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Abstract

Embryonic development requires cells to communicate as they arrange into the adult

organs and tissues. The ability of cells to sense their environment, respond to signals

and self-organise is of crucial importance. Patterns of cells adopting distinct states of

differentiation arise in early development, as a result of cell signalling. Furthermore,

cells interact with each other in order to form aggregations or rearrange themselves

via cell-cell adhesion. The distance over which cells can detect their surroundings

plays an important role to the form of patterns to be developed, as well as the time

necessary for developmental processes to complete. Cells achieve long range commu-

nication through the use of extensions such as filopodia. In this work we formulate

and analyse various mathematical models incorporating long-range signalling. We

first consider a spatially discrete model for juxtacrine signalling extended to include

filopodial action. We show that a wide variety of patterns can arise through this

mechanism, including single isolated cells within a large region or contiguous blocks

of cells selected for a specific fate. Cell-cell adhesion modelling is addressed in this

work. We propose a variety of discrete models from which continuous models are

derived. We examine the models’ potential to describe cell-cell adhesion and the as-

sociated phenomena such as cell aggregation. By extending these models to consider

long range cell interactions we were able to demonstrate their ability to reproduce

biologically relevant patterns. Finally, we consider an application of cell adhesion

modelling by attempting to reproduce a specific developmental event, the formation

of sympathetic ganglia.
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Chapter 1

Introduction

Developmental biology studies the processes involved in the formation of an adult

organism from a single cell. The sequence of events that lead to the formation of a

multicellular organism is termed development (figure 1.1).

Figure 1.1: Developmental cycle of the frog, showing the different stages of embryo-
genesis. Taken from [34].

The process of fertilisation marks the beginning of development of a new living

organism. Fusion of the two gametes, the sperm and the egg, activates the egg,

and the nuclei of the two gametes merge and form a single diploid nucleus. Animal

development following fertilisation is generally composed of four major stages [3, 34]:
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1. Cleavage takes place immediately after fertilisation, and is characterised by a

series of rapid cell divisions. Multiple smaller cells are thus created, called

blastomeres, while the total mass remains constant, which ultimately form the

blastula.

2. Following the slowing down of the rate of cell divisions, Gastrulation occurs. In

this process, cells rearrange themselves forming three germ layers : the ectoderm,

endoderm, and mesoderm, i.e. the outer, inner, and middle layers respectively.

The three germ layers have different fates: The endoderm forms the lining of

the digestive tube, and the respiratory tube and the associated organs and

glands (pharynx, esophagus, stomach. intestines, liver, pancreas and lungs),

the ectoderm produces epidermal cells and the nervous system, and mesoderm

is responsible for the skeletal muscles, bones, the dermis, the heart, blood vessels

and blood cells.

3. In the phase of organogenesis, cells that compose the three germ layers rearrange

further, through interactions with one another to form the tissues and organs of

the developing organism. During this process, numerous cell types can migrate

over long distances to their appropriate destinations.

4. The process of gametogenesis, is the development of gametes, the cells that will

eventually lead to the next generation of the organism. This process starts early

in the embryo development, with the production of germ cells, yet is typically

not completed until the organism reaches maturity. Germ cells migrate and

differentiate into gametes.

The complex process of formation of a living organism requires the coordination

of several fundamental mechanisms. Quoting from [34], principal questions faced

in developmental biology are: (i) Cell differentiation - Understanding how different

types of cells performing different tasks are generated; (ii) Growth and cell division

- Revealing the mechanisms responsible for regulating cell division and consequently

growth. (iii) Morphogenesis - the creation of form and how individual cells organise

themselves in order to create properly functioning organs at the appropriate locations.
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1.1 Cell Signalling

Development of a multicellular organism requires cell communication. Cells should be

able to emit and receive signals which they interpret and act on accordingly, in order

to self-organise and form the structures of a living organism. A variety of complex

mechanisms are employed in order to control the signals that are emitted, the correct

timing of signalling and the appropriate response of a cell to the signal.

Cell-cell signalling is achieved through the production of signalling molecules such

as proteins. These molecules can either be secreted in the extracellular space and

reach the target cells via diffusion or remain attached to the cell membrane and

signal cells in direct contact with the signalling cell. A cell is capable of receiving

and interpreting the signal through a receptor. Receptors are usually located in the

surface of cell’s membrane. The extracellular part of a receptor specifically binds

the signalling molecule and becomes activated. Following receptor activation, the

signal is relayed to the interior of the cell through activation of intracellular signalling

molecules, and a response is generated. In some cases the receptors are located inside

the cell and become activated by small signalling molecules entering the target cell [3].

Communication of cells through secreted signalling molecules is categorised de-

pending on the distance the signal acts on. Thus, paracrine signalling refers to the

case where the signalling molecules act locally, only stimulating cells located nearby.

Cells may also respond to signals produced by themselves, a process termed autocrine

signalling. The third category is endocrine signalling, in which the signalling molecules

(hormones) travel long distances by entering the blood stream [3].

Cell signalling can also be achieved by cells directly contacting each other: In jux-

tacrine signalling both ligand and receptor molecules are attached to the cell mem-

brane. We will discuss this mode of cell communication in more detail in chapter 2.

Another form of direct cell-cell communication can be achieved by cells connecting to

each other via GAP junctions and exchanging small molecules such as inorganic ions

directly.
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1.2 Models for Pattern formation and morphogen-

esis

Understanding and exploring the underlying mechanisms responsible for pattern for-

mation in biology has been a major challenge. To this end, mathematical modelling

can aid through offering explanations for experimental data and make predictions

about the system that is being modelled. There exists a vast modelling literature

of pattern formation during development, generally classified into two broad cate-

gories: chemical pre-pattern models, and mechanical models (see [11, 51, 52, 64] for

reviews). The first class owes its existence to the pioneering work of Turing [97] and

Wolpert [107]. Turing suggested that cells form patterns in response to a pre-pattern

formed by chemicals which he termed morphogens, and showed how interactions be-

tween morphogens can result in spatial patterns. In the second class, patterns are

generated from a homogeneous cell distribution due to mechanochemical interactions

between cells and their environment.

1.2.1 Morphogen models

Wolpert’s positional information theory [107] forms a chemical pre-pattern model.

As the name suggests, Wolpert proposed that a cell somehow determines its position

with respect to its neighbouring cells, and adopts a particular developmental fate ac-

cordingly. One simple such mechanism would be that a morphogen pre-pattern allows

cells to differentiate according to the chemical’s concentration at their position. The

simplest pre-pattern model, involves a single morphogen, with source and sink cells

generating a spatial gradient in the chemical’s concentration. Once the gradient is

established, cells differentiate according to a number of threshold values of concen-

tration. Biological examples of this type of mechanism include Activin in xenopus

embryos [38], and Sonic Hedgehog in the vertebrate neural tube [23].

In contrast, Turing [97] showed how a system of two or more morphogens can

produce an inhomogeneous distribution without the need of a pre-pattern of source-

sink type. In Turing’s work, the patterned distribution of morphogens can emerge

from homogeneity through chemical interactions and diffusion. Specifically, Turing
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considered two morphogens that react with each other and diffuse in a domain of

identical immobile cells, and was able to demonstrate that under a certain combi-

nation of these interactions, spatial patterns were possible due to the production of

an instability. This is counter-intuitive since diffusion is considered a homogenising

process, yet it is the interplay between the diffusivities of the chemicals that results

in an instability of a homogeneous steady state, which in turn leads to patterning.

In particular diffusion-driven instability comes as a result of ‘short-range activation,

long-range inhibition’ dynamics, a term introduced by Gierer and Meinhardt [33]. In

brief this means that one of the morphogens (the ‘activator’) self-promotes its own

production, and has a smaller diffusion coefficient (i.e. ‘short range’), while the sec-

ond chemical inhibits production of the activator. Turing-type models can exhibit a

rich variety of patterns and have been extensively studied and applied in biological

processes.

Similarly to the source-sink models, the pre-pattern of morphogens is first estab-

lished, and cells are assumed to interpret the pre-pattern and differentiate according

to the levels of chemical concentration they experience. Furthermore, the patterns

predicted by reaction-diffusion systems have fixed wavelengths determined by the

kinetics and diffusion coefficients.

The theoretical work of Turing has been verified experimentally in chemistry,

and specifically in the CIMA (chlorite-iodide-malonic acid starch) reaction [16, 22].

Patterns predicted by the corresponding mathematical model [49] were shown to be

in excellent agreement with experimental observations. However, the applicability of

the mechanism in biological systems is still an open question, since the existence of

morphogens and their precise function is not well established.

Turing considered a homogeneous medium in which morphogens diffuse and react.

However, there exist other modes for cell-cell communication by signalling molecules,

for example, active transport of molecules through channels between cells, or inter-

actions between receptors and ligands of neighbouring cells. The latter mechanism

is termed juxtacrine signalling, and has been identified as the mechanism for cell

fate specification patterns in Drosophila melanogaster. In chapter 2 we discuss this

phenomenon in more detail.
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1.2.2 Mechanical and Cell movement models

As mentioned previously, in morphogen models it is assumed that the pre-pattern

is established before the cells respond to it. There are instances however, in which

self-organisation is achieved through the mechanical interactions between cells and

their environment, for example instances of cell movement towards or away from a

cue (taxis), or cell aggregation through adhesive interactions. Such aggregations can

occur spontaneously from a uniform cell distribution due to an imbalance between

homogenising factors such as diffusion, and aggregating factors. The latter include cell

movement up gradients of chemical concentration (chemotaxis) or adhesive gradients

(haptotaxis) among others.

Mechanochemical Models

The mechanochemical approach to morphogenesis developed by Murray and Oster [60]

(see Murray [62] for an overview) offers an alternative view on pattern generation to

the morphogen pre-pattern models. Models of this type take into account the various

mechanical forces and chemical stimuli that act on the cells, which ultimately lead to

cell aggregation and pattern formation. An advantage of this theory over pre-pattern

models is that it is based in terms of measurable quantities. The disadvantage of

the pre-pattern approach is that, as mentioned, the existence of morphogens is under

debate.

Chemotactic Models

Chemotaxis is the preferential movement of cells or organisms up a chemical concen-

tration gradient. The chemical in question may be a nutrient or a morphogen. The

classical chemotaxis equation (or the Patlak-Keller-Segel (PKS) chemotaxis equation)

has been used to model this phenomenon in a variety of different biological contexts.

Patlak used a phenomenological approach in order to derive the chemotaxis equa-

tion [78]. He considered a random walk where an external bias from chemical cues

gives the walker a preferred direction. Keller and Segel [46] used the derived equation

along with a reaction-diffusion equation describing the evolution of a chemical signal
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in order to model chemotactic movement of the amoebae of the slime mould Dic-

tyostelium discoideum. They proposed that amoebae aggregate due to an instability

of the homogeneous steady state, a claim that was later proved incorrect. However,

their work on modelling chemotaxis was a major contribution to the field.

Cell-Cell Adhesion

Cell adhesion is fundamental for a variety of developmental processes, such as cell

migration, cell sorting, aggregation and subsequent formation of organs and tissues.

Adhesive bonds can be created between cells or between cells and the extracellular

matrix, thus providing a mechanism for the attachment of cells in specific locations.

Adhesion mechanisms are responsible for providing guidance to migrating cells along

their paths, in order for them to reach their destination and assemble with other

cells and create organ structures. Furthermore, selective adhesion allows cells of the

same type to form stronger bonds with each other. This gives the cells of different

populations the ability to sort out and form structured arrangements, which is of

crucial importance for the correct formation of organs. In chapter 3 we discuss in

further detail the biology of cell-cell adhesion, as well as its potential for driving

pattern formation. Several attempts to mathematically model cell adhesion and its

role in pattern formation under different circumstances have been recorded, using a

variety of modelling approaches, which we discuss in section 3.3.

The ability of cells to sense their environment, receive and emit signals to which

they respond in a variety of manners is essential for development. The range over

which cells can detect their surroundings plays an important role in morphogenetic

pattern formation. Cells extend thin protrusions (lamellipodia, filopodia) which assist

them in both moving and detecting chemical signals. In doing so, they are able to

communicate with each other over larger distances than their average cell radius per-

mits. By being capable of gathering information about their environment over larger

distances, cells can react, transmit and relay chemical or mechanical signals faster

and over a greater number of their neighbouring cells. This has large implications

on pattern formation, since long range communication allows cells to form a variety

of long wavelength patterns. Furthermore, long range signalling can accelerate the
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patterning process and provide the correct pattern in the time available for certain

developmental events. Including long range signalling in mathematical modelling of

pattern formation, and investigating its implications is the central theme of this work.

1.3 Thesis outline

The overall aim of this thesis is to consider the manner in which cell-cell signalling,

and in particular non local signalling, can lead to pattern formation during embryonic

development.

In chapter 2 we consider a model for cell differentiation and pattern formation via

juxtacrine signalling. We have extended an existing model for this phenomenon in

order to include long range signalling. The original model proposed in [20] is capable

of producing fine grain patterns of cells with alternating cell fate. By considering

several manners in which cells can sense their environment over larger distances, we

show that a variety of long wavelength patterns are possible.

In chapter 3 a framework for modelling cell-cell adhesion is introduced. A set of

discrete models is proposed by considering a biased random walk, in a similar fashion

to the derivation of chemotaxis equations [66]. The bias introduced varies according

to the assumptions made for the nature of the adhesive mechanism. In this family of

models, only next neighbour interactions are assumed. Through the use of appropriate

scalings continuous models for cellular adhesion are derived and assessed. Analysis of

the adhesion models derived in chapter 3 is undertaken in chapter 4. Using techniques

such as linear stability analysis, bifurcation analysis and numerical simulations, we

draw conclusions of the capabilities and drawbacks of each model.

Extension of the models of cellular adhesion in order to allow for long range sig-

nalling is considered in chapter 5. Here we introduce the notion of a sensing radius

in this context, and alter the models of chapter 3 accordingly. The extended models

are analysed using similar methods as in chapter 4, as well as insight obtained from

the analysis of the simpler models. We show that aggregations comprised of multiple

cells are possible as a direct result of the long-range signalling regime employed.

In chapter 6 we consider a specific biological application of cellular adhesion mod-
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elling. We model the formation of sympathetic ganglia in developing chick embryos.

Both cellular adhesion and chemical cues have been experimentally shown to play

important roles in the process we attempt to model. We employ both discrete and

continuous modelling formulations to address the problem. The continuum model

presented in [8] is coupled with a chemotaxis-type contribution in order to provide

the continuous model for sympathetic ganglia formation. For the discrete modelling

approach we use a modification of one of the models analysed in chapter 5.
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Chapter 2

Pattern formation via long-range

filopodial cell-cell interaction

2.1 Introduction

Developmental biology studies the mechanisms by which complex living organisms

are constructed from a single cell. The cell is the structural unit of every living

organism and the mechanisms that control its behaviour are of crucial importance.

In particular, the emergence of spatial organisation is required for an organism to be

built: cells must be able to communicate with each other to arrange the organs and

tissues that form the adult organism.

Cell differentiation is taking place in early embryonic development. During this

process cells adopt a cell fate whereby different genes are activated. Regulation of

cell fates is achieved by a variety of mechanisms involving the interaction of signalling

molecules. These molecules bind to specific sites triggering a response. This can be

achieved via diffusion of the molecules in the extracellular space, molecules passing

directly from cell to cell through channels or Juxtacrine signalling (cf. Figure 2.1)[3].

Many theoretical and mathematical approaches have been proposed in order to

investigate spatial pattern formation. As briefly discussed in chapter 1, Turing [97]

demonstrated that reaction and diffusion of chemicals can result, under certain cir-

cumstances, in heterogeneous spatial patterns of concentration. A pre-pattern of

chemical concentration is thus generated and cell fate specification is regulated through
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(a) (b)

Figure 2.1: Schematic representation of two of the mechanisms responsible for cell
fate regulation. (a): Diffusion of a signalling molecule into extracellular space. Cell
fate (represented by different shading) is determined according to the concentration
of the chemical represented by the curve. (b): GAP junction: Chemicals pass directly
from cell to cell.

the different reaction of the cells to the chemical according to their location. Such

chemicals are therefore termed morphogens. A different suggestion was made by

Wolpert [107] who proposed that diffusion of a morphogen can generate a gradient in

morphogen concentration. Cells were assumed to be pre-programmed to react to such

a gradient and adopt different fates according to their distance from the source of

the morphogen. Such morphogen gradients do exist, for example the Sonic Hedgehog

protein in the neural tube [23] and activin in Xenopus [38].

2.1.1 Juxtacrine Signalling

In juxtacrine signalling, the signalling molecules are situated in the cell’s membrane

and bind to the membrane-bound receptors of immediate neighbouring cells and ac-

tivate them. Juxtacrine signalling can play an important role in cell fate specification

through the response in the neighbouring cell to receptor activation. For example,

in the process of lateral inhibition, a cell that commits to a specific fate prevents its

neighbouring cells from adopting the same fate, for example, see [17], [50]. In lateral

induction, the signal stimulates the production of receptors and ligands.

One of the most widely studied examples of juxtacrine signalling and lateral inhi-

bition is Drosophila neurogenesis. In early development, cells in a proneural cluster

are equivalent in the sense that they all have the same potential of developing into a

neural cell. In practice, a pattern is generated in which only a few selected cells adopt

the (primary) neural fate and they are surrounded by cells adopting the (secondary)
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epidermal. Biological experiments showed that developing neuroblasts are equally

spaced between them, and if one of them is ablated with a laser beam, an adjacent

cell that would normally have adopted the epidermal fate instead differentiates to a

neuroblast [24]. It was suggested that this is a consequence of the absence of in-

hibition that would normally take place if the ablated neuroblast was present. This

suggestion contrasted with the original theory that cells are competing for a diffusible

substance which promotes the primary fate.

A set of genes was identified that mediates lateral inhibition. Experiments demon-

strated that there is an overproduction of neural cells when the initial cells are defec-

tive in these genes (figure 2.2). These experiments served both to prove the lateral

inhibition process, as well as identifying the genes that mediate it. Specifically, the

products of the genes Notch and Delta were identified as receptor and ligand for lateral

inhibition in Drosophila. It has been demonstrated that when a cell expresses Delta,

its neighbours are forced to downregulate Delta expression via binding to Notch.

Therefore, small differences in Delta activity in neighbouring cells are amplified.

Figure 2.2: A: Adult wing blade from a wild type fly. B: Adult wing blade from a fly
with cells made defective of neurogenic genes which resulted to overcommitment to
the vein cell fate and reduction of epidermal cells. (Taken from [63])

2.1.2 Previous Modelling of Juxtacrine Signalling

To mathematically model juxtacrine signalling, a spatially discrete approach is typical,

in contrast to the continuum models classically used to describe reaction-diffusion

systems. The latter treat the cells as a continuous and homogeneous medium, the

former assumes each cell as a distinct object. For juxtacrine signalling, this allows

direct interaction between individual cells to be incorporated. In biological systems

relevant to this study, the nature of the signalling demands a discrete model, whereby
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the variables representing levels of activity of the relevant factors are recorded in

each cell. Othmer and Scriven [65] considered such a set-up in order to pattern a

population in a manner similar to a Turing system.

An early attempt to model juxtacrine signalling specifically, was made by Collier

et al. [20]. Through the use of a simplified model for Notch-Delta interactions they

were able to derive the conditions under which patterns arise. Their analysis predicts

small spatial scale patterns (wavelength of two and three cells for a linear array

and a hexagonal array of cells respectively). This model, despite its simplifications

demonstrates the basic process of lateral inhibition, yet is unable to robustly generate

the longer-range patterns (i.e. of wavelength greater than 2) observed in the proneural

field. The assumption is that additional mechanisms may operate.

Plahte [79] and Plahte and Øyehaug [80] further explored the model and high-

lighted the importance of the feedback structure of the model in favouring the alter-

nating pattern seen in [20]. Furthermore, travelling waves that generate pattern by

invading into a homogeneous region were explored.

In [27] the Collier et al. model was extended in order to include a diffusible form

of the ligand which contributes to signalling in addition to the juxtacrine signalling

process. It was demonstrated that including diffusion of the ligand in the system

has both stabilising effects that counteract the pattern formation process, as well as

eliminating the imperfections of the patterns seen in [20].

An alternative model for juxtacrine signalling was proposed by Owen and Sher-

ratt [68] and formed the basis for a number of further studies [69, 100, 101]. Rather

than the more phenomenological approach of describing general levels of “activity”in

these models an explicit representation of ligand/receptor binding was incorporated.

Ligand molecules are assumed to bind to receptors of adjacent cells and the variables

are the numbers of ligand molecules and the bound and free receptors. A further

difference from the Collier et al. [20] model is that lateral induction is also consid-

ered. This is the reverse mechanism of lateral inhibition studied in [20]. When ligand

molecules bind to cell receptors, the occupied receptors generate a signal which leads

to activating (instead of inhibiting) the production of ligands and receptors. This

alternative model predicts a wider range of long wavelength patterns in contrast to
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those produced by the model of Collier et al. [20]

A further extension to the model of Owen and Sherratt [68] and Wearing et

al [100, 101] was developed by Webb and Owen [102, 103]. They investigated the

behaviour of the model using different geometries and including both lateral induc-

tion and inhibition. In a subsequent paper, Webb and Owen [102], further amended

the model to account for non uniform distributions of proteins and receptors within

a cell. Hence, interactions between segments of cell membranes were considered (e.g.

each side of a square). They also include diffusive transport of proteins and receptors

between segments of cell membranes. Additionally, they suggest that production of

ligand or receptor may be localised to distinct parts of a cell membrane.

The potential of a juxtacrine model to give rise to travelling wave solutions as well

as graded solutions was investigated by Monk [58] who studied a juxtacrine system

using a 3-variable model and demonstrated that both behaviours can be observed, de-

pending on the strength of the signalling feedback. Owen [67] studied the production

and propagation of waves of initiation of pattern formation in a general framework

and applied the study to the model developed in [68, 69, 100].

2.1.3 Filopodia in cell-cell communication

A number of studies [21, 54, 83, 84] have revealed that cells extend finger-like pro-

trusions named filopodia to signal to cells located further away. Ramirez-Weber and

Kronberg [83, 84] discovered long (∼ 100µm) and thin (∼ 0.2µm in diameter) filopo-

dia on drosophila imaginal discs which they named cytonemes. Such protrusions were

previously found in other organisms such as the sea urchin embryo [39] and have

recently been associated with long range cell-cell interactions [55]. The suggestion

that cytonemes take part in transferring signalling molecules was further supported

by experiments showing Decapentaplegic receptors travelling along the length of a

filopodium [43].

de Joussineau et al. [21] studied epithelial sheets of cells in fruitflies. During

embryonic development, cells with the same potential for a particular fate develop into

sense organ precursors (SOPs) and signal to their surrounding cells to inhibit them

from adopting the same fate. The question of how an inhibition signal is transmitted
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over long distances arises. The authors conducted experiments that ruled out a relay

transport of the system. Another alternative for long range action of lateral inhibition

is signal transduction via diffusion. Indeed, a soluble form of Delta exists [82], but

this was found to be unable to activate Notch, as a relevant study suggests [56].

The authors [21] found that filopodia contain the Delta protein and therefore are

able to activate Notch in distant cells by direct contact. They performed experiments

that demonstrated that disrupting filopodium formation resulted in too many cells

adopting the primary fate, an indication that long range lateral inhibition failed.

They also studied SOP formation and showed that a new SOP is always formed

outside the reach of the filopodia of a preexisting SOP. Furthermore, it was observed

that overexpression of Delta leads to an increase in filopodium formation.

In a recent paper, Cohen et al. [19] observed that the SOP pattern undergoes a re-

finement process in which the “unorganised” pattern that initially emerges gradually

becomes well ordered. Additionally, the authors in [19] tested the role of filopodia in

pattern formation using a combination of imaging and modelling techniques. They

were able to demonstrate that filopodial signalling is responsible for the long-scale

patterns observed and reveal their role in the process of pattern refinement by high-

lighting the importance of filopodial length and lifetime.

These studies therefore provide a novel mechanism for how communication over

larger distances can be achieved with lateral inhibition and thus how longer wave-

length patterns can arise.

The aim of this study is to incorporate the action of filopodia into a mathematical

model for juxtacrine signalling with lateral inhibition. We shall begin by discussing

the original model of Collier et al. [20] for Delta and Notch. Whilst the later models

describe the biology of receptor-ligand activation more realistically, the simple nature

of the Collier et al. model makes it more amenable to analysis. Following a brief

review of the Collier et al. model we extend it to include the filopodial action and

investigate its potential for pattern formation.
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2.2 Model Derivation

2.2.1 Model framework

To mathematically model juxtacrine signalling, a spatially discrete approach is appro-

priate, in which each cell is represented as a distinct object, allowing direct interaction

between individual cells to be incorporated.

Incorporation of filopodia is taken into account in this model, offering a mechanism

for long-range signalling between cells. We have considered several distinct scenarios

for the mechanism of sensing. Figure 2.3a shows a generic signalling scenario, in

which a cell extends filopodia of different lengths and signals cells in its vicinity, and

no specific assumptions are made about the nature of signalling. In our analysis we

first consider the fully generic scenario of figure 2.3a, and then study two “extreme”

cases for the nature of signalling. In the first case (figure (2.3A)) each cell equally

signals all cells from its immediate neighbours to those at the maximum filopodial

reach. In the second case, (figure (2.3B)) it is assumed that each cell only signals to

cells located at the full distance a filopodium is assumed to reach. These first two

scenarios would respectively model idealised scenarios in which all filopodia grow to

the same length and, in the first case contact cells uniformly along their length, and,

in the second case only contact cells at the tips of their filopodia. Finally, we address

a more general and realistic case, shown in figure (2.3C), where it is assumed that

neighbouring cells receive more signal due to the increased likelihood of contact. This

latter supposition is supported by evidence provided in [21].

2.2.2 System of Equations

General framework

To study the role of filopodia we adopt the model of Collier et al. [20]. This model

describes the activation levels of receptors and ligands in each cell. While, more

realistic models have been developed, incorporating details of receptor-ligand bind-

ing [68, 69, 100, 101, 102, 103], the simpler model of Collier et al. [20] is more amenable

to analysis.
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(a)

A

B

C

(b)

Figure 2.3: Schematic diagram of cell signalling through filopodia. (a): General case.
A cell extends filopodia of different lengths to all directions and communicates with
cells in its neighbourhood. No specific assumptions are made about the nature of
signalling. (b): Three specific signalling scenarios considered in this work. A: The
cell in the centre signals to all the cells within the filopodial radius. All cells receive
equal amount of signal. B: Only cells located in the maximum distance filopodia can
reach are signalled. C: Cells located in the vicinity of the source are receiving more
signal.

The system of equations is given by the coupled set of equations:

d(Rj/R0)

dτ
= F (L̄j/L0)− µRj/R0, (2.1)

d(Lj/L0)

dτ
= G(Rj/R0)− ρLj/L0, (2.2)

where Rj and Lj are respectively the levels of receptor and ligand activity in cell j,

and τ is the time. R0 and L0 are typical levels of ligand and receptor activity. The
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assumptions made were as follows:

1. Cells interact with neighbours within the range that filopodia extend. We define

L̄j to be the mean level of ligand activity in the neighbouring cells of cell j over

the filopodial signalling range.

2. Functions F and G are continuous functions F,G : [0,∞) → [0,∞) that model

the nature of interaction between cells (e.g. lateral inhibition). Their specific

form depends on the case study considered and will be detailed below.

3. µ and ρ are the rate constants for decay of receptor and ligand activity.

4. Cell division is neglected

5. Low levels of receptor activity in a cell lead it to adopt the primary fate, while

high levels lead it to adopt the secondary fate

Defining f := F/µ and g := G/ρ, where f and g are of order 1, setting rj = Rj/R0,

lj = Lj/L0, t = µτ and v = ρ/µ, we obtain the non-dimensional system:

drj
dt

= f(l̄j)− rj, (2.3)

dlj
dt

= v[g(rj)− lj ]. (2.4)

The specific form of l̄j will be dictated by the geometry of the array of cells being

considered and the assumptions made about the nature of filopodial interactions, as

we describe later. The action of filopodia alters the averaging term so as to include

more cells in the signalling process. This is a simple assumption, and a more detailed

model should consider the filopodial mechanism as a dynamic process since, as relevant

studies reveal, filopodia are promoted by Delta [21].

Filopodia sensing functions

Since the exact nature of the action of filopodia is not known, a theoretical approach is

considered here. In a general framework we may expect closer cells to receive greater

signal due to the increased likelihood of contact. This can be taken into account by
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applying a weighting on the contributions of cells to the averaging term according

to their location. The general form of l̄j is assumed to take the following form for a

1-dimensional line of cells:

l̄j =

m
∑

i=−m,i 6=0

Bilj+i

m
∑

i=−m,i 6=0

Bi

, (2.5)

where i denotes the distance of a cell from cell j, m is the maximum distance

filopodia can reach, and Bi are the values of a weighting function applied to a cell

located at a distance of i cell diameters. In the following we assume Bi = B−i,

reflecting that filopodial distribution is symmetrical with respect to the signalling

source. However, it is worth noting that in certain biological situations signalling

is polarised towards some direction [83], and the above framework can be extended

to model such scenarios. We briefly consider polarised signalling in section 2.4.2.

Equation (2.5) is a generalised form of the averaging term for juxtacrine signalling

employed by Collier et al. [20]. The term in the denominator acts as a normalisation

ensuring that l̄j describes the mean level of ligand activity in the neighbouring cells

of cell j. Filopodia have been reported to span several cell diameters and Ramirez-

Weber and Kronberg reported cytonemes of 700µm in length [83]. In the following we

allow m to vary up to a value of 10 cell diameters, or approximately 100µm assuming

an average cell diameter of 10 µm.

To model the specific cases of figure (2.3), we assume for the case of figure 2.3A:

Bi =







1 −m ≤ i ≤ m, i 6= 0

0 elsewhere,
(2.6)

for the case of figure (2.3B):

Bi =







1 i = ±m,

0 elsewhere,
(2.7)

and a decreasing function of |i| for case C.

To understand the potential contribution of filopodial signalling, we consider its
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impact on both pattern formation as well as travelling waves and signal propagation.

2.3 Pattern Formation in a System with Lateral

Inhibition

In the following sections we will analyse the extended model given by equations (2.3)

- (2.4) using (2.5) for the averaging term l̄j , with the various assumptions for Bi out-

lined in the previous section. It was shown in [21] that long-range signalling through

filopodial extensions is responsible for the long wavelength patterns of organ precur-

sors observed experimentally. By disrupting filopodial formation, the authors were

able to show how the resulting pattern is affected. Specifically, it is reported that

restriction of the range of operation of lateral inhibition (by disruption of filopodial

extensions) results in overexpression of SOPs, i.e. in a shorter wavelength pattern.

Our aim is to model the experimental findings of de Joussineau et al. [21] and inves-

tigate the potential for long-range pattern formation. Through the use of different

assumptions for the nature of filopodial signalling we study the conditions under

which long scale patterns are possible, and analyse the different patterns that result

depending on the signalling regime.

We first consider the system (2.3) - (2.4) for the different cases of filopodial sig-

nalling using a lateral inhibition mechanism. In a lateral inhibition mechanism, ex-

ternal ligand from a neighbour bound to a receptor in a cell is assumed to result in

a downregulation of the cell’s ligand activity. Receptor activity in a cell is assumed

to increase with the level of ligand activity in adjacent cells. To model this we adopt

the approach of Collier et al.[20] by assuming F : [0,∞) → [0,∞), to be a continuous

increasing function. Similarly, G : [0,∞) → [0,∞) is a continuous decreasing function

accounting for the fact that ligand activity in a cell is a decreasing function of the

level of receptor activity in the same cell (fig. (2.4)). With respect to equations (2.3)

& (2.4) we take the Hill type functions

f(x) =
xh1

α + xh1
, and g(x) =

1

1 + βxh2
, (2.8)
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Figure 2.4: Diagram showing the lateral inhibition mechanism taking place between
interacting ligands and receptors of neighbouring cells. Figure adapted from [20].

where α, β > 0 and h1, h2 ≥ 1. The system of equations (2.3)- (2.4) becomes:

drj
dt

=
l̄j
h1

α + l̄j
h1

− rj (2.9)

dlj
dt

= v[
1

1 + βrh2
j

− lj], (2.10)

Figure (2.5) depicts the manner by which the feedback functions vary with respect

to the parameters. The form of the feedback functions (eq. (2.8)) was chosen such

that both functions are monotonic, and saturating. Biologically, this means that the

level of activation cannot increase indefinitely and there is a limit to the production

of signalling molecules.

2.3.1 Linear Stability Analysis

The system of equations (2.9) and (2.10) possesses a single homogeneous steady state

(r∗, l∗). That is, a state in which the levels of Notch and Delta activity have the same

value in every cell of the system. This is given by: f(g(r∗)) = r∗, l∗ = g(r∗). Since

f(g(r)) is monotonically decreasing ∀r ≥ 0, there can only exist one homogeneous

steady state. We need to examine the stability of this steady state to spatially varying

perturbations. If it is stable, that means that no pattern is formed since the rates of

production of Notch and Delta activity are in equilibrium with their rates of decay,

and any disturbance from the equilibrium will die out and the system will return to

homogeneity. If the steady state is unstable, however, any small perturbations will

be magnified and the system will evolve to a different inhomogeneous steady state
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Figure 2.5: Feedback functions f(x) and g(x) for the lateral inhibition system plotted
against parameters of the model (eq. (2.8)). Arrows indicate direction of increasing
parameter values. A: plot of f(x) with fixed h1 = 2 and (from left to right) α =
10−4, 10−3, 10−2, 10−1, 1. B: plot of f(x) with α = 0.01 and h1 = 2, 4, 6, 8, 10. C: plot
of g(x) with h2 = 2 and β = 10000, 1000, 500, 100, 10 D: plot of g(x) with β = 100
and h2 = 2, 4, 6, 8, 10.

which allows pattern formation. If we consider small perturbations from the steady

state we can disregard the non-linear terms of the equations on the basis that their

contribution is negligible. Studying the stability of the resulting linearised system

gives valuable information about the behaviour of the full non-linear system.

For the 1-D case, we start by setting: r̂j = rj + x0 and l̂j = lj + g(x0), where

r∗j = x0, l
∗
j = g(x0) is the homogeneous steady state. Thus, the new variables give a

measure of the disturbance from the steady state. The linearised equations read:

ṙj = al̄j − rj , (2.11)

l̇j = vbrj − vlj, (2.12)

where rj, lj denote the new variables, and . denotes the time derivative. a := f ′(g(x0))
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and b := g′(x0), with r∗j := x0 and l∗j := g(x0) being the homogeneous steady state

of the system. We first consider the fully generic scenario of figure 2.3a. The general

form of the averaging term in 1-dimension is:

l̄j =

m
∑

i=1

Bi(lj+i + lj−i)

2
m
∑

i=1

Bi

. (2.13)

In the above, Bi are the values of the weighting function applied to a cell located

at a distance of i cell diameters. As mentioned, we assume a symmetrical filopodial

distribution, so that B−i = Bi. Through use of the appropriate weighting function we

obtain the averaging terms for each of the cases depicted in figure 2.3. Thus, using

Bi = 1 for all i we obtain l̄j for the scenario in which all cells within the filopodial

reach receive equal amount of signal (figure 2.3A):

l̄j =
1

2m

m
∑

i=1

(lj+i + lj−i). (2.14)

Considering the case where only the cells located at the maximum filopodial distance

are being signalled (figure 2.3B), we obtain:

l̄j =
lj+m + lj−m

2
. (2.15)

Notably, both cases collapse into the simple juxtacrine signalling model of Collier

et al. [20] for m = 1. In the case of figure 2.3C, the averaging term l̄j is obtained

by (2.13) with Bi a decreasing function of i.

Following standard stability analysis, e.g. [61], we look for solutions of the form:

lj = leλt+ikj and rj = reλt+ikj, where l and r are constants, λ is the temporal growth

and k the wavenumber. Substitution into (2.11) yields:





−1 − λ aK

vb −v − λ









r

l



 =





0

0



 ,

where K is a function of the wavenumber (k), and differs according to the averaging
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term. In general:

K =

m
∑

j=1

Bj cos(jk)

m
∑

j=1

Bj

, (2.16)

with |K| ≤ 1. Thus, K = 1

m

m
∑

j=1

cos(jk) for the first case (fig. 2.3A) while K =

cos(mk) for the second (fig. 2.3B). Note once again that form = 1 we have K = cos(k)

as for the Collier et al. model [20].

For non-trivial solutions we require the determinant of this matrix to be zero, i.e.

for the eigenvalues λ to satisfy:

λ± =
1

2

[

−(v + 1)±
√

(v − 1)2 + 4vabK
]

. (2.17)

Considering stability to homogeneous perturbations (k = 0), we require all λ

to have a negative real part. Therefore, we require ab < 1 for both cases (since

K = 1), which is automatically satisfied for the choices for f and g. Considering

inhomogeneous perturbations, we look for regions where the steady state is unstable,

for k 6= 0, i.e. for regions where Re(λ+) > 0. Equation (2.17) yields abK > 1. The

criterion for patterned solutions to arise is therefore:

ab <
1

Kmin
≤ −1 (2.18)

where Kmin is the minimum value of K. Note that for both the Collier et al. model

and the scenario depicted in figure 2.3B, Kmin = −1, and the condition for patterning

simplifies to: ab < −1. The eigenvalue with the largest real part is given by:

λ+ =
1

2

[

−(v + 1) +
√

(v − 1)2 + 4vabKmin

]

,

since ab < 0 from the assumption that f is monotonically increasing and g is mono-

tonically decreasing. The fastest growing mode will be the wavenumber km that

minimises K and the pattern that is expected to arise (for random initial data and
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at least initially) will be the one with wavelength w = 2π
km

. Due to the discrete nature

of the grid , for spatial patterns to arise we need to look for patterns of wavelength

2 cells or greater. Thus, patterns will only emerge if there are unstable wavenumbers

k ∈ [0, π]. Figure 2.6 illustrates the relation between Re(λ) and the wavelength for

the two cases illustrated in figure 2.3A and 2.3B, when m = 3.

Figure 2.6: Dispersion relation for the two distinct cases of figure 2.3. The real part
of the eigenvalue is plotted against the wavelength w. The homogeneous steady state
is unstable in regions where Re(λ) > 0. Multiple ranges of unstable modes can be
observed for both cases. For case A there always exists one mode that grows faster
than any other, while for case B we observe a number of modes growing equally fast.

a and b as defined above, are the slopes of the feedback functions f and g at the

homogeneous steady state respectively. Condition (2.18) above demonstrates that

the feedback mechanism should be sufficiently strong for patterns to emerge. If the

feedback is weak, the system will not diverge from its homogeneous steady state, and

small perturbations from it will eventually die out.

In order to predict the pattern that will result if condition (2.18) is met, we can

compute the range of unstable wavenumbers in each case. Thus, we can determine the

modes of pattern that may result. The range of unstable wavenumbers is generally
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given by: abK > 1. This implies that for both the extreme cases considered, if 2.18

holds, we obtain multiple ranges of unstable wavenumbers separated by stable ones,

for m > 2, depending on the parameter choices. The fastest growing mode will be

the one expected to dominate and is given by the wavenumber km that minimises

K. Thus, the pattern expected to be observed will be the one with a wavelength (in

terms of number of cells): w = 2π
km

.

Case A

Figure 2.7 shows the relation between the absolute value of ab required for pattern

formation, as computed by criterion (2.18), and m, the filopodial range for the case of

figure 2.3A. In this case, asm is increased, more cells are signalled. As can be observed

in figure 2.7, as more cells are included the value of |ab| that is needed to satisfy the

criterion in (2.18) is increased. In other words, as the number of cells receiving signal

increases, a stronger feedback is required for patterning. An explanation for this

result is that the more cells are being signalled, the available amount of Delta has

to be distributed among more cells. Thus, a stronger feedback is required to sustain

pattern formation. Therefore, the analysis suggests that long wavelength patterns are

possible, on the condition that the feedback mechanism is sufficiently strong. From a

biological point of view, this result shows that there is a limit on the scale of pattern

that can be produced, even in the event where filopodial interactions are artificially

enhanced.

Inspecting figure 2.7, we observe that the feedback strength needed for pattern

formation seems to be saturating for large values of m. For biologically realistic large

values of the filopodial range, |ab| is approaching the value 3π/2, and km ≈ 2π
3m

.

The feedback strength is controlled by the parameters α, β, h1, and h2 appearing

in the chosen form of the feedback functions f and g as given by equation (2.8). It

can be shown that |ab| cannot exceed the value h1h2. Here we present the case for

h1 = h2 = 2 for simplicity, but the result can be generalised for larger values of h1, h2.

Additionally we assume αβ = ρ = const.. The system (2.3)- (2.4) has a unique
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Figure 2.7: Critical value of |ab| needed for pattern formation as a function of m (the
distance that filopodia can cover), for the scenario of figure 2.3A. Asm increases, more
cells are signalled and therefore a stronger feedback is required for pattern formation.

homogeneous steady state r0, l0, which can be determined by solving:

l20
α + l20

= r0 (2.19)

1

1 + βr20
= l0. (2.20)

Substituting (2.20) into (2.19) and rearranging yields:

αr0 + r0 + 2αβr30 + αβ2r50 = 1. (2.21)

We require the homogeneous steady state to exist ∀α, β and therefore equation (2.21)

to hold ∀α, β. In the limit α → 0 (β → ∞) :

lim
β→∞

(r0 + 2ρr30 + βρr50) = 1, (2.22)

which implies

lim
β→∞

βρr50 = 1,
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and thus, for large enough β, we can therefore approximate

r0 ∼
1

ρ
β−1/5. (2.23)

From (2.20) we obtain l0 + βr20l0 = 1. Taking the limit β → ∞, and using (2.23)

yields:

lim
β→∞

β3/5l0 = ρ2,

so that, for large enough β:

l0 ∼
1

ρ2
β−3/5. (2.24)

Now

ab = f ′(l0)g
′(r0) = − 2αl0

(α + l20)
2

2βr0
(1 + βr20)

2
.

Using αβ = ρ and equations (2.23) and (2.24), we obtain the result:

lim
β→∞

ab = −4. (2.25)

Combined with the result discussed previously, that the greater the number of cells

signalled the stronger the feedback required for patterns to emerge, the consequence

of this result is that in a setup where a large number of cells are being signalled,

one needs to consider h1 > 2 or h2 > 2 in order for inhomogeneous patterns to be

obtained. For example, in the case of large protrusions such as reported in [83]. From

a biological point of view, this result suggests that there may be limitations to the

scale of patterns that can be generated.

Case B

As mentioned, in the case depicted in figure 2.3B, the instability criterion (2.18)

simplifies to ab < −1 and does not depend on the filolopodial length. As we have

discussed, the feedback strength needed for patterning depends on the number of cells

receiving the signal, which in this case is 2 for any m.

In the situation reflected in fig 2.3B there are modes that grow equally fast, the

number of which increases with filopodial range. For example when m = 3, the
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analysis shows that the 2 and 6 wavelength modes are growing equally fast (see the

dispersion relation in figure 2.6). This is depicted in figure 2.8, where the fastest

growing modes are plotted as a function of the maximum distance that filopodia can

reach. As shown, multiple fastest growing modes appear as filopodial range increases.

In contrast, in the case of figure 2.7A, there is always a single mode that grows faster

than any other.

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

20

Filopodial Range (m)

F
as

te
st

 G
ro

w
in

g 
M

od
e 

(W
av

el
en

gt
h)

Figure 2.8: Plot of the fastest growing modes as a function of m, the maximum
filopodial reach (case B in fig. 2.3). The number of dominant modes that grow equally
fast increases with the filopodial length. Solid line indicates the uppermost fastest
growing mode, dominating in numerical simulations (see section 2.4).

2-dimensional arrays

The linear stability analysis for two-dimensional (hexagonal) cells, is similar to the

one-dimensional case described above. For the Collier et al. model [20], the averaging

term is given by:

l̄i,j =
li,j−1 + li,j+1 + li−1,j + li+1,j + li+1,j+1 + li−1,j−1

6
, (2.26)
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which, after repeating the procedure outlined above, leads to:

K =
1

3
(cos(k1) + cos(k2) + cos(k1 + k2)) , (2.27)

where k1, k2 are the wavenumbers. Therefore, the patterning criterion becomes more

strict than the one-dimensional case. Specifically, we require ab < −2 for patterns to

form, since Kmin = −1

2
. The reason for this is that, as discussed, a single cell now

possesses six neighbours that receive signalling. The fastest growing mode corresponds

to k1 = k2 = 2π
3

and therefore patterns of wavelengths w1 = w2 = 3 are observed.

Introducing filopodial signalling in this system increases the number of cells contacted

and therefore leads to a stronger feedback requirement in order for patterns to emerge.

Similarly to the one-dimensional case, incorporation of long-range signalling results in

longer wavelength modes becoming unstable and therefore we expect to obtain longer

wavelength patterns than in the Collier et al. model.

2.4 Numerical Simulations

In order to investigate the behaviour of the system, equations (2.3) and (2.4) were

solved numerically using a 4th order Runge-Kutta method (see Appendix A.1 for

details). Simulations were performed using either periodic boundary conditions, or

such that there is no contribution to the averaging term from cells located outside the

boundary. That is, we assume, for example with m = 2, l̄1 =
l2+l3
2

. Periodic boundary

conditions model a ring of cells, or can be interpreted as modelling an infinite line

of cells. The system is initially close to homogeneity, with small (∼ 1%) random

perturbations applied around the homogeneous steady state. We can thus investigate

how the system involves from initially almost identical cells to pattern formation. We

begin by presenting numerical simulations carried out for the two “extreme” cases of

figure 2.3.
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2.4.1 1-Dimensional line of cells

Figures 2.9- 2.13 show simulations carried out for the two extreme cases discussed

in the previous section. With the major change being the introduction of long-range

filopodial mediated sensing, we choose to concentrate on the sensing range m as our

parameter for investigation. The levels of receptor activity are depicted in each case at

a time point for which equilibrium has been reached, for 100-cell lines. As mentioned,

cells adopt the primary fate when the levels of receptor activity in that cell are low.

Case A: Sensing all cells

Figures 2.9a and 2.10a show the simulations carried out (for h1 = h2 = 2 and

h1 = h2 = 3 respectively) with m = 1, which corresponds to the Collier et al. model

to allow comparison with subsequent simulations. Figures 2.9b, c, and d and 2.10b,

c, and d show the simulations performed for the first case of fig. 2.3 with a filopodial

range of m = 3, 5 and 10. The choice of parameters was such that the instability

criterion (2.18) is satisfied. We have chosen to use v = 1, assuming equal ligand and

receptor rates of decay. The choice v 6= 1 does not alter the final pattern produced,

but does affect the time needed for the inhomogeneous equilibrium to be reached.

The linear analysis dictates (figure 2.7A) that the more cells are being signalled, the

stronger the feedback needs to be in order to produce inhomogeneous patterns. For

large values of m therefore, such as the system with m = 10 considered below, we

either need to use parameter values α ∼ 10−6, β ∼ 106, or choose h1 = h2 = 3 in

the feedback functions. Both these choices however, are somewhat problematic for

reasons that will be discussed in the following.

All the numerical simulations for this model exhibit a basic common feature: The

small initial perturbations from homogeneity initially diminish, and the system ap-

proaches the homogeneous steady state before pattern formation occurs. Collier et

al. [20] have also observed this behaviour in their simulations. The time evolution of

a system of 50 cells for m = 3 is depicted in figure 2.11.

The pattern observed in figure 2.9b is a combination of the modes with w = 4 and

w = 5, which are predicted by the linear analysis, the w = 5 mode being the fastest

growing. Additionally, the linear analysis predicts that the modes with w = 2 and
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Figure 2.9: Numerical simulations for the first case of figure 2.3 for various values of
the filopodial length m. Periodic boundary conditions were employed. Parameters
used: (a)-(c): α = 0.001, β = 1000, v = 1, (d): α = 10−8, β = 108, v = 1, with
h1 = h2 = 2. All the pictures show the levels of Notch (receptor) and Delta (ligand)
activity when equilibrium has been reached. (a): m = 1 (Collier et al. model). (b):
m = 3. (c): m = 5. (d): m = 10. The pattern obtained for m = 10 is the minimum
wavelength pattern, not predicted by the linear analysis due to the choices of α and
β (see main text).

w = 6 are also expected to grow for the parameters used. Using initial conditions that

favour these modes show that the w = 2 mode initially grows, but ultimately cannot

be sustained, as it appears to be unstable, and the system evolves to a pattern similar

to that seen in figure 2.9b. The w = 6 pattern however, appears to be stable and

the system will evolve to it when selected initial conditions are applied. The same is
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Figure 2.10: Numerical simulations for the first case of figure 2.3 for various values
of the filopodial length m ,using h1 = h2 = 3 to avoid phenomena seen in figure 2.9d.
Periodic boundary conditions were employed. Parameters used: α = 0.001, β =
1000, v = 1, with h1 = h2 = 3. All the pictures show the levels of Notch (receptor)
and Delta (ligand) activity when equilibrium has been reached. (a): m = 1 (Collier
et al. model). (b): m = 3. (c): m = 5. (d): m = 10

true for the cases were initial conditions force the system towards the w = 4 or the

w = 5 patterns. Similar conclusions can be drawn from simulations with different

values of m. We can expect therefore, from figure 2.6, that inhomogeneous steady

states corresponding to the fastest growing mode range of unstable wavenumbers are

likely to be stable.

In simulations using m = 10, we need to choose the parameters such that a
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Figure 2.11: Time evolution of the system of figure 2.3A for m = 3, in a 50-cell line.
Periodic boundary conditions were used. Initial conditions are shown in the top left
figure. Only receptor activity is shown. The initial perturbations die out and the sys-
tem approaches the homogeneous steady state. As time progresses, peaks of activity
emerge corresponding to the fastest growing mode predicted by the linear analysis.
These peaks grow until an inhomogeneous equilibrium is established. Parameters
used: α = 0.001, β = 1000, v = 1, h1 = h2 = 2.

strong feedback is produced. Choosing α = 10−6, β = 106 has the desirable effect,

and the system does evolve initially as predicted by the linear analysis. That is,

we observe peaks of activity being formed corresponding to the fastest growing mode.

However, this choice of parameters ultimately leads to negligible levels of activity that

are numerically indistinguishable from zero. The very steep slopes of the feedback

functions imply that once the activity at a certain cell p exceeds a threshold, it grows

almost instantaneously to lP = 1. This renders the lateral inhibition imposed by any

other small peaks in its neighbourhood insignificant. As a consequence, the evolution

of the pattern breaks down, and the pattern that the simulation evolves to is the

minimum wavelength pattern (w = 11 in this case), composed of cells exhibiting

either maximum or zero activity (figure 2.9d). In order to avoid this behaviour we

chose h1 = h2 = 3, such that f(l) = l3

α+l3
, and g(r) = 1

1+βr3
. The resulting simulation
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is depicted in figure 2.10d.

Another important finding of Collier et al. is that in their simulations, adjacent

cells never adopt the primary fate. That is, adjacent cells never exhibit low receptor

activity. However, they report that the alternating pattern was found to contain

“defects” where two adjacent cells have high levels of receptor activity. Plahte [79]

and Plahte and Øyehaug [80] argue that the alternating pattern of the Collier et

al. model can be a result of travelling waves: A small perturbation in receptor or

ligand activity of a cell in a string of cells at the homogeneous steady state, results in

the perturbation spreading from its origin, and establishing the predominant pattern

in its passage. It is argued that the evolution of a randomly perturbed system can

be considered as a superposition of waves spreading from the most perturbed cells.

Therefore, the defects in the alternating pattern seen in [20] occur as a result of

two travelling waves originating from different spatial points with opposite directions

meeting in equal phases.

The authors in [20] remark that boundary conditions in their simulations do not

play as an important role as the initial conditions, in the time evolution of their

model. Additionally they report that the pattern usually starts forming close to the

boundaries and spreads inwards. The zero activity boundary conditions used in [20]

do produce boundary effects, in the sense that there is always a patterning wave

emanating from the boundaries due to the boundary conditions. In the case where m

is small, these effects are not very significant, since their magnitude is similar to the

perturbations applied initially. However, for larger values of m, this particular type

of boundary conditions results in large perturbations forming at the boundaries and

spreading inwards. The consequences of this phenomenon are more apparent in the

case described in the following section.

The fact reported in [20] that two cells never adopt the primary fate generally

holds for our simulations. However, using parameter values that marginally satisfy the

instability criterion, we were able to produce patterns in which the levels of ligand and

receptor activity vary in a gradient-like manner. The resulting pattern does involve

adjacent cells expressing comparably low levels of receptor activity. Whether this can

be regarded as two adjacent cells adopting the primary fate depends on the threshold
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of receptor activity needed. This type of pattern can be observed for relatively large

values of m, and is more prominent when higher order feedback functions are used.

Figure 2.12 shows two examples for m = 3 and m = 10. These patterns are a result

of travelling waves occurring from different points within the lattice and meeting. We

note that the marginal instability requirement may indicate that patterns such as the

ones presented in figure 2.12 are not likely to be robust.
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Figure 2.12: Numerical simulations showing the ability to produce patterns in
which receptor activity varies in a gradient-like manner, when using parameters
that marginally satisfy the instability criteria. Parameters: h1 = h2 = 3 (a):
m = 3, α = 0.1, β = 10, (b): m = 10, α = 0.01, β = 100.

Case B: Sensing cells in the maximum distance

Simulations for the second case depicted in fig. 2.3 are shown in figure 2.13. In

this case, we assume that there is a set filopodial length, and only cells at the tip

of the filopodia are contacted. The linear analysis for this scenario predicts multiple

modes growing equally fast. Since K = cos(mk) = cos(2π
w
), modes with wavelengths

w = 2πm
2n+1

, n = 0, 1, 2, ... are expected to dominate. This is in fact what the simulations

of figure 2.13a depict. Observation of figure (2.13a) (where m = 3) reveals that the

dominating pattern is a combination of patterns with wavelengths w = 6 and w = 7,
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as well as the alternating cell fate pattern. This should be expected, since the fastest

growing mode is 6, but the mode with w = 7 is growing almost as fast. As shown by

the stability analysis, the w = 2 mode is also unstable (fig. 2.8).

It should be noted that simulations carried out for this case have been found to

be sensitive to the size of the domain used and the boundary conditions, unlike the

corresponding simulations of the previous sections. The alternating cell fate pattern

does not always emerge. As the value of m increases, so does the number of unstable

modes. Thus, for large m, using random small perturbations from homogeneity as

initial conditions results in a steady state composed by blocks of cells of various sizes

being selected.

Furthermore, using periodic boundary conditions and small random initial per-

turbations favours the shorter wavelength modes. However, the system evolves to a

pattern of alternating cell fates (w = 2), as in the simulations performed by Collier

et al. [20] (figure 2.9a), or indeed any pattern corresponding to the modes plotted

in figure 2.8 when using initial conditions biased towards them. On the other hand,

when using boundary conditions supposing zero ligand activity outside the domain

(l0 = lN+1 = 0, etc.), in line with [20], we observe patterns consistent with the up-

permost growing mode (solid line in figure 2.8). These patterns always first emerge

near the boundaries and spread inwards. As mentioned in the analysis of the previous

case, this is a direct result from the relatively large perturbations generated at the

boundaries due to the imposed conditions. The domain size is a significant factor

concerning the final pattern in this case. As the pattern spreads inwards, patterning

fronts spreading from the boundaries meet in the middle of the domain. Therefore,

if the domain size is of the appropriate size, a regular pattern of equal blocks of cells

will emerge, otherwise the pattern will be defective, and at the point of intersection

of the two fronts a defect similar to the ones seen in [20] will appear (figure 2.13b).

The numerical simulations reveal that in this case it is possible to observe neigh-

bouring cells adopting the primary fate. This is to be expected, because of the assump-

tion made about the nature of the signalling: here immediate neighbour signalling

only occurs for m = 1 and communication is, as mentioned above, only with cells

located at the maximum distance of the filopodium reach. This may generate a sit-
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Figure 2.13: Numerical simulations for the case of fig. 2.3B. This case is sensitive
to the domain size and boundary conditions. Simulations in 200-cell lines. (a): Pe-
riodic boundary conditions, and small random perturbations from homogeneity as
initial condition were used. The number of unstable modes increases with m and
the pattern reached is composed of blocks of cells of various sizes being selected.
Shorter wavelength modes are favoured. (b): Boundary conditions such that ligand
activity is zero outside the domain. In this case the pattern spreads from the bound-
aries inwards and its wavelength corresponds to the largest fastest growing mode
(solid line in figure 2.8). “Defects” form at the areas where the patterning waves
meet, so that the resulting pattern depends on the exact domain length Parameters:
α = 0.01, β = 100, h1 = h2 = 2.

uation where a cluster of cells is selected to adopt a certain fate, while its adjacent

cluster adopts a different one.

Case C: Weighted sensing

Investigation of the two extreme cases (figure 2.3A and B) is instructional, as

it reveals fundamental aspects of juxtacrine signalling incorporating long-range sig-

nalling through direct contact with filopodia. In this section we examine the scenario

depicted in figure 2.3C: Specifically, we assume that cells located in the vicinity of the

signalling cell are receiving a stronger signal. This case is more biologically realistic

and is supported by experimental data reported in [21]. To model this scenario we use

smoother weighting functions. We choose a Gaussian type function for the weighting

function, so that the averaging term is given by (2.13):
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l̄j =

m
∑

i=1

Bi(lj+i + lj−i)

2
m
∑

i=1

Bi

,

with:

Bi = e
− (i−µ)2

(2σ2) , (2.28)

where i denotes the distance from the signalling source, µ = 1 so that the immediate

neighbours receive maximum signal, and σ is varied. Division by 2

m
∑

i=1

Bi normalises

the weighting so that l̄j is an averaging term. The weighting functions used are

depicted in figure 2.14.

Figure 2.14: plot of (2.28) against j, with µ = 1 : (A) σ = 1, (B) σ = 2, (C) σ = 3.

Figure 2.15a shows the simulations carried out. We have used periodic boundary

conditions and the system is initially perturbed from homogeneity. The maximum

filopodial length was taken to be m = 10 in all cases. By varying σ in equation 2.28

we are able to control the relative weights in the averaging term. The linear analysis

for this case indicates that a strong feedback is needed in order for inhomogeneities to

grow. By increasing σ, the wavelength of the corresponding pattern rises, since cells

located at longer distances receive more significant inhibition signals. The patterns

depicted in figure 2.15 are consistent with the predictions of the linear analysis, and
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Figure 2.15: Numerical simulations using (2.28) as the weighting function. Simu-
lations shown correspond to the curves (A), (B), and (C) of fig. (2.14) from top
to bottom. Periodic boundary conditions used. (a) Initial conditions were small
random perturbations from homogeneity. (b) The activity of the receptor of a sin-
gle cell is initially perturbed from homogeneity. The pattern then spreads from
that cell. Domain sizes are 100, 102, 104 from top to bottom. Parameters used:
h1 = h2 = 3, α = 0.001, β = 5000.

correspond to the fastest growing mode in each case. However, the patterns seen

here show irregularities due to the domain size and the strong feedback that has been

used. Regular patterns can be obtained, provided the domain is of the appropriate

size. In figure 2.15b, such regular patterns are shown for the same parameters as in

figure 2.15a. The domain size along with the initial conditions were altered.

Our simulations show that by increasing σ, thus increasing the filopodial length,

results in patterns with increasing spacing between the cells selected to adopt the

primary fate. Therefore, our analysis can reproduce the experimental procedures

undertaken in [21] and [19], in which perturbing filopodia formation results in patterns

of decreased spacing.

2.4.2 2-Dimensional arrays

In the preceding sections we have analysed distinct signalling scenarios for one-

dimensional arrays, which are more amenable to analysis. In this section we present

simulations performed for hexagonal arrays of cells. This offers a more realistic repre-
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sentation of cells, making the resulting patterns more easily comparable to the actual

patterns seen in a biological system. The equivalent scenarios as in the 1-D case were

considered. That is, cells signalling every cell in a set radius, cells contacting cells lo-

cated in the maximum filopodial distance, and weighted signalling relative to distance.

Figure 2.16 shows the signalling regime for the equivalent of the two cases studied in

one dimensional arrays: (A) signalling all cells within a set radius and (B) signalling

cells located at the maximum filopodial length. Linear analysis demonstrated that

the criterion for inhomogeneous solutions should be more strict than in the equivalent

1-dimensional case. i.e. the feedback should be stronger in order for inhomogeneities

to grow. This is to be expected since a signalling source must communicate with more

cells.

Case A: Signalling all cells

The first simulation depicted in figure 2.17 shows the pattern obtained when all cells

within a radius of m = 3, 5 and 10 cell diameters from the source are signalled

(figure 2.16A). Regular patterns are produced for this case for different values of m.

A B 

* 

Figure 2.16: Representation of the signalling regime for the simulations carried out
in hexagonal arrays. Depending on the different cases under investigation, it was
assumed that a cell either communicates with all its neighbours within a set radius
or with the cells located at the maximum distance the filopodia can reach. That is,
the signal is received by cells forming a disc or a ring around the source. In the latter
case we set the radius to be: r = m ± 0.5. The cell in the centre signals to all the
cells marked with a star. A: All cells are included. B: Only the cells in the perimeter
are being signalled.
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As in the 1-dimensional case, the wavelength being observed is a combination of the

wavelengths that are predicted by the linear analysis. Therefore, extending the Collier

et al [20] model by including filopodia results in isolated cells being singled out to

adopt the primary fate. Similarly to the equivalent 1-dimensional case, the distance

that separates these cells depends on the filopodial length.

de Joussineau et al. [21] performed experiments where they disrupted filopodial

formation. They showed that not allowing filopodia to grow as long as they normally

would leads to overproduction of SOPs. We can reinterpret our results in order to

confirm their findings. If we suppose that filopodia can grow up to 10 cell diameters

(figure 2.17c), then the results shown in figures 2.17a and 2.17b can be interpreted as

situations where filopodia were artificially disrupted, leading to a shorter wavelength

pattern.
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Figure 2.17: Numerical simulation of the case where all cells within a radius of 3,
5, and 10 cell diameters are signalled, according to the signalling regime shown in
figure 2.16A, performed on a 30 × 30 hexagonal grid. Receptor activity shown only.
Black indicates high activity (secondary fate) and white indicates low activity (pri-
mary fate). Parameters: h1 = h2 = 3, α = 10−7, β = 107
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Case B: Sensing cells in the maximum distance

In the case shown in figure 2.18, simulations were performed where the signalling

radius was varied. As can be observed, blocks of cells are being selected, the size of
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Figure 2.18: Receptor activity levels when only cells in a maximum filopodial distance
of 3, 5, or 10 cells are receiving the signal. Blocks of cells are singled out to adopt
the primary fate as opposed to isolated cells seen in previous simulations (fig. 2.17).
Parameters: h1 = h2 = 2, α = 10−3, β = 103.

which depends on the distance that filopodia are allowed to reach. Regular patterns

are also found here, and similarly to the 1-dimensional case, the alternating fate mode

can sometimes be observed. In both cases, the system is perturbed from homogeneity.

The perturbations seem to die out initially and the system returns to the homogeneous

steady state temporarily, before the patterns start to emerge. It should also be noted

that the patterns spread from the boundaries inwards, an observation also made

in [20].
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Case C: Weighted Sensing

Figure 2.19 shows the simulations carried out using the 2-dimensional equivalent of

the averaging term and weighting function used in section 2.4.1 (equation (2.28)).

Here, i represents the distance of a cell from the signalling source. The patterns

(a) σ = 1 (b) σ = 2

(c) σ = 3

Figure 2.19: Simulation when the strength of the signal depends on the distance from
the source, using (2.28) as the weighting function. Parameters: h1 = h2 = 5, α =
10−8, β = 108.

obtained for three different choices of parameter σ are shown. By increasing σ we

allow more cells to be contacted by effectively increasing the number and length of

filopodia. By increasing σ therefore, the range in which lateral inhibition is operating

is also increased, leading to more sparse patterns. The results shown mirror the

experimental procedures undertaken in [21]: Disrupting filopodial formation leads

44



to an overexpression of the primary fate in cells, which is what can be observed in

figure 2.19 for reducing σ.

Polarised signalling

The authors [21] also report that filopodia are mainly oriented along one axis. In the

simulations presented so far a symmetrical distribution of filopodia was assumed. We

took that fact into account and performed simulations where signalling is polarised, for

the equivalent of the two “extreme” cases . The simulations are shown in figure 2.21.

It was assumed that the orientation of the filopodia is mainly along the x-axis. This

was achieved by reducing the reach of filopodia along the y-axis to half the value

of the equivalent x-axis range (see figure 2.20 for a schematic representation of the

signalling regime employed, and compare with figure 2.16). We can observe striped

patterns for both cases. Figure 2.21a can be compared with fig. 2.17. We observe

that while the wavelength along one axis is preserved, cells adopting the primary fate

emerge along the second axis of the pattern. Similarly, in figure 2.21b we observe

alternating stripes of equal thickness of cells adopting different fates.

Figure 2.20: Schematic representation of the signalling regime under the assumption
that filopodial growth is polarised. We assume that filopodial orientation is mainly
along the x-axis. The equivalent of cases I and II were addressed (cf. figure 2.16). A:
All cells within the filopodial reach are signalled. B: The cell in the centre signals the
cells located at the tip of each filopodium. m = 5 in both cases.

2.5 Discussion

We have studied a discrete receptor-ligand model for long range intercellular signalling

in early development, and investigated its behaviour under different assumptions.

Collier et al. [20] considered such a model taking into account juxtacrine (nearest
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Figure 2.21: Patterns emerging when polarisation of the orientation of filopodia is
accounted for. In both simulations filopodia are growing along the x-axis. (a): all
cells within a radius m = 5 are signalled. Two distinct wavelengths are observed
along each axis of the pattern. Parameters: h1 = h2 = 3, α = 10−5, β = 105. (b):
Only the cells in the maximum distance are signalled. Stripes of alternating blocks of
cells are produced. Parameters: h1 = h2 = 2, α = 10−2, β = 102.

neighbour) signalling only, assuming that lateral inhibition takes place. This model

however, only predicts patterns of short wavelength. The authors suggested that

longer scale patterns can emerge as a result of cell division occurring after the pattern

is set up. Long wavelength patterns were predicted by other models when a positive

feedback in ligand and receptor activation levels (lateral induction) was coupled with

juxtacrine signalling [68, 69, 100, 101].

In this work we considered long range cell signalling via the inclusion of filopo-

dial action into a system of juxtacrine signalling, as supported by experimental find-

ings [21, 54, 83]. Linear stability analysis and numerical simulations in a system

with lateral inhibition, revealed that a variety of long wavelength patterns can be

obtained when filopodial signalling is taken into account. Using techniques similar to

the investigation of diffusion driven instability by Turing [97] we derived conditions

for pattern formation and showed that these depend on parameters of the feedback

functions. Different long-scale patterns were observed in our simulations under differ-

ent assumptions for the nature of signalling, reflecting different biological situations.

It was demonstrated that in order for longer wavelength patterns to emerge, more

cells have to be signalled and the available resources of ligand have to be shared be-
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tween them. The pattern formation criteria therefore, reflect the fact that a stronger

feedback is needed for patterned solutions to emerge. However, linear analysis cannot

always accurately predict the dominating pattern, making a non-linear study of this

model an interesting direction for future research.

In a recent study [19], the model of Collier et al. [20] was extended in a similar

fashion to our work, in order to include nonlocal filopodial sensing. The authors

combined experimental procedures and mathematical modelling in their work, and

were able to demonstrate the impact of filopodial signalling both for producing the

correct spacing between SOPs and the patterning refinement process. In their mod-

elling work they considered randomly distributed dynamic filopodia and highlighted

the impact of the filopodial length and lifetime. Our work consists of a more detailed

theoretical approach in which we perform a comprehensive analysis of the various

signalling scenarios, investigate the underlying mechanisms of pattern formation, as

well as analysing the resulting long-scale patterns.

Studying two distinct cases we were able to reveal the basic characteristics of

the model and showed that the filopodial signalling mechanism is sufficient to pro-

duce long-range patterns if coupled to a system in which lateral inhibition alone is

operating. Patterns emerge from small random fluctuations without the need of a

pre-pattern, or a diffusion mechanism, while lateral induction was not considered in

the study of this particular system. Regular patterns of several cell diameters in wave-

length can be generated in which a single cell is singled out to commit to the primary

fate surrounded by neighbouring cells adopting the secondary fate, a situation that

has been observed in various biological situations, like the organisation of bristles in

the Drosophila notum [89]. Our results can reproduce the experiments [19, 21] in

which the formation of filopodia is disrupted. These experiments have shown that if

filopodial extension is perturbed, the distance between successive SOPs is significantly

reduced.

We have also demonstrated that considering polarised filopodia orientation has

a dramatic effect on the patterns produced. A potential direction for further study

therefore, would be to explore polarised signalling in more detail.
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Chapter 3

Modelling Contact Mediated Cell

Movement

In this chapter we examine self-aggregation behaviour and patterning in a population

of cells driven by a contact mediated process such as cellular adhesion. Aggregation

of cells occurs as a result of their ability to sense their environment and preferentially

move towards higher cell density areas in order, for example, to establish and sus-

tain adhesive bonds. In the following sections we discuss the biological motivation

and present previous attempts to model similar systems. By providing simple move-

ment rules, we devise discrete models for cell movement, and derive their continuous

counterparts. The models presented in this chapter are then analysed in chapter 4.

Our aim is to explore whether these models are capable of predicting behaviours seen

in real biological situations, such as the cell-aggregation phenomena shown in fig-

ure 3.1. In particular, we are interested in assessing: (i) the capability of a model to

capture cell-aggregation, (ii) if a model can exhibit multiple such aggregations, and

(iii) whether cell aggregations spanning over multiple cell diameters can be produced.

These three fundamental questions are tabulated in table 3.1.

Table 3.1: Fundamental Questions

(i) Aggregating behaviour
(ii) Multiple/Regularly spaced aggregations
(iii) Multi-cell width aggregates

In this and the following chapter we consider models of cell movement based on
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cells only being capable of sensing their immediate environment. In chapter 5, the

models presented here are extended in order to allow long-range signalling.

3.1 Introduction

Modelling cell movement has been the focus of numerous studies due to its impor-

tance and involvement in a variety of biological processes such as tumour invasion or

aggregation of bacteria [61, 62]. Cell movement plays a very important role in devel-

opment, as many cells must migrate in order to organise themselves and form organs.

Cells can interact with each other and exhibit aggregating or cell-sorting behaviour

via various contact mediated processes, such as cell-cell adhesion. Numerous attempts

have been made to mathematically model cell-cell adhesion and cell movement. One

approach is to devise a discrete model for cell movement wherein the position of each

individual cell is tracked, with rules for cell movement defined according to the phe-

nomenon under investigation (for a review of random walks in biology see [18]). In

certain cases a continuous model can then be derived by considering an appropriate

scaling (e.g. [66]).

In this chapter we will follow this approach and present and analyse a number of

mathematical models that incorporate non local information and derive their contin-

Figure 3.1: Cell aggregations due to adhesive bonds. Pictures show cell aggregations
forming with increasing levels of N-cadherin expression. Note that the average size
of the aggregates increases with increasing cadherin expression. Taken from [29]. To
give an indication of size, the authors in [29] remark that the aggregations shown in
figures 3.1C and D are visible to the unaided eye.
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uous counterparts. Given its importance to a wide range of biological processes we

concentrate on cell adhesion, although we note that the framework is generic and can

describe other types of movement. We therefore outline adhesion below.

3.2 Biology of Cellular Adhesion

Adhesion plays a crucial role in a number of important processes in biology. During

early embryonic stages, cells move and arrange themselves into the specific configura-

tions that will form tissues and organs. Cell-cell and cell-matrix adhesion play a key

role for these processes to take place [94]. Adhesive bonds are also essential for the tis-

sue stability of the adult organism. During development, adhesive molecules located

both at cell surfaces and in the extracellular matrix guide cells to the appropriate

location [3].

Adhesion is mediated by the cell adhesion molecules (CAMs), which are located

on the cell membrane. CAMs can be divided into two classes, Ca2+-dependent, and

Ca2+-independent molecules. In general, CAMs are transmembrane molecules in

which the extracellular domain binds to molecules located on other cells or the ECM.

The intracellular domain is linked with molecules inside the cell that form a signalling

pathway [3]. Adhesion molecules bind to each other by a variety of mechanisms. They

can form a homophylic bond, in which molecules of the same type in neighbouring

cells form a bond (figure 3.2A), a heterophylic bond, when molecules of different type

are bound to each other (figure 3.2B), or binding can be achieved through secretion

of a linker molecule (figure 3.2C) [3].

3.2.1 Molecules in adhesion

Cadherins

Cadherins form the principle family of CAMs of the Calcium-dependent class, and

are the proteins principally responsible for cell-cell adhesion [81, 105]. Their large

extracellular domain is composed by five similar domains (cadherin repeats) and

calcium ions are responsible for holding the repeats together, thus stabilising the
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A B

Figure 3.2: Illustration of the three possible mechanisms by which cell-cell adhesion
is mediated. A: Homophylic bond. B: Heterophylic bond. C: Binding through extra-
cellular linker molecule. Figure adapted from [3].

molecules [3, 77]. The importance of Ca2+ becomes apparent by their removal, lead-

ing to the degradation of the cadherins by proteolysis. Cadherins principally form

homophylic bonds, however heterophylic bonds do form (e.g. P-cadherin - E-cadherin

bonds), with different adhesive intensity [26]. Many members of the Cadherins family

have been identified (e.g. E-cadherin in epithelial cells, N-cadherin in mesenchymal

cells [106]), and it was demonstrated that when different types of cadherins are mixed,

they tend to bind to their own type, and cells expressing different proteins sort out.

Roth et al. [86] have shown that if dissociated cells from liver and retina are mixed

together, they will eventually sort out into aggregates of cells of the same type. Take-

ichi [93] then demonstrated that this sorting out occurs because of the difference in

cadherin type expression between the two cell types. Experiments have demonstrated

that changes in cadherin expression coincide with the formation of specific tissues

during development [37]. Multiple molecules on adjacent cells bind to each other

simultaneously, in a zipper manner, thus increasing the strength of the bond. The

intracellular domain of the cadherins interacts with a number of intracellular attach-

ment proteins, the most important of which are the catenins. An adherens junction

is then formed by the cadherin-catenin complex, which connects cells together [96].

Catenins interact with and bind to the actin cytoskeleton. It has been shown that

cell-cell adhesion fails without the cadherin-catenin interaction. Cadherin molecules

must be attached to the cytoskeleton as well as to one another in order for the adhesive
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bonds to function properly.

Integrins

Integrins also mediate Ca2+-dependent adhesion, and are mainly involved in the reg-

ulation of adhesion between cells and the components of the extracellular matrix [12].

Integrins are heterodimeric receptors that form much weaker bonds with their ligands

in comparison to other signalling molecules, but 10 to 100 times the number of bonds

are created. In this manner, cells can remain connected to the ECM while, since bonds

can be easily broken, still having the freedom to move. Integrins are so called because

they unite the extracellular matrix, by binding to their appropriate ligands, and the

cytoskelton by binding to actin filaments inside the cell, with the use of attachment

proteins talin and α-actinin [42].

3.2.2 Pattern generation through adhesion

As mentioned earlier, when different types of dissociated cells are artificially mixed

together, they reorganise and form aggregates of cells of the same type. This was first

demonstrated experimentally by Townes and Holtfeter [95]. Steinberg performed a

series of experiments and formulated the Differential Adhesion Hypothesis (DAH) [90,

91, 92], reviewed in [29]. The experiments show that cells sort-out into separate

aggregates the configuration of which is preserved. Furthermore, it was shown that

a hierarchy between cell populations exists: If cells of type A ultimately surround

cells of type B and cells of type B engulf cells of type C, then cells A will also

engulf cells C. In order to explain the experimental findings Steinberg proposed a

model based on thermodynamic principles. His assumption was that cells interact

and form aggregates while minimising their free interfacial energy, which leads to a

thermodynamic equilibrium. Using the DAH one can predict the final configuration

of a mixture of cells of different types A and B with different adhesive strengths (see

figure 3.3). If SAA, the adhesive strength of the binding between two A-type cells,

is greater than the equivalent strength for cells of type B (SBB) and the strength

with which two cells of different type connect (SAB), then sorting will occur with the

cells that form the strongest bonds (A, in this case) engulfed (figures 3.3B and C).
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No sorting will occur if the “cross-adhesion” SAB strength is greater or equal to the

average “self-adhesion” strengths and the cells will be randomly mixed, because such

a scenario will consist a thermodynamic equilibrium (figure 3.3A). Finally, if cells of

different type do not adhere to one another (i.e. if SAB = 0), then complete sorting

will occur and two separate aggregates of each type will form (figure 3.3D).

DA B C

Figure 3.3: Illustration of the possible results of mixing two cell populations, A, shown
in black, and B, in white. A: Cross adhesion strength SAB is greater than the average
self-adhesion strengths SAA and SBB: The two cell populations are mixed, no sorting
occurs. B: Cells of type B engulf cells of type A if SAA > SAB > SBB. That is, the
cross-adhesion strength is greater than the self-adhesion strength of one of the cell
types and weaker than the other. C: If the cross-adhesion term is weaker than both
self-adhesion strengths, partial engulfment occurs. D: The two populations do not
adhere to each other (SAB = 0). Complete sorting occurs. Figure adapted from [28].

3.3 Modelling of Cellular Movement

Models for cell movement can generally be classified into two principal classes. Dis-

crete models study the behaviour of individual cells and their interactions with each

other and their surroundings. Continuous models consider cell densities rather than

isolated cells and model phenomena at a larger length scale. The latter class of models

has the advantage that it is easier to analyse both analytically and computationally

due to the large number of variables that a realistic discrete model would require. On

the other hand, the use of a discrete model enables the tracking of individual cells

and ease of setting up movement rules.

Both modelling approaches should yield similar results at their overlapping area of

applicability. A number of papers (e.g. [7, 66, 70, 74]) start from a discrete model that

incorporates movement rules for a biased random walk at the microscopic level and

subsequently derive the corresponding continuous model. Specifically, the approach

is to develop a discrete-space, continuous-time master equation and then use a scaling
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in order to obtain a continuous partial differential equation model.

3.3.1 Discrete Modelling of Cell Adhesion

There are a large variety of discrete modelling approaches that take cellular adhesion

into account (see [32] for a mini review). Discrete models can often be subdivided into

lattice-based and lattice-free models. Cellular automata models fall into the former

category: generally, in these models the cells occupy a single site on a lattice in which

evolution is governed by specified rules. An example of this type of model is found

in [59] where a cellular automaton model is employed to study pigmentation stripes

in zebrafish generated by differential adhesion.

A significant modelling approach is the Cellular Potts Model (CPM), an extension

of the Potts model from statistical mechanics adapted to model cell populations by

Graner and coworkers [35, 36]. In the CPM a cell is represented by a number of

points on a lattice. The type of cell is also defined, so that cells of different type can

be differentiated. A Hamiltonian function of the system can then be defined which

describes the total energy of cell interactions. The energy terms describe surface

energy due to binding of adhesive receptors and ligands of neighbouring cells, of

the same or of different type, and the energy required for the deformation of cells.

Depending on the model, other contributions can be included, for example, due to

chemotactic interactions. A Monte Carlo scheme is employed for the evolution of

the system with the aim to reduce its total energy. The cellular Potts model has

been used to model cell sorting [57], in agreement with the experimental work of

Steinberg [90, 91, 92], and has been extended to model different biological processes

such as solid tumour growth [98] or cellular slime mould morphogenesis [53]. Alber et

al. [1, 2] and Turner et al. [99] were able to derive continuous models of cell interactions

beginning with a Potts model.

A “hybrid” model was proposed by Anderson [6] to model tumour invasion. In this

model, cells are discrete entities which interact with continuous variables representing

the extracellular matrix, oxygen, and enzymes. The movement of cells is dictated

by these interactions (including cell-ECM adhesion) through appropriate probability

assignments.
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In a family of models for the movement of Dictyostelium discoideum cells [75,

76], each cell is considered to be a deformable ellipsoid and its movement calculated

according to its location and the forces exerted on it. Models of this type have the

advantage that the movement occurs in a continuous medium and no pre-imposed

grid is necessary.

Immersed boundary models (e.g. [85]) treat cells as individual elastic entities im-

mersed in an incompressible fluid. The forces exerted between cells and a fluid repre-

senting the extracellular medium and cytoplasm are studied in order to describe cell

behaviour.

3.3.2 Continuous Modelling of Cell Adhesion

As mentioned previously, continuous models for cell adhesion can be derived by tak-

ing discrete models to their continuum limit (e.g. see [99], where a Cellular Potts

Model was taken to its continuous limit). The same approach was used by Anguige

and Schmeiser [7]. They proposed a discrete model for cell adhesion by imposing cell

movement rules and by taking its continuum limit they were able to derive a continu-

ous model for cell-cell adhesion including volume filling effects. Khain and Sander [47]

developed a continuous model that incorporates cell movement, cell proliferation and

cellular adhesion, in order to study propagating cell fronts invading a wound. These

authors have used an extended Cahn-Hilliard equation and compared its behaviour

to a discrete model of the same phenomenon [48]. Armstrong et al. [8] (see also [32])

proposed a phenomenological continuous model for cell-cell adhesion, by considering

the response of cells to adhesive forces, and incorporating a non-local adhesion term.

Their model exhibits aggregating behaviour, and when extended to consider multiple

cell populations, it was shown to be able to replicate different types of cell sorting.

This model was then used in further work [9] in order to adapt a model of somite

formation to include cellular adhesion. In [71] and [31] it was used in models for

cancer invasion.
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3.4 General Modelling Framework

Clearly, there have been many attempts to derive continuous models for cell movement

from an underlying discrete lattice-based model. In this chapter we will use the

framework employed by Othmer and Stevens [66] which we outline below. We derive

mathematical models for cell adhesion, starting from discrete models and considering

their continuous limit.

Othmer and Stevens [66] employed this approach in order to derive a variety of

continuous PDE models. By making several assumptions about the ways that cells

can communicate with their neighbours and sense their environment, the authors

were able to define distinct movement rules in a biased random walk on a discrete

lattice. Through deriving the corresponding continuous-time discrete-space master

equation and applying an appropriate scaling, they could derive the continuous mod-

els in the limit. Models considered in [66] were classified into (a) strictly local models,

in which a walker only bases its movement on local information, (b) “barrier” models,

where movement occurs as a result of information gathered at a neighbouring site

and (c) gradient models where the walker detects a local gradient and chooses the

most favourable direction accordingly. Studying these models, the authors were able

to demonstrate that they exhibit a range of behaviours, from aggregation to blow-up

to collapse to homogeneity. Painter and Hillen [72] used this framework of a biased

random walk in order to derive continuous models for chemotactic movement incor-

porating volume filling and quorum-sensing effects. In [40] a variety of continuous

chemotactic models were derived based on several assumptions on the jump proba-

bility of random walkers. Painter et al. [73] and Horstmann et al. [41] focused on

the first class of models as classified in [66], i.e. strictly local sensing models, and

performed analyses for both the discrete and the continuous model derived from it.

Painter and Sherratt [74] also used this approach in order to derive continuous models

for cell migration of multiple interacting cell populations, and in [70] the same tech-

nique was used in order to derive a PDE model for the movement of tissue composed

by different cell types. Anguige and Schmeiser [7] were able to derive a continuous

model for cell-cell adhesion starting with a discrete model incorporating volume filling
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effects. Baker et al. [10] also derived similar PDE models by considering the limit of

a lattice-based random walk model, and incorporated the effect of growing domains.

We begin by introducing the framework of Othmer and Stevens [66]. For a one-

dimensional discrete lattice we define un(τ) to be the probability of a walker being

at a point n at time τ , conditioned on beginning at n = 0 at τ = 0. Considering

T±
n to be the transitional probabilities per unit time of a jump from n to n ± 1 (cf.

figure 3.4), we can write down the master equation for the evolution of un as

∂un

∂τ
= T+

n−1un−1 + T−
n+1un+1 − (T+

n + T−
n )un. (3.1)

Figure 3.4: Schematic diagram showing a particle moving on a 1-dimensional grid,
and the transitional probabilities

To begin with, we outline a few distinct assumptions for the rules of movement.

These are purposefully simplistic, in order to provide insight into how the different

rules can impact on the expected model behaviour. We consider a discrete lattice

divided into subintervals of length h, and set x = ih. To model a system in which our

particle executes an unbiased random walk, we can assume that T±
n = a, a constant.

i.e. the probability of jumping to the left or right is the same. Then equation (3.1)

becomes:

∂un

∂τ
= a(un−1 + un+1 − 2un). (3.2)
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By expanding the right-hand side as a function of x to second order in h we obtain:

∂u

∂τ
= ah2

∂2u

∂x2
+O(h4). (3.3)

Finally, introducing the scaling τ = λt and assuming that lim
λ→∞

h→0

aλh2 = D (a constant),

we obtain the continuous diffusion equation:

∂u

∂t
= D

∂2u

∂x2
, (3.4)

with constant diffusion coefficient D.

Next, we demonstrate the impact of a bias in the transitional probabilities, such

that the probability to jump away from a site now depends on the particle density at

the site in question: for example, T±
n = a + bun. For b < 0, this models the case in

which a particle is less likely to move away from a site of high particle density, while

for b > 0 a particle moves away from sites at high density. Both cases can be found to

have parallels in real life scenarios. For example, the former case could be considered

a crude approximation for a cell-cell adhesion type phenomenon, in which particles

stick to one another, while the latter case could, for example represent dispersion

induced by overcrowding. Substituting this expression into the master equation (3.1),

expanding, and neglecting the higher order terms, we now obtain:

∂u

∂τ
= ah2

∂2u

∂x2
− 2bh2

∂

∂x

(

u
∂u

∂x

)

, (3.5)

which, after using the same scaling as above, τ = λt and assuming that lim
λ→∞

h→0

λh2 = D,

yields:

∂u

∂t
= D

[

a
∂2u

∂x2
− 2b

∂

∂x

(

u
∂u

∂x

)]

= D
∂

∂x

[

(a− 2bu)
∂u

∂x

]

. (3.6)

Comparing the resulting equation to the diffusion equation (3.4), one can observe

that by including a bias, an additional term is produced, that either counteracts or
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enhances the diffusion process depending on the sign of b. It should be mentioned

however, that in the case a − 2bu < 0 the problem becomes ill-posed (i.e. negative

diffusion).

In the following section we will be applying these techniques in order to derive

a variety of simple “short range” models for cell-cell adhesion and other processes

in which movement is affected by the local cell density. In these models we assume

that cells are capable to communicate with each other within a limited region that

defines their local neighbourhood. In the following chapter we will proceed to analyse

both the discrete/ master equation and the corresponding continuum models. In

chapter 5, these models are extended in order to allow for cell communication over

longer distances.

The aim of this study is to present a variety of models that can be used to model

cell adhesion, and assess their capability of capturing the behaviour of cells in real

biological systems, such as the ability of cells to sort and rearrange themselves into

patterns of distinct cell aggregations separated by low cell density areas. We are

particularly interested in the models’ capability of producing such patterns, and by

studying the resulting patterns we can obtain further understanding of the mecha-

nisms that drive pattern generation through cell-cell adhesion.

3.5 Model Description

Applying the techniques previously discussed, and similarly to the work of Othmer

and Stevens [66], we make several simple assumptions for the nature of movement and

examine their behaviour. The discrete/master equation approach employed in [66]

allows a variety of different possibilities for the mechanisms cells use to sense and

respond to their environment. As shown in [66], the precise form of the underlying

sensing mechanism of a chemical signal greatly affects the behaviour of the system.

Consequently, in order to explore the suitability of a model to describe an adhesion-

type process, we perform a comprehensive analysis by looking at a number of plausible

forms by which a cell can locally respond to the environment. In the next section we

present a preliminary description of the models that will be formally presented and
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analysed in this and the following chapter.

3.5.0 The Models

We begin by assuming that a cell occupies a single point on a linear grid (figure 3.4),

although we note that this will be relaxed in chapter 5. A schematic representation of

the various models we consider is given in figure 3.5. The probability of performing a

one-site jump depends on information gathered by the cells from their immediate sur-

roundings. Figure 3.5 shows the existing or prospective adhesive bonds (represented

by straight lines). Based on the information gathered, cells move with an assigned

probability in the direction marked by the arrows.

First, we will look at two strictly local models ((M1)-(M2)), the first of which

is the simplest scenario describing a myopic walker basing its decision to move on

information gathered locally, i.e. at the site that it is located and regardless of the

status of the sites to which it will move (figure 3.5a). The second form of local

model we consider is a modification of the strictly local model, where we introduce

a “volume filling” effect as in [72]. That is, we assume the decision to move depends

on local information as before, but now movement is impeded if the target site has

reached a saturation level of cell density (figure 3.5b). Secondly, we will look at two

distinct models in which movement is dictated by information gathered from a cell’s

near neighbourhood: (i) a cell senses an adjacent site and moves to it (model (M3),

figure 3.5c) and (ii) a cell senses an adjacent site and moves away form it (model

(M4), figure 3.5d). Finally, we will consider a gradient-based model (M5), where the

decision to move depends on computing local differences in information (figure 3.5e).

Models (M1)-(M5) will be presented in more detail in the following sections.

3.5.1 (M1) Strictly Local Sensing

Using the underlying motivating problem of cell-cell adhesion, we suppose that the

capacity of cells to migrate is dictated by whether they can break the bonds necessary

to leave a site. That is, movement is dictated only by information gathered at the

location the cell currently occupies. If the cell density at the specific site is high, then
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Figure 3.5: Schematic representation of the models considered in this chapter. A cell
occupies a single lattice point. Straight lines connecting the cell to the lattice show
the point(s) from which information is gathered. Arrows represent the probability of
a cell moving in the direction shown based on that information. (a): Strictly local
sensing model (M1). The decision to move depends only on the site a cell occupies.
(b): Local sensing with crowding (M2). Same as in (a) but movement is impeded by
the presence of cells in the target site (represented by the dashed circle). (c): Sensing
into direction of movement (M3). Cells sense the target site and move towards it.
(d): Sensing into direction opposite of movement (M4). Cells sense an adjacent site
and move away from it. (e): gradient sensing (M5). Information at both the current
and target site is computed and compared.

the cell is likely to have formed a large number of adhesive bonds and will be less

likely to move from that site, but if the bonds are broken movement is assumed to

occur in either direction with equal probability. Effectively, cells are assumed to have

no longer range communication with its surroundings. This is modelled by:

T±
n = a+ bf(un) (3.7)

where f is assumed to be a decreasing function of un. Substituting into the master

equation (3.1), we obtain:

∂un

∂τ
= (a+ bf(un−1))un−1 + (a + bf(un+1))un+1 − 2(a+ bf(un))un. (3.8)
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Considering a grid of mesh size h and setting x = nh, we can expand the right hand

side of (3.8) as a function of x to second order in h to obtain:

∂u

∂τ
=

(

a+ bf(u)− bh
∂f(u)

∂x
+

1

2
bh2

∂2f(u)

∂x2

)(

u− h
∂u

∂x
+

1

2
h2

∂2u

∂x2

)

+

(

a+ bf(u) + bh
∂f(u)

∂x
+

1

2
bh2

∂2f(u)

∂x2

)(

u+ h
∂u

∂x
+

1

2
h2

∂2u

∂x2

)

− 2(a+ bf(u))u, (3.9)

which after some manipulation leads to:

∂u

∂τ
= h2a

∂2u

∂x2
+ h2b

∂2

∂x2
(f(u)u) +O(h4). (3.10)

Finally, introducing the scaling τ = λt and assuming that lim
λ→∞

h→0

λh2 = D, we obtain

the continuous model:

∂u

∂t
= D

(

a
∂2u

∂x2
+ b

∂2

∂x2
(fu)

)

, (3.11)

which can be written in the alternative form

∂u

∂t
= D

∂

∂x

(

(a + bf)
∂u

∂x
+ b

∂f

∂x
u

)

. (3.12)

Equation 3.11 can also be written as:

∂u

∂t
= D

∂

∂x

(

(a+ bf + buf ′)
∂u

∂x

)

= D
∂2

∂x2
(au+ buf). (3.13)

where f ′ denotes the first derivative of f with respect to u. Equation 3.13 is the form

of a non-linear diffusion equation and if (a + bf + buf ′) < 0, then the equation is

not well posed and we would expect blow up to occur. As we shall see in chapter 4,

(a + bf + buf ′) < 0 is precisely the condition required for patterning. The system is

expected to converge to homogeneity if a+ bf + buf ′ > 0. The form of model (3.12)

suggests that there is a competition between the two terms inside the brackets. The
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first of these terms will have a dampening effect since a+ bf > 0, whereas the second

term is favouring self-aggregating behaviour since ∂f
∂u

< 0. We expect that depending

on the initial data, this system will exhibit blow-up in finite time or convergence to

homogeneity. Studies on similar models have indeed demonstrated this [41, 73].

3.5.2 (M2) Local Sensing with Crowding Effect

The continuous local sensing model derived above is problematic since, depending on

the parameters, it can be ill-posed or cannot exhibit aggregating behaviour. Equa-

tion (3.13) predicts blow-up behaviour since there is no restriction on cell density. In

an attempt to prevent blow-up from occurring we introduce an additional bias such

that a “crowding” or “volume filling” effect is taken into account, similarly to [40].

Thus, we assume that if the cell density at a site reaches a certain maximum, no more

cells can be attracted to that site. To model this behaviour, we assume:

T±
n = [a+ bf(un)](1− un±1), (3.14)

with f , again, a decreasing function of u. Proceeding as before, we obtain the con-

tinuous model:

∂u

∂t
= D

[{

a
∂2u

∂x2
+ b

∂2

∂x2
(fu)

}

− b
∂

∂x

(

u2
∂f

∂x

)]

, (3.15)

or
∂u

∂t
= D

∂

∂x

(

(a + bf)
∂u

∂x
+ b

∂f

∂x
(1− u)u

)

. (3.16)

This can again also be written as a diffusion equation:

∂u

∂t
= D

∂

∂x

(

(a+ bf + bu(1− u)f ′)
∂u

∂x

)

. (3.17)

Comparing (3.16) to the strictly local model (3.12) we observe the inclusion of the

term (1− u). Similarly to the remarks of the previous section, there is a competition

between dampening terms and terms favouring aggregation. Intuitively, we could

expect that the extra term prevents aggregates from growing above a certain density
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threshold. However, the continuous model derived here can still be ill-posed if a +

bf + bu(1−u)f ′ < 0, which according to the analysis of chapter 4 is the region where

pattern formation is expected. Thus, even after including volume filling effects we

still obtain blowup.

3.5.3 (M3) Sensing direction of movement

Next, we assume that a particle will move from site n to n+1 according to how many

new adhesion bonds it can create at the potential new site. For this model we have:

T±
n = a + bg(un±1), (3.18)

where g is now assumed to be an increasing function of u, reflecting that the prob-

ability of a cell moving to a specific site increases with the cell density of that site.

The continuum limit of (3.1) with (3.18) is then:

∂u

∂t
= D

[{

a
∂2u

∂x2
+ b

∂2

∂x2
(gu)

}

− 2b
∂

∂x

(

u
∂g

∂x

)]

, (3.19)

or

∂u

∂t
= D

∂

∂x

(

(a + bg)
∂u

∂x
− b

∂g

∂x
u

)

= D
∂

∂x

(

(a + bg − bug′)
∂u

∂x

)

. (3.20)

Comparing with previous models, we would expect this model to yield similar

results to the strictly local model (3.12): We again obtain two terms with opposite

sign, since ∂g/∂u > 0. In the absence of random diffusion, (a = 0), and with g an

increasing function we would expect dampening of perturbations to occur at relatively

high cell densities. Similarly to the previous remarks, this model will behave as a non-

linear diffusion equation if a + bg − bug′ > 0 and we therefore expect evolution to a

homogeneous distribution. In contrast when a+ bg − bug′ < 0 we obtain a backward

diffusion equation and the problem is ill-posed.
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3.5.4 (M4) Sensing opposite to movement

Mirrored to the previous case our next model assumes that a cell senses a site in its

immediate neighbourhood, but moves in the opposite direction. Hence, if the site to

a cell’s right is empty or the cell density at it is low, we assume that the cell will move

to the left:

T±
n = a + bf(un∓1). (3.21)

Where f is taken to be a decreasing function. Substituting into (3.1) and expanding

the right-hand side, the continuous model derived is given by:

∂u

∂t
= D

[{

a
∂2u

∂x2
+ b

∂2

∂x2
(fu)

}

+ 2b
∂

∂x

(

u
∂f

∂x

)]

, (3.22)

or

∂u

∂t
= D

∂

∂x

(

(a+ bf)
∂u

∂x
+ 3b

∂f

∂x
u

)

= D
∂

∂x

(

(a+ bf + 3buf ′)
∂u

∂x

)

. (3.23)

Similarly to the previous sections, in the continuous model derived in this case

there is a competition between terms of opposite signs (since f ′(u) ≤ 0). Furthermore,

if a + bf + 3buf ′ > 0 the system is expected to only obtain a stable homogeneous

solution. Conversely, if a+ bf + 3buf ′ < 0 blow up is expected.

3.5.5 (M5) Gradient Sensing

Our final model incorporates elements of the previous models in that now cell move-

ment is determined by information gathered both at the site the cell resides and the

site it may move to. Therefore, cells decide whether to move to a specific location

based on the difference in cell density between its current and neighbouring location.

Thus we use an increasing function g and write down the model:

T±
n = a+ b[g(un±1)− g(un)], (3.24)
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where it should be noted that (since T± denote probabilities) we should demand T± ≥
0. Proceeding as before and upon substitution in the master equation (3.1), expansion

to second order terms and taking the diffusion limit we obtain the continuous gradient

model:
∂u

∂t
= D

[{

a
∂2u

∂x2
− b

∂2

∂x2
(gu)

}

+ b

(

g
∂2u

∂x2
− u

∂2g

∂x2

)]

, (3.25)

or

∂u

∂t
= D

∂

∂x

(

a
∂u

∂x
− 2b

∂g

∂x
u

)

= D
∂

∂x

(

(a− 2bug′)
∂u

∂x

)

. (3.26)

The continuum model thus derived (eq. 3.26) is not well-posed if a < 2bug′ and

will remain homogeneous otherwise.

3.6 Summary of Models

Table 3.2 below summarises the derived continuous models of the preceding sections.

The general form of all the models derived is given as

∂u

∂t
=

∂

∂x

[

(A(u) +B(u)u)
∂u

∂x

]

. (3.27)

The table also shows the sign of the first derivative of the function F with respect to

u, (where F is either f or g) in order to indicate whether an increasing or a decreasing

function of the cell density is used in each model.

Table 3.3 shows typical simulations performed for each discrete model, in order to

provide a preview of the results and assist in clarifying the differences between the

models. It also illustrates the importance of the random diffusion component (a),

since its inclusion in the model can have a drastic effect on the final pattern reached.

Note that for the gradient model we need to impose a ≥ b since we require T±
n ≥ 0.

Consequently, a small random migration term is necessary, rendering the case a = 0

non-applicable.
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Model Section T±
n A(u) B(u) ∂F/∂u

(M1) ( 3.5.1) a+ bf(un) a+ bf bf ′ −
(M2) ( 3.5.2) [a+ bf(un)](1− un±1) a+ bf bf ′(1− u) −
(M3) ( 3.5.3) a+ bg(un±1) a+ bg −bg′ +
(M4) ( 3.5.4) a + bf(un∓1) a+ bf 3bf ′ −
(M5) ( 3.5.5) a + b[g(un±1)− g(un)] a −2bg′ +

Table 3.2: Summary of the models proposed in this section. The table shows the tran-
sitional probabilities of the discrete models and the corresponding continuous models
written in the form: ∂u

∂t
= ∂

∂x

[

(A(u) +B(u)u)∂u
∂x

]

. Both increasing and decreasing
functions of cell density were used depending on the model’s assumptions. The sign
of ∂F

∂u
is shown to indicate which function type is being considered.

In summary, in this section we have proposed a number of discrete models, (M1)-

(M5), to describe cell movement and aggregation due to cell density. We have con-

sidered biased random walks in one-dimensional discrete lattices. The specific nature

of the introduced bias differs according to the assumptions of each model, but in

general movement towards higher cell densities (or away from low cell densities) is

favoured. By applying techniques similar to [66] we have derived the corresponding

continuous models, and demonstrated that the models thus derived take the form of

a non-linear diffusion equation, given in general by equation (3.27). The behaviour

of each of the models considered depends on the interplay between stabilising terms

(denoted by A(u) in (3.27)) and aggregating terms (B(u)u in (3.27)). The condition

for inhomogeneous solutions to evolve is therefore: A(u) +B(u)u < 0. However, this

is precisely the condition under which the problem becomes ill-posed. Consequently,

with the expectation of blow up in the continuous versions of the models, it is doubtful

whether these could provide a “useful” model for biological adhesion.

In the following chapter, we will mainly concentrate on the analysis of the discrete

models proposed in this section. However, a part of the chapter is dedicated to

analysing the continuous models since they do offer some valuable information about

the behaviour of the system. We will use techniques such as linear stability analysis,

bifurcation analysis and numerical simulations for each of the discrete models in order

to illustrate their main properties, and assess their validity. In particular we are

interested in assessing whether, (i) the model is capable of producing self-aggregating

behaviour, (ii) it produces multiple and regularly spaced aggregations, and (iii) the
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Table 3.3: Typical simulations for the discrete models studied in subsequent sections.
All simulations show the systems at rest. Note the effect a small random migration
term (a 6= 0) can have to the patterns observed. The case a = 0 in the gradient
model (Model 5) is not applicable since it leads to negative transition probabilities.
Function f = 1

1+qu2 was used in (M1), (M2), (M4), g = u2

γ+u2 in (M3), and g = u3

γ+u3

in (M5). All simulations shown were performed in 100-site lattices with periodic
boundary conditions. A small random perturbation from homogeneity was used as
initial condition. Parameters used: (a): b = 1.0, q = 100,M = 10. (b): a = 0.1, b =
1.0, q = 100,M = 20. (c): b = 1.0, q = 100,M = 20. (d): a = 0.01, b = 1.0, q =
100,M = 20. (e): b = 2.0, γ = 0.1,M = 20. (f): a = 0.01, b = 2.0, γ = 0.1,M = 20.
(g): b = 1.0, q = 100,M = 20. (h): a = 0.1, b = 1.0, q = 100,M = 30. (i):
a = 1.1, b = 1.0, γ = 0.1,M = 30.
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model can produce cell aggregates of multiple cell widths.
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Chapter 4

Local Sensing Analysis

In this chapter we analyse the models presented in section 3.5. The discrete models

are generally given by (3.1):

∂un

∂t
= T+

n−1un−1 + T−
n+1un+1 − (T+

n + T−
n )un,

where the form of the transitional probabilities T±
n varies for each model (see ta-

ble 3.2). The continuous models take the form:

∂u

∂t
=

∂

∂x

[

(A(u) +B(u)u)
∂u

∂x

]

,

where functions A(u) and B(u) differ according to the specific model. We will study

both types of models subject to periodic boundary conditions, so that total cell density

is conserved and the impact from the boundaries is minimal. We study the discrete

system in one-dimensional domains comprised of N sites, whereas for the continu-

ous system x ∈ [0, L]. Small (≈ 0.5%) random perturbations from a homogeneous

distribution were used as initial conditions, unless otherwise stated.

We initially perform a linear stability analysis for both the discrete and continuous

models in order to obtain predictions of the behaviour of the systems as well as to

compare them to each other. Since as we have seen in chapter 3 that the continuous

models can be ill-posed, we concentrate our investigation on the discrete models.

A bifurcation analysis is then performed in discrete systems of a limited number

of sites. In order to obtain detailed understanding of the system, we first study
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the behaviour for small sized grids, comprising only a few sites. We investigate the

behaviour of the steady state stability as the total density increases in lines of two,

three and five sites, using periodic boundary conditions to limit boundary induced

artifacts. Bifurcation analyses for all models were carried out in order to calculate the

stability of the homogeneous steady state as well as to trace inhomogeneous solutions,

characterise them, and calculate their stability, similarly to the work undertaken

in [73]. This was achieved using the numerical package AUTO [25].

Finally, numerical simulations of the discrete systems discussed in the previous

sections have been performed. Our aim is to further explore the systems behaviour

in order to confirm the analysis and reveal aspects of the models that cannot be

determined analytically. We performed numerical simulations in systems of 100 or

more lattice sites. Small perturbations from a homogeneous distribution were used

as initial condition, unless otherwise noted. Additionally, the initial cell density is

chosen such that any criterion for instability, as derived from the linear analysis, is

met for each case studied. Periodic boundary conditions were employed throughout.

The analysis undertaken in the following sections serves as a tool for understand-

ing the properties of each model. The aim, from a biological point of view, is to test

whether a particular model is capable of reproducing behaviours found in real biologi-

cal systems, and to what extent. Analysis of each model can reveal its drawbacks and

limitations in that aspect. Furthermore, the mathematical models proposed here, are

approximations of biological systems and analysing their properties can help improve

our understanding of the underlying mechanisms of the real systems in question.

4.1 Strictly Local Sensing Analysis

In this section we perform a detailed stability, bifurcation, and numerical analysis

of the strictly local model. This will highlight the methodologies being performed

in a transparent manner aided by the relatively tractable nature of the model. Our

principal aim is to understand the capacity of the model to predict aggregation in a

population of cells.
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4.1.1 Linear Stability Analysis

We begin by focusing on the strictly local sensing model (sec. 3.5.1). We linearise both

the discrete and continuous models. As implied in the preceding chapter, the contin-

uous models derived are shown to be ill-posed whenever deviation from homogeneity

is expected. By linearising the continuous models however, we can both confirm this

point, and further our investigation by obtaining a general stability condition, which

we can then compare to the equivalent stability condition of the discrete model and

explore the correspondence between them.

Continuous model

The continuous model derived for the strictly local case (equation (3.11)) possesses

a single homogeneous steady state u0, where u0 =
1

L

∫ L

0
u(x, 0)dx. We are interested

in determining the stability of the homogeneous steady state in order to derive the

conditions under which patterns can emerge. Furthermore, linear stability analysis

about the homogeneous equilibrium can provide useful information about the system’s

evolution. The model (3.11) reads:

∂u

∂t
= D

∂

∂x

(

(a + bf)
∂u

∂x
+ b

∂f

∂x
u

)

= D
∂

∂x

(

(a + bf)
∂u

∂x
+ bf ′∂u

∂x
u

)

, (4.1)

where f ′ = ∂f
∂u
. We linearise around the homogeneous steady state u0, and set u =

u0 + ũ, where ũ is a small perturbation from the steady state:

∂ũ

∂t
= D

∂

∂x

[

∂ũ

∂x
(a+ bf0 + bũf ′

0) + b(f ′
0 + ũf ′′

0 )(ũ+ u0)
∂ũ

∂x

]

= D
∂

∂x

[

∂ũ

∂x
(a+ bf0 + 2bũf ′

0 + bu0f
′
0 + bũ2f ′′

0 + bũu0f
′′
0 )

]

. (4.2)
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where f0, f
′
0, and f ′′

0 represent the function f and its first two derivatives evaluated

at u0. Ignoring any non-linear terms, we obtain:

∂ũ

∂t
= D

∂2ũ

∂x2
(a+ bf0 + bu0f

′
0). (4.3)

Finally we assume solutions of the form ũ = ueikx+λt, which yields the following

dispersion relation:

λ = −D(a+ bf0 + bu0f
′
0)k

2 (4.4)

where, f0 and f ′
0 are the values of f and its first derivative evaluated at u0, the

homogeneous steady state, and λ and k are the eigenvalues and wavenumbers of the

system. As mentioned in the preceding sections, we presume f to be a decreasing and

saturating function. Biologically, this reflects the fact that a large number of adhesive

bonds will form at high densities, making a cell less likely to move away from densely

populated sites. Saturation of f prevents negative values, as this will not make sense

from a biological point of view. Furthermore, equation (4.4) yields the condition:

a+ bf0 + bu0f
′
0 < 0, (4.5)

for inhomogeneous patterns to develop, or

f ′
0 < −a + bf0

bu0

,

which implies that f must be sufficiently steep at the homogeneous steady state for

patterning to occur.

We observe therefore from equation (4.4) that the equilibrium is always stable or

unstable for every wavenumber. When it is unstable, the fastest growing modes cor-

respond to the shortest wavelengths. Note that the unstable case corresponds exactly

to a backward diffusion equation, and is hence an ill posed problem. Consequently,

blowup behaviour can be expected and the model can be considered unsuitable as a

model for cells, since the density will tend to infinity at blowup locations.

73



Discrete model

The continuous model is ill-posed in the region of instability of the homogeneous

steady state. Linear stability analysis was also performed on the discrete model, to

establish the correspondence between the two models, and to obtain predictions about

the behaviour of the discrete system which will be further explored in the following

sections.

Equations (3.7) and (3.1) read:

∂un

∂t
= [a + bf(un−1)]un−1 + [a + bf(un+1)]un+1 − 2[a+ bf(un)]un. (4.6)

Proceeding as with the continuous case, we examine perturbations from the homo-

geneous steady state u0, where in the discrete case, u0 = 1

N

∑N
i=1

ui. By setting

un = ũn + u0, and expanding with Taylor’s series ignoring higher order terms, equa-

tion (4.6) yields:

∂ũn

∂t
= [a + bf(ũn−1 + u0)](ũn−1 + u0) + [a + bf(ũn+1 + u0)](ũn+1 + u0)

− 2[a+ bf(ũn + u0)](ũn + u0)

= (a+ bf0 + bũn−1f
′
0)(ũn−1 + u0) + (a+ bf0 + bũn+1f

′
0)(ũn+1 + u0)

− 2(a+ bf0 + bũnf
′
0)(ũn + u0)

= (ũn−1 + ũn+1 − 2ũn)bu0f
′
0 + (a+ bf0 + bũn−1f

′
0)ũn−1

+ (a + bf0 + bũn+1f
′
0)ũn+1 − 2(a+ bf0 + bũnf

′
0)ũn. (4.7)

Ignoring non-linear terms, we obtain:

∂ũn

∂t
= (a+ bf0 + bf ′

0)(ũn−1 + ũn+1 − 2ũn). (4.8)

In the discrete case we look for solutions of the form ũn = ueink+λt, yielding the
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corresponding discrete dispersion relation:

λ = 2(cos k − 1)(a+ bf0 + bu0f
′
0), (4.9)

which, upon expanding the cosine term to second order in k is in accordance with the

continuous case dispersion relation (eq. (4.4)), and both yield the same condition for

λ to be positive for all wavenumbers k. That is, we require:

a+ bf0 + bu0f
′
0 < 0. (4.10)

We should note here that in the discrete version of the model, we consider a discrete

lattice and therefore the admissible modes are also discrete. Furthermore, we are only

interested in discrete wavenumbers that correspond to the effective wavelengths of

w = 2π
k
= 2, 3, 4 cells etc. Thus, we only consider values of k ≤ π, since values of k > π

correspond to wavelengths smaller than 2 cells, which is the lowest relevant wave-

length for patterning on a discrete lattice. Taking the periodic boundary conditions

into account, the admissible discrete modes are given by k = 2πn
N

, n = 0, 1, 2, ...N/2.

Figure 4.1 shows a plot of the dispersion relation (equation (4.9)) under a specific

patterning scenario (i.e. equation (4.10) is satisfied). Modes corresponding to integer

values of wavelength w are indicated.

As previously discussed, we presume f to be a decreasing and saturating function.

Functions of the form f = 1

1+qum , with m > 1, with q a positive constant, meet the

general requirements. We note that according to (4.10), if m ≤ 1 the homogeneous

steady state remains stable. In the following sections we are using the analytically

convenient form: f = 1

1+qu2 . Another suitable form is f = e−qu and simulations using

the latter function have shown the same qualitative behaviour as with f = 1

1+qu2 .

Under these assumptions for f , it follows from (4.10) that the necessary condition for

the homogeneous steady state to be unstable is:

Q ≡ a+ aq2
M4

N4
+ q

M2

N2
(2a− b) + b < 0 (4.11)

where we have used f = 1

1+qu2 , N is the total number of grid points and M is the total
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Figure 4.1: Plot of the dispersion relation (equation (4.9)) for the discrete model in
the range of values of k ∈ [0, π]. Parameters were chosen such that condition (4.10)
is satisfied, and the homogeneous steady state is unstable to all modes. Vertical lines
indicate the modes corresponding to wavelengths of w = 2, 3, 4, ... cells. (Only the
modes of wavelength up to 6 cells are annotated for clarity). We plot equation (4.9)
with f = 1

1+qu2 . Parameters: a = 0.1, b = 2, q = 100, u0 = M/N = 0.3

cell density over the lattice, such that u0 = M/N is the homogeneous steady state.

Figure 4.2 shows a plot of the above expression as a function of the total cell density

for a representative set of parameters. We can observe that the homogeneous steady

state is unstable for values of M greater than ≈ 11 and smaller than ≈ 41 with the

parameters used. We observe therefore, that the homogeneous equilibrium becomes

unstable once the total cell density exceeds a certain threshold, and is stable for high

densities. As mentioned in the derivation of the model (section 3.5.1), equation (3.12)

suggests that there is a competition between terms of opposite sign. At low cell

densities the diffusive terms dominate. Considering the discrete model, the decision

to move depends on local information and if the cell density is low, cells will move

with greater probability in a random direction. Conversely, if the total cell density is

high, cells will generally remain “stuck”, and small perturbations from homogeneity

will die out due to diffusion. In the special case a = 0, the condition (4.11) reduces
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Instability
  region

Figure 4.2: Plot to illustrate the stability criterion of eq. (4.11) for the strictly local
model of section 3.5.1. The quantity Q is plotted againstM , the total cell density. The
sign of Q indicates whether the homogeneous steady state is stable. When Q < 0, the
homogeneous steady state is unstable. Parameters used: a = 0.1, b = 2, q = 100, N =
100.

to:

M > N

√

1

q
. (4.12)

In this case therefore, the steady state is stable only below a certain threshold of the

cell density and unstable above it, suggesting that for high densities in the absence of

random diffusion, small perturbations from the homogeneous steady state are mag-

nified. Figure 4.3 shows a plot of Q with respect to M for different values of a to

illustrate its effect on the instability criterion. It follows from equation (4.11) that a

necessary condition for the steady state to become unstable in a certain region (i.e. for

equation (4.11) to hold) is b < 8a. In other words, with reference to equation (3.11),

we can see that by increasing a the diffusivity of the system increases, and when a

reaches a critical value, diffusion dominates and the system remains homogeneous.

Furthermore, (4.9) suggests that as long as (4.11) holds, the fastest growing modes

will be the ones with the shortest wavelengths w = 2π
k

(see also figure 4.1).

Both the discrete and continuous linear stability analysis therefore, yield the same

condition for instability of the homogeneous steady state (equation (4.10)).
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Figure 4.3: Plot of Q versus the total cell density M , according to eq. (4.11), for
different values of a, Parameters: number of sites N = 100 , q = 100 and b = 4. The
homogeneous steady state becomes unstable when Q < 0. The region of instability is
reduced as a increases due to the increasing dominance of diffusion. When a reaches
the critical value a = b/8 the region of instability ceases to exist. Note that for the
specific case a = 0, Q < 0 ∀ M > M∗, where Q(M∗) = 0.

4.1.2 Strictly Local Model (M1) Bifurcation Analysis

In this section we perform a detailed bifurcation analysis in small lattices. As shown

from the linear analysis, the stability of the homogeneous steady state depends on

the total cell density M . We therefore have chosen M to be the varying parameter,

and explored the stability properties of the homogeneous equilibrium as well as the

existence, form, and stability properties of any inhomogeneous steady states. A clas-

sification of the steady states encountered in the following sections is presented in

table 4.1. The inhomogeneous steady states found in the systems under consideration

are generally characterised by two levels of cell density, although we note that steady

states consisting of more than two density levels can also exist, as we demonstrate

later. We have therefore classified the inhomogeneous steady states in terms of the

number of sites at high (H) and low (L) cell density. For example, (HHLL) denotes

a family of steady states, in a 4-site lattice, composed of two sites at high density and

two sites at low, regardless of their position on the lattice.

Case I: a = 0

We begin by first examining the case where a = 0. This case has been studied by

Painter et al. [73] and is reviewed here for completeness. Linear stability analysis

showed that in this case we expect the homogeneous equilibrium to be unstable above
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Lattice Homogeneous Inhomogeneous
(HL)

2 sites

(HLL) (HHL)

3 sites

(HLLL) (HHLL) (HHHL)

4 sites

Table 4.1: Classification of the steady states found in 2, 3, and 4-site lattices. In-
homogeneous equilibria consist of two levels of cell density. The number of sites at
each level characterises the class of equilibria. As we discuss in the following sections,
steady states of the same class share their stability properties: For example, the three
steady states that form the class (HLL) in a 3-site lattice coexist in the same pa-
rameter space and are either all stable or all unstable depending on the parameters.
Thus, in the following, there is no distinction between members of the same class.

a certain level of the total cell density (fig. 4.3 in section 4.1.1). In the bifurcation

diagrams of this and the following sections the cell density of a site at all possible

steady states (u∗) is shown as the total cell mass (M) is varied. The stability of a

steady state is also traced, and indicated by a solid line (stable steady state), or a

dashed line (unstable steady state).

As can be observed in figure 4.4, the system possesses only one homogeneous

steady state, u0 = M
N

which is stable, when the total density is below the threshold

dictated by the criterion of (4.10). Once the threshold is reached, the homogeneous

equilibrium loses its stability and further steady states appear. In the 2-sites case

(figure 4.4a), an inhomogeneous equilibrium is reached, where one site has high cell

density while the other site low. We can analytically determine all steady states of

the system in this case. The system reads:

∂u1

∂t
= 2bf(u2)u2 − 2bf(u1)u1 (4.13)

∂u2

∂t
= 2bf(u1)u1 − 2bf(u2)u2, (4.14)

where we have used periodic boundary conditions. At steady state the two equations
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(a)

(b)

(c)

Figure 4.4: Bifurcation diagrams for the strictly local model of section 3.5.1. Steady
states (u∗) are plotted versus the bifurcation parameter M , the total cell mass for
(a) a 2-sites system, (b) a 3-sites system and (c) a 5-sites system. Parameters used
throughout: a = 0, b = 1, q = 100. Solid lines indicate stable steady states and
dotted lines unstable steady states. Also shown are the forms of the steady states the
different lines of the diagram correspond to.
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collapse into:

bf(u1)u1 = bf(u2)u2, (4.15)

which is coupled with the mass conservation constraint:

u1 + u2 = M. (4.16)

The system (4.15)- (4.16) can be analytically solved. Using f = 1

1+qu2 , the solutions

are: u1 = u2 = M/2 (the homogeneous steady state) and

u±
i =

M ±
√

M2 − 4/q

2
, (4.17)

where i = 1, 2, and which are paired (u+

1 , u
−
2 ), (u

−
1 , u

+

2 ). We can observe that the

bifurcation occurs for M = 2/
√
q. For M < 2/

√
q, the only real solution is the

homogeneous one, whereas forM > 2/
√
q, the inhomogeneous solutions (4.17) become

real. This behaviour is shown in figure 4.4a.

In the 3-sites case (figure (4.4b)), there appear two new branches and at equilib-

rium, the density is low at two of the sites and high at the third. The unstable branch

corresponds to a steady state where there is high density at two of the sites. As the

number of sites increases, the situation becomes more complicated. Figure 4.4c shows

the bifurcation diagram obtained for a system of 5 sites. As shown, the stable equilib-

rium is inhomogeneous and corresponds to a state where there is relatively high cell

density at one of the sites and low density at the other four (HLLLL). The unstable

branches shown correspond to steady states where: four sites have high density and

one site low (HHHHL), three sites with high density and two with low (HHHLL),

and two sites with high density and three with low (HHLLL). As a final outcome

therefore, when in the region where the homogeneous steady state is unstable, the

system will evolve to a state where there is global aggregation of all cells at a unique

site. Further increasing of the lattice size will not alter the final outcome, but further

unstable solutions will emerge that can play a role in the temporal evolution of the

system, as will be shown in the numerical simulations of the following section.

Figure 4.5 below shows some preliminary simulations on 5-site grids to further
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Figure 4.5: Time evolution of the strictly local model (M1) with a = 0 on a 5-site
lattice. Parameters used b = 1, q = 100,M = 10.6

illustrate the bifurcation analysis carried out in this section. Periodic boundary con-

ditions were used. The system was given a small perturbation from homogeneity and,

as can be seen in figure 4.5, the system transiently passes from the homogeneous

steady state to one where three peaks appear, to one with only two peaks remaining

before finally reaching one of the five possible stable inhomogeneous steady states

where almost all the cell mass is located at one of the sites. It is also shown that

the pattern with alternating high and low cell density is the first to appear. This

can be expected from the linear analysis, where patterned modes with the shortest

wavelength (2 for discrete lattices), are the fastest growing.

Case II: a > 0

In the case where a 6= 0 the homogeneous steady state is stable for both low and high

cell densities according to the linear analysis. Bifurcation analysis shown in the figures

below confirms this. However, the main difference between this case and when a = 0
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is that, in the absence of random migration, there are just two fundamental forms

of stable equilibria, given the total cell density: a uniformly dispersed population

and a unique localised aggregation. For a 6= 0 there are many possible stable steady

states as the total density varies. Comparing figures 4.4b and 4.6b for the 3-sites

case for example, we can observe that in the former case the only possible steady

state for M > 0.3 is (HLL). In the second figure however, the steady state (HHL) is

also stable for a certain range of values of M . This feature becomes more prominent

as the number of sites increases. In the 5-sites case of fig. 4.6d, in the range of

M for which the homogeneous equilibrium is unstable, four stable branches emerge

corresponding to four different stable inhomogeneous steady states. In contrast to

the case where a = 0 (fig. 4.4c), the equilibria (HHHHL), (HHLLL), and (HHHLL)

can now be stable. This is also shown by Painter et al. [73], where by adding a small

random diffusion component in the system studied, they showed that it evolved to

stable multiple peak solutions rather than a unique aggregation, although no further

analysis was performed. We can also observe in figures 4.4b - 4.4c and 4.6b - 4.6d that

there are some areas of bistability. It should also be noted that inhomogeneous steady

states of the same form share the same stability properties. For example in the 4-sites

case (figure 4.6c), both (HHLL) and (HLHL) equilibria as well as the permutations

of these are either all stable or all unstable depending on the parameters. However,

we expect the pattern with alternating high and low cell density between sites to

emerge from simulations, with random initial data. That is because, as shown by the

linear analysis (section 4.1.1), the fastest growing modes are those with the shortest

wavelength, and specifically with wavelength w = 2.

In order to illustrate the bifurcation analysis for this case, simulations on a 5

site grid were performed. Figure 4.7, shows the results of a series of simulations

with varying total cell mass. The pictures show the system following evolution to

equilibrium, and it can be used as an accompaniment to figure 4.6d. It shows the

progression of the stable steady states reached as the total mass M is increased.

It is also interesting to note that when a 6= 0 steady states exist in which there

are three distinct levels of cell density, albeit these have always been found to be

unstable. Figures 4.8a and 4.8b show details from fig. 4.6d. Two unstable solutions
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(a) (b)

(c) (d)

Figure 4.6: Bifurcation diagrams for the strictly local model of section 3.5.1 for (a) a
2-sites system, (b) a 3-sites system, (c) a 4-sites system and (d) a 5-sites system for
the case where a random diffusion component is added (a 6= 0). f = 1/(1 + qx2) was
used throughout with q = 100, and the varying bifurcation parameter is the total cell
density M . Parameters: (a) a = 0.1, b = 1, (b) a = 0.1, b = 2, (c) a = 0.1, b = 1, (d)
a = 0.1, b = 1. Solid line: stable steady state. Dotted line: unstable steady state.
The form of each steady state is shown at the parameter area where it is stable.

are plotted. If, for example, we examine the vertical line where M = 0.90 in fig. 4.8a

we can observe that there is a steady state where u = 0.10 in two of the sites, u = 0.20

in another two and u = 0.30 in the remaining one. Such steady states do not occur

at all in the case where a = 0.

Summary of bifurcation analysis

In this section we have performed bifurcation analysis of the strictly local sensing

model (M1). Based on the predictions of the linear stability analysis (section 4.1.1),

84



1 2 3 4 5
0

0.1

0.2

0.3

0.4
M = 0.7

1 2 3 4 5
0

0.1

0.2

0.3

0.4
M = 0.8

1 2 3 4 5
0

0.1

0.2

0.3

0.4
M = 1

1 2 3 4 5
0

0.1

0.2

0.3

0.4
M = 1.2

Figure 4.7: Simulations on a 5-site lattice of the strictly local model in order to
further illustrate the bifurcation diagrams. Four different simulations are shown when
equilibrium is reached, for varying total cell density. Periodic boundary conditions
were employed. Parameters used a = 0.1, b = 1, q = 100

(a) (b)

Figure 4.8: Details from figure 4.6d, the bifurcation diagram of a 5-site system with
a > 0. Each figure shows the existence of steady states with three distinct levels
of cell density among the 5 sites. Also shown are the forms of the steady states in
question. Steady states of this form do not exist when a = 0, and are not expected
to be observed in simulations with random initial conditions, since they are always
unstable (as indicated by the dashed line).

we considered the cases a = 0 (no random cell motility) and a 6= 0 separately.

In the first case, we have shown that the unique homogeneous steady state is stable

for relatively low values of the total cell density and unstable otherwise. If the total
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cell density is higher than a threshold specified by the parameters, the system can only

evolve to a family of inhomogeneous steady states, where almost all cells aggregate at

a single site. Increasing the lattice size results in more inhomogeneous steady states

emerging. However, these are all unstable and do not alter the final outcome of global

aggregation at a single site. It is expected however, that the time evolution of a system

from small perturbations from homogeneity to global aggregation will be affected.

When a small random cell motility term is added to the system, global aggregation

can be prevented. The bifurcation analysis shows that in this case the homogeneous

steady state is stable for both low and high total cell densities. In the region where it

is unstable, there are now multiple stable inhomogeneous steady states, the number of

which increases with the domain size. These equilibria are composed of two levels of

cell density, and the ratio of sites at high density to sites at low density is dictated by

the total available cell density M . The stability of the inhomogeneous steady states,

and therefore the pattern the system will evolve to also depends on M . We therefore

expect that in a large domain system, a large variety of stable inhomogeneous equi-

libria exists, and the model is capable of producing a number of different patterns. In

order to confirm this prediction and further investigate our model we have performed

the numerical simulations presented in the following section.

4.1.3 Numerical Simulations

The bifurcation analysis presented in the previous section allows insight into the

properties of the system and the various forms of patterns that can be obtained in

a system with small size. However, as the domain size is increased, studying the

models with bifurcation analysis techniques becomes increasingly difficult. Therefore,

in order to study larger domains we resort to a numerical investigation to see whether

the insight gained can be further explored.

The simulations shown in this section concern the model (M1) discussed in sec-

tion 3.5.1 and analysed in 4.1.1 (for details of the numerical methods used, see sec-

tion A.2 of the appendix). This is the simplest model where only local sensing is

assumed. We begin by exploring the special case where a = 0. We have seen that

the homogeneous steady state is always unstable provided that the total cell density
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Figure 4.9: Time evolution of the strictly local model with a = 0, in a 100-site do-
main.The system was initially perturbed from homogeneity. Perturbations are mag-
nified and multiple peaks appear. In the course of the simulation the peaks merge
until finally equilibrium is reached with almost every cell gathered at a single site.
Parameters: b=1.0, q=100. Numerical method details in A.1.2

exceeds a certain threshold (eq. (4.10)). The bifurcation diagrams of section 4.1.2

have shown that in this case it is expected that if the parameter regime is such that

the homogeneous steady state is unstable, then in the resulting inhomogeneous equi-

librium, a single site on the lattice will have high cell density. To test this prediction

we have performed the simulation displayed in figure 4.9. f = 1

1+qu2 was used, and the

parameters were:a = 0, b = 1, q = 100. The simulation reveals that the final pattern

is indeed one with a single site attracting a high cell density, while the rest of the sites

have a low cell density. Transiently, the perturbations initially given are magnified

and as a result spikes appear. Gradually, the spikes become larger and further apart

as cells move. Eventually all peaks but one disappear and the system reaches equilib-

rium. This coarsening effect is reported in [41] and [73] and can be predicted from the

bifurcation analysis carried out above: as the lattice size is increased, multipeaked

patterns correspond to saddle points which may transiently attract solutions.

Further simulations were performed in order to explore the general case in which

a 6= 0. The analysis previously undertaken predicts that there are now stable solu-

tions where multiple peaks appear. When a = 0 the system evolves to either the
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homogeneous equilibrium or to a steady state where all the cells aggregate at a single

site, depending on the total cell density. In this case however, the inhomogeneous

equilibria correspond to a number of sites being at a relatively high cell density while

the rest at a relatively low density. We expect that for a given set of parameters, the

number of peaks at equilibrium will be increasing as the total cell mass M increases.

This can be seen in fig. 4.10, which shows the simulations performed for six different

values of the total cell density M . The bifurcation analysis of a 5-site system in sec-

tion 4.1.2 showed that as M is increased, the system evolves in succession from the

homogeneous steady state to (HLLLL), to (HHLLL), to (HHHLL), to (HHHHL),

and finally to homogeneity (cf. figure 4.7). Figure 4.10 shows the equivalent behaviour

for a system of 100 sites.
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Figure 4.10: Simulations for the full strictly local model where diffusion is included
(a > 0). The different plots show the equilibria reached for different values of the
total cell density M. In each case, each site can be at either of two possible levels of
cell density. As the total density increases, the fraction of sites at high density rises.
Parameters: a = 0.1, b = 1.0, q = 100. (see A.1.2 for details)
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4.1.4 Summary and relation to aggregation of adhesive pop-

ulations

In summary, we have seen that global aggregation of all the cells at a single site occurs

unless a small element of random diffusion is added to the system. Such behaviour is

typically not desirable, since the model is incapable of capturing the regular aggrega-

tion patterns observed in real systems. Including random migration prevents global

aggregation and produces regular patterns. However, the analysis showed that these

are short wavelength patterns, meaning that instead of cell aggregations we obtain

patterns at the scale of individual cells. In order to obtain blocks of sites at high cell

density, a system with high total cell density is needed. In this case, the aggregations

form as a result of the high cell density forcing high density sites in proximity, rather

than the model’s properties. Furthermore, the aggregations formed in this way are

separated by single site regions of low cell density, and are therefore not good ap-

proximations of a natural system since at a macroscopic scale, such regions would be

indistinguishable. Therefore, with reference to the fundamental questions outlined in

table 3.1, the model (M1) is capable of: (i) producing aggregating behaviour, (ii) pro-

ducing multiple aggregations provided there is a non-zero random migration element,

but (iii) these aggregations are of single cell width.

4.2 Analysis of (M2): Local Sensing with Crowd-

ing

In this section, the local sensing model with crowding effect is analysed. The model

is presented in section 3.5.2, where the assumptions for cell movement are described.

In summary, a cell moves according to information gathered locally. That is, a cell

is more likely to move away from a site when the cell density at that site is low.

Additionally, a restriction in cell movement is imposed. It is assumed that there

exists a certain maximum capacity at each site, and when it is reached no more cells

can move to this particular site.
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4.2.1 Linear Analysis

We have performed linear stability analysis for the case of section 3.5.2. That is,

the case where strictly local sensing is assumed and a crowding effect is taken into

account. By linearising the continuous model derived (eq. (3.15)) we obtain the

following dispersion relation:

λ = −D(a + bf0 + bu0f
′
0 − bu2

0f
′
0)k

2, (4.18)

which implies that for inhomogeneities to grow we require

a+ bf0 + bu0f
′
0 − bu2

0f
′
0 < 0. (4.19)

Performing the corresponding linear analysis for the discrete case of the model yields:

λ = 2(cos k − 1)(a+ bf0 + bu0f
′
0 − bu2

0f
′
0) (4.20)

which is equivalent to the continuous dispersion relation eq. (4.18) upon expansion

of the cosine term to second order, and yields the same condition for stability of

the homogeneous equilibrium (equation (4.19)). Again we note that the instability

condition in the continuous model corresponds to the region where the model is an ill

posed/backward diffusion model. As such, we expect blowup and concentrate on the

discrete model.

Similarly to the previous case, assuming f = 1

1+qu2 , we obtain the following crite-

rion for the homogeneous steady state to be unstable in the discrete case:

Q = a + b+ aq2
M4

N4
+ 2bq

M3

N3
+ q

M2

N2
(2a− b) < 0 (4.21)

which is illustrated in figure 4.11 using the same parameters as with the simple local

sensing case. Comparing this plot with figure 4.2 we observe a far smaller region in

which the homogeneous steady state is unstable for the same parameters. This differ-

ence can be intuitively explained by comparing equation (3.15) and equation (3.11)

for the strictly local case: here we observe the introduction of the term −b ∂
∂x

(

u2 ∂f
∂x

)

.
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The inclusion of this term has a dampening effect explaining the smaller region of

instability observed. For the same reason, the homogeneous steady state remains

stable for smaller a than in the previous case. It is also worth noticing that in this

case the homogeneous steady state is stable for large values of M , even in the extreme

case of a = 0, in contrast to the strictly local sensing scenario discussed in the previ-

ous section. Again, this can be intuitively expected from the crowding term, which

will restrict cell movement at higher levels. As can be seen from table 3.2 the B(u)

term of the strictly local sensing case is multiplied by a saturation factor of (1 − u),

which becomes more significant in high densities and impedes the movement of cells.

Similarly to the local sensing scenario, provided that the homogeneous equilibrium is

unstable, the fastest growing modes will be those with the short wavelength modes

and we would expect these to dominate initial patterning from the steady state.

(a) a = 0.1 (b) a = 0

Figure 4.11: Plot to illustrate the stability criterion of eq. (4.21) for the local sensing
with crowding model of section 3.5.2. The equivalent criterion for the strictly local
case (eq. (4.11)) is also plotted here for comparison. The quantity Q is plotted against
M , the total cell density. The sign of Q indicates whether the homogeneous steady
state is stable: When Q < 0, the homogeneous steady state is unstable. (a): The
homogeneous equilibrium is shown to be unstable for both low and high values of M ,
for sufficiently low a. (b): The region of stability for high total density exists even
for a = 0, in contrast to the case of the strictly local sensing model as a result of the
crowding term included. Parameters used: b = 2, q = 100, N = 100.
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4.2.2 Bifurcation Analysis

Figures 4.12a and 4.12b below show the bifurcation diagrams obtained for the model

(M2), for a system of three lattice sites and for a = 0 and a 6= 0 respectively. In

contrast to the case discussed in the previous section, we observe that, when a = 0

the homogeneous equilibrium can now become stable both below and above a certain

threshold of the total cell density. This was also shown by the linear analysis under-

taken in section 3.5.2. Figure 4.12a also reveals that the “secondary” inhomogeneous

solution (where two sites have high cell density (HHL)) also becomes stable for some

values of M , and the system is bi-stable. This becomes clearer when the lattice size

is increased Figure 4.12c shows the case for a 4-site lattice. The situation for a 6= 0

is qualitatively the same, in that the system possesses the same stable steady states,

and only the region in which the homogeneous steady state is unstable changes. Note

also that, as in the case for strictly local sensing, steady states with sites in more than

two levels of cell density exist but are always unstable.

4.2.3 Numerical Simulations

In this section we investigate the model numerically, using the method outlined in A.2.

We have mentioned previously that there is a competition between terms of opposite

sign in the model, where both the crowding term and the random migration term

have a stabilising effect. This was examined further in the analysis undertaken in

the previous sections. In this section we make no distinction between the a = 0 (no

random migration) and a 6= 0 cases, since they are qualitatively identical.

The simulation depicted in figure 4.13 illustrates how the final pattern depends on

the total cell density. We note that multiple simulations were undertaken with varying

initial cell density. The model shows qualitatively the same behaviour to the strictly

local sensing model (with a 6= 0) analysed in the preceding section: as the total cell

density increases, the number of sites at high cell density found at the final stable

pattern increases in line with the predictions of the bifurcation analysis for small

lattice size (section 4.2.2). As the domain size is increased, further stable branches

appear at higher densities. Figure 4.13 depicts the progression from homogeneity at
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(a) (b)

(c)

Figure 4.12: Bifurcation diagrams for the local sensing model with crowding effect of
section 3.5.2. Steady states are plotted versus the bifurcation parameter M , the total
cell mass for (a) a 3-sites system with no random diffusion, a = 0, (b) a 3-sites system
for a 6= 0, and (c) a 4-sites system. Parameters used : (a) a = 0, b = 2, q = 100, (b)
a = 0.1, b = 2, q = 100, (c) a = 0, b = 2, q = 100. Solid lines indicate stable steady
states and dotted lines unstable steady states. Also shown are the forms of the steady
states the different lines of the diagram correspond to.

low cell density (not shown) to patterns with scattered high density sites, to large

numbers of sites at high density, and back to homogeneity for large total cell mass

(not shown).

Figure 4.14 shows the time evolution of the system for a particular choice of the

total cell mass M , for a = 0. The system is shown to follow a similar course as with

the strictly local scenario with a 6= 0. Small perturbations from a uniform density

are magnified, and provided the total density is low enough, the system evolves into

a fine pattern where high density sites are separated from low density sites. This is

consistent with the predictions made from the linear analysis, where it was shown
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Figure 4.13: Numerical simulations of the local sensing model with crowding effects.
Figures show the dependence of the pattern on the total cell density M . Each site
can be at either of two possible density states. The number of sites at high density
increases with M . Parameters used: q = 100, N = 100, a = 0.01, b = 1.0. Details of
numerical methods can be found in A.1.2

that the shorter wavelength modes are the fastest growing.

In summary, inclusion of crowding effects prevents global aggregation to a single

site, and has a similar impact to the inclusion of a small random migration element.

However, similarly to the strictly local case, this model only appears to produce pat-

terns with alternating high and low cell densities and there is no evidence of repro-

ducing the multicell width patterns often found in biological cases of cell aggregation.

4.3 Analysis of (M3): Sensing into direction of

movement.

Here, we analyse the model (M3) described in section 3.5.3. The assumption for this

model was that a cell’s decision to move is based on the cell density of the destination

site. Cells probe their adjacent neighbourhood and move to a particular site if the
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Figure 4.14: Time evolution of the crowding effects model. Small initial perturbations
are magnified and the system diverges from homogeneity. Parameters used: q =
100, N = 100,M = 25, a = 0.0, b = 1.0. See A.2 for details

conditions at that site are favourable. In this case, to model an adhesion type process,

the probability of a cell moving to a site is assumed to increase with its cell density.

4.3.1 Linear Analysis

Linearising equation (3.19), the continuous model for the assumptions made in sec-

tion (3.5.3) we obtain:

λ = −D(a+ bg0 − bu0g
′
0)k

2. (4.22)

Linearising the discrete model yields a dispersion relation which results in the equiv-

alent criterion for instability as the continuous case:

λ = 2(cos k − 1)(a+ bg0 − bu0g
′
0). (4.23)

Both equation (4.22) and (4.23) imply that the stability of the homogeneous steady

state depends on the sign of a+bg0−bu0g
′
0. Similarly to the cases previously described,
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this condition indicates that the homogeneous steady state is either stable or unstable

to all modes. We again note that in the continuous case, the condition for instability

coincides with the region where the model is ill-posed, and we will concentrate on

the discrete model. g is an increasing function of u, as mentioned previously. This is

motivated from a biological point of view: The higher the cell density at the target

site, the more adhesive bonds will be formed. However, we require g to be saturating

at high cell densities in order to impose a limit on the number of adhesive bonds that

can be formed. A suitable form is: g = um

γ+um , with γ > 0, and m > 1 since the

system will always remain homogeneous otherwise. In the following we use g = u2

γ+u2

for analytical convenience. The criterion for instability in the discrete case reads:

Q = aγ2 + (a + b)
M4

N4
+ γ

M2

N2
(2a− b) < 0, (4.24)

which has at most two positive real roots. A plot of (4.24) for a specific set of

parameters can be seen in figure 4.15. By setting a = 0 in (4.24), the condition

reduces to: M < N
√
γ, which gives the value of the threshold below which the steady

state is unstable. We observe that in this case there is at most one positive root for

Q = 0 and, that in contrast to the cases analysed previously, the homogeneous steady

state is unstable for all densities up to some threshold (figure 4.15b).

(a) a = 0.1 (b) a = 0

Figure 4.15: Plot to illustrate the stability criterion of eq. (4.24). (a): Similarly to
previous models for a 6= 0 the homogeneous steady state is stable for both low and
high densities. (b) For a = 0 the homogeneous equilibrium is stable only at high
densities. Parameters used: b = 1, γ = 0.01, N = 100, and a = 0.1 in (a).
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4.3.2 Bifurcation Analysis

Case I: No random diffusion. a = 0

Figures 4.16a and 4.16b show the bifurcation analysis diagrams of the model pre-

sented in section 3.5.3 for a system of 3 sites. Figure 4.16a is the bifurcation diagram

obtained for the case a = 0. The stable steady states besides the homogeneous one

are (M/2,M/2, 0) and (M, 0, 0), whereas unstable inhomogeneous equilibria shown

in figure 4.16a correspond to (HHL), (HLL), and (HL0). Effectively, the only het-

erogeneous steady states are those in which one site has become completely devoid

of cells. Intuitively, we expect that for larger domains the system evolves to steady

states strongly dependent on the initial conditions: initial variation in cell density

between adjacent sites can lead to sites being depleted of cells and, in the absence of

random diffusion (a = 0), once a site has become depleted, then the probability of

cells moving to it becomes zero, since T±
n = a + bg(un±1) and g(0) = 0. Therefore, if

alternating sites have zero cell density then all the equations of the system are auto-

matically satisfied, leaving only the constraint of mass conservation. In a system of 4

sites for example, u1 = u3 = 0 and u4 = M −u2 is a steady state for any u2. In larger

arrays therefore, the system can evolve into an infinite number of steady states. As

seen with the previous cases, the linear analysis predicts that the shortest wavelength

modes (w = 2) are the fastest growing, corresponding to alternating sites of high and

low density. As such we again initially observe evolution to steady states with peaks

separated by empty sites. Once a zero cell density is established in alternate sites,

no further evolution can take place. The steady state the system evolves to there-

fore depends on the initial random perturbation from homogeneity, and therefore is

impossible to predict exactly (see the numerical simulations, sec. 4.3.3).

Case II: Including random diffusion. a 6= 0

For a 6= 0, the bifurcation diagrams obtained (represented in figure 4.16b for a 3-

site system) are similar to cases previously described in that there is an area of

instability of the homogeneous equilibrium for intermediate values of the total density

(as predicted from the linear stability analysis of section 4.3), and multiple stable
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inhomogeneous steady states, depending on the total density M . Inclusion of random

diffusion stabilises the homogeneous steady states at low densities in contrast to when

a = 0. Furthermore, it allows movement to empty sites and therefore “regular”

patterns are formed.

(a) (b)

Figure 4.16: Bifurcation diagrams for the closest neighbour sensing model of sec-
tion 3.5.3. Steady states are plotted versus the bifurcation parameter M , the to-
tal cell density for (a) a 3-sites system with no random diffusion, a = 0, and (b)
a 3-sites system for a 6= 0. Parameters used : (a) a = 0, b = 1, γ = 0.01, (b)
a = 0.1, b = 1, γ = 0.01. Solid lines indicate stable steady states and dotted lines un-
stable steady states. Also shown are the forms of the stable steady states the different
lines of the diagram correspond to.

4.3.3 Numerical Simulations

In this section, numerical simulations performed for the closest neighbour sensing

model are presented. Figure 4.17 shows a series of simulations performed in an array of

100 sites for different values of the total density M , with a = 0 and periodic boundary

conditions. g(u) = u2

γ+u2 was used as above. The figure demonstrates the same

properties as in the cases analysed in the previous sections. That is, as the total initial

cell density is increased, more sites are populated by cells. In this particular case, as

shown in the bifurcation diagrams of section 4.3.2 the patterns that emerge show sites

that are completely empty, and others with varying levels of cell density. When M is

relatively low, the stable patterns that can be observed are ones with alternating sites

of zero and non-zero cell density. As M increases, neighbouring sites can be found

having equal non-zero density, and the resulting pattern is comprised by blocks of sites
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Figure 4.17: Numerical simulations for the model where cells sense their adjacent
neighbours, section 3.5.3. No random migration was taken into account (a = 0).
Six different simulations are shown for different values of the total cell density, are
shown at final equilibrium. Simulations show that the steady states reached are
comprised of peaks of cell density separated by completely empty sites. Parameters:
γ = 0.1, b = 2, a = 0. Numerical details in A.2.

populated by cells. The location of the peaks in the final pattern as well as the level of

cell density exhibited cannot be predicted: as explained in the previous section, these

are critically dependent on the initial conditions. Figure 4.18 below demonstrates

two simulations carried out using the same value for the total density M but given

slightly different random perturbations from the homogeneous steady state. These

perturbations were of the same magnitude and drawn from a uniform distribution with

a different seeding. The two simulations of figure 4.18 demonstrate the dependence

on the initial conditions. However, we can also observe that the patterns obtained are

qualitatively similar. Both the average spacing between aggregates and the average

cell density of the aggregates are the same in the two simulations. Thus, although

the pattern reached cannot be predetermined quantitatively, similar initial conditions

will yield similar patterns, which from a biological point of view are indistinguishable.

By including a random diffusion component, cell movement is allowed into sites

containing no cells. The system can now evolve to a regular steady state comprised

of two levels of cell density, see figure 4.19.
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Figure 4.18: Simulations for the closest neighbour sensing model, in order to illustrate
the dependence on initial conditions. The figures show the equilibria reached for two
simulations of the same system with slightly different initial conditions given. The
total cell density is M = 20 in both cases. Parameters used: γ = 0.1, b = 2, a = 0.
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Figure 4.19: Time evolution of the full closest neighbour sensing model. Random
diffusion was taken into account. Small initial perturbations are magnified and even-
tually the system evolves to a steady state where two different cell density levels exist.
Parameters: M = 20, γ = 0.1, b = 2, a = 0.01.

4.4 Analysis of (M4): Sensing opposite to move-

ment

The model of section 3.5.4 is examined in the following sections. Here, we assume

that cell movement is dictated by the site opposite to movement. Thus, a cell will
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now be more likely to move away from an adjacent site with low cell density.

4.4.1 Linear Analysis

Linearisation of the continuous model of section 3.5.4 yields the equation below for

the eigenvalues of the system:

λ = −D(a+ bf0 + 3bu0f
′
0)k

2. (4.25)

The criterion for instability, assuming f = 1

1+qu2 as before, in this case reads:

Q = a + b+ aq2u4

0 + qu2

0(2a− 5b) < 0, (4.26)

which as can be seen in figure 4.20, exhibits similar behaviour as discussed above.

Once more, if the criterion (4.25) is satisfied, the continuous model is not well-posed.
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M

Figure 4.20: Plot to illustrate the stability criterion of eq. (4.26). Parameters used:
a = 0.1, b = 1, q = 100, L = 1.

The linearised discrete model yields the dispersion relation below.

λ = 2(cos k − 1)(a+ bf0) + 2bu0f
′
0(2 cos

2 k − cos k − 1), (4.27)
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which upon expansion of the cosine terms to second order agrees with (4.25).

Condition (4.26) is sufficient to predict instability for the continuous model, as the

corresponding dispersion relation (equation (4.25)) from which it is derived generates

either λ ≥ 0 or λ ≤ 0 for every k. However, in contrast to previous cases analysed,

linear analysis of the discrete model does not generate the same result to the continu-

ous model. While Q < 0 still yields the condition for which the homogeneous steady

state is unstable, only a range of unstable wavenumbers exists. To illustrate this, the

dispersion relation (4.27) is plotted as a function of k for different values of M (shown

in figure 4.21 for a = 0). The inequality given in (4.26) for a = 0 yields: Mcritical =
N√
5q

which is the value below which we obtain strictly negative eigenvalues for the discrete

dispersion relation (4.27) for every value of k (M = 0.2 for the parameters used in

figure 4.21). However, we should impose a second restriction for pattern formation

to occur. Periodic boundary conditions suggest that only wavenumbers of the form

k = 2πn
N

, n = 0, 1, 2, ... are admitted. Therefore the critical value for M , which allows

patterns to occur emerges from (4.27) with k = kcritical =
2π
N
. For example, for a

system with 4 sites, kcritical = π/2 and the condition for patterns to emerge becomes:

M >
N√
q
. (4.28)

As the number of lattice sites N increases, the condition of instability for the discrete

model approaches that of the continuous model.

4.4.2 Bifurcation Analysis

Figure 4.22a demonstrates the bifurcation diagram for the model (M4) for a system

comprised of four lattice sites, with a = 0. Similarly to the previous cases, the

homogeneous steady state loses stability once the total mass M exceeds a certain

threshold and remains unstable for larger values of M. The inhomogeneous steady

states that emerge correspond to (HHLL), i.e. a steady state where two sites are

in high density while the remaining two are in low density, which is stable, and to

an unstable steady state where there exist three levels of cell density. The same

classification of steady states can be observed in figure 4.22b (where a 6= 0). In the
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Figure 4.21: Dispersion relation for the discrete model (equation (4.27)). In contrast
to previously analysed models, when the criterion for instability is satisfied, a range of
unstable wavenumbers exists. M = 0.2 is the critical value predicted from (4.26), the
continuous model dispersion relation. However, when periodic boundary conditions
are taken into account, the critical value increases for the discrete model. Parameters:
a = 0.0, b = 1.0, q = 80, N = 4.

latter case, similar to previous cases, the homogeneous equilibrium becomes stable for

large values of M . As the domain size increases, we observe that the stable steady

state that emerges in the area of instability, for a = 0, is an equilibrium comprised of

three distinct cell densities (fig. 4.22c, for a 5-site system), where two of the sites are

at high density, one in low and two at intermediate cell density (HHMML). This is

distinct from all previous models to date, where the only stable steady states found

in the bifurcation analysis correspond to sites in one of just two densities. Numerical

simulations confirm this holds also for larger domains (see section 4.4.3 below). A

typical bifurcation diagram for a 6= 0, is shown in figure 4.22d . In addition to

the homogeneous steady state, there is an inhomogeneous equilibrium (HHMML),

as previously, but also a stable steady state (for a small range of values of M), in

which all 5 sites have distinct levels of cell density. Furthermore, at high range of

values of M , the system becomes bistable, since along with the homogeneous steady

state, there is a stable steady state characterised by 1 site with high density, two with

intermediate density, and two with low (HMMLL).
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(a) (b)

(c) (d)

Figure 4.22: Bifurcation diagrams for the sensing opposite to movement model of
section 3.5.4. Steady states are plotted versus the bifurcation parameter M , the total
cell mass for (a) a 4-sites system with no random diffusion, a = 0, (b) a 4-sites system
for a 6= 0, (c) a 5-sites system for a = 0. and (d) a 5-sites system for a 6= 0. Parameters
used : (a) a = 0, b = 1, q = 100, (b) a = 0.1, b = 1, q = 100, (c) a = 0, b = 1, q = 100,
(d) a = 0.1, b = 1, q = 100. Solid lines indicate stable steady states and dotted
lines unstable steady states. Also shown are the forms of the stable steady states the
different lines of the diagram correspond to, in the region where they are stable.

4.4.3 Numerical Simulations

Numerical simulations performed for the model described in section 3.5.4 are presented

in this section. As above, we used 100-site domains and periodic boundary conditions

(for details, see section A.2 of the appendix). The initial condition imposed is a

small random fluctuation from the homogeneous steady state, while the parameters

used ensure that the criterion for instability (eq. (4.26)) derived in section 4.4.1 is

met. Figure 4.23 shows the progression from a small random perturbation to the

final steady state reached for a = 0. Similarly to the strictly local sensing scenario

investigated in 4.1.3, the initial perturbations are magnified, leading to the appearance
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of peaks and troughs of cell density. The setup of the model is such that cells located

adjacently to a site with relatively high population will be less likely to move away

from it. Additionally, if the site located in the opposite direction is scarcely populated,

the cells will tend to move towards the highly populated region. This leads to the

transient appearance of pairs of sites with relatively high cell densities. The system

finally relaxes to a pattern where almost all cells are aggregated at two adjacent sites.

Technically speaking, there are three levels of cell density as shown by the bifurcation

analysis of section 4.4.2, as besides the two prominent peaks of figure 4.23 there are

another two sites with non-zero cell density located on each side of the aggregation,

so that the final pattern has the form of a very abrupt gradient of cell density.

Figure 4.24 demonstrates the same progression from small perturbations applied

to the homogeneous equilibrium to the stable pattern with the inclusion of diffusion

(a 6= 0). Resembling the a = 0 case, small aggregations start to appear as time

progresses with the gradient-like structure more apparent. Including diffusion in the

model plays a stabilising role and prevents global aggregation.

The final pattern (figure 4.24, bottom right) is distinctly different from the pat-

terns emerging in the previous models. To date, we have generally encountered ag-

gregations consisting of alternating high and low cell density. Here however, the

equilibrium reached takes the form of distinct small, but multi-cell aggregates, more

closely corresponding to cell aggregations in real biological systems. In order to ex-

plain this behaviour, we re-examine the basic underlying assumption of the model in

section 3.5.4. In this model, it is assumed that movement occurs according to the

information gathered by cells from the site opposite to the direction in which they

move: T±
n = a + bf(un∓1). Therefore, a longer range sensing element is introduced

here. A jump between two adjacent sites involves three sites in this case: the site

of origin, the destination site, and the site at which the walker bases its decision to

move. In contrast, in the previous models only the site of origin and the destination

are involved. The results presented here therefore, give a strong indication that by

allowing long range sensing distinct cell aggregations can occur, in contrast to the

local sensing cases of the preceding sections.
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Figure 4.23: Time evolution of a 100-site system for the discrete model of section 3.5.4,
with a = 0 (for numerical details see A.2). Small perturbations from the homogeneous
steady state, given initially, are magnified, leading to the appearance of pairs of
adjacent sites at high densities separated by low density gaps. The peaks eventually
merge, and the system rests to a steady state. Note that the global aggregation that
occurs consists of a high density at 2 neighbouring sites. Parameters: b = 1.0, q =
100,M = 10.
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Figure 4.24: Time evolution of a 100-site system for the discrete model of section 3.5.4,
with a 6= 0. Similarly to when a = 0, small perturbations are magnified, but now cells
aggregate in gradient-like structures. The final pattern comprises of a number of cell
aggregations, depending on the total cell density. Parameters: a = 0.1, b = 1.0, q =
100,M = 35.
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4.5 Analysis of (M5): Gradient Sensing

Finally, we explore the gradient model of section 3.5.5. In this model, a cell senses

its immediate environment, and chooses to move if the conditions at its new position

are favourable in relation to the original site. In other words, a cell computes a local

gradient in the cell density and moves according to this information.

4.5.1 Linear Analysis

Linearising the continuous gradient model (equation (3.26)) of section 3.5.5 yields the

following dispersion relation:

λ = −D(a− 2bu0g
′
0)k

2, (4.29)

while linearising the discrete model yields:

λ = 2(a− 2bu0g
′
0)(cos k − 1). (4.30)

Both equations imply that the homogeneous steady state is unstable if a−2bu0g
′
0 < 0.

This condition for aggregation exactly corresponds to the condition for the contin-

uous model becoming ill-posed. In common with all previous models, we therefore

concentrate on the analysis of the discrete model.

In this case, because of the extra condition that needs to be imposed in order to

keep the transition probabilities positive (a ≥ b), the general form g(u) = u2/(γ+u2)

does not allow patterning. Therefore, we consider g(u) = u3/(γ + u3). Substitution

into (4.29) yields the criterion for instability in this case:

Q = aγ2 + a
M6

N6
+ 2γ

M3

N3
(a− 3b) < 0 (4.31)

which possesses exactly two positive real roots for M , for b ≤ a < 3b/2 and no positive

roots for a > 3b/2. A plot of (4.31) is shown in figure 4.25 for different values of a. We

can deduce that, similarly to some of the cases previously analysed, the homogeneous

steady state is stable for both low and high values of the total cell density, and unstable
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for intermediate values. Additionally, equation (4.30) shows that as long as (4.31) is

satisfied (a < 2bu0g
′
0), the largest positive eigenvalue corresponds to k = π. Therefore,

the fastest growing mode is expected to have a wavelength w = 2π/k = 2. In other

words, we expect the pattern to emerge to possess alternating high and low cell

densities.

4.5.2 Bifurcation Analysis

Bifurcation analysis undertaken for the gradient model (M5) reveals similar behaviour

to other models covered previously. According to the linear analysis of section 4.5.1

we expect that for a certain set of parameters, the homogeneous equilibrium will

be stable for low and high total cell densities. When the homogeneity cannot be

sustained, the system can evolve to a variety of stable steady states depending on the

total cell density. Figure 4.26 below shows the bifurcation diagram for this model for

a 3-site system. Once the threshold of total density M for instability is exceeded, two

branches appear, corresponding to the (HLL) and (HHL) steady states. Similarly to

the strictly local sensing case, there exists a steady state where all three of the sites

are occupied by different cell densities (see figure 4.8). This steady state however,

is always unstable and is not expected to be observed in a simulation. We expect

that as the size of the domain increases, more inhomogeneous steady states arise,

similarly to the cases previously described. Note that in this case, since we have used

Figure 4.25: Plot to illustrate the criterion for instability of the homogeneous steady
state, resulting from linearising the gradient model of section 3.5.5. The quantity Q is
plotted against the total cell density for different values of parameter a. When Q < 0,
the homogeneous equilibrium is unstable. Parameters: b = 1.0, γ = 0.01, N = 100.
The critical value for a, above which the instability region does not exist is a = 3b/2.
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g = u3/(γ + u3), there is another family of steady states that correspond to at least

one of the sites having negative cell density. These steady states are always unstable

and do not make sense biologically. Therefore, the bifurcation analysis predicts that

the system will evolve to a steady state where all sites are at either of two levels of

cell density, and that the fraction of sites at high density will depend on the total cell

density.

4.5.3 Numerical Simulations

As with the previous models, we conclude the analysis of the gradient model with

a numerical investigation for systems comprised of multiple lattice sites. We begin

by investigating the effect the total cell density has on the emerging patterns. To

this end, the simulations depicted in figure 4.27 were undertaken. The results shown

do not differ from the equivalent investigations undertaken for the models discussed

previously. The bifurcation analysis of the previous section implies that as the total

cell density M increases, the stable steady states consist of a larger fraction of sites at

Figure 4.26: Bifurcation diagram for a system of 3 sites for the gradient model of
section 3.5.5. The homogeneous steady state is stable for low and high total cell den-
sity. For intermediate values, the system can evolve to two inhomogeneous equilibria
depending on the cell density. Both possible stable equilibria are comprised of two
levels of cell density. A steady state where all three sites are in different cell densities
exists, but is always unstable. Similarly to previous models, increasing the domain
size yields more stable steady states. Parameters used a = 1.1, b = 1.0, γ = 0.1.
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Figure 4.27: Numerical simulations for the gradient model of section (3.5.5). Figures
depict the equilibria reached for various values of M , the total cell density. The
fraction of lattice sites at high density is proportional to the total initial density.
Parameters: a = 1.1, b = 1.0, γ = 0.01. Numerical details in A.2

high density. This is confirmed by the numerical simulations. While M is relatively

low, we obtain patterns in which high cell density is found at isolated lattice sites.

As the total cell density is increased, the low density gaps between peaks shrink, and

only for relatively high values of u0, we observe neighbouring sites in high density.

The time evolution of the system for a particular choice of M is shown in fig-

ure 4.28. Initial perturbations from a uniform density are magnified and as expected

from the linear analysis a pattern with alternating high and low densities emerges

initially. The system rests at a steady state where a fine pattern is created.

4.6 Summary / Discussion

We have presented and analysed a variety of models for a cell-cell adhesion type

process. The models were developed in chapter 3 with a cell described as occupying

a single site on a discrete one-dimensional lattice. Cells perform one site jumps along

the lattice with transition probabilities prescribed according to rules specific to each
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Figure 4.28: Time evolution of the gradient model for a total cell density M = 30.
Parameters: a = 1.1, b = 1.0, γ = 0.01. Numerical details in A.2

model. Given the large flexibility of choices for the discrete model, we performed

a comprehensive analysis of a variety of models based on different plausible forms

for environmental interactions, models (M1)-(M5). The discrete models formed in

this way, were taken to their continuum limit in order to yield the corresponding

continuous model.

A consistent feature repeatedly found, however, is that the continuous models are

generally ill-posed in the region where we expect patterning, and therefore lead only

to either blow-up or convergence to homogeneity. Thus, any information inherent in

the discrete model was lost after the approximation needed in order to derive the

continuous model. Nevertheless they provided helpful insight into the requirements

of the movement rules needed to generate distinct forms of behaviour. However, in

terms of a suitable model for cell-cell adhesion, we focus on the discrete models

Analysis of the various discrete models is instructional since their relative simplic-

ity offers insight into their potential for pattern formation and renders them amenable

to explore. Furthermore, one can argue that at the level of a cell population, a dis-

crete model is more appropriate: Supposing a cell diameter of 10 µm, a lattice of 100
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sites is equivalent to a domain of 1mm, which is a relevant length to biological spatial

scales, particularly in embryonic development, cancer invasion etc. We have provided

a comprehensive analysis of the different models allowing us to draw conclusions of

their merit and disadvantages as a model for patterning, as well as make predictions

and further our understanding for the development of a more complicated model.

Table 4.2 summarises the models’ capabilities in relation to the three fundamen-

tal properties we outlined in chapter 3 (see table 3.1), in which the models were

introduced. In particular, we were interested in a model that: (i) is able to exhibit

aggregating behaviour, (ii) produce multiple and regularly spaced distinct cell aggre-

gates, and (iii) produce multiple cell width aggregations.

Notably, despite the different underlying assumptions on how the cells interact

with the environment, all of the models (M1)-(M5) explored tended to generate very

similar behaviour. In contrast, in the case of cell movement and aggregation due

to chemical signalling studied by Othmer and Stevens [66], the precise mechanism

of signal detection had a large impact in the behaviour of the system. Our results

suggest that the general model of adhesion type processes is relatively robust against

the precise mode of environment sensing.

Model Section Aggregation Multiple/ Regularly spaced Multicell width
(M1) ( 3.5.1) Yes Yes if a 6= 0 No
(M2) ( 3.5.2) Yes Yes No
(M3) ( 3.5.3) Yes Yes No
(M4) ( 3.5.4) Yes Yes if a 6= 0 Yes
(M5) ( 3.5.5) Yes Yes No

Table 4.2: Comparison of the models analysed in this chapter. The ability of the
models to exhibit the three fundamental properties of table 3.1 is assessed: (i) All
models are capable of aggregating behaviour. Global aggregation at a single lattice
point is generally observed, unless a small random migration term a > 0 or a crowd-
ing term (model (M2)) are introduced. (ii) When global aggregation is prevented,
multiple aggregations are produced. However, (iii) these aggregations are at the level
of individual cells, with the exception of the “sensing opposite model” (model (M4)),
in which a longer-range signalling regime is assumed.

A feature common to all the models considered is that their behaviour ultimately

depends on competition between stabilising terms, and terms that favour aggrega-

tion. It is also shown that global aggregation to a single site occurs unless a small
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random diffusion term, or a crowding term is included in the model. Inclusion of such

terms generally results in regular patterns, i.e. patterns that are composed of mul-

tiple aggregations which are equally spaced. However, in nearly all the cases, these

are patterns at the scale of individual cells which is often not the case for many bio-

logical instances of cell aggregation (for example sympathetic ganglia formation [44],

which we discuss in chapter 6, see also figure 3.1). A notable exception is the model

(M4) in which a cell decides to move away from the site adjacent to it (presented in

section 3.5.4 and analysed in 4.4). Simulations of this model exhibit regular patterns

composed of distinct small cell aggregations of a few cell widths. This phenomenon

can be attributed to a “longer-range” element in this model. In the next chapter we

take this a step further, exploring whether inclusion of long-range sensing can gener-

ate much larger cell aggregates, i.e. of the spatial scale corresponding to aggregates

observed in biological instances of patterning.
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Chapter 5

Sensing Radius

In this chapter we extend the models of section 3.5 to incorporate a “sensing radius”.

This can be the physical boundary of a cell, which extends over several grid points,

or can also be larger than the average cell radius if cell protrusions are taken into

account. In general, the sensing radius defines a neighbourhood over which a cell can

sense its environment.

As we have seen in the previous chapter, while all the “short-range” models gener-

ated aggregations, such aggregations were typically of the dimension of a single site,

rather then the larger scale (multicell diameters) aggregations, characteristic of adhe-

sive populations (figure 3.1). This is chiefly attributed to the short range signalling

itself. In the “sensing opposite” model (M4), we found aggregations spanning multiple

lattice sites, which we attributed to the somewhat long-range signalling regime incor-

porated into this model. We expect that by allowing cells to communicate over longer

distances, the resulting patterns will more closely reflect real biological systems.

We have also seen in chapter 4 that the continuous models can become ill-posed.

Furthermore, linear stability analysis showed that the condition for aggregation for

each model converges to the condition for ill-posedness. The continuous models there-

fore are not capable of exhibiting the desirable aggregating behaviour. Consequently,

an important question that arises is whether incorporating longer range information

can result in a continuous model that allows aggregating behaviour while remaining

well posed.

In the following sections, we first present the extended models before analysing
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them as previously, i.e. through a combination of linear stability analysis, bifurcation

analysis, and numerical simulations.

5.1 Model Derivation

5.1.1 Local Sensing

We begin by extending the strictly local sensing model presented in section 3.5.1.

The general assumption for the earlier model is that a cell is only capable of detecting

information at the site it occupies, and decides to move based on that information.

Extending the model, we assume that now a cell extends over multiple grid points.

In other words, the physical size of a cell is taken into account. With reference to

section 3.5.1, we now write:

T±
n = a+ bf(Un), (5.1)

where Un =
∑n+r

i=n−r
ui

2r+1
now denotes the average cell density within an area of

sensing radius r centred at n. To describe an adhesive type process, in which cells

are limited in their migratory capacity when localised with other cells, we assume f

to be a decreasing function of U as in 3.5.1. Now the master equation (3.1) becomes:

∂un

∂τ
= (a+ bf(Un−1))un−1 + (a+ bf(Un+1))un+1 − 2(a+ bf(Un))un. (5.2)

Expanding the right-hand side as before, we need the expansions of f(Un), f(Un−1),

and f(Un+1) as a function of x to second order in h. These are as follows:

f(Un) ≈ f(u) + µf ′h2
∂2u

∂x2
,

f(Un−1) ≈ f(u) + µf ′h2
∂2u

∂x2
− h

∂f

∂x
+

1

2
h2

∂2f

∂x2
,

f(Un+1) ≈ f(u) + µf ′h2
∂2u

∂x2
+ h

∂f

∂x
+

1

2
h2

∂2f

∂x2
, (5.3)
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where µ =
∑r

j=1
j2 1

2r+1
and f ′ denotes the first derivative of f with respect to u.

Equation (5.2) becomes:

∂u

∂τ
=

(

a+ bf + µbf ′h2
∂2u

∂x2
− hb

∂f

∂x
+

1

2
bh2

∂2f

∂x2

)(

u− h
∂u

∂x
+

1

2

∂2u

∂x2

)

+

+

(

a+ bf + µbf ′h2
∂2u

∂x2
+ hb

∂f

∂x
+

1

2
bh2

∂2f

∂x2

)(

u− h
∂u

∂x
+

1

2

∂2u

∂x2

)

+

−
(

2a+ 2bf + 2µbf ′h2
∂2u

∂x2

)

u,

which collapses to
∂u

∂τ
= h2a

∂2u

∂x2
+ h2b

∂2

∂x2
(fu) +O(h4). (5.4)

Note that this is exactly equation (3.10) of sec. 3.5.1. Finally, introducing the scaling

τ = λt and assuming that lim
λ→∞

h→0

λh2 = D, as in section 3.5 we obtain the continuous

model:
∂u

∂t
= D

(

a
∂2u

∂x2
+ b

∂2

∂x2
(fu)

)

(5.5)

or
∂u

∂t
= D

∂

∂x

(

(a+ bf)
∂u

∂x
+ b

∂f

∂x
u

)

(5.6)

Notably, the continuous model derived here (equation (5.6)) is exactly as for the

strictly local continuous model derived in section 3.5.1 (equation (3.12)): The extra

“information” provided by the non local sensing is lost as h → 0 and we can expect

similar behaviour (for the continuous model) as before.

5.1.2 Other models

The local models of chapter 3 have all been extended to incorporate a sensing radius.

By undergoing similar procedures as in the preceding section, we were able to present

the equivalent non-local discrete models and derive their continuous counterparts.

These models are summarised in table 5.1. We present both the original local models

of chapter 3 and their extended non-local version. The discrete models are given by

the master equation (3.1): ∂un

∂t
= T+

n−1un−1 + T−
n+1un+1 − (T+

n + T−
n )un. Table 5.1

shows the transitional probabilities T±
n from which the discrete models are derived.
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The continuous models take the form: ∂u
∂t

= ∂
∂x

[

(A(u) +B(u)u)∂u
∂x

]

. Functions A(u)

and B(u) are tabulated for each case. Any difference between the local and nonlocal

continuous models is also shown to highlight the effect of incorporating a sensing

radius in the models. Note that the continuous models (R1)-(R5) can still be ill-

posed despite the differences from their local counterparts (M1)-(M5).

Model T±
n A(u) B(u) Difference

(M1) a+ bf(un) a + bf bf ′

0
(R1) a+ bf(Un) a + bf bf ′

(M2) [a + bf(un)](1− un±1) a + bf bf ′(1− u)
0

(R2) [a+ bf(Un)](1− un±1) a + bf bf ′(1− u)
(M3) a+ bg(un±1) a+ bg −bg′

−2br ∂
∂x
(ug′ ∂u

∂x
)

(R3) a+ bg(un±r±1) a+ bg −bg′(1− 2r)
(M4) a+ bf(un∓1) a + bf 3bf ′

2br ∂
∂x
(uf ′ ∂u

∂x
)

(R4) a+ bf(un∓r∓1) a + bf bf ′(3− 2r)
(M5) a+ b[g(un±1)− g(un)] a −2bg′

−4br ∂
∂x
(ug′ ∂u

∂x
)

(R5) a+ b[g(un±1)− g(un)] a −2bg′(1− 2r)

Table 5.1: Summary of all local and nonlocal models. The local models of chap-
ter 3 ((M1)-(M5)) are shown for comparison. The nonlocal models are denoted by
(R1)-(R5). The transitional probabilities T±

n are shown for the discrete models, and
functions A(u) and B(u) for the continuous models. The last column shows the extra
term (if any) generated by incorporating a sensing radius.
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5.2 Local Sensing Model (R1)

In the following we analyse the extended long-range models presented in the preceding

sections. We proceed using the techniques employed in chapter 4.

First, linear stability analysis is undertaken, in order to determine the condi-

tions under which stable heterogeneous solutions exist, and extract some information

about the form of the patterns expected to be observed. Linear stability analysis is

performed for both the discrete and continuous versions of the models in order to

identify potential differences. Similarly to the short range models we linearise around

the homogeneous steady state. u0 = 1

N

∑N
i=1

ui is the homogeneous steady state for

the discrete model, where N is the total number of sites in the lattice, and ui, the

cell density at site i. The homogeneous steady state for the continuous model studied

on a one-dimensional line of length L, with u(x) being the cell density at x is given

by: u0 =
1

L

∫ L

0
u(x)dx. The stability of this steady state in both cases depends on the

total initial cell density, for a given set of parameters.

A bifurcation analysis on lattices of small size is then presented for each case. We

study the various models using the bifurcation software AUTO [25] and show how

the steady states and their stability vary according to the total cell density available.

Finally, numerical simulations for larger domains were performed to reveal aspects of

the models that are analytically intractable.

5.2.1 Linear Analysis

In this section we perform linear stability analysis for the spatially extended equivalent

of the model (M1). We have seen that the continuous model (R1) derived is identical

to the strictly local sensing model (M1) derived in section 3.5.1. Therefore, linear

analysis of the continuous model (R1) yields the exact same results as in section 4.1.1.

In particular, the model becomes ill-posed in the region where the homogeneous steady

state is unstable. Linear stability analysis performed on the discrete model, however,

reveals a different situation. The dispersion relation now reads:

λ = 2(a+ bf0)(cos k − 1) +
2bu0f

′
0

2r + 1

(

cos[(r + 1)k]− cos(rk)
)

(5.7)
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where f0 and f ′
0 are the values of f and its first derivative evaluated at u0, the

homogeneous steady state, and λ and k are the eigenvalues and wavenumbers of the

system as before. When r = 0, this reduces to:

λ = 2(cos k − 1)(a+ bf0 + bu0f
′
0) (5.8)

which is consistent with the dispersion relation for the strictly local case (eq. (4.9)), as

expected. As shown in section 4.1.1, in the case of the strictly local sensing scenario

(r = 0) the uniform steady state can be either stable or unstable for every wavenum-

ber. However, if r 6= 0 there is a range of unstable wavenumbers: figure (5.1) depicts

the dispersion relation for r = 0, r = 2, r = 5, and r = 10. The common feature in

the case r 6= 0 is that the modes corresponding to larger wavelengths are unstable

(a)

(b)

Figure 5.1: Dispersion relation for the long-range discrete local sensing model. The
eigenvalues of the system λ are plotted as a function of the wavenumber k for different
values of the sensing radius. (a): Plot for the range k ∈ [0, 2π]. Note that the range
of values of k > π corresponds to wavelengths of less than two cells and are therefore
not taken into account. The common feature of all three plots with r 6= 0 is that
low wavenumbers (large wavelengths) are unstable. (b): In order to further illustrate
this point, the dispersion relation is plotted for k ∈ [0, π/4]. We plot equation (5.7)
with f = 1

1+qu2 , and u0 = M/N is the homogeneous steady state. Parameters used:
b = 1, q = 100,M = 30, N = 100, a = 0.01.
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while lower wavelengths are stable. This is in contrast to the strictly local sensing

model (r = 0), where only the shorter wavelength patterns are favoured. One could

intuitively expect therefore to obtain patterns with larger cell aggregates.

5.2.2 Bifurcation Analysis

In this section we perform bifurcation analysis on small sized grids, as was done in

the strictly local case. Note that in the long range sensing, while a five sites system

provides some level of detail, in order to study the different steady states possible

and compare to the case r = 0, we would need to study systems with even more

sites. This however poses limitations, since larger systems quickly become analytically

intractable. Therefore, such analysis will be limited to numerical simulations.

Case I: a = 0.

We begin by first examining the case where the random diffusion component is set

to zero. In order to investigate the behaviour of the system when the sensing radius

r = 1, we study a line of 5 sites. The resulting bifurcation diagram is shown in

figure 5.2b, next to the corresponding diagram for the strictly local case (r = 0),

replotted here in order to facilitate comparison. As the total density exceeds a critical

value the homogeneous steady state becomes unstable and six further branches appear.

The stable branches correspond to an inhomogeneous steady state to which the system

evolves. Figure (5.3b) demonstrates the numerical simulation performed showing the

steady state reached: (HMMLL). Also plotted (figure 5.3a) is the steady state

reached for the case where r = 0, showing global aggregation at one site.

Case II: a > 0.

Figure 5.4 below depicts the bifurcation diagram obtained for a system comprised of

five sites in the case where a 6= 0. The inhomogeneous stable steady state corresponds

to the case depicted in figure 5.3. That is, three different levels of cell density, as in

the case where a = 0. The critical difference between here and above is that, as in

the strictly local case, the homogeneous steady state is stable for both high and low

cell densities.
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(a) r = 0 (b) r = 1

Figure 5.2: Bifurcation diagrams for the local sensing model. (a) Bifurcation diagram
for r = 0, presented in section (4.1.2), to allow comparison. (b) Bifurcation diagram
for the extended model, with r = 1. The stable branches (solid lines) correspond to
the steady state shown in fig. 5.3b. Parameters: a = 0.0, b = 1.0, q = 100.

The main conclusion to be drawn from the bifurcation analysis shown in this sec-

tion is that it demonstrates, despite its limitations discussed above, that introduction

of nonlocal sensing allows the possibility of nonlocal aggregations.
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Figure 5.3: Simulations in 5-site domains for the local sensing model with (a) r = 0,
strictly local sensing and (b) r = 1, extended model. Parameters as in figure 5.2 with
M = 1.0 in (a) and M = 2.0 in (b). The system was initially given a small random
perturbation from homogeneity (∼ 0.5%).
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5.2.3 Numerical Simulations

Case I: a = 0.

Simulations for various lattice sizes were performed with the same parameters as given

in figure 5.2, and for different values of the radius r. In section 5.2.2, a bifurcation

analysis was performed for r = 1 for a 5-site lattice. It was shown that when the

homogeneous steady state becomes unstable, three stable branches appear, corre-

sponding to three different levels of cell density, such that the resulting pattern has

the characteristics of a gradient of density. We expect more stable branches to appear

as the domain size increases. To confirm this, simulations for lattices of 5, 7, 9, and

15 grid points were performed for the case where r = 1. The results are shown in

figure 5.5. As can be seen, the patterns emerging are gradients of cell density. In the

5-site case, there are 3 levels of cell density corresponding to the stable branches of

figure 5.2b in section 5.2.2. As we increase the size of the domain, the density levels

that compose the equilibrium reached increase as well.

Figure 5.4: Bifurcation analysis of the extended local sensing model, when a small
random diffusion element is added (a 6= 0). A 5-site system is considered. The
homogeneous steady state is stable for both low and high total cell density. For
intermediate values the system evolves to a steady state comprised of three levels of
cell density (HMMLL). In the same region, an unstable steady state exists (HHMML).
Parameters: a = 0.001, b = 1.0, q = 100.
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Figure 5.5: Numerical simulations for the extended local sensing model. The pictures
show how domain size affects the final pattern. Lattices of 5, 7, 9, and 15 sites are
shown. As the domain size increases the gradient-like patterns that emerge involve
more cells.

Simulations performed in a 100-site lattice showed the same coarsening type be-

haviour observed for r = 0. That is, starting from small perturbations of the homo-

geneous equilibrium, we observe multiple aggregations appearing which decrease in

number until one dominates and the system is at equilibrium. Significantly differ-

ent, however is that the sensing radius allows smoother and multiscale aggregates to

appear instead. Figure 5.6 depicts the evolution of the system.

In order to study the effect the sampling region has on the resulting pattern, we

have performed simulations over a range of values of the sensing radius. Figure 5.7

shows simulations carried out for r = 1, r = 2, r = 3, and r = 5. The evolution of

each system has the same characteristics mentioned above, and we can observe that

as the radius increases, the resulting aggregates become distributed over an increasing

number of lattice sites.
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Figure 5.6: Time evolution of the extended local sensing model with no random
migration. The system was started from a slightly perturbed uniform cell density.
The perturbations are magnified initially and peaks appear. The peaks subsequently
merge and become broader, until the system finally rests to a steady state where a
single aggregation exists. Parameters: r = 1, b = 1.0, q = 100,M = 40. Numerical
method details in A.2.

Case II: a > 0

The following set of simulations were performed in order to reveal the effect of adding

a small random diffusion component to the system. Figure 5.8 depicts the patterned

steady states reached for different values of the sensing radius. All simulations were

performed on 200-site domains, with the same parameters, using periodic boundary

conditions. Initially the system is perturbed from a homogeneous distribution. We can

observe that by adding a random migration element to the system, global aggregation

can be prevented. As seen in the analyses of the short range models of chapter 4,

choosing a > 0 results in multiple-peaked patterns emerging, since the interplay

between diffusion and the attraction of cells by adhesive forces leads to a stable

equilibrium. The final patterns are formed by distinct cell aggregations that occupy

more space and are fewer as the sensing radius is increased. If a is further increased,
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Figure 5.7: Effect of the sampling radius on the system. All figures show the systems
at equilibrium. Global aggregation is observed for every value of the sensing radius r.
As r increases, the aggregates formed become distributed over an increasing number
of lattice sites. Parameters: q = 100, b = 1,M = 40. Numerical method details can
be found in A.2

the result is a pattern with more and broader aggregates. Furthermore, the difference

in cell density between low and high density regions of the final pattern decreases

with increasing a.

Time evolution

In order to study the time evolution of the system further, we have examined the

system with r = 3 using the same parameters as in figure 5.8, using the initial condi-

tion: ui(0) =
M
N

− 0.01 cos(4π
N
i). We have seen that a stable inhomogeneous solution

comprised of two cell aggregates exists in this case (figure 5.8). The initial condition

described above provides a bias towards this steady state. The two small peaks cre-

ated initially, shown in figure 5.9 (top left), are magnified as the simulation progresses.

However, each of the two peaks breaks up into smaller aggregates, and a pattern with

8 aggregates is formed. Subsequently, these aggregates begin to merge, producing a

pattern comprised of four cell-aggregations. Finally, after further merging, a stable

steady state with two aggregations is formed. The linear analysis for this system, pre-
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Figure 5.8: Effect of the sensing radius on a system of 200 lattice sites with a small
random diffusion element (a 6= 0). The stable inhomogeneous equilibrium is comprised
of multiple aggregations in this case. As we allow the sensing radius to include
more sites, the final aggregations become fewer and larger. Parameters: b = 1, a =
0.01,M = 120. For numerical method details, see A.2.

dicts that the homogeneous steady state is stable for modes with wavelengths w < 16

and unstable to all other modes. According to the linear analysis, the fastest growing

mode corresponds to a wavelength w = 22, which corresponds to the pattern of 8

cell aggregations initially seen in the simulation. This time evolution is persistent

and observed in simulations with different initial conditions. In addition, simulations

for different parameter sets show that the fastest growing mode is the one observed

initially, as predicted by the linear analysis, but the systems eventually evolve to a

pattern of larger wavelength.

The bifurcation analysis for both the long range model with r = 1 (figure 5.4) and

the short range case (figure 4.6) give an indication for this behaviour. They reveal the

existence of numerous unstable inhomogeneous steady states, the number of which

increases with the available total cell density. Furthermore, they seem to suggest

that, for given total cell mass, there are at most two families of steady states that

are stable. Transiently, saddle points of multiple aggregations, like the one observed

here, attract solutions, and after a relatively long time period, the effect of coarsening
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Figure 5.9: Time evolution of the long-range local-sensing model with sensing radius
r = 3 in a 200-site domain. The initial condition ui(0) = M

N
− 0.01 cos(4πi

N
) forces

two small peaks to appear which become magnified. A patterned solution with 8
peaks appears transiently. The system undergoes a process of coarsening of the cell
aggregates and finally rests at a stable equilibrium with two distinct aggregations.
Parameters: b = 1, a = 0.01,M = 120.

of cell aggregates takes place, until the system reaches a stable steady state (here a

2-peaked solution, w = 100 in this case) of fewer aggregates.

From a biological point of view, this behaviour can be explained as follows: In a

randomly distributed population of cells, small aggregations start to form relatively

quickly as adhesive bonds form between cells located within a small neighbourhood.

After these initial aggregations are formed, they attract one another, but this process

is much slower due to the competing forces exerted on cells by adhesion bonds that are

already formed. Ultimately, the small cell aggregations move towards each other and

form larger aggregations located in sufficiently large distances such that an equilibrium

is reached.
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Pattern dependence on total cell density

The total available cell density also plays an important role in the form of the final

stable patterns. In order to illustrate its effect, figure 5.10 was plotted, showing the

stable equilibria reached for systems of 200 sites in the same parameter regime for

four values of the total cell mass M .

It is demonstrated that the number of cell aggregates that compose the final steady

state increases with cell density. This is an effect also observed in the strictly local

sensing case, and can be attributed to the assumptions of the model. At relatively low

cell densities, the random diffusion component becomes more significant. Therefore,

cells are able to move more freely along the grid. Once aggregations start to form,

they attract more cells. Subsequently, merging and coarsening of the peaks occurs,

and the number of aggregates is decreased. Since cell movement is not significantly

constrained, small density differences in the remaining peaks will cause the cells to

be attracted to the higher density regions over time. Increasing the total cell density

is shown to have a similar effect as when decreasing the random migration term,

since competition between the adhesive attraction forces and diffusion determines the
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Figure 5.10: Effect of the total cell density on the final pattern reached. The number
of cell aggregations observed at equilibrium rises with the number of available cells.
Parameters: b = 1, a = 0.01, r = 1.
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form of the resulting pattern. The linear analysis shows that increasing the total cell

density results in the solution of λ(w) = 0 as well as the fastest growing mode moving

towards higher values of w. This however, does not greatly affect the final pattern

obtained since, as discussed earlier, it is the large wavelength steady states that are

stable.

Minimum and Maximum cell density

It is also interesting to note another feature revealed by the simulations presented:

As can be observed by the time-evolution simulation (figure 5.9), the aggregations

formed are growing initially until they reach a certain maximum level of cell density.

During the course of the simulation, aggregations merge, but this results in broader

aggregates while the maximum cell density at any one site remains constant. The same

holds for the minimum cell density a single site can accommodate. Furthermore, as

can be seen in figures 5.8 and 5.10 both the maximum and minimum cell density are

independent of the sensing radius and the total cell density as long as the remaining

parameters are fixed. Simulations were carried out in which cells were added at a

system that was already at an inhomogeneous equilibrium. The additional cell density

was distributed within the previously established aggregates and the resulting pattern

consisted of broader aggregates, but both the maximum and minimum cell density

were not altered.

Insight to this phenomenon can be gained by focusing on the bifurcation analysis

of the strictly local model. Figure 4.6 shows the bifurcation diagrams obtained for

systems of 2, 3, 4, and 5 sites, in absence of a sensing radius. One can observe that

every branch of the bifurcation diagram reaches the same maximum and minimum

values, which seem to be independent of the lattice’s size. Furthermore, the change

in stability for every branch corresponds to the same values of u. As the lattice size is

increased, more branches emerge corresponding to different steady states. For large

lattices, these branches are sufficiently close to each other such that the range of values

of the total cell mass M in which each equilibrium dominates becomes significantly

small. Thus, as the total cell density increases, the system switches from one family of

steady states to another, so that both the maximum and minimum cell density at any
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site remain almost constant. It should be noted that this behaviour is only possible

for a 6= 0 since, as we have demonstrated, global aggregation occurs otherwise and

the maximum cell density can grow as large as the total cell density allows.

Size dependence with sensing radius

We have previously discussed the effect of the magnitude of the sampling radius to the

final patterns for the case where no random diffusion term was taken into account (see

figure 5.7). As discussed above, introducing a small randommigration element into the

system prevents global aggregation phenomena and results in wider cell aggregations.

In the a = 0 case, the size of the unique aggregation is the minimum allowed by the

sensing radius, irrespectively of the total cell density.

Figure 5.11 is a set of graphs that show the relationship between the size of the

aggregations formed (S) and the sensing radius (r), for a 6= 0. We define the aggre-

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

200

8

4

2

← − − − − − − − − − − − − 1 − − − − − − − − − − − →

r

S

(a)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

←  8

←  4
←  4

←  2←  2←  2←  2

←  1←  1←  1←  1←  1

←  1

←  1

←  1
←  1  1  1  1  1

r

S

(b)

Figure 5.11: Plots of the aggregation size S as a function of the sensing radius r for the
two different definitions of S explained in the main text. The number of aggregations
formed in each case are indicated. All data points were obtained from numerical
simulations with parameters: a = 0.05, b = 1.0, q = 100,M = 100, N = 400, and show
the aggregation sizes at equilibrium. S is shown to be a piece-wise linear function of
r. S grows linearly with r for r-values that produce the same number of peaks.

gation size S as the total number of lattice sites at which the cell density exceeds a

certain threshold. We can choose this threshold to be M/N , the homogeneous steady

state, or we can exclude from the aggregation the sites at densities within a set toler-
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ance of the minimum cell density within the lattice. In the first graph (fig. 5.11a), S

is defined as the number of sites at density u ≥ M/N , whereas in the second graph

(fig. 5.11b), S is the sum of sites at densities u ≥ umin + 10−4, where umin is the

minimum cell density. The data plotted refers to the size of one of the aggregations

in the cases multiple peaks exist. The number shown at each data point indicates

the number of peaks formed at equilibrium for each case (e.g. for r = 2 we obtain 4

identical aggregations).

As expected, the size of the aggregations rises with r. We can observe that S

increases linearly within ranges of r that result in the same number of aggregations,

whereas S increases abruptly when the change in r alters the form of the equilibrium

reached. In this case however, the total number of sites above the set threshold actu-

ally decreases. As r is increased, the aggregations grow in size until their magnitude

renders the previously stable steady state unstable. Therefore, the peaks merge and

produce a pattern composed of fewer and more compact aggregates. The piecewise

linear nature of S = S(r) is more apparent in figure 5.11b, and in figure 5.11a for

large values of r. That behaviour cannot be captured in the case of figure 5.11a when

small steps in r are considered due to the stricter definition of S. However, in the

case of figure 5.11b, linearity breaks down at high r values, since almost every site in

the domain is considered a part of the aggregation.

In conclusion, the long range model shares a number of properties with its short

range counterpart, in the sense that competition between two terms in the models

determine the evolution of the system. In the case where no random diffusion is taken

into account (a = 0), both models exhibit global aggregation. However, the long

range sensing version of the model is capable of producing relatively large distinct cell

aggregations which are more relevant from a biological point of view. In contrast, the

strictly local model gives rise to patterns of alternating high and low cell density.

5.3 Other Models

In this section we use the techniques applied in chapter 4 and section 5.2 in order to

investigate the non-local models (R2)-(R5) derived by extending the models (M2)-

131



(M5) of chapter 3 (see table 5.1). Extensive analysis of the equivalent local models

has been presented in chapter 4. The non-local models analysed in this section share

many of their properties and behaviours with the long-range local sensing model (R1)

analysed in the previous section. Here we will restrict our analysis to the basic details

of the remaining models, and show some representative results.

5.3.1 Linear Analysis

Linearisation of the continuous models (R2)-(R5) revealed that, similarly to the mod-

els (M1)-(M5) analysed in chapter 4, the patterning condition in each case corresponds

to the region in which the models are ill-posed. Therefore, incorporating non-local

information in the models under this framework was not sufficient in producing a well

posed continuous model that allows aggregating behaviour. For this reason we limit

our analysis to the discrete models.

We have linearised the discrete long range models (R2)-(R5) around the homoge-

neous steady state. The dispersion relation for each model is given by:

λ =


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2(a+ bf0)(cos k − 1) +
2bu0f ′

0

2r+1
(1− u0)

(

cos[(r + 1)k]− cos(rk)
)

, (R2)

2(a+ bg0)(cos k − 1) + 2bu0g
′
0

(

cos(rk)− cos[(r + 1)k]
)

, (R3)

2(a+ bf0)(cos k − 1) + 2bu0f
′
0

(

cos[(r + 2)k]− cos[(r + 1)k]
)

, (R4)

2a(cos k − 1) + 4bu0g
′
0

(

cos(rk)− cos[(r + 1)k]
)

, (R5)

(5.9)

where, λ is the temporal growth, k is the wavenumber, u0 denotes the homogeneous

steady state, and r is the sensing radius. f0, g0, f
′
0 and g′0 are the functions modelling

adhesive processes for each case and their first derivatives, evaluated at u0. For

r = 0, equations (5.9) reduce to the dispersion relations for the local models, as to be

expected.

The most notable common characteristic of equations (5.9) is that they predict the

existence of a range of unstable modes. In contrast, the dispersion relations obtained

for the equivalent local models revealed that the homogeneous steady state is either

stable or unstable to all modes. To further illustrate this property, we have plotted λ

against the wavelength w = 2π/k, in figure 5.12, using the same functions f, g as in
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chapter 4.

Figure 5.12a shows the dispersion relation for the extended local sensing model

with crowding effects (R2), in which we observe the same behaviour qualitatively as

in the simpler model that does not include crowding effects. Similarly to the local

sensing case, we note that including crowding effects results in a smaller instability

region, due to the 1 − u0 term of equation (5.9 (R2)). The fastest growing modes

correspond to relatively large wavelengths (w = 2π/k). However, we should note that

for a certain range of parameters, and for large values of the total cell density, the

reverse can be observed. That is, the homogeneous steady state becomes unstable for

short wavelength modes.

In contrast, we can observe that in each of the three remaining models (R3)-(R5)

(a) Crowding model (R2) (b) Nearest neighbour model (R3)

(c) Sensing opposite model (R4) (d) Gradient model (R5)

Figure 5.12: Plots of the eigenvalue λ against the wavelength w for the non-local
models (R2)-(R5). In the crowding model case long wavelength modes are unstable,
while in the remaining three cases there exist intermittent ranges of unstable modes.
Parameters: (a):a = 0.01, b = 1.0, q = 100, u0 = M/N = 0.3, (b): a = 0.1, b =
1.0, γ = 0.01, u0 = M/N = 0.05, (c): a = 0.1, b = 1.0, q = 100, u0 = M/N = 0.2, (d):
a = 1.1, b = 1.0, γ = 0.01, u0 = M/N = 0.01.
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and under the chosen parameter regimes, the homogeneous steady state is unstable

to an intermittent range of values of the wavenumber k. Therefore, under certain

circumstances dictated by the parameters used, different modes can become unstable.

Both short and long wavelength modes are growing, in contrast to the cases previously

discussed where either exclusively short or exclusively long wavelengths are favoured.

By increasing the sensing radius, we allow for more modes to become unstable.

5.3.2 Bifurcation Analysis

Figure 5.13 shows the bifurcation analysis undertaken for the long-range crowding

model (R2) and the closest neighbour model (R3) for systems of 5 sites with sensing

radius r = 1.

(a) (b)

Figure 5.13: Bifurcation diagrams for: (a) the long-range sensing model with crowding
effects, and (b) the extended neighbour sensing model. The homogeneous equilibrium
is stable for both low and high cell densities in both cases. (a): Stable inhomogeneous
steady states, existing for intermediate values of M , are of the form: (HMMLL).
Unstable equilibria of the form (HHMML) exist in the same region. Parameters
used: a = 0.001, b = 10, q = 100. (b): Three forms of inhomogeneous equilibria
exist: (HMMLL), (HHMML), and one in which all 5 sites are at different cell
density levels. Out of these, the former is expected to arise from simulations since it
is stable in the area of instability of the homogeneous steady state. The two remaining
are stable in the region where the homogeneous equilibrium is also stable, and are
therefore expected to arise should the initial conditions favour them. Parameters
used: b = 1, γ = 0.01, a = 0.1.

As in chapter 4, the bifurcation diagram of figure 5.13a, for the model incorpo-

rating crowding effects (R2), is qualitatively the same for (R1) with the same steady
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states observed. In this case the only possible stable inhomogeneous steady state is

the one corresponding to figure 5.3: One site with high cell density, two sites with

low cell density, and two with a cell density level between the two extremes. We

should expect therefore, to observe the same general behaviour. Specifically we ex-

pect gradient-like structures, the size of which will depend on the sampling radius.

Similarly to the case r = 0, the homogeneous steady state becomes stable for high

cell densities even in the absence of random migration.

Figure 5.13b depicts the bifurcation diagram of the neighbour sensing model. Sim-

ilarly to the equivalent short-range model, the homogeneous steady state is stable for

both low and high cell densities. For intermediate values of the total cell mass M , sta-

ble inhomogeneous steady states emerge. In this specific system three inhomogeneous

equilibria exist, only one of which can be stable for a given value of M . Two of these

equilibria, shown in figure 5.13b, correspond to steady states where three distinct

levels of cell density exist between the five sites: (HHMML), and (HMMLL). The

third one, corresponds to a steady state where all sites are occupied by cells at differ-

ent density levels. In the parameter region where the uniform steady state is unstable,

the (HMMLL) equilibrium becomes stable, and therefore is the one expected to be

observed in simulations. Both remaining inhomogeneous equilibria are stable in the

region of stability of the homogeneous steady state, making the system bi-stable in

these areas. The patterned solutions of this type therefore will be observed depending

on whether the initial conditions favour them instead of homogeneity.

It should be noted however, that the small size of the lattices along with the peri-

odic boundary conditions imposed pose limitations to the parameters that can be used

in order for the uniform steady state to be unstable. As can be seen in figure 5.13a,

the homogeneous equilibrium loses stability for considerably higher cell densities due

to the parameter regime employed. The boundary conditions also reinforce stability

at lower cell densities. As the domain size is increased, the boundary conditions’ sta-

bilising effect becomes less significant and we can expect the conditions for instability

to be satisfied for the range of parameter values used previously. The linear stability

analysis suggests that for the parameters used in this section, and for a relatively

large domain size, one should observe two separate regions of instability.
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Due to these limitations, we omit the bifurcation diagrams for the remaining two

models. Even though they do suggest that multiple cell width patterns are admissible,

they are incapable of reproducing the behaviour of larger systems or providing any

additional information to the diagrams shown, offering very limited insight. Thus, we

have to resort to numerical simulations in order to examine larger systems.

5.3.3 Numerical Simulations

In this section we present numerical simulations undertaken for the nonlocal models

(R2)-(R5).

Time evolution

All models studied here exhibit similar general behaviour, as far as their time evolution

is concerned, to the long-range local sensing model (section 5.2): Multiple peaks

appear initially, the number of which is predicted by the linear analysis, since the

transient pattern corresponds to the fastest growing mode. The aggregates formed

initially merge and grow during the course of the simulation until a final stable pattern

is produced. In particular, the time evolution of the model incorporating crowding

effects is qualitatively the same as in figure 5.9 for the local sensing model. The

difference between the two models is that the aggregates formed in this case are not

as sharp and are elongated. This is due to the crowding effect of the model, which

does not allow lattice sites to become densely populated. Thus, we obtain patterns

with plateaus of cell aggregations rather than spikes. For that reason, we generally

observe a larger number of aggregates being formed, which are less pronounced and

occupy more lattice sites than in the previous case.

Figure 5.14 shows the time evolution of the nonlocal closest neighbour model

(R3), which demonstrates the common characteristics described above: The system

deviates from homogeneity and initially sharp peaks appear. As time progresses, these

peaks coarsen and ultimately the system rests at a patterned equilibrium. The top left

picture of figure 5.14 shows a pattern with wavelength w ≈ 5, whereas after coarsening

of the peaks has ensued (t = 130, second frame shown) the approximate wavelength

of the pattern is w ≈ 8. Finally, after a long period of time has elapsed, the system
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Figure 5.14: Time evolution of model (R3). (a): Initially small aggregations appear
corresponding to the fastest growing mode as dictated from the linear analysis. (b):
The aggregates start to coarsen as time progresses, in common with all the models
considered. (c): Further coarsening of the peaks occurs until (d): the system reaches
equilibrium, forming a pattern in which the cell aggregations are separated by a
distance of at least 2r + 1 sites. Parameters: b = 1, γ = 0.01, a = 0.1, r = 10, M=20,
N=400.

relaxes forming a pattern with w ≈ 40. The linear stability analysis undertaken in

section 5.3.1 predicts that the first two modes mentioned are the ones growing most

rapidly (figure 5.12b). However, the simulations reveal that they are unstable, and the

system further evolves to a stable solution. As mentioned, this behaviour is common

in all our models. We note however, that in the case of the nonlocal sensing opposite

model (R4), simulations reveal that there exist multiple stable steady states and the

evolution of the system depends largely on the initial conditions used.

Concentrating on the time evolution of the closest neighbour model we can observe

that when the initial aggregations start merging in order to form the final pattern, they

do so in a wave-like fashion. That is, some of the cell aggregations of figure 5.14(b)

begin to merge forming the aggregates shown on the left hand side of figure 5.14(c).

This forces the cell aggregates adjacent to these peaks to follow the same process and

merge as well. This is a consequence of the model’s assumptions: cells sense their

environment and decide to move to a new site if the density at it is relatively high.
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After the initial aggregations have been formed, the system is in a pseudo-steady

state, where cells move to either direction with almost equal probability, because the

characteristics of this intermediate pattern roughly correspond to the sensing radius.

However, once the first few peaks merge, they attract almost every cell in their local

environment, defined by the sensing radius. That in turn leads to a break in symmetry,

in the sense that now cells in an aggregate obtain a favourable direction in which to

move. The final pattern is composed by a number of large cell aggregates separated by

sites at very low cell density. The distance between sites located in the aggregates is

always more than twice the value of the sensing radius, making cell aggregates unable

to communicate between them, and therefore the system rests.

Relation to sensing radius

Here we consider the effect of the sensing radius to the aggregations formed in each

model. Another common feature of all the models we have analysed is that increasing

the sensing radius results in patterns with fewer and larger aggregations, i.e. patterns

composed of aggregates of multiple sites in width.

Figure 5.15 depicts a set of simulations carried out for different sensing radii for

the long-range crowding model. By increasing the sensing radius, the aggregations

forming the final pattern involve more lattice sites as expected. They are broader

than the corresponding aggregations of the simpler long-range local sensing model,

since the crowding term prevents cells from further aggregating at a specific site.

Figure 5.16 is a plot of the magnitude of the final aggregations as a function of

the sensing radius for the long-range gradient model (R5). Similar behaviour is also

observed for the neighbour sensing and the sensing opposite models. This plot is

produced using data of numerical simulations performed for each case, using random

small perturbations from a homogeneous cell distribution. The size of the aggregate

S is defined here as the number of consecutive lattice sites in which the density is

above the value of the homogeneous steady state M/N . Also shown is the number

of aggregates in equilibrium for each value of r. Thus, for example for r = 3, we

obtain 8 aggregations of size S = 4. Note that shortly after the first peaks merge,

the width of each aggregation reaches a set number of sites dictated by the value of

138



0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8
r = 1

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8
r =3 

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8
r = 5

Figure 5.15: Numerical simulations of the long-range sensing model with crowding
effects. Simulations show systems of 200 lattice points at equilibrium, for various
values of the sensing radius r. Parameters: M = 60, q = 100, a = 0.01, b = 1.0.

the sensing radius, which is the size S plotted in figure 5.16, and does not increase

further. Subsequent merging of the aggregations results in more cells occupying the

same space, making the final peaks longer rather than wider, in contrast to the long-

range local sensing models R1 and R2.

Relation to total cell density

We have explored the effect of the total cell density available, to the pattern produced.

The crowding model exhibits the same behaviour as the strictly local sensing model:

An increase in M corresponds to an increase in the number of aggregates formed.

Figure 5.17 depicts the various patterns produced for different values M for the long-

range sensing opposite model, for r = 1, with small random perturbations from

homogeneity used as initial condition. For relatively low values of M , we observe a

co-relation between the number of peaks ultimately obtained and the total available
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Figure 5.16: Plot of the size of the final aggregation(s) S that compose the steady
state reached after numerical simulations, against the sensing radius, for the non-local
gradient sensing model (R5). S is defined as the number of consecutive sites at cell
density u > u0 = M/N . The numbers shown next to each data point correspond to
the total number of aggregations once equilibrium has been established. All simula-
tions were performed in 200-site domains, using the same small perturbation from a
homogeneous cell distribution for t = 0. The local gradient model is also included
(r = 0). S is increasing linearly with r, and the final aggregations increase in size
in 1-site steps. Similar results are obtained for models R3 and R4. Parameters:
M = 40, a = 1.1, b = 1.0, γ = 0.01

cell density. However, for relatively large values of M , this co-relation breaks down,

and irregular aggregations are formed comprised with fewer peaks. Similar behaviour

is observed in the non-local gradient model. Linear analysis of the model shows that

the last point of intersection of λ(w) with the w-axis moves to the right asM increases.

That is, as the total cell density increases, the wavelength of the first unstable mode

as well as of the fastest growing mode increase as well. If a certain threshold of M is

exceeded, low-wavelength modes become stable. Thus, beyond a certain value of M ,

only patterns of large wavelengths are possible.

We should note at this point, that the width of the aggregates of the final patterns

observed in the models (R3)-(R5), is constant and independent of the number of

aggregates, depending only on the size of the sensing radius. This contrasts with
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Figure 5.17: Numerical simulations showing the relation between the final pattern
obtained and the total cell density for the non-local sensing opposite model. Similar
results are obtained for the non-local gradient model. As M increases, so does the
number of cell aggregations forming the pattern at equilibrium. For relatively large
values of M however, this relation breaks down and the final pattern is comprised by
fewer peaks. Parameters: r = 1, b = 1, a = 0.1, q = 100.

the findings of section 5.2.3, where we showed that it is the maximum density that

remains constant while the width varies. In other words, in these models, cells are

accumulated over a set number of sites dictated by the sensing radius. This fact may

offer an explanation for the behaviour seen in figure 5.17: Since all cell aggregations

are of the same size, there is a maximum number of cell aggregates that can be

accommodated in a certain domain. Therefore, if the total cell density exceeds a

certain threshold, the relation between M and the number of density peaks cannot

be sustained.

5.4 Summary

In this chapter we have extended the models presented in chapters 3 and 4 to allow

for long-range sensing by incorporating a sensing radius. In chapter 3 we introduced

the discrete local models (M1)-(M5) by considering a variety of ways by which cells
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respond to their environment by sensing the cell density in their local neighbour-

hood. Our aims were to derive continuous models using an approach similar to [66],

and explore the effectiveness of both discrete and continuous models to describe an

adhesion-type process. The three basic requirements of our models were highlighted

in table 3.1: To successfully describe an adhesion-type process a model should be

able to (i) allow aggregating behaviour, (ii) exhibit multiple cell aggregates, and (iii)

produce cell aggregates of multiple cell widths.

As far as the derivation of continuous models is concerned, we showed in chapters 3

and 4 that the models derived become ill-posed in the region were instability of the

homogeneous steady state is predicted. Blow-up is expected under the conditions for

instability, rendering the continuous models unusable. However, the continuous mod-

els do, at some level, predict aggregation since patterning conditions can be obtained

from the linear analysis, which correspond to the equivalent conditions for the discrete

models, and blow-up behaviour can be viewed as an aggregation phenomenon. One

could expect that by incorporating non-local sensing in the models, this behaviour

can be avoided. However, the results of chapter 5 in which non-local interactions were

included showed that ill-posedness is still an issue.

Derivation of continuous models from an underlying discrete model can be very

useful since it offers a connection between microscopic and macroscopic properties.

Thus, macroscopic parameters, such as diffusion coefficients, can be determined from

the equivalent measurable microscopic parameters, such as cell velocities. A continu-

ous model has the advantage of being analytically tractable and, especially when large

populations of particles are studied, less computationally intensive. Discrete models,

on the other hand, are desirable since they allow the incorporation of interactions at a

cellular level. It is therefore highly desirable to develop continuous models that retain

the underlying characteristics of their discrete counterparts.

The ill-posed nature of continuous models generated using the same approach is

also observed in similar local sensing models (e.g. [7, 73]), while in [99] a master equa-

tion/Potts model was taken to its continuous limit. Our results in chapter 5, indicate

that non-local information inherent in the discrete model is lost upon transformation

into a continuous model, an observation also made in [99]. However, the illposedness
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of the continuous models may be a product of the scalings and the limit used. There-

fore it is possible that different forms of discrete models or the use of different scalings

could lead to a well-posed and therefore usable continuous model.

Due to the ill-posed nature of the continuous models we focused our analysis to

the discrete models. The analysis of chapter 4 revealed that the discrete models

(M1)-(M5) were capable of producing regular patterns if a random migration or a

crowding term were included. We also demonstrated that despite some variation

in the models’ behaviour, the discrete model formulation is relatively insensitive to

differences in the precise nature of the sensing mechanism. The drawback of these

models is that they cannot exhibit patterns of multiple cell diameters. By including

a sensing radius we demonstrated that the extended models (R1)-(R5) retained the

desirable characteristics of their local sensing counterparts. Additionally, we showed

that through the modifications applied in this chapter multicell patterns are possible,

making the models analysed capable of reproducing adhesion mediated aggregating

behaviour under the requirements we imposed in table 3.1.

A straightforward extension to the models developed here would be to consider

multiple cell populations with different adhesive properties. As we have discussed

in section 3.2.2, the Differential Adhesion Hypothesis predicts several cell sorting

scenarios (see figure 3.3), and a model of cell-cell adhesion should be able to reproduce

these behaviours.

Cell-cell and cell-matrix adhesion is present and plays a key role in a variety

of biological processes, including cancer invasion, wound healing, angiogenesis and

development of the slime mould Dictyostelium discoideum. Numerous attempts of

mathematical modelling of these phenomena exist that have taken adhesion into ac-

count. Examples include [76] for Dictyostelium and [31] for cancer invasion. Our

models can be extended to include additional processes such as chemotaxis in order

to model cell movement and pattern formation in developmental biology, and fur-

ther study the interaction of the two processes. We consider one such application in

the following chapter, in which we will use the discrete model with non-local sensing

approach in order to apply it to modelling a specific example of adhesion mediated

pattern formation.
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Chapter 6

Application of adhesion modelling:

Sympathetic ganglia formation

In this chapter we will consider a specific biological application in which cell-cell ad-

hesion plays an important role: the formation of sympathetic ganglia (figure 6.1).

We will first give an account of the biological background. In order to model this

phenomenon we will examine both a continuous and a discrete formulation. For the

discrete model we will accordingly adapt the discrete master equation-model (R2)

proposed and demonstrated to successfully capture the characteristics of adhesive

populations in the previous chapter. Since this model was unable to generate a “us-

able” continuous model we will fall back on an established continuous model for cell

adhesion, developed by Armstrong et al. [8]. A brief description of this model will

be given, along with a review of analytical results. Finally, we will present the full

ganglia formation model, and its analysis.

6.1 Introduction

6.1.1 Biological Background

Sympathetic ganglia are structures of the autonomic part of the peripheral nervous

system. They are divided into two subtypes: the paravertebral ganglia and the pre-

vertebral ganglia. The former are located on either side of the spinal chord and form
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long chains (the sympathetic chains), while the latter are found in the abdominal cav-

ity [87]. Sympathetic ganglia play an important role in the function of the autonomic

peripheral nervous system.

Sympathetic ganglia formation is initiated in early development when trunk neural

crest cells migrate from the neural tube. Neural crest cells migrate and generate a

variety of differentiated cell types. The trunk neural crest cells disperse from the

neural tube and follow two principal pathways: cells that migrate dorsally underneath

the ectoderm ultimately differentiate into skin pigment cells (melanocytes). Cells

that follow the ventral pathway give rise to the dorsal root ganglia and sympathetic

ganglia [34]. Sympathetic ganglia are formed after a subpopulation of these cells

continue their journey past the dorsal root ganglia formation site, and disperse along

the dorsal aorta. A striking difference between the two pathways is that in the former

case migration is unsegmented, while cells following the ventral pathway move through

the somites in a patterned fashion: they selectively enter the rostral part of the somite

and avoid the caudal portion [14] (figure 6.2). Experimental evidence suggests the

existence of guidance cues located in the somites, responsible for the migration of

neural crest cells [15]. Therefore, it was believed that sympathetic ganglia formation

is a result of the patterned migration. However, a recent study [45] showed that when

Figure 6.1: Formation of sympathetic ganglia. A: neural crest cells initially dispersed
along the dorsal aorta. Lines indicate somite borders. Dorsal (D) and ventral (V)
directions shown. Figures B-G and B’-G’ show the cells migrating away from the
interganglionic regions and aggregate into sympathetic ganglia. Scale bar: 50µm,
times in hours. Figure taken from [45].
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cells arrive at the sympathetic ganglion sites, the segregated pattern ceases to exist

and cells undergo further re-sorting in order to from discrete ganglia (see figure 6.1).

Further studies by Kasemeier-Kulesa et al [44] provided experimental evidence

that the interplay between two mechanisms drive sympathetic ganglia formation. The

authors were able to demonstrate: (1) that cell-sorting occurs as a result of a repulsion

mechanism mediated by the expression of ephrinB1 in the inter-ganglionic regions and

its receptor EphB2, and (2) that cell-adhesion mediated by N-cadherin plays a major

role in the aggregation process as well as in controlling the ganglion size. As cells

migrate away from the inter-ganglionic regions due to the inhibitory signals, cells

adhere to one another, thus forming discrete ganglia. This process is schematically

depicted in figure 6.2: Neural crest cells migrating from the neural tube pass through

the rostral somite and disperse along the dorsal aorta. Ephrin expression is manifested

in the interganglionic regions, forcing the cells to move away from them. Cells adhere

to each other by forming homophyllic N-cadherin bonds and form discrete sympathetic

ganglia.

In the following sections we will attempt to model the sympathetic ganglia for-

mation process based on the findings of Kasemeier-Kulesa et al [44]. To do this,

we will employ both a discrete and continuous approach. For the discrete model we

will extend one of the non-local models for cell adhesion (model (R2)), developed

and demonstrated to capture the characteristics of adhesive populations in chapter 5.

As discussed in chapter 5, the continuous model derived from the discrete model is

ill-posed. For the continuous formulation we will therefore use a more detailed con-

tinuous model for cell-cell adhesion proposed in [8]. Our aim is to propose a model

that can account for the phenomena described in [44] and make predictions about

the biological system. Furthermore, we test the ability of the model for cell adhesion

proposed in chapter 5 to model a specific biological application and compare it to the

more established continuous model.

We will first give an account of the continuous model for cell adhesion developed

in [8] and subsequently present both the full adhesion-repulsion models and their

analysis in sections 6.2 and 6.3.
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Figure 6.2: Schematic representation of discrete sympathetic ganglia formation, high-
lighting the key processes: 1. Neural crest cells migrate from the neural tube (nt)
through the rostral somites (r), avoiding the caudal part of the somites (c). 2. Neural
crest cells disperse adjacent to the dorsal aorta (da). ephrinB1 expression is estab-
lished in inter-ganglionic regions between developing ganglia. 3. Interplay between
N-cadherin mediated adhesion and ephrinB1 repulsion drives discrete ganglia to form
adjacent to the ventral edge of a rostral somite. A, anterior; P, posterior; Figure taken
from [44]

6.1.2 Mathematical Background

In this section we present and discuss the continuous model for cell adhesion developed

in [8]. This model will be extended in section 6.2 in our model formulated to describe

sympathetic ganglia formation. The authors assumed no cell birth or death in the

system and used a mass conservation approach to derive the model:

∂u(x, t)

∂t
= −∂J

∂x
, (6.1)

where u(x, t) is the cell population density at position x and time t, and J , the cell

flux, is taken to be:

J = Jd + Ja, (6.2)

147



where Jd and Ja are the contributions due to diffusion and adhesion respectively.

Fickian diffusion was assumed: Jd = −D ∂u
∂x
, while the adhesive flux is given by:

Ja =
φ

R
u

∫ R

−R

αg(u(x+ x0))ω(x0)dx0. (6.3)

The specific form of Ja shown in (6.3) is derived in [8]. The integral represents

the sum of local adhesion forces exerted at cells at position x due to the presence of

cells at a distance x0. R is defined as the maximum distance x0 within which cells can

sense the adhesive force, and termed the “sensing radius”. As we have discussed in

the previous chapters, R minimally represents the physical cell size, but in practice is

likely to be somewhat larger in order to include the distance covered by cell protrusions

such as filopodia or lamellipodia.

The nature of the adhesive forces and their dependence on cell density is described

in (6.5) by g(u(x+x0)), the specific form of which will be discussed later. The strength

of adhesion is modelled by the parameter α, and ω(x0) models the direction and

magnitude of the force according to the location of the cells. Finally φ is a constant

of proportionality related to viscosity. The model (in one space dimension) is then as

follows:

∂u

∂t
= D

∂2u

∂x2
− ∂

∂x

(

uK(u)
)

, (6.4)

where

K(u) =
φ

R

∫ R

−R

αg(u(x+ x0))ω(x0)dx0. (6.5)

In (6.4) u(x, t) is the cell population density at position x and time t. The first

term in the right hand side accounts for random cell motility (with D the diffusion

coefficient), whereas the second term, containing the integral, models movement due

to cell adhesion. Regarding the specific forms of g(u(x+ x0)) and ω(x0), the authors

in [8] assume that the adhesion forces are attractive and increase with cell density,

since a cell is likely to create more adhesive bonds at higher densities. They propose

a simple linear form:

g(u(x+ x0)) = u(x+ x0), (6.6)
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or a form that incorporates crowding effects, assuming that adhesion forces decrease

once the cell density exceeds a certain threshold:

g(u(x+ x0)) =







u(x+ x0)(1− u(x+ x0)/M) if u(x+ x0) < M

0 otherwise,
(6.7)

where M represents the crowding threshold. Finally, ω(x0) is given by:

ω(x0) =







−1 −R < x0 < 0,

1 0 < x0 < R.
(6.8)

As discussed, ω(x0) models the force’s direction according to the location of the cells.

This is the simplest form for ω(x0), though a more realistic assumption would be that

the magnitude of the adhesion force varies with distance, e.g. to reflect decreased

likelihood of forming bonds with distance from cells.

In the following sections we will employ the model (6.4) with the density depen-

dent form of g (equation (6.7)) in order to describe cell-cell adhesion in our model

for sympathetic ganglia formation. We scale the cell density u by the crowding ca-

pacity M , so that u∗ = u/M . Incorporating parameter φ into the adhesion strength

parameter α yields α∗ = αφM , so that the model reads

∂u

∂t
= D

∂2u

∂x2
− 1

R

∂

∂x

(

u

∫ R

−R

αu(1− u)ω(x0)dx0

)

, (6.9)

where we have dropped the stars for notational convenience. The parameter choices

will be discussed in the following sections.

The authors in [8] have analysed the model presented above by performing linear

stability analysis and numerical simulations both in one and two dimensions. The

linear stability analysis predicts that aggregating behaviour is possible in the model,

and offers a criterion for the strength of the adhesion parameter required in order for

aggregations to form. In section 6.3.1, we present the linear analysis in one dimen-

sion undertaken in [8]. Numerical simulations confirmed that the model captures cell

aggregation. Furthermore, by extending the model to study two adhesive cell popu-
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lations, Armstrong et al. [8] showed that the model can reproduce the experimental

results of Steinberg and capture cell sorting behaviour.

6.2 Sympathetic ganglia formation modelling

6.2.1 Continuous Model

In order to model the formation of sympathetic ganglia, we consider a cell density

u(x, t) at position x and time t of sympathetic ganglia precursor cells that are initially

homogeneously distributed along the dorsal aorta. We consider a 1-dimensional do-

main of size L: x ∈ [0, L], where x describes the position along the longitudinal axis of

the dorsal aorta (see figure 6.2). If J denotes the flux of the cells, mass conservation

implies:
∂u

∂t
= −∂J

∂x
.

Movement of cells is assumed to occur due to random migration, cell-cell adhesion as

a result of N-cadherin, and movement in response to the Eph-Ephrin repulsive forces,

so that J = Jd + Ja + Jr, where Jd, Ja, and Jr are the corresponding contributions

to the total flux due to each type of movement. We will utilise the model proposed

in [8] and discussed in 6.1.2 to describe the contributions Jd and Ja. In order to

model Ephrin mediated repulsion, we assume that cells respond to the distribution of

EphrinB1 located in the interganglionic region by moving down its gradient. Adopting

the classical approach of modelling taxis type terms [61], we therefore take:

Jr = −βu
∂ρ

∂x
, (6.10)

where β is the (constant) chemo-repulsion sensitivity, and ρ(x) denotes the EphrinB1

distribution. Experiments [44] suggest that EprinB1 expression is restricted to the

caudal portion of each somite. Furthermore, it was demonstrated that EphrinB1 ex-

pression in the interganglionic regions coincides with the movement of neural crest

cells away from these regions, and that EphrinB1 is still expressed after the cells have

formed discrete ganglia (figure 6.2). To model these findings we assume a periodic
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spatial distribution of EphrinB1, to account for the fact that its expression is localised

in each caudal somite. We also assume that directed movement of cells due to repul-

sion forces begins after EphrinB1 expression is established, and therefore make the

simplifying assumption that the chemical’s distribution is constant in time. Assuming

the chemical concentration is high at the location of the caudal somite, and low at

the rostral somite, we can rewrite (6.10) as:

Jr = βuΛ(x). (6.11)

We will use Λ(x) = sin(2nπx
L

), where L is the domain size and n is an integer corre-

sponding to the number of somites present in the domain in question. The assumption

behind this form of Λ(x) is that the Ephrin concentration is fixed in space and does

not diffuse, which is supported by the experiments.

The full model reads:

∂u

∂t
= D

∂2u

∂x2
− ∂

∂x

(

uK(u)
)

+
∂

∂x

(

βu sin(
2nπx

L
)
)

, (6.12)

with

K(u) =
1

R

∫ r

−r

αu(1− u)ω(x0)dx0, (6.13)

where parameters α and β model the strengths of the adhesive and repulsive forces

respectively, D is the random motility coefficient and R is the sensing radius. Biolog-

ically, α represents the level of N-cadherin activity in the cells, while β the level of

Ephrin activity. We have used the (scaled) volume-filling form of g(u) (equation (6.7)),

while ω(x0) is given by (6.8).

6.2.2 Discrete Model

In this section we approach the problem of sympathetic ganglia formation using the

discrete modelling formulation introduced in chapters 3- 5. Specifically, we will use a

modified version of the long range crowding model described in sections 3.5.2 and 5.1.2.

In this model, the transition probabilities per unit time of a jump from n to n±1 are
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given by:

T±
n = [d+ af(Un)](1− un±1), (6.14)

where un is the cell density at site n which now represents a discrete location along

the dorsal aorta, Un =
∑n+r

i=n−r
ui

2r+1
, f(U) = 1

1+qU2 , r is the sensing radius, and d, a, q

are positive constants. The main assumptions of this model are that the probability

of a cell moving from a specific site depends on the cell density at the site and random

migration. The latter is modelled by d, whereas a models the adhesive strength. We

also assume that there is a crowding threshold in cell density. Analysis of this model

was presented in chapter 5.

In order to model sympathetic ganglia formation, we need to modify (6.14) in order

to include the contribution of the repulsion mechanism. The presence of Ephrin in

specific locations along the lattice should be accompanied by a corresponding increase

in the likelihood of a cell located at these sites performing a jump. The modified

transition probabilities read:

T±
n = [d+ af(Un) + b sin

(2mπn

N

)

](1− un±1), (6.15)

where N is the total number of sites, b is a constant corresponding to the strength of

the repulsion, and m corresponds to the number of somites in the lattice.

Table 6.1 below shows the correspondence between the parameters of the contin-

uous and discrete models.

Process Continuous Discrete
Random Motility D d
Cell Adhesion α a
Repulsion β b

Table 6.1: Key parameters of the ganglia formation models. Corresponding parame-
ters between the discrete and continuous models are shown.
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6.3 Analysis

6.3.1 Continuous Model Analysis

I: No repulsion forces

In this section we analyse the model (6.12) in the absence of the repulsion forces,

i.e. we set β = 0 in (6.12). We present the linear stability analysis undertaken

for (6.9), first presented in [8]. The analysis serves as an indication of whether the

model can develop cell aggregation patterns when adhesion alone is operating, and

investigate the criteria under which this is possible. Furthermore, these criteria will

assist in estimating the parameter α to be used in our subsequent simulations. The

experimental procedure equivalent to the case we analyse here, would be to artificially

disable the Eph/Ephrin repulsion mechanism, which was undertaken in [44]. This

experimental procedure resulted into no ganglia forming, and the cells remaining

homogeneously distributed along the dorsal aorta.

We begin by linearising around the homogeneous steady state U , by setting:

u(x, t) = U + ũ(x, t), where ũ(x, t) is a small perturbation. Substitution into (6.9)

yields:

∂ũ

∂t
= D

∂2ũ

∂x2
− αU(1− 2U)

R

∂

∂x

(
∫ R

−R

ũ(x+ x0)ω(x0)dx0

)

, (6.16)

where we have neglected non-linear terms in ũ. We look for solutions of the form:

ũ ∝ eikx+λt. Upon substitution into (6.16), we obtain the following dispersion relation:

λ(k) = −Dk2 − 2αU(1− 2U)

R
(cos(Rk)− 1). (6.17)

For cell aggregations to develop we require Re(λ(k)) > 0, which leads to the following

criterion:

α >
DRk2

2U(1− 2U)(1− cos(Rk))
. (6.18)

Expression (6.18) demonstrates the ability of the model to produce inhomogeneous

patterns on the condition that the adhesion parameter α is sufficiently strong. The

authors in [8] have demonstrated the ability of their model to produce aggregating
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behaviour through numerical simulations.

The equivalent analysis for the discrete model was undertaken in section 5.3.1,

in which the nonlocal model with crowding (R2) was linearised. The condition for

patterning is:

2(d+ af0)(cos k − 1) +
2au0f

′
0

2r + 1
(1− u0)

(

cos[(r + 1)k]− cos(rk)
)

> 0 (6.19)

where u0 is the homogeneous steady state, and f0, f
′
0 are the function f = 1

1+qu2

modelling cell-adhesion, and its first derivative evaluated at u0.

II: No adhesion forces

We can also analytically determine the steady states of the model (6.12) without

the adhesion contribution. The equivalent experimental procedure was performed by

Kasemeier-Kulesa et al. [44], where they suppressed N-cadherin expression in pre-

ganglionic cells. Specifically, setting α = 0 we obtain at steady state :

∂

∂x

(

D
∂u

∂x
+ βu sin(

2nπx

L
)

)

= 0,

or

D
∂u

∂x
+ βu sin(

2nπx

L
) = c1.

Using no-flux boundary conditions yields c1 = 0. Integrating, we obtain:

u = A exp
( βL

2πnD
cos(

2πnx

L
)
)

, (6.20)

where A is an integration constant that can be determined through a density conser-

vation argument:
∫ L

0
u(x, t)dx =

∫ L

0
u(x, 0)dx = M0, with M0 being the total initial

cell density. Equation (6.20) implies that in the absence of adhesion a periodic inho-

mogeneous steady state is obtained, the period of which is dictated by n, the number

of somites in the domain. This is in accordance with the biological experiments in [44],

where it was shown that if N-cadherin expression is suppressed sympathetic ganglia

do form in the area rostral to the somites. However, ganglia formed under these

conditions were found to be malformed: Since adhesive connections were weakened
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the discrete ganglia were found to be elongated. This preliminary analysis therefore

provides an indication for the magnitude of the relevant parameters. Furthermore we

can compare this analytical result to the numerical simulation.

Numerical simulations of the full model (6.12) will be presented in the following

section. Our aim is to reproduce the results of Kasemeier-Kulesa et al. [44] and

make predictions about the real biological system. Specifically, we will examine the

interplay between the repulsive and attractive forces mediated by Ephrin and cell-cell

adhesion respectively, and attempt to determine their significance in the formation of

sympathetic ganglia. Additionally we will look at the manner the system behaves if

longer range signalling is taken into account, through the use of cellular protrusions.

6.3.2 Numerical simulations

Parametrisation and fitting to experimental data

In this section, results of numerical simulations of equation (6.12) are presented. We

have used g(u) = u(1−u), the scaled equivalent of (6.7), which takes crowding effects

into account. We solve (6.12) on a domain of length L = 300µm discretised into 3000

mesh points, corresponding to approximately three somites (we estimate the length

of each somite to be 100 µm [45], leading to n = 3). We generally consider a sensing

radius of R = 20µm, which implies that cells can sense their environment within a

radius approximately two times their physical size, however a range of values for R

will be investigated in order to illustrate how the magnitude of the sensing radius

affects the system. Bray [13] estimated the diffusion coefficient of a “typical” animal

cell to be 5 × 10−10cm2/sec, whereas the motility coefficient of fibroblast cells was

estimated in [88] to be ∼ 0.83× 10−9cm2/sec. We will use D = 10−9cm2/sec.

Initially we presume that cells are uniformly distributed along the dorsal aorta,

following the results in [44], and therefore assume that at t = 0 the cell density

distribution is homogeneous with a small random perturbation: u(x, 0) = U + η,

where U = 0.25, and η is a random perturbation of order 10−4. Periodic boundary

conditions were employed in the simulations shown, effectively modelling an arbitrarily

long domain. Simulations using no-flux boundary conditions were also performed,
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exhibiting no considerable difference in the results. We are interested in patterns

forming within a time window of ≈ 10 − 12 hours, since this is the relevant time

period for sympathetic ganglia formation as suggested in [44].

Figure 6.3 shows the simulations performed, for various values of α and β. Details

about the numerical method employed can be found in the appendix A.3. In this

manner we test the sensitivity of the system to variation of these two parameters.

A reference value for parameter α can be obtained from the linear analysis. Equa-

tion (6.18) poses a condition for aggregating behaviour to occur in the absence of the

repulsion mechanism. Kasemeier-Kulesa et al. [44] report that by inhibiting Ephrin,

the cells remained uniformly distributed along the dorsal aorta over the timescale of

patterning, i.e. there was no aggregation into the discrete ganglia. Taking this into

account, we vary α around the critical αc that (6.18) predicts.

Using the value of U = 0.25 set in the initial condition, we obtain αc ≈ 8D/R.

Note that α & αc does not necessarily imply that patterns would be observed in the

relevant time period. However, for α ≫ αc we would expect to see peaks in the absence

of repulsion contradicting the results of [44]. For α & αc inhomogeneities do grow,

however they develop very slowly and the system does not deviate significantly from

homogeneity within the relevant biological time scale. Of course, pattern formation

due to adhesion is observed in the course of the simulation but the time period required

is significantly larger. We have chosen α = 12D/R > αc to be the “normal” value

for the adhesion parameter, since the experimental data in [44] suggest that there is

minimal motility in the absence of the repulsion mechanism.

For α < αc and β = 0, the system returns to homogeneity, as expected. For

α = 0, there is perfect agreement between the simulations shown and the steady

states calculated by (6.20). Therefore, equilibrium has been reached in the course of

the simulation. As β increases, the repulsion mechanism becomes more significant.

The sympathetic ganglia pattern forms for low values of β, but the cell density of the

aggregates is low and they occupy more space when cell adhesion is weak. In other

words, the repulsion mechanism however weak, forces cells to move away from the

interganglionic areas, but this leads to malformation of sympathetic ganglia if cells

form weak or no adhesive bonds at all, since the repulsion mechanism is not sufficient
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Figure 6.3: Numerical simulations of the full model (6.12) for various values of the
adhesion and repulsion strength parameters. All figures depict the patterns obtained
at t = 12h, in a domain of length L = 300µm. In absence of adhesive forces (α = 0,
top row), analytical results of the steady states calculated in section 6.3(eq. (6.20))
are also plotted, marked with ′o′. Perfect agreement with numerical results indicates
that for this case the steady state has been reached. Aggregations do not from in
the absence of a repulsive mechanism (β = 0) for any of the values of α used, in the
time the simulation was allowed to run. If cell-cell adhesion is weak, cells tend to
move away from the interganglionic areas but the aggregations thus formed are of low
density and more elongated. Parameters: U = 0.25, R = 20µm,D = 10−9cm2/sec.
For numerical method details see section A.3 of the appendix.

to overcome cell diffusion. This is in agreement with a second experimental procedure

presented in [44]. The authors measured the lengths of sympathetic ganglia of a

control group to be equal to the length of the rostral somite (i.e. 50% of a somite’s

length). By blocking N-cadherin expression, cell-cell adhesion is greatly disrupted.
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The size of sympathetic ganglia in embryos injected with an N-cadherin antibody was

shown to be significantly affected. Since adhesion was weakened, the cells were more

loosely aggregated, leading to a significant increase of ganglion length.

In the case where α > αc and α is significantly large in comparison to β, more

peaks emerge due to adhesion driven aggregation. However, if the repulsion is strong

enough, the aggregates ultimately merge and form the normal sympathetic ganglia

pattern seen in our simulations. This process of peaks merging and moving to the gan-

glia region might significantly delay the formation process, depending on the relative

magnitudes of α and β.

An important conclusion that can be drawn from figure 6.3 is that the sympathetic

ganglia formation process is relatively robust. As can be observed, for relatively

large values of α and β (bottom right panels in figure 6.3) we obtain very similar

patterns. Therefore, ganglia formation is robust to variation of the adhesive and

repulsive strengths around their “normal” values.

Predictions

An interesting scenario is the one depicted in figure 6.4, in which the repulsion mech-

anism is inhibited, while cell-cell adhesion is enhanced. This scenario corresponds

to an experiment in which Ephrin receptors in cells are blocked while at the same

time N-cadherin is overexpressed. If α is significantly larger than its critical value,

pattern formation is observed during the relevant time frame. The patterns formed

are composed of multiple cell aggregates, the initial number of which is dictated by

the linear analysis (equation (6.17)). Over time, cell communication and movement

results in the merging of the aggregations, in common with the discrete adhesion

models presented in chapter 5. Therefore, under these circumstances, our model pre-

dicts the formation of cell aggregations varying in size, at random locations along the

dorsal aorta. Furthermore, if there is a small but non-zero repulsion contribution, it

predicts the emergence of multiple cell aggregations that move as a whole, rather than

individual cells, and eventually form the sympathetic ganglia pattern. Malformation

of sympathetic ganglia is manifested if the aggregations have not merged in the avail-

able time, or if they are not found in the correct position. Furthermore, the cells are
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Figure 6.4: Pattern formation occurring in the model when the repulsion mechanism
is suppressed (β = 0) and adhesion is enhanced. The pattern obtained at t = 12h
is shown, to allow comparison with figure 6.3. The same parameters and initial and
boundary conditions used as in 6.3 except α = 100D/R. Multiple peaks emerge
initially, and merge as time progresses.

expected to be more densely packed due to the large adhesion forces operating. It

would be interesting to assess the validity of these predictions through experimental

procedures.

Simulations of the model (6.12) have been carried out in order to determine the

role of the magnitude of the sensing radius, in the sympathetic ganglia formation

process. Figure 6.5 below shows the results for R = 10µm, 20µm, and 40µm. The

simulations show that an increase in the sensing radius results in the accumulation

of a larger number of cells in the predetermined ganglionic regions, over a set time

period. A similar result was obtained in [9], where the same cell-adhesion model was

used. Sympathetic ganglia formation is faster for larger values of the sensing radius,

since cells form adhesive bonds with cells located further away, thus increasing the

collective cell movement towards the ganglionic areas. However, the difference in

ganglia size obtained is small in comparison to the corresponding variation of the

sensing radius, suggesting that our model is robust to variation of R.
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Figure 6.5: Numerical simulations of the full ganglia model (6.12) for different sensing
radii: R1 = 10µm(−.−), R2 = 20µm(−), R3 = 40µm(−−). Parameters and initial
and boundary conditions as in fig. 6.3, with α = 12D/R1, β = D/R1, t = 12h.

6.4 Discrete modelling of sympathetic ganglia for-

mation

In this section we present numerical simulations performed for the discrete model

of sympathetic ganglia formation in order to assess the nonlocal adhesion model of

chapter 5 by using it to model a specific application and comparing it to the continuous

model.

We have performed numerical simulations in lattices composed of 300 sites, such

that one lattice site corresponds to a length of 1µm, for various parameter values,

using periodic boundary conditions. Figure 6.6 depicts the results for a sensing ra-

dius r = 10, so a cell senses over a length of 20µm. The system exhibits very similar

behaviour to that observed for the continuous model (see figure 6.3 for comparison).

Pattern formation depends on the competition between the homogenising effects of

random migration and the aggregating effects of cell-adhesion and the repulsion mech-

anisms. If the adhesion mechanism is disrupted or weak, the patterns formed are gen-

erally composed of lower density peaks extending over more lattice sites. Increasing

the adhesion contribution leads to the formation of cell aggregations that are more

compact and increases their cell density. However, when b, the repulsion strength
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Figure 6.6: Numerical simulations of the discrete sympathetic ganglia formation
model. The random migration term d is kept constant, while the adhesion and re-
pulsion strength parameters are varied in order to reveal the interplay between the
two mechanisms. No inhomogeneous patterns are obtained in the simulation time for
a ≤ 30d. The model exhibits behaviour similar to the continuous model analysed in
section 6.3. Specifically, an increase of a, the adhesive component, enhances ganglia
formation. However, when the repulsion parameter is sufficiently strong, increasing a
has the opposite effect.

approaches values close to d, the random migration contribution, this behaviour is

reversed. We observe that for b ≈ d, increasing a leads to a slight decrease in the cell

density of the aggregations.

This behaviour is more apparent in figure 6.7, in which the patterns obtained for

various values of the sensing radius are compared. Here, we observe that increasing

the sensing radius results in less pronounced peaks, in contrast to the findings of the

continuous model.
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Figure 6.7: Comparison of the patterns obtained for varying values of the sensing
radius in the discrete model for sympathetic ganglia formation. r = 5µm(−−), r =
10µm(−), r = 20µm(−.−).

The discrete model for cell adhesion was derived by imposing simple rules for the

movement of cells in response to cell density variations, and subsequently extended to

incorporate nonlocal sensing. Despite the differences discussed above, the results of

the discrete model compare well with the equivalent results for the more complex con-

tinuous system. Variation of the adhesion and repulsion parameters a and b exhibits

very similar behaviours to the corresponding parameter variation of α and β for the

continuous model. The discrete model is able to capture the basic aspects of the sym-

pathetic ganglia formation process, i.e. the interplay between the adhesion/repulsion

processes, and reproduce the biological experiments. These results reinforce the va-

lidity of the discrete cell adhesion models of chapter 5 and demonstrate the impact of

incorporating nonlocal sensing in a simple model of cell movement.

6.5 Discussion/Summary

In this chapter we attempted to model sympathetic ganglia formation, a process in

which cellular adhesion plays a central role. To this end, we proposed both a discrete

and a continuous modelling approach. For our discrete formulation we have used
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a model developed in chapter 5 to describe cell adhesion. As shown in chapter 5,

the discrete models considered are capable of capturing the fundamental aggregating

properties of adhesion-type processes. However, the continuous models derived were

demonstrated to be unsuitable. For the continuous modelling of sympathetic ganglia

formation therefore, we have employed an established model for cell adhesion.

Our goals were to mathematically describe the process of sympathetic ganglia for-

mation and reproduce the experimental findings of [44], as well as to make predictions

about the biological system in question. Furthermore, we were interested to apply the

model developed in the previous chapters to a specific biological process and further

test its capabilities and limitations by comparing it both with the experimental results

and the results of the more established continuous model.

In [44] it was demonstrated that two processes are chiefly responsible for the

correct ganglia formation: N-cadherin mediated cell-cell adhesion, and chemorepulsion

mediated by Ephrin. We have performed a parameter sensitivity analysis for the two

principal parameters of both our models: α (or a for the discrete model) representing

the adhesive strength and β (or b) representing the repulsion strength. Both models

are capable of capturing the behaviour of the system, and reproduce the experiments

undertaken in [44]: In the absence of the repulsion mechanism, no aggregation is

possible, while if cell adhesion is suppressed the resulting ganglia are less pronounced.

For sufficiently large values of α and β the model exhibits cell aggregations forming

corresponding to discrete sympathetic ganglia. Furthermore, when both adhesion and

repulsion mechanisms are sufficiently strong, parameter variation has limited effect

on the resulting pattern, suggesting that the sympathetic ganglia formation is robust.

Additionally, the system was found to be relatively robust to variation of the sensing

radius. Increasing the length over which cells can communicate does result in faster

ganglia formation and more compact aggregates, however these changes are small in

comparison to the large sensing radius length variation.

The discrete model yields very similar results compared to the continuous model.

Variation of parameters a and b shows the same qualitative behaviour: loose ag-

gregations are formed when cellular adhesion is weak, while no ganglia formation

is possible in absence of the repulsion mechanism. Discrete ganglia are formed for
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relatively large values of a and b, while increasing either parameter results in more

compact aggregates. However this correlation seems to break down for large parame-

ter values. Overall, this agreement of the discrete model with the continuous model’s

results demonstrates that despite its simplified nature, the model possesses the essen-

tial features necessary to describe biological processes. This reinforces the conclusions

of chapter 5 and further demonstrates the impact of non-local sensing.
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Chapter 7

Conclusions

In chapter 2 we extended a model for juxtacrine signalling and lateral inhibition [20]

in order to include nonlocal signalling. These mechanisms are identified and proved

to be responsible for cell fate determination patterning. The model proposed in [20] is

incapable of producing the relatively long spaced patterns found in nature. Based on

recent experimental results [21], we altered the juxtacrine signalling model to account

for long range communication of cells facilitated by the use of filopodia. By considering

simple scenarios for the nature of cell signalling we were able to demonstrate that

regular long range patterns of different types are possible.

Using standard linear stability analysis we were able to derive the criteria under

which pattern formation is possible and highlighted the importance of the strength of

the feedback mechanism: Including filopodia signalling corresponds to more cells be-

ing contacted. In order for pattern formation to occur a stronger feedback is needed,

indicating the existence of a “natural limit” on the possible scale of the patterns that

may result. Linear analysis is a useful tool for determining the conditions for pattern-

ing and predicting the form of the resulting patterns. However, an accurate prediction

of the dominating pattern is not always possible. This is mainly a consequence of the

discrete nature of the system: a mode predicted by the linear analysis to be unstable

may not correspond to an integer value of wavelength and therefore will not develop.

Numerical simulations demonstrated the variety of patterns that can be obtained

by considering different signalling scenarios and confirmed the predictions of the linear

analysis. Furthermore, they provided insight to the patterning process. Considering
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the more realistic scenario of weighted signalling in one and two-dimensional domains

we demonstrated that our results can reproduce the experimental work undertaken

in [21].

We have also briefly looked at how a polarised filopodia distribution affects the

patterns produced. We demonstrated that polarised signalling can produce striped

patterns of alternating cell fates. A more detailed analysis of this phenomenon is an

interesting direction of future study. A further extension of the work undertaken in

chapter 2 is to consider dynamic filopodia promoted by Delta, as suggested in [19, 21],

instead of the constant in time and of set length filopodial distribution considered in

this work. Such an extension may be able to reproduce the pattern refinement process

reported in [19]. Another future direction for this study would be to undertake a non-

linear analysis of the model in order to reveal aspects of it which cannot be fully

captured by the linear analysis.

In this study we have chosen to extend the Collier et al. model [20], since its simpler

nature offers the possibility of a more detailed analysis. This in turn, provides great

insight into the patterning process due to long-range signalling. We remark however,

that a more realistic model would have to incorporate a more detailed description

of the ligand-receptor binding mechanism, as was the case for the models presented

in [68, 69, 100, 101, 102, 103].

In chapter 3 we introduced a framework for modelling contact mediated cell move-

ment. We proposed a number of different discrete models by considering different

mechanisms by which cells sense and respond to their environment, and were able to

derive continuous models by following the techniques used in [66].

Both discrete and continuous modelling approaches have their benefits and draw-

backs. The discrete approach models a biological problem by considering the behavour

and properties of individual cells. A discrete model describes interactions at a mi-

croscopic level. Thus, it enables the tracking of individual cells, and allow the use

of measurable quantities such as cell velocities. Furthermore, a discrete model offers

the advantage of ease of setting up movement rules based on interactions at a cellular

level. However, a realistic discrete model quickly becomes analytically intractable

and computationally intensive as the number of cells being studied rises, due to the
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large number of variables and equations that would be required in order to accurately

capture the behaviour of a large system.

Continuous models on the other hand, describe phenomena from a macroscopic

point of view. They are formulated in terms of macroscopic quantities such as cell

densities and diffusion coefficients. Thus, in contrast with the discrete modelling

approach, a continuous model is easier to analyse both analytically and computation-

ally, since it requires significantly fewer variables and equations. However, continuous

models may not be able to capture processes taking place on an individual cell scale.

Derivation of a continuous model from a discrete model, offers a link between

microscopic and macroscopic properties. Therefore, derivation of a continuous model

from an underlying discrete model is highly desirable, since one can combine the

strengths of each model form. This is the main reason for the numerous attempts to

derive mathematical models in this manner found in the literature (see for example [1,

2, 7, 66, 70, 74, 99]).

In this work we used the framework introduced in [66] in common with a variety

of other models (e.g. [7, 40, 72, 74]).The different discrete models formulated were

based on different simplyfing assumptions about the movement of cells in response to

different sensing mechanisms. The movement rules set up in each case were simplistic

on purpose in order to investigate the impact different sensing mechanisms have on the

models’ behaviour. The simple nature of the models makes them more amenable to

analyse, compare them to each other, and highlight the importance of several aspects

essential to pattern formation. The simple discrete/master equation approach affords

a whole set of different possibilities for the way a cell can sense its environment.

Consequently, to obtain a detailed understanding into what respresents a suitable

model for a cell adhesion type process, the approach is to perform a comprehensive

analysis by looking at all plausible forms by which a cell can locally respond to the

environment.

Analysis of the models was undertaken in chapter 4, were we showed that the

continuous models are ill-posed in the region of instability of the homogeneous steady

state and therefore cannot be used. Ill-posedness of continuous models derived from

underlying discrete models is an issue found in other work similar to ours (e.g. [7, 41]).
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We therefore concentrated on the discrete models. The discrete models were shown

to be capable of producing patterns comprised of multiple cell aggregates as long

as a small random motility term or a crowding term were included. Whithout the

inclusion of these terms, global aggregation was observed, where all the available cell

density is localised at a single site. We have also highlighted the importance of the

total available cell density in aggregation formation. We showed that aggregations

are not possible if the total cell density is below a certain threshold, an observation

also made in [7]. Furthermore, it was shown that aggregations are not possible when

the total density is too high if random motility or crowding effects are considered.

The aggregates observed however, were of the scale of individual cells, making

the models unable to describe the patterns seen in nature, where aggregations are

of significantly larger scale. Nevertheless, analysis of the models provided insight to

the patterning process and aided in the development and better understanding of the

extended models of chapter 5.

It was also demonstrated that the different models considered produced similar

results, and the patterns obtained do not exhibit significant differences. We have

concluded therefore that the impact of the precise sensing mechanism is not very

significant in contrast to the case of chemical signalling as considered in [66]. The

precise form of chemical detection actually had a big impact on the behaviour of the

system, which implied a significant sensitivity. The conclusion to be drawn from our

study is that for adhesion type processes we obtain a type of robustness with respect

to the precise sensing mechanism.

In chapter 5 we generalised the models introduced in chapter 3 to include nonlocal

sensing. We allowed cells to occupy multiple lattice sites by introducing a sensing ra-

dius. The notion of a sensing radius can also be thought to include long range sensing

by cellular extensions such as filopodia. There is biological evidence that filopodia

do play a role in adhesion processes, as cells extend filopodia to probe for potential

adhesive sites [4, 30]. By extending the models of chapter 3, we demonstrated that

the models retained the characteristics of the local sensing models while being capable

of producing multiple cell aggregations comprised of multiple cell width aggregates, a

fundamental requirement for a successful model of cell adhesion mediated patterning.
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Inclusion of nonlocal interactions however, could not alter the ill-posed nature of

the continuous models. Similarly to [99], we observed that any non-local information

existing in the discrete formulation is not present in the continuous models. We remark

that derivation of a well-posed continuous model may be achieved by following this

procedure for different discrete models or by using a more appropriate combination

of scalings and limits.

The approach of Anderson and Chaplain [5] offers an interesting alternative to-

wards the direction of linking discrete and continuous modelling forms. In their work,

the authors developed a continuous model for tumor induced angiogenesis comprised

of a system of nonlinear partial differential equations. By discretising the continu-

ous system they were able to derive a discrete model similar to the biased random

walk models of Othmer and Stevens [66] and the models developed in this work. The

discrete model derived describes the motion of an individual cell, by redefining the

coefficients of the model to be the probabilities of movement towards a specific direc-

tion. The original continuous model can be retrieved following the methods of [66]

used in this work. The discrete model derived enabled the authors to track the move-

ment of individual cells as well as to explicitly include specific movement rules. In this

manner, the model successfully captures the finer processes of angiogenesis which the

continuous model could not account for. A possible aproach to link discrete and con-

tinuous model formulations of cell adhesion therefore, would be to take the opposite

route from the one used in this work. One could derive a discrete model by employing

a similar method to the one used in [5], starting from a well-posed continuous model.

The modelling framework developed in this work can be extended in order to

model pattern formation in different biological contexts. One possible extension is to

modify the models in order to capture cell sorting of multiple cell populations due

to differential adhesion, experimentally shown in studies like [86, 90, 91, 92, 93, 95].

A successful model of cell adhesion should be capable of capturing the different cell

sorting behaviours predicted by the Differential Adhesion Hypothesis.

Another future direction would be to extend the models to two spatial dimen-

sions, thus considering a more biologically realistic scenario. The models can also be

extended in order to include additional processes such as chemotaxis, haptotaxis, or
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cell-matrix adhesion. Inclusion of such interactions in our models, in addition to cell

adhesion will be helpful in studying the interplay between them and highlighting their

importance in relation to each other. The additional processes can be incorporated

in the model by altering the movement rules of cells and the transition probabilities

accordingly, and considering additional PDEs to describe, for example, the evolution

of a chemical signal in the case of chemotaxis. Furthermore, the modified models can

be used in order to model cell aggregating behaviour in specific biological contexts.

Cell adhesion has been shown to play a significant role in various developmental pro-

cesses such as vasculogenesis, gastrulation, and cell migration [94]. Other examples

include aggregating slime mould, and cancer invasion.

Finally, in chapter 6 we test one of our nonlocal adhesion models in modelling a

specific biological process in which cellular adhesion plays a crucial role. We used

both discrete and continuous modelling approaches in order to describe the process of

sympathetic ganglia formation. We have extended one of the non-local discrete mod-

els of chapter 5 for the discrete formulation, and a modified version of the continuous

model for cell adhesion presented in [8]. Both approaches were successful in describing

ganglia formation through the combination of cellular adhesion and chemical repul-

sion processes, and highlighting their contributions and interplay. Additionally, our

models enable us to make testable predictions about the biological process. Finally,

we demonstrated that the discrete nonlocal models developed in chapter 5 compare

well with the continuous model.

Overall, by considering different mechanisms of pattern formation, we studied

how inclusion of nonlocal sensing affects developmental processes modelling. We

showed how it can generate long-scale patterns comprised of multiple cell widths and

accelerate the pattern formation process. By incorporating nonlocal information in

discrete models of cellular adhesion we were able to derive models that can successfully

capture the essential aspects of self-aggregation processes, a claim reinforced by the

results of chapter 6.
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Appendix A

Numerical Methods

A.1 Juxtacrine Signalling

A.1.1 1-dimensional numerical simulations

Simulations appearing in chapter 2 for the system of equations (2.3)-(2.4), for 1-

dimensional lines of cells were produced using FORTRAN. A 4th order Runge-Kutta

method for time integration was employed, and the averaging term l̄j was computed

explicitly for every time step. The systems were solved in domains of 100 or 200 cells

with time step dt = 0.01. The solution was accessed by MATLAB in order to produce

the graphic output. We have used either periodic boundary conditions or such that

there is no ligand activity outside the domain (specified in the main text). The initial

conditions were a homogeneous distribution of ligand and receptor activity with an

additional small (∼ 1%) random noise term, unless otherwise stated.

A.1.2 2-dimensional numerical simulations

Numerical solution of the system (2.3)-(2.4) in hexagonal arrays was obtained using

a FORTRAN program in which a “signalling regime” is specified (see figure 2.16).

This is achieved by computing the coordinates of all the cells, contacted by each

cell in the domain. The averaging term is computed for each cell through direct

summation of ligand activity in the contacted cells for each time-step. The ROWMAP

integrator [104] is used for time-integration, a method that automatically adjusts
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the time-step size. Boundary conditions were such that there is no contribution to

the averaging term from cells outside the domain, and initial conditions were small

perturbations from the homogeneous steady state. Output files were processed by

MATLAB to produce the figures presented.

A.2 Cell Adhesion Modelling

Numerical simulations presented in chapters 4 and 5 for the models (M1)-(M5) and

(R1)-(R5) were performed using the MATLAB in-built ODE solver ode15s. Periodic

boundary conditions were employed throughout. A homogeneous distribution of cell

density with a small random noise term was applied initially, except in figure 5.9 were

ui(0) = u0 − 0.01 cos(4π
N
) was used.

A.3 Sympathetic Ganglia Formation

The discrete model, equation (6.15) was solved using MATLAB’s ode15s in-built solver

as in A.2. For the continuous model, equation (6.12), a method of lines was employed.

The equation is discretised in space on a mesh of spacing ∆x = 0.1. Time-integration

of the resulting ODEs system is performed using the ROWMAP integrator [104] for

stiff ODEs. Calculation of the integral term is achieved through direct summation of

the grid points enclosed within the set radius. The diffusion term was discretised using

a central difference scheme. For the adhesion term, a first-order upwind scheme was

employed. Periodic boundary conditions were used for the simulations shown, but no-

flux boundary conditions were also used showing no considerable difference. Initially

a small random perturbation to a uniform cell density distribution was applied.
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