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Chemoselective Suzuki-Miyaura Cross-coupling via Kinetic

Transmetallation

James W. B. Fyfe, Neal J. Fazakerley,” and Allan J. B. Watson*!

Abstract: Chemoselective Suzuki-Miyaura cross-coupling generally
requires a designed deactivation of one nucleophile towards
transmetallation. Here we show that boronic acids can be
chemoselectively reacted in the presence of ostensibly equivalently
reactive boronic acid pinacol (BPin) esters by kinetic discrimination
during transmetallation. Simultaneous electrophile control allows
sequential chemoselective cross-couplings in a single operation in
the absence of protecting groups.

Chemoselective  Suzuki-Miyaura cross-coupling of multi-
nucleophile systems has emerged as a powerful synthetic
strategy for chemical synthesis."? Chemoselectivity within
systems containing two organoborons is typically achieved by a
designed deactivation: (i) Highly effective p-orbital protecting
group strategies developed by Burke (BMIDA)® and Suginome
(BDAN)* render one organoboron unit unreactive towards
transmetallation  (Scheme 1a)®® (i) A unique self-
activation/protection mechanism developed by both Morken and
Shibata allows chemoselectivity within geminal and vicinal
diboron compounds (Scheme 1b);” and (iii) Crudden has shown
that benzyl BPin species are unreactive in the absence
specific additives, allowing selective aryl/benzyl transmetall
(Scheme 1c).®2 Accordingly, current methods to a
chemoselectivity rely upon employing one nucleophil
unreactive towards transmetallation under the prevailin
conditions. In particular, selective discrimination of tw
nucleophiles is only achievable using a suitable prg,
strategy.”"°
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Scheme 2. Independent and competitive cross-couplings of boronic acid
(1a/4a) vs. BPin (1b) with aryl bromide 2. Determined by HPLC analysis.

These initial results suggested comparable reactivity of 1a
and 1b, with both nucleophiles rapidly consumed at the same



initial rate and displaying a comparable reaction profile. However,
under identical reaction conditions in a competitive system
notable chemoselectivity was recorded (Scheme 2b). Here, the
cross-coupling of 4a was found to significantly outcompete 1b,
with ca. 9:1 selectivity exhibited in this non-optimized system.

Accordingly, while exhibiting similar reactivity in isolation,
chemoselectivity can be leveraged in a competitive system by
kinetic discrimination of the nucleophiles by the catalytically
generated Pd(Il)-intermediate. Since transmetallation occurs
after the rate-determining step (RDS),'® the overall rate is
unaffected by transmetallation in the isolated reactions (Scheme
2a) but a rate difference exists and therefore chemoselectivity
can still be leveraged between nucleophiles post-RDS (Scheme
2b)." However, this is contingent on ensuring inhibition of
pinacol equilibration (Scheme 3)."®°
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Scheme 3. Equilibration in a boronic acid/BPin system.

Competitive coupling of the in situ generated BPin-derived
boronic acid erodes selectivity and thus must be controlled ,in
order to exploit any natural kinetic advantage (vide in,
Fortunately, however, diol transfer can be controlled by the
media typically used for Suzuki-Miyaura reactions,'®? allowing
optimization of this nascent system (Table 1 — see E full
details of the investigation of all variables).

Table 1. Chemoselective cross-coupling of B(OH), vs. BPi

Pd(dppf)Cl; (4 mol%)

p-Tol —B(OH), Ph —BPin Ph—Br K4PO, (3 equiv) Ph —Ph
(1 equiv) (1 equiv) (1 equiv) H,0, solvent 3
4a 1b 2 70°C,1h
A N
Entry H,O (equiv) Solvent ‘ Conv. 3:5 (%)[w
| ; L W4
~
2 5 1,4-Rioxane w

4 50 A 1,4{‘ 28:68
10X
5 100 1,4-Dioxane 'WSB

[a] Determined by HPLC analysis. Se 1.2
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quantity of H,O added to the system (entries 2-5). Limiting the
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Under reaction-like conditions (i.e., in the absence of Pd
catalyst and aryl halide) using restricted quantities of H,O (98/2
1,4-dioxane/H,0), the formation of a bulk aqueous phase is
prevented and, consequently, phase transfer of boronic acid to
the aqueous (A, Scheme 4) is restricted. In contrast, in a highly
biphasic medium (50/50 1,4-dioxane/H,0), boronic acid phase
transfer was observed to begin immediately (<5 min). The BPin
species were not observed to undergo phase transfer,
consistent with previous studies.'®?’

In addition, under optimum (low H,O) conditions, diol
equilibration (B, Scheme 4) was inhibited, maintaining ~95%
integrity of the initial system — 16.4:1 B(OH).:BPin after 10 min.
However, under biphasic conditions, equilibration was much
more significant (2:1 B(OH),:BPin within 10 min).

Chemoselective transmetallation of boronic acid over BPin
takes place with high fidelity — the principal determinant for
chemoselectivity is therefore the generation of a mixture of
boronic acids as a result of diol equilibration. In the optimized
system (low H,O), diol equilibration takes place more slowly. As



the boronic acid is consumed by cross-coupling, equilibration is
further suppressed, i.e., chemoselectivity is assisted by Le
Chatelier’s principle.

With optimized conditions for selective cross-coupling in a
model system, we sought to evaluate the generality of the
procedure by varying the structure of the boronic acid, BPin, and
bromide coupling partners in an equistoichiometric system
(Scheme 5). High selectivity was observed in all cases with
cross-coupling favoring the boronic acid, leaving the BPin
unreacted. Importantly, selectivity was unaffected by steric (e.g.,
ortho-substituted compounds) or electronic composition.
Crossover experiments demonstrated that selectivity was not
influenced by specific combinations of boronic acid and BPin
partners — chemoselectivity was independent of the functionality
of the boron coupling partner (e.g. 7a-9a vs. 7b—9b). Importantly,
the mass balance was generally returned starting material, with
some protodeboronation observed in specific cases.?? Reactions
were halted at 1 h and the yields represent the efficiency of the
boronic acid coupling over this time frame; however, increasing
the reaction time did not negatively affect chemoselectivity.
Electron-rich boronic acids delivered greater efficiency over
those comparatively electron-poor, in agreement with previous
studies."°
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generality of our protocol, we
sought to explore the utili is process, specifically through
subsequent use of the unreacted BPin component. Our first goal
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was to determine the integrity of the Pd catalyst following the
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Scheme 6. One-pot sequential chemoselective coupling. Isolated yields.

order to fully probe the power of this methodology, we
ght to combine chemoselective transmetallation of the
ganoboron nucleophile with chemoselective discrimination of
he electrophile, i.e., chemoselective oxidative addition.'®®?® This
would establish the first complete chemoselective control over
two of the three key mechanistic processes of the Suzuki-
Miyaura reaction. Using the reactivity gradient afforded by
dihaloarenes, a one-pot sequential chemoselective Suzuki-
Miyaura reaction was enabled without the requirement for any in
situ modification of the reaction conditions (temperature change,
sequential addition) or reactants (protecting group removal,
boron species interconversion) (Scheme 7).

A change to the more active catalyst system of Pd(OAc), and
DavePhos was required in order to engage the less reactive aryl
chloride, while a short screen of base and water equivalents
revealed optimum conversion could be achieved using 4 equiv
of KsPO4 with 15 equiv of H,O. Under these conditions a range
of aryl and heteroaryl boron species were tolerated, along with
substituted and heteroaryl dihalides, affording the desired triaryl
products in good to excellent yield. Catalyst efficiency was
similar to that of the sequential coupling (Scheme 6) at ca. 80%
per C-C bond formation. Importantly, similar to the observations
for Scheme 5 and 6, reactions with lower efficiency were not due
to poor chemoselective control. Instead, the efficiency of the
process was limited by the second cross-coupling event (i.e.,
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o ) . o ) (a) J. Li, S. G. Balimer, E. P. Gillis, S. midt, A. M. E.
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oc. 2010, 132, 2548-

CO,Me 2549.
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O Ed. 2016, 55 2K 2649; Angew. CHilll 2016, 128, 2682-2696; (b)

ss-coupling on di-(sp?)BPin
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Scheme 7. Chemoselective tandem cross-coupling. Isolated yields. Bruno,? Terencio, M. Paya, R. Riccio, Bioorg. Med. Chem. 2008,

16, 905 64.
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