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Abstract 

 
Using modern electronic structure methods, the ammonia-hydrogen halide complexes 

and their anions are characterised to determine the number, type, and properties of their 

minima, and their electron binding energies.  Methodological issues of determining the 

potential energy surfaces of reactive monomers are addressed in the course of this 

investigation.  The energetic origins of the hydrogen-bonded minima are determined by 

evaluation of the one-body and two-body terms composing the total energy of the 

complexes, and a rationale for the drive to proton transfer is presented.  It is concluded 

that the systems have qualitatively similar potential surfaces, and that the balance of the 

one-body and two-body forces determines the number and depth of minima, while the 

electron acts as a perturbing agent on the one- or two-body energy, depending upon the 

nature of the minimum encountered.  The halogen-bonded structures of ammonia-

hydrogen bromide, iodide, and astatide complexes are shown to be stable, and one may 

perhaps bind an electron.  The concept of the ammonium radical as a pseudo-atom is 

presented and tested.  It is found to show competing pseudo-atomic and molecular 

properties. 
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Chapter 1: Introduction 

 

This thesis assembles work performed on evaluating the hydrogen-bonded complexes 

NH3HX, their anions, and the implicit pseudo-alkali-metal unit NH4 (ammonium).  

While the opening sections of the chapters summarise the pertinent literature associated 

with that research, those discussions are necessarily brief.  This introductory chapter 

provides a broader overview of the literature on proton transfer in the NH3HX systems, 

on molecular anions, on electronegativity, and on electron-triggered reactions.   

 

1.1. The Hydrogen Bond and Proton Transfer 

 

The hydrogen bond is the attractive interaction between an acceptor atom in one site A, 

classically electron-rich, and a hydrogen atom donor in a second site, classically a 

hydrogen atom bonded to an electronegative atom H-D.[1,2]  (Hereafter denoted A
…

H-

D or similar.)  A simple electrostatic model appears sensible; however hydrogen bonds 

are now known to be somewhat covalent in character.[3,4]  In fact, hydrogen bonds are 

characterised by the degree to which the electrostatic and polarisation, charge-transfer 

(covalent), dispersion (van der Waals) and exchange repulsion dominate the interaction.  

Electrostatic, polarisation and charge transfer terms dominate in strong bonds, while 

exchange repulsion and dispersion interactions are the most significant terms in weak 

bonds.[1,5,6] 

 

The hydrogen bond has several effects upon the donor, the most prominent of which 

make hydrogen bonding a kind of “incipient proton transfer”.[1]  Prototypically, the H-

D bond is extended and the corresponding stretching mode is softened, moreso as the 

hydrogen bond becomes stronger (and the distance between the heavy atoms 

reduces).[1-3,7,8]  This is ascribed to the electrostatic hyperconjugate interaction 

between the donor and acceptor; the proton is attracted to the other heavy atom, and 

electron density is contributed to the vacant sigma* orbital corresponding to this bond.  

This charge transfer is present in all hydrogen bonds, and correlates closely with bond 

strength.[3,9]  However this effect is in balance with the Pauli repulsion of the atoms 

and a rehybridization of the donor which leads to a shortening and strengthening of the 

bond.  Where hyperconjugation is small, as in very weak hydrogen bonds (sometimes 

argued to be van der Waals interactions[1]), a blue shift and bond shortening may, 

paradoxically, be observed.[9] 
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Kock and Popelier established criteria for the definition of hydrogen bonds in the Atoms 

in Molecules (AIM) model.  In that model, chemical structures are described in terms of 

the topology of the electron density, particularly those points where the gradient is zero 

(critical points). Chemical bonds are identified as critical points (bond critical points, 

BCP) where the curvature is negative along an internuclear axis, and positive 

perpendicular to this axis.  Covalent (electron-sharing) interactions exist where there is 

an accumulation of density (the Laplacian of the density is negative), while closed-shell 

interactions (such as ionic bonds) exist where there is a deficit of electron density (the 

Laplacian of the density is positive; see Figure 1.1).[10]  Hydrogen bonds were defiend 

by Kock and Popelier as existing where there is a BCP between the donor and acceptor, 

with a density between 0.002 and 0.034 a.u. and a local curvature that is positive, from 

0.024 to 0.139 a.u., indicating a closed-shell interaction.[11]  The density at the critical 

point is positively correlated with the strength of the interaction, and with the degree of 

proton transfer.[1,3]  The criteria are necessarily equivocal as a consequence, and strong 

hydrogen bonds exhibit a negative curvature at the BCP, due to an increasing degree of 

covalency.[1,3]   

 

Figure 1.1: Location of the bond critical points (BCPs) in the hydrogen-bonded complex H3N
…

HCl. 

The red BCP has a positive Laplacian, indicating the closed-shell closed-shell hydrogen-bonding 

interaction; the green BCP has a negative Laplacian, indicating the electron-sharing covalent bond. 

If the position of a proton is varied across the hydrogen bond, the topological properties 

of the bond critical points between donor, acceptor, and proton vary continuously.  As 

an example, consider with the hydrogen bonded complex between NH3 and H-Cl from 

Figure 1.1, which we label “N”.  The proton moves toward NH3.   The density at the  

NH3
...

H
+
 BCP increases, while the Laplacian (second derivative) of the density increases 

from its original positive value to a peak near the (free-molecule) NH3
...

H
+
 dissociation 

limit.  As the proton approaches NH3 more closely, the Laplacian drops rapidly below 

zero.  In other words, a covalent bond between NH3 and H
+
 replaces the hydrogen bond.  

Meanwhile, the reverse occurs at the BCP between H and Cl; the covalent bond is 

replaced with a hydrogen bond NH3-H
+...

Cl
-
.   We have transferred a proton; as a 

consequence of moving the charge, we haveformed a zwitterionic complex 
 
which we 

shall label Z.[4,12-15]  In the cited studies (which dealt with a different set of systems) 
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these changes in the topology around the bond critical points occur irrespective of 

whether this transfer is actually favourable. 

 

Given that the proton seems to be able to bond at the acceptor or donor depending on its 

position, that hydrogen bonds are an “incipient proton transfer”,[1] and that external 

perturbations can drive hydrogen bonded systems along a continuum from weakly 

interacting to completely proton-transferred,[4] it is worth investigating the 

circumstances which make a proton transfer across a hydrogen bond favourable or 

unfavourable.  An important test system is the hydrogen-bonded dimer NH3
…

HX, where 

X is a halide (the aforementioned NH3HCl is its most notorious member). The degree of 

proton transfer in this system has been of theoretical interest to chemists for decades (as 

this chapter will demonstrate), providing an insight into proton transfer, and is of 

practical significance for understanding the chemistry of gas giants, where pressures are 

low and free hydrogen halides have an important role.[16] 

 

The problem of proton transfer in hydrogen-bonded systems can be divided into the 

contributions from one-body and two-body terms; by evaluating these terms, we can 

rationalise the role of monomer and two-body properties in controlling proton transfer, 

and predict what changes will drive or impede proton transfer (Chapter 4).  

Furthermore, we can investigate whether the perturbation from a third body – an 

electron in this instance – works through the one or two body terms, or independently of 

them (Chapters 3 and 5).   

 

The one-body term comes from the balalance of the proton donor and proton acceptor 

character of the monomers.  The hydrogen bond acceptor, A, is typically also a good 

proton acceptor.  However, the conjugate base D
-
 of the donor DH is also typically a 

good proton acceptor.  If the two monomers are infinitely separated from one another, 

but able to exchange a proton, the proton is more favourably localised at the species 

with the greatest proton affinity, and the difference between the proton affinities decides 

how strong this preference is.  This is the one-body energy component of the problem, 

and it raises the energy of the system with respect to the two free monomers: both 

species would prefer to be protonated, but only one may be.  The balance of the one-

body energies nigh-universally favours N.[17,18]  
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There is also an attractive two-body term, due to the hydrogen-bonding, electrostatic 

and van der Waals interactions between the monomers.  This term is always greater in 

magnitude than the destabilising one-body energy, because otherwise the N-type 

structure would not exist.  The electrostatic interaction between the ions in Z is always 

larger than the sum of the weaker interactions in the N, and therefore this two-body term 

favours Z. 

 

The balance between the one- and two-body terms, then, determines whether the N or Z 

structure is preferred in isolation.  (Matrix effects and outside perturbations can shift 

this balance, as discussed in section 1.1.5).  By computing the values of these terms, and 

comparing them for different species, it is possible to evaluate which structure is 

favoured and whether the one- or two-body energy is the dominant contribution.  

Furthermore, the one- and two-body terms are not constants but are functions of the 

proton position in the monomers (D-H or A-H
+
 bond length) and in the complex (the 

proton transfer coordinate).  By describing how the one- and two-body energies vary 

with these coordinates, we can gain an insight into the shape of the potential energy 

surface, and thereby several of the properties of the complex (see section 2.7). 

  

1.1.1. The Structure of NH3HCl 

 

The theoretical study of NH3HCl arguably begins with Mulliken.  His early studies of 

charge transfer complexes created the categorization “outer complex” for interacting 

monomers which do not transfer atoms in the formation of the dimer, and “inner 

complex” for interacting monomers which do transfer atoms in the dimer.  In this case, 

N and Z structures would constitute the outer and inner complexes, respectively.[19]  

Mulliken highlighted the contemporary experimental data for the complex of NH3 with 

HCl.  In Rodebush and Michalek’s study of thoroughly dried NH3 and HCl vapours 

above NH4Cl, the rate at which NH4Cl condensed out was greatly reduced by drying, 

indicating that water was an important intermediary in proton transfer.[20] Similarly in 

Spotz and Hirschfelder’s gas phase study, NH4Cl crystals were formed from NH3 and 

HCl gases in air,[21] but a follow-up by Johnston and Manno found that the exclusion 

of air and use of dry gases prevented precipitation.[22]  Clearly, NH3 and HCl did not 

undergo proton transfer, unperturbed, in the gas phase. 
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The early theoretical work was hamstrung by the limited computational resources of the 

time, but the difficulties encountered would ultimately grant an insight into the 

importance of electron correlation and basis set effects in these systems.  Clementi 

performed important early theoretical work on the NH3HCl complex, using the SCF 

method (see 2.2).[23-25] This study progressed from free NH3 + H
+
 and Cl

-
 + H

+
 

fragments, describing the one-body energies of the monomers, to a combined system of 

interacting units.  This work predicted that the Z structure would be preferred, would be 

stable by 19 kcal mol
-1

 with respect to dissociation, and that no minimum would exist 

for the NH3HCl N complex.[23]  This conflicted with the experimental observation that 

NH4Cl crystals are not formed between HCl and NH3 gases in the vacuum gas 

phase.[22]   

 

Clementi noted that the omission of electron correlation was likely to cause issues with 

the shape of the potential energy surface, specifically the presence or absence of a 

barrier, but did not extend these concerns to the relative stabilities (or existence) of the 

minima.  He argued that NH4Cl was thermodynamically stable, but that the equilibrium 

was strongly in favour of the NH3 and HCl monomers, i.e.  it was kinetically 

unstable.[23]  His subsequent paper with Gayles computed that, principally due to the 

very low barrier to dissociation on the potential surface, the equilibrium did indeed lie 

far in favour of the neutral molecules, and only parts-per-thousand levels of NH4Cl 

would be present in an equilibrium mixture of NH3 and HCl at experimental 

temperatures.[25] 

 

Indeed, Goldfinger and Verhaegen were able to detect small amounts of ND4
+
 above 

solid ND4Cl and reasonably concluded that it arose from ionisation of ND4Cl.  On the 

basis of the temperature dependence of the signal they found a value for the dissociation 

energy of NH4Cl of 15.2 kcal mol
-1

, in close agreement to Clementi’s value.[26] On the 

basis of subsequent results it is likely that they had observed a dissociation product of 

the NH3HCl Z structure, perhaps as a result of ionisation in a vibrationally excited (and 

more highly proton-transferred) state.   

 

The most convincing experimental data of this era came from Shibata who performed 

electron scattering experiments on NH4Cl vapours and was not only able to pin down 

the structure of its product as the C3v structure with one proton between N and Cl 
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(Figure 1.2), but also provide geometric parameters for the internuclear distances.  His 

experimental value for the H-Cl distance of 1.54 Å was indicative of an N structure.[27] 

H

H

N

H
H

Cl

 

Figure 1.2: The C3v structure of NH3HCl 

Note that Clementi also addressed the charge transfer between NH3 and HCl in the 

complex.  In this analysis, it was concluded that the interaction between the monomers 

causes charge transfer from the π orbitals associated with the H atoms on NH3, to the 

nitrogen atom; and that subsequently this charge is transferred from the lone-pair σ 

orbital of NH3 to Cl via the “shuttling” proton.  He proposed the intriguing view that the 

nitrogen atom acted as a “transformer” of charge between the π and σ systems in the 

molecule in this instance.[24] 

 

Improving computational resources and the dawn of computational chemistry as a field 

in its own right allowed Raffenetti and Phillips to compute the potential energy surface 

of NH3HCl using a counterpoise treatment of BSSE (an issue in intermolecular 

interactions; see 2.6) and the CI method (for electron correlation; see 2.3.2.1), with large 

basis sets; this result concluded that the complex was likely to be NH3HCl, and not 

NH4Cl as previously believed.[28] An extensive study of the amine hydrogen halides by 

Brciz et al[29] reached the same conclusion, and their study and those by various other 

researchers established the effect of electron correlation[30-36] and of basis set 

quality[37] upon the number and type of minima computed for these hydrogen-bonded 

systems. 

 

Essentially, the omission of electron correlation (see section 2.3 for a general overview)  

can lead to an underestimate of the intermolecular interaction energy for N (due to 

neglect of dispersion), which will tend to both unphysically stabilise Z with respect to 

the N, and lead to the appearance of an unphysical barrier between the two structures.  

In a significantly later study, Biczysko and Latajka established that the inclusion of very 

high level treatments of electron correlation – up to CCSD(T) – are required for the 

accurate quantitative description of the potential energy surfaces for the proton-transfer 

complex, e.g.  the proton-shuttling vibrational frequency, in NH3HF, NH3HCl, and 

NH3HBr, while cementing the view that NH3HX takes the N structure.[38] 
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One particularly curious result was obtained by Famulari et al, using an a priori 

correction for BSSE, MCSCF, and a robust (Dunning-type TZ basis set (section 2.4).  

Their calculation of the NH3HCl proton-transfer potential energy surface indicated a 

local minimum for the Z structure.[39]  However this study used a rigid one-

dimensional potential energy surface where only the position of the transferred proton 

was changed.  It is now known that the “breathing” motion between the monomers is 

strongly coupled to the proton position, and so moving the proton without making the 

corresponding breathing motion artificially elevates the energy of the system.  It is the 

author’s opinion that this is the source of the barrier.  (See also section 2.7.1).  Such an 

issue was anticipated by Raffenetti and Phillips.[28]  Regardless, the MCSCF method 

used in Famulari et al’s study provides information on how the N and Z “character” 

combines in the observed complex . A small amount NH4Cl character in the N complex 

is responsible for the red-shift in the HCl vibrational frequency.[39] 

 

Parallel experimental studies had issues of their own that shed light on the sensitivity of 

the proton transfer process in hydrogen bonds, in this case the issue of matrix effects.  

Interim experimental IR studies established quite definitively that NH3HCl had a C3v 

hydrogen-bonded structure,[40] but could not determine well the degree of proton 

transfer.  This is now believed to be due to the role of matrix effects (specifically, the 

polarizability of the matrix, and the resultant field) in triggering proton transfer.[41,42]  

A 15 K infrared spectroscopy study in nitrogen by Ault et al suggested that the structure 

of NH3HCl was intermediate between N and Z, for example,[40,43]  An attempt to 

disentangle the contradictory theoretical and experimental results was made by Barnes 

et al, who moved to a less polar argon matrix and found greatly reduced proton transfer 

in NH3HCl and the other amine-HCl complexes.[44,45]
  

Modern studies in even more 

inert matrices continue to show a higher degree of proton transfer than that seen in the 

gas phase.[46] 

 

The definitive experimental work on the structure of NH3HCl was performed by 

Goodwin, Howard and Legon, using gas phase microwave spectroscopy.  Their studies 

thoroughly characterised the NH3HCl system as hydrogen bonded,[47-49] with 

particular insight from isotopic substitution of the hydrogen in the acid.[47]  They found 

that the nuclear quadrupole coupling constant for the chlorine atom and intermolecular 

force constant was quantitatively consistent with an HCl unit perturbed by NH3, rather 

than NH4Cl (assuming that the quadrupole coupling with NH4 would be similar to that 
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of  the alkali chlorides).  Their data indicated an N-Cl distance close to that of the 

NH3HCl structure originally report by Latajka et al.[30] 

 

1.1.2. From NH3HCl to NH3HBr and NH3HI 

 

Contemporary to the revival of the issue of the structure of NH3HCl by Raffenetti and 

Phillips, theoreticians and experimentalists had began exploring the issue of proton 

transfer in the other hydrogen halide-amine systems, with either more labile hydrogen 

halides or more basic amines.  Similar experimental and theoretical issues were 

encountered to those in the NH3HCl studies. 

 

Early computational work suggested that the complexes containing halides heavier than 

Cl would be proton-transferred or intermediate in structure, but as noted in the previous 

section on NH3HCl, these results did not account for electron correlation and thus were 

likely to overestimate the degree of proton transfer.[50-52] The addition of MP2 

electron correlation (section 2.3.2.3) to NH3HBr in Latajka et al’s study of NH3HBr 

only succeeded in recharacterising the system from one capable of adopting both N and 

Z structures, to one having an intermediate structure between those extremes.[51] Brciz 

et al (correctly) characterised NH3HBr as an N-typestructure by using a now-obscure 

electron correlation method called CEPA[53] (a sort of approximate coupled cluster) 

with double-zeta, polarised basis sets, but this result was not yet persuasive.[29] Later 

calculations by Latajka et al with superior basis sets convincingly characterised 

NH3HBr as the an N structure.[38,52] 

 

Continuing on this theme, Kollman et al studied NH3HI at the SCF level using an ad-

hoc correction to the NH3 proton affinity but obtained inconclusive results.[50]  

However a particularly strong early study was performed by Jasien and Stevens, who 

applied electron correlation by CCD (see 2.3.2.2) and zero-point corrections to establish 

the existence of a single N-type minimum for NH3HCl and NH3HBr, but two minima 

for NH3HI, the N-type one being more stable than the Z-type.[35] Latajka et al 

attempted to characterise the potential energy surface of NH3HI at the MP2 level, and 

found two shallow minima, perhaps coalescing into a very broad well with complete 

sharing of the proton.  However given that the N was increasingly favoured when 

moving to the MP4 level, there is reason to suppose that a higher-level treatment may 

find just a single N-type minimum.[52] 
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Experimentalists found NH3HBr and NH3HI as challenging as their lighter counterpart.  

Nitrogen matrix IR studies initially suggested that NH3HBr was proton-transferred,[43] 

but the argon matrix work of Barnes et al again pointed towards a system which would 

adopt an N-typestructure in the gas phase butwas being perturbed by the matrix to 

favour a Z-type structure.[54] Comprehensive studies by Schriver et al,[55] Andrews et 

al,[41,56,57] Barnes et al,[58,59] Liu et al[60] and del Bene et al[61] show that the 

measured degree of proton transfer in NH3HX is strongly matrix-dependent, to the 

extent that changing matrix by one step in the sequence gas-Ne-Ar-N2 causes a change 

in degree of proton transfer equal to substituting for the next halide in the series F-Cl-

Br-I. 

 

Howard and Legon followed up their seminal microwave study of NH3HCl with an 

equivalent analysis (albeit without isotopic labelling of hydrogen) of NH3HBr, in search 

of a proton-transferred complex.[62]  Early computational studies had suggested the 

existence of such a minimum.  Given the soft intermonomer stretching mode and the 

value of the quadrupole coupling between the nitrogen and the bromine (i.e.  similar 

arguments to those for NH3HCl), they concluded that this was also an N structure with a 

small amount of charge transfer and little geometric perturbation.  Legon confirmed that 

this extended to NH3HI with an analogous study.[63] 

 

1.1.3. Modelling and generalisation to other hydrogen-bonded systems 

 

As theoretical tools began to assign the correct qualitative structure to the ammonia-

hydrogen halide complexes, investigation into the electronic structure of these systems 

began in earnest.  One of the most extensive computational studies is that performed by 

Alkorta et al, with the specific goal of addressing the driving force for proton 

transfer.[17] Their systematic DFT study crossing the hydrogen halides with a variety of 

bases (including NH3 and the methylamines) drew several useful conclusions.  Most 

pertinent to this section was the observation that the strength of the N complexes grew 

with the electronegativity of the halogen, while the strength of the Z complexes 

dropped.  The N complex becomes more stable because of the increase in the 

polarisation of H-X, and thus the electrostatic intermolecular interaction.  The Z 

complex becomes less stable because the one-body term to dissociate the H-X bond 

increases, while the counterbalancing electrostatic two-body interaction does not 

increase as rapidly.[17] 
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Secondly, and most importantly, Alkorta et al. deduced a simple model for whether 

proton transfer will occur with a given acid and base.  For a pair of ions A
-
 and HB

+
, 

there is a distance Rc where the electrostatic interaction between these ions (which 

varies with the inverse of the distance) becomes so large that it is greater than the 

difference between the proton affinities of the free molecules, and these ions (the Z 

structure) are favoured over the neutral molecules (the N structure).  Note that the 

difference between the proton affinities of the free molecules is the asymptotic limit of 

the “difficulty” in forming the ion pair; in reality, proton transfer is slightly easier 

because the proton is still near both molecules  On the other hand, the model assumes 

that the interaction between the neutral molecules is zero, but it is actually finite.  

Alkorta et al supposed that two molecules could not come closer than 2.8 Å, and 

therefore the electrostatic interaction at that distance had to be greater than the 

difference in two-body energies if proton transfer was to occur.  They computed the 

electrostatic energy between two point charges at that distance, giving a critical value of 

120 kcal mol
-1

.  If the difference in one-body energies is greater than this value, then the 

molecules cannot approach close enough for the electrostatic two-body term to rise 

enough to overcome it.[17]  

 

A similar treatment had been suggested by Ault and Pimentel in the publication of one 

of their matrix isolation studies, which put the threshold at 124 kcal mol
-1

, and forecast 

the critical internuclear distances for the NH3HBr and NH3HI complexes at 2.90 Å and 

3.17 Å, respectively.[40]  These models were borne out by their computational data 

points, although of particular note was the fact that NH3HI was found to be a borderline 

case.  These models are grossly simplified in a manner that does not consistently favour 

the neutral molecules or the ions. For example, omitting valence repulsion will oppose 

the approach of the ions, disfavouring Z at any internuclear distance, while 

hyperconjugation which will act to weaken the A-H bond and thereby make proton 

transfer more favourable.  However these approaches provided some of the first reliable 

benchmarks for the likelihood of proton transfer between acids and bases. 
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1.1.4. NH3HF: an outlier 

 

NH3HF poses a number of experimental issues, not least the corrosiveness of HF, which 

have limited the experimental research into the structure of NH3HF.  Notwithstanding 

this difficulty some studies went ahead, and fortunately unlike the other NH3HX 

systems, there was little ambiguity about its structure in either experimental or 

theoretical studies, due to fluoride’s great affinity for the system’s proton.  Shibata’s 

electron scattering studies reportedly found the C3v structure seen in NH3HCl (see [27]).  

Johnson and Andrews’ argon matrix IR study characterised the complex as HF only 

modestly perturbed by NH3, albeit with a large amount of charge transfer.[64]  Even 

SCF-level theoretical calculations indicated a very small amount of proton transfer.[65] 

Szczesniak et al performed later computational studies on NH3HF at the MP2 and MP3 

levels, and found that correlation, while not necessary for the qualitative description of 

the NH3HF complex, reduced the already small degree of proton transfer and 

perturbation.[66] However, measurements of the complex’s dipole moment and the 

geometric parameters have unfortunately remained unpublished.  (See ref.s 10 and 11 in 

[64]). 

 

1.1.5. Additional degrees of freedom: variation of the base or environment 

 

Although beyond the remit of this thesis, we may also consider the situation in which 

we change the other one-body term by varying the base.  Adding methyl groups to 

ammonia will increase its proton affinity, increase the degree of proton transfer in the 

system, and ultimately should “tip the balance” in favour of the proton-transferred 

structure, as indicated by experimental[43,45,48,54,67-69] and computational 

studies.[17,29,30,51,52,67,70]  In their DFT analysis of the hydrogen halides (up to 

iodine) versus a variety of nitrogen- and phosphorus-containing bases, Alkorta et al 

found that the use of strong bases was expected to create the Z structure in many 

cases.[17]  As expected, strong acids and bases tended to favour Z, while weak acids 

and bases tended to favour the N structure.  HBr, being a strong acid, had a Z structure 

in all cases, although given that this includes NH3 there is likely some degree of 

overestimation.  HF, meanwhile, made  N favourable in all but two cases, congruent 

with Szczesniak’s et al’s earlier study that the methylamines are simply not strong 

enough bases given HF’s poor acidity.[66]  With one exception, only a single minimum 
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was found on the potential energy surface, i.e. either N or Z structure weas 

obtained,[17] as anticipated for correlated calculations.[30] 

 

Proton transfer may also be triggered by an outside perturbation.  In a similar manner to 

the effect of polarisable matrices, the addition of a polar solvent leads to increased 

proton transfer, as a microscopic example of solvation,[36,71-78] while the addition of 

other NH3HX dimers can also make proton transfer possible as a microscopic form of 

crystal formation.[79,80]  Even on ice, the hydrogen chloride is ionised to a hydrated 

chloride anion and a hydrated proton, which can then find and react with hydrated NH3 

to form ammonium.[81]  

 

Related to matrix effects, proton transfer can also be facilitated by the application of an 

outside electric field, which favours the formation of a large dipole on the complex by 

proton transfer.[82,83]  As well as providing a way to model matrix effects,[83] such 

fields allow experimental and computational studies of one system with an arbitrary 

intermediate degree of proton transfer determined by the field strength.[82,83] 

 

In the gas phase hydration of NH3HX, the acidity of the halide controls the rate at which 

additional water molecules enhance proton transfer.  Recall that it is the difference in 

one-body proton affinities of the monomers that must be overcome; the more acidic the 

hydrogen halide, the smaller the imbalance is.  (Some of this imbalance is reduced by 

the two-body energy term.)  Correspondingly, one molecule of water has been shown in 

simulations to drive NH3HBr to proton transfer, two water molecules to drive transfer in 

NH3HCl, and three to cause transfer in NH3HF.[71-73,77]  The addition of water 

molecules stabilises tZ (which is ionic) more favourably than the N, and ultimately 

moves the balance in favour of proton transfer.  Contrary to the above, only one 

additional ammonia is needed to drive proton transfer in the halides heavier than F.[75] 

 

Mulliken proposed that the clustering of many NH4Cl units could ultimately construct a 

local environment where the electrostatic stabilisation by the other NH4Cl would lead to 

the thermodynamic favourability of proton transfer.[19]  However, the kinetic 

improbability of forming these NH4Cl units and bringing them together in clusters in the 

first place would require high pressures.[19]  This problem was revisited by Cheurng 

and Tao, who studied the clusters (NH3HX)n at the DFT and MP2 level, where X is F, 

Cl, or Br.[79,80]  For n=1, the hydrogen bonded structure with only a mild perturbation 
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of the H-X bond was predicted.  For n=2 and above and X=Cl and Br, a wholly ionic 

cluster was predicted and for n=4, even fluorine was expected to form a microscopic 

salt crystal.  Naturally, at very large n, we have the macroscopic crystal. 

 

Cheurng and Tao made the interesting proposal that the observed proton transfer was 

due to the strengths of the intermolecular interactions (i.e.  the 2-body term) but also the 

rate at which those terms increased.  For increasing n, a single new hydrogen-bonding 

interaction is available to each dimer, but n new
 
ionic interactions can be obtained.  

They forecast that the ionic advantage would become saturated once the halides were 

fully surrounded by base units (and vice versa).  Therefore an amine-hydrogen halide 

which did not undergo proton transfer with a sufficiently large number of other dimers 

would never undergo proton transfer.[79,80] 

 

1.1.6. Summary 

 

In summation, the NH3HX systems are a prime example of the careful balancing act of 

the intermolecular forces behind proton transfer, which both makes them an excellent 

test case and a theoretical and experimental challenge.  A great deal of progress has 

been made through a combination of Legon and collaborators’ experimental ingenuity 

in gaining true gas phase studies, and the improvement of computational techniques to 

the point where they could describe the underappreciated non-electrostatic effects 

involved.  Principally, the use of poor theoretical tools tends to favour the more 

electrostatic Z structure, and exaggerate or create barriers between the Z and N 

structures.    

 

That said, this thesis has two primary themes. Firstly, it determines the role of one- and 

two-body energy terms in the overall favourability of proton transfer in the ammonia-

hydrogen halide hydrogen bonded complexes.  This is the subject of Chapter 4.  

Secondly, itinvestigates the effect of a very simple chemical perturbation – the binding 

of an electron, to create the molecular anion – upon the degree of proton transfer in 

these systems, which is discussed in Chapters 3 and 5. 
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1.2. Anions 

 

To understand the anions of the NH3HX systems, it is vital to first understand the nature 

of anions in general.
1
  At the simplest level, an anion is any chemical system in which 

the number of electrons is greater than the number of protons, the singly-charged anion 

being most commonplace due to the Coulombic repulsion between a singly-charged 

anion and an electron[84] (although multiply-charged anions are not out of the realm of 

possibility,[85] that research often focuses on providing many discrete sites for the 

electrons to bind[86,87]).  These may be classified by the mechanism by which the 

excess electron is bound, and the ultimate fate of the anion once created. 

1.2.1. Methods of Binding an Excess Electron 

 

The simplest anions are valence anionsof open-shell parents, for example the chloride 

anion or the hydroxide anion, where the inclusion of an additional electron in the 

valence orbital satisfies the valence of the system and closes the shell.  However the 

modern study of molecular anions is typically focussed upon those in which an “extra” 

electron has been added to a system which already has a closed shell.  The nature of the 

interaction and the consequences categorise the anions.  In this review, anions where the 

incident electron has negligible kinetic energy shall be considered (i.e.  we shall study 

the properties of anions, not of the electron impact). 

The first and simplest such anion is, as mentioned above, the valence anion, where the 

excess electron appears in a valence orbital of a molecule which may or may not have a 

closed shell.  As valence electrons are closely bound to the system, their orbitals 

typically exhibit nodal structure within the nuclear framework (Figure 1.3), and 

consequently the binding of an electron can lead to a change in the nuclear structure, the 

bond strengthening or weakening that undergraduate chemists learn to associate with 

bonding and antibonding orbitals.[88]  More unoccupied orbitals are antibonding than 

bonding as they accumulate ever greater numbers of nodes to satisfy their orthogonality 

with the remainder of the molecule, and therefore bond weakening is more 

commonplace.  

                                                 
1
 This section of the review is addressed primarily with the phenomenology of dipole-bound anions; the 

relevant theory of anions is discussed in Chapter 2.   
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Figure 1.3: The lowest unoccupied orbital (red and black contour lines, denoting phase) of CH3F, 

which has a node (dashed line) between C and F.  If an electron occupies this antibonding valence 

orbital to form the CH3F anion, the C-F bond will weaken. 

The second and, for this thesis, most relevant type of anion is the multipole-bound 

anion.  In this class of systems the positive regions of the multipole on a molecule – 

such as “N” the end of the dipole that exists across NH3HX - bind an excess 

electron.[89]  Due to the rate of decay of the multipole interaction (r
-2

 for a dipole, r
-3

 

for a quadrupole, etc.) dipole-bound anions are the most common.[84]  The resulting 

electron density is diffuse, and therefore although orthogonality must be satisfied, the 

interaction between the dipole-bound electron and the nuclear framework is weak.   

A notable strong early study by Miller et al addressed the alkali halide anions MX
-
.  

This study sought to understand whether the electronis   bound by the dipole, i.e. 

[M
+…

X
-
]

-
 or the electron simply occupyies the diffuse s orbital of the alkali metal ion, 

with some polarisation by the halide anion, i.e. M
0…

X
-
.  Their study  hypothesised that 

in the “valence” scheme the vertical detachment energy of the anion would be 

correlated with the polarizability of the alkali metal atom and the inverse square of the 

internuclear distance (α/r
2
).  Their data indicated no strong correlation between the 

dipole moment and the vertical detachment energy, but a clear correlation with α/r
2
, 

validating this “valence” picture.[90]   

The solvated electron is closely related to the dipole-bound anion.  In these systems, an 

electron is not bound by the sum multipole of a group of molecules.  Instead, the 

multipoles (typically dipoles) of the solvent molecules arrange such that their positive 

ends are directed towards the electron.  Although the total dipole of the group is near 

zero by cancellation of the dipole vectors, there exists a local region of positive 

electrostatic potential where the electron may reside (Figure 1.4).[84,89,91]   
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Figure 1.4: Schematic illustration of a solvated electron in water 

The classic example of a solvated electron is the blue solution of an alkali metal in 

ammonia, where the blue colour arises from visible-light absorption by the solvated 

electrons.  Similar principles lie behind the proper description of species such as dipole-

bound anions and the less-electronegative halide anions in solution, where the charge on 

the solute is distributed into the solvent.[84] There is an ongoing lively debate about 

whether the solvated electron, and its solid-state peer, the electride (an electron 

occupying an anion site in a crystal lattice),[92] constitute anions in their own right.  

There is computational evidence of electron density maxima in the vicinity of solvated 

electrons; which in the AIM formalism, which attempts to describe molecular systems 

entirely in terms of the electron density (see also section 1.1) electron density maxima 

are defined as nuclear attractors, i.e. the nuclei of atoms.[93] 

The most curious of the bound anions is known as the Rydberg anion.[84] These states, 

analogous to the Rydberg series of orbitals of the hydrogen atom, bind electrons due to 

the long-range potential of the molecule, out where the valence repulsion to the excess 

electron is weak and dispersion and other higher-order interactions can have a 

significant effect.[84] Such species typically find a use as very soft electron sources for 

the formation of anions of other species.[94]  

The terms “correlation-bound anion” and “dispersion-bound anion” have been coined 

for anions of any of the foregoing types which are bound primarily through the 

correlation effects in general and dispersion interaction in particular between the extra 

electron and its neutral host, rather than the electrostatic interactions which are typically 

used to rationalise them.[95-97] 
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1.2.2. Unbound Anions 

 

There exists a third class of anion, the anionic resonance or unbound anion, in which the 

electron interacts with a molecule (e.g.  by scattering) but is adiabatically unbound: the 

resulting anion is higher in energy than the relaxed neutral molecule .[88,89]  These are 

divided into shape resonances, so named because the electron is bound by the “shape” 

of the molecule-electron potential which temporarily blocks its escape (e.g.  a 

centrifugal barrier),[88,89,98] and excited resonances, in which the mixing of excited 

vibrational and/or electronic states creates an anion state that is higher in energy than 

the associated vibrationally excited neutral (“vertical detachment” is exothermic), but 

not with respect to the neutral ground state.[88,89,98]  Vibrationally-excited resonances 

are known as Feshbach resonances; electronically-excited resonances in the vibrational 

ground state are known as core-excited shape resonances (where the core is the parent 

molecule),[88,89] and finally electronically- and vibrationally-excited resonances are 

termed core-excited Feshbach resonances.[88] 

1.2.3. The Fates of Anions 

 

The fates of the anions are determined by two factors.  First, each of the anion classes 

outlined in the previous section can couple to the others, including the unbound states.  

Secondly, and importantly for chemistry, structural changes can occur that bind the 

electron more permanently,[99-101] or which lead to the breakdown of the molecular 

framework, or even aggregation.[88]  This is dependent upon the electron’s lifetime 

being large.  It is infinite in the case of bound electrons, and for shape resonances is 

strongly dependent upon the coupling to bound states, for example. 

In dipole-bound anions, as noted previously, the interaction with the molecular 

framework are not strong and the geometric perturbations are typically mild.[102]  

However, a system may undergo a geometric change which produces a more stable 

anion.  In the alkali halide and dipole-bound anions, the system relaxes by increasing 

the alkali-halogen distance, congruent with both an increase in the stability of the excess 

electron, and the weakly antibonding nature of the SOMO.[90,103]  This raises the 

question: are these the effect of the SOMO’s antibonding nature, or the enhancement of 

the electron binding that these changes provide? 

The effect is more pronounced in cyanoacetylene, which has a linear dipole-bound 

anion, while a significantly more stable valence anion with a “zig-zag” state is 
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available,[99,100] while (HF)3 prefers a cyclic structure which restricts its dipole 

moment, and its anion prefers a “zig-zag” structure to maximise the dipole moment 

(Figure 1.5).[104] The lowest-energy tautomers of several nucleic acid base anions are 

not the lowest-energy (“canonical”) tautomers of the neutrals, as the need to stabilise the 

excess electron adds an additional term.[105-110]   

 

Figure 1.5 (a): Cyanoacetylene neutral structure and zig-zag valence anion; bond orders in the 

anion are ambiguous. (b): Cyclic, dipole-minimising structure of the HF trimer, and the linear 

dipole-maximising structure of its anion. 

Hydrogen bonds provide a particularly appealing target.  The hydrogen-bonded 

complexes H2O
...

HCl and HOH
...

NH3 show a weakening and softening of the bond 

between the donor and the hydrogen upon binding of the electron, with the addition of 

an extension of the distance between the two heavy atoms that further enhances the 

dipole.[111,112]  In NH3HCl, binding the excess electron drives complete proton 

transfer to the ammonia, producing an (NH4Cl)
-
 complex reminiscent of the alkali 

halide anions.[113] In the thymine-glycine dimer anion, proton transfer is similarly 

triggered upon binding of an extra electron,[114] More generally, dipole-bound anions 

exhibit a softening and lengthening of any bond, be it intra- or inter-molecular, which 

can be characterised as providing the dipole moment, so that the dipole is 

enhanced.[102] 

Dissociative electron attachment (DEA), wherein a molecule decomposes upon the 

binding of an excess electron, is a well-studied class of reactions.  DEA is of particular 

interest as a way to chemically process surfaces with electron beams as a form of 

lithography for nanotechnology.  A little-appreciated counterpart exists, known as 

associative attachment, in which an electron can bind two fragments together that would 

not otherwise be stable.  Such a three-body interaction is an unlikely process   but has 

nevertheless been proposed in the case of heterogeneous and homogeneous 

clusters.[88,98]  

(a) (b) 

e
-
 

e
-
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DEA is traditionally associated with valence anions, particularly the occupation of 

antibonding valence orbitals associated with the bonds to be broken.[115-118]  

Alternatively, the exotherm associated with the electron affinity and any electron kinetic 

energy may be greater than the dissociation energy of the molecule. If the molecule has 

no way to disperse this energy, it may fragment.[94] Regardless, the lifespan of the 

anion between electron binding and dissociation is dependent upon the dissociation 

pathway.  For a polyatomic molecule, it may be a matter of milliseconds before the 

molecule samples the region of the potential energy surface that allows it to dissociate; 

for diatomic molecules the lifespan is no more than a vibrational period.[88] 

The final possible fate of an anion is, of course, electron autodetachment, which is 

possible under a variety of circumstances.  In resonances, this is a matter of course; 

ultimately electronic and/or nuclear relaxation leads to the escape of the electron or 

decay into another state.[88,89]  

1.2.4. Low energy electron attachment to DNA 

 

Given the previous discussion, it is worth highlighting one of the most practically-

revevant electron-triggered reactions, which happens to involve the whole spectrum of 

anions: the reductive DNA damage caused by secondary electrons from ionising 

radiation.  This radiation is so named because the energy of a single incident particle or 

quantum of radiation is sufficient to eject completely electrons from molecules and 

atoms, forming cations.  As implied previously, the majority of electrons in a stable 

molecule are to be found in the stable bonding orbitals, therefore there is a high 

likelihood that the radiation will cause a weakening of the bonding framework of the 

molecule, possibly leading to dissociation.  At any rate, the bonding framework will 

change, i.e.chemical damage has been initiated by the physical ionisation process.  The 

incident radiation may also dump significant energy into the molecule’s vibrational or 

rotational modes. 

Where the ionised molecule is a DNA strand, this leads to damage which, if left 

unrepaired, may cause problems in proper cell functioning and replication, leading to 

disease and possibly cancer.  When high-energy radiation passes through an aqueous 

medium, it does not simply dump all of its energy onto the first molecule it encounters.  

The nucleus or photon dumps energy into the medium gradually, ionising the water and 

producing streams of relatively high-energy secondary electrons.[119,120] 
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The journey through our medium has, in 10
-16

 to 10
-18

 seconds, produced a wake of sites 

containing low energy electrons, ionised water molecules, excited water molecules, 

protons, hydroxyl anions, and aqueous radicals.  Although the other species are 

important in creating a variety of radiation products, the low-energy electrons dominate.  

Thermalisation and solvation, resulting in almost-zero-energy electrons is rapid, and 

recombination with the water cations is considered unlikely.[119] 

These electrons have low energies, but they are by no means benign.  As discussed 

previously, electron attachment can lead to processes such as DEA.  One particular area 

of interest is low-energy electron attachment to DNA, for example Sanche and 

coworkers’ seminal paper in 2000.[121]   Their experimental work demonstrated that 

low-energy electrons (< 20 eV) can cause single- or double-strand breaks in the DNA 

chain, with clear peaks indicating some resonant process above a monotonous 

background (i.e. some precise electron-capture process is involved).  In other words, the 

kinetic energy of the elecron need not be large for damage to occur.  Since then, there 

has been a great interest in exploring low-energy or zero-energy electron damage to 

DNA, including finding the mechanisms for this strand breaking process.   

Much research has been concerned with discussing valence- and dipole-bound anions, 

considering metastable anions to simply be “doorways” to these states, rather than 

reactive intermediates in themselves.[122,123]  DNA bases, for example, can form 

dipole-bound anions in isolation and valence anions when they dimerize.[124]  

However, the significance of shape resonances in these processes is now being 

appreciated.[125,126]  It is interesting to note that although the nucleic acid bases can 

bind electrons more strongly than the backbone, and large chains of guanine resides 

appear to be efficient at capturing electrons (either with the guanine dipole or via 

resonance states) the electrons  may not be ultimately localised on the bases 

themselves.[123] 

Calculations on phosphate fragments have  suggested that binding of very low-energy 

(< 5 eV) electrons can simply break the sugar-phosphate backbone by DEA.[127] This 

is a simplistic model, but even more comprehensive calculations have suggested that 

such incompletely thermalised (2-3 eV) electrons may attach directly to the phosphate 

group in the backbone,[128] and perform some DEA process.   

Below energies of a few eV, binding of an electron to the backbone at the equilibrium 

geometry is considered unlikely, as with the exception of guanine, binding to the base 
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should be favoured.[128,129]  It has been suggested that base excision may occur 

directly by DEA of low energy electrons to the base itself.  This is not just a structural 

failure in the strand and a loss of a “bit” of genetic information, as the resultant sugar 

radical can cleave the backbone. A reactive hydrogen radical is then produced, and  the 

excised base can itself abstract hydrogen from its surroundings on the DNA strand.[130] 

Electron attachment to the base is one of the most significant low-energy processes, in 

comparison to dissociative attachment via the backbone.[131] It is widely suggested that 

< 5 eV electrons can perform DEA to the nucleic acid bases to release hydrogen radicals 

or hydride ions, which can then further react to cause damage to the DNA 

molecule.[122,132,133][134-136] This process may be highly selective, with the 

electron energy determining the hydrogen removed, yet it appears to be 

indirect.[137,138]  It has been suggested that by replacing the target hydrogen with a 

halogen, haloradicals could be released during radiation exposure, which are much more 

reactive.  Therefore halo-nucleotides could act as novel sensitizers for radiation 

therapy.[139,140] 

While these DEA processes are interesting and create reactive species which may 

damage the backbone, metastable resonances may be very important in inducing strand 

breaks directly.  It has been suggested that a π* shape resonance (see 1.2.2; in this case 

the “shape” capturing the electron is associated with a π* orbital) of the base may 

temporarily bind an electron, and then stretching of the C-O bond can make the π*-

anion and the backbone-based σ* C-O anion degenerate.  The electron can then transfer 

into the σ* orbital, and therefore the anion equilibrium C-O bond length is greatly 

increased and the barrier to dissociation is significantly lower.  This is unlikely in the 

gas phase due to the high probability of autoejection of the electron from the π* orbital 

and the inhibition of electron transfer by base stacking, but becomes plausible in the 

solution phase, where the π* orbital may become bound or, at least, more stable.  

[125,126,141]  The term “indirect dissociative electron attachment” has been coined for 

such processes.[142]  

It is interesting to note that there exists a weakly-bound π* valence anion of uracil 

which becomes bound with respect to the anion when the ring is puckered;[106] this 

may be related to the π* shape resonance discussed above.  Sommerfeld noted a 

Feshbach resonance of uracil that coupled a highly-vibrationally-excited form of its 
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dipole-bound anion to its valence anion.  The resultant valence anion would have 

significant internal energy, which could induce DEA.[101]  

It has been shown that certain tautomers of the nucleic acid base anions (formed by 

transfer of hydrogen from an abasic nitrogen to one of the carbon atoms, for example) 

are more stable than the “canonical” anion.  As mentioned previously, the “canonical” 

valence anions of the nucleic acid bases may not be stable at their equilibrium 

geometries at all, and therefore fragment.[106]  The tautomers, once formed, may not 

base pair correctly, leading to transcription and replication errors, i.e. mutations.  The 

relative stabilities of the “non-canonical” tautomers is believed to be due to the 

stabilisation of the excess electron’s orbital.  [105-110,114]  In this case, the origin and 

energy of the excess electron is not particularly significant, provided that it can bind 

long enough for the tautomerisation to occur. 

1.3. Proton-coupled electron transfer 

 

Tautomerisation or proton transfer triggered by an excess electron may be considered as 

a proton transfer process coupled to the position of an electron. It therefore belongs to 

the class of reactions known as “proton-coupled electron transfer", or PCET.  The 

proton transfer we hope to induce in NH3HX by addition of an excess electron would 

also fall under this umbrella.  A generous definition of an electron transfer  coupled to a 

proton transfer would include the entire sphere of hydrogen transfer reactions,[143] but 

it is more typical to consider coupled proton and electron motions where the electron 

and proton are not moving together, whether they be moving along the same axis 

(collinear PCET) or in different regions (orthogonal PCET).[144] Proton transfer events 

are typically short-range, and electron-transfer events long-range, but there remains the 

possibility of long-range proton “transfer” by a relay of short proton-transfer events, as 

is important in biological systems.[145] 

PCET has been implicated in charge transfer through the DNA chain, due to the 

existence of many (Watson-Crick) hydrogen bonds between the nucleic acid bases.[146] 

The long-range charge transfer properties of DNA (both hole transfer and electron 

transfer) are believed to be important in the detection of DNA damage and its 

subsequent repair.[147-149]  PCET is also important in the charge transport chains in 

photosynthesis and respiration, and the redox action of various enzymes[144,150] as 

well as artificial charge-transport systems.[151,152] 
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It is important to consider whether this process is concerted or stepwise.  The stepwise 

case is perhaps intuitively more likely, as the probability of transfer of both species at 

the same time is lower than the probability that one will transfer, and then drive the 

motion of the other.  For example, transient solvent fluctuations could shift the electron 

potential energy surface such that it transfers, and then the resultant change in the 

proton potential energy surface drives its transfer which “fixes” the product.  The 

reverse, where solvent fluctuations make proton transfer favourable which then 

stimulates electron transfer, is also plausible.[153]  

                 

 

Figure 1.6: Diagram of changes in electron potential energy surface for PCET, D is electron donor, 

A is electron acceptor 

On the other hand, the stepwise process may be unfavourable in free-energy terms, as it 

is for a hydrogen transfer reaction, due to the high-energy intermediates (or in the 

solution phase, the kinetic difficulty in obtaining the correct solvent fluctuation).  The 

concerted reaction exploits the quantum mechanical nature of the proton, coupling the 

proton and electron motions and avoiding the barrier on the  potential energy surface 

defined by the proton or electron position (see 2.7) that must be invoked in a stepwise 

mechanism (although the transfer of the electron and proton is not necessarily 

simultaneous).  [143,145,153] By using a proton relay, the proton transfer can occur 

over a surprisingly long distance, a property exploited by enzyme activity.[145] 

Such processes are curious from a theoretical perspective because, while the proton is a 

much more “quantum-mechanical” body than the rest of the molecule, the electron is 

even moreso in comparison to the proton, moving relatively rapidly.  The process may 

be modelled as an uncoupled electron, proton, and rest-of-system reaction, each 

occurring on a different timescale and uncoupled from the rest.[145,152,154]  However 

situations can even arise in collinear PCET where the proton transfer occurs faster than 

the electron transfer, and proton and electron motions must be treated as coupled.[155] 
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In summation, the addition of an excess electron can have a significant effect upon the 

structure of a chemical system, with this change being most obvious in the potential 

energy surface associated with the position of a proton.  Proton and electron motions 

can be extremely closely coupled.  These couplings have important roles in 

biochemistry, both constructively and destructively, and mimickry of these processes is 

a promising area of research for materials science. 

1.4. Halogen bonding 

 

Halogen bonding is a counterintuitive noncovalent intermolecular interaction.  It is an 

attraction between a halogen atom in a donor molecule R-X and an electron-rich 

acceptor A, it is principally electrostatic in nature, in which the van der Waals surfaces 

intersect and the R-X bond and X-A are collinear.[156-158]  At first glance, the idea 

that two characteristically electronegative species would interact electrostatically is 

absurd.  However such interactions are extant in nature, and in fact have many 

properties that are directly analogous to hydrogen bonds.[159]  Halogen bonding 

requires a more nuanced picture of the way molecules “talk to” one another.  Given the 

involvement of the hydrogen halides in our research, it is natural to ask: will the 

hydrogen halides H-X also form halogen bonds with NH3, in the “backwards” complex 

H3N
…

X-H?   

 

The definitive picture of the halogen bond is that the halogen atom – although 

negatively charged overall – has a region where the negative charge is depleted by its 

bonding to another atom.  For example, in a CH3Cl molecule, this region would be on 

the Cl atom along the axis of – but on the other side of the Cl atom from – the Cl-C 

bond.  This “σ hole” is satisfied by interaction with an electron-rich region on another 

molecule, known in the nomenclature as the halogen bond acceptor, as vividly 

illustrated by various publications by Politzer and coworkers.[156,158,160]  (This is 

illustrated in Figure 1.7).  In other words, this is a local electrostatic interaction, where 

the goal is not simply to align monopoles, but to bring electron density “holes” together 

with electron density “lumps”.[161]  The resultant interactions can be quite strong, and 

have proven to be an appealing new tool for structural chemists.[157,162]  The 

theoretical study of these systems continues apace.[162] 
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Figure 1.7: Electrostatic potential maps of NH3, HCl, and hypothetical H3N
…

ClH halogen bonded 

structure 

The σ hole can be thought of as a region of depleted charge along the bond axis.  This 

certainly contributes to the effectiveness of halogen bonds – adding more 

electronegative substituents R to R3C-X halogen bond donors increases their donor 

ability, while adding electropositive substituents reduces it.[163]  However halogen 

bonds do not require that the group attached to the halogen is more electronegative than 

the halogen.  It has been proposed by NBO analysis that the depletion occurs because a 

p electron is involved in the covalent bond with the neighbouring atom, along the bond 

axis, and is not available to “fill out” the electron density around the halogen.  This is 

supported by the trend in the strength of halogen bonds; the smaller the halogen, the 

more s-p hybridisation occurs, the more the σ hole is mixed across the p orbitals, and 

the less distinct it is.[158,160]  Note that in H3N
…

XH, the hydrogen atom has no p 

orbitals, and therefore s-p hybridisation cannot quench the σ hole, suggesting that 

halogen bonding is plausible. 

 

It has also been proposed that halogen bonding is not simply an electrostatic interaction; 

where the donor halogen is bonded to particularly electronegative groups (e.g.  in HOX 

or XY donors, where Y is also a halogen) there is a high degree of charge transfer from 

the acceptor to donor, and the degree of charge transfer correlates positively with the 

bond strength.[163,164]  SAPT analyses suggest that dispersion interactions are very 

important in halogen bonds involving the lighter halogens (Cl, F) where the electrostatic 

term is small.[165] 

 

X-H -hole lone 

pair H3N 

? 
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AIM  analysis  of the charge density of hydrogen- and halogen-bonded systems has 

provided some particular insights (see 1.1).  In this formalism, the Laplacian of the 

electron density is positive at a critical point in a region where the electron density is 

depleted, as is the case for σ holes, and negative at a critical point in a region where the 

electron density is accumulated, such as in lone pairs on halogen bond acceptors; the 

magnitude of the Laplacian is correlated with the strength of the resultant halogen 

bond.[161,164] A critical point is established between the donor and acceptor in the 

complex; in halogen bonds the Laplacian of the electron density at the critical point is 

positive, indicative of a closed-shell interaction.[164]  While, similarly to hydrogen 

bonds, the density of charge at the critical point and amount of charge transfer are 

positively correlated with the strength of the bond, the Laplacian of the density at the 

critical point becomes increasingly positive as the halogen bond becomes stronger, i.e. 

more closed-shell, whereas hydrogen bonds tend to show increasing 

covalency.[164,166] 

 

 
 
Figure 1.8: The halogen-bonded H3N

...
ClH structure, and its critical points; positive between 

nitrogen and chlorine, indicating a closed-shell interaction and negative inside the hydrogen 

chloride molecule, where there is a covalent bond. 

In an X-Y
…

A halogen bond, where X and Y are both halogens, as the electron-donating 

nature of the halogen bond acceptor increases, the bond becomes stronger, shorter, and 

more electrostatic. Complicating this, the X-Y distance increases, and there is a 

corresponding redshift in the X-Y stretching vibrational mode, just as is observed in the 

hydrogen bond.[167] Furthermore, as in the hydrogen bond these changes arise from 

hyperconjugation, the donation of charge into the σ* orbital of X-Y.[168,169]  In bonds 

where there is a very significant amount of charge transfer from the acceptor A, and 

usually where Y is chlorine, this can ultimately lead to a chlorine-shared or chlorine-

transferred, “ion-pair” halogen bond AY
+…

X
-
, in a similar manner to particularly strong 

hydrogen bonds leading to proton transfer.[159,170,171]  

 

For some weak, long halogen bonds, the amount of charge transfer is small; in these 

cases a blue shift of the X-Y stretching mode and a shortening of the corresponding X-
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Y bond may be observed.  This is due to an electrostatic repulsion between the electron-

rich halogen and the acceptor atom that is not offset by the red-shifting effect of the 

charge transfer to σ*.  This phenomenon is similar in nature to blue-shifted hydrogen 

bonds.[168] It has been argued that this effect is more ubiquitous in halogen bonds 

because the halogen may redistribute this back-donated charge to its p orbitals, a 

mechanism not available to the hydrogen atom in a hydrogen bond. 

 

One of the promising uses of halogen bonds in structural chemistry is as an orthogonal 

interaction to hydrogen bonds; that is, where a halogen is used as a hydrogen bond 

acceptor, it can also be used as a halogen bond donor in another direction, without 

disrupting the hydrogen bond, due to the distinctly different methods of bonding.  The 

energetic independence of the two interactions has been suggested by a recent 

review.[172] However in the three-centre complexes NH3-XY-HF, where the halogen X 

is acting as both a halogen bond donor and a hydrogen bond acceptor, the halogen bond 

may enhance the hydrogen bonds, and vice versa, due to the polarisation of the X-Y 

bond through charge transfer.[173] Furthermore halogen and hydrogen bonds may 

compete for the same site in the crystallisation of small molecules.  In polar solvents, 

the halogen bond tends to be favoured, in spite of the electrostatic favourability of the 

hydrogen bond.[174-177] Tuning the competition between these interactions may thus 

open new avenues in molecular self-assembly.[157,166] 

 

1.5. Electronegativity 

 

In section 1.1.1 , it was noted that the structure of the ammonium halides was 

established, in part, by comparison of the ammonium halide quadrupole coupling 

constants to the equivalent alkali halides.  The body of this thesis shall make the case 

that ammonium is a genuine “pseudo-alkali metal” with pseudo-alkali-metal-like 

properties, specifically electronegativity.   

 

Electronegativity (χ) is a property intimately tied into the modern history of our 

understanding of chemistry.  Avogadro was the first to propose such an idea in an 

attempt to formalise the discussion of oxidising and reducing materials (oxygenicity, in 

their terms), in the era between the demise of alchemy and the arrival of the concept of 

molecules; Berzelius ultimately coined the term we use today.[178,179]  The term 

gained widespread acceptance as a sense of the “electron-attracting ability” of an atom 
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when the atomic and molecular model of chemistry began to be widely appreciated and 

adopted.  In particular, it offers a rationalisation for the formation of polar bonds and the 

tendency of organic reactions to prefer one pathway and set of products over another.   

 

1.5.1. Pauling and Mulliken: The Physics of Electronegativity 

 

Electronegativity was not quantitative, however, until Linus Pauling set out a theoretical 

study of and empirical scale for electronegativity in the 1930s, in one of the first issues 

of the Journal of the American Chemical Society.[180]  In the paper, Pauling describes 

the additivity of the energies of chemical bonds: that the energy EAB of the bond AB is 

equal to one half of the energy EAA of an A-A bond and one half of the energy EBB of a 

B-B bond: 

)(
2

1
BBAAAB EEE   (1) 

This principle holds for weakly-polar bonds, but for polar bonds the total bond energy is 

(almost) always greater than predicted by additivity, to a degree that increases with 

increasing polarity.  This is due to the additional electrostatic attraction between the 

oppositely charged atoms on each end of the polar bond.  The polarity of these bonds 

and the “extra” nonadditive component of the energy arise because of the 

electronegativity difference.  Pauling established a mapping between the square of the 

differences in the electronegativities of the two atoms (χA and χB) and the surplus bond 

energy, chose a sign for differences by chemical intuition, and thereby created an 

empirical quantitative scale. 

2)()(
2

1
BABBAAAB EEE    (2) 

Pauling suggested that using the geometric mean might be superior in consistency to 

simple additivity (the arithmetic mean), naming it the “postulate of the geometric 

mean”.[181,182]  In fact the Pauling electronegativity computed in this way, using 

modern thermochemical data, is not significantly better.[183] 

 

Note that Mulliken came up with a theoretically superior scale by supposing that the 

energies, and thus contributions, of the two different ionic resonance structures were 

equal to the difference between the ionisation energy (IE) of one atom and the electron 

affinity (EA) of the other.[184]   

A
+
B

-
(1)ABA

-
B

+
(2)  
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E1=IEA-EAB (3) 

E2=IEA-EAB  

Where the electronegativities are equal, the contributions are equal, and therefore the 

energies of the two resonance structures must be equal: 

E1=E2 (4) 

IEA-EAB =IEA-EAB (5) 

By simple rearrangement and adding an arbitrary factor of ½, he concluded that the 

electronegativity of an atom is equal to the arithmetic mean of the ionisation energy and 

electron affinity.   

2

AA

A

EAIE 
  (6) 

Mulliken invoked an important caveat: the atom in the molecule is not the same as the 

atom in the gas phase, and the necessity of forming a bond puts the atom into a valence 

state.  Therefore it is the ionisation energy and electron affinity of this state which must 

be calculated.  [184] 

 

Mulliken’s scale correlates well with Pauling’s, indicating that they are both measures 

of the same implicit property; a proper correlation with the Pauling electronegativity, or 

sometimes Allred and Rochow’s (see below) is a historical criterion for the worthiness 

of an electronegativity scale.  A recent review of correlations between the Pauling and 

Mulliken schemes has suggested that the connections between Pauling’s and Mulliken’s 

scale might be improved by attempting to understand the tangable link between the 

bond energies and the electronic energies of molecules, i.e. by making sense of 

correlations using valence bond theory.[185]  

 

A significant issue is that the Pauling and Mulliken scale have different units; Pauling’s 

the square root of energy, and Mulliken’s the energy itself.  Given that the Mulliken 

scale has now been identified as a potential per unit electron (see the discussion on 

DFT, below), one would expect the energy units to be correct.  A recent evaluation 

suggests that Pauling electronegativities are indeed superior if the “excess energy” is 

taken as the electronegativity difference, rather than its square root.[183] 
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1.5.2. The Application of Electronegativity 

 

These papers by Pauling[180] and Mulliken[184]  launched what would appear to be an 

ongoing operation to define the electronegativity in terms of every available chemical 

property.  Schemes can be divided into two rough groups: post-Pauling scales which 

correlate the electronegativity with some property of bond strength, such as Gordy’s 

famously successful relation of the electronegativity product to the bond force constant 

and bond strength[186]; and post-Mulliken scales with correlate the electronegativity to 

some property of the electronic structure of the system.   

 

The latter are of the most theoretical interest to the quantum chemist, however not all 

provide immediate insight.  Gordy proposed a scale based upon the electrostatic 

potential,[187] and Allred and Rochow created a popular scale based upon the 

electrostatic force.[188] Both are measured using the covalent radius for an atom in a 

particular bonding state, but use different measures for the effective nuclear charge.  

Both are ultimately simply related to the orbital energy. 

 

Allen proposed that the electronegativity is simply the mean of the energies of the 

valence electrons in a ground-state atom in the gas phase, as determined by 

experiment.[189] Although appealing, such a scheme is clearly just an effective 

approximation to the established Mulliken scheme.  Similarly Nagle suggested a scheme 

based on atomic polarisabilities, which are of course intimately related to the frontier 

orbital energies.[190]  In that publication, he proposed that such a scheme would not 

require a correction for the valence state, as the polarizability (to some extent) describes 

the ease with which electrons may be excited to such states. 

 

The diversification of the two lineages continues to this day.  The theory of 

electronegativity has comparatively been slow to advance, and exclusively in the region 

of post-Mulliken definitions.  The first step was the impressive case made by Hinze and 

Jaffe that the Mulliken electronegativity, being defined for an electron removed from 

the valence state of an atom, is only well-defined for a specific electron, and therefore a 

specific electronic orbital.[191]  This clarification was of such importance that the 

Mulliken electronegativity is often commonly referred to as the “Mulliken-Hinze-Jaffe” 

electronegativity, or simply the “Hinze-Jaffe orbital electronegativity.  (This is not to 
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ignore their remarkable effort in computing the Mulliken electronegativities of the 

elements and their ions.[191-194]) 

 

1.5.3. The Electronegativity of Groups 

 

 It should not be surprising that the electronegativity as a tool in describing organic 

reactions was soon linked to substituent constants, which are taken as descriptors of the 

donating or withdrawing power of a chemical group.  However such a concept requires 

the idea of group electronegativity. 

 

Most efforts lead from where electronegativity scales had progressed.  Clifford, after 

relating the solubility of metal salts to the electronegativity of the constituent ions, 

established the electronegativities of chemical ions via the known electronegativity of 

the metal.[195,196]  He made the observation, and proposed a generalised principle, 

that negative ions tended to have an electronegativity similar to the mean of the 

constituent atoms, while positively-charged, metal-containing ions tended to have an 

electronegativity similar to that of the metal.  Datta et al  took a direct route (as 

evaluated negatively in Pritchard and Skinner’s review decades earlier)[197] and 

computed group electronegativities on the basis of thermochemical data for bond 

dissociation energies, and found the results to correlate well with NMR spin coupling 

constants (one potential electronegativity scale).[198] 

 

Analyses in terms of molecular structure were suggestive of later developments.  

Huheey demonstrated the ability to properly account for the charge placed on a 

chemical group in computing its electronegativity, by introducing a parameter which 

varies the electronegativity with the charge,[199,200] a concept rigorously defined in 

terms of atomic charges, hardnesses, and electronegativities by Komorowski et al, who 

obtained a strong correlation with the Hammett constants of organic chemistry.[201] 

Following up on comments in Allen’s original publication of his electronegativity 

scheme, Reed and Allen devised an electronegativity scale based upon the “bond 

polarity index”, a property comparing the average energy of the valence electrons in two 

bonded atoms, which they had previously shown to compare well to experimental 

measures of polarity such as substituent constants and chemical shifts.[202,203] Mullay 

proposed a scheme based upon the calculated energy of the orbital involved in a bond, 
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using a combination of semi-empirical estimates of orbital energies and the 

electronegativity equalisation scheme.[204,205] 

 

It was Sanderson who ultimately laid the groundwork for the conception of molecular or 

group electronegativity by suggesting that scheme.  Given that two atoms of differing 

electronegativity will transfer electron density, and that putting electron density on an 

atom reduces its electronegativity, he proposed the “equalisation principle”, stating that 

electron density will be rearranged within a molecule until all the electronegativities are 

equal, and that this can be approximated by the geometric mean of the constituent 

electronegativities.[206,207] This suggests that the idea of a whole molecule, or a 

functional group, having a well-defined electronegativity distinct from that of the 

constituent atoms is not only plausible but necessary.  Hinze and Jaffe applied this idea 

productively in computing the electronegativity of chemical bonds or groups from first 

principles.[192] 

 

1.5.4. The Modern Synthesis of  Electronegativity and DFT 

 

The issue of electronegativity equalisation was “brought into the fold” of modern 

electronic structure theory by Parr et al.  Iczkowski and Margave had deduced that the 

electronegativity is simply the finite difference approximation to the derivative of the 

energy with respect to the gain or loss of electrons by a system.[208]  Parr et al used 

density functional theory (DFT, an electronic structure method with deep links to 

chemical properties) to rigorously show that the electronegativity is the negative of the 

electronic chemical potential (the potential related to the addition or removal of 

electrons to/from a chemical system), a parameter which is already present in the DFT 

implimentation as the Lagrange multiplier.[209]  Given that a potential is equal across 

any closed system in a stationary state, the equalisation principle must hold.  From this 

work, the group were able to deduce the conditions under which Sanderson’s 

“geometric mean” principle was valid. They found that it was related specifically to an 

expontential decay of the valence state energy as more electrons are added to an atom 

(which happens to be true in many common cases).[210]  

 

It is now known that two other quantities are closely related to electronegativity through 

DFT.  The first is the global absolute hardness, a counterpart to electronegativity which 

was originally defined as equal to the difference (or half of the difference) between the 
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ionisation energy and electron affinity of the species in question, but can be shown to be 

the second derivative of the energy with respect to addition or loss of electrons; where 

the electronegativity is a gradient, the hardness is a curvature.[211]  It also has a local 

value, equal to the derivative of the density with respect to the global electronegativity.  

Furthermore, the Fukui function, a local parameter used to predict reactivity, is equal to 

the derivative of the local density with respect to a change in the total number of 

electrons, but is also equivalent to the derivative of the electronegativity with respect to 

an applied potential.[212,213]  Komorowski demonstrated that such a definition allows 

one to describe the electronegativity as varying with the chemical and physical 

environment to a degree controlled by the hardness, with Mulliken’s definition for a 

lone atom in the valence state as a special case and approximation.[214] 

 

Modern computational approaches create the tantalising possibility of probing 

electronegativity in situations which are not experimentally tractable, and are too 

complex to succumb to the traditional theoretical tools that enabled the classical 

definitions to be devised.  Marriott et al made the reasonable observation that the 

electronegativity of an atom X is correlated with 1-qH, where qH is the calculated charge 

on the hydrogen atom in the molecule HX.  From this they proposed and tested a 

definition of electronegativity for organic groups R, χR = 1-qH where qH is the calculated 

charge on the hydrogen atom in HR.[215] Boyd and Edgecombe made the tantalising 

suggestion that the electronegativity relative to hydrogen could be related to the ratio of 

the position of and charge density at the bond critical point between a given group and a 

hydrogen atom (i.e. RH) suggesting that electronegativity could be probed 

experimentally.[216] 

 

Drawing together the foregoing, it is clear that the Mulliken electronegativity is a 

justified measure of an inherent, physically meaningful property of a chemical group or 

molecule.  De Proft et al made a significant step forward when, on the basis of Parr’s 

definition, they computed the electronegativity and hardness of chemical groups by 

computing the calculated ionisation energy and electron affinity of the associated 

radicals; the results compared well with previous scales and chemical intuition.[217] 

Leyssens et al, applied modern computational chemistry techniques to compute the 

Mulliken electronegativity of component parts of a molecule as they are exposed to 

point charges.[218]  It is in this context that we have evaluated the ammonium radical. 
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1.6. Summary 

 

To summarise, the key outstanding issues from the above literature which are addressed 

in this thesis: 

 

 In the NH3HX complexes, where X = F or Cl, the proton transfer potential 

energy surfaces have been ambiguously characterised in the past, and the shapes 

of the surfaces have been found to be highly dependent upon the quality of the 

theoretical method. 

 For heavier halogens, the shapes of the surfaces and the structures of the 

complexes become increasingly ambiguously characterised. 

 The anions of the NH3HX neutral pair complexes may undergo proton transfer, 

for reasons that have not been fully elucidated. 

 The electronegativity of groups and molecules has been justified, but its 

usefulness in a practical context has not yet been established. 

 The NH4 group, widely regarded (implicitly and explicitly) as a “pseudo-atom”, 

could be assigned the atomic property of electronegativity and evaluated as both 

a pseudo-atom and a molecule. 

 It is likely that the hydrogen halides can form a “backwards” structure using 

halogen bonding. 
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Chapter 2: Theory 

 

As established in Chapter 1, the proper calculation of the potential energy surfaces of 

the NH3HX systems requires a high-quality treatment of electron correlation and good 

basis sets.  Furthermore, the description of dipole-bound molecular anions has its own 

theoretical hurdles.  Modern electronic structure methods, which used quantum 

mechanics to predict the properties of chemical systems, must be used.  This chapter 

describes the theories and methods used in this thesis, and an evaluation of their 

advantages and limitations. 

 

2.1. The Born-Oppenheimer Approximation 

 

Suppose we wish to describe a chemical system by quantum mechanics.  One 

fundamental approach is to determine the wavefunction of the system.  Given the 

wavefunction, we would then be able to calculate the properties of that system. 

 

We know that the wavefunction of the system must satisfy the Schrödinger equation: 

  EH ˆ  (7) 

Where Ĥ  is the Hamiltonian, ψ is the wavefunction, and E is the energy.  The 

eigenfunctions and eigenvalues of this equation are the quantum states and the 

respective energies available to the system.  For our complete chemical system, we 

have: 

 
nneeneentot VVVTTH ˆˆˆˆˆˆ   (8) 

Where nT̂  is the nuclear kinetic energy operator, eT̂  is the electronic kinetic energy 

operator, neV̂ is the nucleus-electron interaction operator, eeV̂  is the electron-electron 

interaction operator, and nnV̂  is the nucleus-nucleus interaction operator.[1] In this form, 

the nuclear and electronic motions are strongly coupled.  However, the electrons and 

nuclei have very different masses, and therefore we would expect that the electronic 

motions would be more strongly coupled to each other than they are to the motions of 

the nuclei, and vice versa.   

 

Without getting into any further technical detail, it is possible to separate the expression 

for the wavefunction into the product of an electronic wavefunction ψ(r;R) at a given 
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set of nuclear coordinates R, and a function describing the nuclei moving in the 

electronic potential Ee(R).  This process splits the Hamiltonian into the sum of a 

“clamped nuclei” Hamiltonian for the electrons, with the nuclear positions as a 

parameter, and a corrective Hamiltonian for nuclear motion.[2] 

 

A linear combination of the eigenfunctions of the clamped nuclei Hamiltonian gives us 

a (useful) exact form of the wavefunction.  Taking a single eigenfunction of the 

clamped nuclei Hamiltonian decouples the different solutions and gives us the adiabatic 

approximation, which still incorporates a small correction for nuclear motion.  Finally, 

we can remove the small correction for nuclear motion, and obtain the Born-

Oppenheimer approximation.[2]  We are no longer calculating the total wavefunction of 

the system, but just the electronic wavefunction, ψe.  Given a set of nuclear coordinates 

R, and labelling the electronic coordinates as r, we must solve:  

 

 );()();()ˆˆˆˆ( RrRERrVVVT eenneenee    (9) 

 

2.2. The Hartree-Fock Method 

 

So far we have not defined a form for the wavefunction ψ(r;R),  but we do know that it 

must be in terms of the electronic coordinates.  We also know that it must be 

antisymmetric with respect to exchange of any two electrons, because they are fermions.  

We achieve this by defining the wavefunction as a (normalised) Slater determinant of 

orthonormal molecular spinorbitals[3]: 
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Each term )(ni  is the molecular spinorbital “i” occupied by electron “n”.  As the name 

suggests, these terms are the product of a spatial function (θi(r)) and a spin function 

(α(s) or β(s)) denoting up or down spin: 

 )()( srii    (11) 
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It can be seen by writing out the determinant in full that exchange of any two particles 

changes the sign of the wavefunction: 
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(12) 

Jensen provides a useful trick to handling the Slater determinant which is applied to the 

remainder of this section.[4] It is more convenient to write the Slater determinant in 

terms of a product of one-electron wavefunctions, and an operator called the 

“antisymmetriser” Â .  This idempotent, Hermitian operator generates all of the possible 

permutations of the electrons via a permutation operator P̂ , where the subscripts i, ij, ijk 

etc.  indicate the permutation of 1, 2, 3 or more electrons, and π indicates the parity of 

the permutation[4]: 
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 (13) 

With the Hamiltonian and wavefunction well-defined, we are now ready to begin.  

Assuming atomic units (i.e. the mass and charge of the electron are implicit), the 

definitions of the components of the electronic Hamiltonian eĤ are straightforward[3,4]: 
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(14) 

Note the sums, where i runs over all the electrons and all nuclei.  We can gather the 

operators according to how many electrons they act upon.  There is a no-electron 

operator, nnV̂ , which comes out as a constant Vnn.  This is simply the Coulomb repulsion 

of the nuclei from each other and is calculated using Coulomb’s law for the electrostatic 

potential.  There is a one-electron operator iĥ : 
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The physical interpretation of this operator is one electron i moving (kinetic energy 

2

2

1
i ) in the field of all the nuclei (electrostatic potential energy 
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Finally there is a two-electron operator ijĝ : 
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g
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ˆ  (16) 

The physical interpretation of this operator is the Coulomb interaction between two 

electrons i and j. 

 

So therefore (in the Born-Oppenheimer approximation) our total Hamiltonian becomes: 

   
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Now the reason for our use of the antisymmetriser will become apparent.  If we define 

the energy in terms of the determinant, we can exploit the properties of the 

antisymmetriser to define the energy in terms of the Hamiltonian, and the permutations 

P of the electrons in the product: 
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 (18) 

In other words, the energy is now defined in terms of permutations upon a simple 

product of singly-occupied spinorbitals.[4] 

 

We now have a sum of integrals involving ever-higher orders of permutation 

operator P̂ .  The integral involving iĥ and P̂  can be simplified, because 

orthonormalisation removes many of its parts.  For iP̂ =1, h1 only operates upon each of 

the spinorbitals in which electron 1 resides, )1(i .  In each case, we can gather that 

spinorbital in an integral around the operator, and leave the remaining operators in their 

own integral.  The spinorbitals are normalised, and therefore the integrals involving the 

overlap of the other spinorbitals with themselves must be 1: 
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 (19) 

For integrals involving 1ĥ  and ijP̂ (or higher permutations), orthonormalisation means 

that the integral on the right is always equal to 0.  This is because the permutation 

inevitably creates an integral involving the overlap of two different spinorbitals, which 

we know to be orthogonal.  For example with 12P̂  
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For integrals involving ijĝ and iP̂ =1, most of the MO parts vanish by normality as 

before: 
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 (21) 

For integrals involving ijĝ  and ijP̂ the permutation of two electrons also gives a valid 

contribution to the integral, because the MOs holding the permuted electrons go into the 

integral with ijĝ   rather than just overlap.  This term will appear with a negative sign 

because of the factor (-1)
1
 in the sum: 
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 (22) 

For integrals with higher permutations, the integrals are all zero.  The integral in the 

right now involves overlap of two different MOs, which are orthogonal. 
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To summarise, we have the energy in terms of a sum of one-electron integrals, and a 

double-sum of two two-electron integrals, and the nucleus-nucleus repulsion: 

  
  


elec elec elecN

i

N

i

nn

N

ij

ijiji VKJhE
1 1

)(  (24) 

To simplify this a little, we can rewrite the double sum with a factor of one half to 

remove double-counting of the interactions: 

  
  
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1
 (25) 

The two-electron integrals Jij and Kij are known as the Coulomb and exchange integrals, 

respectively.  It can be seen from inspection that the Coulomb integral describes the 

electrostatic (i.e. Coulombic) interaction between an electron i and another electron j, 

including an unphysical interaction between i and i.  The exchange integral describes 

the quantum-mechanical exchange interaction between electrons i and j, which lacks a 

classical counterpart.  The spurious exchange term for interaction between i and i 

exactly cancels the spurious Coulomb term. 

 

We may also write this expression in terms of the “core Hamiltonian” operator iĥ , the 

nuclear-nuclear repulsion energy Vnn, and the coulomb and exchange operators iĴ  

and iK̂ : 

 nnjijjij

N

i

N

ij

iii VKJhE
elec elec

 


)ˆˆ(
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1

  (26) 

Where e.g.: 
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 (27) 

The variational principle informs us that the wavefunction which provides us with the 

lowest energy will be the closest approximation to the wavefunction of this system 

(within the B-O approximation etc.).[4]  Therefore we can now solve for the lowest 
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possible E given a set of MOs and nuclear coordinates, using the method of variations.  

By the method of Lagrange multipliers (to constrain orthonormality), it is possible to 

generate the set of Hartree-Fock equations: 

 
elecN

j

jijiF ˆ  (28) 

Where the one-electron Fock operator F̂  is: 

  
elecn

j

jj KJhF )ˆˆ(ˆˆ  (29) 

…and when λij is diagonalised, this expression becomes the Fock equation: 

 ''ˆ
iiiF    (30) 

Here the set of eigenfunctions is the set of the “canonical” molecular spinorbitals of the 

system, and the eigenvalues are the respective orbital energies.[4] The lowest-energy 

orbitals become occupied, and the remaining orbitals are “virtual” ones.  However 

having come this far, we hit a snag.  The one-electron Fock operator F̂  includes the 

Coulomb and exchange operators.  These operators are written in terms of all of the 

occupied spinorbitals j.  Therefore, we cannot solve this eigenvalue problem unless we 

first know all of the spinorbitals.  However we do not know the spinorbitals unless we 

solve the eigenvalue problem. 

 

To bootstrap this, we must postulate a guess for the occupied molecular orbitals of the 

system.  Then we can solve the problem.  The Coulomb and exchange integrals will 

describe the interaction of the electron i with the approximate field of the other electrons 

j.  The solution to this eigenvalue equation will not be ideal; however it will be better 

than the guess.  We can then use this improved solution as the guess for another round 

of computation.  This process can continue until we are satisfied with the results.  Given 

the variational principle, we may impose a convergence criterion on the energy, which 

should drop with each iteration of the procedure.  Or we may note that the exact 

solution would give us the same spinorbitals as output which were used in the original 

guess, and impose a self-consistency criterion.  Computational methods use both in 

practice.[4,5] 

 

To summarise, we now have an expression – the Hartree[6-8]-Fock equations – which 

can be solved to give a set of molecular orbitals and their energies.  Now we must solve 

the equations.  It is necessary to define the spinorbitals as a set of functions, in such a 
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way that we can computationally change their form.  The problem is then one of finding 

the forms of the spinorbitals which satisfy the equations.  One such approach is to 

express the spinorbitals as a linear combination of basis functions, where the basis 

functions are fixed and the coefficients used in their combination are varied.  Expressing 

the Hartree-Fock equations in this way generates the Roothaan-Hall equations.[9,10] 

 

2.2.1. The Roothaan-Hall Equations 

 

The Roothaan-Hall equations are deceptively simple, but very powerful.  The closed-

shell case is the simplest.  Let us return to the one-electron pseudo-eigenvalue problem: 

 ''ˆ
iiiF    (31) 

For a closed-shell molecule, there are an equal number of α and β electrons, paired in 

MOs. We can replace the spinorbital with a doubly-occupied spatial molecular orbital 

(MO) 'i .  Once we redefine the jĴ  and jK̂ operators in terms of the new MOs, we get a 

simpler Fock operator thus: 

  
2/

)ˆˆ2(ˆˆ
elecn

j

jj KJhF  (32) 

(NB: All electrons interact through the Coulomb operator, but only electrons of like spin 

interact through the exchange operator.)  

 

Now we define the wholly spatial MO 'i  as a linear combination of Mbasis basis 

functions (spatial functions  with a form which we will describe later): 

 
basisM

ii C


  '  (33) 

So the problem is now: 

  
basisbasis M

ii

M

i CCF






 ˆ  (34) 

If we multiply from the left by the complex conjugate of another basis function χβ, 

integrate over the electron coordinates, and pull out the sum we get[4]: 

    
basisbasis M

ii

M

i drCFdrC






  *ˆ*  (35) 

We can denote the integral on the left hand side as: 

   FdrF ˆ*  (36) 



Chapter 2: Theory 

 54 

This is the element αβ of the “Fock matrix” F.  The integral on the right hand side is 

denoted as: 

   * drS  (37) 

This is the element αβ of the “overlap matrix” S. 

 

If we gather all of the orbital coefficients into their own matrix C we can represent the 

Hartree-Fock equations in the basis set approximation.  In this representation the 

equations are known as the Roothaan-Hall equations: 

 SCFC   (38) 

Note that the overlap matrix S, and the integrals involving the core Hamiltonian ĥ , do 

not involve the orbital coefficients, only the basis functions, which do not change in the 

course of the calculation.  In contrast, the right hand side of each entry in the Fock 

matrix includes Coulomb and exchange operators, which invoke the MOs, and therefore 

involve the orbital coefficients.  These can also be simplified. 

   FdrF ˆ*  (39) 

Returning to the space-saving bra-ket notation, this is: 

 

  FF ˆ  

 
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j

jj KJhF   ˆˆ2ˆ  
(40) 

Stating jĴ  and jK̂ explicitly in terms of the MO j  where OccMOs is the number of 

occupied MOs: 

 )ˆˆ2(ˆ
  jj

OccMOs

j
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Of course j can be written in terms of the basis functions and its own set of orbital 

coefficients.  Taking the utmost care with subscripts, we can deduce: 
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We can replace the sum over occupied MOs and the corresponding coefficients with a 

further matrix D[4]: 
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These integrals, involving one or two electrons (in two or four basis functions), do not 

change in the course of the calculation.  In practice one-electron integrals are computed 

once and kept in memory, while the two-electron integrals are typically too numerous to 

store in memory and are quicker to recompute when needed than retrieve from disk.  

The matrix D, known as the density matrix, provides information on the density of the 

electrons for the Coulomb and exchange interactions. 

 

This is the key to solving the self-consistent field problem.  Recall that in the Hartree-

Fock method, the Fock operator was defined in terms of the solutions to the equation.  It 

was suggested that we had to feed in a guess for the form of the MOs, so that the 

Coulomb and exchange parts of the Fock operator would be defined.  The density 

matrix provides us with this opportunity. 

 SCFC   (44) 

We create a guess density matrix D, and use it with the one- and two-electron integrals 

to construct the Fock matrix F.  Solving this matrix equation by diagonalising F, we 

obtain orbital coefficients in C and orbital energies in ε.  The coefficients can then be 

used to compute a new density matrix, and thus construct a new Fock matrix F for the 

next iteration.  This proceeds until self-consistency is achieved (D input into the 

equations approximately the same as D output by the equations) and the energy is 

converged.[3,4] 

 

2.3. Beyond the Hartree-Fock method: Electron Correlation 

 

The Hartree-Fock model is an elegant approach to predicting the electronic structure of 

chemical systems within the Born-Oppenheimer approximation, with one significant 

drawback.  The Hartree-Fock method is predicated upon the assumption that a single 

Slater determinant is a good description of the wavefunction.  However, the Slater 

determinant describes the wavefunction for a single electronic configuration.  In reality, 

the wavefunction does not experience this restriction, and therefore the Hartree-Fock 

wavefunction – no matter how well-converged – is inaccurate.   

 

The physical interpretation of this limitation is that the Hartree-Fock method only 

describes the Coulomb and exchange interaction between an electron and the average 

field of all of the electrons.  The Hartree-Fock wavefunction is constructed in an 

effective Hamiltonian in which the electron-electron repulsion is dealt with as a mean 
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field, but its energy is evaluated in the nonrelativistic, Born-Oppenheimer model 

Hamiltonian.  As a consequence the electrons do not “avoid” each other as successfully 

as they could.  If the electrons were able to respond to each other instantaneously as the 

wavefunction was optimised, then a lower-energy solution could be found. 

 

If the wavefunction could mix in additional electronic configurations, “excited” Slater 

determinants of higher energy, it would allow the electrons greater flexibility in 

“avoiding each other”.  (In a classical model we would say that their motions were 

correlated.) This flexibility would reduce the electron-electron potential energy and 

thereby lower the energy of the system.  The extra stability gained by adding this 

flexibility is called the electron correlation energy.  [11]The methods by which electron 

correlation is described are documented in a section 2.3.2 

 

Note that providing electronic correlation only brings us one step closer to describing 

the “real” wavefunction of the system.  We are still operating in the Born-Oppenheimer 

approximation, and with a nonrelativistic, time-independent Hamiltonian.  If we were to 

turn on the adiabatic correction for nuclear motion, we would “step up” to the adiabatic 

approximation.[2] As mentioned in section 2.1, this approximation creates one of the 

eigenfunctions of the nonrelativistic, time-independent Hamiltonian, i.e. one electronic 

state.  If we were to describe the wavefunction as a linear combination of these adiabatic 

wavefunctions, we could couple multiple electronic states, and describe the connection 

between nuclear and electronic motion (Figure 2.1).  However these techniques are not 

of immediate importance to this study. 

 

 

 

Figure 2.1: Relationship between determinants, states, and the nonadiabatic description of the 

system 
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2.3.1. The Post-Hartree-Fock methods 

 

The Fock operator used in the Hartree-Fock method is hermitian, and therefore the 

eigenfunctions of the effective Hamiltonian – the sum of the Fock operators – form a 

complete set.  These eigenfunctions are the Hartree-Fock wavefunction, and a series of 

excited configurations corresponding to exciting any number of electrons into virtual 

orbitals (i.e. replacing the occupied orbitals with virtual ones).  We may express the 

wavefunction as a linear combination of a “reference” determinant obtained in Hartree-

Fock and excited configurations thereof, and determine optimal linear combination 

coefficients.   

 

This adds the flexibility that was lost by using a single-determinantal wavefunction.  In 

particular, we can think of an electron being excited to a virtual orbital and another 

electron being excited to a different virtual orbital as a double-excitation, but also as a 

correlation between the motions of the two electrons.  One electron can respond to the 

movement of the other.  As the set of excited state determinants is complete, we can (if 

we use all the available determinants) produce an exact wavefunction within the limits 

of the model (a nonrelativistic Hamiltonian, in the Born-Oppenheimer approximation 

with a finite basis set).  These methods – which use a Hartree-Fock reference as their 

starting point – are known as post-Hartree-Fock methods. 

 

It is useful at this point to introduce a notation for the excitations.  An interesting 

formulation of QM exists called the second quantisation which can be used to describe 

excitations tidily.  In this notation, the excitation of an electron from one orbital a to 

another orbital m is equivalent to the simultaneous action of an annihilation operator aâ , 

which destroys the electron in orbital a, and a creation operator mâ , which creates an 

electron in orbital m. 

 ma aa ˆˆ   (45) 

Double, triple etc. excitations simply involve a greater number of creation and 

annihilation operators. 

 

.

ˆˆˆˆˆˆ
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 (46) 
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2.3.2. Three Related Approaches to Electron Correlation 

 

There are many ways of expressing the correlated wave function using the excited 

determinants.  It will be illustrative to discuss three approaches to the problem: Møller-

Plesset perturbation theory of order n (MPn), the configuration interaction (CI) and the 

coupled cluster (CC) method.  Assuming the MPn method converges, these methods 

would reach the same wave function if used to exhaustion.  However they differ in 

important ways when they are truncated, which will always be the case in practice.  One 

key issue to note is size consistency: a method should determine the same energy for 

two fragments at infinite separation, and the sum of the energy for each fragment 

calculated separately. 

 

The CI method expresses the wavefunction as a linear combination of excited state 

determinants by applying an excitation operator Ĉ  to the reference determinant 

0 .[11] 

 
00 )ˆ1()ˆ1(  CECH   

...ˆˆˆˆˆ
4321  CCCCC  

(47) 

 

Where 1Ĉ  creates all the singly-excited determinants, 2Ĉ  generates all the doubly-

excited determinants, etc. weighted by linear combination (CI) coefficients.  We can 

solve this problem variationally in a manner analogous to that for SCF to get the 

coefficients.  The truncation of the excitation operator determines the truncation of the 

method. 

 

The CC method[12,13] also expresses the wavefunction as a linear combination of 

excited state determinants, but generates the wavefunction by acting on the reference 

wavefunction with a wave operator Te
ˆ
, where the cluster operator T̂  has a similar form 

to the CI excitation operator Ĉ .[14] This ansazt appears arbitrary, but has many 

desirable properties which we will discuss shortly.  This method is also truncated by 

using a finite cluster operator. 

 
0

ˆ

0

ˆ
 TT EeHe   (48) 
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MPn supposes that we can separate the Hamiltonian into a reference 0Ĥ  and a 

perturbation Ĥ  , and then generate corrections to the wavefunction by perturbation 

theory.  The correction to the wavefunction is expressed as a linear combination of 

excited configurations, and ultimately the correction to the energy can also be expressed 

in terms of the same combination coefficients and integrals.[15] 

 

2.3.2.1.   The Configuration Interaction 

 

As mentioned previously, the CI method involves acting upon the reference 

wavefunction with an excitation operator Ĉ , which contains terms to generate all the 

single, double, triple etc. excited configurations (Equation 47). 

 
00 )ˆ1()ˆ1(  CECH   

...ˆˆˆˆˆ
4321  CCCCC  

(49) 

Each of these terms nĈ  performs every possible n-tuple excitation, weighted by a 

coefficient, e.g. for single and double excitations: 

 

 
ma
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m

a aacC
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ˆˆˆ  
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nmba
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mn

ab aaaacC ˆˆˆˆˆ

,,,

2
   

(50) 

The goal is to optimise all of the coefficients. 

 

The finite basis set means that there is a finite number of excitations, and in principle it 

can be solved exactly by including all of these excitations (“full CI”).  However even 

for very small numbers of basis functions, the number of excitations is enormous.  

Therefore it is necessary to truncate the excitation operator, and this causes issues with 

size consistency.   

 

Suppose we generate the wavefunction of the H2 molecule using single and double 

excitations ( 21
ˆˆˆ CCC  , which is denoted CISD).  This is the full CI for the H2 

molecule, as there are no triple or higher excitations in a molecule with only two 

electrons.  Two times this energy is, arithmetically, the energy of two isolated H2 

molecules.  By doing this we include a doubly-excited configuration of each H2 into the 

calculation of the energy, equivalent to a quadruply excited configuration of the dimer. 
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However, if we compute the energy of (H2)2 with an arbitrarily large intermolecular 

separation, using the same CISD method, we do not have access to quadruple 

excitations.  Not only is the CISD method truncated with respect to (H2)2, now the 

monomer and dimer energies are being computed inconsistently!  In other words, the CI 

energy is not additive, and does not scale linearly with the number of particles.  CI is 

not size consistent.[16]  

 

More formally, consider the form of the CID (no singles) wavefunction of the two H2 

molecules A and B in a minimal basis.  With a minimal basis, the H2 molecules have 

only two possible configurations, one with both electrons in bonding orbital ( 0 ), and 

some contribution c from an excited configuration ( 1 ) with both electrons in the 

antibonding orbital. 

 

A

A

AA c 10    

B

B

BB c 10    
(51) 

 

At this stage it is useful to factorise these expressions, by introducing the excitation 

operator 2Ĉ .  By definition, (1+ 2Ĉ ) takes 0 and creates a weighted combination of 0  

and 1 , which is exactly what we have in the above expression. 

 

AAA C 02 )ˆ1(    

BBB C 02 )ˆ1(    
(52) 

 

If A  and B do not overlap, the wavefunction for (H2)2 should be their 

antisymmetrised product[14]: 
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 (53) 

Clearly BACC 22
ˆˆ  is the troublesome quadruple excitation we encountered earlier.  

However the CID wavefunction for (H2)2 is: 

 
ABBABAAB

CID CCCC 01122 )ˆˆˆˆ1(    (54) 
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This includes a double excitation BACC 11
ˆˆ  which does not appear in the product of the 

monomer CI wavefunctions (neither fragment has CI singles), and omits the quadruple 

excitation BACC 22
ˆˆ (the interacting system has no quadruples).  The former is not an issue, 

because the singly excited configurations are σgσu and therefore overall ungerade, and 

thus cannot couple with 0  (σg
2
) or 1  (σu

2
) which are overall gerade.  The latter is an 

important inconsistency.  The size consistency failure in CID arises because it fails to 

provide excitations corresponding to the product of the excitation operators in the 

fragments. 

 

2.3.2.2.   The Coupled Cluster Method 

 

The product of the two CI wavefunctions suggests a solution to the size consistency 

issues in CI.  Let us take an ansatz: 

 
0

ˆ
 T

CC e  (55) 

Why is this form of the wavefunction so useful?  We can simply rewrite Te
ˆ
(the “wave 

operator”, where T̂ is the “cluster operator”) as a Maclaurin series[17]: 

 

 ...ˆ
!4

1ˆ
!3

1ˆ
2

1ˆ1 432ˆ
TTTTeT   (56) 

We write the cluster operator in the same way as the CI excitation operator, truncating 

at some maxT̂ e.g. for CC singles and doubles: 

 
21

ˆˆˆ TTT   (57) 

The cluster operator nT̂ is structured in a very similar way to the CI excitation operator 

nĈ .  The difference is that its coefficients are known as “amplitudes”.  It is these 

amplitudes which the CC algorithm acts upon in order to find the wavefunction and the 

energy.  [14] 
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The wave operator becomes: 
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Which we can expand as: 
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Then we gather terms by their total number of excitations: 
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The first operator 1Ĉ  groups terms which lead to single excitations.  The second groups 

terms that create double excitations, and so on.  Note that the truncation occurs in the 

cluster operator T̂ and not the wave operator.  Compare these operators to their CISD 

equivalents.  Even at CC singles and doubles, with the cluster operator 21
ˆˆˆ TTT  , the 

wave operator includes terms for triple and higher excitations.  [14] In this process we 

have generated not just single and double excitations 1T̂  and 2T̂ , but a new 2

1T̂  double 

excitation, and additional triple and quadruple and higher excitations.  The term 2

2T̂ , for 

example, is exactly the product of two double excitations which we were deprived of 

when we did the CI calculation on the (H2)2 dimer.  The coupled-cluster method is size 

consistent as a result of this form.[14,17,18] 

 

The various terms are labelled connected or disconnected, to refer to their physical 

interpretation.  The connected doubles term is 2T̂ , for example, and the connected 

quadruples term would be 4T̂ .  These nT̂  terms represent the correlation between N 

electrons.  However there is also a disconnected quadruples term 2

2T̂ , which represents 
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the mean-field interaction between two pairs of electrons, where the electrons in each 

pair are correlated with one another.  In other words, the electrons in pair A move into 

excited orbitals to correlate their motions, but they happen to do so at the same time as 

pair B, and not as a result of the interaction between pair A and pair B.  (The amplitude 

for that product of excitations is the product of the amplitudes of the excitations.)[19] 

Similarly, the disconnected triples term 21
ˆˆ TT  represents a pair of correlated electrons 

( 2T̂ ) and an electron interacting with the mean field of that pair ( 1T̂ ).[17] 

 

Now that we have a rough theoretical justification for this ansatz, we must use the 

coupled cluster method to solve a quantum chemical problem.  Recall that: 

 n

nmba

mba

mn

ab aaaatT ˆˆˆˆˆ

,,,

2
   (62) 

The determinants generated by this connected doubles operator would be: 

 
ab

mn
 (63) 

Let us take our ansatz: 

 
0

ˆ

0

ˆˆ  TT EeeH   (64) 

We multiply from the left by Te
ˆ : 

 
00

ˆˆ ˆ  EeHe TT   (65) 

The left hand side of the equation can be expressed exactly in terms of the 

commutator[14] between H and T: 
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If we substitute this back into the Schrödinger equation and multiply from the left by an 

excited determinant (in this example, a doubly-excited one): 
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Given that the excited determinants are orthogonal to the reference determinant, we 

have: 
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There is one such equation for every excited determinant generated by the cluster 

operator.  Now we must find the solutions: the cluster amplitudes in the cluster operator 

T̂ that satisfy the set of all of these equations. 

 

Without going into too much detail,[14,17] for CCD we can create an expression 

relating the energies of the orbitals involved, integrals between all of the orbitals, and 

the  doubles amplitudes: 
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 (69) 

 

Similar results exist for the singles, triples etc.  These expressions can then be solved 

iteratively until self-consistency is achieved, bootstrapping the right hand side of the 

equation with a set of guessed amplitudes (zeros will suffice[14]).  Then we can use the 

expression and the SCF orbital energies to determine the amplitudes for each excitation, 

and then plug those amplitudes into the right hand side of the equations to repeat the 

process. 

 

2.3.2.3.   Perturbation Theory. 

  

Perturbation theory is a ubiquitous method of approximation in which the exact solution 

to a problem is expressed as the known solution to a simpler problem, plus a correction 

to reach the solution to the true problem.  The corrections are expanded in a series, 

which can be truncated to a desired level of accuracy.  In this instance, we take a 

problematic Schrödinger equation: 

  EH ˆ  (70) 

Where Ĥ is the many-electron Hamiltonian of the system (nonrelativistic and in the 

Born-Oppenheimer approximation for our purposes) and E and Ψ are the desired 
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solutions.  We can re-express it in terms of a simpler Hamiltonian 0Ĥ , and a correction 

Ĥ  .  The simpler unperturbed Hamiltonian 0Ĥ is the sum of the Fock operators from 

the Hartree-Fock procedure.: 
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(71) 

This is a mean field Hamiltonian – it assumes that the electrons move in a shared mean 

field of all of the electrons, and otherwise neglect each other’s presence.  This simpler 

problem is already solved, and being Hermitean has provided a complete set of 

wavefunctions n .[15,20] 

 nnn EH  0
ˆ  (72) 

0  is the unperturbed Hartree-Fock wavefunction, which acts as a reference in this 

method (we are looking for the ground state wavefunction).  E0 is the sum of the 

occupied Hartree-Fock orbital energies.  The other eigenfunctions are excited 

configurations obtained by replacing the occupied lowest-energy Hartree-Fock orbitals 

with virtual orbitals, and the energies of these configurations are also simply the sum of 

the constituent orbital energies. 

 

The difference between the noninteracting Hamiltonian and the true Hamiltonian lies in 

the electron-electron interaction.  By summing over every one-electron Fock operator, 

each of which includes the interaction between that electron and the mean field, the 

electron-electron interaction is counted twice.[15]  Therefore the correction to the 

Hamiltonian is: 
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eeee VVH 2ˆ   

We introduce a parameter λ, where 10   , which “turns on” the perturbation.  This is 

a computational trick which allows us to express the problem as a Taylor series and 

gather terms in powers of λ : 
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(74) 

Where each term nW and n  is the nth order correction to the energy or the 

wavefunction.  Our hope is that the series converges rapidly towards the correct answer 

and can therefore be truncated to a small number of terms.[15,21] 
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If we multiply out and collect terms in λ
n
: 
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(76) 

This gives us Rayleigh-Schrödinger perturbation theory.  Now we just need a basis in 

which to express the corrections n  to the wavefunction.  Fortunately we already have 

one: the aforementioned complete set of eigenfunctions of the Schrödinger equation 

with the unperturbed Hamiltonian, the Slater determinants of the Hartree-Fock orbitals.  

We can express the wavefunction corrections as a linear combination of these 

determinants, using coefficients which are analogous to the CI coefficients and CC 

amplitudes.  This model is known as Møller-Plesset perturbation theory.[15,22] 

 

The solution to the zeroth-order of the perturbation equations is the unperturbed 

(Hartree-Fock) wavefunction and the sum of the orbital energies, which are already 

known.  The first-order correction to the energy can then be calculated.  The first order 
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correction exactly cancels the double-counting of electron-electron repulsion and 

provides the Hartree-Fock energy. 

 eeVW 1  (77) 

Now we can continue adding corrections of higher order to obtain the electron 

correlation energy.[15,21] In addition to the first-order correction to the energy, we can 

compute the first-order correction to the wavefunction.  Then we can compute the 

second order correction to each, and so on up the hierarchy.(In fact we can compute the 

energy corrections up to (2n+1)th order given the nth order corrected 

wavefunction.)[15]  

 

Note that we can obtain many of the coefficients for the MP corrections using 

amplitudes obtained on the first iteration of the CC cycle (where the self-consistency 

procedure starts with zero amplitudes).  The MP2 amplitudes and energy (plus MP3, 

and some components of MP4) are “free” when we perform a CCSD calculation.[18]  

The second-order correction to the energy is (where ci are the amplitudes): 
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We can express this energy without reference to the amplitudes at all: 
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Single excitations do not couple to 0  through the Hamiltonian by the Brillouin 

theorem, and higher excitations do not couple through two-electron operators at all, so 

this can be restricted to a sum over double excitations.  Furthermore, given that the 

energies En are simply sums of MO energies, we can express the denominator in terms 

of the energies of the orbitals the electrons are excited from and to, which is information 

available at the Hartree-Fock level.  Finally, the integrals between the excited 

determinants can be expressed as two-electron integrals between the orbitals involved in 

the excitation, which can be computed cheaply.[15,22] 
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Note that the earlier assumption that our perturbation theory model would converge 

toward the correct answer at high order has been found to be inaccurate by numerical 

investigation.  Although MPn becomes increasingly accurate at higher order for small 

values of n (less than 10), it soon displays oscillatory behaviour and ultimately 
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diverges.[22]  Therefore it is common – as is the case in this work – to use MP2 as an 

early approximation, and switch to coupled cluster methods if higher accuracy is 

required.   

 

2.3.3. Where Do We Truncate Expansions in Correlation Expressions? 

 

We can use perturbation theory, or the CI expansion, to evaluate the importance of each 

set of excitations to the electron correlation, with excitations appearing in the lower-

order corrections in the MPn energy (for n>1) being the most important.  Clearly, the 

double excitations are of the highest importance, as they are the only contribution at 

MP2 (and even at MP3)[18] and they typically have large CI coefficients.[23]  The 

double excitation describes the correlation of two electrons, which intuitively – and in 

practice – makes the largest single contribution to the correlation energy.  Going to 

higher levels, triple excitations make an appearance as the next most important 

contribution.  In all of these methods, single excitations enter only weakly, because they 

do not couple to the unperturbed configuration through the Hamiltonian, reflected in the 

fact that they do not appear in the MPn expansion below MP4.[18] 

 

If we consider the CC method, then by the above rationale excitations involving 2T̂  will 

tend to be important, such as the disconnected quadruples 2

2T̂ , while excitations 

involving 1T̂  will tend to be small, such as the disconnected triples 21
ˆˆ TT .  As mentioned 

previously, the triple excitations become important, and by process of elimination the 

connected triples 3T̂ must be the next most important contribution.  It is omitted from 

CCSD.  However, the CCSDT method is computationally very expensive, and is a 

rather wasteful way of getting at the connected triples (consider the many small terms 

involving 1T̂  that will be generated).  For this reason, the triples contribution to the CC 

energy is commonly calculated using perturbation theory, the so-called CCSD(T) 

method.[18,24] 
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2.4. The Form of the Basis Set 

 

2.4.1. Choice of Functions 

 

The Roothaan-Hall equations expand the molecular orbital in a basis of basis functions, 

however we have not yet addressed the form of these functions.[5,25] From intuitive 

ideas about atomic orbital overlap and LCAO theory we may conclude that a set of 

atomic orbitals might provide an efficient approximation for constructing molecular 

orbitals.  Taking dilithium as an example, the basis set could consist of two identical 

groups of functions, one centred on each lithium atom.  Each group would consist of 

two atomic orbitals, the 1s and 2s hydrogenic orbitals of the lithium atom, which are 

radial Slater-type functions: 

     rn

mls erNYr   1

, ,,,  (81) 

(Y provides the spherical harmonics, while N is a normalisation constant; n and l are the 

principal and angular momentum quantum numbers; r is the nucleus-electron distance.) 

The Schrödinger equation, in considering the nucleus as a point charge, creates “cusp” 

in value of the wavefunction near the nucleus (nonzero gradient), and the wavefunction 

decays with re .  These properties are shared by Slater functions.[25] While these 

functions reproduce the solutions of the Schrödinger equation well, the two-electron 

integrals over these functions which are used in computational methods become 

computationally inconvenient. 

 

Alternatively, we may choose to use Gaussian functions: 

    
222

, ,,, rln

mlg erNYr    (82) 

These give integrals which are much quicker to compute.  Gaussians do not have the 

cusp (the gradient is zero at the nucleus) or the right long-range behaviour, meaning that 

single Gaussians are not good approximations of single Slater functions.  However, the 

two-electron integrals are so computationally cheap when performed upon these 

functions that we can simply use a fixed linear combination of n Gaussian functions 

(“nG”) to approximate each Slater function without a significant performance cost.[25] 

 

This linear combination constitutes a contracted basis function.  More generally, any set 

of primitive functions (Gaussians in this case) may be collapsed into one contracted 

basis function by taking a linear combination of the primitives.  The linear combination 
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coefficients (contraction coefficients) are optimised in the process of constructing the 

basis set then fixed, and are not manipulated during the subsequent molecular 

calculation.  The contracted basis function acts as though it was just a single 

function.[5] 

 

2.4.2. Basis Set Size and Convergence 

 

Returning to our Li2 example, the use of a basis set consisting of just two s-type Slater 

functions, or two “nG” approximations of these Slater functions, is somewhat 

restrictive.  We can only create molecular orbitals with σ symmetry, and not π or δ.  

Instead, we could include enough functions to provide the complete core and valence 

shells of the lithium atom, i.e. two different s functions, and three identical p functions 

with different ml values.  This is known as a minimal basis set: 

 

1s 2s 2py 2px 2pz  

Figure 2.2: A minimal basis set for lithium 

With these basis functions, we can now place nodes along the bond axis.  We can now 

generate π orbitals: 

 

+ =

 

Figure 2.3: Constructing a π orbital 

However there are still many limitations.  We have little control over how compact or 

diffuse the molecular orbital is.  While we can use a linear combination of the two s 

functions to approximate an s orbital of intermediate diffuseness, we cannot generate 

one which is more or less diffuse than either of the basis functions: 
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+

 

Figure 2.4: Limitations of basis function extent 

A better basis set would provide some additional functions for flexibility.  In the 

simplest case, we could add additional functions of the same symmetry but with 

different diffuseness, making the basis set n-tuply redundant (typically denoted as an 

“n-tuple zeta” basis set[5]).  We can also add polarisation functions, of lower symmetry 

than the occupied atomic orbitals, to allow us to construct molecular orbitals of lower 

symmetry.  As more basis functions are added, it becomes possible to approximate any 

arbitrarily chosen molecular orbital more closely.[5,25] 

 

In this way the basis is said to progress toward completeness, where it would be able to 

exactly reproduce any arbitrary spatial function.  Basis set completeness is an 

asymptote, and our ability to approach it is restricted by the availability of 

computational power and time.  The time required for the Hartree-Fock method in the 

basis set approximation scales with N
3
 or N

4
, where N is the number of basis functions, 

and the time for correlated methods can scale with N
5
 or higher.  Therefore it is our best 

interest to use as few functions as possible.  We most efficiently approach completeness 

when we add additional functions which fit the physics of the chemical system we are 

studying.  Polarisation functions allow us to describe the polarisation of atomic orbitals, 

for example: 

 

+ =

Polarisation 
function  

Figure 2.5: Polarisation functions 

One of the most important families of basis sets is the Dunning-type n-tuple zeta 

correlation-consistent family, which is optimised to efficiently recover the correlation 

energy of a chemical system.[26] These basis sets drew primarily upon two previous 

≠ 
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works.  Almlöf and Taylor[27] proposed using a properly truncated set of atomic natural 

orbitals as basis functions.  This was found to efficiently recover the correlation energy 

of the system. 

 

Jankowski et al evaluated the effects of adding polarisation functions to s and p basis 

sets of fluorine, while performing high-level correlated calculations.[28] In their 

procedure, they added even-tempered sets of polarisation functions, where the 

exponents ζ of the functions go in a geometric progression: 

 
n

n    (83) 

They then optimised the parameters of the even-tempered set as each additional function 

was added.  They discovered that certain sets of functions recovered roughly equal 

amounts of correlation energy.  For example, adding the first d function recovered 

around 130 milliHartrees (mH) of the correlation energy.  Including a second d function 

recovered only 38mH.  Adding the first f function recovered 40 mH of the correlation 

energy, which is similar to that recovered by the second d function.  The third d 

function, second f function, and first g function all recover on the order of 10 mH.  In 

this way a truncation scheme suggests itself: add groups of functions which recover 

similar amounts of the correlation energy. 

 

Dunning adopted this idea, tested, and generalised it.[26] Starting with the oxygen atom, 

correlated calculations were performed to optimise even-tempered sets of polarisation 

functions.  (The 1s “core” orbitals were constrained to double occupancy in these 

calculations, with the effect that they were not able to correlate with the other, “valence” 

electrons.)  As in Jankowski et al, it was found that the additional functions could be 

grouped according to their contributions to the correlation energy (specifically, as a 

function of their contribution to the total correlation energy that could be recovered 

using additional functions with that angular momentum).  At each stage, one additional 

function of each existing angular momentum is added, plus one function of the next 

highest angular momentum.  2s1p is superseded by 3s2p1d, which is then replaced by 

4s3p2d1f.  As all of the basis functions contribute roughly equally to the correlation at 

each stage, Dunning named these the correlation consistent basis sets.  Dunning 

labelled these sets the “N-tuple zeta” sets (“double zeta”, “triple zeta”, etc.), where N is 

both the number of sets of Gaussians per valence orbital, and the maximum value of l in 

the set.   
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The orbitals occupied by the s and p electrons in the atomic ground state (the core 

orbitals, composed of core basis functions) have not been mentioned so far.  The pre-

Dunning studies used a contracted set of s and p functions for these orbitals.  Dunning 

added s and p primitives as even-tempered sets of Gaussians, optimised through 

correlated calculations as before, with a fixed set of polarisation functions.  He found 

that contractions of these primitives into pairs of a single s and a single p function were 

correlation-consistent with sets of polarisation functions.  However he also discovered 

that contractions of Hartree-Fock orbitals could also be constructed which recovered 

similar amounts of correlation energy, and used these instead. 

 

Dunning was able to construct similar basis sets for all of the first-row main-group 

elements in this paper.  In later collaborations, Dunning and coworkers went on to 

develop sets for most of the periodic table.[29-31] Taking correlation-consistent, 

polarised, Valence N-tuple Zeta, we have the notation: 

cc-pVNZ 

As noted earlier, the Dunning-type basis sets did not include correlation of the core 

electrons with the valence electrons (core-valence correlation), as these effects are often 

(but not always) minor.  Later studies extended these basis sets by including additional 

“tight” functions which are optimised while allowing core-valence correlation.  These 

are Core-Valence basis sets:[31] 

cc-pCVNZ 

Calculations that include core-valence correlation may be less accurate than those that 

exclude it if these functions are omitted.[31] 

 

Alternatively, we may wish to describe systems in which the electrons are much more 

diffuse than normal atomic orbitals.  For example, Rydberg states and molecular anions 

often involve more diffuse orbitals.  To describe these systems, we require functions 

with low exponents.  Dunning and co-workers extended the basis set family by adding a 

single Gaussian function of each symmetry, and optimising its exponent to minimise the 

energy of the anion of the atom in question (at the SCF level for the core functions, and 

the CISD level for the polarisation functions).[32] Basis sets extended in such a fashion 

are “augmented”. 

aug-cc-pVNZ 
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2.4.3. Limitations of Conventional Basis Sets 

 

As the basis set is incomplete, the use of a basis set necessarily introduces an 

approximation.  As noted above, we choose basis sets which fit the physics of the 

problem, in this case functions resembling atomic orbitals centred upon the atoms.  Care 

must be taken to construct a basis set which is suited to the problem, and not a basis set 

which is suited to the answer we might like to obtain.  For example, if we really wanted 

to demonstrate the electrons in water were mostly located on the hydrogens (which is 

obviously not true)), we could construct a basis set with no functions on oxygen at all. 

 

H
O

H
 

Figure 2.6: Schematic of water molecule with basis functions (circles) only on H. 

Of course we are above begging the question in such a shameless way to obtain an 

unphysical result.  Rather, we note when our basis set fails to properly describe the 

physics we are interested in, and extend it in an impartial manner to include that 

behaviour.  An excellent example is in the description of dipole-bound anions.  In these 

systems, electrons are contained in orbitals that are so diffuse that conventional basis 

sets simply do not have functions diffuse enough to describe them.  The electron 

becomes unbound and the corresponding orbital makes use of the most diffuse basis 

functions available. 

 

It is necessary to add diffuse functions to properly describe this excess electron.  The 

tested and effective approach to this problem is to add an “even-tempered” set of basis 

functions.[33] These functions have exponents which undergo a geometric progression, 

from the most diffuse function in the standard Dunning basis out to a minimum 

exponent where the basis set is considered to be converged with respect to the properties 

of the neutral molecule’s lowest unoccupied molecular orbital (LUMO).  The properties 

in question are the energy of the LUMO, and the molecular orbital coefficients 

associated with the diffuse functions. 

 

This can be better conveyed pictorially.  Figure 2.7 shows the convergence of LUMO 

orbital energy of the neutral NH3HCl with the addition of extra diffuse s and p functions 

(one of each added at each step, with the geometric progression ratio 2.5).  Inset is an 
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overlay of the 0.9-electron isosurface of the LUMOs created with each set of extra 

functions.  (Hartree-Fock/aug-cc-pvdz plus the extra functions, with a geometry 

optimised at MP2/aug-cc-pvdz plotted in VMD[34] with OpenCubeMan). [35]  Figure 

2.8 and Figure 2.9 plot MO coefficients against the negative of the natural logarithm of 

the exponent of the extra basis functions, for sets with 4, 5, 6, and 7 extra s and p diffuse 

functions.  Smaller exponents correspond to Gaussian functions which decline at a 

slower rate – in other words, more diffuse wavefunctions.  Therefore, an increase on the 

horizontal axis is an increase in orbital “diffuseness”, on a logarithmic scale.  Note that 

energy convergence (to five decimal places, or 0.57 mH) occurs before LCAO 

convergence. 
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Figure 2.7: LUMO energy convergence with number of additional extra diffuse s and p functions 

for NH3HCl neutral 
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Figure 2.8: Variation of MO coefficients for additional diffuse s functions as additional functions 

are added to neutral NH3HCl. 
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Figure 2.9: Variation of MO coefficients for additional diffuse p functions as additional functions 

are added to neutral NH3HCl. 
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Once the LUMO properties have converged with respect to additional diffuse functions, 

the basis set is ready for use.   

 

The lowest exponents for the diffuse functions (the exponents of the 7
th

 s and p 

functions in this case), can be used to estimate the lowest exponents required when 

studying the same system in a different basis set.  Additional diffuse functions are added 

to the new basis set in the same way, but rather than starting from the standard basis set, 

we begin by adding an even-tempered set such that the lowest exponent is near the one 

found for the previous basis set.  Then this set is tested to see if the LUMO properties 

are converged; if it is not, additional functions can then be added until convergence is 

achieved.  If LCAO coefficients for the most diffuse functions are very small, these 

functions may be removed for efficiency. 

 

Extending the basis set in this manner carries the assumption that the LUMO energy is a 

good measure of the anion electron binding energy.  This approach, known as 

Koopmans’ theorem (see 2.8.1), neglects orbital relaxation and therefore is an 

underestimate of the electron binding energy.  This will only result in the addition of 

more diffuse functions than is actually needed.  Therefore the method is conservative 

(the electron will bind at the Hartree-Fock level of theory if it is bound at the 

Koopmans’ theorem level) but inefficient.  The magnitude of the error is constrained, 

because the electronic relaxation caused by a weakly-bound electron is relatively 

small.[36] 

 

2.5. Extrapolation to the Complete Basis Set Limit 

 

The systematic growth of the Dunning type basis sets, and the consistent recovery of 

correlation energy, suggests an extrapolation scheme to a “basis set limit” when the 

cardinal number N in aug-cc-pVNZ is infinity.  Helgaker et al noted that the Hartree-

Fock energy and correlation energy would display different convergence with the 

increasing number of basis functions, as the former would be satisfied with a finite 

maximum l in the basis set (in principle, a finite number of basis functions could 

describe the single-determinant Hartree-Fock wavefunction) while correlated 

calculations benefit from arbitrarily large bases (to provide “headroom” for 

excitations).[37] This paper took Feller’s suggestion of a three-point exponential 

extrapolation[38] (equation 84) and applied it to Hartree-Fock and correlated 
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calculations.  They found that extrapolations to the limit with this model (which requires 

three points) were excellent for the Hartree-Fock theory. 

 
)( ANHF

cbs

HF

N BeEE   (84) 

where HF

cbsE is the Hartree-Fock energy at the complete basis set limit, which we wish to 

obtain, HF

NE is the energy calculated with the N-tuple zeta basis set, and A and B are 

fitting parameters. 

 

Halkier et al revisited the issue and evaluated exponential and power fits to the Hartree-

Fock energy.[39] Their study found that exponential fits are superior, noting that the 

majority of the error in the extrapolated result arises due to the difference in the 

magnitude of the error between the highest and lowest extrapolation points. 

 

Helgaker et al also attempted to determine the convergence of the correlation energy 

with respect to basis set size.  Schwartz found that the correlation energy would 

converge with an inverse power in the highest l in the basis set, which he suggested to 

be between lmax
-1

 and lmax
-4

 and which at any rate is more slowly than Feller’s 

scheme.[40] They performed extrapolations with a power form in N
-3

, drawing on 

Schwartz’s analysis of the correlation energy of the helium atom.  The extrapolation 

assumes that the correlation energy with a given basis set has the form: 

 
3 ANEE corr

cbs

corr

N  (85) 

(A more general form, )3()( Ccorr

cbs

corr

N BNAEE  , was also evaluated and found to 

be no better.)[37] 

 

From these two schemes, expressions for the Hartree-Fock and correlation energy at the 

basis set limit have been proposed[41]: 
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2.6. Basis Set Superposition Error 

 

The basis sets used in computational chemistry are never complete.  Unlike the basis of 

orthogonal x, y, and z axes which could be used to exactly represent any vector in a 3-

dimensional space, the basis sets of Gaussian atomic orbitals used in computational 

chemistry only allow us to create an approximation of the molecular orbitals.  Although 

we try to ensure that the basis set lets us construct a wavefunction which properly 

captures the physics of the problem at hand, for example that the energy and geometry 

of a system are converged with respect to basis set size, this approximation has many 

subtle consequences that must be noted.  The basis set superposition error is probably 

the most discussed and important issue.   

 

Suppose we wish to describe the interaction energy between two monomers “A” and 

“B”.  The energy required to separate the two monomers is the energy for the following 

process: 

 AB  A + B (87) 

We can compute the energies of A, B, and AB, ( EAB, EA, and EB) and then subtract the 

sum of the monomer energies from that of the dimer: 

 EAB – EA – EB = Eint (88) 

This is known as a supermolecular calculation of the interaction energy.  At first glance 

this is physically justifiable, but we must reconsider when operating in the basis set 

approximation.  “A” has a set of basis functions a, and “B” has a set of basis functions 

b, and the dimer has both sets of functions a b (henceforth ab).  Thus we have: 

 
ABab  Aa + Bb 

intEEEE b

B

a

A

ab

AB   
(89) 

The energies of the monomers are computed with different, smaller basis sets than the 

energy of the dimer.  In the dimer, monomer “A” can benefit from the basis functions b 

to lower its energy, and “B” can likewise benefit from the basis functions a.  However 

in the monomer calculations, each monomer only has access to its own set of basis 

functions (Figure 2.10).  As a consequence the dimer energy is artificially lowered 

relative to the monomers. 
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Figure 2.10: NH3HCl complex (left) in dimer basis set; NH3 (middle) and HCl (right) in monomer 

basis sets 

This is known as the basis set superposition error – an additional stabilisation which 

results from the superposition of the basis sets of the monomers when they are 

assembled into the dimer.[5,25]  The BSSE is dependent upon the intermolecular 

distance.  Typically, the closer A and B are, the more one monomer can benefit from the 

basis set centred on the other.  In the case of the supermolecular interaction energy of a 

typical chemical system, the BSSE is non-negligible for the equilibrium geometry of the 

dimer, and is zero when the monomers are infinitely separated.  The BSSE varies 

continuously between these extremes, and distorts the energies, and gradients and 

higher derivatives of the energy with respect to geometric parameters. 

 

2.6.1. The Counterpoise Correction to Basis Set Superposition Error 

 

To correct for the BSSE in the supermolecular energy, we can apply what is known as 

the counterpoise correction.  This method was developed by Boys and Bernardi,[42] and 

Jansen and Ros.[43]  This quantifies the amount of the dimer energy which arises from 

BSSE, so that we may subtract it.  The procedure is elegant.  First, we compute the 

energy ab

ABE  as before.(Figure 2.11, left). 

 

N HCl

  

N

  

N

 

 

Figure 2.11: NH3HCl in dimer basis set; NH3 in dimer and monomer basis sets 

Next, we compute the monomer energy for monomer A in its own basis set, a

AE , as per 

the normal supermolecular interaction energy calculation (Figure 2.11, middle). At this 

stage, we take the dimer and remove the nuclei and electrons, but not the basis 

functions, from monomer B (Figure 2.11, right).  The energy of this system is ab

AE . 

 

HClNN HCl
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The basis functions b are still present at the original atomic coordinates, and still 

contribute to the wavefunction’s variational flexibility.  However the monomer B is 

missing.  These are known as “ghost orbitals”.  The difference between a

AE and ab

AE  is 

equal to the contribution to the basis set superposition error by monomer A using the 

basis functions b. 

 A

ab

A

a

A BSSEEE   (90) 

 

The same procedure is followed for monomer B.  First b

BE  is calculated, and then ab

BE . 

 

 

 

Figure 2.12: HCl in monomer (left) and dimer (right) basis sets 

 B

ab

B

b

B BSSEEE   (91) 

There total BSSE is now equal to the sum of these quantities: 

 BSSEAB = BSSEA + BSSEB (92) 

We can add the BSSE to the energy of the dimer (or alternatively, subtract it from the 

interaction energy) to obtain the counterpoise-corrected energy.  Using this energy, we 

can compute the interaction energy without BSSE: 

 

cpcorr

ABAB

ab

AB EBSSEE   

cpcorrb

B

a

A

cpcorr

AB EEEE int  
(93) 

From this, it follows that there is a counterpoise-corrected potential energy surface, 

upon which chemical systems move and experience gradients and curvatures just as on 

the uncorrected surface as described in Equation 94 below.  (Note that these are all 

partial derivatives, with y and z then the z coordinates respectively kept constant; the 

notation is omitted for clarity.)[44]  
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(94) 
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2.6.2. Correcting BSSE for Reactive Monomers 

 

Suppose we wish to describe a reaction profile for two monomers transferring a proton: 

 A
-
H

+
 + B

-
  A

-
 + H

+
B

-
 (95) 

Furthermore, suppose we want to describe the strength of the interaction between the 

two monomers at any point across the reaction profile. 

 21int monomermonomerAHB EEEE   (96) 

To compute the proper interaction energy, we should apply the counterpoise correction 

to EAHB.  However, we have two choices of monomers when defining the counterpoise 

correction.  In one our monomers are the reactants AH and B
-
, and the other with 

respect to the products A
-
 and HB.  Which counterpoise correction should we choose? 

 

We could simply impose the same correction across the reaction profile.  However this 

would be unphysical in the region of the reactants or the products (depending on which 

we impose).  So, we could impose the reactant counterpoise correction in the vicinity of 

the reactants, and the product counterpoise correction in the vicinity of the products.  

However we still have to choose a counterpoise correction for the intermediate region.  

Which is appropriate?  And how do we handle the cross over? 

 

It is possible and often necessary to redefine the counterpoise correction to consider 

more than two fragments.  Turi and Dannenberg[45]  treated a straight chain of n HF 

monomers by computing the CP correction between the nth monomer and the existing 

aggregate of (n-1) monomers.  They observed that if an HF monomer is added to the 

molecule, it can be added to either end.  While the counterpoise-uncorrected energy is 

identical for each process, the counterpoise corrections for each end differ (an inevitable 

consequence of the different basis functions involved), even though the same reactants 

and products are involved.  This inconsistency arises because the Boys-Bernardi scheme 

does not consider the BSSE within the aggregate. 

 

They proposed a scheme where the BSSE of an aggregate of n monomers is the sum of 

the BSSE of each monomer, and the BSSE of each monomer is the difference in energy 

between the monomer in its own basis set and its energy in the complete aggregate basis 

set.   
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 (97) 

 

In this model, the counterpoise correction to the energy for adding an additional 

monomer is equal to the difference in BSSE between a chain of n monomers and the 

BSSE of the resultant chain of n+1 monomers.  This disregards the choice of where the 

HF molecule is added to the chain, returning consistency. 

 

Valiron and Mayer highlighted some conceptual and practical limitations of the scheme, 

and improved upon it.[46]  Refining work by White and Davidson,[47] they  proposed 

that it is necessary to perform a counterpoise correction for each interaction between the 

monomers, and not simply the interaction between one monomer and the rest of the 

aggregate (although this is dominant).  For example, in a three-body aggregate ABC, the 

counterpoise correction for monomer A must correct the A-BC interaction energy (as in 

Turi and Dannenberg), but also the A-B interaction energy, and the A-C interaction 

energy, in order for the energies to be consistent irrespective of the manner in which the 

complex is disconnected to its monomers.  That is, the BSSE upon A consists of: 
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 (98) 

 

(This quickly results in a very large number of terms.  For the three-body counterpoise 

correction, 19 single-point energies are needed; for a four-body counterpoise correction, 

125 energies are needed.) 

 

Lendvay and Mayer evaluated the usefulness of two- and three-body counterpoise 

corrections in describing reactive surfaces.[48]  They note the inevitable inconsistency 

between the surface determined if one takes the two-body counterpoise correction 

scheme using the reactant monomers, and one determined for the reverse reaction with 

its reactant counterpoise correction.  However, they also note that the three-body 

counterpoise correction is not particularly physically sensible around the reactants or 

products, and consequently the energies in these regions are not accurate.  Furthermore, 
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although the three-body counterpoise correction may be sensible with reference to a 

particular reaction pathway, it is arbitrary when we consider the space of other reactions 

available to the monomers.  They make the case that ultimately, a compromise is 

necessary: either the surface must be discontinuous, or the conceptual demands placed 

upon the counterpoise correction must be relaxed. 

 

2.7. Potential Energy Surfaces 

 

2.7.1. Reducing the Dimensionality of Potential Energy Surfaces 

 

The Born-Oppenheimer approximation imposes the idea of a potential energy surface 

within which the nuclei move, with each possible arrangement of nuclei having a 

particular potential energy associated with it.  In the traditional chemist’s view of the 

molecule, this corresponds to the energy involved in stretching, bending, making and 

breaking bonds.  For a nonlinear system of N atoms, there are 3N-6 degrees of freedom 

in the relative nuclear positions, and therefore the potential energy surface is 3N-6-

dimensional.  However for high-symmetry systems, it is possible to reduce the 

dimensionality, and if we then express the positions in internal coordinates, we can 

construct potential surfaces that correspond to chemically intuitive bond lengths and 

angles.  By restricting our search to just those degrees of freedom that are meaningful to 

the problem at hand, we can collapse the 3N-6-dimensional surface to a comprehensible 

1-, or 2-dimensional surface that can be given a 2- or 3-dimensional representation.[49] 

 

As an example, consider the NH3HX system which is at the heart of this project.  If we 

wanted to describe its potential energy surface in absolute detail, we would need 3N-6 = 

12 coordinates for nuclear position.  However, the for hydrogen bonded structure with 

C3v symmetry (Figure 2.13), we can use just three bond lengths and one bond angle to 

completely describe the molecule. 

 

Hs

H

N

H
H

X

 

Figure 2.13: C3v structure of a hydrogen bonded molecule 
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Note that the selection of these “internal coordinates” is not unique.  We could equally 

use the N-Hs and Hs
...

X distances instead of N
...

X and Hs-X.  These are still too many 

degrees of freedom to visualise.  However given that we are interested in studying the 

Hs-X motion, and that the changes in the energy with respect to the NH3 angle and N-H 

distance are small, we could neglect these coordinates and produce a two-dimensional 

potential energy surface such as Figure 2.14. 

 

 

Figure 2.14: A two-dimensional potential energy surface for NH3HCl neutral; Å and arbitrary 

energy scale 

We could remove another dimension to obtain a one-dimensional surface describing 

only the proton motion (Figure 2.15), omitting the N-X distance entirely even though 

the energy changes meaningfully with respect to this coordinate. 
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Figure 2.15: A one-dimensional potential energy surface (obtained for  the same system as Figure 

2.14) with fixed R=2.8.  Units of Å and arbitrary energy scale 

Dropping to lower dimensionality in this way adds complications.  In order to neglect a 

coordinate, we must either fix that coordinate or relax it.  In this case, fixing the 

coordinate corresponds to taking a straight slice through the 2D surface at some value of 

R, and the choice of value is important (e.g. the white line in Figure 2.16; the line would 

show a markedly different  profile if it was shifted higher or lower).  This can cause a 

misleading impression of the shape of the surface of interest (e.g. Famulari et al in 

Section 1.1.1, where the slice presented a nonexistent barrier).  If we relax the 

coordinate, the resulting surface follows a curved path through the 2D potential energy 

surface and we lose some of our control of the specification of the molecule (red line in 

Figure 2.16).   

 



Chapter 2: Theory 

 87 

 

Figure 2.16: Example of the path a fixed (white) and a relaxed (red) 1D surface follows through the 

2D surface for the same system as the previous figure. Å and arbitrary energy scale. 

Supposing we vary r
X
 to study the motion of the proton and now relax all of the other 

coordinates.  The resultant plot of energy against coordinate is a relaxed potential 

energy surface, shown by Figure 2.17 and the red line in Figure 2.16.  Whereas the rigid 

plot (Figure 2.15) encounters the “hill” in the potential energy surface, the relaxed 

surface moves around it, following the lowest energy path, by changing R. 

 

Figure 2.17: One-dimensional relaxed potential energy surface as in Figure 2.15. Å and arbitrary 

energy scale.  
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This is meaningful in the region near the halide X (small values of r
X
).  We can easily 

probe the repulsive wall around X.  However the position of N is unrestricted with 

respect to X or Hs, and as Hs approaches the repulsive wall around N, the force that 

develops causes NH3 to retreat.  The change we apply to r
x
 does not affect r

N
 (which 

asymptotically approaches a fixed value) but instead increases R (Figure 2.18, Figure 

2.19). 

 

 

Figure 2.18: Effect of changing r
X
 upon r

N
 and R in NH3HCl 

 

Figure 2.19: r
N
 and R versus r

X
 in NH3HCl 
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An analogous situation arises if we describe the proton position with respect to N, and 

we try to probe the repulsive wall of X. 

 

The solution in this study was to combine two complementary potential energy surfaces, 

one described with respect to N, one described with respect to X.  At intermediate 

distances, the geometries obtained by the partial optimisation are the same regardless of 

the choice of coordinate, and so is the energy.  Therefore the same surface is explored 

regardless of the choice of coordinate and the two surfaces coincide.  When probing the 

repulsive wall of a heavy atom, the surface is chosen that specifies the proton position 

with respect to that atom, so that the heavy atom does not retreat. 

 

For example, in Figure 2.20 the r
X
 distance is fixed at each step, and the other 

parameters are relaxed.  This allows us to probe the repulsive wall near X.  In Figure 

2.21(a),  r
N
 is fixed at each step, and all of the other parameters are relaxed, so we can 

probe the repulsive wall near N.  We can also measure r
X
  at each step (Figure 2.21(b)) 

(which in the C3v geometry is exactly the difference between R and r
X
), and plot the 

energy at each point against that coordinate.  We can then plot both surfaces on the 

same x axis (Figure 2.22). 

 

 

Figure 2.20: Relaxed potential energy surface of NH3HAt with r
X
 as the coordinate (Å and 

arbitrary energy scale)  
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Figure 2.21: Relaxed potential energy surface of NH3HAt with r
N
 as the coordinate, plotted against 

r
N
 (a) and against r

X
 (b) (Å and arbitrary energy scale) 

 

 

Figure 2.22: A combination of the two complementary 1D relaxed potential surfaces from Figure 

2.20 and Figure 2.21(b) (i.e. NH3HAt, Å and arbitrary energy scale ) 

As a final complication, note that the counterpoise correction applies an offset to the 

energy.  If the same definition of counterpoise is used in correcting both of these 

surfaces, then the offsets will be equal and the two surfaces will still coincide as in 

Figure 2.22.  However, if the choice of monomers is different, then a different 

correction will be applied and the resulting surfaces do not overlap.  However, because 

the correction is simply an offset, the surfaces continue to be approximately parallel.  In 

this study, proton transfer changed the identity of the monomers quite definitively and 

therefore the monomers had to be changed, giving a result like that shown in Figure 

2.23. 

(a) (b) 
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Figure 2.23: Complementary counterpoise-corrected 1D relaxed potential surfaces computed for 

the proton-transfer coordinate of NH3HAt, at CCSD with a double-zeta basis set. (Å and mH) 

 

2.7.2. The Significance of Stationary Points on the Surface 

 

Geometries of key chemical importance lie at the stationary points upon the potential 

energy surface, the places where the derivatives of the energy with respect to the 

nuclear coordinates are zero.  The negatives of these derivatives are more commonly 

and informatively known as forces.  The stationary points are characterised by their 

second derivatives, also known as the curvatures (the matrix of these derivatives being 

the Hessian).  These first and second derivatives are always available numerically, by 

varying nuclear coordinates by small amounts and recording the energy changes, but are 

also available analytically for certain methods.   

 

For example, the gradients for a variational method such as Hartree-Fock can be 

computed directly from the derivatives of the one- and two-electron integrals, without 

reference to the basis set coefficients.  When we try to introduce the coefficients into the 

expression for the gradient, the chain rule introduces terms which include first 

derivatives of the energy with respect to the coefficients, which for a variational method 

must be zero.  Similarly, calculating the Hartree-Fock hessian involves only the first 

derivative of the coefficients with respect to nuclear coordinates, which can be obtained 

by an analytical method (coupled-perturbed Hartree-Fock).[50] 
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Where the second derivatives are all positive, the stationary point is a minimum.  

Minima correspond to chemically stable structures, inasmuch that any perturbation in 

the nuclear coordinates results in a restoring force, toward the original geometry.  For 

the structure to be genuinely stable, its zero-point energy and any thermal energy must 

be smaller than the depth of the well around the minimum, otherwise the structure can 

“escape”.  Many such minima will exist for most potential surfaces; the most stable 

minimum is known as the global minimum, and the remainder are local minima. 

 

When the second derivatives are all negative, the stationary point is a maximum, and the 

structure is unstable.  Any perturbation will generate a nonzero force away from the 

stationary point.   

 

Where n derivatives are negative and the remainder are positive, the stationary point is 

an nth order saddle point.  First order saddle points are chemically important as they 

describe the lowest energy path between minima, which means that they are transition 

states when the two minima represent products, reactants, or intermediates, or barriers 

to intramolecular motion when the minima are multiple configurations or confirmations 

of the same molecule. 

 

Finding the stationary points would be entirely trivial if we had an expression (derived 

or fitted) for the potential energy with respect to the nuclear coordinates that was easily 

soluble.  Unfortunately this is usually not the case, and instead we must use the 

available energies, forces and curvatures to inform a search strategy.  (This search will 

be much more efficient where analytical derivatives are available.)  An algorithm can 

use this information to understand the shape of the surface and “plot a course” in a 

rational manner toward a stationary point.   

 

Many such approaches are available for minima, from a simple steepest decent, which 

follows the gradient “downhill” (guaranteed to find a minimum, but inefficiently, and 

not necessary the global minimum)[49] through more nuanced methods involving the 

Hessian such as Newton-Raphson,[49] interpolated methods such as the GDIIS,[49] and  

elaborate artificial (and even human[51]) intelligence techniques used in protein 

folding.   
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Finding transition states (saddle points) is more challenging and typically involves 

investigating the path between a reactant and product structure (usually an interpolated 

series of coordinates between the two, e.g.  linear and quadratic synchronous transit) 

and finding the maximum of energy on that path.  This may then be further optimised 

by attempting to maximise the energy with respect to the parameters corresponding to 

the negative curvature(s), and minimise the energy in all other degrees of freedom.[49] 

 

2.7.3. Defining Vibrational Frequencies with the PES 

 

The second derivatives are useful for more than simply describing the curvature around 

stationary points.  The matrix elements of the hessian are force constants k for the 

motions of the atoms in all available directions, e.g. k12 for the movement of an atom 1 

along the x coordinate and atom 2 along the y coordinate.  Therefore the hessian 

provides information on a harmonic approximation to the potential energy surface in 

which the nuclei move, from which the harmonic vibrational frequencies could be 

derived.  The vibrational behaviour of the molecule, and its characteristic vibrational 

frequencies, can be obtained from this hessian by normal mode analysis.  

 

First, the matrix k is re-expressed in a system of mass-weighted coordinates, such that 

for a basis vector x and atom i, we have a new basis vector:  

 
iii xmq 2

1

  
(99) 

 This mass-weighted Hessian is then diagonalised; the eigenvalues are the squares of the 

harmonic frequencies along a set of normal modes.  The molecular motions related to 

these modes are described by the eigenvectors, which are linear combinations of the 

original mass-weighted coordinates.[50,52] 

 

It is particularly informative to consider such a process when using internal coordinates, 

wherein the basis vectors are simply the bending and stretching motions of the 

molecule.  In this case the eigenvectors are linear combinations of those basis vectors, 

which can be readily interpreted as the coupling of motions along different coordinates, 

e.g. a coupling between two stretching motions, a bend and a stretch, or two stretches in 

a single normal mode.[50,52] 
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The second derivatives encode useful information about the potential energy surface, 

such as the rigidity of the structure at a minimum, and the motion associated with 

crossing a transition state.  The meaningfulness of the frequencies computed from these 

force constants depends upon the extent to which the harmonic approximation is valid, 

i.e. how closely the potential well approximates a parabola.  If the potential surface is 

highly anharmonic, then the frequencies will not be properly described by this model.  

The double-well potentials in Figure 2.22 and Figure 2.23 are good examples.  These 

surfaces are harmonic at low energies around the two minima, but increasingly 

anharmonic at higher energies. 

 

2.8. Theoretical Aspects of Dipole-Bound Anions 

 

Fermi and Teller in 1947 and Wightman in 1950 are jointly credited with the 

observation that in the Born-Oppenheimer approximation a point electric dipole of 

1.625 Debyes or greater will bind an electron.[53,54]  This implies that – neglecting 

rotation, or the Pauli exclusion principle – any molecule with a dipole moment greater 

than this value would bind an electron, even if it has no empty valence orbitals.  

However such a model results in an infinite number of bound states of infinite binding 

energy.[36] In practice, when molecular rotation and the repulsion between the 

molecule’s valence orbitals and the excess electron are considered, a molecule with a 

dipole greater than about 2.4 Debyes will possess a dipole-bound state, usually only one 

such state, and able to bind only one electron.[55] 

 

The most important descriptor of a weakly bound anion is, of course, the electron 

affinity of the species that binds the electron, and the strength with which the electron is 

bound.  Given that the optimal geometry of the neutral will not be the optimal geometry 

of the anion, assuming the electron has any interaction with the molecule at all, we must 

define the electron binding energies in terms of the geometries of the anion and the 

neutral species. 

 

The energy to go from the neutral species at its optimised geometry to the anion at that 

same geometry is the vertical attachment energy (VAC), “vertical” referring to the fixed 

horizontal position on the surface, with only a change in energy.  Similarly, the energy 

to go from the anion at its optimised geometry to the neutral at that same geometry is 
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the vertical detachment energy (VDE).  These energies inform us of the strength with 

which the electron is bound without accounting for geometric relaxation. 

 

 

 

 

Figure 2.24: Vertical attachment (left) and detachment (right) energies (blue arrows) 

Using the nomenclature )(GE CM
for the energy of the molecule “M” with charge “C” in 

geometry “G”: 

 

)()(0 NeutralENeutralEVAE
MM   

)()(0 AnionEAnionEVDE
MM   

(100) 

Note the sign convention: the VAE and VDE are positive if the electron is bound, 

although the electron attachment process is exothermic and the electron detachment 

process is endothermic in that case. 

 

The energy to go between the anion at its optimised geometry and the neutral at its 

optimised geometry – the electron affinity with geometric relaxation, in other words – is 

the adiabatic electron affinity EAA. 
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Figure 2.25: Adiabatic electron affinity (blue arrow) 

 )()(0 AnionENeutralEEA
MMA   (101) 

These energies are calculated in a supermolecular method, i.e. the difference in energy 

between the anion and the neutral at a given geometry.  The adiabatic electron affinity 

can be easily corrected for vibrational zero-point energy of the complex, as the ground 

vibrational states of the neutral and anion are well-defined around the minimum.  

However in the vertical energies, either the anion or neutral is away from its minimum 

energy structure, and therefore is vibrationally excited.  In many of these NH3HX 

systems, the neutral surfaces are highly anharmonic, and therefore the vibrational 

energy levels are difficult to compute.   

 

2.8.1. Koopmans’ Theorem for Electron Binding Energies 

 

A convenient result of the Hartree-Fock method is that we have meaningful measures of 

the orbital energies.  As a result it is possible to define the binding energy of an electron 

wholly in terms of the output of a single Hartree-Fock calculation.  Once our Hartree-

Fock orbitals are converged, the energy is: 
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Suppose we take the same orbitals, and remove an electron: 
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Taking the electron affinity as positive when the electron is bound, the difference 

between these two energies is: 

 k
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This is Koopmans’ theorem: the ionisation energy for removing a single electron from 

its Hartree-Fock orbital is equal to the Hartree-Fock orbital energy, and likewise the 

electron affinity for adding a single electron to an Hartree-Fock orbital is equal to the 

negative of the Hartree-Fock orbital energy.[4] 

 

This measure of the electron binding energy, in which the same set of orbitals is used 

for the anion and the neutral, gives us a measure of electron affinity that neglects the 

relaxation of the orbitals.  Therefore, if we predict the electron binding energy by taking 

the Hartree-Fock LUMO energy, we will obtain an underestimate.[5]  It also has the 

limitation that while the occupied orbitals and their energies are well-defined, the 

virtual Hartree-Fock orbitals are not necessarily good descriptors of the unoccupied 

orbitals of the molecule.[4]  

 

2.8.2. The Importance of Correlation in Electron Binding 

 

Conveniently for the study of dipole-bound anions, the orbital relaxation caused by a 

weakly-bound electron is small, and therefore the difference between the KT and 

Hartree-Fock energies is also small.[36]  However, the electron correlation effects are 

very important, and these must be included.  The clearest a priori reason is that electron 

correlation in the anion and the neutral species will be different, as the two species have 

different numbers of electrons and different orbital occupancies, and therefore the 

correlation energy will not cancel when the two energies are subtracted.[36]  

 

Furthermore, the very large polarizability of the diffuse dipole-bound electron means 

that the dispersion interaction between that electron and the neutral parent molecule is 

an important part of the description of the electron binding,[56] to the extent that 

dispersion can be the majority (sometimes the overwhelming majority[57-59]) of the 

binding energy. 
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2.9. Population Analysis: Defining the Charges of Atoms 

 

The concept of an atom as a well-defined unit is a fundamental idea in chemistry.  That 

the atom has particular physical properties, such as a certain amount of electron density, 

the ability to form bonds, etc. is implicit in the way chemical reactions are described, 

from simple structure drawings and Lewis diagrams to the theory of resonance.  

However, an atom within a molecule is not particularly well-defined in electronic 

structure, in particular having little concept of electron “ownership”, and therefore 

evaluating the partial charges of atoms (to discuss polarity, charge transfer etc.) is 

nontrivial. 

 

Suppose we have a homonuclear diatomic molecule H2.  It is intuitively sensible to 

assign the two electrons equally to each hydrogen atom (more accurately, to that 

nucleus) and obtain a structure of two neutrally charged atoms bonded together.  For a 

heteronuclear diatomic molecule such as HF, we understand that fluorine has a higher 

electronegativity than hydrogen and will attract the electrons in the covalent bond and 

move them closer to F, i.e. it will polarise the bond.  This results in an electric dipole 

across the molecule, as there is now more than nine electrons’ worth of electron density 

“at F” and less than one electron’s worth of density “at H”.  This forms an electric 

dipole.  We express this understanding with the simple sketch: 

 

H F

 

 

Figure 2.26: Schematic of a hydrogen fluoride molecule 

Suppose we now wish to put values to these small partial charges δ+ and δ-.  Using 

theoretical chemistry, we can determine the wavefunction of this system and thereby 

compute the density at any point in space.  Now we have to integrate the electron 

density at F, add the nuclear charge, and we will obtain the partial charge at F.  At this 

point our analysis comes to a halt as we realise that we do not know what “at F” means.  

Specifically, we do not have a way of assigning the electron density to a particular 

atom.  The problem of partitioning the electron density between atoms is known as 

population analysis. 

 

One of the easiest schemes of population analysis was devised by Mulliken, who 

proposed that the electrons in a given MO could be partitioned according to the 



Chapter 2: Theory 

 99 

occupancy of the atomic basis functions.[60]  Suppose we have a normalised molecular 

spinorbital i of HF which is expanded in just two normalised basis functions χH and χF 

centred on H and F respectively.  It is singly occupied and normalised, and therefore 

integrating the density over all space should give 1. 

 

 

FFHHi cc    

22222 )()()(2)()()( rcrrccrcrr FFFHFHHHii    

 dccccdd FFFHFHHHii   )2(1
22222

 

(105) 

 

Given that the basis functions are normalised, and knowing the identity of the overlap 

integral S, the following is obtained. 

 
22

21 FHFFHH cSccc   (106) 

The first term indicates the amount of electron density in this orbital which is 

unambiguously assigned to the basis function on H, and the last term indicates the 

density assigned to F.  The middle term indicates density which is shared between the 

two.  Mulliken then generalised the expression to an arbitrary number of basis 

functions: 
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The occupation numbers ni of the molecular orbitals are then added, and now the 

number of electrons can be summed over the orbitals to give the total number of 

electrons: 
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The first term indicates the electron density which is unambiguously assigned to a 

particular basis function k, while the second indicates electron density which is shared 

between the two functions k and l.  Mulliken noted that this partitioning does not 

distinguish the two basis functions’ contribution to this term, and therefore the two 

atoms must contribute equally to it.  Instead of summing over the orbitals, we can take 

the same partitioning and sum over the basis functions Ak   which are centred on a 

given atom A.  Gathering all of these contributions gives the total number of electrons 

associated with atom A.[61] 
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The connection to the Hartree-Fock results is clearer if the expression is written in terms 

of the density matrix D and the overlap matrix S.  The diagonal elements provide for the 

first term for the above expression (diagonal elements of the overlap matrix are unity for 

a normalised basis) while off-diagonal elements provide the second two terms.[62] 
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This method has the advantage that it is simple to compute and uses only information 

that is already present in a calculation performed in an atomically-centred basis set.  (It 

is meaningless when a non-atomically-centred basis set, is used e.g. plane waves or 

Gaussians centred anywhere other than a nucleus.)  Unfortunately it is also completely 

beholden to the basis set and consequently subject to biases.  Suppose we had a 

complete basis set for the H2O molecule using only basis functions centred on the 

hydrogen atoms (inefficient, but possible; c.f. Section 2.4.3).  In the Mulliken 

population analysis, the oxygen would always have a charge of +2, and each of the 

hydrogen atoms a charge of -1.  This is unphysical.  Subtler examples of the same bias 

limit the Mulliken population analysis’ utility.  There is also a limitation that the 

division of the overlap charge equally between the two centres is not accurate; this is 

addressed by other partitionings based on D and S, such as the Löwdin or natural 

population analysis schemes.[61,62] 

 

A second method is to divide the molecule into a series of volumes, each associated 

with a particular atom, and to integrate the electron density over those volumes.  A 

particularly broadly adopted partitioning was suggested by AIM theory (as raised in 1.1, 

1.2.1, and 1.4).  To revise, nuclei are maxima and chemical bonding is indicated by a 

second-order saddle point between nuclei.Atoms are volumes bounded by “zero-flux” 

surfaces where the electron density reaches a minimum with respect to distance from 

the nucleus, and the gradient is negative at a tangent to the surface.  In Bader’s model, 

the charge of an atom is obtained by integrating the electron density within the volume 

in which its nucleus lies.[62,63] 
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The topologies obtained by Bader’s analysis are not strongly basis set or method 

dependent, provided that the wavefunction is well converged with respect to basis set 

size.[64]  However charges obtained by Bader’s analysis fail to properly recreate 

molecular dipole moments, because the analysis fails to account for the inhomogeneity 

of the electron density within the volume.[61] 

 

The third approach is to assign charges which properly recreate the electrostatic 

potential of the whole molecule (and typically also the dipole moment).  Merz-Kollman-

Singh (MK), CHELP, and CHELPG schemes are based on this process.[65-67]  All 

three schemes depend upon manipulating the point charges assigned to each atom until 

they accurately reproduce a subset of the true electrostatic potential of the molecule.  

These methods have the advantage that the electrostatic potential they reproduce is an 

important chemical property.The methods differ in how the electrostatic potential is 

sampled, and the fitting algorithm.  The MK and CHELP schemes use nested surfaces 

beginning near the van der Waals surface and moving outward, while the CHELPG 

scheme uses a regular grid, excluding the van der Waals volume.  Excluding the VdW 

volume is necessary because the electrostatic potential is not well-approximated by 

point charges when one is close to the molecule.[67]  The MK scheme fits by an 

iterative least squares method, while CHELP and CHELPG use Lagrange 

multipliers.[65-67]   
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Chapter 3: Ammonia-Hydrogen Bromide and Ammonia-Hydrogen 

Iodide Complexes:  Anion Photoelectron and Ab Initio Studies 

 

Published in J. Phys. Chem. A vol. 114 pp. 1357–1363 (S. N. Eustis, A. Whiteside, D. Wang, M. 

Gutowski, and K. H. Bowen) 

 

3.1. Abstract 

 

The ammonia-hydrogen bromide and ammonia-hydrogen iodide, anionic hetero-dimers 

were studied by anion photoelectron spectroscopy.  In complementary studies, these 

anions and their neutral counterparts were also investigated via ab initio theory at the 

coupled cluster level.  In both systems, neutral NH3
….

HX dimers were predicted to be 

linear, hydrogen-bonded complexes, whereas their anionic dimers were found to be 

proton-transferred species of the form, (NH4
+
X

-
)
-
.  Both experimentally-measured and 

theoretically-predicted vertical detachment energies (VDE) are in excellent agreement 

for both systems, with values for (NH4
+
Br

-
)

-
 being 0.65 eV and 0.67 eV, respectively, 

and values for (NH4
+
I
-
)
-
 being 0.77 eV and 0.81 eV, respectively.  These systems are 

discussed in terms of our previous study of (NH4
+
Cl

-
)
-
. 

 

3.2. Introduction 

 

Acid-base reactions between ammonia and hydrogen halides (HX) have fascinated 

generations of scientists, most of whom have seen the white fog that develops when 

vapors from ammonium hydroxide and hydrochloric acid intermingle. While reactions 

between ammonia and all the hydrogen halides readily form ammonium halide salts at 

significant reactant densities, their ability to proceed on the microscopic level with only 

one molecule of each reactant is another matter.  Since the acidities of hydrogen halides 

increase consecutively from HF, to HCl, to HBr, to HI, the tendency for proton transfer 

to occur within the confines of isolated, neutral NH3
….

HX complexes would also be 

expected to increase in that order. This expectation is somewhat quantified by the 

following semi-empirical condition for proton transfer in neutral base
…

HX 

complexes,[1] PAbase + ∆Hacid + 102 > 0, where PA is the proton affinity of base, ∆Hacid 

is the acidity of HX (the negative of the enthalpy of dissociation for the HX  H
+
 + X

-
 

reaction), and where both values are in units of kcal/mol. Applying this criterion to the 

NH3
….

HX series yields negative values in all four cases , viz., -65.4, -27.4, -17.4, and -

8.3, where HX = HF, HCl, HBr, and HI, respectively.  Furthermore, this outcome is 
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consistent with the preponderance of available experimental data and high level 

calculations on neutral NH3
….

HX complexes, i.e., proton transfer between NH3 and HX 

in an isolated interacting pair does not occur.  Below, we briefly summarize the 

pertinent literature on NH3
….

HCl, NH3
….

HBr, and NH3
….

HI neutral complexes. 

 

In the case of NH3 and HCl, early theoretical work suggested that their reaction would 

proceed with only a single molecule of each reactant.[2] Later theoretical studies, 

however, found that hydrogen bonding rather than proton transfer would likely 

dominate in complexes of ammonia and hydrogen chloride.[3,4]  Experimental work 

including pulsed nozzle, Fourier-transform microwave studies,[5,6] matrix-isolated 

infrared investigations,[7-10] and Stark effect measurements[11] have since provided 

conclusive evidence that the neutral NH3/HCl pair does not undergo proton transfer, 

preferring instead to form the linear hydrogen-bonded complex, NH3
….

HCl. Modern 

theoretical predictions[12-21] are in accord with these results.  

 

Fourier-transform microwave work showed the NH3.
…

HBr complex to be 

predominately hydrogen-bonded but with 11% ionic character.[6,22]  Stark effect 

measurements were consistent with a linear, hydrogen bonded complex.[11]  Matrix-

isolated infrared studies in which NH3 and HBr were co-deposited with the relatively 

non-perturbing host, neon, found the NH3/HBr pair to form a hydrogen-bonded 

complex.[23-25] However, with more interactive hosts, such as Ar, Kr, and N2, the 

infrared spectra were consistent with a growing degree of proton-transfer character in 

the NH3
….

HBr complex.[25] Thus, the matrix environment was found to significantly 

influence the extent of proton transfer in the NH3
….

HBr complex.  Theoretical work was 

consistent with these experimental results, finding the isolated NH3/HBr pair to form a 

linear, hydrogen-bonded complex with little to no proton transfer.[4,20,26-28] 

 

While Fourier-transform microwave work suggested that the NH3
….

HI complex is 

hydrogen-bonded rather than proton transferred,[6,29,30] matrix-isolated infrared 

studies found the level of proton transfer to be entirely dependent on the host.[31-33] 

Furthermore, different calculations found various degrees of proton transfer within the 

NH3
….

HI complex,[26,27,34] these ranging from none to complete proton transfer. 

Clearly, the NH3
….

HI complex is edging toward proton transfer even in the gas phase, 

and it is quite sensitive to changes in its environment. 
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Thus, in isolation, proton transfer does not spontaneously occur between a single 

molecule of ammonia and a single molecule of any of the three hydrogen halides 

considered here; these reactions, which occur so readily in bulk, do not have a true 

molecular level (two body) counterpart.  Instead, they require the aide of external 

interactions, albeit to different extents, in order to initiate proton transfer and form ionic 

ammonium halides, NH4
+
X

-
.  

 

Among the simplest of perturbing agents is an electron, and through a combination of 

anion photoelectron spectroscopic experiments and high level ab initio calculations, in a 

previous study we showed that an excess electron is indeed enough to initiate proton 

transfer between ammonia and hydrogen chloride, forming the anion of ammonium 

chloride.[21] Our work further showed that the excess electron occupies a highly 

delocalized orbital surrounding the NH4
+
 cation, creating a Rydberg NH4 moiety which 

itself interacts with and is distorted by the neighboring chloride anion, i.e., (NH4
+
Cl

-
)
-
 = 

NH4 
...

 Cl
-
.  Thus, while the most stable form of the isolated neutral complex is likely 

hydrogen-bonded, the anionic complex prefers a proton-transferred configuration.  

 

Our work with this system led us to examine analogous complexes between ammonia 

and the heavier hydrogen halides, HBr and HI.  Two effects must be considered in the 

progression through the halogens.  First, the larger halogens are better proton donors, 

which will affect the energetics of the electron-driven proton transfer.  Second, the 

larger halogens show a tendency to form halogen bonds, resulting in a stable NH3
…

XH 

complex.  However due to dipole cancellation such a complex would only weakly bind 

electrons, and would not undergo electron-driven proton transfer.  Therefore this result 

will be discussed in a later publication. 

 

Here, we present a synergetic experimental (anion photoelectron spectroscopy) and 

theoretical (coupled cluster level) study of both the anions and the corresponding neutral 

forms of ammonia-hydrogen bromide and ammonia-hydrogen iodide complexes. 

 

3.3. Experimental 

 

Anion photoelectron spectroscopy is conducted by crossing a mass-selected beam of 

negative ions with a fixed-frequency photon beam and energy-analyzing the resultant 

photodetached electrons.  Photodetachment is governed by the energy-conserving 
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relationship, hν = EBE + EKE, where hν is the photon energy, EBE is electron binding 

energy, and EKE is electron kinetic energy.  Knowing the photon energy and measuring 

the electron kinetic energy leads to the electron binding energies of the observed 

transitions. 

 

The anionic complexes of interest were generated in a nozzle-ion source. In this device 

an ammonia/argon mixture (15%/85%) at 1-3 atm and 25°C was expanded through a 20 

µm orifice (nozzle) into an operating vacuum of ~7 x 10
-5

 Torr, while an HX/argon 

(10%/90%) mixture at a few Torr was allowed to infuse into the expansion region 

immediately outside the nozzle.  The stagnation chamber and nozzle were biased at -500 

volts.  Low energy electrons from an independently biased, thoriated-iridium filament 

were directed into the jet near the mouth of the nozzle.  An axial magnetic field helped 

to form a micro-plasma just outside the nozzle orifice.  Anions formed in this way were 

extracted through a 2 mm diameter skimmer into the ion optical system of the 

spectrometer.  These were mass-analyzed by a 90
°
 sector magnet (mass resolution = 

400) before being mass-selected and directed into the ion-photon interaction region, 

where they interacted with ~200 circulating Watts of 2.540 eV photons from an argon 

ion laser operated intra-cavity.  The resulting photodetached electrons were analyzed by 

a hemispherical electron energy analyzer (constant resolution throughout energy 

window) and counted by an electron multiplier.  The photoelectron spectra were 

calibrated against the well-known photoelectron spectrum of O
-
. Our apparatus has been 

described in detail previously.[35] 

 

3.4. Computational Detail  

 

The coupled cluster electronic structure method was used due to the significant 

contribution of electron correlation effects to the stability of weakly bound excess 

electron systems.[36,37]  Geometry optimizations, dipole moment calculations, and 

vibrational zero-point energy corrections were performed at the coupled-cluster singles-

doubles level of theory (CCSD).  Single-point energy calculations were performed with 

perturbative triples (CCSD(T)), using the same basis sets, geometries, and tight 

convergence criteria. 
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The large, diffuse SOMO orbital in the anion would not be correctly described by 

conventional basis sets, even those augmented with conventional diffuse functions. 

Therefore the augmented, polarized, correlation-consistent basis set of double-zeta 

quality[38-40] was supplemented with an additional set of seven s and seven p diffuse 

functions.[41] The additional diffuse s and p functions were “even-tempered”, i.e. their 

exponents form geometric progressions with the progression constant set to 2.5, and 

they used the most diffuse s and p functions on the conventional basis set as the zeroth 

functions in each progression. These extra functions are centered on the positive end of 

the complex’s dipole, in this instance, on the nitrogen atom. Hereafter, these basis sets 

are referred to as “aug-cc-pvdz-2.5”. Iodine, however, is an exception; there, the aug-cc-

pvdz-PP basis set[42] (relativistic pseudopotentials for the core electrons on iodine) was 

used. All calculations were performed in the Gaussian 03 package.[43] Visualizations of 

molecules were generated in MOLDEN[44] with diffuse orbitals visualized as 50%-of-

electron iso-surfaces using VMD.[45,46] 

 

Adiabatic electron affinities (EAa) for neutrals were computed as the energy of the 

anions subtracted from the energy of the neutrals at their optimized geometries, with 

zero-point energy corrections applied.  Positive values therefore indicate that binding of 

an electron is exothermic, i.e., the standard thermochemical definition. Vertical 

(electron) detachment energies (VDE) for anions were determined as the energy of the 

anion at its optimized geometry subtracted from the energy of the neutral at the same 

geometry. Likewise, vertical electron (attachment) affinities (EAV) were computed as 

the energy of the anion at the neutral’s optimized geometry, subtracted from the energy 

of the neutral at that same geometry.  Positive values indicate that the anionic state is 

bound with respect to the neutral state. 

 

Dissociation energies were determined as the energy of the relevant complex at its 

optimized geometry subtracted from the sum of the energies of its two separated 

fragments at their optimized geometries.  The energy of the complex was determined 

using the dimer-centered basis set, with BSSE (by counterpoise) and vibrational zero-

point energy corrections applied. Likewise, the monomer energies were determined with 

monomer-centered basis sets with vibrational zero-point corrections. Positive values 

indicate that fragmenting the complex is an endothermic process. 
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Proton affinities were determined as the energies of the protonated species subtracted 

from those of the deprotonated species at their optimized geometries, with (where 

necessary) zero-point energy and counterpoise corrections included. Positive values 

indicate that binding a proton is exothermic.   

 

Relaxed potential energy curves for neutral species were calculated at the CCSD level 

with the aug-cc-pvdz-2.5 basis set described previously.  The acidic proton, aligned 

with the C3 axis and bridging the heavy atoms, is dubbed as "shuttling" because its 

position is profoundly affected by the excess electron attachment.  The “shuttling” 

proton position was varied and all other coordinates relaxed.  This proton’s position is 

explicitly relative to either the nitrogen or the halogen, which each give a unique 

potential energy surface.  At intermediate distances, the choice of coordinate does not 

influence the result, and the surfaces are identical.  As the shuttling coordinate is 

extended, the other heavy atom is free to retreat from the advancing proton.  Therefore 

we do not probe the proton shuttling potential energy surface near the other heavy atom, 

but instead probe the heavy atom-heavy atom breathing potential energy surface. For 

example at a high halogen-proton distance, the proton-nitrogen distance becomes 

constant, and the nitrogen-halogen distance varies.  This was circumvented by 

combining surfaces created using both coordinates. 

 

The potential energy curve for the anion was assessed as the vertical attachment energy 

at each point of the neutral potential energy curve, in order that the vertically-bound or –

unbound nature of the anion would be obvious.  This also avoided anticipated 

difficulties with spontaneous autodetachment of the electron during optimization in the 

weakly-bound region of the surface. 

 

3.5. Results 

 

The measured photoelectron spectra of (NH4
+
Cl

-
)
-
, (NH4

+
Br

-
)
-
, and (NH4

+
I
-
)
-
 are 

presented in Figure 3.1.  Peak centers (EBE) for each of these spectra are tabulated in 

Table 3.1.  Experimental and calculated values for vertical detachment energies (VDE) 

and electron affinities (EAa) are presented in Table 3.2.  Computed structures for the 

anions and their neutral counterparts are presented in Figure 3.2.  In Table 3.3, the 

nitrogen-hydrogen and the halogen-hydrogen bond lengths in the free ammonium cation 

and the free hydrogen halides, respectively, are compared to the nitrogen-“shuttling 
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proton” and the halogen-“shuttling proton” bond lengths in both the neutral and anionic 

structures of the complexes under study here.  Theoretical potential energy curves are 

presented in Figure 3.3 parts a and b.   

 

Table 3.1: Experimental peak center positions (EBE's) for the photoelectron spectra, (NH4
+
X

-
)

- 
(X = 

Cl, Br, I), all data are in eV. (NH4
+
Cl

-
)

-
 data are taken from reference [21]. 

ν' (NH4
+
Cl

-
)
-
 (NH4

+
Br

-
)
-
 (NH4

+
I

-
)
-
 

1 0.075 - 0.451 

2 0.196 0.402 0.619 

3 0.384 0.530 0.696 

4 0.537 0.667 0.814 

5 0.700 0.804 0.920 

6 0.802 0.941 1.060 

7 0.965 1.069 1.179 

8 - 1.223 - 
 

Table 3.2: The experimental and theoretical electron affinities (EAa) and vertical detachment 

energies (VDE) for the NH3
…

HBr/(NH4
+
Br

-
)

-
 and the NH3

…
HI/(NH4

+
I

-
)

-
 systems. 

NH3
…

HCl/(NH4
+
Cl

-
)

-
 data are taken from reference [21]. 

Species NH3
…

HBr (NH4
+
Br

-
)

-
 NH3

…
HI (NH4

+
I

-
)

-
 NH3

…
HCl (NH4

+
Cl

-
)

- 

Expt. VDE (eV)  0.67  0.81  0.540 

Theo. VDE (eV)  0.65  0.77  0.52 

Expt. EAa (eV) 0.28  0.45  0.075  

Theo. EAa (eV) 0.26  0.47  0.068  

Table 3.3: Computed nitrogen-hydrogen and halogen-hydrogen distances for neutral and anionic 

complexes compared to computed values for the free ammonium cation and the free hydrogen 

halides.  The hydrogen atoms being referred to here are the “shuttling protons”, Hs, in both Δ(N-

Hs) and Δ(X-Hs) (X=Br, I).  Positive values indicate that the bond length or angle is greater in the 

anion than the complex than the free neutral monomer. 

Species NH3
…

HBr (NH4
+
Br

-
)
-
 NH3

…
HI (NH4

+
I

-
)
-
 

Δ(N-Hs), Å +0.836 +0.053 +0.943 +0.039 

Δ(X-Hs), Å  +0.036 +0.634 +0.028 +0.714 
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Figure 3.1: Photoelectron spectra of the ammonium chloride anion, the ammonium bromide anion, 

and the ammonium iodide anion each taken with 2.540 eV photons.  The spectrum of the 

ammonium chloride anion[21] is presented here for comparison. 
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Figure 3.2: Calculated geometries for (a) NH3

…
.HBr, (b) (NH4+Br

-
)

-
, (c) NH3

…
.HI, and (d) (NH4

+
I

-
)

-
 

at the CCSD/aug-cc-pvdz-2.5 level of theory. Blue for nitrogen, white for hydrogen, red for 

bromine, purple for iodine. 

(a) 

NH3
…

HBr 

(b) (NH4
+
Br

-
)
-
 

(c) NH3
…

HI (d) (NH4
+
I

-
)
-
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Figure 3.3, (a): Potential energy surfaces for the (NH4

+
Br

-
)

-
 anionic and the NH3

….
HBr neutral 

complexes, dashed and solid lines respectively. (b): Potential energy surfaces for the (NH4
+
I

-
)

-
 

anionic and the NH3
….

HI neutral complexes, dashed and solid lines respectively.  Calculated at the 

CCSD/aug-cc-pvdz-2.5 level of theory Black indicates surface evaluated from proton-halogen 

distance, blue indicates surface evaluated from proton-nitrogen distance 

 

 

(a) 

(b) 
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The photoelectron spectra of (NH4
+
Br

-
)

-
 and (NH4

+
I
-
)
-
, though different from one 

another, are nevertheless reminiscent of the spectrum of (NH4
+
Cl

-
)
-
, which we collected 

in our previous study.[21]
  

The spectrum of (NH4
+
Br

-
)
-
 reveals a clear vibrational 

progression beginning with a peak at EBE ~0.4 eV and with the maximum in its fitted 

intensity envelope occurring at 0.67 eV.  The spectrum of (NH4
+
I
-
)
-
 is similar in shape, 

with a maximum intensity occurring at 0.81 eV.  In neither case did the spectral patterns 

change with source conditions, suggesting that none of the observed peaks are due to 

vibrational hot bands.  While all of these ammonium halide anion photoelectron spectra 

are analogous to alkali halide anion photoelectron spectra in that they are anions of 

salts,[47] they are different in that the formation of ammonium halide anions involves 

proton transfers and in that the vibrational structure in their spectra are primarily due to 

shuttling proton motions. The related vibrational mode is a fully-symmetric stretching 

mode dominated by the motion of the “shuttling proton” along the C3 axis, mirroring 

our earlier assessment of this motion in the case of the (NH4
+
Cl

-
)
-
 system.[21] 

 

The results of our theoretical studies on these two systems are consistent with our 

experimental results.  Theory predicts that for both systems the neutral complexes are 

linear and hydrogen-bonded, whereas for both anionic complexes the preferred 

configuration is the proton transferred ionic salt, (NH4
+
X

-
)
-
.  As shown in Table 3.3, the 

halogen-hydrogen distances in the neutral complexes, although extended, are close to 

those of the free hydrogen halide.  However, the distance from the nitrogen to the 

shuttling proton in each neutral complex is substantially larger than a nitrogen-hydrogen 

bond in the free ammonium cation.  This indicates a covalently bonded hydrogen halide 

which is non-covalently bonded to an ammonia molecule. Conversely in the anions, the 

distance from the nitrogen to the shuttling proton is close to that seen in the ammonium 

cation, albeit slightly elongated.  Furthermore, the distance from the halogen atom to 

this proton is much larger than that in the free hydrogen halides.  This implies that the 

proton has been fully transferred and covalently bonded by the nitrogen, and that a non-

covalent interaction exists between that hydrogen and the halide anion. 

 

In the case of (NH4
+
Br

-
)

-
, there is excellent agreement between the experimental and 

theoretical VDE values (0.67 ± 0.02 eV vs. 0.65 eV, respectively).  Initial assignments 

for the adiabatic electron affinity (EAa) of ammonium bromide focused on the first 

visible peak centered at EBE = 0.41 eV.  However, by subtracting the nearest 

vibrational spacing (0.131 eV) from the peak center at EBE = 0.41 eV, we arrived at a 
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value of 0.28 eV, which is consistent with the theoretically proposed value of 0.26 eV 

for the EAa value of ammonium bromide.  Furthermore, upon careful comparison of the 

peak patterns in the (NH4
+
Cl

-
)
-
 and the (NH4

+
Br

-
)

-
 photoelectron spectra, one sees that 

the (NH4
+
Br

-
)
-
 spectrum is missing the lowest EBE (origin) peak seen in the (NH4

+
Cl

-
)
- 

spectrum.  This is likely caused by the relatively lower signal-to-noise ratio of the 

(NH4
+
Br

-
)
-
 spectrum as compared to the (NH4

+
Cl

-
)
-
 spectrum.  Based on the foregoing, 

we put forth 0.28 ± 0.05 eV as the best value for the EAa of ammonium bromide. 

 

In the case of (NH4
+
I
-
)
-
, we again find excellent agreement between the experimental 

and calculated values of the VDE (0.81 ± 0.04 eV and 0.77 eV, respectively).  In this 

case, the theoretically proposed EAa value of 0.47 eV is consistent with the weak peak 

centered at EBE ~ 0.45 eV. We thus take the EAa to be 0.45 ± 0.05 eV. Interestingly, 

despite a relatively strong (NH4
+
I
-
)

-
 ion signal, its photoelectron spectrum was weak by 

comparison with those of (NH4
+
Cl

-
)
-
 and (NH4

+
Br

-
)
-
, revealing a photodetachment cross 

section for (NH4
+
I
-
)
-
 that is roughly ten times less than that of (NH4

+
Cl

-
)
-
.  (The fact that 

the photoelectron spectrum of (NH4
+
Br

-
)
-
 has a slightly lower signal-to-noise ratio than 

that of (NH4
+
Cl

-
)
-
 is mostly due to a lower (NH4

+
Br

-
)
-
 ion intensity rather than to a lower 

photodetachment cross section.) 

 

3.6. Discussion 

 

The results provide strong evidence that the anionic complexes of ammonia-hydrogen 

bromide and ammonia-hydrogen iodide are, in fact, the anions of the salts, (NH4
+
Br

-
)
-
 

and (NH4
+
I
-
)
-
.  Moreover, as in the ammonia-hydrogen chloride system reported 

previously,[21] their corresponding neutral complexes are linear and hydrogen-bonded, 

with little or no proton transfer. Consistent with these findings is the similarity, as 

mentioned above, between the photoelectron spectrum of (NH4
+
Cl

-
)
-
 and those of 

(NH4
+
Br

-
)
- 
and (NH4

+
I
-
)
-
. Comparing the experimental VDE and EAa values, we see an 

increase from the chloride to the bromide case of 0.13 eV and 0.20 eV and from the 

bromide to the iodide case of 0.14 eV and 0.17 eV, respectively – a consistent yet 

relatively modest change.  Similar comparisons are seen among the theoretically-

predicted VDE and EAa values, and these are plotted in Figure 3.4.  Both the (NH4
+
Br

-
)
- 

and the (NH4
+
I
-
)
-
 photoelectron  spectra also show vibrational progressions due to the 

proton shuttling mode (N
…

Hs
…

X). The vibrational spacings for the most intense peaks 

have shrunk from 0.154 eV (1242 cm
-1

) in the (NH4
+
Cl

-
)
-
 spectrum to 0.135 eV (1089 
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cm
-1

) in the (NH4
+
Br

-
)
-
 spectrum, largely reflecting the greater mass of bromine over 

chlorine. The vibrational spacings in the (NH4
+
I
-
)
-
 spectrum follow the same trend.  The 

local minimum in the neutral potential energy surface of NH3HI (Figure 3.3 (b)) around 

the proton-transferred geometry should be noted. This has a depth of approximately 50 

meV. As the structure of the spectrum arises from the formation of a vibrationally 

excited neutral in this region of the potential energy surface upon removal of the 

electron, this complication may contribute to the poor resolution of the vibrational 

structure. 
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Figure 3.4: Comparison of computed EAa and VDE values for NH3
…

HCl and (NH4
+
Cl

-
)

-
, NH3

…
HBr

-
 

and (NH4
+
Br

-
)

-
, and NH3

…
HI and (NH4

+
I

-
)

-
, respectively.  Values for NH3

…
HCl and (NH4

+
Cl

-
)

-
 were 

taken from reference 21. 

Conceptually, the fact that proton transfer is made favorable by the addition of an 

excess electron can be rationalized in terms of the stabilization of the excess electron by 

the increased dipole moment on the ionic system versus the hydrogen-bonded one.  This 

can be visualized by comparing the two plots in Figure 3.5, these depicting the volumes 

of 50% electron iso-surfaces for the LUMO of neutral NH3
….

HBr and for the SOMO of 

anionic (NH4
+
Br

-
)
-
. 
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Figure 3.5: Plots depicting the volumes of 50% electron iso-surfaces for the LUMO of     neutral 

NH3
….

HBr on the left and for the SOMO of anionic (NH4
+
Br

-
)

-
 on the right. 

Insight is also provided by considering the energetics of these systems.  For example, 

consider forming the separated NH4
+
/Cl

-
 ion pair from NH3 and HCl molecules.  For 

proton transfer between the gas-phase, non-interacting acid and base, i.e., the 

transformation from NH3 + HCl to NH4
+
 + Cl

-
 shown in Figure 3.6, the energy needed 

is the difference in the gas-phase proton affinities of ammonia and the chloride anion, 

calculated as 5.37 eV (5.58 eV, if we correct for zero-point energy and counterpoise).  

However, the transformation from the H3N
….

HCl neutral complex to the net neutral 

H3NH
+…

Cl
-
 salt requires only 0.38 eV.  This is a much lower energy than the proton 

transfer between the two isolated fragments.  (Here, we used our a priori knowledge of 

the proton-transferred structure and disregarded the unavailable zero-point vibrational 

energy.)   

 

Figure 3.6: Energetic cycles relating to the formation of the ammonium chloride anion. 
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The reason for this is that the energy recovered by associating the ammonium chloride 

ion pair (NH4
+
 + Cl

-
 to H3NH

+…
Cl

-
) is significantly more than the energy needed to 

dissociate the ammonia-hydrogen chloride, hydrogen bonded, neutral complex 

(H3N
….

HCl to NH3 + HCl ).  The difference in dissociation energies is 4.99 eV (4.97 eV 

with counterpoise, ZPE unavailable for NH4
+
Cl

-
).  If we traverse the diagram, we can 

see that the extra electrostatic stability accounts for the bulk of the energy needed to 

transfer the proton, dropping the endothermicity by 4.99 eV from 5.37 eV to 0.38 eV. 

However, proton transfer is still not spontaneous in the neutral. 

 

The situation changes qualitatively with the addition of an excess electron. It can be 

seen that the vertical attachment energy of the excess electron to the neutral complex 

(EAv = 0.042 eV, H3N
….

HCl to [H3N
….

HCl]
-
) is significantly lower than the vertical 

detachment energy from the anionic complex (VDE = 0.52 eV, H3NH
…

Cl
- 

to 

H3NH
+…

Cl
-
).  That is to say, the extra electron is more stable by 0.482 eV when the 

anionic complex is of the ionic, proton-transferred type.  This makes intuitive sense, 

given the larger dipole moment in the ionic form (4.31 D for the neutral at the 

hydrogen-bonded geometry, versus 10.01 D for the neutral at the ionic geometry).  It is 

this extra 0.482 eV stabilization which “tips the balance” in favor of the electron-

induced, proton transfer process, from endothermic by 0.38 eV to exothermic by 0.10 

eV.  

 

This scenario also holds for the bromide and the iodide.  Similar schemes are provided 

in Figure 3.7 and Figure 3.8. Comparing the ammonia-hydrogen bromide complex to 

the ammonia-hydrogen chloride complex, a lessened proton affinity difference of 5.01 

eV (5.20 eV with counterpoise and ZPE corrections) is partially counterbalanced by a 

lowered dissociation energy difference of 4.73 eV (4.69 eV with counterpoise), leaving 

a reduced endothermicity of 0.28 eV to proton transfer in the neutral complex.  

Formation of the ionic complex in the anion stabilizes the excess electron by 0.65 eV, 

resulting in an exothermicity of -0.33 eV for proton transfer in the anionic complex. The 

neutral dipole moment at the hydrogen-bonded geometry is 4.20 D, while that at the 

ionic geometry is 10.95 D. 
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Figure 3.7: Energetic cycles relating to the formation of the ammonium bromide anion. 

  

 

Figure 3.8: Energetic cycles relating to the formation of the ammonium iodide anion. 

 For iodine, the proton affinity difference is 4.66 eV (4.83 eV), with the dissociation 

energy difference for the neutral, ionic complex 4.50 eV (4.43 eV) higher than that of 

the hydrogen-bonded, neutral complex, resulting in a 0.16 eV endothermicity for proton 

transfer in the neutral complex. Forming the ionic complex in the anion stabilizes the 

excess electron by a net 0.74 eV, i.e., -0.77 - 0.03 eV, resulting in an exothermicity of  

-0.58 eV for proton transfer in the anionic complex.  The neutral dipole moments are 

3.74 D and 11.69 D for the hydrogen-bonded and ionic geometries, respectively. 
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Note that proton transfer in the neutral complexes approach spontaneity in all three 

systems as the halogen size, and thus acidity, increases.  With increasing halogen size, 

the hydrogen halide becomes a stronger acid, and therefore proton transfer in the neutral 

becomes less endothermic.  Therefore, it is expected that proton transfer will become 

spontaneous in the neutral with slightly stronger bases or acids than those considered 

here.  

 

Furthermore, as reflected in both the experimental and the theoretical results, the 

stabilization of the excess electron, brought on by forming the anionic ionic complex, 

grows with increasing halogen size, making electron-induced, proton transfer 

increasingly exothermic.This is the dominant contribution to the trend. This stabilization 

arises in part due to the declining dipole moments of the hydrogen-bonded, neutral 

complexes (4.31 D, 4.20 D, and 3.74 D for NH3
….

HCl, NH3
….

HBr, NH3
….

HI, 

respectively), and in part due to the increasing dipole moments of the ionic systems 

(10.01 D, 10.95 D, and 11.69 D for NH4
+
Cl

-
, NH4

+
Br

-
, and NH4

+
I
-
, respectively).  

These, in turn, are due to the reduced polarization of the H-X bond in the hydrogen 

halides of the hydrogen-bonded complexes and to the increasing N-X distances in the 

ionic systems, respectively. 

 

It is noteworthy from an “orbital taxonomy” perspective that in these proton transfer 

processes, the excess electron shifts from a distinctly dipole-bond orbital at the neutral 

equilibrium geometry to a much more compact orbital akin to a distorted valence s 

orbital (forming the distorted NH4 Rydberg molecular moiety) at the anion equilibrium 

geometry. 
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Chapter 4: Potential Energy Surfaces of the Neutral NH3
…

HX (X=F, 

Cl, Br, I, At) Dimers 

 
In preparation (A. Whiteside, M. Gutowski) 

 

4.1. Abstract 

 

The equilibrium structures and potential energy surfaces of the ammonia-hydrogen 

fluoride and ammonia-hydrogen astatide complexes are presented and characterised.  

NH3HF is found to take a neutral pair structure at -1930 mH with respect to the free 

monomers, while NH3HAt supports both a neutral pair and ion pair minimum at -6.31 

mH and -2.16 mH respectively.  The energetics of proton transfer in the full range of 

ammonia-hydrogen halide complexes are evaluated by investigating the forces acting 

upon the proton, as decomposed into one- and two-body terms.  Halogen bonded 

structures of NH3HX, where X is bromine, iodine, or astatine, are reported with energies 

of -1.03 mH, -2.83 mH, and -4.72 mH, respectively.  These systems are characterised in 

depth. 

 

4.2. Introduction 

 

The ammonia-hydrogen halide systems have been of great theoretical interest to 

chemists since Mulliken first used ammonia-hydrogen chloride as an example charge-

transfer complex in his early studies.[1]  Early insights into intermolecular interactions 

and the challenges of experimental investigation led to a lengthy period of investigation 

into the degree of proton transfer within these systems.[2-12]  In a recent paper[13] and 

the preceding chapter, we have discussed the role of an electron in triggering proton 

transfer in these complexes.  However we have not directly addressed the issue of why 

and how proton transfer occurs in the corresponding neutrals.  Furthermore, we have not 

discussed the possible alternative structures these systems may adopt. 

 

The complexes of NH3HX are experimentally known to adopt a C3v hydrogen-bonded 

structure (Figure 4.1).[14,15]  However the degree of proton transfer is highly matrix-

dependent in experiment and method-dependent in theory.[2,16-32]  Although it is now 

well-established that all of the systems adopt a neutral-pair (“N”) structure NH3…HX, 

[12,33-38] the matrix sensitivity of the results in matrix IR studies suggests that these 

systems are energetically close to proton transfer (PT) to form a zwitterionic (“Z”) 

structure.  What is the source of this careful balancing act?  What factors are at play in 
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driving proton transfer?  Are these systems qualitatively distinct, as suggested by the 

difference in the structures adopted, or is there an underlying commonality?  

 

 

Figure 4.1: H3N•••HX hydrogen bonded structure.  “Hs” refers to the “shuttling proton”. 

Having described the relaxed potential energy surfaces of NH3HBr and NH3HI in the 

preceding chapter, and NH3HCl in a past paper,[13] here we present the relaxed 

potential energy surfaces of NH3HF and NH3HAt, calculated with counterpoise 

corrections and careful consideration of how the systems can be best described to gain 

access to the proton transfer problem.  Furthermore, the minima have been fully 

characterised at a high level of theory.  These potential surfaces and minima can then be 

compared to the previous surfaces for Cl, Br, and I, which have been slightly improved 

with counterpoise corrections. 

 

In investigating the heavier halides, it became clear that the dipole moment on NH3HAt 

is very low, and the arrangement of charge is ambiguous.  Astatine’s electronegativity is 

similar to that of hydrogen, and therefore it is not obvious in which direction the dipole 

moment will lie.  This is suggestive of a complex in which the halogen is the positively  

charged species directed at ammonia, which in turn is suggestive of halogen bonds.  

These counterintuitive interactions take advantage of the region of positive charge 

known as the “sigma hole” that appears on a halogen as the antipode of a covalent bond, 

and allow a negatively charged halogen to bond with an electron donor.  By analogy to 

hydrogen bonds, the systems are identified as the halogen bond donor (electron 

acceptor) and halogen bond acceptor (electron donor). 

 

To establish whether this is a plausible mode of interaction for the hydrogen halides, 

and to what degree it competes with the hydrogen-bonded structure, we computed 

potential energy surfaces for the “backwards” approach of H-X to NH3, and attempted 

to find and characterise minima (Figure 4.2). 

 

α 

R 

r
N
 r

X
 

r
NH
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Figure 4.2: H3N•••XH halogen bonded structure. 

4.3. Computational methods 

 

The energy of a neutral complex X-Y at a geometry G can be written as: 

 )()()()()()( 211 GEGEGEGEGEGE YX

b

Y

b

X

bYYXXYX



   (111) 

where )( WW GE is the energy of the monomer (W= X or Y) at its equilibrium geometry 

GW and  

)()()(1 WWW

W

b GEGEGE   (112) 

)()()()(2 GEGEGEGE YXYX

YX

b  



  (113) 

The first two terms on the right hand side of Equation 111 are the energies of the free 

relaxed monomers, and the sum of their energies constitutes the zero of energy in this 

analysis.  The term )(1 GEW

b  (Equation 112) is the one-body energy for monomer W; the 

increase of the energy as a result of its geometrical deformation (from WG to G ) when 

the complex is formed.  )(2 GE YX

b



  (Equation 113) is the two-body interaction between 

the monomers X and Y after they adopt the geometry of the complex (G).  The 

)(1 GEW

b term is positive or zero by definition (notwithstanding methodological 

limitations), while the sign of )(2 GE YX

b



 depends on the geometry of the complex; it is 

negative near the minimum energy structure of the X-Y complex.   

 

The expression for the total energy )(GE YX  can be rewritten as: 

)()()()( GEGEGEGE stabYYXXYX   (114) 

where:  

)()()()( 211 GEGEGEGE YX

b

Y

b

X

bstab



   (115) 

)(GEstab represents the stabilization energy of the X-Y complex at the geometry of the 

complex G.  The force F(G)  (a vector) is defined as the finite difference approximation 

α 

R 

r
X
 

r
NH
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to the derivative of the energy, where for a given pair of points Gn and Gn+1 on the 

potential energy surface: 

nn

nnnn

GG

GEGEGG
F












 





1

11 )()(

2
 (116) 

 E may be the stabilisation energy )(GEstab , in which case this is the overall force 

drawing the monomers together; or it may be any one of )(1 GEW

b (the restoring force 

pulling the proton toward a particular monomer) or )(2 GE YX

b



  (the force drawing the two 

distorted monomers together).  The sign of the displacement G to Gn+1 was chosen in 

such a way that when the force is positive, it is directed towards the N structure 

(halogen atom), and when it is negative, it is directed toward the Z structure (nitrogen 

atom). 

 

Depending on the region of the potential energy surface, the X and Y monomers can be 

NH3 and HX or NH4
+
 and X

-
.  We will always use )(

33 NHNH GE + )( HXHX GE as the zero 

of the energy and we will apply a constant energy shift of 

))()(()(
4433
 

NHNHNHNHHXHXX
GEGEGEE to the two-body term )(4

2 GE
XNH

b

 

 .  This 

term is typically large and negative, as it characterizes the interaction between ions 

NH4
+
 and X

-
; the “shift” is the energetic penalty required to perform proton transfer 

between the monomers. 

 

The potential energy surfaces, optimised geometries and harmonic frequencies of the 

complexes were computed at the CCSD level[39] with standard Boys-Bernardi 

counterpoise corrections.[40-42]  The geometric coordinates for the surfaces were 

defined as the shift of r
X
 or r

N
 from the equilibrium value for the free monomer.  The 

monomers were NH3 and HX in the case of N-type and halogen-bonded minima and 

NH4
+ 

and X
-
 in the case of Z-type minima.  The geometries of the monomers themselves 

were also optimised, and their vibrational frequencies computed.  The CCSD density 

was used to calculate the dipole moments and effective charges by the Merz-Sing-

Kollman method.[43,44]  The charge transfer q
T
 is defined as the total charge on the 

NH3 subunit of the NH3HX molecule, regardless of the choice of N, or halogen-bonded 

structure, and the total charge on NH4
+
 for Z structures. 

All electronic structure calculations were performed in the Gaussian 03[45] and  

Gaussian 09[46] codes.  Tight SCF convergence criteria were imposed.  Dunning-type 
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correlation consistent augmented double- and triple-zeta basis sets (aug-cc-pvdz, aug-

cc-pvtz, respectively) were used,[47,48] with pseudopotentials in the case of 

astatine,[49] and further augmented with a set of 7s and 7p (F-I) or 12s and 11p (At) 

diffuse functions consistent with the preceding and following chapters, using a 

progression ratio of 2.5.[50] Henceforth, these basis sets are AVDZ+ and AVTZ+, 

respectively.  AVDZ+ was used for halogen bonded structures, potential energy 

surfaces, and the hydrogen-bonded minima of the systems with Cl through I.  AVTZ+ 

was used for the hydrogen-bonded minima of the new systems NH3HF and NH3HAt.  

The basis set and pseudopotential for astatine were obtained from the EMSL Basis Set 

Exchange.[51,52]  

The most important geometric parameter in computing the proton transfer potential 

energy surface is the position of the “shuttling” proton Hs which is transferred between 

the two monomers.  We could have fixed the other coordinates at some arbitrary value, 

and scanned the proton position to obtain the potential energy surface, but this 

procedure could lead to artefacts, such as a spurious local minimum for NH4
+
···Cl

-
.[32] 

Therefore a relaxed potential energy surface was necessary.  However this introduces an 

additional difficulty: we must define the Hs position with respect to the heavy atom N or 

X ( Nr and Xr in Figure 4.1), and each coordinate is only appropriate in the vicinity of 

the corresponding heavy atom.  In the relaxed surface, at large values of Nr  the 

intermonomer distance R relaxes and the region of the surface near X is not probed (and 

vice versa).  Therefore as detailed in the preceding chapter and in the theory section it is 

necessary to combine two “complementary” potential energy surfaces.
  

Furthermore, 

counterpoise corrections were applied with respect to the monomers implied by the 

choice of coordinate: when scanning Nr , the monomers were NH4
+
 and X

-
, while when 

scanning Xr  the monomers were NH3 and HX (Figure 4.3).(The Nr  potential surface 

for NH3HF was counterpoise-corrected to NH3 and HF for reasons apparent in the 

following chapter, but the forces computed in a separate scan corrected to NH4
+

 and X
-
.) 
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.  

Figure 4.3: The two different monomer definitions used for counterpoise corrections, one with the 

neutral molecules (a) and one with the ions (b); notice that the same geometry is counterpoise 

corrected in two different ways 

 

4.4. Results 

 

4.4.1. Hydrogen bonded structures 

 

An N structure was found for F, and both a global minimum N structure and a local 

minimum Z structure were found for At (Figure 4.4, Figure 4.5).  Their relative energies 

and geometric parameters are summarised in  through .  The N structures are well-

characterised as hydrogen-bonded dimers in which the X-H bond is elongated and 

softened by hydrogen bonding.  Note the importance of the counterpoise correction in 

correctly determining the relative energies of the N and Z minima, albeit at the cost of 

potential energy surface discontinuity (Figure 4.6).  The potential surface of NH3HAt is 

highly anharmonic and therefore harmonic frequencies calculated upon it should be 

treated as suspect.  Notwithstanding this, the Z structure of NH3HAt is clearly an NH4
+
 

cation hydrogen bonded with an astatide anion At
-
, with the corresponding red-shift and 

stretch of the N-H bond. 

 

Table 4.1: Stabilisation energies of N and Z structures of NH3HF and NH3HAt (mH) 

 N Z 

NH3HF -19.295  

NH3HAt -6.314 -2.162 

 

(a) (b) + 

- 
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Table 4.2: Monomer geometric parameters (as in Figure 4.1), changes upon complex formation, 

and intermonomer distances, charge transfer (q
T
) and dipole moments (μ) for complexes (Å, °, D, e) 

  r
NH

 α r
X
 R μ q

T
 

HF   0.918  1.810  

HAt   1.688  0.062  

NH3 1.012 112   1.528  

NH3HF +0.000 -0.3 +0.028 2.671 4.544 0.143 

NH3HAt +0.001 -0.2 +0.016 3.843 3.036 0.215 

NH4
+
 1.022 109.4 1.022    

NH4At -0.006 -0.658 +0.097 3.307 10.134 0.475 

 

Table 4.3: Monomer normal modes, changes on complex formation, and intermonomer normal 

modes for NH3HF and NH3HAt (cm
-1

) 

 

a1 intermol.  

str. 

e intermol.  

bend 

e intermol. 

bend 

a1 NH3 

bend 

e NH3  

bend 

a1 H-X  

str. 

a1 NH3 

str. 

e NH3  

str.  

HF      4170   

HAt      2215   

NH3    1064 1686  3500 3627 

NH3HF 261 254 941 +97 -0 -624 +1 -2 

NH3HAt 87 136 416 -32 -3 -165 -5 -5 

 

Table 4.4: Monomer normal modes, changes on complex formation, and intermonomer normal 

modes for NH4At (cm
-1

) 

NH4
+
 

 t2 bend  e bend a1 str t2 str  

 1505 1505 1753 3402 3520 3520 

NH4At 

a1 intermol.  

str. 

e intermol.  

bend 

a1 bend e bend e bend a1 str a1 str e str 

278.3 247 -174 -47 -57 -1487 -52 +78 
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Figure 4.4: Hydrogen-bonding potential energy surface of NH3HF; coordinates as in Figure 4.1 

 

Figure 4.5: Hydrogen-bonding potential energy surface of NH3HAt.  Black and blue denote 

different counterpoise corrections; coordinates as in Figure 4.1. 
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Figure 4.6: Comparison of counterpoise-corrected (black/blue) and counterpoise-uncorrected 

(red/pink) potential surfaces of NH3HAt 

4.4.2. Halogen bonded structures 

 

Halogen bonded minima were located for the systems where X=Cl, Br, I, At (Figure 

4.7). However the minimum for NH3ClH is very shallow, and the intermolecular 

bending mode corresponding to the transition to the N structure is soft (actually 

imaginary, harmonic approximation notwithstanding) and the zero-point corrected 

energy is therefore only a fraction of a millihartree below the free monomer asymptote 

(Table 4.5).  Therefore it is not likely to be physically meaningful. The remaining 

minima are modestly stable, and actually competitive in energy with the Z structure and 

approaching N for astatine (c.f. ). Note the very small degree of monomer perturbation 

in geometric parameters and normal modes, particularly in comparison to the hydrogen-

bonded structures (Table 4.6 and Table 4.7). Minima are increasingly stable with the 

increasing halide size, reflected in the stabilisation energy, the reducing R (despite the 

increasing halide size) and the gradual blue shift of the intermolecular 

stretching/bending modes due to the halogen bond’s preference for linearity.  These 

effects arise from the increasing polarisability and declining electronegativity of the 

halide, which increases the “depth” of the sigma hole.  The degree of charge transfer 

increases with increasing halide size and bond strength, as anticipated (Table 4.5 and 
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Table 4.6) leading to a surprisingly large dipole moment for the complex with hydrogen 

astatide which would not be expected from dipole summation. 

 

 

Figure 4.7: Halogen bonding potential energy surfaces for NH3XH. Yellow=F, Green=Cl, Red=Br, 

Purple=I, Black=At 

Table 4.5: Stabilisation energy of halogen-bonded structures (mH) 

Halogen 
Stabilisation  

energy 

Cl -0.064 

Br -1.031 

I -2.833 

At -4.720 
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Table 4.6: Geometric parameters of monomers (as in Figure 4.1), changes in halogen bond 

formation, and intermonomer distances, dipole moments and charge transfer in halogen bonded 

complexes  (Å, °, D, e) 

 r
NH

 α r
X
 R μ q

T
 

HCl   1.291  1.159  

HBr   1.425  0.887  

HI   1.613  0.446  

HAt   1.702  0.046  

NH3 1.022 112.605   1.551  

NH3ClH +0.000 -0.052 +0.001 3.430 0.660 0.101 

NH3BrH +0.000 -0.028 +0.003 3.334 1.138 0.144 

NH3IH +0.000 -0.104 +0.007 3.310 1.915 0.167 

NH3AtH +0.000 -0.147 +0.012 3.221 2.591 0.200 

 

Table 4.7: Normal modes of monomers, intermonomer modes in complexes, and changes in normal 

modes in complexes 

 

a1 intermol.  

str. 

e intermol.  

bend 

e intermol.  

bend 

a1 NH3 

bend 

e NH3  

bend 

a1 H-X  

str. 

a1 NH3  

str. 

e NH3  

str.  

HF      4170   

HCl      2988   

HBr      2682   

HI      2347   

HAt      2215   

NH3    1064 1686  3500 3627 

NH3ClH (28i) (27i) 220 +11 -26 -10 -38 -29 

NH3BrH 77 79 263 +21 -26 -19 -38 -30 

NH3IH 92 124 303 +30 -27 -30 -37 -29 

NH3AtH 108 165 337 +42 -27 -101 -36 -29 

 

4.5. Discussion 

 

Now that the series NH3HX has been completed by the addition of At and F, it can be 

evaluated globally.  The N structures of the ammonia-hydrogen halides as a class show 

the typical qualities of the hydrogen bond: a red shift of the proton donor a1 stretching 

mode, a corresponding increase in the bond length, and a modest degree of charge 

transfer from the proton acceptor to the proton donor (Table 4.8 through Table 4.10).   

The charge transfer increases the dipole moment of the complex beyond the sum of the 

monomer dipoles (even when extension of r
X
 is accounted for), without which these 

systems would be unlikely to bind an excess electron (see the preceding and following 

chapters, and [13]).  The bond stretch distance and normal mode frequencies (i.e. the 

shapes of the potential surfaces) correlate with the strength (stabilisation energy) of the 

bond as anticipated for most of the halides (Table 4.9 and Table 4.10), however fluorine 

is an exception; the amount of bond stretching is less than chlorine, perhaps because of 

fluorine’s genuinely exceptional affinity for its proton.  The frequency of the 
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corresponding stretch is, however, strongly red-shifted (Table 4.10).  The degree of 

charge transfer does not correlate with the strength of the bond as expected, for 

unknown reasons (Table 4.9).  

 

Table 4.8: Stabilisation energies of N and Z hydrogen-bonded structures (mH) 

 N Z 

F -19.30   

Cl -11.83  

Br -9.92  

I -6.85 -1.84 

At -6.31 -2.16 

 

Table 4.9: Changes in geometric parameters upon complex formation, and intermonomer 

distances, charges and dipole moments for NH3HX complexes (Å, °, D, e) 

 r
NH

 α r
X
 R μ q

T
 

NH3HF +0.000 -0.273 +0.028 2.671 +1.205 0.143 

NH3HCl +0.009 -0.558 +0.031 3.221 +1.607 0.203 

NH3HBr +0.009 -0.549 +0.028 3.416 +1.511 0.181 

NH3HI +0.010 -0.367 +0.018 3.778 +1.340 0.209 

NH3HAt +0.001 -0.237 +0.016 3.843 +1.446 0.215 

 

Table 4.10: Changes in normal modes upon hydrogen bond formation for NH3HX complexes (cm
-1

) 

 
a1 NH3 

bend 

e NH3  

bend 

a1 H-X  

str. 

a1 NH3  

str. 

e NH3  

str.  

NH3HF +97 -0 -624 +1 -2 

NH3HCl +53 -4 -431 +3 +3 

NH3HBr +43 -5 -346 +2 +4 

NH3HI +28 -4 -181 -2 -1 

NH3HAt +32 -3 -165 -5 -5 

 

Although only two Z minima are found, and therefore it is inadvisable to draw trends 

from these results, the changes in the geometric parameters and vibrational frequencies 

are consistent with the picture of an NH4
+
 cation hydrogen bonded to a halide anion 

(Table 4.11, Table 4.12).  The N-H distance (r
N
) for the hydrogen-bonded proton is 

extended, and the stretching mode corresponding to this perturbation is red-shifted, 

while there low value of the charge on NH4
+
 is indicative of more than 0.5e charge 

transfer from the halide.  These effects decline when moving from the lighter to the 

heavier halide. 
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Table 4.11: Changes in geometric parameters upon complex formation, and intermonomer 

distances, charges and dipole moments for NH4X complexes (Å, °, D, e) 

 r
NH

 α r
N
 R μ q

T
 

NH4I -0.006 -0.391 +0.099 3.244 10.191 0.457 

NH4At -0.006 -0.658 +0.097 3.307 10.134 0.475 

 

Table 4.12: Changes in normal modes upon hydrogen bond formation for NH4X complexes (cm
-1

) 

 
e NH4 

bend 

a1 NH3 

bend 

e NH3  

bend 

a1 N-Hs  

str. 

a1 NH3  

str. 

e NH3  

str.  

NH4I -40 -185 -57 -1535 -65 +76 

NH4At -47 -174 -57 -1487 -52 +78 

 

Although the presence of the Z minimum is unique to NH3HI and NH3HAt, we argue 

that the molecular properties which cause this minimum to develop are intrinsic to this 

class of systems and can be seen throughout the system.  The pending development of 

the Z minimum for NH3HX is apparent even with NH3HF; the nascent Z structure is 

apparent as a slight inflection of the potential energy surface between +0.3 Å and +0.4 

Å r
X 

(Figure 4.4).  As the series progresses, this part of the potential surface is “pulled 

down” until the surface is nearly flat in NH3HBr and ultimately a second minimum is 

present (Figure 4.8).  

 

Figure 4.8: Hydrogen bonding potential energy surfaces for NH3HX. Yellow=F, Green=Cl, Red=Br, 

Purple=I, Black=At 
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While the argument for the stability of the minima in NH3HI and NH3HAt may be made 

by comparing the stabilisation energy of the complex to the difference in the proton 

affinity of its monomers, as in the preceding chapter, this does not provide any 

information about the underlying origin of the distortion of the potential surface.  It is 

more informative to evaluate the gradient of the energy with respect to proton position.  

This derivative is the vector force acting on the proton.  Where it is positive, the force 

acts to the left, toward the N structure, and where it is negative, the force acts to the 

right, toward the Z structure.  The other parameter of interest is the gradient of the force 

(second derivative of the energy), which determines how rapidly the force changes upon 

the proton motion.  This is experimentally accessible around the minima, where it 

appears as the force constant in the harmonic vibrational frequencies. 

 

Starting at the N structure, in all cases the system begins with negative force, then 

climbs to cross zero at some positive extension of HX corresponding to the N minimum. 

In this area, the second derivative is approximately constant.  The force then climbs to a 

maximum around +0.2 Angstroms r
X
, and then falls off (the second derivative becomes 

negative) as the proton approaches NH3 to a distance of around +0.2 Angstroms r
N 

(Figure 4.9).  The force then climbs again near the repulsive wall of NH4
+
.  Although all 

of the complexes feel this effect, leading to the inflection point in F and Cl, only in the 

heavier complexes does the force drop near zero to give a plateau (Br) or cross zero to 

provide a barrier and second minimum (I, At).  To understand why the surfaces differ, 

we must decompose the force into one- and two-body terms. 
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Figure 4.9: Derivative of the energy with respect to proton position, from perspective of NH3-HX.  

Colours as in Figure 4.8. 

 

From the perspective of the N structures, the one-body terms favour N (Figure 4.10). 

(Stretching the H-X bond is unfavourable, while NH3 is not strongly distorted  in the N 

or Z structure and does not have a significant role in the one-body energy.)  The two-

body terms favour Z (Figure 4.11), due to the increased electrostatic interaction from 

the elongated H-X and reduced proton-ammonia distance.  From these plots we can see 

why the N structure has an extended H-X bond with respect to the monomer.  The force 

upon the HX monomer is zero at equilibrium.  The two-body force lies in favour 

extending H-X to increase the electrostatic interaction.  Necessarily the sum of these 

forces favours extending H-X.  However, the one-body force increases more rapidly 

(has a larger second derivative) than the two-body force with increasing r
X
, and 

therefore the two opposing terms ultimately sum to zero at the slightly-increased r
X
 

found in the N structure. 
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The most important factor for the development of the Z minimum is the rapid increase 

in the magnitude of the two-body force at around +0.2Å (Figure 4.11).  It is this large 

negative contribution to the force that is largely responsible for the stagnation of the 

total force (Figure 4.9) and the corresponding droop in the potential surface (Figure 

4.8).   

 

Figure 4.10: Derivative of the one-body energy with respect to proton position, from perspective of 

NH3-HX.  Colours as in Figure 4.8. 

 

Figure 4.11: Derivative of the two-body energy with respect to proton position, from perspective of 

NH3-HX.  Colours as in Figure 4.8. 
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For NH3HF, the two-body force and second derivative is the largest due to the large 

dipole moment of the monomer.  However, the second derivative for HF is so 

exceptionally large that by +0.2 Å r
X 

 the one-body force is too large to be much 

affected by the two-body term.  

 

With progressively heavier halides, the one- and two-body terms act in opposite 

directions.  The one-body force and second derivative become progressively smaller due 

to the softer hydrogen halide bond (Figure 4.10, ), which allows the two-body term to 

have a greater influence.  However the two-body force and second derivative are also 

becoming less negative, as the halide is softer and the hydrogen halide is less polar, and 

therefore the dipole moment is not enhanced as rapidly by the extending proton (Figure 

4.11, ).  In practice, the balance lies in favour of the increasing influence of the two-

body term, which continues to be large around +0.2 Å r
X
, and “pulls down” the force 

curve, leading to the development of the inflection and plateau for heavier halides Cl 

and Br. For I and At it finally passes through zero, leading to a barrier and, beyond it, a 

net force toward the Z structure at large r
X
. 

 

Viewed from the perspective of the Z structure, there is a strong force towards increased 

r
N
, i.e. the N structure (Figure 4.12).  The one-body term is entirely due to the NH4

+
 

stretch, which is almost constant from system to system and lies in favour of the Z 

structure (Figure 4.12).  Therefore the variation in the ability to proton transfer is 

governed entirely by the two-body term, which is electrostatic in origin and is due to the 

halide anion’s force upon the proton, and therefore favours the N structure.   

 

The two-body force and second derivative are both larger for the lighter halides (Figure 

4.14), due to the shorter internuclear distance (electrostatic interaction varies with 

r

1
and its gradient with 

2

1

r
) and the greater partial charge on the halide (the lighter 

halides are more electronegative).  For NH3HF, the two-body term always completely 

overbalances the one-body term, pulling the force curve up above zero for all values of 

r
N
.  For the rest, the two-body term is much smaller, and the one-body term has an 

opportunity to cancel it (Figure 4.12).  For progressively heavier halides, the two-body 

force and second derivative become smaller.  Therefore the one-body force is allowed to 

pull down the force curve.  For the heavier halides, it passes through zero, and thereby 
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establishes a barrier to proton transfer at large r
N
 , and a negative force (toward Z) for 

small r
N
, leading to the minimum. 

 

Figure 4.12: Derivative of the energy with respect to proton position, from perspective of NH4
+
X

-
.  

Colours as in Figure 4.8. 

 

Figure 4.13: Derivative of the one-body NH4
+
 energy with respect to proton position, from 

perspective of NH4
+
X

-
.  Colours as in Figure 4.8. 
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Figure 4.14: Derivative of the two-body energy with respect to proton position, from perspective of 

NH4
+
X

-
.  Colours as in Figure 4.8. 

4.6. Summary 

 

Three types of minima were sought on the potential energy surfaces of the C3v NH3HX 

(X=halogen) complexes: H3N
…

HX “N” structures, proton-transferred NH4
+
…X

-
 “Z” 

structures, and H3N
…

XH halogen-bonded structures.  N structures were located for all 

of the halides F through At, at energies of -19.30 mH, -11.93 mH, -9.92 mH, -6.85 mH 

and -6.31 mH respectively.  Their characteristics are consistent with hydrogen-bonded 

systems in general and the historically and chemically significant ammonia-hydrogen 

halides in particular.  Z type minima are available to NH3HI and NH3HAt, at -1.84 mH 

and -2.16 mH respectively, and were successfully characterised as hydrogen bonded 

complexes of the ammonium cation with a halide anion. 

 

The universality of the ammonia-hydrogen halide potential energy surfaces was 

demonstrated by examining the derivative of the energy with respect to proton position, 

i.e. the force on the proton.  The force-geometry curves so developed were found to be 

qualitatively similar for all of the systems, with the quantitative changes in the shape of 

these curves determining whether one or two minima exist.  Viewed from the 

perspective of the N complex, the one-body force governs the plausibility of proton 

transfer, with a large two-body term in its favour across all of the halides.  Viewed from 
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the perspective of the Z complex, the two-body force governs the plausibility, with a 

strong effect from halide size and electronegativity. 

 

It was found that the hydrogen halides heavier than HBr can form stable halogen 

bonded complexes with ammonia, and that these species show the classic trends of 

halogen-bonded complexes.  In particular, the strength of the interaction increases with 

the size of the halide, even though this means a reduction in the intermonomer distance 

as the halide gets larger.  For X=Br through At, their energies are 1.03mH, 2.83mH and 

4.72 mH below the free monomer asymptote.  Surprisingly, the ammonia-hydrogen 

astatide halogen bonded complex has a sufficiently large dipole moment that it may be 

able to bind an electron, although the experimental challenges of investigating astatine 

mean that this may not be confirmed for some time. 
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5.1. Abstract 

 

We have introduced a classification scheme for hydrogen-bonded dimers based on their 

preference to transfer a proton and form an ionic pair, a zwitterion.  NH3HF and 

H2OHCl belong to class I, the least susceptible to proton transfer.  These complexes do 

not proton transfer even upon the attachment of an excess electron but they support 

dipole-bound anions with electron vertical detachment energies (VDE) of 1.67 and 2.16 

mH for (NH3HF)
-
 and (H2OHCl)

-
, respectively.  Their PES spectra display very weak 

vibrational structures, if any.  NH3HCl belongs to class II: it does not support a 

zwitterionic minimum but it does proton transfer upon excess electron attachment. Its 

PES spectrum has very clear vibrational structure, dominated by a progression involving 

the H-Cl stretching mode.  The excess electron binds to the NH4
+
 site forming a pair 

NH4…Cl
-
, thus the VDE value of 19.88 mH is much larger than for the former systems.  

The last system, NH3HAt, belongs to class III, the most susceptible to proton transfer. It 

supports a zwitterionic local minimum for the neutral complex and strongly binds an 

excess electron with a VDE of 30.80 mH.  We have discussed the energetics of proton 

transfer in the NH3HX complexes in terms of proton affinities, intermolecular 

interactions, and excess electron binding energies. We have reported opposed patterns 

of geometric distortions and vibrational shifts upon excess electron attachment to the 

complexes in class I and III, i.e. H3N…HF and NH4
+
… At

-
.  We have interpreted these 

patterns in terms of modifications of one- and two-body interaction energy terms and 

excess electron binding energies.  

 

5.2. Introduction 

 

The reaction of ammonia with hydrogen chloride provides an excellent example of the 

distinction between macroscopic solution-phase chemistry and microscopic bimolecular 

chemistry.  In the solution phase, ammonia and hydrogen chloride react by proton 

transfer to form the salt ammonium chloride.  However in the gas phase, the proton 

affinity (PA) of an ammonia molecule (854 kJ/mol[1,2]) is lower than that of a chloride 
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anion (PA Cl
-
 1395 kJ/mol[3]), so in the bimolecular case the two molecules form a 

hydrogen-bonded complex of ammonia-hydrogen chloride (H3N···HCl).  This is also 

expected of H3N···HBr (PA Br
-
: 1354 kJ/mol[4]) and H3N···HI (PA I

-
: 1315 kJ/mol[5]). 

Most of the endothermicity of proton transfer is compensated by intermolecular 

interactions when the molecules are brought together.  These interactions are at least an 

order of magnitude greater for the proton-transferred “zwitterionic (Z)” complex than 

for the neutral (N) pair.  However for the systems above, this is insufficient to make 

proton transfer (PT) favourable.[6,7]   

In a recent publication and the preceding chapter (and corresponding publication) we 

examined the effect of a simple chemical perturbation, the addition of an electron, on 

H3N···HCl,[6] H3N···HBr and H3N···HI.[7]  It was found that binding an electron made 

proton transfer favourable in each case.  Proton transfer approximately doubles the 

dipole moment of the neutral complex, and thus raises the binding energy of the 

electron.  This increase in binding energy provides the additional drive toward PT which 

is necessary to tip the balance in favour of the Z complex.  Upon electron detachment 

from the (NH4
+
···Cl

-
)
-
 anion, a vibrationally excited neutral H3N···HCl  is formed (with 

the proton Hs shuttling between N and Cl, seeFigure 5.1, which gives rise to the 

vibrational structure in the photoelectron spectrum of the (NH4
+
···Cl

-
)
-
 anion (Figure 

5.2).  

 

Figure 5.1: H3N•••HX hydrogen bonded structure.  “Hs” refers to the “shuttling proton”. 
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Figure 5.2: Photoelectron spectra of the dipole-bound ammonia/hydrogen fluoride and 

water/hydrogen chloride dimer anions (NH3
…

HF
-
 and H2O···HCl)

-
, and the electron-induced-

proton-transferred ammonium chloride anion, (NH4Cl)
-
. 

It can be inferred that when using a weaker base or acid, proton-transfer might not 

occur, even in the anion.  Starting from a base that is weaker than NH3, an earlier 

computational study by Skurski and Gutowski on the neutral and anionic H2O...HCl 

identified that both forms have N-type structures.[8] The computed photoelectron 

spectrum was dominated by a single narrow peak at a low electron binding energy 

(EBE), and several weak peaks at higher EBEs.  The main peak is associated with the 

transition  from the vibrational ground state of the anion to the vibrational ground state 

of the neutral (“0-0”), while the weak peaks are associated with the intermolecular 

modes (H bond stretching and wagging of the H2O monomer) and high energy 

combination transitions involving the aforementioned modes and the intramonomer 
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bending and stretching modes of H2O.  In this contribution, we report the experimental 

photoelectron spectrum of the (H2O···HCl)
-
 anion and discuss the experimental data in 

terms of these computational predictions.[8] 

We anticipate that using an acid that is weaker than HCl will have a similar effect of 

preventing proton transfer in the anion.  Hydrogen fluoride (HF) is a famously weak 

acid (although its poor acidity belies its chemical activity); the fluorine anion has a 

proton affinity of 1555 kJ/mol.[9] The neutral H3N···HF complex has been 

characterized by its infrared spectrum as a strong “type I” hydrogen-bonded species, 

with the HF stretching mode frequency red shifted by 921 cm
-1

 in the argon matrix-

isolated species.[10] The structure of the complex and its polarity were probed in 

microwave spectroscopy experiments.[11]  Those authors reported a relatively short N-

F distance of 2.66 Å and a significant dipole moment of 4.448 D, the latter being 1.2 D 

larger than the sum of experimental dipole moments of NH3 and HF.  Unfortunately, our 

efforts to generate the (H3N···HF)
-
 anion were unsuccessful, thus our investigation of 

H3N···HF and its anion is purely computational.  In particular, the dependence of 

anionic and neutral potential energies on the position of the proton Hs has been 

investigated, and the equilibrium structures, vibrational frequencies, and electron 

binding energies of the neutral H3N···HF complex have been calculated.  Finally, we 

modelled the photoelectron spectrum for its anionic complex. 

Conversely, a hydrogen halide HX, where X
-
 has an exceptionally low proton affinity, 

may undergo proton-transfer in the neutral complex with ammonia.  Astatide has the 

lowest proton affinity in water of all the halides,[12] and it is expected that astatide 

would also have the lowest proton affinity in the gas phase among all the halides, 

considering that the gas phase proton affinities of the remaining halides drop with 

increasing weight.[3-5,9]  We have computationally studied the neutral H3N···HAt and 

zwitterionic NH4
+
···At

-
 structures.  The dependence of anionic and neutral potential 

energies on the position of the proton Hs was explored, and their equilibrium structures, 

vibrational frequencies, and vertical and adiabatic excess electron binding energies were 

calculated. 

Hydrogen astatide (HAt) has a very low dipole moment of unconfirmed polarity,[13,14] 

owing to astatine’s low electronegativity (2.2 in Pauling units), comparable with that of 

hydrogen (2.20 in Pauling units).  On the other hand, the covalent radii of astatine (1.5 

Å)[14] and hydrogen (0.31 Å)[15] and their polarisabilities differ drastically. As a 
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result, it is not obvious whether HAt would bond to NH3 through a hydrogen bond 

(H3N···HAt or NH4
+
···At

-
) or through a halogen bond (HAt···NH3).  Due to dipole 

cancellation, such a complex is unlikely to bind an electron, and therefore this 

discussion is limited to the “N” (H3N···HAt) and “Z” (NH4
+
···At

-
) structures.  

Hydrogen-bonded dimers can accommodate an excess electron on a  or 

[18,19]orbital, but only the latter case is considered in this contribution.  Our 

discussion is focused on the H3N···HF, H3N···HCl, H3N···HAt, and H2O···HCl 

systems and their responses to the excess electron attachment, but it relies on and 

benefits from our past experience with dipole-bound anions supported by hydrogen-

bonded systems[6,7,20-24] and amino-acids.[25-27] 

 

The systems discussed here are representatives of three broad classes of hydrogen-

bonded dimers characterised in Table 5.1.  The class I systems do not support the Z-type 

minimum for the neutral complex and do not undergo proton transfer in the anion, e.g. 

H3N···HF or H2O···HCl.  The class II systems are the most affected by the excess 

electron attachment: they still do not support the Z-type minimum for the neutral 

complex, but they undergo proton transfer in the anion, e.g. H3N···HCl, H3N···HBr.  

The systems from this class have been studied in our earlier publications.[6,24]  Finally, 

the class III neutral dimers support a Z-type minimum (local or global) and the 

minimum energy structure of the anion resembles the Z-type minimum of the neutral 

species, e.g. NH3···HI, NH3···HAt.  

 

Table 5.1: Three classes of hydrogen-bonded dimers discussed in this chapter 

Class   Characteristics 

Class I 

Examples: H3N···HF, 

H2O···HCl 

No Z-type minimum for the neutral; 

No proton transfer in the anion 

Class II 

Examples: H3N···HCl, 

H3N···HBr 

No Z-type minimum for the neutral; 

Proton transfer in the anion 

Class III 

Examples: H3N···HI, 

H3N···HAt 

Z-type minimum for the neutral (local or global);  

The minium energy structure of the anion resembles the Z-

type minimum of the neutral 
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Hydrogen bonding favours linear arrangements between proton acceptors (A) and 

proton donors (HD).  Thus the A···HD structures listed above are characterised by 

constructive superposition of dipoles of the interacting monomers.  In fact, due to 

intermolecular charge transfer, dipole moments of the C3v H3N···HX dimers are larger 

than the sum of dipole moments of the isolated monomers.  The dipole moments of 

hydrogen bonded dimers frequently exceed Fermi and Teller’s critical dipole of 1.625 

D[28] which is required to bind an excess electron. The resulting dipole-bound anionic 

states will be explored in this chapter.  

The hydrogen-bonded DH and A units are prearranged for proton transfer 

(“zwitterionisation”):  

A···HD ↔ AH
+
···D

-
 (117) 

In Table 5.2 we summarize experimental proton affinities of deprotonated proton 

donors, D
-
, and proton acceptors, A.  The differences between these quantities represent 

natural thermodynamic barriers for proton transfer.  Intermolecular interactions 

compensate these barriers to a large extent.  However for the class I and II complexes 

these interactions are insufficient to support a Z-type minimum.  Excess electron 

attachment provides an additional driving force for proton transfer to occur, which is 

characteristic of the class II complexes.  

Table 5.2: Proton affinities of deprotonated proton donors (PA D
-
) and proton acceptors (PA A) 

and differences thereof (kJ mol
-1

) 

A···HD  PA D
-
 PA A Difference 

H3N
…

HF 1555[8] 854[1,2] 701 

H2O···HCl 1395[3] 691[1] 704 

H3N···HCl 1395 854 541 

H3N···HBr 1353[4] 854 499 

H3N···HI 1315[5] 854 461 

H3N···HAt 1298 (Computed) 854 444 

 

The classification presented in Table 5.1 is sufficient for the current project, although it 

could become more detailed based on the number of minima (one or two) supported by 

the neutral and the anion and their relative depth.  Quite an extended study of anionic 

complexes of uracil with alcohols of various degree of acidity was presented by us in 

the past.[29]  
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This study has the following objectives: 

I. To characterise the potential energy surfaces (and minima thereon) associated 

with the Hs position (Figure 4.1) in the neutral and anionic NH3HF (class I) and 

NH3HAt (class III). 

II. To determine modifications of geometries and vibrational frequencies 

brought about by excess electron attachment to these complexes. 

III. To predict the anion photoelectron spectrum of H3N···HF and to analyze 

differences in experimental anion photoelectron spectra of H2O···HCl and H3N···HCl.  

5.3. Computational Methods 

 

The one- and two-body energies of the neutral species are defined as in 4.3. The energy 

of the anion (X-Y)
-
 can be written as 

)()()()()()()( )()(
GEBEGEGEGEGEBEGEGE stabYYXXYXYX

    (118) 

where EBE(G) is the vertical electron binding energy at the geometry G: 

)()()(
)(

GEGEGEBE
YXYX    (119) 

The values of EBE are positive for vertically bound anionic states considered here.  

In Sections 5.5 and 5.7 we will analyze two characteristic geometries, GN and GA, 

which are equilibrium geometries for the neutral complex X-Y and the anion (X-Y)
-
, 

respectively.  In Section 5.7 we will pay attention to the energy of the anion at these two 

geometries.  It follows that the change in energy between the two structures can be 

written as:  

)()(
)()()( NYXAYXYX

GEGEE  
  (120) 

EBEEE stabYX
  )(

 (121) 

)()( NstabAstabstab GEGEE   (122) 

)()( NA GEBEGEBEEBE   (123) 

YX

b

Y

b

X

bstab EEEE 

  211  (124) 

)()( 111 N

W

bA
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b

W

b GEGEE    (125) 

)()( 222 N

YX

bA

YX
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YX

b GEGEE 









   (126) 
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The potential energy surfaces, optimised geometries and harmonic frequencies of the 

neutral and anion complexes were computed at the CCSD level[30] with standard Boys-

Bernardi counterpoise corrections.[31-33]  In the neutral complexes, the monomers 

were NH3 and HX in the case of N-type structures and NH4
+ 

and X
-
 in the case of Z-

type structures.  In the anionic complex, the monomers were NH4
0
 and X

-
 in the case of 

PT structures.  The counterpoise correction for anionic non-PT structures presents a 

challenge, because neither NH3 nor HX can retain an excess electron.  On the 

assumption that the counterpoise correction would be little affected by the binding of 

the excess electron, the counterpoise correction for the non-PT anions was defined as 

exactly equal to that of the corresponding neutral.  The geometries of the monomers 

themselves were also optimised, and their vibrational frequencies computed. 

Once the optimised geometries were obtained for the neutral and anionic complexes, 

EBEs were computed at CCSD(T)[34] with counterpoise corrections analogous to those 

applied to the optimisations.  The vertical attachment energy (VAE) is equivalent to 

EBE(GN).  The vertical detachment energy (VDE) is equivalent to EBE(GA).  The 

adiabatic electron affinity is defined as )()(
)( AYXNYX GEGEAEA   .  

Incremental contributions of each level of theory to the EBEs are defined as the 

difference between the affinity calculated at that level of theory, and the affinity 

calculated at the preceding level.  A positive sign indicates that the electron is more 

strongly bound at the next level.  Corrections from the vibrational zero-point energy (as 

computed from the above harmonic vibrational frequencies) were added to the final 

AEA values.  

The CCSD density was used to calculate the dipole moments and effective charges by 

the Merz-Sing-Kollman method.[35,36]  Orbitals were plotted from the same density, 

using MOLDEN[37] for contour plots and the OpenCubeMan tools[38] and VMD[39] 

(rendering in POVRay[40]) for isosurfaces. 

All electronic structure calculations were performed in the Gaussian 03,[41] Gaussian 

09[42] and Molpro[43] codes. Tight SCF convergence criteria were imposed.  Dunning-

type correlation consistent augmented double- and triple-zeta basis sets (aug-cc-pvdz, 

aug-cc-pvtz, respectively) were used,[44,45] with pseudopotentials in the case of 

astatine,[46] and further augmented with a set of 7s and 7p (F) or 12s and 11p (At) 

diffuse functions to bind the excess electron, using a progression ratio of 2.5.[47] 
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(Henceforth, these basis sets are AVDZ+ and AVTZ+, respectively.)  The basis set and 

pseudopotential for astatine were obtained from the EMSL Basis Set Exchange.[48,49]  

The most important geometric parameter in computing the potential energy surface is 

the position of the “shuttling” proton Hs which is transferred between the two 

monomers.  We could have fixed the other coordinates at some arbitrary value, and 

scanned the proton position to obtain the potential energy surface, but this procedure 

could lead to artifacts, such as a spurious local minimum for NH4
+
···Cl

-
.[50] Therefore 

a relaxed potential energy surface was necessary.  However this introduces an additional 

difficulty: we must define the Hs position with respect to the heavy atom N or X ( Nr and 

Xr ), and each coordinate is only appropriate in the vicinity of the corresponding heavy 

atom.  Therefore as detailed in our previous chapter it is necessary to combine two 

“complementary” potential energy surfaces.
  

Furthermore, for NH3HAt counterpoise 

corrections were applied with respect to the monomers implied by the choice of 

coordinate: when scanning Nr , the monomers were NH4
+
 and At

-
, while when scanning 

Xr  the monomers were NH3 and HAt.  (The counterpoise correction was consistently to 

NH3 and HF in NH3HF). 

The anion profiles were created by taking the neutral optimised geometry at each point, 

and calculating the counterpoise-corrected energy for the anion at that geometry.  

Therefore reading vertically between the two surfaces corresponds to the EBE at each 

point.  The anion minimum is not necessarily included on this neutral profile, but given 

the limited number of degrees of freedom, the presence of a well on the anion profile 

can be read as an indication of the nearby minimum. 

A fictitious (NH4
+
···F

-
)
-
 structure was constructed in order to estimate energetics of 

proton transfer in NH3HF.  This was created by noting trends in the differences between 

anion and neutral geometries in the other NH3HX systems (which did undergo proton 

transfer in anionic complex) and estimating a plausible magnitude for the changes that 

would occur between H3N···HF and (NH4
+
···F

-
)
-
.  The geometrical parameters of the 

fictitious system are given in the Supplimentary Information (section 5.9). 

A simulated photoelectron spectrum was created for (H3N···HF)
-
 because this system is 

amenable to future experimental verification.  The (NH3HAt)
-
 system, on the other 

hand, is not only experimentally challenging because of the relatively short half-lives of 

all isotopes of At (the longest is 8.1 hours)[14] but also methodologically more 
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challenging because of the strongly anharmonic potential energy surfaces, in particular 

of the neutral complex. The Frank-Condon (FC) factors, i.e. the squares of the overlap 

integrals between vibrational wave functions of the neutral and anionic H3N
...

HF, were 

calculated in the harmonic approximation at the CCSD/AVTZ+ level with counterpoise-

corrected equilibrium geometries and hessians.  Both equilibrium geometrical 

parameters and curvatures are affected by the excess electron attachment and the 

resulting FC factors might contribute to vibrational structure in the photoelectron 

spectrum.[8,20,51]  The polyatomic FC factors were calculated using Doktorov and co-

workers’ relations[52] as implemented in the code of Roy,[53] and assuming a 

temperature of 100 K in the mass selected ion beam.[21] The intensity of the 0-0 

transition was set to one and all other intensities were scaled accordingly.  The notation 

j

in indicates that for the nth mode there is an excitation from the ith to the jth quantum 

state and 0

00  stands for the 0-0 transition.  The calculated FC factors were convoluted 

with Lorentzian line shapes (full width at half-maximum equal to 218 cm
-1

).[21]  

5.4. Experimental methods 

 

Mixed dimer anions composed of both ammonia/hydrogen chloride and water/hydrogen 

chloride molecules were generated and studied by anion photoelectron spectroscopy 

(PES). This technique is conducted by crossing a mass-selected beam of negative ions 

with a fixed-frequency photon beam and energy-analyzing the resultant photodetached 

electrons. The photodetachment process is governed by the energy-conserving 

relationship, hν = EBE + EKE, where hν is the photon energy, EBE is the electron 

binding energy, and EKE is the electron kinetic energy.  Since the photon energy is 

known and the electron kinetic energies are measured, electron binding energies 

(transitions from an anion to its neutral counterpart) are determined.  

Both anionic complexes of H2O···HCl and H3N···HCl were generated in a supersonic 

expansion nozzle-ion source. To produce NH4Cl
-
 anions, an NH3/Ar gas mixture 

(15%/85%) at 1-3 atmospheres and 25°C was expanded through a 20 µm diameter 

orifice into vacuum (~7 × 10
-5

 Torr), while a few Torr of a HCl/Ar gas mixture 

(10%/90%) was leaked through a small tube (0.125” OD) into the supersonic expansion 

region immediately outside the nozzle. To produce (H2O···HCl)
-
 anions, an HCl/Ar gas 

mixture (10%/90%), sitting over ~5 ml liquid H2O (at 25°C) on the floor of the nozzle’s 

stagnation chamber, was expanded (along with H2O vapor) through a 20 µm diameter 

orifice into a ~1 × 10
-4

 Torr vacuum.  In both cases, negative ions were formed by 
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injecting low energy electrons from a negatively-biased thoriated-iridium filament into 

the expanding jet, where a microplasma was formed in the presence of a weak axial 

magnetic field.  These anions were then extracted, collimated, and transported by ion 

optics into the flight tube of a 90° magnetic sector, mass spectrometer with a mass 

resolution of ~400.  The mass-selected anions of interest were then crossed with the 

intra-cavity laser beam of an argon ion laser, and the photodetached electrons were 

energy-analyzed in a hemispherical electron energy analyzer with a resolution of ~30 

meV. The photoelectron spectra reported here were recorded with ~180 circulating 

watts of 2.540 eV/photon light and calibrated against the well-known photoelectron 

spectrum of O
-
 anion.[54] A detailed description of this apparatus has been presented 

previously.[55] Efforts to generate (H3N···HF)
-
 anions were unsuccessful. 

5.5. Computational results for (H3N
…

HF)
-
 and (NH4

+…
At

-
)
-
 

 

The neutral and anionic C3v complexes of NH3 with HF do not support minima for PT 

structures.  By contrast, the neutral hydrogen bonded complex of NH3 with HAt 

supports two minima: N and Z.  The anion of this complex supports only one minimum 

related to the zwitterionic (PT) structure.  

5.5.1. Effect of excess electron on the geometry and frequencies  

Binding of an electron results in subtle geometric changes in the H3N…HF complex, as 

depicted in Table 5.3 and Figure 5.3.  The NH3 molecule bends away from planarity by 

additional 0.6°, the HF bond length increases by 0.006 Å, and the R distance decreases 

by 0.020 Å. There is also an elongation of the NH bonds in ammonia by 0.002 Å.  All 

these geometrical changes lead to an increase of the dipole moment of the neutral 

complex by 0.09 D and therefore stabilize the dipole-bound anionic state.  
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Table 5.3: Geometric parameters (as Figure 55). dipole moments and charge transfer of NH3HF 

and NH3HAt , and changes upon electron binding and proton transfer as appropriate.  Å, °, D and 

e. 

 r
NH

 α r
X 

r
N
 R μ

N
 q

T
 

HF   0.918   1.810  

HAt   1.689   0.062  

NH3 1.012 112.1    1.528  

NH4
+
 1.022 109.471  1.022    

NH4
0
 1.038 109.471  1.038  0  

NH3HF 1.012 111.8 0.946 1.725 2.671 4.544 0.143 

(NH3HF)
-
 +0.002 +0.6 +0.006 -0.026 -0.020 +0.088 +0.013 

NH3HAt 1.013 111.9 1.705 2.138 3.843 3.036 0.215 

NH4
+
At

-
 +0.003 -3.1 +0.483 -1.019 -0.537 +7.099 +0.261 

(NH4
+
At

-
)
-
 +0.011 +2.0 +0.275 -0.062 +0.212 +1.823 +0.097 

 

 
Figure 5.3: Counterpoise-corrected neutral potential energy surface (black) and anion energy 

profile (green) of NH3HF. 

The presence of an excess electron favours a more polar structure for the complex, as 

this binds the electron more strongly.  Even though the Z type minimum does not exist 

for this complex due to the large proton affinity of fluoride, the structural reorganization 

is in the direction of zwitterion formation, i.e. Nr  reduces by 0.029 A and Fr  increases 

by 0.006 A.  There is also a transfer of 0.013 e within the neutral complex from NH3 to 
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HF upon this geometrical relaxation.  This nascent proton transfer is responsible for the 

redshift of the H-F stretching mode by 122 cm
-1

 (Table 5.4).   

Table 5.4: Normal mode frequencies of NH3HF and changes upon electron binding (cm
-1

) 

Mode # Description ν (NH3HF) δν(NH3HF)
-
 

1 a1 Intermolecular str. 261 +8 

2,3 e Intermolecular bend 254 +30 

4,5 e Intermolecular bend 941 +46 

6 a1 NH3 bend 1161 +15 

7,8 e NH3 bend 1686 -5 

9 a1 Hs-F str. (some NH3) 3546 -164 

10 a1 NH3 str. (some Hs-F) 3502 -22 

11,12 e NH3 str. 3626 -27 

 

The stretching modes localized on ammonia, a1 and e, are also redshifted by 55 and 26 

cm
-1

, respectively (Table 5.4).  These shifts might be associated with the nature of the 

orbital occupied by the excess electron, which is weakly antibonding across the N-H 

bonds (Figure 5.4).  The redshifts in frequencies of the stretching modes are paralleled 

by blueshifts in the a1 NH3 umbrella bending mode and in all the intermolecular modes, 

in particular the bending e modes (Table 5.4).  The blueshift for the NH3 umbrella mode 

is consistent with the fact that planarization of ammonia decreases the dipole moment of 

the neutral complex and therefore destabilizes the anion, i.e. raises the energy to a 

greater degree (and therefore is associated with a stronger force) than the same 

perturbation in the neutral. 

 
Figure 5.4: Contour plot of the lowest unoccupied orbital the NH3HF

 
molecule in the region near 

NH3.  Only one of the N-H bonds is in the plane of the plot.  The change in phase (red to black) 

along the bond indicates that the orbital is antibonding with respect to this bond, and therefore 

forming the anion will weaken it. 
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In contrast to NH3HF, two hydrogen bonded minima were identified for NH3HAt: N 

and Z (Figure 5.5).  The relative stability of these two minima is very sensitive to the 

level of theory; it requires the counterpoise correction and a highly correlated treatment 

to unravel that the non-PT minimum is the global minimum (as detailed in the preceding 

chapter).  With respect to the isolated NH3 and HAt, the N complex is at -6.3 mH, the 

transition state is at +2.1 mH, and the Z complex is at -2.2 mH, all results at the 

CCSD(T) level of theory.  It goes without saying that the double well potential for the 

NH3HAt neutral will result in anharmonicity and the quantitative values of the harmonic 

frequencies quoted in the following should be treated as suspect, especially for the mode 

corresponding to proton transfer.  Notice that the counterpoise method is needed to pin 

down the relative stability of the N and Z structures, but it introduces a discontinuity 

between the “left” and “right” branches due to different offsets to energy resulting from 

the different counterpoise corrections (Figure 5.5).  This discontinuity has to be 

removed before solving the anharmonic vibrational problem.   

 

Figure 5.5: Counterpoise-corrected potential energy surface for NH3HAt neutral (black/blue), and 

profile for the anion (dark green/light green).  Colours indicate coordinate choice for scan. 

 

The detailed discussion of the N and Z neutral structures of NH3HAt is briefly 

summarized in Table 5.3, Table 5.5 and Table 5.6.  Here we focus on their ability to 

vertically bind an excess electron.  Starting from the N structure, its dipole moment of 
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3.036 D is smaller by 1.508 D than the dipole moment of H3N…HF.  The difference 

results primarily from the small dipole moment of isolated HAt (0.062 D, with the 

positive pole on the hydrogen) when compared with 1.810 D for HF.  The sum of dipole 

moments of the isolated monomers in NH3HAt (1.528 D (for NH3) + 0.062 D = 1.590 

D) is smaller than Fermi and Teller’s 1.625 D critical dipole.[28]  However, there is a 

significant charge transfer of ca. 0.2 e from NH3 to HAt upon formation of the N 

complex and the resulting dipole of 3.036 D becomes sufficient to vertically bind an 

electron, though the value of VAE is smaller than 0.6 mH.  (This is why 

characterization of this region of the potential energy surface for the anionic NH3HAt 

required additional s and p diffuse basis functions.)  Despite the small value of VAE, 

the potential energy surface of the anionic complex does not support the N-type 

minimum, i.e. the energy of the anionic dimer decreases as the 
Atr coordinate increases 

from 1.71 A until the NH4
…

At
-
 minimum is reached (Figure 5.5).  

Table 5.5: Normal mode frequencies of NH3HAt, and changes upon proton transfer and electron 

binding (cm
-1

) 

Mode # Description  

(NH3HAt) 

ν (NH3HAt) Description (NH4
+
At

-
) ν(NH4

+
At

-
) δν(NH4

+
At

-
)

-
 

1 a1 Intermol. str. 87  278.3 -99 

2,3 e Intermol. bend 136  246.8 -27 

4 a1 NH3 bend 1096 a1 NH3 bend + Hs-N str. 1331 +55 

5,6 e Intermol. bend 416 e NH4 bend 1458 -6 

7,8 e NH3 bend 1684  1696 -12 

9 a1 Hs-At str.  2051 a1 Hs-N str. 1914 +938 

10 a1 NH3 str. 3495  3468 -182 

11,12 e NH3 str. 3623  3598 -240 

 

Table 5.6: Normal mode frequencies of NH4
+
, and changes upon hydrogen bonding to At

-
 and 

electron binding(cm
-1

). Mode numbers to match Table 5.5. 

Mode 

# 

Description  

(NH4
+
) 

ν(NH4
+
) Description  

(NH4
+
At

-
) 

δν 

(NH4
+
At

-
) 

δν 

(NH4
+
At

-
)

-
 

ν(NH4
0
) 

4 t2 bend 1505 a1 NH3 bend + Hs-N str.  -174 +55 1348 

5,6     ″    ″ e NH4 bend -46 -6    ″ 

7,8 e bend 1753 e NH3 bend -57 -12 1638 

9 a1 str. 3402 a1 Hs-N str. -1487 +938 3091 

10 t2 str. 3520 a1 NH3 str. -52 -182 3117 

11,12     ″    ″ e NH3 str. +78 -240    ″ 

 

The low-barrier proton-transfer in the neutral complex changes the identities of the 

constituent monomers (Figure 5.5).  The resulting neutral Z structure NH4
+
…At

-
 is 
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characterized by a dipole moment of 10.135 D (Table 5.3).  The NH4
+
 monomer is 

significantly distorted from the relaxed Td structure: 
Nr is increased by 0.097 Å, 

NHr decreased by 0.006 Å, and decreased by 0.7°.  Stronger intermolecular 

interactions in NH4
+
…At

-
 than in H3N…HAt must be responsible for the shortening of 

R by 0.537 Å (Table 5.3).  

The excess electron attaches to the NH4
+
 site of the Z complex leading to NH4…At

-
, 

where NH4 is the ammonium Rydberg radical characterized by Herzberg,[56] here 

geometrically and electronically distorted by the interaction with At
-
 (see also the 

following chapter).  The geometric distortions resulting from binding an excess electron 

are significant and lead to an increase of the dipole moment of the neutral complex by 

1.823 D (Table 5.3).  Of particular interest is the evolution of the R parameter, which 

increases by 0.212 Å in the anionic complex involving At but decreases by 0.020 Å in 

the anionic complex involving F (Table 5.3).  In parallel, all of the intermolecular 

modes are redshifted for the former but blueshifted for the latter (Table 5.4 and Table 

5.5).  These results suggest that the excess electron attachment weakens intermolecular 

interactions in NH4
+
…At

-
 but strengthens them in H3N

…
HF.  These observations 

illustrate qualitative differences between the anions based on the class I and III dimers.    

Another striking feature is a partial reversal of the distortion of the NH4
+
 unit upon the 

excess electron attachment: 
Nr decreases by 0.062 Å (Table 5.3), thus significantly 

compensates an increase by 0.095 Å reported above between the relaxed NH4
+
 and the 

Z neutral complex. This geometric change is paralleled by a large blueshift (938 cm
-1

) 

of the a1 N-Hs stretching mode (Table 5.5), i.e., there is a significant compensation of a 

redshift of 1487 cm
-1

 experienced by the a1 mode of NH4
+
 upon formation of the 

hydrogen bond with At
-
; the resultant mode is close to that of the free ammonium 

radical
 
(Table 5.6). 

Other distortions of the NH4
+
 moiety and frequency shifts upon the excess electron 

attachment (Table 5.3 and Table 5.5) are analogous to those reported for H3N
…

HF and 

have a similar interpretation.  They are, however, enhanced by the stronger interaction 

between the excess electron and the dimer.  Thus the 
NHr distance increases by 0.011 Å 

and the NH stretching modes are redshifted by 182 and 240 cm
-1

 for the a1 and e modes, 

respectively.  The angle increases by 2 ° and the a1 NH3 umbrella bending mode is 

blueshifted by 55 cm
-1

.   
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5.5.2. Vertical and adiabatic excess electron binding energies  

Incremental contributions to the vertical and adiabatic electron binding energies, 

starting from the Koopmans’ theorem and Hartree-Fock terms and ending up at the 

CCSD(T) level, are collected in Table 5.7 and Table 5.8 for NH3HF and NH3HAt, 

respectively.  This format exposes the role of electron correlation, the investigation of 

which can be simplified to two tasks:[57-60]  (i) reproduce the dynamical correlation 

between the excess electron and electrons of the neutral dimer, and (ii) reproduce the 

correlated electron distribution in the neutral complex, in these specific cases a 

reduction of the Hartree-Fock dipole moment of the neutral complex brought about by 

electron correlation effects.  Electron correlation effects reduce the Hartree-Fock dipole 

moment by ca. 0.15 and 0.18 D for the N-type neutral complexes H3N
…

HF and 

H3N
…

HAt, respectively, and by ca. 0.50 D for the Z complex NH4
+
…At

-
.  These 

reductions should reduce the excess electron binding energy.  The results reported in 

Table 5.7 and Table 5.8 demonstrate, however, an increase of electron binding energies 

upon inclusion of electron correlation effects.  Clearly, the dynamic correlation between 

the excess electron and electrons of the neutral dimer is more important than the 

reduction of dipole moment.  In the case of HAt, we report the VAE and AEA values 

with respect to two minimum energy structures of the neutral complex, H3N
…

HAt and 

NH4
+…

At
-
 (Table 5.8). 

 

Table 5.7: Electron binding energies for NH3HF and its anion (mH). Koopmans’ theorem values in 

brackets. 

 HF δMP2 δCCSD δ(T) Total δZPE Total Total (meV) 

VDE 0.595 (0.56) 0.445 0.485 0.140 1.666 N/A 1.666 45.3 

VAE 0.526 (0.50) 0.400 0.459 0.131 1.516 N/A 1.516 41.2 

AEA 0.037 1.029 0.381 0.222 1.669 0.171 1.840 50.1 
 

Table 5.8: Electron binding energies for NH3HAt and NH4At, and the NH4At
-
 anion (mH). 

Koopmans’ theorem values in brackets. AEA values are from NH4At
-
 to NH3HAt or NH4At. 

 HF δMP2 δCCSD δ(T) Total δZPE Total 

VDE 22.701 (19.56) 6.197 1.153 0.746 30.796 N/A 30.796 

NH3HAt        

VAE 0.039 (0.040) 0.081 0.483 0.1464 0.750 N/A 0.750 

AEA 28.446 -6.212 -0.789 0.285 21.723 -6.112 15.618 

NH4At        

VAE 15.257 (12.82) 4.981 1.266 0.696 22.199 N/A 22.199 

AEA  21.449 1.836 2.293 0.305 25.883 -0.320 25.563 
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HF, MP2, and CCSD contribute approximately equally to VDE and VAE for H3N
…

HF 

(Table 5.7), with a non-negligible contribution from triple excitations (>8% of the total 

CCSD(T) value).  Due to the small dipole moment of H3N…HAt the convergence of 

VAE is very slow (Table 5.8).  The CCSD term proves to be dominant (64.4%) 

followed by a contribution from triple excitations (19.5%), while the Hartree-Fock 

contribution represents only 5.2 % of the total CCSD(T) value.  The electron binding 

energies are much larger for the high-dipole Z structure, NH4
+
…At

+
.  Note the dramatic 

contraction of the orbital occupied by the excess electron upon the proton transfer 

(Figure 5.6).  The Hartree-Fock term proves to be dominant for the VDE, VAE and 

AEA values (more than 69%).  The incremental MP2 term is the second most important 

(more than 20%) for the vertical energies VDE and VAE, with smaller contributions 

from CCSD and CCSD(T).  Once again, it is confirmed that highly correlated methods 

are needed to reproduce electron binding energies for neutral systems with dipole 

moments less than 5 D.[57-60]  On the other hand, electron binding to ionic pairs with 

dipole moments larger than 9 D is methodologically much less demanding.[25-27]  

Orbital relaxation effects associated with polarization of the neutral dimer by the excess 

electron and backpolarisation, which are quantified by a difference between the Hatree-

Fock and Koopmans’ terms, are negligible for the N-type structures, H3N
…

HF and 

H3N
…

HAt, but they represent more than 10% of the total CCSD(T) value of VAE and 

VDE for the Z structure, NH4
+…

At
+
.   

 
Figure 5.6: Left and right: 0.9-electron isosurfaces of neutral NH3HF LUMO at neutral and anion 

equilibrium geometries respectively (to scale). 
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Contributions from zero-point vibrations typically stabilize a dipole-bound anion with 

respect to the neutral.  The stabilization results from red shifts for specific 

intramonomer modes brought about by the excess electron (see Section 5.5.1 for a 

detailed discussion of the nature of these modes).  Indeed, a contribution from zero-

point vibrations contributes 9% to the total AEA of H3N
…

HF (Table 5.7).
  
However, the 

zero-point vibrational contribution destabilizes (NH4
+…

At
-
)
- 
(Table 5.8).  In the case of 

AEA defined with respect to NH4
+
…At

-
, it is a blue shift in the frequency of the Hs-N 

stretching mode, which is responsible for a negative contribution to AEA.  The 

contribution is even more destabilizing for AEA defined with respect to H3N…HAt 

(Table 5.8).  This is due to the fact that the zero point energy increases for the 

H3N…HAt  NH4
+
…At

- 
transformation, because a soft intermolecular e mode morphs 

into a more rigid intramonomer e NH4
+
 bending mode (Table 5.5). 

5.5.3. Computational photoelectron spectrum of (H3N
…

HF)
-
 

The predicted anion photoelectron spectrum for NH3HF
-
 (Figure 5.2) is dominated by a 

transition at 404 cm
-1

 between the vibrational ground states of the anion and neutral 

(which is set as the zero energy point for the figure by convention).  The position of this 

transition is equivalent to AEA.  It is determined based on the CCSD(T) electronic 

energies of the anion and neutral at their minimum energy structures and a correction 

for zero-point vibrations determined at the CCSD level.  In view of small differences in 

geometries (Table 5.3) and frequencies (Table 5.4) between the neutral and the anion 

complex, the FC factors strongly favour transitions with the anion and the neutral in the 

same vibrational state (Table 5.9;
 

2

03 denotes the transition from the second excited state 

of the third mode in the anion, to the ground vibrational state of that mode in the 

neutral, etc.).  

 

Table 5.9: Peak assignment for computed NH3HF spectrum (cm
-1

) 

 
Energy (cm

-1
) Transition Description F-C factor Intensity 

373 1

12 ;
1

13 ; e2 intermolecular bend (hot band) 0.996 0.017 

396 1

11  a1 intermolecular str. (hot band) 0.975 0.02 

404 0

00  AEA 1 1 

665 1

01  a1 intermolecular str. 0.013 0.013 

910 2

02 ;
2

03  e2 intermolecular bend 0.002 0.002 

1565 1

06  a1 NH3 bend 0.005 0.005 

3949 1

09  a1 F-Hs str. 0.001 0.001 
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The only vibrational excitation of the neutral species, with an intensity exceeding 1% of 

the 0-0 transition, is associated with the a1 intermolecular stretching mode ( 1

01 ).  This is 

consistent with a contraction of R upon the anion formation by 0.02 Å. 1

06 is next in 

intensity (0.5% of the 0-0 transition) and reflects an increase in α by 0.6° and a small 

blue shift for the a1 NH3 bending mode upon the anion formation.  This transition is far 

enough from the 0-0 transition and sufficiently strong to perhaps account for the small 

maximum in the PES spectrum at 0.19 eV.  Other transitions, with intensities exceeding 

0.1% of the 0-0 transition, involve an intermolecular e mode (blueshifted by 30 cm
-1

 

upon the anion formation) and an intramolecular a1 F-Hs stretching mode ( Fr  increased 

by 0.006 A and the mode redshifted by 163 cm
-1

 upon the anion formation).  The latter 

is the “proton shuttling” mode but the intensity of the 1

06 transition is very weak indeed, 

and the peak can barely be resolved at the foot of the spectrum.  Of particular interest 

are the intermolecular hot bands, which lie close in energy but below the AEA as a 

consequence of the blue shift of the intermolecular modes in the anion (Table 5.9).  The 

transitions involving the a1 stretching and e bending modes have FC factors very close 

to 1, but their intensities are strongly dampened by Boltzmann factors. Due to small 

values of blueshifts (< 30 cm
-1

) they merge into the “foot” of the 0-0 peak and are 

unlikely to be resolved as separate peaks, though they should bias the measured AEA to 

a lower energy.  At the assumed temperature of 100 K the maximum of the PES 

spectrum still coincides with the position of the 0-0 transition and the full width at half-

maximum of the dominant peak remains 218 cm
-1

. Increased temperature should 

enhance the population of the anion excited states, giving a temperature-dependent red-

shift of the AEA.  

 

5.6. Experimental results for (H2O···HCl)
-
 and (NH4

+…
Cl

-
)
-
 

 

The photoelectron spectrum of the (H2O···HCl)
-
 anion displayed the distinctive spectral 

signature of a dipole-bound anion, in which the spectrum is dominated by a single, 

narrow peak at low electron binding energy (EBE) with much weaker molecular 

vibrational features located at slightly higher EBE values (Figure 5.2).  This spectral 

pattern implied nearly perfect Franck-Condon overlap between the anion and its 

corresponding neutral and thus suggested a high structural similarity between the anion 

and its neutral counterpart.  By contrast, the photoelectron spectrum of the 

ammonia/hydrogen chloride dimer anions was very different.  It displayed a well-

developed vibrational envelope, implying a significant structural difference between the 
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anion and its corresponding neutral.  In addition, EBE value of the maximum in its 

vibrational envelope is an order of magnitude larger than that for the dipole-bound, 

water/hydrogen chloride dimer anion.  As has been described previously, the excess 

electron in the ammonia/hydrogen chloride dimer anion induced proton transfer from 

the hydrogen chloride molecule to the ammonia molecule.[6]  Thus, ammonia/hydrogen 

chloride dimer anions are best characterized as ammonium chloride anions, (NH4Cl)
-
, 

whereas water/hydrogen chloride dimer anions are best characterized as dipole bound 

anions, (H2O···HCl)
-
, with no excess electron induced proton transfer. 

5.7. Discussion 

 

To evaluate the reasons why proton-transfer does or does not occur, the energetics for 

the overall process were assessed for the model class I (NH3HF) and III (NH3HAt) 

dimers and the results are presented in Figure 5.7a and b.  In the case of HF, this 

involved the construction of the fictitious PT structure discussed in Section 5.3. 

As discussed in the Introduction, the fluoride anion’s proton affinity is much higher than 

that of ammonia (Table 5.2), and therefore proton transfer between an isolated HF 

molecule and an isolated NH3 is strongly disfavoured by 269 mH.  The electrostatic 

interaction between the NH4
+
 and F

-
 ions is much stronger than that between the NH3 

and HF molecules, and as a consequence the association energy for assembling those 

ions (224 mH) is much larger than the energy required to dissociate the NH3HF 

complex (14 mH), and therefore proton transfer in the neutral complex is only 

disfavoured by 57 mH.  However this is still quite a large barrier to overcome.  
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Figure 5.7: Decomposition of the energetics of proton transfer between NH3 and HX in the isolated 

monomers, neutral complex, and anionic complex.  X=F for a, X=At for b.  Counterpoise and (where start 

and end are minima) zero-point energy corrections have been applied to the energies.  

Binding an electron also tips the balance towards the ionic complex.  The dipole 

moment in the N-type NH3HF complex is 4.544 D, and the dipole moment in the 

proposed Z-type NH4
+
F

-
 complex is much larger at 10.025 D.  As a consequence, the 

electron is 17.5 mH more strongly bound in the Z-type complex.  However this still 

leaves a 40 mH shortfall.  Proton transfer is therefore not favourable, even for the anion.  

This is consistent with the trend observed in the previous chapter.  In that case, the 

heavier halides displayed a progressively smaller shortfall in proton affinity in the gas 

phase, and a progressively greater difference between the electron affinities of the 

hydrogen-bonded and proton-transferred structures.  (Conversely, heavier halides show 

a steadily smaller difference between hydrogen-bonded and proton-transferred 

dissociation energies, diminishing an effect which favours proton transfer in the neutral 

species.) 
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In NH3HAt, as in the other NH3HX, proton-transfer is not favourable in the neutral 

complex.  However, the shortfall in energy is much smaller than in NH3HF ( +10 mH). .  

The computed proton affinity of astatide is much lower than that of fluoride (494 mH, 

versus 588 mH for F
-
; Table 5.2), and thus the proton transfer between the isolated 

monomers is less unfavourable.  However note that the gain in association energy from 

proton transfer is smaller, 170 mH in this case versus 210 mH in NH3HF, due to the 

increased internuclear distance between the NH4
+
 and X

-
 fragments.  As the electron 

binding energy of the N-type neutral is much lower in this case (due to the very weak 

polarisation of the H-X bond by astatine; the dipole is 3.036 D), and the electron 

binding energy of the PT-type anion is much higher (due to the increased internuclear 

separation by the larger halide; the dipole is 11.957 D), there is a large enough energetic 

benefit from proton transfer in the anion to make this highly favourable. 

The evolution of VDE and VAE in the NH3HX complexes is summarised in Figure 5.8.  

X=F breaks from the trend of VDEs quite dramatically because it lacks a PT-type anion.  

Still, the hypothetical Z structure for the HF complex matches the trend of VDE values.  

Other VDE values exceed 19 mH and systematically increase along the halogen series.  

These anions are based on PT structures characterised by dipole moments larger than 10 

D.  The increasing values of VDE reflect the fact that the distance between X
-
 and NH4 

increases along the halogen series.  As a consequence, the unpaired electron in the NH4 

radical is less destabilized as X
-
 becomes more distant.  The VAE values are small and 

decrease along the halogen series.  The decreasing value of VAE reflects the fact that 

the polarity of the N-type complexes decreases along the halogen series.  This in turn 

reflects a decreasing polarity of the HX molecules along the halogen series.  The VDE 

and VAE values for the HF complex are indistinguishable in Figure 5.8. 
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Figure 5.8: Comparison of computed electron affinities of NH3HX (X=F, Cl, Br, I, At) complexes. 

The VAE and VDE for F are coincident. 

In Section 5.5 we noted that excess electron attachment to the H3N
…

HF and NH4
+…

 At
-

complexes leads to qualitatively different geometric distortions and vibrational shifts. 

First, the R distance decreases for the non-PT complex, but increases for the PT-type 

complex.  Second, the intermolecular vibrational modes are blueshifted in the N-type 

complex but redshifted in the PT-type complex. Third, NH4
+
 unit is strongly distorted in 

the neutral complex with At
-
, in particular the N-Hs bond is elongated.  However, upon 

excess electron attachment, the NH4 unit distorts back towards a tetrahedral structure, 

i.e., N-Hs bond contracts and the associated stretching mode blueshifts by 938 cm
-1

.  

The values of X

bE  1 , Y

bE  1 ,  bE  2 , and EBE terms defined by Eqs. 9-15 and 

collected in Table 5.10 allow us to interpret the above results.  In the case of the PT-

type complex in systems with a Z minimum, the lowering of the energy of the anion 

upon relaxation from the GN to GA geometry is accomplished through weakening of the 

2-body interaction between NH4
+
 and X

-
, a significant increase of the EBE, and a 

significant decrease of the 


 4

1

NH

bE  term.  An increase of the R distance stabilizes the 

unpaired electron in NH4 at the expense of weakening of the 2-body term.  As a 

consequence, the EBE is enhanced and the intermolecular vibrational modes are 

redshifted.  A partial restoration of the tetrahedral geometry of NH4 leads to a decrease 

of the 


 4

1

NH

bE term and a significant blueshift in the N-Hs stretching mode.  Reducing the 

one-body term in NH4
+
 corresponds to relaxing the NH3-H

+
 bond toward the 
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equilibrium tetrahedral geometry; such a motion raises the overall dipole moment of the 

complex and is therefore favoured in the anion.  The same pattern is observed for both 

NH4At and NH4I, which also supports a Z minimum and a PT anion (Table 5.10, Table 

5.11, Table 5.12).  

Table 5.10: Change in one- and two-body energies, and electron binding energy, between neutral 

and anion geometries (mH) 

 
bE  2  



 XHX

bE /

1  


 43 /

1

NHNH

bE  EBE  E  

NH3HF -0.34 0.36 -0.02 -0.15 -0.15 

NH4At 9.7 0.0 -4.7 -8.5 -3.6 

NH4I 10.0 0.0 -5.0 -9.1 -4.0 

 

Table 5.11: Geometric parameters of NH4I (as in Figure 5.1) and changes upon electron binding in 

Å, ° and Debye. 

 r
NH

 α r
N
 R μ

N
 

NH4
+
I

-
 1.023 109.1 1.128 3.244 10.191 

(NH4
+
I
-
)

-
 +0.010 +1.9 -0.05 +0.222 +1.935 

 
Table 5.12: Normal mode frequencies of NH4

+
, and changes upon hydrogen bonding to I

-
 and 

electron binding 

Mode 

# 

Desc.  

(NH4
+
) 

ν(NH4
+
) Description  

(NH4
+
At

-
) 

δν 

(NH4
+
At

-
) 

δν 

(NH4
+
At

-
)
-
 

ν(NH4
0
) 

1   a1 intermol str.  -103  

2,3   e intermol. bend  -25  

4 t2 bend 1505 
a1 NH3 bend  

+ Hs-N str.  
-185 +67 1348 

5,6     ″    ″ e NH4 bend -40 -7    ″ 

7,8 e bend 1753 e NH3 bend -57 -8 1638 

9 a1 str. 3402 a1 Hs-N str. -1535 +993 3091 

10 t2 str. 3520 a1 NH3 str. -64 -181 3117 

11,12     ″    ″ e NH3 str. +76 -235    ″ 

 

The evolution of the 1- and 2-body terms is opposite in the case of the N-type complex 

NH3HF.  The lowering of the energy of the anion is accomplished through strengthening 

of the 2-body interaction between NH3 and HF and an increase of the electron binding 

energy EBE at the expense of increase of the repulsive 
HF

bE  1  term.  Contrary to NH3-

H
+
, extending the H-F bond will contribute positively to the total dipole moment, and 

therefore the energetic penalty of such a stretch is compensated for by the electron in 

the anion.  The increased 2-body interaction is responsible for the shortening of R and 

blueshifting of intermolecular modes.  The geometrical distortions, in particular an 
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increase of Fr  (Table 5.3), are responsible for enhancement of the dipole moment of the 

neutral complex by 0.088 D and thus for  enhanced EBE.  An increase in Fr is penalized 

by the 
HF

bE  1 term and is followed by a red shift in the F-Hs stretching mode (Table 

5.10).  

We believe that modifications of the 1-body, 2-body, and EBE terms brought about by 

the excess electron attachment and demonstrated for the NH3HF and NH4At/NH4I 

systems are characteristic for the class I and III hydrogen bonded complexes.  The 

geometric distortions reported in the past for the anions of (HF)2,[20] NH3H2O[61] and 

H2OHCl[8] match the geometric pattern for the class I systems.  These systems should 

be revisited to quantify the 1-body and 2-body terms.  The geometric distortions 

reported in the past for zwitterions of amino acids[25-27] match the geometric pattern 

for the class III systems. 

In section 5.5 we also noted that excess electron attachment leads to longer 

NHr distances and red shifts in the stretching NH modes of a1 and e symmetry.  We 

discussed these changes in terms of the nodal structure of an orbital occupied by the 

excess electron. Another way of looking at these shifts is to recognize that the excess 

electron is tethered to the protic hydrogens of the NH3 group.  One can view e
-…

H3N-

HF as a hydrogen bonded system, in which the excess electron acts an acceptor of the 

protic H(N)s.[51]  If so, then the redshifts of the NH stretches upon binding an electron 

are analogous to redshifts for stretching modes of proton donors in hydrogen bonded 

systems, though diminished by a smaller strength of “intermolecular” interactions: the 

energy of a typical hydrogen bond is ca. 8 mH, whereas the VDE value for this anionic 

complex is 1.666 mH.  

5.8. Summary 

We have introduced a classification scheme for the hydrogen-bonded dimers A
…

HDD 

based on their preference to transfer HD
+
 from D and form a zwitterion AHD

+
…D

-
.  The 

systems studied, NH3HF, H2OHCl, and NH3HAt, belong to the extreme classes I and 

III.  The first two belong to class I, the least susceptible to proton transfer: they do not 

support a zwitterionic minimum and do not transfer HD even upon the attachment of an 

excess electron.  The two systems support dipole-bound anions with VDEs of 1.67 and 

2.16 mH for (NH3HF)
-
 and (H2OHCl)

-
, respectively.  The third system, NH3HAt, 

belongs to class III, the most susceptible to proton transfer.  It supports a zwitterionic 
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local minimum for the neutral complex, and strongly binds an excess electron with a 

VDE of 30.80 mH.  

 

The computational results for (NH3HF)
-
 and (H2OHCl)

-
[8]

 
and the experimental PES 

spectrum of (H2OHCl)
-
 demonstrate that these molecular frameworks are only weakly 

affected by excess electron attachment. No vibrational structure is present in the 

computed spectrum of (NH3HF)
- 

(Figure 5.2). 
 
It is weak but clearly visible in the 

experimental spectrum of (H2OHCl)
-
 (Figure 5.2) and the corresponding computational 

results.[8]  The difference in the strength of the vibrational structure in the PES spectra 

of (H2OHCl)
-
 and (NH3HF)

-
 correlates with the magnitude of electron binding energies 

(1.67 vs. 2.16 mH).  

 

The NH3HCl system belongs to the middle class, II: it does not support a zwitterionic 

minimum but it does transfer HD upon excess electron attachment.  Thus the structures 

of the neutral and anionic complex differ qualitatively.  As a consequence, the PES 

spectrum has very clear vibrational structure, dominated by a progression involving the 

H-Cl stretching mode (Figure 5.2).  The excess electron binds to the NH4
+
 site forming 

a pair NH4
…

Cl
-
.  Hence, the VDE value of 19.88 mH is much larger than for the class I 

systems, though no stable neutral Z structure is present.   

 

We discussed the energetics of proton transfer in the NH3HX complexes and the 

additional driving force for proton transfer resulting from an excess electron attachment. 

In view of the fact that the proton affinity of D
-
 is typically larger than that of A by 400-

700 kJ mol
-1

, the shortfall needs to be compensated by additional interactions.  Firstly, 

intermolecular interactions favour the ionic pair AH
+
…D

-
 over the neutral pair A…HD.  

Still, they are not able imprint a local minimum for AH
+
…D

-
 on the potential energy 

surface in the complexes with F, Cl, and Br (the preceding chapter).  Only with I and 

At, for which the shortfall in proton affinities is the smallest, can we witness such a 

minimum.  In this context, with the subtle balance between one-and two-body forces, 

the excess electron can exert a powerful influence.  A barrier to proton transfer 

disappears for Cl and all the heavier halogens, as illustrated by our calculations and 

photoelectron spectra ([6,24]; Figure 5.2).  The binding of the excess electron is much 

stronger for NH4
+
… X

-
 than for H3N…HX.  The anion of the former can be viewed as a 

complex of the NH4 radical with X
-
, whereas for the latter the anion is dipole-bound and 

the vertical attachment energy does not exceed 1.5 mH.  
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We reported opposed patterns of geometric distortion and vibrational shifts upon excess 

electron attachment to the complexes in class I and class III, i.e. H3N
…

HF and NH4
+…

 

At
-
.  For example, the distance between the heavy atoms decreases in the F complex but 

increases in the At complex, and the intermolecular vibrational modes are blueshifted in 

the former but redshifted in the latter.  We interpreted these patterns in terms of 

modifications of one- and two-body interaction energy terms and excess electron 

binding energies.  Of particular interest is partial restoration of the tetrahedral geometry 

of NH4 in the anionic complex and a significant blueshift of the N-H stretching mode by 

938 cm
-1

.  By contrast, in the neutral NH4
+…

At
-
 complex the same N-H bond is strongly 

elongated away from Td symmetry and the stretching mode is redshifted by 1487 cm
-1

. 

 

5.9. Appendix: Supplementary Information 

 
Table 5.13: Geometric parameters of extrapolated NH4F Z complex..(Å and °) 

 r
NH

 α r
X 

r
N
 R 

NH4F (Z) 1 111.3 1.6 1.1 2.7 
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6.1. Abstract 

 

Molecular ions in the form of “pseudo-atoms” are common structural motifs in 

chemistry, with properties that are transferrable between different compounds.  We have 

determined one such property – the electronegativity – for the “pseudo-alkali metal” 

ammonium (NH4), and evaluated its reliability as a descriptor versus the 

electronegativities of the alkali metals.  The computed properties of ammonium’s binary 

complexes with astatine and of selected borohydrides confirm the similarity of NH4 to 

the alkali metal atoms, although the electronegativity of NH4 is relatively large in 

comparison to its cationic radius.  We have paid particular attention to the molecular 

properties of ammonium (angular anisotropy, geometric relaxation, and reactivity), 

which can cause deviations from the behaviour expected of a conceptual “true alkali 

metal” with this electronegativity.  These deviations allow for the discrimination of 

effects associated with the molecular nature of NH4.   

 

6.2. Introduction 

 

Electronegativity is the ability of an atom to attract electrons from its neighbours.  This 

concept has been of great utility in explaining and predicting chemistry, from the polar 

covalent bond that is formed between two atoms of unlike electronegativity,[1] to 

directing effects in aromatic substitution reactions.[2] Central to this concept is the 

assumption that electronegativity is a consistent property regardless of the atom’s 

environment, i.e. it is transferable.  Further development in this area has questioned 

whether chemical functional groups and certain molecular ions – “pseudo-atoms” – are 

sufficiently well-defined and well-behaved to have electronegativities of their own. 

 

Electronegativity was first given a quantitative definition by Pauling in 1932, during the 

period in which theoretical chemistry (as we now understand it) was first being 

formulated.[3] This definition was based upon the resonance model of polar bonding 

and experimental thermochemical data, and inferred the value of electronegativity from 
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the energetics of the bonds being formed.  In 1934 Mulliken redirected Pauling’s 

argument to define electronegativity as an absolute property of the atom, equal to one 

half of the sum of the atom’s gas-phase ionisation energy and its electron affinity.[4] 

(This was later conceptually refined as a property of the corresponding orbitals that 

either gain or lose the electrons.[5]) A caveat of this latter definition is that an atom 

must be in its proper valence state to form specific chemical bonds, and therefore a 

value for the electronegativity obtained from ground state electron affinities and 

ionization energies might be invalid.  It is therefore understood that electronegativity is 

not strictly transferable and depends upon an atom’s environment.[4] 

 

Sanderson initially proposed[6] and various groups ultimately applied (e.g.  Reference 

[7,8]) the “electronegativity equalisation principle”.  This principle observes that as an 

electronegative atom accumulates negative charge, its electronegativity will tend to 

decrease.  Conversely its less electronegative neighbours will gain positive charge and 

increase in their electronegativity.  An equilibrium is reached when the 

electronegativities are equal.  Therefore a molecule has its own well-defined 

electronegativity, which is constant across the molecule.  Parr ultimately confirmed this 

principle by demonstrating the equivalence between the electronic chemical potential 

(i.e. the energy change of a physical system upon the gain or loss of electrons) and the 

electronegativity.[9]  

 

Related to electronegativity is the concept of hardness.  Pearson proposed chemical 

hardness qualitatively in his hard-soft acid-base (HSAB) theory, as an intuitive 

combination of several related concepts such as the electronegativity, the polarisability, 

and the valence orbital energies of an atom.[10] This model was very successful in 

developing the understanding of reactivity.  In the 1980s, Parr and Pearson formalized a 

quantitative definition of “absolute hardness”, equal to one half the difference between 

the ionisation energy and the electron affinity of the atom.  Whereas the Mulliken 

electronegativity is the finite-difference approximation to the first derivative of the 

energy with respect to the number of electrons, the hardness is the approximation to the 

second derivative.[11] 

 

Since molecules have well-defined ionization energies and electron affinities, we 

propose that the Mulliken electronegativity and the Pearson hardness of a molecule can 

be calculated from these quantities.  (We note that the Mulliken definition of 
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electronegativity was used by Leyssens et al[12] to discuss changes in electronegativity 

of parts of a molecule, i.e.its constituent chemical groups). 

 

The electronegativity and hardness are expected to vary with a molecule’s charge, 

electronic state and geometry, and geometrical relaxation can be expected to occur 

when a molecule’s charge changes.  In order to systematically investigate the molecular 

electronegativity and hardness, it is instructive to start from molecular systems whose 

geometry is not significantly altered upon the change of their total charge.  In addition, 

complications resulting from the involvement of excited valence electronic states should 

be avoided.   

 

Ammonium meets both of these criteria.  The parent species, the “pseudo-atom” for 

which the electronegativity and hardness are calculated, is the ammonium radical.  This 

unusual molecule consists of a tetrahedrally symmetric ammonium cation binding one 

electron to a diffuse, full-symmetric orbital using its positive charge.[13] First 

definitively identified by Herzberg in 1980,[14] this “Rydberg molecule” was of 

considerable interest as a molecular analogue for the alkali metals.  For example, it was 

predicted by Boldyrev and Simons[15] that the ammonium radical would form a dimer 

similar in properties to the alkali metal dimers.  Wright and McKay indicated that 

spontaneous decomposition to ammonia and molecular hydrogen would occur when the 

ammonium molecules rotated in such a way that two hydrogen atoms were in 

proximity,[16] but a later study found that mixed alkali metal-ammonium dimers would 

be stable.[17]  

 

The ammonium radical can bind a second electron in its fully-symmetric orbital to form 

an ammonium anion[18-20] dubbed the “double-Rydberg anion” NH4
-
.[18] The process 

is akin to an alkali metal cation binding a first and a second electron to its s valence 

orbital.  The tetrahedrally-symmetric ammonium radical and anion are metastable with 

respect to decomposition to an ammonia molecule plus a hydrogen radical and anion, 

respectively.  The nitrogen-hydrogen bond distance is predicted to change by less than 

0.02 Å between the cation and the neutral,[21,22] and only to a small degree between 

the neutral and anion,[18] meeting the first criterion.  Like the alkali metals,[23] the 

ground electronic states of the neutral, cation, and anion are proper for the 

determination of  the electronegativity and hardness of NH4, therefore meeting the 

second criterion. 
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Notwithstanding its compliance with the basic requirements for determining 

electronegativity, ammonium is not an atom.  Ammonium is not isotropic with respect 

to orientation, as the alkali metals are.  Ammonium can distort geometrically, while the 

alkali metals cannot.  And ammonium can donate one or more of its protons, a capacity 

that is unavailable to the alkali metals in the chemical regime.  Therefore it was 

anticipated that ammonium would not behave as an ideal “pseudo-atom” in all 

conditions. 

 

In this study we have computationally evaluated properties connected with ammonium’s 

electronegativity in order to determine similarities and differences with the alkali 

metals.  Firstly, we probed ammonium’s behaviour in the gas phase to elucidate these 

effects in a clear, well-defined model.  Using these insights, we then investigated 

ammonium’s behaviour in solids to determine how these effects influence bulk 

materials. 

 

6.2.1. Selection of Systems 

 

Ammonium is a “pseudo-alkali metal”, and therefore its electronegativity and properties 

were compared to those of the true alkali metals.  In the first instance, accurate values 

for the ionization energy (IE) and electron affinity (EA) were calculated for the 

ammonium and sodium radicals at a high level of theory.  In the case of IE, a positive 

value indicates that removal of an electron is endothermic.  In the case of EA, a positive 

value indicates that addition of an electron is exothermic.  From these values the 

Mulliken electronegativity, defined as one half of the sum of the IE and EA, and the 

Pearson hardness, defined as one half of the magnitude of the difference between the IE 

and EA, were calculated. 

 

To identify similarities and differences between NH4 and alkali metals, we compared 

the polarity of complexes containing ammonium with the polarity of analogous 

complexes containing the alkali metals (for Li, Na, and K).  The dipole moment across a 

bond is expected to vary linearly with the “ionicity” of the bond,[1] and this bond 

ionicity is approximately proportional to the difference between the electronegativities 

of the two atoms (or an atom and a pseudo-atom, in this instance), as noted by Dailey 

and Townes.[24] We therefore computed the dipole moment and effective atomic 

charges of selected alkali and ammonium complexes.   
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NH4
+
 is a conjugate Brønsted-Lowry acid, and consequently it can interact by hydrogen 

bonding or proton donation with other chemical species.  For this study it is important 

to maintain the identity of NH4
+
, which would be disrupted by proton transfer.  We have 

therefore modelled NH4
+ 

and alkali metal cations complexed with a weak Brønsted-

Lowry base, astatide (At
-
).  (Complexes of NH4

+
 with stronger bases were discussed 

elsewhere.)[25,26]  The choice of astatine as an electronegative probe of NH4 ensures 

the geometrical stability of the cation-anion pair against proton transfer to the astatide. 

This results from astatide’s low proton affinity (the lowest of any of the halides except 

the ununseptide[27] anion).  The ionicity of ammonium astatide was then compared to 

the ionicities of the alkali metal astatides. 

 

Ammonium is neither spherically symmetric nor rigid, and therefore it is expected to 

behave differently in different orientations or geometries.  We probed ammonium with 

astatine in several structures.  The C3v structures depicted in Figure 6.1 (“structure A” 

and “structure B”) were the prototypes.  In structure A, a vertex of the tetrahedron is 

directed toward astatine.  In structure B, a face of the tetrahedron is directed toward 

astatine.  The orientation of the ammonium provides the first degree of freedom, and by 

evaluating each structure with a rigid tetrahedral “pseudo-atom” we could determine the 

effect of the orientation of ammonium on the ionicity.   
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Figure 6.1: Structures of ammonium astatide complexes, indicating the terms used in the text. 

As the next degree of freedom, we permitted ammonium to relax, i.e. to distort from the 

perfect tetrahedral structure.  By comparing the dipole moment and charge for the rigid 

and relaxed geometries in the A and B structures we could investigate the effect of 

ammonium’s internal geometric relaxation on the ionicity. 
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Finally, changes in the distance between the astatide and its partner cation cause 

compound variations in the dipole moments.  First, there is a direct dependence of the 

dipole moment on the separation between effective positive and negative charges.  In 

addition, effective atomic charges vary with the interionic distance.  To isolate these 

two effects, we evaluated the ionicities of the alkali and ammonium astatides with either 

a relaxed or a fixed distance between the astatide and its partner.  For ammonium, both 

rigid and deformable “pseudo-atoms” were considered in the A- and B-type 

orientations.  When maintaining a fixed interionic distance for the alkali and ammonium 

astatides, we used the optimal astatine-nitrogen distance obtained for structure B when 

ammonium was rigid.  This was selected based on the conjecture that ammonium in this 

geometry would behave most similarly to an alkali metal atom (as elaborated in the 

Results section).  In summary, a total of eight structures were calculated for ammonium 

astatide (A vs. B, rigid vs. deformable NH4, optimized vs. fixed interionic distance), and 

two for each alkali metal astatide (optimized vs. fixed interionic distance).   

 

A single astatine atom used as a probe of the properties of NH4 provides a demanding 

test of the usefulness of the electronegativity concept for molecular species.  On the one 

hand, astatine seems to be quite benign, because At
-
 is a weak Brønsted-Lowry base.  

On the other hand, At
-
 creates a strong electrostatic field and acts as a potential donor of 

electron density.  These features lead to a geometrical relaxation of NH4
+
 paralleled by a 

partial intermolecular charge transfer, which counteract effects associated with the 

electronegativity difference between At and an isolated NH4.  One could expect that 

electronegativity would be a more robust descriptor in the case of NH4 engaged in a 

highly symmetric crystalline lattice.  We investigated the borohydrides of the alkali 

metals and ammonium to assess whether the ammonium borohydride fits the 

electronegativity-property correlations that are characteristic of the corresponding alkali 

crystals. 

 

Orimo et al studied the relationship between electronegativity of the metal site and 

properties of the alkali metal borohydrides,[28] which are of considerable interest as 

hydrogen storage materials for fuel cell vehicles.  These borohydrides decompose upon 

heating to release hydrogen gas.  They demonstrated that the more electronegative alkali 

metals form less stable borohydrides (as determined by the heat of formation), which 

decompose at lower temperatures.  They proposed that the stability of a borohydride is 

dependent upon placing a negative charge upon the BH4
-
 unit, and that the use of more 
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electronegative metals reduces this charge, leading to instability in the borohydride and 

a lower temperature of dehydrogenation.  However even the borohydride of lithium 

decomposes at such a high temperature that it is impractical for on-board 

applications.[28,29]  Ammonium borohydride, by contrast, releases hydrogen at 

relatively moderate temperatures.[30]  Once the electronegativity of ammonium had 

been computed, we could assess whether the electronegativity of ammonium is high 

enough to be the cause of this behaviour, or whether the effect arises from other 

properties or molecular nature of ammonium. 

 

Ammonium borohydride’s crystal structure is a matter of some interest and ongoing 

debate.[30]  Two structures have been proposed: a zinc blende structure in which the 

vertices of ammonium tetrahedra are directed at the faces of borohydride tetrahedra, and 

an orientationally disordered rock salt structure.  The zinc blende crystal’s N-H
…

H3B 

dihydrogen bonded structure A (Figure 6.2) is akin to the “structure A” indicated in the 

preceding ammonium astatide detail (Figure 6.1).  We can propose a complementary 

structure (zinc blende “structure B”, Figure 6.2) in which borohydride tetrahedral 

vertices are directed towards the ammonium tetrahedral faces, B-H
…

H3N.  In this 

structure, ammonium’s proton donor role is reduced.  By computing the ionicity of 

ammonium borohydride in these zinc blende structures, we could assess whether links 

between the ionicity and the orientation of ammonium carry over to the solid phase.  

Furthermore, by comparing the ionicity and stability of the zinc blende structures, we 

could assess whether the more ionic structures are the more stable, as expected by the 

rule for the alkali metal borohydrides, or whether other effects overrule ionicity. 

H

NH
+

H
H

H
-
H3B

H

BH
-

H
H

H
+
H3N

A B 

 

Figure 6.2: The preferred (A) and unpreferred (B) dihydrogen bonding structures in zinc blende 

ammonium borohydride. 
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6.3. Computational Detail 

 

For isolated ammonium and the ammonium astatides, the coupled cluster method,[31] 

with singles and doubles (CCSD) or with singles, doubles and perturbative triples 

(CCSD(T)) was used.  The Gaussian 03 package was used for these calculations.[32]  

The core orbitals of nitrogen and the alkali metals were not frozen, i.e. core-valence 

correlation was permitted.  Dunning-type augmented, correlation-consistent, polarized 

valence double- triple- and quadruple-zeta basis sets (aug-cc-pVnZ, n=D, T, Q)[33] 

were used for hydrogen.  Their core-valence analogues (aug-cc-pCVnZ)[33-37]
2
 were 

used for alkali metals and, while valence basis sets coupled with pseudopotentials (aug-

cc-pVTZ-pp)[40] were used for astatine.  These basis sets were obtained from the 

EMSL basis set library.[38,39]   The basis sets for sodium were further augmented with 

one diffuse s function centered on the atom, whereas for nitrogen they were augmented 

with an even-tempered set of three s functions, in order to adequately describe the 

valence electron(s).[41]  Each additional function had an exponent equal to that of the 

most diffuse function divided by 2.5.   

 

The geometry of tetrahedral ammonium was optimised at the CCSD and CCSD(T) 

levels with triple- and quadruple-zeta basis sets.  The geometries of the astatide 

complexes were optimised (or partially optimised) at the CCSD level with the triple-

zeta basis set.  Dipole moments, effective atomic charges determined by the Merz-

Singh-Kollman method,[42-44]
3
 vibrational frequencies and harmonic zero-point 

vibrational energy corrections were calculated at the same level of theory, the latter for 

fully optimized geometries only.  Effective charges reported are the negative of the 

charge at the astatine atom, qAt.  Hartree-Fock (HF), Møller-Plesset second-order 

perturbation theory (MP2), CCSD, and CCSD(T) contributions to the energy were 

recorded.  Hartree-Fock energies were extrapolated to the basis set limit by Halkier’s 

method[45] using three points, and correlation energies by Helgaker’s method[46] using 

two points.  In each case, the highest extrapolation point was the energy obtained with 

the quadruple-zeta basis set.   

 

                                                 
2
 Woon and Dunning's core-valence basis set for sodium and  Feller’s core-valence basis set for 

potassium are are not yet published in the literature, but has been made available on the EMSL basis set 

library (the latter as “Feller misc. CVnZ”).[38,39] 
3
 Given that ammonium astatide is expected to be highly ionic in character, the ionic radius of the 

ammonium cation (1.46Å) and an estimate of the ionic radius of astatide (2.25Å) were used, in place of 

the covalent radii. 
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Optimised geometries and electronic structures for crystalline ammonium borohydride 

were calculated with the PW91 functional[47] and PAW-GGA pseudopotentials[48] 

using VASP.[49-52]  Partial charges were calculated by Bader’s analysis[53] using 

software developed by Henkelman et al.[54-56] Bratsch’s half-power scheme[23] was 

chosen to convert the Mulliken electronegativity in eV (χM) to the electronegativity on 

the Pauling scale (χP): 37.135.1  MP  . 

 

Chemical structure diagrams were created using ChemDraw.[57] 

 

6.4. Results  

 

Astatine’s Mulliken electronegativity was computed as 6.22 eV based on literature 

values for the ionisation energy[58] and electron affinity.[59]  This is equivalent to 2.00 

on the Pauling scale (via the equation in the Computational Detail section).  We have 

tested that the ionic complex of NH4
+
 and At

-
 is stable with respect to the hydrogen 

bonded complex of HAt with NH3, which contrasts At with lighter halogen 

atoms.[25,26]   

 

The computed results for isolated Na and NH4 are summarised in Table 6.1 and Table 

6.2 respectively.  HF indicates the Hartree-Fock (uncorrelated) energy, ΔMP2, ΔCCSD, 

and Δ(T) indicate the incremental contributions to the correlation energy at the 

respective level of theory, and ΔZPE indicates the zero-point vibrational energy 

correction to the adiabatic properties.  At the CCSD(T) level of theory the calculated 

values of the ionisation energy (IE) and electron affinity (EA) of sodium were within 

0.01 eV and 0.0002 eV of the experimental data, respectively.  The error bars in 

experimental values of IE and EA for NH4 are larger than those for Na.  The CCSD(T) 

IE and EA of NH4 are marginally outside of the error bars.  Note that the second 

electron is unbound for both species at the Hartree-Fock level, and that more than 10% 

of the EA of NH4 is recovered by the perturbative triples correction used at the 

CCSD(T) level, a fact that further emphasises the importance of electron correlation in 

the proper description of the anions.   
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Table 6.1: Calculated sodium radical ionization energy (IE), electron affinity (EA), 

electronegativity and hardness calculations (values in eV).  HF indicates the Hartree-Fock 

(uncorrelated) energy, ΔMP2, ΔCCSD, and Δ(T) indicate the incremental contributions to the 

correlation energy at the respective level of theory (MP2, CCSD,  and CCSD(T)). 

 HF ΔMP2 ΔCCSD Δ(T) Total Experimental 

IE 4.954 0.156 0.008 0.011 5.130 5.13908 [60] 

EA  -0.104 0.473 0.155 0.024 0.548 0.547949 +/- 0.000044[61] 

Electronegativity 2.425 0.315 0.082 0.018 2.839  2.844 from expt.  data 

2.84 from literature [23] 

Hardness 2.529 -0.158 -0.073 -0.006 2.291 2.296 from expt.  data 

2.30 from literature[11] 

 

Table 6.2: Calculated ammonium radical  ionization energy (IE), electron affinity (EA), 

electronegativity and hardness (values in eV).  HF indicates the Hartree-Fock (uncorrelated) 

energy, ΔMP2, ΔCCSD, and Δ(T) indicate the incremental contributions to the correlation energy 

at the respective level of theory (MP2, CCSD, and CCSD(T)) and ΔZPE indicates the zero-point 

vibrational energy correction to the adiabatic values. 

 HF ΔMP2 ΔCCSD Δ(T) ΔZPE Total Expt. 

IE (adiabatic) 4.001 0.469 -0.011 0.058 0.138 4.656 4.73 +/- 

0.06
[13]

 

IE (vertical) 4.062 0.440 -0.010 0.053 N/A 4.545 N/A 

EA (adiabatic) -0.103 0.424 0.086 0.063 -0.012 0.458 0.472  

+/- 0.003
[18],4

  

EA (vertical) -0.102 0.424 0.086 0.063 N/A 0.470 N/A 

Electronegativity from 

adiabatic energies 

1.949 0.447 0.037 0.061 0.063 2.556 N/A 

Electronegativity from 

vertical energies  

1.980 0.432 0.038 0.058 N/A 2.507 N/A 

Hardness from adiabatic 

energies  

2.052 0.022 -0.049 -0.002 0.075 2.099 N/A 

Hardness from vertical 

energies  

2.082 0.008 -0.048 -0.005 N/A 2.037 N/A 

 

The resulting Mulliken electronegativity values are 2.839 eV for Na, and 2.556 eV 

(adiabatic), and 2.507 eV (vertical) for NH4.  For reference, the literature value for 

sodium is 2.84 eV.[23] Using Bratsch’s scheme, values of 0.77 (vertical) and 0.79 

(adiabatic) are obtained for ammonium on the Pauling scale.  The corresponding 

hardnesses of ammonium are 2.098 eV (adiabatic) and 2.037 eV (vertical).  Boldyrev 

and Simons have previously estimated sodium’s electronegativity to be approximately 

1.3 times that of ammonium using the available data on the latter,[17] putting 

ammonium’s electronegativity around 2.1 eV.  That underestimate resulted from the 

value of EA used in the prediction. 

 

                                                 
4
 Snodgrass et al[18] report the vertical detachment energy of the ammonium anion, but conclude that 

"because of the high degree of structural similarity between this anion and its corresponding neutral, the 

adiabatic electron affinity of [tetrahedral ammonium] has the same value" 
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The fully relaxed structure A for ammonium astatide was found to be the global 

minimum, while fully relaxed structure B was a second-order saddle point.  Two 

degenerate negative frequencies exist for the fully relaxed structure B, corresponding to 

rotation of the ammonium molecule perpendicular to the C3 symmetry axis (i.e.  toward 

structure A).  The fully relaxed structure A was 0.26 eV more stable than the fully 

relaxed structure B at the level of theory used for the optimization. 

 

The effective charges qAt of the binary complexes have been plotted as a function of the 

difference in electronegativity between astatine and either the alkali atom or 

ammonium.  The results for complexes with fixed and relaxed interionic distances are 

displayed in Figure 6.3 and Figure 6.4, respectively.  Analogous plots for dipole 

moments are displayed in Figure 6.5 and Figure 6.6.  All complexes proved to be highly 

ionic.  For the alkali astatides, the dipole moments ranged from 7.3 to 11.5 D, and qAt 

ranged from 0.61 to 0.75 e.  For the ammonium astatide structures, the dipole moments 

ranged from 9.1 to 10.9 D, and the charges from 0.53 to 0.70 e.   

 

For the alkali (Li, Na, K) astatides (diagonal crosses “” in Figure 6.3 to Figure 6.6) 

there are clear correlations between the qAt or the dipole moments and the difference in 

electronegativity between the astatine and the metal.  These correlations are denoted 

with straight lines.  A superior correlation was found when the alkali-astatine distance 

was fixed (Figure 6.3, Figure 6.4).  The ammonium astatide with the rigid tetrahedron at 

the B orientation, labelled with “+”, is typically the closest to the lines determined by 

the alkali astatides.  The matching is better for dipole moments than for qAt , with the 

latter being too small with respect to the trend lines.  We conclude that ammonium 

radicals are the most similar to the alkali atoms when they are constrained to the rigid 

tetrahedral geometry and their ability to engage in chemical interactions involving their 

hydrogen atoms is suppressed by the B orientation.   

 

Changing the ammonium orientation from B to A, while keeping the tetrahedron rigid 

and the interionic distance fixed, lowers the ionicity of the complex (asterisks “*” in 

Figure 6.3, Figure 6.4).  A clear deviation from the straight line can be seen for qAt 

(Figure 6.3) and the dipole moment (Figure 6.4).  We ascribe the drop in qAt to the direct 

chemical interaction between the “handle” hydrogen of NH4 and At.  The A structure 

ensures a perfect collinear alignment of the “handle” hydrogen with N and At and 

facilitates a charge transfer from the idealized At
-
 to NH4

+
.  As a consequence, the qAt 
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value is lower by 0.12 e for A than for B.  The dipole moment then declines by 0.9 D as 

a result.  This illustrates that the iconicity of ammonium can be substantially quenched 

upon its engagement in hydrogen bonding.   
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Figure 6.3: Correlation between the electronegativity difference (Pauling scale) and charge (in e) of 

astatide complexes, with alkali-astatide and nitrogen-astatide distances (RNAt) fixed to that obtained 

for structure B with rigid NH4 at 3.1293 Å.  Diagonal crosses (×) indicate the alkali metals, to which 

a least-squares fit line is applied.  The vertical cross (+) indicates the rigid ammonium astatide in 

structure B.  The diamond (♦) indicates the relaxed ammonium astatide in structure B.  The 

asterisk (*) indicates the rigid ammonium astatide in structure A.  The square (■) indicates the 

relaxed ammonium astatide in structure A. 
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Figure 6.4: Correlation between the electronegativity difference (Pauling scale) and dipole moment 

(Debye), with alkali-astatide and nitrogen-astatide distances (RNAt) fixed to that obtained for 

structure B with rigid NH4 at 3.1293 Å.  Symbols as in Figure 6.3. 

In the next step we considered the effect of the geometrical relaxation of the NH4
+
 unit 

caused by the interaction with At
-
, while the interionic distance remains fixed.  This 

partial geometrical relaxation causes a drop in dipole moment and qAt (symbols “♦” for 

B and “■” for A in Figure 6.3 and Figure 6.4).  For the B orientation, the dipole moment 

dropped by 0.55 D while the qAt value was reduced by 0.035 e.  The most profound 

geometrical change is the widening of the “umbrella” angle by 5.4°, i.e., moving the 

“umbrella” hydrogens toward astatine.  In addition, the umbrella and handle hydrogen-

nitrogen distances lengthened by 0.004 Å and shortened by 0.003 Å, respectively, with 

respect to the isolated ammonium cation.
5
 Thus all the hydrogen atoms have relaxed 

closer to astatine.  Given that the hydrogen atoms carry partial positive charges, this 

relaxation contributes to the reduction in the dipole moment of the complex.  The 

reduction in qAt and the dipole moment with respect to the “+” values provides direct 

evidence for quenching the iconicity of the complex resulting from the structural 

flexibility of ammonium. 

 

The relaxation of NH4
+ 

causes similar changes in structure A (* versus ■ in Figure 6.3 

and Figure 6.4).  The dipole moment declined by 0.95 D while qAt was reduced by 0.045 

e.  The most profound geometrical change is the elongation of the “handle” hydrogen-

                                                 
5
 CCSD with a triple-zeta basis set. 
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nitrogen distance by 0.11 Å with respect to the isolated ammonium cation.  This change 

is consistent with a hydrogen-bonding interaction between ammonium cation and 

astatide.  In addition, the “umbrella” hydrogen-nitrogen distance decreased by 0.007 Å 

and the umbrella angle is reduced by 0.4° versus the tetrahedral angle.  The net result of 

these rearrangements is again to move the hydrogens toward the astatide and reduce the 

overall dipole of the complex.  The reduction in qAt and the dipole moment with respect 

to the rigid values values (“*”) provides further evidence for quenching the iconicity of 

the complex resulting from structural flexibility of ammonium.   

 

In the final step we allow for the relaxation of the interionic distance in both the alkali 

and ammonium astatides and the resulting qAt values and dipole moments are presented 

in Figure 6.5 and Figure 6.6, respectively.  The trend lines are again based on the results 

for alkali astatides.  As the “fixed” interionic distance used in Figure 6.3 and Figure 6.4 

was optimal for the B structure with the rigid tetrahedron, it is the A structure of 

ammonium astatide which is primarily affected by relaxation of this degree for freedom.  

Indeed, the dipole moment for the A orientation, rigid tetrahedron (“*” in Figure 6.6) 

lies just on the trend line!  This results from the compound nature of the dipole moment.  

The value of qAt is too small with respect to the trend line by over 0.1 e, see Figure 6.4, 

but this deficiency in polarity is compensated by a relatively large interionic distance 

(3.25 vs. 3.13 Å for A and B, respectively) and the resulting dipole moment closely 

matches the trend line.  The preference for a larger interionic distance in A is a 

reflection of the internal structure of NH4, specifically of the repulsive steric interaction 

between the “handle” hydrogen and At.  Notice that the values of qAt  are only modestly 

affected by the relaxation of the interionic distance.   
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Figure 6.5: Correlation between the electronegativity difference (Pauling scale) and charge (in e) of 

astatide complexes, with optimum alkali-astatide and nitrogen-astatide distances (RNAt).  Symbols 

as in Figure 6.3. 
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Figure 6.6: Correlation between the electronegativity difference (Pauling scale) and dipole moment 

(Debye), with optimal alkali-astatide and nitrogen-astatide distances (RNAt). Symboles as in Figure 

6.3. 

The ionicities of the ammonium borohydride zinc blende crystal structures are 

consistent with the conclusions drawn from the gas phase study.  Zinc blende structure 

B, which has less hydrogen bonding character, is more ionic (with a partial charge of 
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0.84 e on each ion) than structure A (0.77 e).  This agrees with our gas-phase 

observation that permitting the use of ammonium’s hydrogen-bonding ability leads to a 

reduction in the ionicity of its compounds.  Therefore our conclusion regarding the 

effect of ammonium orientation upon the ionicity of its compounds has transferred from 

the gas phase to the crystal. 

 

The relationship between improved stability and increased ionicity for the alkali metal 

borohydrides[28] does not follow for the relative energies of these ammonium 

borohydride structures.  The more ionic structure B is less stable (by 1.1 eV per formula 

unit) than the less ionic structure A, which is contrary to the rule formulated for metal 

borohydrides, but consistent with the relative stability of the A and B complexes of 

NH4
+
 with At

-
.  The behaviour expected by considering ammonium as an atomic 

pseudo-alkali ion is trumped by its preferences with regard to intermolecular, i.e., 

dihydrogen, bonding.   

 

The correlation between alkali metal borohydride decomposition temperatures and 

electronegativity of the metal is summarised in Figure 6.7.
6
  The plot suggests that an 

alkali metal with an electronegativity higher than lithium is needed for more favourable 

hydrogen release.  Ammonium’s electronegativity of 0.77 to 0.79 on the Pauling scale 

would be too low for favourable hydrogen release if ammonium borohydride obeyed the 

electronegativity vs.  temperature of dehydrogenation relation indicated by the black 

trend line on this chart, which predicts a release temperature on the order of 850 K.   

 

                                                 
6
 Note the correlation in the work of Orimo et al is made with the Pauling electronegativity, which has a 

thermochemical basis, while our calculated electronegativity for ammonium is the Mulliken 

electronegativity, which is electronic in nature. We plotted our own correlation using the Mulliken 

electronegativities of the alkali metals and ammonium, converted to the Pauling scale using Bratsch’s 

method as outlined previously. The converted Mulliken electronegativities of the alkali metals are lower 

than the Pauling electronegativites. The discrepancy is 0.01 for lithium, 0.02 for sodium, 0.09 for 

potassium, and 0.12 for rubidium. 
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Figure 6.7: Correlation between the decomposition temperatures of alkali metal and ammonium 

borohydrides, and the electronegativities of the alkali metal atoms and the ammonium radical.  

Circles (○) denote results for alkali metal borohydrides from Orimo et al.[62]  The line represents a 

least-squares fit to these points.  Squares (□) denote three hydrogen release temperatures of 

ammonium borohydride,[30] plotted against the adiabatic electronegativity of NH4. 

 

However, ammonium borohydride’s first hydrogen release temperature,
7
 indicated with 

the lowest square (□),[30] is significantly lower than those of the alkali metal 

borohydrides.  This is due to the substantially different mechanism of hydrogen release.  

Ammonium borohydride’s decomposition reaction takes advantage of the presence of 

protic hydrogens on ammonium, which can interact with the hydridic hydrogens on 

borohydride for the facile release of molecular hydrogen.[30] Therefore the 

electronegativity of ammonium is not a suitable descriptor for the hydrogen release 

temperature of NH4BH4, due to its molecular nature. 

 

                                                 
7
 Ammonium borohydride can release up to four equivalents of molecular hydrogen per formula unit, 

with increasing temperature. The experimentally reported temperatures for some of these decompositions 

are plotted with the additional squares, but do not correspond to any borohydride. Note that the adiabatic 

electronegativity of ammonium has been used for the plot. 
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6.5. Discussion 

 

The calculated electronegativity of 2.556 to 2.507 eV for ammonium lies between the 

values for sodium (2.84 eV[23]) and potassium (2.42 eV[23]) on the Mulliken scale.  

Similarly, ammonium’s hardness of 2.098 eV to 2.037 eV is between that of sodium 

(2.30 eV)[60,61] and potassium (1.92 eV) [60,61] As anticipated, structural relaxation 

in isolated ammonium upon the change in the number of electrons was very minor at the 

CCSD and CCSD(T) levels and does not exceed 0.016 and 0.017 Å, respectively (see 

the Supporting Information).   

 

The similarity in the structures corresponding to the different charge states is reflected 

in the similarity of the adiabatic and vertical electronegativities and hardnesses.  In fact, 

the majority of the difference is due to the inclusion of a zero-point vibrational energy 

correction in the adiabatic calculations.  The adiabatic electronegativity and hardness 

were higher than the vertical electronegativity and hardness in each case.  Ammonium’s 

effective cationic radius is 1.46 Å,[44] which is significantly larger than that of 

potassium (1.38 Å[44]) and near that of rubidium (1.52 Å[44]).  Therefore if ammonium 

were an alkali metal, it would have an unusually high electronegativity and hardness for 

the size of its cation, and vice versa (see Figure 6.8).   
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Figure 6.8: Neutral electronegativity and hardness versus cation radius[44] for the alkali metals 

and ammonium.  Electronegativity as diamonds (“♦”) for alkali metals and vertical cross (“+”) for 

NH4.  Hardness as squares (“■”) for alkali metals and diagonal cross (“x”) for NH4. 
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With regard to the electronegativity-ionicity relations, note that the values of qAt  are 

systematically below the trend lines, irrespective of the orientation of the tetrahedron, its 

deformation, or interionic relaxation (Figure 6.3 and Figure 6.4).  However the effective 

cationic radius of NH4 is large for its electronegativity (Figure 6.8).  This increases the 

equilibrium cation-anion distance, and consequently the dipole moments, which end up, 

fortuitously, close to the alkali trend lines (Figure 6.6). 

 

The calculated Mulliken electronegativity of 2.5 eV for NH4 justifies a high polarity of 

its complexes with astatine ( M = 6.2 eV), as reflected by their significant dipole 

moments (9.1 to 10.9 D).  There are, however, other factors that partially quench the 

ionicity of these complexes.  These are: (i) participation of NH4 in hydrogen bonding 

and (ii) geometrical distortion of NH4 away from the tetrahedral structure.  Both are 

manifestations of the molecular (polyatomic) nature of NH4 and the availability of 

protic hydrogens.  Similarly, in the ammonium borohydride zinc blende crystals, 

allowing ammonium to act as a hydrogen bond donor reduced the ionicity of the crystal.   

The structure of ammonium borohydride, given ammonium’s high electronegativity, is 

worthy of further discussion.  The alkali metal borohydrides, with the exception of 

lithium, adopt a cubic rock salt structure with orientational disorder of the hydrogen 

atoms around the boron atoms.[63]  These are the same structures as the corresponding 

bromides, which given the borohydride anion’s comparable radius (2.03 Å[64] for BH4
-
 

versus 1.96 Å[44] for Br
-
) is not surprising (lithium borohydride adopts a cubic zinc 

blende structure, in which the faces of borohydride tetrahedra are oriented toward alkali 

metal atoms,[65] while lithium bromide adopts the rock salt structure.) Given that Rb
+
 

has a similar radius to NH4
+ 

(Figure 6.8), that rubidium borohydride has the rock salt 

structure, and that most of the alkali borohydrides adopt the rock salt structure, we may 

assume that ammonium borohydride would also adopt this structure.  However, 

theoretical results in this study and prior work[30] indicate that the zinc blende structure 

has a lower electronic energy than the rock salt structure.   

 

Mooser and Pearson’s empirical rules for binary crystals suggest that for ions of a given 

size, decreasing the electronegativity difference tends to favour the zinc blende and 

wurtzite structures over the rock salt and caesium chloride structures.[66]  Starting from 

rubidium borohydride structure, we may replace rubidium with ammonium, which is of 

a similar size but which is much more electronegative (see Figure 6.8).  Therefore the 
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electronegativity difference between “metal” and borohydride is reduced, and the 

balance is tipped in favour of the zinc blende structure.  We therefore conjecture that the 

relatively large electronegativity of ammonium for its size contributes to the similarity 

in stability of the zinc blende and rock salt structures of its borohydride.   

 

The relative stability of the zinc blende and rock salt structures is a complex 

problem.[30] Calculations indicate that entropic factors arising from the orientational 

disorder of the ammonium and borohydride ions will cause ammonium borohydride to 

favour the rock salt structure.[30] Once again, effects arising from the polyatomic 

nature of NH4 and BH4 would be acting contrary to the effects associated with the 

electronegativity difference. 

 

6.6. Conclusions 

 

We have computed the Mulliken electronegativity of the ammonium radical as 2.507 eV 

based on the vertical ionization potential and electron affinity (assuming rigidity) and 

2.556 eV based on adiabatic data (allowing relaxation).  We have also computed the 

Pearson hardness as 2.037 eV in the vertical case, and 2.098 eV in the adiabatic case.  

These values are intermediate between those of sodium and potassium, although 

ammonium has an effective cationic radius between potassium and rubidium.  In 

comparison with alkali atoms, ammonium’s electronegativity “punches above” its 

effective cationic radius 

 

We have identified in what ways ammonium’s molecular nature competes with its 

pseudo-atom nature.  Allowing ammonium to act as a hydrogen bond donor, or to 

geometrically distort causes a partial quenching of its ionicity in a heterodimer or 

crystal.  The equilibrium interionic distance of its heterodimer, and thus the dipole 

moment, depends upon whether the ammonium tetrahedral face or vertex is directed at 

its neighbour.  And in the borohydrides, allowing ammonium to act as a source of 

hydrogen opens up new reaction mechanisms for decomposition that are unavailable to 

the alkali metals, leading to a markedly different decomposition temperature. 

 

In conclusion, it has been shown that that ammonium’s electronegativity remains the 

dominant factor in determining polarity, or iconicity, of its compounds.  The deviations 

from the behaviour expected of a conceptual “true alkali metal” with this 
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electronegativity allow for the discrimination of effects associated with the polyatomic 

nature of NH4. 

 

6.7. Appendix: Supplementary Information 

Table 6.3: Structural parameters of tetrahedral ammonium optimised at CCSD(T) with a 

quadruple-zeta basis set 

Ammonium species N-H distance (Å) 

Cation 1.020793 

Neutral radical 1.037817 

Anion 1.038075 

 
Table 6.4: Structural parameters of tetrahedral ammonium optimised at CCSD with a triple-zeta 

basis set  

Ammonium species N-H distance (Å) 

Cation 1.020699 

Neutral radical 1.036253 

Anion 1.035621 

 
Table 6.5: M-At distances (Å) of alkali metal astatides optimised at CCSD with a triple-zeta basis 

set. 

Species M-At distance 

LiAt 2.473519 

NaAt 2.807132 

KAt 3.161683 

 
Table 6.6: Optimised structural parameters of ammonium astatide complexes, with fixed N-At 

distance of 3.129267Å..  Computed at CCSD with a triple-zeta basis set, parameters as defined in 

Figure 6.1,  

Structure 
Relaxed 

ammonium 

N-H distances (Å) 
Umbrella angle (degrees) 

Umbrella Handle 

A No 1.037817 1.037817 109.4712 

A Yes 1.014029 1.130603 109.0492 

B No 1.037817 1.037817 109.4712 

B Yes 1.024800 1.017454 114.9086 

 
Table 6.7; Optimised structural parameters of ammonium astatide complexes, with a relaxed N-At 

distance.  Computed at CCSD with a triple-zeta basis set., parameters as defined in Figure 6.1. 

Structure 
Relaxed 

ammonium 

N-H distances (Å) N-At distance 

(Å) 

Umbrella angle 

(degrees) Umbrella Handle 

A No 1.037817 1.037817 3.251229 109.4712 

A Yes 1.013987 1.136430 3.246783 108.7977 

B No 1.037817 1.037817 3.129266 109.4712 

B Yes 1.024780 1.017470 3.127330 114.9240 
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Table 6.8: Unit cell of ammonium borohydride zinc blende structure A, optimised with PW91 using 

PAW pseudopotentials. 

Cell vectors (Å): 

a  5.1335458009040660   -0.0235500354008238   -0.3840658446176553 

b  -0.0234581092507503 5.1341681061017880   -0.3847550083818576 

c  2.8075901210810380   2.8073247543690010   3.1185642438214990 

 

Atomic positions in direct coordinates: 

N  0.7645084075436205  0.1365109104196390  0.7252345451772200 

B  0.0162160596308303  0.8846295454023274  0.2253354923674998 

H  0.7243882807774787  0.7866911824164417  0.3935680891969809 

H  0.0794643625683199  0.7544305207815673  0.4554915226582984 

H  0.1141412715356508  0.1763894293011204  0.0571941765710051 

H  0.1464594710835674  0.8214898946290582  0.9950531025575302 

H  0.8095448760549329  0.0174138822250706  0.9278414962412535 

H  0.5188492228553107  0.0549971046902061  0.8565992035943381 

H  0.8461970998700018  0.3821304376452062  0.5938638112811853 

H  0.8835388217802667  0.0914321907893582  0.5226394197546850 

 
Table 6.9: Unit cell of ammonium borohydride zinc blende structure B, optimised with PW91 using 

PAW pseudopotentials. 

Cell vectors (Å): 

a  5.6816776657229870   -0.0374515339523117   -0.4484371799942925 

b  -0.0374086411750119   5.6801086497665860   -0.4497660063360067 

c  3.0858164994323410   3.0839471627306210   3.4387573934370530 

 

Atomic positions in direct coordinates: 

B  0.7629498571604868  0.1380393340593030  0.7253395255202859 

N  0.0178154174742070  0.8830633138588478  0.2252323846805541 

H  0.7968699186728154  0.8094338041799586  0.3556057830276947 

H  0.0713153219913259  0.7891914383901534  0.3955783686828067 

H  0.0914391699808737  0.1040140188264751  0.0948301956265480 

H  0.1118118727685051  0.8294701601228478  0.0548911835306147 

H  0.8448870474690436  0.0472910609805322  0.9081742031031389 

H  0.5012086543776734  0.0499240144996494  0.9010391041630239 

H  0.8516011282287041  0.3997635968797088  0.5495656056200135 

H  0.8534094855763659  0.0559243565024760  0.5425645054452943 
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Chapter 7: Summary 

 

The ammonium-hydrogen halide systems have been extensively discussed in the context 

of the degree of proton transfer that they undertake.  It has been demonstrated that the 

proton transfer in the neutral complex is actually driven by a common underlying 

balancing act between the one- and two-body forces upon the proton, a balancing act 

that is close to shifting in these species.  The mild perturbation of the addition of a 

dipole-bound electron (a very weak interaction) can drive proton transfer in all of these 

systems save ammonium fluoride, and it has been demonstrated that this is driven by the 

electron’s own demands upon the one- and two-body energy of the complex, which are 

likely to manifest as a force upon the proton if investigated using the techniques 

described in Chapter 4. 

 

In view of this, it is hoped that such an analysis of proton transfer could be extended to 

other hydrogen-bonded systems, in particular those containing different bases.  The 

balance of one- and two-body terms may suggest ways to control the PT properties of 

economically significant systems such as photoelectric devices and fuel cells, or 

biologically relevant materials, such as ion channels.  Deeper analysis of the two-body 

term through techniques such as symmetry-adapted perturbation theory (SAPT) would 

be particularly enlightening.  Furthermore, the close coupling of electron- and proton-

transfer in these systems is suggestive of deeper subtleties.  How to the terms binding 

the electron vary in these proton transfer systems?  As suggested in the penultimate 

research chapter, describing the excess electron as an interacting third body – perhaps 

also via SAPT – would provide insight. 

 

This analysis also provided the unexpected discovery of halogen-bonded systems for 

NH3HX.  Of particular interest is the ammonia-hydrogen astatide system, which has a 

dipole moment of over 2.6 D due to charge transfer from ammonium in spite of the 

halogen’s proximity to it.  A dipole of this magnitude should vertically bind an electron.  

While experimental verification of this system is unlikely to be forthcoming, a 

theoretical analysis would be intriguing. 

 

Throughout this thesis, a constant theme has been the identity of ammonium.  In the 

proton-transferred anions NH4X
-
, we can make the case that the system is actually an 

ammonium radical bound to a halide anion in much the same way as the alkali halide 
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anions, and is not a dipole-bound anion at all.  Given this, the case has been made that 

ammonium is a well-defined pseudo-atom, and it has been tested by assigning it an 

electronegativity and exploring how its molecular and pseudo-atom natures compete.  

Could other molecules be engineered with such a split identity, carrying advantageous 

molecular and atomic properties?  And how widely does this concept of the pseudo-

atom with electronegativity carry?  Many other plausible pseudo-atom units exist, such 

as the hydronium radical, the BH4
-
 in alkali metal borohydrides, the B12 and B2 “ions” 

suggested for a high-pressure phase of boron[1] and perhaps even fullerenes.  It is not 

obvious what results might be found by the investigation of these species as atoms-and-

molecules  

 

In brief, it is anticipated that the generalisations presented here may be carried forward 

and exploited to better the understanding of intermolecular interactions and molecular 

anions. 
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AIM atoms in molecules; also known as "Bader's analysis", a method of 

defining and characterising the volumes of and interactions 

between atoms soley on the basis of the topology of the electron 

density (section 1.1) 

BSSE basis set superposition error; an error in computing interaction 

energies (section 2.6) 

BCP bond critical point; a point in a molecule lying between two atoms 

where the gradient of the density is zero, and the curvature is 

negative only along the internuclear axis 

CI configuration interaction; a post-Hartree-Fock method for 

computing electron correlation (section 2.3.2.1) 

CIS/D/T configuration interaction with single/double /triple excitations 

CC coupled cluster; a post-Hartree-Fock method for computing 

electron correlation (section 2.3.2.2) 

CCS/D/T/(T) coupled cluster method using single/double/triple/perturbative 

triple excitations 

DFT density functional theory; an electron correlation method in which 

the electron correlation energy is defined soley based on the 

electrn density 

IR infra-red; in this context, infra-red vibrational spectroscopy 

mH millihartree; a unit of energy equal to the product of the Rydberg 

constant, the Planck constant, and the speed of light (0.027 

electron volts) 

MPn (n=1,2,3...) Møller-Plesset perturbation theory of order n; a post-Hartree-Fock 

method for computing electron correlation (section 2.3.2.3) 

MCSCF multi-configurational SCF; method for computing electron 

correlation by operating on a linear combination of determinants 

NBO natural bond order analysis; a method for describing the 

involvement of particularly orbitals in bonds by analysis the 

distribution of electron density between the basis functions 

SCF self-consistent field; in this context, the Hartree-Fock self-

consistent field procedure (section 2.2) 

SAPT symmetry-adapted perturbation theory; an application of 
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perturbation theory, properly adapted to the antisymmetry of the 

electronic wavefunction, to decompose monomer interaction 

energies into electrostatic, induction etc. components 

 


