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ABSTRACT  

Drought is a major threat to world agriculture. In order to identify proteins associated 

with plant drought tolerance, barley varieties bred in the UK (Golden Promise) and Iraq 

(Basrah) were compared. 

The variety Basrah showed physiological adaptations to drought when compared to 

Golden Promise, for example relative water content after one week of drought was 

much higher for Basrah than for Golden Promise in the leaves as well as the roots. Also 

the water loss rate was significantly different between the two varieties, with the Basrah 

variety loosing water at about half the rate of Golden Promise.  

DIGE analyses were carried out on proteins from roots and leaves under control and 

drought conditions. 24 leaf and 45 root proteins were identified by MALDI-TOF MS 

spectrometry. The relative expression patterns of the identified proteins fell into a 

number of distinct classes. The variety Basrah is characterised by constitutive 

expression or higher drought-induced expression levels of proteins regulating ROS 

production and protein folding. Photosynthetic enzymes, by contrast, were down-

regulated in Basrah. Enzyme assays showed a good correlation between DIGE-derived 

protein abundance estimates and enzyme activity in extracts. 

Overall this study shows that the enhanced drought tolerance of variety Basrah is driven 

by an enhanced regulation of ROS under drought. A number of transcription factors 

with enhanced expression in Basrah under drought conditions were also identified; it is 

hypothesised that these may contribute to the drought tolerant phenotype and thus make 

interesting targets for barley breeding experiments. 
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1.1 Barley 

The cultivated cereals such as barley, maize, wheat, rice, rye, oats, millet (ragi) and 

sorghum all belong to the large monocotyledonous grass family, Gramineae. Maize, 

rice, and wheat are the most commonly cultivated cereals and in 2010 , they accounted 

for an estimated 88% of the total cereal production worldwide (Food and Agriculture 

Organization of the United Nations (FAO)). The global annual production of barley in 

2010 amounted to more than 125 million tonnes, accounting for 7.5% (FAO). 

In 2011 the total barley production in Scotland accounted for 69% of the cereal 

production, with spring barley representing 59% and winter barley 10%. Wheat 

accounted for 26% of the area cultivated in Scotland and oats accounted for 5% 

(http://www.scotland.gov.uk/Publications/2011/09/27083355/0). The average yield in 

Scotland, of winter barley, spring barley, wheat and oats in 2011 stood at 7.1, 5.6, 8.1, 

and 5.6 tonnes per ha, respectively. The average cereal yield in UK was 6.9 tonnes per 

ha in 2010 (http://data.worldbank.org/indicator/AG.YLD.CREL.KG). The high yield of 

barley is one of the reasons that cereals are very important as food plants. In the UK 

around 6.5 million tonnes of barley is produced every year, with about 1.5 million 

tonnes being exported, 3 million tonnes are used for animal feed, and about 2 million 

tonnes are used for malting and distilling 

(http://www.ukagriculture.com/crops/barley_uk.cfm). 

The point of origin for barley is believed to be the southern part of the Fertile Crescent, 

more specifically Israel and Jordan [1], and wild varieties of two-row barley (Hordeum 

spontaneum) are still seen in western Asia. The most commonly cultivated forms are the 

two- and six-row barleys. The six-row barley is more resistant to extreme temperatures 

than the two-row barley. Alternating nodes, each bearing three single flower spikelets, 

make up the spike (or ear). All three spikelets are fertile in six-row barley, but only the 

central spikelet is fertile in two-row barley. At maturity, the ear (awned or awn-less) 

may be erect or drooping. Winter barley is sown in the autumn and will then vernalise 

over winter and be ready for harvest towards the end of the summer. Vernalisation 

(exposure of seeds or seedlings to low temperature) of winter barley is necessary in 

order to induce flowering. Spring barley is sown in the spring, and is ready to be 

harvested in late summer. Barley is a diploid self-pollinating plant, with each flower 

bearing both male (anthers) and female (ovary) organs. 
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1.2 Abiotic stress 

Plants, being sessile organisms, will have to be able to cope with different types of 

environmental conditions and changes. Plants have the ability to respond to 

environmental changes by altering their gene expression patterns. Strong light, UV, 

high and low temperatures, freezing, drought, salinity, heavy metals, and hypoxia are all 

environmental circumstances that can result in abiotic stress [2, 3]. 

 

1.2.1 Climate changes and the effect on abiotic stress 

According to reports from the Intergovernmental Panel of Climate Change 

(http://www.ipcc.ch), global climate changes, such as the frequency of heavy 

precipitation and of warm daily temperature extremes, the decreases in cold extremes, 

and an increase in length, frequency and/or intensity of heat waves will cause an 

increase in abiotic stresses over most land areas during the 21st century. This 

anthropogenic climate change is foreseen to cause severe problems, as many areas of 

the world are predicted to become warmer with changes to annual precipitation [4], and 

the Intergovernmental Panel of Climate Change is currently looking at how to manage 

the risks of extreme climate events and disasters to advance climate change adaptation. 

Crop plants must be able to cope with environmental stress factors in order to survive 

and provide a sustainable yield. These environmental stress factors include climate 

change scenarios as drought, elevated temperatures, elevated [CO2] and salinity.  

At present there is a significant growth in the global human population, which further 

highlights the importance of developing sustainable agriculture. This is, however, 

complicated by the fact that all aspects of plant architecture can be affected by climate 

change [5]. Plants can deal with and survive environmental stress factors by means of 

molecular programs that enable the plant to quickly sense changes and adapt 

accordingly. It has been necessary for plants to evolve a wide range of these molecular 

programs in order to survive. For many decades, understanding these molecular 

reprogramming events during climate changes has been a widely discussed subject that 

has created a lot of interest. It is however still not possible to predict how plants will 

cope with climate change catastrophes and what molecular programs will be activated 

during the stress events and how they work. Therefore, further insight into these 

evolved molecular reprogramming events is necessary, and will help enable the 
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breeding of crops with enhanced tolerance to environmental stress factors, either by 

traditional breeding or by producing transgenic varieties [5]. Different approaches on 

how to achieve enhanced stress tolerance are further described in section 1.3. 

 

1.3 Drought stress 

Plants require water in order to transport dissolved mineral nutrients from the roots to 

the rest of the plant and to retain cell turgor. However, water is lost from the aerial parts 

of the plant because assimilation of carbon dioxide through photosynthesis requires that 

the stomatal pores are open to the atmosphere, thus causing water loss through 

transpiration. The physiological and biochemical changes in plants that have been 

exposed to drought have been well characterized; if a plant is unable to obtain or retain 

sufficient water, the consequences are wilting, reduced photosynthesis and reduced 

mineral uptake, with negative consequences for plant growth and development 

(reviewed in [6] [7] [8]). 

Yield and quality in global agriculture is threatened by lack of water [9], and 

anthropogenic climate change will exacerbate this problem since many areas of the 

world are predicted to become warmer with changes to annual precipitation [4]. It is 

estimated that water shortage causes a loss of up to 50% of agricultural yield 

worldwide, whereas the loss caused by pathogen attack is estimated to be between 10-

20 % [10]. 

Different plant species are adapted to different environmental regimes, and within one 

species, different varieties may show a range of abilities to cope with drought. This is 

particularly the case for crop plants that may have evolved in arid environments such as 

the Fertile Crescent, but are now grown all over the world. The Fertile Crescent is at the 

heart of West Asia and North Africa, a region referred to as WANA. Three important 

regions of biological diversity lie within the WANA area: the Near Eastern region, the 

Mediterranean region and the Central Asian region [11]. A wide range of crop plants 

are believed to have their origin, and domestication, from different areas of the WANA 

region, including crop plants as pulses, spices, oil crops, fibre plants, pasture and forage 

species, fruit and nut trees and cereals [12] [13], and this also includes barley [1]. The 

WANA region is characterised by several major land forms such as flat elevated land 

(today largely desert), mountainous arcs, rolling terrain (a repetitive pattern of ridges 
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and valleys) and alluvial plains. The variation in topography strongly influences the 

climate, ranging from Mediterranean hot dry summers and cool, wet winters at the 

costal regions in the west, to continental climates inland [11]. The varying climate again 

strongly influences the vegetation, and the Fertile Crescent was once a major food-

producing area [14]. After 9000 BCE, favourable climate conditions improved the 

environment in the Fertile Crescent, encouraging growth and spread of wild plants, and 

the native habitat for early forms of wheat and barley was formed by grasslands with 

scattered trees [11]. Wild cereals were gradually domesticated, along with other crop 

plants, thus a significant number of species forming today’s agriculture originated from 

the Fertile Crescent about 10,000 years ago, where the wild relatives and landraces can 

still be found today. This genetic diversity is invaluable with respect to modern plant 

breeding, as genetic material is maintained in old landraces. This genetic material 

significantly widens the gene pool, contributing to the possibility of assuring food 

security and making sure that sustainable agricultural production can cope with biotic as 

well as abiotic changes and challenges [11] [14]. 

Therefore, important traits for drought tolerance in plants can be found in old landraces 

from geographical regions with challenging climates close to the origin of 

domestication, and these traits will be the raw material for plant breeders to generate 

drought-tolerant crop plant varieties. Different strategies have been adopted to identify 

such traits [15] [16]. An empirical approach to this is to select for enhanced yield under 

adverse conditions, but drought tolerance is a difficult trait to breed for since there is a 

high genotype x environmental interaction for such tolerance [17] [18] [19]. More 

recently, quantitative trait loci have been reported for drought tolerance, and this should 

assist breeding by marker-assisted selection [20] [21]. An alternative approach has been 

to analyse the transcriptome of droughted plants; in barley this approach has identified 

genes associated with stomatal closure, synthesis of osmoprotectants, and ROS (reactive 

oxygen species) scavengers [22]. There have been several previous studies (briefly 

described below) specifically on the stress proteome (particularly salt and drought 

stress) of barley [23] and wheat [24], and also some studies that have compared the 

transcriptome of different barley varieties [22] [25]. 

Witzel et al. (2009) [23] used two-dimensional polyacrylamide gel electrophoresis (2D 

electrophoresis) to compare the root proteome between a salt tolerant barley genotype 

and a salt susceptible genotype, grown under saline and non-saline conditions. Patterns 
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of cultivar specific protein expression as well as salt stress responsive protein 

expression were revealed, and 26 proteins were identified using MALDI-TOF MS 

(matrix-assisted laser desorption/ionisation-time of flight mass spectrometry). In 

particular, two proteins were identified, which were expressed at a higher level in the 

tolerant genotype and plays a role in the glutathione based detoxification of ROS; GST 

(glutathione S-transferase) and lactoylglutathione lyase (known as glyoxalase I). The 

proteins were less abundant in the susceptible genotype, whereas proteins involved in 

iron uptake were more abundant. Peroxidase, ascorbate peroxidase (APX) and catalase 

(CAT) were also identified; all three enzymes are involved in ROS catabolism. 

Peroxidase was up-regulated in the drought tolerant genotype after drought treatment 

and down-regulated in the susceptible genotype. Ascorbate peroxidase was expressed at 

a higher level in the susceptible genotype, and catalase was down-regulated in both 

genotypes but to a higher extend in the susceptible genotype. Witzel et al. (2009) [23] 

emphasised through the study that ROS detoxification plays an important role during 

salinity stress, and proteins involved in ROS detoxification, with the potential to 

increase salt tolerance in barley were identified. 

Caruso et al. (2009) [24] also used 2D electrophoresis and MALDI-TOF in a proteomic 

study of drought stress in wheat, which enabled the identification of 36 proteins with 

altered levels in response to drought. It was found that proteins involved in 

photosynthesis, the Calvin cycle and sugar metabolism (eg. ribulose bisphosphate 

carboxylase, fructose-bisphosphate aldolase, triose-phosphate isomerise) were down 

regulated and proteins involved in ROS scavenging (e.g. ascorbate peroxidase, carbonic 

anhydrase and superoxide dismutase) were up-regulated. Furthermore, photosystem II 

oxygen-evolving complex protein was up-regulation after exposure to drought and ATP 

synthase CF1 beta subunit was down-regulated. 

In an approach to identify genes involved in drought tolerance in barley Guo et al. 

(2009) [22] monitored gene expression in the leaves during the reproductive stage under 

drought by using a microarray to screen two drought tolerant varieties and one drought 

susceptible variety. In the two drought tolerant varieties 17 genes were exclusively 

expressed after exposure to drought, and their encoded proteins are thought to be 

involved in control of stomatal closure, synthesis of osmoprotectants, ROS catabolism, 

membrane and protein stabilisation. Another 18 genes showed a higher expression in 

the two drought tolerant varieties under drought conditions as well as control 
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conditions, indicating that the genes are constitutively expressed in drought tolerant 

varieties (e.g. HSP17.9 (heat shock protein) and HSP70, GST). Seven of these genes are 

proposed to enhance drought tolerance via signalling such as CDPK (calcium-

dependent protein kinase) and membrane steroid binding protein, and via anti-

senescence and detoxification pathways [22]. 

The studies described above, looking at the transcriptome and stress proteome of plants 

after drought and salt treatment, show the same indications: proteins involved in 

photosynthesis, the Calvin cycle and sugar metabolism are down regulated, and proteins 

involved in ROS scavenging and the synthesis and accumulation of osmoprotectants are 

up-regulated [22] [24] [23]. 

A different approach to identify important traits for stress tolerance in plants was taken 

in a study by Qiu et al. (2011) [25], where salt tolerance and the function of HvHKT1 

and HvHKT2 were evaluated in wild barley. HKT transporters (high-affinity K+ 

transporters) mediate Na+ transport or coupled transport of Na+-K+. 189 Tibetan wild 

barley accessions were evaluated for salt tolerance by looking at the reduction in dry 

biomass. Accessions differing in salinity tolerance were analysed by measuring the 

concentrations of Na(+) and K(+), and association analysis (genetic association between 

unrelated individuals, in this case 189 wild barley accessions, seen as non-random 

association of alleles in haplotypes [26]) and gene expression assay were used to 

determine the allelic and functional diversity of HvHKT1 and HvHKT2 in the 

accessions. The wild barley genotypes showed a wide variation in salt tolerance, with a 

high salt tolerance significantly associated with K(+)/Na(+) ratio. It was revealed in 

association analyses that HvHKT1 mainly controls Na(+) transport, and HvHKT2 

mainly controls K(+) transport under salt stress. Qiu et al. (2011) [25] concluded that 

elite alleles of HvHKT1 and HvHKT2 conferring salt tolerance can be found in Tibetan 

wild barley. 

Physiological approaches have also been utilised in the attempt to identify traits 

conferring drought and salt tolerance in barley; Ivandic et al. (2000) [27] looked at the 

phenotypic variation after exposure to drought and Khosravinejad et al. (2008) [28] 

looked at the physiological changes after exposure to salt stress. 

Ivandic et al. (2000) [27] studied the effect of drought on the phenotypic responses of 

wild barley. Fifteen agronomic, morphological, developmental, and fertility related 
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traits were studied, whereof 10 traits were significantly affected by drought. In a 

principal component analysis 88.8% of the population variation was explained by the 

first three principal components. Yield-related and morphological traits (principal 

component 1) explained 47.9% of the variation, developmental characteristics (principal 

component 2) explained 22.9%, and fertility related traits (principal component 3) 

explained 18.0%. It was proposed that the identified genotypes exhibiting yield stability 

during drought might be useful for breeding of new barley varieties that are better 

adapted to drought. 

Khosravinejad et al. (2008) [28] studied the effects of salinity on changes in the content 

of photosynthetic pigments, the level of respiration, and relative water content (RWC) 

in two barley varieties. Total chlorophyll content, and the chlorophyll a and b content, 

significantly decreased under salinity. With increasing salt concentration oxygen uptake 

declined in both shoot and root, and RWC also decreased. The decrease in RWC 

showed a reduction in growth and an increase in shoot/root ratio. 

 

1.3.1 Short-term water deficit 

When exposed to limited water resources plants have different strategies to survive. The 

strategy depends on how fast drought develops, as the response to drought can differ 

depending on whether the drought occurs within days/months or within hours/days. 

During short-term water deficits (hours to days) the plant strategy is to hold on to the 

water already taken up by closing the stomata, reduce leaf surface area by leaf curling 

or changing the angle of the leaf to reduce transpiration [29] [30] [31] [32]. Short-term 

drought also results in the reduction of photosynthetic enzymes, which helps reduce the 

production of ROS in the chloroplasts (see section 1.5) [33] [34] [35] [36] [32]. In order 

to alleviate the effects of drought, plants can make osmotic adjustments by regulating 

their solute potential in order to create an intracellular water potential that will cause 

water to be drawn from the soil towards the root surface and into the cells, and thereby 

maintain turgor pressure. Turgor pressure contributes to the rigidity and mechanical 

stability of nonlignified plant tissue, and is the pressure that occurs when the plasma 

membrane pushes against the cell wall due to the cytoplasm and vacuoles being full of 

water. Maintenance of turgor pressure is essential for many physiological processes in 

the plant, such as cell enlargement, gas exchange in the leaves, transport in the phloem, 

and transport processes across membranes. By accumulating osmotically active 
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compounds, the concentration of solutes in the cell will increase and a positive turgor 

pressure inside the cell is preserved, because the flow of water into the cell is 

maintained. This means that plants may accumulate osmotically active compounds in 

the cell such as proline and other amino acids [37], or quaternary ammonium 

compounds (for example glycine betaine) [38]. In addition, plants may develop 

biochemical mechanisms for coping with the effects of drought, such as the production 

of LEA proteins, conserved polypeptides thought to be involved in the preservation of 

structural integrity of enzymes [39].  

 

1.3.2 Long-term water deficit 

If the water shortage develops gradually (days to months), plant strategies to hinder 

drought stress include taking up more water from the soil through enhanced root 

growth, and reducing water loss by morphological changes to leaf anatomy and 

structure [40] [41] [42]. Plants have different ways of escaping long-term water deficit. 

Besides adapting biochemically by inducing the expression of stress responsive genes 

through activation of various signalling pathways, which also happens in response to 

short-term water deficit, plants can also shorten their life cycle or adapt 

morphologically, by directing energy to growth of the root system or by decreasing 

plant biomass, in relation to long term water deficit. Traits involved in dehydration 

escape can explain the plant’s ability to adapt to drought by controlling plant 

development and shape, and these traits are mostly constitutively expressed [43] [44] 

rather than stress-induced, which means that they give the plant constant advantages as 

no gene induction is needed. Shortening the lifecycle and producing less biomass are 

irreversible adaptations to drought. Shortening the lifecycle is primarily caused by 

activating processes leading to flowering and seed production [43] [44] [6]. 

 

1.4 Signalling pathways involved in abiotic stress 

A host of diverse factors are implicated in the signalling pathways involved in the plant 

responses to environmental stresses [45] [46]. When a plant recognizes stress at the 

cellular level a stress response is initiated. The plant hormones, particularly abscisic 

acid (ABA), jasmonic acid (JA), and ethylene (ET), and also secondary messengers, for 

example calcium and transcription factors are known to play vital roles in the regulation 
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of plant stress responses (see section 1.4.1 to 1.12.5). Signal transduction pathways are 

activated by signal recognition leading to changes in gene expression and cellular 

metabolic readjustment. The translation of this might lead to a changed physiological 

state possible leading to a better adaption of the plant towards the stress. The way in 

which the plant recognises stress and the type of sensor molecules detecting the stress 

signal varies between the different types of abiotic stress and signalling pathways, and 

will be described in the following sections 1.4.1 to 1.12.5, with focus on drought stress. 

 

1.4.1 Molecular mechanisms activated during drought 

One of the first lines of defence against drought is closure of the stomata, which results 

in reduced water loss but as a consequence also reduced gas exchange and hence 

reduced carbon fixation. Enhanced production of ABA in the roots is one mechanism 

that cause stomatal closure; ABA is translocated from the roots to the rest of the plant 

and causes the stomata to close, as well as promoting expression of a large number of 

stress-related genes (see section 1.6) [47]. Furthermore, it has been shown that an 

increase in xylem pH (caused by stress as for example drought) can cause the closure of 

stomata and limit leaf growth by regulating the release of ABA from symplastic stores 

in stems and leaves [48]. This means that even low concentrations of ABA in the xylem 

of well-watered plants is capable of inducing stomatal closure, if there is the appropriate 

change in pH. This signalling mechanism effectively allow the plant to respond to low 

levels of stress, without having to synthesise extra hormone [48] 

The production of enhanced levels of ROS is also characteristic of drought stress (see 

section 1.5). ROS production is a normal consequence of photosynthetic metabolism 

(see section 1.5.1) and the levels of these molecules are normally kept within acceptable 

limits by the cell (see section 1.5.3). Enhanced ROS levels can lead to cellular damage 

(oxidative stress) as these compounds will react with proteins, nucleic acids and lipids. 

The enhanced levels of ROS produced under drought conditions are caused in large part 

by ABA-induced stomatal closure, leading to reduced carbon fixation through 

photosynthesis. This in turn drives ROS production through a number of different 

mechanisms (see section 1.5.1 and 1.5.2) [49] [50] [51] [52]. The plant utilises the 

enhanced level of ROS (in particular hydrogen peroxide) as a messenger to inform on 

the stress levels of the cell, which can trigger the expression of genes involved in 
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protection against stress, for example enhanced expression of antioxidant ROS 

scavenging enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and 

glutathione peroxidase (see section 1.5.3 and 1.5.4).  

 

1.5 Reactive oxygen species 

Partial reduction of atmospheric O2 produces what is called reactive oxygen species 

(ROS). Singlet oxygen (1O2), superoxide radical (O2
-), hydrogen peroxide (H2O2), and 

hydroxyl radical (HO•) are the four cellular forms of ROS [50]. ROS are highly reactive 

as they contain valence shell electrons that are unpaired, which means they can easily 

give away electrons and thereby reduce other compounds. Particularly singlet oxygen 

and hydroxyl radicals are very reactive, as they can oxidize cellular components as 

DNA and RNA, and lipids and proteins. If the oxidation of cellular components is 

unhindered, it will eventually lead to cell death and in fact this is utilised by the cell in 

the reaction to biotic stress as a part of the defence mechanism is an oxidative burst that 

triggers programmed cell death [53]. During abiotic stress ROS have been suggested to 

have a dual role depending on the overall cellular levels [54]. At low cellular levels 

ROS seem to have a function in stress signalling pathways involved in stress defence 

and acclimation responses [54] [55]. At high cellular levels ROS becomes extremely 

damaging and oxidative cascades commence, damaging membranes and other cellular 

components [54] [51]. 

 

1.5.1 Natural production of ROS in the plant 

ROS molecules are continuously produced in plants under normal conditions; in the 

chloroplasts as a result of photosynthesis, as a result of photorespiration, and in the 

mitochondrial electron transport chain. Under normal conditions, singlet oxygen (1O2) 

and hydroxyl radicals (OH•) are kept at a low level [56] [57], superoxide radicals (O2
-) 

and hydrogen peroxide (H2O2) are synthesised at very high rates [56] [58].  

ROS generation takes place through cellular respiration in the mitochondrial electron 

transport chain. It has been shown that the mitochondria are the major source of ROS 

production in mammalian cells [59], and it has been suggested that the same is the case 

for non-photosynthesising plant cells [59]. Of the oxygen consumed and respired by the 
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plant, it has been proposed that 1-2% of oxygen is used to generate superoxide (O2
-) in 

the mitochondrial electron transport chain [59].  

The chloroplasts are one of the main sites where ROS production takes place. During 

photosynthesis, the two light harvesting complexes in the thylakoidal membranes, 

photosystem I and II, receives all the energy captured by the photosynthetic apparatus. 

As a series of light-dependent redox reactions takes place in the electron transport 

chain, the captured light energy is converted into the molecules ATP and NADPH, 

where the energy is carried as chemical energy. During the light-independent reactions 

the reduction of CO2 (final acceptor for the electrons) into glucose takes place, driven 

by the NADPH and ATP formed during the light-dependent reactions. Through the 

light-dependent and light-independent chains, it can however occur that oxygen is used 

as an alternative final acceptor for the electrons instead of CO2, and thereby superoxide 

radicals (O2
-) are formed. 

Furthermore, in the water-water cycle the thylakoidal electron transport components of 

photosystem I, such as the Fe-S centres and reduced thioredoxin, cause the reduction of 

O2 forming superoxide radicals (O2
-) and hydrogen peroxide (H2O2) [60] [61] [62]. 

Approximately 10% of the electrons from the photosynthesis are believed to flow to the 

water-water cycle [63]. This natural reduction of O2 leading to generation of ROS has 

been proposed to stabilise the electron carriers and make them more efficient, and is 

therefore favourable to the electron transport chain under unstressed conditions [58]. 

ROS are also produce in photorespiration. When the concentration of CO2 is sufficient, 

the enzyme rubisco catalyses the carboxylation of ribulose-1,5-bisphosphate during 

carbon assimilation. Rubisco is however not absolutely specific for CO2 as a substrate 

but can use O2 to oxygenate ribulose-1,5-bisphosphate, yielding glycolate. The 

glycolate produced in the chloroplasts is then transported to the peroxisomes where 

H2O2 is yielded due to oxidation of glycolate by glycolate oxidase. During this reaction, 

no carbon is fixed and energy is used to salvage the carbons from glycolate, so 

photorespiration consumes O2 and releases CO2 [64] [65].  
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1.5.2 ROS production during drought 

A limitation on water supply is firstly sensed by the root system, where after a signal 

(proposed to involve ABA) is send to the leaves through the xylem sap [66] [67]. The 

signal will cause the stomata to close and the plant will now use a strategy where it tries 

to hold on to the water it has already taken up. By closing the stomata the plant will 

limit the loss of water, but at the same time also limit the entrance of CO2, and 

photorespiratory oxygen consumption is favoured over photosynthetic carbon 

assimilation [64]. In a study by Wingler et al. (2000) [65] it was estimated that over 

70% of total H2O2 production under drought is generated through photorespiration. 

Furthermore, Biehler & Fock (1996) [68] estimated that the flow of electrons from the 

photosynthesis to the water-water cycle increased by 50% in wheat during drought 

stress. 

In non-photosynthesising plant cells, the main site of ROS production is in the 

mitochondria through the electron transport chain, and during drought the production of 

ROS increases as the electron transport chain is disrupted. The increased levels of H2O2 

released from the mitochondria are used as a signal and causes an increase in the 

synthesis of ROS scavenging enzymes in plant roots [59]. 

So the production of ROS during drought is enhanced through photosynthesis as well as 

through photorespiration, and in the mitochondrial electron transport chain, and the 

higher production of ROS increases the oxidative load on the tissues [69]. 

 

1.5.3 ROS scavenging 

Mechanisms inhibiting oxidation are a part of the plants defence towards ROS during 

unstressed conditions. These defence mechanisms are in place to ensure that there is an 

equilibrium of ROS levels in the cell. The balance between ROS production and ROS 

scavenging can be disturb by both biotic as well as abiotic stress, including salinity, UV 

radiation, drought, heavy metals, temperature extremes, nutrient deficiency, air 

pollution, herbicides and pathogen attacks [52].  

Superoxide dismutase (SOD), CAT, and APX are the three major ROS scavenging 

(Table 1) mechanisms in plants under non-stressed conditions (described in detail in 

section 1.5.4). SOD is located throughout the cell, and rapidly scavenges the superoxide 
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radical (O2
-), which is one of the first ROS to be produced. APX is located in every 

cellular compartment that produces ROS, whereas CAT is exclusively located in the 

peroxisomes. Furthermore, APX has a much higher affinity for H2O2 than CAT, and it 

has therefore been proposed that APX modulates ROS for signalling and CAT removes 

excess ROS under stress [51]. The individual activity of these ROS producing and 

scavenging mechanisms, and the balance between them, is used to determine and 

monitor the intracellular steady-state level of ROS during unstressed conditions [70]. 

 

 
Table 1: The major plant ROS scavenging antioxidant enzymes and their reactions 

[52]. Abbreviations: dehydroascorbate, DHA; oxidised glutathione, GSSG; reduced 

glutathione, GSH; ascorbic acid, ASA; thioredoxin reductase, TRXR. -SH-SH signifies 

dithiols, in the example here reduced thioredoxin. S-S signifies disulfides, in the 

example here oxidised thioredoxin. 

 

1.5.4 ROS scavenging during drought 

Both enzymatic and non-enzymatic antioxidants play a part in the antioxidant defence 

system. Enzymatic antioxidants include SOD, CAT, APX, peroxidase, thioredoxin 

reductase, monodehydroascorbate reductase (MDAR), dehydrogenase reductase and 

glutathione reductase (GR), and non-enzymatic antioxidants include glutathione (GSH), 

ascorbic acid (ASA), carotenoids and tocopherols. Table 1 show the major plant ROS 

Enzymatic antioxidants Reaction catalysed 

Superoxide dismutase (SOD) O2•
- + O2•

- + 2H+ ⇒ 2H2O2 + O2 

Catalases (CAT) H2O2 ⇒ H2O + ½ O2 

Ascorbate peroxidase (APX) H2O2 + ASA ⇒ 2 H2O + DHA 

Glutathione peroxidase (GPX) H2O2 + GSH ⇒ H2O + GSSG 

Monodehydroascorbate reductase (MDAR) MDA + NAD(P)H ⇒ ASA + NAD(P)+ 

Dehydroascorbate reductase (DHAR) DHA + 2GSH ⇒ ASA + GSSG 

Glutathione reductase (GR) GSSG + NAD(P)H ⇒ 2GSH + NAD(P)+ 

Thioredoxin reductase (TRXR) SS + NAD(P)H ⇒ -SH-SH + NAD(P)+ 
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scavenging antioxidant enzymes and their reactions, and Fig. 1 summarise the major 

ROS scavenging pathways of plants. 

The SOD pathway is found in most cellular compartments, it is the first line of defence 

against the damaging effects caused by oxidative bursts, and it is the most effective of 

the enzymatic antioxidants. The SODs remove O2
- by dismutation, so one O2

- is reduced 

to H2O2 (Fig. 1) and the other O2
- is oxidized to O2 (Table 1). By eliminating O2

- the 

risk of OH• formation is decreased, which is important for the defence, as OH• is a very 

highly reactive ROS that can react with all biological molecules [52]. After the 

reduction of O2
- to H2O2 by SOD, H2O2 is detoxified by APX (Fig. 1a-b), GPX 

(glutathion peroxidase) (Fig. 1c) and CAT (Fig. 1d). 

APX utilises ascorbate as electron donor (Table 1) and is involved in the water-water 

cycle and the ascorbate-glutathione cycle (Fig. 1a-b) [71].  

Ascorbic acid (ASA) plays an important role in the ascorbate/glutathione cycle (Fig. 1b) 

and in the ASA redox system. ASA can donate electrons in enzymatic reactions as well 

as non-enzymatic reactions and is regarded as a powerful ROS scavenger (Fig. 1a+b). 

In leaves and chloroplasts ASA is mainly present in the reduced form. Fully oxidised 

ascorbic acid (dehydroascorbate, DHA) is not very reactive and the regeneration of 

ASA by reduction of DHA is therefore important. Ascorbate is regenerated from its 

oxidised state (DHA) by dehydroascorbate reductase (DHAR) (Table 1; Fig. 1b) [72], 

which regulates the cellular ascorbate redox state [51] [52]. The ASA redox system 

consists of ASA, monodehydroascorbate (MDA) and dehydroascorbate (DHA), where 

glutathione (GSH) reduces DHA to ASA [52] [51].  

Glutathione reductase (GR) is mainly localised in the chloroplasts but has also been 

identified in mitochondria and cytosol. GR plays a role in the ascorbate/glutathione 

cycle (Fig. 1b) and is important because it can maintain glutathione (GSH) in the 

reduced state. Oxidised glutathione (GSSG) consists of two GSH linked together by a 

disulphide bridge. GSSG can be converted back to two GSH by glutathione reductase 

(GR) (Fig. 1b) [72] [71].  

Glutathione peroxidase (GPX) comprises a large family of isozymes. In Arabidopsis, a 

family of seven proteins were identified in the cytosol, chloroplast, mitochondria and 

endoplasmic reticulum [73]. GPX helps protect plant cells against oxidative stress by 

using reduced glutathione (GSH) as a substrate to reduce H2O2 (Table 1; Fig. 1c). 
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GSH is abundant in the apoplast and in cell compartments such as the cytosol, 

endoplasmic reticulum, vacuole, mitochondria, chloroplasts, and peroxisomes [74] [75]. 

Several cellular reactions yielding oxidised glutathione (GSSG) use GSH as a substrate 

(Table 1; Fig. 1b+c) [71] [52]. The maintenance of cellular redox state is affected, and 

partly controlled, by the balance between GSH and GSSG. In order to counteract the 

inhibitory effects of the oxidative stress induced by ROS, GSH is essential for 

maintaining the normal reduced state of the cell. GHS is a ROS scavenger of 1O2, H2O2, 

and OH• [76] and plays an essential part of the antioxidative defence system by 

regenerating ASA through the ascorbate/glutathione cycle (Fig. 1b) [56] [71]. The level 

of GSH has been reported to decline when the level of stress increases, which means a 

more oxidised redox state leading to deterioration of the system [77]. 

Monodehydroascorbate reductase (MDAR) is present as chloroplastic and cytosolic 

isozymes, exhibiting high specificity for monodehydroascorbate (MDA) as electron 

acceptor, and prefers NADH to NADPH as electron donor (Table 1). In peroxisomes 

and mitochondria, MDAR together with APX, scavenge H2O2 (Fig. 1b) [51] [52]. 

CAT can directly dismutate H2O2 into H2O and O2 (Table 1; Fig. 1d) and is essential for 

ROS detoxification during drought particularly in peroxisomes where H2O2 is generated 

by oxidases that are involved in β-oxidation of fatty acids, photorespiration and purine 

catabolism [52]. 

Thioredoxin reductases are localised in the chloroplasts, mitochondria and the 

cytoplasm, where they recycle oxidised thioredoxin using NADPH as the electron donor 

[51]. Thioredoxin proteins have a role as antioxidants reducing various forms of ROS 

(primarily H2O2), and are crucial in the redox regulation of transcription factors, which 

are important for the expression of stress related genes. To be able to do this it is 

important that the thioredoxins are kept in a reduced form, a task maintain by 

thioredoxin reductase [71]. 
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Figure 1: The major ROS scavenging pathways of plants 

The first line of defence towards stress is the reduction of O2
- to H2O2 by superoxide 

dismutase (SOD), followed by detoxification of H2O2 by ascorbate peroxidises (APX), 

GPX and CAT. 

(1a) The water-water cycle in 

chloroplasts. The reducing power here 

is taken directly from the 

photosynthetic apparatus. 

(1b) The ascorbate-glutathione cycle in 

chloroplasts, cytosol, mitochondria, 

apoplast and peroxisomes. It is not 

entirely clear where the reducing power 

in the ascorbate-glutathione cycle 

comes from. 

(1c) Glutathione peroxidase (GPX). 

(1d) Catalase (CAT) in peroxisomes.  

The regeneration cycle for APX and 

GPX (a-c) requires ascorbate (AsA) 

and/or glutathione (GSH). AsA or GSH 

is not required for CAT regeneration. 

ROS are indicated in red, antioxidants 

are indicated in blue, and ROS 

scavenging enzymes in green.  

Abbreviations: DHA, dehydroascorbate; DHAR, DHA reductase; Fd, ferrodoxin; GR, 

glutathione reductase; GSSG, oxidised glutathione; MDA, monodehydroascorbate; 

MDAR, MDA reductase; PSI, photosystem I: tAPX, thylakoid-bound APX. Figure and 

legend taken from [51]. 
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1.5.5 Accumulation of osmoprotectants during drought 

Nontoxic molecules called compatible solutes, or osmoprotectants, are synthesised in 

response to osmotic stress in organisms ranging from microbes to animals and plants. 

Molecules such as amino acids, glycine betaine, sugars or sugar alcohols are all 

osmoprotectants [78], and accumulate to varying degrees in plants under stress 

conditions. Sugar accumulation has in numerous studies shown to be strongly correlated 

with osmotic stress tolerance [79] [80] [81] [82] [83]. 

Baki et al. (2000) [80] measured the change in concentration of carbohydrates, amino 

acids, betaines, and total soluble proteins in shoots and roots of maize after salt 

treatment. In shoots as well as roots, a 7-fold increase was seen for aspargine, a 10-fold 

increase was seen for proline, and a 4-fold increase was seen for serine. Glutamine and 

glutamate only showed a small increase in the leaves after salt treatment and were not 

affected in roots. Quartenary ammonium compounds only showed a small increase and 

total soluble proteins increased in leaves but not in roots. A 3-fold increase was seen in 

sugar accumulation in the leaves, but no significant changes were seen in the roots. An 

8-fold increase was seen for starch in the leaves but again no significant changes in the 

root content. Based on the results it was concluded that the accumulation of 

osmoprotectants correlated with osmotic stress tolerance, and it was proposed that other 

mechanisms than osmotic adjustment were involved in conferring the tolerance [80]. 

Osmoprotectants predominantly accumulate at high concentrations in the cytosol during 

drought stress, and to a lesser extend in the chloroplasts and mitochondria [84]. Osmotic 

adjustment was believed to be the main role of osmoprotectants, however other roles 

have now been proposed [85] [86]. For example, some osmoprotectants have also been 

proposed to be involved in scavenging of ROS [87] [88] [89] [84]. In a study by Shen et 

al. (1997) [87] the role of mannitol in plant defence against oxidative stress was studied. 

Transgenic tobacco plants expressing mannitol in the chloroplast (2.5 to 7 µmol/g fresh 

weight) showed an increased resistant to oxidative stress. Hong et al. (2000) [88] 

showed that a 2-fold increased accumulation of proline in tobacco plants reduced 

oxidative damage caused by osmotic stress. The compatible solute, citrulline, proved to 

be a very efficient ROS scavenger and reduced oxidative damage in wild watermelon, 

when the accumulated content was measured to be 24 µmol/g fresh weight [89]. 
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1.6 Abscisic acid (ABA) 

The hormone abscisic acid (ABA) is one of the key compounds controlling the 

pathways involved in abiotic stress responses [90]. With respect to the developmental 

stages in the plant, ABA plays several roles. Seed dormancy, fruit abscission, stomatal 

closure and leaf senescence are the developmental stages wherein ABA is involved. 

ABA-mediated adaptive responses are vital to plant survival if the plant is exposed to 

abiotic stress during vegetative growth. Various abiotic stressors prompt an increase in 

ABA levels, which in turn activate stress-related genes. These activated genes are 

believed to be involved in a number of processes in the plants defence system against 

abiotic stress, as for example the accumulation of osmoprotectants, synthesis of LEA 

proteins and dehydrins, signalling, and transcriptional regulation. These processes are 

vital in order for the plant to retain water and to protect membranes and proteins under 

stress [90]. 

Even though ABA has many functions in development and growth of plants, the main 

function of ABA in the vegetative plant is in the regulation of plant water balance and 

osmotic stress tolerance. This is exemplified by analysing ABA-deficient mutants, 

which has been shown to grow and develop relatively normally in the absence of water 

or temperature stress. However, when exposed to drought stress, mutants deficient in 

ABA wilt and die faster than wildtype plants if the stress persists [91]. The role of ABA 

in drought stress is believed to be twofold. Maintenance of water balance through guard 

cell aperture regulation is the first role. Cellular dehydration tolerance as a result of the 

induction of genes encoding dehydration tolerance proteins in nearly all cells is the 

second role [91] [92]. 

 

1.6.1 ABA signalling 

In recent years, four research groups have separately isolated PYR/PYL/RCAR 

(Pyrabactin resistance1/pyrabactin resistance 1-like/regulatory component of ABA) 

proteins using different methods and identified them as ABA receptors [93] [94] [95] 

[96] [97]. The presence of ABA causes PYR/PYL/RCAR to bind the type 2 C protein 

phosphatases (PP2Cs) and thus inhibit the enzymatic function of these proteins (Fig. 2). 

This enables the phosphorylation of SnRK2s (sucrose non-fermenting 1-related protein 

kinases), which will then allow for the phosphorylation of ABA-responsive element 
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binding factors (ABFs) leading to gene expression. In the absence of ABA, the SnRK2s 

activity is inhibited due to a high activity of PP2Cs, as PP2Cs are not bound by 

PYR/PYL/RCAR. It was shown that PP2Cs dephosphorylate SnRK2s directly in the 

absence of ABA, thus inactivating them (Fig. 2) [98] [99]. Dephosphorylation is 

therefore one of PP2Cs essential roles, as it inactivates SnRK2s, and SnRK2s are 

important in ABA signaling as positive signalling molecules [93] [94] [95] [96] [97] 

[97]. 

 

 

 

 

 

 

 

Figure 2: Signalling through ABA PYR/PYL/RCAR proteins. 

The panel to the left show what happens when no ABA is present: PP2Cs activity is 

high as they are not bound by PYR/PYL/RCAR, and this activity prevents activation of 

SnRK2s. The panel to the right show what happens in the presence of ABA: 

PYR/PYL/RCAR proteins bind and inhibit PP2Cs. Phosphorylated SnRK2 

accumulates, which allows for the phosphorylation of ABFs (see section 1.6.2). 

Abbreviations: ABA, abscisic acid; PYR/PYL/RCAR, pyrabactin 

resistance1/pyrabactin resistance 1-like/regulatory component of ABA; PP2Cs, type 2 C 

protein phosphatases; SnRK2s, Snf1-related protein kinases; Snf1, sucrose non-

fermenting 1; ABFs, ABA-responsive element binding factors. Figure and legend taken 

from [97]. 
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1.6.2 ABA-regulated gene expression 

The majority of genes that are induced by dehydration are also induced by ABA 

treatment [100] [101]. ABA-inducible genes are characterised by conserved cis-

elements in the promoter. Two ABA-dependent pathways in plants have been reported 

to control gene expression during exposure to drought. One of the pathways works 

through the ABA-responsive element (ABRE), which has been shown to be activated 

by bZIP transcription factors (see section 1.12.3), such as the ABRE-binding factor 

(ABF)/ABRE binding protein (AREB) (Fig. 2). The transcription factor AREB activates 

stressresponsive genes, such as RD29A, by binding to the ABRE motif of the genes 

promoter. The activation of stress related genes is enhanced by posttranslational 

modifications such as phosphorylation [101]. The other ABA-dependent pathway is 

activated through MYB and MYC transcription factors (see sections 1.12.1 and 1.12.2). 

The expression of drought-responsive genes like RD22, RD29A and COR15A is brought 

on by the involvement of these transcription factors in ABA-dependent pathways [102].  

 

1.6.3 Non-ABA-mediated responses to drought 

In ABA-deficient and ABA-insensitive mutants, it has been shown that cell dehydration 

still results in the new transcription of a set of genes, indicating that ABA is not 

necessary for expression of these genes [103]. A dehydration responsive element (DRE, 

characterised by the consensus sequence TACCGACAT) is conserved in the promoter 

of these ABA-independent drought induced genes. The DRE promoter element interacts 

with a signalling cascade that works independently of ABA, and DRE is accordingly 

involved in gene regulation (see section 1.12.5). Abiotic stress activated pathways 

converge at the DRE promoter element where information is integrated enabling the 

plant to respond to multiple stresses [104]. Integration of ABA-dependent and ABA-

independent pathways can take place downstream of the first recognition and signalling 

events and both DRE and ABRE elements may be present in the promoter of the same 

gene. For example the RD29A Arabidopsis gene contain a DRE element as well as an 

ABRE element. The regulation of RD29A is initially independent of ABA, but becomes 

dependent of ABA after the first hours of dehydration, after the early stages of 

expression [103]. 
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1.6.4 ABA interaction with the JA/ET signalling pathways 

Besides ABA, the plant hormones ethylene (ET) and jasmonic acid (JA) also play 

important roles in abiotic stress. These hormones interact with ABA in a complex way, 

both directly and indirectly [105] [106] [107] [108]. The interactions between the 

different plant hormones, and their integration of the different stress signals, are thought 

to control the balance between the response reactions at cell level as well as plant level. 

JA plays a role in regulation of not only abiotic stress such as exposure to ozone, 

wounding, water deficit, and pathogen and pest attack, but is also an essential hormone 

for developmental processes such as growth of the root system, tuberization, ripening of 

fruit, senescence, tendril coiling and development of pollen [109]. JA and ET both play 

a role in defense against pathogens, and crosstalk between JA and ET has been well 

documented, with the two hormones either cooperating or acting as antagonists during 

stress and developmental stages. Furthermore, the JA/ET pathway can be disrupted by 

ABA [110] [111] [112] [113]. The JA/ET defence pathways against pathogens can be 

negatively regulated by ABA, and this crosstalk between the hormone signalling 

pathways enables the plant to prioritize resistance against abiotic stress over biotic 

stress under the control of ABA. 

 

1.7 The mitogen activated protein kinase (MAPK) pathway 

The mitogen activated protein kinase (MAPK) pathway is common not only to plants 

but to all eukaryotic cells, and is an important component of the intracellular signalling 

network, which may be initiated at the plasma membrane by extracellular stimuli such 

as biotic and abiotic stress. The basic structure of the three classes of kinases in the 

MAPK signalling network is conserved in all eukaryotes [114]. The signal is initiated 

by a MAPK kinase kinase (MAPKKK), where after it is carried by a MAPK kinase 

(MAPKK), before the signal is conveyed to intracellular targets by a MAPK [115] 

For the plant to control external stimuli and react appropriately, activation of suitable 

genes is necessary. One of the major mechanisms responsible for this activation is 

protein phosphorylation. Phosphorylation is also required for activation in the MAPK 

cascade [116]. Specific motifs in the MAPKKKs sequences selectively confer their 

activation in response to external stimuli, so the first component of the phosphorylation 

cascade is the MAPKKK that phosphorylates conserved serine/threonine residues of the 
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MAPKK, and thereby activates it. The MAPKK then activates the MAPK by 

phosphorylation of the conserved threonine and tyrosine residues in the TEY (Thr, Glu, 

Tyr) (or sometimes TDY) activation loop [116]. Thus, the MAPK pathway is a 

phosphorylation system that works as a link between upstream receptors and 

downstream targets. 

 

1.7.1 MAP Kinase pathway activation during drought 

It has been shown in a number of studies that MAPK cascades are essential for the 

plants defence against drought, and that MAPK cascades controls the expression of 

appropriate genes by sending signals from the cell membrane to the nucleus (for 

example [117] [118]).  

In a study by Mizoguchi et al. (2000) [117] an Arabidopsis cDNA encoding a protein 

kinase with homology to the MAPKKK family was cloned and characterized. Northern 

blotting was used to study the expression of three protein kinases structurally related to 

MAPKKK, MAPK and ribosomal S6 kinase, respectively. After exposure to touch, 

cold, salinity stress, and dehydration it was shown that the mRNA levels of all three 

protein kinases increased significantly and simultaneously. Based on the results it was 

concluded that MAP kinase cascades respond to various extracellular signals, are 

regulated at the posttranslational level but also at the transcriptional level [117]. 

Mikolajczyk et al. (2000) [118] showed that a MAPK (SIPK, salicylic acid–induced 

protein kinase) was induced in tobacco cells after exposure to osmotic stress. SIPK is 

also involved in the response to a number of different stresses, and has previously been 

shown to be activated by pathogen infection, pathogen-derived elicitors, and wounding 

[119] [120] [121]. SIPK is rapidly induced by protein phosphorylation caused by 

osmotic stress, and the resulting MAPK cascade leads to the expression of stress related 

genes [118]. 
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1.8 Calcium-dependent protein kinase (CDPK) pathways 

Calcium is a well-studied intracellular messenger in eukaryotic cells. The concentration 

of cytosolic free calcium usually increases in response to most types of abiotic stress as 

well as biotic stress. In a study by McAinsh & Hetherington (1998) [122] it was shown 

that by changing location, frequency and duration of Ca2+ concentrations, specific 

responses to different stimuli could be achieved, and based on the these findings it was 

proposed that Ca2+ plays an important role in stress signalling [122] [123].  

CDPKs are a large subfamily of protein kinases that can be directly activated by Ca2+ 

binding and do not depend on interaction with exogenous calmodulin [124] [125]. The 

CDPK gene family can be grouped into a number of subfamilies, which suggests that 

single isoforms may confer different specificities [123].  

CDPK gene expression can be regulated by a number of different stimuli, such as light, 

cold temperatures, drought, salinity, phytohormones, wounding and pathogen attack, 

mechanical strain, anoxic stress, heat stress and calcium chloride treatment {Ludwig 

[123]. 

Several CDPK genes are regulated by exposure to dehydration or high concentrations of 

NaCl in Arabidopsis [126], in mung bean (Vicia faba) [127], and in ice plant 

(Mesembryanthemum crystallinum) [128]. However, the CDPK genes identified in 

different studies, as being induced by the same type of stress (for example dehydration 

or high concentrations of NaCl) are not all grouped in the same CDPK subfamily [123]. 

 

1.9 Phospholipid signalling during drought 

In plants, changes in phospholipids at the plasma membrane are important with respect 

to mediation of osmotic stress signals. These changes are important because the role of 

perceiving and transmitting environmental signals is carried out at the plasma 

membrane, this being the interface between the cell and the outside world [129]. 

Phospholipid-derived secondary messengers are produced when phospholipids are 

cleaved by phospholipases. Four major classes of phospholipases exists in plants and 

are distinguished by their cleavage site: phospholipase C (PLC), phospholipase D 

(PLD), and phospholipase A1 and A2 (PLA1 and PLA2) [130]. G-proteins have been 
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proposed to play an important role in the regulation of phospholipid signalling, and 

calcium signalling is also believed to be closely involved with phospholipid signalling.  

A number of phospholipid-derived signalling molecules are particularly interesting with 

respect to drought stress in plants; inositol 1,4,5-triphosphate (IP3), diacylglycerol 

(DAG) and phosphatidic acid (PA). Diacylglycerol pyrophosphate (DGPP) and 

phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] are lipid messengers formed during 

novel pathways but not as a direct product of phospholipases. 

The PLC pathway has been extensively studied and is well characterised. The 

hydrolysis of phosphotidylinositol 4,5-bisphosphate (PIP2) is catalysed by PLC, and 

secondary messengers are synthesised: IP3 and the membrane bound DAG. IP3 then 

releases Ca2+ from internal stores [131] [132]. DAG signalling in plants is believed to 

be indirect as it can be rapidly phosphorylated to the important signalling molecule PA, 

which indicates that PA acts as the lipid signal, not DAG [133] [129]. 

It has been shown in several studies that hyperosmotic stress cause a rapid increase in 

IP3 levels in various plant systems [134] [135] [136] [137], and IP3 levels showed an 

increased in the guard cells of protoplasts in Vicia faba [138], in Arabidopsis seedlings 

[91] and in Commelina communis [139] after exogenous treatment with ABA. 

Furthermore, salt and drought stress has been shown to increase expression of AtPLC1, 

the Arabidopsis PLC gene [140]. PLC-genes have also been observed to be involved in 

dehydration in potato [141] and cowpea [142]. 

PLD produces PA by cleaving membrane phospholipids, and it has been shown that 

dehydration stress activates PLD in the resurrection plant Craterostigma plantagineum 

and in Arabidopsis [143] [144]. It has been proposed that PA, as the PLD product, plays 

an important part in signalling events that can reduce stress damage. This is supported 

by the findings that PLD activity increases in guard cells after ABA treatment leading to 

an induction of stomatal closure, an effect that can be mimicked with the application of 

PA [145].  
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1.10 Late embryogenesis abundant proteins (LEA)-type genes 

Late embryogenesis abundant (LEA) proteins accumulate during the late stages of 

embryogenesis. Abiotic stress also initiates the accumulation of LEA proteins. Wang et 

al. (2003) [146] reviewed the role of LEA proteins and examined a group of LEA 

proteins that were found to accumulate in Arabidopsis [147] [148] [149] barley [150] 

and wheat [151] in response to drought, increase in osmolarity and decreasing 

temperatures. It was suggested that these LEA proteins are hydrophilic and strongly 

bind water, and therefore have the ability to retain water and prevent crystallization of 

important cellular proteins and other molecules during drought, which explains their 

protective role during desiccation [152] [153]. Furthermore, LEA proteins are proposed 

to play an important role in preserving membrane integrity, though the exact 

mechanisms are not know [146]. The preservation of membrane integrity is important, 

as the plasma membrane (lipid bilayer) controls which molecules enters and exits the 

cell. When membrane integrity is lost, molecules that should not enter the cell will be 

able to enter, and molecules that should stay inside the cell will be able to leak out of 

the cell. A cell that has lost membrane integrity will eventually be killed [7]. It has been 

suggested that the CDPK pathway (see section 1.8) plays a role in increasing the 

expression of LEA proteins during stress conditions [7]. 

 

1.10.1 The resurrection plant and LEA proteins 

Resurrection plants are vascular angiosperms that have evolved desiccation tolerance 

and can revive from an air-dried state, which means that most protoplasmic water is lost 

from the cell [154]. Resurrection plants adjust their water content to the relative 

humidity in the surrounding environment, and are able to stay in a dehydrated state until 

water is available again, where after they rehydrate and resume full physiological 

activities. One of two types of resurrection plants loses their chlorophyll and partially 

degrades the thylakoid membranes during water loss. The other type of resurrection 

plants, for example Craterostigma plantagineum, retains chlorophyll and the intact 

photosynthetic structures during water loss, and restores photosynthetic activities within 

24 hours after rehydration [155]. C. plantagineum has been used as a model species for 

molecular investigations of desiccation tolerance, and has been shown to use a number 

of protective mechanisms during exposure to drought, such as the accumulation of 

sugars and protective proteins (e.g. LEA proteins), mechanisms that are also used by 
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non-resurrection plants. However, the accumulation of LEA proteins is much higher in 

C. plantagineum and other resurrection plants than in non-resurrection plants [156]. 

This suggests that LEA proteins play a prominent role in desiccation tolerance, and 

might therefore be an important factor in order to improve drought tolerance in non-

resurrection plants such as barley. 

Another unique feature seen in C. plantagineum is the extensive cell wall folding during 

dehydration [157]. As cells shrink during water deprivation, this cell wall folding allows 

for the integrity of the connections between plasma membranes and cell walls to be 

maintained. In non-resurrection plants the decrease in cell wall extensibility is the main 

factor inhibiting leaf growth during water loss. This ability of cell wall folding is 

proposed to involve the cell wall protein expansin, which possess the ability to induce 

wall extension and therefore explain the changes seen in cell wall folding after water 

loss in C. plantagineum [157]. 

 

1.11 Cross-talk in gene expression between various types of abiotic stress 

When analysing stress signalling pathways in a laboratory, they are usually considered 

in isolation from other stress factors in order to simplify interpretation of the results. 

However, in nature the plant is exposed to combinations of stress simultaneously or 

temporally separated and must respond to these in an integrated manner [158]. 

Therefore, abiotic stress warrants a variety of responses, which enables the plant to 

tolerate and survive combinations of unfavourable conditions. These responses 

constitute a network with many levels of interconnections, where different stress 

pathways share common elements that acts as convergence points for cross-talk 

between pathways (Fig. 3) [159] [104]. On the one hand, cross-talk between signalling 

pathways contribute to the swiftness and the efficiency of transduction mechanisms. On 

the other hand, pathways such as the salt overly sensitive (SOS) pathway and the 

induction of the SnRK2.6 kinase appear to be specific to one stress condition, saline 

stress and stomatal closure in these two cases [158]. 

 



Chapter 1  Introduction 

 28 

 

Figure 3: Specificity and cross-talk of the regulatory networks for drought, salt 

and cold stress responses. 

Several kinases such as AtSK, SnRK2, SnRK3, MAPK, and CDPK proteins mediate 

common signalling pathways initiated by osmotic stress caused by drought, salt and 

cold stress. Calcium is proposed to be involved in an upstream element of SnRK3, 

CDPK, and MAPK activation. PA, ABA and H2O2 are proposed to be involved in 

SnRK2 and/or MAPK regulation. Some pathways are specific to one stress condition; 

the SOS pathway has been proposed to be exclusively involved in regulation of sodium 

homeostasis in response to NaCl, and SnRK2.6 is believed to be exclusively involved in 

stomatal closure induced by ABA in response to drought. In several cases downstream 

responses to protein kinases are still unknown. Abbreviations; PA, phosphatidic acid; 

ABA, abscisic acid; CDPK, calcium dependent protein kinase; MAPK, mitogen 

activated protein kinase; SOS, salt overly sencetive; CBL, Calcineurin B-like. 
Figure and legend taken from [158]. 

 

Knight & Knight (2001) [104] looked into the specificity and cross-talk of abiotic stress 

signalling pathways, and argued that common elements are shared between different 

signalling pathways acting as convergence points between the pathways. Sometimes 

more than one pathway can be triggered by the same type of stress, and one pathway 

may be triggered by more than one type of stress. This is the case for dehydration 



Chapter 1  Introduction 

 29 

protection, which is required when plants are exposed to freezing or drought. The 

production of ROS scavenging enzymes, for example catalase and peroxidase, will be 

initiated after exposure to freezing or drought, and this will give protection against 

oxidative damage, which can also be caused by various other abiotic and biotic stresses 

[104]. The RD29A gene is regulated by cold and drought stress, and contains the DRE 

binding sequence in the promoter (Fig. 4). DRE, the dehydration responsive element, is 

characterised by the consensus sequence TACCGACAT, and is conserved in the 

promoter of ABA-independent drought induced genes. The DRE promoter element 

interacts with a signalling cascade that works independently of ABA, and DRE is 

accordingly involved in gene regulation (see section 1.6.3 & 1.12.5 for further 

description of the DRE binding sequence). DREB1 and DREB2 are two structurally 

different transcription factors in Arabidopsis that binds to this DRE/C-repeat sequences 

in RD29A. DREB1 is induced by cold stress and DREB2 is induced by drought and salt 

stress, but their end-point is the same, namely the activation of RD29A (Fig. 4). 

As described earlier in section 1.6.3, the rd29A promoter contains a DRE element as 

well as an ABRE (ABA-responsive promoter element) element. The regulation of 

rd29A is initially independent of ABA, but becomes dependent of ABA after the first 

hours of dehydration, after the early stages of expression [103], which is an example of 

one gene being regulated by two different signalling pathways. 
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Figure 4: The transcription factors, DREB1 and DREB2, are key components in 

the cross-talk between cold and drought signalling in Arabidopsis. 

The expression of the DREB1 and DREB2 families of drought-responsive-element-

binding (DRE-binding) transcription factors is activated by cold and drought, 

respectively. The DRE element is an integration point for cross-talk between cold and 

drought signalling in Arabidopsis, as both sets of transcription factors alight on the 

same cis-acting element in the promoter of genes such as RD29A (the DRE element) 

(see section 1.6.3). Figure and legend taken from [104]. 

 

1.11.1 Overlap in gene expression between different types of abiotic stress 

There are a lot of communalities between the effects of different types of abiotic stress, 

and the overlap in gene expression between different types of abiotic stress has been 

studied [160]. Transcriptomic analyses of the model plant Arabidopsis has uncovered a 

significant degree of overlap in changes in gene expression in response to different 

abiotic stresses such as drought, salinity, ABA treatment and cold [10] [161] [162] 

[163]. Such work has also been extended to barley, with similar findings; different 

abiotic stresses have commonalities in induced gene expression [164] [165] [166] [167]. 
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Even though studies have shown there are communalities between different types of 

abiotic stress, there are also significant differences in gene expression as shown in a 

study by Ueda et al. (2004) [165], where the changes in gene expression in barley after 

exposure to osmotic and salt stress was analysed by the use of a barley cDNA 

microarray. It was found that only 18 genes (27 % of the total) were up-regulated under 

both osmotic stress and salt stress and 16 genes (36% of the total) were down-regulated 

under both types of stress (Fig. 5). Based on these results it can be conclude that there is 

a significant overlap between the signalling pathways controlling gene expression as a 

response to osmotic stress and salt stress, but there are also clear differences in gene 

expression between the two types of abiotic stress [165]. 

 

 

Figure 5: Transcriptome changes under osmotic stress and salt stress. 

The consensus and number of ESTs that are differentially regulated under osmotic 

stress and salt stress were identified from microarray data. Figure and legend taken from 

[165]. 
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1.12 The role of transcription factors during drought 

Transcription factors are essential for any organism in order to control and coordinate 

gene expression. More than 1500 transcription factors are encoded in the Arabidopsis 

genome, making up more than 5 percent of the protein encoding genome [168]. 

Transcription factors function in the nucleus, here they bind to specific DNA sequences 

in gene promoters and interrelate with the fundamental transcription machinery in order 

to activate or repress transcription; signals that regulates the activity of transcription 

factors can affect a combination of processes or just one. Transcription factors can be 

regulated in different ways; reversible phosphorylation is one way of regulation and de 

novo synthesis of the transcription factor is another way. It has been suggested, based 

on analyses of transcription factors already identified, that there is an overlap between 

diverse stress signalling pathways and that the pathways may converge at specific 

points. 

 

1.12.1 MYB transcription factors 

The Myb gene family in Arabidopsis has been shown to consist of 190 genes [168]. The 

Atmyb-2 gene in Arabidopsis was analysed in a study by Urao et al. (1993) [126]. It was 

found that Atmyb-2 mRNA levels were induced by dehydration and was reduced again 

if the plants were rehydrated, and it was concluded that the MYB transcription factor, 

Atmyb-2, plays an essential role in gene regulation in response to drought in 

Arabidopsis. Iturriaga et al. [169] studied two myb-related genes from the resurrection 

plant C. plantagineum, cpMYB7 and cpMYB10, and found that the gene expression was 

induced after exposure to drought and treatment with ABA. In transgenic Arabidopsis, 

increased drought and salinity tolerance was obtained by ectopic expression of 

CpMYB10 [170]. In a study by Abe et al. (1997) [171], dehydration and ABA 

treatment induced the expression of the rd22 gene in Arabidopsis, and the 

transcriptional activator for this expression was shown to be the Atmyb-2 protein. In 

accordance with these results, hypersensitivity to ABA was seen in plants over-

expressing AtMYB-2, again indicating that the Atmyb-2 gene is involved in regulation 

of ABA-mediated gene expression [102].  

More recently Dai et al. (2007) [172] found that cold, drought, and salt stress initiated 

induction of the OsMYB3R-2 gene in rice, and the cold tolerance increased when 
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OsMYB3R-2 was expressed in Arabidopsis. Furthermore, an increase in expression was 

seen for stress related genes such as dehydration-responsive element-binding protein 

2A, COR15a, and RCI2A, in transgenic plants over-expressing OsMYB3R-2 when 

compared to their expression levels in wild type [172]. 

In a recent study by Liu et al. (2011) [173], a full-length cDNA sequence of the MYB 

gene TaPimp1 from wheat (Triticum aevistum L.) was isolated. After exposure to 

drought, TaPimp1 showed significantly up-regulated transcript levels in wheat. The 

TaPimp1 gene was transferred into tobacco (Nicotiana tabacum L.). When comparing 

to control plants, the TaPimp1 transformed plants showed enhanced drought and salt 

tolerance. Based on these results, Liu et al. (2011) [173] proposed that the wheat 

TaPimp1 transcription factor is essential when it comes to controlling responses to 

environmental stresses. 

As seen in the studies described above, there is evidence suggesting that MYB 

transcription factors play an essential role in gene regulation in response to drought in 

plants. 

 

1.12.2 MYC transcription factors 

The role of MYC transcription factors in relation to abiotic stress was examined by Abe 

et al. (1997) [171], who showed that the Arabidopsis rd22BP1 gene encodes a Myc-like 

transcription factor. The gene is induced by environmental stress such as dehydration, 

high salt conditions, and ABA. After induction of rd22BP1, it binds to the myc 

promoter motif of the downstream rd22 and thus activates the gene.  

Furthermore, transgenic plants over-expressing AtMYC-2 exhibited hypersensitivity to 

ABA, whereas insensitivity to ABA was seen in knockout mutants [102]. In transgenic 

plants over-expressing AtMYC-2 and AtMYB-2 the hypersensitivity to ABA was 

enhanced showing that AtMYB-2 and AtMYC-2 interacts in vivo in gene expression 

activated by stress, which suggests that MYC as well as MYB transcription factors play 

an essential role in gene regulation in response to drought in plants [102]. 
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1.12.3 bZIP (Basic Region Leucine Zipper protein) 

The large bZIP transcription factor family includes 75 members in Arabidopsis [174]. A 

number of bZIP transcription factors have been proposed to induce gene expression in 

response to osmotic stress and ABA, and these bZIP factors have been cloned and 

analysed (see section 1.6.2). The ABRE (ABA responsive element) binding factors 

(ABFs/AREBs), and their homolog ABI5 are members of a bZIP subfamily that has 

been genetically linked to an ABA response factor (see section 1.6.2). It has been 

shown that ABRE-binding factor (ABF)/ABRE binding protein (AREB) responds to 

osmotic stress at both the transcriptional and post-transcriptional level [175] [176]. 

When ABF3 and ABF4 were over-expressed in transgenic Arabidopsis plants, drought 

tolerance was enhanced and followed by a reduction in transcription. These findings 

indicate that ABF3 and ABF4 take part in growth regulation and the control of stomatal 

closure mediated by ABA. This was supported by the fact that roots and guard cells 

showed the highest activity of promoters for both ABF3 and ABF4, which is in 

agreement with their role in response to water stress, growth regulation and their 

function in stomatal control [177]. 

 

1.12.4 HD-ZIP (Homeodomain-leucine Zipper Proteins) 

HD-ZIP proteins have so far only been identified in plants. It has been proposed that 

HD-ZIP proteins regulate developmental processes and take part in controlling 

responses to environmental stress signals. HD-ZIPs have been identified in a number of 

plant species as for example Arabidopsis, carrot, tomato, rice, sunflower, and C. 

plantagineum [7]. In C. plantagineum seven HD-ZIP genes (CPHB-1 to -7), have been 

shown to be affected by dehydration in different ways [178]. CPHB-6 and CPHB-7 

showed elevated expression in leaves after 2 hours of dehydration but showed a 

decrease in expression after a prolonged dehydration of 72 hours. A transient induction 

like this indicates that the genes are involved in the early stages of dehydration 

signalling, meaning that CPHB-6 and CPHB-7 receive and amplify signals, and 

transmit the signal to a downstream recipient in the pathway. CPHB-1 and CPHB-2 

have similar expression profiles as CPHB-6 and CPHB-7, with the exception of CPHB-

1 that does not respond to ABA. The fact that multiple genes have overlapping 

functions indicates that a level of redundancy between the HD-ZIP genes exists.  
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Söderman et al. (1996) [179] showed that the expression of ATHB-7 was up-regulated 

in all organs of Arabidopsis after exposure to drought, osmotic stress and ABA 

treatment and proposed that ATHB-7 induction is mediated via ABA, and that the gene 

plays a role in a signalling pathway in the defence against drought and osmotic stress. 

Lee & Chun (1998) [180] isolated and characterised ATHB-12 from Arabidopsis and 

found that the gene is up-regulated in response to drought and ABA treatment in a 

manner similar to ATHB-7, with the exception of the time course of accumulation of 

mRNA after treatment with ABA. ATHB-12 expression is highly induced after 30 

minutes and showed its maximum after 1 hour, whereas ATHB-7 is highly induced after 

1 hour and reached its maximum after 4 hours, indicating that both genes are induced by 

ABA, but they are regulated in different ways and therefore act at different times in the 

signalling pathway. 

 

1.12.5 AP2/ERF-Type Transcription Factors 

AP2/ERF domain proteins include the DREB or CBF proteins, which bind to 

dehydration responsive elements (DRE) or C-repeats [181] [182] [183]. It has been 

shown in functional studies of DREBs/CBFs, that both activation and repression of 

stress responsive genes can be coordinated by CBF genes [184] [185] [103]. In 

Arabidopsis a number of genes induced by stress (Rd29A, Cor6.6, Cor15a and Kin1) 

that contains DRE/C-repeat sequences in their promoters, have been shown to be genes 

that are targeted by DREBs/CBFs. Six genes (FL3-5A3, FL3-27, FL5-2122, FL5-94, 

FL5-77 and erd4) were identified in Arabidopsis, which all contains the DRE/C-repeat 

as well as the ABRE motifs in their promoters [162]. These findings indicate that ABA-

dependent and ABA-independent pathways work together, orchestrating a complex 

regulation of stress inducible genes (see section 1.6.2, 1.6.3 & 1.11).  

Dubouzet et al. (2003) [186] analysed OsDREB transcription factors in rice, and found 

that expression of OsDREB1A and OsDREB1B was induced by cold, and the expression 

of OsDREB2A was induced by dehydration and salt. Furthermore, over-expression of 

OsDREB1A in transgenic Arabidopsis led to over-expression of genes inducible by 

stress; genes known to be induced in Arabidopsis by DREB1A. This over-expression of 

stress related genes resulted in plants with enhanced drought, salt and freezing tolerance 

[186]. 
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1.13 Proteomics 

1.13.1 Two-dimensional electrophoresis 

Two-dimensional polyacrylamide gel electrophoresis (2D electrophoresis) of proteins 

was first introduced by O’Farrell in 1975, and has since become a powerful and widely 

used method in various fields of plant biology, such as the analysis of protein 

expression during development, effects of growth substances, response to stress and the 

study of protein polymorphism [187].  

In 2D electrophoresis, two independent separation methods are used to analyse the 

proteins. The first dimension is isoelectric focusing (IEF) that separates the proteins 

according to protein charge, and the second dimension is SDS PAGE (sodium dodecyl 

sulphate polyacrylamide gel electrophoresis) that separates the proteins according to 

mass. The final product of 2D electrophoresis separation can be viewed as an in-gel 

array of proteins, with each protein showing its unique isoelectric point (pI) and mass 

(MW) on the gel [188].  

Since protein abundance comparisons are identified as differences in protein spot 

density, casting of identical gels and highly similar 2D electrophoresis runs are 

important. Gel to gel variation is problematic and can result in difficulties when 

analysing the images, especially if quantitative analysis is desired. 

The protein patterns in gels can be visualized by various staining methods, and the 

stained gels are scanned and analysed by any of a number of 2D gel analysis software 

packages. However, the most simple and common protein staining methods are not 

always sensitive enough, as for example Coomassie brilliant blue, or can be difficult to 

reproduce, have limited dynamic range or interfere with downstream processing, as for 

example silver staining. These issues with the commonly used staining methods can 

make a quantitative protein expression analysis difficult. There are some 

staining/labelling methods that can overcome these problems to some extent as for 

example radioactive labelling or fluorescent stains such as Sypro Ruby or RuBPS 

(Ruthenium II-bathophenanthroline disulfonate chelate). 

Furthermore, the biological differences between studied samples may be masked by any 

variation between the 2D gels caused by technical errors, which will interfere with any 

quantitative analysis of protein expression levels between multiple gels. A number of 
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parameters affect these variations: faulty uptake of proteins in the IEF gel strip, the 

proteins are not transferred correctly from the first dimension gel to the second 

dimension gel, inconsistencies in the gel, in the field strength, or in the pH gradient. In 

order to get round these problems and the variations they cause, it is necessary to 

implement techniques where it is possible to separate more than one protein sample on 

each gel, followed by individual visualization of these samples [189]. 

 

1.13.2 2D DIGE 

Fluorescent two-dimensional difference gel electrophoresis (2D DIGE) is a multiplex 

technology for 2D gels, which allows for multiple protein samples to be separated on 

the same gel at the same time. Before carrying out IEF and SDS-PAGE, the protein 

extracts are labelled with fluorescent dyes, which allows for the detection and 

quantification of differences in protein abundance between different biological samples 

within one single gel [190] [191]. The spectrally resolvable dyes (CyDyeTM DIGE Fluor 

dyes, GE Healthcare/Amersham Biosciences) used in the present study are minimal 

dyes – CyTM2, Cy3 and Cy5 (called minimal as only 1-2% of the lysine residues of the 

proteins are labelled). The dyes are designed to be both mass- and charge-matched, 

meaning that the same protein labelled with any of the three dyes will travel to identical 

points on the 2D gel. They are pH insensitive, so there is no change in signal over the 

wide pH range used during IEF and equivalent migration in SDS gels. They are 

spectrally resolvable, highly sensitive, and photostable, meaning that the loss of signal 

during labelling, separation, and scanning is negligible. On each gel, two samples can 

be included and an internal standard (internal reference), which is made up of equal 

amounts of each sample in the experiment (Fig. 6). The inclusion of an internal standard 

on all gels gives an increased assurance that the results are not due to system variation 

but actually reflect true biological effects, since the pooled internal standard enables 

normalisation of all spots across all gels [189]. 
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Figure 6: Schematic outline of a 2D DIGE experiment. 

Schematic outline showing an internal pooled standard and three fluorescent dyes. 

Samples A and B are labelled with either Cy3 or Cy5, but a pooled internal standard is 

also constructed from equal amounts of all the samples in the experiment and labelled 

with Cy2. After mixing these protein samples and performing 2D electrophoresis, the 

respective protein spot intensities can now be normalised by dividing each spot intensity 

by the corresponding spot intensity of the pooled internal standard. Analysing these 

normalised spot intensities enables the detection of more subtle differences in protein 

expression levels with a higher statistical confidence. Figure and legend taken from 

[189]. 
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The reactive group of the CyDye DIGE Fluor minimal dyes is an N-

hydroxysuccinimidyl (NHS) ester, which enables labelling of lysine residues within 

proteins by covalently binding to the epsilon amino group of lysine via an amide 

linkage (Fig. 7). An intrinsic positive charge is carried by the lysine amino acid in 

proteins. The minimal dye replaces the positive charge from lysine with its own when 

coupling to the lysine, thereby making sure that the pI of the protein does not change. 

Only 1-2% of the lysine residues are labelled, thus proteins labelled with CyDye can 

still be digested with trypsin and analysed by mass spectrometry as most of the lysine 

residues necessary for tryptic digestion will not actually be labelled [189]. 

 

 

Figure 7: Schematic of the labelling reaction. 

CyDye DIGE Fluor containing NHS-ester active group covalently binds to lysine 

residue of protein via an amide linkage. Figure and legend from [189]. 

 

In order for the 2D DIGE method to be successful and result in gel images allowing for 

the detection and quantification of differences in protein abundance between varieties, it 

is important to have clean protein samples with a relatively high protein concentration.  

It can be troublesome to extract plant proteins and prepare them for protein samples for 

2D electrophoresis. There are a number of reasons for these difficulties: irreversible 

complexes can be formed between the polyphenols in plants and the proteins, the 

concentration of proteins in plants is usually relatively low, disturbances can be formed 

in the gel caused by polysaccharides and lipids, and up to 50% of the protein content in 

leaves is made up of Rubisco, which can mask less abundant proteins.  
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1.14 Mass spectrometry 

MALDI-TOF MS was introduced for the first time in 1987, reporting UV-laser 

desorption of bioorganic compounds above 10 kDa [192] [193] [194]. There are several 

advantages of using MALDI: singly charged ions resulting in spectral simplicity, the 

mass range can be as high as up to >900 kDa, there are low levels of noise, it is highly 

sensitive, only small sample volume are needed, there are relatively fast measurement 

times, tolerant to salt and minimal fragmentation [195]. 

In MALDI-TOF MS the mass of the ion is measured by using its velocity to determine 

the mass-to-charge ratio [196]. The principle behind the technique is, that an organic 

compound is mixed with the sample. The organic compound acts as a matrix in the 

sample, facilitating desorption and ionization of compounds. An applied high voltage is 

used to accelerate the ions, the ions will then separate in the flight tube where they can 

be detected [196].  

Organic aromatic weak acids can easily absorb energy at the lasers wavelength, which 

is why they are usually used as matrix in MALDI-TOF MS. Before laser irradiation, it 

is important that the matrix does not alter the analyte in any way, and it must be 

possible to dissolve the matrix and the analyte in the same solvent in order to get a 

uniform mixing. A molar ration from 1:100 to 1:50000, the optimal for ion production, 

is used when the analyte is mixed with matrix material. The mixture is then spotted onto 

a metal target and allowed to dry as a crystalline coating. The matrix molecules in the 

crystalline coating will absorb the laser energy, which will cause translational motion 

and ionization of molecules that are then accelerated towards the detector [196]. 

The role of the MALDI-matrix is significant for a number of reasons: it protects the 

analyte against decomposition by absorbing energy and thus protecting it from 

excessive energy, photoexcitation or photoionization of matrix molecules followed by 

proton transfer to the analyte molecule enhances ion formation, good separation of 

analyte molecules due to dilution of the sample into the matrix [196]. When optimising 

a method the matrix selection should therefore be one of the first steps to consider, 

which was initially done in the study presented here. 

Proteolytic enzymes with predictable cleavage patterns are normally used to identify 

proteins and peptides by MALDI-TOF MS. The proteolytic enzymes cleave 

distinctively at specific amino acids in the sequence, and the different peptide fragments 
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generated result in what is called a peptide map, which show the specific pattern of 

peptide fragments from each particular protein. The peptide map is used as a fingerprint 

for the protein, and matched against theoretical fingerprints of known protein sequences 

in a database using a computer program. 

 

1.15 Aims of the study 

In the thesis presented here, the focus is on short-term water deficit and the mechanisms 

associated with short-term drought tolerance. The aim was to identify proteins 

differentially expressed in drought tolerant and susceptible barley varieties, with the 

expectation that these proteins are involved in processes that will give the plant a higher 

drought tolerance. 

The study proceeded in five main stages: 

1. The drought tolerance of leaves and roots was quantified by measuring the 

relative water content, water loss rate, and stomatal conductance and density. 

Two varieties of Hordeum vulgare were used in the study; the spring cultivar 

Golden Promise (susceptible to various types of abiotic stress) and a cultivar 

from Basrah, Iraq, (thought to be tolerant to various types of abiotic stress). 

 

2. Different protocols for extraction of leaf and root proteins were tested and 

modified in order to obtain the best possible protein samples for the 2D 

electrophoresis. The different extraction protocols were evaluated by analysing 

all the samples on 1D gels as well as 2D gels. Different protein staining methods 

were also tested (Coomassie blue, silver staining, RuBPS) in order to find the 

best suited for this study. 

 

3. The DIGE technique was used to label the proteins from the drought tolerant 

(Basrah) and drought susceptible (Golden Promise) barley varieties. Proteins 

differentially expressed between the two cultivars were analysed by 2D 

electrophoresis and identified by MALDI-TOF. 

 

4. A number of the differentially expressed proteins detected by DIGE and 

identified by MALDI-TOF were further analysed by the use of enzyme assays 
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and western blotting in order to confirm the protein expression patterns 

identified in the DIGE analysis. 

 

5. The results obtained during the first four stages were analysed and used to draw 

conclusions regarding the identified proteins involved in the higher drought 

tolerance of Basrah. Furthermore, the results were compared to previously 

published work on drought tolerance of cereals, and possible mechanisms/roles 

for the identified proteins were proposed and discussed. 
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2.1 Plant Material 

Two varieties of Hordeum vulgare were used in this study; the semi-dwarf spring 

cultivar Golden Promise habituated to Western Europe and thus thought to be 

susceptible to drought and heat stress, and a cultivar from Basrah (referred to as 

Basrah), Iraq, (thought to be tolerant to drought and heat stress). In this study, plants 

were grown under controlled conditions for 14 days. The plants used for leaf and root 

protein extractions for the DIGE experiment were grown under the following 

conditions: the plants intended for leaf protein extraction were planted in pots with a 

diameter of 10 cm filled with 140 g of Levington F2 compost. The plants intended for 

root protein extraction were planted in the same type of pots filled with perlite. Ten 

seeds were planted in each pot and the plants were then grown for 7 days at an average 

temperature of 21°C, 60-80% relative humidity, and a photoperiod of 16 hour light, 8 

hour dark (light levels of 450 µE. m-2 s-1 at head height) and the plants were watered 

daily. After 7 days the watering was stopped for half of the pots, the other half were 

used as controls and the watering was continued for these. After 7 days leaves were cut 

off, and roots from perlite-grown plants were cleaned and stored at -70°C for later 

protein extraction. 

 

2.2 Physiological analyses 

Relative water content (RWC), water loss rate (WLR), and stomatal conductance are 

three physiological measurements that can be used to quantify short-term drought 

tolerance. Initially RWC and WLR were measured in order to quantify the drought 

tolerance of the two varieties used in this study (Golden Promise and Basrah). 

Measuring the stomatal conductance can also be used to quantify drought tolerance and 

will show how well the measured plant respond to the effect of drought, which can be 

seen in the reduction of water vapour from the plant. 

For statistical analysis of the data obtained from the physiological studies carried out, 

Minitab 15 was used. First, a one-way analysis of variances (ANOVA) was conducted 

for each of the measurements. The data was checked for normality and equal variances 

by looking at the residual plots obtained from the ANOVAs. If the residual plots were 

not unambiguous, Levene’s test was used to confirm equal variances and normality was 

confirmed by using the Anderson-Darling test. Conductance of normality tests and 
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Levene’s tests showed normality and equal variances without removing the outliers in 

all cases, so all outliers were kept in the data. Student’s T-test was used when 

comparing two treatment groups to each other, for example when comparing the 

difference in protein abundance between plants of the variety Basrah grown under 

control conditions and after exposure to drought. 

 

2.2.1 Water loss rate (WLR) 

For the WLR measurements, leaves were cut off unstressed barley seedlings and placed 

on filter paper in a Petri dish at room temperature (21°C), for weighing after 0, 90, 180, 

270 and 360 minutes. The samples were then kept at 80°C for 48 hours before 

determining dry weight (DW). The following formula was used to calculate WLR in 

g/hour per g dry weight: 

WLR = (FWT1 – FWT2 )/ [DW x (T2 – T1)] 

FWT1 is leaf blade fresh mass at time T1, FWT2 is leaf blade fresh mass at time T2, DW 

is leaf blade dry weight, T1 is time when FWT1 was determined, and T2 is time when 

FWT2 determined. 

 

2.2.2 Relative water content (RWC) 

For determination of RWC leaves were weighed (fresh weight) and then saturated in 

water overnight at 5°C by placing the leaf in water. The turgid weight of the leaves was 

determined, as was the dry weight after drying the leaves at 80°C for 48 hours. Four 

treatment groups were evaluated; Golden Promise control and exposed to 7 days of 

drought treatment, Basrah control and exposed to 7 days of drought treatment. RWC 

was calculated as the difference between fresh and dry weight, divided by the difference 

between turgid and dry weight. 

RWC (%) = [(FW – DW) / TW – DW)] x 100 

Where FW = sample fresh weight, TW = sample turgid weight, DW = sample dry 

weight 
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2.2.3 Stomatal conductance 

For determination of the stomatal conductance a leaf porometer from Deacon Devices 

was used according to the manufacturer’s instructions. The leaf porometer was 

calibrated according to the instructions before use. All measurements were done using 

the unit mmol/m2s (millimoles per meter squared seconds) and conducted in ‘Auto 

Mode’. The plants used for measuring stomatal conductance were grown for 7 days at 

an average temperature of 21°C, and a photoperiod of 16 hour light, 8 hour dark and the 

plants were watered daily. After 7 days the watering was stopped for half of the pots, 

the other half were used as controls and the watering was continued for these (see 

section 2.1). 

The stomatal conductance was measured at day 0, and on the days 3,5, 7 and 12 after 

initiation of drought, and control plants as well as plants exposed to drought were 

measured. The measurements were taken between 14.00 and 16.00 pm and 10 leaves 

were measured at each time point for each of the two varieties. 

 

2.3 Protein extraction 

Initially a significant time was allocated towards improving protein extraction 

protocols. Several protocols were tested and modified in order to identify the best suited 

method for this study, and all samples were tested on 1D and 2D gels. 

 

2.3.1 TCA-acetone extraction 

Approximately 100 mg of plant material (fresh weight) was ground in liquid nitrogen 

using a pre-cooled mortar and pestle. The dry powder was transferred to 1.6 ml of 

precipitation solution (10% TCA w/v, 0.07% v/v ß-mercaptoethanol, in acetone) [197]. 

The extract was left to precipitate at -20°C for one hour. Precipitated proteins were then 

pelleted at 15,000 rpm for 15 min, at 4°C. To the pellet, 1.6 ml of ice-cold acetone was 

added, the mixture was vortexed and centrifuged twice at 15,000 rpm for 15 min, at 

4ºC. The pellet was recovered and air-dried at room temperature before solubilising it in 

5 ml phosphate buffer saline (PBS buffer). A 1l 1x PBS stock solution was prepared 

(1.4 mM NaCl, 27 mM KCl, 43 mM Na2HPO4-7H2O, 15 mM KH2PO4) just before use. 
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2.3.2 SDS extraction 

A method preventing degradation of proteins during extraction of plant protein was 

proposed by des Francs et al. (1985) [198]. This method was tested in the present study 

and is described in the following. Approximately 4 g of plant material was ground in 

liquid nitrogen using a pre-cooled mortar and pestle. The powder was resuspended in an 

SDS solution (20 ml containing the following: 4% (w/v) SDS; 5% (v/v) ß-

mercaptoethanol, 5% (w/v) sucrose, 6% (w/v) insoluble PVP (polyvinyl pyrrolidone)). 

The mixture was heated in boiling water for 3 min and then centrifuged at 35,250 g for 

15 min and again for 10 min at 4ºC. The supernatant was recovered and mixed with five 

times (approximately 100 ml when starting with 4 g of leaf material) ice-cold acetone 

with 10 mM ß-mercaptoethanol, the proteins were allowed to precipitate overnight. 

Precipitated proteins were then pelleted at 35,250 g for 10 min at 4°C. The pellet was 

washed twice with ice-cold acetone by vortexing before centrifugation at 35,250 g for 

15 minutes, recovering the pellet between the washes. The pellet was recovered, air-

dried and resuspended in 5 ml DIGE labelling buffer (as described below). 

 

2.3.3 PBS buffer extraction 

Approximately 1.5 g of plant material was ground in liquid nitrogen using a pre-cooled 

mortar and pestle. The powder was resuspended in 10 ml PBS buffer containing 5 mM 

ethylene diamine tetraacetic acid (EDTA), 0.1% (v/v) Triton X -100, 1mM PMSF and 

0.07% (v/v) ß-mercaptoethanol. The mixture was vortexed, centrifuged at 20,000 g for 

10 min at 4°C and the supernatant was recovered. The supernatant was mixed with five 

times the volume of TCA/Acetone with ß-mercaptoethanol (10% (w/v) TCA, 0.07% ß-

mercaptoethanol in acetone). The solution was left to precipitate overnight at -20°C. 

Precipitated proteins were then pelleted at 20,000 g for 20 min at 4°C. 

The pellet was washed twice with acetone (-20°C) by vortexing before centrifugation at 

20,000 g for 20 min at 4°C. The pellet was air dried at room temperature and 

subsequently resuspended in 5 ml DIGE labelling buffer (7 M urea, 2 M thiourea, 30 

mM Tris HCl (pH 8), 4% (w/v) CHAPS). This last method was the preferred method 

for both leaf and root protein extractions as it gave higher protein concentrations and 

better quality 1D and 2D gels. 
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2.3.4 Determination of protein concentrations 

To quantify the protein content obtained using the different protein extraction methods, 

the protein concentration of all samples was measured using the Bradford assay [199]. 

Samples were mixed with Bradford reagent, and the OD measured at 595 nm. Bovine 

serum albumin (BSA) was used as the reference protein to produce a standard curve. 

 

2.3.5 Ultrafiltration of protein samples 

Regardless of the extraction method used, the protein concentration of the samples 

obtained from barley root and leaves was relatively low (1-5 µg/µl). To concentrate the 

proteins in the samples an Amicon® Ultra-15 centrifugal filter device (Millipore) was 

used. A nominal molecular weight limit (NMWL) is used to characterise the 

membranes used in Amicon Ultra devices. The NMWL describes the membrane’s 

ability to retain molecules above a specific molecular weight. Solutes with a molecular 

weight close to the NMWL may only be partially retained. The centrifugal filter device 

used in this study was an Amicon Ultra 3K NMWL membrane, retaining protein solutes 

with a molecular weight of 3,000 kDa or larger, which is suitable for retaining the plant 

proteins required for study. Up to 15 ml of sample was added to the filter unit. The unit 

was centrifuged for 2 x 30 minutes at 4000 x g and the concentrated solutes were 

recovered from the bottom of the filter unit. 

 

2.4 Denaturing polyacrylamide gel electrophoresis of proteins (SDS-PAGE) 

For one-dimensional SDS-PAGE the discontinuous buffer system by Laemmli (1970) 

[200] was used. The resolving gel solution (10% (v/v) acrylamide (GE healthcare; 40% 

acrylamide monomer solution containing 5% N,N’-methylenebisacrylamide was used 

throughout); 375 mM Tris-HCl at pH 8.8; 0.1% (w/v) SDS; 0.1% (w/v) ammonium 

persulfate; 0.1% (v/v) TEMED) was poured between two glass plates using a Hoefer gel 

apparatus (Mighty Small, Hoefer). The gel solution was overlaid with water-saturated 

isobutanol to ensure a flat surface and the gel was allowed to polymerise for 

approximately 1 hour. After polymerisation the isobutanol was poured off and the 

stacking gel (4% (v/v) acrylamide; 125 mM Tris-HCl at pH 6.8; 0.1% (w/v) SDS; 

0.05% (w/v) ammonium persulfate; 0.1% (v/v) TEMED) was poured on top of the 
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resolving gel. Immediately after pouring the stacking gel a comb forming the loading 

wells was inserted and the gel left to polymerise for 45 min. Following polymerisation, 

the glass plates containing the gel was placed into the electrophoresis apparatus, the 

comb removed and the buffer tanks filled with 1 x SDS-PAGE running buffer (24 mM 

Tris-HCl at pH 8.3; 192 mM glycine; 3.5 mM SDS). 2x loading buffer (0.15 M Tris-

HCl; 1.2% (w/v) SDS; 60% (v/v) glycerol; 15% (v/v) 2 mercaptoethanol; 0.09% (w/v) 

bromophenol blue) was mixed in the samples at a ratio of 1:1, heated for 5 min at 98°C 

and the sample loaded onto the gel. A molecular weight marker protein ladder (Sigma; 

M.W. 30,000 Da – 200,000 Da) was run on each gel as a standard. The gel was 

subjected to electrophoresis at 150 V for approximately 75 min or until the dye front 

reached the bottom of the gel. 

 

2.5 2D electrophoresis 

To analyse and evaluate the different protein extraction methods, first-dimensional IEF 

was initially performed using 7 cm precast immobilised pH gradient strips 

(ImmobilineTM DryStrip. GE Healthcare) with a 3-11 pH linear range. For the DIGE 

gels the first-dimensional IEF was performed using 3-11 pH linear range 24 cm precast 

strips (ImmobilineTM DryStrip. GE Healthcare). For the second dimension SDS-PAGE, 

10% polyacrylamide gels were used. 

 

2.5.1 Isoelectric focusing 

With minor modifications, the IEF was performed following the recommendations from 

GE Healthcare [201]. IEF was performed on an EttanTM IPGphor cell (GE healthcare). 

The total amount of rehydration solution used for rehydration of the 7 cm gel strips was 

125 µl, including the protein sample. For the 24 cm gel strips a volume of 450 µl 

rehydration solution was used, including the protein sample. The strips were actively 

rehydrated for 12-15 h at 30 V in rehydration buffer (7 M urea; 2 M thiourea; 2% (w/v) 

CHAPS; 0.5% (v/v) IPG Buffer (GE Healthcare, IPG Buffer, pH 3-11 NL), 0.002% 

bromophenol blue; 7mg dithiothreitol (DTT) per 2.5 ml rehydration buffer was added 

just before use) containing approximately 250 µg of protein for the 7 cm strips and 

approximately 1000 µg of proteins for the 24 cm strips. IPGphor fixed-length Strip 

Holders (GE Healthcare) were used for rehydration of the strips. The IEF was 
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performed using an Ettan IPGphor system (GE Healthcare). Electrofocusing was carried 

out at 20°C with a gradually increasing voltage. The following settings were used for 

the 7 cm gel strips: 100 V for 2 h (Step & Hold); 500 V for 1 h (Step & Hold); 5000 V 2 

h (Gradient); 5000 V for 4 hours (Step & Hold). The following settings were used for 

the 24 cm gel strips: 300 V for 2 hours (Step & Hold); 1000 V for 1 hour (Gradient); 

8000 V for 2 hours (Gradient); 8000 V for 8 hours (Step & Hold). Due to the low ionic 

strength within the Immobiline DryStrip the current per strip was not allowed to exceed 

50 µA. 

After IEF, IPG strips were equilibrated by immersing them first for 15 min. into Tris-

HCl (75 mM) pH 8.8, containing 6 M urea, 29.3% (v/v) glycerol, 2% (w/v) SDS, 

0.002% bromophenol blue, and 1% DTT, and then for 15 min. in the same solution 

containing 2.5% (w/v) iodoacetamide and no DTT. 

 

2.5.2 Second-dimensional SDS electrophoresis 

The second-dimensional SDS-electrophoresis was run on 10 cm x 8 cm or 26 cm x 26 

cm lab-cast 10% SDS-polyacrylamide gel using an EttanTM DALTsix (GE healthcare) 

gel apparatus. The IPG strips were transferred onto the gel, sealed with an agarose 

sealing solution (100 ml 1 x SDS-PAGE running buffer; 0.5% (w/v) agarose; 0.002% 

(w/v) bromophenol blue) and the electrophoresis was carried out at 160 V until the dye 

front reached the bottom of the gel. 

 

2.6 Gel staining 

Coomassie brilliant blue and silver staining are some of the most used staining methods 

for protein gels. These methods are however not very sensitive (Coomassie brilliant 

blue) or have limited linearity (silver staining) and are therefore not ideal for a 

quantitative protein expression analysis. The problems with low sensitivity and limited 

linearity can to some extend be minimized by using fluorescent stains such as Sypro 

Ruby or RuBPS. Therefore, different staining methods were tested in order to select the 

best-suited method for this study. 
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2.6.1 Coomassie blue stain 

The gels were placed in a staining solution (50% (v/v) methanol; 10% (v/v) acetic acid; 

0.1% (w/v) Coomassie blue R250; 40% (v/v) distilled H2O) for at least one hour. 

Subsequently the gel was placed in a destaining solution (10% (v/v) methanol; 10% 

(v/v) acetic acid; 80% (v/v) distilled H2O) overnight, or until the background of the gel 

was clear and bands or spots were visible. This method was the preferred method for 

staining of the gels as it was by far the fastest method and since protein quantification 

was not necessary. 

 

2.6.2 Silver staining 

The silver staining was performed using the method originally described by Switzer et 

al. (1979) [202]. All steps were carried out at room temperature on a shaking platform. 

The gel was placed in a tray with fixation solution for one hour (50% (v/v) methanol; 

12% (v/v) acetic acid; 0.05% (v/v) formalin (commercial formalin is 35% 

formaldehyde)). The fixation solution was poured off and the gel was washed for 3 x 20 

min in 50% (v/v) ethanol and subsequently pre-treated for 1 min. in a sensitizing 

solution (0.02% (w/v) Na2S2O3). The gel was then rinsed 3 x 20 min in H2O before 

impregnating it with a staining solution (0.2% (w/v) AgNO3, 0.076% (v/v) formalin). 

The staining solution was poured off and the gel rinsed for 2 x 20 seconds in H2O. The 

gel was rinsed shortly in the developing solution (6% (w/v) Na2CO3; 0.0004% (w/v) 

Na2S2O3; 0,05% formalin), before the protein image was developed by incubating the 

gel in more developing solution for 1-10 min. Termination of the reaction, when the 

desired intensity of the bands is reached, can be achieved by adding termination 

solution (20% ethanol) directly to the gel that is still immersed in the developing 

solution. The gel was washed in H2O for 2 x 2 min. and subsequently placed in a stop 

solution (50% (v/v) methanol; 12% (v/v) acetic acid for 10 min before a final 20 min 

wash in 50% (v/v) methanol.  

Gels stained with Coomassie blue or by silver staining were scanned using a ScanJet 

5300C scanner (Hewlett Packard). 
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2.6.3 RuBPS staining 

Ruthenium II-bathophenanthroline disulfonate chelate was prepared as described by 

Rabilloud et al. (2001) [203] (which is a modification of the method described by Lin et 

al. (1976) [204]. Firstly, 0.2 g of potassium pentachloro aquo ruthenate was dissolved in 

20 ml boiling water and kept under reflux. The reflux was continued for 20 min after 

adding three molar equivalents of bathophenanthroline disulfonate, disodium salt. 

Refluxing was continued for another 20 min after adding 5 ml of 500 mM sodium 

ascorbate solution to the refluxing mixture. The colour of the solution changed to a deep 

orange-brown colour. After cooling of the solution, the pH was adjusted to pH 7 with 

sodium hydroxide and the volume was adjusted to 26 ml with H2O, giving a 20 mM 

stock solution. 

For staining the gel, the following steps were carried out at room temperature on a 

shaking platform. After electrophoresis the gel was fixed (30% (v/v) ethanol; 10% (v/v) 

acetic acid) for approximately 3 hours. The gel was then placed in a rinsing solution 

(20% (v/v) ethanol) for 4 x 20 min followed by incubation overnight in 20% (v/v) 

ethanol; 1 µM RuBPS (5 µl in 100 ml 20% (v/v) ethanol). The gel was rinsed for 2 x 10 

minutes in H2O before being destained (40% (v/v) ethanol; 10% (v/v) acetic acid) for 3-

4 hours and a final rinse in H2O for 2 x 10 minutes. The gel images were scanned using 

a Typhoon Variable Mode Imager (GE Healthcare) using the following settings: PMT 

between 500 to 550; Laser 532 nm; emission filter 610 nm; medium sensitivity. 

 

2.7 2D Fluorescence Difference Gel Electrophoresis (2D DIGE) 

Fluorescent 2D DIGE is a multiplex technology for 2D gels, which allows for the 

separation of up to three samples on one gel. The protein extracts are covalently tagged 

with fluorescent dyes, before IEF and SDS-PAGE. The labelling of the proteins allow 

for the detection and quantification of differences in protein abundance between 

different biological samples within one single gel [190]. With minor modifications, the 

2D DIGE was performed following the recommendations from GE Healthcare [201]. 
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2.7.1 Preparation of CyDye DIGE Fluor minimal dyes for protein labelling 

The fluors as supplied by GE Healthcare were equilibrated to room temperature before 

adding DMF (dimethylformamide) into the fluor vial to achieve a concentration of 1 

nmol/µl. These were mixed and centrifuged to collect fluor at the bottom of the vial. 

The concentrated stock solution can be stored at -20°C for several months. The stock 

solution was diluted to a working fluor concentration of 200 pmol/µl using DMF. The 

working solution is stable for 1 week at -20°C. 

 

2.7.2 Design of DIGE experiment 

Six large format gels were run for the leaf protein analysis and six for the root protein 

analysis according to the following scheme (Table 2). 

 

Table 2: Experimental design for 2D DIGE analysis of two barley 

varieties, Basrah (B) and Golden Promise (GP). 

The experiment was set up to reveal any differences in protein 

expression between the two varieties when grown under near optimal 

conditions and when exposed to drought. The same design was used 

for the leaf protein analysis and the root protein analysis. Numbers in 

brackets show sample number. 

Gel Samples Dyes Internal standard 

1 GP control (1)-GP stressed (2) Cy3-Cy5 Cy2 

2 GP control (3)-B control (4) Cy5-Cy3 Cy2 

3 GP control (5)-B stressed (6) Cy3-Cy5 Cy2 

4 GP stressed (7)-B control (8) Cy3-Cy5 Cy2 

5 GP stressed (9)-B stressed (10) Cy5-Cy3 Cy2 

6 B control (11)- B stressed (12) Cy3-Cy5 Cy2 
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2.7.3 CyDye labelling of protein samples 

The CyDyes were reconstituted in DMF to give a CyDye working solution of 0.4 mM. 

The protein concentrations of all twelve samples were adjusted to 10 µg/µl by diluting 

the samples with the highest protein concentration in DIGE labelling buffer. The 

samples 2, 3, 6, 8, 9 and 12 were labelled with Cy3 and the samples 1, 4, 5, 7 10 and 11 

were labelled with Cy5 (Table 2). An internal standard (25 µg of protein from each of 

the 12 samples pooled together) was created and labelled with Cy2, in a total volume 

sufficient for inclusion on all six gels in the experiment. The recommended ratio of 

protein to fluor is 50 µg protein to 200 pmol fluor. To a sample containing 50 µg of 

protein, 1 µl of working fluor solution (200 pmol/µl) was added. The solution was 

mixed thoroughly by vortexing before centrifugation to collect labelling mixture at the 

bottom of the tube. The mixture was incubated on ice for 30 min in the dark. The 

labelling reaction was stopped by adding 1 µl of 10 mM lysine, mixed well and then left 

on ice for 10 min in the dark. At this stage the labelled samples can be stored for up to 3 

months at -70°C in the dark or used immediately.  

 

2.7.4 Two-dimensional separation of DIGE labelled protein samples 

Protein samples labelled with the different dyes (Cy2, Cy3 and Cy5) were pooled 

according to the experimental design (Table 2). The same design was used for both the 

leaf protein experiment and the root protein experiment. In this way, three biological 

replicates can be compared with reciprocal labelling of dyes. Two labelled protein 

samples (Cy3 and Cy5) were combined with the labelled internal standard (Cy2). The 

first and second dimension of the 2D DIGE was performed as described under section 

2.5. 

 

2.7.5 Scanning and analysis of DIGE gels 

Immediately after the second dimension SDS-electrophoresis the gels were scanned 

using a Typhoon imager (GE Healthcare) following the manufacturers instructions. 

Three scans were generated for each gel: one for the internal standard (Cy2), one for the 

sample labelled with Cy3 and for the sample labelled with Cy5. In addition, these three 

images were superimposed generating an image showing all three CyDyes. The 
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following settings were used: for Cy2 the PMT was 500 V, emission filter at 520, and 

the blue laser at excitation wavelengths of 488 nm; for Cy3 the PMT was 525 V, 

emission filter at 580, and the green laser at excitation wavelengths of 532 nm; for Cy5 

the PMT was 500 V, emission filter at 670 and the red laser at excitation wavelengths of 

633 nm. 

For analysing the DIGE gels the following DeCyder software programmes from GE 

Healthcare were used: “Differential Analysis” (DIA) and “Biological Variation 

Analysis” (BVA).  

Initially each gel was analysed separately using the DIA. The estimated number of spots 

was set to 10,000 followed by running the spot filter with the settings shown in Table 3. 

The spot filter was used as a selection tool to select the spots on the gel that were most 

likely to represent proteins and filter away the spots that represents dust or other 

artefacts in the protein samples. This is possible because proteins will generate a spot 

with a characteristic slope, area, height and volume and artefacts will generate spots that 

look very different to protein spots. The analysis with the DIA software revealed the 

number of spots detected on each gel, and the number of spots that were similar in 

intensity, and increased or decreased in intensity, when comparing the two samples 

from each gel, labelled with Cy3 and Cy5, to the internal standard labelled with Cy2 

(Table 3). 
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Table 3: Settings applied in the DeCyder Differential Analysis (DIA) software. 

Settings used when analysing the leaf and root DIGE gels separately. The estimated 

number of spots was set to 10,000 and the settings for the spot filter for each gel are 

shown in the table. The spot filter was used as a selection tool to select the spots on the 

gel that were most likely to represent proteins and filter away the spots that represents 

dust or other artefacts in the protein samples.  

 Gel 1 Gel 2 Gel 3 Gel 4 Gel 5 Gel 6 

Max slope 0.52 0.59 0.50 0.59 0.50 0.45 

Area 350 339 400 400 500 580 

Peak 

height 
500 500 500 495 750 850 

Volume 30,000 30,000 30,000 30,000 30,000 30,000 

 

Files generated using the DIA software, when analysing the gels separately, can be 

analysed together using the BVA software. Because of the inclusion of the internal 

standard it is possible to analyse and compare samples between gels. The first step in 

the BVA is to match the gels according to a master scan, which is usually the internal 

standard from the gel where most spots have been detected. Figs. 8 and 9 show screen 

shots of the gel matching process using the BVA software. 
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Figure 8: Screenshot of “Spot Map Table” generated using the Biological 

Variation Analysis (BVA) module. 

The table gives information that enables the analysis and matching of protein spots 

between all scans in the experiment. Presented are all three scans from each of the six 

gels; what type of labelling has been used and which of the CyDyes has been used to 

label the sample; total number of spots identified; number of spots matched on each gel 

with respect to the master; ‘function’ indicates what scan has been used as the master 

(M) and what scans have been included in the analysis (A); ‘group’ indicates what 

group the scan belongs to (Basrah-control, Basrah-drought, Golden Promise-control, 

Golden Promise-drought). 
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Figure 9: Screenshot of the matching process of two scans, from two different gels, 

using the Biological Variation Analysis (BVA) module. 

The match vectors indicate the difference in distance and direction between identical 

spots on the two scans. For an accurate match all vector lines should point in the same 

direction and be of equal length. The spot in purple highlight the same protein spot on 

both of the two scans, making it easier to identify and match the proteins. If the scans 

were superimposed the distance between the selected spot on the two scans is indicated 

by the match vector, so match vectors of varying length and direction indicates an 

overall poorly matched gel. 

 

After matching all 18 scans from the six gels to the master scan, the accuracy of the 

matching was checked by comparing the scans of the internal standards to the master 

scan, one at the time. The master scan was selected based on the total number of spots 

identified on the scan, meaning the scan with the highest number of spots was selected 

as the master. Inaccurate matches were broken and landmark matches were manually 

added in areas of each scan where the matching had not been accurate enough. A 

landmark match is a manual match of a spot between two scans. Landmark matches 

should only be added to big, clear and well-separated spots, which can be selected 

without doubts. Selecting good landmark matches increases the accuracy of 
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neighbouring matches. A new matching of all scans was performed, taking the manual 

corrections into account and using them as landmarks. 

After matching of the gels a 1-way ANOVA and T-tests were carried out for all 

matched spots. The P values from the ANOVA and T-tests were used as selection 

criteria when applying the protein filter (P≤0.05). The protein filter was used as 

selection tool to select the protein spots that show a significant change between samples 

and filter away the protein spots that have no obvious change in relation to the samples. 

A T-test between the two treatment groups Golden Promise-drought and Basrah-

drought should reveal protein spots that potentially could be important in relation to 

drought. However the protein spots could also be varietal differences, which can be 

determined by looking at the protein expression patterns for all four treatment groups 

(Basrah-control, Basrah-drought, Golden Promise-control, Golden Promise-drought). 

The protein expression pattern shows the expression level of a particular protein for all 

four treatment groups (See examples of idealised protein expression pattern in Fig. 23). 

Theoretically, any spot of interest should be present on at least nine of the scans. A 

given protein should be present on all six scans of the internal standard, and at least 

three other scans, since there are three biological replicates for each treatment group. 

This was also used as selection criteria in the protein filter and only spots present on at 

least nine of the scans with a P-value lower than 0.05 were included in any further 

analysis. The P-values were generated from ANOVAs or T-tests. A P-value lower than 

0.05 from the ANOVA shows that there is a significant difference for a particular 

protein, between at least two of the treatment groups out of the total of four, but it does 

not tell between which groups. A P-value lower than 0.05 generated in the T-test shows 

that there is a significant difference in expression for a particular protein spot, when 

comparing two different treatment groups. For example, when comparing protein spots 

from Basrah grown under control conditions, to protein spots from Basrah after 

exposure to drought, a specific protein spot shows a significant difference in expression 

level under the two conditions if a T-test reveals a P-value below 0.05. 
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2.8 Peptide Mass Fingerprinting (PMF) 

2.8.1 Ettan spot picker 

1.4 mm gel plugs were excised from 2D-DIGE gels using the EttanTM spot picker 

system (GE Healthcare) with spot coordinates from the Typhoon scans. All gels with 

CyDye labelled proteins were post-stained with RuBPS before spot picking using the 

Ettan spot picker. Alternatively, a manual gel spot picker was used for 2D gels run 

under the same conditions as the 2D-DIGE gels, loaded with 1000 µg protein and 

stained with Coomassie. The EttanTM spot picker system was used according to the 

manufacturer’s instructions.  

 

2.8.2 Preparation of protein samples for mass spectrometry 

The gel plugs were placed into 0.5 ml microcentrifuge tubes that were prewashed twice 

with 50% (v/v) acetonitrile (ACN), 0.1% trifluoroacetic acid (TFA) in H2O. The gel 

plugs were then destained twice for 45 min for each treatment (at 37°C) with 0.2 ml of 

100 mM NH4HCO3. The gel plugs were dehydrated for 5 minutes at room temperature 

in 100 µl 100% ACN. The gel plugs were at this point much smaller than their initial 

size and they were whitish/opaque in appearance. The gel plugs were dried at a 

temperature below 30°C in an AES2010 SpeedVac® (ThermoSavant) for 10-15 min to 

remove the ACN. Trypsin “Gold” (Promega) was resuspended at 1 µg/µl in 50 mM 

acetic acid (7.5 µl/2.5 ml). This solution was then diluted to 20 µl/ml of 40 mM 

NH4HCO3 in 10% (v/v) ACN/H2O to a final volume of 50 ml. The gel plugs were then 

pre-incubated in a minimal volume (10-20 µl) of the trypsin solution for 1 hour at room 

temperature. During this time the plugs rehydrated. If after one hour the gel plugs still 

appeared white/opaque, an extra 10-20µl of trypsin was added and left for incubation 

for another hour at room temperature. Digestion buffer (40 mM NH4HCO3 in 10% (v/v) 

ACN) was added so it completely covered the gel plugs. The tubes were capped tightly 

to avoid evaporation and left for incubation overnight at 37°C. 150 µl of distilled water 

was added to the gel plug digests and incubated for 10 min, with frequent vortexing. 

The liquid was removed and saved in new microcentrifuge tubes. Drying of this extract 

was started, using an AES2010 SpeedVac® (ThermoSavant). Initiating the drying at 

this point shortens the protocol by a couple of hours. 50 µl of 50% (v/v) ACN, 5% (v/v) 

TFA in H2O was added to the tubes with the gel plugs, and vortexed for 1 hour to 
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extract the gel slice digest. The liquid was remove and added to the extract already in 

the SpeedVac® for drying. This step was repeated once more. All drying was 

performed at room temperature, and total drying time was about 2 hours.  

 

2.8.3 ZipTip pipette tips 

The extracted peptides were purified and concentrated using ZipTip pipette tips 

(Millipore Corporation). The ZipTip tips were prepare by washing with 10 µl of 100% 

ACN, then washing 2-3 times with 10 µl of 0.1% (v/v) TFA. The samples were 

reconstituted with 10 µl of 0.1% (v/v) TFA and then drawn into the ZipTip by pipetting 

fully into and out of the tip 4-5 times and finally the liquid was ejected. The ZipTip tips 

were then washed 2-3 times with 10 µl of 0.1% (v/v) TFA to remove contaminants. The 

peptides were eluted in 2.5 µl of 70% (v/v) ACN, 0.1% TFA, 10 mg/ml α-cyano-4-

hydroxycinnamic acid (CHCA) and spotted directly onto the MALDI target and run on 

the Ettan MALDI-ToF Pro system (Amersham Biosciences) for mass spectrometry 

protein identification. 

 

2.8.4 MALDI-ToF 

Peptide mass fingerprinting (PMF) was carried out by using the Ettan MALDI-TOF 

control module 2.01 and evaluation software (GE Healthcare) to generate mass spectra 

of tryptic peptides. The instrument was set to reflectron mode and positive ion polarity 

for ionisation of peptides. The mass range was set to ‘low’ (mass: 10251 m/z) and lower 

mass rejection was set to 500 m/z. The 8-shot laser mode was selected, the acceleration 

potential was set to 20 kV, and for pulsed extraction the focus mass was set to 2500 

m/z.  

The instrument was run with selective accumulation until an accumulation of 250 shots 

were reached for each of 4 spectra. Internal calibration performed on the auto-digested 

fragments trypsin I and trypsin III. Peak detection was set to the “Centroid” algorithm 

with a signal to noise ratio of 2.5, with monoisotopic mass detection and a mass 

tolerance of 0.2 at m/z <3000, and average mass detection with a mass tolerance of 1 at 

m/z>3000. The internal software was set to adjust partially for oxidation of methionine 

and complete alkylation of cysteine with iodacetamide during peptide identification. 
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The downloaded sequence database, located at a server at GE Healthcare, was updated 

with sequence data compiled from the newest updates of the NCBI Genbank. 

Despite the availability of the easily accessible internal software, on-line search-engines 

were preferred for the identification of proteins by peptide mass fingerprinting, as this 

proved more successful. 

Weblinks: MS-Fit - Proteomics tools for mining sequence databases in conjunction 

with Mass Spectrometry experiments. 

http://prospector.ucsf.edu/prospector/mshome.htm 

Mascot – on-line tool for identifying proteins by peptide mass 

fingerprinting. 

http://www.matrixscience.com/search_form_select.html 

When using the MS-Fit proteomics search-engines the NCBI database was used. The 

selected taxonomy was ‘green plants’, nil missed cleavages were allowed, with 20 ppm 

peptide mass tolerance. Considered modifications were peptide N-terminal Gln to 

pyroGlu, oxidation of M and protein N-terminus acetylated. Carbamidomethyl (C) was 

selected as a constant modification. The minimum number of peptides required to 

match was initially set to 4. Pre-search parameters can be selected and a narrow range 

for MW and PI can be chosen if these parameters are known for the spot being 

analysed. The MW and PI was estimated from the DIGE scans and used to narrow the 

search. Taxonomy names can also be used to narrow down the search. The search 

results show the MW and PI of the protein, number of peptide matches, and the 

percentage covered. The MS-Fit proteomics search-engine does not give an E-value 

(Expectation value), instead a so called MOWSE score (weighted measure of the match 

between the actual and predicted spectrum) is generated. The MOWSE score changes 

with each individual search and there is no set value that shows significance. But a 

relatively high score indicates a good hit. The MOWSE score was considered high if 

there was a relatively large difference between the highest score and subsequent scores. 

If the highest score was not much larger that the subsequent scores the MOWSE score 

was not considered high, except for highly conserved families where several similar 

proteins had MOWSE scores that were considered high. 
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The identity of those proteins with a high Mowse score where subsequently confirmed 

using the Mascot program. When searching in Mascot the NCBI database was used. 

The selected taxonomy was ‘Viridiplantae’, nil missed cleavages were allowed, with 20 

ppm peptide mass tolerance. Carbamidomethyl (C) was selected as a fixed 

modification. The search results give a protein score and an E-value , where E is the 

probability that the observed match is a random event. The protein score varies 

according to the selected settings, but in general protein scores greater than 72 are 

significant (E<0.05). The mass of the protein and number of peptide matches is also 

shown. 

 

2.9 Enzyme assays 

2.9.1 Root Peroxidase activity assay 

Enzyme extract preparation and enzyme assay was carried out according to Vanacker et 

al. (2000) [205] with minor modifications. Approximately 1 g of root tissue was 

immersed in liquid nitrogen and ground to a fine powder in 10 ml of 50 mM HEPES pH 

7.5, 5 mM MgCl2, 1 mM EDTA, 0.1% (v/v) Triton X-100, 1 M NaCl, 5 mM 

dithiothreitol, and 0.5 mg/ml BSA. The reaction mixture (1 ml) consisted of 0.25% 

(v/v) guaiacol in 0.01 M sodium phosphate buffer, pH 6.0 and 0.1 M H2O2, and 10 µl 

enzyme extract. The reaction was followed at 470nm and activity was expressed as the 

increase in A470 min-1 mg-1 protein. 

ΔA470 min-1 mg-1 protein = ((ΔA470/Δmin) * (1000/Protein concentration in 10 µl)) * 100 

ΔA470 = decrease in absorbance at 470 nm 

Δmin = minutes between first and last reading 

 

2.9.2 Root ascorbate peroxidase activity assay 

With minor modifications the enzyme extract preparation was carried out according to 

Vanacker et al. (2000) [205], as described above. Ascorbate peroxidase was assayed 

according to Nakano & Asada (1981) [206]. A total volume of 1 ml reaction mixture 

was used containing the following: 50 mM potassium phosphate buffer (pH 7.0), 0.5 

mM ascorbic acid, 0.1 mM hydrogen peroxide and 10 µl enzyme extract. An absorption 
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coefficient of 2.8 mM-1 cm-1 was assumed. By monitoring the decrease in absorbance at 

290 nm, the hydrogen peroxide-dependent oxidation of ascorbic acid could be followed. 

One unit of ascorbate peroxidase activity is defined as the amount of enzyme that can 

oxidize 1 µmol ascorbic acid min-1. The activity was calculated and expressed as µmol 

enzyme mg-1 protein min-1. 

µmol enzyme mg-1 protein min-1 = (ΔA290/Δmin) * (1000/total protein in 100 µl) * 100 

Δ290 = decrease in absorbance at 290 nm 

Δmin = minutes between first and last reading 

 

2.9.3 Root catalase activity assay 

Preparation of the enzyme extract and the assay of catalase activity were carried out 

according to the methods described by Roy et al. (2011) [207], with minor 

modifications. Root tissue (1 g) was ground in liquid nitrogen and extracted in 10 ml of 

0.067 M phosphate buffer (pH 7) with a pre-cooled mortar and pestle. The homogenate 

was centrifuged at 18,000 g for 15 min. The supernatant was poured off and kept in a 

separate tube. Cold phosphate buffer was mixed with the pellet and left in the freezer 

with occasional shaking. The homogenate was again centrifuged at 18,000 g for 15 min. 

The supernatants were combined and used for the assay of catalase activity. The 

catalase activity was estimated in the extracts by measuring the decrease in absorption 

at 240 nm in a 3 ml reaction mixture (0.16 ml of 10% w/v H2O2 diluted to 100 ml with 

0.067 M phosphate buffer) and 0.1 ml of enzyme extract. 

Δ240/min/mg = ((ΔOD/10)*(1000/protein concentration in 100 µl))*100 

Δ240 = decrease in absorbance at 240 nm 

10 = Δmin, minutes between first and last reading 

 

2.9.4 Root lipoxygenase activity assay 

The enzyme extracts were prepared according to Aziz et al. (1999) [208], with minor 

modifications. Root tissue (1 g) was ground in liquid nitrogen and extracted in 10 ml of 

100 mM phosphate buffer (pH 6.3) containing 2 mM sodium metabisulphite, 2 mM 
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ascorbic acid and 1 mM EDTA. The homogenate was centrifuged at 15,000 g for 15 

min and the lipoxygenase enzymes in the crude extract were enriched by ammonium 

sulphate precipitation (45% saturation) at 4°C. The pellet was resuspended in 40 mM 

phosphate buffer, pH 6.3.  

The lipoxygenase activity was determined according to Anthon & Barrett (2001) [209]. 

The added H2O2 act as an oxidant in the assay. Addition of the lipoxygenase enzyme in 

the assay result in a purple indamine dye, by catalysing the oxidative coupling of 3-

methyl-2-benzothiazolinone (MBTH) with 3-(dimethylamino)benzoic acid (DMAB). 

Detection of lipid hydroperoxides is enabled by this oxidative coupling reaction. Lipid 

hydroperoxides then acts as an oxidant and the catalyst is the added heme compound 

(hemoglobin). Assaying of lipoxygenase is in this way enabled by the detection of lipid 

hydroperoxides. 

The sample, in a volume of 10 µl, was incubated with 0.5 ml of solution A (solution A: 

mix 10 ml of 20 mM DMAB (3-(dimethylamino) benzoic acid), 100 mM phosphate 

buffer (pH 6), with 0.4 ml of 25 mM linoleic acid stock and 9.6 ml of water).  

To prepare the linoleic acid substrate, 155 µl of linoleic acid and 257 µl of Tween 20 

were added to 5 ml of water. The liquids were mixed with a Pasteur pipet by drawing 

the mixture back and forth. The mixture was then clarified by adding 0.6 ml of 1 M 

NaOH. H2O was added to reach a final volume of 20 ml. The mixture was then divided 

into 1 ml aliquots which were flushed with N2 before storing at -20°C. 

After incubation with solution A for the specified amount of time (generally 5 min), 0.5 

ml of solution B was added (solution B: mix 0.4 ml of 10 mM MBTH (3-methyl-2-

benzothiazolinone), 0.4 ml of 5 mg/ml haemoglobin (bovine), and 19.2 ml water). After 

an additional 5 min, 0.5 ml of 1% (w/v) SDS was added to stop the reaction and the 

absorbance at 598 nm was measured. The activity was calculated and expressed as 

mMols end product per mg protein.  

The following calculation was used to calculate the enzyme activity: 

mMols end product per mg protein = 

((OD598 * (1000/total protein in µg/µl)) / 18,700) *100 

OD598 = Absorbance at 598 nm 
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18,700 = Extinction coefficient, M-1cm-1 

2.9.5 Root lipase activity assay 

For determination of the lipase activity the QuantiChromTM Lipase Assay Kit (Sigma) 

was used and the manufacture’s instructions were followed. Preparation of the enzyme 

extract was carried out according to the methods described by Roy et al. (2011) [207]. 

Root tissue (1 g) was ground in liquid nitrogen and extracted in 10 ml of 100 mM 

phosphate buffer (pH 7) with a pre-cooled mortar and pestle. The solution was 

centrifuged at 18,000 g for 15 min. The supernatant was poured off and kept in a 

separate tube. The pellet was stirred with cold phosphate buffer, and left in the freezer 

with occasional shaking. The homogenate was again centrifuged at 18,000 g for 15 min. 

The supernatants were combined and used for the assay of catalase activity. The assay 

is based on a dimercaptopropanol tributyrate (BALB) method, where the lipase 

cleavage of BALB forms the SH groups that react with 5,5’-dithiobis(2-nitrobenzoic 

acid) (DTNB). The colour intensity of the resulting product can be measured at 412 nm. 

The assay kit contained the following buffers and reagents: 15 ml assay buffer (pH 8.5), 

530 mg colour reagent, 1 ml BALB Reagent, and 2 ml calibrator (equivalent to 735 

U/L). The working reagent was prepared by mixing colour reagent into assay buffer and 

shaking the vial to mix, before adding 0.8 ml BALB Reagent. The samples were 

assayed in 1 ml cuvettes. The spectrophotometer was set at 412 nm and blanked against 

water. Calibrator and H2O was mixed (50:50) and OD412nm was measured. Protein 

sample (100µl) was added to 900µl working reagent and OD412nm was measured after 

10 min (OD10min) and 20 min (OD20min). The lipase activity was calculated as follows: 

Activity = (OD20min - OD10min/ODcalibrator – ODH2O) * 735 (U/L) 

OD20min and OD10min are the OD412nm values of the sample at 20 min and 10 min 

respectively. ODcalibrator and ODH2O are the OD412nm values of the calibrator and water at 

20 min. The number “735” is the equivalent activity (U/L) of the calibrator under the 

assay conditions. One unit of enzyme catalyzes the cleavage of 1 mole of substrate per 

minute under the assay conditions (pH 8.5). 
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2.9.6 Leaf glutamine synthetase activity assay 

Preparation of the enzyme extract was carried out according to the methods described 

by Roy et al. (2011) [207] as for catalase enzyme assay. The glutamine synthetase 

activity was determined according to Rose et al. (2004) [210]. 

The principle reaction of the glutamine synthetase assay is as follows: 

Glutamine Synthetase 

Glutamate + NH4
+ + ATP   ⇒  L-Glutamine + ADP + Pi 

Pyruvate Kinase 

ADP + Phospho(enol)pyruvate   ⇒   ATP + Pyruvate 

L-Lactic Dehydrogenase 

Pyruvate + β-NADH   ⇒   L-Lactate + β-NADH 

A reaction cocktail was prepared (37 mM imidazole HCl (pH 7.1), 113 mM sodium 

glutamate, 9.4 mM adenosine 5’-triphosphate, 67 mM MgCl2, 18.8 mM KCl, 45.3 mM 

NH4Cl). To cuvettes the following was added: 2.70 ml of the reaction cocktail, 0.2 ml 

33 mM phospho(enol)pyruvate solution  and 0.06 ml 12.8 mM β-NADH in 100 mm 

imidazole. The content of the cuvettes was mixed by inversion and equilibrated to 37°C. 

The A340nm was monitored until constant, before adding 0.04 ml of lactate 

dehydrogenase/pyruvate kinase enzyme solution in 50% glycerol (lactate 

dehydrogenase: 1000 units/ml, pyruvate kinase: 600 units/ml). The content of the 

cuvettes was again mixed before adding 0.10 ml extract buffer to the reference cuvette 

and 0.10 ml of the enzyme extract to the sample cuvette. The decrease in A340nm was 

monitored for approximately 10 min. The ΔA340nm was obtained by using the maximum 

linear rate for both the test and blank. One unit of the enzyme will convert 1.0 µmole L-

glutamate to L-glutamine in 15 min at pH 7.1 at 37°C. 
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The following calculations were used to calculate the activity of the enzyme: 

Units/ml enzyme = 

((ΔA340nm/min Test - ΔA340nm /min Blank) * (3) * (15)) / ((6.22) * (0.1)) 

3 = total volume (in ml) of assay. 

15 = conversion factor to minutes (Unit definition). 

6.22 = millimolar extinction coefficient of β-NADH at 340 nm. 

0.1 = volume (in ml) of enzyme used. 

Units/mg protein = (units/ml enzyme) / (mg protein/ml enzyme) 

 

2.9.7 Leaf thioredoxin reductase activity assay 

Preparation of the enzyme extract was carried out according to the methods described 

by Roy et al. (2011) [207]. See under section 2.9.5 for further details on the protocol. 

The thioredoxin reductase activity was determined according to Holmgren & Bjornstedt 

(1995) [211]. The principle reaction of the thioredoxin reductase assay is as follows: 

  TR 

DTNB + NADPH + H+ ⇒ 2TNB + NADP 

Thioredoxin reductase (TR) reduces 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) by 

NADPH. 5’-thionitrobenzoic acid (TNB), the product of the reaction, is yellow and has 

an absorbance maximum at 412 nm with an extinction coefficient of 13,600 M-1 cm-1. A 

reaction mixture consisting of 0.2 mg/ml NADPH, 10 mM EDTA, 100 mM potassium 

phosphate buffer pH 7, 2 mg/ml DTNB, 0.2 mg/ml BSA in water. 500 µl of reaction 

mixture was added to two cuvettes. To the sample cuvette 100 µl of the protein sample 

was added, and 100 µl of extraction buffer was added to the reference cuvette. The 

reaction was followed at 412 nm. One unit of thioredoxin reductase is defined as 1 µmol 

TNB formed per minute. 

1U = (ΔA412/Δmin) / 27.2) 

Activity per µl protein sample = ((ΔA412/Δmin) / 27.2) / protein concentration per µl. 
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2.10 Western blotting 

For western blotting two SDS–PAGE gels with identical samples loaded were run 

simultaneously, one to be transferred and the other to be stained with Coomassie (see 

section 2.6.1) to check that the gels had run correctly and with equal loading. For 

western blotting, pre–stained markers were used (PageRuler™ Plus Pre Stained Protein 

Ladder, Fermentas). Being already stained, the markers can be seen at all times without 

additional staining, and will indicate whether or not the transfer of proteins has occurred 

effectively. 

After electrophoresis, the gel to be transferred was equilibrated for five minutes in 

1xTowbin buffer (25 mM Tris, 192 mM glycine and 5 % (v/v) methanol) at room 

temperature. A section of nitrocellulose membrane, four Scotch Brite pads (cut to fit 

snugly into the cassette to prevent leakage) and four pieces of Whatman No. 1 filter 

paper, was also equilibrated in the 1xTowbin buffer. To avoid contamination of the 

nitrocellulose membrane gloves should be worn at all times. The Mini Blot Module 

cassette was set up as follows: two Scotch–Brite pads were placed on top of the cathode 

followed by two pieces of Whatman No. 1 filter paper. The SDS–PAGE gel was then 

placed on top of these and covered with 1xTowbin buffer to prevent drying. The 

nitrocellulose membrane was then placed onto the gel, while taking care not to entrap 

any air bubbles between the gel and the membrane as this would prevent protein 

transfer. Finally, two pieces of Whatman No.1 filter paper and two Scotch–Brite pads 

were placed on top of this. The cassette was closed by placing the anode on top of the 

Scotch–Brite pads to complete the sandwich. The cassette was placed into the blotting 

chamber with the cathode side facing the cathode electrode, and filled with 1xTowbin 

buffer. Protein transfer was then carried out at constant voltage of 15 V for two hours at 

room temperature. 

After blotting, the membrane was stained with Ponceau red stain (2 % (w/v) Ponceau S 

(Sigma, Dorset, UK), 50 mM glacial acetic acid) for approximately two minutes at 

room temperature, to check the efficiency of the protein transfer. The membrane was 

gently rinsed with distilled water to rinse of the Ponceau red stain and reveal the stained 

bands. In order to completely remove the Ponceau red stain further washes with water 

were carried out. 

 



Chapter 2  Materials & Methods 

 70 

2.10.1 Detection of alpha amylase with rabbit anti–alpha–amylase antibody 

After blotting the membrane was blocked for one hour at room temperature in 1xTBS–

T (10 X stock solution: 1.5 M NaCl, 650 mM Tris, 0.5 % Tween – 20) containing 1 % 

(w/v) non–fat skimmed milk powder (Tesco, UK). The membrane was then incubated 

in the primary antibody at a dilution of 1:5000 rabbit anti–alpha–amylase antibody 

(Agrisera, Vännas, Sweden) in 1xTBS–T containing 1 % non–fat skimmed milk powder 

overnight at 4 °C. The antibody solution was then discarded and the membrane washed 

five times (once quickly and four times for 20 minutes each time) in 1xTBS–T at room 

temperature with gentle agitation. The membrane was then incubated in the secondary 

antibody at a dilution of 1:10000 of goat–anti rabbit–HRP linked antibody (Sigma, 

Dorset, UK), for one hour at room temperature. The membrane was washed three times 

for 10 minutes each time in 500 ml of 1xTBS –T plus 0.5 M NaCl, after discarding the 

antibody solution. 

 

2.10.2 Chemiluminescence Detection  

Antibody detection was carried out using the ECL Plus Western Blotting Detection 

Reagent kit (Amersham, UK) according to the manufacturer’s instructions. The 

membrane was allowed to drip dry to remove any excess wash buffer directly after the 

final washing steps, and was then placed on top of a clean piece of acetate film with the 

protein side up. The reagent solution (made up according to manufacturer’s 

instructions) was then pipetted on top of the membrane and the membrane incubated for 

five minutes at room temperature. To prevent high background from the reagent itself, 

any excess reagent solution was allowed to drip off the membrane by holding it gently 

with forceps and touching a corner against clean tissue paper. The membrane was then 

placed onto a fresh piece of acetate followed by a second acetate piece on top of the 

membrane and all three enclosed within the X–ray cassette. An X-ray film was then 

exposed to the membrane. After 15 minutes to 1 hour (depending on the intensity of the 

signal) the X–ray film was developed. Developer and fixer solution (Kodak) were 

diluted 1:5 in dH2O according to manufacturer’s instruction. All steps were carried out 

in a dark room using a red safety light. The X–ray film was placed in the developer 

solution and gently agitated until a signal could be seen (usually 1-2 min), then it was 

rinsed in water before being placed into fixer solution for approximately 3 min. The 

developed X-ray film was rinsed in water and then allowed to dry. 
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2.10.3 Detection of 14-3-3 with sheep-anti-spinach 14-3-3 antibody 

A similar protocol was used for detection of 14-3-3 as for alpha amylase (2.10.1). The 

primary antibody, sheep-anti-spinach 14-3-3, was used in a 1:5000 dilution. The 

secondary antibody, anti-sheep-IgG coupled to alkaline phosphatase, was used in a 1:10 

000 dilution. 

 

2.10.4 Colorimetric detection 

The membrane was developed by adding western detection buffer (40 µl nitroblue 

tetrazolium salt (NBT) and 40 µl 5-bromo-4-chloro-3-indolyl phosphate (BCIP) in 10 

ml 0.1 M Tris-HCl at pH 9.5, 0.1 M NaCl) and incubating in the dark. NBT solution 

contained 75 mg/ml NBT in 70% (v/v) dimethylformamide. BCIP solution contained 50 

mg/ml BCIP in 100% (v/v) dimethyl formamide. The reaction was stopped by rinsing in 

water followed by air drying of the blot.  
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3.1 Physiological tests 

Initially, the physiological measurements water loss rate (WLR) and relative water 

content (RWC) were used to quantify the drought tolerance of the two barley varieties 

Golden Promise and Basrah used in the study. The stomatal conductance was also 

measured. WLR is a measure of how fast the leaf looses water after initiation of 

drought. The better the leaf holds on to the water, the more drought tolerant the plant is. 

RWC is an appropriate estimate of plant water status in terms of cellular hydration 

under possible effect of both leaf water potential and osmotic adjustment. The method 

estimates how much water the leaf holds at the time of the measurement, when 

comparing to how much water it can hold at full turgidity, and will measure the water 

deficit in the leaf. The stomatal conductance measures the rate of passage of gases such 

as carbon dioxide (CO2) or water vapour through the stomata of a leaf, and is a function 

of the density, size, and degree of opening, of stomata. 
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3.1.1 Relative water content 

The RWC of Golden Promise and Basrah under control and drought conditions was 

determined. Fully hydrated tissues have by definition a RWC of 100%; under the 

control growth conditions leaves of both Golden Promise and Basrah had a RWC of 

around 80%. After one week of withholding water, the Golden Promise leaves had a 

RWC of around 60% but Basrah leaves had a RWC of 75% (Fig. 10), and this 

difference was statistically significant (T test, p = 0.000238). 

 

 

 

 

 

 

Figure 10: Relative water content of barley leaves before and after 7 

days drought. 

The RWC (%) was measured in the leaves of two varieties; Golden 

Promise (GP) and Basrah (B), in control plants (Bcontrol and 

GPcontrol) and plants exposed to drought (GPdrought and Bdrought). 

Bars indicate standard error of the mean. The two bars marked with * 

differ to each other at p= 0.000238 (T-test). 
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Similarly, the RWC of roots was determined before and after drought. Both 

varieties had a RWC of around 90% under control conditions, and after one week 

of drought, Golden Promise roots had a RWC of 18% whereas Basrah roots had 

a RWC of 25% (Fig. 11), and this difference was statistically significant (T test, 

p = 0.0027).  

 

 

 

 

Figure 11: Relative water content of barley roots before and after 7 

days drought. 

The RWC (%) was measured in the roots of two varieties; Golden 

Promise (GP) and Basrah (B), in control plants (Bcontrol and 

GPcontrol) and plants exposed to drought (GPdrought and Bdrought). 

Bars indicate standard error of the mean. The bars marked with * differ 

from each other at p= 0.00027 (T-test). 
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3.1.2 Water loss rate 

The water loss rate of isolated leaves was measured (Fig. 12). The data showed that the 

total WLR was significantly different (T test, p= 0.014) between the two varieties, with 

the Basrah variety loosing water at about half the rate of Golden Promise. One 

important factor that regulates water loss is stomatal conductance, which therefore was 

investigated further. 

 

 

 

 

 

Figure 12: Water loss rate over six hours from 

excised leaves of barley varieties Basrah and Golden 

Promise. 

Bars indicate standard error of the mean. Means differed 

significantly at p=0.014 (T test). 
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3.1.3 Stomatal conductanse and density 

Stomatal conductance is a function of stomatal density and guard cell aperture, so in 

order to look further into the differences in WLR the distribution and number of stomata 

on leaves from both varieties was studied. However, stomatal density (number per mm2 

± standard deviation) did not differ significantly between Golden Promise (46.3 ± 8.4) 

and Basrah (43.2 ± 7.4). The measurements of the stomatal conductance did not reveal a 

significant difference between the two varieties over a 12 day period of drought (Fig. 

13), indicative of no major difference in stomatal aperture.  

 

 

 

 

 

 

 

Figure 13: Stomatal conductance of varieties Basrah 

and Golden Promise over 12 days of drought. 

Basrah (square symbol) and Golden Promise (round 

symbol). Bars indicate standard error of the mean.  

 

3.2 Optimisation of protein extraction protocols 

Initially, a significant time was allocated towards optimising protocols for extraction of 

leaf and root proteins, in order to obtain samples that would give good and clear gels 

enabling unambiguous analysis of the gel images. After trying out numerous different 

protein extraction protocols and making several changes, it was possible to generate 

good and stable gel images through 1D electrophoresis (Figs. 14 & 15) as well as 2D 

electrophoresis (Figs. 16 & 17). 
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Figure 14: Coomassie blue stained SDS-PAGE gel of leaf proteins. 

The proteins were extracted during optimisation of extraction protocols. The analysed 

leaf protein samples are extracted from the variety Basrah. Sample 1, 2, and 5 are 

extracted from control plants grown under non-drought conditions. Sample 3, 4, and 6 

are samples extracted from plants exposed to drought. A molecular weight marker 

protein ladder (Sigma; M.W. 30,000 Da – 200,000 Da) was run as a standard. 

 

 

 

 

 

 

 

 
Figure 15: Coomassie blue stained SDS-PAGE gel of root proteins. 

The Proteins were extracted during optimisation of extraction protocols. The analysed 

root protein samples are all extracted from the variety Golden Promise grown under 

non-drought conditions. The samples are loaded in different concentrations to find the 

optimal amount of protein to load in each lane. A molecular weight marker protein 

ladder (Sigma; M.W. 30,000 Da – 200,000 Da) was run as a standard. 

1       2       3       4      5     6              M 

  1     2     3    4     5     6    7     8    9     M 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Figure 16: Coomassie blue stained 2D electrophoresis gel image of leaf proteins. 

The leaf protein sample used, extracted during the process of optimising extraction 

protocols, is from the variety Basrah, grown under non-drought conditions. pH range 

between 3-11, 24 cm 10% acrylamide gel. 

 
Figure 17: Coomassie blue stained 2D electrophoresis gel image of root proteins. 

The root protein sample used, extracted during the process of optimising extraction non-

drought conditions. pH range between 3-11, 24 cm 10% acrylamide gel. The root 

protein sample used, extracted during the process of optimising extraction protocols, is 

from the variety Basrah grown under non-drought conditions. 
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Based on the optimisation of protein extraction protocols and the 1D and 2D gels used to 

analyse the optimised samples, it was determined that the PBS buffer extraction method 

was the most suitable for both leaf and root protein extractions as it gave higher protein 

concentrations and better 1D and 2D gels. The Coomassie blue staining method was the 

preferred method for routine staining of the gels if protein quantification was not 

necessary as it was by far the fastest method. 

 

3.3 2D-DIGE 

To identify the proteins differentially expressed between the drought tolerant barley 

variety, Basrah, and the drought susceptible barley variety, Golden Promise, the 2D-

DIGE technique was used.  

Protein samples from stressed and unstressed barley leaves and roots of Basrah and 

Golden Promise were extracted, labled with Cy-dyes and used for the DIGE analysis. 

Six large format gels with leaf protein samples and six large format gels with root 

proteins (Table 2) were made. The experimental design ensures that each sample is 

labelled with both Cy3 and Cy5, thus avoiding labelling efficiency bias. The gels were 

then scanned, using three different wavelengths, generating three separate scans for 

each gel (Figs. 18 and 19). 
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Figure 18: 2D-DIGE electrophoretic pattern of leaf protein extracts. 

Panel A shows all three scans superimposed. Equal amounts of proteins 

from all treatments were labelled with Cy2 (blue, B), proteins extracted 

from drought-treated Golden Promise leaves were labelled with Cy3 (green, 

C) and proteins extracted from drought-treated Basrah leaves were labelled 

with Cy5 (red, D). 
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Figure 19: 2D-DIGE electrophoretic pattern of root protein extracts. 

Panel A shows all three scans superimposed. Equal amounts of proteins 

from all treatments were labelled with Cy2 (blue, B), proteins extracted 

from drought-treated Golden Promise roots were labelled with Cy3 (green, 

C) and proteins extracted from drought-treated Basrah roots were labelled 

with Cy5 (red, D). 

 

The average ratio (standardized protein abundance relative to the signal from the 

combined Cy2 standard) of the fluorescent signals from the DIGE analysis were 

analysed by ANOVA and revealed a total of 295 differentially expressed leaf protein 

spots and 323 differentially expressed root proteins over the entire set of samples. These 

sums include duplication of proteins between the experimental conditions, meaning 
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those proteins that differ between the varieties under both normal and stress conditions. 

When comparing only the unstressed control plants, there were 66 differentially 

expressed proteins in the leaves and 77 in the roots, which represent the constitutive 

varietal differences between Basrah and Golden Promise (Table 4). When comparing the 

controls with plants exposed to drought, it was found for Basrah that the leaves had 

twice as many proteins differentially expressed after drought when compared to Golden 

Promise, but for roots the numbers were very similar between the two varieties (Table 

4). 

Individual protein expression levels from this group were further tested by analysis of 

the treatment groups in pairs by T-test and those with an average ratio ≥ -1.5 or ≥+1.5 

(relative to the pooled sample tagged with Cy2), and that could be individually and 

unambiguously picked from the gel where chosen for further analysis. 101 leaf proteins 

and 123 root proteins that show a significant difference between the two varieties when 

exposed to drought were picked for analysis. 

 

Table 4. Number of differentially expressed leaf and root proteins 

between Basrah and Golden Promise using 2D-DIGE. 

Differentially expressed proteins between drought tolerant (Basrah, B) 

and a drought susceptible (Golden Promise, GP) barley variety identified 

using 2D-DIGE. Four treatment groups were included; Bcontrol, Bstress, 

GPcontrol and GPstress. The protein spots that differed in expression 

level by at least 1.5 fold were selected after ANOVA and T-tests. 

Experiment Leaf proteins Root proteins 

Bcontrol/GPcontrol 66 77 

Bdrought/GPdrought 67 53 

Bcontrol/Bdrought 111 92 

GPcontrol/GPdrought 51 101 

Total  295 323 
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After the protein spots of interest were selected based on ANOVA and further 

subdivided into smaller groups based on T-test and average ratio, each spot was 

evaluated individually. Individual evaluation can be carried out in the BVA software 

(see section 2.7.5). By selecting the spot of interest on one scan, it will automatically be 

selected on all scans, making it possible to evaluate the accuracy of the matching 

between scans and the size and location of the spot to ensure that it is relatively easy to 

pick. By evaluating each spot individually it is easier to validate the accuracy of the 

matching before the spots are selected for a pick list and further analysed by MALDI-

TOF. MALDI –TOF is a technique that subjects the picked spots to a tryptic digest, and 

determines the spectrum of peptide masses, which then can be compared in silico to a 

data base of theoretical tryptic peptide masses. 

 

3.4 MALDI-TOF MS analysis 

Initially protein extracts were labelled with CyDye fluorescent dyes (see section 2.7.3) 

and separated by 2D-DIGE. After subsequent analysis of the DIGE gel scans (see 

section 2.7.5), the protein spots that were identified as differentially expressed between 

the two cultivars Basrah and Golden Promise in relation to drought and easily 

accessible, were excised from the gels, digested with trypsin, and the tryptic peptides 

subject to MALDI-TOF MS (see section 2.8). 

 

3.4.1 Protein identification methods 

A total of 224 proteins spots (101 leaf proteins spots; 123 root proteins spots) were 

excised from 2D-DIGE gels using the EttanTM spot picker system (GE Healthcare) with 

spot coordinates from the Typhoon scans of RuBPS stained gels, or alternatively from 

2D gels loaded with 1000 µg protein and stained with Coomassie, using a manual gel 

spot picker. The protein spots were then subject to in-gel digestion with trypsin. 36% of 

the total number of differentially expressed proteins identified in the DIGE analysis 

(Table 4) were selected for tryptic digestion. The 224 spots that were selected for 

MALDI-TOF MS were chosen on account of being well resolved and visualised on the 

gel following Coomassie staining, and with the DIGE protein expression pattern 

indicating a significant change in expression that might be caused by to drought.  
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The extracted and trypsin digested peptides were then mixed with the matrix alpha-

cyano-4-hydroxycinnamic acid and spotted onto the MALDI target (see section 2.8.2), 

and subjected to MALDI-TOF MS, which generates a spectrum of peptides, an example 

of which is shown in Fig. 20, with Table 5 summarizing the peptide mass fingerprint 

(PMF) generated. 

 

 

 
Figure 20: MALDI-TOF MS peptide mass fingerprint (PMF). 

PMF for an excised protein spot from barley identified as cyclophilin A-2. The 14 peaks 

marked were identified in the database search and these tryptic peptides are shown in 

red in the protein sequence. 
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Table 5: Summary of tryptic peptides identified from Fig. 20, and the 

corresponding sequence information. 

An excised protein spot was identified as cyclophilin A-2 based on the 14 tryptic 

peptides shown in this table. The measured mass of the peptide is indicated in the table, 

as is the peptide sequence and any modifications. None of the identified peptides had 

any missed cleavages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PMF were analysed using a combination of the Ettan MALDI-TOF MS internal 

software and the two online search-engines, MS-Fit and Mascot (see section 2.8.4). 

These tools can compare the generated peptides with a theoretical list of peptide 

fragments for every protein in the public database [212].  

For the non-barley positive identifications (generally rice, Arabidopsis, or wheat) a 

BLAST search was done, in order to see if the identified protein showed high homology 
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503.4260 Mono 0 NIEK - 

529.6080 Mono 0 FVHK - 

556.6270 Mono 0 DAVPR - 

608.6230 Mono 0 FADEK - 

689.9830 Mono 0 GSSFHR - 

765.2290 Mono 0 TVENFR - 

911.5990 Mono 0 IVMELYK 1 oxidation 

926.6280 Mono 0 SGKPLHYK - 

1102.8210 Mono 0 QVVIADC(Carbamidomethyl)GQL Carbamidomethyl 

1269.0980 Mono 0 GNGTGGESIYGEK - 

1441.4520 Mono 0 VFFDMTVGGAPAGR 1 oxidation 

1615.1450 Mono 0 VIPDFMC(Carbamidomethyl)QGG
DFTK Carbamidomethyl 

1644.5230 Mono 0 HVVFGEVVEGMDVVK - 

1659.5410 Mono 0 HVVFGEVVEGMDVVK 1 oxidation 
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to a previously identified barley hypothetical proteins. A BLAST search was also done 

on all identified hypothetical proteins, in order to see if those proteins showed high 

homology to any previously identified and annotated proteins in other cereals or other 

plant species. 

 

3.5 Identified proteins 

It did not prove possible to identify all of the 224 spots analysed, but those proteins that 

were identified are shown in Tables 6 and 7. A total of 24 leaf proteins (Table 6) and 45 

root proteins (Table 7) were identified by MALDI-TOF. Because of the stringent 

criteria adopted for identification, although fewer proteins were positively identified, 

confidence can be placed in the correct identity of those that were. The identified 

proteins are highlighted on 2D-gels in Figs. 21 (leaf proteins) and 22 (root protein). 

Eight of the identified proteins are currently known only as hypothetical proteins but 

names could be assigned to the rest. Rubisco was identified from multiple spots (12 

spots) but only one representative is included in the analysis. The relative patterns of 

expression, for the identified proteins, between the different treatment groups was 

complex but could be divided into a number of different categories. The different 

expression patterns are shown in idealised reciprocal diagrams approximating the 

relative expression levels (Fig. 23), and each protein in Tables 6 and 7 has been 

assigned a pattern.  
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Table 6: Differentially expressed proteins identified by MALDI-TOF in barley leaves. The differentially expressed leaf protein spots were 

identified between a drought tolerant (Basrah, B) and a drought susceptible (Golden Promise, GP) barley variety using 2D-DIGE. The differentially 

expressed leaf protein spots were analysed by MALDI-TOF. The protein expression patterns (change in protein expression between GP and B before 

and after exposure to drought) were divided into categories as shown in Fig. 23. Also shown in the table is fold expression, the change in expression 

level of the analysed protein when compared between two treatment groups; T-test, shows the treatment groups compared when analysing 

significance of differences in protein expression; annotation, the identity of the protein as determined by Mascot; Acc #, the NCBI accession number; 

species, that relating to the accession number; Blast, the identity of proteins closely related (>80% homology) to the protein identified by MALDI-

TOF; % sequence cov/ No. of peptides, the degree of coverage and the number of matched peptides of the identified protein; E-value, the probability 

of a random match by Mascot.  

 E
xpression 

pattern 

Fold 
expression 

T
-test 

A
nnotation  

A
cc# 

Species 

B
last 

%
 

sequence 
cov/ N

o. of 
peptides 

E
-value 

1 1A 1.98 GPs/Bs Regulatory protein B-Peru-like 52077546 O. sativa Also in Zea mays and 
Sorghum 12.4/6 4.00E-02 

2 1A 1.53 GPs/Bs Retrotransposon protein 18958673 O. sativa Also in other cereals 7.2/9 1.50E-02 

3 1A 1.64 Bc/GPc Hypothetical protein 115472619 O.sativa Putative BLE2 
protein (Oryza) 13.6/15 1.70E-09 

4 1A 2.03 Bc/GPc 70 kDa heat shock protein 254211611 T. aestivum Also in H.vulgaris 8.3/9 4.20E-02 

5 1A 1.61 GPs/Bs Putative gypsy-type 
retrotransposon protein 19551095 O. sativa  13.4/10 1.20E-02 
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6 1A 1.5 Bc/GPc Rubisco large subunit-binding 
protein subunit alpha 134102 T. aestivum Also in H.vulgaris 29.8/15 2.10E-09 

7 1A 2.14 Bs/GPs Glutamine synthetase leaf isozyme 121340 H. vulgare Also in other cereal 20.3/12 5.4 E-06 

8 1B -2.32 GPs/Bs Hypothetical protein 77552351 O. sativa - 16.3/9 3.90E-02 

9 1B -1.87 GPs/Bs Guanylate kinase family protein 108707868 O. sativa Also in H.vulgaris 14.2/5 4.90E-02 

10 2A -1.56 GPc/GPs Hypothetical protein 326487308 H. vulgare 

Oxygen-evolving 
enhancer protein 1, 
chloroplastic (T. 
aestivum) 

44/10 4.4 E-06 

11 2B 1.73 GPc/GPs Cysteinyl-tRNA synthase 108706130 O. sativa Also in H.vulgaris 8.3/7 1.30E-02 

12 3A -1.54 GPs/Bs Hypothetical protein 218187115 O. sativa Also in other cereals 22.8/9 1.50E-03 

13 3A -1.52 GPs/Bs Alpha amylase 288814501 H. vulgare  16.7/8 2.60E-02 

14 3A -1.84 GPs/Bs Ribulose bisphosphate carboxylase 
large chain precursor, putative 110288945 O. sativa Also in other cereals 22.7/8 1.80E-02 

15 3A -2.1 GPs/Bs Cyclin-A2 195644654 Zea mays Also in other cereals 18.5/7 2.50E-02 

16 3A -1.61 GPs/Bs Hypothetical protein 115488340 O. sativa mRNA binding 
protein (Arabidopsis) 23.1/8 3.80E-02 

17 3B 1.89 GPs/Bs Oxygen-evolving enhancer protein 
2, chloroplastic 131394 T. aestivum Also in other cereals 45.7/8 1.3 E-04 
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18 3B 1.81 Bs/GPs SWIB/MDM2 domain containing 
protein 226506384 Zea mays Also in other cereals 24/11 2.20E-06 

19 4A -1.55 GPc/GPs Kinesin motor protein 77556073 O. sativa Also in H.vulgaris 10.9/15 6.90E-03 

20 4A -4.37 GPs/Bs Hypothetical protein 326506180 H. vulgare 
Thioredoxin 
reductase (T. 
aestivum) 

41.9/9 1.80E-05 

21 4B 1.61 GPs/Bs ATP synthase CF1 beta subunit 118430395 H. vulgare Highly conserved, 
other cereals 49.6/17 7.50E-14 

22 4B 1.56 Bs/Bc Methionine synthase 50897038 H. vulgare Also in other cereals 22.4/14 3.40E-06 

23 4B 1.74 GPc/GPs Cytochrome P450 108707973 O. sativa Also in H.vulgaris 19.7/13 1.00E-03 

24 5A 1.76 Bc/Bs 14-3-3 protein 226666 H. vulgare Also in other cereals 28.5/10 1.30E-03 
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Table 7: Differentially expressed proteins identified by MALDI-TOF in barley roots.The differentially expressed root protein spots were 

identified between a drought tolerant (Basrah, B) and a drought susceptible (Golden Promise, GP) barley variety using 2D-DIGE. The differentially 

expressed root protein spots were analysed by MALDI-TOF. The protein expression patterns (change in protein expression between GP and B before 

and after exposure to drought), were divided into categories as shown in Fig. 23. Also shown in the table is fold expression, the change in expression 

level of the analysed protein when compared between two treatment groups; T-test, shows the treatment groups compared when analysing significance 

of differences in protein expression; annotation, the identity of the protein as determined by Mascot; Acc #, the NCBI accession number; species, that 

relating to the accession number; Blast, the identity of proteins closely related (>80% homology) to the protein identified by MALDI-TOF; % 

sequence cov/ No. of peptides, the degree of coverage and the number of matched peptides of the identified protein; E-value, the probability of a 

random match by Mascot. 

 E
xpression

pattern 

Fold 
expression 

T
-test 

A
nnotation  

A
cc# 

Species 

B
L

A
ST

 

%
 sequence 

cov/ N
o. of 

peptides 

E
-value 

1 1A 1.66 GPs/Bs Hypothetical protein 212275326 Zea mays - 22/6 1.80E-04 

2 1A 1.89 GPs/Bs NADP malic enzyme 37694731 O. sativa  14.7/11 1.00E-03 

3 1A 1.97 GPc/Bc 
Translationally-controlled 
tumor protein homolog 
(TCTP) 

20140865 H. vulgare  44/9 4.20E-05 

4 1A 1.6 GPc/Bc Cyclophilin A-2 13925734 T. aestivum Highly conserved 64.9/14 5.30E-09 

5 1A 1.89 GPs/Bs Hypothetical protein 115461547 O. sativa 
DNA binding protein or 
histone deacetylase 
(Arabidopsis) 

19.6/7 3.10E-02 
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6 1B -2.43 GPs/Bs Hypothetical protein 125558307 O. sativa - 32/4 3.80E-02 

7 1B -2.01 GPs/Bs Inositol-tetrakisphosphate  
1-kinase 3 226498758 Zea mays  26.7/6 4.00E-02 

8 1B -1.74 GPs/Bs RNA polymerase beta 
chain 90403771 Lilium sp. 

Qui 
Highly conserved, in 
many species 8.6/12 3.00E-02 

9 1B -1.53 GPs/Bs RNA-directed RNA 
polymerase 6a 206598331 H. vulgare  6.8/10 9.30E-03 

10 2A -1.75 GPc/GPs Retrotransposon protein, 
Ty1-copia subclass 110289113 O. sativa  14.5/9 1.90E-03 

11 2A -1.89 GPc/GPS Hypothetical protein  
OsJ_31415 125574688 O. sativa Glutathione transferase 

(Triticum) 42.5/6 5.20E-03 

12 2A -2.7 GPc/GPs Hypothetical protein  
OsI_13923 218193918 O. sativa Membrane protein, WD-

40 domain (Oryza) 25.8/10 4.10E-05 

13 2A -2.3 GPc/GPs Putative AdoMet Synthase 
1 68655435 H. vulgare  44.9/13 6.70E-06 

14 2A -2.12 GPc/GPs Glutamine synthethase 
isoform GS1c 71361904 T. aestivum Also in H. vulgare 15.7/7 3.90E-02 

15 2A -1.65 GPc/Bc Methionine synthase 2 
enzyme 68655500 H. vulgare  23.8/16 1.10E-05 

16 2B 2.2 GPc/GPs Hypothetical protein 125533583 O. sativa - 10.1/7 1.10E-02 
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17 2B 2.74 GPc/GPs Hypothetical protein 108705868 O. sativa HGWP repeat containing 
protein-like (Oryza) 39/4 1.90E-02 

18 2B 2.05 GPc/GPs Lipoxygenase 2 2429087 H. vulgare  20.6/16 2.70E-07 

19 2B 1.83 GPc/GPs Hypothetical protein 125550878 O. sativa - 20.7/8 6.70E-04 

20 2B 4.44 GPc/GPs Hypothetical protein 218199015 O. sativa - 16.9/17 1.80E-05 

21 2B 2.54 GPs/GPs Far-red impaired response-
like protein 50508935 O. sativa  16.2/13 2.10E-03 

22 2B 5.1 GPc/GPs Hypothetical protein 226507242 Zea mays 

Putative r40c1 protein 
(Oryza), stress 
responsive protein (Zea 
mays) 

19.5/9 3.00E-02 

23 3A -1.51 GPs/Bs Hypothetical protein 218184089 O. sativa - 13.2/6 4.40E-02 

24 3A -1.52 GPs/Bs UDP-D-glucuronate 
decarboxylase 50659026 H. vulgare  20.4/9 0.001.1e-03 

25 3A -1.55 GPs/Bs Hypothetical protein 218184929 O. sativa Putative receptor-like 
protein kinase (Oryza) 11.2/4 5.00E-02 

26 3B 2.05 GPs/Bs Hypothetical protein 195612232 Zea Mays - 12.1/9 1.70E-02 

27 3B 1.67 GPs/Bs Hypothetical protein 218190271 O. sativa DEAD/DEAH box RNA 
helicase family protein 9.9/7 4.60E-02 

28 4A -1.58 GPs/Bs Hypothetical protein 115451911 O. sativa Enolase (Zea mays) 14.2/9 2.30E-03 
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29 4A -1.69 Bc/Bs Hypothetical protein 115453201 O. sativa 
Cytochrome P450 
(Oryza, Hordeum, 
Triticum) 

16.0/10 6.10E-03 

30 4B 1.83 GPs/Bs Hypothetical protein 115477479 O. sativa 
MADS-box protein 
(Oryza, Triticum, 
Hordeum) 

13.9/5 2.00E-02 

31 4B 2.04 GPs/Bs Myb-like transcription 
factor 45736010 O. sativa  15.3/9 1.70E-03 

32 4B 1.73 GPs/Bs Glucan endo-1,3-beta-
glucosidase isoenzyme 3037080 H. vulgare  41.8/8 4.00E-05 

33 4B 1.71 GPs/Bs Root peroxidase, class III 
peroxidase 194425589 T. aestivum Also in H. vulgare 31.8/8 4.80E-03 

34 4B 1.59 GPs/Bs Ascorbate peroxidase 3688398 H. vulgare  31.2/7 9.90E-03 

35 5B -1.64 Bc/Bs ATP Synthase 51536330 O. sativa Highly conserved, in 
other cereals as well 25.5/13 1.70E-05 

36 5B 1.7 GPc/Bc Fructose-bisphosphate 
aldolase 226316443 H. vulgare  34.4/10 1.70E-05 

37 5B -1.69 Bc/Bs NBS-LRR type resistance 
protein (TsIM) 2792222 O. sativa  40.3/14 1.70E-04 

38 5B -1.56 Bc/Bs Triose-phosphate 
isomerise 2507469 H. vulgare  35.2/7 1.00E-02 
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39 6A 2.92 Bc/Bs Hypothetical protein 218185404 O. sativa 

DNA binding protein 
(Arabidopsis). BRCA1 C 
Terminus (BRCT) 
domain (Oryza) 

13.8/11 2.50E-02 

40 6A 1.8 GPs/Bs GTP binding protein Rab2 20270077 O. sativa  45.4/9 2.80E-02 

41 6A 3.66 Bc/Bs Hypothetical protein 222634891 O. sativa AAA-type ATPase-like 
protein (Arabidopsis) 14.6/6 2.90E-02 

42 6A 1.79 GPs/Bs Hypothetical protein 115456123 O. sativa isopentenyl transferase 
IPT6 (Zea mays) 27.7/9 1.50E-04 

43 6B -1.77 GPs/Bs Hypothetical protein 218196726 O. sativa Lipase class 3 family 
protein (Arabidopsis) 14.8/7 2.80E-02 

44 6B -1.56 GPs/Bs Aspartate aminotransferase 20601 Panicum 
millaceum Also in Oryza 12.0/5 2.00E-03 

45 6B -1.54 GPs/Bs Catalase 1705628 T. aestivum Also in H. vulgare 12.4/8 3.10E-02 
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Figure 21: Protein expression pattern in the leaves of the varieties 

Basrah and Golden Promise, when grown under control conditions 

and after exposure to drought. 

The 2D-gel shows the internal standard used in the experiment (see 

section 2.7.3), thus all proteins are represented. The 24 highlighted leaf 

proteins were identified as differentially expressed between the drought 

susceptible Golden Promise and the drought tolerant Basrah after the 

plants had been exposed to drought. Leaf proteins were extracted after 7 

days of drought, separated by 2D DIGE, and differentially expressed 

proteins were analysed by MALDI-TOF where 24 of the leaf proteins 

were identified (See Table 6 for further information on the identified 

proteins). 
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Figure 22: Protein expression pattern in the roots of the varieties Basrah 

and Golden Promise, when grown under control conditions and after 

exposure to drought. 

The 2D-gel shows the internal standard used in the experiment (see section 

2.7.3). The 45 highlighted root proteins were identified as differentially 

expressed between the drought susceptible Golden Promise and the drought 

tolerant Basrah after the plants had been exposed to drought. Root proteins 

were extracted after 7 days of drought, separated by 2D DIGE, and 

differentially expressed proteins were analysed by MALDI-TOF where 45 of 

the root proteins were identified (See Table 7 for further information on the 

identified proteins). 
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Categories 1A (Fig. 23) (12 proteins) and 1B (6 proteins) indicate constitutive varietal 

differences between Basrah and Golden Promise, irrespective of drought conditions. 

The 1B category shows those proteins constitutively up-regulated in Golden Promise as 

compared to Basrah. In contrast the 1A category show those proteins constitutively up-

regulated in Basrah as compared to Golden Promise. Category 1A include the following 

leaf proteins: regulatory protein B-Peru-like, retrotransposon protein, 70 kDa heat shock 

protein, putative gypsy-type retrotransposon protein, rubisco large subunit-binding 

protein subunit alpha, glutamine synthetase leaf isozyme, and putative BLE2 protein. 

The following root proteins were included in category 1A: NADP malic enzyme, 

translationally-controlled tumor protein homolog (TCTP), cyclophilin A-2, DNA 

binding protein, and one hypothetical proteins. In category 1B there are two leaf 

proteins (guanylate kinase family protein and one hypothetical protein) and four root 

proteins (inositol-tetrakisphosphate 1-kinase 3, RNA polymerase beta chain, RNA-

directed RNA polymerase 6a and one hypothetical protein). 

Categories 2A (Fig. 23) (7 proteins) show proteins down-regulated in Golden Promise 

after exposure to drought and constant low expression levels in Basrah irrespective of 

drought. Categories 2B (8 proteins) show proteins enhanced after stress in Golden 

Promise and constitutively elevated in Basrah. In category 2A there is one leaf protein 

(oxygen-evolving enhancer protein 1, chloroplastic) and the following root proteins: 

retrotransposon protein Ty1-copia subclass, putative AdoMet Synthase 1, glutamine 

synthethase isoform GS1c, methionine synthase 2 enzyme, glutathione transferase, and 

membrane protein, WD40 domain. Category 2B contains one leaf protein (cysteinyl-

tRNA synthase) and the following seven root proteins: lipoxygenase 2, far-red impaired 

response-like protein, HGWP repeat containing protein-like, putative r40c1 protein, and 

three hypothetical proteins. 

Categories 3A (Fig. 23) (8 proteins) show proteins down-regulated in Basrah after 

exposure to drought and elevated expression levels in Golden Promise irrespective of 

drought. Categories 3B (4 proteins) show proteins enhanced after stress in Basrah and 

constitutively low expression levels in Golden Promise. Category 3A contains the 

following leaf proteins: alpha amylase, ribulose bisphosphate carboxylase large chain 

precursor, cyclin-A2, mRNA binding protein and one hypothetical protein. Three root 

proteins were included in category 3A: UDP-D-glucuronate decarboxylase, putative 

receptor-like protein kinase, and one hypothetical protein. Category 3B contains two 
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leaf proteins (oxygen-evolving enhancer protein 2, chloroplastic, and SWIB/MDM2 

domain containing protein) and two root proteins (DEAD/DEAH box RNA helicase 

family protein and one hypothetical). 

Categories 4A (Fig. 23) (4 proteins) show a down regulation in Golden Promise and in 

Basrah after exposure to drought, with stressed Golden Promise and unstressed Basrah 

approximately at the same expression level. Categories 4B (8 proteins) show an up-

regulation in Golden Promise and in Basrah after exposure to drought, again with 

stressed Golden Promise and unstressed Basrah approximately at the same expression 

level. Category 4A contains two leaf proteins (kinesin motor protein and thioredoxin 

reductase) and two root proteins (enolase and cytochrome P450). The following three 

leaf proteins are included in category 4B: ATP synthase CF1 beta subunit, methionine 

synthase, cytochrome P450. Five root proteins are included in category 4B: Myb-like 

transcription factor, glucan endo-1,3-beta-glucosidase isoenzyme , root peroxidase class 

III peroxidase , ascorbate peroxidase and a MADS-box protein.  

Category 5A (Fig. 23) (1 protein, identified as 14-3-3) shows enhanced levels in 

unstressed and stressed Golden Promise, and stressed Basrah, but reduced levels in 

unstressed Basrah. The 5B class (4 proteins) shows the opposite pattern, low levels in 

unstressed and stressed Golden Promise and stressed Basrah, and higher levels in 

unstressed Basrah. Category 5A only contains one protein; the leaf protein 14-3-3, and 

no root proteins were identified showing this expression pattern. Four root proteins are 

included in category 5B: ATP Synthase, fructose-bisphosphate aldolase, NBS-LRR type 

resistance protein (TsIM), and Triose-phosphate isomerise. None of the identified leaf 

proteins showed the same protein pattern as in 5B.  

Category 6A (Fig. 23) (4 proteins) shows low levels in unstressed plants and enhanced 

levels after exposure to drought, with highest expression levels in Basrah after exposure 

to drought when comparing to stressed Golden promise. The 6B pattern (3 proteins) 

shows enhanced levels only in stressed Golden Promise. Four root proteins are included 

in category 6A: GTP binding protein Rab2, DNA binding protein, AAA-type ATPase-

like protein and isopentenyl transferase IPT6. Three root proteins are included in 

category 6B: aspartate aminotransferase, catalase and lipase. 
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Figure 23. Schematics of idealised relative protein expression patterns used to 

categorise DIGE expression data. 

Each panel shows a reciprocal set of data points, the Y axis represents the 

standardised abundance of a particular protein, the X axis shows the four 

experimental conditions. GP, Golden Promise; B, Basrah. 
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3.6 Confirmation of protein expression by enzyme assay 

Some of the proteins identified in Tables 6 and 7 are enzymes that are easily assayed. 

For a number of these, enzyme assays were carried out on protein extracted from leaves 

and roots exposed to drought and control plants. The assays were carried out in order to 

support the obtained protein patterns from the DIGE analysis and to prove that the 

obtained data for enzyme activity was reproducible. Assays were carried out for the root 

enzymes ascorbate peroxidase (root spot 34), peroxidase (root spot 33), catalase (root 

spot 45), lipoxygenase (root spot 18) and lipase (root spot 43) (Figs. 24 to 28) and the 

leaf enzymes glutamine synthetase (leaf spot 7) and thioredoxin reductase (leaf spot 20) 

(Figs. 29 and 30). Western blots were carried out for the leaf protein 14-3-3 (leaf spot 

24) (Fig. 31) and for alpha amylase (leaf spot 13). However, the level of alpha amylase 

in the leaves is very low and the western analysis therefore only revealed traces of alpha 

amylase, which was not enough for an unambiguous analysis of the results. 
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3.6.1 Ascorbate peroxidase activity in roots 

The enzyme activity assay shows that ascorbate peroxidase (root spot 34) activity is 

enhanced by drought in both barley varieties but to a higher extend in Basrah than in 

Golden Promise (Fig. 24) (Fig. 23, category 4B). The protein expression pattern 

obtained from the activity assay is in good accordance with the protein expression 

pattern obtained from the DIGE analysis  (Fig. 24). 

 

 

Figure 24: Ascorbate peroxidase activity in 

roots. The protein expression patterns are obtained 

from the DIGE analysis (standardised abundance) 

(circles) and enzyme activity assay (columns). Bars 

indicate the standard error of the mean. Inserts in 

the figure show scans of the 2 protein samples that 

showed the greatest difference in abundance and 

that were used for the T-test (see Table 7). 
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3.6.2 Catalase activity in roots 

The catalase (root spot 45) activity assay shows that the enzyme is up-regulated in both 

varieties but to a higher extend in Golden Promise than in Basrah. The protein pattern 

obtained from the DIGE analysis show the same tendency as the expression pattern 

from the activity assay (Fig. 25) (Fig. 23, category 6B).  

 

 

 

 

 

 

Figure 25: Catalase activity in roots. 

The protein expression patterns are obtained from 

the DIGE analysis (standardised abundance) 

(circles) and enzyme activity assay (columns). Bars 

indicate the standard error of the mean. Inserts in 

the figure show scans of the 2 protein samples that 

showed the greatest difference in abundance and 

that were used for the T-test (see Table 7). 
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3.6.3 Lipoxygenase activity in roots 

The lipoxygenase (root spot 18) activity assay shows that the enzyme is constitutively 

up-regulated in Basrah and only up-regulated in Golden Promise after exposure to 

drought, which is in good accordance with the protein expression pattern obtained from 

the DIGE analysis (Fig. 26) (Fig. 23, category 2B). 

 

 

 

 

 

 

Figure 26: Lipoxygenase activity in roots. 

The protein expression patterns are obtained from 

the DIGE analysis (standardised abundance) 

(circles) and enzyme activity assay (columns). Bars 

indicate the standard error of the mean. Inserts in 

the figure show scans of the 2 protein samples that 

showed the greatest difference in abundance and 

that were used for the T-test (see Table 7). 
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3.6.4 Peroxidase activity in roots 

Expression of a class III peroxidase enzyme (root spot 33) was enhanced by stress in 

Golden Promise, but this protein was expressed at a much higher level in unstressed and 

stressed Basrah (Fig. 27) (Fig. 23, category 4B). Enzyme assays on root extracts gave 

an activity pattern that closely followed the expression pattern found in the DIGE 

analysis (Fig. 27).  

 

 

 

 

 

 

Figure 27: Peroxidase activity in roots. 

The protein expression patterns are obtained from 

the DIGE analysis (standardised abundance) 

(circles) and enzyme activity assay (columns). 

Bars indicate the standard error of the mean. 

Inserts in the figure show scans of the 2 protein 

samples that showed the greatest difference in 

abundance and that were used for the T-test (see 

Table 7). 

 



Chapter 3  Results 

 106 

3.6.5 Lipase activity in roots 

The lipase (root spot 43) activity assay shows that the lipase activity increases in both 

varieties after exposure to drought, but the activity is higher in GP both under control 

conditions and drought (Fig. 23, category 6B) (Fig. 28). The protein pattern obtained 

from the DIGE analysis show a big difference between the two varieties and between 

treatments, whereas the assay, whilst mirroring the trend, does not show big changes in 

activity. 

 

 

Figure 28: Lipase activity in roots. 

The protein expression patterns are obtained from 

the DIGE analysis (standardised abundance) (dots) 

and enzyme activity assay (columns). Bars indicate 

the standard error of the mean. Inserts in the figure 

show scans of the 2 protein samples that showed 

the greatest difference in abundance and that were 

used for the T-test (see Table 7). 
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3.6.6 Glutamine synthetase activity in leaves 

Glutamine synthase show a constitutive enhanced expression (leaf spot 7) in Basrah 

(Fig. 23, category 1A) and a constitutive low expression in Golden Promise. This is one 

of the protein patterns that are a cultivar difference that may or may not be involved in 

drought (see section 3.5 & Fig. 23). The assays for glutamine synthase activity closely 

mirrored the expression pattern seen by DIGE in leaves (Fig. 29). 

 

 

 

 

 

 

Figure 29: Glutamine synthetase activity in 

leaves. The protein expression patterns are 

obtained from the DIGE analysis (standardised 

abundance) (circles) and enzyme activity assay 

(columns). Bars indicate the standard error of the 

mean. Inserts in the figure show scans of the 2 

protein samples that showed the greatest 

difference in abundance and that were used for 

the T-test (see Table 6). 
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3.6.7 Thioredoxin reductase activity in leaves 

The expression level of thioredoxin reductase (leaf spot 20) is lower in Basrah than in 

Golden Promise, and lower still in water-stressed Basrah (Fig. 23, category 6A). A 

downward trend is apparent for thioredoxin reductase enzyme activity although the 

control Basrah and stressed Basrah leaf extracts still retain substantial activity (Fig. 30). 

 

 

 

 

 

 

 

Figure 30: Thioredoxin reductase activity in 

leaves. 

The protein expression patterns are obtained from 

the DIGE analysis (standardised abundance) 

(circles) and enzyme activity assay (columns). Bars 

indicate the standard error of the mean. Inserts in 

the figure show scans of the 2 protein samples that 

showed the greatest difference in abundance and 

that were used for the T-test (see Table 6). 
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3.7 Confirmation of protein expression by western blotting 

The presence of alpha amylase and the protein 14-3-3 was investigated by western blot 

analysis (see section 2.10.1 & 2.10.3). The western analyses were carried out in order to 

support the protein patterns obtained from the DIGE analysis and to verify the presence 

of the proteins. As mentioned earlier, the level of alpha amylase in the leaves is very 

low so no unambiguous results were obtained and no further results on alpha amylase 

are included here. 

 

3.7.1 Expression of 14-3-3 proteins in barley leaves 

In the DIGE experiments reported here, 14-3-3 protein levels were much lower in 

Basrah leaves as compared to Golden Promise, but levels rose upon drought stress (leaf 

spot 24) (Fig. 23, category 5A) (Fig. 31). Protein extracts of the varieties Golden 

Promise and Basrah, both grown under control conditions and exposed to drought were 

prepared as described in the section 2.3.3, and run on a 10% SDS-PAGE gel, 

electroblotted to a nitrocellulose membrane, and incubated with an anti-spinach 14-3-3 

antiserum. The western analysis shows that 14-3-3 is up-regulated in the leaves in 

Basrah after exposure to drought and constitutively up-regulated in the leaves of Golden 

Promise (Fig. 31C). It is not possible to detect any difference between Golden Promise-

control, Golden Promise-stress and Basrah-stress in the western analysis, which is in 

accordance with the DIGE protein profile (Fig. 31A). The 14-3-3 polyclonal antiserum 

used is non-specific and can therefore cross-reacts with three known barley isoforms, 

which may be illustrated by the presence of multiple bands. 
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Figure 31: Comparison of leaf protein expression of the protein 14-3-3 from 

Golden Promise and Basrah protein extracts. 

Expression of the protein 14-3-3 from Golden Promise (GP) and Basrah (B) protein 

extracts as determined by DIGE (standardised abundance) and by immunological 

reactivity. Leaf proteins were extracted as described in Materials and Methods (section 

2.3.3) from the two barley cultivars, both grown under control conditions and exposed to 

drought. The extracts were subject to SDS-PAGE and western blotting and the results 

obtained from the western analysis were compared to the protein pattern obtained from 

the DIGE analysis. A: standardised abundance of 14-3-3 by DIGE. Bars indicating the 

standard error of the mean. Inserts in the figure show scans of the 2 protein samples that 

showed the greatest difference in abundance and that were used for the T-test (see Table 

6). B: Coomassie blue stained SDS-PAGE of leaf protein extracts as loading standard, 

markers at 55 kDa and 35 kDa. C: Signal from bound 14-3-3 antiserum, markers at 55 

kDa and 35 kDa. 
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4.1 Discussion 

The findings in this thesis on the changes to the barley proteome after exposure to 

drought are discussed in this chapter. Specifically, the leaf and root proteins identified 

as being differentially expressed between Basrah and Golden Promise, and thought to 

confer stress tolerance, are discussed in relation to drought and in relation to findings in 

previous studies analysing drought tolerance (or abiotic stress tolerance) in cereals or 

other crop plants. Also discussed are the methods and materials used in order to obtain 

the results presented in this thesis. 

 

4.2 Plant material 

Two barley varieties were selected for this study, Golden Promise and Basrah. Golden 

Promise was produced by ϒ-ray irradiation of barley seeds from the variety Maythorpe 

and was selected by the breeders because of its short, stiff straw, and its yield and 

malting qualities [213]. Furthermore, Golden Promise has been the chosen barley 

variety used for genetic transformation because of its high regeneration rate [214]. The 

commercial use of Golden Promise in agriculture was surpassed in recent times by other 

barley cultivars because Golden Promise is susceptible to several fungal pathogens 

[215]. The variety Basrah was selected based on the assumption that it is relatively 

drought tolerant. Different varieties within a species will have evolved a range of 

different mechanisms in order to deal with the stress of the environment they evolved 

in. Barley evolved in the Fertile Crescent, with an arid environment (see section 1.3), 

and therefore shows traits specifically evolved to cope with drought [1]. With this in 

mind it was assumed that traits conferring drought tolerance would be preserved in the 

barley variety Basrah, which is grown in Iraq. This assumption was made, based on the 

differences in growing seasons and climate between Edinburgh and Basrah. In Basrah, 

barley is planted late October early November, and harvested in April, and in 

Edinburgh, barley is planted in March and harvested around August/September. During 

the growing season the average level of precipitation is 26 mm per month in Basrah 

(http://www.bbc.co.uk/weather/6751115) as compared to 57 mm per month in 

Edinburgh (http://www.bbc.co.uk/weather/2650225), and the average temperature 

during the growing season is between 23°C to 25°C in Basrah 

(http://www.bbc.co.uk/weather/6751115) as compared to 8°C to 15°C in Edinburgh 
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(http://www.bbc.co.uk/weather/2650225). So in order for barley varieties to survive in 

Iraq it is necessary for the plant to possess mechanisms that enables the plant to cope 

with the high temperature and low level of precipitation. It is the proteins involved in 

these mechanisms that this study has aimed to identify. 

In the experiments carried out here, the plants intended for leaf protein extractions were 

grown in compost whereas the plants intended for root protein extractions were grown 

in perlite. The part of the project concerning leaf protein analysis (including protein 

extraction, 2D-DIGE, and MALDI-TOF analysis) was carried out first, so when 

initiating the root protein analysis, the leaf protein analysis was close to being finished. 

After initiating the root protein extractions it quickly became evident that it would not 

be possible to extract the proteins from roots grown in compost, as it was not possible to 

clean all soil particles of the roots and these particles would cause disturbances in the 

gels. Therefore, different types of growth medium were tested in order to find the best 

suited for protein extraction. Vermiculite and perlite were tested, and combinations of 

the two mixed with soil. Perlite turned out to be the best suited for growing of plants 

intended for root protein extraction. There is a possibility that soil type can influence 

the response to drought, and ideally all plants should have been grown in the same type 

of growth medium to enable comparative studies. Different types of sand has 

successfully been used as growth medium in plant studies [216] [217] and could have 

been tested in this study, and used to grow plants intended for root protein extraction as 

well as leaf protein extraction. By using the same type of growth medium for all plants 

any changes and differences in protein expression caused by the type of growth medium 

would have been minimised. However, this does not distract from the main aim of the 

project, which was to identify differentially expressed proteins between two varieties 

rather than two soil types, under drought conditions. 
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4.3 Physiological analyses 

Initially, a number of physiological measurements were carried out in order to quantify 

the drought tolerance of the two barley varieties used in the study, and to determine if 

there actually is a difference in drought tolerance between them. 

Crop plants will resist drought better if they have a high water-use efficiency. Water-use 

efficiency can be viewed as the amount of crop water used for biomass production [218] 

[219] and is calculated as the ratio of total dry mass produced (or harvestable plant parts 

if increased yield is the primary target) over the total water used [151]. A number of 

things characterise plants with a high water-use efficiency: the plants are more efficient 

in taking up water from the soil surrounding the root zone, they produce more biomass 

relative to the amount of transpired water, and the plant will be capable of directing a 

bigger part of the biomass produced to the harvest product. This means that more of the 

available water is moved through the crop and used to produce biomass of the 

harvestable plant parts, the water does not evaporate from the surface of the soil, and it 

is not left behind in the soil after harvest [218] [219].  

Another physiological aspect that plays an important part of the plants defense against 

drought is cell turgor. Turgor pressure (see section 1.3.1) is the pressure that occurs 

when the plasma membrane pushes against the cell wall due to the cytoplasm and 

vacuoles being full of water, it contributes to the rigidity and mechanical stability of 

nonlignified plant tissue, and is responsible for cell enlargement, gas exchange in the 

leaves, transport in the phloem, and transport processes across membranes. The cell 

turgor is generated by the vacuoles and the cytosol. In a mature plant cell vacuoles can 

make up as much as 90% of the intracellular volume [220]. In order to maintain the 

internal water balance of the cell, accumulation of solutes is required. This is controlled 

by the activity of H+ pumps at the vacuolar membrane, these pumps are necessary in 

order to generate the proton gradient across the membrane. This gradient allows for 

transport and accumulation of inorganic ions, organic acids, sugars, and other 

compounds, thus generating cell turgor. Turgidity is caused by osmosis, which is a flow 

of water from an area of high water potential to an area of low water potential, e.g. from 

the cell cytoplasm to the vacuole [221]. The ability to maintain cell turgor is an 

important part of the plants defense against drought. 
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4.3.1 Relative water content (RWC) 

For a number of reasons, RWC was chosen as one of the methods to quantify and 

evaluate the drought tolerance of the barley varieties. Many physiological variables, 

such as photosynthesis and respiration, leaf turgor, stomatal conductance and growth, 

affect the water status of a leaf [222]. Physiological cellular water deficit in plants and 

the water status resulting from this deficit can be analysed by measuring the RWC. 

RWC estimates how much water the leaf holds at the time of the measurement, when 

comparing to how much water it can hold at full turgidity, and will measure the water 

deficit in the leaf. In turgid and transpiring leaves the RWC is typically about 98% and 

can be as low as 40% in severely desiccated and dying leaves. At wilting point the 

RWC will typically be between 60% to 70% in most plants [223] [224]. 

The RWC was measured after one week of drought stress, and showed that Golden 

Promise had a lower (60%) RWC in the leaves than Basrah (75%) (see section 3.1.1), 

and the same trend was evident in the roots (Basrah: 25% RWC, Golden Promise: 

18%). Based on these results, it is clear that the Basrah variety is better equipped to 

retain its water content in both leaves and roots under drought conditions. This could be 

because roots of the variety Basrah are better at taking up water from the environment 

and prevent loss of water to the soil, and/or because leaves of Basrah are better able to 

prevent loss of water to the atmosphere due to thicker leaves and/or a thicker cuticle. 

Not many studies measuring the root RWC have been conducted, and no studies 

measuring both leaf and root RWC are available. Selote & Khanna-Chopra (2010) [225] 

used a drought tolerant wheat variety (cv. C306) to study the antioxidant response of 

wheat roots to drought acclimation. In order to acclimate the plants (accustomize them 

to the drought condition), they were exposed to stress cycles of increasing intensity with 

intermittent recovery periods. It was found that the root RWC was reduced to around 

60% in roots of non-acclimated plants and to 70% in acclimated plants after exposure to 

11 days of drought treatment, compared to a 25% root RWC in Basrah after 7 days of 

drought in the present study. However, the results obtained by Selote & Khanna-Chopra 

(2010) [225] are for a number of reasons not directly comparable to the results obtained 

here. Bigger pots were used to grow the plants in, there is no information on how many 

seeds they planted in each pot, and there is no information on the soil water content so it 

is not possible to see if the degree of drought corresponds to the degree of drought in 

the study presented here. Nevertheless, it is still possible to confirm that there is a 
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downward trend in root RWC after exposure to drought, and that acclimated plants 

showed a higher root RWC (70%) after exposure to drought than non-acclimated plants. 

Furthermore, the acclimated plants accumulated less ROS in both leaf and root tissue 

[225]. 

 

4.3.2 Water loss rate (WLR) 

The results from the measurement of WLR from leaves showed that the Basrah variety 

looses water at about half the rate of Golden Promise (T test, p= 0.014), indicating that 

Basrah holds on better to the water it has already taken up, which could be explained by 

Basrah having thicker leaves and/or a thicker cuticle. However, measurements of leaf 

thickness and cuticle thickness were not conducted in the present study. Another key 

factor that regulates leaf water loss is stomatal conductance, which is a function of 

stomatal density and guard cell aperture. To explore this further, the stomatal density 

and conductance was measured. 

 

4.3.3 Stomatal conductance and density 

Leaf transpiration occurs from diffusion of water vapour through the stomatal pore. The 

stomata provide a low-resistance pathway for diffusion of gases across the epidermis 

and cuticle as the stomatal pores lower the diffusional resistance for water loss from the 

leaves. Changes in the stomatal aperture plays a role in the regulation of water loss by 

the plant and is important in controlling the rate of carbon dioxide uptake, essential for 

sustained CO2 fixation during photosynthesis. In response to drought the plant will 

close the stomata and limit water loss. Thus, the productivity of plants under water-

limited conditions depends not only on the total amount of water available in the plant 

and the water use of the plant, but also on stomatal opening, as stomatal closure reduces 

the CO2 uptake, which in turn limits photosynthesis and therefore slows down 

productivity. 

However, the stomatal density (number per mm2 ± standard deviation) did not differ 

significantly between Golden Promise (46.3 ± 8.4) and Basrah (43.2 ± 7.4) and the 

measurements of the stomatal conductance did not reveal a significant difference 
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between the two varieties over a period of drought (Fig. 13), indicative of no major 

difference in stomatal aperture. 

 

4.3.4 Osmotic adjustment 

As discussed above, no significant differences between the two varieties were identified 

with respect to stomatal density and stomatal conductance. Thus the reduced rate of 

water loss from Basrah may be due to other factors such as higher levels of solutes in 

the leaf cells. Drought tolerance has been associated with the accumulation of 

metabolites, also called compatible solutes or osmoprotectants (see section 1.5.5) [226]. 

Proline [227] [228] [229], glycine betaine [230], and sugars [231] [227] [232] are 

examples of osmoprotectants, which affects osmotic adjustment and therefore play a big 

role in drought tolerance of plants. 

Osmotic adjustment is defined as the net accumulation of solutes in a cell as a result of 

decreasing water potential of the cell’s environment [233]. A fall in the osmotic 

potential is the result of this net accumulation of solutes, and this in turn will draw 

water into the cell and thereby maintain the turgor pressure [234]. During water deficit 

osmotic adjustment (accumulation of solutes in the vacuole) can maintain turgor 

pressure in both shoots and roots, which allows for the maintenance of stomatal activity 

and for the continuation of growth. Hence, these turgor dependent processes can 

continue to function at progressively lower leaf water potential [234]. 

In a study by Vajrabhaya et al. (2001) [235], the solute accumulation after exposure to 

drought in five rice lines was examined. Four of the lines were drought tolerant lines 

selected from somaclonal variants originating from RD23 regenerated seedlings in 

vitro. The lines were selected for five generations grown under drought before the 

progenies were used. Vajrabhaya et al. (2001) [235] showed that in six-week old 

drought tolerant seedlings, after five weeks of drought, there was a 4-fold increase in 

total soluble sugar content, when comparing to non-stressed plants. In the original 

drought sensitive line the increase was only 2.5-fold. Furthermore, the proline content 

was found to have increased by 9-fold to 15-fold in the four drought tolerant lines, after 

the five weeks of drought, as opposed to the original line showing only a 5-fold increase 

in proline content. It was suggested that the plant’s ability to accumulate compatible 

solutes correlates with a higher level of drought tolerance [235]. 
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Based on the information given above it is likely that the reduced rate of water loss 

from Basrah in the present study may be due to higher levels of solutes in the leaf cells. 

A higher level of compatible solutes in Basrah would result in more water being drawn 

into the cell, resulting in lower water loss when comparing to Golden Promise. 

The accumulation of compatible solutes in plants can be measured in a number of ways. 

Chen et al. (2007) [236] used high-performance liquid chromatography (HPLC) to 

determine the accumulation of compatible solutes (glycine betaine, sugars, and polyols) 

in barley in relation to salt stress. Casterline et al. (1999) [237] used gas 

chromatography (GC) to identify sugars. Various colorimetically methods have been 

developed [238] [239] [240], and enzymatic methods based on NADPH absorption and 

requiring a specific enzyme for each of the sugars have been used [241] [242]. 

It is not only the level of accumulation of compatible solutes that plays an important 

role for drought tolerance, but also the rate of transport of the solutes within the plant. 

The active transport of solutes across the cell membrane relies on a proton gradient, 

which is established by proton pumps. Three different proton pumps exist in plants, and 

together they generate the proton gradient across cell membranes. There is the P-type 

ATPase pump that pumps H+ into the extracellular space from the cytoplasm across the 

plasma membrane. The remaining two pumps acidify the vacuolar lumen and other 

intracellular compartments; those pumps are the vacuolar H+-ATPase and the vacuolar 

H+-pyrophosphatase [243]. This means that an increased accumulation of solutes in the 

vacuole is associated with not only a higher content of solutes, but also a higher level of 

expression of H+ pumps at the vacuolar membrane [220]. This was illustrated by 

Gaxiola et al. (2001) [244] in an experiment, where transgenic plants over-expressing 

the vacuolar H+-pyrophosphatase (encoded by a single gene, AVP1 [245]) showed better 

drought tolerance than wild type strains. 

Because proton pumps play a vital role in maintaining the turgor pressure of the cell by 

accumulating solutes and maintaining water in the cell, it is likely that the level of 

expression of these proton pumps is higher in Basrah than in Golden Promise, partly 

explaining the reduced rate of water loss from Basrah in the present study when 

comparing to Golden Promise. However, no proton pumps were identified in the results 

presented here. One explanation for this could be that the protein spot for a given proton 

pump fall in the same location on the 2D gel as one or more other spots, and the 

differential expression of the pump between Golden Promise and Basrah is therefore 
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masked. In order to try and overcome this, the pH range of the second dimension gel 

could be minimized from pH 3-11 to pH 5-8, in order to spread out the protein spots and 

avoid the spots migrating to exactly the same area of the gel. The isoelectric point of the 

plasma membrane H+-ATPase has been estimated to be 6.5 and the molecular weight 95 

kDa [246]. When estimating the likely area of the proton pump on the 2D gels in this 

study (Fig. 21 and 22), based on other identified proteins, it falls at the top of the gel in 

an area with multiple spots, consistent with the hypothesis that some differentially 

expressed protein spots are masked by other protein spots and therefore not possible to 

identify. The presence of proton pumps in Golden Promise and Basrah could be 

investigated further by Western blotting, which was not done in the present study. 

Another reason for not identifying any proton pumps in the present study could be that 

proton pumps are membrane proteins [247], and membrane proteins are not easily 

extracted and fractionated by 2D gels [248]. Membrane proteins can be extracted with 

good results using a method, where the proteins are first solubilized in an extraction 

buffer (containing 0.7 M sucrose, 0.5 mM Tris, 30mM HCl, 50 mM EDTA, 0.1 M KCl, 

2% (v/v) 2-mercaptoethanol, and 2 mM PMSF) followed by extraction using water 

saturated phenol, before the proteins can be precipitated from the phenol phase by 

adding ammonium acetate in methanol [248]. Extraction of membrane proteins was not 

carried out in the thesis presented here. 

 

4.4 Protein extraction 

To get high quality protein fractionation, in both 1D and 2D gels and also the 2D DIGE 

gels, it is important to have clean samples with a high concentration of protein. It can be 

difficult to extract and prepare plant protein samples for electrophoresis for a number of 

reasons. Polyphenols and proteins can together build irreversible complexes, the protein 

concentrations are usually not very high in plants, polysaccharides and lipids in the 

extract can create abnormal migration patterns in the gel, the high abundance of 

Rubisco in the leaves can mask less abundant proteins when the protein extract is run on 

a gel, and when extracting root proteins, some types of growth medium are difficult to 

clean off the roots and this again will affect the quality of the sample. Because of this, a 

significant time was allocated towards improving protein extraction protocols and 

several protocols were tested and modified in order to find the most suited method for 

protein extraction in this study. 
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One of the issues addressed was the high abundance of Rubisco and rubisco proteolytic 

breakdown products, and how to minimise this effect on the gel. Des Francs et al. 

(1985) [198] proposed SDS extraction as a method to prevent degradation of proteins 

during extraction. It was shown that 23 out of 24 protein spots related to the large 

subunit of Rubisco were degradation products, and that 20 of these degradation 

products disappeared after extraction by means of heating in the presence of SDS [198]. 

This was clearly visualized on 2D gels. However, in this study, protein samples 

extracted by means of heating in the presence of SDS did not look different on 2D gels 

when comparing to 2D gels showing protein samples extracted by other methods. It was 

therefore judged that the elimination of Rubisco degradation products was not seen after 

extraction by heating in the presence of SDS and it was decided not to use the SDS 

method. 

The two other extraction methods tested were the TCA-acetone extraction method and 

the PBS buffer extraction method. The PBS buffer was chosen to be tested, as it appears 

to be the most widely used in other plant proteomic studies. The TCA-acetone method 

was chosen with the anticipation that it would be a relatively quick method, which 

would be an advantage when taking into consideration the number of protein extractions 

need for the study. However, out of the two, the PBS buffer methods showed clear 

advantages with respect to higher protein concentrations, better quality 1D and 2D gels, 

and the method was still relatively quick to perform and was therefore the preferred 

method. The quality of the gels was visually judged by looking at the reproducibility, 

the clearness of the protein spots/bands and absence of vertical and horizontal streaking 

on the 2D gels. 

 

4.5 2D Fluorescence Difference Gel Electrophoresis (2D DIGE) 

An important part of the DIGE analysis is the matching of spots between the different 

scans and gels (see section 2.7.5). An inaccurate match between two protein spots will 

indicate a difference in protein expression between two treatment groups that is not 

actually a biological difference but a technical difference. A number of functions in the 

DIA and BVA software (see section 2.7.5 for detailed description of the software) are 

designed to minimise these technical errors, as for example the selection of landmark 

spots, the orientation of the match vectors, and the individual evaluation of protein spots 

of interest (see section 2.7.5 and Figs. 8 & 9). If these matching functions are used in 



Chapter 4  Discussion 

 121 

the appropriate way the occurrence of matching errors is stated to be minimal by the 

software producers. When matching the protein spots between scans, it is not possible 

to see how many proteins are actually present in each spot, which again can be the 

source of inaccurate identification of differences in protein expression levels, as 

changes in expression of one protein will be diluted by the presence of other proteins. In 

particular it is very likely that several spots will be masked under bigger spots as for 

example Rubisco. Unfortunately there is no simple way of dealing with this problem. 

When using the CyDye DIGE Fluor minimal dyes, only 1-2% of the proteins are 

labelled (see section 1.13.2). However, the addition of a CyDye molecule to the labelled 

protein slightly increases the size by ~500 Da, which result in a small migration 

difference between labelled and unlabelled proteins. The difference is more pronounced 

for lower molecular weight proteins. To compensate for this, it is necessary to post-stain 

a gel containing CyDye labelled protein before spot picking using the Ettan spot picker. 

The post staining is necessary in order to ensure that the unlabelled proteins will be 

picked by the spot picker so there is enough protein for further analysis by Maldi-TOF. 

In these experiments the gels were post-stained with RuBPS (see section 2.6.3). 

 

4.6 Peptide Mass Fingerprinting (PMF) 

4.6.1 Protein identification methods 

The number of spots selected for tryptic digestion and further analysis represents only 

36% of the total number of differentially expressed proteins identified in the DIGE 

analysis (see section 3.4.1). The reasons for only selecting 36% of the spots were, that 

some spots were too close to the edge of the gel, on top of other protein spots, or the 

protein was not present in a high enough concentration to be visualised by post-staining 

thus impeding the excision of the spot from the gel. 

The relative patterns of expression for the identified proteins could be divided into a 

number of different categories, which are shown in idealised reciprocal diagrams 

approximating the relative expression levels (Fig. 23) (see section 3.5 for detailed 

description of the protein expression patterns). Some of the protein spots picked will be 

present in several of the different analysed groups. Thus a protein identified as being 

differentially expressed between Bcontrol and GPcontrol, might also be identified as 
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differentially expressed between Bcontrol and Bstress, and indeed also between 

GPcontrol and GPstress. This one protein will therefore count as three out of the total 

number of 618 proteins found to be differentially expressed. Moreover, some of the 

differences will be cultivar differences that might not actually be related to drought . 

The protein expression patterns shown in Fig. 23, (1A & 1B) are constitutive cultivar 

differences that may or may not be important in relation to drought tolerance. The other 

patterns shown are conditional differences of clear interest in relation to drought. 

When analysing the PMF a number of measures were implemented in order to narrow 

down the search window and make the search more efficient. From molecular weight 

markers (initially run on some of the 2D gels stained with Coomassie blue or RuBPS to 

give an indication of protein size) and by using identified proteins with known sizes, it 

was possible to select a relatively narrow search window for the molecular weight of the 

protein. A value for the PI was also estimated based on the localisation of the protein 

spot on the 2D gel, and used for a more stringent search, by narrowing down the 

number of candidates for each protein. A protein was determined as unambiguously 

identified, if the following criteria were met: the protein should be identified in two 

independent experiments, sequence coverage must be at least 10% with at least 4 

independent peptides matching, with a final expectation value of <0.05 (>95% 

confidence) by Mascot. All PMFs were initially analysed using MS-Fit 

(http://prospector.ucsf.edu/prospector/mshome.htm). The MS-Fit proteomics search-

engine does not give an E-value (Expectation value), instead a so called MOWSE score 

(weighted measure of the match between the actual and predicted spectrum) is 

generated. The MOWSE score changes with each individual search and there is no set 

value that shows significance. But a relatively high score indicates a good hit. The 

MOWSE score was considered high if there was a relatively large difference between 

the highest score and subsequent scores. If the highest score was not much larger that 

the subsequent scores the MOWSE score was not considered high, except for highly 

conserved families where several similar proteins had MOWSE scores that were 

considered high. If a relatively high MOWSE score was generated, indicating a good 

hit, the PMF was then also analysed using Mascot 

(http://www.matrixscience.com/search_form_select.html) to confirm the hit and to 

obtain the expectation value, which indicates whether or not the hit is statistically 

significant. If the criteria were met and the generated expectation value was <0.05, the 

protein was determined unambiguously identified. 
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A post-hoc re-evaluation of the fingerprint was carried out for all the identified proteins, 

in order to improve the overall sequence coverage for the individual protein. By using 

the web accessible program ‘PeptideMass’ (http://web.expasy.org/peptide_mass/) a 

theoretical trypsin cleavage of the identified protein was carried out. These theoretical 

masses were then compared to the generated PMF in order to find additional low 

intensity peaks that were not picked up initially. 

Identification of proteins in this way relies on the available sequence information in the 

databases. As barley has not yet been fully sequenced, this is a limitation when 

attempting to identify barley proteins. It has however been shown to be possible to 

identify barley proteins by comparison with the fully sequenced rice and Arabidopsis 

genomes, or other partially sequenced cereals like wheat [249].  

As the number of protein studies in plants increases, it has become clear that a single 

gene can give rise to several different protein products. This was also evident here, 

where some of the proteins occurred as multiple spots within the gel. The occurrence of 

proteins present as multiple spots are probably due to differences in post translational 

modifications (PTM), proteolytic breakdown or the expression of highly related gene 

sequences, which in turn could arise from multigene families or differential splicing of 

nascent RNA. It has been estimated that more than 200 possible forms of PTM occurs 

in nature [250]. For proteins with multiple spots, that with the highest expectation value 

and sequence coverage was chosen for reporting. When running 2D gels there is in 

addition always a possibility of artefacts being introduced into the gels. These spots, 

which can arise from contamination with proteins not originating from barley, or 

dust/dirt particles, can appear as spots on the gels; when these spots are analysed by 

MALDI-TOF, they do not produce a recognisable PMF. In this study the 2D-DIGE 

system was used, which is a system that by labelling different protein extracts with 

different fluorescent dyes permit loading of up to three samples on the same gel (see 

section 2.7), thus enabling the detection of such technical differences. Because the 2D-

DIGE system was used in this study, the technical errors are not likely to cause any 

major difficulties when analysing the gels. 
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4.7 Identified proteins 

Out of the 224 protein spots analysed by MALDI-TOF in the present study, 24 leaf 

proteins and 45 root proteins were identified, amounting to 31% of the analysed 

proteins. Castillejo et al. (2008) [251] conducted a proteomic analysis of responses to 

drought stress in sunflower, and used MALDI-TOF to identify 43% (23 out of 53 

protein spots) of the analysed protein spots. Vensel et al. (2002) [252] analysed wheat 

endosperm proteins and used MALDI-TOF to identify 30% (75 out of 250 protein 

spots) of the analysed protein spots, subsequently nano-flow LC-MS/MS techniques 

were used to identify 80 out of 100 protein spots (80%). Cui et al. (2005) [253] used 

MALDI-TOF MS and ESI/MS/MS to analyse cold stress responses in rice seedlings and 

identified 68% (41 out of 60 protein spots) of the analysed proteins. Sadiq et al. (2011) 

[254] identified 35% (31 out of 88 protein spots) of the differentially expressed proteins 

in anoxic rice coleoptiles using MALDI-TOF. Alterations induced by salt stress in the 

root proteome of barley were analysed by Witzel et al. (2009) [23] and 66% of the 

analysed protein spots (26 out of 39 protein spots) were identified. 

In other proteomic studies (examples given above) slightly higher identification rates of 

proteins using MALDI-TOF are seen in some cases, when comparing to the present 

study. In general, in the studies with high identification rates, using MALDI-TOF, a 

lower number of protein spots have been analysed (for example 53 protein spots 

analysed by Castillejo et al. (2008) [251]; 60 protein spots analysed by Cui et al. (2005) 

[253]; 39 protein spots analysed by Witzel et al. (2009) [23]). In studies with similar 

protein identification rates as the present study a larger number of proteins have been 

analysed by MALDI-TOF (250 protein spots analysed by Vensel et al. (2002) [252]; 88 

protein spots analysed by Sadiq et al. (2011) [254]), which is comparable to the present 

study where 224 protein spots were analysed. Other identification methods, as for 

example LC-MS/MS and ESI/MS/MS, are more sensitive and give higher protein 

identification rates [252] [253]. In the present study 69 proteins were identified and it is 

likely that more proteins could have been identified if more time had been allocated to 

the MALDI-TOF process. In total 45 root proteins and 24 leaf proteins were identified. 

Many of the 69 proteins identified in the present study have previously been associated 

with drought tolerance. Some of these proteins will be discussed in the following 

section, within the protein profile categories they were placed after identification. See 

section 3.5 for detailed description of the protein expression patterns. 
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Categories 1A (Fig. 23) (12 proteins) and 1B (6 proteins) indicate constitutive varietal 

differences between Basrah and Golden Promise, irrespective of drought conditions. 

Category 1A proteins are those that are constitutively up-regulated in Basrah as 

compared to Golden Promise and includes a number of proteins associated with 

protection against abiotic stress. For example the 70 kDA heatshock protein (HSP70) 

(identified in the leaves), which is a molecular chaperone that plays an essential part in 

the protection against stress by helping to stabilise and repair the proteins that are 

damaged during stress. HSP70 proteins are present in the cytosol, the chloroplast, in 

mitochondria, and in the endoplasmic reticulum. The activity of HSP70 is modulated by 

binding and hydrolysis of ATP, and they prevent aggregation, assist in refolding of 

proteins, they take part in protein import and translocation, and they facilitate 

degradation of damaged proteins by directing them to the lysosomes or proteasomes 

[255] [256]. The main role of the HSP70 family is in protein folding during translation 

[257]. The constitutive high expression in Basrah might be an adaptation to growing in 

a hot, dry climate, which would partly explain the higher drought tolerance of this 

variety. Other proteins identified in category 1A and associated with protection against 

abiotic stress are rubisco large subunit binding protein (also a molecular chaperone) 

(identified in the leaves) [258], and cyclophilin A (which aids in protein folding) 

(identified in the roots) [259]. When plants are exposed to abiotic or biotic stress, the 

protein conformation may be changed and the proteins no longer function properly. It is 

therefore necessary for the plant to be able to restore normal protein conformation and 

thereby cellular homeostasis, and HSPs and cyclophilins have been proposed to be vital 

in the folding process [260] [257]. 

The 1B category are those proteins constitutively up-regulated in Golden Promise as 

compared to Basrah and include inositol tetrakisphosphate kinase, an enzyme involved 

in the pathway leading to phytic acid [261] and RNA polymerase beta chain (both 

identified in the roots), but the relationship to drought stress of these proteins is not 

clear, and these proteins may represent a non-stress related varietal difference. 

Categories 2A (Fig. 23) (7 proteins) and 2B (8 proteins) indicates down or up regulation 

respectively after stress in Golden Promise, but constant levels of expression in Basrah 

at those levels that are seen in the stressed Golden Promise. Thus the constitutive 

expression pattern in Basrah resembles that of stressed Golden Promise. The class 2A 

root proteins methionine synthase and S-adenosylmethionine synthase are a part of the 
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biosynthetic pathway for ethylene and polyamine biosynthesis, and have been found to 

be up-regulated in plants after cold and salt stress (for example [253, 262]. Ethylene 

promotes programmed cell death and senescence (occurring at the last developmental 

stage of any organ) and ethylene production is frequently associated with abiotic stress, 

however a previous study on drought stress in wheat found no evidence for enhanced 

ethylene production [263]. A transcription factor in sunflower (Hahb-4) has been found 

to negatively regulate genes associated with ethylene synthesis [264] [265]. Hahb-4 is 

ABA-regulated and regulated by water availability. Manavella et al. (2006) [265] 

showed that over-expression of Hahb-4 gave plants that were less sensitive to external 

ethylene and entered the senescence pathway later, there was a repressive effect on 

genes related to ethylene synthesis (e.g. ACO and SAM) and signalling (e.g. ERF2 and 

ERF5) and a strong tolerance to drought was seen. Based on the results it was proposed 

that the transcription factor Hahb-4 is related to ethylene mediated senescence and plays 

an important role in the cross-talk between ethylene and drought-stress signalling 

pathways. It was suggested that the most significant factor conferring drought tolerance 

is the inhibition of ethylene-induced senescence, allowing the plant to have active 

photosynthesis and to synthesise osmoprotectants for a longer period [265]. A similar 

mechanism in barley, like the repressive effect the transcription factor Hahb-4 has on 

genes related to ethylene synthesis and signalling, would explain the expression patterns 

seen here in this study where methionine synthase and S-adenosylmethionine synthase 

(involved in ethylene biosynthesis) are not up-regulated in Basrah after exposure to 

drought. 

Also in category 2A is glutathione S-transferase (GST) (root protein), an enzyme 

encoded by a multigene family, which catalyses the conjunction of reduced glutathione 

to a number of different oxidised substrates. GST is involved in ROS homeostasis, 

processes involved in the control of development, redox regulation, and detoxification 

reactions. Levels of this protein have frequently been noted to rise after abiotic stress 

[266], and over-expression confers drought resistance in tobacco [267]. However the 

activity of GST (and glutathione peroxidase) has been found to drop under drought 

conditions in wheat [268], and transcripts were seen to decrease in barley leaves and 

roots after drought treatment [167]. Similarly, in the experiments reported here, levels 

decreased after drought in Golden Promise and remained low in Basrah. The reasons for 

this are not clear, but a possible explanation could be that the regulation of gene 

expression in this multigene family are controlled by multiple mechanisms, thus the 



Chapter 4  Discussion 

 127 

inducibility of the different GST genes will differ according to the type and combination 

of stress. This explanation is supported by Jiang et al. (2007) [266] who identified four 

GST genes in Arabidopsis, and showed that the changes in abundance varied between 

the four genes at different time points. A down-regulation for two of the GSTs were 

seen after six hours of NaCl treatment, but an up-regulation for all four GSTs were seen 

after 48 hours of treatment. Wagner et al. (2002) [269] showed the same tendency, with 

the Arabidopsis AtGST1 gene being up-regulated by a variety of treatments, whereas a 

selective spectrum of inducibility to different types of stress were seen for two other 

GSTs (AtGSTF2 and AtGST6). 

Proteins enhanced after stress in Golden Promise and constitutively elevated in Basrah 

(class 2B) include an r40c1 protein (root protein), which belongs to a class of ABA and 

stress-induced proteins of unknown function [270]. 

Categories 3A (Fig. 23) (8 proteins) and 3B (3 proteins) show the opposite condition; 

down or up regulation in Basrah after stress, but no change in Golden Promise. The 

photosynthetic enzyme rubisco was down-regulated in Basrah leaves, which would help 

reduce excess ROS production [33] [32]. Conversely the oxygen evolving enhancer 

(OEE) protein is up-regulated in the leaves. The OEE protein plays an important role in 

photosystem II, and it was therefore expected that the enzyme would have shown a 

down-regulation. However, the enzyme has previously also been noted to be up-

regulated by drought in rice leaves [271]. It is of relevance to note that this protein in 

green algae exhibits thioredoxin activity, and is therefore not only involved in 

photosynthesis but also cell redox regulation and ROS homeostasis [272]. If a similar 

function of the protein is seen in barley, it might explain the stress induction seen in the 

present study and in previous studies, such as Ali & Komatsu (2006) [271], as the 

enzyme might play a role in the scavenging of ROS. 

Categories 4A (Fig. 23) (4 proteins) and 4B (9 proteins) show a non-stressed expression 

level in Basrah approximately equivalent to that in stressed Golden Promise, and an 

enhanced down or up regulation in Basrah as compared to Golden Promise under 

drought stress conditions. A cytochrome p450 was down-regulated in Basrah roots. This 

large and diverse group of enzymes catalyses the oxidation of organic substrates 

including metabolic intermediates such as lipids and steroidal hormones, drugs and 

toxic chemicals. Thus, P450s are involved in the breakdown of toxic compounds in the 

cell and have frequently been found to be modulated by stress, for example [167] [273]. 
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However, the p450s are not only involved in detoxification but have many other 

metabolic roles, such as ABA catabolism [274], thus this particular enzyme might be 

involved in a pathway that is down-regulated by stress [275] [276]. This explanation is 

supported by Ramya et al. (2010) [275], who conducted an analysis of drought tolerant 

genes in rice and found a cytochrome p450 (OsCYP78A3) to be down-regulated [275]. 

The up-regulated proteins under the 4B category from the leaves include methionine 

synthase; as noted previously this enzyme is involved in ethylene biosynthesis, and is 

down-regulated in roots. However methionine synthase has previously been found to be 

up-regulated in barley leaves after salt and drought stress [277], and as well as an 

involvement in ethylene biosynthesis, this enzyme provides precursor molecules for 

glycinebetaine, which act as osmotica to supplement osmotic pressure in the plant 

[278], which may explain the upregulation. 

Category 5A (Fig. 23) (1 leaf protein, identified as 14-3-3)  shows enhanced levels in 

unstressed and stressed Golden Promise, and stressed Basrah, but reduced levels in 

unstressed Basrah. 14-3-3 protein levels were analysed further by western blotting (see 

section 4.9). The 5B class (4 proteins) shows the opposite pattern, low levels in 

unstressed and stressed Golden Promise and stressed Basrah, and higher levels in 

unstressed Basrah. This group includes several enzymes involved in sugar metabolism 

(fructose bisphosphate aldolase, trios phosphate isomerase), and the down-regulation 

upon stress is consistent with reduced photosynthetic capacity.  

Catagory 6A (Fig. 23) (4 proteins) shows low levels in unstressed plants but enhanced 

levels in stressed plants, particularly in Basrah. The GTP binding protein Rab2 has been 

reported to be up-regulated in the desiccation tolerant grass Sporobolus stapfianus. 

Rab2 is required for cell maintenance, and is thought to be involved in drought induced 

cellular repair [279], which supports the findings of an up-regulation in Basrah roots 

(tolerant) in the present study. Isopentenyl transferase IPT6 (root protein) is an enzyme 

involved in cytokinin biosynthesis. It has been reported that the tolerance to mild stress 

and the speed of recovery is increased by cytokinin [280]. Cytokinin has also been 

proposed to reduce the negative effects of drought on chlorophyll and carotenoid 

content and on the photosynthetic apparatus [281], and the recovery of stomatal 

conductance and net photosynthesis after rehydration is improved by cytokinin [281]. 

Furthermore, cytokinin stimulates the transcription of many genes induced by stress 

[282]. Havlov et al. (2008) [283] observed that the accumulation of cytokinin increased 
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in roots of tobacco plants during drought. At the same time, a decrease in the shoot 

cytokinin content coinciding with a reduction in shoot growth was seen. This led to the 

proposal that cytokinin plays an important role in the increase of the root-to-shoot ratio 

[283]. In the present study an up-regulation of isopentenyl transferase IPT6 was seen in 

Basrah roots, leading to a higher rate of cytokinin biosynthesis, which is in agreement 

with a role for this plant hormone in alleviating water stress through adaptation of roots 

to drought [284] [283]. The 6B pattern (3 root proteins) shows enhanced levels only in 

stressed Golden Promise, this group including catalase and lipase, which were analysed 

further by enzyme assays as described below. 

 

4.7.1 Transcription factors 

A number of transcriptional regulators were identified and since one transcription factor 

has the ability to regulate the expression of multiple genes in response to stress, these 

are of great importance as a strategy for understanding and manipulating drought stress 

in plants. A B-Peru-like protein was found to be constitutively up-regulated 2-fold in 

Basrah as compared to Golden Promise (category 1A). B-Peru is a Helix-Loop Helix 

protein, known to be involved in regulation of anthocyanin biosynthesis [285], and 

anthocyanins have been proposed to play a role in photoprotection of chlorophylls 

during drought stress [285]. B-Peru, being involved in the regulation of anthocyanins, 

could therefore play an important role in conferring the higher drought tolerance of 

Basrah, when comparing to Golden Promise. The SWIB/MDM2 proteins are conserved 

proteins of unknown function in plants but in animals these proteins can promote 

transcription by altering the structure of chromatin [286]. Here, a leaf SWIB/MDM2 

protein was found to be up-regulated in Basrah but down-regulated in Golden Promise 

after drought (category 3B). Potentially, SWIB is involved in the control of drought 

responsive gene expression in Basrah.  

In roots, a Myb-like protein was found to be up-regulated in stressed Basrah when 

comparing to Golden Promise (category 4B). Myb proteins are strongly associated with 

stress in plants (see section 1.12.1), and they have been found to be up-regulated by salt 

and drought stress in wheat [287] [288]. Furthermore, over-expression of Myb genes 

can enhance abiotic stress resistance, including drought tolerance, by activating the 

expression of stress-responsive genes [172] [173].  
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In a study by Seo et al. (2009) [289] it was shown that Arabidopsis MYB96 was 

expressed at high levels in the lateral roots and the expression was further elevated by 

drought and ABA. An Arabidopsis mutant over-expressing the MYB96 gene (myb96-ox) 

was shown to have enhanced drought resistance. Changes in growth of the root system 

in response to drought are important defense mechanisms. The primary root growth is 

not majorly affected by drought, whereas lateral root number and growth is reduced 

significantly [290]. Auxin promotes lateral root formation, whereas ABA represses 

lateral root formation [291]. Auxin plays a vital role in the initiation of lateral root 

growth, but under osmotic stress conditions auxin is suppressed by ABA and the lateral 

root growth is thereby significantly reduced [289]. The plant’s strategy during osmotic 

stress is to reduce growth of lateral roots, stem, and leaves and reduce metabolic 

activities in order to maintain primary root growth so deeper water can be reached. Seo 

et al. (2009) [289] showed that gene expression of the MYB96 transcription factor was 

induced, particularly in the lateral roots, by ABA and drought in the Arabidopsis 

myb96-ox mutant, and that the mutant exhibited enhanced resistance. Based on the 

results it was proposed that MYB96 is a molecular link that mediates ABA-auxin cross 

talk in response to drought signalling, thus preventing lateral root growth, conferring a 

higher level of drought tolerance [289]. 

Dai et al. (2007) [172] used a microarray approach to monitor the expression profile of 

rice genes during cold treatment. Following on from these experiments, the OsMYB3R-

2 gene was selected for further examination. An Arabidopsis transgenic plant over-

expressing OsMYB3R-2 displayed an increased tolerance towards cold, drought, and salt 

stress. Furthermore, the expression of abiotic stress related genes such as dehydration-

responsive element-binding protein 2A, COR15a, and RCI2A were over-expressed in 

the OsMYB3R-2 mutant. Based on the results it was proposed that OsMYB3R-2 acts as a 

master switch in stress tolerance, inducing stress related genes. This hypothesis is 

supported by Liu et al. (2011) [173] who identified a MYB transcription factor, 

TaPIMP1, in wheat. TaPIMP1 was up-regulated in response to fungal pathogens and in 

response to salt and drought, and the activity of SOD (involved in ROS catabolism) and 

phenylalanine ammonia-lyase (involved in antioxidation during stress) was also up-

regulated. 

The studies described above highlights the importance of the findings in the present 

study. A MYB transcription factor is shown to be up-regulated in the roots of the water-
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stressed drought tolerant barley variety, Basrah, thus this transcription factor has the 

potential to play a role in the regulation of root growth and the expression of stress-

related barley genes in response to drought stress. 

MADS-box proteins are usually associated with the flowering process and organ 

identity [292], however an analysis of MADS-box genes in rice showed that a number 

of them were up- or down-regulated by abiotic stresses, including drought [293]. 

Recently it has been demonstrated that a rice MADS-box protein may regulate the 

biosynthesis of stress mediating compounds such as jasmonic acid, ethylene, or ROS 

[292]. In the results presented here, a MADS-box protein was identified to be up-

regulated by stress in the roots of Golden Promise and to a greater extent in the roots of 

Basrah (category 4B), which is in agreement with the role of MADS-box proteins in the 

regulation of biosynthesis of stress mediating compounds. 

 

4.8 Enzyme assays 

To test the validity of the DIGE data, differentially expressed proteins that were easy to 

assay were selected. For leaves (Table 6, Fig. 21), glutamine synthase (leaf spot 7) and 

thioredoxin reductase (leaf spot 20) enzyme activities were assayed, and for roots 

(Table 7, Fig. 22) a class III peroxidase (root spot 33), catalase (root spot 45), ascorbate 

peroxidase (root spot 34), lipoxygenase (root spot 18), and lipase (root spot 43) enzyme 

activity was assayed.  

 

4.8.1 Root ascorbate peroxidase 

Plant, fungal, and bacterial peroxidases are evolutionarily related. The peroxidase 

superfamily is divided into three classes. Class I peroxidases are found in prokaryotes 

and in eukaryotes, where they are intracellular and comprises chloroplast and cytosol 

ascorbate peroxidase.  Class II peroxidases are extracellular fungal peroxidases, and 

class III comprises a variety of secretory plant peroxidases, characterized by horseradish 

peroxidase isozyme [294]. Ascorbate peroxidase (root spot 34) is an enzyme family 

belonging to the class I peroxidases and is associated with ROS scavenging by 

elimination of hydrogen peroxide as part of the plant’s defence against drought [295]. 

Mittler et al. (2002) [51] has proposed that ascorbate peroxidases are responsible for the 
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fine regulation of ROS levels in the cell, critical for the signalling functions of ROS. 

Gene expression of cytoplasmic ascorbate peroxidase (but not chloroplastic or 

mitochondrial) is enhanced by drought in spinach, and an ascorbate peroxidase has been 

shown to be up-regulated by salt stress in rice [296]. Pastori & Trippi (1992) [297] 

showed that the activity of ascorbate peroxidase is higher in drought resistant maize. In 

the present study the ascorbate peroxidase activity in the roots was enhanced by drought 

in the drought susceptible barley variety as well as the drought tolerant variety but to a 

higher extend in Basrah than in Golden Promise (Fig. 24) (Fig. 23, category 4B). So the 

findings in the present study are in accordance with the findings from previous studies 

mentioned above, and the enhanced ability to eliminate the accumulation of ROS might 

partly explain the higher drought tolerance of Basrah when comparing to Golden 

Promise. 

 

4.8.2 Root catalase 

Catalase (root spot 45) is a major ROS scavenging enzyme in plants, which is found in 

peroxisomes where it works by eliminating hydrogen peroxide [51]. Catalase activity 

has been shown to be up-regulated after drought stress [298]. Catalase plays an 

important role in ROS catabolism (see section 1.5.3 & 1.5.4) and it was therefore 

expected that the activity would be significantly higher in Basrah (the drought tolerant 

variety), particular after exposure to drought, than in Golden Promise, but this was not 

the case here. However, catalase transcripts in wheat leaves have been shown to only 

increase significantly under severe drought [69]. In the study by Luna et al. (2005) [69] 

severe drought treatment consisted of rapid desiccation to a soil water content of 15–

20% at the final harvest point and the mild drought treatment consisted of a gradual 

water deprivation for 6 days until a reduction to 40% of the original soil water content. 

The drought treatment applied in the experiments presented in this thesis resembles the 

mild drought treatment in the study by Luna et al. (2005) [69]. In the results presented 

here, the soil water content was not measured. It could have been used as an indication 

for the level of drought but it was decided to expose the plants to drought for seven days 

based on information from previous studies, see for example Demirevska et al. (2008) 

[299]. Furthermore, the lack of measurements for soil water content does not affect the 

results obtained. Catalase levels in the experiments carried out in this thesis shows up-

regulation in both varieties but to a higher extent in Golden Promise than in Basrah. 



Chapter 4  Discussion 

 133 

This could indicate that the effect of drought is more severe in Golden Promise than in 

Basrah, with Basrah being better at dealing with the exposure to drought. This might be 

explained by Basrah holding on better to the water already taken up by the plant (as 

seen in the measurements for RWC and WLR), thus resulting in a less severe drought in 

Basrah. 

As mentioned earlier (see section 1.5.3) catalase is exclusively located in the 

peroxisomes, it is one of the most efficient ROS scavenging systems [300], and is 

believed to have a role as bulk remover of H2O2 under stress [51] (see section 1.5.3), 

which again supports the findings in the present study where the catalase level is higher 

in the drought susceptible variety. 

The peroxisomes are also where high amounts of H2O2 are produced as a consequence 

of photorespiration in the chloroplasts during drought (see section 1.5.2). It is likely that 

Basrah, showing better drought tolerance in the results presented here, will produce less 

H2O2 as a consequence of lower rates of photorespiration when comparing to Golden 

Promise. The rate of photorespiration increases when the level of CO2 decreases, which 

is what happens in response to drought after ABA induced stomatal closure. As 

mentioned above, Basrah shows indications of being better at dealing with the exposure 

to drought and might be better at maintaining turgor pressure (see section 4.3), which 

allows for the maintenance of stomatal activity and for the continuation of growth 

[234]. This in turn means that photosynthetic carbon assimilation is favoured over 

photorespiratory oxygen consumption for an extended period, and less H2O2 will be 

produced. This might explain the lower catalase levels in Basrah, as catalase will not be 

needed for H2O2 scavenging in the peroxisomes. 

 

4.8.3 Root lipoxygenase 

Lipoxygenase (root spot 18) (Fig. 22) is known to be active after wounding and other 

stress responses. It catalyses the dioxygenation of polyunsaturated fatty acid and the 

enzyme initiates the conversion of the membrane lipid linolenic acid into the 

phytohormone jasmonic acid. Jasmonic acid is associated with many forms of abiotic 

stress and is enhanced in level after water stress (see section 1.6.4) [301]. 
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Lipoxygenase and a number of jasmonate-induced genes were found to be up-regulated 

by drought in barley roots and leaves [167]. The present study shows that lipoxygenase 

levels are constitutively up-regulated in Basrah roots and only up-regulated in Golden 

Promise after exposure to drought (Fig. 26). The protein expression pattern for 

lipoxygenase in Golden Promise in the results presented here show the same tendency 

as the protein expression pattern for the barley variety Hordeum vulgare L. cv. Tokak 

(used in the study by Ozturk et al. (2002) [167]). Furthermore, Tokak [167] and Golden 

Promise (present study) both show a leaf RWC of ≈60%, which indicates that the two 

varieties have the same level of drought tolerance and are both susceptible to drought, 

and not drought tolerant like Basrah. Therefore, the protein expression patter of Basra 

(present study), showing a constitutive up-regulation of lipoxygenase, might not be 

comparable to the results obtained by Ozturk et al. (2002) [167] who used a drought 

susceptible variety (Tokak).  

As mentioned above lipoxygenase initiates the conversion of the membrane lipid 

linolenic acid into the phytohormone jasmonic acid, which is involved in abiotic stress 

and show elevated levels after water stress (see section 1.6.4). Therefore it is speculated 

that the constitutive high levels of lipoxygenase in Basrah might be one of the 

contributing factors for the higher drought tolerance of this variety. 

 

4.8.4 Root peroxidase 

Class III peroxidases have a wide array of functions including regulation of ROS levels 

through breakdown of H2O2 (see section 1.5.3 & 1.5.4), and oxidation of substrates such 

as lignin [294]. Peroxidases are particularly abundant in roots, but have been shown to 

be present in all organs and most tissues [302]. The class III peroxidase enzyme plays 

an important role in ROS catabolism but is also capable of promoting the formation of 

hydrogen peroxide (H2O2), hydroxyl radicals (OH•) and superoxide radicals (O2
-) [303]. 

Whether peroxidase has a role in ROS formation or is scavenging H2O2 depends on the 

surrounding chemical environment [304]. 

The activity of peroxidase has been found to increase in water stressed wheat plants 

[298], and protein expression was enhanced in salt stressed Arabidopsis roots [266]. In 

the experiments presented here, expression of a class III peroxidase enzyme (root spot 
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33) was enhanced by stress in Golden Promise, but was expressed at a much higher 

level in Basrah under unstressed as well as stressed conditions (Fig. 27). 

Passardi et al. (2006) [305] studied the influence of peroxidases on root elongation in 

Arabidopsis, and showed that over-expression of two homologous genes encoding 

peroxidases promoted root length, whereas down regulating the expression of those two 

genes reduced root elongation. 

Dunand et al (2007) [302] studied the distribution of hydrogen peroxide (H2O2) and 

superoxide radicals (O2
-) in the roots of Arabidopsis, and their interaction with 

peroxidases in relation to root development. Based on the results Dunand et al. (2007) 

[302] proposed that H2O2 is involved in root growth restriction and root hair formation, 

and O2
- is involved in root elongation and restriction of root hair growth. Furthermore, it 

was proposed that peroxidases, due to their strong catalytic versatility in roots, play a 

major role in ROS metabolism in the roots, thus partly dictating root morphology and 

growth [302]. 

Base on the results obtained by Passardi et al. (2006) [305] and Dunand et al (2007) 

[302], it is likely that the constitutive high levels of peroxidase in Basrah in the 

experiments presented in this thesis, might be one of the contributing factors to the 

higher drought tolerance in this variety. A constitutive high expression of peroxidase 

might promote root elongation, and thereby a continuously more efficient root system in 

Basrah. The root morphology of Golden Promise and Basrah could have been analysed 

in rhizotrons, to see if there are any significant differences in root morphology between 

the two varieties. A rhizotron analysis was not conducted in this thesis. 

 

4.8.5 Root lipase 

Lipases (root spot 42) (Fig. 22) take part in the digestion of lipids and fats and are 

important during stress. Membrane integrity and functionality is highly affected by 

drought and other forms of abiotic stress so plants acquire various changes, such as 

remodelling of lipid composition, in order to adapt to stress and to survive [129]. Free 

fatty acids are released due to membranes being destroyed when the plant is exposed to 

stress. Lipases take part in the digestion of lipids and fats for the release of fatty acids, 

which acts as a substrate for jasmonic acid (JA) biosynthesis [306]. As mentioned 
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earlier, JA is involved in various developmental processes as a signalling molecule, 

such as root growth, development of pollen, and abscission and senescence, and JA is 

also involved in the response to abiotic and biotic stress. This means that lipase can play 

an important role in the plants defence against drought and other types of stress, 

because the rate of biosynthesis of JA is positively influenced by the action of lipases 

[306]. The lipase activity assay in the present study shows that the activity increases in 

both varieties after exposure to drought, but the activity is higher in Golden Promise 

than in Basrah both under control conditions and drought (Fig. 23, category 6B) (Fig. 

28). The protein pattern obtained from the DIGE analysis show a bigger difference 

between the two varieties (around 1 fold increase between Golden Promise-

control/Basrah-control and between Golden Promise-stress/Basrah-stress) and between 

treatments (around 1.5 fold between Golden Promise-control/GPstress and 1 fold 

between Basrah-control/Basrah-stress), when comparing to the activity assay (less than 

0.5 fold). The plant lipase gene family is large and diverse and different isoforms are 

involved in different stress responses [307] [306], which might explain the protein 

expression pattern seen in the experiments presented here, where the up-regulation of 

lipase is higher in Golden Promise than in Basrah. Furthermore, the presence of 

multiple lipases may explain why the overall enzyme activity does not change much, 

which is reflected in the smaller changes identified in the activity assay as compared to 

bigger changes in the DIGE analysis (Fig. 28). 

 

4.8.6 Leaf glutamine synthetase 

Glutamine synthetase (GS) plays an important role in the assimilation of inorganic 

nitrogen into organic forms providing nitrogen groups for the biosynthesis of all 

compounds in the plant containing nitrogen [308] [309] [310]. As a consequence, GS 

also plays a role in the biosynthesis of proline, which functions as a nitrogen source and 

is thought to play an important role as osmoprotector during drought and salt stress, by 

stabilizing cellular structures and scavenging of ROS (se section 1.5.3 & 1.5.4) [311] 

[312] [313]. 

In a study by Brugière et al. (1999) [314] two transgenic tobacco lines with a reduced 

expression of GS were generated by agrobacterium-mediated transformation with 

antisense cytosolic glutamine synthetase (GS1) cDNA from tobacco. The two 
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transgenic lines showed reduced levels of GS activity in the phloem, a decrease in 

proline content, and after two weeks of salt treatment an enhanced stress phenotype was 

observed in the transgenic plants when comparing to control plants. Based on the results 

Brugière et al. (1999) [314] concluded that tobacco plants with a reduction in GS 

activity are less able to tolerate salt stress. Furthermore, it was concluded that the 

content of GS in the phloem plays an important part in regulating proline production, 

which is in agreement with the function of proline as a nitrogen source and a key 

metabolite synthesized in response to drought [314]. 

The results from Brugière et al. (1999) [314] are supported by results obtained in a 

study by Hoshida et al. (2000) [315], where over-expression of GS was shown to confer 

salt stress in rice. Based on the information given above, the constitutive enhanced 

expression of glutamine synthetase (leaf spot 7) (Fig. 21) in Basrah seen in the present 

study (Fig. 23, category 1A) may play a role in the cultivar’s enhanced drought 

tolerance. 

 

4.8.7 Leaf thioredoxin reductase 

Thioredoxin reductases are represented by chloroplastic, mitochondrial, and 

cytoplasmic enzymes in plants. The protein identified by the DIGE and MALDI-TOF 

analysis here corresponds to a chloroplastic thioredoxin reductase (leaf spot 20) (Fig. 

21). Thioredoxin reductase cycles thioredoxin from an oxidized to a reduced form, 

making it re-available for ROS regulation. Thioredoxin is an antioxidant that reduces 

protein thiols and various forms of ROS using NADPH as the ultimate electron source. 

Reduced thioredoxin is critical for modulating enzyme activity by keeping proteins in a 

reduced form, in particular enzymes involved in the Calvin cycle are controlled in this 

way [72]. In the present study, the expression level of thioredoxin reductase protein is 

lower in Basrah than in Golden Promise, and lower still in water-stressed Basrah (Fig. 

30) (Fig. 23, category 6A). Since thioredoxin reductase indirectly plays an important 

role in ROS catabolism it was expected that the activity would have been up-regulated 

after exposure to drought and to be higher in Basrah than in Golden Promise. However, 

the results in this thesis suggest that Basrah is better at coping with water deficit than 

Golden Promise (as seen in the results from measurements of RWC and WLR, sections 

3.1.1 & 3.1.2), and it is therefore likely that the accumulation of ROS is delayed, when 

comparing to the drought susceptible Golden Promise. If this is the case, thioredoxin 



Chapter 4  Discussion 

 138 

reductase may not be needed to cycle thioredoxin from an oxidized to a reduced form, 

making it re-available for ROS regulation, which would explain the lower expression in 

water-stressed Basrah. 

In the experiments presented here, a downward trend is apparent for thioredoxin 

reductase enzyme activity although the control Basrah and stressed Basrah leaf extracts 

still retain substantial activity, which probably reflect the activities of mitochondrial and 

cytoplasmic forms of the enzyme in the extract (Fig. 30). 

 

4.9 Western blotting of 14-3-3 

14-3-3 proteins have also been linked with abiotic stress in plants. A multigene family 

encodes for these small regulatory proteins [316]. In rice, 14-3-3 transcripts have been 

reported to be enhanced by salinity and drought [316] [317], and over-expression of a 

14-3-3 in cotton improves tolerance to moderate drought [318]. In tobacco, there was a 

down-regulation of 14-3-3 during adaptation to salinity [319], however it is known that 

different 14-3-3 genes are induced by different stresses [320]. In the DIGE experiments 

reported here, 14-3-3 protein levels were much lower in Basrah leaves as compared to 

Golden Promise, but levels rose upon drought stress (leaf spot 24, Fig. 21) (Fig. 23, 

category 5A) (Fig. 31). Thus, the 14-3-3 protein level is constitutively expressed at high 

levels in Golden Promise, whereas the 14-3-3 protein level is drought induced in 

Basrah. The 14-3-3 polyclonal antiserum used in the present study is non-specific and 

can therefore cross-react with three known barley isoforms, which is illustrated by the 

presence of multiple bands (Fig. 31). However, it is not possible to determine which of 

the bands corresponds to the 14-3-3 isoform detected in the DIGE experiment. 

The reasons for the constitutive expression of 14-3-3 in Golden Promise and a drought 

induced expression in Basrah in the results presented here are not clear. However, a 

possible explanation could be that the induction of 14-3-3 genes differ according to the 

type and combination of stress, as multiple mechanisms are involved in control and 

regulation of gene expression in the 14-3-3 multigene family. This explanation is 

supported by Campo et al. (2012) [321] who studied the functional characterisation of 

the ZmGF14-6 gene encoding a maize 14-3-3 protein, and found that the gene is up-

regulated by fungal infection and salt treatment, but down-regulated by drought. 

Furthermore, rice plants constitutively expressing the ZmGF14-6 gene showed an 
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increased tolerance towards drought due to an increased induction of genes associated 

with drought in rice. However, this constitutive expression also led to an increased 

susceptibility to infection by fungal pathogens, and the plants suffered a penalty in the 

form of reduced growth and lower grain yield [321]. These findings by Campo et al. 

(2012) [321] support the theory that multiple mechanisms are involved in control and 

regulation of the 14-3-3 genes, and the induction of the genes will therefore differ 

according to the nature of the external stimuli the plant is exposed to. 

 

4.10 Comparisons to other proteomic analyses of drought 

In recent years a number of proteomic analyses of cereal crop plants and their tolerance 

to drought stress have been carried out, for example [322] [323] [299] [324] and [325]. 

Ford et al. (2011) [322] conducted a quantitative proteomic analysis of wheat in relation 

to drought tolerance. Three Australian bread wheat cultivars with differing ability to 

maintain grain yield during drought were used in their study; Kukuri (susceptible), 

Excalibur (tolerant) and RAC875 (tolerant). An attempt was made to mimic the natural 

field conditions by exposing the plants to cyclic drought treatment. Based on the results 

obtained, Ford et al. (2011) [322] concluded that the three cultivars all showed changes 

reflecting an increase in oxidative stress metabolism and ROS scavenging capacity 

through an increase in SOD and CAT, and a decrease in proteins involved in 

photosynthesis and the Calvin cycle reflecting ROS avoidance. These findings are 

similar to the results obtained in the present study where enzymes involved in ROS 

catabolism, such as ascorbate peroxidase, catalase, and peroxidase, are found to be up-

regulated in barley after exposure to drought, and proteins involved in sugar metabolism 

and photosynthesis, such as rubisco, fructose bisphosphate aldolase, and trios phosphate 

isomerase, are down-regulated in barley after exposure to drought. However, Ford et al. 

(2011) [322] also highlighted differences between the two tolerant varieties, with 

Excalibur lacking extensive changes in protein expression during the initial onset of the 

water stress, whereas RAC875 showed large numbers of significant changes in protein 

expression during this initial drought period. The mechanisms of drought tolerance 

between the two varieties differed, with Excalibur having a high osmotic adjustment 

potential allowing cellular functions to continue working under drought, which was 

reflected in the initial lack of changes in protein expression. RAC875 showed 
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anatomical adaptations through higher content of water-soluble carbohydrates in stem 

and leaves and thicker and more waxed leaves. These anatomical adaptations were not 

seen in protein expression changes, however, a larger number of changes in protein 

expression were initially seen due to the variety’s better capacity for cellular protein 

response and better cell detoxification. 

The results obtained by Ford et al. (2011) [322] indicates that the mechanisms identified 

in this thesis, proposed to confer drought tolerance in Basrah, might not be common to 

all drought resistant barley varieties, but the combination of mechanisms conferring the 

tolerance will be unique to Basrah. Finding the right combination of mechanisms, from 

several different drought tolerant barley varieties will be the task for the future in order 

to obtain the most tolerant plant.  

Peng et al. (2009) [323] analysed the changes in protein expression in bread wheat after 

exposure to salinity and drought, by using 2D electrophoresis and mass spectrometry. 

The somatic hybrid wheat cv. Shanrong No. 3 (SR3, salt and drought tolerant) and the 

parent bread wheat cv. Jinan 177 (JN177, stress susceptible) was used in the study. A 

total of 118 proteins (59 root proteins and 59 leaf proteins) were identified as being 

salinity/drought responsive and not cultivar specific differences. The results showed 

that the number of stress responsive proteins were close to equivalent between the two 

cultivars, some of the proteins were expressed under both drought and salinity stress, 

and some of the proteins were only stress induced in one of the cultivars. The number of 

proteins induced by salinity was higher than the number of proteins induced by drought, 

and the majority of drought-induced proteins were also induced by salt. Based on the 

results, Peng et al. (2009) [323] concluded that there are similarities as well as 

differences between salt and drought tolerance in wheat. Furthermore, it was proposed 

that the enhanced drought/salinity tolerance of SR3, when comparing to JN77, can be 

attributed to a better capability to maintain osmotic and ionic homeostasis, better 

capacity to remove toxic by-products (as for example the removal of ROS) and a faster 

and better recovery of growth [323]. 

Demirevska et al. (2008) [299] analysed the changes in drought induced leaf proteins in 

a drought tolerant and a drought susceptible wheat variety and focused on the 

coordinated response of specific proteins. Among a selection of proteins, they looked at 

HSP. One of them, a HSP70, which they found to be up-regulated in the drought 

tolerant wheat variety, was also found to be up-regulated in the drought tolerant variety 
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in the experiments presented here, and it was proposed that the HSP70 could be used as 

a marker for drought tolerance [299]. 

A common conclusion derived from the proteomic studies mentioned here is that the 

enhanced capacity for ROS scavenging is an important mechanism in relation to 

enhanced drought tolerance [323] [322]. The significance of enhanced capacity for ROS 

scavenging is supported by Hajheidari et al. (2007) [324] and Bazargani et al. (2011) 

[325]. 

Hajheidari et al. (2007) [324] highlighted the importance of the ability to control 

oxidative stress in wheat grain in response to drought. The changes in protein 

expression in wheat grain between three wheat genotypes with differing genetic 

background were analysed. It was shown that two-thirds of the 57 proteins identified in 

the grain as differentially expressed in relation to drought, were thioredoxin targets. 

Thioredoxin is know to play an important role in ROS scavenging, and is critical for 

modulating enzyme activity, particular enzymes involved in the Calvin cycle, by 

keeping the enzymes in a reduced form (4.8.7) [72]. 

Bazargani et al. (2011) [325] analysed the role of drought-induced senescence and 

oxidative stress defence in wheat, in order to determine the molecular mechanism of 

stem reserve utilisation under drought conditions. The stem proteome pattern of two 

wheat landraces was compared, N49 and N14. It was proposed that a coordinated 

expression of proteins involved in leaf senescence, oxidative stress defence, signal 

transduction, and photosynthesis enabled the cultivar N49 to remobilise its stem 

reserves more efficiently than N14. Furthermore, it was highlighted that the up-

regulation of ROS scavenging enzymes resulted in a better protection against oxidative 

stress during senescence and therefore a better protection against cell death. 

 

4.10.1 Comparisons to transcriptomic analyses of drought 

In an attempt to identify the mechanisms involved in stress tolerance in cereal crop 

plants a number of transcriptomic analyses have been carried out over the last decade. 

Rabbani et al. (2003) [326] analysed the transcriptome of rice under cold, drought, and 

salinity stress, and ABA application, by use of a cDNA microarray. A total of 73 stress 

inducible genes were identified, with 36 being induced by cold, 62 induced by drought, 
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57 induced by salinity, and 43 genes induced by ABA. Out of these genes, 15 were 

induced by all four treatments. A greater level of cross talk between pathways was 

identified for drought, ABA, and salinity than for cold and ABA or cold and salinity. 

Out of the 73 genes identified, comparative analysis between Arabidopsis and rice 

revealed that 51 of these genes already have been reported to be involved in abiotic 

stress in Arabidopsis. Based on the results, Rabbani et al. (2003) [326] concluded that a 

universal set of genes responds to abiotic stress in general, and unique sets of genes are 

activated by specific types of stress. This conclusion is supported by Peng et al. (2009) 

[323] (see section 4.10), who also showed that there are commonalities in gene 

expression between different types of abiotic stress, as well as specific gene expression. 

Ueda et al. (2006) [167] conducted a large-scale study, analysing the changes in 

transcript abundance in drought- and salt-stressed barley, by microarray hybridization 

of 1463 DNA elements derived from cDNA libraries of 6 and 10 hours drought-stressed 

plants. The results revealed that transcripts showing a significant up-regulation after 

exposure to drought were illustrate by jasmonate-responsive, metallothionein-like, LEA 

proteins, and ABA-responsive proteins, and the most drastic down-regulation was seen 

for photosynthesis-related proteins [167]. However, overall the same up-regulation as 

seen in the present study and in the results obtained by Ford et al. (2009) [322], of 

enzymes involved in ROS catabolism was not seen in the study conducted by Ueda et 

al. (2006) [167]. This might be explained by the type of drought treatment applied, 

which was a shock treatment of a maximum of 10 hours [167]. The production of ROS 

during such a short period might not be sufficient to trigger a significant change in the 

production of enzymes involved in ROS catabolism. 

Moumeni et al. (2011) [327] conducted a comparative analysis in rice, of the root 

transcriptome of two pairs of near-isogenic lines (NIL) under drought stress; each pair 

of NILs share a common genetic background but show contrasting levels of drought 

tolerance, with one line showing tolerance to drought, the other susceptibility. Two 

levels of drought treatment were used; mild and severe. The results showed that 55% of 

the transcripts (24027 out of 43494) were differentially expressed in at least two 

situations after exposure to drought, and this number correlated with level of drought; 

the more severe the drought the higher was the number of differentially expressed 

genes. Furthermore, it was found that a higher number of genes were commonly up-

regulated between the NILs (5760 after severe drought and 3846 after mild drought) 
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than the number of commonly down-regulated genes (4815 after severe drought and 

3794 after mild drought). The genes found to be up-regulated in the drought tolerant 

line were mainly involved in hormone biosynthesis, (ABA, auxin, gibberellins 

ethylene), cellular transport (pumps and secondary transporters involved in ion and 

water transport), amino acid metabolism (proline metabolism), ROS catabolism (for 

example SOD, APX, GPX), and signalling (for example LEA proteins and dehydrins). 

Genes down-regulated in the drought tolerant line were mainly found to be involved in 

photosynthesis and cell wall growth. Transcription factors were found to be both up- 

and down-regulated in the drought tolerant lines. 

The indications deduced from the studies mentioned above, proteomic studies as well as 

transcriptomic, shows that ROS catabolism is an important mechanism in relation to 

enhanced drought tolerance, which is in accordance with the findings in the thesis 

presented here. Other mechanisms are also important in conferring drought tolerance, as 

for example the down-regulation of proteins involved in sugar metabolism and 

photosynthesis (such as rubisco, fructose bisphosphate aldolase, and trios phosphate 

isomerase), a better capacity to maintain osmotic and ionic homeostasis, the 

accumulation of osmoprotectants, and the expression of proteins involved in protein 

folding, (such as HSPs and cyclophilins), and the expression of transcription factors, 

where for example the MYB transcription factor has been proposed to be of high 

significance in relation to drought tolerance. However, the most obvious common 

feature between the proteomic and transcriptomic studies is the enhanced ability for 

ROS scavenging. 

 

4.11 Concluding remarks 

In this thesis the changes in expression of barley leaf and root proteins in relation to 

drought was analysed. Two barley varieties were compared; the commercial malting 

barley variety, Golden Promise (susceptible) and Basrah, an accession grown in 

southern Iraq (tolerant). In total, 69 proteins were identified (45 root and 24 leaf 

proteins) by 2D DIGE and MALDI-TOF.  

In the recent years a number of studies have been conducted, looking into abiotic stress 

tolerance, particularly drought and salt tolerance, in cereals. The majority of studies 

were conducted on wheat, using 2D electrophoresis and MALDI-TOF/TOF (for 
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example [323] [324] [325]). Ford et al. (2011) [322] and Kamal et al. (2010) [328] also 

worked on wheat and used 2D electrophoresis. However, Kamal et al. (2010) [328] 

used MALDI-TOF for protein identification, which is not as sensitive as TOF/TOF, and 

Ford et al. (2011) [322] used iTRAQ labelling. Ford et al. (2011) [322] looked at the 

leaf proteome of wheat, Bazargani et al. (2003) [325] looked at the stem proteome of 

wheat, and Kamal et al. (2010) [328] and Hajheidari et al. (2007) [324] analysed 

protein expression in the wheat grain. Peng et al. (2009) [323] looked at the changes in 

protein expression in both leaves and roots of wheat by 2D electrophoresis, but only 

looked at a fraction of the proteome as a gradient of pH 5-8 was used. Furthermore, a 

conventional 2D analysis allows for more technical errors due to gel to gel variation 

(see section 1.13.1 & 1.13.2) than the 2D DIGE technique used in the present study. 

So when comparing to the available studies on drought tolerance in cereals, this thesis is 

unique in that it is focused on barley, examining changes in leaf proteins as well as root 

proteins, by 2D DIGE using a gradient of pH 3-11 in the second dimension. Therefore, 

this study gives a bigger and clearer picture of all the proteins involved in drought 

tolerance of barley, as changes in both leaf and root proteome in relation to drought 

were analysed, and the largest gradient available for the second dimension of the 2-D 

gel was used. The study might have been improved if the MALDI-TOF/TOF equipment 

had been available, as it is more sensitive and might have allowed for identification of a 

bigger percentage of the analysed protein spots. However, this does not impact on the 

proteins that were identified by MALDI-TOF in the results presented here. 

Golden Promise and Basrah were shown to differ physiologically in their response to 

drought, the variety from Basrah being better adapted to water stress. Individual 

expression patterns of the identified proteins could be categorised into a number of 

recognisable expression patterns. Half of the identified proteins were either 

constitutively expressed at higher levels in Basrah, or showed enhanced expression in 

Basrah after water stress (Fig. 23, patterns 1A, 2B, 3B, 4B, 6A). Most of the proteins 

that were identified had, from the literature, a clear association with drought stress, such 

as enzymes that scavenge ROS or molecular chaperones. A number of the differentially 

regulated proteins were independently characterised by enzyme assays or by western 

blotting. The majority of these assays showed similar patterns of activity or abundance 

as that determined by the original DIGE analysis and thus give greater confidence to the 

validity of the DIGE expression data. The enhanced drought tolerance of Basrah is 
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attributable to an enhanced stress response in which the regulation of ROS production 

and breakdown is a key element. Thus, enzymes involved in ROS catabolism, such as 

ascorbate peroxidase, catalase, and peroxidase, were found to be up-regulated in barley 

after exposure to drought, and proteins involved in sugar metabolism and 

photosynthesis, such as rubisco, fructose bisphosphate aldolase, and trios phosphate 

isomerase, are down-regulated in barley after exposure to drought. These findings are 

supported by a number of previous studies as described earlier [323] [324] [322] [325] 

[24]. 

In this work, a number of transcription factors were identified that might control the 

expression of those genes regulating the stress response. Of particular interest is a Myb-

like protein, which was found to be up-regulated in the roots of stressed Basrah when 

comparing to Golden Promise. Myb proteins are strongly associated with stress in 

plants (see section 1.12.1), and they have been found to be up-regulated by salt and 

drought stress in wheat [287] [288], and to enhance abiotic stress resistance, including 

drought tolerance, by activating the expression of stress-responsive genes [172] [173] 

(see section 4.7.1).  

Future work to verify the function of the identified transcription factors (particularly the 

Myb gene) could include the phenotypic and genotypic analysis of a mapping 

population between Basrah and Golden Promise, the analysis of other drought resistant 

barley accessions for commonalities in enzyme activity or the analysis of transgenic 

plants carrying allelic variants of key regulatory genes. Such work would also address 

the important question of whether enhanced stress resistance might come at the expense 

of yield or quality. 
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