

Suicmez et al. (2006, 2007) extended the thee-dimensional three-phase net-

work model of Piri and Blunt (2005a,b) by adding two new double displacement

mechanisms for a water-wet system: double imbibition (water→oil→gas) and

imbibition-drainage (water→gas→oil). The model was further validated using

additional experimental datasets from Oak (1990), Egermann et al. (2000) and

Element et al. (2003). The first dataset was previously used by Piri and Blunt

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



1.4 three-phase pore-scale models 22

(2005b). However, in this work, both simultaneous and cyclic gas-water injec-

tion experiment were simulated. The water relative permeability prediction was

excellent. However, the oil relative permeability at low oil saturation was under-

estimated. This result was different from that obtained by Piri and Blunt (2005b)

who overestimated the oil relative permeability during gas injection. In both

cases, at low oil saturation the oil relative permeabilities were controlled by oil

layer flow.

Piri and Blunt (2005a,b) and Suicmez et al. (2006, 2007) illustrated that it is

important to model oil layer conductance accurately to obtain adequate estimate

of oil relative permeability. In our model we overcome this problem by modelling

the oil layers based on a novel thermodynamic criterion for the formation and

collapse of oil layers in pores with angular cross-sections, introduced by van

Dijke et al. (2004a, 2007). The criteria was derived using an extension of the MS-

P method of Mayer and Stowe (1965) and Princen (1969a,b, 1970) to three-phase

flow. Such criteria allows for adequate modelling of layer flow of oil, which

affects the oil relative permeability at low oil saturation. We will discuss this in

more details in chapter 4.

Nardi et al. (2009) developed a three-phase network model, which can use net-

works extracted for 3D digital rocks. The model incorporated wettability alter-

ation, hysteresis, oil spreading layers and true three-phase capillary entry pres-

sures. It was assumed that water is hydraulically connected everywhere in the

pore-network. Hence, only single and double displacements are considered. The

model was used to predict two experimental datasets: The data for Berea sand-

stone from Oak (1990) and the data for composite core material from the Statfjord

field reported by Petersen et al. (2008). In general, the predicted three-phase rela-

tive permeabilities were in fair agreement with the corresponding experimental

three-phase relative permeabilities. The authors suggested that the implementa-

tion of a saturation path tracking algorithm is needed for a more comprehensive

validation of the model.

Table 1.1 gives a summary of previous three-phase pore-networks which were

discussed in this chapter.
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Table 1.1: Summary of three-phase pore-network models.

Reference Network Compute F/L Comment

Heiba et al. (1984) Cayley Pc, kr − water-wet sys-

tems

Soll and Celia (1993) 3D regular Pc F -

Øren et al. (1994) 2D regular Pc F strongly water-

wet systems

Pereira et al. (1996) 2D regular Pc F/L strongly water-

wet and oil-wet

Mani and Mohanty

(1997, 1998)

3D cubic lattice Pc, kr F/L −

Fenwick and Blunt

(1998a,b)

3D cubic lattice Pc, kr F/L −

Laroche et al.

(1999a,b)

2D or 3D lattice Pc F −

Hui and Blunt

(2000a,b)

capillary bundle Pc, kr F/L −

Lerdahl et al. (2000) realistic 3D (Berea

sandstone)

Pc, kr F/L the first to sim-

ulate three-phase

flow in a realistic

pore network

Larsen et al. (2000) regular cubic lattice Pc, kr F/L −

van Dijke et al. (2000,

2001a,b)

capillary bundle Pc, kr − introduce the lin-

ear relationships,

see chapter 2

van Dijke et al. (2004b,

2006)

regular 3D Pc, kr F/L∗ *only notional

Piri and Blunt

(2005a,b)

realistic 3D (Berea

sandstone)

Pc, kr F/L −

Nardi et al. (2009) realistic 3D Pc, kr F/L −
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where

F implementation on corner films

L layers separating corner films and bulk phase that occupying the centre part of the pore

kr relative permeabilities

Pc capillary pressures

1.5 structure of the thesis

This thesis is divided into two mutually connected parts: The first part relates

to the pore-scale simulation and comprises the description of the fundamental

three-phase physics at the pore-scale, resulting in a new pore-network model.

The second part demonstrates the capability of the pore-scale network model to

derive flow functions that can be used to predict three-phase flow processes at

a larger scale. Different injection scenarios are simulated at the macro-scale. In

total, this thesis consists of 8 chapters.

Chapter 1: This is the current chapter in which we showed the importance of

the three-phase flow processes, in particular WAG injection, in the oil and gas

industry. The physics of the three-phase flow that lead to an increase in oil re-

covery as result of WAG injection are still not well-understood. We propose using

pore-network modelling as a physically-based simulation tool to explore the be-

haviour of three-phase flow at the pore-scale and for subsequent "predictions" of

three-phase flow functions. We also reviewed the previous three-phase models

and their limitations.

Chapter 2: Here we describe the fundamental physics of three-phase flow,

most notably, the two physical properties which control the three-phase fluid

configuration at equilibrium conditions. This includes the interfacial tensions of

three coexisting phases. They are used to determine the spreading coefficient

and the three-phase contact angles, which decide the wetting state of the system:

water-wet or oil-wet.

Chapter 3: Here we discuss the shape of the real pores, demonstrating the

importance of angular pore shapes to model key pore-scale physics like the oc-
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currence of films and layers, which influence three-phase flow behaviour. We

also introduce the pore networks which are used in this study. We then provide

the calculations of conductance, porosity, phase saturations, absolute permeabil-

ity and relative permeability.

Chapter 4: Here we give a detailed description of the pore-network model,

discussing the two most important advancements in the current model: A ther-

modynamic criterion for oil layer formation and collapse and multiple displace-

ment chains.

Chapter 5: Here we validate our pore-network model against experimental

data for different wetting systems. For a water-wet system, we match our sim-

ulations with landmark experimental data of Oak (1990). We demonstrate the

impact of implementing the thermodynamic criteria for oil layer formation and

collapse by comparing predictions from our model and the well-known network

model of Piri and Blunt (2005a,b) to the experimental data. For an oil-wet sys-

tem, we simulate the micromodel experiments that were conducted by Sohrabi

et al. (2001, 2004). The simulation results are compared with the experimental

data quantitatively, using the oil recovery profile, and qualitatively, using fluid

distributions. We also compare our model prediction with previously published

results for the pore-network model developed by van Dijke et al. (2006).

Chapter 6: Here we use realistic 3D pore-networks, representing sandstone

and carbonate rocks, to show the capability of our new model to compute the

relative permeabilities for different wetting systems. We study the emergent be-

haviours and resulting flow properties of the networks and wetting systems.

We compare the saturation paths between two runs, using single- and multi-

displacement. The impact of these implementations on the residual oil satura-

tion is discussed.

Chapter 7: Here we show how the flow functions derived from our pore-

network model can be used in a commercial reservoir simulator. We use our

network model to derive physically consistent capillary pressure and relative

permeability functions for two- and three-phase flow. These functions are im-
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plemented into a commercial field-scale simulator to model WAG injection. We

study different processes, including the impact of pore-scale generated three-

phase flow functions on recovery rates in oil reservoirs, the efficiency of WAG

injection in reservoirs of different wettability.

Chapter 8: Here we summarise the results of this work and provide the key

conclusions. We also give some recommendation for future work.
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Part I

T H R E E - P H A S E P O R E - S C A L E N E T W O R K

M O D E L I N G

In this part we introduce our newly developed state-of-the-art three-

phase flow pore-network model, demonstrating the key advancements

of our model over the existing three-phase pore-network models. These

comprise the implementation of a novel thermodynamic criterion for

the formation and collapse of, oil layers and the multiple displace-

ments mechanisms of disconnected phase clusters which were ob-

served by micromodel experiments. We explain the local theory of

these processes which were worked out some time ago by van Di-

jke et al. (2004a, 2007) in Institute of Petroleum Engineering. We de-

scribe the pore space structure of the networks. We validate the model

against the well-known experimental data conducted by Oak (1990)

and the micromodel experiments of Sohrabi et al. (2000, 2001, 2004).

Finally, we run simulations using full 3D pore-networks for sandstone

and carbonate rocks for different wettability systems.
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2
F U N D A M E N TA L S O F T H R E E - P H A S E P H Y S I C S

2.1 introduction

Two main physical properties are required to describe the three-phase fluid con-

figuration in a porous medium at equilibrium conditions. The first property

is the interfaical tension between each of the three fluid pairs when the three

phases coexist. These interfacial tensions are different from the corresponding

two-phase systems (Zhou and Blunt, 1997). The three-phase interfacial tensions

are used to determine an important feature of three-phase physics which is the

ability of one fluid to spread over the other in the presence of a third fluid in

the system, expressed by the spreading coefficient. This is a crucial concept that

affects the residual oil saturation (Mani and Mohanty, 1997) and thus employ-

ing realistic values of interfacial tensions is essential. The second property is the

three-phase contact angle between each of the three fluid pairs when the three

phases coexist. This decides the wetting order of the phases in the presence of

a solid surface. The contact angle is defined as the angle that the fluid-fluid in-

terface between the two fluids makes with the solid surface, usually measured

through the denser fluid. In this chapter, we give a background of these two

physical properties and other parameter which can be determined from them.

2.2 interfacial tensions and spreading coefficients

The spreading coefficient can be calculated by taking into account the force bal-

ance of the contact line where all three phases (oil, water and gas, labeled o, w,

and g, respectively) meet. The important quantities which are required to cal-

28

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



2.2 interfacial tensions and spreading coefficients 29

culate the spreading coefficient are the interfacial tensions, σgo, σow and σgw. If

each of the interfacial tensions was measured for a pair of fluids in the absence

of the third fluid (i.e. two-phase system), then the spreading coefficient Ci
s,o can

be given in Eq. 2.1 which defines the initial oil spreading coefficient (Adamson

and Gast., 1997). However, if these interfacial tensions were measured when all

fluid phases are present in the system (i.e. three-phase system), they would be

different from the corresponding two-phase systems (Zhou and Blunt, 1997). If

the fluids remain in contact for a sufficient period of time to reach thermody-

namic equilibrium, then a new spreading coefficient, called the equilibrium oil

spreading coefficient Ceq
s,o can be defined by Eq. 2.2 (Adamson and Gast., 1997).

Ci
s,o = σgw − σgo − σow. (2.1)

Ceq
s,o = σ

eq
gw − σ

eq
go − σ

eq
ow, (2.2)

where σ
eq
gw, σ

eq
go and σ

eq
ow denote the interfacial tensions at thermodynamic equilib-

rium for gas-water, gas-oil and oil-water, respectively.

In the absence of a solid surface, the three-phase systems can be divided into

three groups (Piri, 2003), shown in Fig. 2.1:

(a) A non-spreading system, where a blob of oil floats on the surface of water.

In this case all three fluids in the system are in contact with each other and,

therefore, there are contact lines where all three fluids meet. At the contact

lines the interfacial tensions balance. For this system, the initial spreading

coefficient is negative.

(b) A partially spreading system, where the initial spreading of oil over water

takes place to form a thin film of oil covering the surface of the water. This is

possible when the initial spreading coefficient is positive and the equilibrium

spreading coefficient is positive.

(c) A spreading system, where a layer of oil spreads between water and gas.

Any addition of oil to the system leads to a thickening of the oil layer. In
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this system, the initial spreading coefficient is positive and the equilibrium

spreading coefficient is close to zero.

(a) Non-spreading system (b) Partially spreading system

(c) Spreading system

Figure 2.1: Classification of spreading systems.

In addition to the oil spreading coefficient (Eq. 2.2), the equilibrium spreading

coefficient for each of the remaining two fluids are defined as:

Ceq
s,w = σ

eq
go − σ

eq
gw − σ

eq
ow. (2.3)

Ceq
s,g = σ

eq
ow − σ

eq
go − σ

eq
gw. (2.4)

From Eqs. 2.2–2.4 it is clear that only one spreading coefficient can be posi-

tive or zero at any time and, therefore, there is only one fluid that may spread

as a layer between the other two. Considering realistic values of the interfacial

tensions for oil, water and gas systems in oil reservoirs, only the oil spreading

coefficient is normally non-negative, Cs,o ≥ 0. However, Rowlinson and Widom

(1989) showed that at thermodynamic equilibrium, spreading coefficients cannot

be positive. Based on this, oil will spread only if Cs,o = 0.

It is well-known that the properties of oil and gas become very similar at high

pressure (i.e. a near miscible system) such as high pressure high temperature
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(HT-HP) reservoirs. Moreover, during the production phase, the reservoir pres-

sure could either increase or decrease, depending on the balance between the

production rate and injection rate of the reservoir. The water-wet micromodel

experiment of Mackay et al. (1998) showed that the value of σgo decreases with

increasing pressure (Fig. 2.2) until it reaches zero at bubble point pressure. Amin

and Smith (1998) studied the effect of pressure and temperature on interfacial

tension. The measured data of the three-phase interfacial tension and the corre-

sponding oil spreading coefficient as a function of pressure are shown in Figs.

2.3 and 2.4, respectively. These data show that σgw is most sensitive to a pressure

change. At low pressure, the oil spreading coefficient is positive. As the pressure

increases, σgw decrease whereas σow increases slightly until they become equal,

indicating that oil and gas have similar properties (i.e. are miscible). These inter-

facial tensions will be related to the contact angles in section 2.3.

Figure 2.2: The variation of gas/oil interfacial tension with pressure for the C1-nC10 mix
(Mackay et al., 1998).

In this study, we always assume that the interfacial tensions are taken at

thermodynamic equilibrium, including the effects of any wetting and spread-

ing films or layers that may be present in the system. Unless other values of

interfacial tensions are stated, we use the values for three-phase fluid system

of air/water/hexane (Hui and Blunt, 2000b) in our pore-scale simulations. The

interfacial tensions values of this system are shown in Table 2.1.

Table 2.1: Interfacial tensions which are used in this work (Hui and Blunt, 2000b).

System σgo (mN/m) σow (mN/m) σgw (mN/m)

Hexane 19 48 67
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Figure 2.3: Measured data of the three-phase interfacial tension as a function of pressure
at reservoir conditions (Amin and Smith, 1998).

Figure 2.4: The corresponding oil spreading coefficient as a function of pressure at reser-
voir conditions (Amin and Smith, 1998).

2.3 contact angles and wettability alteration

The ability of oil or water to form wetting films on a solid determines the wet-

tability of the surface (Laroche et al., 1999a), depending on the value of the

oil-water contact angle (θow). In a three-phase system, Young’s equation (2.5) de-

scribes the horizontal force balance of the three pairs of fluids in the presence of

a solid surface (Fig. 2.5).

σos = σws + σow cos θow. (2.5a)
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σgs = σws + σgw cos θgw. (2.5b)

σgs = σos + σgo cos θgo. (2.5c)

These three equations can be combined, by eliminating the fluid-solid inter-

facial tensions (σws, σos and σgs), to one equation (Eq. 2.6), called the Bartell-

Osterhof equation (Bartell and Osterhof, 1927; Johnson and Dettre, 1993; Zhou

and Blunt, 1997).

σgw cos θgw = σow cos θow + σgo cos θgo. (2.6)

(a) oil/water/solid (b) gas/water/solid

(c) gas/oil/solid

Figure 2.5: Force balances of three two-phase systems in the presence of solid surface.

The Bartell-Osterhof equation includes the three-phase contact angles and in-

terfacial tensions. This equation requires two of the fluid-fluid contact angles to

be known in order to calculate the third one. van Dijke and Sorbie (2002) pro-
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posed linear relationships (Fig. 2.6) to find cos θgo and cos θgw for a given cos θow

and given interfacial tensions:

cos θgo =
1
2

{(
−1 +

σgw − σow

σgo

)
cos θow + 1 +

σgw − σow

σgo

}
. (2.7a)

cos θgw =
1
2

{(
1−

σgo − σow

σgw

)
cos θow + 1 +

σgo − σow

σgw

}
. (2.7b)

These linear relationships satisfy the Bartell-Osterhof equation. Moreover, Eq.

2.7b has recently been validated experimentally by Grate et al. (2012).

Figure 2.6: Linear relationships proposed by van Dijke and Sorbie (2002), showing
cos θgo and cos θgw as functions of cos θow for (a) a nonspreading oil and (b) a
spreading oil.

In an oil-water two-phase system, depending on the contact angle of oil/wa-

ter, the system could be either water-wet (θow < π
2 ) or oil-wet (θow > π

2 ). In the

three-phase system, the wettability can be indicated by the wetting order, which

defines the three phases as: wetting phase, intermediate phase and non-wetting

phase. For instance, generally, in a strongly water-wet system (θow ≈ 0), water

is the wetting phase, oil is the intermediate wetting phase and gas is the non-

wetting phase. The linear relationships (Eqs. 2.7) define the wetting order of gas

relative to oil (based on the sign of cos θgo, Eq. 2.7a) and gas relative to water

(based on the sign of cos θgw, Eq. 2.7b). Mathematically, there are six wetting or-

ders that are possible in any three-phase system, starting from the most to the

least wetting phase: water-oil-gas , water-gas-oil , oil-water-gas, oil-gas-water,

gas-water-oil and gas-oil-water. However, general values of three-phase interfa-
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cial tensions imply that only three out of the six wetting orders are possible:

water-oil-gas, oil-water-gas and oil-gas-water.

McDougall and Sorbie (1995) classified the wettability of any porous rock to

be either: (1) Uniform wettability, where the entire rock surface has the same

wettability (i.e. 100% water-wet, 100% oil-wet or 100% intermediate-wet) with

constant contact angles throughout the system; or (2) Non-uniform wettability,

where the pore space has heterogeneous wettability in a way that the wettability

can vary from pore to pore throughout the network. The authors subdivided

non-uniform wettability into two subclasses: fractional wettability and mixed

wettability. In fractionally-wet rock, pores of any size can be oil-wet. In mixed

wettability, a fraction of either the largest pores or the smallest pores are con-

sidered to be oil-wet whereas the remaining fraction remains water-wet. The

authors mentioned about the wettability heterogeneity at sub-pore level (i.e. dif-

ferent wettability within one pore) but they did not consider it in their study.

Generally, the wettability of oil reservoirs are not completely water-wet or

oil-wet (Willhite, 1986). This is because direct contact of oil with the (mineral)

surfaces of the pores leads to an alteration of the wettability of the contacted

regions. Pores often display non-uniform wettability when both water-wet and

oil-wet surfaces are present. Kovscek et al. (1993) introduced a model that ac-

counts for the wettability alteration as result of direct contact of oil with the

solid surface. The porous medium is assumed to be initially water-saturated, im-

plying a strongly water-wet system (Fig. 2.7a). When oil invades the system, it

fills the central part of the (large) pores (Fig. 2.7b). However, thin wetting films

of water, covering the solid surface, prevent oil from contacting the surface. Such

wetting films were observed by electron microscopy (Robin et al., 1995). These

films may collapse at a given threshold capillary pressure, allowing oil to touch

the solid surface and alter the wettability of the contacted regions only. This

means that within one pore, two surfaces of different wettability are present and

the pore is said to display non-uniform wettability (Fig. 2.7c). We refer to this pro-

cess of wettability alteration as "ageing" and it is modelled by changing the oil-

water contact angles of the altered surface. Additionally, the real pore surfaces

are normally rough. This causes the contact angle to vary, depending on which

phase displaces which (Morrow, 1975), i.e. on the direction of the displacement.

This phenomenon is known as contact angle hysteresis. There are generally two
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types of contact angles: advancing contact angles where the more wetting phase

invades the less wetting phase; and receding contact angles where the less wet-

ting phase invades the more wetting phase. For rough surfaces, the advancing

contact angle is bigger than the receding contact angle (Morrow, 1975). There-

fore, we assign up to 12 contact angles for each pore as summarised in Table 2.2,

depending on the wettability of the pore and the direction of the displacement.

(a)

oil flood

(b)

ageing

(c)

Figure 2.7: Primary drainage (oil flood) and wettability alteration in a pore with corners.
(a) The pore is completely filled with water, implying water-wet pore surfaces
(i.e. thin wetting films of water, covering the solid surface). (b) Oil displaced
water from the centre of the pore, leaving water to reside at the corners.
(c) The wettability of the oil contacted surfaces is changed, rendering the
pore to non-uniform wettability. Blue denotes water, red denotes oil, blue
lines denote water-wet (unaltered wettability) surfaces and black lines denote
altered wettabiliy surfaces.

Table 2.2: Possible contact angles assigned for each pore

Surface wettability Advancing (a) Receding (r)

Unaltered wettability (e.g. water-wet (w)) θw
go,a θw

ow,a θw
gw,a θw

go,r θw
ow,r θw

gw,r

Altered wettability (e.g. oil-wet (o)) θo
go,a θo

ow,a θo
gw,a θo

go,r θo
ow,r θo

gw,r

In this study, we use the linear relationships (Eq. 2.7) to find the three-phase

contact angles. Additionally, we consider "realistic" values of the interfacial ten-

sions that may represent the spreading behaviour of the system in oil reservoir

(Table 2.1). The network model can assign both receding and advancing contact

angles (Table 2.2). However, in this study we use single values for each of the con-

tact angles (i.e. advancing and receding contact angles are the same on a given

wetting surface). Therefore, we drop the subscripts "a" and "r" for simplicity.
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2.4 summary and closing remarks

In this chapter, we have explored the physical properties that control the be-

haviour of three fluid phases when they coexist. In the absence of a pore or solid

surface, the three-phase systems are categorised into three groups (Fig. 2.1): (1)

Non-spreading system, where a blob of oil floats on the surface of water. (2) Par-

tially spreading system, where a thin film of oil covering the surface of the water,

representing an initial spreading of oil over water. (3) Spreading system, where

a layer of oil spreads between water and gas. At thermodynamic equilibrium,

spreading coefficients cannot be positive and oil spreads between water and gas

only if Cs,o = 0. The three-phase contact angles and interfacial tensions appear

in one equation, called the Bartell-Osterhof equation. Linear relationships are

used to calculate cos θgo and cos θgw for a given cos θow and given interfacial ten-

sions. These linear relationships satisfy the Bartell-Osterhof equation and have

been partially validated experimentally. Oil reservoirs are usually not completely

water-wet or oil-wet, but a mixture of both. At the microscopic scale, pores with

non-uniform wettability, where there are water- and oil-wet regions, are com-

monly found. This is because of the direct contact of oil with the solid surface,

causing an alteration in the surface wettability towards more oil-wet conditions.

In the next chapter, we will describe the pore space structure, including ge-

ometrical characterisation of the pores. This will enable us to implement the

three-phase physics which was described in this chapter.
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S T R U C T U R E O F T H E P O R E S PA C E A N D I N T R A - P O R E

P R O P E RT I E S

3.1 introduction

Accurate prediction of the flow properties for a given reservoir relies on accurate

representation of porous medium. In pore-network modelling, pore-networks

are used to represent the microstructure of porous media. These pore-networks

consist of pore bodies (nodes) connected by pore throats (bonds). Each pore is as-

signed a regular shape, e.g. n-cornered star, triangle, square or circle (Ryazanov

et al., 2009). This allows easy analytical calculation of the intra-pore flow prop-

erties such as capillary entry pressures. The pore-networks are commonly ex-

tracted from 3D digital images of porous media. The extraction and reconstruc-

tion methods of pore-networks are well documented (e.g. Lindquist et al., 1996;

Øren et al., 1998; Delerue and Perrier, 2002; Silin et al., 2004; Al-Kharusi and

Blunt, 2007; Jiang et al., 2007). However, we briefly review these methods for com-

pleteness. There are two methods to obtain the 3D digital image of pore space:

(1) Computed tomography (CT) imaging of core samples. In this approach, the

3D digital rock is obtained by using computed X-Ray tomography with a resolu-

tion ranging from few microns (Dunsmuir et al., 1991) to sub-microns (Coenen

et al., 2004). (2) Using 2D thin sections to reconstruct the 3D digital rock. This ap-

proach requires 2D thin section images which can be obtained, for example, by

Scanning Electronic Microscope (SEM) and then using common 3D pore space re-

construction methods. The latter is widely done by two ways: (a) Process-based

algorithms: these algorithms are based on the concept of linking the the forma-

tion of pore structure with the physical process. They use petrographical data

38
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(e.g. grain size distribution) from 2D thin sections to reconstruct 3D digital rocks

(Bakke and Øren, 1997; Øren and Bakke, 2002, 2003). (b) Statistical methods: the

statistical properties (e.g. porosity) are determined from 2D thin section images.

Then 3D digital rocks are generated that capture the statistical properties 2D thin

section images (Wu et al., 2006).

Once the 3D digital rocks are obtained, different types of algorithms can

be used to extract pore-networks which are topologically and geometrically

equivalent. Examples of these algorithms are: (1) Medial axis based algorithm:

Here, the digital pore space is reduced to the topological skeleton of the pore-

network, followed by pore space partitioning which is used to identify the pore

bodies (nodes) and pore throats (bonds) (Lindquist et al., 1996; Lindquist and

Venkatarangan, 1999; Sheppard et al., 2005, 2006; Jiang et al., 2007). (2) Maximum

ball based algorithm: This algorithm distinguishes between the pore bodies and

pore throats by defining a maximum ball for each void voxel of the 3D image.

The largest balls are considered to be the pore bodies whereas the set of the

smallest balls, which overlap each other and that form a connected path/link

between two largest balls, are considered to be pore throats. The algorithm also

establishes volumes and connectivity of the bonds and nodes (Silin et al., 2003;

Silin and Patzek, 2006). (3) Voronoi diagram: This algorithm uses Voronoi tessel-

lation to extract the skeleton of the pore-network from known coordinates of all

grain centres, which are provided by a process-based algorithm for reconstruct-

ing the 3D digital rock (Bryant and Blunt, 1992; Bryant et al., 1993a,b; Øren and

Bakke, 2003).

Sok et al. (2002) studied the effect of topology on residual saturations by gener-

ating stochastic network models with the same geometric (pore-size, throat-size)

and topological (coordination number distribution) properties. They derived the

two-phase flow properties directly from the network models and their stochastic

equivalents. They found that the stochastic networks provided a poor representa-

tion of flow properties of two-phase flow on the direct network equivalents. This

was attributed to inaccurate topological characterization. They also found that

accurate prediction of the residual phase saturations relies heavily on the accu-

racy of the description of the network topology. Furthermore, Arns et al. (2004)

have shown the importance of incorporating realistic 3D topologies to derive

accurate flow properties from the network models. They found that using regu-
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lar lattice or stochastic networks with identical geometric (pore-size, throat-size)

properties of the realistic networks of sandstone cannot reproduce the same flow

properties of the latter networks. Therefore, it is crucial to use pore-networks that

can preserve the topology of the pore space and the geometrical properties (e.g.

inscribed radius, shape factor and hydraulic radius etc.).

In this chapter, we describe the 3D pore-networks that are used in this study

to represent sandstone and carbonate rocks. Then we present the real shape

characterisation of the pore, showing different shapes of the pore cross-sections

that are used to model different realistic fluid configurations in the pore, such

as films and layers. The methods for calculating conductance, porosity, phase

saturations, absolute permeability and relative permeability of the pore-network

are presented in this chapter.

3.2 pore-networks

The new three-phase flow network model, which was developed as part of this

thesis, takes as input the equivalent network extracted from a real pore space. Ta-

ble 3.1 presents the types of information of the network that can be read by our

model from the input data files, which are properties that are typically extracted

for pore-networks (Bakke and Øren, 1997; Øren et al., 1998; Øren and Bakke,

2002). In this study, we use four different realistic 3D pore-networks (Fig. 3.1 and

Fig. 3.2) extracted from both sandstone (Network A) and carbonate (Networks B,

C and D) rocks for the sensitivity analysis (see chapter 6). These networks have

been extracted from pore-space reconstruction methods and CT images, preserv-

ing both topology and pore shape of the rock. The key statistics of the networks

are given in Table 3.2. In addition, we have generated 2D lattice networks to val-

idate our model against experimental data from an oil-wet micromodel. We will

describe these 2D networks in detail in chapter 5. Here we give a brief descrip-

tion of the two types of the realistic 3D networks used in the remainder of this

work.

1. Sandstone network (A): This is a widely used pore-network which is ex-

tracted from a process based reconstruction of a Berea sandstone (Øren

and Bakke, 2003). The pore space image and the extracted network of Berea
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Table 3.1: Input network parameters which are obtained by pore-space reconstruction
methods (Bakke and Øren, 1997; Øren et al., 1998; Øren and Bakke, 2002) and
that can be read by our model and some of the recent pore-network models
(Piri and Blunt, 2005a).

Parameters

- Total number of network elements (pore bodies and throats)
- Dimensions of the network (used to calculate the cubic volume of the network, section 3.6)
- Volume of each element (excluding clay volume)
- Clay volume of each element
- 3D coordinates (x, y, z) of each pore
- Inscribed radius (rins) of each element
- Hydraulic radius (rh) of each element1

- Number of pore(s) connected to each pore
- Indices of pore(s) connected to each pore
- Inlet pores of the network
- Outlet pores of the network
- Index of the throat (bond) connecting two pores
- Shape factor of each element (G)
- Indices of the first and second pores connected to each throat
- Distance between the centres of the two connecting pores
- Length of the first and second pore connecting to each throat
- Length of each throat

1 if it is given in the input data, cannot be read by other models.

(a)

3.0mm

(b)

Figure 3.1: (a) Pore space reconstructed by a process-based approach for a Berea sand-
stone sample, taken from Øren and Bakke (2003); (b) Network A, Table 3.2,
extracted from a process-based Berea sandstone.
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0.80mm

Network B

1.14mm

Network C

2.14mm

Network D

Figure 3.2: Extracted networks for three carbonate samples. Network B was extracted in-
house at Heriot-Watt University whereas networks C and D were extracted
by Dong and Blunt (2009). Pink regions denote isolated pores.

Table 3.2: Main pore networks parameters

Network A B C D

Number of Nodes 12349 3698 4576 8508

Number of Bonds 26146 6424 6921 10336

Average Coordination Number 4.19 3.46 2.98 2.37

Permeability, mD 2673 166 570.48 162.25

Net Porosity, % 18.3 15.73 21.25 14.04

Clay Bound Porosity, % 5.72 0.42 1.85 2.28

Formation Volume Factor 15.16 91.72 23.43 84.14

Volume, mm3
27.0 0.514 1.482 9.772

are shown in Fig. 3.1 and the main parameters of the network are given in

Table 3.2. Further details about the data structure for these networks can

be found in Bakke and Øren (1997) and Piri and Blunt (2005b). We use
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the Berea sample because of the availability of experimental three-phase

data for validating our new network model (see chapter 5). This network

is homogeneous and well-connected (has high coordination number, Table

3.2). However, its pore structure is less complex than what is commonly

encountered in real reservoir rocks.

2. Carbonate networks (B,C,D): These networks are very heterogeneous with

poor connectivity (see Table 3.2 and Fig. 3.2). We will use these networks

to represent the carbonate rocks in our sensitivity analysis (see chapter

6). Carbonate networks C and D were extracted by Dong and Blunt (2009)

from 3D images using the maximal ball algorithm. Carbonate sample B was

extracted in-house at Heriot-Watt University (Jiang et al., 2007). A notewor-

thy feature of these networks is that they contain a small number of pores

with large volume ("vugs"). This might affect the results of three-phase flow

simulations (see chapter 6). The effect of this feature can be incorporated

by using larger pore networks.

3.3 realistic shape characterisation of the pore

Many important two- and three-phase flow physics at the pore-scale cannot be

modelled without assigning a realistic pore shape. The real pore shapes are ir-

regular (Fig. 3.3a) with many corners that can accommodate a wetting phase

(e.g. water) whereas the non-wetting phase (e.g. oil) occupies the centre part

of the pore (Lenormand et al., 1983). Moreover, conditionally stable oil layers

surrounded by water corner films and bulk water or gas phases could form at

the corners. These films and layers contribute to the hydraulic connectivity of

the corresponding phases, especially at very low phase saturations, providing

pathways for the the phase to escape from the system. One of the limitations of

empirical three-phase models (Stone, 1970, 1973) is that they fail to capture the

oil relative permeability at very low oil saturations (Blunt, 2000). Therefore, it is

essential to characterise the shape of the pore cross section in a "realistic" way by

incorporating shapes with corners (e.g. Fig. 3.3).
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Mason and Morrow (1991) proposed a parameter called the shape factor (G)

that is defined by the cross sectional area (A) of the pore cross-section and its

perimeter (L):

G =
A
L2 , (3.1)

where A and L are the area and perimeter of the cross-section, respectively.

The shape factor has been used to formulate the capillary entry pressure for

pores with arbitrary triangular cross sections. Øren et al. (1998) and Patzek (2001)

used the shape factor to identify the arbitrary triangular shapes of unstructured

networks, representing the pore shapes of their pore-space reconstructions. The

most common approach for representing the real pore shape is to assign Circle,

arbitrary Triangle or Square (C-T-S) shapes to the network pore cross-sections

based on shape factor matching (Patzek, 2001; Valvatne and Blunt, 2004; Piri and

Blunt, 2005a; Valvatne et al., 2005). Recently, a technique for pore shape character-

ization was suggested by Joekar-Niasar et al. (2010). It is based on shape factors

or a shape factor distribution extracted from input rock images to reproduce a

continuous ranges of shape factors.

(a) (b)

Figure 3.3: (a) Cross-section of a real pore with irregular shape, accommodating water at
the corners and oil at the centre part of the pore, taken from Ryazanov (2011).
(b) The star shape approximation for the real pore. Blue denotes water and
red denotes oil.

The ratio (known as the dimensionless hydraulic radius H, Eq. 3.2) of the

hydraulic radius (Rh) and the inscribed radius (Rins) of the shape cross-section

defines its convexity, which divides the types of cross-section into two groups:
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1. Convex (C-T-S) shapes, where for every pair of points that fall inside the

shape boundary, every point on the straight line segment that connects

them lies also within the shape boundary (Fig. 3.4). This is the most com-

mon approach to represent the pore cross-section shape based on the shape

factor G (Øren et al., 1998; Patzek, 2001; Valvatne and Blunt, 2004):

• Arbitrary triangle: if G ≤
√

3
36 . The half angle values are determined

using a special procedure introduced by Øren et al. (1998) and Patzek

and Silin (2001).

• Square: if
√

3
36 < G ≤ 1

16 .

• Circle: if G > 1
16 .

Convex shapes have H ≥ 0.5. Circle, square and all triangles have H = 0.5.

2. Non-convex (n-cornered star) shapes, where for at least one pair of points

that fall inside the shape boundary, there are points on the straight line seg-

ment that connects them fall outside the shape boundary (Fig. 3.5). Non-

convexity occurs in a significant fraction of pores in realistic rocks (Kovscek

et al., 1993). The main characteristic of this type of shapes is the sharp cor-

ners, which facilitate the presence of wetting films and layers. Non-convex

shapes have H < 0.5. This type of shape is represented by regular n-stars

whom dimensionless hydraulic radius (Hn,γ) and shape factor (Gn,γ) are

defined based on the number of corners n and the corner half-angle γ (Eq.

3.3).

H =
Rh

Rins
=

A
L

Rins
. (3.2)

Hn,γ =
1
2

sin(γ +
π

n
), Gn,γ =

1
4

sin(γ) sin(γ + π
n )

n sin(π
n )

with γ <
π

2
− π

n
. (3.3)

The star shape for any cross-section with dimensionless hydraulic radius < 0.5

and arbitrary shape factor can be identified uniquely (Helland et al., 2008), Fig.

3.6.
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(a) (b) (c)

Figure 3.4: Convex pore cross-sections.

γ

S

B

O
Rh

Rins

Figure 3.5: Non-convex regular n-star cross-section. Rh is the hydraulic radius, Rins the
inscribed radius and γ is corner half angle. The shaded elementary triangle
SOB is used to calculate the shape factor of the limiting regular n-cornered
polygon (section 3.4).

In this study, the pore networks that are used as input for the network flow

model consists of pore bodies (nodes) and pore throats (bonds). We used n-

cornered star, equilateral triangle, square and circle shapes for the pores cross-

sections.
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Figure 3.6: Shape factor (G) versus dimensionless hydraulic radius (H) for various
shapes. The left boundary and the right boundary are the theoretical limits
for the G and H values of any shape (Ryazanov et al., 2009).

3.4 conductance calculations

The conductances of different phases that occupy different parts of the pore

cross-section area (bulk, layers and corner films) are used to calculate the (rela-

tive) permeabilities. For the calculation of these properties, the flow is assumed

to be steady state, laminar flow in each phase, with constant viscosity. The fluids

are assumed to be incompressible.

3.4.1 Single-phase conductance

The single-phase conductance, when one fluid occupies the entire cross-section,

can be approximated in the pores with C-T-S shapes as (Øren et al., 1998; Val-

vatne and Blunt, 2004; Piri and Blunt, 2005a):

g =
Cg A2G

µ
, (3.4)

where µ denotes viscosity, Cg is a constant which is equal to 0.6 for arbitrary

triangles, 0.5623 for squares and 0.5 for circles.
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For an n-cornered star, the single-phase conductances can be calculated nu-

merically (Helland et al., 2006, 2008), see Fig. 3.7. Ryazanov et al. (2009) have

derived a new correlation based on the numerical results:

g = ∼gA2, (3.5)

where ∼g denotes the dimensionless single-phase conductance for n-cornered

stars, given by

∼g = C(n)

(
Gt

n,γ

Gt,max
n

)B(n)

, (3.6)

where

B(n) and C(n) fifth order polynomials of n.

Gt
n,γ the shape factor of the elementary triangle SOB (see Fig.

3.5).

Gt,max
n the shape factor of the elementary triangle for the limit-

ing regular n-cornered polygon.

Figure 3.7: Single-phase conductance vs. shape factor (Ryazanov et al., 2009).
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3.4.2 Area and conductance of corner films and layers

During two- and three-phase flow, more than one fluid can coexist in the same

pore. A fluid can exist in a corner of an angular pore as one or two of the follow-

ing simultaneously: corner film, layer or bulk. Fig. 3.8 shows the general situa-

tion in which film, layer and bulk exist at one corner α. The area and conductance

are computed for each phase separately. The corner area that is bounded by Arc

Meniscus (AM) at the interface of the fluids i and j with radius of curvature rij at

a given corner (α) is calculated as:

A(α)
ij (rij, θij) = r2

ij

(
θij + γ(α) − π

2
+ cos θij

cos(θij + γ(α))
sin γ(α)

)
, (3.7)

where θij is the contact angle between the two fluids (i and j).

The film area A(α)
f at a given corner (α) is equal to the corner area that is

bounded by AM1:

A(α)
f = A(α)

23 (r23, θ23). (3.8)

The model employs a correlation proposed by Øren et al. (1998) to estimate

the films conductance gi, f of phase i for a no-slip boundary condition at AM1:

gi, f = nC

(
A(α)

f

)2
G f

µi
, C = 0.364 + 0.28

G∗f
G f

, (3.9)

where n is the number of corners, A f is the area of the film (Eq. 3.8), G f is

the shape factor for the corner cross-section which contains the film, G∗f is the

shape factor in case of zero curvature of the fluid–fluid interface, µi is the phase

viscosity.

The layer area that is bounded by AM1 and AM2 at given corner (α) can be

computed:

A(α)
l = A(α)

12 (r12, θ12)− A(α)
23 (r23, θ23). (3.10)
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For the layer conductance g(j,l) of fluid j, the model uses a correlation proposed

by Valvatne and Blunt (2004):

g(j,l) = n
L4

j
∼gl

µj
, (3.11)

where Lj is the apex distance for the AM2 position, µj is the phase viscosity and
∼gl is the dimensionless conductance of the layer, given by:

ln∼gl = a1ln2
( ∼

A3
l Gl

)
+ a2ln

( ∼
A3

l Gl

)
+ a3, (3.12)

where
∼
Al is the dimensionless area of the layer, Gl is the shape factor of the layer

and ai(i = 1...3) are the polynomial fitting parameters.

The bulk area can be calculated by:

Ab = A−
n

∑
α=1

(
A(α)

f + A(α)
l

)
, (3.13)

where n is the number of corners and A is the cross-section area of the pore.

The bulk conductance (gk,b) of phase k is estimated from the single-phase

conductance as (Øren et al., 1998):

gk,b =
Ab
A

g, (3.14)

where Ab is the bulk area given by Eq. 3.13, A is the cross-section area and g is

the single phase conductance given by Eq. 3.4 for C-T-S shapes and by Eq. 3.5

for n-cornered star shapes.
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A(α)
f A(α)

l

3
2

1

θ23

θ12AM1

AM2

Figure 3.8: General fluid configuration in a pore corner with film, layer and bulk phases
separated by arc menisci AM1 and AM2. Dark gray denotes flim phase (3),
light gray denotes layer phase (2), white denotes bulk phase (1), A(α)

f denotes

film area, A(α)
l denotes layer area, θ12 denotes the contact angle between layer

and bulk phases, θ23 denotes the contact angle between film and layer phases,
and bold lines denote the surfaces of altered wettability (section 4.3.2).

3.5 saturation calculation

Each element (pore body or pore throat) is allowed to have volumes for each

type of phase occupancy (film, layer and bulk),

Ve =
3

∑
i=1

(
vi

b + vi
f + vi

l

)
, (3.15)

where i denotes the phase (i = 1 . . . 3), Ve is element volume, vb is bulk volume,

v f is film volume and vl is layer volume.

The total volume of phase i in the network is given by

Vi =
n

∑
j=1

(
vi

b,j + vi
f ,j + vi

l,j

)
, (3.16)

where vi
b,j, vi

f ,j and vi
l,j are the bulk, film and layer volumes, respectively, of phase

i in element j.

Each element j in the network has some amount of constant clay volume Vc,j

which is normally not removed during the core floods (Valvatne and Blunt, 2004).
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This volume is given in the input data file of the network, Table 3.1. The total

clay volume in the network is given by

Vclay =
n

∑
j=1

(
Vc,j
)

, (3.17)

where Vc,j is the clay volume in the element j and n is the total number of

elements in the network.

Therefore, the total volume of the network is given by

Vtotal = Vclay +
3

∑
i=1

Vi. (3.18)

Saturations of oil, gas and water can be calculated as

So =
Vo

Vtotal
, (3.19)

Sg =
Vg

Vtotal
, (3.20)

and

Sw =
Vw + Vclay

Vtotal
, (3.21)

where volumes of oil Vo, gas Vg and water Vw are computed by Eq. 3.16.

3.6 porosity

Porosities are calculated based on the volumes of bonds, nodes, clay and the

cubic volume (Vcv) occupied by the network:

φnet = ∑n
i=1 Vi

Vcv
, (3.22)

φclay =
Vclay

Vcv
, (3.23)
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and

φtotal = φnet + φclay, (3.24)

where φnet denotes net porosity, n denotes the number of elements (bonds+nodes),

Vclay denotes total clay volume in the network (Eq. 3.17), Vi denotes pore volume,

φclay denotes clay porosity and φtotal denotes total porosity.

3.7 absolute permeability and relative permeability calculation

Permeability is a property of porous media. It determines the ability of fluids to

flow through the porous media. When a single phase is present in the porous

media, it is called absolute permeability. If there are other immiscible phases

present, it is called the effective permeability. The ratio of the effective perme-

ability of a particular phase to the absolute permeability of that phase is used to

compare different abilities of phases to flow in the presence of each other. This

dimensionless ratio is called the relative permeability.

The absolute permeability is calculated by assuming that the network is filled

by a single incompressible phase. A pressure drop ∆P is imposed across the

network length L, from the inlet of the network to its outlet, to compute the

pressure distribution from the set of equations, based on the mass conservation

at each node (Øren et al., 1998):

n

∑
j=1

qij = 0, for each node i, (3.25)

where n denotes the number of nodes connected to node i, qij denotes the flow

rate between nodes i and j given as

qij =
gij

Lij
∆Pij, (3.26)

where gij denotes the effective hydraulic conductance between node i and node

j given by Eq. 3.27 as the harmonic mean of the conductances of the bond and
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the adjoining nodes (Øren et al., 1998), Lij distance between the centres of the

nodes i and j and ∆Pij pressure difference between the nodes.

Lij

gij
=

1
2

Ln
i

gn
i

+
Lb

ij

gb
ij

+
1
2

Ln
j

gn
j

, (3.27)

where gn
i , gn

j and gb
ij denote conductances of nodes (i and j) and bonds respec-

tively (see section 3.4), Ln
i , Ln

j and Lb
ij denote lengths of nodes (i and j) and bond

respectively.

The total flow rate Qx in the direction of the flow x in response to ∆P is used

in Darcy’s law to calculate the absolute permeability k:

Qx = − k
µ

∆P
L

A, (3.28)

where µ denotes viscosity and A denotes the total cross-sectional area of the

model perpendicular to the flow direction.

Similar to absolute permeability calculations, a pressure drop ∆P is imposed

across the network to compute the pressure distribution of each hydraulically

connected phase i. For each phase, the flow rate in the flow direction is calcu-

lated by applying a pressure drop across the network and using the bulk, film

and layer pore conductances (section 3.4) for the considered phase only. Finally,

the flow rate Qx,i is used in the Darcy type expression to calculate the relative

permeability kr,i as

Qx,i = −kkr,i

µi

∆P
L

A, (3.29)

where k denotes absolute permeability given by Eq. 3.28, µi denotes the viscosity

of phase i, L denotes the length of the network and A denotes the cross-section

of the network.
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3.8 summary and closing remarks

In this chapter, we discussed the shape of the real pores. Previous authors

showed that the real pore shapes are irregular with many corners that can ac-

commodate water whereas oil occupies the centre of the pore. Additionally, oil

layers surrounded by corner water films and bulk water or gas phases could

form. These films and layers help to keep the hydraulic connectivity for their

corresponding phases, maintaining pathways for the the phase to escape the

system. The networks, which are used as input for our model, consist of pore

bodies (nodes) and pore throats (bonds). The dimensionless hydraulic radius of

the pore cross-section defines the convexity, which can be used to characterise

the cross-sections as (1) Convex Circle, Triangle and Square (C-T-S) shapes and

(2) non-convex n-cornered star shapes. These two regular shapes are assigned to

the cross-sections of the pores based on the shape factor. They allow for easy

analytical calculation of the intra-pore flow properties. Finally, equations for

the conductance, porosity, phase saturations, absolute permeability and relative

permeability were presented in this chapter. The displacement processes at the

pore-scale and the corresponding three-phase capillary entry pressures, demon-

strating the key features of the new pore-network model, will be described in

the next chapter.
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T H R E E - P H A S E F L O W P O R E - N E T W O R K M O D E L

D E S C R I P T I O N

4.1 introduction

In the previous two chapters, we have introduced two aspects of the model: the

implementation of wettability conditions (chapter 2) and the incorporation of

complex network structures (chapter 3). In this chapter, we focus mainly on the

displacement processes during different floods at the pore-level. We describe

the two most important advancements in the current model. These comprise

the implementation of a thermodynamic criterion for oil layer formation and

collapse, and multiple displacement chains.

In the displacement processes considered in this study, initially all the pores

and throats (network elements) are filled with only water. Then, oil is injected

into the network until connate water saturation, Swc. After that, wettability al-

teration takes place in the oil-filled pores. Note that only the wettability of the

oil contacted part of the element surface changes (Kovscek et al., 1993). Then

water invades the network until residual oil saturation Sor is achieved or until a

predefined initial water saturation Swi is reached, at which gas invasion into the

system at Sw = Swi takes place. Additionally, WAG injection may be simulated.

Every element with angular cross-section can accommodate up to three differ-

ent phases (Piri and Blunt, 2005a; van Dijke et al., 2004a, 2007). We considered

that the three phases can be present as films in the pore corners, as a bulk phase

in centre of the pore, or as layers sandwiched between the bulk phase and the

films (van Dijke et al., 2004a, 2007), presented in section 3.4.2. We have not con-

sidered the configurations that involve double layers as Piri and Blunt (2005a)

56
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did. Therefore, at any given corner, we allowed a maximum of two arc menisci

(AMs) to be present (Fig. 3.8). The formation of the films and layers will be dis-

cussed later in section 4.3.

A cluster of phase i is defined as an interconnected set of network elements

that accommodate at least one fluid element (bulk, film or layer) of phase i. For

instance, a water cluster could have a network element which contains water

as corner films, bulk or both. Therefore, every network element can belong to

a maximum of three different clusters of different phases at the same time. For

example, a network element containing films and bulk of water and layers of oil

will belong to both oil and water clusters, implying that films and bulk are from

the same water cluster and thus they have the same pressure (Piri and Blunt,

2005a; Ryazanov et al., 2009, 2010).

In this chapter, we present all possible pore fluid configurations (section 4.2)

and pore level displacements (section 4.3), which may occur during different

floods (primary drainage, imbibition, secondary or tertiary gas injection and

WAG injection). In particular, we focus on two levels of displacements: (1) The

displacement of one phase by another one in a single pore, emphasising the

new implementation of the formation and collapse of oil layers during different

floods. We have used the thermodynamic based capillary entry pressure criteria

of van Dijke et al. (2004a). They extended the MS-P method (Mayer and Stowe,

1965; Princen, 1969a,b, 1970) to three-phase flow by formulating the balance of

virtual work and change of surface free energy for a small displacement. This

was done for a three-phase configuration at capillary equilibrium in a pore with

angular cross-section. Additionally, they derived a thermodynamic condition for

the existence of layers of an intermediate-wetting phase (van Dijke et al., 2004a,

2007). We describe the three-phase capillary entry pressures based on the ther-

modynamic criterion in section 4.4. (2) The displacement chain that involves a

series of clusters which displace each others. This displacement chain is known

as the multiple displacements which are an extension of double displacements

(Øren and Pinczewski, 1995; Fenwick and Blunt, 1998b; Piri and Blunt, 2005a).

The multiple displacements occur when injection of a phase at the inlet leads

to movement of a series of phase clusters spanning from the inlet to the outlet.

This important three-phase flow phenomenon was revealed by micromodel ex-

periments (Sohrabi et al., 2000, 2001, 2004) in which disconnected clusters of oil,
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water or gas, which were formed during different floods (e.g. trapped oil clus-

ters during (imbibition) water flood), were observed to move during three-phase

flow (e.g. tertiary gas injection) and reach the outlet of the micromodel. They are

the cause of lower residual oil saturations because less oil remains trapped in

isolated clusters. van Dijke et al. (2004b) were the first to implement the multiple

displacements in a 3D lattice pore-network model, described in section 1.4. We

implemented the multiple displacements in the new pore-network model (sec-

tion 4.5). This allows for accurate modelling of the mobilization of disconnected

phase clusters that arise during higher order (WAG) floods.

All floods are assumed to be capillary dominated and are simulated accord-

ing to invasion percolation principles (Valvatne and Blunt, 2004; Piri and Blunt,

2005a). The displacement events are modelled in invasion-percolation by increas-

ing the pressure of the invading phase at the inlet while keeping the pressure of

the outlet connected phases (or reference phase) constant. The pressure bound-

ary conditions are imposed at the inlet and the outlet of the network (Ryazanov

et al., 2009). For two-phase flow, during oil and water injections, the overall net-

work capillary pressure Pc,ow = Po − Pw is gradually increased and decreased, re-

spectively (Patzek, 2001; Valvatne and Blunt, 2004). During various three-phase

floods, the pressure of the injecting phase (Pinj) at the inlet is gradually increased

while the pressure of a reference phase (Pre f ) at the outlet is kept constant. This

results in increasing the overall pressure difference Pdi f f = Pinj − Pre f , leading

to many possible multiple displacement chains. To find the most favourable dis-

placement chain in the network during the three-phase invasion-percolation pro-

cess, we implemented a computationally efficient shortest path search algorithm

(van Dijke et al., 2008), described in section 4.5.

In the following sections, we present the fluid configurations in an angular

pore that are possible during multiphase flow under the wettability assump-

tions described in chapter 2. Then, the displacement processes at the pore-level

are described with the possible changes in the fluid configurations during dif-

ferent floods. After that, we introduce the new thermodynamic criterion to the

model to calculate the three-phase capillary entry pressures. Then, we give a full

description of the shortest path algorithm, which is used for determination of

the preferred multiple displacements, and we describe its advantages. Finally,
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we state some of the computational issues that have been encountered during

the model development.

4.2 pore phase occupancies

To illustrate the fluid configuration and displacements at pore level, we use an

equilateral triangular cross-section as an example of pores with angular cross-

section (Fig. 4.1). We present all the fluid configurations in the cross-section of

an angular pore with equal corners that may arise during three-phase flow (Fig.

4.2). Fluid configurations are included for surfaces with uniform wettability and

surfaces with non-uniform wettability. Every pore surface could have two por-

tions of different wettability (water-wet surface and altered wettability surface,

e.g. configuration P) (Kovscek et al., 1993). The direction of the curvature of

any Arc Meniscus (AM) depends on the underlying surface wettability and the

phases that are present at either side of that AM. Generally, AMs curve in unless

at the point where wettability changes. Therefore, we define fluid configuration

based on the pore surface wettability (uniform unaltered wettability, uniform al-

tered wettability, or non-uniform wettability), phases that are present in the pore

(oil, water and gas) and their form (film, layer and bulk).

Figure 4.1: A pore with equilateral triangular cross-section.
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Figure 4.2: Continued on next page . . .
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. . . continued from previous page
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V

Figure 4.2: Occupancies in an idealised pore of equilateral triangular cross-section for
fluid configurations during gas invasion. Dark gray denotes water, light gray
denotes oil, white denotes gas and bold lines denote the surfaces of altered
wettability. Note that the direction of the curvature for the AMs that bounds
the films in configurations of non-uniform wettability (e.g. Q, S, T and U)
could be different, depending on the AM contact angle.
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4.3 displacement processes

We define the pore-scale displacement as an event where the fluid configuration

of the pore cross-section changes to an essentially different fluid configuration.

For instance, when a phase i (e.g. gas) invades a pore, filled with a different

phase j (e.g. oil), a possible pore displacement could occur as shown in Figs. 4.3–

4.4. There is an entry capillary pressure Pentry that must be overcome for each

pore displacement to take place. This Pentry is defined in terms of an (effective)

entry radius rentry:

Pentry = Pi − Pj =
σij

rentry
, (4.1)

where i denotes the invading phase, j denotes the defending phase, σij denotes

the interfacial tension between the two phases, and Pi and Pj are pressures of the

phases. The value of rentry depends on the pore shape and the pore displacement.

It is defined in terms of two principal radii of curvatures (r1,r2) by the Laplace

equation:

1
rentry

=
1
r1

+
1
r2

. (4.2)

There are two types of fluid-fluid interface in the pore (Figs. 4.3–4.4), Main

Terminal Meniscus (MTM) and Arc Meniscus (AM).

A

C

B

′
A

′
C

′
B

α

AM

Figure 4.3: Phase j (gray) is displaced by phase i (white) in a pore with equilateral trian-
gular cross-section. Corner α is illustrated in Fig. 4.5.
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MTM

′
A

′
C

′
B

A

B

C

i j

Figure 4.4: Cross-section along a pore showing a small displacement of phase j by i as
indicated in Fig. 4.3, showing the MTM.

γ(α)

j

i
θij

AM

rij

L(α)
s,ij

L(α)
f ,ij

Figure 4.5: Phase occupancy in a corner with corner wetting film phase j and bulk phase
i. We call j the inner phase of the AM and i the outer phase of the AM.

For a pore with circular cross-section, only MTM can exist (Fig. 4.6). The entry

radius for piston-like displacement is given by

rentry =
rins

2 cos θij
, (4.3)

where rins is the radius of the circular cross-section. Hence, the entry pressure is

Pentry =
2σij cos θij

rins
. (4.4)

The AM is limited to the pores with angular cross-section (Fig. 4.5). The AM

for a given fluid-fluid combination is present if it satisfies a simple geometrical
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A

B

rins

(a)

MTM

A

B

i j

(b)

Figure 4.6: (a) Pore with circular cross-section with radius rins. (b) Piston-like displace-
ment along a pore with circular cross-section, showing that the MTM is
present at the interface between the invading phase i and the defending
phase j.

criterion relating the contact angle θij, measured through the more wetting phase

j, of the AM to the corner half angle γ(α) in corner α (Fig. 4.5), given by:

θij <
π

2
− γ(α). (4.5)

At capillary equilibrium, we define each AM, which separates two phases in

the corners, with the radius of curvature rij that is consistent with the Laplace

equation

Pij =
σij

rij
, (4.6)

where Pij = Pi − Pj denotes the pressure difference between the phases.

The apex distance L(α)
s,ij of the AM (Fig. 4.5) is given by

L(α)
s,ij = rij

cos(θij + γ(α))
sinγ(α) . (4.7)

In the next section, we describe the displacement processes during different

floods. These floods correspond to what happens to the reservoir, starting with

primary oil migration and ending with the injection of water and gas during the

production phase.
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4.3.1 Primary drainage (oil flooding)

At the start of any simulation, the network is assumed to be occupied by water

and to be strongly water-wet. If we take a pore throat (a straight tube) with an

equilateral triangle-cross section in the network (Fig. 4.1), then this pore will

have fluid configuration A (Fig. 4.2) and is uniformly wetted, i.e. it is water-

wet with drainage contact angle θdr
ow < π

2 . Then the network is invaded by oil

during primary drainage. During this flood, oil may displace water from the

pore by piston-like displacement, leading to a change in the fluid configuration

of the pore cross-section. Water could either be removed completely from the

pore (configuration B) or it could remain in the corner as films (configuration J),

creating arc menisci at the oil-water interfaces.

For primary drainage, the formation of these arc menisci is determined by

the geometrical condition, for θdr
ow (Eq. 4.5). Hence, there are three possible fluid

configurations of the pores during primary drainage process A, B and J (Fig. 4.2),

and the two possible displacements that can occur during this flood are indicated

in Fig. 4.7. The entry radius rNFF
entry for the no-film formation (NFF) displacement,

A→B, is given by Eq. 4.8 whereas the entry radius rFF
entry for the film formation

(FF) displacement, A→J, is given by Eq. 4.9 (Ryazanov et al., 2009).

rNFF
entry =

rins

2
sin( π

n )
cos(θdr

ow + γ(α))
. (4.8)

rFF
entry =

1
2

cos θdr
owLn,γ −

√
cos2 θdr

owL2
n,γ − 4nAα An,γ

nAα
, (4.9)

where Ln,γ and An,γ are the perimeter and area respectively of the n-cornered

star shape with half-angle γ. Aα is the dimensionless film area in a single corner

α, given by Eq. 4.10 for θow = θdr
ow (Helland et al., 2006, 2008).

Aα = θow + γ(α) − π

2
+ cos θow

cos(θow + γ(α))
sin γ(α) . (4.10)
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rFF
entry is smaller than the maximum radius rsn

entry associated with snap-off (van

Dijke et al., 2007):

rFF
entry < rsn

entry =
Ls

2n
sin γ(α)

cos(θdr
ow + γ(α))

. (4.11)

At the end of the primary drainage process, the maximum oil-water pressure

difference is Pdr
ow. If Pdr

ow > Pentry (Eq. 4.1), oil will have invaded the pore. If AMs

exist, their radii of curvature row are given by Eq. 4.6.

configuration A

θdr
ow < π

2 − γ(α)

Pentry < Pdr
ow

configuration J configuration B

yes
no

Figure 4.7: Flowchart of the two possible displacements scenarios during primary oil
drainage for an angular pore.
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4.3.2 Wettability alteration (ageing)

After the primary drainage, the wettability of the oil-filled pore surfaces, which

are in contact with oil, may have been altered by changing the contact angles.

This represents the alteration of the reservoir wettability during ageing. The wet-

tability of the pore surface which stays in contact with water remains unaltered,

having the same contact angle as during primary drainage θw
ow = θdr

ow whereas

the pore surface which is in contact with oil changes its wettability (Fig. 4.8).

This pore with two different wettability surfaces is known as a pore with non-

uniform wettability (Kovscek et al., 1993). The degree of ageing is modelled by

the oil-water contact angle (θalt
ow) of the altered wettability surface.

γ(α)

water

oil
θw

ow θalt
ow

AM

Ldr
s

Figure 4.8: Phase occupancy in corner with film phase j and bulk phase i. Bold lines
denote the surfaces of altered wettability.

The half length of the unaltered wettability corner surface Ldr
s (Fig. 4.8) is

given by Eq. 4.7 for θij = θdr
ow and rij = rdr

ow, which is the minimum oil-water

radius of curvature. It corresponds to Pdr
ow that is reached at the end of the pri-

mary drainage process. The oil-water AM in the corner is pinned at Ldr
s during

subsequent water flood with hinging contact angle θow,h, for θw
ow < θow,h < θalt

ow.

4.3.3 Imbibition (waterflooding)

During the field life, water is often injected into the reservoir to maintain its pres-

sure and to displace additional oil. At the pore level, water invades the network,

displacing oil from the oil-filled pores either by piston-like displacement or by

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



4.3 displacement processes 68

snap-off. Piston-like displacement (bulk-bulk displacement) takes place when

bulk water displaces bulk oil from the center of a pore. In this type of displace-

ment, water must be available as a bulk phase in one of the neighbouring pore

bodies. Snap-off occurs when bulk oil is displaced by the surrounding water

films (section 4.4.2). In both types of displacement, water must be hydraulically

connected to the inlet (i.e. the invading cluster), whereas oil must be connected

to the outlet (i.e. oil is not trapped). During piston-like displacement, oil layers

sandwiched between bulk water and water films (configuration S in Fig. 4.2) may

form. The formation of oil layers is subject to whether or not the new AM satisfy

the geometrical condition Eq. 4.5.

Additionally, the radii of curvature of the AMs should satisfy both geomet-

ric and thermodynamic conditions; we elaborate on this in section 4.4.1. The

piston-like displacement during which the layers are formed is called Layer For-

mation (LF): P→S. This displacement may be followed by another displacement

in which water displaces the oil layers, known as Layer Collapse (LC): S→G.

However, oil could be removed completely at once from the pore by piston-like

displacement (i.e. No Layer Formation (NLF)): P→G. Fig. 4.10 summaries these

displacements. The capillary entry pressures during water invasion in pores with

non-uniform wettability for the three displacements have been derived by van

Dijke and Sorbie (2006), based on free energy variation. The capillary entry pres-

sures were computed from the corresponding entry radii (Eq. 4.1):

1. Oil layer formation (P→S):

rLF
entry =

1
2

cos θalt
owLn,γ +

√
cos2 θalt

owL2
n,γ − 4nAα An,γ

nAα
, (4.12)

where Aα is the dimensionless film area in the corner α bounded by the

new arc meniscus (AM2 in Fig. 4.9), given by Eq. 4.10 for θow = θalt
ow.

2. Oil layer collapse (S→G):

rLC
entry = Ldr sin γ(α)

cos(θh + γ(α))
, (4.13)
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water oil

water

θow,h

θalt
woAM1

AM2

Figure 4.9: General fluid configuration in a pore corner with water film, oil layer and
bulk water separated by arc meniscii AM1 and AM2. Bold lines denote the
surfaces of altered wettability (section 4.3.2).

where θh is estimated by solving Eq. 4.14 numerically.

π − θalt
ow − θh + cos θalt

ow
cos(θalt

ow − γ)
sinγ

+ (cos θh − 2 cos θalt
ow)

cos(θalt
ow − γ)

sinγ
= 0.

(4.14)

3. No layer formation (P→G): A system of two equations (Eqs. 4.15–4.16),

derived from the MS-P theory, are solved iteratively to compute the entry

radius rNLF
entry and the hinging contact angle θh .

(4.15)
−An,γ + rNLF

entryLn,γ cos θalt
ow + nrNLF

entry
2
{

π

2
− θh −

γ + (cos θh − 2 cos θalt
ow)

cos θh cos(θh − γ)
sinγ

}
= 0.

rNLF
entry = Ldr sin γ(α)

cos(θh + γ(α))
. (4.16)

During this flood, eight possible changes of fluid configuration could occur

to the oil-filled pore: P→S, S→G, P→G, E→M, B→A, E→D, H→G and J→A.

Therefore, during a water flood the pore could have one of the ten possible fluid

configurations: A, B, D, E, G, H, J, M, P and S.

At the end of the water flood, the minimum oil-water pressure difference is

Pmin
ow . If Pmin

ow < Pentry (Eq. 4.1), water will have invaded the pore. If AMs exist,

their radii of curvature row are given by Eq. 4.6.
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configuration P

Pmin
ow < Pentry

θalt
ow > π

2 + γ(α)

PLF
ow > PNLF

ow

PLF
ow > PLC

ow

configuration G configuration S

no

yes

snap-off

layers collapse

Figure 4.10: Flowchart of the selection of favourable displacement when water invades
oil surrounded by water films in pore with equilateral triangular cross-
section. Where layers were created, layers collapse may follow. Note that
the geometrical condition Eq. 4.5 should be satisfied for all new AMs.

4.3.4 Gas flood and WAG injection

During gas and water floods (e.g. WAG injection), a pore can be invaded by

any fluid because of multiple displacements (section 4.5) and thus for each dis-

placement there is an invading phase (i), a defending phase (j) (where i 6=j), an

old configuration, and possible new configurations. Table 4.1 summarizes all

displacements, which have been implemented in the current model during gas

and water floods. The formation of any new AM, which is associated with some

displacements, has to meet the geometrical condition which relates the contact

angle to the corner half angle in a given corner (Eq. 4.5). One of the important
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displacements that occurs during gas injection is when gas displaces oil that

is surrounded by water films (e.g. pore with fluid configuration P). Then, two

displacements may take place: (1) Oil is completely displaced by gas (P→Q)

with an entry pressure of PNLF
go or (2) Oil remains as layers separating the water

corner films and bulk gas (P→U) with an entry pressure of PLF
go . These layers

must satisfy the geometric condition, derived by Fenwick and Blunt (1995) and

Firincioglu et al. (1999):

r23

r12
≤


cos(θ12+γ(α))
cos(θ23+γ(α)) if θ23 ≤ θ12

cos θ12−sin γ(α)

cos θ23−sin γ(α) if θ23 > θ12

, (4.17)

where 1 denotes bulk phase, 2 denotes layer phase and 3 denotes film phase.

Additionally, θ12 and θ23 must satisfy the condition (of Eq. 4.5). When layers

have formed, a subsequent layer collapse displacement may take place (U→Q)

with entry pressure PLC
go . The favourable displacement is selected based on the

flow chart in Fig. 4.11. The expressions for these entry pressures will be pre-

sented in section 4.4.

The formation of layers maintain the hydraulic connectivity of the oil and pro-

vide pathways for the oil to escape to the outlet. However, these layers could

collapse at later stages of the flood, reducing the oil connectivity and causing oil

to be disconnected and may be trapped. This depends on the capillary pressures

of the formation and collapse of these layers. Therefore, finding the precise cap-

illary entry pressures is essential. In next section we show the capillary entry

pressures calculations and, specifically, the precise criteria for the formation and

collapse of oil layers.

Table 4.1: Possible displacements during WAG injection at pore level.

Old config. i j New config. Notes

A o w B NFF

g w C NFF

o w J FF

g w L FF

Continued on next page . . .
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Table 4.1 – Continued from previous page

Old config. i j New config. Notes

B w o A NFF

g o C NFF

g o K FF

C w g A NFF

o g B NFF

D o w E NFF

g w F NFF

g w O FF

E w o D NFF

w o M FF

g o F NFF

g o N FF

F w g D NFF

o g E NFF

G o w H NFF

o w P FF

g w I NFF

g w Q FF

H w o G NFF

g o I NFF

g o R FF

I o g H NFF

w g G NFF

J w o A PL or SN

g o L NLF, FU

g o V LF

K o g B PL or SN

w g A PL: film/bulk removed

Continued on next page . . .
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Table 4.1 – Continued from previous page

Old config. i j New config. Notes

L o g J PL, FU

w g A PL or SN

M o w E PL or SN

g w N PL, FU

g w F PL: film/bulk removed

N o g E PL or SN

w g M PL, FU

w g D PL: film/bulk removed

O w g D PL or SN

o g E PL: film/bulk removed

P w o G PL or SN

g o Q NLF, FU

g o U LF

Q o g P NLF

w g G PL or SN

R o g H PL or SN

w g G film/bulk removed (very

rare displacement)

S o w P PL or SN

g w U PL, LU

w o G LC

T g w Q PL or SN

w g G LC

U o g P PL or SN

w g S LU

g o Q LC

V o g J PL or SN

w g A layer/bulk removed

Continued on next page . . .
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Table 4.1 – Continued from previous page

Old config. i j New config. Notes

g o L LC

where

PL piston-like displacement

SN snap-off displacement

FF film formation

NFF no film formation

LC layer collapse

LF layer formation

NLF no layer formation

FU film updated

LU layer updated

o oil

w water

g gas

i invading phase

j defending phase
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configuration P

PLF
go <

PNLF
go < PLC

go

configuration Q configuration U

no

yes

layers collapse

Figure 4.11: Flowchart of the selection of favourable displacement when gas invades oil
surrounded by water films in a non-uniformly wetted pore with equilateral
triangular cross-section. Where layers were created, layers collapse may fol-
low. Note that the geometrical condition Eq. 4.5 should be satisfied for all
new AMs.

4.4 three-phase capillary entry pressures

4.4.1 Thermodynamic criteria

Accurate modelling of three-phase flow at the pore scale requires determina-

tion of the capillary entry pressures that are associated with the phase dis-

placements. This is very important for modelling of oil layers in pores of an-

gular cross-sections. Previous three-phase pore-network models (Piri and Blunt,

2005a,b; Suicmez et al., 2006) modelled these layers based on a geometrical crite-
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rion. However, this criterion is not sufficient to accurately predict the oil relative

permeability at low oil saturations when the oil flow is controlled by layers (Fig.

1.11). Additionally, novel thermodynamic criteria were introduced by van Di-

jke et al. (2004a, 2007) for more accurate modelling of oil layers. In this section,

we present a brief description of the capillary entry pressures, which have been

formulated by van Dijke et al. (2004a, 2007) for displacements at the pore scale.

In the following we give the key general equations that are required to deter-

mine the precise capillary pressure for pores of arbitrary wettability for three-

phase flow. Then we briefly describe the derivations of the thermodynamic crite-

rion for pores of uniform, but arbitrary wettability.

The three-phase capillary entry pressures are related by:

Pc,gw = Pc,go + Pc,ow, (4.18)

which can, using the Laplace equation (Eq. 4.6), be written in terms of interfacial

tensions and the radii of curvature as:

σgw

rgw
=

σgo

rgo
+

σow

row
. (4.19)

The capillary entry pressures are calculated based on the thermodynamic equi-

librium from minimization of the Helmholtz free energy F when one configu-

ration is displaced by another for a small displacement dx along the same pore

(e.g. Fig. 4.16) . The free energy change can be expressed as dF = Gdx. At equilib-

rium, the change in free energy dF = 0. van Dijke et al. (2004a) and Piri and Blunt

(2004) worked out the general formula for the variation of Helmholtz free energy

dF, caused by a three-phase displacement in a pore with angular cross-section:

(4.20)
dF = PgwdVw + PgodVo + σgw

(
dAgwcosθMTM

gw dAws

)
+ σgo

(
dAgocosθMTM

go dAos

)
+ σowdAow,

where

dVi the change of volume of phase i

dAis the change of the fluid-solid contact area for phases i

dAij the change of the fluid-fluid contact area between phases i and j.

The procedure to find the capillary entry pressure is as follows:
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1. Determine the new and old configurations for each displacement.

2. Calculate the changes in volume and area as a result of the displacement,

taking place from the old and new configuration using the geometrical

expression given in appendix A.

3. Solve dF = 0 (Eq. 4.20). This equation may require a simple Newton-

Raphson method to determine the solutions for some displacements.

4. Use the solution which gives the minimum physically viable capillary entry

pressure to be associated with the displacement. By physically viable we

mean that the solution must not be larger than the corresponding snap-

off value (section 4.4.2) and the geometrical collapse criteria must not be

violated.

We give an example of using this procedure in section 4.4.4.

For pores of uniform wettability, van Dijke et al. (2004a) used the energy bal-

ance formulation of Mayer and Stowe (1965) and Princen (1969a,b) for two-phase

flow to derive a general formula for determination of the precise capillary entry

pressures for three-phase flow. They analysed all possible combinations of phase

occupancies on either side of the MTM in angular cross-sections of uniform wet-

tability. We briefly describe these derivations:

G is given as a function of the radii of curvature rij:

G(rgo, row, rgw) = − ∑
ij=go,ow,gw

σijg(rij, θij)δab
ij +

n

∑
α=1

∑
ij=go,ow,gw

σijg(rij, θij)(δ
(α)a

ij − δ
(α)b

ij ),

(4.21)

where

δ
(α)β

ij =

 1 if ij AM present in corner α at β,

0 otherwise,
(4.22)

and where β denotes the cross-sections a and b with different phase occupancies

on either side of the MTM

δab
ij =

 1 if bulk phase i is present at a and bulk phase j is present at b,

−1 otherwise.
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(4.23)

The geometrical function g(rij, θij) for an angular cross-section is given in Ap-

pendix A.

At equilibrium, the change in free energy is dF = 0, and hence

G = 0. (4.24)

Therefore, for one given radius of curvature (e.g. from a previous flood), the

two remaining unknown radii of curvature can be calculated by solving Eq. 4.19

and Eq. 4.24.

We have implemented the non-uniform wettability of the pore space as a re-

sult of ageing as discussed in section 4.3.2. Under these conditions, oil or gas

layers occur in aged oil-wet pores, surrounded by corner water and bulk water

or gas phases (see configuration S, T and U, Fig. 4.2). The corresponding thermo-

dynamic criteria for layer collapse have been derived by van Dijke et al. (2007).

The first condition for any displacement that includes formation of a new AM is

that the AM should satisfy the simple geometrical criterion given in Eq. 4.5.

However, this requires an additional constraint (Eq. 4.7 for θij,h) to determine

the appropriate contact angles, since in some cases the AM is not a priori known,

i.e. when the AM is pinned on unaltered to altered wettability surface (Fig. 4.8).

4.4.2 Snap-off displacement

A snap-off displacement refers to an event where a phase occupying the centre

of the pore is displaced by another phase surrounding it in the pore corner (i.e. a

layer or film of a phase). In a pore with uniform wettability (e.g. configuration J,

Fig. 4.2), the radius of curvature is positive and therefore, when the correspond-

ing capillary pressure decreases, the AM moves towards the centre, leading to

spontaneous snap-off (Fig. 4.12) when the AMs meet. In a non-uniformly wet

pore (e.g. configuration P, Fig. 4.2), if the AM is present on the water-wet surface,

then the process of snap-off begins by moving the AM to the centre of the pore.

When the AM reaches the point of wettability change, the AM may hinge until the

hinging contact angle reaches the contact angle value of the altered wettability
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surface θalt. If θalt < π
2 − γ, then the AM is forced to move on the altered wetta-

bility surface until it meets other AMs at which the pore is filled spontaneously.

If θalt > π
2 − γ, then snap-off takes place immediately (Fig. 4.13).

Figure 4.12: Snap-off in an angular pore of uniform wettability.

Figure 4.13: Snap-off in an angular pore of non-uniform wettability.

For a regular n-sided angular pore shape, spontaneous snap-off occurs when

the whole pore surface becomes contacted by the invading phase from the cor-

ners, which is equivalent to L(α)
s = Ls

2n . Using Eqs. 4.6 and 4.7, the snap-off thresh-

old capillary pressure is defined as

Psn
ij =

2nσij

Ls

cos(θij + γ(α))
sinγ(α) . (4.25)

However, for snap-off with negative radius of curvature rij, when the AMs start

to move onto the surface of altered wettability, they become unstable, causing the

pore to be filled by the invading phase (Fig. 4.13). The corresponding threshold

capillary pressure is given by

Psn
ij =

σij

Ldr(α)
s

cos(θsn
ij + γ(α))

sinγ(α) , (4.26)
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where Ldr(α)
s is defined by Eq. 4.7 and θsn

ij denotes the angle at which collapse of

the AMs takes place. θsn
ij = θalt

ij if θalt
ij ≤ π − γ(α) otherwise θsn

ij = π − γ(α) (van

Dijke et al., 2007).

Finally, note that when the invading phase is present in the center of one of the

neighbouring elements, then piston-like displacement is favoured over snap-off.

4.4.3 Pore body filling

A pore body filling (PBF) event is defined as a displacement where the non-

wetting phase occupying a pore body is displaced by a wetting phase from one

or more adjoining pore throats. The process of PBF is complex (Fig. 4.14). The cap-

illary entry pressure of this displacement depends on the number of adjoining

pore throats that are occupied by the wetting phase (Lenormand et al., 1983). Dif-

ferent parametric models of pore body filling have been proposed (Blunt, 1997;

Øren et al., 1998). The model of Blunt (1998) is used to calculate the capillary

entry pressure

Pcap =
2σ cos θ

rins
− σ

z

∑
i=1

(Aixi) , (4.27)

where z denotes the number of adjoining throats that are filled with phases

that do not contribute to the invasion of the pore body, σ denotes the interfacial

tension, rins denotes the inscribed radius of the pore, xi denotes random numbers

between 0 and 1, and Ai are arbitrary parameters.

The PBF is similar to piston-like displacement in the situation where there

is only one adjoining throat that is occupied by the defending phase, which

corresponds to the displacement shown in Fig. 4.14b.

We treated the displacements in pore bodies as piston-like displacements.

4.4.4 Example of three-phase displacement

Here we give an example of one displacement to show how the capillary entry

pressure is calculated, following the procedure given in section 4.4 to solve Eq.

4.20. We consider a displacement during three-phase flow in a throat with equi-
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(a) (b) (c)

(d) (e)

Figure 4.14: Pore body filling events (Blunt, 1997).

lateral triangular cross-section which is occupied by bulk oil and surrounded

by water films (configuration P). One of the possible changes of configuration is

shown in Figs. 4.15–4.16, where bulk gas displaces bulk oil. All the information

of lengths of the unaltered wettability surfaces are taken from the drainage flood

and Pow is taken from the water flood. First, we formulate the volume and area

changes related to the displacement:

dAws = n
(

L(α)
s (rgw, θAM1

gw )− L(α)
s (row, θAM1

ow )
)

dx (4.28a)

dAos = −
(

Ls − nLdr
s

)
dx (4.28b)

dAgs = (Ls − nL(α)
s (rgw, θAM1

gw ))dx (4.28c)
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dAow = −nL(α)
f (row, θAM1

ow )dx (4.29a)

dAgo = 0 (4.29b)

dAgw = nL(α)
f (rgw, θAM1

gw )dx (4.29c)

dVw =
(

nA(α)(rgw, θAM1
gw )− nA(α)(row, θAM1

ow )
)

dx (4.30a)

dVo = −
(

A− nA(α)(row, θAM1
ow )

)
dx (4.30b)

dVg =
(

A− nA(α)(rgw, θAM1
gw )

)
dx (4.30c)

A

C

B

′
A

′
C

′
B

Figure 4.15: Gas displaces oil surrounded by water films in a pore with equilateral trian-
gular cross-section, displacement P→Q, Fig. 4.2. Dark gray denotes water,
light gray denotes oil, white denotes gas and bold lines denote the surfaces
of altered wettability.

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



4.4 three-phase capillary entry pressures 83

dx

MTM

′
A

′
C

′
B

A

B

C

Figure 4.16: Cross-section in a pore showing a small displacement dx of the MTM, corre-
sponding to Fig. 4.15.

Eqs. 4.28–4.30 are substituted for the volume and area terms in Eq. 4.20. The

oil-water capillary pressure, Pow, and θow,h are obtained from the previous flood

from which row can be calculated using Eq. 4.7. At the MTM, the contact angles

are taken as the contact angles of the altered wettability surface: θMTM
go = θalt

go and

θMTM
gw = θalt

gw. However, it is not known whether the new gas-water AM will sit

on the water-wet surface, the altered wettability surface, or will be pinned with

hinging contact angle θgw,h. Therefore, the term cos θMTM
gw dAws is split between

the two surfaces as

cosθMTM
gw dAws = cosθw

gwdAw
ws + cosθalt

gwdAalt
ws, (4.31)

where

dAw
ws = n

(
L(α)

s (rgw, θw
gw)− Ldr

s

)
dx, (4.32)

and

dAalt
ws = n

(
Ldr

s − L(α)
s (row, θow,h)

)
dx. (4.33)

The additional constraint in Eq. 4.34, relates the two unknowns rgw and θgw,h,

is taken.

Ldr
s = rgw

cos(θgw,h + γ(α))
sinγ(α) , for θw

gw < θgw,h < θalt
gw. (4.34)

We used a simple Newton-Raphson method to solve Eq. 4.20, resulting in

two solutions of rgw, which were tested against the snap-off radius of curvature
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(section 4.4.2) to determine the final solution. This solution is used to calculate

the capillary pressure, Pc,gw = σgw
rgw

, and Pc,go, using Eq. 4.18.

4.5 modelling of the multiple displacements

The network consists of (phase) clusters of interconnected pores that accommo-

date the same phase as defined in section 4.1. The pressure within each cluster

is uniform. The cluster pressures are determined through the entry pressures

of the pores, as described in sections 4.3–4.4, at the boundaries between the

network clusters. These clusters can be connected to the inlet, the outlet, both,

or not connected to either the inlet or the outlet. The latter are called discon-

nected clusters. If these disconnected clusters are formed during two-phase flow,

they are usually trapped and immobile (Ryazanov et al., 2009). However, dis-

connected clusters are very common to form during three-phase flow (e.g. WAG

injection). These disconnected clusters of oil, water or gas which are formed

during different floods, has been observed to move by multiple displacements

during three-phase flow (Sohrabi et al., 2000, 2001, 2004), Fig. 4.17.

Fig. 4.18 shows the (bulk) fluid distributions in the pore-network. Note that

films and layers are not displayed on the pore-network but pores that contain

only film or layer of a phase are still part of the corresponding phase clusters.

Layers and films play a crucial role in connecting large (bulk) clusters, providing

pathways between clusters. Layer collapse could lead to break up of clusters and

possibly forming smaller, disconnected clusters. Fig. 4.18 can be simplified as

map of clusters (Fig. 4.19), taking gas as invading phase at the inlet. The arrows

indicate a possible cluster-cluster invasion. Note that there is no cluster that can

invade cluster (1). This is because cluster (1) is the inlet invading cluster and

hence its pressure is always increasing relative to one or more of the outlet con-

nected clusters, (5), (8) and (9). The latter type of clusters are always defending

clusters only, indicated by arrows into them.

Two types of displacements can occur:

1. Single displacement: This is a direct displacement during which a phase

cluster connected to the inlet displaces a phase cluster connected to the

outlet. If we consider an idealised map of the phase distribution within a
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(a) 100% water saturation (b) Primary drainage (c) Initial waterflood

(d) First cycle gas injection (e) First cycle water injection (f) Second cycle gas injection

(g) Second cycle water injec-
tion

(h) Fifth cycle gas injection (i) Fifth cycle water injection

Figure 4.17: An example of a section of the micromodel, showing the fluid distribu-
tions after different floods. The oil cluster in the white circle is formed ini-
tially during primary drainage (b). It becomes disconnected (completely sur-
rounded by water) during second cycle water injection (g). However after
a few WAG cycles (h), the cluster has moved out (captured by the reported
videos of the experiment) of the system by multiple displacement. Blue
denotes water, oil denotes red and yellow denotes gas. Note that the micro-
model was scanned vertically in separate sections. What shown here is only
the image of the middle section at the end of different floods. Images taken
from Sohrabi et al. (2000).

network (Fig. 4.19), then a possible single displacement is when the inlet

connected gas cluster (1) displaces the outlet connected oil cluster (5).

2. Multiple displacement: This is an extension of the double displacement

during which a phase cluster connected to the inlet displaces a discon-

nected phase cluster, which displaces a phase cluster connected to the out-

let. For example, in Fig. 4.19, a possible multiple displacement involves gas

cluster (1), connected to the inlet, displacing the disconnected oil cluster (2),
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which in turn displaces the disconnected gas cluster (6), which displaces

oil cluster (8), connected to the outlet. In section 4.5.3, we explain how to

find the preferred displacement chain such that the sum of the capillary

entry pressures at the boundaries between the clusters from the inlet to the

outlet is the lowest.

Figure 4.18: Fluid distribution as phase clusters in a pore-network. Blue denotes water,
red denotes oil and green denotes gas. The phase clusters can be represented
as a conceptual map (Fig. 4.19). Note that films and layers are not displayed
in this figure.

4.5.1 Partial volume filling

As a result of the multiple displacement mechanism, the network will have pores

that are partially filled by different fluids. A multiple displacement leads to a

change in the volumes of the phases in all pores that are part of the displace-

ment chain. Over the entire displacement chain, we calculate which pore filling

requires the smallest phase displacement. We use this minimum volume to fill

the pores in the chain, leading to a change in the configuration of the pore

with the smallest phase displacement. The configurations of other pores in the

chain remain unchanged unless the volume of displacement phase in the pore

becomes negligible, which is determined by a cut-off value. In this case, the pore

configuration changes to a new one.
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Inlet Outlet1

2

3

4

6 8

7
9

5

rgo rog rgw

Figure 4.19: Conceptual map of a network of phase clusters with cluster-cluster con-
nections, showing their connectivity to inlet and outlet. Dark gray denotes
water, light gray denotes oil and white denotes gas. A possible multiple
displacement chain, involving clusters 1, 2, 6 and 8, is indicated by the
pores that are labelled by the entry radii rgo, rog and rgw, correspoinding
to minimum capillary entry pressures, at cluster-cluster interfaces. A possi-
bele single displacement could occur though the invasion of gas cluster 1

to oil cluster 5. Arrows indicate the direction of invasions, i.e. invading and
defending clusters.

For instance, consider the triple displacement chain involving clusters 1, 2, 6

and 8 in the phase cluster map of Fig. 4.19. The displacement chain takes place

through the pores at cluster-cluster interfaces (indicated in Fig. 4.19). It com-

prises gas (at the inlet) displacing oil, then oil displacing gas and then gas dis-

placing water through the outlet, shortly g → o → g → w. Let us consider that

the pores (configuration) of lowest capillary pressure for each cluster-cluster in-

terface over the entire displacement chain are P, R, A in Fig. 4.2, respectively.

Then, we first calculate the volume difference to complete the displacement

(P→U, R→H, A→L) for each pore in the chain. We select the smallest phase

displacement to cause a change in the pore configuration. This could be, for

example, the volume of the oil phase due to layer formation displacement in

displacement P→U. The phase volumes of all pores in the chain will change but

only the configuration of pore P will change to the new configuration U.

To conserve the volume of the individual phases, we take the detailed film

and layer configurations into account by allowing each pore to have volumes for
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each type of phase occupancy (see Eq. 3.15 in section 3.5). We also describe some

issues resulting from partial volume filling in section 4.5.5.

4.5.2 Outlet boundary conditions

We impose pressures at the outlet boundary for each phase by the pressure

differences Pout
ij , where ij = go, ow, gw. We assume that the network model rep-

resents an entire micromodel or core sample, for which the pressure difference

between the two phases other than the invading phase Pout
ij is kept constant. The

other pressure differences for outlet clusters are assumed to be equal to the tar-

get pressure difference of the latest chain of displacements. For instance, during

gas injection, the gas pressure increases, whereas the pressures of oil and water

clusters at the outlet remain constant. Therefore, the pressure difference between

oil and water Pout
ow is kept constant (taken from the previous flood), whereas the

other two pressure differences Pout
go and Pout

gw vary based on the target pressure of

the latest chain of displacements.

4.5.3 Shortest path algorithm

The multiple displacement events involve a chain of clusters where the begin-

ning of the chain is the inlet invading phase cluster and the end is a cluster

connected to the outlet. This means that there are many possible chains. To find

the most favourable displacement chain in the network during the three-phase

invasion-percolation process, we use a computationally efficient shortest path

search algorithm (van Dijke et al., 2008).

Initially, the map of network phase clusters with cluster-cluster connections

(such as Fig. 4.19) is converted to a graph (Fig. 4.20). We have added a virtual

cluster of a chosen reference phase at the outlet (section 4.5.2). Connections be-

tween clusters connected to the outlet and the virtual cluster have been added.

These connections represent Pout
ij , the difference between the pressure in the out-

let connected cluster in the chain with phase i and the pressure in the reference

outlet phase j. First, we find the pore with lowest capillary entry pressure (sec-

tion 4.4) for each cluster-cluster connection of the graph. Then we use a "shortest-
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path" tree-search algorithm (Algorithm 4.1) to find the minimum target pressure

difference between the invading phase at the inlet and the reference phase at

the outlet. For instance, in the multiple displacement g → o → g → w that was

considered in the previous section, the target pressure difference between gas,

the invading phase at the inlet, and oil, assuming that oil is the reference phase

at the outlet, is

Ptrgt
go = Pc,go + Pc,og + Pc,gw + Pout

wo . (4.35)

In general, for a multiple displacement chain that consists of n clusters (x1, x2 . . . xn)

with invading phase cluster x1 at the inlet and reference (virtual) cluster xre f at

the outlet, the target pressure difference Ptrgt
x1xre f is given by

Ptrgt
x1xre f = Pe f f

c,x1xn + Pout
xnxre f

, (4.36)

where Pe f f
c,x1xn is the sum of the capillary entry pressures for the clusters along

the displacement chain, given by

Pe f f
c,x1xn =

n−1

∑
e=1

Pc,xexe+1 , (4.37)

where Pc,xexe+1 is the lowest capillary entry pressure between invading cluster xe

and defending cluster xe+1.

The clusters of the network are represented by the list V of vertices (clusters)

v. The cluster-cluster connections are represented by the list E of edges e. The

distance of each edge is the lowest capillary entry pressure between the invading

cluster and the defending cluster that are connected by the edge. The distance

of the edges that connect the outlet clusters with the virtual outlet cluster is Pout
ij .

The invading inlet cluster is used as the source vertex s and the virtual outlet ver-

tex (cluster) is r. Therefore, the problem of determining the displacement chain

with the minimum target pressure difference becomes finding the path from s

to r that has the minimum distance. The classic Bellman-Ford-Moore (BFM) al-

gorithm (Bellman, 1958; Ford, 1956; Moore, 1959) is normally used to solve the

shortest path problem. However, a common feature occurs during finding the

shortest path from s to r, the so-called negative (distance/cost) cycle. The nega-
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tive cycle occurs when a closed loop of displacement chain has a negative effec-

tive pressure difference (Eq. 4.37). The displacement within the negative cycle is

equivalent to a spontaneous displacement. Despite that BFM algorithm indicates

the presence of negative cycles, BFM algorithm can not locate them (Cherkassky

and Goldberg, 1999). van Dijke et al. (2008) used a cycle detection strategy in

combination with Tarjan’s subtree disassembly algorithm (Tarjan, 1981). The

shortest path algorithm used in this work is capable of detecting the negative

cycles and can resolve them (van Dijke et al., 2008). If negative cycles are not

detected, the algorithm produces the shortest path from s to every vertex v in

graph G.

The shortest path algorithm is presented in Algorithm 4.1. In brief, the algo-

rithm takes graph G as input, which consists of V and E. The task is to determine

the minimum cost/distance from s to all other vertices. There are two lists: A

is the list of vertices which will be scanned in the current pass, B is the list of

vertices which will be scanned in the next pass. Initially, the algorithm assigns a

distance, i.e. target pressure difference, d(s) = 0 to the source vertex, i.e. the inlet

cluster, and distance d(v) of infinity for all other vertices (algorithm 4.2). Then s

is added to B. At the beginning of every pass, all the vertices are transferred from

B to A. The algorithm takes every vertex u in the list A for a scanning process. In

the scanning process, every edge from vertex u to vertex v is checked. If the dis-

tance d(v) can be shortened by summing up the distance for u plus the distance

l(u, v) for the edge between u and v, then v is updated. The algorithm checks first

if u is one of the descendants of v, i.e. the subtree (Lchildren(v)) of shortest paths

rooted in vertex v is traversed (Algorithm 4.3). If u is found in Lchildren(v), a cycle

is created. The cycle is located and the algorithm reports it and stops. The cycle

is resolved by carrying out the displacement along it. However, if the vertex u

is not found, Lchildren(v) is cleared (i.e. disassembled in Algorithm 4.4) and v is

added to Lchildren(u). If v is not scanned and not in the current scanning list A,

then it will be added to A so it can be scanned in the current pass. Otherwise,

v will be added to B for the next pass. At the end of the scanning process for

u, u is marked scanned and removed from the current scanning list A. When A

becomes empty, a pass is completed. The next pass starts by transferring all the

vertices from B to A. The algorithm stops when B is empty at the end of a pass.
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Figure 4.20: The equivalent graph for the map of network phase clusters in Fig. 4.19.
Clusters are presented as vertices connected by edges. An additional (vir-
tual) vertex is added to represent the outlet (reference phase). Edges repre-
sent the cost for each direction of each cluster-cluster connection.

4.5.4 Pressure determination of each cluster

As mentioned above, one of the advantages of using the shortest path algorithm

is that it provides the shortest path tree from the source vertex, the invading

cluster to all other other vertices, phase clusters. Knowing the reference pressure

(Pout
re f ) of the outlet (vertex 0 in Fig. 4.20), the pressures of the clusters along the

entire displacement chain can be calculated recursively by retracing the shortest

path from the outlet to the inlet:

Pi = Pj + Pc,ij, (4.38)

where ij denote connections that are part of the shortest path chain, starting with

the reference outlet cluster. By doing so, the pressure of the invading cluster

(marked 1) can be determined and, hence, the pressures of all other clusters can

be calculated by traversing the shortest path tree from the inlet using Eq. 4.38,

starting with the invading cluster, i.e. of the source vertex.

For instance, Fig. 4.21 shows the solution for a possible shortest path tree of

the graph (Fig. 4.20). We give arbitrary pressure for the reference phase cluster
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Pout
0 = 0. Then we calculate the cluster pressures through the shortest path chain,

indicated in red colour backward from reference outlet cluster 0 to the inlet

cluster 1 as follows: P8 = P0 + Pout
80 , P6 = P8 + Pc,68, P2 = P6 + Pc,26 and finally P1 =

P2 + Pc,12. Now the cluster pressures along the chain are known and therefore

the cluster pressures along the branches, indicated in blue colour, of the main

chain can be calculated as follows: P7 = P6 − Pc,67, P9 = P7 − Pc,79, P3 = P2 − Pc,23,

P4 = P3 − Pc,34 and P5 = P3 − Pc,35.

When a negative cycle is detected by the shortest path algorithm, no pressure

calculation is performed because of the absence of a shortest path from the in-

let to the outlet. Therefore, apart from pressure changes arising from merger or

break-up of clusters that may occur during resolution of the negative cycle, we

do not update the pressure of the network clusters during a spontaneous dis-

placement. This will enable us to avoid any instabilities in the presence of films

and layers. Previous authors like Piri and Blunt (2005a) and Suicmez et al. (2007)

considered similar decisions in their models. Note that they only considered sin-

gle and double displacements and, hence, they do not encounter the problem of

negative cycles.
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Figure 4.21: A possible shortest path tree of the graph shown in Fig. 4.20.
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4.5.5 Computational Issues

Here we list some of the computational issues that have been encountered during

the network modelling of the three-phase flow:

1. Cluster disappearing: This feature arises during the partial volume filling

as a result of multiple displacements. This situation occurs when there

is a cluster in the displacement chain, consisting of one element only that

carries the smallest phase displacement volume (section 4.5.1). For instance,

consider the situation in Fig. 4.22. Three elements are involved in a double

displacement during gas flood: element e1 belongs to an inlet gas cluster,

element e2 belongs to a disconnected oil cluster and element e3 belongs to

an outlet water cluster. If e2 requires the smallest phase volume to complete

the displacement, then oil is displaced completely by gas from e2 and thus

e2 is removed from oil cluster and added to the gas cluster. However, e3 is

partially filled by oil because the oil volume is not large enough to complete

the displacement in e3. Thus it will not be added to the oil cluster yet. This

means that there is no element that belongs to the oil cluster, i.e. the cluster

is empty, at the end of this multiple displacement. Therefore, the oil cluster

is removed from the network clusters list. However, the volume of oil in

e2 is preserved (see section 3.5). This allows to resume the pore filling of

e3 by oil if it is invaded by another oil cluster ("rescue cluster") at some

point during the current flood or subsequent floods. The volume of oil in

the element will increase until, eventually, the displacement is completed.

This feature is not common to happen (not before the first WAG cycle at

least) and thus it does not have a significant impact on the overall results.

2. Merger of clusters and fluid re-distribution: One of the key features of the

multiple displacement in three-phase flow is that all the clusters within the

network can move, i.e. are active. This increases the possibility of merger

and breakup of clusters. For instance, a series of multiple displacements

(g→o→w→o) involving clusters (1), (2), (3) and (5), see Fig. 4.19, could

cause cluster (2) to move towards the trapped cluster (4) and eventually

reach cluster (4) and merge with it. Additionally, this multiple displace-

ment could break cluster (5), by invasion of cluster (3), into two smaller
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e1

e2

e3

(a)

(b)

Figure 4.22: Conceptual double displamcement, g → o → w, where the displacement
in e2 is completed. (a) 3 elements belong to three different cluster, (b) 3

elements belong to two clusters. Dark gray denotes water, light gray denotes
oil and white denotes gas.

clusters, one disconnected cluster and another cluster connected to the out-

let. In particular, merger of clusters could cause a change in the pressure of

the involved clusters. If the pressure of a disconnected cluster changes, the

phase volumes (film/layer/bulk) in the pore or throat that is connected to

this cluster should change. In other words, the volume of the cluster should

be redistributed between its elements, leading to change in the phase vol-

ume in the cluster elements. This implies that the volumes of the other

phases in these elements need to be adjusted. This requires volume re-

distribution for the merged clusters and their neighbouring clusters. This

might be more accurate but is difficult to implement and computationally

expensive. Additionally, the pressure change of the cluster could lead to

another chain of displacements, possibly starting from a disconnected clus-

ter where layers could collapse and trigger a chain of displacements, which

is not part of main chain that was found by shortest path algorithm.

3. Pressure of trapped film cluster: Updating the pressure of a trapped water

cluster in which none of its element has a bulk water (Fig. 4.23a). In a

more complicated case, this film cluster could be interacted with more

than one cluster (Fig. 4.23b). The issue arises during the construction of the

graph, which is used to find the shortest path and update clusters pressures

(section 4.5.4), because such disconnected (film) cluster has no incoming

(and thus no outgoing) edges (arcs) in the graph. In other words, the cluster
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is isolated in the graph. The pressure of the film trapped cluster will be

changed by the same amount of the pressure change in the trapping cluster.

If it is trapped by more than one cluster, then the cluster with the maximum

pressure (or the cluster with maximum pressure change) will be considered

as the trapping cluster. However, given that the network is initially filled

with water (strongly water-wet), water is likely to be connected by the films

through the network and therefore the formation of trapped film cluster is

rare to occur and, if it happened, it usually produce small clusters. In other

words, the effect of this issue is negligible and does not have a noticeable

impact on the overall results.

(a)

1 2 3 4

water film cluster 5

(b)

1

2

3

4

5

Pc,12

Pc,34

Pc,23

Pc,32

(c)

Figure 4.23: (a) Film water cluster is trapped by One (oil) cluster. (b) Film water cluster
is trapped by four clusters. (c) The equivalent graph for phase clusters in (b).
Clusters are presented as vertices, connected by edges. Edges represent the
cost for each direction of each cluster-cluster connection. Dark gray denotes
water, light gray denotes oil and white denotes gas.

The computational issues that we encountered are not limited to the ones we

mentioned in this section. The purpose of this section is just to show that imple-

menting pore-scale physics (e.g. multiple displacement) is a non-trivial exercise,

which requires careful treatment of the pressure and the volume conservation

for a disconnected phase that can be present as bulk, film or layer.
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Algorithm 4.1: Shortest Path Algorithm
Data: Graph G = (V, E), Start s ∈ V
Result: The minimum distance between each vertex (s ∈ V) and s

1 initialization; // shown in Algorithm 4.2
2 while B 6= ∅ do
3 A=B
4 B← ∅
5 while A 6= ∅ & cycle = f alse do

// Scan the current first vertex u from List A
6 scan (u)
7 foreach e(u, v) ∈ Eout(u) do
8 if d(u) + l(u, v) < d(v) then
9 if Lchildren(v) 6= ∅ then

10 CheckSubtree(u,v) given by Algorithm 4.3
11 end
12 if p(v) > 0 then
13 remove v from Lchildren(p(v))
14 end
15 inE(v)← e(u, v)
16 add v to Lchildren(u)
17 d(v)← d(u) + l(u, v)
18 p(v)← u
19 Disassembly(v)

// Disassembly the subtree rooted at vertex v
using Algorithm 4.4.

20 end
21 if v /∈ A & v /∈ B then

// Check if vertex v is going to be scanned
22 if S(v) 6= scanned then
23 add v into A
24 else
25 add v into B
26 end
27 end
28 end
29 end
30 remove u from A
31 u← scanned
32 end
33 end
34 end
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Algorithm 4.2: Initialization
Initialization

A← ∅ B← ∅
foreach v ∈ V do

p(v)← 0
d(v)← ∞
S(v)← unscanned
Echildren(v)← ∅
inE(v)← 0
if v = s then

d(s)← 0
add s to B

end
end

end

Algorithm 4.3: Check that u is not one of descendants of vertex v
CheckSubtree(u,v)

forall the w ∈ Lchildren(v) do
if w=u then

cycle← true
// Stop, report and resolve ! break

else
CheckSubtree(u,w)

end
end

end

Algorithm 4.4: Disassembly the subtree rooted at vertex v
Disassembly(v)

Remove v from A and B
foreach m ∈ Lchildren(v) do

Disassembly(m) // Disassembly the subtree rooted at vertex m
p(m)← 0
d(m)← ∞

end
Lchildren(v)← ∅

end
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4.6 summary and closing remarks

In this chapter we have described the two most important advancements in the

current model. These comprise the implementation of a thermodynamic crite-

rion for oil layer formation and collapse and multiple displacement chains. We

have presented all possible fluid configurations in the cross-section of an angular

pore with equal corners that may arise during three-phase flow, including sur-

faces with uniform wettability and surfaces with non-uniform wettability. The

displacement processes that occur at the reservoir scale have been modelled at

the pore scale, including primary drainage, imbibition and WAG injection. For

the latter, we have presented all possible fluid configuration changes at the pore-

level for a pore with angular cross-section. The shortest path algorithm, used

to model multiple displacements, has been described. This algorithm is capable

of detecting the negative cycles, which correspond to the spontaneous displace-

ments at the pore-scale. Additionally, the algorithm is used to determine the

pressure of the network clusters.

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



5
C O M PA R I S O N O F N E T W O R K S I M U L AT I O N S W I T H

E X P E R I M E N TA L D ATA

5.1 introduction

In the previous chapter, we described our new pore-network model in detail.

This chapter presents the model validation against experimental data. The two-

phase flow routine of the model is based on the work by Ryazanov et al. (2010),

so we revisit the previous validation of the two-phase pore-network model con-

ducted by Ryazanov et al. (2010) for different wetting systems. Ryazanov et al.

(2010) had run an extensive validation analysis of the model, using the water-wet,

oil-wet and mixed-wet two-phase experimental results of Oak (1990), Valvatne

and Blunt (2004) and Jadhunandan and Morrow (1995) respectively.

For three-phase flow, we use the experimental results of Oak (1990) for a water-

wet system to validate the model. First, we obtain the contact angles from two-

phase matching. Then, the contact angles are used for three-phase simulations.

After that, we compare the measured and predicted three-phase relative perme-

abilities for the water-wet system.

To benchmark the model for oil-wet systems, we use the micromodel exper-

iments of Sohrabi et al. (2000, 2001, 2004). We generate different realisation of

2D network model with properties that are statistically similar to those of the

full micromodel. Then we compare the predicted and measured recovery pro-

files and fluid distributions. Moreover, the effect of the advancements in our

model is demonstrated by comparing our network validation results with those

of previously published network models.

99

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



5.2 previous two-phase validation of the model 100

5.2 previous two-phase validation of the model

5.2.1 Water-wet system

Fig. 5.1 shows the two-phase relative permeability calculations of Ryazanov et al.

(2010) for a water-wet system, which were used to match the relative permeabil-

ities of the experiments conducted by (Oak, 1990) on water-wet Berea sandstone.

Ryazanov et al. (2010) used Network A, described in section 3.2. For the primary

drainage, Ryazanov et al. (2010) imposed a constant contact angle, θdr
ow = 0o,

reflecting strongly water-wet system. During water flood, the oil-water contact

angles were uniformly distributed between 56o and 76o. The simulated relative

permeabilities during the primary drainage and water flood were in a very good

agreement with the experimental data (Fig. 5.1). These predictions were similar

to those of Valvatne and Blunt (2004).

5.2.2 Oil-wet system

To validate the model for an oil-wet system, Ryazanov et al. (2010) used oil-wet

sandstone data modelled by Valvatne and Blunt (2004). The BereaPB network

(Fig. 3.1) was modified, following the approach used by Valvatne and Blunt

(2004). They matched the experimental drainage capillary pressure curve by ad-

justing the pore and throat size distributions. The difference between the models

of Ryazanov et al. (2010) and Valvatne and Blunt (2004) concerns criteria for ex-

istence of oil layers, discussed in section 4.3.3. Ryazanov et al. (2010) used the

thermodynamic criterion as opposed to the geometrical criterion used by Val-

vatne and Blunt (2004).

Initially, Ryazanov et al. (2010) used the same wettability scenario as Valvatne

and Blunt (2004): contact angles were uniformly distributed between 20o and

60o during drainage (oil flood) and uniformly distributed between 90o and 173o

during the water flood. All input parameters are as shown in Table 5.1 (case 1).

The prediction of relative permeability by Valvatne and Blunt (2004) and Ryazanov

et al. (2010) were very good (Fig. 5.2). Valvatne and Blunt (2004) slightly overpre-

dicted the oil relative permeability at high water saturation. Furthermore, it un-
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(a) Two-phase relative permeabilities during
primary drainage

(b) Two-phase relative permeabilities during
primary drainage on semi-log scale

(c) Two-phase relative permeabilities during
Imbibition

(d) Two-phase relative permeabilities during
Imbibition on semi-log scale

Figure 5.1: Comparison of the relative permeabilities predictions by the network model
(Ryazanov et al., 2010) with the experimental data (Oak, 1990) for the two-
phase flow experiments during primary drainage and imbibition. ICL de-
notes the prediction by Valvatne and Blunt (2004) at Imperial College London
and HWU denotes the prediction by Ryazanov et al. (2010) at Heriot-Watt
University.
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derpredicted residual oil saturation (Sor). On the contrary, Ryazanov et al. (2010)

managed to predict Sor more accurately. This was attributed to accurate mod-

elling of oil layers using the thermodynamic criterion. However, the Ryazanov

et al. (2010) model underpredicted the water relative permeability.

A better prediction was obtained (Fig. 5.3) by making the system slightly less

oil-wet during water flood as shown in Table 5.1 (case 2). This showed that

the accuracy of the relative permeabilities predictions strongly depends on the

wettability distribution, which could be obtained by matching other data (e.g.

waterflood capillary pressures). However, in both cases the improved modelling

of oil layers lead to a significantly more accurate prediction of the water flood

residual oil saturation.

Table 5.1: Input parameters used for prediction of oil- wet experiments (Ryazanov et al.,
2010)

Parameters case 1 case 2

Contact angles for Drainage (θdr
ow), degree 20-60 0

Contact angles for Imbibition (θa
ow), degree 90-173 96-158

Connate water saturation (Swc) 0.0 0.0
Initial water saturation (Swi) 0.03 0.02

Water viscosity, 10−3Pa/s 1.0 1.0
Oil viscosity, cP 0.29 0.29

Interfacial tension (σow), 10−3N/m 51.8 51.8

5.2.3 Mixed-wet system

To validate the model for mixed-wet system, Ryazanov et al. (2010) used the

experimental data of (Jadhunandan and Morrow, 1995) for slow-rate waterfloods

in Berea sandstone core samples. The core samples were initially flooded with oil

until prescribed initial water saturations Swi. Then, the systems were aged and

up to 20 pore volumes of water were injected. The oil recoveries were measured

and the Amott-Harvey wettability index was calculated from the experimental

Pc data using the modified Amott approach (Boneau and Clampitt, 1977).

Ryazanov et al. (2010) used the same network (Network A, described in sec-

tion 3.2) and input data as Valvatne and Blunt (2004). However, Ryazanov et al.

(2010) did not include pore bodies and, more importantly, they used the ther-
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(a) Two-phase relative permeabilities during
Imbibition

(b) Two-phase relative permeabilities during
Imbibition on simi-log scale

Figure 5.2: Comparison of the water flood relative permeability predictions of the net-
work model (Ryazanov et al., 2010), using parameters of case 2 in Table 5.1,
with the experimental data (Valvatne and Blunt, 2004) for the oil-wet system.
ICL denotes the prediction by Valvatne and Blunt (2004) at Imperial College
London and HWU denotes the prediction by Ryazanov et al. (2010) at Heriot-
Watt University.

(a) Two-phase relative permeabilities during
Imbibition

(b) Two-phase relative permeabilities during
Imbibition on simi-log scale

Figure 5.3: Comparison of the water flood relative permeabilities predictions by the net-
work model (Ryazanov et al., 2010), using parameters of case 2 in Table 5.1,
with the experimental data (Valvatne and Blunt, 2004) for the oil-wet sys-
tem. HWU denotes the prediction by Ryazanov et al. (2010) at Heriot-Watt
University.

modynamic criterion for oil layer existence instead. Initially, the network was as-

sumed water-saturated with contact angles of 0o. Then, the network was flooded

with oil until the predefined (experimental) initial water saturation Swi. The net-

work was aged and the contact angles were altered to reflect a mixed-wet large
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(MWL) distribution (largest pores are oil-wet). The advancing contact angles for

the water-wet faction of the oil-filled pores were uniformly distributed between

56o and 76o and for the oil-wet fraction the contact angles were distributed be-

tween 117o and a maximum value θow,max
a that was adjusted to match the Amott-

Harvey wettability indices. θow,max
a ranged between 167o and 178o. The water-

flooding was simulated in the network and the corresponding kr and Sor were

calculated.

The remaining oil saturation and corresponding oil recoveries were estimated,

after breakthrough (BT), after 3 and after 20 pore volumes of water injected,

by using the network waterflooding relative permeability in the Buckly-Leverett

analysis (Dullien, 1992). Fig. 5.4 shows the remaining oil saturations and oil re-

coveries as a function of the Amott-Harvey wettability index after different pore

volumes injected, obtained from the experiments and from the network simula-

tions (using Buckly-Leverett analysis). In general, good quantitative agreement

between simulations and experiments was achieved.
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Figure 5.4: Calculated (Ryazanov et al., 2010) and experimental (Jadhunandan and Mor-
row, 1995) remaining oil saturations (a,c,e) and oil recovery efficiencies (b,d,f)
vs. Amott-Harvey wettability index Iwo.
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5.3 three-phase validation of the model

5.3.1 Water-wet system

We used the two- and three-phase experimental data obtained by Oak (1990)

to validate the current three-phase network model for water-wet systems. We

consider the relative permeability data obtained from three water-wet Berea core

samples (Samples 6, 13 and 14, which have absolute permeabilities of 200, 1000,

and 800 mD, respectively). The porosities of the samples were not reported. The

fluid systems that were used in Oak’s experiments for the three samples are

given in Table 5.2.

Oak did not report any measurement of interfacial tensions. However, Blunt

(2000) and Lerdahl et al. (2000) suggested that the fluid system used by Oak

(1990) was a spreading system because of low oil saturations that were reached

in the experiments and the quadratic behaviour of the oil relative permeabil-

ity at these low saturations. Piri and Blunt (2005b) used the interfacial tensions

for a spreading hexane-water-air system to validate their model against Oak’s

experiments. We employ the same values that were used by previous authors:

σow =48mN/m, σow =19mN/m and σgw =67mN/m. Oak did not report values for

the contact angles. Therefore, these values must be estimated. Oak found that

the two-phase relative permeability data of samples 13 and 14 were very sim-

ilar. However, these were different from the relative permeabilities for the less

permeable sample 6.

The network (Network A, described in section 3.2) used here was extracted

from a process based reconstruction of Berea sandstone (Øren and Bakke, 2003),

preserving both topology and pore shapes of the rock. We also compared the

permeability of the network with the permeabilities of the core samples. The

network has a permeability of 2673 mD, which is 13, 2.5 and 3 times higher than

the permeability of samples 6, 13, and 14 respectively. Therefore, we used the

relative permeabilities data of the more permeable samples 13 and 14 to validate

our model.
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Table 5.2: Fluid systems reported by Oak (1990)

Samples Oil Water Gas

Sample 6 deodorized min-
eral spirit+5%
iodobenzene; vis-
cosity: 1.77 cp.

55,000 ppm
brine+10% CsCl;
viscosity: 1.06 cp

nitrogen at 800

psig; viscosity:
0.0187 cp

Sample 13 and 14 Dodecane+10%
iodooctane; viscos-
ity: 1.39 cp.

55,000 ppm
brine+10% CsCl;
viscosity: 1.05 cp

nitrogen at 800

psig; viscosity:
0.0187 cp.

5.3.1.1 Revisiting two-phase validation

We focused on choosing the contact angles that give a good match for the three-

phase model rather than using the same contact angles which had been used

by Ryazanov et al. (2010) for two-phase validation (section 5.2). For primary

drainage, we assumed that the system is strongly water-wet; hence the oil-water

contact angle is 0o. We did not tune any other parameters of the network. The

clay content was given in the input data files of the network (see section 3.5) and

we did not change it; this clay content then dictates the initial water saturation

for the network. For the water flood, we imposed a uniform distribution (uncor-

related to spatial location and pore size) of the oil-water contact angles with a

minimum of 20o and a maximum of 72o, implying a weakly water-wet system.

Fig. 5.5a and Fig. 5.5b show the relative permeabilities calculated by the model,

as well as the experimental data for primary drainage and imbibition, respec-

tively. The calculated curves are in good agreement with the experimental data.

5.3.1.2 Gas Injection

For the "prediction" of the three-phase relative permeabilities, we used the same

oil-water contact angles as used for the water flood. We calculated the contacts

angles for gas-oil (0o) and gas-water (16.9o − 59.7o) according to the linear rela-

tionships; Eqs. 2.7a and 2.7b.

A true comparison of the three-phase relative permeabilities for a given satura-

tion path obtained from the experimental data would require the network model

to produce the same saturation path. Since we could not force our simulations,

which were obtained from gas injection, to follow the experimentally derived sat-
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(a) Two-phase relative permeabilities during
drainage

(b) Two-phase relative permeabilities during
imbibition

Figure 5.5: Comparison of the relative permeabilities predictions by the network model
with the experimental data (Oak, 1990) for the two-phase flow experiments
during drainage and imbibition floods for water-wet system.

uration paths exactly, which were obtained from so-called steady state injection

of multiple phases, we produced a set of saturation paths (Fig. 5.6a) that cross in

the same region of the saturation space as the experimental paths. Consequently,

we compared the three-phase relative permeabilities derived from the network

model with a cloud of the experimental data for numerical and experimental

saturation paths that cover the same region (Svirsky et al., 2007).

Fig. 5.6b shows the three-phase oil relative permeability curve predicted by the

network model, compared to the experimental data (Oak, 1990). The predicted

oil relative permeabilities are scattered in a similar manner as the measured oil

relative permeability. The experimental data are scattered because in a water-wet

system, where oil is the intermediate-wetting phase, the oil relative permeability

is expected to be a function of saturation history and initial oil saturation (Oak,

1990; Hui and Blunt, 2000b; Piri and Blunt, 2005b).

Fig. 5.6c shows the three-phase water relative permeability curve predicted by

the network model, compared to the experimental data of Oak (1990). The pre-

dicted water relative permeability matches the measured values perfectly. The

water relative permeability behaves as expected for a water-wet system. In a

water-wet system, where water is the most wetting phase, the water relative

permeability is a function of its own saturation.

Fig. 5.6d shows the three-phase gas relative permeability predicted by the net-

work model, compared to the experimental data (Oak, 1990). In a water-wet
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system, where gas is the least wetting phase, the gas relative permeability is

a function of its own saturation. However, because of experimental difficulties

(Oak, 1990), the measured gas relative permeability values are scattered at low

gas saturations. The predicted and measured data become less scattered at high

gas saturation. The predictions are in good agreement with the measured values.

These predictions are similar to those obtained by Piri and Blunt (2005b). We

could not match the non-zero gas relative permeability at very low gas satura-

tions due to the finite size of the network used in this work.

(a) Saturation paths (b) Oil relative permeability kro

(c) Water relative permeability krw (d) Gas relative permeability krg

Figure 5.6: Saturation paths and the relative permeabilities predictions by the network
model compared with the experimental data (Oak, 1990) for the three-phase
flow experiments on samples 13 and 14 during tertiary gas injection.
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5.3.1.3 Comparison with predictions by previous three-phase network model

As discussed in section 1.4, different studies have concluded that three-phase

properties (relative permeabilities) strongly depend on the phase saturations

and the saturation path history. Therefore, to predict the experimental results

it would be necessary to reproduce the same saturation paths. Piri and Blunt

(2005a,b) used an algorithm to track the saturation paths of the experiment, by

injecting slugs of oil, water and gas into their pore-network model.

To demonstrate the improvements of our model in predicting the three phase

microscopic properties, we consider one of the experiments that was matched

by Piri and Blunt (2005b). However, we run the simulation without forcing the

saturation path to go in a prescribed direction or to terminate at a specific gas

saturation. In this case, we assume that the network, initially water-saturated,

has an oil-water contact angle of 0o, implying strongly water-wet system. Then,

the network is flooded with oil until a predefined water saturation, taken from

the experiment, (Swi = 0.252). After that, the oil-water contact angles of the oil-

filled pores are altered. Since we are preforming a rigorous comparison rather

than a comparison of clouds of data, we use contact angles, distributed between

56o and 76o, which are based on the model validation for two-phase flow, car-

ried by Ryazanov et al. (2010), as discussed in section 5.2. The corresponding

three-phase contact angles are simply calculated using the linear relationships

(Eqs. 2.7). We used the same interfacial tensions that were used by Piri and Blunt

(2005a,b), shown in Table 2.1. Finally, gas was injected into the network and the

simulation stopped at residual oil saturation. Fig. 5.7a, shows the measured and

predicted saturation paths. Both network models reproduced the same satura-

tion path. The corresponding oil relative permeabilities are shown in Fig. 5.7b.

Both models overpredicted the oil relative permeabilities. However, the predic-

tion of our model is much closer to the measured values. The better prediction

is attributed to the new thermodynamic criterion which was used to model the

oil layer formation and collapse.
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(a) Saturation paths (b) kro

Figure 5.7: Comparison of measured and predicted three-phase properties for experi-
ment 10, sample 14, of experiments of Oak (1990).

5.3.2 Oil-wet System

5.3.2.1 Micromodel experiments

To validate our model for oil-wet systems, we used experimental data from a

WAG micromodel for oil-wet system (Sohrabi et al., 2001, 2004). The WAG ex-

periments were conducted using high-pressure acid-etched glass micromodels

for different wettability conditions (water-wet, oil-wet and mixed-wet). Table 5.3

shows the main parameters of the micromodel and fluid properties. Further

experimental details are given by Sohrabi et al. (2001, 2004). The experiments

revealed some important phenomena in three-phase flow physics, for example

multi-displacement processes and thickening of oil films, which have a major

impact on the flow behaviour of three phases and subsequent oil recovery. In an

oil-wet micromodel, water is the non-wetting phase relative to oil and thus had

to be forced into the model. Contrary to a water-wet system, in which water dis-

places oil through corner filament flow (water imbibition), in the oil-wet system

water displaces oil in a piston-like manner. These two different displacement

mechanisms lead to different patterns of the residual oil. After water injection,

the injected gas was observed to invade the oil-filled pores rather than the water-

filled pores.
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Table 5.3: Main Micromodel Parameters

Model parameters Values

Nodes 120x20

Coordination number 2.67

Pore cross-section Shape Rectangular
Pore width1

90 to 280 µm
Pore depth 50 µm
Pore length 350 µm

ρw, kg/m3
1000

ρo, kg/m3
706

ρg, kg/m3
21

σow, mN/m 41

σgo, mN/m 15

σgw, mN/m 65

Injection rate, cm3/h 0.01

1 Distributed randomly.

Initially, the micromodel was fully filled with oil and there was no water

present in the model. Then, water was injected into the model to mimic the

initial waterflood. After that, gas was injected into the model followed by an-

other water injection (WAG cycle). In total, five WAG cycles were performed. All

floods were stopped at the breakthrough of the invading phase. No contact an-

gles were reported but the observation of the experiments suggested that gas

was the intermediate-wetting phase, water was the non-wetting phase and oil

was the wetting phase in the system.

5.3.2.2 Comparison of numerical results and experimental observations for the oil-wet

micromodel

van Dijke et al. (2006) used the above micromodel experiments to validate an

older three-phase pore-network model. They generated a single 2D network and

simulated half of the micromodel. As there was uncertainty related to the de-

gree of wettability, which was a key input parameter for their simulations, they

compared the direct observation at the pore-scale in the micromodel with the

theory on wetting order and the presence or absence of wetting films. They ran

a limited number of simulations to obtain realistic input values for these param-
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eters (the wetting order of the phases and the presence or absence of oil wetting

films) and were able to achieve a satisfactory distribution of fluid phases and oil

recoveries when compared to experimental data. For this they had to allow oil

wetting films around water to form only in a fraction of the pores. This fraction

was an additional tuning parameter.

In this work, we used the same interfacial tensions as used by van Dijke et al.

(2006). However, in contrast to the latter, the only parameter we needed to tune

to match the experimental data were the contact angles. Since the exact pore-

network geometry of the micromodel could not be recreated with our pore-

network model, we generated ten random 2D networks (N1-N10) with prop-

erties that were statistically similar to those of the full micromodel (Table 5.3).

The generated 2D networks consist of pores bodies (nodes) and pores throats

(bonds). Each pore had a regular square shape.

We used the interfacial tensions and the contact angles given in Table 5.4 to

simulate the oil-wet micromodel experiments. Note that the interfacial tensions

indicate that oil is spreading and also note that the contact angles satisfy Eqs.

2.6 and 2.7. The chosen range of contact angles implies that oil wetting films can

only be present in a fraction of all water filled pores and should be present in

all gas filled pores. However, this is not always the case, especially for higher

order WAG cycles during which oil has been removed completely by water from

some pores. In these pores, we do not allow oil wetting films to form when gas

is introduced to them. This has a great impact on the phase connectivity and,

therefore, manifests the importance of the multiple displacements during higher

order WAG cycles.

All networks have the same wettability state and were subjected to the same

flooding sequence. We averaged the residual oil saturation of all networks after

each flood as shown in Fig. 5.8 and compared the averages with the correspond-

ing values from the oil-wet micromodel (Fig. 5.9). Overall we achieved a good

match between the experiments and the network model simulations in terms of

oil recovery. In the experiment the oil saturation decreases from So,initial ≈ 48%

to So, f inal ≈ 24% while in the simulation the average oil saturation decreases

from So,initial ≈ 52% to So, f inal ≈ 22%. Fig. 5.10 show how our prediction of the

oil recovery compared with the prediction of van Dijke et al. (2006). In general,
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we predicted the oil recovery more accurately than the prediction of van Dijke

et al. (2006).

Table 5.4: Wettability Parameters for the comparison with the micromodel experiments.

Wettability state Values

θow, degree 120.0-180.0
θgo, degree 0.0
θgw, degree 95.6-117.7

σow, mN/m 41

σgo, mN/m 15

σgw, mN/m 56

Wetting order1 oil-gas-water

1 From most to least wetting phase.

Figure 5.8: Simulated residual oil saturations in an oil-wet micromodel for ten randomly
generated 2D networks. All networks have statistically similar geometries as
the micromodel.

Fig. 5.11 shows the fluid distributions in the oil-wet micromodel after the ini-

tial water flood and subsequent WAG floods. Since we have used ten different,

but statistically equivalent, micromodel geometries for our simulations and com-

puted the average oil recovery after each flood, it is difficult to compare the fluid

distribution of the micromodel experiment directly to the corresponding simu-

lated distributions. For a qualitative visual comparison of simulated and experi-

mental fluid distributions we have selected network N9, because its oil residual

is very similar to the average residual oil saturation. Fig. 5.12 shows the sim-
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Figure 5.9: Simulated and experimental residual oil saturation for the oil-wet micro-
model, computed after each individual WAG cycle. Note that the simulated
residual oil saturations represent the averages for the ten networks.

Figure 5.10: Comparison of oil recovery predicted by our model and previous model of
van Dijke et al. (2006).

ulated fluid distribution in the oil-wet system after the initial water flood and

subsequent WAG floods for network N9.

For the initial water flood, the simulated residual oil is slightly higher than

the experimental value. However, the fluid distribution is very similar in the

simulation and the experiment. During the first gas flood a significant amount

of oil is produced, both in the simulation and in the experiment. Gas displaces

both oil and water, which is a direct consequence of the wetting order of the

system. The gas distribution pattern is very similar in the experiment and in the

simulation. There are some parts of the model that have a dense cluster of gas

and they are connected through fingers of gas. During the first water flood, water
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clusters can be observed to reconnect and retain their initial distributions. The

amount of the additional oil recovered by the simulation and the experiment

is approximately the same for the subsequent floods. However, the additional

amount of recovered oil decreases from one flood to the next until it becomes

insignificant after the second WAG cycle.
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Figure 5.11: Experimentally observed fluid distribution during WAG injection in an oil-wet micromodel for the initial water flood and 3 WAG cycles
(Sohrabi et al., 2004). Blue denotes water, red oil and yellow gas. Fluids are injected at the bottom (inlet) and recovered at the top (outlet)
of the micromodel.
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Figure 5.12: Simulated fluid distribution after the initial water flood and first three WAG cycles in an oil-wet network model that is statistically equivalent
to the original micromodel. See Fig. 5.11 for comparison with the experimental data.
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5.4 summary and closing remarks

In this chapter, we have presented the validation of our model against experi-

mental data. To validate the model, two- and three-phase relative permeability

experimental data of a Berea sandstone sample, reported by Oak (1990), were

used. For two-phase flow, the predicted values of relative permeability of both

oil and water are in good agreement with the experimental data. For the three-

phase flow, the predicted three-phase water relative permeability curves are in

perfect agreement with the measured data. The predicted three-phase gas rela-

tive permeability gives a good match with the experimental data. The predicted

oil relative permeabilities are scattered in a similar manner as the measured oil

relative permeability, which is caused, both experimentally and numerically, by

the different saturation histories. Additionally, we demonstrated the impact of

implementing the thermodynamic criteria for oil layer formation and collapse.

This was done by comparing the predictions of our model and a previous model

of Piri and Blunt (2005a,b) with the experimental data. Our model gave a more

accurate prediction, which was attributed to the accurate modelling of oil layers.

For an oil-wet system, we simulated the micromodel experiments that were

conducted by Sohrabi et al. (2000, 2001, 2004). The pore-network model pro-

duced very similar oil recovery profile to the experimental ones. These predic-

tions were better than the prediction of a previous pore-network model devel-

oped by van Dijke et al. (2006). We performed a qualitative visual comparison of

simulated and experimental fluid distributions. For the initial water flood, the

fluid distribution is very similar in the simulation and the experiment. During

the first gas flood, some parts of the model were observed to have dense clusters

of gas which were connected through fingers of gas, both in the experiment and

in the simulation. During the first water flood, water clusters reconnected and

retained their initial distribution.

From these validation, we conclude that the model is able to capture the main

detailed physics of three-phase flow at the pore-scale adequately and is ready to

be put in use for simulation of different networks with arbitrary wettability.
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P O R E - S C A L E S I M U L AT I O N S

6.1 introduction

In this chapter, we show the capability of our new model to compute the rela-

tive permeabilities for realistic 3D pore-networks, extracted from pore-space re-

construction methods and CT images, by carrying out a number of three-phase

water-wet and oil-wet simulations. We use four different networks (Figs. 3.1–3.2):

network A represents the pore-space structure for Berea sandstone rocks and the

other three networks (B, C and D) represent carbonate rocks. Further detail of

the networks can be found in chapter 3.

6.2 wetting systems and flooding sequence

We considered three wetting systems for which the parameters are presented in

Table 6.1, one is water-wet and the other two are weakly and strongly oil-wet,

respectively. The three systems have same interfacial tensions (Table 2.1).For the

water-wet simulation, we assumed that the network is fully filled with water

as the initial state. Then, we flooded it with oil (primary drainage) until the

irreducible water saturation, contained in the clay porosity (Valvatne and Blunt,

2004), was reached. After that, we simulated water invasion (imbibition) up to a

predefined water saturation, Swi. Finally, we injected gas into the network until

the residual oil saturation was reached. We repeated the simulation for different

Swi to generate a data set that represents the full range of three-phase relative

permeabilities in the three-phase saturation reasonably well.

120
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For the two oil-wet systems, we assumed that the network is fully filled with

oil at the connate water saturation as the initial state. Then, we flooded it with

water up to a predefined water saturation, Swi. Finally, we injected gas into the

network until residual oil was reached. We repeated the simulation for different

Swi to generate the three-phase relative permeabilities.

Table 6.1: Properties of the wetting systems

Cases 1 2 3

Wettability state strongly water-wet weakly oil-wet strongly oil-wet

θow, degree 0.0 90.5-110 120-150

θgo, degree 0.0 0.0 0.0
θgw, degree 0.0 73.9-87.8 94.2-109.6

Wetting order1 water-oil-gas oil-water-gas oil-gas-water

1 From most to least wetting phase.

6.3 simulation results and discussion

Figs. 6.1-6.4 show the saturation paths resulting from gas injection at different

Swi with the corresponding three-phase relative permeabilities kr for the four

networks A, B, C and D (Figs. 3.1-3.2), respectively. The following emergent

behaviours and resulting three-phase flow properties can be observed for the

different networks and different wettability states:

6.3.1 Saturation paths

The carbonate networks exhibit some discontinuities in the saturation paths. This

is caused by a small number of pores with large volume ("vugs"). Invasion of

such pores causes an immediate large change in the phase saturation (Fig. 6.2).

Furthermore, in the strongly oil-wet cases, the saturation paths show that gas

displaces oil, except for high water saturations, because water is preventing gas

from invading the oil-filled pores. However, oil can be mobilised by a double

displacement g→w→o. Hence some of these oil-filled pores become accessible

to gas near the end of the saturation path and, therefore, gas can now displace

oil directly (g→o). In network C, significant water displacement occurs for the
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weakly oil-wet system. In the weakly oil-wet system, gas is the least wetting

phase and is therefore expected to displace mainly water. For network C, the

water saturations that are reached after the water flood are larger than for the

other networks. This results in continuity of the water phase for a significant

range of saturations during gas injection.

6.3.2 Residual oil

The common feature for all four networks is that the residual oil saturation

reaches very low values for strongly water- and oil-wet systems during the gas

flood. In the water-wet system, oil is the intermediate wetting phase and can

be present as a bulk phase, occupying the central part of the pores, or as layers

sandwiched between water wetting films and gas bulk phase (Fig. 4.2V). This

maintains hydraulic connectivity for the oil at very low oil saturation, providing

pathways for the oil to escape to the outlet, which results in low residual oil

saturations. In the oil-wet system, oil is the wetting phase and can be present

as a bulk phase or as corner wetting films (e.g. Fig. 4.2M and Fig. 4.2E), which

maintain connectivity of the oil phase. However, in the weakly oil-wet case, a

smaller number of oil films formed around the water compared to the strongly

oil-wet case (and therefore also around the gas phase in the subsequent gas

flood). This results in a lower oil connectivity and hence higher residual oil

saturations. For instance, carbonate network B has less than 1% residual oil for

the strongly oil-wet system, while this can be as high as 32% for the weakly

oil-wet system.

6.3.3 Three-phase region

The size of the three-phase region, i.e. the saturation values where all three

phases are present, is determined by the connate water saturation and the mini-

mum residual oil saturation during the water flood. In the strongly oil-wet case,

a larger number of oil wetting films formed around water during the water flood

compared to the weakly oil-wet case. Therefore, the oil phase is more connected

in the strongly oil-wet case compared to the weakly oil-wet case, leading to lower
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residual oil saturations during the water flood. Hence the saturation paths cover

a larger region, causing a wider three-phase region for the strongly oil-wet sys-

tem. The difference in three-phase regions between the water-wet and weakly

oil-wet systems is large for networks C and D whereas for networks A and B it

is much smaller. This is related to the residual oil saturations during the water

flood, which is in turn related to the network connectivity. Indeed, based on their

respective coordination numbers the network connectivities decrease from net-

work A to network D (Table 3.2), while the water flood residual oil saturations

show the opposite trend in the water-wet systems. Surprisingly, the water flood

residual oil saturations in weakly oil-wet systems are not simply correlated to

the network connectivity.

6.3.4 Oil relative permeability

The oil relative permeability in the strongly oil-wet case is enhanced by the

presence of additional films around water compared to the weakly oil-wet case,

in which the oil phase is less well-connected, resulting in a lower oil relative

permeability. For example for the Berea network at So=0.59, Sw=0.3 and Sg = 0.11,

the oil relative permeability kro is 0.146 for the weakly oil-wet case and kro is 0.242

for the strongly oil-wet case.

6.3.5 Gas relative permeability

In the homogeneous Berea network (Network A), the gas relative permeabil-

ity is comparable for both oil-wet cases, strongly and weakly oil-wet. However,

for the carbonate networks the gas relative permeability is generally higher for

the weakly oil-wet system compared to the strongly oil-wet system at identical

saturation combinations. A noteworthy feature of the gas relative permeability

behaviour for the weakly oil-wet systems is that the saturation paths intersect;

hence different relative permeabilities can occur for the same saturation combi-

nation. This feature can be observed particularly well in the carbonate sample

from network B (Fig. 6.2.) The multiple values of the gas relative permeability

are caused by the dependence of the relative permeabilities on the flow history,
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i.e. the saturation path. Note that this is not only a numerical feature but occurs

in laboratory experiments as well.

6.3.6 Water Relative Permeability

In the water-wet systems, water is connected by water wetting films which yield

small non-zero values for the water relative permeability for a wide range of

saturation paths. On the contrary, in the oil-wet systems the water relative per-

meability quickly drops to zero for relatively large water saturations, because of

the poor phase connectivity due to the absence of water films.

6.3.7 Oil recovery by water and gas flood

In the water-wet system, gas injection leads to a significant improvement in oil

recovery. For example, waterflood in the Berea Sandstone (Network A) leads

to 40% residual oil saturation but injection of gas can lead to a residual oil

saturation of as low as 1%. The reason for this dramatic improvement in recovery

is that during the water flood snap-off displacements disconnect oil clusters and

hence trap them. The resulting disconnected oil clusters cause the high residual

oil saturation. In contrast, during the gas flood, oil is displaced mainly by piston-

like displacements. This creates oil layers which maintain oil connectivity and

thus cause the lower residual oil saturation. However, in the oil-wet system there

is no significant improvement in oil recovery due to gas injection because snap-

off during water injection does not occur. Hence oil can be drained by either

water or gas injection through the oil films.
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(a) kro (b) krw

(c) krg (d) kro

(e) krw (f) krg

Figure 6.1: Continued on next page . . .
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. . . continued from previous page

(g) kro (h) krw

(i) krg

Figure 6.1: Simulated relative permeabilities of network A: (a)-(c) for strongly water-wet
(case 1), (d)-(f) for weakly oil-wet (case 2) and (g)-(i) for strongly oil-wet
(case 3) conditions. Note the difference in the scale of the individual relative
permeabilities.

(a) kro (b) krw

Figure 6.2: Continued on next page . . .
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. . . continued from previous page

(c) krg (d) kro

(e) krw (f) krg

(g) kro (h) krw

(i) krg

Figure 6.2: Simulated relative permeabilities of network B: (a)-(c) for strongly water-wet
(case 1), (d)-(f) for weakly oil-wet (case 2) and (g)-(i) for strongly oil-wet
(case 3) conditions. Note the difference in the scale of the individual relative
permeabilities.
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(a) kro (b) krw

(c) krg (d) kro

(e) krw (f) krg

Figure 6.3: Continued on next page . . .
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. . . continued from previous page

(g) kro (h) krw

(i) krg

Figure 6.3: Simulated relative permeabilities of network C: (a)-(c) for strongly water-wet
(case 1), (d)-(f) for weakly oil-wet (case 2) and (g)-(i) for strongly oil-wet
(case 3) conditions. Note the difference in the scale of the individual relative
permeabilities.

(a) kro (b) krw

Figure 6.4: Continued on next page . . .
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. . . continued from previous page

(c) krg (d) kro

(e) krw (f) krg

(g) kro (h) krw

(i) krg

Figure 6.4: Simulated relative permeabilities of network D: (a)-(c) for strongly water-wet
(case 1), (d)-(f) for weakly oil-wet (case 2) and (g)-(i) for strongly oil-wet
(case 3) conditions. Note the difference in the scale of the individual relative
permeabilities.
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6.4 comparison between single- and multi-displacement

To demonstrate the impact of single- vs. multi-displacement on the estimation

of residual oil, we used network A (Berea Sandstone). We assumed that the

network is fully filled with water as the initial state. The oil-water contact angle

θdr
ow = 0o is assigned to all the pores. Then, the network was flooded with oil

(primary drainage) until the irreducible water saturation, contained in the clay

porosity (Valvatne and Blunt, 2004), was reached. After that, we changed the

contact angles of the pores that have been invaded by oil to mimic ageing. The

oil/water contact angles were distributed uniformly with a minimum of 20o

and a maximum of 72o. Then, we ran the water invasion up to a predefined

water saturation of 50%. Finally, we injected gas into the network until no more

oil was produced at the outlet of the network. At this point the simulations

were stopped. The interfacial tensions are given in Table 2.1 and the saturation

paths of the two types of displacement during gas flood are presented on the

ternary diagram of Fig. 6.5. At the early stages of gas injection, gas displaces

oil only from the largest pores that are part of an outlet connected to an oil

cluster. This is represented in the straight part of the saturation path in both

displacements. In the single-displacement scenario, oil becomes trapped because

the oil that is still connected to the outlet is contained in small pores which

have a high capillary entry pressure. This leads gas to displace both, oil and

water, forming the curved part of the saturation path. Finally, all oil becomes

trapped and cannot be produced any longer. However, the water phase is still

connected to the outlet, leading the gas to displace water only. This results in a

predicted residual oil saturation of 17.5%. However, in the multi-displacement

scenario, the trapped oil is still able to move within the network and can reach

the outlet. In this case, both oil and water are produced simultaneously and,

hence, significantly lower residual oil saturation of 5.5% can be achieved. This is

a major difference compared to the corresponding single-displacement scenario.
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Figure 6.5: Simulated saturation paths using single-displacement (blue path) and multi-
displacement (red path) during tertiary gas injection.

6.5 summary and closing remarks

In this chapter, we used four different realistic 3D pore-networks, extracted from

pore-space reconstruction methods and CT images, to demonstrate the capability

of our new model to compute the relative permeabilities for three wetting sys-

tems. The networks represented sandstone and carbonate rocks. We studied the

emergent behaviours and resulting flow properties of the networks and wetting

systems. The carbonate networks exhibited some discontinuities in the satura-

tion paths. This was attributed to large pore volumes ("vugs"). In the strongly oil-

wet cases, the saturation paths showed that gas displaces oil, except for high wa-

ter saturations. The residual oil saturation reached very low values for strongly

water- and oil-wet systems during the gas flood in all the four networks. This

was because that the hydraulic connectivity of oil was maintained by the oil lay-

ers and films in the water-wet and oil-wet systems respectively. The size of the

three-phase region was controlled by the connate water saturation and the min-

imum residual oil saturation during the water flood. Based on their respective

coordination numbers as the network connectivities decrease, the water flood

residual oil saturations increases in the water-wet systems. However, the water

flood residual oil saturations in weakly oil-wet systems are not simply correlated

to the network connectivity. The oil relative permeability in the strongly oil-wet

case was enhanced by the presence of additional films around water, compared
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to the weakly oil-wet case in which the oil phase was less well-connected. This

resulted in a lower oil relative permeability at identical saturation combinations.

We observed a numerical feature that also occurs in laboratory experiments: The

saturation paths in the weakly oil-wet system intersect each other at different gas

relative permeabilities. This emphasised the importance of the flow history. The

water relative permeability held a non-zero value in the water-wet systems. In

contrast, in oil-wet systems the water relative permeability dropped to zero. This

behaviour was attributed to the presence or absence of water wetting films. Gas

injection led to a significant improvement in oil recovery, compared to water

injection. This was attributed to the favourable displacements types which oc-

curred in each flood. Finally, we ran a simple simulation to manifest the impact

of single- and multi-displacement on residual oil. A significantly lower residual

oil saturation was reached using multi-displacement scenario compared to the

corresponding single-displacement scenario.
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P O R E - T O R E S E RV O I R - S C A L E S I M U L AT I O N S

In this part we apply the network model and employ its three-phase

flow functions in continuum-scale reservoir simulations to investigate

different three-phase flow effects which occur at field-scale. As an

application example, we consider WAG injection for different wetting

systems, demonstrating the uncertainties inherent to three-phase flow

functions and hence the importance of applying the "correct" relative

permeability model, even if the reservoir was subjected to history-

matching and uncertainty analysis and the geology is thought to be

well-understood.
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P O R E - T O R E S E RV O I R - S C A L E

7.1 introduction

In this chapter, we show the capability of our pore-network model to provide

three-phase flow function (relative permeabilities and capillary pressures) that

can be fed into continuum-scale reservoir simulations. Our pore-network model

is used to generate the flow functions for different wetting systems. We use the

3D pore-network extracted from pore-space reconstruction methods of Berea

sandstone (Fig. 3.1) as input in our pore-network model to compute the flow

functions. The main network parameters are shown in Table 3.2. The data struc-

ture for this network was discussed in chapter 3. The flow functions are then

employed in a commercial reservoir simulator to model field-scale WAG injec-

tion and address the following points: (1) It is well-known that uncertainty in

predicting oil recovery depends on the uncertainty in the geological model and

hence novel workflow exist which aim to reduce uncertainty and optimise recov-

ery (Peters et al., 2010). However, if the the geology of the reservoir is thought to

be well understood, is the choice of the relative permeabilities and capillary pres-

sures still critical to forecast the oil recovery accurately, especially during tertiary

gas injection? In other words, how large is the uncertainty in flow functions com-

pared to the uncertainty in a history-matched geological model? To answer this

question we analyse the effects of different three-phase relative permeabilities

models, i.e. from network model and from empirical models, on field-scale re-

covery during WAG injection for different reservoir wettability conditions. We use

a geological model with different equiprobable stochastic realisation of perme-

ability and porosity. We then compare the uncertainty arising from the relative

135
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permeability models to uncertainty in the geological model. (2) As we have seen

in chapter 6, different wetting systems give different saturation paths and flow

functions. If these flow functions are used in a reservoir model, how will they

affect oil recovery? (3) What is the incremental oil recovery due to WAG injection

in a given reservoir model?

In the following sections, we describe the reservoir model. After that, we

present the wetting systems that are considered in this chapter. We then dis-

cuss the simulations at the pore scale, explaining how the flow functions are

derived from the pore-network model. Then, we show the results for numerical

simulations of WAG injection at the reservoir scale to demonstrate the impact of

pore-scale generated three-phase flow functions vs. empirical flow functions on

the sweep efficiency after gas injection for a range of realistic wettability scenar-

ios.

7.2 reservoir model description

We used a completely synthetic field model, the Brugge field, which has been

constructed by the Dutch Organization for Applied Scientific Research (TNO) as a

benchmark study for closed-loop reservoir optimization (Peters et al., 2010). The

dimensions of the Brugge filed are approximately 10 x 3 km. The field consists

of four main reservoir zones: Schelde, Maas, Waal, and Schie. The properties

of these zones are typical for a North Sea Brent-type field (Table 7.2). The field

has a large boundary fault at its northern edge and one internal fault. The reser-

voir model contains 30 wells in total, 20 producers and 10 injectors. The "truth"

model consists of 20 million grid cells and was populated with the common

reservoir description properties such as sedimentary facies, NTG thickness ra-

tio, porosity, permeability and water saturation. Then this model was upscaled

to a 450,000 grid-cell model, with average cell dimensions of 75x75x2.5m. The

upscaled model was used to obtain synthetic production data, which comprise

the input for history matching. This model has not been disclosed. Hence well

data and regional knowledge of the geology are used to generate a new geolog-

ical model comprising 60,000 grid cells (Fig. 7.1). The main parameters of the

model are shown in Table 7.1. Indeed, 104 equiprobable stochastic realizations

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



7.2 reservoir model description 137

of the reservoir properties were created, using four selected control parameters:

facies, fluvial, porosity and permeability. This reflects the geological uncertainty.

Further details on the modelling are given by Peters et al. (2010).

Table 7.1: Main reservoir simulation parameters.

Parameters Values

Pressure 2,466 psi at 5577 ft depth
Free water level 5505 ft
OWC 5498.5 ft
GOC 4900.15 ft
Capillary pressures Fig. 7.2
Pore compressibility 3.5x10-8 1/psi
Well constraints Producers 5000 rb/d, 725 psi

Injectors 10000 rb/d, 2611 psi
Water cut constraint 90% on the producers

We used the 60,000 cell reservoir model to run different WAG injection scenar-

ios, which are summarised in Table 7.3. In all scenarios, we simulate a primary

depletion for the first 21 months before commencing the first flood. There is no

gas cap in the model.

Figure 7.1: Initial oil saturation of the Brugge field.
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Table 7.2: Main reservoir zones properties (Peters et al., 2010).

Formation
1 Schelde Maas Waal Schie

Average thickness, m 10 20 26 5

Average porosity, % 20.7 19.0 24.1 19.4
Average permeability,
mD

1105 90 814 36

Average NTG, % 60 88 97 77

Depositional environ-
ment

Fluvial Lower
shoreface

Upper
shoreface

Sandy shelf

1 The zones are ordered from the top to bottom of the reservoir.

Table 7.3: WAG injection Scenarios.

Scenario index Flooding sequence First flood

1 (base case) Waterflooding for 42.6 years Water
2 Only gas injection for 42.6 years Gas
3 21 WAG cycle, Water 1 year, Gas 1 year Water
4 21 WAG cycle, Water 1 year, Gas 1 year Gas
5 7 WAG cycle, Water 3 year, Gas 3 year Water
6 7 WAG cycle, Water 3 year, Gas 3 year Gas
7 4 WAG cycle, Water 5 year, Gas 5 year Water
8 4 WAG cycle, Water 5 year, Gas 5 year Gas

(a) Gas-oil capillary pressure (b) Oil-water capillary pressure

Figure 7.2: Capillary pressures obtained for two-phase gas-oil and oil-water systems us-
ing our network model.
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7.3 two-phase relative permeability

We used our network model to obtain the two-phase relative permeability for oil-

water and gas-oil systems. In the oil-water system, we injected oil into the fully

water-saturated network to obtain kro(w), krw and Pcow. In the gas-oil system, we

injected gas into the fully oil-saturated network at connate water to obtain kro(g),

krg and Pcgo. The resulting capillary pressures curves were used for initialising

the reservoir model.

7.4 three-phase relative permeability by network model

We used our network model to mimic the reservoir wettability state and the

flooding sequence. Initially, the network is fully saturated with water (water-wet

rock). The network is then flooded with oil up to connate water saturation, Swc

to mimic oil migration into the reservoir, during primary drainage. This repre-

sents the initial state of the reservoir model. Then, contact angles are changed,

modelling the alteration of the reservoir wettability during ageing. Different de-

grees of ageing, from water-wet to oil-wet, were modelled. After that, we ran the

imbibition process up to a predefined water saturation Swi to model reservoir

production during waterflooding. Finally, we simulated gas injection (tertiary

gas injection) in the network to model oil production in the reservoir during gas

injection. We repeated the network simulation for different Swi to generate a data

set that reasonably represents the full range of three-phase relative permeabili-

ties in the three-phase saturation region.

7.5 three-phase relative permeability using empirical models

We used the two-phase relative permeability generated by the network model

(section 7.3) to calculate three-phase relative permeability from the empirical

models of Stone (1970, 1973). Stone proposed these two empirical models to cal-

culate three-phase relative permeabilities. He used two sets of two-phase relative

permeabilities, for oil-water and gas-oil, to compute the three-phase relative per-

meabilities. He made two important assumptions: (1) the relative permeabilities
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of water and gas are function of their own saturations only. (2) The flow of oil is

blocked by water and gas, which is follow from the assumption that the system

is water-wet. Hence, oil relative permeability is a function of water and gas satu-

rations. The equations of Stone I (Stone, 1970) and Stone II (Stone, 1973), which

were used to calculate oil relative permeability are given in Appendix C.

7.6 wetting systems

We used the generated two- and three-phase relative permeabilities and capillary

pressures as inputs for the reservoir model. We considered two different wetting

systems for which the parameters are presented in Table 7.4. The first system

is water-wet, the second is strongly oil-wet. For the latter, we generate relative

permeability in two ways:

1. Non-uniform wettability of the pore space (case 2a) as a result of ageing

as proposed by Kovscek et al. (1993). Under these conditions, oil layers can

be present in aged oil-wet pores, surrounded by corner water and bulk

water or gas phases. The corresponding thermodynamic criteria for layer

collapse have been derived by van Dijke et al. (2007).

2. Uniform wettability (case 2b) where oil can be present as a very stable

corner film surrounding bulk water or gas phases. The layers in the non-

uniform wettability system are conditionally stable as opposed to the oil

wetting films in the uniform wetting system. For the uniform wettability

case, we ran the simulation slightly different from what has been described

in section 7.4; here we assumed that the initial state is a network which is

fully saturated with oil at connate water saturation. Then, we flooded it

with water up to a predefined water saturation Swi. Finally, we simulate

the gas injection (secondary gas injection) in the network until residual oil

was reached.

Figs. 7.3–7.5 show the saturation paths resulting from gas injection at differ-

ent Swi with corresponding three-phase relative permeabilities kr are generated

by the network model for water-wet system, oil-wet system with non-uniform

wettability, and oil-wet system with uniform wettability, respectively. There are
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several important observations: For the water-wet system, the residual oil satura-

tion is higher after waterflooding than after the corresponding gas injection. The

high residual oil saturation after the waterflooding is attributed to the snap-off

of oil filled pores by the surrounding water wetting films. This causes oil clus-

ters to break into smaller ones, some of which become trapped. This reduces the

phase connectivity. For the oil-wet system, the uniform wettability case leads to

very low residual oil for both, water injection and gas injection. This is because

of the presence of oil wetting films at the pore corners, which are stable and

thus enhance the connectivity of oil throughout the network. However, in the

non-uniform wettability case, the residual oil is higher compared to the uniform

wettability case because of the presence of oil layers, which are less stable than

oil wetting films.

(a) kro (b) krw

(c) krg

Figure 7.3: Network derived saturation paths and relative permeabilities during tertiary
gas injection for water-wet system (case 1). Colour scale indicates the value
of the respective relative permeability along the saturation path.
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(a) kro (b) krw

(c) krg

Figure 7.4: Network derived saturation paths and relative permeabilities during ter-
tiary gas injection for oil-wet system with non-uniform wettability (case 2a).
Colour scale indicates the value of the respective relative permeability along
the saturation path.

Table 7.4: Properties of the wetting systems

Wettability state Case 1 Case 2

θow, degree 0-30 140-160

θgo, degree 0.0 0.0
θgw, degree 0-25.3 105.4-112.9

σow, mN/m 48 48

σgo, mN/m 19 19

σgw, mN/m 67 67

Wetting order1 water-oil-gas oil-gas-water

1 From most to least wetting phase.
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(a) kro (b) krw

(c) krg

Figure 7.5: Network derived saturation paths and relative permeabilities during sec-
ondary gas injection for oil-wet system with uniform wettability (case 2b).
Colour scale indicates the value of the respective relative permeability along
the saturation path.
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7.7 application of relative permeability models to field-scale

simulations

To study the efficiency of WAG injection in reservoirs of different wettability we

consider two wetting systems that have the same flooding sequence (sections 7.4

and 7.6): a water-wet system (case 1) and an oil-wet system with non-uniform

wettability (case 2a). Figure 7.6 shows the oil recoveries for the scenarios listed in

Table 7.3. We use the relative permeabilities that were generated by the network

model for the water-wet system and the oil-wet system with non-uniform wetta-

bility (Table 7.4). For the water-wet system, the lowest oil recovery is found when

only one fluid, water (scenario 1) with oil recovery of 43.3% or gas (scenario 2)

with oil recovery of 43.1%, is injected. Recovery can be improved by WAG injec-

tion. An incremental increase of 2.3% in oil recovery was predicted. In the WAG

injection scenarios which we have run, we did not observe significant changes

in the incremental recovery based on the number of the WAG cycles. However,

it may be possible to further optimise WAG injection and incremental recovery

by using different gas slug sizes and WAG ratios. We have not studied this as

we are only interested if WAG injection can lead to a noticeable improvement in

the overall recovery for the Brugge field and how the predictions vary due to

uncertainties in the flow functions, particularly when comparing empirical and

network models, and uncertainty in geology, using from the different geological

realisations of the Brugge field. For the oil-wet system, waterflooding (scenario

1) yields the lowest oil recovery 41.5%. WAG injection increases the oil recovery

by 2.7%. These behaviours are similar to the water-wet system. However,for gas

injection into an oil-wet system, oil recovery is even higher than for WAG injec-

tion at 48.0%. For real field applications, however, the availability of gas may be

become an issue and hence WAG may be more economical.

7.8 geological uncertainty vs . uncertainty in flow functions

We used 13 of the 104 equiprobable geological realisations to compare the uncer-

tainty of the geological model with the uncertainty arising from the flow func-

tions where we used three physical models, Stone I, Stone II and our network
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model. Since differences in WAG cycles did not affect the incremental recovery,

we ran simulated with 21 slugs of gas/water injection length for 1 year each

(scenario 3). This was done for both the water- and oil-wet reservoirs.

Fig. 7.7a and Fig. 7.8a show the resulting oil recovery for WAG injection con-

sidering different geological and physical models for water-wet and oil-wet sys-

tem, respectively. In both systems, the variation of the recovery factor is around

4.5% (absolute) across all models and flow functions. This value represents the

uncertainty in predicted oil recovery during WAG as a result of the combined

uncertainties in the geological models and relative permeability models. When

separating the contributions from geological uncertainty and uncertainty in the

three-phase model, we observe that for the water-wet system that the difference

between the minimum and maximum recovery factor due to different geological

realisations is 1.6%, 1.7% and 1.5% for the network model, Stone I and Stone II,

respectively. For the oil-wet system, similar numbers are observed: 1.4%, 1.7%

and 1.2%, respectively. To compute variation in predicted oil recovery due to

uncertainties in the different relative permeability models, we averaged the oil

recoveries of the different geological realisations for each relative permeability

model (Fig. 7.7b and Fig. 7.8b). For water-wet system, the difference between

the averaged oil recoveries predicted by the network model and Stone I is 2.8%

and between network model and Stone II is 1.5% (both absolute); the maximum

difference in recovery factor solely based on the different relative permeabil-

ity factors is 4.3%. For the oil-wet system, the differences between the network

model and Stone I are 3.0% and between the network model and Stone II are

0.5% (both absolute); the total difference is 3.5%. These figures suggest that the

uncertainty in the prediction of oil recovery caused by using different relative

permeability models for three-phase flow processes encountered in IOR and EOR

can be at least as big the uncertainty in predicted recoveries when using different

equiprobable geological models. Using the "wrong" three-phase flow model in a

reservoir simulation, even if the model was history matched for two-phase flow,

may hence greatly impact the decision if a tertiary gas injection or WAG scheme

is commercially viable or not.
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7.9 effect of pore-scale uniform vs . non-uniform wettability on

the oil recovery of reservoir-scale

We also studied the impact of uniform and non-uniform wettability at the pore-

scale in the oil-wet system on oil recovery (Fig. 7.9). The uniform wettability case

yields slightly lower oil recovery compared to the non-uniform wettability case

where only water or gas are injected (scenarios 1 & 2). However, the effect of

assuming uniform pore-scale wettability on oil recovery for the different WAG

injection scenarios is only minor. This may be because the system which we

consider here is strongly oil-wet. Hence the oil layers in the non-uniform wetta-

bility case are as stable as the oil wetting films in the uniform wettability case.

Therefore the oil in both systems has good hydraulic connectivity. This results

in similar oil relative permeabilities and hence field-scale recovery factors.

(a) Water-wet system (b) Oil-wet system

Figure 7.6: Simulated oil recovery for different wetting systems and different WAG sce-
narios (Table 7.3) using network derived flow functions.
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(a) different geological models (b) averaged recovery of different geological
models

Figure 7.7: Simulated oil recovery during WAG injection (scenario 3) for 13 different geo-
logical and 3 different relative permeability models in a water-wet reservoir.

(a) different geological models (b) averaged recovery of different geological
models

Figure 7.8: Simulated oil recovery during WAG injection (scenario 3) for 13 different geo-
logical and 3 different relative permeability models in an oil-wet reservoir.
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Figure 7.9: Simulated oil recovery for the different WAG scenarios in the two oil-wet
systems, assuming uniform wettability (UW) and non-uniform wettability
(NUW) of the pore-scale.
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7.10 summary and closing remarks

In this chapter, we applied our new, physically-based, and reliable three-phase

pore-network model to field-scale reservoir simulations. We showed that our

model can be used for the simulation of any number of WAG cycles of arbitrary

wettability (chapter 4) to analyse the efficiency of field-scale oil recovery dur-

ing WAG in the presence of geological uncertainty. We investigated the effects

of different three-phase relative permeability models on field-scale recovery dur-

ing WAG injection for different wetting systems using the synthetic Brugge field,

which comprises 104 different equiprobable geological realizations (Peters et al.,

2010).

To generate the three-phase relative permeability models, we used pore net-

works extracted from pore-space reconstruction methods of Berea sandstone as

input into our network model. A constrained set of parameters was tuned to

mimic the wetting state of the given reservoir. A water-wet and oil-wet reser-

voir was considered. Corresponding two-phase relative permeabilities computed

with the network model served as input for empirical three-phase relative per-

meability models (Stone I and Stone II). We also computed three-phase relative

permeability models directly from the pore-network simulations.

Simulations at the pore scale show that the residual oil saturation for a water-

wet system is higher during waterflooding than the corresponding residual oil

saturation during gas injection. This is because of snap-off of oil filled pores

by the surrounding water wetting films. This cause oil clusters to breakup and

hence traps oil clusters at the pore-scale. For the oil-wet system, the uniform wet-

tability case leads to very low residual oil during both, water injection and gas

injection, because highly stable oil wetting films are present in the pore corners.

These maintain the connectivity of oil in the network. The presence of the oil lay-

ers in the non-uniform wettability case leads to a higher residual oil saturation

compared to the uniform wettability. This is because, in this scenario, oil wetting

films are more stable than oil layers.
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Simulations at the reservoir scale show that the lowest oil recovery for the

water-wet system case is obtained by injecting only one fluid (gas or water). Re-

covery can be improved by over 4% (absolute) during WAG injection in agreement

with typical values that were reported in real fields (Christensen et al., 2001), see

chapter 1. For the oil-wet system, recovery behaviours are similar to the water-

wet system with the exception that pure gas injection leads to the highest oil

recovery, i.e. recovery factors that are even higher than during WAG injection.

We also investigated how uncertainty in the geological model, expressed in

different realisations of the permeability and porosity distribution, and funda-

mental uncertainty in three-phase flow physics, expressed by the different three-

phase flow models effects the prediction of oil recovery. The uncertainty in pre-

diction oil recovery due to the different three-phase relative permeability models

is as large as the uncertainty arising from the different geological models. Com-

bining both, geological uncertainty and uncertainty in the three-phase model,

leads to the largest differences in predicted oil recovery. This implies that care

must be taken when choosing the relative permeability model for tertiary gas

injection or WAG as geological uncertainty does not mask uncertainty in the fun-

damental flow physics even if the geological model was history matched for

two-phase flow. The choice of three-phase flow model can greatly impact the

decision of the commercial viability of a WAG project.
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8.1 summary and conclusions

We have developed a reliable and physically-based pore-network model that is

capable of simulating primary drainage, imbibition, secondary or tertiary gas

injection, and any number of WAG cycles for arbitrary wetting systems which

mimic the wettability state of a given reservoir rock. Unlike other models, our

model combines three main features:

1. It employs a novel thermodynamic criterion for formation and collapse

of oil layers (van Dijke et al., 2004a, 2007). The new model thus captures

wetting film and layer flow of oil adequately, which affects the oil relative

permeability at low oil saturation and leads to more accurate prediction of

residual oil.

2. It accounts for multiple displacement chains where injection of one phase

at the inlet triggers a chain of interface displacements throughout the net-

work. This allows for more accurate modelling of the mobilization of dis-

connected phase clusters that arise during higher order (WAG) floods.

3. The model takes realistic 3D pore-networks extracted from pore-space re-

construction methods and CT images as input, preserving both topology

and pore shape of the original rock.

The new model calculates the relative permeability and capillary pressure

functions for two- and three-phase flow. For water-wet systems, the model has

been validated against the two- and three-phase relative permeabilities exper-

imental data of the Berea sandstone sample reported by Oak (1990). For two-

151
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phase flow, the predicted values of the relative permeabilities of both, oil and

water, are in agreement with the experimental data. For three-phase flow, the

predicted three-phase water relative permeability curves are in perfect agree-

ment with experimentally measured data. The predicted three-phase gas relative

permeability matches the experimental data. Predicted oil relative permeabilities

are scattered in a similar manner as the measured oil relative permeability. This

is caused, both experimentally and numerically, by the different saturation histo-

ries. Additionally, a comparison with the well-established pore-network model

of Piri and Blunt (2005a,b) was preformed. Our model gave a more accurate pre-

diction of the experimental data of Oak (1990) compared to the model of Piri

and Blunt (2005b). This emphasises the need for accurate modelling of the oil

layers.

For validating our network model in an oil-wet system, micromodel experi-

ments that were conducted by Sohrabi et al. (2000, 2001, 2004) were simulated.

Oil recovery profiles of the simulations and experiments were in very good agree-

ment. Our predictions were in better agreement with the experimental data com-

pared to pore-network model developed by van Dijke et al. (2006). We also per-

formed a qualitative visual comparison of simulated and experimental fluid dis-

tributions. A satisfactory match of fluid distributions, capturing the main three-

phase flow physics like multiple displacements, between experiments and model

was achieved.

A sensitivity analysis has been carried out using the full 3D network model

for one sandstone and three carbonate rock samples to predict three-phase rela-

tive permeabilities under water-wet and different oil-wet conditions during gas

injection. We found that very low residual oil saturations can be reached during

the gas flood because of the presence of intermediate wetting phase (oil) lay-

ers in the water-wet system and oil wetting films in the oil-wet system. Both

help to maintain oil connectivity at low oil saturation. The oil relative perme-

ability depends on the presence of oil films in oil-wet systems, particularly for

the strongly oil-wet case where surrounding oil films are present, both in gas-

filled and water-filled pores. The gas relative permeability shows little sensitivity

to the degree of oil wettability in the well connected Berea sandstone network,

contrary to the poorly connected carbonate networks. The water relative perme-

ability is very low but non-zero for a large saturation range in the water-wet
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system. It drops abruptly to zero in the oil-wet system. There is a significant

improvement in the oil recovery in the water-wet system during gas injection

because of the formation of oil layers, which provide hydraulic connectivity for

the oil. The three-phase region can increase noticeably due to the formation of

additional oil films around water in the strongly oil-wet system compared to the

weakly oil-wet system. This already leads to very low residual oil saturations

during the water flood. Large discontinuities in the saturation paths of the car-

bonate networks can be observed, which we have attributed to the large volumes

occupied by a few large pores (vugs) in those networks.

We then used the network model to simulate WAG in a synthetic reservoir

model to demonstrate how pore-scale generated three-phase flow functions im-

pact sweep efficiency after gas injection and WAG for a range of realistic wetta-

bility scenarios compared to empirical three-phase flow functions. The detailed

physics of three-phase flow at the pore-scale which are captured in our network

model, are translated into flow functions i.e. relative permeabilities and capil-

lary pressures, that can be used directly as 2D tables in a commercial reservoir

simulator. We investigated oil recovery during WAG for different wetting sys-

tems using flow functions from our pore-network model for these cases. These

flow functions were input into a synthetic field-scale model in which the WAG

injection was implemented. The main conclusions of this work are:

1. Microscopic displacement processes in the network model can be trans-

ferred to reservoir-scale through appropriate flow functions.

2. Oil recovery can be improved by over 4% during WAG injection compared

to injecting one fluid only.

3. Uncertainty in the predicted oil recovery for different relative permeability

models is as great as the uncertainty caused by using statistically equiva-

lent geological models. This means that even if history-matching and un-

certainty analysis have been done for two-phase flow, and the geology of

the reservoir is thought to be well-understood, it is crucial to use the ap-

propriate kr and Pc models for EOR processes involving three-phase physics

flow.
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4. The effect of uniform wettability at the pore-level on field-scale oil recovery

during WAG injection is only negligible.

8.2 future work

Based on the work that was presented in this thesis, for the future work we

would recommend the following:

1. We treat PBF displacement event as a piston-like displacement. Full im-

plementation of the pore-body filling models should be carried out and

consider multiple displacements.

2. Implementations of three-phase flow for the arbitrary triangular shapes.

Currently, we either characterise the pore cross-sections by Circle-Triangle

(equilateral)-Square or an n-cornered star. This might be a difficult task

since arbitrary triangular shapes have different corners where fluid occu-

pancy of each corner could be different, leading to different displacements

in each corner.

3. We recommend to find a way to redistribute the fluids within the network

when clusters merge, as discussed in section 4.5.5.

4. As we have mentioned in chapter 3, that the pore network that were used

in this work to represent carbonate rocks were small. This affected the

results of the three-phase flow simulations (chapter 6). We recommend to

find larger pore networks that will be more representative for carbonates.

5. In this work, we focused on generating the three-phase relative permeabil-

ity during tertiary gas injection. The model can simulate WAG injection (see

chapter 5). We recommend to run WAG injection and compare the relative

permeability hysteresis of each phase during different WAG cycles. These

relative permeabilities can be fed into a reservoir-scale simulator to simu-

late WAG injection at field-scale more accurately (chapter 7).

6. For the reservoir-scale simulation, we used only one network to generate

the flow functions that were fed into the reservoir model. However, the

model is heterogeneous and thus has different rock types. Therefore, we

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



8.2 future work 155

suggest using more than one network to derive the flow functions and

then assign them to different rock types in the reservoir models.

7. In our study at the pore-network, we considered that the phases are immis-

cible phases. Hence, we our investigation at the field-scale was for immisci-

ble WAG. However, miscible WAG injection is more common the immiscible

WAG injection in of the oil fields (Christensen et al., 2001). Investigation on

miscible WAG injection is highly recommended, although this might be a

challenging task to implement at the pore-scale using network modelling.

8. In our simulations at the field-scale, we considered the most popular WAG

ratio which is 1:1 (Christensen et al., 2001). Using different WAG ration

might produce different effect on the oil recovery.

9. The model that we used in our field-scale simulation was homogeneous.

However, using a heterogeneous model including structural heterogeneity

(e.g. fractures) might give different uncertainties in oil recovery using dif-

ferent relative permeability models.
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P O R E G E O M E T RY

In this appendix, we give all general equations that are required to calculate

different parameters of the pore occupied by different fluids. Fig. A.10 show

cross-section of a pore at a corner occupied by phase j in the presence of bulk

phase i in the centre of the pore.

γ(α)

j

i
θij

AM

rij

L(α)
s,ij

L(α)
f ,ij

A(α)
ij

Figure A.10: Phase occupancy in corner with film phase j and bulk phase i. We call j the
inner phase of the AM and i the outer phase of the AM.

a.1 pore geometry

The area of the shaded region, bounded by AM, in the corner (A(α)
ij = A(α)(rij, θij))

is defined as

A(α)(rij, θij) = r2
ij

(
θij + γ(α) − π

2
+ cosθij

cos(θij + γ(α))
sinγ(α)

)
. (A.1)
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The contact lengths fluid-solid and fluid-fluid in each corner α are given, re-

spectively, by

L(α)
s (rij, θij) = 2rij

cos(θij + γ(α))
sinγ(α) , (A.2)

L(α)
f (rij, θij) = 2rij

(π

2
− θij − γ(α)

)
. (A.3)

The geometrical functions g and g(α) defined as

g(rij, θij) =
A
rij
− cosθijLs, (A.4)

g(α)(rij, θij) = −
A(α)(rij, θij)

rij
. (A.5)

Where , A and Ls denote the total area and perimeter of the entire cross-

section, respectively.
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D E S C R I P T I O N O F I N P U T A N D O U T P U T D ATA F I L E S

Our 3-phase pore-network model simulator was written in C++ programming

language. The simulator has a GUI (Fig. B.11) on which all main parameters

that are required for each run can be specified. However, for very advanced

runs where more options are required, the model can read inputs files with de-

fined keywords, explained in section B.1. Before these keywords can be used, the

network must be imported, loading the files: link1.dat, link2.dat, node1.dat, and

node2.dat. These are standard input files which give all the information about

the pore-network structure, presented in Table 3.1. Then, another input file (in-

puts.data) which contains the keywords that define the required run.

1. Main model inputs:

a) Pore-network data. The files: link1.dat, link2.dat, node1.dat, and node2.dat.

b) Wettability distribution, including the interfacial tensions and contact

angles.

c) Linear system solver parameters.

d) Two- and three-phase floods parameters. Higher order of WAG cycle

can be specified using input file, described in section B.1.

e) Pore shape characterization (e.g. CTS, n-cornered . . . ).

f) Oil layers existence criteria.

g) Wettability sensitivity parameters (e.g. different Swi).

2. Main model outputs:

a) Floods data: So, Sw, Sg, kro, krw, krg, Pcgo, Pcow, Pcgw.

b) Displacement statistics.
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c) Pore occupancy statistics.

d) Cluster statistics.

e) Running time statistics.

f) Real-time plotting, main dialogue window, of saturation path and

three-phase relative permeabilities (kr) and capillary pressures (Pc).

g) Real-time 3D visualization of network three-phase occupancy.

b.1 keywords of the input file

1. FDSQU: Flooding sequence-Specify the flooding sequence as follow:

a) Injecting phase (Phinj): 0 denotes oil, 1 denotes water and 2 denotes

gas.

b) Injecting Phase End Saturation (Siend)

c) Spanning invading Cluster (Cspan)

d) Oil End Saturation (Soend)

Example:

FDSQU

$ Phinj Siend Cspan Soend

1 1 0 0

0 1 0 0

1 1 0 0

2 1 0 0

Note that the first row of the input values of this keyword is used as the

initial conditions for the network. In the example above, the first row of

inputs indicates that the network is set to be initially filled with water (1).

The second row indicate that oil is injected until it saturation reach 1 or

residual.

2. IFT: Three-phase Interfacial Tensions:

a) Gas/oil

b) Oil/water
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c) Gas/water

Example:

IFT

$ gas-oil oil-water gas-water

19 48 67

3. EVENTSMAX: The maximum number of invasion events during each flood.

It can specify another way of terminating the current flood. This keyword

might be very useful during debugging process.

Example:

EVENTSMAX

125000000

4. MICROMODEL: For micromodel simulation (0 or 1) Note: if the micro-

model simulation set to 1 then you should make the network initially satu-

rated with oil.

Example:

MICROMODEL

0

5. INIWET: initial wettability (for the first flood, primary drainage) defined

by oil-water contact angle.

a) Is Distributed contact angles (1 or 0)

b) Is Cosine contact angles

c) Min oil-water contact angle

d) Max oil-water contact angle

Example:

INIWET

$ ConAng(oil/water)

$ isDistr isCosDistr min max

0 0 0.0 0.0

Note: if MICROMODEL is set to 1 then it would be an oil-wet run. How-
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ever, it is still required to assign the oil-water contact angle a value between

(0-89) that is automatically translated to (180-91) by the code.

6. AGEWET: wettability alteration (ageing)

a) Is aging active (0 or 1)

b) Wettability mode (water-wet, oil-wet, mixed-wet etc.)

c) Is Distributed contact angles (1 or 0)

d) Is Cosine contact angles

e) Min oil-water contact angle

f) Max oil-water contact angle

Example:

$ isActive wetMod isDistr isCosDistr min max

1 1 1 0 150.0 180.0

7. RESINF: make the interface responsive (1) or not responsive (0), this will

affect the simulation speed.

Example:

RESINF

1

8. SENS: run sensitivity runs or multi-runs using different initial water satu-

rations.

a) Flood number in which the Swi will be incremented

b) Initial value of Swi

c) Increment

d) Final value of Swi

Example:

$ Flood number initial value increment Final value

2 0.00 0.05 1.01

[ January 28, 2013 at 11:27 – PhD thesis by Adnan Al-Dhahli ]



B.1 keywords of the input file 163

9. SNOF: (1 or 0) activate the snap-off displacement in the three-phase runs.

Example:

SNOF

1

10. LC: Layer collapse criterion, 1=thermodynamically (including the geomet-

ric), 0=geometric only

Example:

LC

1

11. SPA: Shortest Path Algorithm

$ 0-BFM_WTR...1-BFM_STD

Example:

SPA

1

12. GPU: Global Pressures update

$ 0-based on target pressure (default) ; 1- based on effective pressure

Example:

GPU

0

13. BC: Outlet Boundary Pressure

$ 0-Constant (default) ; 1-same as maxHistPressure; 2- varied

Example:

BC

0

14. DEBUG: Debug mode

$ 0-no debug (default -0); 1-debug

Example:

DEBUG

0
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15. GSL: Gas Layer

$ Not allowed=0 (defaulet); allowed=1

Example:

GSL

0

16. TRC: Saturation Path Tracking. This is done by selecting the phase at the

outlet to be produced to track the experiment data

$ 0-No tracking (defult); 1-tracking

Example:

TRC

0

17. CUTOFF: Cut off value.

$ % of pore volume at which displacment will forced to be completed to

avoid volume inconsistancy. defult is 0.001

Example:

CUTOFF

0.001

18. SUBDOM: Using only part of the network for the simulation.

$ From x1 to x2. Default is 0 1

Example:

SUBDOM

0 1
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C
S T O N E ’ S M O D E L S

Here we give all general equations that are required to calculate three-phase

relative permeabilities. Two sets of two-phase relative permeabilities, for oil-

water and gas-oil, are required to compute the three-phase relative permeabil-

ities. Since Stone assumes that the relative permeabilities of water and gas are

function of their own saturations only, then water relative permeability is taken

from oil-water data and gas relative permeability is taken from gas-oil data. For

Stone I, oil relative permeability is given by

kro =
Soekro(w)kro(g)

kro(wi)(1− Swe)(1− Sge)
(C.6)

where

Soe =
So − Som

1− Swi − Som
, (C.7)

Swe =
Sw − Som

1− Swi − Som
. (C.8)

Sge =
Sg − Som

1− Swi − Som
. (C.9)

kro(wi) is the oil relative permeability for an oil/water system measured at

irreducible water saturation with no gas present.
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kro(w) is calculated at So = 1− Sw , and kro(g) is calculated at So = 1− Sg − Swi

Som is the minimum residual oil saturation. In this work, Som is taken to be

the minimum of the critical oil-to-water saturation and the critical oil-to-gas

saturation.

The Stone II computes oil relative permeability as

kro = (kro(w) + kro(wi)krw(o))(kro(g) + kro(wi)krg(o))− kro(wi)(krw(o) + krg(o)). (C.10)

kro(g) and kro(w) are measured at So given for Stone I.
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