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ABSTRACT 

 

     Cyanobacteria or blue-green algae are important resources. In some parts of the world, 

cyanobacteria are used as a staple food and their ability to fix nitrogen has been explored to 

increase the productivity of many crops and transform a barren soil into a fertile one. An 

interesting property of cyanobacteria is their ability to absorb nitrogen and inorganic 

phosphorous, so they have been seen in water purification systems. Most interestingly 

cyanobacteria produce O2 and H2 by the combination of photosynthesis and nitrogen fixing 

ability; they could potentially become a producer of hydrogen fuel. This project investigates 

the characterizations of cyanobacteria cultivation in a tubular baffled photo bioreactor 

(TBPBR). 

 

     Many benchmarking experiments were conducted in light boxes in order to understand the 

reaction kinetics and to examine the effects of the ratio of aeration surface over culture 

volume, light intensity, light quality, light cycle, mixing, initial cell density and temperature 

on the growth of Gloeothece membranacea and Oscillatoria amoena. 

 

     Based on the benchmarking results, a tubular baffled photo bioreactor (TBPBR) was 

designed, constructed and commissioned. Further experiments were conducted using 

Gloeothece membranacea in order to characterize the continuous cultivation of in this novel 

photobioreactor; examine the effects of the light saturation and the period of light availability 
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on cell growth and determine the critical cell density for optimal growth. The kinetics 

information was extracted and compared with that of the benchmarking trials.  

 

      The light saturation level for Gloeothece membranacea in the TBPBR was 80 µmole m-2 

sec-1, and the minimum light exposure without affecting the growth was 6 hours, same as that 

in the light boxes. Also, much higher critical cell density (CCD)g of Gloeothece 

membranacea could be accommodated in the TBPBR than that in the light boxes. 

Furthermore, the optimum specific growth rate of Gloeothece membranacea was obtained at 

aeration flow rate of 0.08 vvm and Vol CO2/ Vol air = 6%.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Motivation for the Study 

 

     Cyanobacteria or blue-green algae are a group of simple photosynthetic micro-organisms 

that can be found almost everywhere: from marine shores to damp rocks; from salt marshes 

to trunks of trees and stones. Cyanobacteria are important sources for valuable chemicals, e.g. 

fatty acids, minerals and pigments, and for health food like proteins and vitamins (Glombitza 

, 1989;  Becker, 1994). For example, Spirulina species have very good food value; produce 

β-carotenes, proteins, amino acids and antiviral polysaccharides; and adsorb toxic minerals 

(Behera et al., 2007). Also, cyanobacteria are used in wastewater treatment (Chevalier and de 

la Noüe, 1985, Aziz and Ng, 1992, Yun et al., 1999, Kim et al., 2000, Jin et al., 2003); the 

removal of phosphorous (Gaffney et al., 2001) and nitrate (Hu et al., 2000) from ground 

water; and CO2 bioremediation (De Morais and Costa, 2007). Moreover, cyanobacteria could 

be used to moderate impacts of thermal effluents by reducing their nutrient content 

(Weissman et al., 1998). In addition, cyanobacteria produce a variety of secondary 

metabolites with antibiotic, cytotoxic, immunosuppressive and enzyme inhibiting activities 

(Mundt et al., 2001). Probably the most beneficial characteristic of cyanobacteria is their 

nitrogen fixing ability (Bergman et al., 1997), which can help neighbouring plants grow via a 

symbiotic relationship. This fact has been used to increase the productivity of many crops. 

Another important application of the nitrogen fixing ability is that cyanobacteria can be used 

to gradually transform a barren soil into a fertile one (Rao and Burns, 1990, Ariosa et al., 

2005). 



  2

     The combination of photosynthesis and nitrogen fixation in cyanobacteria produces 

oxygen and hydrogen (Liu et al., 2006). These two gases can be utilized as an energy source 

for combustion engines and fuel cells. Burning hydrogen would produce energy and water. 

The water can then go back into the photosynthesis process generating more hydrogen and 

oxygen. In this way, a clean and totally renewable energy route could be realised. 

 

     Clearly, cyanobacteria have many beneficial usages and potentially enormous impact on 

the generation of the clean and renewable energy of the world tomorrow. The overall process 

of generating energy via cyanobacteria consists of cultivation, nitrogen fixation and 

harvesting the generated energy and the disposal of residual cells. This research project 

however primarily focuses on the characterisation of cultivation of cyanobacteria in a tubular 

baffled photobioreactor (TBPBR).  

 

1.2 The Objectives of the project 

 

• Characterize the growth profiles and parameters that affect them using the selected 

cyanobacteria; 

• Understand the effects of physical parameters on the growth; 

• Implement the learning outcomes into the design of a TBPBR 

• Investigate the effects of the novel photobioreactor environment on the interaction 

with effects of physical parameters, and on the growth; 
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1.3 Thesis Layout 

 

      The structure of the thesis is as follows: after this introduction, the report commences in 

Chapter 2 with the relevant background of cyanobacteria, including a review of cell biology 

and growth cycle of population; the two physiological processes: photosynthesis and nitrogen 

fixation and hydrogen production by cyanobacteria. 

 

     In Chapter 3 the different methods of cultivation that have been used to grow 

cyanobacteria are studied including: open pond systems; vertical, horizontal, flat panel, 

helical, stirred tank photobioreactors as well as hybrid systems. 

 

     In Chapter 4 the species used in this research are presented, the designs of both light boxes 

and the tubular baffled photobioreactor (CBPBR) are given, and a detailed description of the 

experimental apparatus and analytical procedure is explained.  

 

     The results of the experiments that were carried out in the light boxes and the tubular 

baffled photobioreactor (TBPBR) are presented and discussed in Chapter 5 and Chapter 6 

respectively. 

 

     A summary of conclusions that have been drawn from this research is given in Chapter 7, 

followed by recommendations for future work in Chapter 8.  
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CHAPTER 2 CYANOBACTERIA 

 

     This Chapter surveys the background literature relevant to this work, and is divided into 

two parts: cyanobacteria and the main metabolic processes which they carry out: 

photosynthesis, nitrogen fixation and hydrogen production. 

 

2.1 Introduction 

 

     Cyanobacteria (formerly known as blue-green algae) are a group of photosynthetic Gram-

negative Eubacteria that have cell walls (Holt, 1994), tolerate a wide range of temperatures 

from 2 °C in the Antarctic saline ponds to 74 °C in hot springs, representing a connection 

between bacteria and green plants. Cyanobacteria are oxygenic phototrophic microorganisms 

for the reason that they carry out photosynthesis using light as their energy source, CO2 as 

their carbon source and produce oxygen as in green plants, however, some are able to carry 

out anaerobic, an-oxygenic photo-autotrophy using sulphide, where this inactivates 

photosystem П and inhibits oxygenic photosynthesis. Also, cyanobacteria can perform other 

modes of growth like photo-heterotrophy where other chemicals are used as a source of 

carbon, as well as aerobic (respiratory) and anaerobic (fermentative) chemo-heterotrophy 

where other chemicals are employed as sources for both energy and carbon. Yet these modes 

of growth are slow and occur only when conditions are unfavourable. In addition, they are 

prokaryotic, which means that the cells lack membrane-bound organelles such as a true 

nucleus, a chloroplast or a mitochondrion. The genetic material, the photosynthetic and 

respiratory apparatuses are not therefore separated from the rest of the cell by any means of 
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internal membranes. However, their diet is the same as that of eukaryotic algae (organisms 

whose cells are organized into complex structures by internal membranes and cytoskeleton) 

in green plants. Those microorganisms are very ancient. Fossils of cyanobacteria that are over 

three or four billion years old (Schopf and Packer, 1987) have been found. At that time, they 

probably were the first organisms that evolved elemental oxygen and the main producers of 

organic matter. Although ancient, cyanobacteria are very common and found about 

everywhere: on oceanic shorelines and the beds of rivers; on moist rocks and saline marshes; 

or on trunks of trees and pebbles (Fay, 1983). 

 

     There are many reasons for growing cyanobacteria. The first is that cyanobacteria have 

high content of proteins in dry biomass ranging between 33-55 % (González López et al., 

2010), which make them probable candidates for new sources of food for animals and human.  

 

     The second is that cyanobacteria can undergo nitrogen fixation. Thus, they play a vital 

role in the natural environment by their ability to initially colonize arid land and produce 

organic matter. This is because cyanobacteria are able to live in symbiotic relations with 

other plants and animals, where cyanobacteria provide nitrogen products for those plants or 

animals in exchange for a place to grow on. Those symbiotic relations could exist in aquatic 

and terrestrial habitats. 

 

     The third is the co-generation of molecular hydrogen and oxygen, which makes 

cyanobacteria among the most promising agents for biological solar energy systems.  Thus, 
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cyanobacteria could play an important role in the world’s most urgent problems of food and 

energy. 

     The last, but not the least, reason for the growing interest in cyanobacteria is that they 

provide a reasonably straightforward model for the understanding of the elementary 

processes like cell segregation, gene expression and macromolecule synthesis (Fay, 1983).  

 

2.1.1 Cell Biology 

 

     Cyanobacteria are a type of microorganism. The chemical composition of the cell wall of 

cyanobacteria is similar to the wall of the Gram-negative bacteria (Madigan et al., 2000). The 

wall is composed of two layers: 

• The inner layer that is responsible for the mechanical strength of the cell wall 

• The outer layer that probably controls the transport of solutes 

 

     The space between the two layers has a similar content of lipopolysaccharides and 

degradative enzymes as in the Gram-negative bacteria. The cell wall is often covered by 

sheath or capsule which is composed of polysaccharide. This sheath or capsule may promote 

the attachment of the organisms onto solid substrate. However, the ability to produce the 

sheath may be lost upon repeated inoculation (Madigan et al., 2000).  

 

     Cells are built of chemical compounds and growth occurs when all these chemical 

compounds increase in amount. The basic substances of a cell come from its environment. 
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The cell has the ability to transfer those substances into molecules through chemical 

reactions, then to organize those molecules into specific structures of which the cell is 

composed. The process by which a cell is built up from simple substances is called 

biosynthesis or anabolisms (Madigan et al., 2000). However, energy is required for 

biosynthesis, as well as for transport of nutrients and motility. Most of microorganisms get 

energy from the oxidation of chemicals (organic or nonorganic), while some microorganisms 

like cyanobacteria obtain their energy from light. When chemicals are broken down, energy 

is released and conserved by the cell. This process is called catabolism. The enzyme-

catalysed chemical reactions of anabolism and catabolism are collectively referred to as 

metabolism (Lehninger et al., 2008).  

     Figure 2.1  summarizes the simplified view of cell metabolism (Madigan et al., 2000). 

 

 

Figure 2.1 A simplified view of cell metabolism (Madigan et al., 2000). 
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2.1.2 The Prokaryotic Cell 

 

     It is useful to speak about prokaryotic cells, as cyanobacteria are prokaryotes. A 

prokaryotic cell has: 

 

Cytoplasmic membrane: This is a critical permeability barrier that separates the cell from its 

environment. If the membrane is destroyed, the cell dies, as its contents leak into the 

environment. 

 

The cell wall: This is a rigid structure outside the cytoplasmic membrane. It supports and 

protects the cell from osmotic lysis. 

 

Ribosomes: They are small particles that are composed of proteins and ribonucleic acid 

(RNA). The synthesis of proteins takes place on them. 

 

Inclusions: These are storage materials made up of compounds of carbon, nitrogen, sulphur, 

or phosphorous. Those inclusions are formed when nutrients are in excess. They act as 

repositories of nutrients. 

 

A nucleoid: This is a single, circular, double-helical molecule of DNA which exist free in the 

cytoplasm of prokaryotes (Weston, 1997). 
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     Prokaryotes are much smaller than eukaryotes and their small size gives them a big 

advantage. This is because the rate at which nutrients and waste products pass into and out of 

a cell is inversely proportional to cell size and these transport rates are to some degree a 

function of the amount of membrane surface area available, which is relative to cell volume, 

small cells have more surface available than do large ones (Madigan et al., 2000). Thus, 

prokaryotes grow much faster than eukaryotes. 

 

     Prokaryotic cells have special structures which allow cells to move. This movement gives 

the cells a selective benefit under certain environmental surroundings. The first structure that 

prokaryotes may have is gas vesicles, which gives buoyancy to the cells. This characteristic 

allows cells to float up and down in water in reaction to changes in surroundings factors. The 

other structure is called a flagellum (plural, flagella), which is made of a single, coiled tube of 

protein. In the aquatic environment, phytoplankton communities are exposed to a wide range 

of light regimes ranging from growth-limiting to growth-inhibiting light intensities. 

Cyanobacteria species have an advantage over most other phytoplankton with their 

distinctive machinery of buoyancy regulation. By controlling buoyancy, they tend to locate 

themselves at a depth of most favourable light intensity. 

 

     Motility gives prokaryotes the ability to move towards more favourable environmental 

conditions. These directed movements are called taxis and there are different types of them: 

 

• Chemotaxis: a reaction to chemical changes 
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• Phototaxis: a reaction to changes in light 

 

• Aerotaxis: a reaction to changes in oxygen concentration 

 

• Osmotaxis: a reaction to changes in ionic strength 

 

2.1.3 The Forms of Cells of Cyanobacteria 

 

     Cyanobacterial cells can convert into three different forms: vegetative, heterocysts and 

akinetes depending on the environmental conditions. The vegetative cells are present when 

conditions are favourable. They are able to carry out reproduction through photosynthesis. 

 

     Heterocysts have modified membranes, generally lack phycobilisomes and oxygenic 

autotrophic capacity. They have extra wall layers, and work primarily when there are no 

nitrogen compounds in the environment and the cells have to fix nitrogen. Heterocysts do not 

grow or divide and their metabolism is primarily directed to supporting N2 fixation. Their 

metabolism depends upon the supply of carbohydrate from the two adjacent vegetative cells 

(Wolk, 1982). The Adenosine-5'-Triphosphate (ATP) and reductant generated by catabolism 

of this carbohydrate can largely be directed towards N2 fixation. 

 

     Akinetes have very thick cell walls. These structural developments are formed when the 

environments are unfavourable. They contain large amounts of carbohydrates and work as 
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reserves. Due to their high density, they sink to the bottom of the lake and stay there till the 

conditions become favourable again. Then, they act as seeds for the growth of new colonies.  

 

2.1.4 Subgroups of Cyanobacteria 

 

     There are two types of cyanobacteria: unicellular and filamentous. The former reproduces 

either by binary fission where each cell produces two cells identical to the mother cell, or by 

internal multiple fission where the daughter cells are smaller than half the parent. 

 

     The filamentous cells reproduce by binary fission and give either trichomes that are 

composed of cells that do not differentiate into heterocysts or alkinetes; or trichomes that 

have one or a few cells which could differentiate into heterocysts, at least when the 

concentration of nitrogen compounds in the surroundings is low. 

 

     In this study both unicellular and filamentous strains will be examined. The candidate for 

the former is Gloeothece membranacea as many studies claimed that Gloeothece showed 

significant nitrogenase activities during dark time (Klipp et al., 2005), and for the latter is 

Oscillatoria amoena  as Hiroto stated that Oscillatoria displayed higher rates of hydrogen 

production than Anabaena cylindrica  that is a very well-studied species for hydrogen 

production (Hiroto et al., 1995). Members of the genus Gloeothece are unicellular, rod 

shaped cells. Many cells are held together by a distinct sheath. They can undergo nitrogen 

fixation under aerobic conditions. To grow and flourish they only require photons as an 

energy source and CO2 as a carbon source, and this is why they are called photoautotroph 
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(troph = nourishment). They grow when each cell divides to give two equal size cells. This 

kind of reproduction is called binary fission (Holt, 1994). 

 

     Oscillatoria are filamentous cyanobacteria that divide totally by binary fission. All species 

of Oscillatoria are photoautotrophic. They grow in fresh marine and brackish waters as well 

as in inland saline lakes, and a few species tolerate temperatures as high as 56-60 °C in some 

hot springs. Some species form mats in streams (Holt, 1994). Figure 2.2 shows the two types 

of cyanobacteria used in the current project.  

 

 

 

Figure 2.2 Oscillatoria amoena on the right and Gloeothece membranacea on the left 
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2.2 Photosynthesis 

 

2.2.1 The Light Harvesting Pigments in Cyanobacteria 

 

     Chlorophyll a is the main light harvesting pigment in cyanobacteria, however, these 

microorganisms have other accessory harvesting systems which absorb wavelengths that 

chlorophyll a cannot. Thus, they play a vital role in the survival of cyanobacteria in weak 

light conditions. These accessory pigments are called phycobiliproteins. The 

phycobiliproteins form organized structures called phycobilisomes. The phycobilisomes are 

attached to the thylakoid membranes in cyanobacteria; they absorb the light and pass on the 

photons to photosystem П which is the photoreaction centre in photosynthesis (Wang et al., 

1977). 

 

     The phycobiliproteins are water-soluble proteins that are classified into three groups based 

on their spectroscopic properties: phycoerythrin (PE), λmax = 540-570 nm; phycocyanin (PC), 

λmax = 610-620 nm; allophycocyanin (APC), λmax = 650-655 nm (Gantt, 1981, Glazer, 1981). 

There is a fourth type of phycobiliproteins: phycoerythrocyanin (PEC), λmax = 568 nm, 585 

nm, which a few species of cyanobacteria use, instead of PE (Bryant et al., 1976). These 

phycobiliproteins are covalently attached to linear tetrapyrrols by a cysteine bond (Glazer, 

1982).  According to the absorption characteristics of these tetrapyrrols in aqueous solutions, 

they are grouped in four types: phcocyanobilin (PCB), λmax = 660 nm;  phycobiliviolin 

(PXB), λmax = 590; phycoerythrobilin, λmax = 555 nm and phycourobilin, λmax = 495 nm 

(Glazer, 1981, Goodwin, 1976).  
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     Some cyanobacteria species which contain PE have the ability to change the synthesis of 

PE alone or PE and PC under specific light wavelength; this phenomenon is called 

complementary chromatic adaptation (Tandeau de Marsac, 1977, Bogorad, 1975). Because of 

this phenomenon the synthesis of PC under red light and PE under green light is enhanced in 

some species of cyanobacteria (Gendel et al., 1979, Bennett and Bogorad, 1973, Fujita and 

Hattori, 1960b, Fujita and Hattori, 1960a). 

 

2.2.2 The Process of Photosynthesis 

 

      Photosynthesis is the first stage of cyanobacteria cultivation, where light energy is 

converted into chemical energy. Light is captured by light harvesting complex proteins, 

which is known as light harvesting complex I (LHCI) and light harvesting complex П 

(LHCП) (Figure 2.3). These complex proteins play a vital role in both capturing light and 

dissipation of excess energy that otherwise would cause photosynthetic inhibition by 

damaging the photosynthetic reaction centres in particular photosystem П (PSП) (Horton and 

Ruban, 2005). Through the network of pigments bounds by the LHC, photosystem I (PSI) 

and photosystem П (PSП) subunits, the excitation energy is passed to the photosynthetic 

reaction centres of PSI and PSП. Photosystem П uses the energy to split the water into 

protons, electrons and oxygen as: 

 

2H2O + 2NADP+ = 2NADPH + 2H+ + O2 
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     The electrons pass through the photosynthetic electron transport chain via plastoquinone 

(PQ), cytochrome b6f (Cyt b6f), photosystem I (PSI) and ferredoxin (Fd) and onto NADPH 

(Figure 2.3). At the same time, PSП and PQ/PQH2 cycles pass proton into the thylakoid 

membrane. These processes generate a proton gradient, which in turn drives ATP production 

via ATP synthase. NADPH is produced by recombining the protons and electrons by 

ferredoxin-NADP+ oxidoreductase (FNR).  

 

     The energy molecules ATP and NADPH are used by different biochemical pathways to 

produce sugars and other chemical compounds that collectively form biomass. These 

reactions are called Calvin Cycle or Dark Reactions because they happen in the dark. The 

Calvin cycle includes three steps: carboxylation, reduction and substrate (ribulose-1, 5-

bisphosphate RuBP) regeneration. In the first step, CO2 enters the cycle to react with RuBP. 

This process is catalysed by ribulose-1, 5-bisphosphate carboxylase/ oxygenase (rubisco). 

This enzyme is one of the most important proteins, as it constitutes 30% of total proteins in 

most leaves (Parry et al., 2003). Rubisco has two catalytic functions: as a carboxylase as part 

of the photosynthetic reduction cycle, and as an oxygenase as part of photorespiration under 

aerobic conditions. In the first step of the Calvin cycle, rubisco catalyses the formations of 

two 3-phosphoglycerate molecules from RuBP, CO2 and H2O. The forward reaction is 

strongly favoured by the negative free energy of the process. 

 

     The second step is an ATP/NADPH-dependent reduction phase, where these carboxylic 

acids are reduced to two forms of molecules of glyceraldehydes -3-phosphate dehydrogenase.  

 



  

     The third step consists of a series of reactions, where a quantity of 3

converted back to RuBP required to allow the photosynthetic reduction cycle to continue 

(Lazar, 2003).  Figure 2.3 illustrates the process of photosynthesis as described earlier. 

However, in microalgae and cyanobacteria, the electrons and protons, which are extracted 

from water, could pass to the hydrogen

drive the photoproduction of hydrogen.

 

.

Figure 2.3 The Process of p
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The third step consists of a series of reactions, where a quantity of 3

k to RuBP required to allow the photosynthetic reduction cycle to continue 

illustrates the process of photosynthesis as described earlier. 

However, in microalgae and cyanobacteria, the electrons and protons, which are extracted 

from water, could pass to the hydrogenase enzyme (HydA) via the electron transport chain to 

drive the photoproduction of hydrogen. 

 

The Process of photosynthesis (Schenk et al., 2008)

Photosynthesis in Cyanobacteria 

Photosynthesis in cyanobacteria is oxygenic and photoautotrophic. This

cyanobacteria have the ability to use light energy, fix CO2 as a source for carbon, and produce

. However some species are also capable of sulphide-dependent, anae

sulphide inhibits photosystem П. Electrons derived from sulphide 

entering the photosynthetic electron transport chain closer to photosystem I 

The third step consists of a series of reactions, where a quantity of 3-phosphate is 

k to RuBP required to allow the photosynthetic reduction cycle to continue 

illustrates the process of photosynthesis as described earlier. 

However, in microalgae and cyanobacteria, the electrons and protons, which are extracted 

ase enzyme (HydA) via the electron transport chain to 

 

(Schenk et al., 2008) 

photoautotrophic. This means that all 

source for carbon, and produce 

dependent, anaerobic, anoxygenic 

lectrons derived from sulphide 

entering the photosynthetic electron transport chain closer to photosystem I then results in 
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CO2 reduction. Also, some cyanobacteria can also carry out photoheterotrophy where CO2 is 

not the source of carbon but other chemicals; aerobic (respiratory) and anaerobic 

(fermentative) chemoheterotrophy where CO2 is not the source of carbon nor is light the 

source of energy. However, cyanobacteria carry out these modes of growth only for 

maintenance, when environmental conditions are unfavourable. The main characteristic of 

cyanobacteria that make them different from all other prokaryotes is the fact that they have 

dual photosystems that allow them to use H2O as a photoreductant with the liberation of O2.  

 

2.3 Nitrogen Fixation by Cyanobacteria 

 

     Nitrogen is an essential component of cellular compounds; however most organisms 

cannot absorb it directly because nitrogen is relatively inert, for the reason that it has a triple 

bond. However, cyanobacteria have the ability to fix atmospheric nitrogen and convert it to 

other forms such as ammonium ions (NH4
+) and nitrate ions (NO3

-), which other organisms 

can absorb. 

 

     Because of this characteristic, cyanobacteria can supply their own need of nitrogen-based 

nutrient, so they can survive in arid deserts and the frozen Poles. Furthermore, other plants 

can grow with them through symbiosis. 

 

     Cyanobacteria fix N2 by the reaction: 
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N2 + 8H+ + 8e- + 16ATP = 2NH3 + H2 + 16ADP + 16Pi 

 

     This reaction is catalysed by a special enzyme called nitrogenase. Nitrogenase is made up 

of an iron protein and a molybdenum-iron protein (Sakurai and Masukawa, 2007). The fact is 

that nitrogenase is very sensitive to oxygen. Where O2 oxidises iron, it makes nitrogenase 

inactive. As cyanobacteria produce O2 during photosynthesis, it is clear why this is a 

problem. 

 

2.3.1 Nitrogen Fixation by Non-heterocystous Cyanobacteria 

 

     Many, though not all, non-heterocystous cyanobacteria, which could be either unicellular 

or filamentous, could carry out nitrogen fixation. Most of those species fix nitrogen in micro-

oxic1 or anoxic environment, however, a few of them can fix it aerobically2 (Bergman et al., 

1997). Interestingly, this apparently means that those species are able to carry out both 

oxygenic photosynthesis and O2-sensitive N2 fixation in the same cell. This, in turn, implies 

that those non-heterocystous cyanobacteria have the ability to protect nitrogenase from 

inactivation because of O2, which is released as a by-product of photosynthesis. For this 

reason, the vegetative cells of non-heterocystous cyanobacteria have to produce 

photosynthate, by CO2 fixation, to scavenge additional O2 generated during photosynthesis 

                                                 
1 The term micro-oxic refers to environments of cultures grown in the absence of exogenous O2 but 

which remain capable of generating O2 photosynthetically (Bergman et al., 1997). 

2 The terms ‘oxic’ and ‘anoxic’ refer to environments where O2 is present or absent, respectively,  

while the term ‘aerobic’ is used specifically to describe the presence of O2 at concentration 

comparable to that in air (Bergman et al., 1997). 
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and to provide energy for cell growth. In many cases, N2 fixation and photosynthesis in these 

strains show opposing cyclic fluctuations, with N2 fixation occurring at dark in most species 

supported by aerobic respiration, thereby these strains achieve a temporal separation of N2 

fixation and oxygenic photosynthesis (Schneegurt et al., 1994). 

 

2.3.2 Nitrogen Fixation by Heterocystous Cyanobacteria 

 

     All heterocystous cyanobacteria fix N2 aerobically, though only filamentous cyanobacteria 

can differentiate into heterocysts, and moreover, the filament integrity is very crucial to 

nitrogen fixation, as filament breakage leads to loss of nitrogenase activity (Lopes Pinto et 

al., 2002). When there are no nitrogen compounds in the environment, 5-10% of vegetative 

cells differentiate into specialized cells called heterocysts that present the right circumstances 

for nitrogenase to catalyse N2 fixation. Heterocysts do not carry out photosynthesis, thus do 

not produce O2 neither do they fix CO2. They also exhibit a high rate of respiratory O2 

consumption and are surrounded by a thick, laminated cell wall that limits the penetration of 

oxygen into the cell. Therefore, the internal environment of heterocysts is practically anoxic, 

which is ideal for nitrogenase, an extremely O2-sensitive enzyme. In that way, the cells make 

a spatial separation of N2 fixation and oxygenic photosynthesis (Zhang et al., 2006), however, 

the process of N2 fixation happens exclusively during the light phase of a cycle of alternating 

light darkness (Khamees et al., 1987). A few strains of non-heterocystous cyanobacteria also 

fix N2 during the light time (Ortega-Calvoh and Stal, 1994) using the same approach of 

spatial separation, where some cells do not photosynthesize. There are many factors that 

motivate heterocyst differentiation: removing combined nitrogen from the medium, adding 
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carbon sources, immobilizing cyanobacterial cells in polyvinyl and polyurethane foams, or 

living with organisms such as the fern Azolla in a symbiotic relationship (Hall et al., 1995). 

 

     It should be emphasized that the metabolic changes that occur during heterocyst 

differentiation are permanent, whilst those noted during the progress of N2 fixation in non-

heterocystous cyanobacteria can be inverted following resupply of a nitrogen source such as 

ammonium. Heterocysts are terminally differentiated cells, specialized in N2 fixation but 

lacking the ability to either grow or divide. They do not re-differentiate into vegetative cells 

following addition of ammonium, though further differentiation of heterocysts is blocked by 

such treatment and the proportion of pre-existing heterocysts declines as a result of continued 

division of vegetative cells. In contrast, N2 -fixing vegetative cells of non-heterocystous 

cyanobacteria continue to grow and divide and rapidly revert to non-diazotrophic metabolism 

following addition of ammonium. 

 

2.4 Hydrogen Production 

 

2.4.1 Introduction 

 

     Hydrogen is produced in cyanobacteria in two physiological processes: 

 

• Nitrogen Fixation: A light-dependant reaction catalysed by nitrogenase  

N2 + 8H+ + 8e- + 16ATP = 2NH3 + H2 + 16ADP + 16Pi 
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     Happe et. al claimed that Anabaena variabilis showed a clear maximum in nitrogenase 

activity (Happe et al., 2000). 

 

• Fermentation: Dark anaerobic conditions catalysed by bidirectional hydrogenase 

(Stal and Moezelaar, 1997) by the reaction 

 

8H+ + 8e- + 16ATP = 4H2 + 16ADP + 16Pi 

 

      It has been shown that the specific activity of a bi-directional enzyme from Synechocystis 

is superior to hydrogenases from other cyanobacteria (Schmitz et al., 2002). 

 

2.4.2 Major Enzymes Involved in Hydrogen Production by Cyanobacteria 

 

     In total there are three enzymes which are involved in the process of hydrogen metabolism 

in cyanobacteria:  

 

1. Nitrogenase: This enzyme produces hydrogen as a by product through the process of 

nitrogen fixation. There are three types of nitrogenase: Mo-nitrogenase, V-nitrogenase 

and Fe-nitrogenase. Tsygankov et al. (1987) claimed that the specific growth rate of 

Anabaena variabilis with Mo-nitrogenase or V-nitrogenase was three times higher 

than that of the same species with Fe-nitrogenase. However, Anabaena variabilis with 
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V-nitrogenase produced hydrogen at the highest rate of hydrogen (Tsygankov et al., 

1997) 

 

2. Bi-directional hydrogenase: This enzyme catalyses both reduction of protons to 

produce hydrogen and oxidation of hydrogen (Tamagnini et al., 2002) 

 

3. Membrane-bound uptake hydrogenase: This enzyme re-oxidises hydrogen that is 

produced by nitrogen fixation 

 

     Both nitrogenase and hydrogenase are O2-sensitive enzymes. They become irreversibly 

inactive, when O2 is present. As cyanobacteria produce O2 during photosynthesis, this is 

clearly a problem. However, cyanobacteria have adapted several strategies to prevent 

exposure to O2. These include avoidance of O2, physical barriers to its diffusion, and spatial 

and temporal separation of N2 fixation and O2-evoloving photosynthesis (Hansel and 

Lindblad, 1998). For more details see Nitrogen Fixation (2.3). 

 

     All diazotrophic cyanobacteria, which are cyanobacteria that carry out N2 fixation, possess 

nitrogenase and uptake hydrogenase, however, some of them have bi-directional hydrogenase 

as well. On the other hand, non-diazotrophic cyanobacteria only possess bi-directional 

hydrogenase. Hydrogen uptake is linked to the nitrogenase activity, this can explained by the 

fact that the re-oxidizing of H2 is required in order to recover some energy for nitrogen 

fixation (Böhme, 1998). Figure 2.4 illustrates the interaction of hydrogen production by 

nitrogenase and hydrogen use by hydrogenase-uptake enzyme.  
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Figure 2.4 Hydrogen production by nitrogenase and hydrogen use by uptake hydrogenase 

(Das and Veziroglu, 2001) 

 

     Whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependant 

or even related to diazotrophic growth conditions (Schütz et al., 2004). It is claimed that the 

rate of hydrogen production by some species of cyanobacteria is comparable to that measured 

in hydrogenase-based hydrogen production by green algae (Troshina et al., 2002). 
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2.4.3 Categorizing Cyanobacteria according to Hydrogen Production 

 

     There are five forms of cyanobacteria that produce hydrogen, each of which is described 

as follows. 

 

2.4.3.1 Non-diazotrophic Unicellular Cyanobacteria 

 

      These species do not possess nitrogenase, so they do not fix nitrogen. Hydrogen 

production is carried out in these species in the dark under anaerobic conditions, catalysed by 

hydrogenase through a two step process:  

 

• Aerobic photosynthesis is conducted to enable cells to grow. This step occurs in 

12h/12h light/dark cycle where the media contain nitrogen compounds and neither 

nitrogen fixation nor hydrogen production occurs. 

 

12H2O + 6CO2 = C6H12O6 + 6H2O + 6O2 

 

xC6H12O6 = glycogen + yH2O 

 

• Anaerobic hydrogen production occurs in the dark. The transfer from growing 

conditions to hydrogen production conditions leads to the loss of oxygen evolution 

within a day, followed by the loss of the reaction centre in photosystem П in three 
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days. This step occurs after 24 h in the dark when the medium is free from nitrogen 

compounds. 

 

Glycogen + yH2O = xC6H12O6 

 

C6H12O6 + 6H2O = 6CO2 + 12H2 

 

     An example of these species is Gleocapsa alpicola. Serebryakova and Tsygankov 

(2007) stated that, in the first step of hydrogen production from this species, a culture of 

Gleocapsa alpicola, immobilized on a matrix of glass fiber TR-0.3, achieved a density of 

37 g cm-2 in media with limiting concentrations of nitrate to enhance glycogen 

accumulation and activate hydrogenase for the second step in the process, where 

hydrogen was produced in the second step through the fermentation of glycogen in 

darkness with continuous sparging of Ar and without media flow.  The total amount of H2 

produced in one cycle was 957.6 mLL-1
matrix (Serebryakova and Tsygankov, 2007). 

 

2.4.3.2 Diazotrophic Unicellular Cyanobacteria 

 

     These species possess nitrogenase, so they fix nitrogen. When the media are free from 

nitrogen compound, hydrogen production is carried out in these species in the dark under 

aerobic conditions catalysed by nitrogenaze. O2-evolving photosynthesis is carried out during 
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the light period of growth, while hydrogen is produced through nitrogen fixation during the 

dark period. An example of these species is Gloeothece (Reade et al., 1999). 

 

    However, when the media contain nitrogen compounds and nitrogen fixation is not 

necessary for growth, hydrogen production occurs in the dark under anaerobic conditions 

catalysed by hydrogenase through a two step process, the same as hydrogen production by 

non-diazotrophic unicellular cyanobacteria. 

 

2.4.3.3 Non-diazotrophic, Non-heterocystous Filamentous Cyanobacteria 

 

     These species do not possess nitrogenase, so they do not fix nitrogen. Hydrogen 

production is carried out in these species in the dark under anaerobic conditions catalysed by 

hydrogenase through two step process, the same as hydrogen production by non-diazotrophic 

unicellular cyanobacteria. An example of these species is Spirulina platensis (Aoyama et al., 

1997) 

 

2.4.3.4 Diazotrophic, Non-heterocystous Filamentous Cyanobacteria 

 

     These species possess nitrogenase, so they fix nitrogen. When the media are free from 

nitrogen compounds, hydrogen production is carried out in these species in the light under 

anaerobic conditions catalysed by nitrogenase through a two step process. The difference 

from the two step process in hydrogen production from the non-diazotrophic unicellular 



  27

cyanobacteria is that the second step in diazotrophic, non-heterocystous filamentous 

cyanobacteria occurs in the light rather than in the dark. An example of these species is 

Oscillatoria (Mary I. Scranton, 1987). 

 

2.4.3.5 Diazotrophic, Heterocystous Filamentous Cyanobacteria 

 

     These species possess nitrogenase, so they fix nitrogen. When the media are free from 

nitrogen compounds, some cells start to develop structural changes and form heterocysts, 

which have thick walls (Paumann et al., 2005) and can undergo nitrogen fixation and produce 

hydrogen in light, and aerobic conditions catalysed by nitrogenaze through a two step 

process. The difference from the two step process in hydrogen production from the non-

diazotrophic unicellular cyanobacteria is that the second step occurs in the light and aerobic 

conditions rather than in the dark under anaerobic conditions. Examples of these species are 

Nostoc and Anabaena. Nostoc has the highest nitrogenase activity (Yoshino et al., 2007). 

 

    Finally, for hydrogen production by cyanobacteria to be economically attractive, a few 

considerations should be taken into account: 

 

•  Immobilized  cells of cyanobacteria are more suitable for the continuous production 

of biological hydrogen (Markov et al., 1995, Das and Veziroglu, 2001) 
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• Mutant forms of cyanobacteria lacking uptake hydrogenase enzyme, produce higher 

rates of hydrogen (Sveshnikov et al., 1997, Tsygankov et al., 1999, Lindblad et al., 

2002, Masukawa et al., 2002, Schütz et al., 2004, Liu et al., 2006) 

 

• Photobiological hydrogen production occurs in two stages. Conditions during the 

growth phase are different from conditions during hydrogen production (Yoon et al., 

2002) 

 

• Different bioreactors configurations give different efficiencies for both growth and 

hydrogen production (Hansel and Lindblad, 1998) 

 

     The work presented in this thesis is focused on the cultivation of cyanobacteria, and their 

possible use as a source of energy, not specifically on hydrogen production. 
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CHAPTER 3 CULTIVATION OF CYANOBACTERIA  

 

     This chapter introduces the type of vessels which have been described in the literature for 

the growth of cyanobacteria. This includes open ponds, photobioreactors of many different 

types, and hybrid systems. 

 

3.1.1 Introduction  

 

      There are many interrelated parameters that can be limiting the growth of microalgae like 

cyanobacteria. These factors, which have conflicting  and complex effect on optimisation 

during scale up, include temperature (Cho et al., 2007); mixing (Barbosa et al., 2003a); fluid 

dynamics and hydrodynamic stress (Barbosa et al., 2003b); gas bubble size and distribution 

(Poulsen and Iversen, 1999, Barbosa et al., 2004), gas exchange (Eriksen et al., 2007); mass 

transfer (Molina Grima et al., 1999); light cycle and intensity (Pyo Kim et al., 2006, Perner-

Nochta and Posten, 2007); water quality, pH, and salinity, (Abu-Rezq et al., 1999, Ratledge, 

2004, Cho et al., 2007, Ranga et al., 2007); mineral and carbon regulation/bioavailability, cell 

fragility (Gudin and Chaumont, 1991) and cell density and growth inhibition (Benemann, 

1994).  

 

     The growth of cyanobacteria has simple nutritional requirements: water, mineral salts, air 

(CO2 and N2), with light as the only energy source (Hansel and Lindblad, 1998). The cells 

grow in a liquid medium and the growth depends upon mass transfer of nutrients to the cells, 

mass transfer between air and the cells, as well as light availability. To improve the growth 
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rates, air may be added either continuously from the top of the liquid surface (Burja et al., 

2002), or bubbling through the media (Sveshnikov et al., 1997). Bubbling air through the 

liquid also creates mixing. In this context, bubble columns and airlift photobioreactors have 

been documented in the literature as being suitable to grow cyanobacteria (Miron et al., 

2000). 

 

     In photobioreactors, aeration rate, gas hold up and fluid mixing (liquid velocity) affect the 

availability of light to the cells within the reactors. It has been challenging to attain a uniform 

light distribution. Previous set ups have used external lights because for most reactors the 

implementation of light sources within will affect the mixing properties. However, the 

external lights have two disadvantages compared to internal lights. The first is that external 

lights do not offer a uniform light distribution, especially when only one is used. The second 

is that the light intensity decreases with distance from the reactor as the light passes through 

the reactor wall. In general microalgae are cultivated either in open ponds or in closed 

photobioreactors. 

 

3.1.2 Cyanobacteria Cultivation in Open Pond Systems 

 

     Open ponds have many characteristics that make them favourable for microalgae 

cultivation, are cheap and easy to build and maintain (Weissman et al., 1988). The raceway 

pond is the most used design, although there are different shapes and sizes. The open pond is 

a rectangular grid, where each rectangle has an oval channel; the water flows around 

continuously. The water depth is 15-50 cm. There is a similar design called a circular pond 

which is common in Asia and Ukraine (Becker(ed), 1994). In wastewater treatment plants, 
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algae ponds are built depending on the most suitable shape for the location. These ponds are 

usually driven by gravity. Melbourne’s Werribee wastewater treatment plant is one of the 

largest of this type (Schenk et al., 2008). Retaining walls or dug trenches are the basis of 

these ponds, while high flow rates in raceway ponds require more stable structure, as well as 

the addition of paddle wheels, which make raceway ponds less economic than wastewater 

treatment plants. However, a lot of materials could be used in constructing open ponds and 

they are easy to maintain because it is quite straightforward to clear up the bio-film that 

builds up on surfaces.  

 

     The disadvantages of open ponds include difficulties in controlling cultivation conditions; 

inevitable contamination by other unwanted species; the high level of evaporation of water 

and the reduced light intensity with increased depth (Costa et al., 2006). An open pond is 

usually cultivated with the desired microalgae culture, however, over time other unwanted 

species will inevitably contaminate the media, which reduce the productivities significantly 

and fight with the cultivated species. Once another species has been introduced into the pond, 

it is highly difficult to remove them. From 3000 photosynthetic microorganisms in the 

Aquatic Species Program Collection, no species were found to be able to dominate an open 

pond and have favourable biofuels characteristics (Sheehan et al., 1998). Usually open ponds 

have two to six species; however, they grow fast, resist predators and tolerate high 

concentrations of dissolved oxygen. Though a few species can tolerate and out-compete other 

species in particular circumstances like high/low acidity or salinity, for example, Spirulina 

can grow at pH 9-11.5 and is the dominant species in soda (Belkin and Boussiba, 1991), and 

is easy to harvest because of its spiral shape. Another example is Dunaliella salina which 

grows very well in saline ponds because of its high intracellular glycerol content, which 
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protects cells against osmotic pressure, and moreover, Dunaliella salina has valuable 

carotenoids which protects it against intense light (Borowitzka, 2007). 

 

3.1.3 Cyanobacteria Cultivation in Photobioreactors 

 

     Closed photobioreactors have many advantages over open ponds system: the possibility of 

cultivation of monoseptic culture; prevention of evaporation of water; saving of energy and 

chemicals; smaller footprints and higher productivities (Barbosa et al., 2003b), where higher 

productivities would compensate for higher costs of construction (Chisti, 2007). Some closed 

photobioreactors are given the following subsections: 

 

3.1.3.1 Stirred Tank Photobioreactors 

 

     The stirred tank photobioreactor is the most convenient method to cultivate photosynthetic 

microorganisms.  Mixing is provided by impellers of different sizes and shapes. The source 

of carbon for growth is CO2-enriched air that is bubbled at the bottom of the photobioreactor. 

Baffles are used to prevent vortex formation, thus improving mixing (Ugwu et al., 2008). The 

illumination in this type of photoreactor is externally supplied by fluorescent lamps or optical 

fibres. However, the drawback of these photobioreactors is the low ratio of surface area over 

volume which in turn hinders the efficiency of light absorption. To overcome those problems 

fluorescent lamps are provided internally. The use of optical fibres is another option. 

However, internal illumination has the disadvantage of hindering the mixing pattern. The 

unused sparged gas and the produced oxygen during photosynthesis are separated in a 
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disengagement zone. The main disadvantages of these photobioreactors are the high shear 

stress imposed as a result of mechanical mixing and the low ratio of surface area over volume 

which in turn hinders light harvesting efficiency. 

 

3.1.3.2 Vertical Tubular Photobioreactors 

 

     These photobioreactors are vertical transparent tubes which allow the transmission of 

light. At the bottom of the tube a sparger is attached which converts the sparged gas into 

small bubbles. The process of sparging provides mixing, mass transfer of carbon dioxide to 

media, and diffusion of oxygen produced by algae through photosynthesis. Vertical tubular 

photobioreactors are divided according to the mode of liquid flow into the reactors: 

 

a) Bubble column photobioreactors 

 

     The bubble column photobioreactors consist of cylinders with a height greater than twice 

the diameter. The important characteristics of these photobioreactors are: high ratio of surface 

area over volume, efficient heat and mass transfer, acceptable release of oxygen, no moving 

parts and low costs (Sánchez Mirón et al., 2000). Bubbling gas mixture through the sparger 

achieves mixing. Light is provided externally. Light and dark cycle, as the media circulates 

from central dark zone to external photic zone at high rates, affects gas flow rates, which in 

turn affects the photosynthetic efficiency. The higher the gas flow rate, the higher the 

photosynthetic efficiency, as higher gas flow rate leads to shorter light and dark cycle. 

Photosynthetic efficiency greatly depends on gas flow rate which is influenced by the light 
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and dark cycle as the liquid circulated regularly from central dark zone to external photic 

zone at higher gas flow rate.  

 

b) Airlift Photobioreactors 

 

     Airlift photobioreactors consist of two connected tubes which are called the riser and the 

downcomer. In the riser the gas mixture is sparged, while there is no gas addition in the 

downcomer (Sánchez Mirón et al., 2000). The airlift photobioreactors have two forms: 

internal loop, where the riser and downcomer are separated by either a draft tube or a split 

cylinder, and external loop, where the riser and downcomer are physically separated by two 

different tubes as shown in Figure 3.1.  Light is supplied externally. 

 

Figure 3.1 Vertical tubular photobioreactor (Miron et al., 2000)  
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3.1.3.3 Horizontal Tubular Photobioreactor 

 

     Horizontal tubular photobioreactors are a parallel set of tubes which are placed 

horizontally or near horizontally. The advantage of this type of reactors in outdoor cultivation 

of microalgae is the orientation towards sunlight which leads to improved light conversion 

efficiency. A special gas system provides CO2 and releases O2 which slows down growth 

(Ugwu et al., 2008). However, the exposure of these reactors directly to sunlight results in 

heating up the system. In order to cool off the horizontal photobioreactors, different methods 

have been adapted like spraying water on the system, overlapping of tubes, placing the light 

harvesting unit inside a pool of temperature controlled water, as it is shown in Figure 3.2 

Horizontal airlift-driven-photobioreactor 

 

 

 

Figure 3.2 Horizontal airlift-driven-photobioreactor (Molina Grima et al., 1999) 
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     Another major disadvantage of horizontal photobioreactors is the high consumption of 

energy, as high linear liquid velocities are required to achieve turbulent conditions with 

sufficient short light/dark cycles (Posten, 2009).Near horizontal photobioreactors are inclined 

towards the sun by a few degrees. This inclination allows more efficient utilisation of 

sunlight.  

 

3.1.3.4 Flat Panel Photobioreactor 

 

     The flat panel reactor consists of cuboids which are made of transparent materials like 

glass or polycarbonate. The cuboids have a minimal height to give a minimal light path as 

shown in Figure 3.3.  

 

 

 

Figure 3.3 Flat panel airlift bioreactor system (Schenk et al., 2008) 
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     The shape of these photobioreactors gives the advantage of a high surface area over 

culture volume. Mixing is achieved by either bubbling air from its one side through a 

perforated tube or rotating it mechanically with a motor. For example,Yuen et al. (2005) built 

a flat panel photobioreactor from polycarbonate held together in stainless steel. Illumination 

was achieved by placing 10 fluorescent tubes at one surface. At the bottom of the reactor 17 

needles of 0.8 mm diameter were pinched through a piece of silicon to provide the mixture of 

air and CO2 (Yuen et al., 2005). Some modifications were made to improve mixing and 

minimize shear stress.  

 

3.1.3.5 Helical Type Photobioreactor 

 

     These photobioreactors are transparent and flexible tubes of small diameter which possess 

a separate or attached degassing unit. A centrifugal pump is used to drive the culture through 

a long tube to the degassing unit. Figure 3.4 shows the helical photobioreactor. 

 

 

Figure 3.4 A helical photobioreactor (Hai et al., 2000)  
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     However, designing an economically viable photobioreactor, which meets the 

requirements of growing microorganisms, has many challenges (Weissman et al., 1988). 

Most microalgae become photo-inhibited at modest light intensities, which means low 

efficiencies (Melis, 1999, Polle et al., 2002). To overcome this problem, photobioreactors are 

designed to distribute light evenly over a large surface area in order to provide moderate light 

intensities for the cells. A fence-like construction, where the fence is oriented in a north-south 

direction, is the way forward to achieve that purpose as shown in Figure 3.5. 

 

Figure 3.5 A high-end closed bioreactor system (Schenk et al., 2008). 

 

     Making the bioreactor surface area ten times larger than the equivalent footprint area 

maximizes the even distribution of light intensity. The same purpose can be achieved by 

mounting bubble columns or plate photobioreactors at a defined angle to the sun. However, 

more transparent surface materials are required. Yet, making the surface to volume ratio as 

big as possible is the most important principle when designing a photobioreactor, as this 

results in shorter light path lengths and higher biomass concentrations. Mixing is another 

essential factor in all photobioreactors as it prevents sedimentation of the cells and supports 
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distribution of CO2 and O2 (Molina Grima et al., 1999). However, culture mixing and light 

attenuation have complex interactions, as each single algal cell passes through dark and light 

zones of the reactor in a more or less statistical manner (Barbosa et al., 2003b). Dark zones 

emerge by self-shading. However, there is an increased interest in the effect of flashing light 

(Grobbelaar et al., 1996). High light intensities result in photo-inhibition, thus 

microorganisms have evolved photo-protective mechanisms which dissipate excess energy as 

fluorescence and heat. Another interesting benefit of mixing is that it allows microorganisms 

to move between low light and high light regions. This cycle presents the opportunity for the 

energy in the photosystems to channel into the metabolic reactions during the low light phase. 

In these cycles the dark period was ten times longer than the light period with frequencies 10 

Hz or more (Janssen et al., 2001), which has the same effect as exposing the cells to moderate 

light intensities (Yoshimoto et al., 2005). Other development include plastic bags mounted as 

annular reactors or as plate reactors (Richmond, 2004, Tredici, 2007) as well as triangle 

reactors as shown in Figure 3.6.  

 

 

Figure 3.6 Triangle airlift bioreactor systems (Schenk et al., 2008) 
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     Mixing is achieved by in-built static mixers. This system is one of the most productive 

systems ever built (Pulz, 2007). More work is underway to increase the inner surface area in 

thin layered reactors which would increase biomass production, decrease energy usage 

(Rosello Sastre et al., 2007) and enhance gas exchange by diffusion alone without more 

energy demand for bubbling the system. Another system uses optical fibres to channel light 

energy from plastic Fresnel lenses to a lump reactor (Schenk et al., 2008). 

 

     There is a new technology that proves beneficial in splitting the infra-red from the solar 

radiation. This development could reduce the problem of overheating in the reactor, by using 

this wasted heat energy to produce electricity (Schenk et al., 2008). However, this technology 

still needs more research to be economically available. Four commonly used bioreactor 

designs are shown in Figure 3.7. 

 

 

 

Figure 3.7 Different closed photobioreactor designs (a) plate reactor, (b) tubular reactor, (c) 
annular reactor, (d) plate airlift reactor with baffles. 
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3.1.4 Cyanobacteria Cultivation in Hybrid Systems 

 

     A combination of open ponds system and photobioreactors is the best possibility for 

cultivating microalgae. Using this combination would reduce the high cost of using 

photobioreactors alone, would avoid contamination which occurs in open ponds when used 

alone. In this combination, open ponds are cultivated with a desired species, which had been 

initially cultivated in a photobioreactor. One of the most important factors in this process is 

the size of the inoculum, which would ensure the dominance of the desired species. However, 

eventually ponds would get contaminated by one or more unwanted species and they have to 

be cleaned and re-inoculated. This is why hybrid systems are considered as batch cultures, 

and the cost of cleaning has to be added to the total cost when establishing these systems.  

Haematococcus pluvialis was cultivated in Aquasearch (Hawaii, USA) for the production of 

astaxanthin. Firstly Haematococcus pluvialis was produced in photobioreactors with 

sufficient nutrients to motivate high cell densities, then a portion of this culture was 

transferred to open ponds with limited nutrients, as these conditions would motivate the 

production of astaxanthin. When astaxanthin concentration peaked, Haematococcus pluvialis 

was harvested, and the pond flushed and re-cultivated (Huntley and Redalje, 2007). This 

approach could be used for the production of biofuels. This is because when transferring the 

culture into limited-nutrients conditions, microalgae quickly begin to switch solar energy into 

chemical energy that is stored as lipids, which are very important components for biofuel 

production. The mechanism of storing chemical energy as lipids enables the survival of 

microorganisms.  
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     For large scale microalgae biofuel production, a series of photobioreactors of increasing 

size is to be used, where smaller bioreactors have to be sealed strictly to avoid contamination, 

however, moving up to bigger reactors, less restrictions are required to avoid contamination, 

as long as there is a continuous supply of inoculum, which enable re-inoculation if 

contamination occurs at any stage. As the bioreactors increase in size, the cost should be 

minimised by reducing the level of complexity.  

 

      In this work cyanobacteria will be cultivated in a relatively new photobioreactor, namely 

the tubular baffled photo bioreactor (TBPBR). The motivations for selecting TBPBR are that 

it provides uniform and consistent mixing throughout the system, ensuring a constant fluid 

mechanical condition and environment for cell cultivation; it enables light sources to be 

evenly planted within the TBPBR, providing a uniform light distribution throughout the 

reactor; it offers enhanced mass transfer rates due to much smaller and even bubble size 

distribution and significantly higher gas hold up, facilitating better cell growth; the 

continuous operation allows the effect of plug flow characteristics on cell growth to be 

examined. 
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CHAPTER 4 EXPERIMENTAL SETUP AND PROCEDURES 

 

     This chapter describes the cyanobacterial species, media and culture conditions that have 

been used throughout the project; the design of the light boxes; the design of the tubular 

baffled photobioreactor (TBPBR); and the experimental and analytical procedures for both 

systems.  

 

4.1 Microorganisms, Media and Culture Conditions 

 

     The two different strains of microorganisms used in this work were Gloeothece 

membranacea (CCAP 1430/3) and Oscillatoria amoena (CCAP 1459/39) and were supplied 

by the Culture Collection of Algae and Protozoa, Scotland, UK (CCAP). The former is 

unicellular and showed significant nitrogenase activities during dark time (Klipp et al., 2005), 

and the latter is filamentous and showed higher rates of hydrogen production than Anabaena 

cylindrica, which is a very well-studied species for hydrogen production as stated by Hitoro 

et al., (1995). 

 

     BG11 medium was used to cultivate the cells and consisted of: (gL-1): 

NaNO3, 1.5; K2HPO4, 0.04; MgSO4.7H2O, 0.075; CaCl2.2H2O, 0.036; Citric acid, 0.006; 

Ammonium Ferric Citrate Green, 0.006; EDTANa2, 0.001; Na2CO3, 0.02; Trace metal 

solution, 1 ml; Distilled water, to 1 L. The  pH was adjusted to 7.1 with the addition of NaOH 

(0.1M). 
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    The trace metal solution contained (g/l-1): H3BO3, 2.86; MnCl2.4H2O, 1.81; ZnSO4.7H2O, 

0.222; Na2MoO4.2H2O, 0.390; CuSO4.5H2O, 0.079; Co(NO3)2.6H2O, 0.0494. 

 

     Cells were cultured in a number of Erlenmeyer flasks, beakers and cylinders with different 

volumes of BG11 depending on the vessel size. All cultures were incubated at room 

temperature (25°C) in the light boxes. Media and containers were sterilized by autoclaving at 

121°C for 15 mins before inoculating with culture of cyanobacteria. The cultures were mildly 

shaken by hand on alternative days. 

 

4.2 Light Boxes Design and Measurements 

 

     Three light boxes were designed for this study with different light intensities. These were 

achieved using different cool white fluorescent tubes (Philips) in each light box to give light 

intensities of 3769, 6697, 9774 Lux respectively. The light intensity was measured using a 

light sensor (LS-DIN) supplied from Vernier, USA.  

 

     The growth of an organism that carries out photosynthesis depends on visible light with 

wavelengths between 400-700 nm. The photosynthetically active radiation (PAR) could be 

used as a measurement for the potential growth of cyanobacteria and is defined as the number 

of moles of photons of visible light available for organisms per squared meter per second. 

The PAR was measured using a PAR meter (Skye, ref No 98/065)  
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     Each light box was fitted with a fan to make sure that it was well ventilated, a 

thermometer to measure the temperature, and a timer to control the light cycle. 

 

     Figure 4.1 shows the three light boxes with the lowest light intensity on the right (3769 

Lux, 100 µmol m-2 sec-1), the medium light intensity in the middle (6697 Lux, 250 µmol m-2 

sec-1) and the highest light intensity on the left (9774 Lux,.520 µmol m-2 sec-1). 

 

9774 Lux                                            6697 Lux                                                3769 Lux 

 

520 µmol m-2 sec-1                           250 µmol m-2 sec-1                                 100 µmol m-2 sec-1 

 

 

 

Figure 4.1 The three light boxes used in the project 
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4.3 Design of the Tubular Baffled Photobioreactor TBPBR 

 

     A new tubular baffled photobioreactor (TBPBR) was constructed and consisted of an over 

3m long double pass glass tube with equally spaced orifice baffles. The baffles were made of 

PTFE, spaced 1.8 times the tube diameter with a reduction ratio of 22%. The volume of the 

TBPBR is 0.0038 m3.The lights are supplied internally by placing 6 white LEDs regularly 

around the surface of each baffle. The reason for using internal illumination is that the 

external solar radiation is much more difficult to control (Molina Grima et al., 1999). White 

light has been chosen as it gave the highest growth based on the data generated from the 

experiments in the light boxes. The number of the LEDs was decided after a few experiments 

had been conducted to measure the PAR that the LEDs delivered (the results are not shown). 

Initially, two baffles with 10 white LEDs on each were designed; by varying the current (1-20 

mA) and measuring the PAR at different positions between the two baffles, six LEDs were 

found to be optimal for providing light intensities in the range of 20- 200 µmol m-2 sec-1, 

while minimizing the temperature rise of the media within the system.  

 

    The design allows the study of the effects of light intensity and light duration on the 

growth profiles for the species of the microorganisms chosen for the project. The 

cyanobacteria and the media are pre-mixed in a feed tank of 25 L in volume. A pump is used 

to deliver the media from the tank into the TBPBR. Flow rates of 1-3 (L min-1) can be 

achieved (Re=500-1580), giving uniform mixing between the cells and the media without the 

need of oscillation at such flows (patent from NiTech US2010/0124145). The aqueous media 

are then returned to the feed vessel, where the removal of air is taking place. The growth will 

be measured using the spectrophotometer that was also used in the light boxe experiments. 
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The TBPBR was vertically positioned as it increased the air/CO2  residence time in the 

medium, which enhance the carbon dioxide consumption efficiency (Ono, 2004). Table  4.1 

shows the specifications which were used in the TBPBR. Aeration in the first runs was only 

achieved by circulating the medium through the TBPBR, as this process helped in releasing 

harmful oxygen from the medium, while the big ratio of aeration surface over culture volume 

in the vessel (97 m2/ m3) enhanced CO2 dissolution in the medium. In the later runs aeration 

was also achieved by bubbling air through only the right side of the TBPBR. The temperature 

of the medium in the reactor was controlled using an automatic water bath which was placed 

underneath the bend of the TBPBR and thermometer was used to monitor the temperature 

each other day (The water bath and the thermometer are not shown in the photo of the 

TBPBR) 

Table  4.1 The dimensions of the TBPBR 

ID (m) 0.04 

Length of the bioreactor excluding bends (m) 3 

Length of the bend (m) 0.37 

Total length of the bioreactor (m) 3.37 

The number of the baffles 45 

The diameter of the baffle (m) 0.038 

The diameter of the orifice (m) 0.02 

The distance between two baffles (m) 0.072 

The number of LEDs on each baffle 6 

The volume of the TBPBR (m
3
) 0.0038 

The surface area of the TBPBR (m
2
) 0.423 

 

     Figure 4.2 shows a schematic diagram of the TBPBR set up.  
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Figure 4.2 The set up of the tubular baffled photo bioreactor (TBPBR) and the baffle 
with the LEDs (on the top left corner) 
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     Figure 4.3 shows a photo of the TBPBR. 

 

 

 

Figure 4.3 The tubular baffled photobioreactor (TBPBR)  
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4.4 The Experimental and Analytical Procedures 

 

4.4.1 Cultivation of the Microorganisms in the Light Boxes 

 

     The procedure for preparing the growth culture is as follows:  

• To a suitable container add a desired amount of BG11 medium (suitable containers 

are those which can be autoclaved); 

• Put a sponge stopper at the top of the container and cover it with foil. Stick some 

autoclave tape on the container and label the tape; 

• Wrap several pipette tips in foil; 

• Autoclave the containers & pipette tips; 

• Allow the medium to cool to ambient temperature, preferably overnight; 

• Ignite a Bunsen burner. Whenever a sterile container is opened it is important to pass 

the Bunsen flame over the opening of the container to stop foreign organisms 

contaminating the culture; 

• Now, use the sterile pipette tips, add some concentrated cyanobacteria culture to the 

media; 

• Measure the optical density of the new culture; 

• If a specific optical density is required, more medium or culture can be added and the 

optical density is measured till the desired one has been obtained; 

• Place the new culture in the light box; 

• Measure the optical density at regular intervals, typically every 24 hrs. 
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4.4.2 Cultivation of the Microorganisms in the TBPBR 

 

     While there were three light boxes used for batch trials, there was only one TBPBR 

available for the continuous cultivation. Since the specific growth rate of cyanobacteria in the 

TBPBR was not quite fast in comparison to that in the light boxes, a run of four weeks was 

chosen as the cultivation period in this research, which was based on many experimental runs 

in the light boxes. In order to investigate the effects of each parameter on the growth of 

cyanobacteria, a total of 12 weeks was needed to cover all operational parameters, as these 

were done in the light boxes. 

 

     It was well noted during the experiments in the light boxes that the cyanobacteria were not 

easily contaminated. Runs of non-autoclaved and autoclaved cultures were carried out to 

compare the growth and kinetics of both species. Results showed that the growth rate and 

generation times were exactly the same (results are not shown). Thus, it was decided that 

cultures growing in the TBPBR will not be autoclaved. Nevertheless, precautions were taken 

to prevent any contamination where possible. 

 

     The procedure for preparing the growth culture in the TBPBR is as follows:  

• Prepare 5L of BG11 media as in 4.1; 

• Close the tap underneath the feed tank in the TBPBR, as shown in Figure 4.3; 

• Pour the media into the vessel; 

• Add some concentrated cyanobacteria culture to the media; 
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• Shake the vessel well to achieve mixing; 

• Measure the optical density of the new culture; 

• If a specific optical density is required, more medium or culture can be added and the 

optical density is measured till the desired one has been obtained; 

• After achieving the desired optical density, open the tap underneath the vessel; 

• Switch the pump on; 

• Put a container underneath the port at the top of the reactor, then open the port to 

release the air that has been trapped inside the reactor, then close the port; 

• Switch on the LED’s and set the timer; 

• Switch the water bath and set to 25 °C (not shown in Figure 4.3);   

• Measure the optical density at regular intervals, typically every 24 hrs for four weeks. 

 

4.4.3 Optical Density Measurement for Cell Mass  

 

     The procedure of measuring optical density was based on the work of Yan et al. (1997) 

and consisted of: 

• Shake the culture flask until a uniform green solution has been obtained; 

• Take 1 ml sample using a sterilized pipette tip; 

• Transfer the  sample to a 1.6 ml cuvette; 

• Using the spectrophotometer as shown in Figure 4.4 measure the optical density of the 

sample at 750nm; 

• Plot the absorbance vs. time to obtain a growth profile. 
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4.4.4 Dry Weight measurement  

 

      A correlation between absorbance and cell concentration had to be developed by 

measuring the absorbance of a sample, then measuring the dry weight of a known volume of 

the sample. The procedure was based on the work by Rand et al. (1976) and is described 

below: 

1) Wash the GF/C 70 mm filter paper with 30 ml distilled water in the vacuum flask 

apparatus to remove any lose fibres 

2) Dry the paper in an oven for 1 hour at 100 °C 

3) Remove it and leave it to cool 

4) Weigh it using a balance that is accurate to 4 decimal places 

5) Filter a known volume of solution through the filter paper as per 1 

6) Dry the filter paper as per 2 

7) Weigh it as per 3 

8) Calculate the cell concentration using the formula below 

Cell concentration = Difference in Weight / Volume of sample 

 

4.4.5 Optical Density Measurement  

 

     The following is the procedure of using the spectrophotometer CAMLAB DR/4000 U 

(Figure 4.4) to measure the optical density: 

• Switch the spectrophotometer on and wait until it has finished its start-up routine 
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• Press single λ ( the wavelength) 

• Next press goto λ; 

• Input the desired wavelength and press enter 

• press setup; 

• Press avg x (this sets the average number of readings to 25 times, considerably 

increasing the accuracy of readings) 

• Input 25 then press enter  

• Press exit to leave the setup menu 

• Insert the cuvette that contains the blank (distilled water) into the spectrophotometer 

compartment; 

• press zero; 

• Next, replace the blank with the sample 

• Press read, that will give the measurement of the optical density. 

 

Figure 4.4 The spectrophotometer (CAMLAB DR/4000 U) 
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4.5 The Calibration Curves of Optical Density versus Dry Weight 

 

     Optical density (OD) measurements are usually used to track the growth of light-

harvesting and photosynthetic microorganisms. To verify the validity of these measurements 

and establish the relationship between the measurements (OD@680 nm) and cell 

concentration (mg l-1), dry weight measurements as described in section 4.4.4 were taken and 

the calibration curves of the optical density (OD@680 nm) versus dry weight or cell 

concentration (mg l-1) for both Gloeothece membranacea and Oscillatoria amoena were 

obtained. The zero points were taken as BG11 media without cells in the spectrophotometer. 

Following the procedure in 4.4.3 and 4.4.4 the calibration curves were obtained for 

Gloeothece membranacea (Figure 4.5) and Oscillatoria amoena (Figure 4.6). 

 

 

Figure 4.5 The calibration curve of optical density versus cell concentration for Gloeothece 
membranacea 
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Figure 4.6 The calibration curve of optical density versus cell concentration for Oscillatoria 
amoena 

 

     For both Gloeothece membranacea (Figure 4.5) and Oscillatoria amoena (Figure 4.6), the 

graphs show a linear relationship between the absorbance and the cell concentration, which is 

expected.  It should be noted that the slope of the curve of Oscillatoria amoena (Figure 4.6) 

is much greater than that of Gloeothece membranacea (Figure 4.5). This indicates that the 

two different species have different abilities to absorb light. At the same cell concentration 

the unicellular species, Gloeothece membranacea, absorbs more light than the filamentous 

one, Oscillatoria amoena. This difference in the ability of absorbing light is comprehensible, 

agreeable with the literature (Yoon et al., 2002), and could be explained by the fact that 

different species have different light harvesting pigments, hence different abilities to absorb 

light according to the original environment of the species.  

     Nonetheless, having different abilities of light absorbance for the two different species 

does not affect the accuracy of the method, as the results for each species were analysed 

independently.  
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CHAPTER 5 THE CULTIVATION OF GLOEOTHECE 

MEMBRANACEA AND OSCILLATORIA AMOENA IN THE LIGHT 

BOXES 

 

     This chapter presents the results obtained and discusses the effects of various operational 

parameters on the cell growth of Gloeothece membranacea (CCAP 1430/3) and Oscillatoria 

amoena (CCAP 1459/39) in the light boxes. These results would be considered as 

benchmarking data for the experiments in the tubular baffled photobioreactor (TBPBR). It 

should be noted that the purpose of the trials was to identify the optimal environmental 

conditions for cultivation of the chosen cyanobacteria, whether they are used as the raw 

material for either biodiesel production or hydrogen generation. 

 

5.1 Growth Cycle of Populations 

 

    There are generally four stages in the growth profile of a batch culture after inoculation 

into a fresh culture medium: 

a) Initial lag phase 

b) Exponential phase where growth commences 

c) Stationary phase where essential nutrients are depleted or toxic products build up and 

growth ceases 

d) Death phase: if incubation continues, cells may begin to die 
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Figure 5.1 shows the typical growth curve for a bacterial population (Madigan et al., 2000). 

 

 

 

Figure 5.1  Typical growth curve for a bacterial population (Madigan et al., 2000). 

 

 

5.1.1 Lag Phase 

 

     Growth does not usually start instantly when inoculating microorganisms into a fresh 

medium, but only after a delay in time called lag phase, which may be short or long 

according to the growth parameters and the background of the culture.  If the inoculum is 

taken from a culture in its stationary phase and inoculated in the same culture, a lag phase 

generally takes place even if all the cells are viable and able to duplicate. This happens 

because the cells are usually deprived of some necessary constituents and their re-
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synthesising will take time. A lag phase is also observed when the cells are damaged (but not 

killed) by heat, radiation, or toxic chemicals because time is required for the harm to be 

repaired. However, if the inoculum is taken from an exponentially growing culture, a lag 

phase does not occur and exponential growth commences at once.  

 

5.1.2 Exponential Phase 

 

     Usually the cells are the healthiest at this stage, thus they are desirable for studies of 

enzymes, other cell constituents and kinetics. The rate of the exponential growth varies 

greatly from different species and is affected by surroundings conditions such as temperature, 

culture medium, as well as by genetic properties of the organism itself. 

 

5.1.3 Stationary Phase 

 

    What usually occurs in a batch culture is that either one of the nutrients is deprived or 

some waste product builds up in the medium. At that point the exponential growth stops and 

the population has reached the stationary phase. During the stationary phase, growth does not 

usually occur; however, many cell functions may continue. For some species, some cells 

grow while others die, the two processes are balanced out so there is no increase or decrease 

in cell numbers. However, as many bacterial cells in nature are in a non-growing or a very 

slow growing state, many genes have evolved to deal with conditions.  
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5.1.4 Death Phase 

 

     After the culture reaches the stationary phase, the cells either continue to function and stay 

alive or die. In some cases cell lysis may occur. Both the growth phase and the death phase 

are exponential; however, the exponential specific growth rate is much faster than the 

exponential death rate.  

 

     It should be emphasized that the phases of the bacterial growth (lag phase, exponential 

phase, stationary phase and death phase) are reflections of the events in a population of 

cells, not in individual cells. 

 

5.2 Growth Profiles of Gloeothece membranacea and Oscillatoria amoena 

 

     The growth and kinetic profiles for both G. membranacea and O. amoena under the 

environmental conditions recommended by the Culture Collection of Algae and Protozoa, 

Scotland, UK (CCAP), the institution where they obtained from, would be considered as 

benchmarking results through this research. These two experiments were run for 2000 h to 

give a sufficient amount of time for the study of the growth cycles of these two species. 

     Figure 5.2 shows a photo of the two species in the light box and Table 5.1 lists the growth 

conditions for the cultures. 
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Table 5.1 The growth conditions of the cultures 

Strain 
Gloeothece membranacea, 

Oscillatoria amoena 
Light Intensity 520 µmol m-2 sec-1 

Wavelength White  

Light Dark Cycle 12/12 Light/Dark 

Growth Medium BG11 

Temperature 25 °C 

Container Flask 200 ml 

Culture Volume 100 ml 

OD 0.030, 0.030 

Light Position External 

Gas composition Air 

Aeration S/V 1/m 44.2 

 

 

 

Figure 5.2 The light box with the two species   

Gloeothece membranacea 
Oscillatoria amoena 
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Figures (5.3 - 5.4) show the growth profiles for Gloeothece membranacea and Oscillatoria 

amoena respectively. 

 

Figure 5.3 Growth profile for Gloeothece membranacea 

 

 

Figure 5.4 Growth profile for Oscillatoria amoena  
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     In order to establish a reasonable scientific methodology of differentiating phases, the 

following procedure was proposed and used throughout this thesis. It should be noted that the 

method chosen could only be made more accurate by making the interval of data collection 

smaller. This was not possible during this work. It can be seen that the cell concentrations 

increased with time for both species, three typical distinguished phases can be identified: 

 

• The lag phase (denoted as 1 in Figures 5.3 - 5.4). During the lag phase cell 

concentrations do not increase with time. The change in cell concentrations over time 

between 0 and 140 hrs would be considered as the baseline for the lag phase as there 

was little change in the cell concentration over that period of time. So the lag phases 

for both Gloeothece membranacea and Oscillatoria amoena are around 140 hours. 

  

• The exponential phase (denoted as 2 in Figures 5.3 – 5.4) - where cells start to 

duplicate. During the exponential phase cell concentrations increase exponentially 

with time, thus there is a linear relationship between the log of the cell concentration 

and time. Figure 5.5 illustrates that the cell concentrations of Gloeothece 

membranacea increased exponentially between 140 and 1300 hrs because the 

relationship between ln C and t is linear, while Figure 5.6 shows that the 

concentrations of Oscillatoria amoena increased exponentially between 140 and 1100 

hrs because for the same reason.  Therefore, the exponential phases for Gloeothece 

membranacea = 1300 -140 = 1160 (hrs) and for Oscillatoria amoena = 1100 – 140 = 

960 (hrs). 
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• The stationary phase (denoted as 3 in Figures 5.3 – 5.4) - where either one of the 

nutrients is deprived or some waste product builds up in the medium. At that point the 

exponential growth ends and the population has reached the stationary phase, i.e. 

during the stationary phase cell concentrations do not increase with time. Figures 5.3 

– 5.4 indicate that the cell concentrations of Gloeothece membranacea did not 

increase after 1300 hrs, while the cell concentrations of Oscillatoria amoena did not 

increase after 1100 hrs. This implies that the stationary phases for Gloeothece 

membranacea and Oscillatoria amoena are reached after 1300 and 1100 hours 

respectively.   

     It should be noted that the death phase was not reached in these experiments as obviously 

this would have taken much longer period of time, which was not feasible during the length 

of the project. The durations of growth phases for both species are summarised in Table 5.2. 

 

Table 5.2 The duration of the growth cycles of the two species 

Growth Phase (hrs) Lag Phase Exponential Phase Stationary Phase 

Gloeothece membranacea 140 1300-140 = 1160 1300 

Oscillatoria amoena 140 1100-140 = 960 1100 

 

5.3 Kinetic Parameters of Gloeothece membranacea and Oscillatoria amoena 

 

     The specific growth rates can be determined using the experimental data obtained in the 

exponential phase only. Sandnes et al. (2005) assumed that in the exponential multiplication 

stage, the cell number is given by: 
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Nt = N0 exp (µ t)        (5.1) 

 

Where Nt is the cell number at time t, N0 the initial number of cells, and µ the specific 

specific growth rate (hour-1) (Sandnes et al., 2005). Normally cell concentration (mg l-1) is the 

preferred terminology, was obtained by dividing the cell number by volume of the bioreactor 

at both sides of equation (5.1), 

 

Nt/V = (N0/V) exp (µ t)       (5.2) 

 

Then, 

 

Ct = C0 exp (µ t)        (5.3) 

 

Where Ct is the cell concentration at time t, C0 the initial cell concentration. The specific 

growth rate is obtained from a linear fit in a semi-logarithmic plot of cell concentration 

against time, as 

ln Ct = ln C0 + µ t        (5.4) 

 

     The specific growth rate (hour-1) is constant and at its maximal value for as long as the 

culture remains in the exponential growth phase (Sandnes et al., 2005). Thus, the specific 

growth rates are the slopes of Figures 5.5-5.4, the intercept at y-axis is ln C0. 
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     The time required to duplicate the cell number, i.e. the mean generation time (td), is given 

by the following equation: 

 

td = ln (2 / µ)         (5.5) 

 

     It should be emphasised though that the kinetics were derived using the data from the 

exponential phases only as the Equations 5.4-5.5 are solely valid in that phase as explained 

earlier in the literature review. Equations 5.4 -5.5 were used to calculate the specific growth 

rates and the generation times of the two species throughout the thesis. By using those 

equations, it is assumed that the reactions which lead to the growth of the species is first order 

(Sandnes et al., 2005), however Figures 5.5 – 5.6 prove that the assumption is acceptable, as 

the results fit Equation 5.4. The results are summarized in Table 5.3 and Figures 5.5 – 5.6 

displays the kinetic profiles for the two species. 

 

Table 5.3 The kinetic parameters of the two species 

 µ (hour
-1

) td (hrs)  C0 (mg l
-1

) experiment C0 (mg l
-1

)graph ∆C0 (mg l
-1

)  

Gloeothece membranacea 0.0025 277 28.2 27.1 1.1 

Oscillatoria amoena 0.0049 141 62.7 60.3 2.4 
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Figure 5.5 Kinetic profile for Gloeothece membranacea 

 

  

 

Figure 5.6 Kinetic profile for Oscillatoria amoena  

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ln
 C

Time (hrs)

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ln
 C

Time (hrs)



 

68 
 

     It is clear that the filamentous species, Oscillatoria amoena, is growing faster than the 

unicellular one, Gloeothece membranacea, as the specific growth rate and doubling time for 

the former is 0.0049 hour-1, 141 hours respectively, and for the latter is 0.0025 hour-1, 277 

hours respectively. Moreover, the lag phases for both Oscillatoria amoena and Gloeothece 

membranacea is 140 hours (Table 5.2), this further confirms the more rapid growth for the 

former than for the latter species.  

 

     When a lag phase is bypassed by taking the inoculums from an exponentially growing 

culture, exponential growth commences at once. This method is applied to shorten 

experiments periods. This methodology was adopted throughout this thesis. So based on the 

times of the exponential phases of the two species (1160 hours for Gloeothece membranacea 

and 960 hours for Oscillatoria amoena), 1000 hours were set for both the experiments in the 

light boxes and the tubular baffled photo bioreactor later on.  
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5.4 Effect of the Ratio of Aeration Surface over Culture Volume 

 

      Gas-liquid mass transfer and the subsequent cell growth rate are affected by the ratio of 

aeration surface over culture volume for the reason that the transport rate is a function of the 

amount of surface area available (Madigan et al., 2000). The bigger the ratio the more surface 

is accessible for the mass transfer between the air and liquid and the faster CO2 transferred 

across the surface of the culture and to the microorganisms in the medium. In turn, there is a 

shorter diffusion route for gases which are produced as by-products like O2. Note that O2 has a 

negative impact on nitrogen-fixation processes, when O2 is accumulated in great amounts it 

inactivates the nitrogenase enzyme, which is responsible for the nitrogen fixation process in 

species of nitrogen-fixing cyanobacteria. To examine the effect of this factor on the cell 

growth of Gloeothece membranacea and Oscillatoria amoena, experiments were carried out 

with three different surface-to-volume ratios of 9.6, 38.5, 44.2 (m2 m-3) using different 

containers and culture volumes. Table 5.4 lists the growth conditions for the cultures. 

Table 5.4 The growth conditions for the cultures                                                                       
of different ratios of aeration surface over culture volume 

Strain 
Gloeothece membranacea, 

Oscillatoria amoena 
PAR 250 µmol m-2 sec-1 

Wavelength All visible light 

Light Dark Cycle 12/12 Light/Dark 

Growth Medium BG11 

Temperature 25 °C 

Container 
Cylinder250 ml, Flask 1 L, 

Flask 250 ml 
Culture Volume 100 ml, 500 ml, 100 ml 

OD 0.030 

Light Position External 

Gas composition Air 

S/V L/m 9.6,19,44.2 
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     Figures 5.7 -5.10 show the growth and kinetic profiles for Gloeothece membranacea and 

Oscillatoria amoena respectively. Note that the results represent the exponential phases only. 

 

Figure 5.7 Growth profile for Gloeothece membranacea with different ratios of             
aeration surface to culture volume 

 

Figure 5.8 Kinetic profile for Gloeothece membranacea with different ratios of aeration 
surface to culture volume  
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Figure 5.9 Growth profile for Oscillatoria amoena with different ratios of                       
aeration surface to culture volume 

 

 

 

Figure 5.10 Kinetic profile for Oscillatoria amoena with different ratios of                     
aeration surface to culture volume 
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     Equations 5.4 -5.5 were used to calculate the growth rates and the generation times of the 

two species and the results are summarized in Table 5.5. 

 

Table 5.5 The kinetic parameters of the two species with different ratios of surface area over 
culture volume 

 Gloeothece membranacea Oscillatoria amoena 

S/v (m
2 

m
-3

)
 

9.6 19 44.2 9.6 19 44.2 

µ (hour
-1

) 0.0010 0.0018 0.0024 0.0028 0.0047 0.0052 

Td (hours) 693 385 289 248 147 133 

 

 

     The growth and kinetic profiles for Gloeothece membranacea in Figures 5.7 – 5.8 and 

Table 5.5 suggest that the growth was better with bigger ratios of aeration surface over 

culture volume, as cultures with ratios of 9.6, 19, 44.2 have growth rates of 0.0010, 0.0018, 

0.0024 hour-1, and the generation times of 693, 385, 289 hours, respectively. The same result 

can be concluded for Oscillatoria amoena from Figures 5.9 – 5.10 and Table 5.5, as cultures 

with ratios 9.6, 19, 44.2 have growth rates of 0.0028, 0.0047, 0.0052 hour-1, and the 

generation times of 248, 147, 133 hours, respectively. The results are as expected. 

 

     It is apparent that the effect of the ratio of aeration surface over culture volume on cell 

growth is more pronounced with Oscillatoria amoena than Gloeothece membranacea, as the 

doubling time, which is a distinctive character for each strain of microorganisms and it is 

related to the genetics of that particular strain and its natural environment, of Oscillatoria 
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amoena (133 hours) is shorter than that of Gloeothece membranacea (289 hours). This could 

be due to the fact that Oscillatoria amoena is filamentous while Gloeothece membranacea is 

unicellular; the ratio of aeration surface over culture volume has more impact on filamentous 

species than on unicellular ones. 

 

      The outcome of the experiments indicates that the bigger the ratio of surface over volume, 

the faster the cell growth. The ratio of the surface area over culture volume in the TBPBR is 

97 (m2 m-3), which is superior to the ratios used in the light boxes. This in turn supports the 

idea of using the TBPBR to grow these two species.  

 

5.5 Effect of Light Intensity 

 

     Light provides the energy source to the growing culture, and is crucial to the 

photoautotrophic process. Increasing light intensity has been shown to affect nutrients uptake, 

which in turn affects the photosynthesis (Hu et al., 2000). Live vegetative cells and 

heterocysts show a peak, either in numbers or as a percentage of the total cells, at the 

saturation light intensity and decrease at lower and higher intensities (Lee and Rhee, 1999). 

On the other hand, too much light intensity can cause photo inhibition (Ibelings, 1996). 

Photo-oxidative stress is introduced in cyanobacteria due to the absorption of excess light that 

cannot be used productively for photosynthesis. These photo-oxidative conditions lead to 

deactivation of superoxide dismutase (SOD) that absorbs harmful oxygen.  
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To examine the effect of this factor on the cell growth of Gloeothece membranacea and 

Oscillatoria amoena, experiments were carried out at three light intensities: 

 

The lowest light intensity = 3769 Lux, PAR=100 µmol m-2 sec-1; 

The medium light intensity = 6697 Lux, PAR 250 µmol m-2 sec-1; 

The highest light intensity = 9774 Lux, PAR 520 µmol m-2 sec-1. 

 

     Table 5.6summarizes the growth conditions for the cultures of different light intensities, 

and Figure 5.11 shows the light boxes with the cultures of different light intensities. Note that 

the culture volumes remain constant. 

 

Table 5.6 The growth conditions for the cultures of different light intensities 

Strain Gloeothece membranacea, 
Oscillatoria amoena 

Light Intensity 100, 250, 520  µmol.m-2.sec-1 

Wavelength All visible light 

Light Dark Cycle 12/12 Light/Dark 

Growth Medium BG11 

Temperature 25 °C 

Container Flask 250 ml 

Culture Volume 100 ml 

OD 0.050 

Light Position External 

Gas composition Air 

 S/V l/m  44.2 

 



 

 

 

520 µmol m-2 sec-1  

Figure 5.11 Light boxes with the cultures at

75 

250 µmol m-2 sec-1  100 µmol m-2 sec

Light boxes with the cultures at different light intensities

 

sec-1 

different light intensities 
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     Figures 5.12 – 5.15 show the growth and kinetics profiles for Gloeothece membranacea 

and Oscillatoria amoena respectively. Note that the results represented the exponential 

phases only. 

 

Figure 5.12 Growth profile for Gloeothece membranacea with different light intensities 

 

 

Figure 5.13 Kinetic profile for Gloeothece membranacea with different light intensities 
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Figure 5.14 Growth profile for Oscillatoria amoena with different light intensities 

 

 

 

Figure 5.15  Kinetic profile for Oscillatoria amoena with different light intensities 
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     Equations 5.4 -5.5 were used to calculate the growth rates and the generation times of the 

two species and the results are summarized in Table 5.7. 

Table 5.7 The kinetics parameters of the two species with different light intensities 

 Gloeothece membranacea Oscillatoria amoena 

PAR (µmole m
-2

 sec
-1

) 100 250 520 100 250 520 

µ (hour
-1

) 0.0025 0.0025 0.0025 0.0035 0.0048 0.056 

Td (hours) 277 277 277 198 144 125 

 

     For Gloeothece membranacea, the light intensity did not seem to have any impact on the 

growth, as all three curves overlapped in Figures 5.12 -5.13 with the same specific specific 

growth rate of 0.0025 hour-1 and the same generation time of 277 hours, as shown in Table 

5.7. This could be due to the light intensities available in these experiments were in excess for 

this particular species. Thus it could be concluded that light intensity ≥ 100 µmol m-2 sec-1 is 

higher than the optimum light intensity of Gloeothece membranacea, as high light intensities 

overload the phtotsystems with photons which lead to the alteration and interruption of the 

synthesis and degradation of the  light harvesting systems (Kumar et al., 2011).  

 

     However, Table 5.7 indicates that for Oscillatoria amoena, increasing the light intensity 

enhanced the growth, as cultures with light intensities of 100, 250, 520 (µmol m-2 sec-1) gave 

growth rates of 0.0035, 0.0048, 0.0056 hour-1, and the generation times of 198, 144, 124 

hours, respectively. This supports that the light intensity available catered for the energy 

needed for the maintenance of this species only, thus the specific growth rate was 

proportional to light intensity (Merchuk et al., 2007). The difference in results could be 
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explained by the fact that the effect of light intensity and the efficient manipulation of 

photosynthetic irradiation differ significantly for different species of cyanobacteria (Yoon et 

al., 2002).  The design of the TBPBR would give a wide range of light intensities to further 

investigate the findings in the light boxes.  

 

5.6 Effect of Light Wavelength 

 

     The light is absorbed mainly by chlorophyll a within a cell, which receives the blue_ 

violet and the red regions of the visible light spectrum, reflects green light and this is why 

cyanobacteria look green. 

 

     As well as chlorophyll a, cyanobacteria contain other pigments with a range of colours 

including yellow, red, violet, green and blue. These super molecular assemblies are called 

phycobilisomes (PBS), which are attached to the surface of photosystem П core in the 

thylakoid membrane. Each phycobilisome consists of a group of brilliantly coloured 

“phycobiliproteins” (PBP), each of which in turn contains covalently bonded pigments or 

chromophores called “phycobilins” (PB). The primary function of this remarkable light 

harvesting apparatus is to allow the organism to survive in weak light conditions. 

Phycobilisomes possess the particular ability to absorb photons in spectral regions where 

light is only weakly absorbed by chlorophyll, and funnels this absorbed energy to 

photosystem П (PSП) reaction centres with an efficiency greater than 95% (Malkin, 2005). 

As the super molecules structure of phycobilisome is formed, the absorption in the visible 
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region is further enhanced. Apparently, the absorption is influenced by interaction of the 

chromophore with the protein environment (Malkin, 2005). 

 

     Chromatic adaptation occurs in some cyanobacteria, which means that these 

microorganisms can adapt to varying light colours. This is done by cascading energy. The 

energy is carried from higher levels down to lower levels. Violet, blue and green lights have 

the shortest wavelength. This means that these lights have higher frequency and therefore 

higher energy than yellow, orange and red. If violet, blue, or green lights are present the 

cyanobacteria produce high energy carriers whereas when yellow, orange or red light is 

present they produce only low energy carriers. 

 

     Phycobilisomes from cells of different species can have quite different absorption spectra 

(Malkin, 2005), moreover, light quality has an impact on the components of phycobilisome 

(Babu et al., 1991). For those reasons further experiments were carried out using three 

different colours of light (red, yellow, and blue). That was achieved by placing coloured 

transparent films over the flasks to act as filters as shown in Figure 5.16. Those three colours 

were chosen to be tested because LEDs, which were going to be used in the design of the 

TBPBR, are only available in red light or blue and yellow. So it was important to see the 

effect of these three colours on the growth of Gloeothece membranacea and Oscillatoria 

amoena. Table 5.8 lists the growth conditions for the cultures of different light qualities. Note 

that the culture volumes remain constant. All the cultures were placed in the same light box 

to ensure the same light intensity.   
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Table 5.8 The growth conditions for the cultures of different light qualities 

Strain 
Gloeothece membranacea, 

Oscillatoria amoena 
Light Intensity 520 µmol m-2 sec-1 

Wavelength White, Blue, Orange, Red 

Light Dark Cycle 12/12 Light/Dark 

Growth Medium BG11 

Temperature 25 °C 

Container Flask 200 ml 

Culture Volume 100 ml 

OD 0.030, 0.030 

Light Position External 

Gas composition Air 

Aeration S/V 1/m 44.2 

 

 

 

 

Figure 5.16 The light box with the cultures at different light qualities 
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     Figures 5.17 – 5.20 show the growth and kinetics profiles for Gloeothece membranacea 

and Oscillatoria amoena respectively. 

 

Figure 5.17 Growth profile for Gloeothece membranacea with different colours of light 

 

 

Figure 5.18 Kinetic profile for Gloeothece membranacea with different colours of light 
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Figure 5.19 Growth profile for Oscillatoria amoena with different colours of light 

 

 

 

Figure 5.20 Kinetic profile for Oscillatoria amoena with different colours of light 
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     Equations 5.4 -5.5 were used to calculate the specific growth rates and the generation 

times of the two species and the results are summarized in Table 5.9 . 

Table 5.9 The kinetics parameters of the two species with different colour of light 

 Gloeothece membranacea Oscillatoria amoena 

Light Colour White Blue Yellow Red White Blue Yellow Red 

µ (hour
-1

) 0.0025 0.0025 0.0026 0.0024 0.0049 0.0023 0.0023 0.0024 

Td (hours) 277 277 266 288 141 301 301 289 

 

     The same approach which had been used in (5.2) was used here in specifying the growth 

phases. From a brief look at both Figures 5.17 and 5.19, the white light gave the highest 

measurements. However, for Gloeothece membranacea, the growth of the three cultures with 

blue, yellow and red lights looked more or less the same, with the lag phases (denoted as 1B 

on Figure 5.17), where cell concentrations hardly changed over time,  being 1160 hrs, 

comparing to 140 hrs for the white light as shown in Table 5.10.  

Table 5.10 The lag phases of Gloeothece membranacea subject to different light colours 

Growth Phase (hrs) Lag Phase 

White 140 

Blue 1160 

Yellow 1160 

Red 1160 

 

The high specific growth rate of the culture with the white light was expected as the culture 

received the highest light intensity, as placing the transparent films around the other cultures 

reduced the light intensity. Nevertheless in the exponential phases (denoted as 2A and 2B in 

Figure 5.17) where cell concentrations increase exponentially over time, the cultures with 
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white, blue, yellow, red had more or less the same growth rates of 0.0025, 0.0025, 0.0026, 

0.0024 hour-1, and the same generation times of 277, 277, 266, 288 hours, respectively. 

 

     For Oscillatoria amoena the growth profiles were slightly different for each of the light 

wavelengths. First of all, the lag phases (denoted as 1A, 1B, and 1C in Figure 5.19) were 

different, e.g. 260 hrs for the white light, 640 hrs for yellow and blue lights, and 1020 hrs for 

red light as shown in Table 5.11. 

Table 5.11 The lag phases of Oscillatoria amoena subject to different light colours 

Growth Phase (hrs) Lag Phase 

White 260 

Blue 640 

Yellow 640 

Red 1020 

 

However in the exponential phases (denoted as 2A, 2B and 2C in Figure 5.19) where cell 

concentrations increased exponentially over time and, the cultures with white, blue, yellow, 

red had different growth rates of 0.0049, 0.0023, 0.0023, 0.0024 hour-1 and different 

generation times of 141, 301, 301, 289 hours, respectively as it is summarized in Table 5.9. 

The growth of culture with white light was the best with the shortest generation time 141 

hours, while the growth of the other cultures was more or less the same with the generation 

time between 298 and 301 hours. 

    The difference in growth in response to the different wavelengths between the unicellular 

species (Gloeothece amoena) and the filamentous one (Oscillatoria amoena) is expected for 

the reason that different species have different light harvesting pigments and different 

phycobiliproteins, and consequently different abilities of chromatic adaptation.  
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     The initial results in these experiments show that Gloeothece membranacea would grow 

in the yellow, blue and yellow lights at more or less the same rate as in white light, however, 

Oscillatoria amoena would grow at much slower specific growth rate in red, yellow, blue 

lights than in white light. 

 

5.7 Effect of Photoperiod  

 

     Light availability is a critical factor in cyanobacteria cultivation; however, the time period 

that would provide enough light energy for cells to commence photosynthesis has not been 

fully investigated. Because of the high efficiency of pigments, they absorb all light energy 

available for them, although they cannot utilise all. This excess energy is lost as heat; it could 

cause photo-damage to cells, which results in time delay for the cells to repair. This is why it 

is believed that making light available for shorter periods would be better. This in turn would 

save energy consumption. Moreover, mutual shading is generated when cell densities are 

very high, i.e. the cells at the lit surface would absorb all the photons available and shield the 

other cells within the cultures from receiving light energy. The investigation in the following 

experiments aimed to study the effect of different light cycles on the growth of Gloeothece 

membranacea and Oscillatoria amoena. With that purpose in mind, three different light 

cycles for each species were achieved by employing a timer to leave the light on for 24 hrs at 

the first run, 12 hrs on and 12 hrs off at the second run, and 6 hrs on and 18 hrs off at the third 

run. The same light box was used to assure the same light intensity. Table 5.12 summarizes 
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the growth conditions for the cultures of different light-cycles. Note that a constant culture 

volume was used. 

 

Table 5.12 The growth conditions for the cultures of different light cycles 

Strain 
Gloeothece membranacea, 

Oscillatoria amoena 

Light Intensity 250 µmol m-2 sec-1 

Wavelength All visible light 

Light Dark Cycle 
24 hrs light, 12/12 

Light/Dark, 6/18 light/dark 

Growth Medium BG11 

Temperature 25 °C 

Container Flask 400 ml 

Culture Volume 200 ml 

OD 0.060, 0.050 

Light Position External 

Gas composition Air 

Aeration S/V 1/m 28.4 
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     Figures 5.21 – 5.24 displays the growth and kinetics profiles for Gloeothece membranacea 

and Oscillatoria amoena respectively. Note that the results represent the exponential phases 

only. 

 

Figure 5.21 Growth profile for Gloeothece membranacea with different light cycles 

 

 

Figure 5.22 Kinetic profile for Gloeothece membranacea with different light cycles 
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Figure 5.23 Growth profile for Oscillatoria amoena with different light cycles 

 

 

 

Figure 5.24 Kinetic profile for Oscillatoria amoena with different light cycles 
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     Equations 5.4 -5.5 were used to calculate the growth rates and the generation times of the 

two species and the results are summarized in Table 5.13. 

 

Table 5.13 The kinetics parameters of the two species with different light cycles. 

 Gloeothece membranacea Oscillatoria amoena 

Light/Dark
 

24/0 12/12 6/18 24/0 12/12 6/18 

µ (hour
-1

) 0.0024 0.0024 0.0024 0.0048 0.0048 0.0048 

Td (hours) 289 289 289 144 144 144 

 

     For both Gloeothece membranacea and Oscillatoria amoena, it is apparent that making 

the light available for 24 hrs did not improve the growth, as Gloeothece membranacea with 

different light cycles gave the same specific growth rate of 0.0024 hour-1 and the same 

generation time of 289 hours, and Oscillatoria amoena with different light cycles also gave 

the same specific growth rate of 0.0048 hour-1and the same generation time of 144 hours. 

 

     The most interesting results are that the same growth kinetic as the other two light cycles 

were obtained with only 6 hrs light duration for both Gloeothece membranacea and 

Oscillatoria amoena. This could be explained by the fact that once a cell has enough light 

energy to commence photosynthesis, excess light is redundant. The results here are very 

encouraging because making the light period shorter would mean less energy consumption. 

However, due to the shortage of time, what would be the minimum light exposure without 

affecting the growth is still to be determined. In the TBPBR, a 6 hrs on and 18 hrs off would 

be used as the operational parameters. Note that culture that had the light on all the time 
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turned yellow. This would indicate that the conditions were adverse for the cells, since there 

is evidence that when environmental conditions become unfavourable, the culture starts 

forming resistant spores, and when this happens the green coloured culture turns yellow 

(Thiel and Pratte, 2001, Thiel and Wolk, 1983). 

 

5.8 Effect of Mixing 

 

     Mixing is one of the most important factors in microorganism growth, as it has a vital 

influence on light availability; reduces mutual shading in high cell densities cultures; mimics 

the effect of flashing light in cultures with densities over the critical cell density; makes more 

air available for the cells (Hu et al., 2000); affects mass transfer rate between cells and media, 

and between cells and air; prevent sedimentation of cells. Moreover, mixing helps to release 

the evolved oxygen from the media that is produced during photosynthesis, as too much 

dissolved oxygen will oxidise photosystem П and inhibit photosynthesis, which in turn could 

lead to severe growth inhibition (Wang et al., 2012). However, violent mixing might damage 

microorganisms and prevent metabolism, which in turn might be detrimental to cell growth. 

To study the effect of mixing on the growth, two different mixing rates were used as well as 

without mixing. Table 5.14 displays growth conditions for cultures with different mixing 

conditions and Figure 5.25 shows the light box with the cultures with different mixing 

conditions. Note that the culture volumes remain the same. 

 

  



 

 

 

Table 5.14 The growth conditions for the cultures of different mixing conditions

Strain

Light Intensity

Wavelength

Light Dark Cycle

Growth Medium

Temperature

Container

Culture Volume

Light Position

Gas composition

Aeration S/V 1/m

 

 

Figure 5.25 The light box 
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The growth conditions for the cultures of different mixing conditions

Strain 
Gloeothece membranacea, 

Oscillatoria amoena 
Light Intensity 520 µmol.m-2.sec-1 

Wavelength All visible light 

Light Dark Cycle 12/12 Light/Dark 

Growth Medium BG11 

Temperature 25 °C 

Container Flask 400 ml 

Culture Volume 200 ml 

OD 0.053, 0.053 

Light Position External 

Gas composition Air 

Aeration S/V 1/m 28.4 

 

The light box with the cultures at different mixing conditions

The growth conditions for the cultures of different mixing conditions 

 

different mixing conditions 
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     Figures 5.26 – 5.29 show the growth and kinetics profiles for Gloeothece membranacea 

and Oscillatoria amoena respectively. Note that the results represented the exponential 

phases only. 

 

Figure 5.26 Growth profile for Gloeothece membranacea with and without mixing 

 

 

Figure 5.27 Kinetic profile for Gloeothece membranacea with and without mixing 
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Figure 5.28 Growth Profile for Oscillatoria amoena with and without mixing 

 

 

Figure 5.29 Kinetic profile for Oscillatoria amoena with and without mixing 

  

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

C
el

l c
o

n
ce

n
tr

at
io

n
 (

m
g

/l)

Time (hrs)

no mix 350 rpm 1200rpm

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000

ln
 C

Time (hrs)

no mix 350 rpm 1200rpm



 

95 
 

     Equations 5.4 -5.5 were used to calculate the growth rates and the generation times of the 

two species and the results are summarized in Table 5.15. 

 

Table 5.15 The kinetics parameters of the two species with different mixing intensity 

 Gloeothece membranacea Oscillatoria amoena 

Re
 

0 40,000 160,000 0 40,000 160,000 

µ (hour
-1

) 0.0024 0.0029 0.0024 0.0048 0.0048 0.0048 

Td (hours) 289 239 289 144 144 144 

 

     The growth and kinetic profiles in Figures 5.26 -5.27 and the summarized results in Table 

5.15 reveal that mixing at 350 rpm improved the growth of Gloeothece membranacea, as it 

had a higher specific growth rate of 0.0029 hour-1 and a shorter generation time of 239 hours. 

Without mixing it had a specific growth rate of 0.0024 hour-1 and a generation time of 289 

hours. However, this was not the case with mixing at 1200 rpm, as the culture at the highest 

mixing rate had the same specific growth rate of 0.0024 hour-1 and the same generation time 

of 289 hours as a culture with no mixing. This maybe due to the high shear experienced in the 

later condition, which had adverse effect on cell integrity. 

 

     For Oscillatoria amoena mixing had little effect on the cell growth, as the cultures had the 

same specific growth rate of 0.0048 hour-1 and the same generation time of 144 hours 

(Figures 5.28 -5.29). This is may be due to that Oscillatoria amoena is filamentous and 

mixing broke down the filaments and may have resulted in the same severe effect it had on 

the growth of Gloeothece membranacea at 1200 rpm, as vigorous mixing might prevent cell 
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growth as a result of hydrodynamic stress on the microalgal cells (Vunjak-Novakovic et al., 

2005). In the design of the TBPBR, only moderate mixing (Re=500-1580) will be applied 

offering an enhanced mass transfer rate due to much small and even bubble size distribution, 

facilitating better cell growth. 

 

5.9 Effect of Cell Density 

 

     . Available light intensity decreases as cell density increases. Hence, a lesser cell density 

culture will be exposed to stronger light intensities. However, as cell densities increases, 

mutual shading would have more effect on cell growth. The cell density of a culture which 

grows without mutual shading is called the critical cell density (CCD). This new parameter 

has increasingly been used in the design of photobioreactors. To study the effect of the initial 

cell density on the growth, find out the critical cell densities of the two species in this 

research, six different initial cell densities were used for each species. Table 5.16 tabulates 

the growth conditions for the cultures of different initial cell densities, and Figure 5.30 shows 

the light box with the cultures of different initial cell densities. Note that the culture volume 

remains the same. 

  



 

97 
 

 

Table 5.16 The growth conditions with the cultures of different cell densities 

Strain 
Gloeothece membranacea, 

Oscillatoria amoena 
Light Intensity 100 µmol m-2 sec-1 

Wavelength All visible light 

Light Dark Cycle 12/12 Light/Dark 

Growth Medium BG11 

Temperature 25 °C 

Container Flask 400 ml 

Culture Volume 200 ml 

OD Varied 

Light Position External 

Gas composition Air 

S/V L/m  44.2 

 

191.8 mg l-1   383.6 mg l-1    479.5 mg l-1

  

23.5 mg l-1     47.0 mg l-1     94.0 mg l-1  

The numbers indicate the optical densities at the start of the experiments. 

Figure 5.30 The light box with the cultures of different initial cell densities 
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     Figures 5.31 -5.34 show growth and kinetics profiles for Gloeothece membranacea and 

Oscillatoria amoena respectively. Note that the results represented the exponential phases 

only. 

 

Figure 5.31 Growth profile for Gloeothece membranacea with different cell densities 

 

 

Figure 5.32 Kinetic profile for Gloeothece membranacea with different cell densities 
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Figure 5.33 Growth profile for Oscillatoria amoena with different cell densities 

 

 

Figure 5.34 Kinetic profile for Oscillatoria amoena with different cell densities 
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     The results in Figures 5.31 – 5.32 and Table 5.17 show that the growth rates for 

Gloeothece membranacea at the initial cell densities of 23.5, 47.0 and 94.0 mg l-1 were the 

same of 0.0024 hour-1 as with the same slope, and the generation times were the same too of 

289 hours. However, the specific growth rate and the generation time for the culture of the 

initial cell density of 191.8 mg l-1 were 0.0007 hour-1 and 990 hours which were much longer 

than that of the previous cell densities. There was hardly any growth at all for the cultures of 

the initial cell densities of 383.6 and 479.5 mg l-1, where the growth rates were 0.0001 and 

0.00003 hour-1, and the generation times were 6931 and 23105 hours, respectively. It should 

be noted that there is a gap in the growth rates and the generation times between the cell 

densities 94.0 and 191.8 mg l-1, and due to time constraint these experiments were not carried 

out in this thesis work. Based on available results, it could be concluded that the critical cell 

density for G. membranacea  (CCD) is about 94.0 mg l-1, which means that cultures with CD 

≤ 94.0 mg.l-1  would grow without mutual shading, while cultures with CD > 94.0 mg.l-1 

would grow with mutual shading. All results are summarised in Table 5.17. 

Table 5.17 Kinetics parameters of Gloeothece membranacea at different cell densities 

 Gloeothece membranacea 

C (mg l
-1

) 23.5 47.0 94.0 191.8 383.6 479.5 

µ (hour
-1

) 0.0024 0.0024 0.0024 0.007 0.0001 0.00003 

Td (hours) 289 289 289 990 6931 23105 

 

     The same trend applies for Oscillatoria amoena, as the cultures of the initial cell densities 

of 52.2, 104.5, and 208.9 mg l-1 had the same growth rates and generation times of 0.0048 

hour-1 and 144 hours respectively. While the growth rates and generation times of the cultures 

of the initial cell densities of 440.8, 1044.5, 1673.3 mg l-1 were of 0.0034, 0.0023 and 0.0018 
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hour-1, 204, 301 and 385 hours respectively. Once again there is a gap in the growth rates and 

generation times between the cell densities 208.9 and 440.8 mg l-1, and due to time constraint 

these experiments were not able to be carried out in this thesis work.  Based on the data 

obtained, the critical cell density for Oscillatoria amoena (CCD) was found to be around 

about 208.9 mg.l-1, which means that cultures with CD ≤ 208.9 mg.l-1 would grow without 

mutual shading; cultures with CD > 288.9 mg.l-1 would grow with mutual shading. Also, 

further investigation is required as there is a gap. These critical cell densities will be further 

investigated at the TBPBR trials. All results are summarized in Table 5.18. 

Table 5.18 Kinetics parameters of Oscillatoria amoena at different cell densities 

 Oscillatoria amoena 

C (mg l
-1

)
 

52.2 104.5 208.9 440.8 1044.5 1673.3 

µ (hour
-1

) 0.0048 0.0048 0.0048 0.0034 0.0023 0.0018 

Td (hours) 144 144 144 204 301 385 

 

5.10 Effect of Temperature 

 

     From chemical reaction engineering viewpoint, the reaction rate is a function of 

temperature. The effect of temperature on cell cultures relates to both the temperature 

dependence of the structural components of the cells (particularly lipids and proteins) and the 

temperature coefficient of reaction rates. A consequence of these primary effects are the 

significant changes in metabolic regulatory mechanics, specificity of enzyme reactions, 

permeability and cell composition (Richmond, 1986). To examine the effect of temperature 

on microbial growth, experiments were conducted at three temperatures (25 °C, 30 °C and 38 



 

 

°C). These were achieved by using hot plates to control the temperature. 

growth conditions for the cultures of different temperatures, and 

with the cultures of different temperatures. Note that the culture volume remains constant.

Table 5.19 The growth conditions for the cultures different temperatures

Strain

Light Intensity

Wavelength

Light Dark Cycle

Growth Medium

Temperature

Container

Culture Volume

Light Position

Gas composition

Aeration S/V 1/m

Figure 5.35 The light box with cultures at

102 

). These were achieved by using hot plates to control the temperature. Table 

growth conditions for the cultures of different temperatures, and Figure 5

with the cultures of different temperatures. Note that the culture volume remains constant.

The growth conditions for the cultures different temperatures

Strain 
Gloeothece membranacea, 

Oscillatoria amoena 
Light Intensity 520 µmol m-2 sec-1 

Wavelength All visible light 

Light Dark Cycle 12/12 Light/Dark 

Growth Medium BG11 

Temperature 25 °C,30 °C, 38 °C 

Container Flask 400 ml 

Culture Volume 200 ml 

OD 0.102, 0.012 

Light Position External 

Gas composition Air 

Aeration S/V 1/m 44.2 

 

The light box with cultures at different temperatures

Table 5.19 lists the 

5.35 is the light box 

with the cultures of different temperatures. Note that the culture volume remains constant. 

The growth conditions for the cultures different temperatures 

 

different temperatures 
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     Figures 5.36 -5.39 show the growth and kinetics profiles for Gloeothece membranacea 

and Oscillatoria amoena respectively. Note that the results represent the lag and the 

exponential phases. 

 

Figure 5.36 Growth profile for Gloeothece membranacea with different temperatures 

 

 

Figure 5.37 Kinetic profile for Gloeothece membranacea with different temperatures 
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Figure 5.38 Growth profile for Oscillatoria amoena with different temperatures 

 

 

Figure 5.39 Kinetic profile for Oscillatoria amoena with different temperatures 
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     Equations 5.4 -5.5 were used to calculate the growth rates and the generation times of the 

two species and the results are summarized in Table 5.20. 

Table 5.20 The kinetic parameters of the two species with different temperatures 

 Gloeothece membranacea Oscillatoria amoena 

T (°C) 
25 30 38 25 30 38 

µ (hour
-1

) 0.0024 0.0024 0.0006 0.0048 0.0048 0.0005 

Td (hours) 289 289 11552 144 144 1386 

 

     For both Gloeothece membranacea and Oscillatoria amoena, the growth at 38 °C seems 

to be stopped, as the growth rates were much slower of 0.00006 and 0.0005 hour-1and the 

generation times much longer of 11552 and 1386 hours respectively, compared to growth 

rates of 0.0024 and 0.0048 hour-1 and the generation times of 289 and 144 hours at 25 °C. 

This could be explained by the fact that above a certain temperature, particular proteins and 

lipids may irreversibly be damaged (Madigan et al., 2000). Moreover, the reaction rates in 

micro algal cells are significantly affected by the environmental temperature (Sandnes et al., 

2005). It can further be noted that the temperature had a more adverse effect on the 

unicellular species than that on the filamentous one. This could be explained by the fact that 

filamentous species cells are closely connected to each other in each filament which in turn 

makes them more protective. 

 

     Furthermore, the growth and kinetic profiles are identical for 25 °C and 30 °C for both the 

species studied, this could imply that the temperature range of 25-30 °C is the optimum one 

for both Gloeothece membranacea and Oscillatoria amoena as the growth rates were 0.0024 
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and 0.0048 hour-1 and the generation times 289 and 144 hours. However, more experiments 

are required at temperatures less than 25 °C in order to further confirm the optimum 

temperature range. Due to the time constraint, these tests were not undertaken. As a result, 25 

°C will be the baseline temperature in the design of TBPBR.  
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CHAPTER 6 THE CULTIVATION OF GLOEOTHECE 

MEMBRANACE IN THE TUBULAR BAFFLED PHOTO 

BIOREACTOR (TBPBR) 

 

     In general photo-bioreactors are classified according to the shape of the devices: tubular or 

flat panel; the orientation of the device; the means of flow of the culture; the method used to 

supply the light; and the type of gas exchange system. The most important factors that need 

to be addressed are: the availability and efficient use of both light and CO2, and the handling 

of the release of O2 which is produced by photosynthesis, as it inhibits metabolism and 

eventually prevents cells from growth, if it is allowed to accumulate. Productivity is 

dependent on the environmental conditions of the micro-algal species chosen for the study 

and is determined by the growth rate. However, more research is still required for the 

optimum design of a photo bioreactor on an industrial level with many technical and 

economical challenges (Sforza et al., 2012). 

 

     In an oscillatory baffled bioreactor, the mass transfer coefficient kLa was 75% higher than 

that in a stirred tank fermenter and six times higher than that in bubble columns (Sforza et al., 

2012, Ruiz-Marin et al., 2010, Ni and Gao, 1996, Gaidhani et al., 2003, Yuen et al., 2005), 

and the shear rate is lower than that in an equivalent stirred tank reactor (Posten, 2009)  The 

uniform mixing with excellent mass transfer in this type of bioreactors would lead to 

satisfactory contribution of nutrients to microorganisms and efficient removal of gases and 

other by-products of catabolism from the microenvironment of the cells. Moreover, the scale-

up correlation of oscillatory baffled reactors is linear (Reijnders, 2013, Wang et al., 2012, 
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Vega-Estrada et al., 2005, Vunjak-Novakovic et al., 2005), enabling direct transfer of 

knowledge learnt from laboratory to full scale production. The motivation of applying this 

type of bioreactor was stemmed from those previous studies. In continuous oscillatory baffled 

bioreactors, the uniform mixing is achieved by the combination of fluid oscillation with the 

presence of baffles. Plug flow characteristics are obtained under laminar flow conditions. A 

variation of this type of devices is the tubular baffled reactor (NiTech Patent 

US2010/0124145). The mixing is achieved by the combination of the net flow with the 

presence of orifice baffles. The advantage of this variation is that the need for oscillation is 

removed, this brings up simplicity and robustness to the operation, in particular, to this 

project where each experiments has a typical duration of 4 weeks. The downside of this is the 

compromise on the residence time, since the net flow Reynolds number is in the range of 

500+ in comparison to 150 with oscillation. This shortcoming was overcome by the design of 

operating it in a loop in order to accommodate the duration of the experiment. 

  

     Only Gloeothece membranacea was chosen to be studied in the TBPBR for the following 

reasons: 

1) From the batch data it was concluded that mixing improved the growth of Gloeothece 

membranacea, but not Oscillatoria amoena, which is a filamentous species and 

mixing might have caused the breaking down of the filaments; 

2) Gloeothece membranacea grew as fast with blue and yellow LEDs as with white 

LEDs, while Oscillatoria amoena grew very poorly in blue and yellow light; 

3) The cells of Oscillatoria amoena turned yellow when mixing was applied and when 

growing with blue and yellow LEDs. This would indicate that the conditions were 

adverse for the cells, since there is an evidence that when environmental conditions 
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become unfavourable, the culture starts forming climate resistant spores, and when 

this happens the green coloured culture turns yellow (Thiel and Pratte, 2001, Thiel 

and Wolk, 1983). 

 

     The objectives of these planned experiments were to 

a) Confirm and verify some of the data obtained in the light boxes; 

b) Extend the findings from the light boxes; 

c) Identify the operational conditions for continuous culture of cyanobacteria in 

the TBPBR, whether these could be used as the raw materials for either 

biodiesel production or hydrogen generation. 

 

6.1 The Cultivation Parameters in the TBPBR 

 

     The outcome of the batch work in the light boxes indicated that the bigger the ratio of 

surface area over volume, the faster the cell growth. That ratio in the TBPBR was 97 m-1, 

which is superior to the ratios used in the light boxes.  

 

     It was also noted that light intensities ≥ 100 µmol m-2 sec-1 did not have any impact on the 

growth of the species chosen for this study (Figure 5.12), so 100 µmol m-2 sec-1 was the 

baseline light intensity, however other light intensities in the range of 20-200 µmol m-2 sec-1 

were tested in the bioreactor in order to find out if the parameters of cultivation of G. 
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membranacea would change between the light boxes and the TBPBR, while other process 

parameters remain the same.  

 

     As LEDs were only available in white (which has blue and yellow wavelength but looks 

white to the human eye) or in red, and G. membranacea grew in yellow and blue light as fast 

as in white light (Figure 5.17), and the effects of these two light colours on cell growth were 

rarely, if at all, studied in the literature, the same white LEDs were used in the TBPBR.  

 

     The batch data also indicated that exposing the cells of G. membranacea for only 6 hours 

a day allowed the species to grow as fast as exposing it to 12 or 24 hours of light a day 

(Figure 5.21). Thus it was decided that the light cycle of 6/18 light/dark was the baseline for 

the experiments in the TBPBR. However, other light cycles were also investigated to verify 

and expand the results of light cycles in the light boxes and the TBPBR.  

 

     To achieve uniform mixing between the cells and the media, the flow rates of 1-3 L min-1 

with Reynolds numbers of 500-1580 were applied in the TBPBR. The data can be compared 

and extended with respect to the benchmarking data. 

 

     It was concluded that the critical cell density of G. membranacea (CCD) was ≥ 94.0 mg/l, 

which means that cultures with CD ≤ 94.0 mg.l-1 would grow without self shading, while 

cultures with CD > 94.0 mg.l-1 would grow with self shading (Figure 5.31). It was decided 

that the the baseline of the cell density used in the TBPBR would be 94.0 mg l-1.  
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     Temperature experiments suggested that the optimum range for the growth of G. 

membranacea is 25-30 °C (Figure 5.36), so 25 °C was the baseline temperature for the 

operation in the TBPBR. All growth conditions of the species are summarized in Table 6.1. 

 

Table 6.1 The growth conditions of Gloeothece membranacea                                                                         
in the TBPBR 

Strain Gloeothece membranacea 

Light Intensity 100 (µmol m-2 sec-1) 

Wavelength Yellow, Blue 

Light Dark Cycle 6/18 Light/Dark 

Growth Medium BG11 

T 25 Cº 

Container TBPBR 

Culture Volume 5L 

Cell Density 94 (mg l-1) 

Light Position Internal 

Gas composition Air 

Flow Rate 1-3 (l min-1) 

Re 500-1580 

 S/V l/m  97 m2 m-3 

 

     The same methods of evaluating growth kinetics in Chapter 5 are used here. Also, culture 

preparation was the same as in the light boxes to ensure the same culture conditions. 
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6.2 The Light Saturation Level  

 

     Mass culture growth is limited by light availability and micro-algal photosynthesis 

kinetics are greatly affected by light because it is easily absorbed and scattered by cells (Jeon 

et al., 2005). However excessive light intensities inhibit photosynthesis, cause photo-

oxidation of chlorophyll, and enhance photo-respiration (Smith et al., 1980). A large lit 

surface area over volume is very desirable in photobioreactors. There is evidence in the 

literature that 7.3 µmol/m2.sec light intensity was enough to maintain photosynthesis 

(Ogbonna and Tanaka, 1997). This must depend on the devise used to grow the culture. In the 

light boxes the results indicated that light intensities equal or higher than 100  µmol m-2 sec-1 

did not improve the growth for Gloeothece membranacea, which might imply that light 

saturation level for this particular species is equal or less than 100 µmol m-2 sec-1. In order to 

investigate the light saturation level for this species 5 different levels of light intensities were 

applied within the TBPBR as shown in Table 6.2. Figure 6.1 shows the set-up of the tubular 

baffled photo bio-reactor for the light saturation level experiments. 

Table 6.2 The growth conditions of the cultures                                                                        
of different light intensities in the TBPBR 

Strain Gloeothece membranacea 
Light Intensity 20,40,80,120,160 (µmol m-2 sec-1) 
Wavelength Yellow, Blue 

Light Dark Cycle 6/18 Light/Dark 
Growth Medium BG11 

T 25 Cº 
Container TBPBR 

Culture Volume 5L 
Cell Density 94 (mg l-1) 

Light Position Internal 
Gas composition Air 

Flow Rate 1-3 (l min-1) 
Re 500-1580 

 S/V l/m  97 
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Figure 6.1 The set-up of the TBPBR for the light saturation level experiments 

 

  

Air inlet 

Air outlet 
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     Figures 6.2 – 6.3 show the growth and kinetics profiles for Gloeothece membranacea in 

the TBPBR. Note that the results represent the exponential phases only. 

 

Figure 6.2 The Growth profile of Gloeothece membranacea                                                    
in the TBPBR with different light intensities 

 

 

Figure 6.3 The kinetic profile of Gloeothece membranacea                                                      
in the TBPBR with different light intensities  
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     Equations 5.4 -5.5 were used to calculate the specific growth rate and the generation time 

of Gloeothece membranacea, and the results are summarized in Table 6.3. 

 

Table 6.3 The kinetics parameters in the light boxes                                                                          
and the TBPBR with different light intensities  

 The TBPBR The Light Boxes 

PAR 
 

20 40 80 160 220 100 250 520 

µ (hour
-1

) 0.0006 0.0017 0.0024 0.0024 0.0024 0.0025 0.0025 0.0025 

Td (hours) 1155 408 289 289 289 277 277 277 

 

          The growth and kinetic profiles of Gloeothece membranacea in Figures 6.2 – 6.3 and 

the summarized results in Table 6.3 show that increasing the light intensity up to 80 µmol m-2 

sec-1 in the TBPBR enhanced the growth, as these light intensities gave higher growth rates of 

0.0006, 0.0017, 0.0024 hour-1 and shorter generation times of 1155, 408, 289 hours. 

However, light intensities higher than 80 µmol m-2 sec-1 did not improve the growth, as the 

cultures with light intensities of 80, 160, 220 µmol m-2 sec-1 had the same specific growth rate 

of 0.0024 hour-1 and the same generation time of 289 hours. This may be due to the fact that 

the high light intensities caused photo-inhibition, which in turn caused the inactivation of 

other oxygen evolving systems and electron carriers (Kumar et al., 2011). The results in the 

light boxes also showed that the culture of Gloeothece membranacea at light intensities of 

100, 250, 520 µmol m-2 sec-1 gave the same specific growth rate 0.0025 of hour-1 and the 

same generation time of 277 hours. The findings in the light boxes and the TBPBR might 

imply that the light saturation level for the growth of Gloeothece membranacea is 80 µmol m-

2 sec-1 .  
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6.3 The Period of Light Availability  

 

     Light availability is one of the most important limiting factors in cyanobacterial growth, as 

it controls the rate of photosynthesis and productivity. The tests in the light boxes indicate 

that the light period of 6 hrs on and 18 hrs off gave the same specific growth rate as that when 

the light period was 24 hrs. In order to validate and confirm the findings and to find out the 

minimum light exposure, the effect of varing light periods were further examined in the 

TBPBR.     Table 6.4 displays the growth conditions for the cultures of different light cycles 

inside the TBPBR and Figure 6.4 shows the set-up of the tubular baffled photo bio-reactor for 

the light on and off for the light availability experiments. 

 

     Table 6.4 The growth conditions of the cultures                                                                   
of different light cycles in the TBPBR 

Strain Gloeothece membranacea 

Light Intensity 80 (µmol m-2 sec-1) 

Wavelength Yellow, Blue 

Light Dark Cycle 2/22,4/20,6/18,12/12, 24/0 Light/Dark 

Growth Medium BG11 

T 25 Cº 

Container TBPBR 

Culture Volume 5L 

Cell Density 94 (mg l-1) 

Light Position Internal 

Gas composition Air 

Flow Rate 1-3 (l min-1) 

Re 500-1580 

S/V l/m  97 
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Figure 6.4 The tubular baffled photo bio-reactor with the lights on (on the left) and off (on the 
right). 
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     Figures 6.5 - 6.6 show the growth and kinetics profiles for Gloeothece membranacea in 

the TBPBR. Note that the results represent the exponential phases only. 

 

Figure 6.5 The growth profile for Gloeothece membranacea                                                    
in the TBPBR with different light cycles 

 

 

Figure 6.6 Kinetic profile for Gloeothece membranacea                                                                
in the TBPBR with different light cycles  
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     Equations 5.4 -5.5 were used to calculate the specific growth rate and the generation time 

of Gloeothece membranacea and the results are summarized in Table 6.5 

 

Table 6.5 The kinetics parameters in the light boxes                                                                        
and the TBPBR with different photoperiods  

 The TBPBR The Light Boxes 

Light/Dark 
 

2/22 4/20 6/18 12/12 24/0 6/18 12/12 24/0 

µ (hour
-1

) 0.0009 0.0018 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 

Td (hours) 770 385 289 289 289 289 289 289 

 

 

     The growth and kinetic profiles for Gloeothece membranacea in Figures 6.5 - 6.6 and 

Table 6.5 reveal that making the light available for 6, 12, or 24 out of 24 hours did not 

enhance the growth, as cultures subjected to these conditions had the same specific growth 

rate and the generation time of 0.0024 hour-1 and 289 hours respectively. However, 

decreasing the period of light availability decreased the specific growth rate and increased the 

generation time, as cultures subjected to 4 or 2 out of 24 hours had growth rates of 0.0018 

and 0.0009 hour-1 respectively, and generation times of 385 and 770 hours respectively. The 

results indicate that only 6 hours of light in 24 hours is sufficient for the growth of 

Gloeothece membranacea in the TBPBR. This further validates the results in the light boxes, 

which also suggest that exposing this species for only 6 hours of light is enough for the 

growth as shown in Table 6.5. 
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6.4 The Critical Cell Density CCD  

 

     In high density cultures, light availability is affected by self-shading. However fluid 

dynamics plays a major role, not only in minimizing the effect of self-shading in dense 

cultures, but also in mass transfer and transport mechanism between CO2, other nutrients and 

cells. In the light boxes the critical cell density (CCD) of Gloeothece membranacea was 94.0 

mg l-1, which means that cell densities higher than 94.0 mg l-1 would grow with self shading. 

In order to evaluate and validate the findings and to find out the desirable CCD in the TBPBR 

without mutual shading, further experiments were undertaken. Table 6.6 displays the growth 

conditions for the cultures of different cell densities inside the TBPBR.  

 

Table 6.6 The growth conditions of the cultures of                                                             
different initial cell densities in the TBPBR 

 

Strain Gloeothece membranacea 
Light Intensity 80 (µmol m-2 sec-1) 
Wavelength Yellow, Blue 

Light Dark Cycle 6/18 Light/Dark 
Growth Medium BG11 

T 25 Cº 
Container TBPBR 

Culture Volume 5L 
Cell Density 94.0,188.0,282.0,376.1,470.1 (mg l-1) 

Light Position Internal 
Gas composition Air 

Flow Rate 1-3 (l min-1) 
Re 500-1580 

S/V l/m  97 

  



 

121 
 

     Figures 6.7 – 6.8 show the growth and kinetics profiles for Gloeothece membranacea in 

the TBPBR. Note that the results represent the exponential phases only. 

 

 

Figure 6.7 Growth profile for Gloeothece membranacea with different initial cell densities 

 

 

Figure 6.8 Kinetic profile for Gloeothece membranacea with different initial cell densities 
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     Equations 5.4 -5.5 were used to calculate the specific growth rate and the generation time 

of Gloeothece membranacea and the results are summarized in Table 6.7. 

 

Table 6.7 The kinetics parameters in the light boxes                                                                         
and the TBPBR with different cell densities 

 TBPBR LIGHT BOXES 

C (mg l
-1

) 94.0 188.0 282.0 376.0 470.0 23.5 47 94 191.8 383.6 479.5 

µ (hour
-1

) 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0007 0.0001 0.0003 

Td (hours) 289 289 289 289 289 289 289 289 990 6931 23105 

 

     Table 6.7 demonstrates that cultures with the initial cell densities 94.0, 188.0, 282.0, 376.0 

and 470.0 mg l-1 had the same specific growth rate and the generation times of 0.0024 hour-1 

and 289 hours respectively. The results could be explained by the efficiency of mixing in the 

TBPBR, which may resulted in higher efficiency of light availabilities at higher cell densities, 

as improving mixing is one of the most tailored strategies to develop light delivery (Wang et 

al., 2012).  

 

      Comparing the results in the TBPBR to that in the light boxes reveals that the growth was 

improved in the TBPBR as the cell density of 94.0 mg l-1 was no longer the critical cell 

density for Gloeothece membranacea in the TBPBR as higher cell densities up to 470 mg l-1 

grew at the same specific growth rate and had the same generation time, which means that 

this species could be cultivated in the light boxes of density up to 94.0 mg l , while up to 470 

mg l-1 in the TBPBR without affecting the growth, as light intensities higher than the 
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optimum values lead to higher percentage of the cells to stay in the dark due to self shading 

(Kumar et al., 2011). 

6.5  Air Addition 

     High velocities and small bubbles enhance mixing, as in traditional stirred tanks air 

velocity affects bubble size and bubble diameter affects transfer coefficients (Anderson et al., 

2002). Bubbling gas through the bottom of the photo bioreactor increased the efficiency of 

consuming CO2 and released the inhibitory accumulated O2 (Wang et al., 2012). However, it 

is practically challenging to have both high velocities and small bubbles. To investigate the 

effect of bubbling air through the bottom of the TBPBR, further tests were conducted where 

air at different flow rates was added only at the bottom of the right side of the loop, i.e. there 

are air bubbles in the baffled tube on the right hand side of Figure 6.1, however, there are no 

air bubbles at all in the baffled tube on the left hand side of the same figure. The purpose of 

this arrangement was to compare the effect of culture with and without air on the growth as 

well as cleanliness. Table 6.8 shows the growth conditions for the cultures with different air 

velocity inside the TBPBR.  

Table 6.8 The growth conditions of the cultures                                                                                     
of different air flow rates in the TBPBR 

Strain Gloeothece membranacea 
Light Intensity 80 (µmol m-2 sec-1) 
Wavelength Yellow, Blue 

Light Dark Cycle 6/18 Light/Dark 
Growth Medium BG11 

T 25 Cº 
Container TBPBR 

Culture Volume 5L 
Cell Density 94 (mg l-1) 

Light Position Internal 
Gas composition Air 

Flow Rate 1-3 (l min-1) 
Re 500-1580 

S/V l/m  97 
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     Figures 6.9 – 6.10 show the growth and kinetics profiles for Gloeothece membranacea in 

the TBPBR. Note that the results represented the exponential phases only. 

 

 

Figure 6.9 Growth profile for Gloeothece membranacea with different air flow rates 

 

 

Figure 6.10 Kinetic profile for Gloeothece membranacea with different air flow rates  
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     Equations 5.4 -5.5 were used to calculate the specific growth rate and the generation time 

of Gloeothece membranacea and the results are summarized in Table 6.9 

 

Table 6.9 The kinetics parameters in the TBPBR with different air flow rates  

Air Flow (ml min
-1

) 0 200 300 400 500 

Aeration rate (vvm) 0 0.04 0.06 0.08 0.10 

µ (hour
-1

) 0.0024 0.0027 0.0029 0.0024 0.0024 

Td (hours) 289 257 239 289 289 

 

 

     The growth and kinetic profile in Figures 6.9 – 6.10 and the summarized results in Table 

6.9 indicate that the specific growth rate of G. membranacea with different air flow rates 

went through a peak, as increasing the flow rates of air from 0 – 400 ml min-1 increased the 

specific growth rate from 0.0024 to 0.0029 hour-1 and decreased the generation times from 

289 to 239 hrs. This might be due to the removal of the accumulated oxygen, which has 

negative impact on cell growth.  The incoming air (Wang et al., 2012), and the higher the 

flow rates of air removed greater amounts of the oxygen. Also, the presence of baffles 

promotes narrower bubble size distribution, as baffles lead to bubble breakage as well as 

bubbles trapping underneath them. The effect of breakage and trapping of bubbles was to 

simultaneously increase the number of both small bubbles and gas hold-up (Oliveira et al., 

2003, Oliveira and Ni, 2004). The higher the superficial gas velocity, the higher the gas hold-

up. However, increasing the air flow rates further from 400 – 600 ml min-1 decrease the 

growth rates from 0.0029 to 0.0024 hour-1 and increase the generation times from 289 to 239 

hrs as extreme gas velocities damage cells and prevent growth (Vega-Estrada et al., 2005).  



 

 

Furthermore, bubbling air through the bottom of the right side of baffled tube

the cleanliness of the TBPBR, as air bubbles break loose and carry

attached onto the baffles and tube surfaces, leading to far cleaner baffles and brighter lights in 

the side of the TBPBR where the air was added as shown in 

that adding air prevented the microorganisms from accumulating on the baffles which could 

eventually lead to blockage.  

 

Figure 6.11 The effect of adding air on the fouling in the TBPBR. 
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6.6 Addition of Carbon dioxide 

 

     Cyanobacteria have the distinctive advantage of using CO2 in the air as their carbon source 

to produce cellular substances, hence reduce the effect of this green house gas in the 

environment. In fact, CO2 is a limiting factor in cyanobacteria cultures. The cultivation of 

cyanobacteria for bio-fixation of CO2 not only would reduce the cost of production, but also 

would moderate carbon discharge (De Morais and Costa, 2007). In order to investigate the 

effect of CO2 concentration on growth, a number of experiments were conducted under a 

continuous feed of enriched CO2. The gas was added through the air flow duct containing 

different CO2 concentrations, as a minimum of 3% of mole fraction in the gas phase must be 

added (Sforza et al., 2012). Table 6.10 displays the growth conditions for Gloeothece 

membranacea in the TBPBR with different CO2 concentrations.  

 

Table 6.10 shows the growth conditions for the cultures                                                                    
with different CO2 concentrations in the TBPBR 

 

Strain Gloeothece membranacea 
Light Intensity 80 (µmol m-2 sec-1) 
Wavelength Yellow, Blue 

Light Dark Cycle 6/18 Light/Dark 
Growth Medium BG11 

T 25 Cº 
Container TBPBR 

Culture Volume 5L 
Cell Density 94 (mg l-1) 

Light Position Internal 
Gas composition Air/CO2 

Flow Rate 1-3 (l min-1) 
Re 500-1580 

S/V l/m  97 
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      Figures 6.12- 6.13 show the growth and kinetics profiles for Gloeothece membranacea 

in the TBPBR. Note that the results represent the exponential phases only. 

 

 

Figure 6.12 Growth profile for Gloeothece membranacea with different CO2 concentrations  

 

Figure 6.13 Kinetic profile for Gloeothece membranacea with different CO2 concentrations  
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     Equations 5.4 -5.5 were used to calculate the specific growth rate and the generation time 

of Gloeothece membranacea and the results are summarized in Table 6.11. 

 

Table 6.11 The kinetics parameters in the TBPBR with different CO2 concentrations  

(VCO2/ VAir )% 0.038 4 6 8 10 

µ (hour
-1

) 0.0029 0.0033 0.0036 0.0031 0.0028 

Td (hours) 239 210 193 224 248 

 

     The growth and kinetic profiles in Figures 6.12 – 6.13 and the summarized results in Table 

6.11 indicate that the specific growth rate of G. membranacea increased with increasing the 

concentration of CO2 in the gas flow up until 6%. The growth rates increased from 0.0029 to 

0.0036 hour-1 and the generation times decreased from 239 to 193 hrs, when increasing CO2 

concentrations from atmospheric level to 6%. This could be explained by the fact that when 

CO2 concentration is liming, the specific growth rate is reduced because photosynthetic 

activity is slowed down (Sforza et al., 2012), as CO2 is a limiting factor for the growth of 

microalgae if its concentration is low (Wang et al., 2012). However, increasing CO2 

concentrations further decreased the growth rates and increased the generation times. This 

may be due to the fact that higher CO2 concentrations cause excess acidification (Ruiz-Marin 

et al., 2010). This was confirmed by the results as the pH values decreased from 8 to 5.7, 

when CO2 concentrations increased from atmospheric level to 10% (results not shown). The 

concentrations of dissolved CO2 becomes the dominant factor of the pH of a culture in high 

density cultures with air enriched with CO2, it is important to highlight that the maximum 

value of dissolved CO2 which can be consumed by cyanobacteria depends on strain, pH, and 

light availability (Kumar et al., 2011)   
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CHAPTER 7 CONCLUSIONS 

 

     A large number of experiments have been carried out to characterize the growth of 

Gloeothece membranacea and Oscillatoria amoena in light boxes as the benchmarking data 

for the design and comparison of the TBPBR, as well as the growth of Gloeothece 

membranacea in the TBPBR. The results in the light boxes can generally be summarized as  

 

• The bigger the ratio of surface area over culture volume, the faster the growth rate; 

 

•  Increasing the light intensity in the range of 100-550 µmole m-2 sec-1 did not enhance 

the growth of Gloeothece membranacea, though, the higher the light intensity, the 

faster the growth of Oscillatoria amoena;  

 

• The results of light quality clarify that different species had different absorption 

spectra, as Gloeothece membranacea growth in yellow, blue, or red lights was as fast 

as that in the white light, however the growth of Oscillatoria amoena in the coloured 

lights was much slower than the that in the white light; 

 

• On the effect of the light cycle, making the light available for 6 hrs gave the same 

specific growth rate as that for 12 and 24 hrs; 
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•  The effect of mixing on growth is that there was an optimal intensity of mixing for 

the unicellular species Gloeothece membranacea, while mixing did not show any 

effect on the growth of the filamentous species Oscillatoria amoena;  

 

• The critical cell densities for both G. membranacea and O. amoena were identified as 

0.100 and 0.222 mg.l-1 respectively; 

 

• The growth ceased at 38 °C, and the optimum range of temperature for both the 

species was 25-30 °C;  

 

• It has been notified that the growth of the filamentous strain Oscillatoria amoena was 

faster than that of the unicellular strain Gloeothece membranacea; 

 

• The specific growth rate and the generation time for Gloeothece membranacea are 

0.0025 hour-1 and 277 hours respectively, the specific growth rate and the generation 

time for Oscillatoria amoena are 0.0049 hour-1 and 141 hours respectively under the 

conditions summarized in the following Table: 

Strain  Gloeothece membranacea Oscillatoria amoena 

Aeration S/V (m
-2

 m
-3

) 44.2 44.2 

Light intensity 520 μmol m
-2

 sec
-1

 520 μmol m
-2

 sec
-1

 

Light colour white white 

Light cycle (light/dark) (h/h) 6/18 6/18 

Mixing (rpm) 350 0 

CCD mg l
-1 

94.0 208.0 

T (°C) 25 25  
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     Using the data from these benchmarking experiments in the light boxes, the tubular 

baffled photobioreactor (TBPBR) was designed, built and commissioned and further 

experiments with Gloeothece membranacea only were undertaken. The following general 

conclusions can be drawn: 

 

• The light saturation level for Gloeothece membranacea was about 80 µmole m-2 sec-1, 

and light intensity less than this value became a limiting factor for growth; 

 

• On the period of light availability, the minimum light exposure without affecting the 

growth in the TBPBR and the light boxes was 6 hours; 

 

• Much higher cell densities of Gloeothece membranacea can be accommodated in the 

TBPBR; 

 

• Increasing the flow rate of air up to 0.08 vvm increased the specific growth rate of 

Gloeothece membranacea, however further increase in flow rate of air decreased the 

growth rate; 

 

• The higher the concentrations of CO2 in air up to 6% (Vol CO2/ Vol air), the higher 

the specific growth rate of Gloeothece membranacea, however higher concentrations 

had a negative effect of the growth.  
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CHAPTER 8 RECOMMENDATIONS FOR THE FUTURE 

 

     A large number of batch and continuous experiments have been carried out in this 

thesis work, covering a variety of key process parameters, however, some areas were left 

out, some new aspects emerged based on the results obtained. The following is a list, but 

not exhaustive one, of future work to be recommended: 

 

• Based on the available data in the light boxes, it is assumed that the critical cell 

density of Gloeothece membranacea CCD is about 94.0 mg l-1, however there is a gap 

in the growth rates and the generation times between the cell densities 94.0 and 191.8 

mg l-1, so trials of cell densities between 94.0 and 191.8 mg l-1 should be carried out in 

the light boxes. The same argument applies for Oscillatoria amoena, as it is assumed 

that the critical cell density of that species CCD is about 208.9 mg l-1 , however, also 

there is a gap in the growth and generation times between the cell densities 208.9 and 

440.8 mg l-1, so trials of cell densities between 208.9 and 440.8 mg l-1 should be 

carried out in the light boxes; 

 

• The temperature experiments could imply that the temperature range of 25-30 °C is 

the optimum one for both Gloeothece membranacea and Oscillatoria amoena as the 

growth rates were 0.0024 and 0.0048 hour-1 and the generation times 289 and 144 

hours. However, more experiments are required at temperatures less than 25 °C in 

order to further confirm the optimum temperature range; 
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• Appling the principle of airlift photo bioreactor in the TBPBR to achieve air 

circulation in both baffled tubes, i.e. one acts as the riser, another as the downcomer, 

is recommended. Circulating air through both tubes would not only help with mixing, 

but also eliminate O2, which would harm the cells and eventually causes termination 

of growth, if it is allowed to build up. 

 

• The experiments on the critical cell densities in the TBPBR suggested that cultures 

with cell concentrations up to 470.0 mg l-1 could grow without mutual shading. 

However due to time constraint of the experiments only 5 different cell densities were 

examined in these experiments. Exploration of cultures with cell concentrations 

higher than 470.0 mg l-1 should be undertaken in order to find out the maximum cell 

concentrations that is viable in the TBPBR without self shading. Higher critical cell 

densities are advantageous as higher densities mean higher productivity.  

 

• Investigating the growth of other unicellular species of cyanobacteria as well as 

filamentous ones in the TBPBR would be recommended. For example Synechococus 

(Cyanothece 7822) as it interestingly produces H2 and does not carry out hydrogen 

uptake activity, which is the major drawback in most hydrogen producing species 

(Hiroto et al., 1995). However trials should be carried out in the light boxes in order 

to understand if the species could grow at the wavelengths of the LEDs available and 

whether the process is commercially viable. 

 

• The methodologies and procedures for cleaning and harvesting should be considered 

to investigate the feasibility of commercial usage. 
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• The energy consumption for the batch and continuous operations should be studied.  
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