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Abstract

With the introduction of the Solvency II regulatory framework, insurers face the

challenge of managing the risk arising from selling unit-linked products on the mar-

ket. In this thesis two approaches to this problem are considered:

Firstly, an insurer could project the value of their liabilities to some future time us-

ing Monte Carlo simulation in order to reserve adequate capital to cover these with a

high level of confidence. However, the complex nature of many liabilities means that

valuation is a task requiring further simulation. The resulting ‘nested-simulation’ is

computationally inefficient and a regression-based approximation technique known

as least-squares Monte Carlo (LSMC) simulation is a possible solution. In this thesis,

the problem of configuring the LSMC method to efficiently project complex insur-

ance liabilities is considered. The findings are illustrated by applying the technique

to a realistic unit-linked life insurance product.

Secondly, an insurer could implement a hedging strategy to mitigate their expo-

sure from such products. This requires the calculation of market risk sensitivities

(or ‘Greeks’). For complex, path-dependent liabilities, these sensitivities are typi-

cally estimated using simulation. Standard practice is to use a ‘bump and revalue’

method. As well as requiring multiple valuations, this approach can be unreliable

for higher order Greeks. In this thesis some alternative estimators are developed.

These are implemented for a realistic unit-linked life insurance product within an

advanced economic scenario generator model, incorporating stochastic interest rates

and stochastic equity volatility.
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Chapter 1

Introduction to the thesis

This thesis is the culmination of research on the topic of the risk-management of

unit-linked insurance products which feature an embedded guarantee. In the section

which follows, an overview of the research of this thesis and how it relates to the

existing literature will be given. But before moving on to this, I feel it is important

to give some background to the PhD opportunity from which this thesis comes.

This research was funded jointly by the Engineering and Physical Sciences Research

Council (EPSRC) and Barrie and Hibbert Ltd. through an industrial CASE stu-

dentship. The purpose of such initiatives is to help encourage collaboration between

academia and industry through the research of a PhD student. Barrie and Hib-

bert are a world leader in the provision of economic scenario generation solutions

and related consultancy. Therefore, the research in this PhD will have Monte Carlo

methodologies at its core. Furthermore, the research the company conducts through

its role as a consultant is of both a technical and practical nature and the research

in this PhD shares this philosophy.

1.1 Literature review and contributions of thesis

Before discussing some background topics which are relevant to the later chapters

of this thesis, a literature review of the previous work on which this thesis builds

and an outline of the original contributions of this thesis will be given.

In Part I of the thesis the least-squares Monte Carlo (LSMC) method for project-

ing insurance liabilities will be investigated. This approximation technique could

prove very useful for practitioners in the insurance industry looking for an efficient

approach to calculating a solvency capital requirement (SCR) under the Solvency II

regulatory framework. The natural simulation approach to such calculations leads

to a computational set-up known as nested simulation, where a number of inner

valuation scenarios branch out from a number of scenarios projecting future states

of the economy. The nested simulation set-up has been discussed previously in the

finance literature: Gordy and Juneja [Gor00] investigate how a fixed computational
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budget may be optimally allocated between the outer and inner scenarios, given

realisations of the relevant risk factors up to some time horizon for a portfolio of

derivatives. They also introduce a jack-knife procedure within this set-up for reduc-

ing bias levels in estimated values. Bauer, Bergmann and Reuss [Bau11] perform

similar analysis for a nested simulation set-up in the context of calculating a SCR.

In this paper a mathematical framework for the calculation of a SCR is developed

and the nested simulation set-up is shown to result naturally from this framework.

In a similar manner to Gordy and Juneja the optimal allocation of outer and inner

scenarios within this nested simulation set-up is also investigated, as is the reduc-

tion in bias from implementing a jack-knife style procedure. Another line of research

investigated in this article is the construction of a confidence interval for the SCR

within this nested simulation framework, based on the approach of Lan, Nelson and

Staum [Lan07]. Finally, they consider the implementation of screening procedures

in the calculation of a SCR. The idea here is to perform an initial simulation run

and use the results of this to disregard those outer scenarios which are ‘unlikely’ to

belong to the tail of the liability distribution when performing the final simulation

run (which is used to calculate the SCR). This approach follows the paper of Lan,

Nelson and Staum [Lan10a]. Bauer, Bergmann and Reuss conclude their article by

testing the analysis on a hypothetical insurer selling a single participating fixed-term

contract.

Another area in financial mathematics where a nested simulation set-up occurs is

the valuation of American options. This will be discussed further in Section 2.1,

however we note that calculating the price of an American option by simulation is

impractical unless some sort of approximation method is used. One such technique

is known as least-squares Monte Carlo (LSMC) simulation and was developed by

Carriere [Car96], Tsitsiklis and Roy [Tsi99] and Longstaff and Schwartz [Lon01]. It

essentially aims to improve the accuracy of the estimate of the continuation value

of the option at each timestep by performing a regression on the key economic vari-

ables on which this value depends. This approach has become very popular with

practitioners looking to efficiently price American-type financial products in recent

years. Some papers which investigate the convergence of the LSMC algorithm for

American options are Clément, Lamberton and Protter [Clé02], Stentoft [Ste03],

Zanger [Zan09] and Cerrato and Cheung [Cer05]. Such theoretical results of conver-
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gence will extend to the case where the LSMC method is applied in the context of

calculating an insurance SCR. This alternative context for the LSMC method will

now be introduced.

Bauer, Bergmann and Reuss [Bau10] and [Bau11] propose taking this LSMC method-

ology and applying it to the challenge of calculating a SCR, which also naturally

yields a nested simulation set-up. They find the nested simulation set-up is “very

time-consuming and, moreover, the resulting estimator is biased” [Bau10], and this is

despite some of the extensive analysis given in optimising the allocation of the outer

and inner scenarios and reducing levels of bias within this framework. Whereas,

they note the LSMC approach is “more efficient and provides good approximations

of the SCR”. This article does warn, however, of the significance of the choice of the

regression model on the success of this approach.

Part I of this thesis will also consider the LSMC approach in a capital adequacy

context. In Chapter 3 some analysis will be given regarding the key outstanding

issues in the implementation of the technique for calculating a projected insurance

liability. In order to make progress we introduce the similar problem of estimating

the projected value of a European put option, where the valuation scenarios are per-

formed under the Black-Scholes model. As this alternative problem yields analytical

valuations for each outer scenario, the success of the LSMC method under different

configurations is far easier to investigate. The results of the investigation of such

issues include finding that a stepwise AIC algorithm is a reasonably good approach

for selecting the regression model and one which is robust to statistical over-fitting

(which is shown to be a problematic issue in the LSMC technique). It is also shown

that if the outer fitting scenarios, used to calibrate the regression model, are sam-

pled from the real-world distribution, the fit to the projected value distribution can

be somewhat poor in the upper tail. This obviously has consequences in insurance

risk-management, where it is the upper tail of the liability distribution which is of

key concern. On the other hand, if the outer fitting scenarios are sampled in an

alternative manner, based on a quasi-random sampling scheme, it is shown that

this gives a significant improvement in the fit in the upper tail of this distribution.

Evidence is also presented in Chapter 3 which suggests that some improvement in

accuracy may be possible by using orthogonal polynomials in the LSMC regression

model. Finally, results are presented indicating that when implementing the LSMC
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algorithm, only one pair of antithetic valuation scenarios should be performed, with

the remainder of the available computational budget used to generate as large a

number of outer fitting scenarios as possible. Some of these issues are discussed by

Bauer, Bergmann and Reuss for the nested simulation set-up SCR calculation, thus

the analysis for the LSMC framework given in this thesis is complementary to their

analysis.

In Chapter 4 the LSMC method is applied to estimate the projected liability distri-

bution of a unit-linked variable annuity contract. This product, which offers equity

participation coupled with an embedded guarantee, is typical of the type of insurance

product which has become popular with consumers in recent years. Many of the

findings from Chapter 3 are used in configuring the LSMC set-up in this insurance

context and a thorough analysis of how the ideas developed in this earlier chapter

extend to the insurance context is presented. Investigating the issues and ultimate

success in applying the LSMC method to this type of VA contract is another origi-

nal contribution of this thesis. It is found that the LSMC method performs well in

estimating percentiles in the upper tail and centre of the liability distribution pro-

jected one year into the future. The approach is also found to perform reasonably

well in approximating the projected liability distribution at year five, however the

fit in the upper tail is somewhat less accurate due to difficulties in implementing

quasi-random sampled fitting scenarios in this case. Some lines of promising further

research which could help improve the fit in the upper tail for the five year (and

also a one year) liability projection are outlined in Section 4.6. Overall, the analysis

of Chapter 4 demonstrates the LSMC technique to be a successful method in the

challenge of estimating projected insurance liabilities and, hence, in the calculation

of a SCR.

As well as being able to accurately value and project complex insurance liabilities,

many insurance companies wish to employ a hedging strategy to mitigate some of

the risk they are exposed to from selling unit-linked products featuring guarantees

on the market. Investigating how such hedging strategies can be developed is the

main theme of Part II of this thesis.

In order to construct an effective hedging strategy for an option, one needs to know

the sensitivities of the option value to the key risk-drivers on which this quantity

depends. These sensitivities are often known collectively as the Greeks, as each
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sensitivity is denoted by a different Greek letter. Some references which give an in-

troduction to hedging strategies for options are Baxter and Rennie [Bax96], Wilmott

[Wil00] and Bingham and Kiesel [Bin04]. To hedge some of the risk faced in selling

unit-linked insurance products, practitioners must similarly determine the sensitivity

of the value of the liability to the key risk-drivers on which this depends. Calculating

these insurance Greeks would be an easier task if we were to assume the underlying

asset and economy were described by the Black-Scholes model. However, if we want

a realistic valuation of an insurance liability, we need a more sophisticated descrip-

tion of the underlying equity dynamics and economy. Two equity models which

offer this are introduced in Sections 5.1 and 5.2. The structure of both these models

was introduced and developed by Cox, Ingersoll and Ross [Cox85] in the context of

describing short-term interest rates. Heston [Hes93] later applied this form of model

to describe the volatility of equity returns and showed that under this model a semi-

analytical formula for the value of a European option could be found. Many years

earlier, Merton [Mer76] proposed an extension to the Black-Scholes equity model to

include random, discontinuous jumps, in order to give a better fit to observed equity

asset dynamics. Bates [Bat96] then combined the Heston model with this Merton

model to give a model which is sometimes known as Bates’ model, but which we will

refer to as the stochastic volatility jump diffusion (SVJD) model. In Section 8.3, we

combine the Heston model with the CIR model to give an economic model describ-

ing equity, volatility and short-term interest rate dynamics. This model, which we

denote as the Heston-CIR model, has not been widely used in the literature. Indeed,

it was only after developing this model for the analyses of this thesis that this author

became aware of further references in the literature. Grzelak and Oosterlee [Grz10]

investigate finding an affine approximation to the Heston-CIR model. This form

of approximation will be very useful in efficiently calibrating this model to market

observables, as it can be used for very fast pricing of European options.

In Chapter 6 of this thesis the theoretical framework and derivation of the semi-

analytical value for a European option under the Heston model is given a complete

introduction. This follows the derivation given in Gatheral [Gat06], however the

treatment given in this thesis expands on this explanation and also gives some rele-

vant background theory. This should provide greater clarity in illustrating how the

semi-analytical formula is constructed. Furthermore, some errors in Gatheral are
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highlighted and corrected. In the later sections of Chapter 6, this semi-analytical

formula is extended to calculate the liabilities on some simple unit-linked insurance

contracts. These are found using the approach of Hardy [Har03] who derived these

liability formulae under the Black-Scholes model. Obtaining semi-analytical values

and sensitivities for these simple unit-linked insurance products under the Heston

and SVJD models is another original contribution of this thesis. For more complex

insurance products, however, such analytical formulae are not available. Such prod-

ucts’ liabilities must then be valued by numerical techniques, such as Monte Carlo

simulation. In Section 5.3 an overview of the discretisation approaches for simulat-

ing realisations from the Heston model for equity asset returns is given. Lord et

al. [Lor08] introduce and compare some of the simple discretisation schemes for the

Heston model. Andersen [And07] proposes a more sophisticated approach for this

discretisation which claims to reduce levels of discretisation bias compared to stan-

dard discretisation approaches. Other possible discretisation schemes have been

proposed by Kahl and Jäckel [Kah05a], Zhu [Zhu08], Halley, Malham and Wiese

[Hal09] and Glasserman and Kim [Gla09]. Broadie and Kaya [Bro06] discuss a sam-

pling approach which can simulate realisations from the Heston model without any

discretisation bias. This technique is relatively slow to simulate paths, however,

and thus may not be a practical approach in an insurance risk-management context

where a large number of real-world scenarios are required.

In Chapter 7 an overview of the main approaches for estimating option price sensitiv-

ities by Monte Carlo simulation is given. Three standard approaches are reviewed:

the bump and revalue method, which is the natural finite difference approach often

used in practice; the pathwise method, which was developed in the context of option

pricing by Brodie and Glasserman [Bro96]; the likelihood ratio method, developed

in the context of option pricing by Broadie and Glasserman [Bro96] and Glasserman

and Zhao [Gla00]. Mixed hybrid estimators, introduced by Broadie and Glasserman

[Bro96], which combine the latter two of these standard approaches to construct

an efficient estimator for second-order sensitivities, will also be reviewed. In Chap-

ter 7, these estimators will be calculated under a Black-Scholes model with fixed

withdrawals being subtracted from the equity fund at regular intervals. This model

has not, to this author’s knowledge, been considered in the literature before. Thus,

the development of these estimators for this model is an original contribution of
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this thesis. This model captures some of the features of a GMWB variable annuity

contract, thus this analysis provides some guidance to the challenge of calculating

sensitivity estimators for unit-linked insurance products under the more sophisti-

cated Heston-CIR model. Investigating this problem is the purpose of Chapter 8.

In Section 8.3 the likelihood ratio method is extended to the setting of the Heston-

CIR economic model. This is an original innovation and builds on the work of

Broadie and Kaya [Bro04], who discuss how the likelihood ratio method can be

applied under a Heston model. In Section 8.4 the standard approaches of Section

7.1 and the extension of the likelihood ratio method in Section 8.3 are developed

for the sensitivities to the liability of a stylised variable annuity product. The

pathwise approach for these sensitivities, derived in Section 8.4.2, follows a similar

approach to the article of Hobbs et al. [Hob09], except that this thesis considers a

more complex product and a stochastic model for volatility and interest rates. The

likelihood ratio method is then extended to find the sensitivities to the liability of

our stylised VA product, in Section 8.4.3. In Section 8.4.4, a mixed estimator is

constructed for the VA liability gamma sensitivity. Finally, Section 8.5 compares all

the estimators developed for the stylised VA product in terms of numerical efficiency.

The mixed gamma sensitivity estimator is found to be particularly efficient, which is

appealing as this is the sensitivity for which the standard approach performs worst.

The development of all these estimators in the context of a variable annuity life

insurance contract are original contributions of this thesis, although the pathwise

estimator is based on the methodology of Hobbs et al. [Hob09].

1.2 Solvency II insurance directive

Before beginning to introduce and develop the main ideas of this thesis, some con-

text describing where this research will be of interest within the insurance industry

will be given. According to the European Commission Solvency II website a general

definition of a solvency margin is the amount of “regulatory capital an insurance

undertaking is obliged to hold against unforeseen events” [EUSD]. Some form of

requirements on such an amount have been in place since the 1970s, with the Eu-

ropean Commission (EC) reviewing the solvency rules for European Union member

states in the 1990s. This led to some reform of the insurance regulatory framework

in Europe known as Solvency I. During the process of developing and implement-

7



ing Solvency I, however, it became clear that more fundamental regulation with

greater scope was necessary. With insurance companies now large, multi-national

companies with investments in many different asset-classes in a large number of

markets, a regulatory framework which would consider the “overall financial po-

sition of the insurance undertaking” and take into account “current developments

in insurance, risk management, finance techniques, international financial reporting

and prudential standards, etc” has been developed over the last ten years [EUSD].

This framework has become known as Solvency II and European insurance compa-

nies have been actively preparing to operate under these new rules and guidelines

from the beginning of 2013.

The following summary of the framework will largely follow the Solvency II intro-

ductory document of the consultancy firm EMB. The directive is based on three

categories of requirements, or pillars. The first pillar is concerned with the quanti-

tative requirements of the framework. There are two levels of capital requirement

defined under the regulations: the solvency capital requirement (SCR) and the min-

imum capital requirement (MCR). Failure to meet each of these requirements will

result in differing levels of supervisory intervention. The SCR is “intended to reflect

all quantifiable risks” that an insurer could face. The Solvency II directive gives

two possible methodologies for calculating this amount: either using a European

standard formula or using a firms own internal model of its assets and liabilities.

The SCR should also take into account “any risk mitigation techniques” that an

insurer may use to minimise its exposure. If the SCR is not met by an insurer, then

they “must submit a recovery plan to the supervisor and will be closely monitored

to ensure compliance with this plan.” The MCR, on the other hand, is a lower level

capital requirement, which if breached could trigger withdrawal of authorisation by

the relevant supervisor.

The second pillar in the Solvency II directive contains the qualitative requirements.

This essentially concerns the system of governance within insurance firms and on

how the risk management function should integrate into the organisational structure

of a firm. Through this firms must show that there is “proper processes in place

for identifying and quantifying their risks in a coherent framework” and supervisors

will require that such an internal assessment “reflects the specific risks faced by

the firm based on internal data”. [EMB10] This process will encourage insurers to
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employ models which realistically capture the risks to which they are exposed, both

in their risk management practice and regulatory reporting. As a result firms should

make “informed business decisions understanding the impact of risk and capital on

the firm”. The third pillar of Solvency II is concerned with the disclosure of the

solvency and general financial stability of each insurance company. As part of this

report a description of “risk exposure, concentration, mitigation and sensitivity by

risk category” and the “methods of valuation of assets and technical provisions”

should be given [EMB10]. Capital adequacy information, including the SCR and

MCR levels, should also be provided in these publications.

In this thesis we will be investigating a technique which can be used in calculat-

ing a SCR for complex insurance liabilities and also introducing methodologies for

calculating hedging strategies for insurance companies who wish to mitigate some

of their exposure to such liabilities. This is firmly in the remit of pillar one of the

Solvency II requirements. We will now briefly explore the general process through

which an insurer calculates a capital requirement. This will follow the Solvency II

introductory slides of McNeil [McN11].

Let us consider an insurance company with current net asset value given by Vt.

This is just the total assets of the firm minus the total of all the liabilities to which

it is exposed. To ensure the firm remains solvent in one years time with some

high probability α, it may need to hold some amount of extra capital x0 which is

determined by

x0 = inf{x : P(Vt+1 + x · (1 + i) ≥ 0) = α}, (1.1)

where i is the one-year risk-free rate of interest. If x0 is negative, this signifies the

firm is well capitalised and money could be ‘taken out’, that is additional liabilities

could be taken by the business which are not matched by additional assets. With

some simple algebra, this can be written

x0 = inf{x : P(Vt − Vt+1/(1 + i) ≤ x+ Vt) = α}, (1.2)

which implies that Vt + x0 = qα(Vt − Vt+1/(1 + i)), where qα denotes a quantile at

the level α. The sum Vt + x0 can be thought of as the SCR and is a quantile of

the distribution of Lt+1 = Vt − Vt+1/(1 + i). In general, capital requirements are

calculated by applying a risk measure to the distribution Lt+1. In the above analysis
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this risk-measure is a value-at-risk (VaR) and this is the method typically proposed

under Solvency II. However, alternative risk measures could also be employed here.

See McNeil, Frey and Embrechts [McN05] for a complete introduction to different

financial risk-measures. One possibility is expected shortfall (sometimes known as

tail-VaR), which is just the conditional expectation of Lt+1, conditional on being in

some upper tail of this distribution. But how would an insurance company determine

Vt? Well, the Solvency II directive states that “the calculation of technical provisions

shall make use of and be consistent with information provided by the financial

markets [...] (market consistency). [Article 76] Furthermore, “where future cash flows

associated with [...] obligations can be replicated reliably using financial instruments

for which a reliable market value is observable the value of technical provisions [...]

shall be determined on the basis of the market value of those instruments.” [Article

77(4)]

In practice the market consistent valuation of many liabilities (and assets) has to be

done on a mark-to-model basis, because there are no relevant quoted prices available

in liquid and transparent markets. Preferably the parameters of such models will be

determined using fully observed market inputs, although some economic judgement

may have to be used.

For firms with complex assets and liabilities, the calculation of Vt can be difficult

enough. Determining the distribution of Vt+1 is even more challenging. The natural

Monte Carlo approach for calculating this is computationally demanding and for

many liabilities impractical. This will be discussed further in Section 2.1. Part I

of this thesis investigates a technique for approximating such a value using Monte

Carlo methodologies. The construction of a hedging strategy for mitigating some

of the exposure an insurer faces requires accurate and reliable calculations of the

sensitivities of this liability to its key risk drivers. For complex insurance liabilities,

numerical techniques such as Monte Carlo simulation are required to calculate these

sensitivities. Part II of the thesis develops Monte Carlo estimators for the liabilities

which arise from complex unit-linked insurance products.
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1.3 Variable annuity (VA) insurance products

A form of financial product which will underlie much of the later analysis in this

thesis will be the class of variable annuity (VA) insurance products. This type of

product has become very popular in the USA and Japan over the last 10-15 years

and many experts believe that this success will extend to the UK and Europe in the

foreseeable future [Led10]. Before outlining why these products create problems in

the context of risk management, a broad definition of what constitutes a variable

annuity will be given. Much of this discussion is based on a Faculty of Actuaries

Variable Annuity Working Party paper [Led10].

A general definition of a VA product is “any unit-linked or managed fund vehicle

which offers optional guarantee benefits as a choice for the customer”. One may

think of an annuity as an “insurance contract that can help individuals save for

retirement through tax-deferred accumulation of assets” and at some later stage,

perhaps during retirement, as a “means of receiving payments . . . that are guaranteed

to last for a specified period, [perhaps] including the lifetime of the annuitant”.

Thus, from the payment of money upfront, some annuity products will guarantee

periodic payments for the remaining lifetime of the policy holder at some point in

the future. The difference between a traditional annuity of the past and a variable

annuity product is in the optional benefits available to the customer, which offer

guaranteed payments to customers at certain policy anniversaries or perhaps upon

the death of the policyholder.

Another common property of VA products is the variety of investment options avail-

able to the contract owners. This allows them to put some assets into investment

funds, allowing the fund to keep pace with inflation, or to choose safer forms of

investment. This is similar to unit-linked retirement savings products available in

the UK, however the distinguishing feature of these new products is in some of the

guarantees offered to customers by these VA products, as mentioned above.

These guarantees generally fall into 4 main classes and a brief description of each of

these will be given at the top of the next page:
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• Guaranteed Minimum Death Benefits (GMDBs) This option guaran-

tees a return of the principal invested, upon the death of the policyholder. If

the underlying unit account is greater than this principal, the amount paid on

the death of the policyholder would be the balance in the account. A varia-

tion to this, which will be included in the product we will analyse later, is the

addition of a ‘ratchet’ feature. Here the principal invested will be guaranteed

to accumulate by “periodically locking into (and thereby guaranteeing) the

growth in the account balance”.

• Guaranteed Minimum Accumulation Benefits (GMABs) The benefits

of this option are similar to that of the GMDB, except here the guarantee is not

conditional on the death of the policyholder, but will initiate at certain policy

anniversaries (or between certain dates while the policy remains in force).

• Guaranteed Minimum Income Benefits (GMIBs) This option guaran-

tees a minimum income stream in the form of a life annuity from some specified

future time. This could be fixed initially or depend on the account balance at

annuitisation. The customer would typically lose access to the fund value by

choosing this option.

• Guaranteed Minimum Withdrawal Benefits (GMWBs) This feature

guarantees regular withdrawals from the account balance. For example, a fixed

term GMWB option could guarantee that withdrawals of 5% of the original

investment can be made by the policyholder for a period of 20 years. Recently

some VA products have allowed a GMWB for the lifetime of the policyholder

(even if the account value reduces to zero). With the GMWB option, the

remaining fund would be paid to the estate of the policyholder on their death,

whereas this is not the case with a GMIB.

In the past, with-profits policies were very popular in the UK and Europe. The

Variable Annuity Working Party paper states that these products gave customers an

“apparently simple product with the prospects of high investment returns . . . coupled

with a range of guarantees”. However, over the past 15 years the UK with-profits

business has “declined sharply . . . with little prospect of any recovery”. This was

a result of sustained periods of poor equity returns, which resulted in poor perfor-

mance of with-profits products, due to insurers not having been prudent enough in
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the previous years of strong equity growth. With large exit penalties and a lack of

investment control available to the policyholders, the uptake of such products di-

minished dramatically. Therefore, there appears to be demand for a product which

offers some security through certain guarantees, but whose value will not be com-

pletely eroded through inflation. These new VA products could prove to meet the

customer’s needs, without the apparent disadvantages of with-profits policies.

With this in mind many insurers in the UK and Europe are looking to offer VA

type products over the coming years. Unfortunately, as much as they might ap-

peal to customers, they create some problems in the context of risk management.

An interesting article in the magazine Risk in 2004 discusses the problems US in-

surers have faced in calculating capital requirements amidst the rapid growth of

evermore complex VA products [Rud10]. Indeed one of the largest re-insurers of

VA guarantees, Cigna, had to stop its reinsurance operations in 2002 as a result

of having underestimated reserve requirements. This challenge of calculating realis-

tic capital requirements for complex insurance products was introduced in Section

1.2. Obtaining accurate approximations for such calculations is even more crucial

as Europe enters this new phase in insurance regulation.

The VA class of products will feature in the analysis in this thesis as follows: In

Chapters 4 and 8 Monte Carlo estimation techniques will be developed for calculating

the projected liability value and the sensitivity of the liability to some key risk-drivers

for a GMWB type of VA contract. In Chapter 6.3, analytical values for the liabilities

on GMAB and GMDB VA contracts under the Heston stochastic volatility model

will be derived.

1.4 Introduction to Monte Carlo valuation

The central mathematical concept which will form the basis of the liability valuation

and risk-management techniques developed throughout this thesis is Monte Carlo

(MC) simulation. An excellent resource which gives a complete overview on the

application of the MC technique in a financial context is the textbook “Monte Carlo

Methods in Financial Engineering” by Paul Glasserman [Gla03]. This text guides

the reader from the basics of simulation through to applying the technique across

a broad range of financial models and products for valuation and managing risk.
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A review of some of the fundamental areas of MC simulation covered in this text

will now be given. These topics are important in understanding all the subsequent

chapters of this thesis and provide a solid background to some of the key concepts

in MC simulation. It should also help illustrate how powerful this approach can be

for estimating financial quantities and values, which will complement some of the

ideas which are developed in later parts of the thesis.

Let us begin by stating succinctly what is meant by MC simulation. These methods

are a class of computational algorithms that are based on repeated random sam-

pling, often used when simulating physical and mathematical systems. They are

useful for modelling phenomena with significant uncertainty in inputs, for example

in finance for the calculation of risk or to value and analyze (complex) derivatives

and portfolios. To do this we simulate, or mimic, the various sources of uncertainty

that affect the value of the instrument or portfolio we are interested in and then

calculate a representative value or risk-level given these possible values of the inputs

(which will be described by the model(s) we choose to employ). A MC estimator

for the general financial problem α = E[p(S(Zi))] can be expressed as

α̂ =
1

n

n∑
i=1

p(S(Zi)). (1.3)

Here, E[·] represents the mean, or expected value operator. The function p gives

the payoff, liability or risk-measure given a realisation of the behaviour of some un-

derlying asset(s) modelled by S(Z), which itself is a function of some source(s) of

uncertainty Z. The Zi are n independent random vectors needed to evaluate the pay-

off along each simulation path i = 1, . . . , n. These vectors could consist of uniform

random variables, or from some other statistical distribution by simply transforming

the uniform variates appropriately. Standard normal random variables, which are

very popular in stochastic financial models, can be readily obtained from uniform

variates using the Box-Muller transform, for example. To generate uniform random

numbers a computer typically employs what is known as a pseudo-random number

sequence, which is an algorithm for generating a sequence of numbers (which is de-

terministic once the initial state or seed value is chosen). The sequence generated

mimics the behaviour of a sample drawn from a uniform distribution. There is also

the possibility of using quasi-random number (or low discrepancy) sequences. This
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is where sample points are systematically chosen so that they evenly fill a Cartesian

grid according to a particular algorithm, with the aim of reducing the variance of

any estimators calculated. This approach will be introduced in more detail at the

end of this section.

One key advantage the MC method has over other techniques is the ability to work

with problems consisting of a large number of sources of uncertainty (i.e., of high

dimensionality). In such instances we essentially just have to generate an addi-

tional stream of random numbers with each additional dimension of the problem

(some of which may be correlated to other uncertainty source’s generated random

number stream). This compares favourably with other numerical integration tech-

niques, such as finite difference approximations, which typically break-down when

the dimensionality of a problem becomes too large.

1.4.1 Sampling error and variance reduction

Given a MC estimator there are two issues which concern us. First, of course, there

is the numerical value the estimator takes. Equally, importantly, however, is the

uncertainty associated with this value. Let us consider a standard MC simulation

to value some option or liability. Imagine n trials are performed, and the standard

deviation of the n resultant simulated option prices is σ. Then the Central Limit

Theorem implies that the standard (sampling) error for this MC simulation is given

by

SE =
σ√
n
. (1.4)

Notice that in order to reduce the sampling error by half we must quadruple the

number of replications performed. This ‘law of diminishing returns’ means that as

we seek greater accuracy using MC simulation, the number of scenarios we need to

perform increases rapidly. This relatively slow convergence is one of the weaknesses

of the MC simulation technique. Indeed, it has led many people to look for alterna-

tive methods which can help reduce the sampling error in MC simulation, without

having to increase the number of replications used. These attempts come under the

general name of variance reduction techniques and we shall now introduce a few of

these approaches.
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Antithetic Variates

Perhaps the easiest variance reduction technique to implement is known as antithetic

variates. To introduce this method we consider the general financial Monte Carlo

estimation problem from the beginning of this section and follow the discussion of

Higham [Hig04]. The challenge was to estimate

α = E [p(S(Z))] , (1.5)

where Z is a vector of standard normal variates. To simplify the illustration of

the technique of using antithetic variates, let us assume the risk-driver, or shock, is

one-dimensional and set q(Z) := p(S(Z)). Then, the natural estimator for α under

a Monte Carlo simulation is simply given by

α̂ =
1

n

n∑
i=1

q(Zi), (1.6)

where Zi are independent and identically distributed standard normal variates. On

the other hand, the alternative antithetic variate estimator is given by

α̂? =
1

n

n∑
i=1

q(Zi) + q(−Zi)
2

. (1.7)

Of course, if Zi is a standard normal variate, then so to is −Zi. Thus, this estimator

is clearly unbiased. But why would using this estimator be likely to reduce the

variance as compared to the estimate using the standard MC estimator? Well, the

variance of the antithetic estimator is given by

Var

(
q(Zi) + q(−Zi)

2

)
=

1

4

(
Var(q(Zi)) + Var(q(−Zi) + 2Cov(q(Zi), q(−Zi))

)
=

1

4

(
2Var(q(Zi)) + 2Cov(q(Zi), q(−Zi))

)
=

1

2
Var(q(Zi)) +

1

2
Cov(q(Zi), q(−Zi)), (1.8)

where Cov(A,B), denotes the covariance of the random variables A and B. Now,

we assume that it takes approximately twice the computation time to simulate n

antithetic paths than it does to simulate n standard paths. This ignores the potential

overheads saved by simply multiplying half the shocks generated by −1 rather than
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generating new random shocks for all paths. However, this saving will generally

be small compared to the time taken to value the payoff function along each path,

particularly for complex products, so it is probably fair to claim the antithetic

estimator will take twice the time to simulate than the standard estimator. With

this assumption, the antithetic estimator will reduce the variance if it has a smaller

variance than the standard estimator with double the number of standard paths,

i.e., if

Var

(
q(Zi) + q(−Zi)

2

)
< Var

(
1

2n

2n∑
i=1

q(Zi)

)
, (1.9)

which, after substituting the above identity for the left hand side and evaluating the

right-hand side, can be expressed as

1

2
Var(q(Zi)) +

1

2
Cov(q(Zi), q(−Zi)) <

1

2
Var(q(Zi)). (1.10)

Thus, the antithetic estimator will have smaller variance than the standard estimator

taking the same computation time if Cov(q(Zi), q(−Zi)) is negative. A sufficient

condition ensuring this is the case is for the payoff function q(Z) to be monotonic in

Z. Glasserman [Gla03] provides an argument that the technique will be even more

successful in reducing variance for payoff functions which are close to linear in the

variable Z. With monotonic payoff functions being commonplace in finance, using

antithetic variates gives a fairly straightforward method in which the variance of

the estimate from a Monte Carlo simulation can be reduced, whilst maintaining the

number of simulations performed.

Example 1.1. By way of an example of applying the antithetic variates technique,

let us estimate the price of a simple call option written on a underlying asset whose

dynamics are governed by the Black-Scholes model. Firstly we shall approach this

using a standard MC simulation, then we will look at also considering the antithetic

path and the effect this has on the variance of the estimator of the price. Let S(0) =

100, K = 105, σ = 0.2, r = 0.05 and T = 1. The analytical price for this option is

£8.02. In Figure 1.1 a box-plot is given showing the results of 500 different estimates

of the option price, found by simulating 500,000 standard simulation paths, and 500

estimates found by simulating 250,000 antithetic pair paths. This should give a

fair comparison of the two simulation approaches, as was discussed a moment ago.

The results show that using antithetic variates reduces the variance in estimating
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the price of this basic option. The spread of the 500 estimates around the mean is

smaller for the antithetic variate approach than the standard approach, both in the

full range and inter-quantile range. However, the reduction in variance achieved by

this approach is generally not as large as other variance reduction methods when

these are available. Some of these other variance reduction approaches will now be

discussed.
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Figure 1.1: Box-plot for 500 estimates of the price of a call option under the Black-
Scholes model, with and without the use of antithetic variates. For each of the
500 standard estimates, 500,000 asset price paths were simulated. For each of the
antithetic estimates, 250,000 antithetic pair paths were simulated. Analytical price
of this option is £8.02. Option parameters are given in the main text.

Control Variates

Another popular variance reduction method is to employ a control variate. This

introduction will follow Section 4.1 of Glasserman [Gla03]. Under this approach the

error around known exact quantities is used to reduce the error arising in estimating

some unknown quantity. To make this method clearer and to explain how one would

use the method in practice, let us summarise the basic underlying theory of MC

simulation using some simple notation.

Recall, the standard financial MC set-up is to estimate α = E[p(S(Z))]. Let us define

Y = p(S(Z)). We would then proceed by generating values Y1, . . . , Yn sampled from
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the underlying density of the random variable Y . Let us then assume that on each

replication we can calculate another quantity Xi, which depends on the shock Zi

and is such that E[X] is known. Then for any constant b, we can calculate

Y CV

i (b) = Yi − b(Xi − E[X]) (1.11)

for the i-th replication. Taking the average of these values over all replications,

Ȳ CV(b) =
1

n

n∑
i=1

(Yi − b(Xi − E[X])) = Ȳ − b(X̄ − E[X]), (1.12)

gives us the control variate (CV) estimator. This can be shown to be both unbiased

and consistent. See Glasserman [Gla03] for details.

We now show how this estimator can reduce the sampling error in our MC simulation

and how we choose the arbitrary constant b to minimise this error. Firstly we note

that each Yi(b) has variance

σ2
CV(b) = Var(Yi − b(Xi − E[X])) = σ2

Y − 2bσXσY ρXY + b2σ2
X . (1.13)

The CV estimator then has variance
σ2
CV(b)

n
and the standard MC estimator has

variance
σ2
Y

n
. The CV estimator then has lower variance than the standard estimator

if

b2σ2
X < 2bσXσY ρXY . (1.14)

Therefore, inequality 1.14 gives us a condition which ensures the CV estimator will

reduce variance. But what if we have a CV estimator which satisfies this condition

for many different values of b? In this case we can find the value of b which minimises

the variance of the CV estimator. Minimising Equation 1.13 with respect to b using

simple calculus yields the value b∗ which minimises the variance of this estimator as

b∗ =
σXσY ρXY

σ2
X

=
cov[X, Y ]

Var[X]
. (1.15)

Setting b = b∗ gives the minimum variance which can be achieved using the CV
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estimator involving the random variable X as

Var[b∗] = Var[Y ]− (cov[X, Y ])2

Var[X]
. (1.16)

The ratio of the minimum variance CV estimator to the standard MC estimator

variance is then 1− ρ2
XY .

Therefore, the success of a CV estimator in reducing sampling error is related to

the correlation between the control variable and the quantity of interest Y . This, of

course, makes sense as we are using the knowledge about the error in estimating E[X]

to refine our estimate of E[Y ], thus the stronger the correlation (or anti-correlation)

between X and Y , the more success the control will have. To find the coefficient b∗,

however, we need to know σY and ρXY , which is unlikely if we do not know E[Y ]

(and finding this is the goal of MC simulation). One should still, however, obtain a

reasonably successful control variate if we estimate b using sample estimates for σY

and ρXY , despite this estimation introducing some bias.

Example 1.2. Let us consider an example which demonstrates a practical applica-

tion of the control variate approach, which was originally proposed by Kemna and

Vorst [Kem90]. This example is also relevant to the research in the thesis, as it

demonstrates an application of a variance reduction technique for a path-dependent

option payoff. This is illustrative in thinking about how one could construct a

variance reduction technique for complex insurance liability estimators.

For this example, let us introduce an arithmetic and a geometric Asian option. The

discounted payoff on an arithmetic Asian call option is given by

e−rT max

(
1

T

∫ T

0

S(t)dt−K, 0
)

(1.17)

and the discounted payoff of a geometric Asian call option is given by

e−rT max

(
exp

(
1

T

∫ T

0

ln(S(t))dt

)
−K, 0

)
. (1.18)

We note that there does not exist a closed-form solution for the price of an arithmetic

Asian call option (under the Black-Scholes model), thus some numerical method

must be used to price this class of derivative. One such approach is MC simulation,

but what could one use as a good control variate in this case? Although no analytical
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formula for the price of an arithmetic Asian option is available, there does exist an

analytical formula for the price of a geometric Asian call option. Furthermore, the

prices of arithmetic and geometric Asian options are likely to be highly correlated,

which suggests the difference between the simulation estimate and analytical value

of a geometric Asian option price will be a successful control variate in finding the

price of an arithmetic Asian option. Table 1.1 gives some results of implementing

a MC algorithm to find the price of this type of option with and without the use

of the proposed control variate. We shall not discuss the intricacies of the method

further here. However, the results show that for this type of option, employing a

CV can significantly reduce the sampling error in the MC estimates.

S(0) K σ r T 95% C.I. without CV 95% C.I. with CV
100 100 0.2 0.05 1 (5.60,5.91) (5.80,5.82)
100 110 0.2 0.05 1 (1.89,2.09) (2.02,2.03)
100 90 0.2 0.05 1 (12.37,12.78) (12.63,12.64)
100 100 0.4 0.05 1 (9.79,10.43) (10.18,10.24)
100 100 0.2 0.05 2 (8.50,8.97) (8.73,8.76)

Table 1.1: Estimates of the price of an Arithmetic Asian call option with and without
the use of the proposed control variate in the example. All option settings use 10,000
paths and 100 timesteps. Results shown as 95% confidence intervals.

Importance Sampling

The final variance reduction method which we shall outline is slightly more complex

than the previous techniques. This method is known as importance sampling and

the following introduction is based on Section 4.6 of Glasserman [Gla03]. The idea

of importance sampling is to reduce variance by changing the probability measure

which the paths are sampled from. Essentially this method places more weight on

the paths which are ‘important’ and thus the efficiency of sampling will be increased.

Successfully utilising this method requires a good understanding of the dynamics of

the model for the underlying asset and the option payoff function, therefore it can

often be difficult to apply for complex problems.

To introduce the technique, consider the general problem of estimating

α = E[p(S(Z))] = E[q(Z)] =

∫
q(z)f(z)dz (1.19)

21



with Z ∈ Rd a random vector (perhaps a random variable) with density f and

q : Rd → R some function. The standard MC estimator we introduced earlier in

this section would then be

α̂ =
1

n

n∑
i=1

q(Zi) (1.20)

with the Zi independent samples from the density f . Now consider an alternative

density g on Rd which is absolutely continuous with respect to f , i.e., g(z) = 0 =⇒

f(z) = 0, for all z ∈ Rd. Then α can be expressed in the form

α =

∫
q(z)

f(z)

g(z)
g(z)dz (1.21)

= Eg
[
q(z)

f(Z)

g(Z)

]
(1.22)

where Eg indicates the expectation is taken with respect to the density g.

If the Zi are now independent samples from density g (rather than our original

density f), the importance sampling estimator is given as

α̂g =
1

n

n∑
i=1

q(Zi)
f(Zi)

g(Zi)
. (1.23)

The quantity or weight f(Zi)
g(Zi)

is the likelihood ratio evaluated at Zi.

One can show that α̂g is an unbiased estimator of α, thus in considering the success

in variance reduction of importance sampling we can just compare second moments

of the estimator with and without this technique. The second moment of the im-

portance sampling estimator is

Eg
[(
q(Z)

f(Z)

g(Z)

)2]
= E

[
q(Z)2f(Z)

g(Z)

]
(1.24)

which may be greater or smaller than the standard MC estimator’s second moment

E[q(Z2)]. Indeed, this can even be infinitely larger or smaller with certain choices

of g. Thus, the choice of the importance sampling density is crucial to the success

of this variance reduction method and one must take great care when using this

approach.

If q is taken as the indicator function for some set A, then α = P(Z ∈ A), and

the (theoretical) zero-variance importance sampling density is q(z)f(Z)/α, i.e., the
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conditional density of Z, given Z ∈ A. Thus, when this method is applied in order

to estimate a probability we should seek to find a density which is similar to the

conditional density. Put more simply, we should choose our importance sampling

density to make g more likely. This concept is commonly used in finance to reduce

variance when the set A is rare under f , for example the event of a large number of

obligors defaulting in credit risk management modelling.

Example 1.3. As a very simple example of importance sampling let us attempt to

estimate α = P (Z > 4), where Z is a standard normal distribution. To estimate

this naively by MC simulation, first 1,000,000 standard normal random variates are

simulated and from this sample the standard MC estimator gives a 95% confidence

interval for γ of (−1.94 × 10−3, 1.98 × 10−3). This corresponds to a standard error

of 1 × 10−3. Instead, one could generate normal random variates with mean 4 and

variance 1, density g say, and employ the likelihood ratio between this and the

standard normal density. This likelihood ratio is given by

f(z)

g(z)
=

e−z
2/2

e−(z−4)2/2
= e8e−4z (1.25)

evaluated at each of the sampled values from g. With this approach we obtain a

95% confidence interval for γ of (3.156 × 10−5, 3.182 × 10−5), or, an estimate of

3.169× 10−5 with a standard error of 6.73× 10−8. This compares well to the value

obtained from accurate statistical tables, i.e., 1−Φ(4) = 3.167×10−5. Also, there is

clearly a dramatic reduction in variance using the importance sampling estimator.

Of course, this is a hypothetical example and more efficient methods for calculating

γ exist. However, it demonstrates that if we can utilise some knowledge of the model

or payoff being considered, the increase in accuracy of a MC estimator for certain

problems can be vast.

Quasi-random sampling

Quasi-random (or low-discrepancy) simulation algorithms have a different philoso-

phy in comparison to standard MC simulation. Pseudo-random sampling algorithms

aim to mimic randomness by computing a long list of numbers from a deterministic

sequence which appear very much as if they are uniformly sampled variates. With

quasi-random sampling, however, the aim is not to mimic randomness, but to obtain
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an increased accuracy in MC estimators “specifically by generating points which are

too evenly distributed to be random” (Glasserman [Gla03]). These methods could

potentially offer convergence in these estimators of up to O(1/n), compared to the

standard MC simulation convergence of O(1/
√
n). The variance reduction tech-

niques which have been discussed in this section will only decrease the implicit

constant in the O(1/
√
n) convergence. Thus, the quasi-random sampling approach

can be very rewarding in increasing the efficiency of the MC simulation technique

for certain financial problems.

To further illustrate the idea behind quasi-random sampling, consider again our

general financial MC estimator α̂. This can be expressed as

α̂ =
1

n

n∑
i=1

p(S(Zi)) =
1

n

n∑
i=1

p(S(Θ−1(Ui))) =
1

n

n∑
i=1

r(Ui), (1.26)

where we have expressed the d-dimensional random normal vector Zi in terms of

a d-dimensional vector of uniform random variates using the inverse distribution

function, Θ−1(z), of the random variable z. When being applied to a vector, we

assume this distribution function will act on each element, returning another vector.

We have set r(x) = p(S(Θ−1(x))) to simplify the notation. A general quasi-random

MC estimator for α is then given by

α̂ =
1

n

n∑
i=1

r(xi) (1.27)

for systematically chosen points x1, . . . ,xn in the unit hypercube [0, 1]d. The algo-

rithm for choosing these points is designed to sample as uniformly as possible over

[0, 1]d, where d = dim(Ui) for each random number stream i.

Of course, pseudo-random sampling aims to generate these points such that they

mimic a randomly generated sequence. With the quasi-random estimator this sys-

tematic sampling of points is given by a deterministic sequence which aims to fill

the unit hypercube as uniformly as possible. A naive approach might be to sam-

ple these points in a regularly spaced grid, however this approach suffers from a

couple of major shortcomings, which will be outlined later in Section 2.4. Instead,

algorithms have been developed which generate sequences which aim to minimise

the discrepancy of a set of points in the d-dimensional hypercube. Discrepancy is
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a mathematical notion capturing the deviation from uniformity of a set of points –

this concept is formalised mathematically in Glasserman [Gla03].

To give some insight into how these quasi-random (or low discrepancy) sequences

are generated, let us investigate a quasi-random sequence in one-dimension over the

unit interval. This deterministic algorithm generates what is known as a Van der

Corput sequence. Let us set an integer b ≥ 2 which we will call the base. Every

positive integer has a unique representation as a linear combination of non-negative

powers of b with coefficients, aj(k), in the set 0, 1, . . . , b− 1. This can be expressed

as

k =
∞∑
j=0

aj(k)bj (1.28)

for every k ∈ N, with all apart from a finite number of the coefficients being equal

to zero.

Introducing the radical inverse function φb as a mapping from N to [0, 1). For each

positive integer k it will flip the coefficients of k about the base-b “decimal” point

to obtain a base-b fraction .a0a1a2 . . . More formally, this function is defined by

φb(k) =
∞∑
j=0

aj(k)

bj+1
. (1.29)

The base-b Vand der Corput sequence is then given as 0 = φb(0), φb(1), φb(2), . . . An

example of the first few terms of the base 2 Vand der Corput sequence is given in

the Table 1.2 (which is reproduced from Glasserman [Gla03]).

A naive refinement might just add the new values in increasing order, for example if

the sequence already consisted of 0, 1/4, 1/2 and 3/4, the next terms would be (in

k K(binary) φ2(k)(binary) φ2(k)
0 0 0 0
1 1 0.1 1/2
2 10 0.01 1/4
3 11 0.11 3/4
4 100 0.001 1/8
5 101 0.101 5/8
6 110 0.011 3/8
7 111 0.111 7/8

Table 1.2: First few terms of base-2 Van der Corput sequence.
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order) 1/8, 3/8, 5/8 and 7/8. The Van der Corput sequence adds these in a balanced

way, appearing on alternating sides of 1/2, first of all, and then on alternative sides

of 1/4 and 3/4. This property continues as the sequence extends and fills the unit

interval with greater detail. The base, b, parameter has the property that the larger

the value it takes, the greater the number of points which are required to achieve

uniformity.

This simple Van der Corput sequence illustrates the basic idea behind a quasi-

random number sequence. Quasi-random sequences for multi-dimensional prob-

lems extend this approach to generate points which have low-discrepancy over the

multi-dimensional unit hypercube. In the analysis later in this thesis, we generate

quasi-random points in multiple dimensions using the Sobol sequence. For a de-

tailed introduction to the Sobol sequence see Section 5.2.3 of Glasserman [Gla03].

Glasserman also shows that the uniformity property of quasi-random sequences is

much more apparent in the lower dimensions of a high-dimensional problem. Thus,

it may be beneficial to use knowledge of the underlying stochastic model in conjunc-

tion with quasi-random sampling to improve accuracy. In other words, we should use

the dimensions offering the greatest uniformity for the most important risk-drivers.

1.4.2 Summary of the MC technique in finance

In summary, this section has hopefully given a brief, but informative account of some

of the fundamental principles of the MC simulation technique. This should provide

enough of a background of the method to understand the research which will be

developed throughout the thesis and how such innovations would be implemented

in practice. There are many textbooks which give a more extensive introduction

to the application of MC simulation in finance. Some references are Glasserman

[Gla03], Higham [Hig04] or Huynh, Lai and Soumaré [Huy08]. We will now move

on to introduce a novel extension of the MC technique which has been proposed as

a solution to the challenge of calculating a solvency capital requirement for complex

insurance liabilities. Investigating this approach is the purpose of Part I of the

thesis.
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Part I

LSMC method for insurance liability projection
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Chapter 2

Introduction to LSMC

2.1 Idea behind the Least-Squares Monte Carlo (LSMC) method

In Part I of the thesis the least-squares Monte Carlo (LSMC) method for project-

ing insurance liabilities will be investigated. This approximation technique could

prove very useful for practitioners in the insurance industry looking for an efficient

approach for calculating a solvency capital requirement (SCR) under the upcoming

Solvency II regulatory framework. To begin with, a general overview of the LSMC

simulation technique for the calculation of an insurance SCR will be given. Under

the impending Solvency II regulatory framework, insurance companies operating

inside the European Union will be required to calculate a SCR as part of their risk

management practice. As was discussed in Section 1.2 this can either be done us-

ing an industry-wide standard formula or by an insurer employing their own model

which takes into account the specific risks they face. This thesis will concentrate

on the more sophisticated of these approaches by employing an economic scenario

generation methodology. This is much more aligned with the philosophy of Sol-

vency II and is the method most of the large insurers are considering in their SCR

calculations.

To aid this introduction, let us imagine we are an insurer wishing to calculate an

accurate and reliable SCR over some future time horizon. This more sophisticated

approach proceeds by accurately calculating the projected liability distribution over

this future time horizon and then determining some percentile of this distribution

corresponding to the confidence level at which the SCR is required. There are two

stages to this calculation; firstly, we would look to project a number of realisations

of the key economic variables, or risk-drivers, on which the future liability is likely

to depend. This idea is often known as economic scenario generation. After these

future states of the economy have been simulated, the liability the insurer faces

at the projection date will be calculated, conditional on each of these simulated

future states. With many insurance products the liabilities faced are complex and

path-dependent in nature. As such, there is usually no simple, analytic closed-
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Figure 2.1: Nested simulation.

form valuation formula for these liabilities. Furthermore, these liabilities are often

multi-dimensional in nature, meaning the natural approach to valuing the liabilities

efficiently is to use the technique of Monte Carlo simulation, introduced in Section

1.4. Thus, this challenge of projecting insurer’s liabilities has naturally led to ‘nested’

or ‘stochastic-on-stochastic’ simulation. This can be summarised as a simulation

with a number of ‘outer’ economic scenarios each branching out to form a number

of ‘inner’ valuation scenarios for calculating the (conditional) liability. A schematic

of this nested simulation set-up is given in Figure 2.1.

One important point to note is the different approaches for calibrating the models

from which we simulate these outer economic projections and inner liability val-

uation scenarios. For the outer scenarios, we wish to employ a model which will

realistically capture the behaviour of the key risk-drivers from today out until the

projection date. This chosen model will be calibrated to some historical data to

attempt to best capture the likely observed path of these variables over the period

of time until the projection date. This is often known as a real-world model cal-

ibration. On the other hand, the inner liability valuations are calibrated using a

completely different philosophy. Here, the valuation model will not be calibrated

using the observed behaviour of key economic variables, but instead calibrated in

such a manner as to ensure that the expected value of all financial assets in our

economy will grow at the same rate. This rate of growth will be the return one

would achieve by investing in a risk-free asset, which we assume is available for
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investment in this economy. Calibrating the model in such a manner avoids the pos-

sibility of arbitrage opportunities, where an investor could begin with zero wealth

and expect to make a risk-free profit. This type of model calibration is often known

as risk-neutral, or sometimes market-consistent. There has been a vast amount of

literature over the last forty years, developing the risk-neutral approach to pricing

financial instruments. Some textbooks which introduce this theoretical framework

are Bingham and Kiesel [Bin04], Baxter and Rennie [Bax96] and Wilmott [Wil00].

In practice, market-consistent calibrations are typically obtained by fitting these

models to quoted market prices, since any arbitrage opportunities would be quickly

eliminated and priced out of a liquid market. With the terms of insurance products

often extending many decades into the future, obtaining a market-consistent calibra-

tion would require quoted prices for options with a similar maturity. Such options

are very illiquid and this leads to complications in attempting to obtain risk-neutral

valuations of insurance liabilities. An excellent reference discussing such issues and

proposing methodologies for making progress in the face of this challenge is the

article by Pelsser [Pel11]. For the moment, however, let us assume that a satisfac-

tory risk-neutral calibration can be achieved for the liability valuation model under

consideration.

In this SCR calculation, the number of outer scenarios needed to give a reliable

estimate will, of course, depend on the confidence level the insurer wishes to have in

determining the amount of risk-based capital to hold. As mentioned in Section 1.2,

typical SCR confidence levels are reasonably far into the upper-tail of the required

capital distribution, often at the 99.5-th percentile. In order to obtain an accurate

estimate of such a percentile of the distribution, a large number of outer economic

scenarios must be simulated. This will ensure we have enough resolution in the

upper tail to get an accurate estimate of this percentile through the calculation

of simple estimators based on upper order statistics. Also, given that insurance

liabilities are often long-term, complex, path-dependent and multi-dimensional in

nature, obtaining an accurate liability valuation (conditional on each of the outer

economic scenarios) will require a large number of inner valuation scenarios to be

simulated. Thus, the total number of liability valuations required for an accurate

SCR calculation under the full nested simulation framework is prohibitively large.
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To illustrate the computational challenge of nested simulation let us specify some

numbers: At the typical confidence level of 99.5% (over a one year time horizon) a

minimum of 10,000 outer scenarios would be necessary to get reasonable resolution in

the upper tail of the projected liability distribution. And within each of these outer

scenarios, a minimum of around 10,000 inner scenarios are required to obtain an

accurate estimate of the value of the liability. Thus in total around 10, 000×10, 000 =

100, 000, 000 valuation scenarios are needed. Furthermore, this simulation is only

for a one-year time horizon. If an insurer wished to project n years into the future,

a total of approximately n × 10, 000 × 10, 000 = 100, 000, 000n scenarios would be

required. An illustration of how this nested simulation extends to multiple projection

dates is given in Figure 2.2. Bauer, Bergmann and Reuss [Bau11] analyse the optimal

outer and inner scenario allocation for a SCR calculation in the nested simulation

framework. They argue that reasonably accurate estimates can be obtained with

a smaller number of inner scenarios than this. However, given the long-term and

complex nature of typical insurance liabilities, the required number of valuation

scenarios would still be infeasible given current levels of technology. Thus, the full

nested simulation approach is not computationally practical for insurers.

In order to make this simulation framework computationally tractable, one approach

would be to dramatically decrease the number of (conditional) inner valuation sce-

narios, given each of the outer economic projections. Let us imagine reducing this

number of inner valuation scenarios from 10,000 to just a few, perhaps even just

one. This will, of course, give a liability valuation of very poor accuracy. However,

if we regress each of these poor single inner scenario liability estimates on some key

risk-drivers which influence the liability at the projection date, then the accuracy of

each of these estimates can be vastly improved. Essentially, we are using the cross-

sectional information from across all these inaccurate single inner scenario valuations

to correct the estimate for each of these in isolation. By employing a least-squares

regression to improve the accuracy of the liability estimates at each projection date

within this reduced simulation framework, far more accurate and computationally

efficient estimates of the insurance SCR can be achieved. This technique will be

referred to as the least-squares Monte Carlo (LSMC) method and investigating it

further will form a large part of the content of this thesis. A schematic representation

of the LSMC method is given in Figure 2.3.
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Regression 
at projection 

year

Liability Valuations

Figure 2.3: A schematic representation of LSMC simulation.

The LSMC was originally proposed in the context of American option pricing and

developed by Carriere [Car96], Tsitsiklis and Roy [Tsi99] and Longstaff and Schwartz

[Lon01]. It is worthwhile taking a short digression from the problem of projecting

insurance liabilities to look at how LSMC is used to price American options. This will

help further illustrate the approach in our context and also show the method being

applied in another important area. Furthermore, many results given in the literature

for the LSMC method in this alternative context may extend to our problem of

projecting complex insurance liabilities.
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2.2 LSMC for American option valuation

Let us attempt to value an American put option written on some stock with expiry

in two years time by means of Monte Carlo simulation. The buyer of the option can,

however, exercise this option at the end of the first year and at expiry only. This type

of option is often denoted a Bermudan Option. In reality, in order to approximate

the value of an American option, one would consider a Bermudan option with a large

number of exercise opportunities before expiry. However, for illustrative purposes

we shall just allow the one additional exercise opportunity at the end of the first

year. The first stage in this simulation task is to generate a number of scenarios

for the underlying stock price and calculate the resulting cashflows that arise on

exercising the option. Firstly we need to project forward to the first available exercise

opportunity (in our case at the end of the first year). However, at this stage the

cashflow is dependent on whether or not the option is exercised. If the option is in

the money the holder has the choice between exercising or holding the option until

a later time, believing that the stock price will fall further. Of course the choice

to continue holding the option has value. Therefore, in deciding whether or not to

exercise the option when it is in the money at the end of the first year, the holder

will compare the amount they will receive from exercising the option early with the

(estimated) value from continuing to hold on to the option until expiry. The choice

which provides the greatest value will dictate the action of the option holder.

In order to determine the continuation value of the option, we must generate a

set of ‘inner scenarios’ branching from each outer scenario (taking us from initially

to the end of the first year). This approach was originally proposed by Broadie

and Glasserman who refer to it as a ‘simulated tree’ [Bro97]. Comparing this with

the problem of projecting market-consistent balance sheets, we see both simulation

challenges are very similar. In pricing an American option, both outer and inner

scenarios are simulated under a risk-neutral model, though. Naturally, to price an

American option under this approach, one would take a large number of exercise

opportunities and working backward from maturity apply this method to determine

whether the expected continuation value was greater than the early exercise value

at each of these timesteps. The final value, corresponding to time zero, would then

be the LSMC approximation for the price today of the American option.
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2.3 LSMC framework/algorithm

Let us return to the challenge of projecting market-consistent insurance liabilities

using the LSMC method. In this section, however, we will take the general concept

of the LSMC method outlined in Section 2.1 and formalise it in a mathematical

framework. This will give a clearer understanding of the details of the method

and be crucial in later parts of the thesis where the technique will be thoroughly

investigated and the basic idea of the method extended.

The following notation and framework will be based on that used to describe the

LSMC method in Longstaff and Schwartz [Lon01], however here the algorithm will be

presented in our insurance context, rather than in the pricing of American options.

The market model we shall work under is a complete probability space (Ω,F ,P),

where Ω is the set of all possible realisations of the random economy over a time

period [0, T ], F is the sigma field of events occurring throughout [0, T ] and P is the

‘real-world’ probability measure defined on the elements of F . We define Ft to be

the filtration generated by the price processes for securities and underlying economic

models in this economy until time t. We assume that FT = F . Consistent with

the notion of there being no arbitrage in this economy, we assume there exists an

equivalent martingale measure Q for this economy (under which discounted stock

prices are martingales).

Now, we want to construct an algorithm to give a pathwise approximation to the

future liabilities associated with some insurance product at the projection time.

Firstly let us set t1, t2, . . . as the points in time where the underlying fund level of

the product is re-balanced due to the investments made with the funds since the last

re-balancing date and/or when a withdrawal is made from this fund. Now define the

cashflows from the insurer’s reserves to the policyholder at time t as C(ω, t), which

will be non-zero only if the guaranteed income due to the policyholder exceeds the

underlying fund level at time t. The ω indicates these cashflows are different for

each scenario. The future liabilities associated with the product at time tk can then

be expressed as:

L(ω; tk) = EQ

[
K∑

j=k+1

exp

(
−
∫ tj

tk

r(ω, s)ds

)
C(ω; tj)

∣∣∣Ftk
]
, (2.1)
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where r(ω, t) is the riskless discount rate and the expectation is taken conditional

on Ftk , or the information available about the product (e.g., fund and guaranteed

income levels) and the underlying economy (e.g., interest rates) at time tk. This

information would be available in the outer simulation stage of the nested simulation

set-up. The problem is how do we estimate this conditional expectation?

The LSMC method uses least-squares to obtain an approximation for this condi-

tional expectation function at time tk. At this time the assumption is made that

the unknown functional form of L(ω; tk) can be approximated by a linear combina-

tion of a countable set of Ftk-measurable basis functions. Longstaff and Schwartz

give a formal justification of this assumption. Possible choices of basis functions

include (weighted) Laguerre, Hermite, Legendre and Chebyshev orthogonal polyno-

mials. Longstaff and Schwartz state that simply using powers of the state variables

as basis functions also gives accurate results. A more in depth discussion of possible

choices of basis functions in the LSMC method is given in Section 2.5. Some tests

investigating the accuracy of the LSMC estimates under different choices of basis

functions are given in Section 3.8.

By choosing an appropriate set of basis functions, B1(X), B2(X), . . . , the liability

value can then be expressed as

L(ω; tk) ≈
Q∑
q=0

aqBq(X(tk)) (2.2)

where the aj are constants and X is the vector of appropriate explanatory vari-

ables (which are found to influence the expected future liabilities of the product).

If the LSMC method is used in multi-dimensional problems one may expect the

number of basis functions (including cross-terms) to grow exponentially with an

increasing number of state variables. Longstaff and Schwartz cite research which

shows this number may not increase at such a rate, making the method robust to

multi-dimensionality.

With this LSMC approach to the liability valuation, we can significantly reduce the

number of inner scenarios required for each outer scenario projection, perhaps to

even just a single inner scenario. This computational task is then easily manageable

by a standard desktop computer. Taken alone each single inner scenario will provide

a poor estimate of the true liability value. However, by regressing over a large
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number of these single scenario estimates, a refined, more accurate liability valuation

for each economic projection can be achieved.

Within this LSMC framework there is still a lot of flexibility in how the technique

is implemented in practice. In Sections 2.4-2.6 some of the main choices one has in

configuring this approach for the calculation of an insurance SCR will be discussed.

2.4 LSMC fitting scenario sampling

The first issue in the implementation of the LSMC method which we will discuss is

the approach for sampling in the outer scenarios. Ultimately we will generate outer

scenarios using a realistic real-world model and then feed these into our calculated

regression function. This will generate liabilities which are consistent with how we

believe the economic risk-drivers will behave until the projection date. In order

to obtain an accurate fit for this regression function, however, we can sample or

structure the outer scenarios in any way we like. These scenarios are used to calibrate

the regression model. We will refer to these as outer fitting scenarios to distinguish

them from the real-world outer scenarios.

For these outer fitting scenarios we can simply choose where to place the points to

fill the space spanned by the risk-drivers which drive the projected value/liability, or

sample them from any statistical distribution we choose. Therefore, how best to dis-

tribute these outer fitting scenario points in space is a key issue in the configuration

of the LSMC method.

To explore this idea further, let us set-up an interval such that it is extremely unlikely

that the risk-driver will take a value at the projection time outside of these given

values. For clarity, let us assume there are only two factors which drive the future

liabilities measured at projection time (at end of year one); these are the equity level

at year one and the volatility level at year one, say. Now, we make the assumption

that it is extremely unlikely that by the end of year one the equity return will not

lie within the interval [0.3, 1.8] and the volatility within the interval [0, 50%]. This

notion could be generalised by setting this interval as the range of values the risk-

drivers will take with some extremely high level of confidence, say 99.9%. These

intervals then define the limits over which we wish to determine a regression surface

in the two risk-drivers.
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Figure 2.4: Full (discrete) grid sampling (961 fitting points shown).

2.4.1 Full (discrete) grid sampling

Probably the most natural method under which to sample points from this finite

two-dimensional space is to create a regularly-spaced discrete grid. If we have 961

(= 31x31) outer fitting points, they will fill our two-dimensional space, as is shown

in Figure 2.4. The main problem with this approach is how the number of outer

fitting points grows as the number of risk-drivers increases. This is often referred to

as the curse of dimensionality. Even with just four risk-drivers, choosing 31 points

in each risk-driver would yield 314 = 923, 521 outer fitting points. Furthermore, as

the number of risk-drivers or discretisation points is increased further, the number

of fitting points increases rapidly.

2.4.2 Latin hypercube sampling

One approach which does not suffer from this problem with many risk-drivers is

Latin hypercube sampling (LHS). Under LHS each risk-driver interval is partitioned

into strata and the outer points are sampled in such a way as to ensure that exactly

one outer point will feature in each stratum, for each of the given risk-drivers.

More technically, the stratification only takes place in the one-dimensional marginals

of a multi-dimensional joint distribution. This sampling approach does not pose

problems in high dimensional problems, as the total number of points (and hence

strata used) is independent of the number of risk-drivers. For clarity, we show how
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Figure 2.5: Latin Hypercube sam-
pling (16 fitting points shown).
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Figure 2.6: Latin Hypercube sam-
pling (961 fitting points shown).

16 outer fitting points would fill our finite two-dimensional space in Figure 2.5. The

strata are shown alongside the points in this plot. The results of generating 961

points by LHS in our two-dimensional risk-driver space is then shown in Figure 2.6.

2.4.3 Quasi-random sampling

Another outer fitting scenario sampling approach which is robust to a large number

of risk-drivers is to sample using quasi-random (or low-discrepancy) numbers. These

were mentioned briefly in Section 1.4. The idea in sampling with this method is not

to mimic randomness, as is the case in generating the pseudo-random numbers

used in standard Monte Carlo simulation. Rather an increased level of accuracy is

sought, by generating samples which are too evenly distributed to be random. For a

more detailed introduction, see Glasserman [Gla03]. An example of filling the space

spanned by the year one equity and volatility intervals with 961 two-dimensional

Sobol numbers is shown in Figure 2.7.

2.4.4 Uniform (pseudo-random) sampling

A pseudo-random number generator could also generate 961 two-dimensional points

from the space spanned by the chosen risk-driver intervals. This is just the standard

uniform distribution sampling scheme over this space and gives another method by

which we could sample points in the outer fitting scenarios. Naturally, this will
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Figure 2.7: Quasi-random sampling
(with 961 fitting points shown).
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Figure 2.8: Uniform sampling (with
961 fitting points shown).

fill the space with a greater discrepancy than generating the points using a Sobol

sequence. However, it is not clear that generating outer fitting points with this

low discrepancy property will necessarily improve the fit of the resultant regression

function. A graph of 961 standard uniform sampled year one equity and volatility

pairs is given in Figure 2.8.

In this section we have shown a few different approaches for sampling the outer fitting

scenarios in the LSMC method. In Sections 3.7 and 3.8, these different approaches

will be investigated and some tests determining the accuracy of the LSMC estimates

under these different sampling methods will be performed. For the moment, the key

point to note is that the scenarios which are used to calibrate the regression model

need not necessarily be drawn from the real-world probability model which we be-

lieve to realistically describe the evolution of the risk-drivers out to the projection

date. This idea is not discussed in the American option pricing LSMC literature

and is an original innovation in this thesis. In the context of pricing options, one is

interested in estimating the mean or expected value of the continuation value distri-

bution and using this as part of some approximation scheme to ultimately determine

a fair value. In Section 3.7 we will see that the alternative sampling approaches for

the fitting scenarios will only improve the success of the LSMC estimates when the

aim is to estimate some upper percentile of a simulated distribution. Thus, these

alternative sampling approaches will not add any benefit to the LSMC technique in

the context of American option pricing. Of course, if one were interested in estimat-
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ing a value-at-risk, or similar risk-measure, from positions held in American-style

options, these alternative sampling approaches would improve the LSMC estimates

of these quantities.

2.5 Basis functions in the LSMC method

Another issue one has to contemplate when implementing the LSMC method is the

form the basis functions should take in the regression model. Recall, that the tech-

nique assumes the unknown functional form of the liability at the projection time,

tk, can be given as a linear combination of a countable set of Ftk-measurable basis

functions. However, there are many different possible forms for these basis functions.

One approach would be to take simple powers of the Ftk-measurable explanatory

variables which are found to influence the liability at the projection date. Another

approach often proposed is to construct the regression model from orthogonal poly-

nomials of these Ftk-measurable explanatory variables. In this section we will give

an introduction to the theoretical benefits of using orthogonal polynomials in a re-

gression model. Some simple analysis of the design matrices under different types

of basis functions will then be performed to investigate whether there seems to be

evidence suggesting that using orthogonal polynomials could improve the success of

the LSMC estimates.

Let us imagine we have some data on which we wish to perform a least-squares

regression. For ease of illustration, it is assumed there is just one risk-driver in-

fluencing the regression, x say. Our data consists of n values of x and n values of

the response variable L (which in the LSMC set-up would be the estimated liability

values from each of the single inner scenarios). The regression model will then take

the form

Li = a1B1(xi) + a2B2(xi) + · · ·+ aQBQ(xi) + εi, (2.3)

for i = 1, . . . , n, where the aj are constants, the Bj(x) is the j-th basis function in

the variable x and the εi is the error term, or noise, of the response Li. The errors

εi will be assumed to be normally distributed with mean zero and variance σ2
ε and

be uncorrelated with the regressors, i.e., E[xiεi] = 0.
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This regression can be expressed more succinctly in the form of a matrix as

L = aX + ε, (2.4)

where

L =


L1

...

Ln

 , X =


B1(x1) · · · BQ(x1)

...
. . .

...

B1(xn) · · · BQ(xn)

 , a =


a1

...

an

 , ε =


ε1
...

εn

 . (2.5)

Under ordinary least-squares regression the parameters of the regression model are

found using

â = (X′X)−1X′L (2.6)

and the correlation matrix of the parameter estimates is given by

corr(â) = (X′X)−1σ2
ε . (2.7)

It can be seen from these results that if the matrix (X′X)−1 is diagonal then this will

result in uncorrelated parameter estimates. This would be beneficial in the regression

because the larger the correlation between the parameter estimates the greater the

resultant variance associated with each of the individual parameter estimates.

By setting the basis functions B0(x), . . . , BQ(x) as the first Q+ 1 polynomials from

some family of orthogonal polynomials, the matrix (X′X)−1 will be diagonal in the

limit n → ∞ if x1, . . . , xn are evenly distributed across the domain on which the

family of polynomials are orthogonal. In practice, we will have a finite number of

xi, but it is possible through the sampling schemes discussed in Section 2.4 to make

these points as evenly-spaced across the domain as possible.

With this in mind, a few tests will now be performed to investigate whether the ma-

trix (X′X)−1 is ‘closer to diagonal’ when using a family of orthogonal polynomials as

the basis functions in the regression, compared with just using simple powers of the

explanatory variable. For these tests, we will assume a large number of realisations

of the explanatory variable x have been sampled from the real-world distribution and

xupp and xlow represents the maximum and minimum of this population. The range

over which we wish to sample the fitting points used to determine the best-fitting
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parameter estimates in the regression model is then given as x ∈ [xlow, xupp]. The

two different sampling approaches which will be used in these tests will be uniform

and quasi-random simulation. For each of these two approaches we will consider

both the simple polynomial and orthogonal polynomial basis functions.

Assume we have generated n fitting points, xi, i = 1, . . . , n, by either uniform or

quasi-random sampling over [xlow, xupp]. For the case of simple polynomial basis

functions, we simply set the basis functions as

B0(xi) = 1, B1(xi) = xi, B2(xi) = x2
i , . . . , BQ(xi) = xQi . (2.8)

For the orthogonal polynomial basis functions in this analysis, we will consider the

class of Legendre orthogonal polynomials. The Legendre polynomials are orthogonal

with respect to the L2-inner product over the interval [−1, 1]:

∫ 1

−1

Bm(x)Bn(x)dx =
2

2n+ 1
δmn, (2.9)

where δmn is equal to 1 if m = n and zero otherwise. As these polynomials are

orthogonal over the interval [−1, 1], we must scale and shift our fitting points so

that they lie within this domain. This would be achieved by simply setting

x̃i =
2(xi − xlow)

xupp − xlow
− 1. (2.10)

Taking the basis functions as the first few Legendre polynomials gives:

B0(x̃i) = 1 (2.11)

B1(x̃i) = x̃i (2.12)

B2(x̃i) =
1

2
(3x̃2

i − 1) (2.13)

B3(x̃i) =
1

2
(5x̃3

i − 3x̃i). (2.14)

Further Laguerre polynomials can be determined using Bonnet’s recursion, which

gives the (n+ 1)-th order polynomial in terms of the n-th and (n− 1)-th as

(n+ 1)Bn+1(x̃i) = (2n+ 1)x̃iBn(x̃i)− nBn−1(x̃i). (2.15)
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Other classes of orthogonal polynomials also have simple recursions to generate

them. They may be orthogonal over different domains, however this can be ac-

counted for by adapting Equation 2.10 as appropriate. If we use uniform sampling

to generate 10,000 points over the interval [−1, 1] and then use the first 4 Laguerre

polynomials to give the columns of the design matrix X, this will result in this ma-

trix having 10,000 rows and 4 columns. Then, the 4×4 matrix (X′X)−1 will be given

as is shown just below. The equivalent matrices for Sobol quasi-random sampling

over [−1, 1] together with Legendre orthogonal polynomial basis functions and each

of the two sampling approaches with a simple third-order polynomial regression are

also given below:

Uniform sampling with Legendre polynomials:

(X′X)−1 =


1.0× 10−4 −9.9× 10−7 −7.6× 10−8 1.8× 10−6

−9.9× 10−7 3.0× 10−4 3.9× 10−7 −3.9× 10−6

−7.6× 10−8 3.9× 10−7 5.0× 10−4 −2.5× 10−6

1.8× 10−6 −3.9× 10−6 −2.5× 10−6 6.9× 10−4

 (2.16)

Average of absolute value of off-diagonal elements: 1.67× 10−5.

Sobol quasi-random sampling with Legendre polynomials:

(X′X)−1 =


1.0× 10−4 3.8× 10−8 2.5× 10−8 3.8× 10−8

3.8× 10−8 3.0× 10−4 1.2× 10−7 1.8× 10−7

2.5× 10−8 1.2× 10−7 5.0× 10−4 1.7× 10−7

3.8× 10−8 1.8× 10−7 1.7× 10−7 7.0× 10−4

 (2.17)

Average of absolute value of off-diagonal elements: 7.14× 10−8.

Uniform sampling with simple polynomial:

(X′X)−1 =


2.3× 10−4 −1.2× 10−5 −3.7× 10−4 1.7× 10−5

−1.2× 10−5 1.9× 10−3 1.8× 10−5 −2.6× 10−3

−3.7× 10−4 1.8× 10−5 1.1× 10−3 −2.4× 10−5

1.7× 10−5 −2.6× 10−3 −2.4× 10−5 4.4× 10−3

 (2.18)

Average of absolute value of off-diagonal elements: 3.80× 10−4.
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Sobol quasi-random sampling with simple polynomial:

(X′X)−1 =


2.3× 10−4 4.6× 10−8 −3.8× 10−4 −1.2× 10−7

4.6× 10−8 1.9× 10−3 −1.9× 10−7 −2.6× 10−3

−3.8× 10−4 −1.9× 10−7 1.1× 10−3 6.3× 10−7

−1.2× 10−7 −2.6× 10−3 6.3× 10−7 4.4× 10−3

 (2.19)

Average of absolute value of off-diagonal elements: 3.73× 10−4.

These matrices show that the off-diagonal elements of the matrix (X′X)−1 are on

average closer to zero when Legendre polynomial basis functions are used, in com-

parison to employing a simple polynomial regression. Furthermore, by employing

Sobol quasi-random sampling of the fitting points with orthogonal polynomial basis

functions, these off-diagonal elements are closer to zero again, than when using sim-

ple uniform random sampling over the interval [−1, 1]. This is not a great surprise,

as the theory of orthogonal polynomials suggests that the matrix (X′X)−1 should be

diagonal under an even distribution of points and infinitely many of these orthogo-

nal polynomials. Thus, by employing quasi-random sampling, we would expect that

the matrix using four of these polynomials would be more ‘diagonal-like’, than by

just employing a standard polynomial regression.

Of course, if the matrix (X′X)−1 is close to diagonal, this will give parameter esti-

mates which have very little correlation with one another. Therefore, this analysis

offers some evidence that employing orthogonal polynomial basis functions (particu-

larly when in combination with quasi-random sampling) might give a more accurate

regression in the LSMC method. Of course, all these matrices have fairly small

off-diagonal elements, so any extra accuracy gained in the LSMC method may be

small. Nonetheless, this should be investigated further and some tests of different

orthogonal polynomials (with various fitting point sampling approaches) within the

LSMC method are performed in Section 3.8.

2.6 LSMC outer and inner scenario allocation

The final issue remaining in the optimal configuration of the LSMC method is how

to allocate the available computational budget between the simulation of the outer

fitting scenarios and the inner valuation scenarios. By increasing the number of
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inner valuation scenarios (per outer fitting scenario), the accuracy of the liability

valuation for each fitting scenario will be improved. This means that each of the

liability values on which we want to regress in terms of the key explanatory vari-

ables will have less associated sampling error, thus we would expect that each of the

regression-corrected estimates will also be of greater accuracy. Therefore, by em-

ploying a greater number of inner scenarios (per fitting scenario), a more accurate

LSMC estimated liability value distribution can be determined. On the other hand,

if the number of outer fitting scenarios is increased (whilst keeping the number of

inner valuation scenarios per outer scenario fixed), the accuracy of the LSMC esti-

mated projected value distribution should also improve. The error of the conditional

projected liability value for each fitting scenario will not depend on how many outer

scenarios are sampled. However, with a greater number of fitting points through

which to perform a regression, we would expect to get a more accurate estimated

projected liability value function in terms of the explanatory variables. Hence, by

sampling a greater number of outer fitting scenarios, the accuracy of the LSMC

method will also increase.

Therefore, given a fixed computational budget, there is obviously a trade-off that

must be made between the number of outer fitting scenarios and the number of inner

valuation scenarios in the LSMC set-up. Would generating a large number of outer

fitting scenarios, with a relatively small number of inner scenarios produce more

accurate estimates than doing the converse? In Section 3.9 a test of the accuracy of

the LSMC estimates under different scenario budgets will be performed. This will

provide us with guidance how to allocate the computational budget in calculating

an insurance SCR by this technique.

2.7 Alternative approaches to LSMC

To conclude this chapter, a couple of alternative approaches to the LSMC method

which are sometimes used by practitioners will be outlined. Some of the similarities

between these other two techniques and LSMC will also be examined in this section.

This will provide a brief overview of some of the other possible techniques insurance

companies could use to calculate their SCR and how these different approaches are

related to one another.
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2.7.1 The curve fitting approach

The first alternative technique that practitioners could use to estimate the projected

liability distribution is known as curve fitting. This approach is similar in practice

to LSMC and operates as follows: Under the full nested simulation approach for

estimating the projected insurance liability distribution, outlined in Section 2.1, the

resultant total number of valuation scenarios was too large to be computationally

practical. Under the LSMC method, the idea was to reduce the number of inner

valuation scenarios per outer scenario to a much smaller number, then correct the

liability estimates by performing a regression. With the curve fitting approach, how-

ever, the idea is to reduce the number of fitting scenarios to a far smaller number

instead. This small number of outer scenarios will usually be chosen to be repre-

sentative of risk-driver values which will yield some key percentiles of the projected

liability distribution, when possible.

After this a curve would then be chosen to exactly fit through this small number of

points, which will of course be fairly accurately valued, given a full 10,000 or more

inner scenarios are being used. If we assume these valuations have no error, then

if we have p of these points, a polynomial of degree p − 1 could be fit exactly to

these liability percentiles. This is shown schematically in Figure 2.9. For complex

insurance liabilities, however, there will often be some appreciable error, even if

10,000 valuation scenarios have been used. Thus, some approximation technique to

fit the curve through these points must be used. One such approach could be to

minimise the sum of the squared-errors. But then, of course, we are back in the

regime of the LSMC technique and the issue at hand is just the scenario budget

allocation issue between outer and inner simulations discussed back in Section 2.6.

Different scenario budget allocations within the LSMC method will be tested in

Section 3.9 and some conclusions will be drawn here as to how practitioners should

distribute their available computational resources to make the LSMC technique

most efficient. These tests will also be relevant in the comparison of the LSMC

and curve fitting techniques since typical insurance liability estimates will still yield

some significant amount of error even when a large number of valuation scenarios

are used.
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(real-world)

Inner Scenarios
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Figure 2.9: Schematic representation of the LSMC approach (left) with a large
number of outer fitting scenarios and a small number of inner valuation scenarios
(per outer scenario). The converse, known as curve fitting, is shown to the right.

2.7.2 The replicating portfolio approach

The second alternative technique which an insurer could use to calculate a SCR

is known as the replicating portfolio approach. Under this method the insurance

liability cashflows are approximated by the cashflows from a set of standard financial

instruments. Theoretically, if the value of this portfolio of assets is equal to the

value of the liability today, then it should be equal to the value of the liability given

our real-world economic projection, by the law of one price. Valuing this portfolio

at the projection date provides a faster method for generating market-consistent

projections of the liability, compared to valuing all the liability cashflows for the

complex insurance product over a term of many decades. For more information

on the replicating portfolio approach, a couple of excellent introductory articles are

Koursaris [Kou11] and Oechslin et al. [Oec07]. For a more detailed discussion, see

the textbook of Wüthrich, Bühlmann and Furrer [Wüt10].

Although this technique is conceptually appealing, there are a number of technical

challenges in applying this method in practice, including choice of appropriate can-

didate assets and economic scenarios. In addition, the long-term nature of insurance

business and its exposure to numerous (often non-traded) risk-drivers means that it

can be challenging to replicate even the simplest liabilities in the capital markets.
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Chapter 3

Optimising the LSMC Algorithm

In Sections 2.4-2.6 some of the choices one can make in implementing the LSMC

method were explored. In this chapter we will try to investigate some of these issues

with a view to finding the optimal set-up of the LSMC algorithm. With so many

factors affecting the success of the LSMC approximation, it is crucial that we can

obtain as much information as possible concerning the algorithm for estimating the

liabilities. Bearing this in mind it is sensible to introduce a case study involving a

product which admits analytical values in the inner scenario simulation component

of the algorithm. Then we can obtain an exact liability value for each real world

outer scenario projection. The LSMC method gives a regression-adjusted simulation

estimate for each of these real world outer scenarios. Thus, by using a product with

a corresponding analytical value in the inner scenario stage, the LSMC estimates

can be easily compared to these true conditional liability values. Furthermore, this

comparison can be made either across the whole distribution of real world outer

scenario projections, or perhaps just concentrating on a particular part of this real

world distribution in isolation, for example an upper percentile. This is particularly

appealing in an insurance risk-management perspective, where the the success of

the approximation in the upper tail is of greater importance than other parts of the

distribution.

3.1 Projected value of a European put option

The simplest such product which admits an analytical value is a European option

under the Black-Scholes model for equity asset returns. Under the Black-Scholes

model, the risk-free rate of interest and the volatility are assumed to be constant in

time, thus in the valuation stage of our test of the LSMC algorithm this must also be

the case. Obviously, this is not a realistic assumption for actual market behaviour,

but the purpose of this set-up is simply to test the mechanics of the LSMC method.

Once a better understanding has been obtained of the effect of the parameters of

LSMC algorithm on the accuracy of the approximation, then these parameters can
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be used for a more realistic product and model in the inner scenario valuation stage

(where simple analytical valuation formulae will no longer be available to us).

For the analysis which follows, we will consider a European put option under the

Black-Scholes model. The reason for choosing a put option is that the structure of

the payoff is quite similar to that of the liabilities written on an insurance product.

Under an insurance guarantee, the insurer typically must make some payment, P ,

to a policyholder from an underlying fund, Ft. This fund will be invested in some

financial asset or portfolio from annuitisation until the point in time when the pay-

ment needs to be made, hence Ft is given by some stochastic process. At time T

when the payment is due to be made to the policyholder, if FT > P the insurer will

not face any liability. However, if FT < P then the insurer must pay the difference

out of its own reserves—this is what we call a liability to the insurer. Thus, the

liability L an insurer faces from this simple general insurance guarantee is given by

L = max(P − FT , 0). (3.1)

One can see immediately that this is very similar in form to the payoff of a European

put option. This hopefully provides some justification that considering a simple put

option under the Black-Scholes model will at least capture some of the structure

of typical liabilities which arise from insurance guarantees. Then, hopefully any

results or stylised rules regarding the most efficient LSMC set-up will extend from

this constructed example to the realistic setting of calculating an insurance solvency

capital requirement (SCR).

3.2 LSMC Analysis Set-Up

For this equity put valuation set-up, we will consider the term to maturity to be T

years and attempt to determine the projected value of this option in t year’s time.

The risk-free rate of interest will be assumed to be constant over the T year term

of the option, but the underlying equity and volatility will be projected to year t

using a stochastic real world model. Thus, the value of the option at year t will

depend on two risk-drivers – the equity level at year t and the volatility level at

year t. We will look to approximate the projected value of the option at year t

using the LSMC algorithm. The first stage of this algorithm is to simulate (or set)
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M fitting scenarios, which will be used to find the regression proxy function, which

approximates the value of the option at year t in terms of our risk-drivers. Different

possible sampling methods for these outer fitting scenarios were discussed in Section

2.4. For each of these fitting points, (S̃mt , σ̃
m
t ), we then simulate N inner valuation

scenarios under our valuation (risk-neutral Black-Scholes) model. This will give N

simulated equity prices at year T of S̃m,nT , n = 1 . . . , N , for each fitting scenario m.

The corresponding option payoff for each of these is just given by

Ṽ m,n
T = max(K − S̃m,nT , 0). (3.2)

The estimated option value at year t for fitting scenario m, V m
t , is then given by

taking the average of the subsequent N option payoffs and discounting:

Ṽ m
t = e−r(T−t)

1

N

N∑
n=1

Ṽ m,n
T . (3.3)

Thus, we now have an estimate for the value of the option at year t for each of the

fitting scenarios, m = 1, . . . ,M . As explained in Section 2.1, when the financial

product is complex and path-dependent the required computational run-time for

each inner valuation scenario can be relatively large. As such, the value of N must

be chosen to be relatively small, otherwise the required run-times for projecting

liabilities will become prohibitively large. The idea of the LSMC approach is that

the large standard errors from using a small number of valuation scenarios can be

overcome if we perform a regression on these estimated option values on the two

risk-drivers over all the fitting scenarios generated. Under a standard Ordinary

Least-Squares (OLS) regression

Ṽ m
t = f(S̃mt , σ̃

m
t ) + εm, (3.4)

where the εm are the regression residuals, assumed to be independent and identically

distributed normal random variables. Generally, these residuals will be independent

as Monte Carlo errors, however in practice they are unlikely to be identically dis-

tributed. Indeed, the variance of the error εm will usually depend on the values of the

corresponding explanatory variables S̃mt and σ̃mt . Fortunately, the OLS estimator is

still consistent even if the residuals in the regression are not identically distributed.
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This fact is shown formally by White [Whi00]. Furthermore, there are studies which

show that variable selection criteria can still perform reasonably well in the presence

of heteroscedasticity. See for example Baek, Karaman and Ahn [Bae05].

Let us express the function f(S̃mt , σ̃
m
t ) as being made up of B + 1 functions of the

risk-drivers S̃mt and σ̃mt :

f(S̃mt , σ̃
m
t ) =

Q∑
q=0

aqBq(S̃
m
t , σ̃

m
t ), (3.5)

where the aq ∈ R are the regression coefficients and B0(S̃mt , σ̃
m
t ) = 1 meaning a0 is

just a constant in the regression model. The Q+1 regression coefficients can then be

determined by minimising the sum of the squared errors from the regression. That

is, we choose aq ∈ R, q = 0, . . . , Q, to minimise

M∑
m=0

(
Ṽ m
t − f(S̃mt , σ̃

m
t )
)2
. (3.6)

Let us denote the function which minimises the sum of squared errors in the regres-

sion, or the function with optimal choice of coefficients aq, as f̂(S̃mt , σ̃
m
t ). We then

call f̂ the (fitted) regression proxy function of the two risk-drivers.

Having found our regression proxy function using the fitting scenarios, we are now

in a position to estimate the projected option values for the real world economic

scenarios. These are simulated separately under a realistic model for the behaviour

of the underlying equity and volatility. Sampling R scenarios from a real world

stochastic volatility model yields R equity prices and volatilities at year t. Let us

denote these values Skt and σkt , for k = 1, . . . , R. The fitted regression can now be

used to give the LSMC estimate for real world scenario k as

V̂ k
t = f̂(Skt , σ

k
t ). (3.7)

Of course, under a Black-Scholes model for the inner valuation scenarios an analyt-

ical option price exists for each of these R real world scenarios. This allows us to

find the true value of the option for each fitting scenario and compare these to the

LSMC estimates. The true value of the European put option for real world scenario
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k is then given by

V k
t = pBS(S̃kt , K, T − t, r, σ̃kt ), (3.8)

where pBS(S,K, τ, r, σ) is the analytical formula for the price of a European put

option under the Black-Scholes model, with initial equity price S, strike price K,

risk-free interest rate r, volatility σ and time τ remaining until maturity.

The values of V̂ k
t and V k

t can be used to determine a metric for ‘success’ in the LSMC

method in various ways. We will outline two possible ways of measuring the accuracy

of the LSMC estimates now. Firstly, the difference between the LSMC estimates

and analytic values across the whole real world distribution can be considered. This

first measure of error in the LSMC estimate,M1, can be expressed mathematically

as

M1 =
1

R

R∑
k=0

|V̂ k
t − V k

t |. (3.9)

The absolute value is required as otherwise there would be a cancelling out effect in

the summation from a value of k where V̂ k
t > V k

t and a value of k where V̂ k
t < V k

t .

Furthermore, for now we are not concerned whether V̂ k
t is larger than V k

t for each

scenario k - just with how close the two values are to one another.

The second metric for studying the ‘success’ of the LSMC estimate,M2, will be very

different in nature to M1. Instead of attempting to capture how well the LSMC

approximation technique performs across the whole real world distribution for S1

and σ1, this metric will concentrate on the upper percentile of the projected option

value distribution at year t. This metric will be determined as follows; firstly the R

analytic values of the option value at year t are sorted into increasing order. Let us

denote these values as V
[j]
t , where V

[1]
t < V

[2]
t < · · · < V

[R]
t . The 99.5-th percentile

of the projected option value distribution at year t is then given by V
[j′]
t where

j′ = b0.995 × Rc. We should note that this is actually an approximation to the

percentile, based on our R real world simulations, however by choosing a sufficiently

large value of R this estimate estimate will be very close to the true percentile of

the distribution. We then take the real world scenario which subsequently gave

V
[j′]
t , let’s say indexed by k = k(j′), and take the difference between the LSMC

estimate of real world scenario k and the true 99.5-th percentile of the projected
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value distribution. Mathematically, this metric M2 can then be expressed as

M2 = |f̂(Skt , σ
k
t )− V [j′]

t |. (3.10)

Again the absolute value of the difference has been taken, as we are not concerned

with whether this value is positive or negative. Other possible metrics for study-

ing the success of the LSMC algorithm could be constructed in a similar manner.

The two which we have defined here, however, are quite representative of the major

requirements practitioners have in approximating projected liability distributions:

firstly, that some upper percentile is approximated fairly accurately, as ultimately

this sort of method is most likely to be used to calculate a solvency capital require-

ment or value-at-risk. Secondly, as well as being a good approximation in some

upper percentile of the distribution, some practitioners also feel that the approxi-

mation should also be fairly accurate across the rest of the distribution too. We note

here that the metricM2 suffers from a major shortcoming which will be outlined in

Section 3.4. An adjusted version of this metric which overcomes this problem will

be presented there.

In the analysis which follows in subsequent sections we will perform tests on the

LSMC set-up using the projected put option valuation problem under the Heston

model, which will be introduced in Section 5.1. In these tests the projection time

is t = 1 and the maturity of the option is T = 10 (years). Also, we set the initial

equity price as S0 = 1, the strike price to be K = 1.3 and the risk-free rate to be

r = 5%. For the Heston stochastic volatility model, the initial volatility is given by

σ0 = 10.1%, the mean reversion level κ = 1, the mean reversion level θ = 20% and

the volatility of the variance process σv = 0.15. In these tests 1, 000 outer scenarios

are sampled uniformly and 50 inner valuation scenarios are generated given each

outer scenario.

3.3 Building up the LSMC regression model

The choice of the basis functions is clearly one of the key decisions one has to

make when implementing the LSMC algorithm. In this section we will look at some

different choices of regression model for the problem of estimating the projected

value of the European put. As this issue is investigated some commentary will be
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given as to how this analysis and any findings extend to the more general context

of projecting insurance liabilities. This is, of course, the area where the LSMC

algorithm introduced in this thesis will be useful in practice.

With the inner valuation scenarios simulated under the Black-Scholes model, the

analytic value of the put option at time t can be easily calculated, given the projected

equity price and volatility at year t. In this way, we can construct a true projected

value distribution surface plot in the two risk-drivers, S1 and σ1. Two different views

of this true projected value distribution surface are shown in Figure 3.1.

An alternative way of looking at this surface is via a contour plot. This plot, given

in Figure 3.2, is a top-down view of the surface showing lines of constant projected

option value, V1. Where the lines of this plot are close together, the valuation surface

is steepest. Studying Figure 3.2 in comparison with Figure 3.1, we can see the sharp

fall in projected option value for S1 increasing from 0.3 until around 0.8, when σ1

close to zero. For S1 > 0.8 the projected value of the option is close to zero, and

the contour plot shows this region is very flat. The contour plot gives a nice two-

dimensional interpretation of the three-dimensional projected value surface and is a

useful visual tool in analysing these valuation surface plots.

The challenge we face is to obtain a fairly accurate representation of this true surface

in terms of some proxy function of the two risk-drivers S1 and σ1. This proxy

function is often described in terms of some function of basis functions, which are

given by simple polynomials or from some family of orthogonal polynomials. The

choice of basis functions in the LSMC method was discussed in Section 2.5. In

Section 3.8 some tests will be performed investigating the accuracy of the LSMC

estimates under different choices of basis functions. However, for the moment we

shall just take powers of the explanatory variables as the basis functions in the

implementation of the LSMC method.

Given that the basis functions are just powers of the two explanatory variables,

S1 and σ1, the only issue remaining with the regression component of the LSMC

method is to determine what form the proxy function should take. That is, what

function of S1, σ1, S
2
1 , σ

2
1, S1σ1, S

3
1 , σ

3
1, S

2
1σ1, S1σ

2
1, S

4
1 , σ

4
1, . . ., will give the ‘best’ proxy

function for estimating the projected option value at year one. It is important to be

careful that the proxy function does not fit ‘too closely’ to the option values from
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Figure 3.1: Two views of the analytic surface of V1 varying with S1 and σ1.
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Figure 3.2: Analytic surface contour plot.

the outer fitting points, as the estimated value at these points has some inherent

uncertainty. This situation is known as statistical over-fitting and will be discussed

in Section 3.5. As we are testing the regression models with real world data which

is independent of the outer fitting scenarios, the problem of statistical over-fitting

should be accounted for with the regression error metrics, M1 and M2.

To begin with, let us consider a few simple proxy functions and study them with

a view to understanding how each of the basis functions seem to be affecting the

behaviour of the regression surface. Perhaps the simplest proxy function is just the
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linear sum of the basis functions. That is, we fit the regression model using M

fitting points by choosing a0, a1 and a2 such that
∑M

m=1 ε
2
m is minimised, where

εm = Ṽ m
t − f1(S̃mt , σ̃

m
t ) = Ṽ m

t −
(
a0 + a1S̃

m
t + a2σ̃

m
t

)
. (3.11)

This fitted proxy function can then be plotted as a surface for different values of

S1 and σ1 in the same manner as the true analytical surface plot was earlier. This

surface is plotted in Figure 3.3, showing two views from the same angles that we

displayed for the true projected value surface in Figure 3.1. Also given in Figure

3.3 is the contour plot corresponding to this regression surface and a contour plot

of the surface of V̂1−V1. This is the difference surface between the regression proxy

function and true surface of projected option values for the different values of S1

and σ1 considered.

These plots of the regression surface show that, although some of the characteristics

of the true projected option value surface have been captured by this simple form

of proxy function, f1, there are still clear differences in their overall structures. By

comparing the contour plots, the proxy function significantly underestimates the

projected option value when both S1 and σ1 are relatively low. It is clear from

Figure 3.2 that the true projected value function behaves quite differently with S1

for different fixed values of σ1. In order to capture this effect in the regression, one

needs to include a cross-term, or a term with some power of S1 multiplying some

power of σ1.

To study how adding such a term to our proxy function improves our regression,

let us consider adding an extra S1σ1 term, as well as S2
1 and σ2

1 terms. The proxy

function is now

f2(S1, σ1) = a0 + a1S1 + a2σ1 + a3S
2
1 + a4σ

2
1 + a5S1σ1. (3.12)

In Figure 3.4 a plot of the fitted regression surface is given from the two different

viewing angles, together with a contour plot of this surface. Comparing these plots

to Figure 3.1, show that including a cross-term and also the square of the explana-

tory variables in the proxy function gives a regression surface which is much more

consistent with the true projected value surface. Studying the surface contour plot

shows that the addition of the cross-term captures the bivariate dependence of the
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Figure 3.3: Bottom Row: Two views of regression surface of V̂1 varying with S1 and
σ1, with f1(S1, σ1) = c0 + c1S1 + c2σ1. Top Left: Surface contour plot. Top Right:
Difference surface (V̂1 − V1) contour plot.

projected option value much more accurately than proxy function f1. The difference

surface contour plot gives further clarity on the improved fit to the true surface from

proxy function f2.

Given that the regression surface appears more like the true projected value surface

with the addition of the second-order terms and the second-order cross term, perhaps

it would be sensible to try adding higher powers of the explanatory variables and

higher order cross-terms to the proxy function. To experiment with the inclusion of

some higher power basis functions, we can look at t-distribution hypothesis tests on

the significance of each basis function within the proxy function and take any out

which are not significant.
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2
1 + c5S1σ1. Top Left: Surface

contour plot. Top Right: Difference surface (V̂1 − V1) contour plot.

Proceeding in this manner results in the proxy function f3 being chosen as a statis-

tically successful form of model, where

f3(S1, σ1) = c0 +c1S1 +c2σ1 +c3S
2
1 +c4σ

2
1 +c5S1σ1 +c6S

3
1 +c7S

2
1σ1 +c8S1σ

2
1 +c9S

3
1σ1.

(3.13)

A regression surface for this proxy function is shown from two different views in

Figure 3.5 alongside the corresponding surface contour plot. If we compare Figure

3.5 with Figures 3.1 and 3.2, it is clear that proxy function f3 gives a far superior

fit to the true projected value distribution, than either of the two simple proxy

functions. In fact at first glance, the regression surface is not very different from the

analytic surface at all. Studying these surface plots closely, one can see the profile of
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the projected option value for σ ≈ 0 is slightly too smooth for the regression surface.

This is no real surprise, as it is always going to be difficult to capture this non-smooth

behaviour of the valuation surface in this region perfectly by considering just smooth

basis functions. A second difference between these plots is the slight underestimation

of projected option value in the regression model for low values of S1 and high values

of σ1, and slight overestimation for low values of S1 and reasonably low values of

σ1. This is perhaps more noticeable in the difference contour plot. These slight

differences may not seem very important, however in practice the LSMC method

will most likely be used to estimate some upper percentile of a liability distribution.

Therefore, even around these extremes of the valuation surface we still want to

obtain an accurate representation of the value from the regression proxy function.

In Figure 3.7 we give another plot of the regression surface for the proxy function

f3. However, this plot shows the contour lines projected onto the upper surface of

the imaginary cube enclosing the surface. This helps in visualising the connection

between the surface plot and the two-dimensional contour plot representation. (Note

that this surface has not been floored at zero, so the surface and contours are slightly

different in the corner immediately facing the reader in Figure 3.7).

Of course, manually adding and subtracting basis functions based on statistical

significance tests is both time consuming and not very scientific. Furthermore, in

the case of complex insurance liabilities in multiple dimensions one is likely to have

less intuition about the valuation surface. Therefore, we will now introduce an

approach which can systematically pick out the best form of proxy function in the

regression for the chosen set of fitting points with which we are working.

3.3.1 Stepwise AIC regression approach

The stepwise AIC regression approach is an algorithm which can be used to find the

best regression model for some fitting points (See Venables and Ripley [Ven02] for

a reference to this algorithm). The method is initialised by choosing some simple

regression proxy function. The proxy function f2 from before would be a suitable

choice here. Next we choose a maximal proxy function for the search. For this we

take the explanatory variables and all cross-terms up to order 6. We assume the

regression proxy function will not involve terms out-with this set of basis functions.
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Figure 3.5: Bottom Row: Two views of regression surface of V̂1, with f3(S1, σ1) =
c0 + c1S1 + c2σ1 + c3S
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Surface contour plot. Top Right: Difference surface (V̂1 − V1) contour plot.

With these inputs defined, the model selection algorithm can now run.

The first regression model the stepwise AIC method considers is c0 + c1S1 + c2σ1 +

c3S
2
1 + c4σ

2
1 (the model which we chose to initialise the algorithm). Firstly, the al-

gorithm calculates the Akaike information criterion (AIC) for this regression model.

Next, the method will attempt to add each of the basis functions not in this proxy

function (but which are present in the maximal model) in isolation and calculate the

new AIC for each of these models. As 1, S1, σ1, S2
1 and σ2

1 are in the current proxy

function, the algorithm will take each of these out of the model in isolation and cal-

culate the AIC for each of these new possible models too. It will then compare the

AIC for all these new possible models and the one which gives the biggest decrease,

compared to the current model being considered, will be chosen. This model will
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Figure 3.6: Bottom Row: Two views of regression surface of V̂1, with f4(S1, σ1),
which was found using the stepwise AIC algorithm. Top Left: Surface contour plot.
Top Right: Difference surface (V̂1 − V1) contour plot.

then become the new model which will be tested. Again, the AIC values will be

calculated for all models which can be obtained by adding or subtracting a single

basis function to or from this second model being tested. The model which yields

the greatest decrease in AIC will be chosen as the third model to be tested.

This process carries on until the addition or subtraction of any single basis function

will only increase the AIC. The algorithm will then terminate and the model which

is being tested when this occurs is chosen as the optimal regression model.

Running the stepwise AIC algorithm for the fitting point data from Section 3.3

results in the proxy function f4 being selected as the best regression model for the

61



S1

0.5

1.0

1.5
sig

ma1

0.0

0.1

0.2

0.3

0.4

0.5

P
redicted V

alue

0.0

0.2

0.4

Figure 3.7: Contour lines projected above surface plot for proxy function f3.

projected put option value at year 1, where

f4(S1, σ1) = c0 + c1S1 + c2σ1 + c3S
2
1 + c4σ

2
1 + c5S1σ1 + c6σ

3
1

+ c7S
2
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3
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2
1σ
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5
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5
1σ1. (3.14)

The regression surface for this proxy function is shown from two different views

in Figure 3.6 alongside the corresponding surface contour plot. The two views of

the surface show this regression model behaves quite similarly to proxy function f3.

Both surfaces are generally quite similar to the true projected valuation surface. It

is difficult to infer from these plots which regression model fits best out of of f3 and

f4. It is perhaps easier to compare how these two surfaces correspond with the true

projected value distribution in the centre of the distribution if we study the surface

contour plots. Looking at the contour plots in Figures 3.5 and 3.6 compared with

Figure 3.2, we can see that both proxy functions f3 and f4 approximate the true

valuation surface fairly closely over the range of values considered. The difference

contour plot, again, shows this reasonably accurate fit. By eye it is difficult to

distinguish which of proxy functions f3 or f4 gives a better fit to the true projected

value distribution from these contour plots. However, looking at the values of the

regression error metrics for these proxy functions may give us an approach to choose

between these two models.
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3.4 Performance of regression error metrics

Having compared some different choices of proxy function visually using surface

and contour plots, we will now investigate how our two regression error metrics,

introduced in Section 3.1, perform in determining how successful each form of proxy

function is in the LSMC method. Shortly, we will see that the metricM2 is a poor

indicator of the success of fit of a regression model, however an adjusted version of

M2 can address the problems of this metric.

To test these risk metrics, we use R = 50, 000 real world economic projections

out to year one using the Heston stochastic volatility model. This gives us 50, 000

different values of S1 and σ1, which are, of course, the two risk-drivers on which

the projected option value, V1, depends. These tests use 1,000 uniformly sampled

outer scenarios and 10 inner valuation scenarios per outer scenario. An average of

these metrics is taken over 10,000 of these tests to factor out any dependence on

a particular realisation of the uniform sampled fitting scenarios. Note, that f4 will

take a different form given each different fitting scenario tested, depending on what

is output from the stepwise AIC algorithm.

Using this data let us calculate the risk metric M1 associated with each of the

regression proxy functions. We recall this metric is given by:

M1 =
1

R

R∑
k=0

|Ṽ k
t − V k

t |, (3.15)

where Ṽ k
t is the regression estimate for real world projection k and V k

t is the analytic

Black-Scholes value given real-world projection k. The values of the metric M1 for

the four different proxy functions which were considered in the last section are given

in Table 3.1.

Regression error metric M1:
Proxy Funct. M1

f1 0.0630
f2 0.0181
f3 0.0037
f4 0.0026

Table 3.1: Regression error metric M1 for different proxy functions.
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The values of the metric M1 given in this table are consistent with our discussion

of the plots of the regression surfaces and contour plots for f1 to f4, compared with

the corresponding plots for the true projected value distribution. The smaller the

value of M1, the more accurately the regression proxy function has captured the

true projected value distribution on average across its whole range. In moving from

regression proxy function f1 to function f2, the value of M1 fell by around 70%.

When we considered Figures 3.3 and 3.4 in comparison with the true distribution

surface, we argued that introducing the higher power basis functions and the cross-

term had significantly improved the accuracy the proxy surface modeled the true

surface at essentially all the values of S1 and σ1 considered. Thus, this fall in M1

from proxy function f1 to f2 is definitely consistent with what we see visually in the

diagnostic plots given earlier. There is a further fall of nearly 80% in the value of

this error metric when we move from proxy function f2 to proxy function f3. This,

again, fits with our discussion of the regression surface and the true distribution

surface plots given earlier. Comparing both Figure 3.5 and Figure 3.4 with the true

projected value distribution surface, we saw that using proxy function f3, found by

considering the significance of each of the terms in the regression model, seemed to

give a much closer fit to the true distribution surface.

By considering the surface and contour plots, it was impossible to definitively con-

clude which of functions f3 and f4 gave the best fit across the whole distribution.

Both seemed to fit well in the centre of the projected value distribution. The regres-

sion error metricM1 shows a relatively small fall in moving from proxy function f3

to f4. This can probably be explained by the fact that f4 selected the best fitting

regression model for each specific set of fitting data considered, whereas f3 was fixed

upfront. This is reassuring as function f3 was chosen for one specific set of fitting

data, yet it performed almost as well as f4 in terms of the metric M1.

Overall, it would appear that if we measure success in the LSMC method as a

fairly accurate approximation across the whole projected value distribution, then

M1 appears to be a good statistic to consider. Of course, we do need to know the

option values corresponding to the inner scenario model analytically, which means

we do not need an LSMC approximation in the first place. Thus, this metric can

only be used in this test product set-up. The findings on how to construct the

regression model should extend to a more general insurance framework, however.
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Suppose we are less concerned with how successful the LSMC approximation is across

the whole distribution, and more concerned how successful it is in estimating large

outcomes of projected option value? The second LSMC error metric, introduced in

Section 3.1, would seem more appropriate when this is the case. Recall, this metric

was given by

M2 = |f ?(Skt , σkt )− V [j′]
t |, (3.16)

where V
[j′]
t is the (estimated) true 99.5-th percentile, obtained by taking the cor-

responding order statistic of the R analytic projected option values and f ?(Skt , σ
k
t )

is the regression estimate of the real world projection which subsequently gave the

99.5-th percentile of the projected value distribution. The estimated value of the

99.5-th percentile of the true projected equity put value distribution, V
[j′]
t , was found

to be 0.4467. The values of M2 for each of the proxy functions considered earlier

are given in Table 3.2.

Regression error metric M2:
Proxy Funct. M2

f1 0.0242
f2 0.0021
f3 0.0033
f4 0.0029

Table 3.2: Regression error metric M2 for different proxy functions.

Comparing the proxy function f2 with f1 it is not that surprising that the corre-

sponding value of M2 is significantly smaller. The plots of the regression surfaces

show that f2 is a much better approximation to the true projected value surface,

including in the upper tail. On the other hand when we move from the proxy func-

tion f2 to f3 or f4 the value of M2 increases. This is surprising, as the regression

surface for f3 certainly appears to be a much closer fit to the true projected value

surface than the regression surface of f2 for the vast majority of values of S1 and σ1

considered here. There is, however, a fairly simple explanation of why this is, which

will now be discussed.

When we talk about the 99.5-th percentile of the true projected value distribution

this is simply a certain projected option value – in our example a fairly accurate

estimate of this is 0.4467. There are various combinations of the two risk-drivers, S1

and σ1, which will give this projected option value analytically. Indeed, in Figure 3.8
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Figure 3.8: Two views of the analytic surface of V1. The red line shows the contour
at the level of the 99.5-th percentile of the true projected value distribution.

we plot the analytic projected value surface again (with the usual two views), but

this time we superimpose a contour line on the surface showing where this surface

takes the value V̂1 = 0.4467. It is clear that this line spans many different values

of S1 and σ1. A contour plot of this surface, given in Figure 3.9, perhaps shows

this more clearly. We can see that the 99.5-th percentile of the true projected value

distribution could be a result of a value of σ1 from 0 to 0.5 (the whole range of

volatilities we consider). Also, there are certain values of σ1 with which any value of

S1 from just below 0.4 to around 0.8 will give the 99.5-th percentile of the projected

option value.

Thus, a realisation of the 99.5-th percentile of the true projected value distribution

can be a result of many different possible pairs (S1, σ1). Of course, the difference be-

tween the regression estimate and the true percentile projected value will be different

for all these different pairs. In fact Figure 3.10 shows the contour plot of the surface

of the differences between the regression proxy function f3 and the true projected

value distribution, again, but this time with a line showing the S1 and σ1 pairs which

generate the upper percentile superimposed. We see that along this line there are

points where the regression surface underestimates the percentile and points where

it overestimates it (as well as three points where it estimates it perfectly).

Bearing this in mind, it is not hard to appreciate that choosing the one pair (S1, σ1)
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Figure 3.10: Contour plot of differ-
ence surface V̂1 − V1 with proxy f3.
Black line, same as in Figure 3.9.

as being ‘the’ projection which generated the upper percentile of the value V1 could

give a quite different estimate of M2, than if we chose a different pair (S1, σ1)

lying on this upper percentile contour line. Naturally, when comparing two different

proxy functions, one of them could happen to be a pair where the corresponding

regression surface and analytic surface are relatively close to one another. With

the other proxy function, we could choose a pair where the two surfaces happen to

have diverged away from each other slightly. Despite the fact that along this upper

percentile contour line the two surfaces could be closer together than for the other

proxy function on average, the metricM2 will indicate that the first proxy function

is a preferable regression model. Therefore, this metric is not a good statistic with

which to measure the fit in the upper tail of the projected value distribution.

We will now attempt to modify the definition of the metric M2 so that it still

gives an indication of the fit of regression proxy functions around the upper 99.5-th

percentile of the true projected value distribution, but is much more robust than it

is in its current form. The obvious problem is that the metric is based upon a single

pair (S1, σ1) which lies on the upper percentile contour line. The metric would be

much more robust if we could base it on a larger sample of the pairs (S1, σ1) on

which this contour line lies. As we use a reasonably large sample of R = 50, 000 real

world economic projections in calculating the metricM2, rather than just choosing

the single pair (S1, σ1) which corresponds to the 49, 750-th largest analytic projected
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value, let us now select a set of risk-driver pairs around this percentile. This will

involve selecting the pairs corresponding to the 49, 650-th through to the 49, 850-th

of the ordered analytic projected values. With such a large number of real world

scenarios this will still give a reasonably close approximation to the specific upper

percentile that we wish to consider, however now we will hopefully get a selection of

many different risk-driver pairs (S1, σ1). We then take the difference between these

analytic values and the regression estimates from feeding these real world pairs into

the proxy function being tested. The absolute value of each of these 201 differences

between the analytic surface and regression will then be averaged to give us an

adjusted version of the regression error metric M2, which we denote M3:

M3 =
1

201

100∑
i=−100

|Ṽ k(i)
t − V [0.995R+i]

t |. (3.17)

The terms Ṽ
k(i)
t and V

[j]
t are defined as in the discussion given before Equation 3.10.

In Table 3.3 we consider how this metric rates each of our four proxy functions:

Regression error metric M3:
Proxy Funct. M3

f1 0.0137
f2 0.0058
f3 0.0030
f4 0.0028

Table 3.3: Regression error metric M3 for different proxy functions.

These values for M3 are more consistent with what was seen when we studied the

plots of the regression surfaces in comparison with the true projected value surface.

Thus, using this adjusted metric, we can say the proxy functions f3 and f4 are

preferable to the proxy functions f1 and f2 when our only interest in the regression

is to obtain a reasonably good approximation around the vicinity of the upper

99.5-th percentile of the true projected value distribution. Overall, the metrics M1

andM3 suggest that choosing a fixed form of regression model either by considering

the significance of each term in the model or using a stepwise AIC algorithm is a

sensible way to implement the LSMC method. Bauer, Bergmann and Reuss [Bau10]

suggest using Mallows’ complexity parameter, Cp, as an alternative statistic for

model ranking in the proxy function selection algorithm. See Section 4.6 for more

discussion of this idea.
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3.5 Issue of statistical over-fitting

In studying different possible proxy functions for the regression in the LSMC method

in Sections 3.3 and 3.4, it became clear that the order of the basis functions required

for a good fit to the projected put option value function needs to be greater than just

one or two. Indeed, when an Akaike information criterion-based stepwise regression

selection algorithm was employed a sixth-order term was included in the ‘best fitting’

regression function.

Theoretically if we were to keep adding higher order basis functions to the chosen

proxy function, the fit from the regression to the outer fitting points should keep

improving. This is not the same thing as the fit of the regression model to the

true underlying distribution of projected option values improving, though, since the

estimated value of the option at each fitting point has some associated sampling

error. Thus, by choosing too complex a regression model, one can end up fitting

to the sampling error as well as the underlying option value at each of the fitting

points. This is the problem of statistical over-fitting mentioned earlier. Using an

AIC-based approach to select the best regression model should help overcome this

problem, as it ranks regression models by their value of log-likelihood with a penalty

applied for each term included in the proxy function. Thus, under this approach for

selecting the proxy function, extra terms will only be added to the model if they

can be justified by increasing the accuracy of the fit by enough.

To study whether the issue of over-fitting applies to the LSMC algorithm and at

what point this phenomenon seems to occur, let us simplify our test case somewhat.

Rather than considering estimating the projected value of an equity put option

with two risk-drivers by LSMC, we will now only consider this to be driven by a

single risk-driver. To do this, we assume the underlying asset volatility is constant

throughout the whole term of the option. Thus, the underlying equity level at the

projection date, S1, is now the sole explanatory variable in the LSMC method and

the outer fitting points will only be one-dimensional.

Naturally, the real world outer scenarios will no longer need to be given by a stochas-

tic volatility equity model. Instead now we will just assume the Black-Scholes model

with annualised rate of growth µ as our real world distribution for equity returns.

In full, the projection time is in one year’s time, that is t = 1, and the maturity
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of the option is in T = 10 year’s time. As before we set S0 = 1, K = 1.3 and

r = 5%. The real world growth in the Black-Scholes model, µ, will be taken as 3%.

Of course, when the Black-Scholes model is simulated in the (risk-neutral) inner

valuation scenarios, the growth will be equal to the risk-free rate r = 5%. We will

use 1,000 outer fitting scenarios and 20 inner valuation scenarios (per outer fitting

scenario). To test the regression fits, we will generate 3,000,000 values of S1 under

the (real world) Black-Scholes model.

The outer fitting scenario points are sampled at regularly spaced intervals over

[0.3, 3.0]. Three different choices of regression proxy function will be considered.

The first, g1(S1), will be found by using the stepwise AIC regression model selection

function in R. The starting model will just be a constant plus S1, and the maximal

model for the scope of the search will be all terms in S1 up to ninth order. When

this is implemented, the model which was returned as the best fitting was g1(S1) =

c0 + c1S1 + c2S
2
1 + c3S

3
1 + c4S

4
1 . The second regression proxy which we will consider

is all terms in S1 up to ninth order, or g2(S1) = c0 + c1S1 + · · ·+ c10S
10
1 . The third

proxy function which will be studied will include all terms up to order 25, that is

g3(S1) = c0 + c1S1 + · · ·+ c25S
25
1 .

The fitted versions of these proxy functions give the LSMC estimate for the projected

equity value at year one, V̂1, as a function of the risk-driver S1. The function V̂1 is

plotted for the 3, 000, 000 values of S1 obtained by simulating from the real world

Black-Scholes model in the left-hand column plots of Figure 3.11. Also shown, as

a red line, in these plots is the analytic value of the projected option, V1, plotted

as a function of S1. The top plot in this column corresponds to regression proxy

function g1, the middle plot shows regression proxy function g2 and the bottom plot

displays proxy function g3.

The plot of V̂1 for proxy function g1 compared with the true distribution line of V1,

shows that this regression model fits the analytic projected value function very well.

The plot of V̂1 for proxy function g2 also appears to fit the true projected value

distribution well.

The plots to the immediate right of these show the corresponding difference plots

between the proxy function estimate and the true distribution, V̂1−V1, as a function

of the risk-driver S1. This shows the difference between the proxy function and the
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true distribution is smaller for slightly more values of S1 with g1 compared to g2.

However, the difference between these fits is fairly small.

What if we were to use as high-order a proxy function as can be handled compu-

tationally. Would the resultant fit be better than with g1 and g2? If we look at

the plot of V̂1 for proxy function g3, the proxy function up to order 25, compared

with the true distribution, there is evidence that this is not so. At first glance

this appears similar to the fit of g2, however if we look very closely at the black

regression estimates they are almost oscillatory in nature for certain parts of the V̂1

distribution. This is certainly not the case for the distribution of V1 which we are

trying to approximate. This effect can be explained by the phenomenon of over-

fitting. By considering too complex a model for V̂1, the proxy function is trying

to fit to the outer fitting scenario points too closely. If the estimated value at any

of those points lie somewhat above the true distribution, the proxy function will

now locally try to move toward that point (even though it is lying away from the

true distribution line simply because of sampling error). Then if a point lies slightly

below the true distribution, the proxy function will try to move down to fit that

point closely. This results in some regions of the distribution of V̂1 appearing almost

oscillatory and is obviously not representative of the behaviour of the true projected

value distribution.

The corresponding difference plot for proxy function g3 seems to have much more

extreme rises from a trough to a peak, and corresponding falls, than the correspond-

ing plot for g2. Perhaps this is an indication of the local oscillatory-like behaviour

mentioned above and a further exhibition of over-fitting in the regression model g3.

Let us now consider how our regression error metrics, M1 and M3, perform in the

presence of possible over-fitting. The values of these two metrics for each of the

proxy functions g1, g2 and g3 are given in Table 3.4.

Regression error metrics:
Proxy Funct. M1 M3

g1 0.00241 0.00042
g2 0.00396 0.00197
g3 0.00583 0.00128

Table 3.4: Regression error metrics M1 and M3 for proxy functions g1, g2 and g3.
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Clearly, M1 also seems to indicate over-fitting in proxy function g3. There is a sig-

nificant increase in the average absolute difference between the regression estimates

and the analytic projected values across the whole real world S1 distribution in go-

ing from proxy function g2 to g3. This is likely caused by the fact that g3 is now

trying to fit too closely to the outer fitting points, that it is fitting not just to the

underlying true distribution, but also to the inherent statistical error in each of the

fitting points simulated projected values. On the other hand, M3 does not seem to

identify over-fitting in the complex regression model. Although the value of M3 is

smaller for proxy function g1 than g2, the value of M3 for g3 is also smaller than

that for proxy g2. This is perhaps not surprising, as this metric only considers a

very small part of the V̂1 distribution, hence it is not likely to be a good indicator

of statistical over-fitting in our regression model. The table below shows the values

of these metrics for all orders of proxy function from 2 to 25. It shows over-fitting

seems to occur with orders greater than about 5. Notice that the best model by AIC

does not exactly correspond to the best model in terms ofM1. However, these two

models have similar values of M1 and AIC, indicating that the stepwise regression

approach does seem to give a method of selecting the form of the regression proxy

function which is robust to over-fitting.

Regression error metrics for different orders of proxy function:
Order M1 M3 AIC Order M1 M3 AIC

2 0.0295 0.0084 -22553.4 14 0.0054 0.0007 -23421.0
3 0.0058 0.0083 -23343.2 15 0.0052 0.0017 -23419.7
4 0.0024 0.0004 -23424.8 16 0.0053 0.0011 -23418.7
5 0.0022 0.0005 -23423.3 17 0.0054 0.0014 -23418.5
6 0.0035 0.0017 -23424.8 18 0.0054 0.0010 -23418.7
7 0.0039 0.0023 -23424.2 19 0.0055 0.0014 -23416.8
8 0.0039 0.0023 -23422.2 20 0.0056 0.0012 -23417.8
9 0.0041 0.0026 -23420.3 21 0.0056 0.0005 -23418.1
10 0.0040 0.0020 -23418.5 22 0.0056 0.0003 -23417.1
11 0.0042 0.0001 -23420.4 23 0.0056 0.0007 -23416.9
12 0.0054 0.0002 -23424.5 24 0.0060 0.0023 -23420.1
13 0.0055 0.0003 -23422.9 25 0.0058 0.0013 -23419.2

Table 3.5: The M1 and M3 errors for different orders of polynomial regression in
the variable S1 with 1,000 outer and 20 inner scenarios being simulated.
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Figure 3.11: Left-hand column plots: Regression est.’s for 3,000,000 real world
outer scenarios shown as black triangles, with analytic value of the option, V1,
shown by the red line. Right-hand column: Differences between the regression
estimates and analytic values for each of the 3,000,000 real world outer scenarios.
Regressions: In the first row g1 = c0 + c1S1 + c2S

2
1 + c3S

3
1 + c4S

4
1 . In the second row

g2 = c0 + c1S1 + · · ·+ c10S
10
1 . In the third row g3 = c0 + c1S1 + · · ·+ c25S

25
1 .
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3.6 Over-fitting and the number of outer/inner scenarios

In the analysis just given, we fixed the number of outer and inner scenarios and

then increased the complexity of the regression model used in the LSMC method

to investigate the issue of over-fitting. This approach, however, does not tell us

anything about the relationship between the number of outer or inner scenarios

being generated and the level of complexity of the regression model at which over-

fitting occurs.

In this section some analysis will be performed to determine whether the number of

inner scenarios being sampled in the LSMC method has an influence over the level

of complexity in the regression model beyond which there is evidence of over-fitting.

Also, we will look to test whether the number of outer scenarios being sampled has

an influence over the same issue.

Recall, statistical over-fitting occurs when the regression model includes a great

enough degree of complexity it begins to fit to the sampling error associated with

each of the estimates, as well as to the true underlying projected value distribution.

If we increase the number of these inner valuation scenarios being performed, the

sampling error associated with each of these projected option value estimates will

decrease. As such, it seems reasonable that with a smaller variance associated with

each of these estimated values the regression proxy function will be less likely to fit

to this. Thus, intuitively, if a greater number of inner scenarios are performed, then

a more complex regression model will be necessary before over-fitting can occur.

In Table 3.6 the M1 and M3 errors are, again, given for different orders of polyno-

mial regression model in the variable S1, but now the number of inner scenarios has

been increased from 20 to 100, in comparison to Table 3.5. The number of outer

scenarios has been kept at 1,000. This table shows that the metric M1, which we

argued in the previous section was a good indicator of over-fitting, suggests that

orders of polynomial beyond 10 or 11 are too complex and are fitting to the sam-

pling error of the estimates. Recall, that for 1,000 inners and 20 inners, the order

of polynomial beyond which this was the case was 5. Therefore, this simple test

gives evidence to justify our hypothesis that increasing the number of inner valu-

ation scenarios allows a more complex regression model to be employed before the

phenomena of statistical over-fitting becomes a problem.
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Regression error metrics for different orders of proxy function:
Order M1 M3 AIC Order M1 M3 AIC

2 0.0304 0.0082 -110249 14 0.0009 0.0025 -114006
3 0.0066 0.0082 -113714 15 0.0008 0.0036 -114008
4 0.0011 0.0014 -114007 16 0.0009 0.0036 -114006
5 0.0009 0.0009 -114005 17 0.0010 0.0036 -114004
6 0.0008 0.0020 -114008 18 0.0010 0.0036 -114004
7 0.0007 0.0025 -114010 19 0.0011 0.0038 -114002
8 0.0005 0.0022 -114010 20 0.0011 0.0037 -114002
9 0.0004 0.0018 -114009 21 0.0011 0.0038 -114000
10 0.0002 0.0013 -114007 22 0.0011 0.0037 -114000
11 0.0002 0.0011 -114006 23 0.0011 0.0037 -114000
12 0.0006 0.0010 -114006 24 0.0011 0.0039 -113998
13 0.0008 0.0014 -114005 25 0.0011 0.0038 -113998

Table 3.6: The M1 and M3 errors for different orders of polynomial regression in
the variable S1 with 1,000 outer and 100 inner scenarios being simulated.

In Table 3.7 the values of M1 and M3 are given for different orders of polynomial

regression for the case of 10,000 outer scenarios and 20 inner scenarios. The results

can be compared to the results of 1,000 outers and 20 inners, given in Table 3.5, to

investigate how increasing the number of outer fitting scenarios affected the point at

which over-fitting seemed to occur. The M1 metric suggests that for 10,000 outer

fitting scenarios and 20 inner scenarios over-fitting seems to occur for polynomial

regression models beyond order 10. This is of much greater complexity than order 5,

which was found to be the corresponding level for 1,000 outer and 20 inner scenarios.

Thus, this test gives evidence that increasing the number of outer fitting scenarios

allows a more complex regression model to be employed before over-fitting becomes

an issue.

Similar tests reducing the number of outer and inner scenarios showed that the level

of complexity at which over-fitting occurred was lower than was the case for 1,000

outer and 20 inner scenarios. This is, again, in correspondence with the hypotheses

given at the beginning of this section.

3.7 Fitting point sampling in LSMC

When implementing the LSMC method, the natural approach for the sampling of

the fitting scenarios might appear to be to use the real-world distribution which we

believe to give a realistic description of the behaviour of the risk-drivers from today
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Regression error metrics for different orders of proxy function:
Order M1 M3 AIC Order M1 M3 AIC

2 0.0298 0.0082 -221379 14 0.0009 0.0014 -228932
3 0.0065 0.0083 -228328 15 0.0009 0.0012 -228930
4 0.0012 0.0016 -228919 16 0.0008 0.0014 -228929
5 0.0006 0.0001 -228931 17 0.0008 0.0014 -228927
6 0.0006 0.0010 -228935 18 0.0008 0.0014 -228927
7 0.0005 0.0014 -228938 19 0.0008 0.0017 -228926
8 0.0004 0.0013 -228937 20 0.0008 0.0015 -228925
9 0.0004 0.0011 -228935 21 0.0008 0.0019 -228925
10 0.0003 0.0010 -228933 22 0.0008 0.0018 -228925
11 0.0004 0.0007 -228932 23 0.0008 0.0017 -228924
12 0.0007 0.0007 -228932 24 0.0008 0.0019 -228923
13 0.0009 0.0011 -228933 25 0.0008 0.0018 -228923

Table 3.7: The M1 and M3 errors for different orders of polynomial regression in
the variable S1 with 10,000 outer and 20 inner scenarios being simulated.

out until the projection date. After all, the regression model which is found will be

used to infer a liability based on this real-world distribution, so why fit the regression

using any other distribution? In Section 2.4 it was argued that sampling from other

statistical distributions may be beneficial in the application of the LSMC technique

in a risk-management setting. In this section, we will perform some simple tests

using the projected put value framework to show that it is, indeed, preferable to

sample the fitting points from other distributions in this context.

For this analysis we will work with the two-dimensional projected put value prob-

lem which was studied earlier in this chapter. The real-world distribution for the

behaviour of the two risk-drivers will be the Heston stochastic volatility model -

which will give us simulated values of the equity price, S1, and the equity volatility,

σ1, at the projection time at year one.

Histograms of 50,000 real-world scenarios sampled from the Heston model are shown

in Figure 3.12 for each of the two risk-drivers. In the top-left of this Figure is a

histogram of the year one equity levels and the top-right Figure displays a histogram

of the year one volatilities. These plots show the Heston model has a reasonably

thick lower tail for the year one equity returns and a reasonably thick upper tail for

the year one volatility levels. From the surface plots shown earlier in this chapter,

relatively low equity returns together with relatively large volatilities is what yields

the largest projected option values. Thus, the projected option value distribution

will also have a reasonably heavy upper tail.

76



This projected option valuation task is being used to guide us in how successful the

LSMC might be in terms of calculating insurance solvency capital requirements and

how the method should be optimised. Naturally, if a good fit can be achieved across

the whole liability distribution, then this would be the most successful outcome in

the LSMC method. However, when this is not possible then achieving a good fit

in the upper tail takes a far greater priority over the fit in the lower tail or centre

of the distribution. The plot in the bottom-left of Figure 3.12 shows 50,000 year

one equity and volatility pairs sampled from the Heston stochastic volatility model.

Superimposed on top of these points is the contour line of the 99.5-th percentile of

the projected option value distribution, exactly as was plotted in Figures 3.9 and

3.10. The plot in the bottom-right of this Figure shows the same, except with just

1,000 sampled pairs from the Heston model. These plots show that when sampling

from the real-world model used to project the two risk-drivers to year one, there

will not be a large amount of points which will yield projected option values around

this 99.5-th percentile. Of course, by definition there will only be a small number

of real-world scenarios which yield values in the upper tail of this projected option

value distribution. Therefore, if the upper tail is of key concern to practitioners,

perhaps it is not wise to use this real-world distribution to fit the regression proxy

function in the LSMC method. Using some other distribution to sample these fitting

points could generate more scenarios which will yield valuations around this upper

99.5-th percentile, compared with using the real-world model.

To demonstrate this fact, 1,000 equity and volatility pairs were sampled from a

uniform distribution, which was scaled and shifted to span the region of this two-

dimensional risk-driver space which the real-world model will generate realisations

within, to some very high level of confidence. These 1,000 risk-driver pairs are

plotted alongside the 99.5-th projected value percentile contour line in Figure 3.13

(the left-hand side plot of this Figure). Comparing this plot with the bottom-right

plot of Figure 3.12, shows that using simple uniform sampling of these risk-drivers

will give more scenarios which yield option valuations around the 99.5-th percentile,

than if we use the real-world Heston model for this. In Figure 3.13 (right-hand side

plot), 1,000 fitting scenario pairs generated from a two-dimensional Sobol quasi-

random number scheme are displayed alongside this upper percentile contour line.

Again, sampling these fitting points using quasi-random numbers over this subset
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Figure 3.12: Top row plots: Histograms of the year one equity values (left-side)
and year one volatilities (right-side) sampled from the Heston stochastic volatility
model. Bottom row plots: Left-side plots 50,000 year one equity and volatility pairs
sampled from the Heston model, with the analytic projected option value 99.5-th
percentile from Section 3.4 superimposed (red line). Right-side plot shows the same,
but with only 1,000 equity and volatility pairs.

of risk-driver space results in a much greater proportion of fitting scenarios in the

vicinity of the upper tail, in comparison with using the real-world distribution for

this purpose.

The discussion up until now seems to indicate that generating the fitting scenarios

used to calibrate the regression proxy function in the LSMC method via a uniform

distribution or by quasi-random sampling may give a better fit in the upper tail of the

projected value distribution, compared with using the real-world model. However,

this is just a hypothesis and needs to be investigated. In order to test different

sampling methods for these regression fitting scenarios, we generate 961 pairs of year

78
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Figure 3.13: Left-side plots 1,000 year one equity and volatility pairs sampled uni-
formly, with the analytic projected option value 99.5-th percentile from Section 3.4
superimposed (red line). Right-side plot shows the same, but with 1,000 equity and
volatility pairs generated using Sobol quasi-random numbers.

one equity and volatility using the Heston stochastic volatility model; (independent)

uniform distributions; Sobol quasi-random numbers; Latin Hypercube sampling; and

placing the fitting points in a fixed grid of even spacing across the subset of risk-

driver space in which the real-world distribution typically generates values. In these

tests we will use the same option parameters given at the end of Section 3.1 and

employ our metrics,M1 andM3, for determining the success of the LSMC method.

In Figure 3.14 the LSMC M1 error is plotted for each of the five different methods

of fitting point sampling. Recall that the M1 error metric took the average of

the absolute differences between the analytical projected option value and LSMC

estimates for 50,000 real-world (Heston model) test scenarios. This plot shows that

if one wants a good fit across the whole projected option value distribution, it is

slightly preferable to sample the fitting points using the real-world (Heston) model.

Since we are also generating the 50,000 test scenarios from the Heston model this

result makes sense. Choosing the fitting scenarios from the same distribution that

we sample the test scenarios is going to give the best fitting regression proxy function

(and hence most accurate LSMC estimates) when accuracy is measured across the

whole distribution.

On the other hand, if we consider the fit of the regression proxy function only in

the upper tail, then the same result need not necessarily hold. Indeed, in Section
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Figure 3.14: Plot of error in LSMC estimates across the whole projected option
value distribution (metric M1) for different methods of sampling fitting scenarios.
U: uniform; D: discrete grid; Q: quasi-random; L: Latin hypercube; R: real-world.
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Figure 3.15: Plot of error in LSMC est’s around the 99.5-th percentile of projected
option value dist’n (metricM2) for different methods of sampling fitting scen’s. U:
uniform; D: discrete grid; Q: quasi-random; L: Latin hypercube; R: real-world.
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2.4 we argued that it would be reasonable to expect a better fit in the upper tail

of the projected value distribution when sampling the fitting scenarios uniformly

or using quasi-random sampling, in comparison with sampling from the real-world

(Heston) model. In Figure 3.15 the LSMC M3 error is plotted for each of the five

different methods of fitting point sampling. Recall that the M3 error metric took

the average of the absolute differences between the analytical projected option value

and LSMC estimates for scenarios which yield projected values in the close vicinity

of the 99.5-th percentile. Figure 3.15 shows that using the real-world Heston model

to sample the fitting scenarios for the regression proxy function does, indeed, give

poorer LSMC estimates in the upper tail of the projected option value distribution,

compared with the other sampling approaches. Thus, the above hypothesis seems

to be correct.

In Figure 3.14 we saw that using the real-world model to sample the fitting points

gave (by a fairly slight margin) the best fitting regression proxy function across the

whole projected value distribution. Yet, in Figure 3.15 we saw that using the real-

world distribution for this purpose, gave much poorer LSMC estimates in the upper

tail of the projected value distribution, compared with other sampling methods.

So, which method for sampling the fitting points should be preferred? Well, the fit

across the whole projected value distribution is only marginally better using the real-

world distribution to sample the fitting points, while the fit in the upper tail is far

poorer using this sampling approach. Furthermore, the fit in the upper tail is of key

concern to insurance practitioners when calculating a solvency capital requirement.

Therefore, this all suggests that when using the LSMC method in calculating a

solvency capital requirement, one would be better off sampling the fitting scenarios

from one of the alternative schemes tested, other than the real world (Heston) model.

But which one of these other distributions should be chosen for sampling the fitting

scenarios? In Figure 3.16 an enlarged plot of the M1 errors in the LSMC esti-

mates for sampling types uniform, discrete grid, quasi-random and Latin hypercube

is given. Although there is not a great difference between these errors, this Figure

suggests that employing quasi-random sampling will give the best fitting regression

function across the whole projected value distribution, followed closely by Latin hy-

percube and uniform sampling. Discrete grid sampling is somewhat poorer in the

subsequent LSMC fit across the whole distribution. The reason for this will be dis-
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cussed in a moment. In Figure 3.17, a similar plot is given for the M3 errors with

these four sampling types for the fitting scenarios. This plot suggests that if one is

only interested in the accuracy of the fitted proxy function in the upper tail of the

projected value distribution, the best approach for generating the fitting scenarios

is to place them in a discrete grid in risk-driver space. There is no significant differ-

ence between the other sampling approaches in terms of the success of the LSMC

estimates in the upper tail. The discrete grid sampling approach places a relatively

large proportion of the total outer scenarios in the corner of the risk-driver hyper-

cube over which we sample. For the projected put valuation problem, the upper tail

of the distribution comes from the scenarios in one of these corners, and hence this

sampling approach provides the best fit in the upper percentile. Conversely, because

of this disproportionate number of points in the corner of this hypercube, there is

relatively fewer of them in the middle of the distribution. This explains the poorer

fit around the centre of the projected value distribution from using discrete grid

sampling. This increased accuracy in the upper quantiles and decreased accuracy

around the median in comparison to real-world sampling is also seen for uniform,

quasi-random and Latin hypercube fitting point sampling and is explained similarly.

This is analogous to importance sampling, where simulating more scenarios from the

tail of the distribution will increase the accuracy of estimators in this region, but at

the expense of the accuracy estimators based on the centre of the distribution.

In more complex insurance problems, it might not be so easy to determine which

part of risk-driver space will yield the largest liability values. Also, the risk-drivers

which yield the largest liabilities might not even be concentrated in a localised

part of risk-driver space, as is the case for the simple put option. Furthermore,

placing the points in a discrete grid is only sensible for a low number of dimensions,

perhaps up to three. As the dimensionality of the problem grows, the total number

of scenarios grows exponentially. This total number will become computationally

infeasible for situations when the dimensionality of the problem is not low. Thus,

when implementing the LSMC method in a typical insurance setting, employing

discrete grid sampling of the fitting scenarios is likely to be impractical. In such cases

any of the alternative sampling methods should offer a similar degree of accuracy in

fit in the upper tail, assuming the analysis from the projected put option valuation

problem can be extended to the insurance setting.
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Figure 3.16: Enlarged plot of error in LSMC estimates across the whole projected
option value dist’n (metric M1) for different methods of sampling fitting scenarios.
U: uniform; D: discrete grid; Q: quasi-random; L: Latin hypercube.
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Figure 3.17: Plot of error in LSMC estimates around the 99.5-th percentile of the
projected option value dist’n (metric M2) for different methods of sampling fitting
scenarios. U: uniform; D: discrete grid; Q: quasi-random; L: Latin hypercube.
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3.8 Form of basis functions in LSMC

In the previous section, the choice of the sampling method for the fitting scenarios in

the LSMC method was investigated. In that analysis, the regression proxy function

was composed of standard polynomial functions. That is, for the two risk-drivers in

this projected option valuation problem, S1 and σ1, the regression model consisted of

simple powers and cross-terms of these variables. Of course, the terms which make

up the regression proxy function, which we refer to as the basis functions, need not

just be simple powers and cross-terms. Indeed, there is a wide class of functions

which would make a sensible choice of form for these basis functions which are known

as orthogonal polynomials. An introduction to the use of orthogonal polynomials

and why they may improve the accuracy of a regression was given in Section 2.5.

The purpose of this section is to perform some simple tests to ascertain whether

the use of orthogonal polynomials improves the performance of the LSMC method.

Furthermore, a few different families of orthogonal polynomials will be tested to see

whether this choice has an effect.

Under a standard polynomial regression, the value of the option is described in terms

of a simple polynomial function as

f(S1, σ1) = a0,0 +
I∑
i=0

ai,0S
i
1 +

J∑
j=0

a0,jσ
j
1 +

P∑
p=1

Q∑
q=1

ap,qS
p
1σ

q
1, (3.18)

where the am,n are constants (to be determined). The parameter I is the maximum

power of S1 and J is the maximum power of σ1 in the regression model. The

parameters P and Q are the maximum powers that S1 and σ1, respectively, can

take in a cross-term of the regression model.

This set-up can be generalised to allow for the basis functions to be constructed

from the set of some orthogonal polynomial, as

f(S1, σ1) = a0,0 +
I∑
i=1

ai,0Bi(S1) +
J∑
j=1

a0,jBj(σ1) +
P∑
p=1

Q∑
q=1

ap,qBp(S1)Bq(σ1), (3.19)

where Bm(x) is the m-th-order orthogonal polynomial in the variable x. Exam-

ples of orthogonal polynomials which could be used in the regression model include

Laguerre, Legendre, Chebyshev and Hermite polynomials.
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The accuracy of the LSMC estimates will now be considered for the different com-

binations of fitting scenario sampling method and choice of orthogonal polynomial

in the regression proxy function. The four different fitting scenario sampling ap-

proaches considered in Figures 3.16 and 3.17 are combined with standard polyno-

mial, Chebyshev, Laguerre and Legendre basis functions to give 16 different possible

LSMC set-ups. For each set-up, 10,000 independent repititions were performed and

the M1 and M3 values will be calculated for each of these repetitions. This allows

us to construct approximate 95% confidence intervals for the values ofM1 andM3

under each of the 16 LSMC set-ups. These confidence intervals are shown in Figures

3.18 and 3.19 for the M1 and M3 metrics, respectively.

The plot in Figure 3.18 gives evidence that that using Legendre polynomials, partic-

ularly in combination with quasi-random sampling, can improve the accuracy of the

LSMC method on average across the whole projected value distribution. The im-

provement in accuracy is relatively small however. Figure 3.19 shows similar findings

for the accuracy of the LSMC method in the upper tail region of this distribution.

An area of interesting further research is to investigate if these results extend to

more complex products.

3.9 Optimal scenario budget allocation

One of the other fundamental questions in implementing the LSMC method is how

the total computational budget should be allocated between generating the outer

fitting scenarios and generating the inner valuation scenarios. This issue was intro-

duced in section 2.6. It was argued there that although increasing either the number

of outer or inner scenarios will increase the accuracy of the LSMC estimates, it is not

immediately clear where the balance between the number of these scenarios should

be drawn to make the method most efficient. We then assume that the general find-

ings in this example will still apply when we consider a typical insurance product or

book of liabilities and assume a more realistic real-world distribution. Bearing this

in mind, it seems more reasonable to consider the computation time of generating

the outer fitting scenarios and the inner valuation scenarios in the context of pro-

jecting complex insurance liabilities under realistic real-world and market-consistent

distributions.
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Figure 3.18: Enlarged plot of error in LSMC estimates across the whole projected
option value dist’n (metric M1) for different methods of sampling fitting scenarios,
U: uniform; D: discrete grid; Q: quasi-random; L: Latin hypercube and different
choices of orthogonal polynomial, P: standard polynomial; C: Chebyschev; La: La-
guerre; Le: Legendre.

In order to investigate this optimal scenario budget allocation problem we require

some information about the relative time it takes to sample these different types of

scenarios. We could calculate how long an outer and inner scenario takes for this

projected put option set–up and then run different outer–inner allocations which

have the same run-time. However, this would be specific to the form of the payoff

of the European put option and our assumption of the Black-Scholes model for the

valuation scenarios. Of course, the only reason we study a European put option

under the Black-Scholes model is because it admits a simple analytical value for

each outer scenario.

For typical insurance products the liability cashflows which need to be calculated

in the inner valuation stage will often be complex, path-dependent and multi-

dimensional in nature. Furthermore, these cashflows will often extend 30 or 40

years into the future. In short, calculating the liability for such insurance products

is a difficult, path-dependent task which is very computationally demanding. On

the other hand, sampling the outer fitting scenarios is a relatively efficient task.

One may just have to generate a set of fitting points uniformly over some hypercube

in risk-driver space. Even if these fitting scenarios were drawn from some realistic
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Figure 3.19: Plot of error in LSMC estimates around the 99.5-th percentile of the
projected option value dist’n (metric M2) for different methods of sampling fitting
scenarios, U: uniform; D: discrete grid; Q: quasi-random; L: Latin hypercube and
different choices of orthogonal polynomial, P: standard polynomial; C: Chebyschev;
La: Laguerre; Le: Legendre.

real-world model, such as the Heston stochastic volatility model, these scenarios

will typically only be sampled out one-year into the future. By employing a fairly

efficient sampling scheme, this would not be too onerous a task computationally.

Thus, it seems perfectly reasonable to assume that generating a single fitting sce-

nario will take far less time, than calculating the liability on some complex insurance

product by Monte Carlo valuation. In fact, for typical insurance products on the

market today, we can assume the time it takes to sample an outer fitting scenario is

negligible compared with a liability valuation scenario. Given this assumption, the

total computation time for the LSMC method will be given solely by the simulation

of the inner scenarios. There are N of these per outer scenario and there are M

outer scenarios altogether. Thus, we want to consider pairs of M and N , such that

M ·N = C, where C is some fixed total number of inner valuation scenarios which

expends our given computational budget. Thus, the question is what ratio of M to

N will yield the most accurate LSMC estimated projected liability distribution?

To answer this we consider the projected put value problem, as this yields an ana-

lytical projected value for each outer real-world test scenario, and hence allows us to

test the accuracy of the LSMC method for different possible budget allocations. The
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budget allocations will, however, be consistent with the previous assumption made

in the context of insurance liabilities. For this analysis, we assume the total compu-

tational budget will be equivalent to a total budget of C = 10, 000 inner valuation

scenarios. Then we want to test the error associated with LSMC estimated projected

value distribution for different scenario allocations, (M,N) such that M · N = C.

The metrics by which we measure the success of the LSMC estimated projected

value distributions will again be M1 and M3 introduced in Section 3.4. For each

of the different budget allocations the optimal regression model is chosen using the

stepwise AIC algorithm, introduced in Section 3.3. Also, 10,000 repeats were per-

formed using different uniformly sampled fitting points in order to construct 95%

confidence intervals for the value of these error metrics for each of the different bud-

get allocations we consider. The error metrics will be calculated both for the LSMC

with antithetic variates being employed in the inner valuation stage and without.

Antithetic variates were introduced in Section 1.4.

In Figure 3.20 theM1 error for the estimated projected value distribution is plotted

for a number of scenario budget allocations. The 95% confidence intervals are too

small to be seen on this scale. This plot shows that in implementing the LSMC

method, the smallest error is achieved by choosing as small a number of inner sce-

narios per outer fitting scenario, N , as possible. Thus, the optimal number of inner

scenarios (per outer scenario) to use is just one antithetic pair. The level of this

error metric gradually increases as the number of inner scenarios, N , is increased.

Figure 3.21 shows similar findings for the error metricM2, again suggesting setting

N as a single antithetic pair. Both of these plots also show that employing antithetic

variates within the LSMC algorithm can offer increased accuracy in the valuations

obtained. As antithetic variates are fairly easy to employ within the method, these

tests suggest that one should use this variance reduction technique when calculating

an insurance SCR using this approach.

3.10 Conclusion

In this chapter, some of the choices in the way the LSMC method is implemented

have been examined. We summarise these briefly: the stepwise AIC algorithm seems

to give a reasonably good approach for selecting the regression model and which is

robust against over-fitting; sampling the fitting scenarios from the real-world dis-
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tribution gives a good fit in the centre of the projected value distribution, but a

poor fit in the upper tail. Sampling the points from an alternative scheme, such as

Sobol sampling, gives a much better fit in the upper tail with only a slightly inferior

fit in the centre of the distribution, compared with real-world sampling; There was

no overwhelming evidence to suggest greatly improved accuracy from using orthog-

onal polynomials in the regression function, although in combination with Sobol

sampling a small increase in accuracy was perhaps noticeable; the algorithm should

only use one antithetic pair of valuation scenarios and the remaining computational

budget should be expended generating outer fitting scenarios for the most efficient

implementation of the algorithm.

Obviously these inferences have been made in the context of the fairly simple prob-

lem of calculating the projected value of a European option. However, the payoff

function in this example is not too dissimilar to the form of payoff functions encoun-

tered in valuing projected insurance liabilities. Thus, the findings made throughout

this chapter should provide reasonable guidance as to how to set-up the LSMC al-

gorithm in an insurance liability context. With this in mind, we shall use some of

the findings made in this chapter as we move on to considering applying the LSMC

method to a stylised life insurance product in Chapter 4.
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Figure 3.20: Distribution-wide average (M1) error of LSMC estimates for different
pairs of outer-inner scenario budget allocations (indicated with reference to the
number of inner scenarios per outer scenario, N). For all points, the total valuation
scenario budget is C=10,000. Results with/without antithetics given.
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Figure 3.21: Upper-tail region local (M3) error of LSMC estimates for different pairs
of outer-inner scenario budget allocations (indicated with reference to the number
of inner scenarios per outer scenario, N). For all points, the total valuation scenario
budget is C=10,000. Results with/without antithetics given.
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Chapter 4

LSMC insurance case study

Having given an introduction to the application of the LSMC method in the context

of the projection of insurance liabilities and calculating an SCR, we will now turn

our attention to considering an illustrative example which tests the technique for a

realistic insurance product. The LSMC approach will be of use to practitioners for

insurance products featuring complex, path dependent and multi-dimensional lia-

bilities. In such instances, no simple analytic formulae for calculating the liabilities

are available and even a nested simulation approach with an optimal scenario allo-

cation can be quite inefficient. The LSMC technique offers a method which is both

efficient and can offer reliable estimates of the projected liability distribution. This

technique was discussed in more detail in Chapters 2 and 3. One class of unit-linked

insurance product for which the liabilities are often fairly complex, path dependent

and multi-dimensional is the variable annuity, which was introduced in Section 1.3.

In this chapter the LSMC technique will be applied to approximate percentiles of

the projected liability distribution for a stylised product from this class.

4.1 Variable Annuity (VA) stylised product

The analysis of the LSMC method in an insurance context given later in this chapter

will be based on the following variable annuity type product which is introduced in a

Faculty of Actuaries Variable Annuity Working Party report [Led10]. The guarantee

outlined in Figure 4.1 on the next page would sit as an option on a pension contract

with income draw-down. This figure summarises the main features of the variable

annuity guarantee and can be understood in relation to the discussion of Section

1.3. A brief overview of these features will now be given to ensure full clarity of

this product. Firstly, the contract owner is a 65 year old male and from the onset

of the contract has the ‘guarantee rider’ activated, i.e., this option on the insurance

contract initially sits on the pensions contract from the policyholder’s 65th birthday.

He will pay an extra 1% of the fund value in management fees as a result of this

option being activated. If the policyholder wishes to turn off this option, he would
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be entitled to do so and this would cancel this extra guarantee charge. We shall

refer to this as a customer ‘lapse’. The modelling of the rate of policyholder lapse

is by no means trivial and is an important issue in the calculation of the product’s

liabilities. Some possible lapsation models will be discussed in Section 4.2.

This product comes under the guaranteed minimum withdrawal benefit (GMWB)

type of the VA product class, as described in Section 1.3. The policyholder is

guaranteed to receive income at the level of 5% of the ‘guarantee base’ each year after

his 65th birthday, until he turns off the guarantee ‘rider’ or dies. This ‘guarantee

base’ is initially set at the amount of the policyholder premium, but can increase

in value with an increasing VA fund level for the first ten years after annuitisation.

After this window passes, the ‘guarantee base’ will remain at the same level for the

remainder of the product’s lifetime. This will be discussed in more detail shortly.

The underlying VA fund, which is initially funded by the policyholder premium, is

invested each year as follows: 60% will be invested in an equity index tracker, while

the remaining 40% will be invested in a ten year zero coupon swaps fund.

Figure 4.1: An outline of the features of the stylised VA guarantee. [VWP07]

4.2 Calculating the stylised product liabilities

In this section a precise description of how the liabilities associated with this stylised

product can be calculated will be given. We will then highlight the features of the

product which make determining these liabilities a path-dependent calculation. This

will hopefully give the reader a clear idea of the structure of the liability cashflows

of this product and the variables on which they depend.
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In order to ultimately deduce the liability faced by an insurer offering this product on

the market, there are a few intermediate results which must be determined. There-

fore, for clarity of exposition we shall treat each of these intermediate calculations

separately, though still demonstrating how they interlink. It is important to recall

that we assume the customer for this product is a 65 year old male, whose prior

payments have accumulated to £100,000 and has initiated the guaranteed minimum

withdrawal benefit rider feature (as stated in the product specification in the table

in Figure 4.1) starting immediately from their 65th birthday.

Policyholder Life Expectancy

Before looking to formalise the features of the product with the intention of calcu-

lating its associated liability, one piece of information we shall certainly require is

the life expectancy of the annuitant at each stage in their life from the age of 65

years. Naturally, as the product pays a guaranteed income level for the remainder of

the policyholder’s lifetime, the future liability to the insurer from this contract will

depend on the future life expectancy of the policyholder. Determining the future life

expectancy of the policyholder involves the use of actuarial tables and performing

some calculations using this data. The exact nature of these calculations is not es-

sential in the following analysis which leads to the VA product’s liabilities, however,

and thus shall not be discussed further. We should note a couple of assumptions.

Firstly, a policyholder aged 120 is assumed to have a future life expectancy of zero

years, as the process requires backward iteration from some future time. Therefore,

in the inner scenario component of the Monte Carlo simulations, we must simulate at

least 55 years into the future from the policyholder’s 65th birthday. Secondly, mor-

tality rates are assumed to be deterministic. More realistically, one should employ a

stochastic mortality model to capture the additional risk of uncertainty within the

mortality rates. This is an area for further research.

VA Fund Value

We now must calculate three key values related to the VA product for each of the 55

(possible) future years from annuitisation, which are all interlinked and stochastic.

These are the ‘fund value’, ‘guarantee base’ and ‘income level’.
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The fund value is the amount of money in the policyholder’s fund, which starts at

£100,000, but can grow or diminish from one year to the next depending on the

performance of the equity index and the ten year zero-coupon swaps fund (or bond)

investment returns. This is information which is obtained through simulation. The

fund value level, Fi, is determined, in terms of the fund return, Ri, in year i as

Fi = max
((
Fi−1 − Ii−1

)
·
(

1 +Ri

)
, 0
)
, (4.1)

with

Ri = αEi + βBi − ν − λ, (4.2)

where i is the number of years after annuitisation, α and β are the percentage of the

fund being invested in equity and bond respectively and Ei and Bi give the return

from equity and bond in each year. The term Ii−1 gives the VA income level from the

previous year, i−1, which is determined as will be discussed shortly. The parameter

ν in the fund return calculation represents the general management charge on the

VA product, while the λ represents the additional charge payable whilst the GMWB

rider is activated. The maximum function simply encapsulates the fact that the fund

value can never take values which are less than zero.

VA Guarantee Base

The next property of the VA related product which shall be discussed is the guar-

antee base. This arises because the income level which the policyholder draws from

the fund each year is not simply dependent on the VA fund value. Instead it de-

pends on this guarantee base which is linked to the fund value, but captures the

‘ratchet feature’ of this product. Initially at annuitisation (on the policyholder’s

65th birthday) the guarantee base will be equal to the fund value of £100,000. If

the number of years since annuitisation is less than the ‘ratchet term’ of the product

(which for this product is given as ten years), then the guarantee base can ‘ratchet

up’ along with the fund value. Thus, if the fund value increases from £100,000 to

£105,000 by the end of the first year, the guarantee base will also rise to £105,000.

If however, a similar rise in the fund value occurred 15 years after annuitisation,

then the guarantee base would remain the same value as it was in the previous year

(as this is outwith the ratchet term of the product). The product also specifies that
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the maximum increase in guarantee base from one year to the next is 15%. Thus,

if the fund value increases by 20% from one year to the next, the guarantee base

will only do so by 15%. The guarantee base also must stay at the same level or

increase from that of the previous year. This is consistent with the product having

a minimum withdrawal level of 5% of the initial fund value. Mathematically, the

guarantee base can be expressed as follows:

If we denote the ratchet term as γ, then the guarantee base i years after annuitisation

is given as :

Gi = I(i ≤ γ) ·min
(

1.15×Gi−1,max
(
Gi−1, Fi

))
+ I(i > γ) ·Gi−1. (4.3)

VA Income Level

The VA income level can now be simply deduced for each future year after annuiti-

sation from the guarantee base value in that year. Indeed, this value is just the

set withdrawal percentage level (stated in the product to be 5%) multiplied by the

guarantee base value at the year considered. Under a typical insurance contract the

policyholder will be able to choose how much to withdraw at each valuation date, up

to some maximum amount. We assume the policyholder always withdraws the full

amount of 5%. However, Milevsky and Salisbury [Mil06] show that, under certain

conditions, withdrawing the full amount will be optimal for the policyholder in the

sense that it maximises the value of the embedded option. Therefore, in the context

of insurance solvency testing, such an assumption regarding policyholder behaviour

seems reasonable.

Policyholder Lapse Rate

The lapse rate gives the rate of the policyholder lapse (as a percentage) at each future

time. Recall that a policyholder lapse is the term given to the situation where the

policyholder decides to switch off the guarantee withdrawal feature. They can then

decide to buy an open-market annuity or remain invested in income draw-down.

This lapse rate can be modelled under either a static or dynamic approach. The

static approach simply sets the policyholder lapse rate at a fixed level. However,

this is not an entirely satisfactory approach. Obviously if the fund value is growing
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rapidly, but we are outwith the ratchet term, the guarantee base will remain fixed.

This situation should make a policyholder more likely to ‘turn off’ the rider feature

of the product (‘lapsing’ on their policy), as the growth in the underlying fund is

not being realised in the income the policyholder receives. With this in mind, it is

more appropriate to model the policyholder lapses ‘dynamically’. This means this

lapse rate will depend on the levels of fund value and guarantee base (which are

of course dependent on the simulated underlying economy) and also on whether or

not the ratchet term has passed. Furthermore, it will also depend on the present

cash roll-up in the underlying economy, i.e., the future value of £1 in one years

time. Encapsulating these features should give a much more realistic appreciation

of actual policyholder lapse behaviour.

It should be noted that although policyholders will rarely make mathematically

optimal decisions when it comes to their policy, they will often realise when the

market situation is not advantageous to keeping their VA policy rider feature active,

perhaps through financial advice. Thus, a dynamical model for lapse rate seems

more realistic than a simple fixed rate static approach. Indeed, a survey carried

out by the Society of Actuaries showed that in 2005, 15 out of 18 insurers assumed

dynamic lapse behaviour in their liability valuations [Led10]. An area for further

research could be to employ a stochastic risk factor to the policyholder lapse model.

The dynamic lapse rate condition that shall be employed in the VA product liability

calculation component of our model shall operate as follows:

• A 4% Base lapse rate amongst policyholders shall be assumed to hold unless

one of the following three conditions hold:

• The lapse rate will be 1% if the present value of income payments is greater

than the current fund value.

• The lapse rate will, naturally, be 0% if the fund value has diminished to zero.

• The lapse rate will reach a maximum of 7% if the current fund value is greater

than the current guarantee base and we are outwith the ratchet term of the

product.
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Rate of Policies in Force

The next property of the VA product we shall consider is the rate of policies (still)

in force at each future projected year. This basically gives the proportion of policies

still in force (in a large completely diversified portfolio of policies) given the current

simulated state of the economy. Thus, at annuitisation this takes value 1, but with

time this value will diminish as there is the possibility of the policyholder lapsing, as

described by the lapse rate model, or policyholder death. If the number of policies

in force is 0.75 at some future given time, then, given the simulated economy until

this time, this means there is a probability of 0.75 that the policy would still be in

force, i.e., the policyholder will not have lapsed or died since annuitisation.

The calculation of this property follows fairly easily from the policyholder lapse

rate at any given future year. Naturally, the initial rate of policies in force at

annuitisation is 1, as there has not been any opportunity for policyholder lapse.

Then, i years after annuitisation, the proportion of policies still in force, Pi, is given

by the recursion

Pi = Pi−1 ·
(

1− qxi−1 −Xi−1

)
, (4.4)

where qxi gives the probability of policyholder death within the next year, given

they are at an age of 65 + i and Xi gives the lapse rate in terms of the year, i,

after annuitisation. This formula is fairly intuitive, as the guarantee will, of course,

remain active on the policy unless the policyholder lapses or dies from one year to

the next.

(Discounted) Cost of Guarantees

Having introduced the key values with regard to the policyholder and the stylised

VA product (some of which of course depend on the state of the economy, which will

be simulated), we are now in a position to calculate the first cashflow associated with

the product. This cashflow is the ‘cost of the guarantees’ to the insurer associated

with the issue of this insurance contract. It essentially gives the cost the insurer will

have to pay at each of the future years after the year of projection as a result of the

embedded minimum withdrawal guarantee in the contract. Naturally, these values

will be different for each simulation path.

97



Of course, the insurer will only face costs in guaranteeing this minimum withdrawal

to the policyholder if the amount cannot be met from the fund value at the time

due. Also, there is the chance that the policy may have already lapsed, in which case

the subsequent information and cashflows of this VA product would be irrelevant

from then on. Thus, we must factor in the proportion of policies which remain in

force (which is essentially the probability that the guarantee feature still remains

active). As a result, the cost of guarantees, Vi, that the insurer faces i years after

annuitisation of the VA contract is given by

Vi = −Pi ·min(Fi − Ii, 0). (4.5)

The factor of −1 is needed as any shortfall in the payment of the required income

level from the fund value is a positive cost to the insurer as counter-party to the

guarantee.

Naturally, we must discount this value of cost of guarantee by the discount factor at

the time the cost is considered, as is always the case for risk-neutral valuation. This

means we divide Vi by the amount £1 at annuitisation has grown to i years later.

Present Value of the Cost of (all future) Guarantees

This brings us to the key product cashflow of this chapter – the present value of the

cost of all the future guarantees. Before going on to discuss the financial importance

of this value, the procedure for its calculation shall be given.

At the time 55 years after annuitisation, the present value of the cost to the insurer

of all future years guarantees (PV CoG) is just the cost of guarantee associated

with the product for that year, i.e., V55 in the notation used above. For all the

years up until 55 years after annuitisation, the PV CoG is given as the sum of

all the subsequent years cost of guarantees discounted back to the year at which

this PV CoG is being calculated. Thus, for example, the PV CoG 53 years after

annuitisation would be given by the sum of the cost of guarantee (CoG) for year 55

discounted back to time 53 years after annuitisation plus the CoG for the year 54

years after annuitisation discounted back one year. Recall, the discounting is with

reference to the discount factor of the underlying (simulated) economy, and thus

will be at different rates for each simulation path.
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Mathematically, the PV CoG i years after annuitisation, Li, is given in terms of the

cost of guarantees, V , as:

Li =
55∑
k=i

Vk
Ci
Ck
, (4.6)

where Cj gives the value at year j of C0 at annuitisation, due to interest. This will

generally be stochastic, unless a deterministic model of interest-rates is assumed.

Economically, this value gives the insurer a measure of the total liability associated

with this VA contract at each year i after annuitisation. Thus, if we consider this

value one year after annuitisation, this will give the insurer an idea as to the level

of capital required to match all the liabilities related to this product from one years

time onward. This will be beneficial in allowing the insurer to plan their finances and

strategy for the coming year, safer in the knowledge that they have a good measure

of required capital levels to remain solvent. For the remainder of this chapter this

is what we will denote a ‘liability’ associated with this stylised product. Thus, L1,

will be referred to as the liability of the product at year one.

An alternative definition for the liability arising from this product would be to

consider the ‘net costs’. This is simply the difference between the PV CoG and

the present value of the sum of all the future annual guarantee charges the insurer

will receive from the policyholder. For a SCR calculation, it perhaps makes more

sense to define the liability in this way, since the liabilities incurred each year can

be ‘offset’ against the charges the insurer takes in. However, for the purposes of

this chapter, we will just consider the ‘liability side’ of the cashflows and use our

definition of liability, L, given above.

(Present Value of the) Guarantee Charges and VA Net Costs

For completeness, we present a mathematical definition of the present value of the

future guarantee charges. This is (at each projected year) the discounted value of

all future guarantee charges the policyholder will pay to the insurer. Naturally, this

will be multiplied by the factor giving the proportion of policies still in force, for the

same reasons as discussed in the calculation of the cost of guarantees. The guarantee

charge the insurer receives, say W , in year i after annuitisation is then given by

Wi = Fi · Pi · λ, (4.7)
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where we recall the guarantee charge, λ, is expressed as a percentage of the fund

value level. The present value of all future guarantee charges can be given for each

projected year in a manner similar to the calculation of the present value of the cost

of all future guarantees. Firstly, for the i-th projected year after annuitisation, we

obtain the discounted guarantee charge for that year, Zi, as

Zi =
Wi

Ci
, (4.8)

where Ci gives the value at year i of £1 at annuitisation due to interest. Then the

present value of all the future charges at any given year is just the sum of all the

subsequent remaining year’s discounted guarantee charges (up until after 55 years

after annuitisation, where we assume the policy will no longer be in force).

The Path-Dependent Nature of Insurance Liability Calculation

Having demonstrated the process through which the liability on this stylised prod-

uct is determined, it is clear that this is a reasonably complex, path-dependent

calculation. Finding a closed-form analytical formula for the liability will not be

possible. The insurance liability associated with this product depends on the cost of

the guarantee for each year the product can still be in force (which we assume is a

maximum of 55). Therefore, we must simulate out this full term to get the interest

rates and equity and bond returns and calculate the cost of the guarantee for each

year after the projection date. This illustrates why the calculation of such a prod-

uct’s insurance liability is a problem which requires simulation and why projecting

for such liabilities will result in a nested simulation framework.

4.3 Test of LSMC method: Black-Scholes-CIR model

Having given a full introduction to the stylised variable annuity product, we will now

test the LSMC method in calculating the projected liabilities on such an insurance

product. For the first of these tests we will assume that the equity index returns are

lognormal as in the Black-Scholes model, however we will assume that the risk-free

rate is stochastic and follows a CIR model. We will denote this the Black-Scholes-

CIR (BS-CIR) model. The stochastic process governing the CIR process for r is the

same as in the Heston-CIR model described in Section 8.3. The parameters of the
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CIR process in the real-world component of the LSMC method are set as follows: the

mean reversion rate κr = 0.3, the mean reversion level θr = 0.05 and the volatility

of the process σr = 0.1. The correlation between the Brownian motions driving the

equity index and risk-free rate processes is set as −0.3 and the initial value of the

short-rate r0 = 0.04. In the risk-neutral scenarios, the CIR process has parameters

set as κr = 0.4, θr = 0.04 and σr = 0.1, with the correlation equal to the level in

the outer scenarios. Naturally, the value of risk-free rate r at the last timestep of

each of the outer scenarios will be taken as the initial value of the process for r in

the corresponding inner scenario stages. The volatility in the lognormal stochastic

process for the equity returns is 20% and µ, the real-world growth of the equity asset,

is 0.03. In these tests we consider a projection date t = 1 year on from annuitisation.

The first issue in applying the LSMC method in this example is to determine what

the explanatory variables which influence the liability valuation at the projection

date are. Naturally, the fund value at projection will be one such variable, as it is

from this fund that the policyholder withdrawals are subtracted. As the projection

date is at year one, the first withdrawal date, the guarantee base will not be an

explanatory variable here. The guarantee base could be used as an explanatory

variable if a projection horizon of greater than one year was considered. It would

essentially capture the path-dependency of the fund value from annuitisation until

the projection year. In the current example there is no such path-dependency to

concern us, since G1 is given by a deterministic function of F1. We will, however,

consider a 5-year projection for this product in Section 4.4. The only other ex-

planatory variable influencing the liability at the projection is then the value of the

short-term risk-free rate of return, r1. The liabilities are obviously dependent on the

levels of interest rates throughout the term of the product, because the calculated

cost of the guarantee at each future year is discounted back to year one and also

the level of interest rates is one of the inputs into the dynamic policyholder lapse

function. With a CIR model, the expected future levels of interest rates explicitly

depend on the current value of the short-rate, hence r1 is the only explanatory vari-

able needed in the regression to fully capture the dependence on the future levels of

interest rate.

Having determined the influential explanatory variables in estimating the liability

L1, the next task is to find the form of the regression model involving these variables.
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Following the findings of Chapter 3, we will not generate the outer scenarios used

to calibrate the regression model in the LSMC method using the real-world Black-

Scholes-CIR model, however. It was argued there that sampling these scenarios using

Sobol quasi-random sampling would yield much more accurate projected liability

estimates in the upper tail of the distribution. Thus, we shall adopt this approach

in the implementation of the technique here. Looking at a large number of real-world

paths out to the projection date at year one, it was concluded that it was extremely

unlikely that the fund value, F1, would be out-with the interval [70, 000, 160, 000]

and the risk-free rate at t = 1 out-with [0, 0.12]. Thus, pairs of points were generated

inside the hypercube spanned by these two intervals using Sobol sampling and these

pairs were taken as the outer fitting scenarios for the following LSMC tests. Also,

following the results of Chapter 3, we employ just one pair of antithetic valuation

scenarios for each of the 10,000 outer fitting scenarios generated. This follows from

the argument given in that chapter that the computational effort should be employed

generating as large a number of outer scenarios as possible, since the subsequent

regression will greatly improve the accuracy of each of the inner scenarios. These

fitting scenarios generated will then be used in the cashflow calculations outlined in

Section 4.1. Ultimately, this will lead to a valuation of the liability at the projection

date for each of the inner scenarios simulated. These valuations will be the response

variables in the regression component of the LSMC algorithm.

The next stage is to determine the form of the regression function of the two ex-

planatory variables. As in Chapter 3 the method we will use for this will be the

stepwise AIC algorithm. This seemed to be reasonably successful in selecting a re-

gression function for the projected put valuation problem discussed in that chapter,

however there are other approaches which could be used here. Bauer, Bergmann

and Reuss [Bau10] advocate using an model selection algorithm based on a gener-

alised Mallows’ Cp statistic. This will be discussed in more detail in Section 4.6.

Implementing the stepwise AIC algorithm in this example, yields the following form

of regression model for the projected liability at year one:

L̂ = c0 + c1F1 + c2r1 + c3F
2
1 + c4r

2
1 + c5F1r1 + c6F

3
1 + c7F

2
1 r1 + c8F1r

2
1

+c9F
4
1 + c10F

3
1 r1 + c11F

5
1 + c12F

4
1 r1 + c13F

6
1 + c14F

5
1 r1. (4.9)
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Figure 4.2: Two views of the regression surface of L̂1 varying with F1 and r1 for
BS-CIR example. The units of L̂1 and F1 in the plots given above is £1000.

A plot of this regression function in terms of the two explanatory variables, F1 and

r1, is given in Figure 4.2. This plot suggests that, generally, for lower levels of year

one fund value, the LSMC liability estimates are larger. This behaviour is expected

for this type of guarantee. If the fund value has fallen significantly by the end of

the first year after annuitisation, then it is more likely that the fund value will be

unable to meet the guaranteed income level at some stage early in the product’s

lifetime. When this situation occurs, the insurer is then liable to meet this and all

subsequent annual incomes to the annuitant out of its own reserves. Therefore, low

levels of fund value at the projection date are likely to give a larger liability to the

insurer from selling such a product on the market.

The plot also shows that the spot-rate at projection, r1, is an equally crucial factor in

determining the regression estimate of the VA liabilities. The regression-estimated

liabilities increase with decreasing short-rate, which is, again, expected for this type

of guarantee. The short-rate gives us an indication of the future expected levels

of interest rate. If future interest rates are large, then any future incomes to the

policyholder which must be met out of the insurer’s own reserves will be discounted

back to the projection year by a greater amount. This means that large levels

of future interest rates will give smaller liability valuations at the projection date.

Furthermore, if interest rates are low, then policyholder lapse is less likely, as a

result of the dynamic lapse function being employed. This results in the guarantee

remaining active on the product and a policyholder continuing to draw income from
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the fund value. This is also consistent with lower future interest rates yielding a

larger liability valuation at the projection date. Thus, overall, this surface makes

sense in comparison with our intuition on the behaviour of this stylised product.

The dependency of the regression function on the two explanatory variables can be

examined further by considering a surface contour plot. In Figure 4.3 the surface

contour plot is given for L̂ in terms of F1 and r1. Also shown here is the regression

surface with the contour plot projected onto the upper surface of the cube which

borders the surface plot. This helps visualise the connection between the regression

surface and the two-dimensional contour plot. The contour plot further illustrates

the dependency of the regression surface on the two explanatory variables, as de-

scribed above. On closer inspection, the contour plot also suggests that for fixed

short-rates, a fund value level of around £115,000 at year one will lead to a larger

liability estimate than a fund value level of around £100,000. This local behaviour is

contrary to the discussion of the overall trend of the surface just given. Is this simply

down to a poorly fitting regression surface and some evidence of over-fitting occur-

ring, or is this behaviour actually consistent with the features of the stylised variable

annuity product? Well, if the fund value grows to £115,000 by year one, then the

guarantee base will also grow by the same amount. Then, for the remainder of the

product lifetime, the policyholder will withdraw at least £115, 000× 5% = £5, 750

each year whilst the guarantee feature is active. On the other hand, if the fund value

remains around £100,000 at year one, the guarantee base will remain at its initial

level and the policyholder will only be guaranteed an annual withdrawal of at least

£5,000 for the remaining lifetime of the product.

Therefore, perhaps this resultant increase in the minimum level of income the pol-

icyholder will withdraw from the fund in each of the subsequent years after year

one will be of greater importance in the calculation of L1 than the fact that the

fund value level, F1, is around £15,000 larger. Obviously, if the fund value grows

by a huge amount over the first year, we would still expect a very small liability to

the insurer since the fund would likely cover all the future annual incomes to the

policyholder. And similarly, if the fund value level falls drastically by year one, we

would still expect this to lead to a large liability. But locally, for values of F1 of

around £100,000 to £120,000, there is no reason why a larger fund value level could

not lead to a larger expected liability.
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Figure 4.3: Left: BS-CIR example regression surface of L̂1 varying with F1 and r1

with contour lines projected onto roof of surrounding box. Right: Regression surface
contour plot. The units of L̂1 and F1 in the plots given above is £1000.

Of course, it could still just be the result of a poorly fitting regression surface, so some

tests need to be conducted to see which of these explanations holds. These tests will

be explained shortly and the results made clear. For now, we turn our attention to

investigating how successfully the LSMC regression function approximates different

percentiles of the true projected liability value distribution. Naturally, we will pay

closer attention to the fit of the regression function to the upper percentiles of this

distribution as this is the region which is of greatest concern to an insurer. In

these tests we would ideally like to select a few key percentiles of the true liability

distribution, conditional on some simulated real-world outer scenarios and compare

how well the LSMC estimates for these outer scenarios match these true liabilities.

But there is no analytical formula for L1 in terms of F1 and r1. Also, attempting to

obtain accurate estimates via simulation is computationally infeasible – this is why

we need to use approximation techniques such as the LSMC method to estimate

the projected liability distribution. Therefore, in these tests we will investigate

how accurately the LSMC regression function approximates the projected liability

value for percentiles of the regression-estimated liability distribution. This is the

distribution which is given by inputting the 10, 000 real-world test scenarios from the

Black-Scholes-CIR model into the regression function found by the LSMC method.

Such an approach will give a reasonable test of the fit to the true percentiles if

the regression-estimated liability distribution has percentiles which are reasonably
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Figure 4.4: Top row: two views of the regression surface with regression-estimated
distribution contour lines superimposed (red). Bottom row: surface contour plot
with these contour lines superimposed. Red circles in bottom-right plot show the
values of F1 and r1 from the outer scen. which corresponds to exact percentiles.

close to those of the true projected liability distribution. This seems a reasonable

assumption to make for the purposes of testing the LSMC technique. The outer

scenarios corresponding to the key percentiles of the regression-estimated projected

liability distribution will then be taken and a large number of inner scenarios will be

simulated to obtain an accurate valuation of this percentile. These ‘full simulation’

valuations can then be compared to the regression estimates as a test of the accuracy

of the LSMC method.

The percentiles which we shall consider in these tests are the 50-th, 75-th, 90-th,

95-th, 99-th and 99.5-th. This will give a thorough examination of the upper per-

centile of the projected liability distribution, but also check the fit around the median
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of the distribution and at the ‘one-in-four year’ worst case scenario. The contour

lines at the values of the percentiles of the LSMC approximated distribution are

shown superimposed on top of the surface plot of the regression function in the

top line of Figure 4.4. These are just the surface plots that were shown in Figure

4.2 with the six LSMC estimated projected liability distribution percentiles shown

on the surface as red lines. In the bottom line of Figure 4.4 the surface contour

plots are shown with the percentile contours superimposed as black lines. In the

bottom-right hand corner plot the red circles show the exact levels of fund value

and short-rate corresponding to each of the six percentiles which we will be testing

against. The results of the tests for each of the percentiles that we consider are

given in Table 4.2 on page 109. The results show that the LSMC method seems

to give a reasonably accurate approximation of the projected liabilities in the up-

per tail of this distribution. Indeed, the regression estimates are fairly close to the

full simulation estimates for the 90-th, 95-th, 99-th and 99.5-th percentiles. These

full simulation estimates were given by taking the outer scenario corresponding to

each of these percentiles and performing 20,000 valuation scenarios. This resulted

in liability valuations with standard errors of around £50, as given in the table.

The LSMC estimates of the projected liability for the median and 75-th percentile

of the distribution also seem to be reasonably accurate in comparison with the full

simulation valuations performed for the corresponding real-world outer scenarios.

It should be noted that we only consider the single scenario which corresponds to

the percentile of the projected liability distribution. As discussed in Chapter 3 we

should really consider an average of the accuracy of fit for a number of scenarios

around each percentile, because many different possible pairs of F1 and r1 can give

a liability around a given percentile. Therefore, some other scenarios around each

percentile were also tested against the LSMC estimates and these gave reasonably

similar levels of accuracy of fit to the results in Table 4.2. Overall, these tests pro-

vide evidence that the LSMC method gives a good approximation in both the upper

tail and around the centre of the projected liability distribution.

The other issue which needs to be investigated is whether the local increase in ex-

pected liability for increasing year one fund values (in the vicinity of year one fund

values of around £100,000 to £120,000) is an artifact of a poor fitting regression

function from the LSMC method. Or is this actually representative of how the
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liabilities of this stylised VA product behave? In order to test which of these ex-

planations is correct, four pairs of scenarios around this region were taken and full

simulations of 20,000 valuations were performed to obtain accurate estimates of the

liability in each case. The results of the full simulation valuations for these four

pairs of scenarios are given in Table 4.1 at the bottom of this page.

If we consider outer scenario numbers 8,524 and 8,126 we will now explain what these

tests show. The fund value at year one for real-world outer scenario number 8,524

is £100,778, whilst for outer scenario 8,126 the fund value is £117,120. Given our

intuition about the overall trend of this product we would expect that (if both these

scenarios had the same value of short-rate, r1), the projected liability at year one

would be larger for simulation path number 8,524. Furthermore, since the short rate

for path number 8,524 is less than the short rate for path number 8,126, this should

increase the projected liability for path number 8,524 relative to the liability for path

number 8,126. However, the LSMC regression function estimated that the liability

for path 8,524 is £5,176, which is smaller than the LSMC estimate for path number

8,126 of £5,426. The full valuation for outer scenario number 8,524 is £5,176 with

standard error of £32, whilst the full valuation of scenario 8,126 is £5,788 with a

standard error of £36. Therefore, the full simulation estimates for these paths agree

with the order of the LSMC regression estimates for these scenarios. The other three

pairs of scenarios in Table 4.1 also confirm that this local anomaly in the overall

trend of the distribution is a result of the complexity of the ratchet feature. The

ability of the LSMC method to capture this rich structure is further evidence that

it can accurately and robustly model complex insurance liabilities.

Sim. Num. F1 r1 Reg. Est. Full Sim. St. Err.
8524 100,778 5.15 5,176 5,182 32
8126 117,120 5.18 5,426 5,788 36
7820 99,366 5.11 5,212 5,207 32
94 119,922 5.16 5,423 5,610 35
44 102,344 5.44 5,055 5,168 32

9918 117,697 5.88 5,174 5,458 34
3020 99,685 5.09 5,215 5,207 32
8318 115,720 5.17 5,423 5,879 36

Table 4.1: Full sim. liability valuations for scenarios chosen to investigate the local
behaviour of the projected liability distribution for F1 around £100,000-120,000.
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Perc. F1 r1 Reg. Est. Full Sim. St. Err.
50-th 94,186 3.58 6,304 6,467 37
75-th 106,300 1.23 7,155 7,335 42
90-th 80,049 5.37 8,385 8,431 42
95-th 82,015 3.20 9,406 9,469 45
99-th 71,771 5.28 11,268 11,251 47

99.5-th 76,372 2.88 11,908 11,990 50

Table 4.2: Full sim. liability valuations for the real-world outer scenarios which cor-
respond to some key percentiles of the LSMC estimated projected liability distribu-
tion. Given for each of these outer trials are the LSMC corrected estimate and also
the full sim. valuation together with standard error. All the values in the table are
quoted in units of pounds, except for r1 which is given as a percentage.
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Figure 4.5: Plot of full sim. liability valuations for the real-world outer scen’s which
correspond to some key percentiles of the LSMC estimated projected liability dis-
tribution. Given for each percentile are the LSMC corrected estimate (red horizon-
tal bar) and the full sim. valuation. The diameter of the small circles of the full
sim. estimates are approximately representative of the 95% confidence interval of
these full valuations. All values in the figure are quoted in pounds.
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The LSMC estimates for some of these scenarios in Table 4.1, perhaps do not appear

as accurate as those scenarios in the upper tail of the projected value distribution

that were given in Table 4.2. This finding is consistent with some further exploratory

tests involving full simulation valuations of other scenarios. On the other hand,

the accuracy of the LSMC estimates around the centre of the projected liability

distribution appeared to improve when the real-world Black-Scholes-CIR model was

employed to generate the fitting scenarios, compared with the results from using

Sobol sampling given here. The accuracy of the fit in the upper tail seemed to

reduce with this form of fitting scenario sampling, however. These findings are

the result of exploratory analysis, but they are consistent with the discussion and

results of Section 3.7. The set-up which gives the best fit in the upper tail of the

distribution will be of most interest to insurers, therefore the results from using

Sobol fitting scenarios have been quoted here.

4.4 Test of LSMC method: Five-year projection

Rather than considering a one year projection of insurance liabilities, some prac-

titioners might want to get an understanding of the longer term capital adequacy

of their business and look at projections over a longer time-horizon. Therefore, in

this section we will consider exactly the same stylised VA product and real-world

financial model from the previous section, except now we will look at estimating

the projected liability on such a product at a projection time of t = 5 years. This

projected liability value is just the value of L5 from the discussion of the cashflows

on this VA product given in Section 4.2. In applying the LSMC method to find the

projected liability at year five, however, the regression function will now consist of

three explanatory variables, as will now be explained.

In the case of a one year projection, as considered in Section 4.3, there is no path

dependency in the calculation of the liability. The first policyholder withdrawal

occurs at year one, hence we do not care what happened to the equity index and

bond returns in the period from annuitisation until then. For a five year projection,

however, we cannot just only consider the fund value and short rate at year five as

the only influential explanatory variables. If the fund value were to rise to a high

level in the first couple of years after annuitisation and then fall back to £100,000 at

year five, this would give a larger expected liability compared with if the fund value
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were to fall in the first couple of years and then rise back up to £100,000. This is due

to the product’s ratchet feature, which controls the level of the floor of the future

annual withdrawal amount made by the policyholder. Thus, we need to take into

account this path dependency in the regression function for the liability projected at

year five. It is not necessary to include the fund value at the end of all of years one to

five, however, since it is only through this ratchet feature that the path dependency

comes into the liability calculation. This ratcheting is completely controlled by the

guarantee base, thus the only explanatory variable needed in addition to F5 and r5

for the five year liability projection is G5, the guarantee base level at the projection

date.

Therefore, in considering a five year liability projection, the regression function for

the projected liability will now be three-dimensional. This will provide a more

realistic test of the LSMC method in approximating projected insurance liabilities,

since those found in practice can often depend on many risk-factors. To begin with,

we will, again, consider generating the fitting scenarios using Sobol quasi-random

sampling, following the results of Section 3.7. This will involve determining the

intervals for which it is ‘extremely unlikely’ that F5, r5 and G5 will be outside under

the real-world we assume for the underlying economy. Then, fitting points will be

sampled within the hypercube spanned by these intervals according to the Sobol

algorithm. Sampling the fitting points in this manner brings about some additional

complications, as will be discussed shortly.

In Figure 4.6 pairwise plots of the year five fund value, short rate and guarantee

base levels are given for a sample of 10,000 real-world scenarios. From these plots

we can see that such a standard quasi-random sampling approach will probably

suffice for the fitting scenarios for the explanatory variables F5 and r5. However, the

guarantee base at the projection date, G5, is clearly highly correlated with the fund

value F5, which makes sense intuitively considering the structure of the product.

The bottom-left hand side plot of Figure 4.6 shows that it would not be wise to

sample the fitting scenarios, such that a significant number consisted of values of F5

above £120,000 and values of G5 below around £120,000. Similarly, there are very

few scenarios for which F5 is below around £100,000 and G5 is above £150,000. On

the other hand, it is often these extreme values of the risk-drivers which yield the

key upper percentiles of the projected liability distribution. Therefore, a balance
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must be drawn between sampling enough scenarios around the extreme values of

the risk-drivers to obtain an accurate fit in the upper tail of the projected liability

distribution, but not too many to make the method very poor at estimating the

majority of the distribution.

Rather than simply sampling the outer fitting scenarios evenly across the given three-

dimensional hypercube according to the Sobol algorithm, we will now try to adapt

this idea to take into account the strong correlation between the fund value and

guarantee base levels at the projection date. An adapted fitting scenario sampling

approach will proceed as follows: firstly, standard Sobol sampling will be used to

generate points evenly over the unit cube. Let the different dimensions of these

Sobol samples be labeled us1, us2 and us3. The next step is to give the Sobol samples

us1 and us2 a correlation of ρF-G . This is achieved by treating these Sobol samples as

uniformly distributed random variables. We then convert these to samples from an

equivalent ‘normal distribution’ using the inverse cumulative distribution function,

Φ−1(x), as zs1 = Φ−1(us1) and zs2 = Φ−1(us2). These ‘equivalent normal samples’ can

then be correlated using a Cholesky decomposition. Setting

zs?1 = zs1 (4.10)

zs?2 = ρF-G zs1 +
√

1− ρ2
F-G zs2 (4.11)

will give correlated ‘equivalent normal samples’ of the first and second dimensions of

the Sobol sample. By employing the cumulative normal distribution function, these

can be converted back to a Sobol sample which is ‘uniform’, but with correlated

first and second dimensions: us?1 = Φ(zs?1 ) and us?2 = Φ(zs?2 ). The third dimension

of the Sobol sample is unchanged since being initially generated, thus we just set

us?3 = us3. Then us?1 , us?2 and us?3 gives a three-dimensional Sobol sample over the

unit cube, such that the first and second dimensions have a correlation which is close

to ρF-G . These Sobol sampled uniform-like vectors are then scaled and shifted to

define a cube in risk-driver space for which it is ‘extremely unlikely’ that the values

of these three influential variables will lie outside. For F5 we set this interval as

[30,000,200,000], for r5 as [0,20%] and for G5 it is defined to be [100,000,200,000].

From the sample of 10,000 real-world scenarios, the correlation between the values

of F5 and G5 was very close to 0.8, thus this is the value that was chosen for ρF-G .
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The plot in the bottom-right hand corner of Figure 4.6 shows the 10,000 Sobol

fitting points for F5, plotted against the 10,000 Sobol fitting points for G5. This

plot clearly shows the effect of the correlation which has been built into this Sobol

sampling algorithm. It certainly appears to be more consistent with the realisation

of the real-world model for F1 and G1 plotted in the bottom-left corner of Figure

4.6, in comparison with a standard Sobol sampling approach (which would just

place points evenly over the whole of this square region of risk-driver space). This

approach can be generalised to obtain Sobol sampled fitting scenarios for a general

number of risk drivers, such that each pair of risk-drivers have a specific correlation.

Further discussion of the Cholesky decomposition technique is given in Section 8.3.

Correlating the Sobol sampled fitting scenarios is only likely to give an improved fit

in the LSMC regression function for cases where the correlation between a pair of

risk-drivers is fairly large in magnitude. Thus, in Section 4.3 we just used standard

Sobol sampling, since the correlation between F1 and r1 was only around −0.3.

Employing the correlated Sobol sampling approach for F5 and G5 will still give fairly

poor LSMC estimates for the five year projection example, however: If the fund level

diminishes over the first five years of the product (which is likely to happen due to

the policyholder withdrawals), the guarantee base will remain at, or be only slightly

above, £100,000. As such, nearly half of the 10,000 real-world BS-CIR samples

generated were such that G5 = £100, 000 and over 75% of these scenarios were such

that G5 < £115, 000. Clearly, the correlated Sobol sampling, shown in the bottom-

right plot of Figure 4.6 is actually not very representative of the real-world samples

F5 and G5. An even distribution of points across the whole range of likely values of

G5 is not what is sought here. Rather, a far larger proportion of fitting scenarios with

G̃5 < £115, 000 is required to realistically capture the behaviour of the projected

liability distribution. We would still, however, like to have some scenarios such that

G̃5 takes an extreme value and also still be able to capture the correlation between

F5 and G5. But adapting Sobol sampling to achieve this would be challenging and

any strategy developed may be too specific to this stylised VA product and not

generalise to other forms of insurance liability. The natural approach to capture

this complex structure is just to use the real-world model for the fitting scenarios,

although in Section 3.7 it was argued that this approach is likely to give a poor fit

in the upper tail. In the tests which follow, the LSMC method will still be found
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Figure 4.6: Top row and bottom-left: pair-wise plots of F5, G5 and r5 from 10,000
sim’s of the real-world Black-Scholes-CIR model. Bottom-right: plot of 10,000 fitting
scenarios for F5 and G5 under the correlated Sobol sampling approach.

to perform fairly well in estimating this region of the projected liability distribution

when the fitting scenarios are sampled from the real-world distribution, however.

Furthermore, in Section 4.6 we will outline some lines of further research which

could improve the fit in the upper tail of the projected liability distribution whilst

still employing real-world sampling of the fitting scenarios.

Having discussed the issue of fitting point sampling, let us now study the form of

the regression model found by the LSMC method. As in Section 4.3 10,000 outer

fitting scenarios were employed and one antithetic valuation pair was simulated per

outer fitting scenario. This choice for the outer and inner scenario allocation follows

the results of Section 3.9. The form of the regression model for the LSMC was then

chosen by the stepwise AIC approach, as was the case in Section 4.3. This gave a

estimated projected liability model which included the following terms, in addition

to a constant: F5, r5, G5, F 2
5 , r2

5, G2
5, F5r5, F5G5, r5G5, F 3

5 , r3
5, F 2

5 r5, r2
5G5, F5r5G5,
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F5r
3
5, r5F

3
5 , G5F

3
5 , G2

5F
3
5 and F 3

5 r
3
5. Since, L̂5 is given in terms of three variables now,

we cannot make the same three-dimensional plot of the regression surface as was

given in the last section. Similar plots can be made if we fix the value of one of the

three risk-drivers, however. Such a surface can be thought of as a three-dimensional

slice of the four-dimensional regression surface for L̂5.

Firstly, then, let us consider fixing the value of r5 and look at how the LSMC

estimated liability depends marginally on F5 and G5. In Figure 4.7, the regression

surface is plotted in terms of F5 and G5 for fixed levels of r5 of 1%, 4.3% and

10%. These values of r5 correspond approximately to the 5-th, 50-th and 95-th

percentiles of the marginal real-world distribution for r5, respectively. In the left-

hand and central plots, we can see that the LSMC estimated liability increases with

a decreasing fund value level and an increasing guarantee base level at year five. This

is consistent with our intuition about the behaviour of this stylised VA product: If

the fund level has fallen to a low level by year five, then it is more likely that at

some point in the future this underlying VA fund will no longer be able to meet one

or more policyholder withdrawals. This results in the insurer having to cover the

shortfall – what we term a liability to the insurer from this product.

Similarly, if the guarantee base level is high at year five, then all the subsequent

year’s withdrawals made by the policyholder will be at a relatively large level. If

the size of the withdrawals from the VA fund are large, then this fund is much

more likely to be unable to meet these at some point early on in the lifetime of the

product. This situation would represent a large liability to the insurance company

selling such a product.

In the right-hand plot of Figure 4.7, it appears that for a large fixed value of r5

and relatively large values of F5, the liability will fall with an increasing level of

G5, however. Such behaviour is not consistent with the structure of the stylised VA

product liability. This anomaly in the regression surface can be easily explained: If

the fund value at year five is above around £115,000 then the guarantee base at year

five must also be above this level, by definition of the ratchet feature of the product.

As the fund value increases further, the only values of guarantee base which are

consistent with this will also be large. Thus, it does not make sense to consider

combinations of relatively large F5 with relatively low G5, as it is impossible for

such scenarios to occur. That is why the regression surface exhibits this spurious
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behaviour for large values of F5 in the right-hand plot. Of course, this is of no

consequence to the success of the LSMC method, since no such scenarios are going

to be produced by the real-world model in practice.

In Figure 4.8 the regression surface is plotted in terms of F5 and r5, for fixed levels

of G5 of £100,000, £108,327 and £135,000. These values of G5 correspond approx-

imately to the 5-th percentile, mean value and the 95-th percentile of the marginal

distribution of G5, respectively. The 50-th percentile was close to £100,000, so the

mean value was chosen here instead to give a distinguishable second regression sur-

face. The right-hand side plot shows the regression estimated projected liability

value increases with a decreasing year five fund level and also with a decreasing

short rate, for a fixed large value of G5. This is in agreement with the discussion of

the structure of the stylised VA product given in Section 4.4. For lower fixed values

of G5, however, we see some spurious effects in the regression surface due to similar

reasons as discussed above. In the left-hand plot the guarantee base at year five is

fixed at £100,000, so it is impossible for the fund level at year five to be in excess

of this level, given the structure of the product. Thus, it does not make any sense

to consider this regression surface for values of F5 beyond £100,000 and this region

can be ignored. A similar argument can also explain the spurious behaviour of the

middle plot of Figure 4.8.

Finally, in Figure 4.9 the regression surface is plotted in terms of r5 and G5, for

fixed levels of F5 of £48,000, £78,297 and £135,000. These values of F5 correspond

approximately to the 5-th, 50-th and 95-th percentiles of the marginal distribution

of F5, respectively. The middle-plot shows the LSMC projected liability distribution

increases with an increasing guarantee base level and with a decreasing short rate

at year five. This behaviour matches our intuition of the structure of the liabilities

of the stylised VA product. Similar behaviour is exhibited for the corresponding

surface for F5 fixed at £48,000, except the whole surface is shifted upward. This

also makes sense, since low levels of year five fund value level should give larger

liability valuations. The right-hand side plot does not really offer any information,

since if F5 is at £128,000, then the guarantee base is extremely unlikely to be below

around £120,000. Therefore, little inference can be made from this plot as the

majority of the surface is so improbable.
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Figure 4.7: Regression surface L5 in terms of F5 and G5 for fixed level of r5. Variable
r5 fixed at 1% (left plot), 4.3% (middle plot) and 10% (right plot). Note that
some regions of the surfaces correspond to essentially impossible combinations of
explanatory variables leading to spurious behaviour. See Section 4.4.
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Figure 4.8: Regression surface L5 in terms of F5 and r5 for fixed level of G5. Term G5

fixed at £100,000 (left plot), £108,327 (middle plot) and £135,000 (right plot). Note
that some regions of the surfaces correspond to essentially impossible combinations
of expl. variables leading to spurious behaviour. See Section 4.4.
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Figure 4.9: Regression surface L5 in terms of r5 and G5 for fixed level of F5. Term F5

fixed at £48,000 (left plot), £78,297 (middle plot) and £128,000 (right plot). Note
that some regions of the surfaces correspond to essentially impossible combinations
of expl. variables leading to spurious behaviour. See Section 4.4.
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Overall, these three-dimensional surfaces make sense in terms of our intuition on the

behaviour of the liabilities of this stylised VA product. Therefore, let us turn our

attention to testing how accurately the LSMC method estimates some key percentiles

of the projected liability distribution for a five year projection. As in Section 4.3

we will consider percentiles of the LSMC estimated liability distribution and make

the assumption that these will correspond closely with the percentiles of the true

liability distribution at the projection year t = 5.

In Table 4.3, some key percentiles of the LSMC regression-estimated projected lia-

bility distribution are quoted. Also given in this table are full simulation valuations

of the year five liabilities (with standard errors) for the outer scenarios which cor-

respond to these percentiles of the regression-estimated liability distribution. For

reference the values of F5, G5 and r5 for these outer scenarios are also stated. The

percentiles for these tests are, again, chosen to be the 50-th, 75-th, 90-th, 95-th,

99-th and 99.5-th. The results quoted show that the LSMC method gives fairly

accurate approximations of the year five projected liability, both in the centre and

upper tail of this distribution. The LSMC estimate for the 50-th percentile is only

around £60 out from the full simulation estimate. For the 75-th this difference is

also only around £120.

As we look further into the tail the LSMC are slightly less accurate with these

differences being approximately £400 and £440 at the 95-th and 99-th percentile,

respectively. The 99.5-th percentile of the LSMC projected liability distribution

then gets within £100 of the full simulation valuation, however. This is, of course,

just one of many possible outer scenarios which give an estimated liability valuation

in the extreme upper tail of this distribution. If we consider a few other outer

scenarios which correspond to other percentiles in the immediate vicinity of this

99.5-th percentile, the LSMC regression estimated distribution is unlikely to give

such a good estimate compared to their respective full valuations.

To make this more concrete, in Table 4.4 full simulation valuations for seven per-

centiles of the LSMC estimated distribution at year five ranging from the 99.47-th to

the 99.53-rd. Clearly, some of these percentiles lie within about £100 of the full val-

uation, while others are out by around £1000. On average, the LSMC estimates are

roughly £600 out from the full valuations around the 99.5-th percentile of the pro-

jected liability distribution. While, similar analysis for the centre of the distribution
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indicates this average difference between LSMC estimate and full valuation is only

around £100. This is not surprising, since it is likely to be more difficult to obtain

an accurate valuation in the upper tail of the liability distribution. Furthermore,

it was argued in Section 3.7 that sampling the fitting points from the real-world

distribution would often lead to a poor fit in this region. The results of the LSMC

estimates in the upper tail are still very encouraging, however, and interesting lines

of further research which could improve this accuracy significantly will be outlined

in Section 4.6.

Perc. F5 r5 G5 Reg. Est. Full Sim. St. Err.
50-th 94,299 2.06 114,573 6,220 6,158 34
75-th 69,634 0.98 100,000 9,921 10,042 39
90-th 49,938 6.38 100,943 14,047 13,905 34
95-th 43,387 7.01 100,000 16,624 16,223 31
99-th 42,697 2.94 100,000 21,421 20,981 33

99.5-th 32,405 7.47 100,000 23,289 23,206 28

Table 4.3: Full sim. liability valuations for the real-world outer scenarios which cor-
respond to some key percentiles of the LSMC estimated projected liability distribu-
tion. Given for each of these outer trials are the LSMC corrected estimate and also
the full sim. valuation together with standard error. All the values in the table are
quoted in units of pounds, except for r5 which is given as a percentage.

Perc. F5 r5 G5 Reg. Est. Full Sim. St. Err.
99.47-th 39,112 3.67 100,000 22,968 22,382 31
99.48-th 39,778 3.25 100,000 23,016 21,695 30
99.49-th 41,254 2.25 100,000 23,229 23,124 33
99.50-th 32,405 7.47 100,000 23,289 23,206 28
99.51-st 39,744 3.01 100,000 23,331 22,590 32
99.52-nd 36,617 4.78 100,000 23,391 22,916 30
99.53-rd 34,677 5.89 100,000 23,455 22,412 28

Table 4.4: Full sim. liability valuations for the real-world outer scenarios which corre-
spond to the close vicinity of the 99.5-th percentile of the LSMC estimated projected
liability distribution. Given for each of these outer trials are the LSMC corrected
estimate and the full sim. valuation together with standard error. All values in the
table are quoted in pounds, except r5 which is given as a percentage.
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4.5 Test of LSMC method: Heston-CIR model

Some tests were also performed applying the LSMC method to the stylised VA

product under a Heston-CIR model. This model is given a full introduction in

Section 8.3. However, for a one year projection of the liabilities under this set-up

there should now be three explanatory variables: F1, r1 and v1, the latter being the

level of the equity variance process at the projection time. This analysis showed

that this additional explanatory variable v1 did not have a very significant effect on

the LSMC regression model which was found and the results were similar to those

given in Section 4.3. Hence, the results will not be reported here.

4.6 Conclusion and further research

Overall, the tests of the LSMC method being applied to the stylised VA product show

the technique is successful in modelling projected insurance liabilities. The guidance

on how best to configure the method, given in Chapter 3, also seems to extend to

the insurance setting, with reasonably accurate LSMC estimates found across the

projected liability distribution. This analysis should interest practitioners who are

looking to apply novel techniques for estimating their projected liability distribution

or calculate a SCR as part of their preparations for the impending the Solvency II

regulatory framework.

To conclude this chapter, some interesting lines of further research related to the

LSMC method will be outlined. The first of these is to consider a larger number

of risk factors and investigate how this affects the accuracy of the LSMC estimates.

In the five year projection there were three influential explanatory variables in the

LSMC regression model, but if a more sophisticated set-up is considered, additional

factors could be included. This could be through extending the modelling to consider

stochastic mortality, incorporating an extra stochastic risk driver in the policyholder

lapsation model or by including some form of credit risk.

Another line of interesting further research is to investigate how appropriate a statis-

tic the Akaike information criterion (AIC) is for selecting the regression model in

the LSMC algorithm. Although the results reported in the thesis appear reasonably

promising, Bauer, Bergmann and Reuss [Bau10] note that the AIC relies on “the
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rather restrictive assumptions of homoscedasticity and/or normally distributed er-

rors” and that “these assumptions are likely to be violated in [a realistic insurance]

setting”. They, instead, suggest using a generalised version of Mallows’ complexity

parameter, as originally proposed by Baek, Karaman, and Ahn [Bae05]. Under this

approach the data is divided into smaller groups such that homoscedasticity can

be assumed within any one group. Then, the variances are estimated within each

group and a generalised version of Mallows’ complexity parameter is derived from

the weighted least-squares estimators which result. It would be interesting to inves-

tigate if such an approach for choosing the form of the regression model will give

more accurate LSMC estimates for the stylised VA product, than those resulting

from a regression model selected by the stepwise AIC algorithm.

The final area of further research which will be discussed is possible approaches for

improving the accuracy of the estimates in the upper percentiles of the projected

liability distribution. One reasonably successful approach found in the thesis is to

sample the fitting scenarios using a quasi-random scheme, but in some circumstances

this can be particularly challenging to implement.

Therefore, it is important to investigate approaches which could improve the fit in

the upper tail of the projected liability distribution, whilst still sampling the outer

fitting scenarios from the assumed real-world distribution. A general method for

achieving this is to sample a larger number of valuation scenarios for the real-world

outer scenarios which will give estimates which are in the upper tail of the liability

distribution at the projection year. Then, the weight given to each outer fitting

scenario in the LSMC regression will be proportional to the number of subsequent

inner valuation scenarios which are performed. Such an approach should lead to

more accurate LSMC projected liability valuations.

There are a few papers which have offered approaches for obtaining more accurate

valuations in the tail of a conditional distribution within a nested simulation set-up.

Broadie, Du and Moallemi [Bro11a] develop an algorithm which can dramatically

improve the accuracy of estimating the probability of incurring a large loss by se-

quentially allocating the inner scenario simulations based on marginal changes to

some risk-measure for each outer scenario. Juneja and Ramprasath [Jun09] also

investigate calculating the probability of a large loss on a portfolio value within

a nested simulation framework. They determine a asymptotically optimal budget
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allocation based on the theory of large deviations to efficiently allocate the compu-

tational budget for such a calculation. Liu, Nelson and Staum [Liu10b] present an

efficient simulation procedure for the point estimation of expected shortfall within a

nested simulation framework. The approach uses ranking and selection to allocate

greater computational resource to estimate the largest losses resulting in improved

accuracy in the estimate of expected shortfall. Finally, Liu and Staum [Liu09] in-

vestigate using stochastic kriging, a technique used in meta-modelling, to improve

the accuracy of estimates of expected shortfall in a nested simulation set-up. This

approach improves accuracy in the valuation of a particular scenario, based on in-

formation from other scenarios which are ‘close’ in risk-driver space, allowing for

greater computational efficiency.

Investigating whether any of these approaches could be successfully incorporated

into the LSMC framework to give more accurate upper tail projected liability val-

uations is a very interesting line of future research. Some recent papers given by

Broadie, Du and Moallemi [Bro11b] and [Bro11c] begin to explore the application

of some of these ideas.
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Part II

Estimating insurance liability sensitivities
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Chapter 5

Heston and SVJD models

In Part I of the thesis the least-squares Monte Carlo simulation technique for esti-

mating the projected value of insurance liabilities was introduced and investigated.

As well as being able to accurately value and project complex insurance liabilities,

many insurance companies wish to employ a hedging strategy to mitigate some of

the risk they are exposed to from offering unit-linked products featuring guarantees

on the market.

In order to construct an effective hedging strategy for an option, one needs to know

the sensitivities of the option value to the key risk-drivers on which this quantity

depends. To hedge some of the risk faced in selling unit-linked insurance products,

practitioners must similarly determine the sensitivity of the liability value to its key

risk-drivers. Investigating approaches for the calculation of these insurance Greeks

is the main purpose of Part II of this thesis. An outline of the structure of the

remainder of the thesis and a review of relevant literature was given in Section 1.1.

We now introduce the equity models which will be assumed in the constructing the

estimators of the liability sensitivities.

5.1 Heston’s Model

With unit-linked insurance products it is imperative that we have a realistic model

for an equity index, as a common feature of these products is their fund’s partic-

ipation in the stock market. One popular choice of model for an equity index is

the standard Black-Scholes model, which offers great tractability and a vast amount

of literature employing this model. Much research, however, indicates that despite

these benefits, this model does not capture the true dynamics of a typical equity

index, such as the FTSE-100. This is especially problematic when considering the

challenge of risk management, as the extreme behaviour of the true index returns

can act very differently to that predicted by the Black-Scholes model, as discussed

and examined by many authors over the years. Indeed Duffie and Pan [Duff97]

argue that “many markets return shocks have fatter than normal tails measured ei-
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ther by kurtosis or tail critical values at typical confidence levels” and they provide

evidence for this fact using the S&P 500 index. Therefore, in the interests of sound

risk management one must employ a model of equity dynamics which captures the

extremal behaviour of the distribution of returns much more realistically than the

Black-Scholes model. While there are various adaptions which can help model these

“fatter than normal tails”, there are two commonly used approaches which allow

some of the structure and tractability of the Black-Scholes model to be kept. These

two approaches will be introduced in this section, together with a model which com-

bines them both together to provide a realistic model for describing equity index

dynamics.

The first of the two approaches for increasing the probability of extreme returns

relative to the Black-Scholes model is to introduce stochastic volatility (SV). This

is where the volatility of the asset is assumed to vary randomly in time according

to some prescribed model, rather than remain constant as it does under the Black-

Scholes model. Thus, under a SV model we now have a stochastic process describing

the behaviour of the volatility (or equivalently, the variance) in time, as well as one

describing the behaviour of the asset price. We now introduce an example of a

model which introduces SV, yet retains much of the analytical tractability of the

Black-Scholes model. Indeed, in Chapter 6 we derive an analytical formulae for the

European option price and delta and gamma sensitivities under this model.

The Heston stochastic volatility model [Hes93] is defined by the coupled two-dimensional

stochastic differential equation (SDE): dSt = rStdt+
√
vtStdW

S
t

dvt = κ(θ − vt)dt+ σv
√
vtdW

v
t ,

(5.1)

where κ > 0 represents the mean reversion speed, θ > 0 denotes the mean reversion

level and σv > 0 is the volatility of the variance process. The Brownian motions

for the asset and volatility processes have correlation ρ, or, dW S
t dW

v
t = ρdt. The

stochastic process St represents the prices of an equity asset or index in time and

vt models the instantaneous variance of relative changes to St. The dynamics of

the variance under the Heston model are the same as the dynamics of interest rates

under the famous Cox-Ingersoll-Ross (CIR) model [Cox85], thus we may equally

appeal to any literature and results which exist for this model.
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One well known result for the Heston model (see for example [And07]) which will

be insightful for much of the analysis which follows in this chapter is given in the

following proposition:

Proposition 5.1. Assume that v0 > 0. If 2κθ ≥ σ2
v then the process for v is such

that v > 0 almost surely. If 2κθ < σ2
v, then the origin is accessible and strongly

reflecting.

Proof. See Cairns [Cai04] for a proof in the context of the CIR model.

When calibrating a Heston model to market data it is common for 2κθ to take a

value significantly below σ2
v . Thus, the likelihood of the variance hitting zero is often

quite high and the process for v can have a strong affinity for the region around zero.

A plot of the Cumulative Distribution Function (CDF) for v, with the parameters

the same as those used by Andersen [And07] for a similar plot, demonstrates this

affinity to the area close to the origin. This is shown in Figure 5.1. This affinity for

the region around zero produces some complications when discretising the variance

process. This will be discussed more in Section 5.3.
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Figure 5.1: The theoretical cumulative distribution function for vT given v0, which is
given by a non-central chi-squared distribution, as described in the main body of the
report. Here T = 0.1,v0 = θ = 4%, κ = 0.5 and ε = 1. This gives an appreciation of
the affinity the variance process has with the region around zero.
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5.2 Stochastic volatility jump diffusion (SVJD) model

The second approach which is often used to increase the thickness of a tail of the

distribution of equity returns is to incorporate jumps into the stochastic process

governing these returns. One simple model which does this is the Merton Jump

Diffusion model introduced in 1975 [Mer76]. In recent years many researchers have

investigated using pure-jump Levy processes as a more sophisticated model of the

jumps found in market equity indices. See Glasserman [Gla03] for more details.

In this report we will use the Merton model, but not in isolation. Instead we will

discuss a model incorporating the jump component of Merton’s model together with

the stochastic volatility dynamics of the Heston model, introduced in the previous

section. We will refer to this model as the stochastic volatility jump diffusion (SVJD)

model, although it is sometimes denoted the Bates model after one of the first

researchers to propose it [Bat96].

Under the risk-neutral measure the SVJD model is defined by the following coupled

system of SDEs: dSt = (r − λµ̄)Stdt+
√
vtStdW

S
t + St(J

S − 1)dNt

dvt = κ(θ − vt)dt+ σv
√
vtdW

v
t .

(5.2)

Here Nt denotes a Poisson process independent of W s
t and W v

t with constant inten-

sity λ dictating when in time these discontinuous jumps in the equity return process

occur and Js is the relative size of this jump, that is St+ = JsSt− when a jump

occurs. This jump size Js takes a lognormal distribution with mean logarithmic

jump size µs and variance σ2
s . The parameter µ̄ = exp (µs + 1

2
σ2
s)− 1 then gives the

mean jump size of the asset, for example µ̄ = −0.25 would represent a fall in equity

price of 25% on average, as a result of a jump. Again, the Brownian motions for the

asset and volatility processes are assumed to have correlation ρ. By setting σv = 0

and θ = v0, the original Merton Jump Diffusion model is recovered.

Incorporating both discontinuous jumps and a stochastic process for the volatility

in the Black-Scholes model will give a much more realistic depiction of the equity

asset returns, particularly in the extremities of the distribution. For a more detailed

discussion of this, see, for example, Duffie and Pan [Duff97].

127



5.3 Simulating from Heston’s model

In Chapter 6 we will show how an analytical value can be found for a European

option and simple unit-linked insurance liability under the Heston model (and also

under the SVJD model). However, for all but simple insurance liabilities such an-

alytical formulae are not available and some numerical technique is required for

valuation. In this section, we turn our attention to the problem of simulating the

returns from the Heston and SVJD models. As the jump component of the SVJD

model is independent of the variance process, this can be simulated in isolation (and

without bias) from the Poisson distribution (for the occurrences of the jumps) and

the lognormal distribution (for each of these jump’s size). Therefore, in the follow-

ing analysis we will discuss some methods for simulating from the Heston model,

but by simply appending an independent jump process the SVJD model can also be

simulated by all these approaches. We also note that the CIR interest rate model

takes exactly the same form as the Heston model, thus it can be discretised by all

of the same methods which apply to the Heston model. This is an important point

with regard to the analysis using the Heston-CIR model in Chapter 8.

5.3.1 Full truncation Euler scheme

Perhaps the simplest scheme one could attempt to use to simulate a trajectory of the

Heston variance process would be a simple forward difference, or Euler, discretisation

scheme. This would express the variance, Vt, and the logarithm of the equity price,

Xt = lnSt, at discrete points in time as

X̂t+∆t = X̂t + (r − 1

2
v̂t)∆t+

√
v̂tZX

√
∆t (5.3)

v̂t+∆t = v̂t + κ(θ − v̂t)∆t+ σv
√
v̂tZv
√

∆t, (5.4)

with ZX and Zv standard random normal variates with correlation ρ. This can be

achieved by setting Zv as a generated standard random normal variate, then setting

ZX = ρZv +
√

1− ρ2ZI , where ZI is a standard random normal variate independent

of Zv. Clearly this scheme can take values below zero with non-zero probability and

thus would fail when attempting to calculate
√
v̂t in the discretisation of X̂t+∆t. A

number of possible ways to fix this problem have been proposed, including using
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absolute value or absorption functions

|y| =

 −y if y < 0

y if y ≥ 0
or y+ = max(y, 0). (5.5)

Lord et al. [Lor08] compare some of these basic remedies and find the one which

results in the least discretisation bias is the following scheme, which they call the

Full Truncation Euler:

X̂t+∆t = X̂t + (r − 1

2
v̂+
t )∆t+

√
v̂+
t ZX
√

∆t (5.6)

v̂t+∆t = v̂t + κ(θ − v̂+
t )∆t+ σv

√
v̂+
t Zv
√

∆t. (5.7)

Under this approach, if the process for v falls below zero, then the stochastic process

will change to become deterministic with upward drift of κθ, until the variance

becomes non-negative. Naturally, whenever we use values from the variance process

discretisation within the asset price process discretisation, those values must be

truncated to be non-negative. This is the purpose of the maximum functions in

Equation 5.6 above.

5.3.2 Andersen moment-matching approach

A slightly more sophisticated discretisation scheme proposed by Andersen [And07]

samples the variance values from a distribution which is a superposition of two

distinct distributions; one for when the previous timestep variance values are small

and a different one when they are large. Andersen proposes two different versions

of these composition of distributions to model the Heston variance process. The

exact nature of these two moment-matching approaches will be made clear in the

remainder of this section, however we note that Andersen gives evidence to suggest

that using either of his two proposed methods can significantly reduce the bias in

option price estimates when the underlying asset follows a Heston model, compared

with using the Full Truncation Euler scheme.

To explain why the sampling approaches introduced by Andersen can provide less

bias in simulating paths of the Heston variance process, we use the following propo-

sition and corollary from Andersen [And07]:
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Proposition 5.2. Let Fχ′2(y; ν, λ) be the cumulative distribution function for the

non-central chi-square distribution with ν degrees of freedom and non-centrality pa-

rameter λ, i.e.,

Fχ′2(z; ν, λ) = e−
λ
2

∞∑
j=0

(λ/2)j

j!2ν/2+jΓ(ν/2 + j)

∫ z

0

zν/2+j−1e−x/2dx. (5.8)

For the Heston variance process define

d =
4κθ

σ2
v

and n(t, T ) =
4κe−κ(T−t)

σ2
v(1− e−κ(T−t))

, for T > t. (5.9)

Conditional on vt, vT is distributed as e−κ(T−t)/n(t, T ) times a non-central chi-square

distribution with d degrees of freedom and non-centrality parameter vt · n(t, T ), i.e.,

P(vT < x|vt) = Fχ′2

(
x · n(t, T )

e−κ(T−t) ; d, vt · n(t, T )

)
. (5.10)

Corollary 5.3. Conditional on vt, vT has the following first two moments:

E[vT |vt] = θ + (vt − θ)e−κ(T−t) (5.11)

Var[vT |vt] =
vtσ

2
ve
−κ(T−t)

κ

(
1− e−κ(T−t)

)
+
θσ2

v

2κ

(
1− e−κ(T−t)

)2

. (5.12)

Proof. For a proof of Proposition 5.2 see, for example, Cairns [Cai04] (proof given

in the context of the CIR interest rate model).

Thus, conditionally on the previous timestep variance value, the Heston variance pro-

cess is described by a non-central chi-squared distribution, with parameters which

can be easily determined. It is this exact distribution for the variance that Ander-

sen uses as guidance in developing a more sophisticated discretisation scheme. As

the non-centrality parameter tends to infinity, it is known that the non-central chi-

square distribution approaches a Gaussian, see, for example, Johnson et al. [Joh95].

Therefore, it would seem that for sufficiently large values of vt, a good approximation

for vt+∆t would be a Gaussian random variable, with first two moments matched to

those of the exact non-central chi square distribution, which are given explicitly in

Corollary 5.3. For small values of vt however, the non-centrality parameter tends to

zero and the distribution of vt+∆t approaches that of a (central) chi-square distribu-

tion with d = 4κθ
σ2
v

degrees of freedom, where the density of a chi-square distribution

130



with ν degrees of freedom is given by

fχ2(x; ν) =
1

2ν/2Γ(ν/2)
e−x/2x

ν
2
−1. (5.13)

In practice d can be significantly less than 2 and in these cases the xν/2−1 term

implies that for small values of vt the density of vt+∆t will be very large around

zero. See Figure 5.1 for graphical evidence of this fact. It is fairly clear from

this analysis that approximating vt+∆t with a moment-matched Gaussian random

variable will not be very accurate when vt is near zero. Finding a discretisation

scheme which overcomes this problem for low values of variance is the motivation

behind Andersen’s two proposed methods.

Andersen’s Truncated Gaussian Scheme

The first of Andersen’s two proposed sampling schemes for the Heston model is

the truncated Gaussian (TG) method. Under the TG method we sample from a

moment-matched Gaussian distribution, but all the probability mass below zero is

added as a Delta function at the origin. For large values of vt it is unlikely that

vt+∆t will reach zero and the scheme will take a value from a moment-matched

Gaussian distribution. Whereas, for small values of vt the scheme will approximate

the central chi-square density by a point mass at zero combined with an upper tail

density which is proportional to e−x
2/2. That is, the TG scheme will determine the

variance at time t+ ∆t as

v̂t+∆t = (µ+ σ · Zv)+, (5.14)

where Zv is a standard Gaussian random variable and µ and σ are constants that

will depend on the size of the timestep ∆t, the value of v̂t and the parameters κ, θ

and σv from the Heston model.

We will not state explicitly how to calculate µ and σ here, as Andersen states

that the alternative quadratic exponential scheme, which will be introduced next, is

generally more accurate than the TG scheme, without adding extra complexity or

requiring much greater computation time. Thus we shall just proceed to give a full

description of this alternative method instead.
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Andersen’s Quadratic Exponential Scheme

The upper tail density for v̂t+∆t is modelled as being proportional to e−x
2/2 under

the TG scheme. For small values of v̂t, however, this decay is too fast. To address

this problem Andersen introduced a modified version of the TG scheme which he

denotes the quadratic exponential (QE) discretisation scheme. This method will

now be introduced.

Firstly we note that a non-central chi-square distribution with moderate or large

non-centrality parameter can be well approximated by a power transformation of a

Gaussian distribution. See, for example, Patnaik [Pat49]. Thus, in the QE method,

for sufficiently large values of v̂t we set

v̂t+∆t = a(b+ Zv)
2, (5.15)

where Zv is a standard Gaussian random variable and a and b are constants that will

depend on ∆t, v̂t and the three parameters from the Heston variance process. The

scheme given by Equation 5.15 does not work well for small values of v̂t, thus it is used

in combination with a scheme for low values of v̂t. This low volatility regime scheme

is based on the asymptotic approximation of the non-central chi-square density given

in Equation 5.13. For this scheme a point mass at the origin is combined with an

exponential tail similar to that found in this asymptotic approximation. Formally,

the following approximate density for v̂t+∆t is used:

P(v̂t+∆t ∈ [x, x+ dx]) ≈
(
pδ(0) + β(1− p)e−βx

)
dx, x ≥ 0, (5.16)

where δ is the Dirac delta-function and p and β are constants which are to be

determined. This implementation of a point probability mass at the origin is similar

to the TG scheme, except the size of this mass, p, is now explicitly defined, rather

than implied by other parameters. Some basic analysis shows that if p ∈ [0, 1]

and β ≥ 0, then Equation 5.16 defines a valid probability density function. If we

integrate this density function, then we obtain the cumulative distribution function

for the low variance regime as

Ω(x) = P(v̂t+∆t ≤ x) = p+ (1− p)
(
1− e−βx

)
, x ≥ 0. (5.17)
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Computing the inverse of Ω,

Ω−1(u; p, β) =

 0 if 0 ≤ u ≤ p

β−1 ln
(

1−p
1−u

)
if p < u ≤ 1,

(5.18)

and using the inversion method gives us a simple sampling scheme for v̂t+∆t as

v̂t+∆t = Ω−1(Uv; p, β), (5.19)

where Uv is a sample from a standard uniform distribution. Thus, Equations 5.15

and 5.19 define the QE discretisation scheme for large and small v̂t respectively.

All that remains is to determine how to calculate the constants a, b, p and β and

how to define the rule for dictating whether we are in the low- or high-volatility

regime. The following two Propositions gives a means for calculating the values of

a, b, p and β.

Proposition 5.4. Let m = E[vt+∆t|vt] and s2 = Var[vt+∆t|vt] using the definitions

of these moments given in Corollary 5.3 and set Ψ = s2/m2. Provided that Ψ ≤ 2,

set

b2 = 2Ψ−1 − 1 +
√

2Ψ−1
√

2Ψ−1 − 1 ≥ 0 (5.20)

a =
m

1 + b2
. (5.21)

Let v̂t+∆t be given by Equation 5.15. Then E
[
v̂t+∆t

]
= m and Var

[
v̂t+∆t

]
= s2.

Proof. See Andersen [And07].

Proposition 5.5. Let m, s and Ψ be as defined in Proposition 5.4. Assume that

Ψ ≥ 1 and set

p =
Ψ− 1

Ψ + 1
∈ [0, 1) (5.22)

β =
1− p
m

=
2

m(Ψ + 1)
> 0. (5.23)

Let v̂t+∆t be given by Equation 5.19. Then E
[
v̂t+∆t

]
= m and Var

[
v̂t+∆t

]
= s2.

Proof. See Andersen [And07].
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In Proposition 5.4 the quadratic sampling scheme can only be moment-matched for

Ψ ≤ 2, whereas in Proposition 5.5 the exponential scheme can only be moment-

matched for Ψ ≥ 1. These domains of applicability overlap and this implies that we

should choose some fixed critical level Ψc ∈ [1, 2] ahead of using the QE discretisation

scheme. Then, in the QE scheme, we use Equation 5.15 if Ψ ≤ Ψc, and Equation

5.19 otherwise. Thus, the domains of applicability for Propositions 5.4 and 5.5 in

effect give us a rule dictating whether we are in the low- or high-volatility regime in

the QE method. In the interval where the domains overlap we must make a choice

where to demarcate the variance into a low and high regime. Andersen states that

the exact choice of Ψc ∈ [1, 2] does not have a significant effect on the success of the

discretisation scheme and the value Ψc = 1.5 is perfectly adequate. A summary of

this scheme is now given:

Summary of the quadratic exponential discretisation scheme:

1. Given v̂t, set m = E[vt+∆t|vt] and s2 = Var[vt+∆t|vt] using Corollary 5.3.

2. Compute Ψ = s2/m2.

3. Generate a uniform random variate, Uv.

4. If Ψ ≤ Ψc:

(a) Compute a and b as defined in Proposition 5.4.

(b) Calculate Zv = Φ−1(Uv), where Φ−1(·) represents the inverse of the cu-

mulative standard normal distribution function.

(c) Set v̂t+∆t = a(b+ Zv)
2

5. If Ψ > Ψc:

(a) Compute β and p as defined in Proposition 5.5.

(b) Set v̂t+∆t = Ω−1(Uv; p, β), with Ω−1 given by Equation 5.18.

Andersen then proposes a discretisation scheme for lnSt+∆t based on the exact

integral representation

lnSt+∆t = lnSt + r∆t+
ρ

ε
(vt+∆t − vt − κθ∆t)

+

(
κρ

ε
− 1

2

)∫ t+∆t

t

vudu+
√

1− ρ2

∫ t+∆t

t

√
vudWu. (5.24)
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To use this result in the discretisation of lnSt+∆t, we use the approximation

∫ t+∆t

t

vudu ≈ ∆t(γ1vt + γ2vt+∆t), (5.25)

where γ1 and γ2 are constants. Using γ1 = 1 and γ2 = 0 would give an Euler-like

approximation to this integral, whereas setting γ1 = 0.5 and γ2 = 0.5 would employ

a central discretisation.

As the Brownian motion W is independent of v, conditional on vt and
∫ t+∆t

t
vudu,

the value of the integral ∫ t+∆t

t

√
vudWu (5.26)

is just a normal random variable with mean zero and variance
∫ t+∆t

t
vudu.

Putting all this together, Andersen proposes to discretise lnSt+∆t using

ln Ŝt+∆t = ln Ŝt +K0 +K1v̂t +K2v̂t+∆t +
√
K3v̂t +K4v̂t+∆t · Z, (5.27)

where Z is a standard normal random variate, independent of v̂, and the Ki are

given by

K0 =

(
r − ρκθ

ε

)
∆t (5.28)

K1 = γ1∆t

(
κρ

ε
− 1

2

)
− ρ

ε
(5.29)

K2 = γ2∆t

(
κρ

ε
− 1

2

)
+
ρ

ε
(5.30)

K3 = γ1∆t(1− ρ2) (5.31)

K4 = γ2∆t(1− ρ2). (5.32)

Andersen argues that the QE method is almost always preferable out of the two

methods proposed in [And07]. Therefore, whenever the Andersen method is referred

to in later parts of this thesis, such discussion will assume this version of the method.

In fact the Andersen QE method is the discretisation scheme which is used for all

the analysis throughout this thesis which required simulating paths from the Heston

and CIR models.
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5.3.3 Other possible simulation schemes

There are various other discretisation schemes in the literature and we pause briefly

to mention a few of these. Perhaps the most important of these alternative schemes

is that of Broadie and Kaya [Bro04]. Although the Andersen quadratic exponential

method may reduce the discretisation bias significantly compared to other simple

discretisation schemes, it will not eliminate bias completely from estimates of op-

tion prices under the Heston equity model. The Broadie and Kaya scheme, however,

allows sampling from the Heston (and also the SVJD) model equity prices process

without incorporating any discretisation bias whatsoever. It proceeds by sampling

directly from the known distribution for the Heston variance process, given in Propo-

sition 5.2, and then uses Fourier inversion techniques to obtain an unbiased sample

from the equity price process using the sampled realisation of the variance process.

There are various other discretisation schemes for the Heston model, which similarly

to the Andersen model, give some bias in the samples. The Kahl-Jäckel discreti-

sation scheme [Kah05a] is similar to the Euler scheme, except they use an implicit

Milstein scheme for the square-root diffusion of the variance process, together with

a particular discretisation for the asset price process. Another discretisation scheme

for the Heston model that shall be briefly discussed is that proposed by Zhu [Zhu08].

Under this scheme rather than attempting to discretise the mean reverting square

root variance process, Zhu proposes an approach to simulate from the discretised

transformed volatility process. This new Ornstein-Uhlenbeck has the benefit of not

having any square root term. A fourth alternative discretisation scheme which we

shall mention is that recently proposed by Halley, Malham and Wiese [Hal09]. They

discuss sampling from the non-central chi-squared transition density by simulating

Poisson distributed sums of powers of generalised Gaussian random variables. These

generalised Gaussian random variables can be simulated efficiently using an exten-

sion of Marsaglia’s polar method for generating pairs of random normal variables.

Halley, Malham and Wiese argue that it provides a good alternative to Andersen’s

approach, with almost similar speeds, yet simulating exactly from the transition

density, rather than through an approximation as in Andersen. Finally, Glasserman

and Kim [Gla09] have proposed a method to circumvent the most time-consuming

step in the Broadie-Kaya approach. They derive an explicit representation of the
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transitions of the Heston model and use this result to give a fast and accurate simu-

lation scheme. The integral of the variance process over an interval, conditional on

the value of the variance at the end-points, is found in terms of infinite sums and

mixtures of gamma random variables, with the increments of the variance process

themselves given as mixtures gamma random variables. Glasserman and Kim show

that using this expansion, together with the Broadie-Kaya method, allows exact

sampling from the transitions of the Heston model. The analysis presented in the

subsequent chapters of this thesis is independent of the specific choice of discretisa-

tion scheme.
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Chapter 6

Semi-analytical liability values under the Heston model

In this chapter a detailed description of how a semi-analytical formula can be de-

veloped for the price of a European option under the Heston model will be given.

This analysis will then be extended to value simple unit-linked insurance liabilities.

Furthermore, in Chapter 7 we refer to analytical option prices under the Heston

model in testing the conditional likelihood ratio method. Therefore, it is important

to make clear precisely how such pricing formulae can be derived. Finding such for-

mulae involves quite a few mathematical definitions and arguments, thus these will

be constructed from first principles over the first couple of sections of this chapter.

This will expand on the treatment given by Gatheral [Gat06] and provide a more

detailed explanation of each of the steps in the derivation. Also, some typograph-

ical and minor theoretical errors which are present in Gatheral’s textbook will be

corrected. To begin this chapter, we show how the Fourier transform can be used

to give a general option pricing formula, which is independent of the equity model.

6.1 Fourier transform pricing

The aim of this section is to show how the Fourier transform can be used in pricing

European options. This analysis holds under a general stochastic equity model,

whether it be the Black-Scholes model or a more advanced stochastic volatility

model. In order to derive this Fourier transform-based option pricing formula, some

key definitions and results are needed. These will also be useful in Section 6.2,

so we will state them explicitly here for clarity of exposition. These definitions

can be found in many textbooks on partial differential equations and digital signal

processing. They are also given in the paper by Matsuda [Mat04].

The first definition that we recall is that of the characteristic function. Given a

random variable X with probability density function (pdf) f(x), the characteristic

function, φ(ω) is given by

φ(ω) = E[eiωX ] =

∫ ∞
−∞

eiωxf(x)dx. (6.1)
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The Fourier transform of the random variable X has an almost equivalent definition

to the characteristic function. The only difference is the sign of the exponent in the

expectation. In full, the Fourier transform of the random variable X is

F(ω) = E[e−iωX ] =

∫ ∞
−∞

e−iωxf(x)dx. (6.2)

The pdf of the random variable X can be recovered from the Fourier transform using

the inverse Fourier transform formula:

f(x) =
1

2π

∫ ∞
−∞

eiωxF(ω)dω. (6.3)

These are the main definitions which we will make use of throughout this chapter.

It should be noted that there are alternative definitions of Fourier transform and

inverse transform that are often used in the literature. Some of the results that

follow in this section can appear different under these alternative definitions.

It is now useful to state a couple of key results which will also be needed later.

Firstly, we give some general results for taking the Fourier transform of some partial

derivatives of a function f(t, x), where the Fourier transform is a mapping F :

(t, x) 7→ (t, ω):

F
(
∂f(t, x)

∂t

)
=

∂

∂t
F(f(t, x)) (6.4)

F
(
∂f(t, x)

∂x

)
= iωF(f(t, x)) (6.5)

F
(
∂2f(t, x)

∂x2

)
= −ω2F(f(t, x)). (6.6)

Proof. Equation 6.4 just follows from the definition of the Fourier transform and

exchanging the order of differentiation and integration. Differentiating the inverse

Fourier transform, Equation 6.3, and bringing the derivative inside the integral

gives ∂f
∂x

= 1
2π

∫∞
−∞ iωF(ω)dω. Applying the Fourier transform to both sides of this

equation gives us Equation 6.5. Equation 6.6 can be found similarly.
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Next, let us define the Heaviside step function,

θ(x− x0) =

 1 if x > x0

0 if x ≤ x0.
(6.7)

The derivative of the Heaviside step function is given by the Dirac delta function,

δ(x− x0). We can think of this function as being zero everywhere except at x = x0,

where there is a ‘spike’. Furthermore, if we integrate the Dirac delta function from

x = −∞ to x = ∞, we get unity. This means the spike at x = x0 must be infinite

in magnitude. We will consider an alternative definition of the Dirac delta function:

δ(x− x0) =
1

2π

∫ ∞
−∞

eiω(x−x0)dω. (6.8)

See Matsuda [Mat04] for a proof (based upon an argument in Carr [Car]) that this

is indeed an identity for the Dirac delta function.

With these definitions made, we can now give a couple of important results which

will be of use throughout this and the next section:

Firstly, the Fourier transform of the Heaviside step function is given by

Fθ(ω) =
1

iω
+ πδ(ω). (6.9)

For a proof of this formula refer to James [Jam11].

The second useful result is often referred to as Parseval’s identity. It states that

∫ ∞
−∞

f(x)g(x)dx =
1

2π

∫ ∞
−∞
F(−ω)G(ω)dω, (6.10)

where F(ω) and G(ω) are the Fourier transforms of the random variables with

densities f(x) and g(x), respectively. A short proof of this result will now be given.
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Proof. The following argument follows the proof given in Matsuda [Mat04]:

∫ ∞
−∞

f(x)g(x)dx =

∫ ∞
−∞

(
1

2π

∫ ∞
−∞

eiαxF(α)dα

)(
1

2π

∫ ∞
−∞

eiηxG(η)dη

)
dx

=

(
1

2π

)2 ∫ ∞
−∞

(∫ ∞
−∞

e−iωxF(−ω)dω

)(∫ ∞
−∞

eiηxG(η)dη

)
dx

=
1

2π

∫ ∞
−∞
F(−ω)

∫ ∞
−∞
G(η)

(
1

2π

∫ ∞
−∞

ei(η−ω)xdx

)
dηdω

=
1

2π

∫ ∞
−∞
F(−ω)

1

2π

∫ ∞
−∞

(
G(η)δ(η − ω)

)
dηdω

=
1

2π

∫ ∞
−∞
F(−ω)G(ω)dω. (6.11)

In the first line above we have made use of the inverse Fourier transform, Equation

6.3, and in the second line we have changed variable. In the third line the order of

integration has been changed and in the fourth line we have invoked our definition

of the Dirac delta function, given in Equation 6.8. In the final line we make use of

the standard ‘sifting’ property of the Dirac delta function.

This brings us to the key result of this section. It has appeared previously in the

literature, for example in Carr and Madan [Car99]:

Proposition 6.1. The expectation of the payoff function under any model for equity

returns (whether incorporating stochastic volatility or not) can be expressed as:

E[max(ST −K, 0)] =
1

2
(F −K) +

1

π

∫ ∞
0

(F · f1 −K · f0)dω, (6.12)

where

f1 = Re

(
e−iω ln(K)

iωF
φX(ω − i)

)
, f0 = Re

(
e−iω ln(K)

iω
φX(ω)

)
(6.13)

and F = E[ST ] is the forward price of the underlying and Re(z) denotes the real

part of the complex number z.

Proof. This expectation is given in terms of an integral by

E[max(ST −K, 0)] =

∫ ∞
0

max(x−K, 0)fST (x)dx, (6.14)

where fST (x) is the pdf of the equity returns ST . If we make the change of variable
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y = ln(x/K) and define gY (y) := fST (x(y))dx(y)
dy

, then this expectation can be

written as

E[max(ST −K, 0)] =

∫ ∞
−∞

max(Key −K, 0)fST (x)
dx(y)

dy
dy

= K

∫ ∞
−∞

max(ey − 1, 0)gY (y)dy

= K

∫ ∞
−∞

(ey − 1)θ(y)gY (y)dy

= K

(∫ ∞
−∞

eyθ(y)gY (y)dy −
∫ ∞
−∞

θ(y)gY (y)dy

)
, (6.15)

where θ(y) is the Heaviside step function, given in Equation 6.7.

Let us consider the second integral from above first. This integral can be represented

as

∫ ∞
−∞

gY (y)θ(y)dy =
1

2π

∫ ∞
∞
GY (−ω)Fθ(ω)dω

=
1

2π

∫ ∞
−∞

φY (ω)

(
1

iω
+ πδ(ω)

)
dω

=
1

2

∫ ∞
−∞

φY (ω)δ(ω)dω +
1

2π

∫ ∞
−∞

φY (ω)

iω
dω

=
1

2
+

1

2π

∫ ∞
0

(
φY (ω)

iω
+
φY (−ω)

−iω

)
dω

=
1

2
+

1

π

∫ ∞
0

Re

(
φY (ω)

iω

)
dω. (6.16)

The steps of this calculation would benefit from some clarification: In the first line

here we have made use of Parserval’s identity, Equation 6.10. In the second line we

have used the fact that changing the sign of the argument of a Fourier transform

gives the characteristic function and we have also used the formula for the Fourier

transform of the Heaviside step function, which was given in Equation 6.9. In the

fourth line, we have applied the sifting property of the Dirac delta function which,

together with the fact that φY (0) = 1, gives the first integral as 1/2. For the second

integral in the fourth line, we have just applied some simple algebraic manipulation.

In the final line above, we have used the fact that for any complex number z, we

have z+ z̄ = 2Re(z), where z̄ denotes the complex conjugate of z and Re(z) denotes

the real part of z.
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The second integral in the formula for E[max(ST −K, 0)] can be manipulated simi-

larly:

∫ ∞
−∞

eygY (y)θ(y)dy =
1

2π

∫ ∞
−∞

φY (ω − i)
(

1

iω
+ πδ(ω)

)
dω

=
1

2

∫ ∞
−∞

φY (ω − i)δ(ω)dω +
1

2π

∫ ∞
−∞

φY (ω − i)
iω

dω

=
F
K

2
+

1

π

∫ ∞
0

Re

(
φY (ω − i)

iω

)
dω. (6.17)

In the first line above we have used

∫ ∞
−∞

eiωy(eygY (ω))dω =

∫ ∞
−∞

ey+iωygY (y)dy =

∫ ∞
−∞

ei(ω−i)ygY (y)dy = φY (ω − i).

(6.18)

Also, in the first integral in the third line we have used the sifting property of the

delta-Dirac function and the fact that φY (−i) = E[eY ] = E[ST
K

] = F
K

.

If we let XT = ln(ST ), then

φY (ω) = e−iω ln(K)φX(ω − i) and φY (ω − i) =
e−iω ln(K)

K
φX(ω − i). (6.19)

Substituting everything back into Equation 6.15 yields the formula for the expected

payoff given in Proposition 6.1.

6.2 Heston valuation equation

In this section we will now proceed to derive the semi-analytical formula for the

price of a European option under the Heston model. The method we will use to find

such a formula will involve solving a partial differential equation governing the value

of the option under the Heston model dynamics for the underlying asset. The first

stage in this process is therefore deriving this partial differential equation for the

option value. This equation will then be solved to find the semi-analytical formula

for the price in Section 6.2.2.
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6.2.1 The valuation equation under stochastic volatility

The partial differential equation (pde) which the option value must satisfy under

a general stochastic volatility model for the underlying equity returns will now be

derived. This general model includes the Heston model as a special case and we will

make use of this pde when we derive a semi-analytical price for a European option

under the Heston model dynamics in Section 6.2.2. The following analysis closely

follows that of Gatheral [Gat06], which in turn is based on Wilmott [Wil00].

Proposition 6.2. Under the general stochastic volatility model given by the follow-

ing stochastic processes dSt = µtStdt+
√
vtStdW

S
t

dvt = α(St, vt, t)dt+ ηβ(St, vt, t)
√
vtdW

v
t ,

(6.20)

where W S
t and W v

t have correlation ρ, an option with value V (t, St, vt) must satisfy

the following valuation pde:

∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v +

∂2V

∂S∂v
ηβSvρ+ rS

∂V

∂S
− rV = −(α− φβη

√
v)
∂V

∂v
.

(6.21)

In the above pde φ is the market price of volatility risk, which gives the extra

expected return on the asset for each extra unit of volatility risk borne. This will be

explained in more detail shortly. A full proof of Proposition 6.2 will now be given.

Proof. Following Gatheral, firstly let V (t, St, vt) denote the value of some option

under the stochastic equity model described in Equation 6.20. By applying the two-

dimensional form of Itô’s lemma, the instantaneous change in value of the option

can be represented by the following stochastic process:

dV =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂v
dv +

1

2

(
∂2V

∂S2
dS2 +

∂2V

∂v2
dv2 + 2

∂2V

∂S∂v
dSdv

)
=
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂v
dv +

1

2

(
∂2V

∂S2
vS2 +

∂2V

∂v2
η2β2v + 2

∂2V

∂S∂v
ηβSvρ

)
dt

=
∂V

∂S
dS +

∂V

∂v
dv +

(
∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v +

∂2V

∂S∂v
ηβSvρ

)
dt.

(6.22)

144



Now, in order to find the price of an option, we aim to construct a replicating

portfolio which perfectly hedges changes in the option value over an instantaneous

timestep. Under the Black-Scholes model this (theoretical) continuous-time hedging

can be achieved by just investing in the underlying stock. However, under the

stochastic volatility model of Equation 6.20 random changes in the volatility must

also be hedged. Thus, the risk-less portfolio in this case will contain the option which

we we are interested in pricing, some holding, −∆ units say, in the underlying equity

asset and now also some holding, −∆1 units say, in another asset with value V1 which

is dependent on the volatility of the equity asset. By a negative holding in an asset

we mean we hold a short position of this number of units in that asset. Here we are

both ‘delta hedging’ the equity risk factor by investing in the underlying asset and

‘vega hedging’ the volatility risk by investing in the asset with value V1. The value

of this portfolio is given by

Π = V −∆S −∆1V1, (6.23)

where we have stopped explicitly denoting the dependence on t, St and vt in the

notation to keep the forthcoming analysis easy to follow. Using the two-dimensional

form of Itô’s lemma, the instantaneous change in the value of this portfolio can be

given by

dΠ = dV −∆dS −∆1dV1

=

(
∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v +

∂2V

∂S∂v
ηβSvρ

)
dt

−∆1

(
∂V1

∂t
+

1

2

∂2V1

∂S2
vS2 +

1

2

∂2V1

∂v2
η2β2v +

∂2V1

∂S∂v
ηβSvρ

)
dt (6.24)

+

(
∂V

∂S
−∆1

∂V1

∂S
−∆

)
dS +

(
∂V

∂v
−∆1

∂V1

∂v

)
.

Now, this portfolio must be instantaneously risk-free, thus the coefficients before the

dS and dv here must be set equal to zero. This gives the following two pde’s which

must hold:

∂V

∂S
−∆1

∂V1

∂S
−∆ = 0, (6.25)

∂V

∂v
−∆1

∂V1

∂v
= 0. (6.26)
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The conditions in Equations 6.25 and 6.26 ensure the portfolio Π will now grow de-

terministically over an instantaneous timestep. In order to avoid creating arbitrage

opportunities, this deterministic growth must be at the same rate of return, r, as

some risk-free reference asset. Thus, in order to avoid arbitrage, the following pde

must hold:(
∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v +

∂2V

∂S∂v
ηβSvρ

)
dt

−∆1

(
∂V1

∂t
+

1

2

∂2V1

∂S2
vS2 +

1

2

∂2V1

∂v2
η2β2v +

∂2V1

∂S∂v
ηβSvρ

)
dt = rΠdt.

(6.27)

The right-hand side of this equation can be expanded as

rΠdt = r(V −∆S −∆1V1)dt

= rV dt− r
(
∂V

∂S
−∆1

∂V1

∂S

)
Sdt− r∆1V1dt,

(6.28)

where in the first line we have substituted in the definition of Π given in Equation

6.23 and in the second line we have substituted in the expression for ∆ given by

rearranging Equation 6.25. Substituting this expression for rΠdt back into Equation

6.27 and rearranging allows us to express the pde in the form:

∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v +

∂2V

∂S∂v
ηβSvρ+ rS

∂V

∂S
− rV

= ∆1

(
∂V1

∂t
+

1

2

∂2V1

∂S2
vS2 +

1

2

∂2V1

∂v2
η2β2v +

∂2V1

∂S∂v
ηβSvρ+ rS

∂V1

∂S
− rV1

)
.

(6.29)

Now, Equation 6.26 implies that

∆1 =
∂V
∂v
∂V1
∂v

(6.30)

and substituting this expression for ∆1 into Equation 6.29 results in

1
∂V
∂v

(
∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v +

∂2V

∂S∂v
ηβSvρ+ rS

∂V

∂S
− rV

)
=

1
∂V1
∂v

(
∂V1

∂t
+

1

2

∂2V1

∂S2
vS2 +

1

2

∂2V1

∂v2
η2β2v +

∂2V1

∂S∂v
ηβSvρ+ rS

∂V1

∂S
− rV1

)
.

(6.31)

Clearly, the left-hand side of Equation 6.31 is a function of V only, while the right-

hand side is a function involving only V1. For this equality to hold, it must therefore
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be the case that both sides are equal to some function involving only the independent

variables t, S and v. Thus, the value, V , of the option must satisfy the following

pde:

1
∂V
∂v

(
∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v +

∂2V

∂S∂v
ηβSvρ+ rS

∂V

∂S
− rV

)
= f(S, v, t).

(6.32)

Now, without loss of generality the function f(S, v, t) can be expressed as

f(S, v, t) = −
(
α(S, v, t)− φ(S, v, t)β(S, v, t)η(S, v, t)

√
v
)
. (6.33)

We note that this form for f is slightly different to that given in Gatheral. The

reasons for choosing to express this arbitrary function in this form will be discussed

in a moment, along with an explanation of why the form for f given by Gatheral

is incongruent with his subsequent discussion. However, we now complete the proof

of the valuation equation: The value, V , of an option under the general stochastic

volatility model, Equation 6.20, must satisfy the following pde:

∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v +

∂2V

∂S∂v
ηβSvρ+ rS

∂V

∂S
− rV = −(α− φβη

√
v)
∂V

∂v
.

(6.34)

An Aside: The Market Price of the Volatility of Risk

So why do we choose to express the arbitrary function f(S, v, t) in the form of

Equation 6.33? In the next couple of paragraphs we show that choosing this rep-

resentation for f is useful in terms of pricing options using the valuation equation

(which is given for general f by Equation 6.32).

For the moment, let us consider an alternative portfolio. This will consist of the

option which we want to price and −∆ units of the underlying equity asset. In other

words, we are now delta-hedging, but not vega-hedging the option. The value of

this portfolio is given by

Π? = V −∆S. (6.35)

Using Itô’s lemma, the instantaneous change in the value of this portfolio can be
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expressed as

dΠ? =

(
∂V

∂t
+

1

2

∂2V

∂S2
vS2+

1

2

∂2V

∂v2
η2β2v+

∂2V

∂S∂v
ηβSvρ

)
dt+

(
∂V

∂S
−∆

)
dS+

(
∂V

∂v

)
dv.

(6.36)

Of course, under a delta-hedging strategy we choose ∆ = ∂V
∂S

which will eliminate

the risk from the dS term. Then

dΠ? − rΠ?dt =

(
∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
η2β2v

+
∂2V

∂S∂v
ηβSvρ+ rS

∂V

∂S
− rV

)
dt+

(
∂V

∂v

)
dv

= −(α− φβη
√
v)
∂V

∂v
dt+

∂V

∂v

(
αdt+ ηβ

√
vdW v

)
= βη

√
v
∂V

∂v

(
φdt+ dW v

)
, (6.37)

where in going from the first to the second line above we have used Equation 6.21

to replace the terms inside the first bracket and Equation 6.20 to substitute in an

expression for dv.

From Equation 6.37 we can see that for every unit of volatility risk, dW v, that

we take on, we get an extra φ(S, v, t)dt units of expected return. In an analogous

manner to the capital asset pricing model (CAPM), we call the term φ the market

price of volatility risk.

If we define the risk-neutral drift in the general variance process by

α′ = α− βη
√
vφ, (6.38)

then starting with a risk-neutral drift in the variance process of Equation 6.20 would

have given identical results to choosing to set the market price of volatility risk term

to zero. This makes sense as setting the drift as α′ ensures we are in a risk-neutral

world. In Section 6.2.2 we will assume that we are always working under the risk-

neutral measure, as is required in order to price options in a consistent manner in

the market. We will drop the prime on the alpha to explicitly state this fact.

If one is studying the above alongside the derivation given by Gatheral [Gat06] an

important point should be heeded. Gatheral uses f = −(α− φβ
√
v), instead of our

form of f in Equation 6.33. After going through the same calculations to those above,
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he ends up with a similar form to the bottom line of Equation 6.37. Unfortunately, he

has made a mistake in getting to this equation (which is acknowledged in the errata

list for the textbook, which is available online). If one corrects for this error, then

the final form of his equation is not compatible with the discussion which is given

subsequently in his text. Thus, taking into account this error in the calculation, one

must really start with our form of the function f(S, v, t) and not the form given by

Gatheral.

6.2.2 Semi-analytical option price under the Heston model

In this section we will now give a derivation of the semi-analytical formula for the

price of a European call option under the Heston stochastic volatility model. As

there are quite a few steps involved in finding this pricing formula, we will describe

these in the form of a series of propositions. After outlining how the construction of

the pricing formula proceeds, each of these propositions will then be proved. Later

in the chapter semi-analytic formulae will be derived for valuing simple liabilities

under the Heston model. Therefore, making clear exactly how such pricing formulae

for European options under this model are derived is a worthwhile exercise. The

formula for the price of a European call option under the Heston model is stated in

the following proposition:

Proposition 6.3. Suppose the value of an equity asset follows the Heston stochastic

volatility model, described by the following stochastic differential equations, dSt = µtStdt+
√
vtStdW

S
t

dvt = κ(θ − vt)dt+ σv
√
vtdW

v
t ,

(6.39)

where the Brownian motions driving the two stochastic processes, W S
t and W v

t , have

correlation ρ. Then, the price of a European call option written on this asset at time

t can be expressed semi-analytically as

cSV = e−rτK(exP1(x, v, τ)− P0(x, v, τ)), (6.40)

where K is the strike price of the option, r is the risk-free rate, x = ln(Ste
rτ/K)

and τ = T − t.
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The terms P0 and P1 are given by

Pj(x, v, τ) =
1

2
+

1

π

∫ ∞
0

Re

(
exp(iωx+ Cj(ω, τ)θ +Dj(ω, τ)v)

iω

)
dω, (6.41)

where

Cj(ω, τ) = κ

(
r−τ −

2

σ2
v

ln

(
1− ge−dτ

1− g

))
(6.42)

Dj(ω, τ) = r−

(
1− exp(−dτ)

1− g exp(−dτ)

)
, (6.43)

with g = r−/r+, r± = (β ± d)/σ2
v, d =

√
β2 − 4αγ, β = κ − ρσvj − ρσviω, α =

−(ω2 + iω)/2 + ijω and γ = σ2
v/2. The κ, θ, σv and ρ are the parameters of the

Heston variance process. Recall, the function Re(z) gives the real part of z.

The integrals in the definition of P0 and P1 can be solved numerically and the

results can then be used to calculate the option price cSV. As numerical quadrature

is required to evaluate these integrals, this is why we refer to the formula for the

European option price under the Heston model as semi-analytical.

Rather than giving a proof of Proposition 6.3 as a whole, it is easier to follow such

an argument if we divide this into a number of smaller propositions and then prove

each of these in turn. Thus, we will now state these propositions, which give an

overview of how such a pricing formula is constructed:

Proposition 6.4. The valuation equation under a general stochastic volatility model,

derived in the last section, Equation 6.21, becomes

∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
σ2
vv +

∂2V

∂S∂v
σvSvρ+ rS

∂V

∂S
− rV = κ(vt − θ)

∂V

∂v
, (6.44)

when applied to the Heston model of equity returns, Equation 6.39.

This pde can be expressed more simply if a change of variable is considered.

Proposition 6.5. Let us employ a change of variable

x = ln

(
erτSt
K

)
= ln

(
F

K

)
, (6.45)

where τ = T − t is the time to maturity and F = erτSt is the forward price of

the stock at maturity and let cSV(τ, x) denote the future value to expiration of the
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European option price. That is,

cSV(τ, x) = erτV (t, St). (6.46)

Then, the Heston valuation pde, Equation 6.44, becomes:

−∂c
SV

∂τ
+

1

2
v
∂2cSV

∂x2
− 1

2
v
∂cSV

∂x
+

1

2
σ2
vv
∂2cSV

∂v2
+ρσvv

∂2cSV

∂x∂v
−κ(v−θ)∂c

SV

∂v
= 0. (6.47)

To determine the pricing formula we need to solve Equation 6.47 for cSV. This will

be performed in the remaining propositions of this section.

Proposition 6.6. If we assume that Equation 6.47 has a solution of the form

cSV(x, v, τ) = K
(
exP1(x, v, τ)− P0(x, v, τ)

)
, (6.48)

then the following pde’s hold for P0 and P1

−∂Pj
∂τ

+
1

2
v
∂2Pj
∂x2
−
(

1

2
−j
)
v
∂Pj
∂x

+
1

2
σ2
vv
∂2Pj
∂v2

+ρσvv
∂2Pj
∂x∂v

+(a−bjv)
∂Pj
∂v

= 0, (6.49)

where

a = κθ, bj = κ− jρσv. (6.50)

Also, the initial conditions for the pde’s for P0 and P1 can be stated as

lim
τ→0

Pj(x, v, τ) =

 1 if x > 0

0 if x ≤ 0
= θ(x), (6.51)

where θ(x) is the Heaviside-step function, introduced in Section 6.1.

The pde’s given by Equation 6.49 for j = {0, 1} can be expressed more simply by

taking a Fourier transform. This will result in pde’s for the Fourier transforms of

the Pj which can be found using the following proposition:

Proposition 6.7. Taking a Fourier transform of Equations 6.49 and the corre-

sponding initial conditions 6.51 allows us to find the following pde’s for P̃0 and P̃1,

the Fourier transforms of P0 and P1 respectively

v

(
αP̃j − β

∂P̃j
∂v

+ γ
∂2P̃j
∂v2

)
+ a

∂P̃j
∂v
− ∂P̃j

∂τ
= 0, (6.52)
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where we define the variables α, β and γ by

α = −ω
2

2
− iω

2
+ ijω, (6.53)

β = κ− ρσvj − ρσviω, (6.54)

γ =
σ2
v

2
(6.55)

and recall that a = κθ.

These pdes for P̃j, j = {0, 1}, can be solved by assuming a solution of a certain

form involving two new unknown functions of the variables ω and τ . The two new

functions then must satisfy a system of ordinary differential equations which can

then be solved. These steps will be made clearer in the two propositions which

follow:

Proposition 6.8. If we assume a solution of pde’s 6.52 of the form

P̃j(u, v, τ) = exp(C(ω, τ)θ +D(ω, τ)v)P̃j(ω, v, 0)

= exp(C(ω, τ)θ +D(ω, τ)v)

(
1

iω
+ πδ(ω)

)
, (6.56)

then functions C and D must satisfy the following system of differential equations:

∂C

∂τ
= κD

∂D

∂τ
= α− βD + γD2 = γ(D − r+)(D − r−).

(6.57)

Proposition 6.9. The solution to system of differential equations 6.57 is:

D(ω, τ) = r−

(
1− exp(−dτ)

1− g exp(−dτ)

)
(6.58)

C(ω, τ) = κ

(
r−τ −

2

σ2
v

ln

(
1− ge−dτ

1− g

))
(6.59)

where the variable g is defined as g := r−
r+

.

Finally, taking the inverse Fourier transform of Equation 6.52 results in formulae

for the terms Pj, j = {0, 1}. This idea is formalised in Proposition 6.10.
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Proposition 6.10. Taking the inverse Fourier transform of Equation 6.52 gives the

following formulae for the functions Pj:

Pj(x, v, τ) =
1

2
+

1

π

∫ ∞
0

Re

(
φ(ω)

iω

)
=

1

2
+

1

π

∫ ∞
0

Re

(
exp(iωx+ Cj(ω, τ)θ +Dj(ω, τ)v)

iω

)
. (6.60)

These formulae are given in terms of the functions Cj(ω, τ) and Dj(ω, τ). However,

the form of these functions was given in Proposition 6.9. The values of P0 and P1

can now be substituted back into Equation 6.48 to give the semi-analytical formula

for the value of a European call option under the Heston stochastic volatility model.

Having given an overview of the structure of the proof through this series of propo-

sitions, let us now turn our attention to proving each of these in turn. We will begin

with Proposition 6.4.

Proof. The Heston model can be recovered from the more general stochastic volatil-

ity model given in the last section, Equation 6.20, by setting α(S, v, t) = κ(θ − vt),

β(S, v, t) = 1 and η = σv. With these choices the valuation equation, given by

Equation 6.21 for the general stochastic volatility model, now becomes:

∂V

∂t
+

1

2

∂2V

∂S2
vS2+

1

2

∂2V

∂v2
σ2
vv+

∂2V

∂S∂v
σvSvρ+rS

∂V

∂S
−rV = −

(
κ(θ−vt)−φσv

√
v
)∂V
∂v

.

(6.61)

Now, as it is our aim to find the price of a European option, the valuation should be

performed in a risk-neutral setting, as is standard in financial mathematics literature.

At the end of Section 6.2.1, we argued that pricing under the risk-neutral measure

was equivalent to setting the market price of volatility risk, φ, equal to zero. The

valuation equation for the Heston model under the risk-neutral measure can then

be expressed as:

∂V

∂t
+

1

2

∂2V

∂S2
vS2 +

1

2

∂2V

∂v2
σ2
vv +

∂2V

∂S∂v
σvSvρ+ rS

∂V

∂S
− rV = κ(vt − θ)

∂V

∂v
. (6.62)

In Proposition 6.5 this pde was given in terms of a set of new variables which were

introduced. A proof of this Proposition is given next.
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Proof. Firstly, let

x = ln

(
erτSt
K

)
= ln

(
F

K

)
(6.63)

where τ = T − t is the time to maturity and F = erτSt is the forward price of the

stock at maturity. Then, let cSV(τ, x) denote the future value to expiration of the

European option price. That is,

cSV(τ, x) = erτV (t, St). (6.64)

With this change of variables, the partial derivative ∂V
∂t

can be expressed in terms

of cSV(τ, x) as follows:

∂V

∂t
=

∂

∂t

(
e−rτcSV(τ, x)

)
=

∂

∂t

(
e−rτ

)
cSV(τ, x) + e−rτ

∂

∂t

(
cSV(τ, x)

)
= re−rτcSV(τ, x) + e−rτ

∂cSV

∂τ

∂τ

∂t
+ e−rτ

∂cSV

∂x

∂x

∂t

= re−rτcSV(τ, x)− e−rτ ∂c
SV

∂τ
− re−rτ ∂c

SV

∂x

= e−rτ
(
rcSV(τ, x)− ∂cSV

∂τ
− r∂c

SV

∂x

)
. (6.65)

Also, the derivative ∂V
∂S

can be expressed in terms of the changed variables as:

∂V

∂S
=

∂

∂S

(
e−rτcSV(τ, x)

)
= e−rτ

∂cSV

∂x

∂x

∂S

= e−rτ
∂cSV

∂x

K

erτS
· e

rτ

K

=
e−rτ

S

∂cSV

∂x
. (6.66)

In a similar manner, each of the following partial derivatives can be expressed as in

terms of cSV(τ, x) as:

∂2V

∂S2
=
e−rτ

S2

(
− ∂cSV

∂x
+
∂2cSV

∂x2

)
, (6.67)

∂2V

∂S∂v
=
e−rτ

S

(
∂2cSV

∂x∂v

)
, (6.68)

∂V

∂v
= e−rτ

∂cSV

∂v
, (6.69)

∂2V

∂v2
= e−rτ

∂2cSV

∂v2
. (6.70)
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Now, using Equations 6.65-6.70, we can express the Heston risk-neutral valuation

pde, Equation 6.44, in terms of the new variable cSV(τ, x) as

e−rτ
(
rcSV − ∂cSV

∂τ
− r∂c

SV

∂x
+

1

2
vS2

(
− 1

S2

∂cSV

∂x
+

1

S2

∂2cSV

∂x2

)
+ ρσvvS

(
− 1

S

∂2cSV

∂x∂v

)
+

1

2
σ2
vv
∂2cSV

∂v2
+ r

∂cSV

∂x
− rcSV

)
= e−rτκ(v − θ)∂c

SV

∂v
.

(6.71)

After some simplification, we arrive at the Heston risk-neutral valuation pde in terms

of the new variables x and τ :

−∂c
SV

∂τ
+

1

2
v
∂2cSV

∂x2
− 1

2
v
∂cSV

∂x
+

1

2
σ2
vv
∂2cSV

∂v2
+ρσvv

∂2cSV

∂x∂v
−κ(v−θ)∂c

SV

∂v
= 0. (6.72)

The solution to pde given in Equation 6.72 is found through the Propostions 6.6-

6.10. A proof for each of these propositions will now be given. We will begin by

considering Proposition 6.6:

Proof. Let us assume the solution of Equation 6.72 will take the same form as the

solution of the equivalent Black-Scholes pde for the value of a European call option.

That is, we assume a solution of the form:

cSV(x, v, τ) = K
(
exP1(x, v, τ)− P0(x, v, τ)

)
. (6.73)

If the function cSV(x, v, τ) does take this form, then the following partial derivatives

can be easily found:

∂cSV

∂τ
= Kex

∂P1

∂τ
−K∂P0

∂τ
, (6.74)

∂cSV

∂x
= KexP1 +Kex

∂P1

∂x
−K∂P0

∂x
, (6.75)

∂2cSV

∂x2
= KexP1 + 2Kex

∂P1

∂x
+Kex

∂2P1

∂x2
−K∂2P0

∂x2
, (6.76)

∂cSV

∂v
= Kex

∂P1

∂v
−K∂P0

∂v
, (6.77)

∂2cSV

∂v2
= Kex

∂2P1

∂v2
−K∂2P0

∂v2
, (6.78)

∂2cSV

∂x∂v
= Kex

∂P1

∂v
+Kex

∂2P1

∂x∂v
−K ∂2P0

∂x∂v
. (6.79)
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Substituting these partial derivatives back into Equation 6.72 yields

−Kex∂P1

∂τ
+K

∂P0

∂τ
+

1

2

(
KexP1 + 2Kex

∂P1

∂x
+Kex

∂2P1

∂x2
−K∂2P0

∂x2

)
− 1

2
v

(
KexP1 +Kex

∂P1

∂x
−K∂P0

∂x

)
+

1

2
σ2
vv

(
Kex

∂2P1

∂v2
−K∂2P0

∂v2

)
+ ρσvv

(
Kex

∂P1

∂v
+Kex

∂2P1

∂x∂v
−K ∂2P0

∂x∂v

)
− κ(v − θ)

(
Kex

∂P1

∂v
−K∂P0

∂v

)
= 0,

(6.80)

which after collecting terms in P0 and P1 becomes:

Kex
(
− ∂P1

∂τ
+

1

2
v
∂2P1

∂x2
+

1

2
v
∂P1

∂x
+

1

2
σ2
vv
∂2P1

∂v2
+ ρσvv

∂2P1

∂x∂v
+ (κθ − κv + ρσvv)

∂P1

∂v

)
−K

(
− ∂P0

∂τ
+

1

2
v
∂2P0

∂x2
− 1

2
v
∂P0

∂x
+

1

2
σ2
vv
∂2P0

∂v2
+ ρσvv

∂2P0

∂x∂v
+ (κθ − κv)

∂P0

∂v

)
= 0.

(6.81)

For this partial differential equation to hold for all values of τ , x and v, both the

expressions inside the brackets above must be equal to zero. This can be expressed

succinctly as follows; for both j = 0 and j = 1, the following pde must be satisfied:

−∂Pj
∂τ

+
1

2
v
∂2Pj
∂x2
−
(

1

2
−j
)
v
∂Pj
∂x

+
1

2
σ2
vv
∂2Pj
∂v2

+ρσvv
∂2Pj
∂x∂v

+(a−bjv)
∂Pj
∂v

= 0, (6.82)

where the terms a and bj are given by

a = κθ (6.83)

bj = κ− jρσv. (6.84)

The initial conditions, which are given at maturity for an option, can be constructed

as follows; as we approach maturity, the variable τ → 0 and the variable x →

ln(ST/K). But, recalling the first line of Equation 6.15, the payoff function at

maturity can be expressed in terms of the variable x as K max(ex − 1, 0). Thus, at

maturity, if x ≥ 0, the option is worth Kex−K, whilst if x < 0 the option is worth

zero. Now, as we assumed a solution of the form

cSV(x, v, τ) = K
(
exP1(x, v, τ)− P0(x, v, τ)

)
, (6.85)
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the initial conditions for the functions P0 and P1 can be stated as

lim
τ→0

Pj(x, v, τ) =

 1 if x > 0

0 if x ≤ 0
=: θ(x), (6.86)

where θ(x) is the Heaviside-step function, defined in Section 6.1.

A proof of Proposition 6.7 is given next:

Proof. Define P̃j(ω, v, τ) as the Fourier transform of Pj(ω, v, τ):

P̃j(u, v, τ) =

∫ ∞
−∞

e−iωxPj(x, v, τ)dx. (6.87)

The Fourier transform of the initial conditions are given by

P̃j(u, v, 0) =

∫ ∞
−∞

e−iωxθ(x)dx =
1

iω
+ πδ(ω), (6.88)

where we have used the result for the Fourier transform of the Heaviside-step func-

tion given in Equation 6.9.

Taking the Fourier transform of partial differential equations 6.82 and using the

rules for taking the Fourier transform of partial derivatives, Equations 6.4-6.6, gives

the following partial differential equation for P̃j, j = {0, 1}:

−∂P̃j
∂τ
−1

2
ω2vP̃j−

(
1

2
−j
)
iωvP̃j+

1

2
σ2
vv
∂2P̃j
∂v2

+ρσviωv
∂P̃j
∂v

+(a−bjv)
∂P̃j
∂v

= 0. (6.89)

If we define the variables α, β and γ by

α = −ω
2

2
− iω

2
+ ijω, (6.90)

β = κ− ρσvj − ρσviω, (6.91)

γ =
σ2
v

2
, (6.92)

then this partial differential equation can be expressed more succinctly as:

v

(
αP̃j − β

∂P̃j
∂v

+ γ
∂2P̃j
∂v2

)
+ a

∂P̃j
∂v
− ∂P̃j

∂τ
= 0. (6.93)
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It was then argued in Proposition 6.8 that if a candidate solution was substituted

into Equation 6.93, then the two functions introduced within this solution would

have to satisfy a given system of ode’s. A proof of this fact is given now.

Proof. Assuming a solution of Equation 6.93 of the form,

P̃j(u, v, τ) = exp(C(ω, τ)θ +D(ω, τ)v)P̃j(ω, v, 0)

= exp(C(ω, τ)θ +D(ω, τ)v)

(
1

iω
+ πδ(ω)

)
, (6.94)

results in the following partial derivatives:

∂P̃j
∂τ

=

(
θ
∂C

∂τ
+ v

∂D

∂τ

)
P̃j, (6.95)

∂P̃j
∂v

= DP̃j, (6.96)

∂2P̃j
∂v2

= D2P̃j. (6.97)

Substituting these partial derivatives into Equation 6.93 and recalling the fact that

a = κθ will give:

v
(
α− βD + γD2

)
P̃j + κθDP̃j − θ

∂C

∂τ
P̃j − v

∂D

∂τ
P̃j = 0. (6.98)

With the differential equation in this form, it is clear that Equation 6.94 will give a

solution to the partial differential equation 6.93 if:

∂C

∂τ
= κD

∂D

∂τ
= α− βD + γD2 = γ(D − r+)(D − r−),

(6.99)

where the terms r+ and r− are defined as

r± =
β ±

√
β2 − 4αγ

2γ
=:

β ± d
σ2
v

. (6.100)
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A solution to the system of ode’s 6.99 is stated in Proposition 6.9. The following

proof shows how such a solution can be found.

Proof. Let us begin by finding the solution to the second of the two partial differ-

ential equations given in Equation 6.57:

∂D

∂τ
= γ(D − r+)(D − r−). (6.101)

Since D, r+ and r− depend on ω, whilst γ does not, the partial differential equation

can be expressed as a separable ordinary differential equation (ode). This equivalent

ode can be written as:
1

(D − r+)(D − r−)
dD = γdτ. (6.102)

Integrating both sides of this equation yields

ln(D − r−)− ln(D − r+)

r− − r+

= γτ + c1, (6.103)

where c1 is an arbitrary constant of integration. Rearranging and exponentiating

the above equation then gives

D =
r− − r+ exp(γ(r− − r+)τ)c2

1− exp(γ(r− − r+)τ)c2

= r−

(
1− r+

r−
exp(−dτ)c2

1− exp(−dτ)c2

)
, (6.104)

where c2 = exp(c1(r− − r+)) is just another arbitrary constant. In the second line

above, we have used the fact r−− r+ = β−d−β−d
σ2
v

= − 2d
σ2
v

and hence γ(r−− r+) = −d.

The initial condition for this differential equation is D(ω, τ) = 0 for τ = 0, which

implies that the constant c2 is equal to r−
r+

. The solution of the differential equation

for D is then

D(ω, τ) = r−

(
1− exp(−dτ)

1− g exp(−dτ)

)
, (6.105)

where g := r−
r+

.

Let us now proceed to solve the second of these pde’s. Using the solution for D(ω, τ)

just found, the pde for C(ω, τ) becomes

∂C

∂τ
= κD = κr−

(
1− exp(−dτ)

1− g exp(−dτ)

)
=

κr−
1− g exp(−dτ)

− κr− · exp(−dτ)

1− g exp(−dτ)
. (6.106)
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Integrating this equation gives

C(ω, τ) =
κr− ln(edτ − g)

d
− κr−(ln(edτ − g)− dτ)

dg
+ c3. (6.107)

The initial condition for this differential equation is C(ω, τ) = 0 when τ = 0, which

implies that

c3 =
κr− ln(1− g)(1− g)

dg
. (6.108)

Now, substituting this expression for c3 into Equation 6.107 and using the fact that

ln(edτ − g) = dτ + ln(1− ge−dτ ) gives

C(ω, τ) =
κr−(dτ + ln(1− ge−dτ ))

d
− κr−(dτ + ln(1− ge−dτ − dτ))

d

+
κr− ln(1− g)

dg
− κr− ln(1− g)

d

= κr−τ +
κr−
d

ln

(
1− ge−dτ

1− g

)
− κr−

dg
ln

(
1− ge−dτ

1− g

)
= κr−τ +

κ

d
(r− − r+) ln

(
1− ge−dτ

1− g

)
= κ

(
r−τ −

2

σ2
v

ln

(
1− ge−dτ

1− g

))
, (6.109)

where in the third equality we substituted in g = r−
r+

and in the last equality we,

once again, used the identity (r− − r+) = − 2d
σ2
v
.

Finally, Proposition 6.10 uses the inverse Fourier transform to find formulae for P0

and P1. A proof of this proposition follows:

Proof. The P̃j are given by substituting the expressions for C(ω, τ) and D(ω, τ)

given in Proposition 6.9 back into Equation 6.56. Recall this equation was given by

P̃j(ω, v, τ) = exp(Cj(ω, τ)θ +Dj(ω, τ)v)

(
1

iω
+ πδ(ω)

)
. (6.110)
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Taking the inverse Fourier transform gives the functions Pj, j = {0, 1}, as

Pj(x, v, τ) =
1

2π

∫ ∞
−∞

eiωx exp(Cj(ω, τ)θ +Dj(ω, τ)v)

(
1

iω
+ πδ(ω)

)
dω

=
1

2π

∫ ∞
−∞

exp(iωx+ Cj(ω, τ)θ +Dj(ω, τ)v)

(
1

iω
+ πδ(ω)

)
dω

=
1

2π

∫ ∞
−∞

φ(ω)

(
1

iω
+ πδ(ω)

)
dω. (6.111)

Using an analogous mathematical argument to that used in deriving Equation 6.16

gives us the final form for the functions Pj as

Pj(x, v, τ) =
1

2
+

1

π

∫ ∞
0

Re

(
φ(ω)

iω

)
=

1

2
+

1

π

∫ ∞
0

Re

(
exp(iωx+ Cj(ω, τ)θ +Dj(ω, τ)v)

iω

)
. (6.112)

6.2.3 Numerical evaluation of the complex integral

In the paper in which the Heston model is introduced, Heston [Hes93], the valuation

of European options using Fourier techniques is discussed. In the pricing formula

given here, however, the variable Cj(τ, ω) is defined as

Cj(ω, τ) = κ

(
r+τ −

2

σ2
v

ln

(
edτ − g
1− g

))
. (6.113)

This function appears equivalent to our definition of Cj(τ, ω) given in Proposition

6.3. Indeed, if we multiply the argument of the logarithm in the above definition

for Cj(τ, ω) by e−dτ

e−dτ
= 1 and use the identity (r− − r+) = − 2d

σvσ2
v
, we end up with

the definition of Cj(τ, ω) which we derived earlier. As they contain a logarithm

whose argument is defined in the complex plane, we cannot just simply state that

the two definitions of Cj(τ, ω) in Equation 6.113 and Proposition 6.3 are completely

equivalent. Gatheral [Gat06] comments that the two definitions coincide “only if

the imaginary part of the complex logarithm [in Equation 6.113] is chosen so that

Cj(τ, ω) is continuous with respect to ω”. If one takes the principal value of the

logarithm in this equation, then Cj(τ, ω) will “jump discontinuously each time the

imaginary part of the argument of the logarithm crosses the negative real axis”.
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The usual approach one takes for this problem of calculating logarithms in the

complex plane is to ensure we remain on the same Riemann sheet by keeping note

of the winding number associated with Equation 6.113. Unfortunately this causes

problems for the standard techniques used to numerically integrate the formulae for

the Pj, given in terms of Cj and Dj in Proposition 6.3.

By defining the variable Cj(τ, ω) as we have done in Proposition 6.3 this is no longer

a problem. With this definition, the real part of the argument of the logarithm

is positive whenever the imaginary part is zero. Gatheral states that taking the

principal value of the logarithm with this definition of Cj(τ, ω) “seems to lead to a

continuous integrand over the full range of integration”, though he states a proof of

this fact “remains elusive”. Since the publication of Gatheral’s textbook, however,

a proof of this has been given. See Lord and Kahl [Lor10] for further details.

An interesting point of note is that a fairly robust and accurate numerical integration

technique which uses Heston’s definition of Cj(τ, ω) has been developed. Kahl and

Jäckel [Kah05b] outline an approach which allows one to employ a Gauss-Lobatto

quadrature scheme together with a new rotation count algorithm to correct the

problem of the discontinuous jumps in the complex logarithm.

6.2.4 Semi-analytical formulae for Heston model with jumps

A semi-analytical pricing formula can also be found under the SVJD model. Recall

that this model, introduced in Section 5.2, combines the Heston stochastic volatility

model with the Merton jump diffusion model, where the asset price can jump dis-

continuously at certain random times. The occurrence of these jumps is governed

by a Poisson process, whilst the magnitude of each such jump is given by a lognor-

mal random variable. Since the jump process is independent of the Heston model,

the characteristic function of the transformed stock price under the SVJD model

is just given by the product of the characteristic functions from the Heston model

and from the Merton jump diffusion model. In Chapter 6 of Gatheral [Gat06], a

semi-analytical formula for the price of an option is given in terms of a general char-

acteristic function of an equity process. Therefore, a semi-analytical pricing formula

under the SVJD model can be derived with little further effort, in comparison with

the Heston model.
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6.3 Semi-analytical insurance liabilities under the Heston model

In this section the semi-analytical formulae which we have just derived will be con-

sidered together with formulae developed in the textbook Investment Guarantees

by Hardy [Har03]. This will give semi-analytical formulae for the liabilities on some

simple unit-linked insurance products under the Heston model. To begin this analy-

sis, a summary of how closed-form solutions can be developed for simple unit-linked

insurance liabilities under the Black-Scholes model will be given.

6.3.1 Analytical U-L liabilities under Black-Scholes

The two types of unit-linked insurance product for which analytical liability formulae

will be developed are variable annuity contracts of the guarantee minimum maturity

benefit (GMMB) and guaranteed minimum death benefit (GMDB) class. For a recap

of the different types of variable annuity contracts offered on the market see Section

1.3 of this thesis. The following analysis outlining how analytical formulae can be

constructed for the liabilities of these products will follow the treatment given in

Chapter 8 of Hardy [Har03]. We begin by considering a GMMB contract.

The GMMB is essentially just a put option on the underlying variable annuity fund

level or value. This fund value is often known in North America as the segregated

fund. We want to value the liability on this product today, or at time t = 0. Let

the current fund value be denoted by FV0 and let the guaranteed payment which

will be made to the policyholder at time T be denoted by G. The liability from this

simple GMMB product at time T is then just max(G − FVT , 0). For a standard

Canadian policy with this sort of embedded guarantee, G is typically 75 or 100

percent of the initial single premium from the policyholder. If we set m as the

monthly management charge deducted from the fund value, then

FVT = FV0
ST
S0

(1−m)T . (6.114)

where St is the stock index with which this VA contract is linked. If we set FV0 = S0,

then the liability from this product is given as a discounted expectation under the
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risk-neutral probability measure Q as

L0 = e−rTEQ[max(G− FVT , 0)]

= e−rTEQ[max(G− ST (1−m)T , 0)]. (6.115)

We can appeal to the Black-Scholes analytic European put option valuation formula

to determine L0 analytically. Replacing S0 by S0(1−m)T in the standard put option

valuation formula, to account for the monthly management charges, gives

L0 = Ge−rTΦ(−d2)− S0(1−m)TΦ(−d1), (6.116)

where

d1 =
log(S0(1−m)T/G) + (r + σ2/2)T

σ
√
T

(6.117)

and d2 = d1 − σ
√
T . Note that this is just the well-known adaption of the Black-

Scholes formula to account for dividends, except here the dividend represents the

monthly charge. This liability valuation formula does not take into account either

mortality or policyholder lapses. The risk that a greater than expected number

of policyholders survive until maturity can be hedged against by diversification.

By selling a sufficiently large number of policies, the rates of mortality will be

known with increasing accuracy. This gives some justification to this deterministic

assumption. Often the lapse risk can also be treated as diversifiable, however it is

perhaps unrealistic to assume lapse rates are uncorrelated with the fund value level.

To capture this dependence would require a model for the policyholder lapsation

rate in terms of fund level. For the moment we will follow the derivation of Hardy

and assume that policyholder lapse rates can be treated similarly to mortality rates.

That is, we assume they are diversifiable and independent of G under the probability

measure Q. The analytic liability formula is then Tp
τ
xL0, where Tp

τ
x is the probability

that the contract will still be in force at maturity.

We now reproduce results given by Hardy for this GMMB contract under the Black-

Scholes model. In Table 6.1 we calculate the liability value L0 for a 50 year old

annuitant holding this GMMB product and assume that the mortality and lapses

follow those of the double decrement table in Appendix A of Hardy. The annualised
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Liability est.’s Term to maturity, T
Guarantee 5 10 20

60 0.549 0.604 0.217
80 2.333 1.696 0.473
100 5.866 3.423 0.826
120 11.099 5.725 1.262

Delta est.’s Term to maturity, T
Guarantee 5 10 20

60 -0.025 -0.017 -0.004
80 -0.082 -0.040 -0.008
100 -0.163 -0.067 -0.012
120 -0.248 -0.096 -0.016

Gamma est.’s Term to maturity, T
Guarantee 5 10 20

60 1.18× 10−3 5.55× 10−4 9.39× 10−5

80 2.88× 10−3 1.03× 10−3 1.54× 10−4

100 4.30× 10−3 1.44× 10−3 2.09× 10−4

120 4.97× 10−3 1.74× 10−3 2.57× 10−4

Vega est.’s Term to maturity, T
Guarantee 5 10 20

60 11.84 11.01 3.76
80 28.75 20.54 6.14
100 43.03 28.89 8.37
120 49.73 34.80 10.30

Tp
τ
x 0.65520 0.42247 0.15972

Table 6.1: Analytical GMMB liability, delta, gamma and vega values under the
Black-Scholes model, reproduced from Hardy [Har03]. Note that this is the corrected
table from the errata list for this textbook (which is available to view online).

volatility in this example is σ = 20% and the risk-free rate of interest is r = 6%.

The initial policy premium is £100. Note that the values that appear in Table 6.1

do not match those in the corresponding table in Hardy. However, if one consults

the official errata list for this textbook, available online, then the updated correct

values are consistent with those quoted here in the thesis. Also given in this table

are some analytical sensitivities of L0.

The second class of VA product for which analytical liability valuations can be

found is the GMDB. The only difference between the GMDB contract and the

GMMB which was just considered is that the maturity date is now contingent on

the death of the policyholder, as opposed to on his or her survival. For a GMDB,

T is now a random variable representing the future lifetime of the policyholder. Let

Tp
τ
x represent the double decrement survival probability, as in the GMMB formula,
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and let µ
(d)
x,t denote the force of mortality at time t for a life aged x at time t = 0.

Discretising the term of the contract into n time units, the liability for this GMDB

contract can be expressed as

ET [L0(T )] =

∫ n

0

L0(t)tp
τ
xµ

(d)
x,tdt, (6.118)

where ET [·] denotes an expectation over the random variable T . This integral can

be evaluated numerically. One such approximation is given by

ET [L0(T )] ≈
n∑
t=1

L0(t)t−1p
τ
x 1q

d
x,t−1, (6.119)

for some suitably small timestep. In the above numerical approximation t−1p
τ
x is

the probability of survival for t− 1 time units and 1q
d
x,t−1 is the probability that the

policyholder dies in the interval t − 1 to t, conditional on them surviving for t − 1

time units.

In Table 6.2, analytical liabilities and sensitivities (using this numerical approxima-

tion to the integral) are given for this GMDB contract with monthly timesteps. The

policyholder is again assumed to be a 50 year-old male and the annualised volatility

and risk-free rate of interest will be the same as for the GMMB example just con-

sidered. The decrement rates are those found in Appendix A of Hardy [Har03]. The

liability values in Table 6.2 are again not the same as those in the corresponding

table in Hardy. However, they do correspond closely to the corrected table given by

Hardy in the list of errata for her textbook. The small discrepancy which remains

is down to different interpretations of the mortality data given in the appendix of

Hardy.

One can see from Tables 6.1 and 6.2 that the liabilities from the GMDB contract

are significantly smaller than those from the GMMB. This is expected, since the

mortality rates for a 50 year-old male are fairly low. The equations for the liability on

a GMDB can be easily adapted to accommodate a more complex death benefit. For

example, a common feature with VA contracts is to have a death benefit guarantee

which increases at a compound rate. If we were to set this compound rate at a

5% increase per year, then the guarantee G would now be given as a function of

T , the month in which the policyholder dies, as GT = G0 · 1.05T/12. Results of the
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Liability est.’s Term to maturity, T
Guarantee 5 10 20

60 0.0061 0.0303 0.0939
80 0.0389 0.1179 0.2718
100 0.1379 0.3117 0.5977
120 0.3294 0.6353 1.0905

Delta est.’s Term to maturity, T
Guarantee 5 10 20

60 -0.0004 -0.0012 -0.0026
80 -0.0019 -0.0041 -0.0071
100 -0.0060 -0.0100 -0.0147
120 -0.0104 -0.0162 -0.0228

Gamma est.’s Term to maturity, T
Guarantee 5 10 20

60 2.28× 10−5 5.42× 10−5 9.29× 10−5

80 1.05× 10−4 1.70× 10−4 2.37× 10−4

100 2.60× 10−4 3.54× 10−4 4.47× 10−4

120 2.01× 10−4 3.13× 10−4 4.26× 10−4

Vega est.’s Term to maturity, T
Guarantee 5 10 20

60 0.150 0.617 1.734
80 0.525 1.482 3.404
100 0.919 2.296 4.949
120 0.948 2.581 5.817

Table 6.2: Analytical GMDB liab. values under the Black-Scholes model, reproduced
from Hardy [Har03]. Note that there is a corrected table to that which is given in
the original textbook in the errata list for this textbook (which is available online).

liability for a GMDB with a compounding increase in the guarantee level under the

Black-Scholes model are given by Hardy.

Further to the GMMB and GMDB products, Hardy also derives a formula for the

liability of a guaranteed minimum accumulation benefit (GMAB) type of variable

annuity contract under the Black-Scholes model. This product would also yield

a semi-analytical solution under more sophisticated economic models, in the same

manner as will discussed in the next section. However, we will not discuss this type

of VA product further in the thesis.

6.3.2 Analytical U-L liabilities under a Heston model

Having given an outline on how to calculate the analytical liabilities for simple

GMMB and GMDB variable annuity contracts under the Black-Scholes model, the
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aim of this section will be to extend these results to the Heston stochastic volatility

and stochastic volatility jump diffusion (SVJD) models, introduced in Sections 5.1

and 5.2. In Sections 6.1 and 6.2 the semi-analytical formula for a European op-

tion under the Heston model was derived. As the liability values given in the last

section are just simple extensions of the Black-Scholes analytic European put op-

tion formula, analogous semi-analytical liability formulae can be readily found. To

the knowledge of this author, semi-analytical liability formulae for simple variable

annuity contracts under the Heston or SVJD models have not previously been given.

For comparison with the results for the two simple VA contracts under the Black-

Scholes model, let us set-up the SVJD model in the following way: Firstly, we set

the mean reversion level and initial variance by θ = V0 = 0.04, so that the variance

reverts to the level that was assumed in the Black-Scholes example in the long-run.

Also, let r = 6%, as it was for the Black-Scholes model. The mean-reversion speed,

κ, will be set at 3.00 and the volatility of the variance process, ε, will be set as

0.4. The correlation between the equity and variance process risk-drivers, ρ, will be

set at −0.80. For the independent jump process, we will fix λ = 0.1, µS = −0.15

and σS = 0.2. This means that the SVJD set-up is as consistent as possible with

the Black-Scholes example from before, except we have allowed the volatility to be

stochastic (with reversion level equal to the constant volatility of the Black-Scholes

model) and have allowed random discontinuous, lognormally distributed jumps in

the equity price process, which will occur on average once every 10 years.

In Table 6.3 the liabilities for the different terms to maturity and guarantee levels

under this SVJD model are given. In comparison with Table 6.1, we can see that by

allowing the volatility to be stochastic and the stock prices to have discontinuous

jumps, the insurance liabilities found for these simple guarantees are quite different.

The change in the liabilities that we see from considering the SVJD model over

the Black-Scholes model appears to be more significant for guarantees which are

far out-of-the-money. The semi-analytical values of the liability delta and gamma

sensitivities from considering the SVJD model are also given here. These liability

sensitivity values also differ from the corresponding Black-Scholes values. The vega

Greek here is the sensitivity with respect to σ0 =
√
V0. That is, the sensitivity with

respect to the initial level of the stochastic volatility. Analytic values can also be

found for the sensitivities with respect to other parameters of the Heston model.
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Liability est.’s Term to maturity, T
Guarantee 5 10 20

60 1.030 0.909 0.298
80 2.998 2.095 0.581
100 6.406 3.823 0.948
120 11.308 6.056 1.389

Delta est.’s Term to maturity, T
Guarantee 5 10 20

60 -0.030 -0.018 -0.004
80 -0.076 -0.038 -0.007
100 -0.144 -0.061 -0.011
120 -0.224 -0.088 -0.015

Gamma est.’s Term to maturity, T
Guarantee 5 10 20

60 1.04× 10−3 4.83× 10−4 8.46× 10−5

80 2.34× 10−3 8.75× 10−4 1.35× 10−4

100 3.78× 10−3 1.27× 10−3 1.85× 10−4

120 4.91× 10−3 1.61× 10−3 2.31× 10−4

Vega est.’s Term to maturity, T
Guarantee 5 10 20

60 0.863 0.364 0.061
80 1.745 0.623 0.094
100 2.570 0.861 0.125
120 3.063 1.047 0.153

Tp
τ
x 0.65520 0.42247 0.15972

Table 6.3: Semi-analytical GMMB liability, delta, gamma and vega values under
the SVJD model with parameters chosen to aid comparison with the Black-Scholes
tests. These SVJD parameters are given in the main text of Section 6.3.2.

The liabilities on the GMDB variable annuity contract under the SVJD model are

displayed in Table 6.4. If we compare these values with the corresponding values

under the Black-Scholes model, given in Table 6.2, we see that the liabilities under

this type of product are also quite strongly dependent on the model choice for the

equity returns. The differences in the liabilities resulting from using the SVJD model

rather than the Black-Scholes, again, seem most significant for guarantees which are

far out-of-the-money.

The liability sensitivities for the GMDB contract under the SVJD model are also

given in Table 6.4. Using the SVJD model for the underlying equity index re-

turns also gives significantly different values for these sensitivities. However, here

the differences do not appear as significant for far out-of-the-money guarantees, in

comparison with the case of the guarantee being in-the-money.
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Liability est.’s Term to maturity, T
Guarantee 5 10 20

60 0.0149 0.0541 0.1446
80 0.0548 0.1536 0.3427
100 0.1475 0.3397 0.6637
120 0.3253 0.6435 1.1350

Delta est.’s Term to maturity, T
Guarantee 5 10 20

60 -0.0005 -0.0015 -0.0029
80 -0.0019 -0.0040 -0.0068
100 -0.0051 -0.0087 -0.0131
120 -0.0098 -0.0151 -0.0212

Gamma est.’s Term to maturity, T
Guarantee 5 10 20

60 2.38× 10−5 5.13× 10−5 8.57× 10−5

80 8.21× 10−5 1.37× 10−4 1.95× 10−4

100 2.35× 10−4 3.17× 10−4 3.99× 10−4

120 2.34× 10−4 3.40× 10−4 4.43× 10−4

Vega est.’s Term to maturity, T
Guarantee 5 10 20

60 0.0230 0.0445 0.0697
80 0.0670 0.1065 0.1474
100 0.1329 0.1890 0.2444
120 0.1159 0.1837 0.2513

Table 6.4: Semi-analytical GMDB liability, delta, gamma and vega values under
the SVJD model with parameters chosen to aid comparison with the Black-Scholes
tests. These SVJD parameters are given in the main text of Section 6.3.2.

Overall, comparing the liabilities and sensitivities for both types of guarantee, we see

that the semi-analytical values can be significantly different under the consideration

of different models for the underlying equity index. Furthermore, this example set

the mean-reversion level and initial variance in the SVJD model to be consistent with

the constant volatility of the Black-Scholes model. With these SVJD parameters

calibrated to market data, the differences in liabilities and sensitivities could be even

larger, compared to a market-calibrated Black-Scholes model.

Earlier in the thesis we argued that the SVJD model will give a distribution of equity

returns with a much heavier tail than the Black-Scholes model gives, which is much

more consistent with the distribution of returns from real-life equity indices. See

Duffie and Pan [Duff97] for more discussion on the merits of the SVJD model over

Black-Scholes in terms of their ability to realistically fit to market data.
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Liability est.’s Term to maturity, T
Guarantee 5 10 20

60 0.403 0.640 0.413
80 2.095 2.143 1.000
100 6.269 4.842 1.849
120 13.328 8.673 2.917

Delta est.’s Term to maturity, T
Guarantee 5 10 20

60 -0.0207 -0.0223 -0.0093
80 -0.0900 -0.0621 -0.0190
100 -0.2195 -0.1164 -0.0298
120 -0.3681 -0.1726 -0.0405

Gamma est.’s Term to maturity, T
Guarantee 5 10 20

60 1.16× 10−3 8.80× 10−4 2.52× 10−4

80 4.09× 10−3 1.96× 10−3 4.22× 10−4

100 7.46× 10−3 2.86× 10−3 5.47× 10−4

120 8.26× 10−3 3.20× 10−3 6.12× 10−4

Vega est.’s Term to maturity, T
Guarantee 5 10 20

60 0.347 0.234 0.063
80 1.078 0.484 0.101
100 1.740 0.665 0.127
120 1.699 0.701 0.138

Tp
τ
x 0.65520 0.42247 0.15972

Table 6.5: Semi-analytical GMMB liability, delta, gamma and vega values under the
SVJD model, with parameters taken from Broadie and Kaya [Bro04] and quoted in
the main text of Section 6.3.2.

To finish the analysis of this chapter, let us consider liabilities and sensitivities under

the parameters given for the SVJD model by Broadie and Kaya [Bro04] and origi-

nally quoted by Duffie, Pan and Singleton [Duff00]. The variance process parameters

are κ = 3.99, θ = 0.014, σV = 0.27 and V0 = 0.008836. The correlation between

equity and variance processes is ρ = −0.79 and the risk-free rate r = 3.19%. The

arrival of the jumps follows an independent Poisson process with parameter λ = 0.11

and the size of the jumps follow a lognormal distribution with µS = −0.1389 and

σS = 0.15, resulting in an average decline in stock price from a jump of µ = −0.12.

The liability values and delta, gamma and vega sensitivities for the GMMB variable

annuity contract under the SVJD model, calibrated as above, are given in Table

6.5. The corresponding results for the GMDB contract under the market-calibrated

SVJD model are given in Table 6.6.
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Liability est.’s Term to maturity, T
Guarantee 5 10 20

60 0.004 0.026 0.119
80 0.030 0.116 0.371
100 0.124 0.340 0.850
120 0.358 0.772 1.620

Delta est.’s Term to maturity, T
Guarantee 5 10 20

60 -0.0003 -0.0012 -0.0037
80 -0.0017 -0.0046 -0.0104
100 -0.0066 -0.0127 -0.0226
120 -0.0137 -0.0232 -0.0371

Gamma est.’s Term to maturity, T
Guarantee 5 10 20

60 1.77× 10−5 5.82× 10−5 1.39× 10−4

80 1.02× 10−4 2.10× 10−4 3.62× 10−4

100 4.48× 10−4 6.21× 10−4 8.29× 10−4

120 2.44× 10−4 4.37× 10−4 6.70× 10−4

Vega est.’s Term to maturity, T
Guarantee 5 10 20

60 0.006 0.017 0.038
80 0.031 0.058 0.095
100 0.091 0.013 0.179
120 0.042 0.084 0.135

Table 6.6: Semi-analytical GMDB liability, delta, gamma and vega values under the
SVJD model, with parameters taken from Broadie and Kaya [Bro04] and quoted in
the main text of Section 6.3.2.

6.3.3 Conclusion

In conclusion to this chapter, we remark that for simple unit-linked insurance guar-

antees the insurance liabilities can be found analytically under both the Black-

Scholes and SVJD models. Some tests showed that the liabilities and sensitivities

can be quite different, even if we just allow the volatility to follow a mean reverting

stochastic process around the constant volatility level assumed in the Black-Scholes

model and allow for the rare possibility of a discontinuous jump in the equity index

level. If the Black-Scholes model and the SVJD model were individually calibrated

to market data, the differences in the sensitivity estimates could be even greater.

It is important to be aware, however, that these analytic solutions can only be found

for the simplest of insurance guarantees. Once the various complexities of typical

insurance liabilities are taken into account, simple closed-form solutions are generally

172



not available. In the remainder of Part II of the thesis we will investigate how Monte

Carlo simulation estimators can be constructed for the sensitivities of more complex

insurance products under more sophisticated market models. We pause to outline a

possible practical benefit of these semi-analytical liability formulae.

In Section 1.4 a brief introduction was given to the Monte Carlo variance reduc-

tion technique of employing a control variate. The idea of this approach is that if

there exists some random quantity with known expected value under the financial

model being considered, we can often use this to improve the accuracy of the un-

known quantity which is being estimated. The greater the correlation between the

quantity with known expected value and the quantity which we are attempting to

estimate, the more successful this approach will be in improving the efficiency of

the estimator. Now, although these guarantees which yield semi-analytical liability

values are simplistic, they are likely to have a significant positive correlation with

more realistic, complex insurance liabilities which must be valued and hedged using

simulation. Therefore, these semi-analytical solutions, which can be calculated very

efficiently, appear to be excellent candidate control variates for improving the effi-

ciency of Monte Carlo estimators of complex insurance liabilities and sensitivities.

Testing these potential control variates for the valuation of more complex liabilities,

such as those considered in Chapter 4, is a line of promising future research. If these

simple guarantees do prove to be successful control variates, the practical benefits

in valuation and hedging could be great.

The analysis given in Section 6.3 could be extended to value these simple guarantees

under an even more sophisticated model. Scott [Sco97] gives a framework for cal-

culating semi-analytical formulae for the price of stock options under a Heston-CIR

model. The Heston-CIR model will be introduced in Section 8.3 of this thesis. He

also shows that the option prices still yield semi-analytical valuations if an indepen-

dent jump process is incorporated into this sophisticated model of equity returns.

Following this framework, the discussion given in Section 6.3 could then be used to

give semi-analytical valuation formulae for the simple guarantees under a Heston-

CIR model featuring random discontinuous jumps for the equity returns process.

This increase in model sophistication under which semi-analytical liability valua-

tion is available further increases the likelihood of these simple guarantees acting as

successful control variates for more complex insurance guarantees.
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Chapter 7

Option sensitivity estimators using Monte Carlo simulation

7.1 Option Price Sensitivity Estimators

The liability from a unit-linked insurance contract takes a similar form to the payoff

of an option, as was discussed in Section 3.1. Thus, in attempting to develop efficient

Monte Carlo methods for determining the sensitivities of insurance liabilities it would

seem sensible to study equivalent estimators for option price sensitivities which have

been developed by researchers in recent years. We now summarise three classes

of approach for calculating the sensitivities of options by simulation. Firstly, we

introduce a simple method commonly adopted by insurers to estimate VA liability

Greeks; the “bump and revalue” approach.

7.1.1 Bump and revalue approach

This term refers to the concept of simulating the cost of the option under some

base scenarios for key risk-drivers and then again under ‘bumped scenarios’, that is

with the sensitivity parameter increased by some small perturbation, say ∆θ. This

sensitivity parameter could be the current equity index level, say. This is just a

forward difference estimate in the sensitivity parameter. If the function Y (θ) gives

the discounted payoff of an option, then the price of this option is then given by

α(θ) = E[Y (θ)] with respect to a pricing measure. Now let Y1(θ), . . . , Yn(θ) represent

the discounted option payoff along simulation paths 1, . . . , n, the estimator of the

first-order sensitivity would then be given by

∆̂B =
Ȳ (θ + ∆θ)− Ȳ (θ)

∆θ
, (7.1)

for the chosen perturbation size ∆θ, where Ȳ (θ) is the average of Y1(θ), . . . , Yn(θ).

The expectation of this estimator is given by

E
[
∆̂B] =

α(θ + ∆θ)− α(θ)

∆θ
. (7.2)
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The variance will be significantly reduced if the same random number stream is used

in calculating the ‘bumped’ and ‘base’ option prices, as opposed to using independent

random number streams. In practice it is also usually beneficial in terms of accuracy

to simulate a downward perturbed path as well as an upward perturbed path and

calculate a central difference estimator.

The bump and revalue approach can incur fairly large sampling errors, particu-

larly with discontinuous payoff functions and second-order sensitivity estimates. See

Glasserman [Gla03] for some numerical tests of calculating the gamma of a European

option with this type of estimator. Alternative approaches for estimating sensitivi-

ties are, therefore, required by practitioners looking to construct a hedging strategy

for their insurance liabilities. Glasserman introduces two more sophisticated general

approaches to determining the sensitivities of option prices.

7.1.2 Pathwise estimator

The first of these approaches is known as the pathwise derivative method, introduced

in a financial context by Broadie and Glasserman [Bro97]. The estimator of the first-

order sensitivity with respect to θ is given as follows: We can find the derivative of

α(θ) = E[Y (θ)] analytically along each simulation path using

Y ′(θ) = lim
h→0

Y (θ + h)− Y (θ)

h
. (7.3)

If the interchanging of differentiation and taking expectations is justified, that is if

E
[
d

dθ
Y (θ)

]
=

d

dθ
E[Y (θ)], (7.4)

then 1
n

∑n
i=1 Y

′
i (θ) is an unbiased estimator of α′(θ). That is, the average of these

analytic derivatives calculated along each simulation path gives us an unbiased esti-

mate of the sensitivity. This is what we refer to as the pathwise derivative estimator.

Example 7.1. As an example of this method, consider the challenge of estimating

the delta of a call option under the Black-Scholes model (that is, the sensitivity of

the option price with respect to S0 the initial underlying asset value). This can,

of course, be found analytically, but considering this problem helps illustrate the
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method. The discounted payoff of a call option is given by

Y = e−rT max(ST −K, 0), (7.5)

where r, K, T and ST are the risk-free rate, strike price, time to maturity and equity

price at maturity, respectively. Under Geometric Brownian Motion

ST = S0e
(r− 1

2
σ2)T+σ

√
TZ , (7.6)

where Z is a standard normal variate. Applying the chain rule to differentiate Y

with respect to S0 with all other parameters held fixed gives

dY

dS0

=
dY

dST

dST
dS0

. (7.7)

With the term dY
dST

the derivative fails to exist at the strike price, however the event

{ST = K} has measure zero and hence dY
dST

= e−rT I(ST > K) almost surely, where

I(A) represents the indicator function of event A. For the second-term, Equation

7.6 gives dST
dS0

= ST
S0

. Thus, the pathwise estimator for the delta of the call option is

dY

dS0

= e−rT I(ST > K)
ST
S0

. (7.8)

If we wish to find the Black-Scholes gamma, i.e., sensitivity of the delta to the initial

asset price, we have to differentiate W = e−rT I(ST > K) with respect to S0, which

is equivalent to estimating the delta of a digital option. Here W is differentiable

with respect to S0 with probability one, and takes the value zero. However, in this

case

0 = E
[
dW

dS0

]
6= d

dS0

E[W ] (7.9)

and the pathwise estimator is inapplicable. Indeed, the method is generally inap-

plicable when the payoff is discontinuous or in estimating second-order derivatives.

The change in E[W ] with a change in S0 is explained by the fact that it could cause

ST to become in-the-money. Glasserman [Gla03] gives some technical conditions for

when the pathwise method can be applied. However, a less rigorous ‘rule of thumb’

is that it can be used when the payoff function is continuous in the parameter of

interest.
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7.1.3 Likelihood ratio method (LRM)

The second more sophisticated approach to estimating option sensitivities intro-

duced by Glasserman [Gla03] is known as the likelihood ratio method (LRM). The

LRM approach relies on differentiating probability densities rather than payoff func-

tions. As such it does not require smoothness in the payoff function, as was required

in the pathwise derivative method. An overview of this approach for estimating

option price sensitivities will now be given.

Suppose we have a discounted payoff Y expressed as a function f(X), where X is

a m-dimensional vector of different asset prices (or alternatively, one asset price at

multiple valuation dates). Then, assuming that X has a probability density g with

parameter θ, taking the expected discounted payoff with respect to this density gives

E[Y ] = E[f(X(θ))] =

∫
Rm

f(x)gθ(x)dx. (7.10)

Now, similar to the pathwise derivative approach, we assume the order of differenti-

ation and integration can be interchanged. Here, however, this is not such a strong

assumption, as typically densities are smooth functions, whereas payoff functions

are not. This gives

α′(θ) =
d

dθ
E[Y ] =

∫
Rm

f(x)
d

dθ
gθ(x)dx

=

∫
Rm

f(x)
d
dθ
gθ(x)

gθ(x)
gθ(x)dx

= E
[
f(X)

d
dθ
gθ(X)

gθ(X)

]
= E

[
f(X)

d

dθ
ln(gθ(X))

]
. (7.11)

Then, f(X) d
dθ

ln(gθ(X)) gives the likelihood ratio estimator for the sensitivity with

respect to the parameter θ, and this estimator is unbiased. The term d
dθ

ln(gθ(x)) is

often known in statistics as the “score function” and in this context is referred to

as the likelihood ratio weight, since it multiplies the discounted payoff function to

give the sensitivity estimator.

The likelihood ratio method will still be applicable and robust in the case of options

with discontinuous payoff functions (and in estimating second-order sensitivities) as
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this approach looks to differentiate the probability density, rather than the payoff

function.

One important point of note is the LRM weight for the sensitivity with respect to θ

is independent of the form of the payoff function. This means that the LRM could

be applied for an alternative payoff function by simply multiplying this function

with the same LRM weight. This generality of the LRM is a feature which makes

it appealing as a technique for estimating option sensitivities with different types of

payoff in the same simulation run.

Example 7.2. To show how this approach works in practice let us again consider

the problem of estimating the delta of a call option under the Black-Scholes model.

In this case the discounted payoff function is given by f(ST ) = e−rT max(ST −K, 0)

and the lognormal density function of ST is given by

g(x) =
1

xσ
√
T
φ

(
ln
(
x
S0

)
− (r − 1

2
σ2)T

σ
√
T

)
, (7.12)

where φ(·) represents the standard normal density function. The score function in

this case is:
d

dS0

ln(g(x)) =
ln
(
x
S0

)
− (r − 1

2
σ2)T

S0σ2T
. (7.13)

Evaluating this function at ST and multiplying by the discounted payoff of the option

gives an unbiased estimator of the delta

e−rT max(ST −K, 0)
ln
(
ST
S0

)
− (r − 1

2
σ2)T

S0σ2T
. (7.14)

As we simulate for ST using the relationship

ST = S0e
(r− 1

2
σ2)T+σ

√
TZ , (7.15)

this likelihood ratio estimator can be written more simply as

e−rT max(ST −K, 0) · Z

S0σ
√
T
, (7.16)

where the term Z/(S0σ
√
T ) is known as the LRM weight.

To obtain the delta sensitivity of a digital option under the Black-Scholes model we
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just have to multiply this alternative payoff function with the LRM weight which

we have already calculated. This gives

e−rT I(ST > K) · Z

S0σ
√
T
. (7.17)

For reference, the LRM weight for the option gamma, found by an analogous process

of differentiating the density gθ(x) twice with respect to θ, can be easily shown to

be Z2−Zσ
√
T−1

S2
0σ

2T
.

For path-dependent options the LRM weights have a similar structure to the equiv-

alent European option LRM weight for the required sensitivity, except they will

only use information along the path up until the first valuation date. The following

Example demonstrates this.

Example 7.3. The analysis thus far has studied the LRM for European-type pay-

offs, however many unit-linked insurance products exhibit some degree of path de-

pendency in their liabilities. With this in mind let us turn our attention to studying

how the LRM extends to path-dependent options.

Following the example in Glasserman [Gla03], let us consider estimating the sensi-

tivities of an arithmetic Asian call option with m valuation dates. The payoff on

this option at maturity is then given by

Y = f(St1 , . . . , Stm) = e−rT max(S̄ −K, 0), where S̄ =
1

m

m∑
i=1

Sti . (7.18)

Using the Markov property of Geometric Brownian motion, the underlying density

for the equity asset path can be factorised as

g(x1, . . . , xm) = g1(x1|S0)g2(x2|x1) · · · gm(xm|xm−1), (7.19)

where gj(xj|xj−1) is the transition density from time tj−1 to tj, i.e.,

gj(xj|xj−1) =
1

xjσ
√
tj − tj−1

φ(ζj(xj|xj−1)), (7.20)

ζj(xj|xj−1) =
log(xj/xj−1)− (r − σ2/2)(tj − tj−1)

σ
√
tj − tj−1

. (7.21)

Suppose we wish to get an LRM estimator for the delta of the Asian option. From

179



the above factorisation it is clear that S0 is a parameter of the first factor, g1(x1|S0),

only. This means we can express the score function, corresponding to the delta

sensitivity, as

∂ log g(St1 , . . . , Stm)

∂S0

=
∂ log g1(St1|S0)

∂S0

=
ζ1(St1 |S0)

S0σ
√
t1

=
Z1

S0σ
√
t1
, (7.22)

where Z1 = ζ1(St1|S0) is the Gaussian increment which takes us from time zero to

time t1. Likewise, the LRM estimator of the gamma sensitivity has a score function

component which only relies on the equity asset path out to the first valuation date.

Thus, the LRM estimator for the delta sensitivity of an Asian option is given by

e−rT max(S̄ −K, 0) · Z1

S0σ
√
t1
. (7.23)

7.1.4 Mixed estimators for second-order sensitivities

In estimating the second-order sensitivities of an option price, for example the

gamma sensitivity, one can also combine the pathwise and LRM approaches to

create hybrid mixed estimators. This idea is most easily illustrated by means of an

example and we will consider the following from Glasserman [Gla03]:

Example 7.4. Let us consider, again, estimating the gamma Greek of a European

call option under the Black-Scholes model. By applying the pathwise approach to

the LRM delta estimator, we obtain the first of the two mixed gamma estimators:

ΓLR-PW =
d

dS0

(
e−rT max(ST −K, 0)

Z

S0σ
√
T

)
= e−rT I(ST > K)K

Z

S2
0σ
√
T
. (7.24)

Alternatively applying the LRM to the pathwise delta estimator gives the PW-LR

mixed gamma estimator. The pathwise delta estimator has both functional and

distributional dependence on S0. To capture the distributional dependence, the

pathwise estimator is multiplied by the LRM weight. For the functional dependence

another pathwise derivative is taken. This gives the second of the two mixed gamma
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estimators as:

ΓPW-LR = e−rT I(ST > K)
ST
S0

· Z

S0σ
√
T

+
d

dS0

(
e−rT I(ST > K)

ST
S0

)
= e−rT I(ST > K)

ST
S2

0

(
Z

σ
√
T
− 1

)
. (7.25)

These mixed estimators typically give smaller standard errors for the gamma of Eu-

ropean options, than the bump and revalue or pure LRM approaches. See Glasser-

man [Gla03] for a numerical comparison of different estimators for the gamma sen-

sitivity of a European option under the Black-Scholes model.

Essentially, these mixed estimators combine the increased accuracy of the pathwise

estimator and the robustness of the LRM estimator to discontinuous payoff func-

tions, to give a highly accurate and reliable approach for estimating second-order

sensitivities. In Chapter 8 a mixed estimator will be constructed for the gamma

sensitivity of the liability on a stylised unit-linked insurance product. Numerical

tests conducted in this chapter will show this is both efficient and robust in esti-

mating this liability sensitivity, in comparison to the bump and revalue and LRM

approaches.

7.2 Option sensitivities under the Black-Scholes withdrawals model

In this section the Black-Scholes model will be extended to incorporate periodic fixed

withdrawals from the equity asset. This structure is the starting point for modelling

GMWB variable annuity products, which we recall entitles the policyholder to pe-

riodic withdrawals from some underlying equity-linked fund. As far as this author

is aware, this form of model has not been considered elsewhere in the literature.

The derivation and analysis of sensitivity estimators within such a framework are,

therefore, original to this thesis.

Let us describe the stochastic cashflows of some equity asset in time by St. The

returns on this asset are governed by the Black-Scholes model, but at each valuation

date a fixed withdrawal of w is made from the asset. After a withdrawal is made from

the asset, the remaining funds are kept invested in the equity asset until the next

valuation date. We note that in this analysis an assumption regarding policyholder

behaviour is being made: under a typical insurance contract the policyholder will be
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able to choose how much to withdraw at each valuation date, up to some maximum

amount. Here it is assumed they will always withdraw the full amount w. However,

Milevsky and Salisbury [Mil06] show that, under certain conditions, withdrawing

the full amount will be optimal for the policyholder in the sense that it maximises

the value of the embedded option. Therefore, in the context of insurance solvency

testing, such an assumption regarding policyholder behaviour seems reasonable.

At first this may seem to just be a simple case of the Black-Scholes model with

discrete dividends, which is well known to still yield lognormal returns and, hence,

give analytical formulae for option prices and Greeks. However, in that instance

the dividends must be proportional to the current level of the equity-index, i.e.,

the dividend will be 0.05Sti at each dividend date ti for a 5% dividend rate. The

case of fixed withdrawals is quite different. Here, no matter what the level of St

the withdrawal amount is fixed as w. This means that if w is sufficiently large the

value of St will be likely to diminish fairly rapidly in time and eventually (given a

long enough contract term) reach zero. On the other hand, with fixed proportional

dividends, the dividend amount would get smaller in proportion with the lower

the value of St, thus having less of an effect on the underlying dynamics. Indeed,

the returns would still be lognormally distributed, which is not the case with the

subtraction of fixed withdrawals.

To begin our analysis of this equity asset, let us calculate the expected value of the

stock at time T , i.e., we wish to determine E[ST ]. Before we consider the general case

of N withdrawal dates, let us go through the case of three withdrawal dates (with

one of these dates coinciding with time t = T ). The diagram given below shows the

expected cashflows of this equity asset featuring withdrawals. The asset begins with

value S0, and by the first withdrawal date, t = ∆t, the expected value of this asset

will be S0e
r∆T . At this point a withdrawal is made resulting in the expected value

of the asset being given by S0e
r∆T −w. This amount is then expected to accumulate

by er∆T until the next periodic withdrawal date, at which point another withdrawal

will be deducted from the new accumulated amount. The expected cashflows are

shown in full for the case N = 3 in Figure 7.1 overleaf.

182



S0e
r∆t (S0e

r∆t − w)er∆t ((S0e
r∆t − w)er∆t − w)er∆t

↓ ↗ ↓ ↗ ↓
S0e

r∆t − w (S0e
r∆t − w)er∆t − w ((S0e

r∆t − w)er∆t − w)er∆t − w

t1 = ∆t t2 = 2∆t t3 = 3∆t = T

Figure 7.1: Black-Scholes model with constant withdrawals at each timestep: Ex-
ample of calculating the expected value of ST , where T = N∆t and N = 3. The
result of the cashflows in this simple case is E[ST ] = ((S0e

r∆t−w)er∆t−w)er∆t−w.

Generalising this to the case of N timesteps and collecting terms, gives us a fairly

simple expression for the value of E[ST ]. This can then be simplified further by

using the standard formula for the sum of a geometric progression:

E
[
ST
]

= S0e
rN∆t − w

(
1 + er∆t + e2r∆t + e3r∆t + · · ·+ e(N−1)r∆t

)
= S0e

rT − w
(

1− erT

1− er∆t

)
. (7.26)

When valuing and determining the sensitivities of a basic European option written

on this equity asset in Section 7.3, we shall set the strike as being at the money,

that is K = E[ST ], with E[ST ] given by the formula above.

In calculating a pathwise derivative estimate for the delta sensitivity of an option

written on this equity asset, it is critical that we can find an expression for ST

in terms of the shocks along a particular simulation path. With the basic Black-

Scholes model under the risk-neutral measure, the equity price at maturity is given

by ST = S0 exp((r − σ2/2)T + σ
√
TZ), where Z is the shock which takes the asset

from time zero out to time T along a particular path. In this case things are not

so simple, as there are many intermittent timesteps up until maturity at time T , at

each of which a withdrawal is subtracted from the equity asset fund level. One can

easily simulate under the Black-Scholes model with many intermittent timesteps,

indeed this is required for some path-dependent options such as an Asian option.

For such path-dependent assets one would simply find the terminal equity price as

ST = S0 exp((r − σ2/2)T + σ

√
T

N
(Zt1 + · · ·+ ZtN ), (7.27)
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where Zt1 , . . . , ZtN are the respective shocks over each of theN intermittent timesteps

until maturity. For the remainder of this chapter, Zn will be used to represent Ztn

for ease of notation. Taking into account the withdrawals from the fund makes the

situation somewhat more complicated, though.

With some thought this problem can be overcome. By considering the stochastic

cashflows which arise on this equity asset along each simulation path, it is possible

to find an expression for ST in terms of the N shocks which govern the returns of

the equity asset in between each of the withdrawal dates. This expression will now

be derived, but we first look at the cashflows over the first couple of timesteps for

intuition. These cashflows are shown schematically in Figure 7.2, given on the next

page.

The equity asset begins with a value of S0 and by the first withdrawal date, its value

will be given by S0e
(r−σ

2

2
)∆t+σ

√
∆tZ1 , where Z1 is a standard random normal variate

representing the shock out to the first timestep. At this point a withdrawal of w is

taken from the equity asset. The remainder of the equity asset after this withdrawal

is then kept invested and by the second withdrawal date this will have increased by

a factor of e(r−σ
2

2
)∆t+σ

√
∆tZ2 . (This factor may of course be less than one, indicating

a depreciation of the equity fund level from the previous timestep). The new fund

level will then have a withdrawal of w subtracted.

This process continues throughout all N timesteps until the final withdrawal at time

T . The value of the equity asset at time T , inclusive of the final withdrawal, is then

the value of ST which is required in the pathwise approach for estimating the delta

sensitivity of an option.

In practice a max(·, 0) function must also be applied to ensure that the value of the

asset cannot go negative, but this is not shown in the diagram of the cashflows for

clarity of illustration.

Having gained some intuition about the cashflows under the Black-Scholes with-

drawals model, we will now turn our attention to deriving a general formula for the

value of ST . This formula will then be used to find the pathwise estimator for the

delta of a European option written on this product.
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√
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2

2
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√
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2

2
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√
∆tZ2)− w

t1 = ∆t t2 = 2∆t · · ·

Figure 7.2: Black-Scholes model with constant withdrawals at each timestep: Ex-
ample of calculating the value of the equity asset at timesteps t1 = ∆t and t2 = 2∆t
under a simulation path which uses shocks Z1, Z2, . . .. The value at future timesteps
can be found by extending this approach.

Keeping track of all the exponential terms and the w terms which they multiply,

one can find an expression for the equity asset at time T as:

ST =

[
S0

(
exp

(
(r − σ2

2
)∆t+ σ

√
∆tZ1

))
− w

)
×
(

exp

(
(r − σ2

2
)∆t+ σ

√
∆tZ2

))
− w

)
× · · · ×

(
exp

(
(r − σ2

2
)∆t+ σ

√
∆tZN

))]
− w

= S0 exp

(
(r − 1

2
σ2)T + σ

√
∆t
(
Z1 + Z2 + · · ·+ ZN

))
− w

[
1 + exp

(
(r − 1

2
σ2)∆t+ σ

√
∆tZN

)
+ exp

(
(r − 1

2
σ2)2∆t+ σ

√
∆t
(
ZN + ZN−1

))
+ exp

(
(r − 1

2
σ2)3∆t+ σ

√
∆t
(
ZN + ZN−1 + ZN−2

))
+ · · ·

]
= S0 exp

(
(r − σ2

2
)T + σ

√
∆t

N∑
i=1

Zi

)

− w
[
1 +

N−1∑
p=1

(
exp

((
r − σ2

2

)
p∆t+ σ

√
∆t

p∑
q=1

ZN−q+1

)]
. (7.28)

Appealing to this expression for ST , it is easy to see that

dST
dS0

= exp

(
(r − 1

2
σ2)T + σ

√
∆t

N∑
i=1

Zi

)
. (7.29)
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It is worth noting that, unlike for the simple Black-Scholes model, the equity value

is not linear in S0. That is, under the extended Black-Scholes model featuring

withdrawals dST
dS0
6= ST

S0
.

Recalling the discounted payoff function for a European call option,

Y = e−rT max(ST −K, 0). (7.30)

we can now apply the pathwise estimator methodology with the equity following the

Black-Scholes withdrawals dynamics. This results in the following estimator for the

delta of the European call option:

∆PW =
dY

dS0

=
dY

dST
· dST
dS0

= e−rT I(ST > K) exp

(
(r − 1

2
σ2)T + σ

√
∆t

N∑
i=1

Zi

)
. (7.31)

Applying the likelihood ratio method (LRM) to estimate the delta of the European

call option is very similar to how the technique applies to a basic European option.

The likelihood ratio weight along each simulation path is simply given by

Z1

S0σ
√

∆t
, (7.32)

where Z1 is the shock which takes us from time zero out to the first withdrawal

date of the equity asset. The LRM delta estimator is then given by multiplying this

weight by the discounted value of the option along the same simulation path, i.e.,

∆LRM = e−rT max(ST −K, 0)
Z1

S0σ
√

∆t
, (7.33)

where ST is the terminal equity asset price (inclusive of the final withdrawal occur-

ring at time T ). A similar LRM estimator for the gamma of the European option

can be found for this equity asset by employing the LRM weight for the gamma

sensitivity, rather than the one for the delta sensitivity. The expression for this

weight can be found as
Z2

1 − Z1σ
√

∆t− 1

S2
0σ

2∆t
. (7.34)
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When looking to estimate the gamma sensitivity, one can also appeal to the mixed

estimators, which combine the LRM and pathwise methods to produce an estimator

which can potentially have much smaller associated standard error. The first of

these mixed estimators involves applying the pathwise methodology to the LRM

estimator for the delta of the call option. This yields the LR-PW mixed estimator

for the gamma of the option. By differentiating the LRM delta estimator with

respect to S0, an expression for the LR-PW gamma estimator is found as follows:

ΓLR-PW =
d

dS0

∆LRM

=
d

dS0

(
e−rT max(ST −K, 0)

Z1

S0σ
√

∆t

)
=

Z1

S0σ
√

∆t
· e−rT d

dS0

max(ST −K, 0)

+e−rT max(ST −K, 0)
d

dS0

(
Z1

S0σ
√

∆t

)
=

Z1

S0σ
√

∆t
· e−rT I(ST > K) exp

(
(r − 1

2
σ2)T + σ

√
∆t

N∑
i=1

Zi

)
−e−rT max(ST −K, 0) · Z1

S2
0σ
√

∆t

= e−rT I(ST > K) · Z1

S2
0σ
√

∆t
·(

K − ST + S0 exp

(
(r − 1

2
σ2)T + σ

√
∆t

N∑
i=1

Zi

))
. (7.35)

If we apply the LRM to the pathwise estimator for the delta sensitivity, we can

find an alternative mixed estimator for the gamma sensitivity of the option. In this

case the mixed estimator is denoted the PW-LR mixed estimator for the gamma

sensitivity of the European option. Let us proceed to derive an expression for this

second mixed estimator.

When defining the PW-LR estimator for a European option under the Black-Scholes

model, one may recall that the estimator had both a functional dependence on S0 and

a distributional dependence through the density of ST . Multiplying the pathwise

estimator for delta by the score function captures the distributional dependence,

but we still must account for the functional dependence. For the basic Black-Scholes

model this functional dependence term was obtained by taking the pathwise estimate
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and differentiating it by S0, i.e.,

d

dS0

(
e−rT I(ST > K)

ST
S0

)
= −e−rT I(ST > K)

ST
S2

0

. (7.36)

Under the Black-Scholes withdrawals model, we no longer have dST
dS0

= ST
S0

. Indeed,

in this case

ST = S0 exp

(
(r − σ2

2
)T + σ

√
∆t

N∑
i=1

Zi

)

− w
[
1 +

N−1∑
p=1

(
exp

((
r − σ2

2

)
p∆t+ σ

√
∆t

p∑
q=1

ZN−q+1

)]
. (7.37)

However, with the standard Black-Scholes model we had

dST
dS0

=
ST
S0

= exp

((
r − 1

2
σ2
)
T + σ

√
TZ

)
(7.38)

and we were therefore differentiating this exponential term when finding the func-

tional dependence in the PW-LR estimator. Thus, we wish to differentiate the anal-

ogous exponential term in our expression for ST to find this functional dependence

in the case of the Black-Scholes model featuring withdrawals. Let us define

A = exp

(
(r − 1

2
σ2)T + σ

√
∆t

N∑
i=1

Zi

)
. (7.39)

Then, by rearranging the expression for ST in the Black-Scholes withdrawals model,

we get

A =
ST
S0

+
w

S0

[
1 +

N−1∑
p=1

exp

((
r − 1

2
σ2
)
p∆t+ σ

√
∆t

p∑
q=1

ZN−q+1

)]
. (7.40)

This can then be differentiated to yield

dA

dS0

= −ST
S2

0

− w

S2
0

[
1 +

N−1∑
p=1

(
exp

((
r − 1

2
σ2
)
p∆t+ σ

√
∆t

p∑
q=1

ZN−q+1

)]
. (7.41)

The PW-LR mixed estimator for the gamma sensitivity can then be found by adding

the distributional dependence term, which is given by multiplying the pathwise delta
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estimator by the score function. Using the expression for dA
dS0

, the PW-LR mixed

estimator for the gamma sensitivity of the European option is then given by

ΓPW-LR = B(ST ) exp

(
(r − 1

2
σ2)T + σ

√
∆t

N∑
i=1

Zi

)
Z1

S0σ
√

∆t
+B(ST )

dA

dS0

= B(ST ) exp

(
(r − 1

2
σ2)T + σ

√
∆t

N∑
i=1

Zi

)
Z1

S0σ
√

∆t

− B(ST )

S2
0

[
ST + w

[
1 +

N−1∑
p=1

(
exp

((
r − 1

2
σ2
)
p∆t+ σ

√
∆t

p∑
q=1

ZN−q+1

)]]
,

(7.42)

where B(ST ) = e−rT I(ST > K).

7.3 Testing sensitivity estimators

Having developed various estimators for both delta and gamma Greeks of a European

option under a Black-Scholes model featuring withdrawals, let us now perform some

analysis to see how these estimators perform in practice.

In order to test these various approaches, some basic European options will be con-

sidered, with different configurations of volatility, withdrawals dates and withdrawal

amounts. These different option parameters used in the tests are stated in Table

7.1. For cases A-H the strike level is set by K = E[ST ], the formula for which was

derived in Equation 7.26. In cases I-L the same settings of case H are considered,

however we vary the level of the strike to test the methods in these instances.

In Table 7.2 the call option prices under all the cases considered are given for refer-

ence. In Table 7.3 the delta estimates for the options in all the cases are given for

the bump and revalue, pathwise and LRM approaches. One can see the bump and

revalue and pathwise estimates and standard errors are essentially indistinguishable.

This is expected as in the small perturbation limit, the bump and revalue estimator

will converge toward the pathwise estimator. In all cases, the pathwise method is

preferable to the LRM for the delta sensitivity. This is also the case for European

option delta sensitivities under the standard Black-Scholes model.

The gamma estimates from the bump and revalue and LRM are given in Table

7.4. From this table we can see that the LRM estimator generally seems to provide
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Case S0 K r σ w T ∆t

A 100 22.87 4% 20% 20 1 0.25
B 100 22.66 4% 20% 10 1 0.125
C 100 63.47 4% 20% 10 1 0.25
D 100 63.37 4% 20% 5 1 0.125
E 100 22.87 4% 30% 20 1 0.25
F 100 22.66 4% 30% 10 1 0.125
G 100 63.47 4% 30% 10 1 0.25
H 100 63.37 4% 30% 5 1 0.125
I 100 45 4% 30% 5 1 0.125
J 100 55 4% 30% 5 1 0.125
K 100 75 4% 30% 5 1 0.125
L 100 85 4% 30% 5 1 0.125

Table 7.1: Test Cases for Estimators: European call option under the Black-
Scholes model featuring withdrawals. Settings for Cases A-H. In all cases 1, 000, 000
paths have been employed and the perturbation in the bumped paths is 0.05% of
S0. For cases A-H, K = E[ST ]. Cases I-L take Case H settings, but vary the strike.

Case: A B C D E F G H I J K L

Price: 5.88 5.52 6.84 6.66 8.80 8.27 10.24 9.97 20.29 14.00 5.99 3.77
St.Err: 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.01

Table 7.2: Price Estimates: European call option under the Black-Scholes model
featuring withdrawals. Results for each of cases A-L.

estimates for this gamma sensitivity which have smaller standard error than the

bump and revalue estimator. We recall that the bump and revalue method is not

expected to perform well in estimating gamma, since the pathwise estimator (to

which the bump and revalue method converges in the small perturbation limit) is

not available for second-order sensitivities. This is also why there is no pathwise

gamma sensitivity estimator quoted in Table 7.4.

We can, however, combine the pathwise and LRM approaches to create the mixed

estimators for this second-order sensitivity. The resultant mixed estimators and

their standard errors are quoted in Table 7.5, together with a recap of the LRM

estimator results for comparison. From these results, it appears that both the mixed

estimators provide gamma estimates with significantly smaller standard error, than

the LRM (or bump and revalue) estimator. The two mixed estimators also seem to

provide estimates which are fairly consistent with each other for each of the cases

considered.
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Case B&R Est. St. Err. PW Est. St. Err. LRM Est. St. Err.

A 0.5322 5.9× 10−4 0.5322 5.9× 10−4 0.5320 1.6× 10−3

B 0.5314 5.9× 10−4 0.5314 5.9× 10−4 0.5338 1.9× 10−3

C 0.5365 5.9× 10−4 0.5365 5.9× 10−4 0.5364 1.7× 10−3

D 0.5363 5.9× 10−4 0.5362 5.9× 10−4 0.5393 2.1× 10−3

E 0.5483 6.4× 10−4 0.5483 6.4× 10−4 0.5480 1.7× 10−3

F 0.5470 6.5× 10−4 0.5470 6.5× 10−4 0.5498 1.9× 10−3

G 0.5548 6.5× 10−4 0.5548 6.5× 10−4 0.5546 1.8× 10−3

H 0.5544 6.5× 10−4 0.5544 6.5× 10−4 0.5578 2.3× 10−3

I 0.8245 5.4× 10−4 0.8245 5.4× 10−4 0.8283 3.2× 10−3

J 0.6822 6.2× 10−4 0.6822 6.2× 10−4 0.6862 2.7× 10−3

K 0.3906 6.3× 10−4 0.3906 6.3× 10−4 0.3928 1.8× 10−3

L 0.2751 5.9× 10−4 0.2751 5.9× 10−4 0.2774 1.5× 10−3

Table 7.3: Delta Estimates: European call option under the Black-Scholes model
featuring withdrawals. Results for each of cases A-L.

Case B&R Est. St. Err. LRM Est. St. Err.

A 0.02801 6.1× 10−4 0.02691 2.8× 10−4

B 0.02942 6.3× 10−4 0.02934 4.5× 10−4

C 0.02238 5.5× 10−4 0.02307 3.0× 10−4

D 0.02310 5.5× 10−4 0.02460 4.9× 10−4

E 0.01802 4.9× 10−4 0.01788 2.0× 10−4

F 0.01908 5.0× 10−4 0.01954 3.2× 10−4

G 0.01511 4.5× 10−4 0.01530 2.1× 10−4

H 0.01612 4.7× 10−4 0.01637 3.5× 10−4

I 0.01077 3.4× 10−4 0.01135 4.7× 10−4

J 0.01489 4.2× 10−4 0.01504 4.0× 10−4

K 0.01500 4.7× 10−4 0.01564 2.8× 10−4

L 0.01334 4.7× 10−4 0.01348 2.4× 10−4

Table 7.4: Gamma Estimates: European call option under the Black-Scholes
model featuring withdrawals. Results for each of cases A-L.

Overall, these tests show that all the Monte Carlo techniques for estimating option

sensitivities considered earlier in the report can be extended to the Black-Scholes

withdrawals model. Furthermore, the same advantages and disadvantages of each

approach under the basic Black-Scholes model seem to apply when we incorporate

withdrawals. That is, for the delta sensitivity the pathwise approach should be the

preferred technique, since it gives the lowest variance in estimating this Greek and

only requires a base simulation run and no further perturbed runs. For the gamma

sensitivities, the mixed estimators provide the lowest standard errors and also only

require a base simulation run.
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Case LRM Est. St. Err. PW-LR Est. St. Err. LR-PW Est. St. Err.

A 0.02691 2.8× 10−4 0.02696 7.5× 10−5 0.02696 6.5× 10−5

B 0.02942 4.5× 10−4 0.02882 1.1× 10−4 0.02880 9.6× 10−5

C 0.02307 3.0× 10−4 0.02310 7.7× 10−5 0.02310 6.6× 10−5

D 0.02460 4.9× 10−4 0.02391 1.1× 10−4 0.02388 9.6× 10−5

E 0.01788 2.0× 10−4 0.01793 5.4× 10−5 0.01793 4.3× 10−5

F 0.01954 3.2× 10−4 0.01917 7.8× 10−5 0.01914 6.4× 10−5

G 0.01530 2.1× 10−4 0.01533 5.6× 10−5 0.01533 4.3× 10−5

H 0.01637 3.5× 10−4 0.01589 8.0× 10−5 0.01586 6.3× 10−5

I 0.01135 4.7× 10−4 0.01055 9.2× 10−5 0.01052 6.6× 10−5

J 0.01504 4.0× 10−4 0.01444 8.6× 10−5 0.01440 6.5× 10−5

K 0.01564 2.8× 10−4 0.01528 7.1× 10−5 0.01525 6.0× 10−5

L 0.01348 2.4× 10−4 0.01318 6.4× 10−5 0.01315 5.5× 10−5

Table 7.5: Gamma mixed Estimates: European call option under the Black-
Scholes model featuring withdrawals. Results for each of cases A-L.

7.4 Liability sensitivities under the Black-Scholes withdrawals model

In the previous section, the problem of estimating the sensitivities of a European

option under the Black-Scholes model featuring withdrawals was considered. This

is, however, still quite different to the challenge of estimating the sensitivities of the

liabilities on variable annuity contracts. With a European option the payoff consists

of a maximum function, involving the terminal asset price and some chosen strike

(which will typically not be too close to zero). On the other hand, a liability will

be modelled by a maximum function which will only be non-zero when the asset

price is equal or close to zero. In this section we will investigate how the estimators

developed can be extended to liability sensitivities.

To determine the form of payoff representing an insurance liability, we must first

understand what constitutes a liability to an insurer. Let us imagine that the

underlying equity index is now some fund owned by a policyholder. Furthermore,

let us imagine some insurance company has guaranteed that the policyholder will

receive the agreed withdrawals for the lifetime of the contract. What will happen if,

due to poor equity performance and the policyholder withdrawals, the fund runs out

of money, but the term of the contract has not been reached yet? Under the terms of

the contract, the policyholder is still entitled to receive the remaining withdrawals.

In such circumstances, the insurer then becomes responsible to meet all the future

withdrawals due to the policyholder out of its own reserves. The money required to
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do this is what we refer to as a liability to the insurer. Thus, having described what

an insurance liability is, let us now model this mathematically.

Before a formula for the liability can be constructed, the notation for the cashflows on

the equity fund must be amended slightly. Let us now think of St as the stochastic

cashflows on the policyholders fund, which is simply the result of their premium

invested wholly in some equity index. Again some fixed withdrawals will be deducted

from this fund at specific, periodic valuation dates. We define S−t to be the fund level

at valuation time t before a withdrawal has been made and S+
t after the required

withdrawal has been deducted and paid to the policyholder. This can be expressed

mathematically as: S−t = S+
t−1 exp

(
(r − 1

2
σ2)∆t+ σ

√
∆tZt

)
S+
t = S−t − w.

(7.43)

The liability cashflow at any given valuation date can then be expressed as Lt =

max(w − S−t , 0) and the overall liability for the insurer resulting from this contract

is then given by the sum of the discounted liability cashflows at all the valuation

dates, i.e.,

L =
N∑
t=1

e−rt∆t max(w − S−t , 0). (7.44)

We now wish to estimate the first- and second-order sensitivities of this liability,

L, with respect to the initial fund level, S0, using the various approaches employed

in Section 7.2. Extending the bump and revalue approach will present us with no

new challenges, so we will begin by developing a pathwise estimator for the delta

sensitivity of the liability L.

Applying the pathwise methodology to the liability, requires us to estimate dL
dS0

along

each simulation path. The derivative operator can be taken inside the summation

and thus our problem becomes one of estimating dLt
dS0

at each valuation date along

each path within the simulation.

This derivative can be expressed as

dLt
dS0

=
dLt
dS−t

· dS
−
t

dS0

= −I(w > S−t ) · dS
−
t

dS0

. (7.45)
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To calculate
dS−t
dS0

, we use the formulae for the dynamics of the fund given in Equation

7.43. This calculation proceeds recursively, as follows:

dS−t
dS0

=
dS−t
dS+

t−1

·
dS+

t−1

dS0

=
dS−t
dS+

t−1

·
dS+

t−1

dS−t−1

·
dS−t−1

dS0

=
dS−t
dS+

t−1

·
dS+

t−1

dS−t−1

·
dS−t−1

dS+
t−2

·
dS+

t−2

dS−t−2

· · · · · · dS
−
2

dS+
1

· dS
+
1

dS−1
· dS

−
1

dS0

= exp

(
(r − 1

2
σ2)∆t+ σ

√
∆tZt

)
exp

(
(r − 1

2
σ2)∆t+ σ

√
∆tZt−1

)
· · ·

= exp

(
(r − 1

2
σ2)t∆t+ σ

√
∆t

t∑
i=1

Zi

)
, (7.46)

where in the penultimate line above we have used the fact that dS+
n /dS

−
n = 1 for

n = 1, . . . , t − 1. Taking this expression for the derivative, the pathwise estimator

for the delta sensitivity of the liability can be expressed as

∆PW = −
N∑
t=1

[
e−rt∆t · I(w > S−t ) · exp

(
(r − 1

2
σ2)t∆t+ σ

√
∆t

t∑
i=1

Zi

)]
, (7.47)

where N is the number of timesteps (or valuation dates in the contract) and Zi is

the shock taking the asset from S+
i to S−i+1 along the particular simulation path.

A LRM estimator can also be found for the delta sensitivity of the liability. The

generality of this approach means such an estimator is constructed using exactly

the same LRM weight as was used in the estimator for the European option under

the Black-Scholes withdrawals model, which was given in Section 7.2. Recall, the

formula for this weight was given by Z1

S0σ
√

∆t
, where Z1 is the shock which takes

us from time zero out to the first withdrawal date of the equity asset. In this

instance, however, the LRM estimator will be given by multiplying this weight with

the expression for the liability, given in Equation 7.44. In full, the LRM estimator

for the delta sensitivity of this fund’s liability is given by

∆LRM =

(
N∑
t=1

e−rt∆t max(w − S−t , 0)

)
· Z1

S0σ
√

∆t
. (7.48)

An LRM estimator for the gamma sensitivity of the liability can be found by mul-

tiplying the liability, L, with the weight corresponding to the gamma Greek. The
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formula for this weight is identical to the European option case. This was given in

Equation 7.34.

In the European option tests performed in Section 7.3, the best estimators for the

gamma sensitivity were found to be the mixed estimators. Therefore, we will now

construct these estimators for the case of the gamma sensitivity of the liability in a

similar manner. Firstly, the LR-PW mixed estimator will be developed.

To derive an expression for this estimator, we apply the pathwise methodology to

the LRM estimator for the delta sensitivity of the liability. This proceeds as follows:

ΓLR-PW =
d

dS0

∆LRM

=
d

dS0

[(
N∑
t=1

e−rt∆t max(w − S−t , 0)

)
· Z1

S0σ
√

∆t

]

= −
(

Z1

S0σ
√

∆t

) N∑
t=1

[
e−rt∆t · I(w > S−t ) · exp

(
(r − 1

2
σ2)t∆t

+ σ
√

∆t
t∑
i=1

Zi

)]
−
(

Z1

S2
0σ
√

∆t

)( N∑
t=1

e−rt∆t max(w − S−t , 0)

)
=

Z1

S0σ
√

∆t
·∆PW − Z1

S2
0σ
√

∆t
· L

=
Z1

S0σ
√

∆t
·
(

∆PW − L

S0

)
. (7.49)

If the pathwise estimator for the delta sensitivity of the liability is already being

calculated, then it is fairly simple to combine this with the LRM weight to obtain the

LR-PW estimator for the gamma sensitivity of the liability along each simulation

path.

The PW-LR mixed estimator can also be found for the liability gamma. With

this estimator, both the functional and distributional dependence on S0 must be

accounted for in calculating the derivative of the delta. This makes the calculation

somewhat more complicated, however a PW-LR estimator can still be found in the

following manner:

Recall, the pathwise estimator for the delta sensitivity of the liability is given by

∆PW = −
N∑
t=1

[
e−rt∆t · I(w > S−t ) · exp

(
(r − 1

2
σ2)t∆t+ σ

√
∆t

t∑
i=1

Zi

)]
. (7.50)
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Now, the distributional dependence for the PW-LR mixed gamma estimator is cap-

tured by multiplying the pathwise estimator by the LRM weight for delta. The

functional dependence then also needs to be accounted for, i.e.,

ΓPW-LR = ∆PW · Z1

S0σ
√

∆t
+ Functional Dependence. (7.51)

In order to derive an expression for this functional dependence, let us follow the

approach used for finding the functional dependence for the European option gamma

PW-LR mixed estimator, given in Section 7.2. The functional dependence will

originate through the exponential terms within the summation of Equation 7.50,

similarly to the exponential term A in the European option analysis. In order to

proceed, let us define

Ak = exp

(
(r − 1

2
σ2)k∆t+ σ

√
∆t

k∑
i=1

Zi

)
. (7.52)

Then, following the derivation of the European option gamma PW-LR estimator,

the derivative of Ak can be expressed as
dAk
dS0

= −S+
k

S2
0
− w

S2
0

(
1 +

∑k
p=2

∏p
q=k e

(r− 1
2
σ2)∆t+σ

√
∆tZq

)
, for k = 2,. . . , N.

dAk
dS0

= −S+
1

S2
0
− w

S2
0
, for k = 1.

(7.53)

Taking into account this functional dependence, the gamma PW-LR mixed estimator

can finally be expressed as

ΓPW-LR = ∆PW · Z1

S0σ
√

∆t
−

N∑
t=1

[
e−rt∆t · I(w > S−t ) · dAt

dS0

]
, (7.54)

where the derivatives of At are found recursively, as described above. This is slightly

more difficult to implement than the LR-PW mixed estimator, which can be calcu-

lated without a great deal of further effort, if the pathwise estimator for the delta

sensitivity has already been found.
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Case S0 r σ w T ∆t

A 100 4% 30% 25 1 0.25
B 100 4% 30% 12.5 1 0.125
C 100 4% 30% 6.25 1 0.0625
D 100 4% 30% 35 1 0.25
E 100 4% 30% 17.5 1 0.125
F 100 4% 30% 8.75 1 0.0625
G 100 4% 30% 20 1 0.25
H 100 4% 30% 10 1 0.125
I 100 4% 30% 5 1 0.0625

Table 7.6: Test Cases for Estimators: Liability under the Black-Scholes model
featuring withdrawals. Settings for Cases A-I. In all cases 1, 000, 000 paths have
been employed and the perturbation in the bumped paths is 0.05% of S0.

Case: A B C D E F G H I

Liability: 6.88 6.39 6.13 37.18 37.29 37.38 1.02 0.80 0.70
St. Err: 0.009 0.009 0.008 0.017 0.016 0.015 0.003 0.003 0.002

Table 7.7: Liability Estimates: Liability under the Black-Scholes model featuring
withdrawals. Results for each of cases A-I given in Table 7.6.

7.5 Testing sensitivity estimators: Liability case

Having developed the various estimators for the delta and gamma sensitivities of

the liability in the Black-Scholes withdrawals model, let us now run some tests to

compare their respective efficiencies. These tests will, again, consist of a number of

different parameter configurations which we label as cases A-I. These are given in

Table 7.6. The cases A-C have been chosen such that it is expected that the fund

will be close to zero at the maturity of the contract. Cases D-F have been chosen,

such that the fund is likely to reach zero (resulting in a liability to the insurer)

earlier on in the contract, than in cases A-C, respectively. Cases G-I are set-up in

the opposite manner, i.e., the fund is less likely to reach zero during the lifetime of

the contract, than in cases A-C, respectively.

The expected value of the liabilities to the insurer for this product under cases A-I are

given in Table 7.7. The values found for cases A-C are around the same level. This

is also the situation for cases D-F and cases G-I, respectively. This is not surprising,

since in the configuration of these cases, whenever the number of withdrawal times

is doubled, the withdrawal amount is halved. The results in this table also show that

197



Case B&R Est. St. Err. PW Est. St. Err. LRM Est. St. Err.

A -0.4074 4.1× 10−4 -0.4074 4.1× 10−4 -0.4075 9.9× 10−4

B -0.4107 4.1× 10−4 -0.4107 4.1× 10−4 -0.4114 1.2× 10−3

C -0.4125 4.1× 10−4 -0.4125 4.1× 10−4 -0.4114 1.5× 10−3

D -0.9244 3.1× 10−4 -0.9244 3.1× 10−4 -0.9239 2.8× 10−3

E -0.9444 2.9× 10−4 -0.9444 2.9× 10−4 -0.9473 3.9× 10−3

F -0.9548 2.8× 10−4 -0.9548 2.8× 10−4 -0.9543 5.4× 10−3

G -0.0948 2.3× 10−4 -0.0948 2.3× 10−4 -0.0946 3.9× 10−4

H -0.0825 2.2× 10−4 -0.0825 2.2× 10−4 -0.0824 4.0× 10−4

I -0.0759 2.1× 10−4 -0.0759 2.1× 10−4 -0.0754 4.4× 10−4

Table 7.8: Delta Estimates: Liability under the Black-Scholes model featuring
withdrawals. Results for each of cases A-I given in Table 7.6.

Case B&R Est. St. Err. LRM Est. St. Err.

A 0.01901 5.0× 10−4 0.01893 1.3× 10−4

B 0.01943 5.0× 10−4 0.02068 2.0× 10−4

C 0.02088 5.2× 10−4 0.02121 3.4× 10−4

D 0.00781 4.1× 10−4 0.00715 3.2× 10−4

E 0.00622 3.8× 10−4 0.00661 5.7× 10−4

F 0.00562 3.7× 10−4 0.00468 1.1× 10−3

G 0.00781 2.8× 10−4 0.00803 5.6× 10−5

H 0.00789 2.8× 10−4 0.00784 7.6× 10−5

I 0.00754 2.7× 10−4 0.00756 1.1× 10−4

Table 7.9: Gamma Estimates: Liability under the Black-Scholes model featuring
withdrawals. Results for each of cases A-I given in Table 7.6.

cases D-F produce larger liabilities than cases A-C, respectively. The opposite fact

is true of cases G-I. This makes sense, since larger sized withdrawals occurring at

the same number of timesteps should obviously produce larger expected liabilities.

Let us now turn our attention to how the liability delta sensitivity estimators per-

form. The bump and revalue, pathwise and LRM estimators and corresponding

standard errors for this sensitivity are reported in Table 7.8. Similarly to the Euro-

pean option analysis in Section 7.3, the bump and revalue and pathwise estimators

are consistent both in value and in the size of standard errors for each of the cases

considered. Again, this is due to the bump and revalue method converging to the

pathwise method in the small perturbation limit. The LRM estimates for cases

A-I are also fairly consistent with the corresponding pathwise estimates, however

the standard errors are consistently larger in the LRM. This is further confirmation

that the pathwise method is generally more efficient than the LRM.
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Case LRM Est. St. Err. PW-LR Est. St. Err. LR-PW Est. St. Err.

A 0.01893 1.3× 10−4 0.01897 3.6× 10−5 0.01897 4.2× 10−5

B 0.02068 2.0× 10−4 0.02062 5.3× 10−5 0.02062 6.1× 10−5

C 0.02121 3.4× 10−4 0.02162 7.6× 10−5 0.02161 8.7× 10−5

D 0.00715 3.2× 10−4 0.00717 5.8× 10−5 0.00716 8.4× 10−5

E 0.00661 5.7× 10−4 0.00621 8.9× 10−5 0.00624 1.2× 10−4

F 0.00468 1.1× 10−3 0.00552 1.3× 10−4 0.00552 1.8× 10−4

G 0.00803 5.6× 10−5 0.00807 2.3× 10−5 0.00806 2.5× 10−5

H 0.00784 7.6× 10−5 0.00784 2.8× 10−5 0.00784 3.0× 10−5

I 0.00756 1.1× 10−4 0.00760 3.5× 10−5 0.00760 3.7× 10−5

Table 7.10: Gamma mixed Estimates: Liability under the Black-Scholes model
featuring withdrawals. Results for each of cases A-I given in Table 7.6.

In Table 7.9, the bump and revalue and LRM estimates and standard errors are

given for the liability gamma sensitivities for each of the test cases. Again, the two

methods seem to provide estimates which are in fairly close agreement for each of the

cases A-I. Generally, the LRM provides estimates with lower variance than the bump

and revalue approach, a fact which was also found in the European option analysis.

This can be attributed to the fact that the pathwise approach is inapplicable for

second-order sensitivities, thus the similar bump and revalue method is unlikely to

give efficient estimates for gamma.

In the European option analysis, the mixed gamma sensitivity estimators outper-

formed both the bump and revalue and the LRM approaches, so it is likely that

this will remain the case in estimating the gamma sensitivity of the liability. The

estimates for this sensitivity under both the PW-LR and LR-PW mixed estimators

are given in Table 7.10, together with a recap of the LRM estimates for comparison.

The results in this table show that the mixed estimators do, indeed, outperform the

gamma estimators of Table 7.9 for all the cases considered. For each of the cases

A-I, the gamma estimates for the PW-LR and LR-PW methods are very close to

one another, and the LRM approach also gives broadly similar estimates to those

given by the two mixed estimators.

In conclusion, these tests show that the various Monte Carlo estimators for option

Greeks can be adapted to estimate the sensitivities of the liability on the Black-

Scholes withdrawals equity-linked product. Furthermore, the same advantages and

disadvantages found for each of these option sensitivity estimators under the basic

Black-Scholes model seem to apply in this extended setting. Again, the pathwise
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approach performs best for the delta sensitivity and the mixed estimators are most

efficient for the gamma sensitivities. Furthermore, these estimators only require the

base simulation run and no further perturbed simulation path runs.

Overall, this chapter has shown how Monte Carlo estimators can be constructed

for the sensitivities of the liability on an equity-linked product which offers periodic

withdrawals to the policyholder. Such analysis will serve as an excellent guide in

developing similar estimators for the sensitivity of the liability on a realistic unit-

linked life insurance product. This is the purpose of Chapter 8 of the thesis.
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Chapter 8

VA sensitivities under the Heston and Heston-CIR models

8.1 Introduction

As previously discussed in the thesis, one approach insurers can take in managing

the risks they face in selling unit-linked products is to construct a hedging strategy.

Setting up such a scheme involves calculating the key market risk sensitivities (or

Greeks) on which the liability depends. The complex, path-dependent nature of

many products means these sensitivities must be estimated by Monte Carlo simu-

lation. Standard practice amongst insurers is to measure such sensitivities using a

“bump and revalue” method. However, as well as requiring multiple valuations, this

approach can be unreliable for higher order Greeks, for example in estimating the

gamma sensitivity.

In this chapter we extend the standard Monte Carlo approaches for estimating option

price sensitivities to the problem of estimating the sensitivities of the liability of a

stylised unit-linked insurance product. This will be similar to the analysis given in

Chapter 7, however here these approaches are adapted to be compatible with an

economic model which is more realistic than the Black-Scholes framework. This will

incorporate both stochastic volatility and stochastic interest rates. The estimators

developed can also be easily generalised to work with the addition of equity jumps.

A review of the literature which is relevant to the analysis which will be conducted

in this chapter is given in Section 1.1. To begin the process of developing the

sophisticated liability sensitivity estimators, we will now discuss how the likelihood

ratio method (LRM) can be adapted to work under the Heston and SVJD models

which were introduced earlier in the thesis.

8.2 Conditional likelihood ratio method (CLRM)

In order to use the likelihood ratio method or construct the mixed second-order

sensitivity estimators, described in Section 7.1.3 and 7.1.4, one must be able to

derive the probability density function for the underlying asset returns. With the
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Black-Scholes model, this density is easily found in closed-form, but it is well known

that this model does not give a realistic description of true market dynamics (see

for example Duffie and Pan [Duff97]). There is, however, an elegant approach which

allows us to incorporate stochastic volatility and discontinuous jumps into the equity

returns process, whilst still being able to utilise the tractability of the Black-Scholes

model.

The conditional likelihood ratio method (CLRM) was introduced by Broadie and

Kaya [Bro04] for the SVJD equity model, which was described in Section 5.2.

An original innovation of this thesis is to extend this approach to also incorpo-

rate stochastic interest rates through the inclusion of the Cox-Ingersoll-Ross (CIR)

model. However, to introduce and test the CLRM, let us first describe this technique

in the context of the SVJD model.

Consider the problem of estimating the sensitivities of a European option written

on an equity asset whose dynamics are modelled by a Heston model. An expression

for ST can be found in terms of the initial asset price S0 as

ST = S0 exp(YT ) exp

(
rT − 1

2
(1− ρ2)

∫ T

0

Vtdt+
√

1− ρ2

∫ T

0

√
VtdW

Ind
t

)
, (8.1)

where YT = −1
2
ρ2
∫ T

0
Vtdt + ρ

∫ T
0

√
VtdW

V
t . The idea behind how to derive such an

expression for ST will be discussed in the context of the more sophisticated Heston-

CIR model in Section 8.3. Similar logic can be applied here to give the above

formula.

It can be seen from this expression that conditional on the variance process Vt, for

t ∈ [0, T ), ST is given by a lognormal distribution. With this insight, we can now

appeal to any theoretical results which have been developed for the Black-Scholes

model (for each fixed realisation of the variance process). In particular, the likelihood

ratio weights (which are easily found for the Black-Scholes model) can be applied

to the Heston model if one first conditions on the variance process. Also, the price

of a European put option under the Heston SV model can now be expressed as

pBS

(
S0 exp(YT ), K, T, r,

√
(1− ρ2)

T

∫ T

0

Vtdt

)
, (8.2)

where pBS(S0, K, σ, r, T ) is the Black-Scholes formula for the price of a European put
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option in terms of the initial asset price S0, strike price K, (constant) volatility of

the underlying asset σ, risk-free interest rate r and time to maturity T . The various

formulae for the Greeks under the Black-Scholes model can also be used to determine

the conditional option sensitivities under the Heston model, with S0 exp(YT ) and

(1−ρ2)
T

∫ T
0
Vtdt replacing S0 and σ.

Lewis [Lew02] and [Lew01] noted that the problem of pricing options and finding

sensitivities reduces to an expectation over the risk-adjusted volatility process alone.

This idea is made more concrete by employing the Mixing Theorem of Romano and

Touzi [Rom97], however this theorem is essentially a formalisation of the result we

have derived above. Based on this insight Lewis developed the Monte Carlo mixing

method, where one simulates a large number of volatility process paths and along

each path values the option or calculates the required sensitivity analytically. An

estimate for the price of the option or the Greek required is then given by averaging

the values calculated over all the simulated volatility process paths.

The likelihood ratio weights for the Heston model can also now be determined given

a fixed realistation of the underlying variance process:

By defining

ξT = exp (YT ) = exp

(
− 1

2
ρ2

∫ T

0

Vtdt+ ρ

∫ T

0

√
VtdW

V
t

)
, (8.3)

σ̄T =

√
(1− ρ2)

T

∫ T

0

Vtdt, (8.4)

dT =
ln
(
ST
S0ξT

)
− (r − 1

2
σ̄2
T )T

σ̄T
√
T

, (8.5)

the likelihood ratio weights for the delta, gamma and rho of a European option

(with time T until maturity) can be expressed, respectively, as

∆w
T =

dT

S0σ̄T
√
T
, (8.6)

Γw
T =

d2
T − dT σ̄T

√
T − 1

S2
0 σ̄

2
TT

, (8.7)

Pw
T = −T +

d
√
T

σ̄T
. (8.8)

These are just the Black-Scholes likelihood ratio weights from Section 7.1.3 with

S0ξT replacing S0 and σ̄T replacing σ in the Black-Scholes model.
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We approximate the first integral in Equations 8.3-8.5 with a discrete sum as

∫ T

0

Vtdt ≈
T−∆t∑
i=0

Vi∆t (8.9)

and the following relationship is used to determine the second integral

∫ T

0

√
VtdW

V
t =

1

σv

(
κθT − κ

∫ T

0

Vtdt+ VT − V0

)
. (8.10)

The above identity is also used in deriving the Andersen discretisation scheme (which

is employed in the following analysis). Of course, by approximating the first integral

using a discrete sum we introduce possible further bias into our resultant estimate

of the option sensitivities. However, by increasing the number of timesteps this bias

can be reduced. Broadie and Kaya [Bro06] proposed a method of determining these

integrals exactly by using Fourier inversion techniques to invert the characteristic

function of the variance distribution, as mentioned in Section 5.3.3.

Having derived the conditional likelihood ratio weights, we will now give a precise

overview of how these can be used to estimate the sensitivities of a European option

under the Heston model through Monte Carlo simulation. This will be given in

the form of a series of high-level steps. A visual representation of the conditional

simulation used in the CLRM is given in Figure 8.1.

Conditional Likelihood Ratio Method Overview:

1. Simulate a realisation of the variance process in the Heston model using one

of the approaches introduced in Sections 5.3. All the analysis in this thesis

simulating the Heston, SVJD and Heston-CIR models will use the Andersen

method, which was described in Section 5.3.2.

2. Simulate a realisation of the equity asset return process, given the variance

process generated in Step (1).

3. Calculate the likelihood ratio weights, given the realisations of the variance

and asset price processes.

4. Calculate the discounted payoff of the option, given the realisations of the

variance and asset price processes.
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5. Estimate the sensitivities along this path by multiplying the values that were

output in Steps (3) and (4).

6. Go to step (2) and generate another realisation of the asset process (but using

the same variance process realisation). Steps (2)-(5) should be repeated until

the required number of asset paths (per variance path) has been reached, say

N paths. Once this number has been reached, proceed to step (7).

7. Go to step (1) and generate a new realisation of the variance process. Steps

(1)-(7) should be repeated until the required number of variance process paths

has been performed. Denote this number M . Now move to step (8).

8. In total we should now have MN estimates of each sensitivity required. Tak-

ing the average of these estimates will give the conditional likelihood ratio

estimator for the required sensitivities of the option.

Figure 8.1: A visual representation of the conditional simulation set-up with 5 vari-
ance paths and 3 asset price paths. These asset paths are conditional on the re-
alisation of the adjacent variance path. The graphic also shows the groupings of
independent asset paths, used in calculating the standard errors of estimators.
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The likelihood ratio method can also incorporate discontinuous jumps in the equity

model, without much extra effort. Under the SVJD model we now condition both

on a realisation of the Heston variance process and the observed number of jumps.

The only difference between the likelihood ratio weights for the SVJD and Heston

models is in the calculation of ξT and σ̄T terms, which was performed by Equations

8.3 and 8.5 for the Heston model. For the SVJD model, we replace these by

ξT = exp

(
nj(µS + σ2

S/2)− λµ̄T − 1

2
ρ2

∫ T

0

Vtdt+ ρ

∫ T

0

√
VtdW

V
t

)
, (8.11)

σ̄T =

√
njσ2

S + (1− ρ2)
∫ T

0
Vtdt

T
, (8.12)

where nj, µS, σS, µ̄ and λ are as denoted in Section 5.2.

With ξT and σ̄T now modified to take into account the addition of the jumps in the

equity returns, the conditional asset price at time T can be expressed as

ST = S0ξT exp

(
(r − 1

2
σ̄T )T + σ̄T

√
TZ

)
, (8.13)

where Z is a standard normal variate. Thus, lognormally distributed equity returns

can be obtained under the SVJD model by first conditioning on the variance process

and the number of the lognormally distributed asset price jumps. The conditional

likelihood ratio weights are then just given by the same formulae as for the Heston

model (Equations 8.6-8.8), but with the above expressions for the ξT and σ̄T used

therein.

An important point worth mentioning is the way in which the standard error of

the CLRM estimator is calculated. The MN pathwise sensitivity estimates are not

independent, due to the fact that there are M groups of N estimates which are all

based upon the same variance process realisation. Therefore, it is not valid to simply

take the standard error as σall/
√
MN , where σall is the standard deviation of all the

MN estimates together. Instead, we group the MN paths into M subgroups each

of size N , where each estimate in a subgroup is based upon the same realisation

of the variance process. The average of each subgroup is then taken, resulting

in M ‘averaged’ estimates. These ‘averaged’ estimates will now all be based on

independent realisations of the variance process. Thus, if we let σ∗ denote the

standard deviation of the M ‘averaged’ estimates, the conditional likelihood ratio
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estimator standard error is then given by σ∗/
√
M . This approach for calculating

the standard error of a CLRM estimator is illustrated graphically in Figure 8.1.

In the Broadie and Kaya paper, the formula for the likelihood ratio weights are

not derived, therefore this thesis will demonstrate how they can be found. However,

rather than give this derivation in the context of the SVJD model, we will derive the

weights for the more sophisticated Heston-CIR model in the next section. The same

logic which is followed there can be used to derive the weights for the SVJD model.

Detailing this calculation is a welcome addition to the literature, where a clear

reference to a paper showing how to derive such formulae is lacking. Furthermore,

the derivation of the likelihood ratio weights under the more sophisticated Heston-

CIR economic model is a wholly original contribution of this thesis.

To compare the CLRM with the simple bump and revalue approach, some tests

will be performed determining the delta and gamma sensitivities on a European put

option, where the underlying asset follows the Heston model. The estimators will be

determined using two different simulation approaches. Firstly, the standard bump

and revalue approach will be used to give estimates of the value of the option and

the sensitivities by generating upward and downward perturbed simulation paths,

as well as the base simulation run. Next, the CLRM estimators will be found by

performing a new simulation involving just a base run. In order to have a fair

comparison of the two approaches, the number of timesteps was kept at 50/year

in all the simulations and the number of paths was chosen so both the bump and

revalue and CLRM simulation approaches took approximately the same time to

run. This was set as 40,000 paths for the bump and revalue simulations and 10,000

variance paths with 10 asset price paths per variance path for the CLRM. In all the

analysis which follows the option considered is a European put option with S0 = 100,

r = 4%, T = 6 and asset process-volatility process correlation ρ = −0.7.

The ‘analytical’ values for the option price and sensitivities will also be quoted

in the results given. These ‘analytical’ (often denoted semi-analytical) values are

found numerically to high accuracy using Fourier inversion techniques and numerical

integration. A full introduction to the semi-analytical valuation of European option

prices under the Heston model was given in Chapter 6 of this thesis.

In Table 8.1 the estimates for the European option prices under both simulation ap-
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S0 K κ σV θ V0 B&R St.Err. CLRM St.Err. Analyt. Val.

100 90 2 0.3 0.04 0.04 6.09 0.08 6.02 0.11 6.12
100 100 2 0.3 0.04 0.04 8.29 0.10 8.14 0.14 8.30
100 110 2 0.3 0.04 0.04 10.84 0.11 10.84 0.17 10.84
100 90 1 0.6 0.04 0.04 5.99 0.10 6.08 0.15 6.07
100 100 1 0.6 0.04 0.04 7.74 0.12 7.63 0.18 7.83
100 110 1 0.6 0.04 0.04 9.78 0.13 9.83 0.20 9.88
100 90 4 0.1 0.04 0.04 5.81 0.07 5.74 0.10 5.83
100 100 4 0.1 0.04 0.04 8.11 0.08 8.04 0.12 8.12
100 110 4 0.1 0.04 0.04 10.79 0.10 10.57 0.15 10.81

Table 8.1: Price Estimates: Heston model. Two different simulation set-ups –
standard MC for the bump and revalue; conditional simulation for the CLRM.

proaches are given for five different model parameter settings. The estimated prices

under the bump and revalue and CLRM are similar, with neither being consistently

closer to the analytical value for all parameter settings. The bump and revalue

approach, however, does have consistently smaller standard errors, by a factor of

around 1.5. This is expected since the CLRM requires a conditional simulation

framework which will not give as many independent equity price paths, as will be

simulated in the bump and revalue method. However, efficient valuation of the cur-

rent liability is not of upmost concern. It is efficient estimators for the sensitivities

of this liability which are needed.

In Table 8.2 the estimates for the delta sensitivities of the option are given for both

simulation approaches, together with the analytical value obtained by the Fourier

inversion techniques outlined in Chapter 6. These results seem to show that the

bump and revalue approach consistently gives estimates which are closer to the

analytical value than the CLRM. Furthermore, the standard errors associated with

these estimates are around 0.75 times the size of the standard errors associated with

the CLRM. This trend is consistent with the previous literature on this topic. See

Glasserman [Gla03], for example. Generally, the pathwise approach is more efficient

than the likelihood ratio method when it is applicable (and in such circumstances

the bump and revalue method will give results which are very similar to the pathwise

estimator if it is employed with a small perturbation).

The problem with the pathwise approach is that it is inapplicable when the payoff

function is discontinuous, or in estimating second-order sensitivities. This was dis-

cussed in more detail in Section 7.1.2. With the similarity between the pathwise and
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S0 K κ σV θ V0 B&R St.Err. CLRM St.Err. Analyt. Val.

100 90 2 0.3 0.04 0.04 -0.1203 0.0013 -0.1183 0.0016 -0.1187
100 100 2 0.3 0.04 0.04 -0.1549 0.0014 -0.1543 0.0019 -0.1532
100 110 2 0.3 0.04 0.04 -0.1916 0.0016 -0.1910 0.0021 -0.1906
100 90 1 0.6 0.04 0.04 -0.0857 0.0011 -0.0895 0.0015 -0.0855
100 100 1 0.6 0.04 0.04 -0.1113 0.0013 -0.1098 0.0017 -0.1117
100 110 1 0.6 0.04 0.04 -0.1421 0.0015 -0.1465 0.0020 -0.1423
100 90 4 0.1 0.04 0.04 -0.1302 0.0013 -0.1292 0.0017 -0.1301
100 100 4 0.1 0.04 0.04 -0.1687 0.0015 -0.1673 0.0019 -0.1683
100 110 4 0.1 0.04 0.04 -0.2077 0.0016 -0.2048 0.0021 -0.2086

Table 8.2: Delta Estimates: Heston model.

the bump and revalue approaches, it might be expected that the bump and revalue

approach will also give poor results in such circumstances. With this in mind, let

us investigate the success of the bump and revalue and CLRM in estimating the

gamma sensitivity of the European put option under the Heston model dynamics.

In Table 8.3 the estimates for the gamma sensitivities are given for the bump and

revalue and CLRM approaches. It is immediately clear from these results that our

intuition was correct and the bump and revalue approach gives very large standard

errors in the option price gamma estimates for all the different parameter settings.

On the other hand the CLRM gives significantly smaller standard errors in esti-

mating this sensitivity. The very large standard errors from the bump and revalue

approach essentially makes this method inapplicable for estimating gamma.

Overall, these tests show that the bump and revalue approach can give good results

for option prices and sensitivities when the payoff function is continuous. However, in

instances when this payoff function is discontinuous, and in estimating second-order

sensitivities, this method breaks down and becomes impractical. With the com-

plex features of many unit-linked insurance products, such as ratchets, policyholder

bonuses and the possibility of policyholder lapse, the payoff functions associated

with the insurance liabilities of these are likely to be discontinuous in nature. Under

such discontinuities, the basic bump and revalue approach will become very ineffi-

cient in estimating second-order sensitivities. The performance of the CLRM, on

the other hand, does not deteriorate in the presence of discontinuities. Therefore,

this approach could be of great benefit to practitioners looking to gamma hedge

their unit-linked insurance liabilities. In the next section this CLRM technique will

be extended to work under both stochastic interest rates and stochastic volatility.
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S0 K κ σV θ B&R St.Err. CLRM St.Err. Analytical

100 90 2 0.3 0.04 0.002403 0.00044 0.002981 5.61× 10−5 0.002956
100 100 2 0.3 0.04 0.003953 0.00058 0.003638 6.49× 10−5 0.003608
100 110 2 0.3 0.04 0.003800 0.00060 0.004265 7.63× 10−5 0.004241
100 90 1 0.6 0.04 0.002392 0.00041 0.002338 5.04× 10−5 0.002163
100 100 1 0.6 0.04 0.002704 0.00049 0.002865 5.87× 10−5 0.002836
100 110 1 0.6 0.04 0.003404 0.00061 0.003987 7.70× 10−5 0.003613
100 90 4 0.1 0.04 0.004064 0.00057 0.003310 5.94× 10−5 0.003305
100 100 4 0.1 0.04 0.004040 0.00062 0.003901 6.92× 10−5 0.003943
100 110 4 0.1 0.04 0.005276 0.00072 0.004473 7.93× 10−5 0.004521

Table 8.3: Gamma Estimates: Heston model. V0 = 0.04 in all the tests above.

8.3 CLRM for the Heston-CIR model

The conditional likelihood ratio method (CLRM) has been introduced for the Heston

and SVJD models of equity index returns. This followed the paper of Broadie and

Kaya [Bro04]. In this section, this method will be extended to also incorporate

stochastic interest rates through the Cox-Ingersoll-Ross (CIR) model. We call this

the Heston-CIR model. This could be further extended to also include discontinuous

jumps in the equity process, in a manner similar to the previous section. However,

this has been omitted here for ease of illustration of the method. In full, the system

of stochastic differential equations which govern our asset price dynamics in the

Heston-CIR model is given by:

dSt = rtStdt+
√
VtStdW

S
t , (8.14)

dVt = κV (θV − Vt)dt+ σV
√
VtdW

V
t , (8.15)

drt = κr(θr − rt)dt+ σr
√
rtdW

r
t . (8.16)

The variance and interest rates both follow exactly the same form of stochastic

process (but calibrated with different parameters). The Brownian motions for the

asset, volatility and interest rate processes are correlated as follows:

corr(W S
t ,W

V
t ) = ρS,V , (8.17)

corr(W S
t ,W

r
t ) = ρS,r, (8.18)

corr(W V
t ,W

r
t ) = ρV,r. (8.19)
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This model has rarely appeared in the financial mathematics literature. Indeed,

when the following analysis was first performed, this author was not aware of the

model appearing in any other article. Later, it came to his attention that Grzelak

and Oosterlee [Grz10] had constructed an affine approximation to the Heston-CIR

model. This article complements the analysis in this thesis, since an affine approxi-

mation for this model gives an efficient means for calibrating the Heston-CIR model

to market data. This would obviously be a key concern to practitioners looking to

use this model in estimating insurance liability sensitivities.

In order to construct this correlation structure among the three normally distributed

risk-drivers in this model we employ a Cholesky decomposition. Let (Z1, Z2, Z3) be

independent standard normal variates. Then standardised increments (ZV , Zr, ZS)

for the variance, interest rate and equity processes are constructed by setting

(Zv, Zr, ZS)′ = A · (Z1, Z2, Z3). (8.20)

Here A is the lower-triangular matrix satisfying A ·A′ = ρ, where ρ is the correlation

matrix constructed from ρS,V , ρS,r and ρV,r. The correlation matrix ρ is assumed to

be positive-definite. For completeness, the matrix A is given by:

A =


1 0 0

ρV,r
√

1− ρ2
V,r 0

ρS,V
ρS,r−ρS,V ρV,r√

1−ρ2V,r

√
1− ρ2

S,V −
(ρS,r−ρS,V ρV,r)2

1−ρ2V,r

 (8.21)

The random variable Zr will now have correlation ρV,r with ZV . Also, the random

normal variate ZS will have correlation ρS,V with ZV and correlation ρS,r with Zr.

This completes our Cholesky decomposition for the correlation structure of the three

risk-drivers out to the first timestep. Now by conditioning on a realisation of the

variance and interest rate processes, the asset returns become lognormal. One can

then use the same form of LRM weights as for the Black-Scholes models, but with

the addition of a couple of extra factors to account for the conditional information.

Let us explore this idea further. Using the Cholesky decomposition the asset price
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dynamics can now be expressed as

dSt
St

= rtdt+
√
VtdW

S
t

= rtdt+
√
Vt

(
a31dW

I1
t + a32dW

I2
t + a33dW

I3
t

)
, (8.22)

where W I1
t , W I2

t and W I3
t are three independent Brownian motion increments, cor-

responding to Z1, Z2 and Z3 in our discretisation and aij is the element in row i and

column j of matrix A. This construction for dSt expresses the asset price dynamics

in terms of all the risk-drivers in the system of SDEs, which together dictate the

behaviour of the asset returns.

In theory an interest rate process with a larger number of risk-factors could be

used. One would employ a Cholesky decomposition to correlate all the risk-drivers

as required and express the asset price dynamics, dSt, in terms of all these other

risk-drivers. One would however do this using a numerical Cholesky decomposition

program to find the coefficients.

To proceed towards a conditional lognormal representation of the asset returns,

we need an expression for the stochastic process representing the logarithm of the

returns, Xt. This expression for dXt is given as

dXt = rtdt+ dYt −
Vt
2
a2

33dt+
√
Vta33 dW

I3
t , (8.23)

with

dYt = −1

2
Vta

2
31dt−

1

2
Vta

2
32dt+

√
Vta31dW

I1
t +

√
Vta32dW

I2
t . (8.24)

A short proof of the above result will now be given.

Proof. Recall, that by employing the Cholesky decomposition the asset price dy-

namics under the Heston-CIR model were expressed in Section 8.3 as

dSt
St

= rtdt+
√
VtdW

S
t

= rtdt+
√
Vt

(
a31dW

I1
t + a32dW

I2
t + a33dW

I3
t

)
, (8.25)

where W I1
t , W I2

t and W I3
t are three independent Brownian motions.
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Using this formula the expression for the stochastic process representing the loga-

rithm of the returns, Xt, can be found as follows. Let g(t, x) be such that Xt =

g(t, St) = lnSt. Then,

∂g

∂t
= 0,

∂g

∂x
=

1

x
and

∂2g

∂x2
= − 1

x2
. (8.26)

By employing Itô’s formula, the stochastic process for the logarithm of the asset

returns, Xt, under the Heston-CIR model, is then given by:

dXt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dSt +

1

2

∂2g

∂x2
(t,Xt)(dSt)

2

=
dSt
St

+
1

2

(
− 1

S2
t

)
(dSt)

2

= rtdt+
√
Vt

(
a31dW

I1
t + a32dW

I2
t + a33dW

I3
t

)
−1

2

1

S2
t

(
Strtdt+ St

√
Vt

(
a31dW

I1
t + a32dW

I2
t + a33dW

I3
t

))2

= rtdt+
√
Vta31dW

I1
t +

√
Vta32dW

I2
t +

√
Vta33dW

I3
t

−1

2
Vta

2
31dt−

1

2
Vta

2
32dt−

1

2
Vta

2
33dt

= rtdt+ dYt −
Vt
2
a2

33dt+
√
Vta33dW

I3
t

with

dYt = −1

2
Vta

2
31dt−

1

2
Vta

2
32dt+

√
Vta31dW

I1
t +

√
Vta32dW

I2
t . (8.27)

With this result for dXt, an expression for ST in terms of the initial asset price S0

can then be found as

ST = S0 exp(YT ) exp

(
1

T

∫ T

0

rtdt−
1

2
a2

33

1

T

∫ T

0

Vtdt+ a33
1

T

∫ T

0

√
VtdW

I3
t

)
,

(8.28)

where YT is given by

−1

2
a2

31

1

T

∫ T

0

Vtdt−
1

2
a2

32

1

T

∫ T

0

Vtdt+ a31
1

T

∫ T

0

√
VtdW

I1
t + a32

1

T

∫ T

0

√
VtdW

I2
t .

(8.29)
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By defining

ξT = exp (YT ), (8.30)

σ̄T =

√
a2

33

T

∫ T

0

Vtdt, (8.31)

r̄T =
1

T

∫ T

0

rtdt, (8.32)

the price of a European put option under the Heston-CIR model is given by

pBS(S0ξT , K, σ̄T , r̄T , T ), (8.33)

where pBS is the Black-Scholes analytical formula for the price of a European put op-

tion in terms of the model parameters. Also, the CLRM weights can be determined

using these adjusted expressions for S0, σ and r with the Black-Scholes score func-

tion, for example Equation 7.13 for the delta sensitivity. These weights can then

be used to obtain the CLRM estimators of the sensitivities of options under this

sophisticated stochastic model for the underlying equity asset and risk-free interest

rate. Naturally, the simulation must, again, be performed conditionally, this time

on realisations of the variance and interest rate processes.

Following the same logic in this derivation of the likelihood ratio weights for the

Heston-CIR model, one can derive the equivalent weights under the Heston and

SVJD models. These weights are usually just quoted without derivation in the

literature, so this description hopefully fills this small gap in the literature and

makes the technique more transparent for insurance practitioners.

8.4 Variable annuity liability sensitivities

8.4.1 Stylised variable annuity product

The methods for estimating option price sensitivities will now be applied to the

problem of estimating the sensitivity of the liabilities on a stylised variable annuity

product. The idea behind this stylised example product is that it should be simple

enough both in terms of tractability and ease of exposition, yet retain some of the

key features which make these products so popular in many markets. It should also
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have liabilities which are path-dependent, as is typical of many VA products on the

market. This product will be very similar to the Guaranteed Minimum Withdrawal

(GMWB) introduced in Sections 4.1 and 4.2. More detail regarding this VA prod-

uct and its associated cashflows can be found there, however we note two differences

behind the analysis given there and that which will follow; firstly, in Section 4.1 it

was assumed that the rate of policyholder lapse was given in terms of a ‘dynamic’

function of the fund level, guarantee base and interest-rates. In the analysis which

follows, we will just assume this rate remains constant at 4%. However, with some

further research a dynamic model of lapsation, should be compatible with the esti-

mators which will be derived throughout this chapter. Secondly, the underlying VA

fund, which is initially funded by the policyholder premium, is now assumed to be

invested wholly in a single equity index with dynamics which are governed by the

Heston-CIR model, given in Equations 8.14-8.16. Possible extensions of this analysis

include investment in a mixture of equities and bonds, as was assumed in Chapter

4, or in a portfolio of two different equity indices. These alternative investment

assumptions are another line of further research.

To model the cashflows on this policy mathematically let us define the fund value,

guarantee base and policyholder income level at year t after annuitisation by Ft, Gt

and It, respectively. Also let Rt denote the return from the equity index from year

t−1 to year t minus the management fees, i.e., Rt = St/St−1−η, where η is the fund

management charge, quoted as an annual percentage. Then we can track the level

of fund value throughout the lifetime of the policy using the following equation:

Ft = max
(
(Ft−1 − It−1)(1 +Rt), 0

)
. (8.34)

This expresses the fund value at year t in terms of the fund value and income level at

year t−1. Naturally then, we require the starting fund and income levels to initiate

this recursion. The initial fund value is just given by the policyholder premium at

annuitisation, P (in units of the initial equity level), multiplied by the initial equity

index level: F0 = P ·S0. The guarantee base at the end of year t after annuitisation

can be expressed as

Gt = I(t ≤ α) min

(
max(Gt−1, Ft), 1.15×Gt−1

)
+ I(t > α)Gt−1. (8.35)
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The income level the policyholder withdraws from the policy fund value at the end

of year t is then given by It = (w−µ)Gt. Here, w is a fixed parameter dictating the

proportion of the guarantee base which is withdrawn by the policyholder at each

annual re-balancing date and µ is the guarantee charge, taken as a percentage of

the guarantee base each year. In our case we have w = 4% and µ = 1%.

The liability, or guarantee shortfall, the insurer faces from issuing this VA contract

on the market, measured at annuitisation, can then be expressed as

L = E

[
T∑
t=1

Dtp
surv
t max(It − Ft, 0)

]
, (8.36)

where Dt is the factor to ensure the liability at each yearly withdrawal date is dis-

counted back to annuitisation, psurvt is the probability of the policy remaining in force

until year t after annuitisation (encompassing both the possibility of policyholder

mortality and lapsation) and T is the maximum contract term. Clearly, the insurer

only faces a liability under the GMWB contract when the policyholder income can-

not be met by the VA fund level. This is captured by the max function in the above

formula for L, which sets the summand to zero at the rebalancing/withdrawal dates

where Ft ≥ It. More detailed discussion of these cashflows was given in Section 4.2.

8.4.2 Pathwise VA liability estimator

Having outlined the relevant cashflows on this stylised VA product, we will now

develop a pathwise methodology for the sensitivities of the liability on this product.

This approach, proposed for a simple VA product by Hobbs et al. [Hob09], is just

the natural extension of the pathwise approach for option sensitivities to the case

of the VA liability, L. The liability is analogous to a series of European options of

increasing maturity, thus the same limitations of the pathwise approach for European

option price sensitivities will apply here. Assuming that interchanging the order of

differentiation and the taking of the expectation is justified, the derivative of the

liability with respect to the initial equity asset price can be expressed as

∆PW = E

[
T∑
t=1

Dtp
surv
t

∂

∂S0

max(It − Ft, 0)

]
. (8.37)
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The derivative only acts on the third factor of each term in the sum, and we can

express the derivative of this term as

∂

∂S0

max(It − Ft, 0) = I(It > Ft) ·
( ∂It
∂S0

− ∂Ft
∂S0

)
. (8.38)

The problem of estimating the delta sensitivity of the VA liability is now one of

estimating the derivative of the fund value, Ft, and income level, It, for each year,

t, after annuitisation. Appealing to the structure of the product’s cashflows, these

derivatives must be calculated recursively. Using Equation 8.34 we can express the

derivative of the year t fund value with respect to S0 as

∂Ft
∂S0

= max

((∂Ft−1

∂S0

− ∂It−1

∂S0

)
(1 +Rt), 0

)
. (8.39)

Similarly, using Equation 8.35, the derivative of the year t income level with respect

to S0 can be expressed using

∂Gt

∂S0

= I
(
(Ft ≥ Gt−1) ∩ (Ft ≤ 1.15×Gt−1) ∩ (t ≤ α)

)∂Ft
∂S0

+I
(
(Ft ≥ Gt−1) ∩ (Ft > 1.15×Gt−1) ∩ (t ≤ α)

)
× 1.15× ∂Gt−1

∂S0

+I
(
(Ft < Gt−1) ∩ (t ≤ α)

)∂Gt−1

∂S0

+ I(t > α)
∂Gt−1

∂S0

, (8.40)

where A∩B is the intersection of events A and B, and the derivative of the income

level is then given by ∂It
∂S0

= (w − µ) · ∂Gt
∂S0

.

These recursions progress forward annually through the lifetime of the policy, with

the initial conditions at time zero (annuitisation) of ∂F0

∂S0
= P , the policyholder pre-

mium, and ∂I0
∂S0

= 0, since the first withdrawal occurs at the end of year one. Sub-

stituting the values output from these recursions into Equation 8.37, via Equation

8.38, gives the pathwise delta estimator.

8.4.3 CLRM VA liability estimator

The second alternative approach for estimating option Greeks proposed earlier was

the (conditional) likelihood ratio method (CLRM). We now outline how the CLRM

can be used in estimating the VA liability sensitivities.
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Firstly, we condition on a realisation of the Heston variance and CIR interest rate

processes, in the same way as was performed in Section 8.3. The only difference here

is that we only condition out to the first valuation date at the end of year one, since

the VA contract liabilities are path-dependent (recall Example 2 in Section 7.1.3).

Therefore, we proceed by calculating

σ̄1 =

√
a2

33

1

∫ 1

0

Vtdt, ξ̄1 = exp (Ȳ1) and r̄1 =

∫ 1

0

rtdt, (8.41)

where Ȳ1 is given by

−1

2
a2

31

∫ 1

0

Vtdt−
1

2
a2

32

∫ 1

0

Vtdt+ a31

∫ 1

0

√
VtdW

I1
t + a32

∫ 1

0

√
VtdW

I2
t . (8.42)

The integrals in the above terms can be approximated by simple numerical quadra-

ture and using the relationship in Equation 8.10 (and the analogous relationship for

the interest-rate CIR process). Then the (implied) shock out to year one is then

given by:

Z? =
log(S1/ξ̄1S0)− (r̄1 − σ̄2

1/2)× 1

σ̄1

√
1

. (8.43)

Using this implied shock, the delta sensitivity can then be determined using

∆LRM =

(
Z?

S0σ̄1

√
1

)
×Liability =

(
Z?

S0σ̄1

√
1

)
×

T∑
t=1

Dtp
surv
t max(It−Ft, 0), (8.44)

and similarly for the gamma sensitivity. The square-root of one is shown in the

formula to help make the approach clear; it comes from the fact the first cashflow

occurs at the end of year one. Thus, this term need not equal one if the product

paid out semi-annual withdrawals, say, in which case this term would be
√

0.5.

8.4.4 VA liability gamma mixed estimator

In Chapter 7 it was found that the most efficient methods for calculating the gamma

sensitivities were given by constructing the mixed estimators, which combined the

respective advantages of the pathwise and LRM techniques. We will now apply the

pathwise approach to the CLRM estimator for the delta of the liability in order to
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derive a mixed gamma estimator for the stylised VA product:

ΓLR-PW =
∂

∂S0

∆LRM

=
∂

∂S0

((
Z?

S0σ̄1

√
1

) T∑
t=1

Dtp
surv
t max(It − Ft, 0)

)

=

(
Z?

S0σ̄1

√
1

)
T∑
t=1

Dtp
surv
t I(It > Ft) ·

( ∂It
∂S0

− ∂Ft
∂S0

)
−

(
Z?

S2
0 σ̄1

√
1

)
T∑
t=1

Dtp
surv
t max(It − Ft, 0). (8.45)

All the terms in this formula are already obtained in calculating the pathwise esti-

mator of the liability delta (except the LRM weight which is easily found).

8.5 Comparison of VA liability estimators

Having derived the sophisticated delta and gamma estimators for the stylised VA

product, we will now investigate the relative accuracy of these approaches. Five test

cases will be considered, labelled A-E in Table 8.4, which give different parameter

settings for the Heston and CIR processes and different correlations between the

normal shocks driving the variance, interest rate and equity processes. In all these

cases the contract has term T = 30 years and the ratchet term is the first 10 years

of the product lifetime. The income drawn each year by the policyholder is 4% of

the guarantee base and the initial policyholder premium is £10,000. For these tests

two separate simulation set-ups were constructed; one for the bump and revalue and

another for the pathwise and CLRM estimates.

In the bump and revalue set-up 36,000 paths were simulated. The perturbation size

was set at 0.5%. There is a trade-off to be made here as the smaller the perturbation

chosen the less bias in the estimate, however reducing the perturbation size will

increase the variance of the estimator – particularly for the gamma sensitivity. In

the CLRM/pathwise set-up 10,000 variance/interest rate outer paths were used,

with 10 equity paths per outer realisation. In both frameworks 20 timesteps per

year were used to discretise the Heston and CIR processes. With this set-up the

bump and revalue and CLRM/pathwise approaches took approximately the same

amount of time to run, providing a fair basis for the comparison of these approaches.
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Case κV θV εV κIR θIR εIR ρS-V ρS-IR ρV-IR
A 2 0.04 0.15 0.4 0.04 0.1 -0.7 -0.3 0.2
B 1 0.04 0.3 0.4 0.04 0.1 -0.7 -0.3 0.2
C 2 0.04 0.15 0.2 0.04 0.2 -0.7 -0.3 0.2
D 1 0.04 0.3 0.2 0.04 0.2 -0.7 -0.3 0.2
E 1 0.04 0.3 0.2 0.04 0.2 -0.9 -0.3 0.2

Table 8.4: Model settings considered in tests. Heston SV parameters denoted by V
subscript, CIR parameters by IR subscript. V0 = θV, r0 = θIR.

Sim. Set-up 1 (B&R) Sim. Set-up 2 (PW/LRM)
Liab.(£) St.Err Liab.(£) St.Err

A 106.99 0.69 106.24 1.17
B 127.00 0.99 125.36 1.74
C 159.21 1.03 157.56 1.82
D 171.62 1.29 168.74 2.29
E 177.42 1.55 174.80 2.85

Table 8.5: VA liability estimates: VA example product.

In table 8.5 the estimates of the liability value under the bump and revalue and

CLRM/pathwise approaches are given. This table shows that under both simula-

tion set-ups the values of liability are generally consistent. The bump and revalue

approach does give estimates with smaller standard errors though. This is due to

the conditional simulation framework required by the CLRM approach, which is less

efficient than a standard simulation set-up in estimating the product liabilities, due

to the reduced number of independent valuation paths. However, it is estimating

the sensitivity of the liabilities that is the difficult challenge facing insurers.

Therefore, let us look at how the approaches perform in estimating the delta sen-

sitivity of the liability in Cases A-E. In Table 8.6 and Figure 8.2 estimates of the

delta sensitivities using each of the approaches discussed are given. Note that for

the bump and revalue estimate, a central difference, using the ‘bumped up’ and

‘bumped down’ simulation paths, rather than a forward difference is used. This

can help minimise levels of bias in this estimator. The gamma bump and revalue

used the simulation analogue of a second-central difference. These results show that

the bump and revalue and pathwise approaches give similar estimates and standard

errors for the delta in each of the given cases. This is expected, as the pathwise

estimator is essentially the small perturbation limit of the bump and and revalue

approach. The reason the estimators are not converging to a common value is that
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B&R St.Err PW St.Err CLRM St.Err

A -0.00769 0.00013 -0.00752 0.00014 -0.00772 0.00034
B -0.00375 0.00014 -0.00384 0.00018 -0.00381 0.00042
C -0.00799 0.00016 -0.00796 0.00019 -0.00795 0.00045
D -0.00359 0.00017 -0.00364 0.00022 -0.00355 0.00053
E -0.00209 0.00019 -0.00200 0.00030 -0.00166 0.00074

Table 8.6: Delta estimates: VA example product.

B&R St.Err CLRM St.Err PW-LR St.Err

A 4.83 0.56 5.33 0.47 4.62 0.10
B 3.29 0.54 2.80 0.82 3.36 0.10
C 4.55 0.79 6.26 0.71 5.53 0.13
D 3.71 0.71 2.71 1.14 4.02 0.13
E 2.22 0.75 1.02 3.54 3.15 0.22

Table 8.7: Gamma estimates: VA example product. In units of 1× 10−6.

they are simulated under the different set-ups: the pathwise results were estimated

under the conditional simulation set-up alongside the CLRM estimator, whereas the

bump and revalue is from the base run of the bump and revalue set-up. Clearly the

CLRM delta estimator is not as efficient as either the bump and revalue or pathwise

equivalents. This can be explained by the fact that this method does not make

use of the specific form of the payoff function, unlike the pathwise approach. This,

however, means the LRM estimator can still be used for options where this payoff

is discontinuous (and also for estimating second-order sensitivities). The pathwise

estimator appears to be as efficient as the bump and revalue, but of course does not

require a perturbed simulation run and is unbiased.

In Figure 8.2, the point estimates of the delta sensitivity under one approach do

not always quite lie within the 95% confidence interval from a different approach.

The reason for this is that these delta estimators are all biased to some degree.

The first source of bias is in the discretisation of the variance and equity processes.

Although the Andersen discretisation scheme should give smaller levels of bias than

other simpler schemes, it will not eliminate it completely. If one wishes to have delta

estimators with no bias whatsoever, employing the pathwise and CLRM estimators

together with the exact Heston discretisation scheme of Broadie and Kaya [Bro06]

will achieve this. The Broadie and Kaya sampling scheme will be much less efficient

than that of Andersen. In addition to this discretisation bias, the bump and revalue
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Figure 8.3: Comparison of VA gamma estimators constructed.

has a further source of bias from using a perturbation. This bias can be minimised by

considering a smaller perturbation size, however if one uses a very small perturbation

the variance of the sensitivity estimators can become very large. Therefore, avoiding

this bias-variance trade-off is one advantage of the pathwise and CLRM approaches.

In Table 8.7 and Figure 8.3 the different estimators for the gamma sensitivity of

the VA liability are compared. These results show that both the bump and revalue
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and CLRM approaches give estimates with fairly large standard errors for cases

A-E, with the CLRM being particularly poor for Case E due to the efficiency of

this method deteriorating for high levels of ρS-V. The mixed PW-LR estimator

gives estimates which are consistent with these two approaches, however they yield

a much smaller standard error for each of the cases considered.

Thus, by constructing a mixed estimator for the gamma sensitivity, we have managed

to gain a significant amount of reduction in variance, compared to the bump and

revalue approach. Furthermore, this method is unbiased, hence we do not encounter

the difficulty of choice of the perturbation step-size, where there is a trade-off be-

tween trying to reduce bias, whilst also trying to minimise the standard error of the

estimates. The results found are consistent with the analysis of the mixed estimators

being applied to European options given in Glasserman [Gla03].

This significant improvement in efficiency in estimating second-order sensitivities

could be of great benefit to practitioners in managing a hedging strategy for their

VA books. The simple bump and revalue approach cannot give both accurate and

unbiased estimates of the gamma sensitivity. As a result, insurers adopting this ap-

proach will find it difficult to judge how frequently their hedge portfolio should be

rebalanced, due to underlying market movements. With the accurate and unbiased

gamma estimator developed in this thesis, practitioners will have a much greater

appreciation of the convexity of their unit-linked insurance liabilities. This knowl-

edge will improve the success of such hedging strategies and help mitigate some of

the exposure inherent in selling these type of products.

8.6 Extension to VA liability vega sensitivities

In this section an idea of how vega sensitivity estimators might be constructed for the

stylised variable annuity product will be given. This discussion will not fully derive

such estimators, which is an area of further research, but will hopefully provide the

interested reader with an overview of some relevant theory from the literature.

To begin with, we consider a vega pathwise estimator. In deriving the VA delta

and gamma pathwise estimators, the stochastic process for the variance was of little

concern; the stochastic volatility only had an indirect influence on these Greeks,

through the equity index process. On the other hand, if we wish to estimate a
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pathwise estimator with respect to the initial level of the variance, the specific form

of the stochastic volatility model is going to be of much greater importance. Indeed,

one quantity which will required in order to find the vega sensitivity of the liability

is the term dVt
dV0

. To illustrate how such a derivative can be estimated for the Heston

stochastic volatility model we summarise the discussion given in Example 7.2.5 of

Glasserman [Gla03]. Recall, the Heston model stochastic process for the variance

dVt = κV (θV − Vt)dt+ σV
√
VtdW

V
t . (8.46)

By Proposition 5.2, we know Vt is distributed as a scaled non-central chi-squared

random variable, with a non-centrality parameter which is proportional to V0, i.e.,

Vt ∼ c1χ
′2
d (c2V0), (8.47)

where the form of c1, c2 and d is given in the aforementioned proposition. Glasserman

shows that for d > 1, Vt can be simulated using

Vt = c1

((
Z +

√
c2V0

)2

+ χ2
d−1

)
(8.48)

with Z a standard normal random variable and χ2
d−1 an ordinary chi-squared random

variable with d− 1 degrees of freedom and independent of Z. It then follows that

dVt
dV0

= c1c2

(
1 +

Z√
c2V0

)
. (8.49)

One can then simulate a variance path V1, V2, . . ., through the recursion

dVn+1

dV0

= c1c2

(
1 +

Zn√
c2Vn

)
dVn
dV0

, (8.50)

where Zn is the standard random normal shock used to generate Vn+1 from Vn.

Deriving dVt
dV0

for the case of d ≤ 1 is not so straightforward, however for all the

Heston model calibrations considered in this chapter and in Chapter 6, the degrees

of freedom satisfy d > 1. It should be possible to combine the above recursion for dVt
dV0

with the variable annuity cashflows, to obtain a pathwise sensitivity for the liability

with respect to V0. In finding such sensitivities, one quantity which will be required

is dSt
dV0

. Computing such a value is fairly straight forward, however, given the values
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of dVt
dV0

. The following idea extends Example 7.2.3 of Glasserman [Gla03].

Discretising the equity asset process under the Heston-CIR model, Sn can be ob-

tained in terms of Sn−1 as follows

Sn = Sn−1 exp

(∫ tn

tn−1

rudu−
1

2

∫ tn

tn−1

Vudu+

∫ tn

tn−1

√
VudW

S
u

)
. (8.51)

Appealing to the numerical quadrature formula for such integrals, given by Equation

5.25, the above expression can be approximated by

Sn = Sn−1 exp

(
(γ1rn−1+γ2rn)∆t−1

2
(γ1Vn−1+γ2Vn)∆t+(γ1

√
Vn−1+γ2

√
Vn)
√

∆tZn

)
,

(8.52)

where Zn is the random shock taking the equity asset from time-point n − 1 to n.

Setting γ1 = γ2 = 1/2 yields a central quadrature approximation to these integrals.

Differentiating Equation 8.52 using the chain rule, results in the following recursion

for the derivative of Sn with respect to v0:

dSn
dV0

=
dSn−1

dV0

· Sn
Sn−1

+ Sn

(
− 1

2
γ1
dVn−1

dV0

− 1

2
γ2
dVn
dV0

+

(
γ1

2
√
Vn−1

· dVn−1

dV0

+
γ2

2
√
Vn
· dVn
dV0

)√
∆t · Zn

)
,

(8.53)

with the initial condition dS0/dV0 = 0. We have already considered how one could

find the values of dVn/dV0, thus this recursion can be used to approximate the

sensitivities of the equity value with respect to V0. This expression could then be

adapted to be consistent with the definition of the vega used earlier in the thesis,

which was the sensitivity with respect to σ0 =
√
V0.

Now, let us discuss how the likelihood ratio method could be adapted to estimate a

vega sensitivity. In order to employ this method, we require an explicit expression for

the score function of the density of the equity returns. Under complex models, such

as the Heston or Heston-CIR model, explicit expressions for the marginal or tran-

sition densities are not available. In order to construct likelihood ratio estimators

for the delta and gamma sensitivities earlier in this chapter, the technique was em-

ployed conditionally, given a realisation of the variance and interest-rate processes.

This allowed us to appeal to the simple form of the probability densities associated
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with geometric Brownian motion. Such an approach cannot be used in estimating

vega sensitivity, since this is a derivative with respect to one of the parameters of

the Heston model. So, does this mean that the likelihood ratio method cannot be

used to estimate vega under a Heston model?

When working with complex models, we typically have to simulate approximations

to these models, using some sort of discretisation method, such as an Euler dis-

cretisation or the Andersen method. Glasserman argues that even though it may

be impossible to construct a likelihood ratio estimator under some complex model,

one may still be able to develop such an estimator for the approximating process.

To illustrate this point Glasserman considers an Euler discretisation of the Heston

model. Under this structure he is able to construct the score function correspond-

ing to the sensitivity with respect to the σV parameter of the Heston model. The

derivation will not be given here, but the interested reader can refer to Section 7.3.4

of Glasserman [Gla03] for more information. A similar approach could be possible

in approximating the sensitivity of the VA liability with respect to V0 or σ0.

It should be noted that if one is only interested in determining the vega sensitivity

of the liability, then a successful estimator should be given by simply applying the

bump and revalue approach. In the analysis given in the previous section, it was

found that the bump and revalue and pathwise estimators gave similar estimates

and standard errors for the delta sensitivity. It was only in estimating second-

order sensitivities, such as gamma, where the bump and revalue approach became

problematic. Of course, for second-order sensitivities involving the vega sensitivity,

the pathwise and likelihood ratio method frameworks could be of great benefit.

8.7 Conclusion

With the increasing popularity of VA products and the new Solvency II regulatory

framework in Europe, employing effective hedging strategies for unit-linked insur-

ance liabilities is a challenge currently facing insurers. The recent financial crisis

has demonstrated that under turbulent market conditions a hedging portfolio can

require more frequent rebalancing. The standard bump and revalue approach for

estimating the Greeks used in such a strategy has some shortcomings, particularly

for second-order sensitivities.
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In this chapter some more advanced estimators for VA Greeks have been developed

which are unbiased and do not require additional perturbed simulation runs. The

mixed estimator developed for the gamma sensitivity also offers far greater efficiency

in comparison to the bump and revalue method. This gain in efficiency will increase

further as the number of Greeks required for a hedging strategy grows. Furthermore,

the bias-variance trade-off in the choice of the perturbation size is avoided.

One interesting line of further research is to adapt the sensitivity calculations given

in this chapter to be compatible with the automatic (or algorithmic) differentia-

tion (AD) method of computation. The idea behind this approach is to use adjoint

methods to re-arrange the algebraic operations which are used to determine the

sensitivity. Using this alternative sequence of the calculations can offer large reduc-

tions in the amount of processing required, particularly in situations requiring the

calculation of the sensitivities of a small number of outputs with respect to a large

number of model input parameters. Thus, if an insurer wishes to determine the

sensitivity of a liability to many risk-factors, adopting the AD approach in calcu-

lating the estimators given in this chapter could lead to great improvements in the

efficiency of such computations. The AD approach has become increasingly popular

in the field of financial mathematics in recent years. See Homescu [Hom11], and the

articles cited within, for an extensive discussion of the application of the technique

in a financial context.
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Chapter 9

Conclusions of thesis

With the impending introduction of the Solvency II framework, we are at the dawn

of a new age in insurance regulation in Europe. As such, many insurers face the

challenge of effectively managing the risk arising from selling unit-linked products in

the market. Therefore, novel techniques which can help such businesses plan for and

react to adverse changes in market conditions will be of enormous practical benefit

to analysts working in this sector. In this thesis, two main approaches which can

help in this challenge were investigated.

The first of these approaches was the least-squares Monte Carlo (LSMC) simulation

method. This technique, originally developed in the context of pricing American op-

tions, has been proposed as a means of approximating the distribution of complex

insurance liabilities projected forward one year or more into the future. The natural

Monte Carlo simulation approach for this task led to a nested simulation computa-

tional framework, which remains inefficient and biased, despite some recent articles

in the literature investigating how to optimally allocate the computational budget

in such a set-up. The LSMC approach approximates the liability at the projection

year by regressing the reduced number of valuation paths simulated on some influ-

ential explanatory variables. This greatly reduces the computational effort required

to obtain accurate estimates of the projected liability distribution.

In Chapter 3 of the thesis, some of the issues regarding the efficient configuration

of the LSMC method were investigated. This analysis found that the stepwise

AIC algorithm gave a reasonably good approach for selecting the regression model

and one which is robust against over-fitting. It was also shown that sampling the

fitting scenarios from the real-world distribution gave a good fit in the centre of the

projected value distribution, but a poorer fit in the upper tail. On the other hand,

sampling these from an alternative scheme, such as quasi-random sampling, gave a

much better fit in the upper tail, with only a slightly poorer fit in the centre of the

distribution compared with real-world sampling. Finally, evidence was given which

suggested that for maximum efficiency in implementing the algorithm, only one
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antithetic pair of inner valuation scenarios should be simulated, with the remaining

computational budget being used to generate as large a number of outer fitting

scenarios as possible.

In Chapter 4 these findings were put into practice when the LSMC method was used

to estimate percentiles of the projected liability distribution for a realistic variable

annuity life insurance product. In this analysis, it was found that the technique is

successful in approximating the projected liability distribution for a fairly complex

product. Furthermore, when it is possible to sample the fitting scenarios from a

quasi-random scheme, this offers a superior estimate to percentiles in the upper

tail of this distribution. An example of a situation where quasi-random sampling

was not possible was also investigated. In this case, it was found that real-world

sampling of the fitting points still gave a fairly accurate fit to the upper tail of this

distribution.

In Chapter 6 semi-analytical formulae were derived for some simple unit-linked in-

surance guarantees under the Heston model. Such formulae could prove very useful

in practice. The liabilities on these simple guarantees for which semi-analytical val-

uation is possible, are likely to be fairly highly correlated to the liabilities on more

complex guarantees. Therefore, these simple insurance guarantees could potentially

be successful control variates in increasing the accuracy of the LSMC estimates of

the realistic projected liabilities considered in Chapter 4. Also, the semi-analytical

valuation of the sensitivity of these simple guarantees could act as control variates for

the sensitivity estimators for more complex liabilities. Investigating these candidate

control variates is an interesting area for further research.

The second of the two main approaches investigated in this thesis was the construc-

tion of a hedging strategy for managing exposure to unit-linked products. Setting

up such a strategy requires the calculation of market risk sensitivities (or ‘Greeks’)

and for complex, path-dependent liabilities these sensitivities typically must be es-

timated using Monte Carlo simulation. Standard practice amongst many insurers

is to measure such sensitivities using a ‘bump and revalue’ method. This is just

the simulation analogue of a finite difference approximation, using standard and

perturbed simulation paths. As well as requiring multiple valuations, this approach

can be unreliable for higher order Greeks.
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More sophisticated approaches have been developed in the literature for estimating

option price sensitivities. In Chapter 7 the pathwise and likelihood ratio estimators

and the mixed estimator, which combines these two approaches for second-order

sensitivities, were extended for a Black-Scholes model featuring periodic fixed with-

drawals. This variation of the Black-Scholes model was introduced in this thesis

and begins to capture some of the features of unit-linked insurance products which

provide a regular income stream to the annuitant. These estimators were then con-

structed for a stylised variable annuity product in Chapter 8. Firstly, the likelihood

ratio method was extended to a Heston-CIR model, incorporating stochastic volatil-

ity and interest rates. This allowed the likelihood ratio estimators to be constructed

for the stylised VA liability sensitivities under a more sophisticated economic model.

The pathwise estimators were then developed for the VA product under this model

and finally both estimators were combined to construct a mixed estimator for the

second-order gamma sensitivity. It was found that these more advanced estima-

tors for the VA Greeks are unbiased and avoid the need for additional perturbed

simulation runs. Also, the mixed estimator developed for the VA liability gamma

sensitivity gave much smaller standard errors in comparison to the bump and revalue

method. This is an important finding, since it is in estimating the second-order sen-

sitivities that this standard approach is particularly poor. A further advantage of

these new estimators is that the bias-variance trade-off which must be made in the

choice of the perturbation size in the bump and revalue approach is avoided. Also,

the gain in efficiency increases as the total number of Greeks required for a hedging

strategy grows.

To conclude this thesis, one final area of further research which could combine the

analyses given in Parts I and II will be outlined. The basic idea is to determine

the sensitivities of an insurance liability projected at a number of regular future

time-points. This would proceed by applying the LSMC method at each time with

the sensitivities, determined using the estimators developed in this thesis, acting as

the response variables. Projecting these Greeks to many regular future time-points

would allow us to determine the value of the actively managed hedge portfolio at

each of these times. This could then be used to adjust the liability cashflows by off-

setting them against the value of the hedging portfolio. Then, we could approximate

a solvency capital requirement which takes into account a particular hedging strategy
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being used by an insurer. Naturally, the greater the number of time-points at which

the Greeks are projected, the more frequently the hedging strategy is assumed to

be re-balanced by the insurer. Maintaining the computational efficiency of such a

framework as the hedge re-balancing frequency is increased is one technical challenge

which would need to be overcome for this approach to be practical.

With the development of novel techniques, insurance companies are in a much better

position to understand the risks inherent in selling unit-linked insurance products

and to manage such risks effectively. The research presented in this thesis will

help insurers continue to meet this challenge and remain financially secure over the

coming years.
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