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Abstract

The objective of this thesis is to investigate risk capital allocation methods in detail

for both non-life and life insurance business. In non-life insurance business loss models

are generally linear with respect to losses of business-lines. However, in life insurance

loss models are not generally a linear function of factor risks, i.e. the interest-rate

factor, mortality rate factor, etc.

In the first part of the thesis, we present the existing allocation methods and discuss

their advantages and disadvantages. In a comprehensive simulation study we examine

the allocations sensitivity to different allocation methods, different risk measures and

different risk models in a non-life insurance business. We also show the possible usage

of the Euclidean distance measure and rank correlation coefficients for the comparison

of allocation methods.

In the second part, we investigate the factor risk contribution theory and examine

its application under a life annuity business. We provide two approximations that

enable us to apply risk capital allocation methods directly to annuity values in order

to measure factor risk contributions. We examine factor risk contributions for annu-

ities with different terms to maturity and the annuities payable at different times in

future. We also analyse the factor risk contributions under the extreme scenarios for

the factor risks.
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Introduction

Financial risk management is essential for a financial institution to continue its oper-

ations safely. Any type of risk that a financial institution faces should be quantified,

reported and controlled continuously. The determination of the capital that a finan-

cial institution needs to stay solvent is of the essence. This capital, used as a buffer

against unexpected losses from risks that could be faced by the institution, is called

risk capital. The necessary amount of risk capital is required to hold by a financial

institution that keeps the possibility of solvency acceptably high. But how should we

measure risk and determine this risk capital?

Many sets of rules have been developed by insurance regulators in order to provide

a safe environment for insurance companies. The objective for regulators is to find

a methodology for measuring risk that is simple to implement and understand, and

that allows regulators to compare lines of business within a company as well as dif-

ferent companies. The current regulation for determination of regulatory capital for

insurance companies, Solvency I, has been in effect since 2002. Under the Solvency I

minimum capital requirements are calculated using the percentage of technical provi-

sions, claims or premiums. Therefore, many type of risks such as market, operational,

longevity and credit risks are not considered. Due to these shortcomings, new regu-

lation standards namely the Solvency II Project has been launched by the European

Commission and it is expected to come into effect in 2012. This project is a risk-based

approach and its main goal is to take account of missing sources of risks to improve

policyholder protection and increase the stability of the financial system. Beyond

these quantitative elements Solvency II also has rules concerning risk management,

supervisory and information disclosure issues.
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The Solvency capital requirement is the target capital level to the insurer which is

the Value at Risk at 99.5% over a one-year time horizon. The Solvency capital re-

quirement can be determined in two ways. Firstly, insurers can calculate it by using a

standard model, details of which are yet to be finalized. Secondly, they can calculate

it by using their own internal model which is approved by the regulator, see CEIOPS

(2007). In addition to these options, the insurer can also utilize a combination of

internal models and the standard model. A brief review on Solvency I and II is given

in Appendix-A.

Once the total risk capital of a company is calculated based on a chosen risk mea-

sure, risk capital allocation is looking for an answer to the question: How can the

total risk capital of a company with multiple business lines (or a portfolio which con-

sists of different sub-portfolios) be fairly allocated back to each business line (or each

sub-portfolio) within this company so that each business line could benefit from a

diversification effect. Put another way, each business line requires to hold its own risk

capital. If the allocated risk capital for each business line is less than its stand-alone

risk capital, then the diversification effect supplies a reward to each business line.

There are also many motives behind risk capital allocation. At first, by comparing

contributions of each sub-portfolio, it is often possible to answer if a sub-portfolio is

worth to keep or not. As the risk capital is defined as a risk measure of the company;

one can assess the riskiness of each component’s position by splitting this capital, and

compare one to another. The risk capital allocation provides a useful device for assess-

ment of performance of each sub-portfolio or assessment of performance of managers

which can be linked to their compensations. It can be used for portfolio optimization

by comparing the ratio of per unit contributions to per unit returns. This approach

is called optimization of the return on risk adjusted capital (RORAC)1. Last but not

least, insurers may use risk capital allocation in pricing.

Many different allocation methods exist in the literature. By considering the linearity

of the portfolio loss variable with respect to loss variables of sub-portfolios and ho-

mogeneity of the chosen risk measure, risk contributions of sub-portfolios (which add

1RORAC optimization briefly described in Appendix-B.
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up to the total portfolio risk) can be calculated. Theoretical and practical aspects

of different allocation methods have been analyzed in a number of papers, for in-

stance, Merton and Perold (1993); Tasche (1999); Overbeck (2000); Myers and Read

(2001); Denault (2001); Fischer (2003); Urban et al. (2004); Buch and Dorfleitner

(2008); Dhaene et al. (2010). The allocation method according to Merton and Per-

old (1993) is based on option pricing theory. This approach is an incremental risk

capital allocation which focus on what happens to the insolvency put option if each

lines of business are added or removed from the firm. Tasche (1999) shows that the

only method that is suitable for performance measurement is the Euler’s method. He

also defines per unit contributions of quantile risk measures. Overbeck (2000) studies

the variance-covariance allocation method. Denault (2001) provides the Shapley and

the Aumann-Shapley methods which are based on game theory. He adds that under

proper conditions the Aumann-Shapley method coincides with the Euler’s method.

Myers and Read (2001) show how option pricing methods can be used in risk capital

allocation. Fischer (2003) studies the Euler’s method where the chosen risk measure

is a downside risk measure. Albrecht (2004) provides a review of allocation methods.

Urban et al. (2004) compares different allocation methods in a scenario of a non-life

insurance portfolio. Buch and Dorfleitner (2008) are concerned with the axioms of

coherent risk measures and coherent allocation principles. They show the equivalence

of some axioms under proper conditions. Buch et al. (2009) consider the optimization

problem of a firm (multi-line) under RORAC framework. Dhaene et al. (2010) provide

different allocations methods considering an optimisation argument, that requires the

weighted sum of measures for the deviations of the business lines losses from their

respective allocated capitals be minimised.

On the other hand, factor risks are important risk drivers in the portfolios and they

need to be identified, their impact need to be quantified and be managed by risk man-

agers. Hence, contributions of factor risks to the total portfolio risk are important as

they support an understanding of the sources of risk in the portfolio. However, the

methodologies for calculating the contributions of factor risks (such as interest-rate,

mortality rate, etc) to the total portfolio risk have not been well developed. There is a

challenge around the calculation of factor risk contributions to the total portfolio risk,
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as the total portfolio risk cannot generally be written as a linear function of separate

factor risks. Recently few papers consider directly the problem of factor risk contri-

butions. Cherny and Madan (2007) describes position contributions of conditional

losses given the factor risks. Tasche (2009) investigate the application of the Euler’s

theorem for the identification of the contributions of underlying names to expected

losses of collateralized debt obligation (CDO) tranches. He also studies measurement

of the impact of systematic factors on portfolio risk. Most recently, Rosen and Saun-

ders (2010) employ the Hoeffding decomposition for the determination of the factor

risk contributions to credit risk of a portfolio.

In recent decades, life expectancy has improved throughout the world and it has been

observed that mortality is a stochastic process in which longevity improvements are

unpredictable, see Cairns et al. (2006a). It is known that these improvements have

greater effects on higher ages which directly cause annuity providers to incur losses

on their annuity business. The main problem is that pensioners are living longer

than was anticipated. Thus, annuity payments last longer than was anticipated. As

a result annuity providers have to bear these costs. Moreover, there is a considerable

uncertainty regarding the future development of life expectancy. Thus, insurer’s need

for risk management of annuity business increases. On the other hand, the regula-

tors have long been focused on the risk in financial investments, however recently,

quantification and management of the risk in pension liabilities has become more and

more important. The financial regulations of insurance companies in the EU has

been redesigning by the Solvency II project, increasing the importance of valuation

and management of pension liabilities. For these reasons, we examine factor risk con-

tributions on life annuities in this thesis.

The goal of the thesis is twofold. First, we examine risk capital allocation methodolo-

gies for linear loss models where the portfolio loss can be written as the sum of losses

of individual sub-portfolios. Put another way, the portfolio loss variable is linear with

respect to loss variables of sub-portfolios. We examine different allocation methods

in combination with different risk measures under a hypothetical non-life insurance

portfolio by considering various scenarios for the risk models. Second, we focus on
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the measurement of factor risk contributions to the portfolio loss where the portfolio

loss is a non-linear function of the factor risks. We provide two approximations for

the linearization of the non-linear loss model. Thanks to these methods we first reach

a linear loss model with respect to factor risks. Then, we apply different allocation

methods in combination with different risk measures to calculate the risk contribu-

tions of factor risks under a life annuity portfolio.

The thesis is organized as follows. In Chapter 1 we give the definitions for risk and

risk measures. We define different risk measures such as the Value at Risk, the Ex-

pected Shortfall, the standard deviation, down-side risk measures and distortion risk

measures. We discuss their properties (shortcomings, inconsistencies etc). Next we

define the concept of coherent risk measures and their properties. We conclude the

chapter by giving the estimation methods for the risk measures.

In Chapter 2 we describe how dependency structure between sub-portfolios can be

modelled with using copula methods for linear loss models. We introduce elliptical

and Archimedean copulas. We also define dependence measures: Spearmann’s rho

and Kendall’s tau in this chapter. We show how these methods can be applied in

modeling the dependency structure of portfolios.

In Chapter 3 we describe the allocation of risk capital methodology and the concept

of coherent allocation. We review different allocation methods: proportional method,

variance-covariance method, the Merton-Perold method, the Shapley method, the

Aumann-Shapley method and Euler’s method in detail by considering their pros and

cons. We also define the partial derivatives of risk measures in this chapter.

In Chapter 4 we present a comprehensive simulation study in which we examine

previously mentioned allocation methods in a hypothetical non-life insurance port-

folio where the portfolio loss can be written as the sum of losses of individual sub-

portfolios. Our hypothetical non-life insurance portfolio consists of six different sub-

portfolios (or business lines): storm, flood, earthquake, general liability, engineering

and fire. The first three sub-portfolios (catastrophic losses) are modelled indepen-
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dently whereas the latter three (general losses) are assumed to be dependent. Origi-

nally, catastrophic losses are modelled by compound-Poisson model and general losses

are modelled by log-normal model2. This simulation study is three-dimensional: we

employ four different risk models: original model, log-normal model, normal model,

non-central t model3, five different risk measures(above-mentioned) and five different

allocation methods(above-mentioned). Different risk models have same first and sec-

ond moments. Moreover, thanks to copula methods dependency structure between

sub-portfolios are preserved in different risk models. In doing so, we examine the

possible effects of different distribution’s on the allocations. We mainly investigate

the sensitivity of the results to different allocation methods, different risk measures

and different risk models. We also propose new approaches to compare allocation

methods. We employ the Euclidean distance and dependence measures: Spearman’s

rho and Kendall’s tau in order to compare differences between the Euler’s allocation

(or marginal allocation) method and other allocation methods recognizing the Euler’s

allocation method as a preferred (fair-unique) allocation method. According to our

knowledge, there is no other study in the literature consisting dealing with such a

comprehensive sensitivity analysis to compare different risk capital allocation meth-

ods.

In Chapter 5 we introduce the theory of factor risk contributions for life annuity

businesses. Foremost, we define the variance decomposition which is the mostly used

approach for risk decomposition in life insurance modelling. Then, we provide two

approximations that can be used in linearisation of the non-linear annuity model.

Firstly, we introduce the Hoeffding decomposition and factor risk contributions under

this approach. Secondly, we introduce linear approximation theory (first order Tay-

lor expansion) and define the contributions of factor risks under linear approximation.

In Chapter 6 we present the risk-neutral pricing approach. At first, we review the

no-arbitrage pricing theory, including the key concepts. Next, we introduce the term

structure of the interest-rates and we discuss zero-coupon bonds. The term structure

2These risk models are chosen based on their common usage in practice.
3For instance log-normal model means that each sub-portfolio is modelled by log-normal distri-

bution, etc.
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of the mortality rates are also introduced in this chapter. We show how mortality

contingent claims can be priced under the risk-neutral valuation approach.

In Chapter 7 we present a detailed simulation study which considers life annuities

and factor risk contributions of the interest-rate factor risk and the mortality fac-

tor risk to the future annuity values. Firstly, we examine future annuity values and

their distributions under stochastic longevity and stochastic interest-rate risk. We

apply the risk-neutral valuation approach for the pricing of the annuities. We use the

Cox-Ingersoll-Ross model (see Cox et al. (1985)) and the two-factor CBD model (see

Cairns et al. (2006a)) to model the interest-rates and mortality rates, respectively.

We investigate annuities with different terms to maturity and analyse distributions of

annuities payable at different times in future. Next we examine the theoretical results

of Chapter 5 in order to analyse the contributions of the interest-rate factor and the

mortality factor to the future annuity values. We calculate factor risk contributions

under both approximations: the Hoeffding decomposition and the Taylor expansion.

Though we focus on the Euler’s contributions of the factor risks, we also apply dif-

ferent allocation methods (stand-alone, incremental etc.) and compare the results.

Moreover, we investigate the factor risk contributions under extreme scenarios of the

factor risks. To our best knowledge, this is the first study that consider the measure-

ment of the factor risk’s contributions to the total risk of a life annuity portfolio with

the mentioned approximations.

Finally, we present our conclusions and give ideas for further research in Chapter 8.
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Chapter 1

Risk and Risk Measures

A risk can be defined as an exposure to events that can cause damage or loss. The

risk can be a portfolio of assets and/or liabilities, or a company itself. A risk measure

is a function that assigns real numbers to random variables and it tells how risky a

portfolio, a business line or a company is. We will focus on risk measures that can

be used in determination of solvency capital requirements for insurance companies.

Insurance companies must hold some capital to use when they face an unexpected

loss. This capital reserve is called risk capital. Measuring risk to find that capital is

a very important aspect of capital adequacy assessment in risk management.

Consider a set of risks X that the insurance company can be exposed to. The elements

X ∈ X are treated as random variables, representing losses at a fixed time horizon T .

Negative values of X will be considered as a loss whereas positive values of X will be

considered as gains. It is assumed that the return from risk-free investment is 1 and

all losses in X are discounted at the risk-free rate, therefore there is no discounting

factor in the following definition of a risk measure.

A risk measure, ρ, is a mapping from a set of random variables X to the real line

R, i.e.

ρ : X → R
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X 7→ ρ(X)

Alternatively risk measures can be obtained from acceptance sets. An acceptance set

A ⊆ X is a set of all ‘acceptable’ risks. This set is determined by regulators or invest-

ment managers of a company. For instance, an acceptance set could be all positions

with a profit or without a loss. For more details on acceptance sets see Artzner et al.

(1999). An unacceptable risk X can be transformed into an acceptable risk by adding

the amount of ρ(X) to the position and this amount (minimum cash) measure the

risk of the position. If X corresponds to the aggregate risk of a company then risk

capital amounts to ρ(X) and the company defaults under the condition of ρ(X) < X.

Risk measures are very similar to premium principles. A premium principle gives the

minimum amount that the insurer must charge the insured in order to proceed the

contract. Thus, premium principles are important examples of probable risk mea-

sures. Premium principles are introduced in literature by Bühlmann (1970); Gerber

(1979). Later, a set of axioms has been proposed by Goovaerts et al. (1984) in order

to define useful premium principles. Goovaerts et al. (1984) also studies different pre-

mium principles such as: expected value principle, maximum loss principle, variance

principle, standard deviation principle, semi-variance principle, exponential principle,

mean value principle, zero-utility principle, Swiss principle, Orlicz principle, Dutch

principle and Esscher principle. Many of these premium principles are out of scope of

this thesis as we focus on risk measures that can be used in determination of capital

requirements.

We will discuss the definitions and properties of different risk measures: Value at

Risk, expected shortfall, variance, standard deviation, down-side risk measures and

distortion risk measures further in this chapter. We also introduce the estimation

methods of risk measures at the end of this chapter.
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1.1 Value at Risk

Value at Risk (VaR, hereafter) was introduced by JP Morgan in 1995 as a risk man-

agement tool, see Morgan (1995). This tool was based on standard portfolio theory

using estimates of the standard deviations and correlations between the losses to dif-

ferent instruments. Intuitively, VaR measures the maximum potential loss of a given

portfolio over a prescribed holding period at a given confidence level α where α ∈
(0,1). Put in another way in 100(1-α)% of the cases the loss is smaller or equal to

VaR at confidence level α. The basic concept was nicely described in Dowd (2002):

Value at risk is a single, summary, statistical measure of possible portfolio

losses. Specifically, value at risk is a measure of losses due to ‘normal’

market movements. Losses greater than the value at risk are suffered only

with a specified small probability. Subject to the simplifying assumptions

used in its calculation, value at risk aggregates all of the risks in a portfolio

into a single number suitable for use in the boardroom, reporting to regu-

lators, or disclosure in an annual report. Once one crosses the hurdle of

using a statistical measure, the concept of value at risk is straightforward

to understand. It is simply a way to describe the magnitude of the likely

losses on the portfolio.

Mathematically, VaR can be seen as a negative α quantile of the distribution function

of X and it can be described as,

VaRα(X) = − inf{x ∈ R : P(X 6 x ) > α}. (1.1)

In the following we define properties of VaR.

1. VaR is positive homogeneous for λ ∈ R and λ > 0, i.e.

VaRα(λX) = λVaRα(X)
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2. VaR is translation-invariant, i.e. for λ ∈ R

VaRα(X + λ) = VaRα(X) − λ

3. VaR is monoton, for X1 ≥ X2 almost sure1, i.e.

VaRα(X1) ≤ VaRα(X2)

4. VaR is comonotone-additive2, i.e. if X1, X2 are comonotone then

VaRα(X1 + X2) = VaRα(X1) + VaRα(X2)

The rapid rise of VaR was due to its certain characteristics:

• VaR provides a common measure of risk across different positions and risk fac-

tors.

• VaR enables us to aggregate the risks of positions taking account of the ways in

which risk factors correlate with each other.

• VaR is probabilistic and gives useful information on the probabilities associated

with specified loss amounts.

• VaR is expressed in simple and understandable way, namely, ‘lost money’

see, Dowd and Blake (2006).

Dominance of VaR in the market became inevitable and finally, in 1996, the Basel

Committee approved the use of VaR for calculating capital requirements for banks,

see on Banking Supervision (1996). Therefore VaR has become the most widely used

risk measure.

VaR also has its drawbacks as a risk measure. Although, VaR is capable of measuring

the maximum potential loss, it fails to address how large this loss can be, if the α

1P(X1 ≥ X2) = 1.
2Comonotonicity mainly refers to the perfect positive dependence between X1 and X2, proof of

comonotone additivity of VaR can be found in McNeil et al. (2005), page 250.
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probability events occur. Hence, VaR can not consider tail losses beyond the quantile,

therefore, it is risky to rely VaR completely.

The most important problem of VaR is, it fails to satisfy sub-additivity, thus can

penalize the diversification in portfolios instead of rewarding it, see Artzner et al.

(1997). A risk measure ρ is called sub-additive if

ρ(X1 + X2) ≤ ρ(X1) + ρ(X2). (1.2)

Intuitively, under sub-additive measures risk of sum of the positions X1 and X2 is

less than or equal to the sum of stand-alone risks. Why this property matters? The

answer is nicely given in Dowd (2002):

• If risks are sub-additive, then adding risks together would give us

an overestimate of combined risk, and this means that we can use

the sum of risks as a conservative estimate of combined risk. This

facilitates decentralised decision-making within a firm, because a su-

pervisor can always use the sum of the risks of the units reporting to

him as a conservative risk measure. But if risks are not sub-additive,

adding them together gives us an underestimate of combined risks,

and this makes the sum of risks effectively useless as a risk measure.

In risk management, we want our risk estimates to be unbiased or

biased conservatively.

• If regulators use non-sub-additive risk measures to set capital require-

ments, a financial firm might be tempted to break itself up to reduce its

regulatory capital requirements, because the sum of the capital require-

ments of the smaller units would be less than the capital requirement

of the firm as a whole.

• Non-sub-additive risk measures can also tempt agents trading on an

organised exchange to break up their accounts, with separate accounts

for separate risks, in order to reduce their margin requirements. This

could be a matter of serious concern for the exchange because the
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margin requirements on the separate accounts would no longer cover

the combined risks.

Therefore, sub-additivity is a highly desirable property for risk measures and VaR

is generally not sub-additive. VaR is sub-additive under the condition that the loss

has jointly normal (more generally jointly elliptical) distribution, see Artzner et al.

(1999). Non-sub-additivity can also occur when the loss distributions of individual

sub-portfolios are symmetric but their dependence structure is highly asymmetric, see

McNeil et al. (2005). We can demonstrate the sub-additivity of VaR with a simple

example. Let X1, X2 both dependent on U where U ∼ Uniform(0,1) where

X1 =







500 if U ≤ 0.03

0 if U > 0.03

and

X2 =







0 if U ≤ 0.97

500 if U > 0.97

Consider now VaR at % 95 confidence level. Then, VaR0.05(X1)=0 and VaR0.05(X2)=0

as in both cases the probability of non-zero loss is less than % 5. On the other hand,

the probability of non-zero loss for the sum X1 + X2 is % 6. Thus, VaR of the sum

X1 + X2 follows

VaR0.05(X1 + X2) = 500 > VaR0.05(X1) + VaR0.05(X2) = 0. (1.3)

Another important problem with VaR is nonconvexity. Precisely, in risk minimization

problems risk surface needs to be convex in order to find a unique minimum. This

condition satisfied if the risk measure is convex. At this point let we introduce the

notion of convexity. A risk measure ρ is convex if it satisfy the following

ρ (λX1 + (1 − λ)X2) ≤ λρ(X1) + (1 − λ)ρ(X2) (1.4)
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where C is a convex set in X , X1, X2 ∈ C and 0 ≤ λ ≤ 1. Positive homogeneity

and sub-additivity together ensure the convexity of a function. Considering the fact

that VaR is positive homogeneous but not sub-additive in general it fails to satisfy the

convexity. For more details on optimization of the VaR, see Basak and Shapiro (2001).

Last but not least, it is not consistent as it may give conflicting results for different

confidence levels.

Comprehensive discussions on VaR can be found in Jorion (2001). For these reasons,

a number of consistent risk measures have been introduced in literature.

1.2 Coherent Measures of Risk

Shortcomings of the VaR led many researchers to seek alternative risk measures.

Artzner et al. (1997) criticized VaR and introduced a more theoretical approach to

risk measurement in their study. In their context, they define some properties that a

good risk measure should satisfy. However, VaR does not belong to these -so called-

coherent risk measures. The theory of coherent risk measures relies on the idea that

an appropriate risk measure is consistent with economic intuition and finance theory.

After this improvement, Artzner et al. (1999) introduced the theory of coherent risk

measures for finite probability spaces. Later, theory extended to general probability

spaces by Delbaen and Hochschule (2000).

A risk measure ρ : X → R is called a ‘coherent risk measure’ on X if it satisfies

the following properties.

Monotonicity: For all X1, X2 ∈ X

ρ(X1) ≥ ρ(X2), if X1 ≤ X2 a.s.

Monotonicity represents that a position X2 with a higher loss than a position X1 has

higher risk.

Positive Homogeneity: For all X ∈ X and for all real numbers λ ≥ 0 we have
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ρ(λX) = λρ(X)

Positive Homogeneity ensures that the risk of a position depends linearly on the size

of the position.

Translation Invariance: For all X ∈ X and for all real numbers a

ρ(X + a) = ρ(X) − a

Translation Invariance property states that adding a constant amount to a position

decreases the same amount from the risk measure. It also implies that the risk mea-

sure for a non-random loss, with known value a, is just the amount of the loss a.

The combination of positive homogeneity and translation invariance property give a

linearity property: ρ(λX + a) = λρ(X) − a.

Subadditivity: For all X1, X2 ∈ X

ρ(X1 + X2) ≤ ρ(X1) + ρ(X2)

This property ensures that the combination of two positions reduces the risk, there-

fore it ensures that there is no incentive to split the total risk into smaller risks. For

more details, see Artzner et al. (1999).

The VaR is not a coherent risk measure due to the missing sub-additivity property

except the case that the distribution of X has a jointly normal (more generally jointly

elliptic) distribution. This property expresses the fact that a portfolio made of sub-

portfolios will risk an amount which is at most the sum of the separate amounts risked

by its sub-portfolios. For a sub-additive measure, portfolio diversification always lead

to risk reduction, while for measures which violate this property, diversification may

produce an increase in risk.

1.3 The Expected Shortfall

The expected shortfall (ES, hereafter) is also known as tail value at risk (in Artzner

et al. (1999)) and conditional tail expectation (in Wirch and Hardy (1999)) . In the

case of continuous loss distribution, all of these measures give the same result but in
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the discrete case they can differ. Tasche (2002a,b) compare different definitions of

expected shortfall. The expected shortfall at confidence level α ∈ (0,1) is given by

the following

ESα(X) =
1

1 − α

∫ 1

α

VaRu(X)du. (1.5)

Strictly speaking, it is defined as an average of VaRs of X at level α and higher.

Therefore, we consider tail of the loss distribution. For continuous loss distributions

more intuitive expression can be given by

ESα(X) = −E[X | X 6 −VaRα(X)] (1.6)

which can be interpreted as the expected loss incurred in the event if VaR is exceeded.

In general (especially for discontinuous loss distributions), ES can be defined as

ESα(X) = −(1 − α)−1
{

E[XI{−X≥VaRα(X)}] + VaRα(X)(α − P [−X ≤ VaRα(X)])
}

(1.7)

where IA is the indicator function that is defined as

IA =







1 if − X ≥ VaRα(X)

0 if − X ≤ VaRα(X)

For the proof of coherency of ES, see Acerbi and Tasche (2002).

The VaR is only the maximum potential loss in the ‘bad’ cases which happens with

the probability α, whereas the expected shortfall measures the average loss in these

‘bad’ cases. Graphically, VaR and ES can be seen in Figure 1.1.

Many studies derive analytical CTE formulas for various continuous distributions, in

which cases the CTE equals to the ES. Panjer (2002) derives the CTE formula for

the multivariate Gaussian distributions. Landsman and Valdez (2003, 2005) generalise

the CTE formula to elliptical distributions and exponential dispersion models, respec-

tively. Hardy (2003) develops the CTE formula for the regime-switching log-normal
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Figure 1.1: Value at Risk and Expected Shortfall under Loss Distribution

model. Furman and Landsman (2005) provides the CTE formula for a multivariate

gamma distribution. Cai and Li (2005); Cai and Tan (2007) provide the CTE for-

mulas for the multivariate skew elliptical distributions and phase-type distributions,

respectively. McNeil et al. (2005) provides comprehensive formulas of conditional ES

for both univariate and multivariate GARCH models.

The ES is a better risk measure than the VaR for many reasons:

• The ES gives an indication of magnitude of the loss whereas, VaR tells nothing

than to expect a loss higher than itself.

• The ES is coherent and always satisfies sub-additivity whereas, VaR does not,

thus ES has various attractions of sub-additivity.

• The ES is consistent that is its value does not change drastically with a small

change in confidence level.

• The ES does not discourage risk diversification, but the VaR sometimes does.

• The ES is convex thanks to its sub-addivity, therefore in risk optimization prob-

lems it always have a unique optimum.
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The ES thus dominates the VaR as a risk measure. We now define some particular

risk measures that are commonly used in the literature. Risk measures discussed so

far are solvency risk measures that is, they can be interpreted as capital requirements

for risks. We now firstly introduce variability measures. Then, we show that they can

be used as solvency risk measures.

1.4 Variance/Standard Deviation

Var(X) = E[(X − µ)2] (1.8)

σ(X) =
√

Var(X) (1.9)

where Var(X) denotes the variance and σ(X) denotes the standard deviation with

the mean of µ = E[X]. The variance/the standard deviation has been a widely used

risk measure since it was introduced to the literature as apart of the mean-variance

portfolio theory by Markowitz (1952). It shows how much variation there is from

the mean. A low variance indicates that the data points tend to be very close to

the mean, whereas high variance indicates that the data are spread out over a large

range of values. However, it penalizes not only the risk of a return below mean but

also the risk of a return above mean. This property does not create a problem un-

der symmetrical distributions, e.g. normal distribution, but under non-symmetrical

distributions it does not account of asymmetry in the distribution. For this reason,

semi-variance/semi-standard deviation risk measures introduced in literature. The

motivation is that only variance/standard deviation on the worst side of the distribu-

tion is important for the measurement. Therefore, we only consider worst side of the

mean, i.e.

S.Var(X) = E[max(0,−(X − µ))2] (1.10)

where µ = E[X] and semi-standard deviation is the square root of the semi-variance.

These measures also called down-side risk measures in the literature.
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Proposition: The variance is not a coherent risk measure as it does not satisfy

(a)positive homogeneity, (b)translation invariance and (c)sub-additivity axioms.

Proof :

• (a): Var(λX) = λ2Var(X) 6= λVar(X).

• (b): Var(X +a) = E[((X +a)−(µ−a))2] = E[(X−µ)2] = Var(X) 6= Var(X)+a

where a is a constant and a 6= 0.

• (c): Take X = Z which is identical to take λ=2 in (a), then Var(X + Z) =

Var(2X) = 4Var(X) > Var(X) + Var(Z) = 2Var(X) where Var(X) 6= 0.

Proposition: The standard deviation is not a coherent risk measure as it does not

satisfy (e)translation invariance axiom. Note that the standard deviation satisfies

(f)positive homogeneity and (g)sub-additivity axioms.

Proof :

• (e): σ(X+a) =
√

E[((X + a) − (µ − a))2] =
√

E[(X − µ)2] = σ(X) 6= σ(X)+a

where a is a constant and a 6= 0.

• (f): σ(λX) =
√

λ2Var(X) = λσ(X).

• (g): Take X = Z which is identical to take λ=2 in (f), then σ(X + Z) =
√

Var(X + Z) =
√

Var(2X) =
√

4Var(X) = 2σ(X) = σ(X) + σ(Z).

Solvency risk measures can be constructed by using variability measures. In the

following we consider these types of measures.

1.5 Standard Deviation Principle

This risk measure is called standard deviation premium principle (MSD3, hereafter)

in actuarial theory and it can be defined by the following

ρsd,a(X) = −E[X] + a · σ(X), a > 0 (1.11)

3We call this risk measure as mean-standard-deviation risk measure or MSD in this study.
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where E[X] and σ(X) denotes the expected value and the standard deviation, respec-

tively. It includes a risk load that is proportional to the standard deviation of the risk,

also it is relating to the Markowitz portfolio theory, see Markowitz (1952). This risk

measure is translation invariant, sub-additive and positively homogeneous. However,

it is not monotonic for a properly chosen X, hence, is not coherent, see Buch and

Dorfleitner (2008).

1.6 Down-side Risk Measures

It is well known fact that most of loss distributions are skewed. Therefore, if we

understand risk as an asymmetrical concept related to outcomes below the mean (or

target level); the standard deviation risk measure is inadequate as both positive and

negative deviations from the mean increase risk. Considering this fact downside risk

measures are preferred to the variance and the standard deviation type risk measures.

One-sided (or down-side) risk measures can be defined by the following

ρp,a(X) = −E[X] + a · σ−
p (X), a > 0 (1.12)

where X− is defined as max{−X, 0} and σ−
p (X) =|| (X − E[X])− ||p for 1 ≤ p ≤ ∞.

We also have || X ||p= (E | X |p)1/p and || X ||∞= ess.sup{| X |}. This risk measure is

coherent if 0 ≤ a ≤ 1, as shown by Lemma 4.1 in Fischer (2003). In the case that p=2

equation (1.12) turns into the mean-semi-standard-deviation risk measure (MSSD4,

hereafter). Throughout the study we use mean-semi-standard-deviation risk measure

in our analysis. MSSD includes a risk load that is proportional to the semi-standard

deviation of the risk.

1.7 Distortion Risk Measures

Distortion risk measures introduced in literature by Wang (1996). A distortion func-

tion is a non-decreasing function g with g(0)=0 and g(1)=1 where g: [0,1] 7→ [0,1].

Then the transform g(F (x)) defines a distorted probability distribution where F (x)

is the distribution function of a random loss X.

4We call this risk measure as mean-semi-standard-deviation risk measure or MSSD in this study.
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A distortion risk measure ρg is defined as the mean value under the distorted proba-

bility function g(F (x)):

ρg(X) = −
∫ 0

−∞

[1 − g(1 − F (x))]dx +

∫ +∞

0

g(1 − F (x))dx. (1.13)

The first term of the right hand side disappears if X is non-negative. Precisely, the

distortion risk measure adjusts the true probability measure in order to give more

weights to more risky events in the tail. Distortion risk measures in general satisfy

translation invariance, positive homogeneity and monotonicity axioms of coherent risk

measures. However, sub-additivity axiom is satisfied under the condition that the dis-

tortion function is concave, see Wirch and Hardy (2000).

Using distorted risk measures, it is possible to express the VaR and the ES through

corresponding distortion function g. The distortion functions that correspond to VaR

and ES are, respectively,

gVaR(t) =







1 if t > 1 − α

0 if t < 1 − α

and

gES(t) =







1 if t > 1 − α

t
1−α

if t < 1 − α.

1.8 Risk Measures and Stochastic Orders

The ordering of risks can be performed by risk measures thanks to their properties.

Consider losses X and Y . X ≺ Y denotes that Y is more risky than X and it be-

longs to a specific type of ordering: first order stochastic dominance or second order

stochastic dominance. A risk measure ρ preserves a stochastic ordering if X ≺ Y

implies that ρ(X) < ρ(Y ). First order and second order stochastic dominance can be

defined as in the following where FX(x) is the cumulative distribution function (cdf)

of X and SX(x) = 1 − FX(x) is the decumulative distribution function (ddf) of X.

21



First order Stochastic Dominance:

If

SX(t) ≤ SY (t)

for all t ≥0 then X ≺1st Y which implies ρ(X) ≤ ρ(Y ).

(Note: There are many other equivalent conditions, see Wang (1998b).)

Second order Stochastic Dominance:

If

∫ ∞

x

SX(t)dt ≤
∫ ∞

x

SY (t)dt

for all x ≥0, with strict inequality for some x ∈ (0,∞) then X ≺2nd Y which implies

ρ(X) ≤ ρ(Y ).

(Note: There are many other equivalent conditions such as stop-loss order, see Wang

(1998b).)

1.9 Estimation Methods of Risk Measures

There are three main methodologies to compute the risk measures:

• Parametric Methods

• Non-parametric Methods

• Monte Carlo Simulation

1.9.1 Parametric Methods

In this approach, there is an assumption that loss distribution takes a particular para-

metric form. The choice of distribution would be guided by some diagnostics such as

quantile-quantile plots, mean excess function plots, etc. Thanks to these approaches

we can check the goodness-of-fit of different possible distributions. After having a

decision on distribution, we can look up that distribution’s quantile formula. If the

quantile formula involves parameters that need to be estimated, we would estimate
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these parameters using a suitable method (method of moments, maximum likelihood,

least squares, etc.) to the selected distribution and then plug these parameter es-

timates into quantile formula to get quantile estimates. Parametric methods are

suitable for risk measurement problems where the distributions are well known or

reliably estimated. However, these conditions are often not met in real life situations.

Parametric methods have both pros and cons. These methods are easy to use since

they give rise to straightforward formulas. However, they depend on the assump-

tion of the parametric form. Thus, unrealistic assumptions on parametric model may

lead to serious problems. For more information about parametric methods, see Dowd

(2002).

1.9.2 Non-Parametric Methods

In this approach, there is no assumption about the loss distribution. Instead the

empirical distribution is used to estimate risk measures. This method is based on an

assumption that the near future will be sufficiently like the recent past that we can

use the recent historical data to forecast the future. There are two key questions to

be answered with respect to setting up the required historical loss data:

• What length of loss data should be used?

• What should be done about risk factors for which no history exists?

The length of time series is the most important decision that must be made when us-

ing the historical simulation approach. In practice, the length of history used, varies

between practitioners. Some companies use 100 days of history, others use three

years or more years. It is impossible to obtain loss history for new line of businesses.

Therefore, a loss data can be borrowed from an existing business line with similar

characteristics until an adequate loss history has been accumulated.

Historical Simulation (HS) is a histogram-based approach. Let N be a number of

losses. By ranking losses in an ascending order, one can determine the VaR value

for confidence level α. The VaR value at level α is equal to the (Nα)st highest

value. This method gives equal weights to all past observations and it assumes that

observations are i.i.d. distributed. Therefore, it may cause some problems if historical
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data set has high volatility, seasonality or extreme values. Another problem with HS

is necessity of large amount of observations. Therefore, even if this method works

fine in many situations, it has some difficulties in handling extremes where data are

sparse, especially in tail region. The ES can be calculated using the VaR estimate. It

is obvious that other risk measures can be calculated using loss data.

1.9.3 Monte Carlo Simulation

As long as loss data history for line of businesses are available for an appropriate

length of history then historical simulation is a particularly effective way of calculat-

ing risk measures However, if a sufficient history of loss data is difficult to come by,

Monte Carlo Simulation (MCS) is superior to the historical simulation. This method

simulates the loss distribution using a random number generators and it is more pow-

erful and flexible than earlier methods. An important point in MCS is choosing a

suitable model to describe the behaviour of the loss data. Carrying out large number

of simulation trials will produces a simulated losses. After having these large numbers

of simulations, the distribution of simulated losses obtained in this way will provide

a good approximation to the true but unknown loss distribution. Finally, this dis-

tribution can be used in the estimation of risk measures. MCS models have some

disadvantages, for instance they might be too time consuming. On the other hand,

these models have the ability of modelling complications such as multiple risk factors,

fat tails, non-linearity, etc.
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Chapter 2

Modelling Dependency

In order to determine the risk capital of a company (possibly multi-line) we first need

to define the aggregate loss of the company. Assume that Xi represents the loss of

line (or sub-portfolio) i then the aggregate loss can be defined as X=
∑

i Xi. We

here do not make any assumptions, such as independence or identical distribution on

Xi’s. They are hardly independent or identically distributed in real life problems;

contrarily it is easy to observe dependence between risks in any insurance portfolio.

For example, different business lines are exposed to the common factor risks such

as interest-rates, inflation, economic crises etc. or a catastrophic event can have big

effects on many different business lines. Thus, both the marginal distributions and

dependency structure between them needs to be studied carefully to determine risk

capital ρ(X) of the company.

In real life, the marginal distributions of individual business lines are easy to obtain

whereas the joint distribution of these are unavailable in most cases. Therefore, we

need tools to construct the joint distribution of the company with using these known

marginals. The most effective tool for this kind of task is a copula. In this part of

the thesis we present the theory of copulas and dependence measures which we will

use in the case study in Chapter 4.
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2.1 Methods of Copula

Copula methods have become very popular in modelling dependency and they pro-

vide a flexible way to express joint distributions of random variables. A d -dimensional

copula is a distribution function, defined on [0, 1]d with standard uniform marginals.

It combines univariate distributions to obtain a joint distribution with a particular

dependence structure. The foundation theorem for copulas, Sklar’s theorem, states

that for a given joint multivariate distribution function and relevant marginal distri-

butions, there exist a copula function which relates them.

Sklar’s Theorem (Bivariate Case)

For ease of notation take d=2. Let FXY be a joint distribution with margins FX and

FY , then there exists a function C : [0, 1]2 → [0,1] such that

FXY (x, y) = P(X ≤ x, Y ≤ y) = C (FX(x), FY (y)) . (2.1)

If X and Y are continuous, then C is unique. On the other hand, if C is a copula

and FX and FY are distribution functions, then the function FXY defined by (2.1) is

a joint distribution function with margins FX and FY , see Nelsen (1999).

Sklar’s theorem allows separating the marginal feature and the dependence structure

which is represented by the copula. The function C is the cumulative distribution

function of the pair (U, V ) where U = FX(X) and V = FY (Y ), and

c(u, v) =
∂2C

∂u∂v
(u, v) (2.2)

is the associated probability density function. Sklar’s theorem proves the existence

and uniqueness of the copula. At the same time it shows how to construct the copula

from the initial distribution. The copula is given by
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C(u, v) = FXY (F−1
X (u), F−1

Y (v)) (2.3)

where F−1
X (u), F−1

Y (v) are the marginal quantile functions and 0 ≤ u, v ≤ 1.

Properties:

For every u ∈ [0,1],

C(u, 0) = C(0, u) = 0 (2.4)

C(u, 1) = C(1, u) = 1 (2.5)

For every (u1, u2) and (v1, v2) ∈ [0, 1]2 with u1 ≤ v1 and u2 ≤ v2,

C(v1, v2) − C(v1, u2) − C(u1, v2) − C(u1, u2) ≥ 0 (2.6)

Using a copula to build multivariate distributions is efficient technique, because it

gives flexibility of choosing different marginals and the derived multivariate distribu-

tion contains the information about the dependence structure of its components. The

simplest copulas are given in the following.

Independence

C(u, v) = uv (2.7)

Comonotony (extreme positive dependence)

M(u, v) = min(u, v) (2.8)
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Counter-comonotony(extreme negative dependence)

W (u, v) = max(u + v − 1, 0) (2.9)

For any copula C, the relation between these copulas is given by the following and M

and W are called the Fréchet upper and lower bounds, respectively, see Wang (1998a).

W (u, v) ≤ C(u, v) ≤ M(u, v) (2.10)

In literature there are many types of copulas exist. The main question is: which copula

does appropriate for to use? In case of extreme distributions the Gumbel copula, for

linear correlation the Gaussian copula and for tail dependence the Archimedean copula

and t-copula are used, for more details see Venter (2002).

2.1.1 Elliptical Copulas

The class of elliptical distributions provides many multivariate distributions which

enables modelling of multivariate extremes and other type of non-normal dependences.

Gaussian Copula

CGa(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1 − ρ2
exp

(

−1

2

t2 − 2ρtz + z2

1 − ρ2

)

dtdz (2.11)

where ρ ∈ [−1, 1] is linear correlation coefficient of corresponding bivariate normal

distribution and CGa(u, v) can be given by

CGa(u, v) = Φρ

(

Φ−1(u), Φ−1(v)
)

(2.12)

where Φ represents the standard normal c.d.f. and Φρ is the bivariate standard normal

c.d.f. with correlation ρ. Gaussian copula is useful for its easy simulation method.

However, it does not have tail dependence1 on both tails.

1Tail dependency is defined in page 31.
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t-Copula

Ct
ν(u, v) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π
√

1 − ρ2

(

1 +
t2 − 2ρtz + z2

ν(1 − ρ2)

)−(ν+2)/2

dtdz (2.13)

where ρ is linear correlation coefficient of corresponding bivariate tν distribution for

ν > 2. Like Gaussian copula, t-copula has symmetric tail dependency. However,

unlike Gaussian copula, t-copula yields dependence structures with tail dependence.

Degree of tail dependency can be set by degrees of freedom parameter, see Embrechts

et al. (2002).

2.1.2 Archimedean Copulas

We have seen that elliptical copulas are easy to deal with however, they have some

disadvantages, i.e. elliptical copulas do not have closed form expressions and they are

symmetric which is not good for modelling heavy-tailed distributions. The Archimedean

copulas allow for a variety of different dependence structures and they have closed

form expressions. Detailed explanations can be found in Nelsen (1999). Let ϕ be a

continuous, strictly decreasing function [0, 1] → [0,∞] such that ϕ(1) = 0 and let ϕ−1

be the pseudo inverse of ϕ. Let C : [0, 1]2 → [0,1] given by

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) (2.14)

Then C is a copula if and only if ϕ is convex, see Nelsen (1999). Copulas of the form

(2.14) are called Archimedean copulas. The function ϕ is called a generator of the

copula.

Gumbel Copula

Let ϕ(t) = (−lnt)θ where θ ≥ 1. Then the Gumbel copula is given by

Cθ(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) = exp
(

−[(−lnu)θ + (−lnv)θ]1/θ
)

. (2.15)

Gumbel copula is an extreme value copula which has more weights in positive tail.
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Clayton Copula

Let ϕ(t) = (t−θ − 1)/θ where θ ∈ [−1,∞)\{0}. Then the Clayton copula is given by

Cθ(u, v) = max
(

[u−θ + v−θ − 1]−1/θ, 0
)

. (2.16)

Clayton copula is an extreme value copula which has more weights in negative tail.

Frank Copula

Let ϕ(t) = −ln e−θt−1
e−θ−1

where θ ∈ R\{0}. Then the Frank copula is given by

Cθ(u, v) = −1

θ
ln

(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)

. (2.17)

Frank copula is the only Archimedean copula which satisfies so-called radial symmetry.

2.2 Dependence Measures

It is known that Pearson’s linear correlation as a measure of dependence works well in

a Gaussian framework. However, outside of that framework linear correlation cannot

capture the nonlinear relationships between risks. Therefore, using linear correlation

for distributions other than elliptical can be misleading, see Embrechts et al. (1999).

Another problem with linear correlation is that possible values of correlation depend

on the marginal distributions of risks. After these shortcomings, some alternative

measures of dependence, rank correlations, have been introduced in the literature.

Rank correlations do not depend on the marginal distributions and they are useful in

presence of heavy tailed distributions.

Spearman’s rho:

Let X and Y be random variables with marginal distribution functions F and G.

Spearman’s ρ is given by the following

ρS(X,Y ) = ρ[F (X), G(Y )] (2.18)
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where ρ is the linear correlation, see Embrechts et al. (2002).

Kendall’s tau:

Let (X1, Y1), (X2, Y2), , (Xn, Yn) be a set of joint observations from two random vari-

ables X and Y respectively. Any pair of observations (Xi, Yi) and (Xj, Yj) are said

to be concordant if the ranks for both elements agree: that is, if both Xi > Xj and

Yi > Yj or if both Xi < Xj and Yi < Yj; otherwise they are said to be discordant.

Kendall’s tau is defined as,

ρτ (X,Y ) = P [(X1 − X2)(Y 1 − Y 2) > 0] − P [(X1 − X2)(Y 1 − Y 2) < 0]. (2.19)

Hence Kendall’s tau is simply the probability of concordance minus the probability

of discordance, see Embrechts et al. (2002). Spearman’s rho and Kendall’s tau are

measures of the degree of monotonic dependence between X and Y .

Once a multivariate distribution has been specified by its marginals X and Y and its

copula function C(u1, u2), Spearman’s rho and Kendall’s tau can be written in terms

of copula C(u1, u2) by

ρS(X,Y ) = 12

∫ 1

0

∫ 1

0

[C(u1, u2) − u1u2]du1du2 (2.20)

ρτ (X,Y ) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2) − 1. (2.21)

Proofs can be found in McNeil et al. (2005).

Coefficients of Tail Dependence:

Tail dependence is a major concept of risk management. The idea of tail depen-

dence is to quantify the dependence that may exist for a bivariate distribution in
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the lower or upper tail. Coefficients of tail dependence provide measures of extremal

dependence, loosely speaking they describe the limiting proportion that one margin

exceeds a certain threshold given that the other margin has already exceeded that

threshold. Measures of tail dependence are given by the following,

Upper tail dependence:

λU(X,Y ) = lim
α→1−

P [X > F−1
X (α)|(Y > F−1

Y (α)] (2.22)

Lower tail dependence:

λL(X,Y ) = lim
α→0+

P [X < F−1
X (α)|(Y < F−1

Y (α)] (2.23)

in case the limit exists and α, λU , λL ∈ (0,1). F−1
X and F−1

Y denote the generalized

inverse distribution functions of X and Y , respectively. If λU ∈ (0, 1], then X and

Y are said to show upper tail dependence; if λU=0, X and Y are asymptotically

independent in the upper tail. For more information, see McNeil et al. (2005).
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Chapter 3

Allocation of Risk Capital

3.1 Allocation of Risk Capital

When risk capital of a portfolio has been calculated based on a risk measure, an-

other important task is to allocate it back to each risk component in the portfolio.

The allocation of risk capital has its own challenges due to the nature of dependence

structures of combined risks. There are many motives behind risk capital allocation.

Firstly, by comparing different losses on capital for each component, it is often pos-

sible to answer if a component is worth to keep or not. Secondly, as risk capital is

defined as a risk measure of the whole company, one can assess the riskiness of each

component’s position by splitting this capital, and compare one to another. In addi-

tion, risk capital allocation provides a useful device for assessment of performance of

managers, which can be linked to their compensations. Last but not least, insurers

may want to use the allocation in pricing. A line with an excessive capital would have

to produce a larger profit by increasing the product margin, see Valdez and Chernih

(2003); Neil (2007). In the literature, many researchers have proposed a set of axioms

that any desirable allocation method is expected to satisfy. For more details, see

Denault (2001); Hesselager and Anderson (2002); Kalkbrener (2005). The following

Axioms are adapted from Denault (2001).

Consider a company (portfolio) with n business lines (sub-portfolios), and define

N={1,2,...,n} to be the set of all lines. Each line’s loss is represented by a random

variable Xi, i ∈ N. The aggregate loss of the company is then given by
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n
∑

i=1

Xi = X. (3.1)

Let D be the set of risk capital allocation problems: pairs (N,ρ) composed of a set of

n lines and a coherent risk measure ρ. Allocated capital for line i is denoted by ai.

An allocation is a functional Π: D → Rn that maps each allocation problem, (N,ρ),

into a unique allocation:

















Π1(N, ρ)

Π2(N, ρ)
...

Πn(N, ρ)

















=

















a1

a2

...

an

















An allocation Π is said to be coherent, if for every allocation problem (N,ρ) satisfies

the following properties.

Full Allocation: The allocated capitals add up to the total capital.

ρ(X) =
n
∑

i=1

ai

No Undercut: The risk of any subset M of the total risk N is always lower than

the sum of stand-alone risks of that subset.

∀ M ⊆ N,
∑

i∈M

ai ≤ ρ

(

∑

i∈M

Xi

)

Symmetry: For any subset M ⊆ N \ {i, j}, if sub-portfolios i and j make the same

contribution to the risk capital of subset M , then ai = aj. This property ensures that a

sub-portfolio’s allocation depends only on its contribution to risk within the portfolio.

Riskless Allocation: Assume that last portfolio (line) is riskless with the initial price

1 and strictly positive price r in any state of nature at time T. Therefore, Xn = αr

34



and

an = ρ(Xn) = ρ(αr) = −α.

According to this axiom, a riskless portfolio should be allocated exactly its risk mea-

sure which can be negative. It is easy to see that this axiom is related to the translation

invariance axiom of coherent risk measures.

3.2 Methods of Allocation

There are various allocation methods available in the literature. Theoretical and

practical aspects of different allocation methods have been analyzed in a number of

papers, for instance, see Merton and Perold (1993); Tasche (1999, 2002a); Overbeck

(2000); Denault (2001); Myers and Read (2001); Fischer (2003); Albrecht (2004); Ur-

ban et al. (2004); Buch and Dorfleitner (2008); Buch et al. (2009); Dhaene et al. (2010).

From a naive point of view sub-portfolios, which a small risk capital allocated, would

be considered as less risky than those which higher risk capital allocated. How-

ever, risk capital allocations depend on the size of the sub-portfolios. Therefore,

various allocation formulas depend on the size of the positions, namely the vector

u = (ui)1≤i≤n ∈ Rn where the aggregate loss is defined by X(u) =
∑n

i=1 uiXi with

sub-portfolio losses Xi.

3.2.1 Proportional Allocation

Proportional allocation is a naive allocation method which is given by

aP,ρ
i (u) =

ρ(uiXi)
∑

j∈N ρ(ujXj)
ρ(X(u)) (3.2)

where the diversification effect is distributed proportionally to the risks. This method

simply calculates stand-alone risk measures for each risk and then allocates the total

risk capital in proportion to separate risk measures. This approach guarantees the

full allocation principle. However, it is not coherent as an allocation method and it

ignores the stochastic dependencies between the risks.
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3.2.2 Variance-Covariance Allocation

This allocation method, proposed by Overbeck (2000), is given by

aV −C,ρ
i (u) =

Cov(uiXi, X(u))

Var(X(u))
ρ(X(u)) (3.3)

where Cov(uiXi, X(u)) is the covariance between the individual risks uiXi (sub-

portfolios) and aggregate risk (portfolio) X(u), Var(X(u)) is the variance of the

portfolio X(u). This method focuses on how individual business units contribute

to the variance of the portfolio. It’s clear that sum of these individual covariances

is equal to the variance of the portfolio. Therefore, the full allocation principle is

satisfied. This relation can be given by

Var(X(u)) = Var

(

∑

i

uiXi

)

=
∑

i

uiCov

(

Xi,
∑

j

ujXj

)

=
∑

i

∑

j

uiujCov(Xi, Xj). (3.4)

3.2.3 Merton-Perold Allocation

This method is based on the option pricing model of the firm. In this approach,

the value of the policyholders’ claim on the firm is equal to the present value of

losses minus the value of the ‘insolvency put option’. The insolvency put option is

the expected loss to due to the possibility of default of the firm. Simply for one

period model the firm issues policies at time 0 and claim payments occur at time 1.

If assets exceed liabilities at time 1, the firm pays the losses and the equity owners

receive the difference between assets and liabilities. However, if liabilities exceed

assets, the insurer defaults and the policyholders receive the assets. Therefore the

payoff of this option at time 1 is L−max(L−A, 0), where L is losses and A is assets

and max(L − A, 0) is the payoff on the insolvency put option, see Cummins (2000).

Merton-Perold approach is an incremental capital allocation which focus on what

happens to the insolvency put option if all lines of business are added or removed

from the firm. Then the allocated capital for line i is given by

36



aM&P,ρ
i (u) =

ρ(X(u)) − ρ(X(u) − uiXi)
∑

j∈N ρ(X(u)) − ρ(X(u) − ujXj)
ρ(X(u)). (3.5)

An important characteristic of this allocation method is that the incremental amounts

do not add up to total risk capital.

3.2.4 Allocation Methods Based on Game Theory

Game-theoretic methods provide a suitable framework for cost allocation problems,

see Shapley (1953); Aumann and Shapley (1974); Aubin (1981). Shapley method is

an example for these methods. It describes how coalitions can be formed in a way that

none of the players benefits more as a stand-alone than as a group. Aumann-Shapley

method is another example for that kind of methods and it allows for fractional units

and requires less computation compared to the Shapley method.

A coalitional game (N, ρ) consists of

• a finite set of n players, N ,

• a cost function, ρ, which associates a real number, ρ(S), to any subset (coalition)

S, of N .

Then each player want to minimise her cost, and her strategies consist of agreeing or

not to take part in coalitions. The main question in coalitional games is the allocation

of the cost, ρ(N), between all players and this question is formalized by the concept

of value.

A value is a functional Π which maps each game (N, ρ) into a unique allocation:

















Π1(N, ρ)

Π2(N, ρ)
...

Πn(N, ρ)

















=

















a1

a2

...

an

















(3.6)
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where
∑

i∈N ai = ρ(N).

The core of a game

Given the subadditivity of ρ, the players of a game have an incentive to take part in

the coalition, since by doing this they minimize the total cost when compared to the

their stand-alone costs. A player does not take part in the coalition if her allocated

cost is higher than her stand-alone cost. The set of allocations that do not allow any

player to be apart from coalition is called the core. The core of a coalitional game,

(N, ρ), is the set of allocations a ∈ Rn for which
∑

i∈S ai ≤ ρ(S) for all coalitions

S ⊆ N .

The Shapley value & The Shapley method

The Shapley value was introduced by Shapley (1953) as a method for each player

to expect a benefit from playing a game and ever since has received interest. Two

players i and j are interchangeable in (N, ρ) if either one makes the same contribution

to any coalition S. A player is a dummy if it brings the same contribution ρ(i) to any

coalition S.

The Shapley value for the game (N, ρ) can be given by,

aS,ρ
i =

∑

S⊆N

(| s | −1)!(n− | s |)!
n!

(ρ(S) − ρ(S \ {i})) (3.7)

where s is the number of players in coalition S and n is the total number of players.

Note that for any game with n players there are 2n − 1 nonempty possible coalitions

and the calculation of the Shapley Value may become harder if n gets bigger. The

intuitive explanation for the Shapley value is given in Roth and Verrecchia (1979):

The Shapley Value can be seen as expected marginal benefit added by

each player if all orderings of players are equally likely. The Shapley value

can be computed by calculating the average marginal benefit which player i

brings to coalition S, under the assumption that coalitions form in random

order. Therefore, there are (| s | −1)!(n− | s |)! orderings of players, such

that player i comes after all the other players in a given coalition S that
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includes player i, but before any player which is not in the coalition S.

Then the marginal contribution of player i is ρ(S)−ρ(S \{i}). Since there

are n! different orderings of the players, the expected marginal contribution

of player i is the sum of its marginal contributions to each coalition S, each

weighted by the proportion of the orderings in which the arrival of player

i forms that coalition.

For more details, see Denault (2001).

The Aumann-Shapley value & The Aumann-Shapley method

Aumann and Shapley extended the concept of Shapley value to non-atomic games,

see Aumann and Shapley (1974). Here non-atomic means divisible players/portfolios.

The Aumann-Shapley value can be given by

aA&S,ρ
i (u) = ui

∫ 1

0

∂

∂ui

ρ(tX(u))dt (3.8)

for a positively homogeneous risk measure ρ this simplifies to

aA&S,ρ
i (u) = ui

∂(ρ(X(u))

∂ui

, (3.9)

where the payoff X(u) =
∑n

i=1 uiXi of a portfolio u = (ui)1≤i≤n ∈ Rn consists of

sub-portfolios with payoffs Xi. In the case of a positively homogeneous, convex and

differentiable cost function the core of such a game consists one element: the gradient

of the cost function due to normed weights of players, see Aubin (1979). Therefore, in

the case of subadditive and positively homogeneous risk measure which is differentiable

at a portfolio u ∈ Rn, the gradient is the ‘unique fair’ per unit allocation. For more

details, see Denault (2001).

3.2.5 Euler’s Allocation Method

The Euler’s allocation method is also called gradient allocation method in the lit-

erature. Consider a function ρ : Lp(P) → R, if ρ is positively homogeneous and

differentiable at u ∈ Rn, then we have
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ρ(X(u)) =
n
∑

i=1

ui
∂ρ(X(u))

∂ui

. (3.10)

where aE,ρ
i (u) = ui

∂(ρ(X(u))
∂ui

. For a positively homogeneous risk measure the Aumann-

Shapley Method coincides with the Euler’s method:

aE,ρ
i (u) = aA&S,ρ

i (u). (3.11)

Under the Euler’s allocation method the capital allocated to the sub-portfolio Xi of

X is the derivative of associated risk measure ρ at X in direction of Xi.
∂ρ(X(u))

∂ui
are

called the per unit Euler’s contributions. The Euler’s contributions are RORAC1

compatible and also satisfy full allocation axiom of coherent allocation. Calculating

risk capital contributions by the Euler’s method is called the Euler’s allocation.

The Euler’s allocation method suggested by several papers for for different reasons:

• Tasche (1999) shows that the Euler’s principle is compatible with portfolio op-

timization.

• Denault (2001) derived the Euler’s allocation principle by game theory which

was regarded as the Aumann-Shapley allocation principle. Under positive homo-

geneous risk measures the Euler’s allocation principle and the Aumann-Shapley

allocation principle coincide.

• Myers and Read (2001) argues that in order to determine line by line surplus

requirements effectively in an insurance company, the most appropriate way is

to apply the Euler’s principle.

• Kalkbrener (2005) argues that the Euler’s principle is the only allocation prin-

ciple that is compatible with the diversification2 effects.

A comprehensive description of the Euler’s allocation principle can be found in Tasche

(1999). Considering both coherent risk measure (the Expected Shortfall) and coherent

1Return on risk adjusted capital approach is briefly described in the Appendix-B.
2Recall that diversification plays an important role for the portfolio management and its provided

by the subadditivity of the risk measures.
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allocation method (the Euler’s method) many authors derive analytic expressions of

ES allocation for various parametric models. Panjer (2002) proves that ES allocation

coincides with the allocation of the capital asset pricing model (CAPM), which is also

referred as covariance-based allocation, in the multivariate Gaussian distributions.

Landsman and Valdez (2003) studies ES allocation for elliptical distributions. Dhaene

et al. (2007) consider two other cases, log-elliptical distributions and comonotonic

random vectors. Furman and Landsman (2007) discuss risk capital decompositions

for compound Poisson risks.

3.3 Partial Derivatives of Risk Measures

Differentiability of risk measures is essential for risk capital allocation in portfolios.

The gradient due to weights of the portfolio gives per unit risk contributions under

differentiable and positively homogeneous risk measures, see Tasche (1999); Denault

(2001). We now introduce partial derivatives of occupied risk measures which were

introduced in Sections: 1.1, 1.3, 1.4 and 1.6.

3.3.1 Partial Derivatives of the VaR

Value at Risk as a risk measure is homogeneous of degree 1 and co-monotonic addi-

tive but not in general sub-additive. Under some smoothness conditions (see Tasche

(1999)), a general formula can be derived for the Euler’s contributions to the VaR.

These smoothness conditions imply that X has a density. The formula for the Euler’s

contributions to the VaR is given by

VaRα(Xi | X) = −E[Xi | X = −VaRα(X)] (3.12)

where E[Xi | X] denotes the conditional expectation of Xi given X. In general,

the conditional expectation of Xi given X cannot easily be estimated. If P[X =

−VaRα(X)] is positive, the conditional expectation on the right-hand side of (3.12)

is given by
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−E[Xi | X = −VaRα(X)] =
−E[Xi1{X=−VaRα(X)}]

P[X = −VaRα(X)]
. (3.13)

However, a crucial condition for (3.13) to hold exactly is the existence of a density

of the distribution of X. The probability P[X = −VaRα(X)] then equals zero, and

right-hand side of (3.13) is undefined. In this situation, the conditional expectation

E[Xi | X = −VaRα(X)] is still well-defined (see Tasche 1999), but its estimation from

a sample requires non-parametric methods. Here we follow Tasche (2008) who applied

kernel estimation methods for the VaR contributions.

Kernel Estimators

Kernel estimation is a non-parametric way of estimating the probability function of a

random variable. The general reference for this section is Chapters 2 and 3 in Pagan

and Ullah (1999).

The Rosenblatt-Parzen kernel estimation for densities

Assume that x1, ..., xT is a sample of independent realizations of a random variable

X with density f . The Rosenblatt-Parzen estimator f̂h with bandwidth h > 0 for f

can be constructed as follows:

• Let X∗ be a random variable whose distribution is given by the empirical

distribution corresponding to the sample x1, ..., xT , i.e. P [X∗ = xt] = 1/T ,

t = 1, ..., T .

• Let ξ a random variable with density (kernel) ϕ.

• Assume that X∗ and ξ are independent.

• Then the estimator f̂h is defined as the density of X∗ + hξ:

f̂h(x) = f̂h,x1,...,xT
(x) =

1

hT

T
∑

t=1

ϕ(
x − xt

h
) (3.14)
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If f and ϕ are appropriately ‘smooth’ (see Pagan and Ullah (1999), Theorem 2.5 for

details), it can be shown for h = hT
T→∞→ 0, hT T

T→∞→ ∞3 that f̂hT (x) is a pointwise

mean-squared consistent estimator of f , i.e.

lim
T→∞

E[(f(x) − f̂h,x1,...,xT
(x))2] = 0, x ∈ R

with independent copies X1, ..., XT of X. While the Rosenblatt-Parzen density esti-

mator is rather robust with respect to the choice of the kernel ϕ, it is quite sensitive to

the choice of the bandwidth h. A very large h would result an oversmoothed density

and oversmoothing distorts the shape of the density, hence this may lead to bias. On

the other hand, a very small h may result a noisy and wiggly density estimate and

this may lead to higher variance, see Pagan and Ullah (1999). For the purpose of this

study we confine ourselves to applying a simple rule of thumb by Silverman

h = 1.06σT−1/5

where σ denotes the standard deviation of the sample x1, ..., xT . Moreover, we choose

the standard normal density as the kernel ϕ, for more details see Pagan and Ullah

(1999).

The Nadaraya-Watson Kernel Estimator for Conditional Expectations

Assume that (x1, y1), ..., (xT , yT ) is a sample of realisations of a random vector (X,Y )

where X has a density f . The Nadaraya-Watson estimator Êh[Y | X = x] with

bandwidth h for E[Y | X = x] can be constructed as follows:

• Let (X∗, Y ∗) a random vector whose distribution is given by the empirical dis-

tribution corresponding to the sample (x1, y1), ..., (xT , yT ), i.e. P [(X∗, Y ∗) =

(xt, yt)] = 1/T .

• Let ξ a random variable with density (kernel) ϕ.

• Assume that (X∗, Y ∗) and ξ are independent.

• Then the estimator Êh[Y | X = x] is defined as the expectation of Y ∗ conditional

3These assumptions on h imply that, as T increases, h should decrease at a slower speed than
1/n.
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on X∗ + hξ=x:

Êh[Y | X = x] = Êh,(x1,y1),...,(xT ,yT )[Y | X = x] (3.15)

=

∑T
t=1 ytϕ(x−xt

h
)

∑T
t=1 ϕ(x−xt

h
)

(3.16)

If f and ϕ are appropriately ‘smooth’ (see Pagan and Ullah, 1999, Theorem 3.4 for

details), it can be shown for h = hT
T→∞→ 0, hT T

T→∞→ ∞, and f(x) > 0 that f̂hT (x) is

a pointwise consistent estimator of E[Y | X = x], i.e.

lim
T→∞

P [| E[Y | X = x] − ÊhT,(x1,x1),...,(xT ,xT )[Y | X = x] |> ǫ] = 0

ǫ > 0 arbitrary, with independent copies (X1, Y1), ..., (XT , YT ) of (X,Y ). The con-

struction of Nadaraya-Watson estimator as described above allows to interpret the

conditional expectation estimation problem as an extended density estimation prob-

lem. This suggests to choose the same bandwidth h and the same kernel ϕ for estima-

tors (3.14) and (3.15). However, estimated Euler contributions of the VaR by using

kernel estimation method differ from natural estimates of VaR. Even if this difference

tends to be small, some authors suggest accounting this difference by an appropriate

multiplier. Here, we apply the multiplicative adjustment suggested by Epperlein and

Smillie (2006). Let VaRKer
α (Xi | X) denotes the Euler’s contributions of VaR under

kernel estimation method. Then, the adjustment can be done by the following

VaRα(Xi | X) = VaRα(X)
VaRKer

α (Xi | X)
∑n

i=1 VaRKer
α (Xi | X)

. (3.17)

3.3.2 Partial Derivatives of the ES

Assuming sufficient differentiability properties, results of Tasche (1999) show that the

partial derivatives of the ES can be given by the following

∂ESα(X(u))

∂ui

= −E[Xi | X 6 −VaRα(X)] (3.18)

The proof can be found in Tasche (1999).
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3.3.3 Partial Derivatives of the Standard Deviation

Using variance decomposition in equation (3.4) we obtain for the variance of X(u):

∂Var(X(u))

∂uk

=
∂

∂uk

(

∑

i

∑

j

uiujCov(Xi, Xj)

)

= 2ukCov(Xk, Xk) + 2
∑

i6=k

uiCov(Xi, Xk)

= 2
∑

uiCov(Xi, Xk)

= 2Cov(Xk, X(u)). (3.19)

Then, it easy to see the derivative of the standard deviation by using (3.19), the

partial derivatives of can be given by

∂σ(X(u))

∂ui

=
Cov(Xi, X(u))

σ(X(u))
. (3.20)

Note that by assuming the gradient allocation method as a unique fair allocation

method, variance-covariance allocation method is a fair allocation method for the

standard deviation, see Tasche (1999).

3.3.4 Partial Derivatives of the MSD

Considering the derivatives of the standard deviation wrt weight ui that is equation

(3.20) we can obtain the partial derivatives of this risk measure as in the following

∂ρsd,a(X)

∂ui

=
∂ (−E[X] + a · σ(X))

∂ui

= −E[Xi] + a · Cov(Xi, X(u))

σ(X(u))
. (3.21)
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3.3.5 Partial Derivatives of the MSSD

According to Fischer (2003), the partial derivatives of the MSSD risk measure are

given by the following. The proof is quite technical and can be found in Fischer

(2003).

∂ρ2,a(X)

∂ui

=
∂ (−E[X] + a· || (X − E[X])− ||2)

∂ui

= −E[Xi] + a · σ−
2 (X)−1 ·

E
[

(−Xi + E[Xi])
(

(X − E[X])−
)]

(3.22)

where X− is defined as max{−X, 0}, σ−
2 (X) =|| (X −E[X])− ||2 and || X ||2 = (E |

X |2)1/2.
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Chapter 4

Case Study 1: Contributions of

Sub-portfolios to the Portfolio Loss

In this part of the thesis we work on the liabilities of a non-life insurance company

where the total portfolio loss is linear in the losses of sub-portfolios. We consider a

one-period framework; therefore between time 0 and T no trading is possible. We

assume ‘risk’ to be given by a random variable X representing an incurred claim at

time T. For the liabilities, we consider the accumulated claim size S ≥ 0. Then the

corresponding loss variable can be defined as X := S−E[S] where we think of E[S] as

the premium. Therefore, we have claim distributions with expectations 0. In the case

of several segments i = 1, ..., n with the corresponding accumulated claims Si ≥ 0 the

loss variables are Xi := Si − E[Si].

4.1 Scenarios and Application

The starting point of the scenario that is used in this case study is Urban et al. (2004).

We have updated the scenario so as to reach a tractable risk models which have defi-

nite first and second moments. Moreover, we have used different risk models and risk

measures. We consider a portfolio of six different loss distributions, three of them are

catastrophic losses (we can say these are main losses for the company, ML hereafter)

such as storm, flood and earthquake where they are represented by S(ML), F(ML)

and EQ(ML) respectively. The other losses are general losses (we can say these are

basic losses for the company, BL hereafter) such as general liability, engineering and
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fire where they are represented by GL(BL), E(BL) and F(BL), respectively. Catas-

trophic losses are modelled by Compound Poisson distribution whereas general losses

are modelled by log-Normal distribution in our base model which we call Model.1,

hereafter.

Additionally, losses are modelled by Student t, Normal and log-normal distributions

which have same first and second moments and same dependency structure with

Model.1. By comparing these four different models we can investigate the allocation

of risk capital differences between them. We now describe these loss distributions and

their properties.

• If a random variable X is log-normally distributed with location parameter µ

then its density is given by

fX(x, µ, σ) =
1

xσ
√

2π
exp

(

−(ln x − µ)2

2σ2

)

(4.1)

where x > 0, σ is the standard deviation of the variable’s natural logarithm.

The expected value and variance of the variable can be given by

E[X] = exp(µ + 0.5σ2) (4.2)

V [X] = (exp(σ2) − 1) exp(2µ + σ2). (4.3)

• If a random variable N is Poisson distributed with parameter λ then its density

is given by

P(N = n) =
λn exp(−λ)

n!
(4.4)

where x = 0, 1, ..., and λ ∈ (0,∞). The expected value and variance of the
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variable can be given by

E[N ] = λ (4.5)

V [N ] = λ. (4.6)

• If a random variable X is Pareto distributed with shape parameter α ∈ (0,∞)

and scale parameter θ ∈ (0,∞) then its density is given by

fX(x, α, θ) =
αθα

xα+1
(4.7)

where x > 0. The expected value and variance of the variable can be given by

E[X] =
αθ

α − 1
α > 1 (4.8)

V [X] =
θ2

(α − 1)2

α

α − 2
α > 2. (4.9)

• The random variable X = Z√
V/ν

is student t distributed with degrees of free-

dom parameter ν, where Z is normally distributed with expected value 0 and

standard deviation 1, V has chi-square distribution with ν degrees of freedom.

Z and V are independent. Then its density is given by

fX(x, µ, ν) =
Γ(ν + 1/2)

Γ(ν/2)
√

πν

(

1 +
x2

ν

)−(ν+1)/2

. (4.10)

The expected value and variance of the variable can be given by

E[X] = 0 (4.11)

V [X] =
ν

ν − 2
ν > 2. (4.12)

For any given constant µ, Y = Z+µ√
V/ν

has non-central t distribution with non-

centrality parameter µ ∈ (−∞, +∞). Non-central t distributed variable’s ex-
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pected value and variance can be given by

E[Y ] = µ
√

ν/2
Γ(ν − 1/2)

Γ(ν/2)
ν > 1 (4.13)

V [Y ] =
ν

ν − 2
(1 + µ2) − µ2ν/2

(

Γ(ν − 1/2)

Γ(ν/2)

)2

ν > 2. (4.14)

• If a random variable X is normally distributed its density is given by

fX(x, µ, σ) =
1√

2πσ2
exp

(

−(x − µ)2

2σ2

)

(4.15)

where x ∈ R, µ and σ are the mean and the standard deviation parameters.

The expected value and variance of the variable can be given by

E[X] = µ (4.16)

V [X] = σ2. (4.17)

These distributions are chosen based on their common usage in practice. Catas-

trophic losses happen rarely but their severity can be very high. Therefore, they are

modelled by a compound Poisson model with Pareto severity. On the other hand, gen-

eral losses like general liability, fire etc. can be modelled by log-normal distribution.

Catastrophic losses can assume to be independent. However, dependency structure of

the general losses is modelled by a Gaussian copula with a rank correlation coefficient

of 0.15.

By assuming all different risk models have same expectations and variances, the pa-

rameters of claim distributions for all risk models are given in the Table 4.1. In

this table we have four different loss distribution for each business-lines; for instance

earthquake-line (denoted by EQ(ML)) has a compound Poisson distribution under

Model.1, a log-normal distribution under log-normal model, a non-central t distribu-

tion under non-central t model and a normal distribution under normal model. It has

a mean=357.5 and variance=1180.784 under each loss model. Moreover, dependency
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structure between business-lines is preserved under different risk models. Therefore,

we have business-lines that have same expected losses and variances but have different

distributions. In doing so, we can examine the role of the distributions on risk capital

allocations.

Table 4.1: Parameters of Loss Distributions under Different Risk Models

Model.1
General Claims (Log-Normal) Catastrophic Claims (Compuond Poisson)

Parameter GL(BL) E(BL) F(BL) Parameter S(ML) EQ(ML) F(ML)
location µ 0.045 0.110 0.025 λ 1.000 0.300 1.600
st. deviation σ 0.800 0.870 0.880 shape α 2.300 2.200 2.900
scale 200 100 140 scale θ 1.0 1.0 3.0
- - - - truncation 200 650 100

Log-Normal Model

location µ 0.0450 0.110 0.025 location µ 5.250 4.641 5.187
st. deviation σ 0.800 0.870 0.880 st. deviation σ 1.113 1.573 0.789
scale 200 100 140 scale - - -

Non-central t Model

non-cent. µ 196.875 108.408 140.121 non-cent. µ 219.000 206.697 167.616
deg. of free. ν 2.653 2.524 2.508 deg. of free. ν 2.245 2.058 2.677

Normal Model

mean µ 288.103 162.979 211.420 mean µ 353.847 357.500 244.211
st. deviation σ 272.783 173.376 228.615 st. deviation σ 553.775 1180.784 227.059

Notes: Sub-portfolios under log-normal, non-central t and normal model have same first
and second moments with the Model 1.

For computation of risk measures and risk capital allocations we simulated N=100,000

realisations of the random vector X = (X1, ..., X6) from engaged marginal models with

predetermined dependency structure of the three general losses1.

We here propose a metric to measure allocation differences/errors between the Euler’s

(or gradient) method and other allocation methods2. By introducing this measure we

can easily define the differences between the Euler’s method and other methods. The

Minkowski metric is inarguably one of the most commonly used quantitative distance

(dissimilarity) measure in scientific applications and it has the advantage of being

isotropic3, see Celebi et al. (2010). Thus, we employ the Euclidean distance (or L2

1Recall that dependency structure of the general losses is modelled by a Gaussian copula with a
rank correlation coefficient of 0.15.

2The Euler’s allocation method considered as a fair-unique (or preferred) allocation method based
on the results of game theory and risk adjusted performance management. Therefore, L2 distances
are calculated between the Euler’s method and other allocation methods.

3Isotropic means rotation invariant that is all vectors are processed in the same way, regardless

51



norm ). edg,o represents the Euclidean distance between the Euler’s (or gradient)

method (denoted by g) and other allocation methods (denoted by o) and can be

defined by the following

edg,o =

√

√

√

√

n
∑

i

(ag
i − ao

i )
2 (4.18)

where i=1,...,n and n is the number of business lines in the insurance portfolio.

Furthermore, we use rank correlations coefficients, Spearman’s rho and Kendall’s tau,

to compare different allocation methods. The definitions of these coefficients can be

found in Chapter 2.

Interpretation of Results

The proportions of risk capital allocated to sub-portfolios are given in several tables

at the end of this section. These tables are based on different risk models (Tables 4.2-

4.5), different allocation methods (Tables 4.6-4.9) and different risk measures (Tables

4.10-4.13). We also visualise the results in Figure 4.1. Here we need to state some

important points:

1. The Variance-Covariance allocation method should give same proportions to

sub-portfolios for different risk models as we preserve the original dependency

structure between sub-portfolios under all risk models. However, due to simu-

lation error4 these proportions can differ insignificantly, see last rows in Tables

4.2-4.5.

2. Although we emphasized in the introduction that we have five different risk

measures in our study, four different risk measures are available in the results:

VaR, ES, MSD and MSSD. The reason for that is we assume a equals 1 and

the expectations of all loss distributions are 0. Thus, standard deviation princi-

ple (MSD risk measure) amounts to the standard deviation risk measure under

these conditions.5

of their orientation.
4With 100,000 iterations we still have a small differences in dependency structure between different

business lines for different risk models. This error can be minimised with higher number of iterations
(>100,000), however this won’t change the allocations substantially.

5−E[X] + a · σ(X) ≡ σ(X) if a=1 and E[X]=0.
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3. The Euler’s allocation method considered as a fair-unique (or preferred) alloca-

tion method based on the results of game theory and risk adjusted performance

management. Therefore, L2 distances and rank correlation coefficients are cal-

culated between the Euler’s method and other allocation methods.

A first look at Table 4.2 (based on original risk model (Model.1)) and Figure 4.1 draws

attention to earthquake EQ(ML)6 which has the highest allocations compared to the

other sub-portfolios. The main reason is EQ(ML) has the heaviest tail. On the other

hand, engineering E(BL)7 has the lowest allocations as it has the lowest variation. We

also observe that second highest allocations go to storm S(ML) which has the second

highest variation in the portfolio.

VaR shows some inconsistencies under log-normal and non-central t model, see Table

4.3 and 4.4. Under log-normal model it gives the highest allocation to the storm

(S(ML)) in combination with the Euler’s method. Moreover, under log-normal and

non-central t model it gives negative allocations to F(ML), F(BL) and E(BL), F(ML),

respectively. These findings directly indicate how important the quantile selection in

combination with the model selection is.

Allocation proportions under Normal model do not change drastically from one risk

measure to the other for each allocation method, see Table 4.5 and Figure 4.1. This

shows that allocations are not sensitive to the choices of the risk measures and allo-

cation methods under normal distribution (generally elliptical distribution).

Variance-Covariance allocation method is a fair allocation method for MSD risk mea-

sure8. We can see that allocations under MSD in combination with the Euler’s and

Variance-Covariance methods are equal for each risk model.

6ML denotes main loss
7BL denotes basic loss
8Variance-Covariance allocation method is also a fair allocation method for standard deviation,

as −E[X] + a · σ(X) ≡ σ(X) if a=1 and E[X]=0.
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Allocations for MSD and MSSD risk measures under each allocation method do not

differ significantly for different risk models, see Tables 4.10, 4.13 and Figure 4.1. We

can say that these risk measures are insensitive to different risk models. However,

allocations for VaR and ES under each allocation method can show drastic changes

which indicate that these measures are very sensitive to the choice of risk model.

We can also say that allocations for MSSD under each allocation method and each

risk model are closer to allocations for ES. Considering the coherency of MSSD we

can say that MSSD outperform MSD. Note that this is not valid for non-central t

model. Allocations for ES under non-central t model are lower than allocations under

other risk models. This might be linked to tail structure of that risk model.

Another observation is the highest differences in L2 distances for proportional method,

see Table 4.14. Proportional allocation method is the only method for which de-

pendency structure between different risks is not relevant. Therefore, proportional

method is the worst method in the sense that it is very different from fair allocation

method.

L2 distances between fair method (the Euler’s method) and other allocation methods

show that VaR has the highest allocation differences in all risk models, see Table 4.14.

Spearman’s rho and Kendall’s tau rank correlation coefficients indicate that ranking

of risk sources based on VaR differ significantly from one allocation method to the

other, see Tables 4.15 - 4.16. Furthermore, we can say that ranking of the risks based

on ES differ less significantly compared to the ranks based on VaR.

Rank correlation coefficients also indicate that MSD and MSSD are agree on ranks of

the risks for all different risk models and allocation methods.

4.2 Conclusions of Case Study 1

We found that when VaR is used, allocation methods matter more than for other risk

measures. This indicates that financial institutions should be careful about choosing
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the allocation method if the applied risk measure is VaR. Surprisingly, this result

is contrary to the conclusion of Urban et al. (2004) in which they emphasized that

companies should choose their risk measure accurately, however they could choose a

simple allocation method. In Urban et al. (2004) there is only one risk model that

is similar to our Model.1. We also consider more risk measures and more allocation

methods in our study. Under more diversified scenarios for the sensitivity analysis of

allocations, we found that the choice of the allocation method is as important as the

choice of the risk measure.

We observe that MSD and MSSD risk measures are insensitive to the different risk

models, whereas VaR and ES are highly sensitive to both different risk models and

different allocation methods.

L2 distances and rank correlation coefficients make comparisons between different al-

location methods easier. These comparisons indicate that the proportional method is

an inefficient allocation method in the sense that it is very different from fair alloca-

tion method.

Allocations based on VaR and ES show that the quantile selection in combination with

the risk model selection are particularly important as the most risky sub-portfolio ac-

cording to these risk measures can change.

In short, our comprehensive simulation study shows that the risk capital allocation

methods matter most if the used risk measure is VaR. This is highly important as

most of the insurance companies still use VaR for the capital requirement issues.

If they use risk capital allocation techniques for the risk quantification/performance

management within the company then they should be careful with the choices of the

allocation methods and risk models. The Euler’s allocation method also highlights

the coherency of the ES and affirms its superiority to the VaR.
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Table 4.2: Proportions of Contributions of Sub-Portfolios Under Different Allocation
Methods for Model.1 at 95% Confidence Level.

Sub-Portfolios / Allocation Methods
Risk Measures GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Euler’s Method
VaR 1.86 0.24 2.35 15.50 78.20 1.85
ES 1.76 0.33 1.09 15.08 80.81 0.93
MSSD 3.84 1.55 2.73 12.54 77.59 1.74
MSD 5.15 2.24 3.71 14.65 71.34 2.91

Proportional Method
VaR 13.26 8.62 11.04 19.95 38.99 8.15
ES 10.83 6.87 9.46 20.00 46.07 6.77
MSSD 10.71 6.73 9.06 19.41 46.03 8.07
MSD 11.01 6.86 9.21 19.89 44.08 8.95

Merton-Perold Method
VaR 3.77 1.15 3.19 17.28 73.10 1.51
ES 0.92 0.29 0.44 11.20 86.82 0.33
MSSD 3.26 1.46 2.38 9.85 81.74 1.32
MSD 4.79 2.23 3.50 12.37 74.78 2.33

Shapley Method
VaR 8.87 4.43 6.76 19.09 56.60 4.25
ES 5.84 3.03 4.68 17.20 66.36 2.89
MSSD 6.81 3.57 5.34 16.13 64.02 4.13
MSD 7.66 4.01 5.95 17.37 59.82 5.19

Variance-Covariance Method
All Risk Measures 5.15 2.24 3.71 14.65 71.34 2.91

Table 4.3: Proportions of Contributions of Sub-Portfolios Under Different Allocation
Methods for Log-Normal Model at 95% Confidence Level.

Sub-Portfolios / Allocation Methods
Risk Measures GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Euler’s Method
VaR 33.70 13.81 -0.27 46.69 6.17 -0.09
ES 1.30 0.13 0.35 9.02 88.90 0.30
MSSD 3.18 1.27 2.34 14.22 77.14 1.86
MSD 4.60 1.97 3.35 15.82 71.40 2.85

Proportional Method
VaR 10.20 6.48 9.17 24.03 41.40 8.73
ES 8.73 5.72 7.86 21.08 49.62 6.99
MSSD 10.09 6.35 8.46 20.78 46.16 8.16
MSD 10.63 6.62 8.80 20.91 44.41 8.63

Merton-Perold Method
VaR 2.04 -0.45 0.18 16.97 79.38 1.87
ES 0.22 -0.09 0.36 4.52 94.66 0.33
MSSD 2.61 1.13 2.02 10.97 81.79 1.48
MSD 4.17 1.90 3.17 13.29 75.03 2.44

Shapley Method
VaR 5.94 2.83 4.44 22.95 59.56 4.29
ES 4.01 2.21 3.45 16.24 71.30 2.80
MSSD 6.08 3.18 4.78 17.76 63.95 4.26
MSD 7.11 3.71 5.51 18.58 60.06 5.03

Variance-Covariance Method
All Risk Measures 4.60 1.97 3.35 15.82 71.40 2.85
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Table 4.4: Proportions of Contributions of Sub-Portfolios Under Different Allocation
Methods for Non-central t Model at 95% Confidence Level.

Sub-Portfolios / Allocation Methods
Risk Measures GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Euler’s Method
VaR 6.17 -0.46 30.11 10.49 53.97 -0.29
ES 7.06 1.52 7.20 33.69 49.29 1.23
MSSD 3.05 1.15 4.10 15.26 74.96 1.49
MSD 3.80 1.53 4.51 15.83 72.26 2.07

Proportional Method
VaR 14.60 8.86 11.43 25.26 27.96 11.88
ES 12.79 7.45 10.95 25.79 33.34 9.69
MSSD 9.37 5.56 10.66 21.19 46.05 7.16
MSD 9.74 5.77 10.69 21.17 45.07 7.55

Merton-Perold Method
VaR 13.10 2.14 9.99 35.72 38.67 0.38
ES 5.01 2.06 7.05 29.84 55.64 0.39
MSSD 2.56 1.07 3.50 12.28 79.47 1.13
MSD 3.43 1.52 4.03 13.19 76.12 1.72

Shapley Method
VaR 13.36 5.41 9.54 29.92 34.10 7.67
ES 9.01 4.00 8.49 29.10 44.68 4.71
MSSD 5.59 2.75 6.84 18.48 62.77 3.57
MSD 6.23 3.08 7.09 18.74 60.76 4.11

Variance-Covariance Method
All Risk Measures 3.80 1.53 4.51 15.83 72.26 2.07

Table 4.5: Proportions of Contributions of Sub-Portfolios Under Different Allocation
Methods for Normal Model at 95% Confidence Level.

Sub-Portfolios / Allocation Methods
Risk Measures GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Euler’s Method
VaR 2.79 1.06 1.25 11.63 79.16 4.11
ES 4.32 1.76 2.96 15.60 72.54 2.82
MSSD 4.27 1.93 3.16 15.82 72.01 2.82
MSD 4.31 1.92 3.16 15.97 72.00 2.65

Proportional Method
VaR 10.26 6.59 8.55 20.99 45.03 8.58
ES 10.17 6.59 8.63 21.09 44.87 8.65
MSSD 10.34 6.56 8.67 21.05 44.77 8.61
MSD 10.34 6.58 8.64 21.06 44.79 8.60

Merton-Perold Method
VaR 4.73 1.77 2.33 16.01 73.13 2.02
ES 3.32 2.01 2.71 13.18 76.45 2.32
MSSD 3.82 1.87 2.94 13.27 75.72 2.37
MSD 3.89 1.85 2.96 13.45 75.70 2.14

Shapley Method
VaR 6.81 3.65 5.19 19.05 60.48 4.82
ES 6.64 3.74 5.35 18.62 60.73 4.93
MSSD 6.84 3.70 5.38 18.68 60.41 4.98
MSD 6.84 3.70 5.36 18.73 60.48 4.89

Variance-Covariance Method
All Risk Measures 4.31 1.92 3.16 15.97 72.00 2.65
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Table 4.6: Proportions of Contributions of the Sub-Portfolios Under the Euler’s
Method for Different Risk Models at 95% Confidence Level

Sub-Portfolios / Risk Models
Risk Measures GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Model.1
VaR 1.86 0.24 2.35 15.50 78.20 1.85
ES 1.76 0.33 1.09 15.08 80.81 0.93
MSSD 3.84 1.55 2.73 12.54 77.59 1.74
MSD 5.15 2.24 3.71 14.65 71.34 2.91

Log-Normal
VaR 33.70 13.81 -0.27 46.69 6.17 -0.09
ES 1.30 0.13 0.35 9.02 88.90 0.30
MSSD 3.18 1.27 2.34 14.22 77.14 1.86
MSD 4.60 1.97 3.35 15.82 71.40 2.85

Non-central t
VaR 6.17 -0.46 30.11 10.49 53.97 -0.29
ES 7.06 1.52 7.20 33.69 49.29 1.23
MSSD 3.05 1.15 4.10 15.26 74.96 1.49
MSD 3.80 1.53 4.51 15.83 72.26 2.07

Normal
VaR 2.79 1.06 1.25 11.63 79.16 4.11
ES 4.32 1.76 2.96 15.60 72.54 2.82
MSSD 4.27 1.93 3.16 15.82 72.01 2.82
MSD 4.31 1.92 3.16 15.97 72.00 2.65

Table 4.7: Proportions of Contributions of the Sub-Portfolios Under Proportional
Method for Different Risk Models at 95% Confidence Level

Sub-Portfolios / Risk Models
Risk Measures GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Model.1
VaR 13.26 8.62 11.04 19.95 38.99 8.15
ES 10.83 6.87 9.46 20.00 46.07 6.77
MSSD 10.71 6.73 9.06 19.41 46.03 8.07
MSD 11.01 6.86 9.21 19.89 44.08 8.95

Log-Normal
VaR 10.20 6.48 9.17 24.03 41.40 8.73
ES 8.73 5.72 7.86 21.08 49.62 6.99
MSSD 10.09 6.35 8.46 20.78 46.16 8.16
MSD 10.63 6.62 8.80 20.91 44.41 8.63

Non-central t
VaR 14.60 8.86 11.43 25.26 27.96 11.88
ES 12.79 7.45 10.95 25.79 33.34 9.69
MSSD 9.37 5.56 10.66 21.19 46.05 7.16
MSD 9.74 5.77 10.69 21.17 45.07 7.55

Normal
VaR 10.26 6.59 8.55 20.99 45.03 8.58
ES 10.17 6.59 8.63 21.09 44.87 8.65
MSSD 10.34 6.56 8.67 21.05 44.77 8.61
MSD 10.34 6.58 8.64 21.06 44.79 8.60
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Table 4.8: Proportions of Contributions of the Sub-Portfolios Under the Merton-
Perold Method for Different Risk Models at 95% Confidence Level

Sub-Portfolios / Risk Models
Risk Measures GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Model.1
VaR 3.77 1.15 3.19 17.28 73.10 1.51
ES 0.92 0.29 0.44 11.20 86.82 0.33
MSSD 3.26 1.46 2.38 9.85 81.74 1.32
MSD 4.79 2.23 3.50 12.37 74.78 2.33

Log-Normal
VaR 2.04 -0.45 0.18 16.97 79.38 1.87
ES 0.22 -0.09 0.36 4.52 94.66 0.33
MSSD 2.61 1.13 2.02 10.97 81.79 1.48
MSD 4.17 1.90 3.17 13.29 75.03 2.44

Non-central t
VaR 13.10 2.14 9.99 35.72 38.67 0.38
ES 5.01 2.06 7.05 29.84 55.64 0.39
MSSD 2.56 1.07 3.50 12.28 79.47 1.13
MSD 3.43 1.52 4.03 13.19 76.12 1.72

Normal
VaR 4.73 1.77 2.33 16.01 73.13 2.02
ES 3.32 2.01 2.71 13.18 76.45 2.32
MSSD 3.82 1.87 2.94 13.27 75.72 2.37
MSD 3.89 1.85 2.96 13.45 75.70 2.14

Table 4.9: Proportions of Contributions of the Sub-Portfolios Under the Shapley
Method for Different Risk Models at 95% Confidence Level

Sub-Portfolios / Risk Models
Risk Measures GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Model.1
VaR 8.87 4.43 6.76 19.09 56.60 4.25
ES 5.84 3.03 4.68 17.20 66.36 2.89
MSSD 6.81 3.57 5.34 16.13 64.02 4.13
MSD 7.66 4.01 5.95 17.37 59.82 5.19

Log-Normal
VaR 5.94 2.83 4.44 22.95 59.56 4.29
ES 4.01 2.21 3.45 16.24 71.30 2.80
MSSD 6.08 3.18 4.78 17.76 63.95 4.26
MSD 7.11 3.71 5.51 18.58 60.06 5.03

Non-central t
VaR 13.36 5.41 9.54 29.92 34.10 7.67
ES 9.01 4.00 8.49 29.10 44.68 4.71
MSSD 5.59 2.75 6.84 18.48 62.77 3.57
MSD 6.23 3.08 7.09 18.74 60.76 4.11

Normal
VaR 6.81 3.65 5.19 19.05 60.48 4.82
ES 6.64 3.74 5.35 18.62 60.73 4.93
MSSD 6.84 3.70 5.38 18.68 60.41 4.98
MSD 6.84 3.70 5.36 18.73 60.48 4.89
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Table 4.10: Proportions of Contributions of the Sub-Portfolios Under the VaR for
Different Allocation Methods at 95% Confidence Level

Sub-Portfolios / Allocation Methods
Risk Models GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Euler’s Method
Model.1 1.86 0.24 2.35 15.50 78.20 1.85
Log-Normal 33.70 13.81 -0.27 46.69 6.17 -0.09
Non-central t 6.17 -0.46 30.11 10.49 53.97 -0.29
Normal 2.79 1.06 1.25 11.63 79.16 4.11

Proportional Method
Model.1 13.26 8.62 11.04 19.95 38.99 8.15
Log-Normal 10.20 6.48 9.17 24.03 41.40 8.73
Non-central t 14.60 8.86 11.43 25.26 27.96 11.88
Normal 10.26 6.59 8.55 20.99 45.03 8.58

Merton-Perold Method
Model.1 3.77 1.15 3.19 17.28 73.10 1.51
Log-Normal 2.04 -0.45 0.18 16.97 79.38 1.87
Non-central t 13.10 2.14 9.99 35.72 38.67 0.38
Normal 4.73 1.77 2.33 16.01 73.13 2.02

Shapley Method
Model.1 8.87 4.43 6.76 19.09 56.60 4.25
Log-Normal 5.94 2.83 4.44 22.95 59.56 4.29
Non-central t 13.36 5.41 9.54 29.92 34.10 7.67
Normal 6.81 3.65 5.19 19.05 60.48 4.82

Table 4.11: Proportions of Contributions of the Sub-Portfolios Under the ES for
Different Allocation Methods at 95% Confidence Level

Sub-Portfolios / Allocation Methods
Risk Models GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Euler’s Method
Model.1 1.76 0.33 1.09 15.08 80.81 0.93
Log-Normal 1.30 0.13 0.35 9.02 88.90 0.30
Non-central t 7.06 1.52 7.20 33.69 49.29 1.23
Normal 4.32 1.76 2.96 15.60 72.54 2.82

Proportional Method
Model.1 10.83 6.87 9.46 20.00 46.07 6.77
Log-Normal 8.73 5.72 7.86 21.08 49.62 6.99
Non-central t 12.79 7.45 10.95 25.79 33.34 9.69
Normal 10.17 6.59 8.63 21.09 44.87 8.65

Merton-Perold Method
Model.1 0.92 0.29 0.44 11.20 86.82 0.33
Log-Normal 0.22 -0.09 0.36 4.52 94.66 0.33
Non-central t 5.01 2.06 7.05 29.84 55.64 0.39
Normal 3.32 2.01 2.71 13.18 76.45 2.32

Shapley Method
Model.1 5.84 3.03 4.68 17.20 66.36 2.89
Log-Normal 4.01 2.21 3.45 16.24 71.30 2.80
Non-central t 9.01 4.00 8.49 29.10 44.68 4.71
Normal 6.64 3.74 5.35 18.62 60.73 4.93
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Table 4.12: Proportions of Contributions of the Sub-Portfolios Under the MSD for
Different Allocation Methods at 95% Confidence Level

Sub-Portfolios / Allocation Methods
Risk Models GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Euler’s Method
Model.1 5.15 2.24 3.71 14.65 71.34 2.91
Log-Normal 4.60 1.97 3.35 15.82 71.40 2.85
Non-central t 3.80 1.53 4.51 15.83 72.26 2.07
Normal 4.31 1.92 3.16 15.97 72.00 2.65

Proportional Method
Model.1 11.01 6.86 9.21 19.89 44.08 8.95
Log-Normal 10.63 6.62 8.80 20.91 44.41 8.63
Non-central t 9.74 5.77 10.69 21.17 45.07 7.55
Normal 10.34 6.58 8.64 21.06 44.79 8.60

Merton-Perold Method
Model.1 4.79 2.23 3.50 12.37 74.78 2.33
Log-Normal 4.17 1.90 3.17 13.29 75.03 2.44
Non-central t 3.43 1.52 4.03 13.19 76.12 1.72
Normal 3.89 1.85 2.96 13.45 75.70 2.14

Shapley Method
Model.1 7.66 4.01 5.95 17.37 59.82 5.19
Log-Normal 7.11 3.71 5.51 18.58 60.06 5.03
Non-central t 6.23 3.08 7.09 18.74 60.76 4.11
Normal 6.84 3.70 5.36 18.73 60.48 4.89

Table 4.13: Proportions of Contributions of the Sub-Portfolios Under the MSSD for
Different Allocation Methods at 95% Confidence Level

Sub-Portfolios / Allocation Methods
Risk Models GL(BL) E(BL) F(BL) S(ML) EQ(ML) F(ML)

Euler’s Method
Model.1 3.84 1.55 2.73 12.54 77.59 1.74
Log-Normal 3.18 1.27 2.34 14.22 77.14 1.86
Non-central t 3.05 1.15 4.10 15.26 74.96 1.49
Normal 4.27 1.93 3.16 15.82 72.01 2.82

Proportional Method
Model.1 10.71 6.73 9.06 19.41 46.03 8.07
Log-Normal 10.09 6.35 8.46 20.78 46.16 8.16
Non-central t 9.37 5.56 10.66 21.19 46.05 7.16
Normal 10.34 6.56 8.67 21.05 44.77 8.61

Merton-Perold Method
Model.1 3.26 1.46 2.38 9.85 81.74 1.32
Log-Normal 2.61 1.13 2.02 10.97 81.79 1.48
Non-central t 2.56 1.07 3.50 12.28 79.47 1.13
Normal 3.82 1.87 2.94 13.27 75.72 2.37

Shapley Method
Model.1 6.81 3.57 5.34 16.13 64.02 4.13
Log-Normal 6.08 3.18 4.78 17.76 63.95 4.26
Non-central t 5.59 2.75 6.84 18.48 62.77 3.57
Normal 6.84 3.70 5.38 18.68 60.41 4.98
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Table 4.14: L2 Distances Between the Euler’s Allocation Method and Other Allocation
Methods.

Allocation Methods / Risk Models
Risk Measures Euler&Var-Cov. Euler&Prop. Euler&Mer.Per. Euler&Shap.

Model.1
VaR 0.081 0.433 0.059 0.239
ES 0.108 0.382 0.073 0.159
MSSD 0.069 0.346 0.050 0.149
MSD 0.000 0.299 0.042 0.126

Log-Normal
VaR 0.788 0.503 0.863 0.659
ES 0.196 0.433 0.074 0.197
MSSD 0.063 0.340 0.057 0.145
MSD 0.000 0.296 0.045 0.124

Non-central t
VaR 0.321 0.394 0.365 0.367
ES 0.294 0.217 0.078 0.081
MSSD 0.030 0.317 0.055 0.134
MSD 0.000 0.298 0.047 0.126

Normal
VaR 0.089 0.376 0.081 0.210
ES 0.007 0.303 0.047 0.130
MSSD 0.002 0.299 0.046 0.127
MSD 0.000 0.298 0.045 0.126

Table 4.15: Spearman’s Rho Rank Correlation Coefficients Between the Euler’s Allo-
cation Method and Other Allocation Methods.

Allocation Methods / Risk Models
Risk Measures Euler&Var-Cov. Euler&Prop. Euler&Mer.Per. Euler&Shap.

Model.1
VaR 0.94 0.89 0.94 0.89
ES 1.00 0.94 1.00 0.94
MSSD 1.00 1.00 0.94 1.00
MSD 1.00 1.00 1.00 1.00

Log-Normal
VaR 0.31 0.31 0.37 0.31
ES 1.00 1.00 0.83 1.00
MSSD 1.00 1.00 1.00 1.00
MSD 1.00 1.00 1.00 1.00

Non-central t
VaR 0.94 0.66 0.77 0.83
ES 0.94 0.89 1.00 0.89
MSSD 1.00 1.00 1.00 1.00
MSD 1.00 1.00 1.00 1.00

Normal
VaR 0.83 0.94 0.83 0.83
ES 1.00 0.94 1.00 1.00
MSSD 1.00 1.00 1.00 1.00
MSD 1.00 1.00 1.00 1.00
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Table 4.16: Kendall’s Tau Rank Correlation Coefficients Between the Euler’s Alloca-
tion Method and Other Allocation Methods.

Allocation Methods / Risk Models
Risk Measures Euler&Var-Cov. Euler&Prop. Euler&Mer.Per. Euler&Shap.

Model.1
VaR 0.87 0.73 0.87 0.73
ES 1.00 0.87 1.00 0.87
MSSD 1.00 1.00 0.87 1.00
MSD 1.00 1.00 1.00 1.00

Log-Normal
VaR 0.20 0.20 0.33 0.20
ES 1.00 1.00 0.73 1.00
MSSD 1.00 1.00 1.00 1.00
MSD 1.00 1.00 1.00 1.00

Non-central t
VaR 0.87 0.60 0.60 0.73
ES 0.87 0.73 1.00 0.73
MSSD 1.00 1.00 1.00 1.00
MSD 1.00 1.00 1.00 1.00

Normal
VaR 0.73 0.87 0.73 0.73
ES 1.00 0.87 1.00 1.00
MSSD 1.00 1.00 1.00 1.00
MSD 1.00 1.00 1.00 1.00
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M1:Model 1, M2:Log−Normal, M3:Non−central t, M4:Normal

Risk Measures
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Chapter 5

Factor Risk Contributions (in

Life-Insurance)

The theory of measuring the separate risk contributions of sub-portfolios (or business

lines) to the overall risk of the portfolio is already rather rich. By considering the

linearity of the portfolio loss variable with respect to loss variables of sub-portfolios

and homogeneity of the risk measure, we can calculate the risk contributions of sub-

portfolios which add up to the overall risk of the portfolio. These contributions are

of great importance for risk capital allocation, risk quantification, performance mea-

surement and hedging.

On the other hand, factor risks are important risk drivers in the portfolios and they

need to be identified, their impact need to be quantified and be managed by risk man-

agers. Hence, contributions of factor risks to the total portfolio risk are important

as they support an understanding of the sources of risk in the portfolio. However,

the methodologies for calculation of the contributions of general factor risks to the

overall risk of a portfolio or a single financial instrument have not been well devel-

oped as much as the methods for the contributions of sub-portfolios to overall risk

of the portfolios. In this case, portfolio losses cannot generally be written as a linear

function of separate factor risks. At first hand, we need a linear loss model in order

to apply any allocation method mentioned in Section 3.2. Thus, we need to convert

the non-linear loss model into a linear one.
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Recently few papers consider directly the problem of factor risk contributions. Cherny

and Madan (2007) describes position contributions of conditional losses given the fac-

tor risks. Tasche (2009) investigate the application of the Euler’s theorem for the

identification of the contributions of underlying names to expected losses of collat-

eralized debt obligation (CDO) tranches. He also studies the measurement of the

impact of systematic factors on portfolio risk. Most recently, Rosen and Saunders

(2010) employ the Hoeffding decomposition for the determination of the factor risk

contributions to the credit risk of a portfolio.

In this chapter, we will provide possible linearisation approximations of the loss model.

Then we will apply the allocation methods to linear model and describe the factor

risk contributions under allocation methods that described in Section 3.2.

After a short introduction to the factor risk contribution theory in general, we now

start to pay our attention to the factor risk contributions under life-insurance and

pensions business.

In recent decades, life expectancy has improved throughout the world and it has ob-

served that mortality is a stochastic process in which longevity improvements are

unpredictable, see Cairns et al. (2006b). It has proved that these improvements have

greater effects on higher ages which directly cause annuity providers to incur losses

on their annuity business. The main problem is that pensioners are living longer than

was anticipated1. Thus, annuity payments last longer than was anticipated. As a

result annuity providers have to bear these costs.

In addition to these uncertainties, there are economic and policy changes that under-

line the management of longevity risk. Mitchell et al. (1997) states that social secu-

rity reforms and the shift from defined benefit to defined contribution private pension

plans should increase demand for individual annuity products in the future. Thus,

with increase in demand for annuities, insurer’s need for risk management of annu-

ity business increases. As a general conclusion insurers interest in understanding the

1Medical advances, new discoveries in genetics and different lifestyles are likely to make future
improvements highly unpredictable.
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longevity risk as well as the possible protection strategies for longevity risk increases2.

By considering the increasing need of risk management/risk quantification of mortal-

ity risk in annuity business, we especially will focus on the life annuities and as is

well known, the principal factor risks that drive the risk and determine the annuity

values are interest-rate risk3 and mortality risk4. Firstly, we will describe the vari-

ance decomposition which is the most common method being used in life insurance

practice to decompose total risk into mortality risk and investment risk. Secondly,

we introduce the Hoeffding decomposition which was recently used to measure factor

contributions to credit risk of a portfolio. We will apply this method to our annu-

ity function and discuss the approach in detail. Last but not least, we define first

order Taylor expansion to the annuity function around a specific point. Thanks to

former two methods we can reach a linear decomposition of factor risks. Then we can

apply allocation methods (especially the Euler’s method) in order to calculate the

contributions of factor risks to the annuity values.

5.1 The Variance Decomposition

Life insurance modelling basically decomposes total portfolio risk into a mortality and

an investment component. Parker (1979); Frees (1998); Bruno et al. (2000) study the

variance as a measure of the riskiness of the life insurance portfolio. The portfolio

loss X is a function of two random variables such that X = G(Z1, Z2). Assume that

Z1 denotes the interest-rate risk and Z2 denotes the mortality risk. The variance

decompositions can be written by the following

Var[X] = E [Var[X | Z1]] + Var [E[X | Z1]] (5.1)

or

Var[X] = E [Var[X | Z2]] + Var [E[X | Z2]] . (5.2)

2The protections can be provided by hedging, asset allocation strategies, reinsurance and by
securitization.

3Throughout the thesis the phrases interest-rate risk and investment risk are interchangeable.
4Throughout the thesis the phrases mortality risk and insurance risk are interchangeable.
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Bruno et al. (2000) suggests two natural ways of writing the total variance of the loss

as the sum of two components as in equation (5.1) and equation (5.2). In equation

(5.1) assume that Z1 is known, say z0. Then, X = G(z0, Z2) is a random quantity

due only to Z2, hence its uncertainty can be summarized by Var[G(z0, Z2)]. Thus the

measure E [Var[X | Z1]] can be interpreted to be the average uncertainty of X due to

Z2, where the averaging is over values of Z1.

Another measure is Var [E[X | Z1]]. E[X | Z1] = E[G(Z1, Z2) | Z1] averages over

all values of Z2. Therefore, the uncertainty in the expectation E[G(Z1, Z2) | Z1] is

due solely to the uncertainty of Z1 and Var [E[X | Z1]] determines this uncertainty.

Similar interpretations can be made for equation (5.2).

Parker (1979) suggests that the decomposition in equation (5.1) is a better choice

then in equation (5.2), and it uses Var [E[X | Z1]] as a measure of investment risk,

whereas E [Var[X | Z1]] as a measure of mortality risk. He shows that in the limit

limc→∞ Var[X
c
] where c is the number of policies, the average mortality risk5 tends to

0, whereas the average investment risk is constant for portfolios of all sizes. This in-

dicates that the average investment risk cannot be diversified by selling more policies

whereas, the non-systematic mortality risk is dispensed with a pooling argument, see

Parker (1979).

However, it was argued in the discussion part of Bruno et al. (2000) that this ap-

proach is not logical and it should be rejected. It was stated that Var [E[X | Z1]]

and Var [E[X | Z2]] are indeed good measures for the portfolio mortality risk and the

investment risk, respectively. However, the same can not be said about other com-

ponents. Precisely, E [Var[X | Z1]] and E [Var[X | Z2]] can not be defined as pure

residuals and they are devoid of any direct meaning, see Bruno et al. (2000).

Frees (1998) studies relative importance of risk sources in life insurance systems by

using the ratio Var [E[X | Z]] /Var[X] where Z is the given factor risk. This ratio is

the well known coefficient of determination that is a measure of risk attribution in

5Note that this is not true for the systematic mortality risk in the portfolio.
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linear regression analysis.

5.2 The Hoeffding Decomposition

The Hoeffding decomposition6 enables us to express portfolio loss as a sum of func-

tions of all subsets of factor risks and the Euler’s allocation method can then be

applied to this decomposition. However, we have to consider contributions not only

from single factor risks, but also from interaction of every subset of factor risks.

Consider now there are k independent factor risks (Z1, ..., ZK) with finite variances,

and assume that the portfolio loss, X = g(Z1, ..., ZK) also has finite variance. By

using the Hoeffding decomposition, X can be written as a sum of uncorrelated terms

involving conditional expectations of g given sets of factor risks Z in the following

way

X =
∑

A⊆{1,...,K}

gA(Zj; j ∈ A) (5.3)

where

gA(Zj; j ∈ A) =
∑

B⊆A

(−1)|A|−|B| E[X | Zk, k ∈ B]. (5.4)

The interpretations of these terms are nicely given in Rosen and Saunders (2010):

“The term gA(Zj; j ∈ A) gives the best hedge (in the quadratic sense)

of the residual risk driven by co-movements of the factors Zj, j ∈ A that

cannot be hedged by considering any smaller subset B ⊂ A of the factors.”

6Rosen and Saunders (2010) measure factor contributions to credit risk of a portfolio by using
the Hoeffding decomposition of the portfolio loss.
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For the set of two factors that is K=2, gA(Zj; j ∈ A) can be written as the sum of

the following functions,

g∅ = E[X]

gk = E[X | Zk] − E[X]

gk,j = E[X | Zk, Zj] − E[X | Zk] − E[X | Zj] + E[X]

Then, the constant term g∅=E[X] presents the hedge possible using a risk-free instru-

ment. The first-order terms gk hedge the residual risk of the portfolio considering the

kth factor in isolation. The second order terms gk,j hedge the remaining residual risk

from joint moves in the factors Zk and Zj, and so on, for more details see Rosen and

Saunders (2010). Therefore, with these possible individual hedges we can remove the

factor risks if there are instruments available.

Now, with using the Hoeffding decomposition of the portfolio loss we can apply the

allocation methods that was introduced in Sections 3.2.1, 3.2.3 and 3.2.5.

5.2.1 Stand-Alone Contributions

Stand-alone contribution of a factor risk is its measure of risk if we consider it as a

portfolio in isolation. Therefore, it is independent from all other factor risks and it

ignores any hedge and diversification effects. Under stand-alone allocation method,

factor risk contributions can be given by the following

ρ(E[X | Zk]) = ρ(E[g(Z1, ..., ZK) | Zk]). (5.5)

Cherny and Madan (2007) study factor risks and they also use ρ(E[X | Zk]) as the

factor risk Zk contribution to the total portfolio risk. Tasche (2009) studies measure-

ment of the impact of systematic factors on portfolio risk. It defines the risk impact

of the factor Zk on X under risk measure ρ by the following
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RIρ(X | Zk]) =
ρ(E[X | Zk])

ρ(X)
(5.6)

that is the ratio of the stand-alone factor risk contribution to the total risk measure.

5.2.2 Incremental Contributions

This method resembles the Merton-Perold method, see Section 3.2.3. The factor

risk contribution is measured by the difference between the portfolio risk calculated

including all factor risks (Z1, ..., ZK) and the portfolio risk calculated without the

kth factor risk. It can be useful for analyzing the effects of addition/subtraction of

different factor risks on the overall portfolio risk, for more details see Cherny and

Madan (2007). We can define the incremental factor risk contribution of factor risk

Zk in the following way

ρ(X) − ρ(E[X | Z[k]) (5.7)

where Z[k] = {Z1, Z2, ..., Zk−1, Zk+1, ..., ZK}.

Stand-alone and incremental contributions do not consider the correlations between

different factor risks, even if there is no correlation between different factor risks,

factor contributions do not necessarily add up to total risk which means factor risks

do not control the overall risk of the portfolio. Therefore, these methods provide only

relative riskiness of the factor risks to each other.

5.2.3 Marginal Contributions

Using the Hoeffding decomposition the portfolio loss can be written as a sum of a set

of random variables and the Euler’s method can be applied as in the following,

aA =
∂ρ

∂ǫ
(X + ǫgA(Zk; k ∈ A)) |ǫ=0 . (5.8)
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where aA is the allocated risk capital to set gA. Rosen and Saunders (2010) defines

the contribution of the term gA to the overall risk as a residual contribution to risk

arising from the interaction of the factors Zk, k ∈ A that is not captured by the effects

of any subset of these factors. The impact of factor Zk that is not already captured

in the expected loss E[X] is measured by gk(Zk). The contribution of gj,k(Zk, Zj) is

the residual contribution to losses of the joint effect of the factors Zk and Zj, that is

not already captured by the expected loss and the conditional expectations E[X | Zk],

E[X | Zj], see Rosen and Saunders (2010).

5.3 The Taylor Expansion

We will now consider an alternative to the Hoeffding decomposition to linearise the

loss model in order to be able to apply allocation methods.

Let us firstly introduce the Taylor expansion methodology. When we interested in a

functions f(x) properties at or near a point x = x0 we can use the nth order Taylor

expansion around x0 and we can write

f(x) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + ... =
∞
∑

n=0

f (n)(x0)

n!
(x − x0)

n

(5.9)

where n! denotes the factorial of n and f (n)(x0) denotes the nth derivative of f eval-

uated at the point x0. Considering this methodology we can apply first order Taylor

expansion (that considers the first two expressions in equation (5.9)) to any function

f that is differentiable at a given point.

Assume that the annuity function f is bi-variate that is a function of Z1 and Z2:

f(Z1, Z2). Let Ẑ1 = z1 and Ẑ2 = z2. Then, we can write linear approximation of

f(Z1, Z2) that is based on the first order Taylor expansion around Ẑ1 and Ẑ2 as in

the following
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f(Z1, Z2) ≈ ∆0 + ∆1(Z1 − Ẑ1)

+ ∆2(Z2 − Ẑ2) (5.10)

where ∆0 is a scalar function, ∆1 is first derivative of f(Z1, Z2) with respect to (wrt

hereafter) Z1 and ∆2 is first derivative of f(Z1, Z2) wrt Z2, that is,

∆0 = f(Ẑ1, Ẑ2) (5.11)

∆1 =
∂f(Z1, Z2)

∂Z1

|Z1=Ẑ1
(5.12)

∆2 =
∂f(Z1, Z2)

∂Z2

|Z2=Ẑ2
(5.13)

We can now treat the linear decomposition in (5.10) as a portfolio of two risky and a

risk-free asset such that,

Risk-free part denoted by frf :

f(Z1, Z2)rf = ∆0 − ∆1Ẑ1 − ∆2Ẑ2 (5.14)

Risky part denoted by fr:

f(Z1, Z2)r = ∆1Z1 + ∆2Z2 (5.15)

so that

f(Z1, Z2) = f(Z1, Z2)rf + f(Z1, Z2)r.
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We can ignore the risk-free part of the portfolio for allocation purposes. Consider now

(5.15) as a portfolio of risky assets (∆1Z1) and (∆2Z2) with asset weights ϕ1 and ϕ2

such that

f(Z1, Z2)r = ϕ1(∆1Z1) + ϕ2(∆2Z2) (5.16)

where ϕ1=ϕ2=1. Hence, we can now apply different allocation methods to the linear

combinations of risky assets in (5.16). Especially, we want to calculate the Euler’s

contributions of Z1 and Z2 to the function f(Z1, Z2) for the comparison between the

Hoeffding decomposition and linear approximation7.

5.3.1 Marginal Contributions under the Taylor Expansion

We can calculate the Euler’s contributions of risky assets ∆1Z1 and ∆2Z2 to ρ(f(Z1, Z2)r)

by differentiating ρ(f(Z1, Z2)r) wrt ϕ1 and ϕ2 in (5.16) where ρ is the risk measure8.

Hence, by considering the additivity of the loss model and positive homogeneity of

the risk measure ρ we can decompose the risk measure ρ(f(Z1, Z2)r) into

ρ(f(Z1, Z2)r) = ϕ1
∂ρ(f(Z1, Z2)r)

∂ϕ1

+ ϕ2
∂ρ(f(Z1, Z2)r)

∂ϕ2

(5.17)

We here applied equation (3.10) with u1 = ϕ1, u2 = ϕ2 where ∂ρ(f(Z1,Z2)r)
∂ϕ1

, ∂ρ(f(Z1,Z2)r)
∂ϕ2

can be thought of as the per unit contributions of ∆1Z1 and ∆2Z2 to the overall loss,

respectively.

We will discuss the application of these methods in detail in Chapter 7.

7Other allocation methods (stand-alone, incremental etc.) also can be applied to the linear
decomposition (5.16). However, as they are insufficient to lead coherent results we ignore these
allocation methods in combination with the Taylor expansion approach

8We can also think that these are the Euler’s contributions of Z1 and Z2 to f(Z1, Z2) as the
risk-free part is ignored.
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Chapter 6

Risk-Neutral Pricing Framework

for Mortality Contingent Claims

In this chapter, we introduce the no-arbitrage pricing approach that we will use to

price annuity contracts which are described in Chapter 7. We need market prices

of annuities at predetermined valuation dates in order to analyse either the distribu-

tions of the future annuities or contributions of underlying factor risks to the annuity

prices. At first we introduce the term structure of interest-rates and zero-coupon

bonds. Then, we review the no-arbitrage pricing theory, including the key concepts.

Finally, we discuss the term structure of mortality rates.

Annuity contracts are contingent claims whose payoff at maturity depends on the

evolution of some underlying random quantities. That’s why they can be named

‘derivative’ which states that they are written on other quantities. In real economies,

the price of a derivative, like the price of any other commodity, is determined by

the market participants where this determination is based on supply and demand in

the market. However, the risk-neutral pricing approach value a derivative in a mar-

ket consistent way such that it determines a relative price in which the value of the

derivative is expressed in terms of the market prices of underlying quantities. In what

follows, the notation from Cairns (2004a) is adopted.

We assume that there exist a probability space (F,F , F) equipped with a right-

continuous filtration Ft with F0 = {∅, F} where F is the real world measure. Let
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the state space F describe all possible events in the financial market, so that the

filtration Ft ∀t ∈ [0, T ] contains all available information about the financial market

up to time t. A numéraire process is a price process B(t) which is strictly positive

∀t ∈ [0, T ] with B(0) =1. We assume that the numéraire is a cash account in this

study. It evolves according to the following differential equation

dB(t) = r(t)B(t)dt with B(0) = 1 (6.1)

where r(t) is the instantaneous risk-free rate of interest that is adapted to Ft. There-

fore,

B(t) = exp

(∫ t

0

r(u)du

)

. (6.2)

6.1 Term Structure of Interest Rates

In this section we discuss the zero-coupon bond prices and interest-rates in detail,

considering the probability space (F,F , F) and short rate r(t) as in the previous sec-

tion.

Zero-Coupon Bonds:

A T -year zero-coupon bond is a financial contract which pays £1 at maturity T . Let

P (t, T ) denotes the time t price of a zero-coupon bond with maturity, T . A zero

coupon bond P (t, T ) is also known as a discount factor from time T back to time t

for the calculation of the present value of a single cashflow. It is clear that P (t, t)=1

for all t. No-arbitrage pricing also states that P (t, T ) ≤ 1 for all T .

Spot Rates:

The spot rate is the interest-rate that is quoted for immediate settlement. The spot

rate at time t for maturity at time T is defined as

R(t, T ) =
− log P (t, T )

T − t
(6.3)
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that is

P (t, T ) = exp[−(T − t)R(t, T )]. (6.4)

Forward Rates:

Forward rates are agreed interest-rates over a specified future term. Assuming that

the P (t, T ) is differentiable w.r.t time T , the instantaneous forward rate curve at time

t is given by

f(t, T ) = − ∂

∂T
log P (t, T ). (6.5)

f(t, T ) can be interpreted as the risk-free interest-rate settled at time t over the in-

finitesimal time interval from T to T + dt. Arbitrage indicates that f(t, T ) must be

positive for all T ≥ t, see Cairns (2004a).

Short Rates:

The short rate can be regarded as the risk-free interest-rate settled at time t over

the infinitesimal time interval from t to t + dt. By taking the limit as T → t, the

instantaneous risk-free interest-rate can be described by the following, see Cairns

(2004a)

r(t) = lim
T→t

f(t, T ). (6.6)

6.2 No-arbitrage Pricing

Suppose that there are d assets available to invest. Let Si(t) for t ∈ [0, T ] be the price

processes of the assets where the price of asset i at time t is denoted by Si(t) for

i = {1, 2, ..., d} with no dividends or coupons payable. Suppose we have θi(t) units of

asset i at time t in our portfolio then,
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A portfolio strategy is any set θ(t)=(θ1(t), θ2(t),..., θd(t)) that is adapted to Ft

The value process corresponding to the portfolio θ(t) at time t is given by

V (t) =
d
∑

i=1

θi(t)Si(t). (6.7)

A portfolio strategy is self-financing if the value process V (t) satisfies the fol-

lowing

dV (t) = θ(t)dS(t). (6.8)

Therefore, a portfolio without withdrawals or deposits is called a self-financing port-

folio. Put another way, if we want to buy a new asset, then we have to finance it

by selling the assets already in the portfolio. Considering these definitions, in what

follows describes what is meant by arbitrage.

Arbitrage exists if there exists a self-financing portfolio θ(t) under which

V (0) =
d
∑

i=1

θi(0)Si(0) = 0,

P r(V (T ) ≥ 0) = 1,

P r(V (T ) > 0) > 0.

So, an arbitrage opportunity can be seen as the making of a gain through trad-

ing without committing any money and without taking a risk of losing money. We

assume that such arbitrage opportunities do not exist under no-arbitrage pricing.

No-arbitrage also states the following conditions, see Cairns (2004a):

• It is impossible to construct a riskless portfolio which returns more than the

risk-free rate of return.
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• If portfolios A and B have identical future cash-flows with certainty, then these

portfolios must have the same value at the present time, the law of one price.

The law of one price clearly states that if we find a self-financing portfolio whose

value equals the payoff of an underlying derivative at maturity, then the prices of the

derivative and the portfolio must be equal in no-arbitrage condition. Therefore, the

fair value of the derivative must equals the initial cost of the portfolio.

Fundamental Theorem of Asset Pricing

Let P (t, T ) denote the price at time t of a zero-coupon bond that pays 1 at maturity,

T and the cash account B(t) is given by (6.2). According to the Fundamental Theo-

rem of Asset Pricing, see Cairns (2004a),

A1. Bond prices evolve in a way that is arbitrage-free if and only if there exist a

measure Q which is equivalent to F so that for each T , the discounted price process

P (t, T )/B(t) is a martingale ∀t : 0 < t < T .

A2. If A1 holds, then the market is complete if and only if Q is the unique measure

under which P (t, T )/B(t) is a martingale.

Therefore, A1 directly implies that

P (t, T ) = EQ

[

exp

(

−
∫ T

t

r(u)du

)

| Ft

]

(6.9)

where EQ implies expectation with respect to a risk-neutral (or equivalent martingale)

measure Q and Ft is the information available at time t.

Consider now X as a FT -measurable derivative payment payable at time T and V (t)

is the fair value at time t of this derivative contract, then the discounted price process

V (t)/B(t) is a martingale under Q and V (t) can be calculated by the following,

V (t) = EQ

[

exp

(

−
∫ T

t

r(u)du

)

X | Ft

]

(6.10)

that is known as the risk-neutral valuation formula. Under a risk-neutral measure,
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any contingent claim’s price grows on average at the risk-free rate.

6.3 Term Structure of Mortality Rates

In equation (6.10) we considered X as a general derivative. In our particular study,

this derivative is an index-linked zero-coupon longevity bond, (T, x)-bond, which pays

the amount S(T, x) at time T where S(T, x) is the survivor index (defined below) at

time T for cohort aged x at time 0. Therefore, we need to consider biometric events

especially, survival of individuals. In this section, we describe the term structure of

mortality and define the components of a model for stochastic mortality.

Let µ(t, x) denote the force of mortality at time t for individuals aged x at time t. In

practice deterministic mortality models assume that µ(t, x) is a deterministic function

of t and x. We here consider µ(t, x) as a stochastic process. Throughout this section

we borrow the relevant stochastic mortality notation of Cairns et al. (2006b).

Consider now an individual aged x at time 0 and suppose that there are large classes

of similar individuals (same gender, age and health status). Furthermore, we assume

that biometric states of individuals are conditionally independent of each other and

any two persons with similar biometric status must pay the same price for the same

contracts. We assume there exits a stochastic process µ(t, x + t) which denotes the

instantaneous hazard rate (force of mortality) for an individual aged x + t at time t.

Thus, we define the survivor index by the following

S(u, x) = exp

(

−
∫ u

0

µ(t, x + t)dt

)

(6.11)

where µ(t, x) is the force of mortality at time t for exact age x at time t. S(u, x)

is equal to the probability that an individual aged x at time 0 will survive to age

x + u if µ(t, x) is deterministic. Similarly, S(t2, x − t1)/S(t1, x − t1) for t2 > t1 > 0

can be interpreted as the probability that an individual aged x at time t1 will survive

until a later time t2. If µ(t, x) is stochastic then, S(u, x) is a random variable when

looking forward from time 0 and this can only be observed at time u. Hence, S(u, x)
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can only be regarded as a survival probability if we observe it after time u. In order

to calculate survival probabilities for time t where 0 ≤ t ≤ u ≤ T , we use the law

of iterated expectations. Let Yx(u) be a Markov chain which is equal to 1 if the

individual aged x at time 0 is still alive at time u, that is

Yx(u) =







1 if the individual is alive at time u

0 if the individual is dead at time u.

Also let Mt be the filtration generated by the term structure of mortality, µ(u, x) up

to time t, that is Mt includes full information about the evolution of mortality rates

up to and including time t, but no information about how mortality rates will develop

after time t. We refer to pP(t, T, x) as the survival probability under the real world

measure P that an individual aged x at time 0 and still alive at the current time t (for

given Mt) survives until time T . Taking t = 0 we have the survival probability under

the real world measure P that an individual aged x at time 0, survives until time T is

pP(0, T, x) = Pr[Yx(T ) = 1 | Yx(0) = 1,M0]

= EP[Yx(T ) | Yx(0) = 1,M0]

= EP [EP[Yx(T ) | Yx(0) = 1,MT ] | M0]

= EP

[

S(T, x)

S(0, x)
| M0

]

= EP[S(T, x)]

where S(0, x)=1, which can also be formulated as

pP(0, T, x) = EP[S(T, x)]

= EP

[

exp

(

−
∫ T

0

µ(t, x + t)dt

)]

. (6.12)

More generally, taking t random, the survival probability under the real world measure
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P that an individual aged x at time 0 and still alive at the current time t survives

until time T is given by the following

pP(t, T, x) = EP[Yx(T ) | Yx(t) = 1,Mt]

= EP

[

S(T, x)

S(t, x)
| Mt

]

(6.13)

which can also be formulated as

pP(t, T, x) = EP

[

exp

(

−
∫ T

t

µ(s, x + s)ds

)

| Mt

]

. (6.14)

Heretofore, we consider the mortality model under the real world measure P. For

valuation purposes in Chapter 7 we will mainly work under the risk-neutral measure

Q that is equivalent to, in the probabilistic sense, the real world measure P. Let

us refer to pQ(t, T, x) as the survival probability calculated under the risk-neutral

measure Q which can be defined by the following

pQ(t, T, x) = EQ[Yx(T ) | Yx(t) = 1,Mt]

= EQ

[

S(T, x)

S(t, x)
| Mt

]

. (6.15)

pQ(t, T, x) can be interpreted as “spot survival probabilities or as market pricing sur-

vival probabilities”, see Cairns et al. (2006b).

6.4 A common filtered probability space

In order to model the market in which pension contracts are traded, we need to

consider a common filtered probability space in which, both financial market (term-

structure of interest rates) and the market of biometric events (term-structure of

mortality) are modelled simultaneously.
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We assume that the market consists of two types of contracts: zero-coupon bonds

for a full range of terms to maturity and life annuity contracts for a full range of

ages and terms to maturity. Recall that a (T, x)-bond pays the amount S(T, x) at

time T where S(T, x) is the survivor index at time T for a cohort aged x at time

0, Ft is the filtration generated by the term-structure of interest rates up to time

t, Mt is the filtration generated by the term-structure of mortality, and Ht is the

combined filtration for both the term-structure of interest rates and mortality rates,

e.g. Ht = Ft ⊗Mt
1. Let V (t, T, x) denote the price at time t of the (T, x)-bond that

pays S(T, x) at time T . If there exists a risk-neutral measure Q equivalent to the real

world measure P then

P (t, T ) = EQ

[

exp

(

−
∫ T

t

r(u)du

)

| Ft

]

(6.16)

and

V (t, T, x) = EQ

[

exp

(

−
∫ T

t

r(u)du

)

S(T, x)

S(t, x)
| Ht

]

. (6.17)

for all t, T and x, then the dynamics of the combined market are arbitrage free, that

is, under the risk-neutral measure Q the discounted price process of any contingent

claim is a martingale.

The independence assumption of the financial events and biometric events allows us

to separate the valuing of biometric (mortality) risk from the valuing of financial

(interest-rate) risk. Hence,

1We assume that the dynamics of the financial events are independent of the dynamics of biometric
events. This assumption is very useful and we believe that it is reasonable under normal conditions.
However, some evidence show that over the very long run the term structure of interest-rates will be
influenced by the relative size of the capital stock to the population that owns it and the population
might be influenced by mortality dynamics. Moreover, a catastrophe in the short run can affects the
size of the population will also affect interest-rates, see Cairns et al. (2006a).
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V (t, T, x) = EQ

[

exp

(

−
∫ T

t

r(u)du

)

S(T, x)

S(t, x)
| Ht

]

= EQ

[

exp

(

−
∫ T

t

r(u)du

)

| Ft

]

EQ

[

S(T, x)

S(t, x)
| Mt

]

= P (t, T )pQ(t, T, x) (6.18)

gives the price of the (T, x)-bond where pQ(t, T, x) is calculated under the risk-neutral

measure Q.

We need to emphasize that these annuity contracts are not tradable assets in the

market like zero-coupon bonds. Moreover, the insurance market is not considered to

be a liquid and frictionless market. Another important point is that the risk-neutral

measure Q might not be unique due to market incompleteness. Therefore, the choice

of the risk-neutral measure Q becomes part of the modelling process. We can test the

validity of our assumptions about Q after mortality-linked securities begin to emerge

and we can gather the market price for these securities. For more details, see Cairns

et al. (2006b).
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Chapter 7

Case Study 2: Contributions of

Factor Risks to the Portfolio Loss

In this part of the thesis we work on the liabilities of a life insurance company (es-

pecially on life annuities) where the total portfolio loss is non-linear with respect to

factor risks in the portfolio. We apply and compare different approaches that we dis-

cussed in Chapter 5 to calculate contributions of factor risks to the annuity portfolio

loss. Firstly, we describe the interest-rate model and mortality model in detail that we

introduced in Chapter 6. We describe these models under both the real world measure

and the risk-neutral measure. We need the former for simulation model whereas; the

latter will be used in valuation model. Secondly, we introduce the simulation study

and scenarios. Then, we investigate the distributions of future annuity values. Next,

we describe the Hoeffding decomposition and linear approximation that is adapted

to annuity function and we examine the contributions of factor risks to the future

annuity values. Lastly, we discuss the results.

7.1 Model Setup for Case Study 2

In this section, we describe the occupied models of the interest-rate and the mortality

rate in detail. Then, we introduce the pricing methodology for annuities. Parameter

estimates of the models and assumptions are also introduced in this section.
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7.1.1 A Stochastic Interest-Rate Model

For our particular study we use the Cox-Ingersoll-Ross (CIR) model to model interest-

rates, see Cox et al. (1985). In the following we define the CIR model dynamics under

both the risk-neutral and the real world measures.

The Interest-Rate Model under the Risk-Neutral Measure

We assume that there exist a measurable space (F,F) equipped with a filtration

Ft ∀t ∈ [0, T ]. The instantaneous spot interest-rate r (that is adapted to Ft) is a

continuous-time stochastic process under the CIR model. Solving the following SDE

dr(t) = α(r̄ − r(t))dt + σ
√

r(t)dW̃ (t) (7.1)

where α represents the mean-reversion parameter, r̄ represents the risk-neutral long-

term mean spot interest-rate, σ represents the volatility parameter of the interest-rate

and W̃ (t) is a standard Brownian motion under a probability measure Q on (F,F)

which we consider to be the risk-neutral measure.

The properties of the interest-rate behaviour implied by the CIR model are:

• This model allows for interest rates to be mean-reverting where the long term

mean equals r̄.

• Negative interest-rates are prevented.

• The absolute variance of the interest-rate increases if the interest-rate itself

increases.

The probability density of the interest-rate at time s, conditional on it’s time t value

for s ≥ t is given by

f(r(s), r(t)) = c exp(−u − v)
(u

v

)q/2

Iq(2
√

2uv) (7.2)

where
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c =
2α

σ2 (1 − exp(−α(s − t)))

u = cr(t) exp(−α(s − t))

v = cr(s)

q =
2αr̄

σ2
− 1

and Iq(). is the modified Bessel function of order q, see Cox et al. (1985). The expected

value and variance of r(s) can be calculated by the following

E[r(s)|r(t)] = r(t) exp(−α(s − t)) + r̄ (1 − exp(−α(s − t))) (7.3)

Var[r(s)|r(t)] = r(t)
σ2

α
(exp(−α(s − t) − exp(−2α(s − t)) + r̄

σ2

2α
(1 − exp(−α(s − t))2 .

(7.4)

Considering equations (7.3) and (7.4), we can make some comments on the properties

of future interest-rates. As α approaches zero, the conditional mean goes to the

current interest-rate and variance goes to σ2r(t)(s−t) whereas as α approaches infinity,

the conditional mean goes to r̄ and the variance goes to zero. We can also say that

lim
s→∞

E[r(s)|r(t)] = r̄. (7.5)

The CIR model is particularly useful as the exact distribution of future instantaneous

spot interest-rate under the CIR model is known. Precisely, if r(T ) follows a CIR pro-

cess, then (4αr(T )/(σ2(1 − exp(−αT )), for given r(0), has a non-central chi-squared

distribution with 4αr̄/σ2 degrees of freedom and non-centrality parameter equal to

(4αr(0)/(σ2(exp(αT ) − 1), see Cairns (2004a).
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Moreover it gives a straightforward formula for spot-rate term-structure based on

the current instantaneous spot-rate. Consider R(t, T ) as the time-t spot-rate for the

fixed maturity T that is given in equation (6.3) where P (t, T ) is the time-t price of a

zero-coupon bond with maturity T that is:

P (t, T ) = C(t, T ) exp[−D(t, T )r(T )] (7.6)

C(t, T ) =

(

2γ exp[(α + γ)(T − t)/2]

(γ + α)(exp[γ(T − t)] − 1) + 2γ

)2r̄α/σ2

(7.7)

D(t, T ) =
2(exp[γ(T − t)] − 1)

(γ + α)(exp[γ(T − t)] − 1) + 2γ
(7.8)

where γ =
√

α2 + 2σ2, see Cox et al. (1985).

The Interest-Rate Model under the Real World Measure

In equation (7.1) we have the interest-rate model under the risk-neutral measure Q.

However, we need the real world measure P dynamics of the interest-rate model for

simulation model. Therefore, we need to change the measure from Q to P, keeping in

mind that the P ≈ Q. We assume that the market price of risk is proportional to the

square-root of the short rate
√

r(t), therefore we can define the market price of risk

by the following

λ
√

r(t) (7.9)

and using (7.9) we can determine the real world dynamics of the model by the following
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dr(t) = α(r̄ − r(t))dt + σ
√

r(t)dW̃ (t)

= α(r̄ − r(t))dt + σ
√

r(t)
(

dW (t) + λ
√

r(t)dt
)

= α(r̄ − r(t))dt + λσr(t)dt + σ
√

r(t)dW (t)

= (αr̄ − (α − λσ)r(t)) dt + σ
√

r(t)dW (t)

consequently we have

dr(t) = α̃(˜̄r − r(t))dt + σ
√

r(t)dW (t) (7.10)

where

α̃ = α − λσ

˜̄r =
α

α − λσ

are the mean-reversion parameter and long-term mean of the spot interest-rate under

the real world measure P, respectively. W (t) is a standard Brownian motion under

the real world measure P. For more details see Cairns (2004a).

7.1.2 A Stochastic Mortality Model

For our particular study we will apply a mortality model introduced by Cairns et al.

(2006a). We define the dynamics of this model under both the real world measure

and the risk-neutral measure in the following.

The Mortality Model under the Real-World Measure

We now assume that q(t+1, x) be the realized mortality rate in year t+1 for individual

aged x at time 0 that is the probability as measured at time t + 1 that an individual
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aged x at time 0 and still alive at time t, dies before reaching time t + 1. q(t + 1, x)

can be modelled in the following

q(t + 1, x) =
exp[A1(t + 1) + A2(t + 1)(x − x̄)]

1 + exp[A1(t + 1) + A2(t + 1)(x − x̄)]
(7.11)

where A1(t + 1) and A2(t + 1) are themselves stochastic processes and x̄ is a constant

which is equal to the mean of the range of ages used in the calibration of the model.

A1(t + 1) affects mortality at all ages in an equal manner, whereas A2(t + 1) affects

mortality proportionally to age. By assuming that A(t + 1) is a random walk with

drift we can define A(t + 1) by the following

A(t + 1) = A(t) + µ + CZ(t + 1) (7.12)

where A(t + 1) = (A1(t + 1), A2(t + 1))′. Here µ is a constant 2×1 vector of drift

parameters, C is a constant 2×2 lower triangular Choleski square root matrix of the

covariance matrix V (that is V = CCT ), and Z(t + 1) is a 2×1 vector of indepen-

dent standard normal variables, see Cairns et al. (2006a). Cairns et al. (2006a, 2009)

show that this mortality model provides a good fit to English&Wales males data over

1961-2004.

We assume that S(t + 1, x) be the survivor index at time t + 1 of a cohort aged x

at time 0 so that S(t + 1, x) is the probability that an individual aged x at time 0

survives to time t + 1. For any given x, S(0, x) = 1 and S(t + 1, x) will decrease as

t gets bigger. Given any path of q(t + 1, x), we can obtain a corresponding path of

S(t + 1, x) from the relationship between mortality rates and survivor index:

S(t + 1, x) = S(t, x)(1 − q(t + 1, x)). (7.13)

90



The Mortality Model under the Risk-Neutral Measure

We now specify the dynamics under the risk-neutral measure Q which is equivalent

to the real world measure P as in Cairns et al. (2006a). Recall that we do not have

a complete market in which all contingent claims can be replicated using hedging

strategies. Therefore, the risk-neutral measure is not unique. The point is expected

returns over the short-term under Q are equal to the short-term risk-free rate of

interest. Under the real world measure

A(t + 1) = A(t) + µ + CZ(t + 1) (7.14)

where Z(t+1) is a standard two-dimensional normal random variable under P. Cairns

et al. (2006a) suggests under the risk-neutral measure

A(t + 1) = A(t) + µ + C(Z̃(t + 1) − λ) (7.15)

= A(t) + µ̃ + CZ̃(t + 1) (7.16)

where µ̃ = µ−Cλ and Z̃(t+1) is a standard two-dimensional normal random variable

under Q. The vector λ = (λ1, λ2) denotes the market prices of longevity risk associated

with the processes A1(t) and A2(t), respectively. λ1 is associated with level shifts and

λ2 is associated with a tilt in mortality. For more details, see Cairns et al. (2006a).

7.1.3 Pricing Longevity Bond

The first example of such a bond is the EIB/BNP longevity bond which was an-

nounced in November 2004. The EIB/BNP longevity bond is a financial contract

which makes annual payments that are proportionally linked to the realisation of the

survivor index for a reference population over the next 25 years where the reference

population is the English and Welsh males aged 65 in 2003.
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Let q(t) be the mortality rate for aged 65 between t and t + 1 for the members of the

reference population. Assume that time t=0 denotes the end of December 2004, end

of December 2005 as t=1 etc. Then the survivor index for the reference population

can be defined as in the following

S(t) = (1 − q(0)) ∗ (1 − q(1)) ∗ (1 − q(2)) ∗ ... ∗ (1 − q(t − 1)). (7.17)

According to the terms of the contract, yearly payments (at the end of each year)

are £50S(t) million at time t=1,2,...,25, respectively for 25 years. We now, examine

how the EIB longevity bond is priced. BNP used the projected survival rates on

the pricing of the bond which are given by the latest GAD’s projections (denoted by

Ŝ(T, x) 1 in the following). This implies that the projected survival rates are unbi-

ased estimates at time 0 under the real world measure P of the survival rates, that is,

Ŝ(T, x) = EP[S(T, x) | M0] where M0 be the filtration generated by the development

of the mortality curve up to time 0 2. Its issue price was based on a yield of 35 basis

points below LIBOR. It is known that the conventional fixed-interest EIB bonds are

usually issued on a yield of 15 basis points below LIBOR. Therefore, the longevity

bond was priced at 20 basis points below standard EIB rates and this spread is ac-

counted for the market price of mortality risk. This spread is denoted by δ in the

following equations.

Next let us refer P (0, T ) as the price at time 0 of a fixed-interest zero-coupon bond

that pays 1 at time T . Then the initial price of the bond was

Vδ(0) =
25
∑

T=1

P (0, T ) exp(Tδ)Ŝ(T, x) (7.18)

which can also be formulated by

1Values for Ŝ(T, x) are specified by BNP.
2That is, M0 represents the history of the mortality curve up to time 0.
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Vδ(0) =
25
∑

T=1

P (0, T ) exp(Tδ)EP[S(T, x) | M0] (7.19)

where P (0, T ) in equation (7.19) should be LIBOR-implied discount factors. Pre-

cisely, let PL(0, T ) denote the LIBOR-implied discount factors and PE(0, T ) denote

the EIB-implied discount factors. EIB longevity bond issue price was based on a yield

of 35 basis points below LIBOR and the conventional fixed-interest EIB bonds are

usually issued on a yield of 15 basis points below LIBOR. Thus, the longevity bond

was priced at 20 basis points below standard EIB rates. According to this relation

the relationship between the two is PE(0, T ) = exp(0.0015T )PL(0, T ) which directly

implies that δ=0.002 in equation (7.19).

With the assumption that the mortality rates over time are independent of the term

structure of the interest rates, the risk-neutral pricing of the bond implies that

VQ(0) =
25
∑

T=1

P (0, T )EQ[S(T, x) | M0)] (7.20)

where the expectation is taken under the risk-neutral measure Q. 20 basis point

spread (expressed as a continuously compounding rate) can be interpreted as an av-

erage yearly risk premium. We here need to emphasize that the risk premium for

the year t2 is expected to be greater than the risk premium of the year t1 if t2 > t1.

The reason for that is the time t survival probability considers year by year mortality

shocks from all years up to year t, therefore each individual shock affects survival

probabilities in all subsequent years, see Cairns et al. (2006a). Hence, the volatility

of survival probabilities is usually very low at the first few years, and then it will pick

up quickly in a non-linear way. This implies that the constant spread would under-

price the long-dated payments but over-price the short-dated payments. Cairns et al.

(2006a) argues that the risk premium will depend upon the term of the bond and on

the initial age of the cohort being tracked.
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In this study we follow the same approach for pricing the longevity bond in order to

calculate time T 3 value of the annuity. We also examine different terms to maturity:

M -year longevity bonds where M=25, 45. Briefly, at first we calculate the value of

the annuity under the real world measure P which consider the risk premium spread4

that is

V M
δ (T ) =

M
∑

i=1

P (T, T + i, r(T )) exp(iδ)EP[S(T + i, x) | A(T )]. (7.21)

Then, under the risk-neutral measure time T value of the annuity can be defined by

V M
Q (T ) =

M
∑

i=1

P (T, T + i, r(T ))EQ[S(T + i, x) | A(T )]. (7.22)

Note that in order to determine the market prices of longevity parameters we use

the same zero-coupon bond curve P (T, T + i, r(T )) for i=1,2,...,M in both (7.21) and

(7.22).

7.1.4 Parameter Estimates/Choices of the Selected Models

We use the mortality rates5 of the ages 65-90 for England&Wales males for the period

1961-2009 in order to estimate the parameters of the model, see (7.12). We find that

the estimates for the parameters in (7.12) are

µ̂ =





−0.0225769

0.0003295



 (7.23)

V̂ = ĈĈ ′ =





7.408048e − 04 1.281308e − 07

1.281308e − 07 1.96997e − 06



 . (7.24)

3Precisely we consider two different points in time: V M
Q (1) (future annuity values in 1-year time)

and V M
Q (40) (future annuity values in 40-year’s time).

4We set δ=0.002 for 25-year annuity and set δ=0.003 for 45-year annuity.
5Mortality data is available at website www.mortality.org.
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Note that x̄=63.5 in (7.11) in order to A1 and A2 to be un-correlated6. For each t, A1

and A2 were estimated using least squares by transforming the mortality rates from

qy to log qy

py
= A1 + A2y + error where py = 1 − qy. Cairns et al. (2006a) also fitted

simpler parametric curves (for example, qy = aA1+A2y), however, they found that the

former curve gives a significantly better fit, especially for higher ages.

Estimated values for A1(t) and A2(t) for the given period are plotted in Figure 7.1. It

is clear that both series have a trend. A1(t) has a downward trend which reflects the

general improvements in mortality over time at all ages. A2(t) has an upward trend

which means mortality improvements have been greater at lower ages, see Dowd et al.

(2010). The mortality curve of year 2009 for ages 65-90 is given in Figure 7.2. The

fit is clearly very good7.
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Figure 7.1: Estimated Values of A1(t)(Left-Hand Panel) and A2(t)(Right-Hand
Panel) in equation (7.11) from 1961 to 2009

6Although, x̄ is equal to the mean of the range of ages used in the calibration of the model that
is 77.5, we use it as 63.5. In doing so the calculation of the factor risk contributions of A1(t) and
A2(t) in Section 7.3 can be done accurately.

7We will examine annuities with different terms to maturity. Precisely, annuities with 25-years
and 45-years term to maturity. For 45-year annuity we use extrapolation to calculate survivor rates
after age 90.
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Figure 7.2: Ungraduated Mortality Rates of Ages 65-90 for England and Wales Males
for the Year 2009(black-dotted) and Fitted Curve(red-dashed)

Figure 7.3: Timeline: we consider a deferred annuity with a starting age of 65(at time
40), continue for M years which is purchased at the age of 25( at time 0). Payments
are made at time 40+i under the condition that the insured is alive at time 40+i
where the payments are S(40 + i, 25) for i=1,2,...,M . The risk-adjusted prices of
M -year annuities at times 0, 1 and 40 are denoted by V M

Q (0), V M
Q (1) and V M

Q (40),
respectively. Recall that we analyse 25-year and 45-year annuities, therefore M takes
a value of 25 or 45.
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Consider the case of a male currently aged 25 (at year 2009) who is starting a defined

contribution plan and is planning to retire in, say, 40 years time at the age of 65. At

the age of 65 he will convert his pension fund into a life annuity. The survivor index

can be used to calculate the present value of this annuity payable annually in arrears

for a period of M years (we assume that the mortality rate at age 65+M is 1) to a

male aged 65 at the start of year 2049, see Figure 7.3.

If we combine the mortality and the interest-rate model, we have three random state

variables, namely A1(t), A2(t) from the mortality model, and r(t) from the interest-

rate model. In order to calculate the annuity value at specific time T by assuming the
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Table 7.1: Inputs for the Simulation Study (for Life Annuity)

Inputs
Age at retirement 65

Years to retirement 40
Current Year 2009

Current instantaneous spot interest rate, r(0) 0.04
Number of Trials in Simulation 5000

Table 7.2: Parameters of the CIR Model under the real world measure P and the
risk-neutral measure Q.

Under Q Under P

α =0.2 ˜̄α=0.29
r̄= 0.04 ˜̄r=0.0275
σ = 0.01 σ=0.01

λ=-0.909

current time is 0, we need simulated values of these random state variables at time T ,

say, [Aj
1(T ), Aj

2(T ), rj(T )] be the jth set of simulated state variables at time T . The

fair value of a M -year annuity at time T , V M
Q (T ), conditional on the simulated state

variables under simulation path j is

V M
Q (T ) =

M
∑

i=1

P (T, T + i, rj(T ))EQ[S(T + i, 25) | Aj(T )] (7.25)

where P (T, T + i, rj(T )) is the time-T zero-coupon bond prices that pay 1 at T + i

given rj(T ), EQ[S(T + i, 25) | Aj(T )] is the expected survivor index at time T + i

and S(40, 25)=1. It also can be defined as the probability of surviving to age 65+i

conditional on surviving to age 65.

Next we will analyse the fair values of 25-year and 45-year annuities at different points

in time, namely time 1 and time 40. In doing so, we can compare the risk factor

contributions at different time horizons. For valuation purposes we use deterministic

mortality model rather than stochastic mortality model in order to cope with the

nested simulations. Under deterministic mortality model, the stochastic process A(t)
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turns into a deterministic process such that A(t + 1) = A(t) + µ. Precisely, for the

valuation at time T , we use stochastic mortality model from time 0 to time T . After

time T , we use the deterministic mortality model. We also assume that S(40, 25)=1

with certainty.

7.2 Annuity Values at Different Times in Future

At this section we will analyse future annuity values at different points in time.

7.2.1 Annuity Values in 40 Years’ Time

We now consider annuity values in 40 year’s time and analyse their distributions un-

der different scenarios. As we need a model that is as realistic as possible, we model

the dynamics of the interest-rates and mortality under the real world measure P up

to the valuation date (time 40). In order to find a time 40 market price for the M-

year annuities that start at time 40, we model the dynamics of the interest-rates and

mortality under the risk-neutral measure Q after the valuation date.

We consider four different cases. In the first case, we assume future mortality rates

to be equal to their current values (values at time 0, year 2009) which means there

are no changes in future mortality rates, but we allow the future instantaneous spot

interest-rate to be stochastic and we use our interest-rate model to simulate its value

at time 40. In the second case, we allow for longevity risk but no interest-rate risk

where future longevity improvements are modelled using stochastic mortality model,

but the future instantaneous spot interest-rate is assumed to equal to its current value

of 4%. In the third case, we allow deterministic longevity risk8 and stochastic interest-

rates. In the last case we allow both interest-rate and longevity to be stochastic. In all

cases, the future annuity values are obtained by taking the time 40 present values of

later cash flows discounted at the relevant interest rate where these rates are obtained

from the CIR interest-rate model.

8Deterministic longevity risk implies that from time 0 to time 40 simulations are done under the
deterministic A(t) processes such that A(t + 1) = A(t) + µ.
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In short, all different cases can be summarized as in the following,

• Case 1: No longevity risk9 & Stochastic interest-rate risk

• Case 2: Stochastic longevity risk & No interest-rate risk

• Case 3: Deterministic longevity risk & Stochastic interest-rate risk

• Case 4: Stochastic longevity risk & Stochastic interest-rate risk.

The interest-rate distribution at time 40 under the real world measure P is given in

Figure 7.4 that is a non-central chi-squared distribution based on (7.10) calibrated

to α̃=0.29, σ=0.1, ˜̄r=0.0275 and T=40. We can see that p.d.f. has a strong positive

skew and a long right-hand tail which shows that the interest-rate risk will have a

serious effect on the distribution of future annuities.

Figure 7.4: Density Function Under P for Future CIR Instantaneous Spot Interest-
Rate at 40-Year Horizon.

The fair value of M -year annuity at time 40 is given by

V M
Q (40) =

M
∑

i=1

P (40, 40 + i, r(40))EQ[S(40 + i, 25) | A1(40), A2(40)] (7.26)

9No longevity risk means there are no improvements in the mortality rates
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where the expectation is taken under the risk-neutral measure Q, S is the survivor

index as in (7.13) and P is the time 40 price of a zero-coupon bond that pays 1 at

maturity 40+i that is calculated by (7.6)10. In order to determine the market prices

of longevity risk parameters λ1 and λ2, firstly we calculate the value of the annuity

with the mortality model under the real world measure P, that is calculated by

V M
δ (40) =

M
∑

i=1

P (40, 40 + i, r(40)) exp(iδ)EP[S(40 + i, 25) | A1(40), A2(40)] (7.27)

where δ11 equals 0.002 and 0.003 for 25-year annuity and 45-year annuity, respectively.

δ choices are depend on the maturity of the bond as well as the age of cohorts at the

retirement date. As we use the age-65 cohort for two different maturities of the bond,

δ is just depend on the maturity of the bond. The longer the term to maturity of

the bond, the greater the risk premium. Cairns et al. (2006a) suggests 20 basis-point

risk premium per annum for the 25-year bond and 25-35 basis-point risk premium

per annum for the 30-year (or more) bond following the age-65 cohort. Different risk

premium δ choices for different terms to maturity and for different age cohorts can

be found in Cairns et al. (2006a).

The values for EP[S(40 + t, 25) | A1(40), A2(40)] based upon parameters in (7.23) and

(7.24) are given in Table 7.3, column 2. Now, the question is: What values for λ1

and λ2 satisfy V M
Q (40)=V M

δ (40)? We obtain V 25
δ (40)=14.677 with δ=0.002. With the

risk-neutral approach we can obtain obtain V 25
λ (40)=14.677 with (λ1, λ2)=(0.0144,0)

and (0,0.00092). The expected cashflows for these two values are given in Table 7.3,

column 4 and 5. We also found a intermediate value for λ between the two extremes12.

We also can obtain V 25
λ (40)=14.677 with (λ1, λ2)=(0.0095,0.0003)13. For this values

of λ, the expected cashflows are given in Table 7.3, column 2. The expected cahsflows

under the risk-neutral measure Q shows up the largest differences compared with the

real world measure P (given in column 2 with (λ1, λ2)=(0,0) and δ=0.002) after t=10,

10Recall that S(40, 25)=1.
11Note that we use similar values of δ for age-65 cohort for 25-year and 45-year maturities with

Cairns et al. (2006a).
12We find these values by fixing first the value for λ1 and then solving for λ2.
13The set of values for (λ1, λ2) that gives a price 14.677 is approximately linear running from

(0.0144,0) to (0,0.00092).
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see Table 7.3.

Table 7.3: 25-year Longevity Bond Expected Cashflows Under the Risk-Neutral Mea-
sure with Various Assumptions for the Market Prices of Longevity Risk Given Time
40 State Variables

Market Prices of Risk Parameters
λ1 0 0.0095 0.0144 0
λ2 0 0.0003 0 0.00092
t EQ[S(40 + t, 25) | A1(40), A2(40)]
1 0.9949 0.9949 0.9950 0.9949
2 0.9892 0.9894 0.9895 0.9893
3 0.9830 0.9834 0.9835 0.9831
4 0.9761 0.9768 0.9770 0.9763
5 0.9685 0.9696 0.9699 0.9689
6 0.9601 0.9617 0.9622 0.9608
7 0.9509 0.9532 0.9538 0.9520
8 0.9407 0.9439 0.9447 0.9424
9 0.9294 0.9338 0.9347 0.9319
10 0.9170 0.9227 0.9239 0.9206
11 0.9033 0.9108 0.9121 0.9084
12 0.8883 0.8978 0.8993 0.8952
13 0.8718 0.8838 0.8854 0.8810
14 0.8536 0.8686 0.8702 0.8657
15 0.8338 0.8521 0.8538 0.8493
16 0.8121 0.8344 0.8361 0.8319
17 0.7884 0.8153 0.8168 0.8133
18 0.7628 0.7949 0.7961 0.7936
19 0.7350 0.7730 0.7738 0.7727
20 0.7050 0.7496 0.7498 0.7508
21 0.6729 0.7247 0.7241 0.7277
22 0.6386 0.6983 0.6967 0.7036
23 0.6023 0.6704 0.6675 0.6784
24 0.5641 0.6411 0.6367 0.6524
25 0.5242 0.6104 0.6042 0.6254

Price
δ=0 14.414 14.677 14.677 14.677
δ=0.002 14.677

It sounds reasonable to think that (λ1, λ2)=(0.0144,0) and (0,0.00092) represent the

extreme values for the market prices of longevity risk: Annuity providers are mainly

concerned with hedging long-term mortality risk in their life-annuity portfolio and it

can be seen in Table 7.3 that the expected cashflows under case (λ1, λ2)=(0,0.00092)

are lower than case (λ1, λ2)=(0.0095,0.0003) for the first 19 years, then after time 20

the expected cashflows become higher under former case. Thus, case (λ1, λ2)=(0,0.00092)

has riskier cashflows than case (λ1, λ2)=(0.0095,0.0003). On the other hand, life offices

are mainly focused on hedging short-term mortality risk in their term-assurance port-

folios. Table 7.3 also shows that the expected cashflows under case (λ1, λ2)=(0.0144,0)
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are higher than case (λ1, λ2)=(0.0095,0.0003) for the first 20 years which indicates that

the former case is riskier than the latter one.

Similarly, we can obtain expected cashflows for 45-year annuity. By applying δ=0.003

to the real world expected cashflows, we obtain the price of 45-year annuity 3.814.

The expected cashflows for 45-year annuity under Q for different choices of λ are

given in Table 7.4. Similar comments can be done for 45-year annuity. This time the

expected cashflows under the risk-neutral measure Q shows up the largest differences

compared with the real world measure P after t=16, see Table 7.4.

Mean and confidence intervals for projected survival indexes of a cohort aged 65 at

time 40 are plotted in Figure 7.5 where we assume S(40, 25)=1. The solid curve plots

the expected values of S(t, 25) under Q. The dashed curves plot the 5th and 95th

percentiles of the distribution of S(t, 25) under Q. Figure 7.5 shows that the resulting

90% confidence interval is quite narrow for the first few years but then becomes quite

wide after time t=55 (60) for 25-year (45-year) annuity. The explanation for this is

that the structure of survival probabilities: their dependency on prior years. Precisely,

the survival probability for year t depends on mortality rates in each of the years 1

to t, therefore if there is a mortality shock on a prior year then all mortality rates

in all subsequent years will be affected by this shock. As a result of this effect the

variance grows rapidly. For a longer maturity, the magnitude of this effect increases.

The survivor index for 45-year annuity has an higher variation then 25-year annuity,

see Figure 7.5.
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Table 7.4: 45-year Longevity Bond Expected Cashflows Under the Risk-Neutral Mea-
sure with Various Assumptions for the Market Prices of Longevity Risk Given Time
40 State Variables

Market Prices of Risk Parameters
λ1 0 0.0055 0.0101 0
λ2 0 0.0002 0 0.000425
t EQ[S(40 + t, 25) | A1(40), A2(40)]
1 0.9949 0.9949 0.9950 0.9949
2 0.9893 0.9894 0.9894 0.9893
3 0.9831 0.9833 0.9834 0.9831
4 0.9762 0.9766 0.9768 0.9763
5 0.9687 0.9693 0.9696 0.9688
6 0.9603 0.9613 0.9618 0.9606
7 0.9511 0.9525 0.9532 0.9516
8 0.9409 0.9428 0.9437 0.9417
9 0.9297 0.9323 0.9335 0.9309
10 0.9173 0.9208 0.9222 0.9190
11 0.9037 0.9082 0.9099 0.9061
12 0.8887 0.8945 0.8965 0.8920
13 0.8723 0.8796 0.8819 0.8766
14 0.8542 0.8634 0.8660 0.8599
15 0.8344 0.8457 0.8487 0.8418
16 0.8128 0.8266 0.8299 0.8222
17 0.7892 0.8059 0.8095 0.8011
18 0.7636 0.7836 0.7874 0.7784
19 0.7358 0.7596 0.7636 0.7541
20 0.7059 0.7339 0.7380 0.7281
21 0.6739 0.7064 0.7105 0.7005
22 0.6397 0.6772 0.6812 0.6713
23 0.6034 0.6463 0.6500 0.6406
24 0.5652 0.6138 0.6171 0.6084
25 0.5254 0.5797 0.5825 0.5748
26 0.4842 0.5444 0.5463 0.5402
27 0.4421 0.5079 0.5088 0.5046
28 0.3994 0.4705 0.4703 0.4684
29 0.3568 0.4326 0.4311 0.4318
30 0.3149 0.3945 0.3916 0.3951
31 0.2742 0.3566 0.3523 0.3588
32 0.2353 0.3194 0.3135 0.3232
33 0.1989 0.2832 0.2759 0.2886
34 0.1654 0.2484 0.2398 0.2554
35 0.1352 0.2156 0.2058 0.2239
36 0.1086 0.1849 0.1742 0.1944
37 0.0855 0.1566 0.1453 0.1671
38 0.0661 0.1310 0.1194 0.1421
39 0.0500 0.1082 0.0967 0.1197
40 0.0371 0.0882 0.0770 0.0997
41 0.0270 0.0709 0.0603 0.0822
42 0.0192 0.0563 0.0464 0.0671
43 0.0133 0.0440 0.0352 0.0542
44 0.0091 0.0340 0.0262 0.0433
45 0.0061 0.0259 0.0191 0.0342

Price
δ=0 15.596 16.184 16.184 16.184
δ=0.003 16.184
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Figure 7.5: Mean and Confidence Intervals for Simulated Survivor Index under Q

Based on Data from 1961-2009 With Given Time 40 State Variables A1(40) and
A2(40). The Mean(Solid Curve) and 5th and 95th Percentiles(Dashed Curves) for the
Simulated Distribution of the Reference Index, S(40, 25)=1, 25-Year Annuity (Left
Hand Panel), 45-Year Annuity (Right Hand Panel)

Some chosen spot-rate curves at time 40 under the CIR interest-rate model are plotted

in Figure 7.6. We can see that quite different yield curves can be generated by the

interest-rate process. However, by the structure of the interest-rate model all different

curves will end up around 0.04 which is the long-term mean of the interest-rates under

the risk-neutral measure Q.
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Figure 7.6: Different Spot-Rate Curves: R(40, 40 + i, r(40)) for i=1,2,...,M as given
in (6.3). Calculated under Q with given (simulated) r(40)s under P, 25-Year Period
(Left Hand Panel), 45-Year Period (Right Hand Panel).
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The risk measures of simulated 25-year and 45-year annuity values for all cases are

given in Table 7.5. The current fair value14 of 45-year annuity (25-year annuity) for a

65 years-old male is 11.863 (11.566)15. We can compare this value with the prospec-

tive annuity prices that current 25-year old might face when he reaches 65.

Table 7.5 column 1 gives the comparable results for the case where we allow for

interest-rate risk but no longevity risk. The mean future 45-year (25-year) annuity

value is now 12.429 (12.087) which is much closer to the current annuity values. This

shows interest-rate risk on its own has a much smaller impact on expected future

annuity values.

Second column in Table 7.5 gives the main futures and different risk measures of

the distribution of future annuity values under the presence of longevity risk but no

interest-rate risk. The mean future 45-year (25-year) annuity value is now 15.405

(14.017). This is 29.8% (21.2%) higher than the values of comparable annuities for

65-year olds bought now. It is clear that future annuity values are expected to rise

due to longevity improvements. Results show that the longer the maturity, the higher

the difference from current annuity values. This can be explained by the longevity

improvements; especially improvements have greatest effects at higher ages. There-

fore, annuity values are increasing with the maturity of the bond.

The comparison of Case 2 mean future annuity values with Case 3 and 4 values tells

that the difference between the former and the latters mainly results from the interest-

rate risk. Moreover, the comparison of Case 1 with Case 3 and 4 also states that the

interest-rate risk has a lower impact on mean future annuity values than the mortality

risk, see first rows in Table 7.5.

Last two columns in Table 7.5 show the results of the cases where we allow both

risks. Precisely, in Case 3, we allow stochastic interest-rate risk with deterministic

mortality improvements for the whole period from time 0 to time 8516. In Case 4 we

14This is the price of the M -year annuity at time 0 for age-65 male cohort retiring now.
15This value is calculated using mortality rates of year 2009.
16We already state that we use deterministic mortality model for the valuation period, see page

98. We here also use deterministic mortality model from time 0 to time 40.
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allow stochastic interest-rate risk with stochastic mortality improvements for the pe-

riod from time 0 to time 40. The mean values of 25-year/45-year annuities for Case 3

and Case 4 are really close to each other. However, the standard deviation of 45-year

(25-year) annuity under stochastic mortality model (Case 4) is 25.6% (5.6%) higher

than the standard deviation of deterministic mortality model (Case 3). This difference

results from the mortality model: deterministic mortality improvements decreases the

variation in the model. Thus, the distribution of annuity values under Case 3 has a

lower standard deviation than Case 4. However, it gives a good approximation to

the mean future annuity values. The mean future 45-year (25-year) annuity values

are 16.188 and 16.190 (14.719 and 14.678) for Case 3 and Case 4, respectively. This

means 45-year (25-year) future annuity values under longevity risk are about 36.5%

(21%) higher than the current annuity values. The impact of both interest-rate risk

and longevity risk give rise to expected future annuity values.

Figure 7.7 and 7.8 show the histograms of simulated 25-year and 45-year annuity val-

ues for all different cases, respectively. It can be seen that the distribution of future

annuity values has a very small negative skew if only longevity risk is considered (Case

2). 45-year annuity even has a positive skew. This shows that the cause of negative

skew in other cases (Case 1, 3, and 4) is mainly caused by the distribution of the

interest-rate risk, see Figure 7.4. Therefore, interest-rate risk on its own has a lower

effect on the mean values, but has a higher impact on the dispersion of the annuity

values.

The results show that the combined effect of interest-rate risk and stochastic longevity

risk (Case 4) results a fairly strong negative skew in future annuity values compared to

the Cases 1 and 3. If we compare 25-year and 45-year annuities for the Case 4, we can

see that the distribution of 25-year annuity has a stronger skew than the distribution

of 45-year annuity. This shows that the mortality risk is more dominant compared

to the interest-rate risk on the distribution of the annuities for the longer maturities,

see Figure 7.7 and 7.8.
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Figure 7.7: Histograms of Simulated Future 25-Year Annuity Values at Time 40 for
Various Cases, see page 98 for Case 1,2,3,4 definitions.
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We consider different risk measures such as the Expected Shortfall, the Value at Risk,

a risk measure based on the standard deviation (MSD) and another measure which

is based on the semi-standard deviation (MSSD) in order to assess the riskiness of

the annuities. These measures are given in Table 7.5. The values of the Expected

Shortfall are a little higher than values of the Value at Risk for all different cases17.

The reason for that little difference is obvious: the distributions of the annuities are

negatively skewed and the risk results from the up-side deviations of the distribu-

tions. We need to emphasize that the difference between the Expected Shortfall and

the Value at Risk under stochastic longevity and interest-rate risk (Case 4) is com-

paratively greater than other cases. This is reasonable because combination of both

stochastic longevity and interest-rate risk gives rise to a higher variation in annuity

values(also cause more risky annuity values in the tail), see Table 7.5. Therefore, the

distribution under Case 4 has a longer tail than other cases which causes a greater

difference between ESα and VaRα.

Briefly, simulation results show that future developments in both longevity risk and

interest-rate risk have a considerable impact on the expected future annuity values.

Therefore, examination of these risk factors and their contributions to total portfolio

risk is of great importance to the insurance companies. We will treat this subject in

Section 7.3.

7.2.2 Annuity Values in 1 Year Time

We now consider annuity values in 1 year time and analyse their distributions under

different scenarios. As we need a model that is as realistic as possible, we model the

dynamics of the interest-rates and mortality under the real world measure P up to

the valuation date that is time 1. In order to find a time 1 market price for the M-

year annuities that start at time 40, we model the dynamics of the interest-rates and

mortality under the risk-neutral measure Q after the valuation date. In this section

we only examine the case where stochastic longevity and stochastic interest-rate risk

are allowed (Case 4).

17ESα is always greater than or equal to VaRα by definition, see (1.1) and (1.5).
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The fair value of M -year annuity at time 1, denoted by V M
λ (1), is obtained by taking

the time 1 present value of later cash flows discounted at the relevant interest-rate18:

V M
Q (1) =

M
∑

i=1

P (1, 40 + i, r(1))EQ[S(40 + i, 25) | A1(1), A2(1)]. (7.28)

Note that this liability is contingent on the state variables r(1), A1(1) and A2(1).

Therefore, first we need to simulate our state variables up to time 1 under the real

world measure then, with these simulated variables we need to evaluate our valuation

model under the risk-neutral measure.

The values for EP[S(40 + t, 25) | A1(1), A2(1)] based upon parameters in (7.23) and

(7.24) are given in Table 7.6, column 2. We obtain V 25
δ (1)=3.484 with δ=0.002. With

the risk-neutral approach we can obtain obtain V 25
Q (1)=3.484 with (λ1, λ2)=(0.0033,0)

and (0,0.00025). The expected cashflows for these two cases are given in Table 7.6,

column 4 and 5. We also found a intermediate value for λ between two extremes19.

We can obtain V 25
Q (1)=3.484 with (λ1, λ2)=(0.00255,0.000051). For this values of λ,

the expected cashflows are given in Table 7.6, column 2. The expected cahsflows

under the risk-neutral measure Q shows up the largest differences compared with the

real world measure P after t=10, see Table 7.6.

We can think that (λ1, λ2)=(0.0033,0) and (0,0.00025) represent the extreme values

for the market prices of longevity risk. Case (λ1, λ2)=(0,0.00025) is an extreme if

the demand for such assets is coming from the annuity providers that is trying to

hedge their long-term mortality risk. If the demand is coming from the life insurance

companies which are looking for hedging strategies for the short-term mortality risk

(catastrophic mortality risk) then the case (λ1, λ2)=(0.0033,0) might be the extreme.

Recall that these comments are based on the comparison of the expected cashflows

(Column 3, 4 and 5) in Table 7.6.

18We assume that S(40, 25)=1.
19We find these values by fixing first the value for λ1 and then solving for λ2.
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Table 7.5: Descriptive Statistics and Risk Measures of Future Annuity Values in 40
years’ Time for Various Scenarios.

25-Year Annuities
Risk Measures Case 1 Case 2 Case 3 Case 4
Mean 12.087 14.017 14.719 14.678
S.Deviation 0.851 0.357 1.083 1.144
Variance 0.724 0.128 1.173 1.309
Skewness -1.291 -0.506 -1.281 -1.042
MSD 12.938 14.372 15.802 15.821
MSSD 12.717 14.337 15.522 15.582
VaR 95% 13.069 14.544 15.973 16.146
ES 95% 13.132 14.651 16.052 16.354

45-Year Annuities
Risk Measures Case 1 Case 2 Case 3 Case 4
Mean 12.429 15.405 16.188 16.190
S.Deviation 0.854 0.841 1.181 1.484
Variance 0.730 0.707 1.396 2.202
Skewness -1.205 0.049 -1.193 -0.445
MSD 13.284 16.246 17.369 17.674
MSSD 13.068 16.245 17.074 17.540
VaR 95% 13.432 16.789 17.578 18.415
ES 95% 13.494 17.153 17.665 18.912

Notes:

•Case 1: No longevity risk & Stochastic interest-rate risk.

•Case 2: Stochastic longevity risk & No interest-rate risk.

•Case 3: Deterministic longevity risk & Stochastic interest-rate risk.

•Case 4: Stochastic longevity risk & Stochastic interest-rate risk.

• In all cases, the future annuity values are obtained by taking the time 40 present
values of later cash flows discounted at the relevant interest rate where these rates
are obtained from the CIR interest-rate model, see Table 7.2.

• In Case 1, mortality rates are assumed to be same with their current levels.

• In Cases 2,3,4 longevity risk is modelled using simulated values of A(40) obtained
using the two-factor CBD model. Parameter values of the mortality model are
based on estimates of the mortality of English and Welsh males aged 65 over the
period 1961-2009.

• In Case 2, the instantaneous spot interest-rate at T=40 is assumed to be equal to
0.04.
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Table 7.6: Future 25-year Longevity Bond Expected Cashflows Under the Risk-
Neutral Measure for Various Assumptions for the Market Prices of Longevity Risk
Given Time 1 State Variables

Market Prices of Risk Parameters
λ1 0 0.00255 0.0033 0
λ2 0 0.000051 0 0.00025
t EQ[S(40 + t, 25) | A1(1), A2(1)]
1 0.9949 0.9954 0.9955 0.9949
2 0.9892 0.9903 0.9905 0.9894
3 0.9830 0.9847 0.9850 0.9834
4 0.9761 0.9785 0.9790 0.9768
5 0.9685 0.9718 0.9724 0.9696
6 0.9601 0.9644 0.9651 0.9618
7 0.9509 0.9562 0.9571 0.9533
8 0.9407 0.9473 0.9483 0.9440
9 0.9295 0.9374 0.9386 0.9339
10 0.9171 0.9267 0.9279 0.9230
11 0.9036 0.9149 0.9162 0.9111
12 0.8886 0.9019 0.9033 0.8981
13 0.8722 0.8878 0.8892 0.8841
14 0.8543 0.8723 0.8737 0.8690
15 0.8346 0.8553 0.8567 0.8526
16 0.8131 0.8369 0.8382 0.8349
17 0.7897 0.8168 0.8179 0.8185
18 0.7643 0.7950 0.7959 0.7953
19 0.7367 0.7714 0.7719 0.7734
20 0.7070 0.7458 0.7460 0.7499
21 0.6750 0.7183 0.7179 0.7248
22 0.6408 0.6888 0.6878 0.6982
23 0.6045 0.6573 0.6555 0.6699
24 0.5661 0.6238 0.6211 0.6401
25 0.5258 0.5883 0.5847 0.6088

Price
δ=0 3.417 3.484 3.484 3.484
δ=0.003 3.484
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Table 7.7: Future 45-year Longevity Bond Expected Cashflows Under the Risk-
Neutral Measure for Various Assumptions for the Market Prices of Longevity Risk
Given Time 1 State Variables

Market Prices of Risk Parameters
λ1 0 0.0025 0.0031 0
λ2 0 0.00003 0 0.000155
t EQ[S(40 + t, 25) | A1(1), A2(1)]
1 0.9949 0.9953 0.9954 0.9949
2 0.9892 0.9902 0.9904 0.9893
3 0.9830 0.9846 0.9849 0.9832
4 0.9761 0.9784 0.9788 0.9766
5 0.9685 0.9716 0.9722 0.9692
6 0.9601 0.9641 0.9648 0.9612
7 0.9509 0.9559 0.9567 0.9524
8 0.9407 0.9469 0.9478 0.9428
9 0.9295 0.9370 0.9380 0.9324
10 0.9171 0.9260 0.9272 0.9209
11 0.9035 0.9141 0.9154 0.9084
12 0.8886 0.9009 0.9024 0.8947
13 0.8721 0.8866 0.8881 0.8799
14 0.8541 0.8708 0.8724 0.8637
15 0.8345 0.8536 0.8553 0.8462
16 0.8129 0.8348 0.8366 0.8271
17 0.7895 0.8143 0.8161 0.8065
18 0.7640 0.7921 0.7938 0.7843
19 0.7364 0.7679 0.7696 0.7603
20 0.7066 0.7418 0.7434 0.7346
21 0.6746 0.7137 0.7151 0.7071
22 0.6404 0.6835 0.6847 0.6778
23 0.6040 0.6512 0.6521 0.6466
24 0.5655 0.6169 0.6174 0.6137
25 0.5252 0.5806 0.5807 0.5791
26 0.4833 0.5425 0.5420 0.5429
27 0.4401 0.5028 0.5017 0.5054
28 0.3961 0.4617 0.4601 0.4668
29 0.3519 0.4197 0.4174 0.4273
30 0.3080 0.3771 0.3741 0.3873
31 0.2652 0.3345 0.3309 0.3473
32 0.2241 0.2925 0.2882 0.3077
33 0.1855 0.2516 0.2469 0.2691
34 0.1500 0.2126 0.2075 0.2318
35 0.1182 0.1761 0.1708 0.1965
36 0.0905 0.1426 0.1373 0.1635
37 0.0671 0.1127 0.1075 0.1335
38 0.0481 0.0866 0.0818 0.1066
39 0.0331 0.0646 0.0603 0.0831
40 0.0218 0.0466 0.0428 0.0631
41 0.0138 0.0324 0.0293 0.0466
42 0.0082 0.0216 0.0192 0.0334
43 0.0047 0.0138 0.0120 0.0231
44 0.0025 0.0084 0.0071 0.0154
45 0.0012 0.0049 0.0040 0.0099

Price
δ=0 3.685 3.814 3.814 3.814
δ=0.003 3.814
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Similarly, we can obtain expected cashflows for future 45-year annuity. By applying

δ=0.003 to the real world expected cashflows, we obtain the price of future 45-year an-

nuity 3.814. The expected cashflows for future 45-year annuity under the risk-neutral

measure for different choices of (λ1, λ2) are given in Table 7.7. Similar comments to

future 25-year annuity can be done for future 45-year annuity.
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Figure 7.9: Mean and Confidence Intervals for Simulated Survivor Index under Q

Based on Data from 1961-2009 With Given Time 1 State Variables. The Mean(Solid
Curve) and 5th and 95th Percentiles(Dashed Curves) for the Simulated Distributions
of the Reference Index, S(40, 25)=1, 25-Year Annuity (Left Hand Panel), 45-Year
Annuity (Right Hand Panel)

Projected survival indexes of a cohort aged 65 at time 40 for the next M -years are

plotted in Figure 7.9 where we assume S(40, 25)=1. The solid curves plot the ex-

pected values of S(t, 25) for t=41,42,...,40+M under Q. The dashed curves plot the

5th and 95th percentiles of the distribution of S(t, 25) under Q. It can be seen that

for 45-year annuity the resulting 90% confidence interval is quite narrow for the first

20 years but then becomes a bit wide after time t=60. For 25-year annuity the con-

fidence interval becomes wider after first 15 years. This time confidence interval is

quite narrow compared to the one with given time 40 state variables, see Figure 7.5.

This can be explained by the structure of the mortality model. For future annuity

values at time 1, simulations are done under the real world measure with stochas-

tic mortality model for only 1 year. However, for future annuity values at time 40,

simulations are done under the real world measure with stochastic mortality model

for 40 years. Hence, the variation of time 40 state variables A(40) are higher than

time 1 state variables A(1) which directly affect the mortality rates and survivor index.
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Chosen spot-rate curves at time 1 under the CIR interest-rate model are plotted in

Figure 7.10. It can be seen that different yield-curves can be generated by the model.

5 10 15 20 25

0.
03

2
0.

03
4

0.
03

6
0.

03
8

0.
04

0
0.

04
2

0.
04

4

Term to Maturity

S
po

t r
at

e 
at

 ti
m

e 
0

0 10 20 30 40

0.
03

5
0.

04
0

0.
04

5

Term to Maturity

S
po

t r
at

es

Figure 7.10: Different Spot-Rate Curves: R(1, 40+i, r(1)) for i=1,2,...,M . Calculated
under Q with given (simulated) r(1)s under P, 25-Year Period (Left Hand Panel), 45-
Year Period (Right Hand Panel)
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Figure 7.11: Histograms of Future Annuity Values at Time 1 for Case 4, 25-Year
Annuity (Left Hand Panel), 45-Year Annuity (Right Hand Panel)

Descriptive statistics and risk measures of future 25-year and 45-year annuities at

time 1 are given in Table 7.8. Figure 7.11 shows the histograms of simulated future

25-year and 45-year annuity values. We obtain the standard deviations of future 25-

year and 45-year annuity are 0.261 and 0.287, respectively. Again, 25-year annuity

has a stronger skew than 45-year annuity which indicates that for long maturities,
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mortality risk dominates interest-rate risk and lowers the effect of interest-rate risk

on the distributions of annuities. We also see that MSSD risk measure has lower

values than MSD as the distributions of annuities are negatively skewed. This shape

of distributions also cause values of the VaR and the ES are close to each other.

Table 7.8: Descriptive Statistics and Risk Measures of Future Annuity Values in 1
Year Time, only Case 4.

Measures 25-Year Annuity 45-Year Annuity
Mean 3.484 3.814
S.Deviation 0.261 0.287
Variance 0.068 0.082
Skewness -0.532 -0.423
MSD 3.745 4.101
MSSD 3.715 4.075
VaR 99.5% 3.871 4.240
ES 99.5% 3.933 4.308

Notes:

•Case 4: Stochastic longevity risk & Stochastic interest-rate risk.

•The future annuity values are obtained by taking the time 1 present values of later
cash flows discounted at the relevant interest rate where these rates are obtained
from the CIR interest-rate model, see Table 7.2.

•Longevity risk is modelled using simulated values of A(40) obtained using the two-
factor CBD model. Parameter values of the mortality model are based on estimates
of the mortality of English and Welsh males aged 65 over the period 1961-2009.
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7.3 Contributions of Factor Risks to the Future

Annuity Values

Previously, we examined the future annuity values and their distributions at different

points in time. In this section we will analyse the contributions of the investment

factor risk and the insurance factor risk to the future annuity values. We will apply

different allocation methods which were introduced in Chapter 5.

We know introduce the Hoeffding decomposition and linear approximation of the

annuity values.

7.3.1 The Hoeffding Decomposition of the Annuity Value

In order to determine the factor risks’ (mortality and interest-rate) contributions to

future annuity values, we now calculate the factor risk terms by using the Hoeffding

decomposition. For the set of these two factors overall loss V M
Q (T ) at time T can be

decomposed into

V M
Q (T ) = g∅ + g1 + g2 + g1,2 (7.29)

where

g∅ = E[V M
Q (T )]

g1 = E[V M
Q (T ) | r(T )] − E[V M

Q (T )]

g2 = E[V M
Q (T ) | A(T )] − E[V M

Q (T )]

g1,2 = E[V M
Q (T ) | r(T ), A(T )] − E[V M

Q (T ) | r(T )] − E[V M
Q (T ) | A(T )] + E[V M

Q (T )].

where A(T ) is the mortality factor risk, r(T ) is the interest-rate factor risk and

V M
Q (T )=E[V M

Q (T ) | r(T ), A(T )]. The first term, g∅, corresponding to the E[V M
Q (T )],

gives the best hedge possible using only a risk-free instrument. The term g1 hedges
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the residual risk of the portfolio considering the interest-rate factor in isolation and

the term g2 hedges the remaining residual risk of the portfolio considering the mor-

tality factor in isolation. The second-order term g1,2 hedges the remaining residual

risk from joint moves in the factors of the mortality and the interest-rate.

7.3.2 The Taylor Expansion of the Annuity Value

Consider the annuity function V M
Q (T ) is a function of r(T ), A1(T ), A2(T ):

f(T ) = f(r(T ), A1(T ), A2(T )) = V M
Q (T ). (7.30)

Let r̂ = E[r(T )] and Â = (Â1, Â2)
′ = E[A(T )]. Then, we can write linear approxima-

tion based on the first order Taylor expansion around r̂ and Â as in the following

f(T ) = f(r(T ), A1(T ), A2(T )) ≈ ∆0(T ) + ∆1(T )(r(T ) − r̂)

+ ∆2(T )′(A(T ) − Â) (7.31)

where ∆0(T ) is a scalar function, ∆1(T ) is first derivative of f(T ) wrt r(T ) and ∆2(T )

is a 2×1 vector of first derivatives wrt A1(T ) and A2(T ), that is,

∆0(T ) = f(r̂, Â1, Â2) (7.32)

∆1(T ) =
∂f

∂r(T )
|r(T )=r̂ (7.33)

∆2,i(T ) =
∂f

∂Ai(T )
|Ai(T )=Âi

i = 1, 2 (7.34)

Derivatives can be computed by numerical methods, by making N simulations of f(T )

given r(T ) = r̂, A(T ) = Â and then repeating for r(T ) = r̂ + h0, A1(T ) = Â1 + h1 ,

A2(T ) = Â2 + h2 for small h0, h1, h2. For first derivatives we subtract the expected

value of f(T ) from baseline (r(T ) = r̂, A(T ) = Â) and divide by h0, h1, h2 respectively.

Then, in order to get the simulated annuity values we have
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V M
Q (T ) = f(r(T ), A1(T ), A2(T ))

f(r(T ), A1(T ), A2(T )) ≈ ∆0(T ) + ∆1(T )(r(T ) − r̂)

+
2
∑

i=1

∆2,i(T )(Ai(T ) − Âi) (7.35)

We here ignore the remainder part of the Taylor expansion which produces an error

term between the exact values and approximated values of the time T annuity value.

However, this error term is negligible in order to get a linear loss model of factor

risks. We will show in the following sections that the linear approximation is slightly

underestimates the true distribution of annuity values. However, it gives a good ap-

proximation to annuity values for the measurement of factor risks. We can treat the

linear decomposition (7.35) as a portfolio of three risky and a risk-free asset;

Risk-free part denoted by V M
Q (T )rf :

V M
Q (T )rf = ∆0(T ) − ∆1(T )r̂ − ∆2,1(T )Â1 − ∆2,2(T )Â2 (7.36)

Risky part denoted by V M
Q (T )r:

V M
Q (T )r = ∆1(T )r(T ) − ∆2,1(T )A1(T ) − ∆2,2(T )A2(T ) (7.37)

so that

V M
Q (T ) = V M

Q (T )rf + V M
Q (T )r.

We can ignore the risk-free part of the portfolio, V M
Q (T )rf , for allocation purposes.

Consider now (7.38) as a portfolio of risky assets (∆1(T )r(T )), (∆2,1(T )A1(T )) and

∆2,2(T )A2(T ) with asset weights ϕ1, ϕ2 and ϕ3 such that
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V M
Q (T )r = ϕ1(∆1(T )r(T )) − ϕ2(∆2,1(T )A1(T )) − ϕ3(∆2,2(T )A2(T )) (7.38)

where ϕ1=ϕ2=ϕ3=1. Hence, we now can apply the Euler’s allocation method to

the linear combination of risky assets (7.38). We want to compare allocations under

linear approximation model and the Hoeffding decomposition. However, we assumed

that there are two main random sources in the Hoeffding decomposition namely, the

interest-rate factor risk (or investment risk) and the mortality factor risk (or insurance

risk), see (7.29). In order to reach a similar composition we now offer the following

combination of ∆2,1A1(T ) and ∆2,2A2(T ) risky assets of risky-part:

V M
Q (T )r = ϕ1(∆1(T )r(T )) − ϕ2Acomb(T ) (7.39)

where Acomb(T )=∆2,1(T )A1(T ) + ∆2,2(T )A2(T ) and ϕ1=ϕ2=1. In this composition

we think that ϕ1 and ϕ2 are the weights of the risky assets ∆1(T )r(T ) and Acomb(T ).

The Euler’s Contributions under Linear Approximation

By differentiating ρ(V M
Q (T )r) wrt ϕ1, ϕ2 and ϕ3 in (7.38) we can calculate the Euler’s

contributions of ∆1(T )r(T ), ∆2,1(T )A1(T ) and ∆2,2(T )A2(T ) to ρ(V M
Q (T )r)

20. Hence,

by considering the additivity of the loss model and positive homogeneity of the risk

measure ρ we can decompose the risk measure ρ(V M
Q (T )r) into

ρ(V M
Q (T )r) = ϕ1

∂ρ(V M
Q (T )r)

∂ϕ1

− ϕ2

∂ρ(V M
Q (T )r)

∂∆2,1(T )
− ϕ3

∂ρ(V M
Q (T )r)

∂∆2,2(T )
. (7.40)

where
∂ρ(V M

Q
(T )r)

∂ϕ1
,

∂ρ(V M
Q

(T )r)

∂∆2,1(T )
and

∂ρ(V M
Q

(T )r)

∂∆2,2(T )
can be thought of as the per unit contri-

butions of ∆1(T )r(T ), ∆2,1(T )A1(T ) and ∆2,2(T )A2(T ) to the overall loss (or annuity

value), respectively.

In order to get a similar composition to the Hoeffding decomposition, differentiating

20We can also think that these are the Euler’s contributions of ∆1(T )r(T ), ∆2,1(T )A1(T ) and
∆2,2(T )A2(T ) to ρ(V M

Q (T )r) as the risk-free part is ignored.
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ρ(V M
Q (T )r) wrt ϕ1 and ϕ2 in (7.39), we can calculate the marginal contributions of

∆1(T )r(T ) and Acomb(T ) to ρ(V M
Q (T )r).

ρ(V M
Q (T )r) = ϕ1

∂ρ(V M
Q (T )r)

∂ϕ1

− ϕ2

∂ρ(V M
Q (T )r)

∂ϕ2

(7.41)

where
∂ρ(V M

Q
(T )r)

∂ϕ1
and

∂ρ(V M
Q

(T )r)

∂ϕ2
can be thought of as the per unit contributions of

∆1(T )r(T ) and Acomb(T ), respectively.

We now ready to calculate factor risk contributions. Factor risk contributions are

calculated for the scenario

• where both longevity risk and the interest-rate risk are stochastic (denoted by

Case 4 previously)

• where (λ1,λ2)=(0.0025,0.00003) (the market prices of longevity risks).

7.3.3 Contributions of Factor Risks to the Future Annuity

Values at Time 40

We will focus on the future annuity values at time 40 and calculate the factor risk con-

tributions under different approaches that we discussed in Chapter 5. Risk measures

of future 25-year and 45-year annuities at time 40 are given in Table 7.9 that consists

of risk measures of distributions of V M
Q (40)-E[V M

Q (40)] by thinking E[V M
Q (40)] as the

premium to be paid. We already interpreted the risk measures of future annuities in

page 105. Later in this section we will allocate these risk measures to factor risks.

Table 7.9: Risk Measures of V M
Q (40)-E[V M

Q (40)] for Case 4 at Different Confidence
Levels at Time 40, Case 4 described in page 98.

25-Year Annuity 45-Year Annuity
Confidence Level 95% 99.5% 95% 99.5%
Risk Measures
Mean 0 0
S.Deviation 1.144 1.484
Variance 1.309 2.202
MSD 1.144 1.484
MSSD 0.905 1.349
VaR 1.469 1.917 2.226 3.324
ES 1.677 2.043 2.722 3.681
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Variance Decomposition at Time 40

Firstly, we examine the variance decomposition, see Section 5.1. Consider now that

the risk measure is the variance. Then, equations (5.1) and (5.2) give ways of dividing

the total riskiness of the portfolio into two components, namely, the insurance risk and

the investment risk. Table 7.10 shows the results of two approaches for the variance

decomposition. Using equation (5.1) we find that the investment risk is 1.165 and

the insurance risk is 0.144 for 25-year future annuity. Using equation (5.2) we obtain

the investment risk of the 25-year future annuity 1.166 and the insurance risk 0.143.

In both cases, the sums of separate risks add up to the total variance. We can say

that 89% of the total risk results from the investment risk component and 11% of the

total risk results from the insurance risk component for the 25-year future annuity.

Equation (5.1) obtains 1.396 for the investment risk and 0.806 for the insurance risk

for 45-year future annuity. Equation (5.2) obtains 1.402 for the investment risk and

0.800 for the insurance risk for 45-year future annuity. This shows 63.5% of the total

risk results from the investment risk component and 36.5% of the total risk results

from the insurance risk component for the 45-year future annuity. In short, both

decompositions result similar proportions. An important observation from Table 7.10

is the changing balance between the investment risk and the insurance risk when we

switch from 25-year annuity to 45-year annuity. Insurance risk under 45-year future

annuity is roughly 25% higher than the 25-year annuity which directly implies that

the investment risk under 45-year annuity lowers by the same amount. This trade-off

simply tells us that the mortality risk becomes more important than interest-rate risk

for long maturities and the main reason for this change is the structure of survival

probabilities: their dependency on prior years. A mortality shock on a prior year

affects all mortality rates in all subsequent years. Therefore, the variance grows

rapidly.
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Table 7.10: Variance Decompositions of Simulated Future Annuity Values at Time 40
for Case 4(Proportions are given in brackets.)

25-Year Annuity
Given Factor Risk Invest.Risk Insur.Risk Total
Interest-Rates 1.165(88.9) 0.144(11.1) 1.309
Mortality 1.166(89) 0.143(11) 1.309

45-Year Annuity
Given Factor Risk Invest.Risk Insur.Risk Total
Interest-Rates 1.396(63.5) 0.806(36.5) 2.202
Mortality 1.402(63.7) 0.800(36.3) 2.202

Stand-alone Method at Time 40 under the Hoeffding decomposition

Using equation (5.5) we obtain stand-alone factor risk contributions for different risk

measures and for different confidence levels in Table 7.11. All risk measures agree

that the investment risk is higher than the insurance risk for both confidence levels

for 25-year annuity. However, the rate of change of the insurance risk from level 95%

to level 99.5% are comparatively higher than the rate of change of the investment

risk. For example, the rate of change of investment risk for VaR is 12.7%(from 1.250

to 1.409), whereas the rate of change of insurance risk for VaR is 48%(from 0.560

to 0.809). Similar comments can be done for the ES. This indicates that the insur-

ance risk becomes comparatively more important than the investment risk further

in the tail. We can explain this by the structure of the interest-rate model and the

mortality model. As we use the CIR interest-rate model21, minimum interest-rate

could be a positive value which implies that there is a limited interest-rate risk in

the model. However, for the mortality rates we do not have this kind of restriction

on the extreme values. Thus, we can say that the mortality risk is predominant in

the tail where we obtain higher annuity values22. Stand-alone contributions under

future 45-year annuity also indicate that the insurance risk becomes more important

than the interest-rate risk. In this case, according to the MSD the investment-risk is

still the important part. However, MSSD gives closer values of the investment risk

and the insurance risk to each other. On the other hand, the VaR and the ES in-

dicate that the insurance risk is higher than the investment risk for both confidence

levels. In short, we can say that according to the stand-alone contributions the in-

surance risk becomes important not only further into tail but also in long maturities.

21This is a positive interest-rate model, hence it does not allow negative interest-rates.
22Note that annuity values are higher if the interest-rates are low and vice versa.
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We here need to emphasize that this method gives contributions which do not add up

to the total risk. Therefore, it just gives an idea of relative riskiness of the risk factors.

Table 7.11: Stand-alone Contributions of Factor Risks Under The Hoeffding Decom-
position at Different Confidence Levels at Time 40 for Case 4

25-Year Annuity
Confidence Level 95% 99.5%
Risk Measures Inv.Risk Ins.Risk Inv.Risk Ins.Risk
MSD 1.025 0.359 1.074 0.376
MSSD 0.761 0.325 0.797 0.340
VaR 1.250 0.560 1.409 0.830
ES 1.329 0.674 1.424 0.890

45-Year Annuity
Confidence Level 95% 99.5%
Risk Measures Inv.Risk Ins.Risk Inv.Risk Ins.Risk
MSD 1.123 0.850 1.176 0.890
MSSD 0.842 0.849 0.882 0.889
VaR 1.391 1.474 1.567 2.292
ES 1.477 1.859 1.581 2.600

Incremental Method at Time 40 under the Hoeffding decomposition

Incremental factor risk contributions are given in Table 7.12. We can make similar

comments to the stand-alone approach. Contributions are very similar to those in the

stand-alone method. This method also has a similar shortcoming of the stand-alone

method: contributions do not add up to total risk.

Table 7.12: Incremental Contributions of Factor Risks Under The Hoeffding Decom-
position at Different Confidence Levels at Time 40 for Case 4

25-Year Annuity
Confidence Level 95% 99.5%
Risk Measures Inv.Risk Ins.Risk Inv.Risk Ins.Risk
MSD 0.727 0.062 0.762 0.064
MSSD 0.535 0.099 0.561 0.104
VaR 0.909 0.219 1.090 0.510
ES 1.003 0.349 1.152 0.619

45-Year Annuity
Confidence Level 95% 99.5%
Risk Measures Inv.Risk Ins.Risk Inv.Risk Ins.Risk
MSD 0.560 0.287 0.587 0.301
MSSD 0.434 0.441 0.455 0.462
VaR 0.752 0.835 1.032 1.757
ES 0.862 1.244 1.081 2.100
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The Euler’s Method at Time 40 under the Hoeffding decomposition The

Euler’s Method at Time 40 under Linear Approximation The Hoeffding decomposition

gives overall risk of the portfolio that is the sum of the factor risks and their co-

movements risk23:

Risk = Investment factor risk + Insurance factor risk + Co-movements risk.

The Euler’s contributions of factor risks to future 25-year and 45-year annuity at 95%

and 99.5% confidence levels are given in Table 7.13 and 7.14, respectively. The ES

for 25-year annuity has a value of 1.667 at 95% confidence level where the investment

factor risks contribution is 1.178, the insurance factor risks contribution is 0.456 and

their co-movement risk contribution is 0.043. For this measure 70.2% of total risk is

caused by the investment risk and 27.2% of the rest caused by the insurance risk. Only

2.6% of total risk is caused by the co-movement risk. If we move to 99.5% level for

this measure then, the contribution of the investment risk goes down to 62.8% and the

contribution of the insurance risk goes up to 33.7%. The co-movement risk also rise

to 3.5%. This pattern is also valid for the VaR. We observed this type of behaviour

previously in this chapter that is if we move further into tail then, the insurance risk

becomes more important. Recall that the reason for that is the interest-rates have

a lower bound in the CIR model whereas the mortality rates have no bounds in the

upper extreme.

MSD risk measure (fourth column in Table 7.13 and 7.14) results similar proportions

with the variance decomposition (Table 7.10) which is reasonable as these measures

are basically measure the variation of the annuity values. Note also that risk measures

of MSD and MSSD do not change with the quantile, therefore their contributions do

not change with different confidence levels. We can see that any choice of the risk

measure and the confidence level lead to a conclusion that the investment risk is more

important than the insurance risk for future 25-year annuity at time 40. However,

when we analyse the factor risk contributions for future 45-year annuity, it turns out

that the insurance risk becomes more important than the investment risk. This im-

plies that for short maturities the investment risk dominant to the insurance risk,

23The mean values are subtracted from the value of the annuities, hence future mean values of
annuities equal 0.
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whereas for long maturities the balance shifts significantly towards insurance risk.

We observe that the co-movement factor risks cause about 2-5% of total risk. This

indicates that the co-movement factor risks can not be negligible, however not so

important as well. The co-movement risk is produced by the non-linearity of the

model. Its value changes with the degree of non-linearity: If the interest-rate risk

and the mortality risk do not dominate each other (that means their contributions

are balanced) then co-movement risk takes a high value. However, if one of them

dominates the other than the value of the co-movement risk decreases24, see Table

7.13 and 7.14. It also rises with the confidence level, i.e. its values at 99.5% confidence

level are higher than the values at 95% confidence level. This indicates that the co-

movement risk might mainly caused by the risky (higher) values of annuities.

Table 7.13: The Euler Contributions of Factor Risks to the Future 25-Year Annuity
at Different Confidence Levels at Time 40 for Case 4 Under The Hoeffding Decompo-
sition(Proportions are given in brackets.)

25-Year Annuity

95% Confidence Level
Risk Factors ES VaR MSD MSSD
Investment 1.178(70.2) 1.108(75.4) 1.018(89.0) 0.714(78.9)
Insurance 0.456(27.2) 0.333(22.7) 0.125(10.9) 0.178(19.7)
Co-movement 0.043(2.6) 0.028(1.9) 0.001(0.1) 0.012(1.4)
Sum 1.667(100) 1.469(100) 1.144(100) 0.905(100)

99.5% Confidence Level
Risk Factors ES VaR MSD MSSD
Investment 1.282(62.8) 1.263(65.9) 1.018(89.0) 0.714(78.9)
Insurance 0.688(33.7) 0.592(30.9) 0.125(10.9) 0.178(19.7)
Co-movement 0.073(3.5) 0.062(3.2) 0.001(0.1) 0.012(1.4)
Sum 2.043(100) 1.917(100) 1.144(100) 0.905(100)

24This directly implies that the contribution of the co-movement risk also increases with the
maturity
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Table 7.14: The Euler’s Contributions of Factor Risks to the Future 45-Year An-
nuity at Different Confidence Levels at Time 40 Under The Hoeffding Decomposi-
tion(Proportions are given in brackets).

45-Year Annuity

95% Confidence Level
Risk Factors ES VaR MSD MSSD
Investment 1.095(40.2) 1.024(46.0) 0.941(63.4) 0.609(45.1)
Insurance 1.510(55.5) 1.128(50.7) 0.539(36.3) 0.696(51.5)
Co-movement 0.117(4.3) 0.074(3.3) 0.004(0.3) 0.046(3.4)
Sum 2.722(100) 2.226(100) 1.484(100) 1.349(100)

99.5% Confidence Level
Risk Factors ES VaR MSD MSSD
Investment 1.228(33.4) 1.207(36.3) 0.941(63.4) 0.609(45.1)
Insurance 2.249(61.1) 1.942(58.5) 0.539(36.3) 0.696(51.5)
Co-movement 0.204(5.5) 0.174(5.2) 0.004(0.3) 0.046(3.4)
Sum 3.681(100) 3.324(100) 1.484(100) 1.349(100)

The Euler’s Method at Time 40 under Linear Approximation

In Chapter 5 we suggested to apply a linear transformation to the annuity value (first

order Taylor expansion) around some specific point25 in time in order to get a linear

combination of the risk factors. We now calculate the Euler’s contributions of risk

factors with this approach. Descriptive statistics and measures of future 25-year and

45-year annuities at time 40 under true distribution and linear approximation are

given in Table 7.15. We can say that linear approximation is slightly underestimates

the true distribution. Mean values and standard deviations are close to each other.

However, linear approximation results moderately skewed distributions compared to

the true distributions. This indicates that linear approximation underestimates the

risky values of annuities. This can also be seen by checking the VaR and the ES

estimates for same confidence levels of true distribution and linear approximation26.

Risk measures of V M
Q (40)-E[V M

Q (40)] under linear approximation are given in Table

7.16. The Euler’s contributions of the investment risk27, and the insurance risk28

to the future 25-year and 45-year annuity under linear approximation at 95% and

99.5% confidence levels are given in Table 7.17 and 7.1829. The contributions of the

25For this section interested point is time 40.
26We will analyse this phenomenon later in page 134
27Investment risk at time T represented by r(T ).
28Insurance risk at time T represented by Acomb(T ) which is directly comparable with the insurance

risk in the Hoeffding decomposition.
29These tables consist the contributions of factor risks to risk measures that are given in Table
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Table 7.15: Descriptive Statistics and Risk Measures of True Distribution and Linear
Approximation at Time 40 for Case 4.

25-Year Annuity 45-Year Annuity
True Dist. Linear Appr. True Dist. Linear Appr.

Confidence Level 95% 99.5% 95% 99.5% 95% 99.5% 95% 99.5%
Measures
Mean 14.677 14.594 16.190 16.026
S.Deviation 1.144 1.152 1.484 1.450
Skewness -1.042 -1.390 -0.445 -0.781
MSD 15.821 15.746 17.674 17.476
MSSD 15.582 15.251 17.540 16.945
VaR 16.146 16.596 15.973 16.412 18.415 19.514 18.075 19.056
ES 16.354 16.719 16.185 16.571 18.912 19.871 18.509 19.287

Table 7.16: Risk Measures of V M
Q (40)-E[V M

Q (40)] for Case 4 at Different Confidence
Levels at Time 40 Under Linear Approximation.

25-Year Annuity 45-Year Annuity
Linear Appr. Linear Appr.

Confidence Level 95% 99.5% 95% 99.5%
Measures
Mean 0.0 0.0
S.Deviation 1.152 1.450
Skewness -1.390 -0.781
MSD 1.152 1.450
MSSD 0.657 0.919
VaR 1.379 1.818 2.049 3.03
ES 1.591 1.977 2.483 3.261

investment and the insurance risk to the ES at 95% confidence level of future 25-year

annuity are 68.3% and 31.7%, respectively. The investment risk goes down to 57.8%

and the insurance risk goes up to 42.2% at 99.5% confidence level. This behaviour

also is valid for the VaR. In general, the investment risk seems more important than

the insurance risk for future 25-year annuity, see Table 7.17. However, the mortality

risk becomes important for future 45-year annuity: the insurance risk’s contributions

are higher than the investment risk’s contribution at both 95% and 99.5% confidence

levels, see Table 7.18. Only MSD risk measure is disagree with other risk measures.

This can be linked to its structure that is it penalise both up-side and down-side

deviations from the mean value.

7.16.
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Table 7.17: The Euler’s Contributions of Factor Risks to the Future 25-Year An-
nuity at Different Confidence Levels at Time T=40 Under Linear Approxima-
tion(Proportions are given in brackets.)

25-Year Annuity

95% Confidence Level
Risk Factors ES VaR MSD MSSD
r(T ) 1.087(68.3) 1.011(73.3) 1.037(90.0) 0.541(82.3)
A1(T ) 0.329(20.7) 0.263(19.1) 0.075(6.5) 0.074(11.2)
A2(T ) 0.175(11.0) 0.105(7.6) 0.040(3.5) 0.043(6.5)
Acomb(T ) 0.504(31.7) 0.368(26.7) 0.115(10.0) 0.116(17.7)

99.5% Confidence Level
Risk Factors ES VaR MSD MSSD
r(T ) 1.143(57.8) 1.125(61.9) 1.037(90.0) 0.541(82.3)
A1(T ) 0.524(26.5) 0.478(26.3) 0.075(6.5) 0.074(11.2)
A2(T ) 0.310(15.7) 0.215(11.8) 0.040(3.5) 0.043(6.5)
Acomb(T ) 0.834(42.2) 0.693(38.1) 0.115(10.0) 0.116(17.7)

Table 7.18: The Euler’s Contributions of Factor Risks to the Future 45-Year An-
nuity at Different Confidence Levels at Time T=40 Under Linear Approxima-
tion(Proportions are given in brackets.)

45-Year Annuity

95% Confidence Level
Risk Factors ES VaR MSD MSSD
r(T ) 1.016(40.9) 0.820(40.0) 0.953(65.7) 0.479(52.1)
A1(T ) 0.665(26.8) 0.428(20.9) 0.218(15.0) 0.195(21.2)
A2(T ) 0.802(32.3) 0.801(39.1) 0.280(19.3) 0.245(26.7)
Acomb(T ) 1.467(59.1) 1.229(60.0) 0.497(34.3) 0.440(47.9)

99.5% Confidence Level
Risk Factors ES VaR MSD MSSD
r(T ) 1.089(33.4) 1.154(38.1) 0.953(65.7) 0.479(52.1)
A1(T ) 1.079(33.1) 0.791(26.1) 0.218(15.0) 0.195(21.2)
A2(T ) 1.092(33.5) 1.085(35.8) 0.280(19.3) 0.245(26.7)
Acomb(T ) 2.172(66.6) 1.876(61.9) 0.497(34.3) 0.440(47.9)

We can easily compare the Hoeffding decomposition and linear approximation by

examining the Table 7.19. We observe that the proportions under both approaches

are similar. Briefly, we observe that both the Hoeffding decomposition and linear

approximation results a reasonable approach to the overall risk while, each risk factor

would provide a reasonable estimate of the contribution of that risk factor to the

overall portfolio risk. With these results once again we see that the insurance risk

is not negligible in the analysis of the future annuities and the main reason for that

is the longevity risk. Especially, its importance increasing with the maturity of the
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Table 7.19: Proportions of the Euler’s Contributions of Factor Risks to the Future
Annuities at Different Confidence Levels at Time 40 Under The Hoeffding Decompo-
sition and Linear Approximation.

ES VaR MSD MSSD
Risk Factors Hoeff. Linear Hoeff. Linear Hoeff. Linear Hoeff. Linear

25-Year Annuity

95% Confidence Level
Investment 70.20 68.30 75.40 73.30 89.00 90.00 78.90 82.30
Insurance 27.20 31.70 22.70 26.70 10.90 10.00 19.70 17.70
Co-movement 2.60 - 1.90 - 0.10 - 1.40 -

99.5% Confidence Level
Investment 62.80 57.80 65.90 61.90 89.00 90.00 78.90 82.30
Insurance 33.70 42.20 30.90 38.10 10.90 10.00 19.70 17.70
Co-movement 3.50 - 3.20 - 0.10 - 1.40 -

45-Year Annuity
95% Confidence Level

Investment 40.20 40.90 46.00 40.00 63.40 65.70 45.10 52.10
Insurance 55.50 59.10 50.70 60.00 36.30 34.30 51.50 47.90
Co-movement 4.30 - 3.30 - 0.30 - 3.40 -

99.5% Confidence Level
Investment 33.40 33.40 36.30 38.10 63.40 65.70 45.10 52.10
Insurance 61.10 66.60 58.50 61.90 36.30 34.30 51.50 47.90
Co-movement 5.50 - 5.20 - 0.30 - 3.40 -

bond that is for long maturities the insurance risk dominates the investment risk. We

also observe that the choice of the quantile really changes the contributions. For both

the ES and the VaR, we observe the same behaviour of increasing importance of the

insurance factor risk and decreasing importance of the investment factor risk as we

move further into the tail.

7.3.4 Contributions of Factor Risks to the Future Annuity

Values at Time 1

We now consider the future annuity values at time 1 and calculate risk factor con-

tributions under different approaches. Risk measures of future 25-year and 45-year

annuities at time 1 are given in Table 7.20. Note that Table 7.20 consists risk mea-

sures of distributions of V M
Q (1)-E[V M

Q (1)]. Later in this section we will allocate these

risk measures between factor risks.
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Table 7.20: Risk Measures of V M
Q (1)-E[V M

Q (1)] for Case 4 at Different Confidence
Levels at Time 1, Case 4 described in page 98.

25-Year Annuity 45-Year Annuity
Confidence Level 95% 99.5% 95% 99.5%
Risk Measures
Mean 0 0
S.Deviation 0.261 0.286
Variance 0.068 0.082
MSD 0.261 0.286
MSSD 0.231 0.261
VaR 0.384 0.513 0.429 0.568
ES 0.446 0.541 0.495 0.598

Variance Decomposition at Time 1

The results of the variance decomposition at time 1 are given in Table 7.21. Both

equations (5.1) and (5.2) give similar results. We obtain the investment risk 0.068

and the insurance risk 0.000 for 25-year annuity. For 45-year annuity, we obtain the

investment risk 0.081 and the insurance risk 0.001. Hence, 98.8% of total risk is

caused by the investment risk and rest caused by the insurance risk. We can say that

the mortality risk is negligible and the investment risk is dominant for 1-year time

horizon. The dominance of the investment risk is mainly results from the mortality

model: mortality rates do not change drastically for very short-term. Put another way,

longevity improvements arise in long-terms. Therefore, the variation of the annuity

values at time 1 is mainly due to variation of the interest-rates.

Table 7.21: Variance Decompositions of Simulated Annuity Values at Time 1(Propor-
tions are given in brackets.)

25-Year Annuity
Given Factor Risk Invest.Risk Insur.Risk Total
Interest-Rates 0.068(100) 0.000(0) 0.068
Mortality 0.068(100) 0.000(0) 0.068

45-Year Annuity
Given Factor Risk Invest.Risk Insur.Risk Total
Interest-Rates 0.081(98.8) 0.001(1.20) 0.082
Mortality 0.081(98.8) 0.001(1.20) 0.082

Stand-alone Method at Time 1 under the Hoeffding decomposition

Using equation (5.5) we find stand-alone factor risk contributions for different risk

measures and for different confidence levels in Table 7.22. All risk measures agree

that the investment risk is higher than the insurance risk for both confidence levels

and for both future 25-year and 45-year annuity. This indicates that the main risk
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predominantly caused by the investment risk for annuities at time 1.

Table 7.22: Stand-alone Contributions of Factor Risks at Different Confidence Levels
at Time 1.

25-Year Annuity
Confidence Level 95% 99.5%
Risk Measures Inv.Risk Ins.Risk Inv.Risk Ins.Risk
MSD 0.247 0.013 0.259 0.014
MSSD 0.219 0.013 0.229 0.014
VaR 0.384 0.022 0.510 0.035
ES 0.444 0.028 0.538 0.038

45-Year Annuity
Confidence Level 95% 99.5%
Risk Measures Inv.Risk Ins.Risk Inv.Risk Ins.Risk
MSD 0.270 0.030 0.283 0.032
MSSD 0.246 0.030 0.258 0.032
VaR 0.423 0.052 0.555 0.082
ES 0.487 0.065 0.578 0.092

Incremental Method at Time 1 under the Hoeffding decomposition

Incremental factor risk contributions at time 1 are given in Table 7.23. Again, we

observe that the investment risk is dominant and the insurance risk is negligible for

both confidence levels and for both future 25-year and 45-year annuity. We can make

similar comments to the variance decomposition.

Table 7.23: Incremental Contributions of Factor Risks at Different Confidence Levels
at Time 1.

25-Year Annuity
Confidence Level 95% 99.5%
Risk Measures Inv.Risk Ins.Risk Inv.Risk Ins.Risk
MSD 0.235 0.000 0.246 0.000
MSSD 0.207 0.000 0.216 0.000
VaR 0.362 0.000 0.478 0.002
ES 0.418 0.002 0.503 0.004

45-Year Annuity
Confidence Level 95% 99.5%
Risk Measures Inv.Risk Ins.Risk Inv.Risk Ins.Risk
MSD 0.241 0.002 0.253 0.002
MSSD 0.217 0.002 0.228 0.002
VaR 0.377 0.007 0.486 0.013
ES 0.429 0.008 0.506 0.020

The Euler’s Method at Time 1 under the Hoeffding Decomposition

The Euler’s contributions of factor risks to the future annuities at 95% and 99.5%

confidence levels under the Hoeffding decomposition are given in Table 7.24 and 7.25.
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We observe that all risk measures agree that the important risk source in the portfolio

is the investment risk for both future 25-year and 45-year annuities. They also agree

on the co-movement’s contribution. We can say that the co-movement’s contribution

is negligible.

Table 7.24: The Euler’s Contributions of Factor Risks to the 25-Year Annuity at Dif-
ferent Confidence Levels at Time 1 Under The Hoeffding Decomposition(Proportions
are given in brackets.)

25-Year Annuity

95% Confidence Level
Risk Factors ES VaR MSD MSSD
Investment 0.443(99.33) 0.382(99.48) 0.260(99.62) 0.230(99.57)
Insurance 0.003(0.67) 0.002(0.52) 0.001(0.38) 0.001(0.43)
Co-movement 0.000(0.0) 0.000(0.0) 0.000(0.0) 0.000(0.0)
Sum 0.446(100) 0.384(100) 0.261(100) 0.231(100)

99.5% Confidence Level
Risk Factors ES VaR MSD MSSD
Investment 0.535(98.89) 0.509(99.22) 0.260(99.62) 0.230(99.57)
Insurance 0.006(1.11) 0.004(0.78) 0.001(0.38) 0.001(0.43)
Co-movement 0.00(0.0) 0.000(0.0) 0.000(0.0) 0.000(0.0)
Sum 0.541(100) 0.513(100) 0.261(100) 0.231(100)

Table 7.25: The Euler’s Contributions of Factor Risks to the Future 45-Year An-
nuity at Different Confidence Levels at Time 1 Under The Hoeffding Decomposi-
tion(Proportions are given in brackets.)

45-Year Annuity

95% Confidence Level
Risk Factors ES VaR MSD MSSD
Investment 0.481(97.17) 0.423(98.60) 0.282(98.60) 0.256(98.47)
Insurance 0.013(2.63) 0.006(1.40) 0.004(1.40) 0.004(1.53)
Co-movement 0.001(0.20) 0.000(0.0) 0.000(0.0) 0.000(0.0)
Sum 0.495(100) 0.429(100) 0.286(100) 0.261(100)

99.5% Confidence Level
Risk Factors ES VaR MSD MSSD
Investment 0.563(94.15) 0.544(95.77) 0.282(98.60) 0.256(98.47)
Insurance 0.031(5.18) 0.021(3.70) 0.004(1.40) 0.004(1.53)
Co-movement 0.004(0.67) 0.003(0.53) 0.000(0.0) 0.000(0.0)
Sum 0.598(100) 0.568(100) 0.286(100) 0.261(100)

The Euler’s Method at Time 1 under Linear Approximation

Descriptive statistics and measures of future 25-year and 45-year annuities at time

1 under true distribution and linear approximation are given in Table 7.26. The
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distribution under linear approximation is slightly more negatively skewed than the

true distribution. However, in general we can say that linear approximation works

well at time 1. We need here to emphasize that linear approximation at time 1

works better than time 40. A comparison between Table 7.26 and 7.15 shows that the

values of descriptive statistics and risk measures at time 1 under linear approximation

really close to values of true distribution. However, linear approximation at time

40 moderately underestimates the true distribution. One reason for this difference

would be the non-linearity of the model. In a relatively short-term mortality rates do

not change significantly. Therefore, the co-movement between the interest-rates and

mortality rates do not produce much risk for short-term horizons. However, in the

long run mortality risk becomes important and as a result the co-movement between

these risk sources produces higher non-linearity effects. Another reason would be the

variation of mortality state variables. Time 1 state variables A(1) have relatively lower

variation than the time 40 state variables A(40). As we use Taylor expansion around

E[A(1)] and E[A(40)], the variation of state variables around these points affects

the approximation’s performance. We will check the accuracy of this proposition by

examining the factor risk contributions later in this section.

Table 7.26: Descriptive Statistics and Risk Measures of True Distribution and Linear
Approximation at Time 1

25-Year Annuity 45-Year Annuity
True Dist. Linear Appr. True Dist. Linear Appr.

Confidence Level 95% 99.5% 95% 99.5% 95% 99.5% 95% 99.5%
Measures
Mean 3.484 3.474 3.814 3.801
S.Deviation 0.261 0.262 0.286 0.286
Skewness -0.533 -0.754 -0.423 -0.632
MSD 3.744 3.736 4.100 4.089
MSSD 3.715 3.639 4.075 3.987
VaR 3.867 3.996 3.838 3.951 4.243 4.382 4.210 4.329
ES 3.929 4.025 3.894 3.977 4.309 4.412 4.266 4.347

The risk measures of V M
Q (1)-E[V M

Q (1)] are given in Table 7.27. The Euler’s contribu-

tions of the investment risk and the insurance risk to the future 25-year and 45-year

annuities at 95% and 99.5% confidence levels under linear approximation are given

in Table 7.28 and 7.29, respectively. We observe that about 99% of total risk caused

by the investment risk whereas only 1% of total risk caused by the insurance risk.

The co-movement’s risk is negligible for both confidence levels and for both future
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Table 7.27: Risk Measures of V M
Q (1)-E[V M

Q (1)] for Case 4 at Different Confidence
Levels at Time 1 Under Linear Approximation.

25-Year Annuity 45-Year Annuity
Linear Appr. Linear Appr.

Confidence Level 95% 99.5% 95% 99.5%
Measures
Mean 0.0 0.0
S.Deviation 0.262 0.286
Skewness -0.754 -0.632
MSD 0.262 0.288
MSSD 0.165 0.186
VaR 0.364 0.477 0.409 0.528
ES 0.420 0.503 0.465 0.546

25-year and 45-year annuity. Allocation proportions draw similar results with the

previous allocation methods (stand-alone, incremental and variance decomposition).

The investment risk is the dominant part in the portfolio. We again observe that the

insurance risk becomes relatively important if we move further into tail and for long

term to maturities.

Table 7.28: The Euler’s Contributions of Factor Risks to the Future 25-Year Annuity
at Different Confidence Levels at Time 1 Under Linear Approximation(Proportions
are given in brackets.)

25-Year Annuity

95% Confidence Level
Risk Factors ES VaR MSD MSSD
r(T ) 0.4174(99.38) 0.3624(99.56) 0.2614(99.77) 0.1644(99.63)
A1(T ) 0.0012(0.29) 0.0015(0.41) 0.0002(0.08) 0.0002(0.15)
A2(T ) 0.0014(0.33) 0.0001(0.03) 0.0004(0.15) 0.0004(0.22)
Acomb(T ) 0.0026(0.62) 0.0016(0.44) 0.0006(0.23) 0.0006(0.37)

99.5% Confidence Level
Risk Factors ES VaR MSD MSSD
r(T ) 0.4996(99.32) 0.4754(99.67) 0.2614(99.77) 0.1644(99.63)
A1(T ) 0.0012(0.24) 0.0001(0.02) 0.0002(0.08) 0.0002(0.15)
A2(T ) 0.0022(0.44) 0.0015(0.31) 0.0004(0.15) 0.0004(0.22)
Acomb(T ) 0.0034(0.68) 0.0016(0.33) 0.0006(0.23) 0.0006(0.37)

Proportions of the Euler’s contributions of factor risks to the future 25-year and

45-year annuities at different confidence levels at time 1 under the Hoeffding de-

composition and linear approximation are given in Table 7.30. We observe that the

proportions under both the Hoeffding decomposition and linear approach are similar.

Especially, under the future 25-year annuity, proportions are very close to each other

as the co-movement factor’s contributions are all 0. We can say that for the future
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Table 7.29: The Euler’s Contributions of Factor Risks to the Future 45-Year Annuity
at Different Confidence Levels at Time 1 Under Linear Approximation(Proportions
are given in brackets.)

45-Year Annuity

95% Confidence Level
Risk Factors ES VaR MSD MSSD
r(T ) 0.4577(98.42) 0.4034(98.64) 0.2855(99.12) 0.1839(98.87)
A1(T ) 0.0008(0.18) 0.0006(0.15) 0.0003(0.10) 0.0002(0.11)
A2(T ) 0.0065(1.40) 0.0049(1.21) 0.0022(0.78) 0.0019(1.02)
Acomb(T ) 0.0073(1.58) 0.0056(1.36) 0.0025(0.88) 0.0021(1.13)

99.5% Confidence Level
Risk Factors ES VaR MSD MSSD
r(T ) 0.5324(97.50) 0.5134(97.24) 0.2855(99.12) 0.1839(98.87)
A1(T ) 0.0001(0.01) 0.0018(0.34) 0.0003(0.10) 0.0002(0.11)
A2(T ) 0.0136(2.49) 0.0128(2.42) 0.0022(0.78) 0.0019(1.02)
Acomb(T ) 0.0137(2.50) 0.0146(2.76) 0.0025(0.88) 0.0021(1.13)

annuities at time 1, the insurance risk is negligible. However, we again observe the

same behaviour of increasing importance of the insurance factor and decreasing im-

portance of the investment factor as we move further into the tail. The Hoeffding

decomposition, the variance decomposition and linear approximation agree that the

risk predominantly caused by the investment risk (about 98-99% of total risk) and the

importance of the insurance risk is very low (about 1-2% of total risk). Stand-alone

and incremental approaches also show that the investment risk is higher than the

insurance risk.

7.3.5 Contributions of Factor Risks to the Future Annuity

Values Under Extreme Scenarios

In this section we will analyse the factor risk contributions under extreme scenarios

of the factor risks. To do this we only analyse future 45-year annuity at time 1 as we

already investigate the possible effects of different terms to maturity and valuations

at different points in time, previously.

Extreme Scenarios of the Interest-Rate Risk

For the upper extreme of the interest-rates we evaluate our valuation model under the

risk-neutral measure Q with parameters r̄=0.2, α=0.2 and σ=0.1 where the values of

r(1) are simulated under the real world measure P with parameters of ˜̄r = r(0)=0.125,
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Table 7.30: Proportions of the Euler Contributions of Factor Risks to the Future An-
nuities at Different Confidence Levels at Time 1 Under The Hoeffding Decomposition
and Linear Approximation.

ES VaR MSD MSSD
Risk Factors Hoeff. Linear Hoeff. Linear Hoeff. Linear Hoeff. Linear

25-Year Annuity
95% Confidence Level

Investment 99.33 99.38 99.48 99.56 99.62 99.77 99.57 99.63
Insurance 0.67 0.62 0.52 0.44 0.38 0.23 0.43 0.37
Co-movement 0.00 - 0.00 - 0.00 - 0.00 -

99.5% Confidence Level
Investment 98.89 99.32 99.22 99.67 99.62 99.77 99.57 99.63
Insurance 1.11 0.68 0.78 0.33 0.38 0.23 0.43 0.37
Co-movement 0.00 - 0.00 - 0.00 - 0.00 -

45-Year Annuity
95% Confidence Level

Investment 97.17 98.42 98.60 98.64 98.60 99.12 98.47 98.87
Insurance 2.63 1.58 1.40 1.36 1.40 0.88 1.53 1.13
Co-movement 0.20 - 0.00 - 0.00 - 0.00 -

99.5% Confidence Level
Investment 94.15 97.50 95.77 97.24 98.60 99.12 98.47 98.87
Insurance 5.18 2.50 3.70 2.76 1.40 0.88 1.53 1.13
Co-movement 0.67 - 0.53 - 0.00 - 0.00 -

α̃=0.32 and σ=0.1. With these choices we obtain the risk premium λ=-1.2. On the

other hand, for the lower extreme we use r̄=0.01, σ=0.1, α=0.2 under Q for valuation

where the values of r(1) are simulated under P with parameters of ˜̄r = r(0)=0.006,

α̃=0.33 and σ=0.1 in which the obtained risk premium is -1.33.

Descriptive statistics and risk measures of the extreme cases are given in Table 7.31.

It is known that if interest-rates are high then annuities worth less or vice versa. The

results in Table 7.31 are in line with this statement. Under high and low interest-

rate scenarios we obtain the values of future 45-year annuities 0.0429 and 15.527,

respectively. Risk measures under high interest-rate setup have relatively low values

as the discount factor minimises the magnitude of the survivor index’s impact and

as a result, the variation in the annuity values decreases. On the other hand, under

low interest-rate setup, the discount factor can not overcome to the survivor index’s

impact and mortality risk becomes important too. Therefore, the variation of the

annuity values increases.
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Histograms of the annuities under extreme scenarios are given in Figure 7.12. We

see in Figure 7.12 that the distribution under high interest-rate scenario is positively

skewed and has low variation whereas, under low interest-rate scenario the distribution

has strong negative skew and the variation is high. These findings are also agreed

with the earlier ones.

Table 7.31: Descriptive Statistics and Risk Measures of Future 45-Year Annuity under
Q at Time 1 Under The Extreme Scenarios for The Interest-Rate, rupper: r̄=0.2,
α=0.2, σ=0.1 and rlower: r̄=0.01, σ=0.1, α=0.2, for the CIR model see (7.1).

45-Year Annuity
rupper rlower

Confidence Level 95% 99.5% 95% 99.5%
Measures
Mean 0.00429 15.527
S.Deviation 0.00071 0.587
Skewness 0.146 -1.068
MSD 0.005 16.114
MSSD 0.00503 15.989
VaR 0.00549 0.00620 16.268 16.519
ES 0.00582 0.00643 16.381 16.598

Proportions of the Euler’s contributions of factor risks to the future 45-Year annuity

at different confidence levels at time 1 under the extreme scenarios for the interest-

rate for different methods are given in Table 7.32. We observe that if interest-rates

are high, then the risk is predominantly caused by the interest-rate factor. Precisely,

the discount factor minimises the effect of the survivor index. Hence, interest-rate

risk dominates the mortality risk. Contributions of the co-movement risk30 also verify

this proposition that it has no contribution to the total risk, see Table 7.32. On the

other hand, under low interest-rate setup the mortality risk becomes important even

for annuity values in 1-year time31. The co-movement risk also increases with this

shift, see Table 7.32.

30We already investigated the co-movement risk’s behaviour early in this chapter, see pages 126
and 134.

31We stated early that the longevity improvements comes into play in the long-run. However, low
interest-rates reveal the mortality risk in a short-term.
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Figure 7.12: Future 45-Year Annuity Distributions for Case 4 at Time 1, High Interest-
Rate Environment (Left Hand Panel), Low Interest-Rate Environment (Right Hand
Panel)

Table 7.32: Proportions of the Euler’s Contributions of Factor Risks to the Future 45-
Year Annuity at Different Confidence Levels at Time 1 Under the Extreme Scenarios
for the Interest-Rate for Different Methods.

Risk Measures and Different Methods
ES VaR MSD MSSD

Risk Factors Hoeff. Linear Hoeff. Linear Hoeff. Linear Hoeff. Linear
High Interest-Rate Environment

95% Confidence Level
Investment 100.00 100.00 100.00 100.000 100.00 100.00 100.00 100.00
Insurance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Co-movement 0.00 - 0.0 - 0.0 - 0.0 -

99.5% Confidence Level
Investment 100.00 100.00 100.00 100.000 100.00 100.00 100.00 100.00
Insurance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Co-movement 0.00 - 0.0 - 0.0 - 0.0 -

Low Interest-Rate Environment
95% Confidence Level

Investment 63.93 61.00 71.79 67.53 88.59 86.44 77.71 77.01
Insurance 34.90 39.00 27.40 32.37 11.41 13.56 21.65 22.99
Co-movement 1.17 - 0.81 - 0.00 - 0.64 -

99.5% Confidence Level
Investment 53.32 49.63 56.55 58.77 88.59 86.44 77.71 77.01
Insurance 45.00 50.37 41.94 41.23 11.41 13.56 21.65 22.99
Co-movement 1.68 - 1.51 - 0.00 - 0.64 -
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Extreme Scenarios of Longevity Risk

Recall that we can think (λ1, λ2)=(λ1,0) and (0,λ2) represent the extreme values for

the market prices of longevity risk. The choice of (λ1, λ2)=(0,λ2) produce an extreme

if the demand for such assets is coming from the annuity providers. On the other

hand, if life insurance companies looking for hedging strategies for the short-term

mortality risk then (λ1, λ2)=(λ1,0) results an extreme.

Descriptive statistics and risk measures of 45-year future annuity at time 1 under

various scenarios32 for the market prices of longevity risk are given in Table 7.33. As

expected, the values of the descriptive statistics and risk measures are identical.

We now examine the allocations under these predetermined scenarios. Proportions

of the Euler’s contributions of factor risks to the future 45-year annuity at different

confidence levels at time 1 under various scenarios for the market prices of longevity

risk for different methods are given in Table 7.34. We observe that the insurance risk

in the scenario of (λ1,λ2)=(0,0.000155) has the highest importance for both confi-

dence levels. This result is plausible as that scenario can be thought as the worst case

scenario for the long term longevity risk that presents the greatest risk to annuity

providers.

In the case of (λ1,λ2)=(0.0031,0), the importance of the insurance risk is relatively

lower than the case of (λ1,λ2)=(0,0.000155)33 which is reasonable as we expect that

the latter produce a riskier result than the former.

Allocations based on the Hoeffding decomposition seems more robust than the alloca-

tions under linear approximation. The reason for that might be the difference between

the structures of the decompositions. In the Hoeffding decomposition both A1(t) and

A2(t) dynamics accounted under only one factor34 in the decomposition whereas in

32We already determined these market prices of longevity risk parameters in Section 7.2.2.
33This can also be explained by dynamics of the A(t) processes. Specifically risk adjustments

to the dynamics of A2(t) through the use of λ2 have relatively much greater effect on higher-age
mortality than adjustments to A1(t) through λ1.

34Recall that under the Hoeffding decomposition, total risk can be divided by the following

X = E[X] + (E[X | Z1] − E[X]) + (E[X | Z2] − E[X]) + E[X | Z1, Z2] − E[X | Z1] − E[X | Z2] + E[X]
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linear approximation they at first evaluated separately then these two parts merged

as an insurance factor risk35.

Table 7.33: Descriptive Statistics and Risk Measures of 45-Year Future Annuity at
Time 1 Under Various Scenarios for The Market Prices of Longevity Risk.

45-Year Annuity
Market Prices of Longevity Risk Parameters

λ1 0.0031 0.00 0.0025
λ2 0.00 0.000155 0.00003

Confidence Level 95% 99.5% 95% 99.5% 95% 99.5%
Measures
Mean 3.814 3.814 3.814
S.Deviation 0.286 0.286 0.286
Skewness -0.423 -0.422 -0.423
MSD 4.099 4.100 4.100
MSSD 4.074 4.075 4.075
VaR 4.242 4.381 4.243 4.382 4.243 4.382
ES 4.308 4.412 4.309 4.413 4.309 4.413

7.4 Conclusions of Case Study 2

In this chapter of the thesis we firstly examined the distributions of the future annu-

ity values in the presence of both longevity and interest-rate risk. We analyse these

distributions at different points in time with different terms to maturity. We used

two factor CBD model for the development of the future mortality rates. This model

allows us to simulate the distribution of a survivor index for different terms to matu-

rity under both the real world measures and the risk-neutral measures. By using the

latter one we price the longevity bonds, given the assumed longevity risk premium (20

basis points for 25-year longevity bond and 30 basis points for the 45-year longevity

bond). We studied longevity bonds with a reference cohort of 65-year-old English and

Welsh males.

Our simulation results suggest that the dispersion of future annuity values under the

combined effect of longevity and interest-rate risk are considerably wider than the

cases in which each is treated separately. The mean future annuity values under dif-

ferent cases are considerably higher than the current annuity value. This is explained

where Z2 is the insurance factor risk and it accounts for both A1(t) and A2(t).
35Under linear approximation V M

Q (T )r = ϕ1(∆1(T )r(T )) − ϕ2Acomb(T ) where Acomb(T )=
∆2,1(T )A1(T ) + ∆2,2(T )A2(T ) and ϕ1=ϕ2=1.
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Table 7.34: Proportions of the Euler’s Contributions of Factor Risks to the Future
45-Year Annuity at Different Confidence Levels at Time 1 Under Various Scenarios
for The Market Prices of Longevity Risk for Different Methods.

Risk Measures and Different Methods

ES VaR MSD MSSD
Risk Factors Hoeff. Linear Hoeff. Linear Hoeff. Linear Hoeff. Linear

95% Confidence Level

(λ1,λ2)=(0.0031,0)
Investment 97.17 97.92 98.36 98.18 98.60 99.07 98.08 98.67
Insurance 2.63 2.08 1.64 1.81 1.40 0.93 1.92 1.33
Co-movement 0.20 - 0.0 - 0.0 - 0.0 -

(λ1,λ2)=(0,0.000155)
Investment 96.97 92.88 97.90 94.00 98.60 96.81 98.08 96.44
Insurance 2.83 7.12 1.86 6.00 1.40 3.19 1.92 3.56
Co-movement 0.20 - 0.24 - 0.0 - 0.0 -

(λ1,λ2)=(0.0025,0.00003)
Investment 97.17 98.42 98.60 98.64 98.60 99.12 98.47 98.87
Insurance 2.63 1.58 1.40 1.36 1.40 0.88 1.53 1.13
Co-movement 0.20 - 0.0 - 0.0 - 0.0 -

99.5% Confidence Level

(λ1,λ2)=(0.0031,0)
Investment 93.98 96.93 96.12 98.08 98.60 99.07 98.08 98.67
Insurance 5.35 3.07 3.53 1.92 1.40 0.93 1.92 1.33
Co-movement 0.67 - 0.35 - 0.0 - 0.0 -

(λ1,λ2)=(0,0.000155)
Investment 93.50 89.41 95.77 92.58 98.60 96.81 98.08 96.44
Insurance 5.67 10.59 3.87 7.42 1.40 3.19 1.92 3.56
Co-movement 0.83 - 0.36 - 0.0 - 0.0 -

(λ1,λ2)=(0.0025,0.00003)
Investment 94.15 97.50 95.77 97.24 98.60 99.12 98.47 98.87
Insurance 5.18 2.50 3.70 2.76 1.40 0.88 1.53 1.13
Co-movement 0.67 - 0.53 - 0.0 - 0.0 -

by the projected future improvements in longevity. Interest-rate risk mainly causes a

strong negative skew in the distributions of the future annuity values. With these find-

ings we can make some inferences for the current 25-year-old male plan member. Let

AF denotes the value of the accumulated pension fund. Table 7.5 tells us that for an

individual aged 65 and retiring now, annual retirement income would be AF/11.863

(AF/11.566) for 45-year (25-year) annuity, whereas current 25-year-old plan member

faces an expected future annuity value of 16.190 (14.678) for 45-year (25-year) annuity

which imply his expected retirement income is only AF/16.190 (AF/14.678). This is

26.7% (21.2%) lower, other things being equal. The reason for this reduction is the

projected longevity improvements over the course of his working lifetime36. Hence

36Member can respond to this reduction in two ways: he can prepared to work longer or he can
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his pension becomes more risky. This can also be explained by the dispersion in the

distribution of future annuity values. Particularly, if we focus on the right-tail of

the distribution, we can say that the gap between the current and expected future

retirement income is widening37.

Secondly, we examined the contributions of the investment factor risk and the insur-

ance factor risk to the future annuity values under different allocation methods. We

visualise the factor risk contributions in Figure 7.13. Specifically, we paid attention

to the Euler’s contributions (or marginal contributions) of factor risks38. In order

to calculate the Euler’s contributions we employ different decompositions namely,

the Hoeffding decomposition and linear approximation. Thanks to these approaches

we derive a loss model in which total loss is linear in losses of factor risks. We ex-

amine the contributions for different terms to maturity and at different points in time.

Under valuation at time 1, the risk is predominantly caused by the investment risk

component and the insurance risk contribution is negligible, see left-hand side of the

Figure 7.13. Different allocation methods agree on this result. Insurance factor risk

becomes relatively important for longer term to maturity. The explanation for this is

that the longer-term survival probabilities incorporate the compounding of year-by-

year mortality shocks: the survival probability for year t depends on shocks applied

to mortality rates in each of the retrospective years up to time t, and each shock

affects survival probabilities in all subsequent years. The Hoeffding decomposition

and the linear approximation result in very similar allocation proportions, and the

linear approximation at time 1 represents the true distribution well.

Under valuation at time 40, the importance of the insurance risk is considerably

higher. Specifically, under 45-year annuities the risk is predominantly caused by the

insurance factor risk, see right-hand side of the Figure 7.13. Different allocation meth-

increase his contributions to his pension plan.
37We here need to emphasize that the CIR model is being criticized for under-estimating the

distribution of future instantaneous spot interest-rates and more empirically appropriate interest-
rate model would lead the distribution of future annuity values to become even more dispersed, see
Dowd et al. (2010).

38We investigated previously in the thesis that the only coherent allocation method is the Euler’s
method. Thus, we particularly focus on the Euler contributions
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ods agree that the longer the maturity the higher the insurance risk. The Hoeffding

decomposition and linear approximation results very similar allocation proportions,

even if linear approximation at time 40 is slightly underestimates the true distribution.

In general, we observe that the shorter the term to maturity the higher the investment

factor risk’s contribution or vice versa. Main reason for that is the mortality shocks

have drastic effects on future mortality rates for longer terms to maturity. Another

important observation is the increasing importance of the insurance factor risk if we

move further in the tail of the distribution. The explanation for this improvement

is that the investment risk has a lower bound39 whereas the mortality risk has no

bounds in the upper extreme. This indicates that the higher values of the annuities

predominantly caused by the higher survival probabilities (or lower mortality rates).

We also in this chapter examined the contributions of the factor risks under extreme

scenarios for the factor risks. We did these examinations under future 45-year annuity

values at time 1. We observe that in higher interest-rate environment annuities worth

less and the risk in the annuities is mainly caused by the interest-rate factor risk. On

the contrary, in lower interest-rate environment annuities worth more and the insur-

ance factor risk’s contribution is considerably higher even if the dominant factor risk

is the investment factor risk. We here need to highlight one thing: analysis at time 40

indicates that the insurance factor risk considerably higher than the investment factor

risk. Therefore, if we were to analyse the lower extreme scenario for the interest-rate

at time 40 we would probably observe that the risk was predominantly caused by the

insurance factor risk and the investment factor risk’s contribution was considerably

less.

The contributions under the extreme scenarios for the market prices of longevity risks

indicate that the insurance factor risk is relatively higher under the extreme values of

the market prices of longevity risks. Precisely, the extreme values of (λ1,λ2)=(0.0031,0)

and (λ1,λ2)=(0,0.000155) indicate higher contributions of the insurance factor risk

than the case of (λ1,λ2)=(0.0025,0.00003), see Table 7.34.

39The CIR model prevents interest-rates to have negative values, hence the interest-rates are
bounded below by 0.
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We observe that either the Hoeffding decomposition or linear approximation work

well for the calculation of contributions of factor risks. However, both approxima-

tions have some deficiencies:

If we have k factor risk, then the Hoeffding decomposition contains 2k terms which

directly implies that the calculations of factor risk contributions becomes intractable

for k > 2. Therefore, we need efficient algorithms either for computing the terms of

the Hoeffding decomposition conditional on realised factor risk values or for calcula-

tion of factor risk contributions.

Linear approximation (first order Taylor expansion) may moderately underestimate

the true distribution for higher values of k as we neglect the other terms in the full

Taylor expansion40. However, risk contribution calculations under linear approxima-

tion can be done easier and faster than the Hoeffding decomposition.

We also notice that the first order Taylor expansion’s approximation performance to

the true distribution decreases with the maturity: the shorter the maturity the better

the approximation. We think that there might be few reasons for this: one of them is

the variability of mortality state variables. Time 1 state variables A(1) have relatively

lower variation than the time 40 state variables A(40). As we use Taylor expansion

around E[A(1)] and E[A(40)], the variation of state variables around these points

affect the approximation’s performance. Another reason would be the non-linearity

of the model. In a relatively short-term mortality rates do not change significantly.

Therefore, the co-movement between the interest-rates and mortality rates do not

produce much risk for short-term horizons. However, in the long run mortality risk

becomes important and as a result the co-movement between these risk sources pro-

duces higher non-linearity effects.

40Full Taylor expansion stands for the expansion that includes all terms: first order, second or-
der,..., kth order, see (5.9).
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Chapter 8

Conclusions and Further Research

In this chapter we provide an overview of the main findings of this thesis as well as

some suggestions for possible further research.

8.1 Conclusions

The main contribution of this thesis is twofold. First, we have examined risk capital

allocation methods in a non-life insurance portfolio where the total portfolio loss is

linear with respect to losses of the sub-portfolios (or business-lines). In Chapter 4 we

have provided a comprehensive analysis of the sensitivity of allocations to different

risk capital allocation methods, different risk measures and different risk models. Sec-

ond, we have provided approximations that enable us to apply risk capital allocation

methods and measure contributions of factor risks to the total loss of a life annuity

portfolio where total portfolio loss is a non-linear function of factor risks. In Chapter

7 we have examined factor risk contributions under stochastic mortality and stochas-

tic interest-rate models with using provided approximations. To our best knowledge,

this is the first study that consider all of the above-mentioned issues.

In Chapter 1, we have introduced risk measures and have discussed properties of co-

herent risk measures. In Chapter 2, we have reviewed the copula methods and have

discussed their usage in modelling dependency structure between sub-portfolios. We

have described the risk capital allocation methodology and different allocation meth-

ods in Chapter 3.1.
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In Chapter 4 we have presented a comprehensive simulation study in which we have

analyzed different allocation methods’ effects/differences on risk contributions of sub-

portfolios in a hypothetical non-life insurance portfolio where the portfolio loss can

be written as the sum of losses of individual sub-portfolios. This simulation study

is three-dimensional: we have employed four different risk models, five different risk

measures and five different allocation methods. Different risk models have same first

and second moments. Moreover dependency structure between sub-portfolios is pre-

served in different risk models. In doing so, we have examined the possible effects of

different distribution’s on the allocations. We also have proposed new approaches to

compare allocation methods. We have employed the Euclidean distance and depen-

dence measures: Spearman’s rho and Kendall’s tau in order to compare differences

between the Euler’s allocation method and other allocation methods recognizing the

Euler’s allocation method as a preferred (fair-unique) allocation method.

According to the Case Study 1 in Chapter 4, the main findings can be summarised

as follows.

We have observed that when the VaR is used, allocation methods matter more than

for other risk measures. This indicates that financial institutions should be careful

about choosing the allocation method if the occupied risk measure is the VaR.

We have found that MSD and MSSD risk measures are insensitive to the different

risk models, whereas the VaR and the ES are highly sensitive to both different risk

models and different allocation methods.

L2 distances and rank correlation coefficients make comparisons between different al-

location methods easy. These comparisons indicate that the proportional method is

an inefficient allocation method in the sense that it is very different from fair alloca-

tion method.
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Allocations based on the VaR and the ES show that the quantile selection in combina-

tion with the risk model selection are really important as the most risky sub-portfolio

according to these risk measures can change.

The Euler’s allocation method also highlights the coherency of the ES and affirms its

superiority to the VaR.

These findings imply that under heavy tailed distributions, allocation methods can

produce very different allocations. Therefore, the necessary attention should be given

either to the choice of allocation methods or to the choice of risk measures.

In Chapter 5 we have introduced factor risk contributions theory and have provided

two approximations that can be used in linearisation of the non-linear annuity loss

model: the Hoeffding decomposition and linear approximation. We have described

factor risk contributions under these approaches. In Chapter 6 we have presented the

risk-neutral pricing approach and have showed how mortality contingent claims can

be priced under this approach.

In Chapter 7 we have presented a detailed simulation study which considers life an-

nuities and factor risk contributions of the interest-rate factor risk and the mortality

factor risk to the future annuity values. Firstly, we have examined future annuity val-

ues and their distributions under stochastic longevity and stochastic interest-rate risk.

We have employed annuities with different terms to maturity and we have analysed

distributions of future annuities at different points in time. We have examined the

theoretical results of the Chapter 5 in which we introduced two approximations for the

linearisation of annuity loss model. We have focused on the Euler’s contributions of

the factor risks, though we have also applied different allocation methods. Moreover,

we have also analysed the contributions under extreme scenarios of the factor risks.

According to the Case Study 2 in Chapter 7, the main findings can be summarised

as follows.
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Applications of employed decompositions/approximations in combination with the

allocation methods have leaded to consistent results. We have showed that both the

Hoeffding decomposition and linear approximation result similar risk attribution to

the factor risks. Stand-alone and incremental allocations also have produced similar

results with the former ones.

As is known, longevity risk has important effects on the annuities for long time hori-

zons (by decreasing the mortality rate / increasing the annuity prices). Thanks to

combinations of different decompositions/allocation methods/risk measures we have

quantified the contributions of the mortality factor and interest-rate factor to the fu-

ture annuity values.

We have observed that for short time horizons the interest-rate factor dominates the

mortality factor, however for long time horizons vice versa. Findings have shown that

for 1-year time 97-98% of the total risk caused by the interest-rate factor risk and

the rest caused by the mortality factor risk whereas for 40-years’ time 40-45% of the

total risk caused by the mortality factor risk and 55-60% of the total risk caused by

the interest-rate factor risk.

We have also examined annuities with different terms to maturity. We have observed

that the contribution of the mortality factor risk under 45-year future annuity ap-

proximately twice the contribution under 25-year future annuity. Put another way,

we have observed that the longer the term to maturity the higher the mortality factor

risk’s contribution or vice versa. Main reason for that is the mortality shocks have

drastic effects on future mortality rates for longer terms to maturity.

Another important observation is the increasing importance of the insurance factor

risk if we move further in the tail of the distribution. The explanation for this increase

is that the interest-rate risk is bounded below by 0 in the CIR model whereas the

mortality risk has no bounds in the upper extreme. This indicates that the higher

values of the annuities predominantly caused by the higher survival probabilities (or

lower mortality rates).
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We have observed that either the Hoeffding decomposition or linear approximation

work well for the calculation of contributions of factor risks. However, both approxi-

mations have some deficiencies for k > 2 where k is the number of factor risks in the

model. Not only the calculation of the terms of the Hoeffding decomposition becomes

intractable but also the calculations of factor risk contributions get complicated. On

the other hand linear approximation may moderately underestimate the true distribu-

tion for higher values of k as we ignore the other terms in the full Taylor expansion1.

We can say that the factor risk contribution calculations under linear approximation

can be done more efficiently than the Hoeffding decomposition, after all.

Examination of future annuity values and measurement of factor risk contributions

motivate the analysis of solvency capital and contributions of factor risks to solvency

capital. Especially, analysis of 1 year VaR and factor risk contributions to 1 year VaR

produce very motivating results. We do not consider the asset side of the insurance

companies in this study. However, the examination of factor risk contributions at

time 1 gives clear signals for the behaviour of factor risk contributions to solvency

capital.

Furthermore, time 40 analysis of solvency capital and factor risk contributions provide

powerful signals for long term risk management of the insurance companies. Increasing

importance of the mortality risk for long term horizons directly indicates that hedging

strategies for the longevity risk are really important for the financial risk management

of the pension funds.

1Full Taylor expansion stands for the expansion that includes all terms: first order, second or-
der,..., kth order, see (5.9).
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8.2 Further Research

The risk capital allocation can be used for many purposes. One of them is the portfo-

lio optimization with RORAC approach, see Fischer (2003). So, a natural extension

of this thesis would be the application of RORAC methodology and compare the

performances of the sub-portfolios under various scenarios of the allocation methods,

risk measures and risk models.

In this study we have used a deterministic valuation model for the calculation of future

annuity values in order to cope with nested simulations. Another interesting research

topic would be the use of, for example, a least-square Monte Carlo(LSM) method

in combination with a fully stochastic valuation model, see Longstaff and Schwartz

(2001).

Another future research might be the re-calibration of the stochastic mortality model

parameters. This can be done by calibration of the model in each prospective year

starting from time 1 and re-estimate the mortality model parameters every calendar

year. This can possibly increase variability in future annuity values, for more infor-

mation on re-calibration risk see Cairns et al. (2011).

As we have stated previously, the distribution of future instantaneous spot interest-

rates is likely to be under-estimated by the CIR model. Therefore, another future

research might be to employ a more plausible interest-rate process for the calculation

of the future annuity values; for example a two-factor interest-rate model for pricing

of long-term interest-rate derivatives proposed by Cairns (2004b).
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Chapter 9

Appendix-A: A Short Review on

Solvency I & Solvency II

The current regulation for determination of regulatory capital for insurance compa-

nies, Solvency I, has been in effect since 2002. The minimum capital requirements

(MCR) for non-life insurance under the Solvency I is given by the maximum of the

premium basis and the claim basis. These basis are given by the following

PBt = 0.18 ∗ min(Pt,¤57.5million) + 0.16 ∗ max(Pt−¤57.5million, 0)

CBt = 0.26 ∗ min(Ct,¤40.3million) + 0.23 ∗ max(Ct−¤40.3million, 0)

where Pt denotes the net premiums in period t, Ct is derived on the basis of the

average claim payments over the last three years net of reinsurance. Then the MCR

is given by the following

MCRt = max(PBt, CBt).

In addition to the MCR, there is a minimum guarantee fund between ¤2.3 million -

¤3.5 million, depending on the line of business, see Commission (2002a), Commission

(2009).
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For life insurance the MCR is given by the following

MCRt = 0.04 ∗ Reserves ∗ max(
NetReserves

GrossReserves
, 0.85)

+ 0.03 ∗ NetAmountatRisk ∗ max(
NetAmountatRisk

GrossAmountatRisk
, 0.50)

where the net amounts are net of reinsurance and the amount at risk is the promised

death benefit less the amounts minus the amount of funds held. The minimum guar-

antee fund is ¤3.5 million, see Commission (2002b), Commission (2009), Cummins

(2009).

Under the Solvency I regulation minimum capital requirements are calculated using

the percentage of technical provisions, claims or premiums as it can be seen above.

Therefore, many type of risks such as market, operational, longevity and credit risks

are not considered. Due to these shortcomings, new regulation standards namely

the Solvency II Project has been launched by the European Commission and it is

expected to come into effect in 2012. This project is a risk-based approach and its

main goal is to take account of missing sources of risks to improve the policyholder

protection and increase the stability of the financial system. Beyond these quantitative

elements its also consider risk management, supervisory and information disclosure

issues. Solvency II based on three pillar structure, capital requirements, qualitative

requirements and information disclosure rules, see Figure 9.1.

Figure 9.1: Solvency II - Three Pillar Approach, see CEIOPS (2007)
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Capital requirements are determined on two-level approach in Pillar I, see Figure 9.2.

Pillar I takes an integrated balance sheet approach, i.e., it considers assets, liabilities,

and the interdependencies between them. The liabilities are subdivided in technical

provisions and the Solvency capital requirement (SCR). The assets are subdivided in

assets covering the technical provisions and the available solvency margin (to cover

the SCR; if the available solvency margin is larger than the SCR, the residual is the

excess capital). Both assets and liabilities are calculated at market value. On the lia-

bility side, calculation of the technical provisions is based on their current exit value,

i.e., the amount necessary to transfer contractual rights and obligations today to an-

other undertaking. The technical provisions are thus the sum of the best estimate of

the liabilities and a risk margin, based on the cost-of-capital method, see Eling and

Holzmüller (2008).

Figure 9.2: Solvency II - The Pillar I, see CEIOPS (2007)

The Solvency capital requirement is the target capital level to the insurer which is the

Value at Risk at 99.5% over a one-year time horizon. The minimum capital require-

ment is the minimum level of capital below which a company cannot be allowed to

carry on its operations normally. The SCR can be determined in two ways. Firstly,

insurers can calculate the SCR by using standard model, details of which are yet to

be finalized. Secondly, they can calculate the SCR by using their own internal model

which is approved by the regulator, see CEIOPS (2007). In addition to these options,

the insurer can also utilize a combination of internal models and the standard model.
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Figure 9.3: Risk Modules for the SCR under Solvency II, see Commission (2008)

The SCR standard formula follows a modular approach where capital charges are

determined for the various risks, i.e. market, operational, life, non-life, health and

default risks see Figure 9.3. These risks then aggregated under the assumption of

a multivariate normal distribution with a prescribed dependence structure. Let us

define

• mk: the number of risks in k th module, i, j=1,2,...,mk

• Ci: the required capital for the risk i belonging to module k

• ρintra
i,j : the correlation coefficient of the risks i and j belonging to module k

• SCRk: the required capital for module k

• ρinter
k,l : the correlation coefficient of modules k and l,

• BSCR: the required capital before operational risk and adjustments

At first, the required capital for each risk module, SCRk, is calculated by the following(intra-

modular aggregation)

SCRk =

√

∑

i,j∈m2
k

ρintra
i,j CiCj. (9.1)
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For aggregation of intra-modules, correlations can be found in Commission (2008).

Then, the basic solvency capital requirement is calculated by the following(inter-

modular aggregation)

BSCR =

√

∑

k,l

ρinter
k,l SCRkSCRl. (9.2)

where correlations between different modules ρinter
k,l are given in Table 9.1.

Table 9.1: Covariance Matrix of Different Modules under Solvency II, Values of ρinter
k,l

in (9.1), see Commission (2008).

Market Default Life Health Non-Life
Market 1.0000
Default 0.25 1.0000

Life 0.25 0.25 1.0000
Health 0.25 0.25 0.25 1.0000

Non-Life 0.25 0.50 0 0.25 1.0000

Finally, overall SCR is defined by the following

SCR = BSCR + SCRopar. (9.3)

where SCRopar. denotes the capital requirement for operational risk1. There are three

levels of intervention are possible based on the capital level. There is no interven-

tion when the insurer’s available capital is equal to or greater than the SCR. If the

available capital falls between the SRC and the MCR levels, the regulator is informed

and the insurer will take effect to raise the available capital level to the SCR level.

The regulator will withdraw the insurer’s license, if the insurer’s available capital falls

down under the MCR level, then the insurer’s liabilities are transferred to another

insurance company, see Commission (2007a,b).

1The capital requirement for operational risk is determined proportional to the BSCR.
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Pillar II concerns the risk management, internal control, governance and supervi-

sory issues. Furthermore, it includes the reinsurance issue and it requires insurers

to conduct Own Risk Solvency Assessments designed to regularly assess their overall

solvency needs with a view toward their own risk profile, see Cummins (2009).

Pillar III consists the information and reporting to investors, policyholders or author-

ities. Thanks to efficient information and reporting services, companies can cope with

the information asymmetry issues.

Under Solvency II, the risk management process can be defined by the following: see

Liebwien (2006),

• Identify potential risk factors, their relationships and their impact on

the companies target variables.

• Quantify these factors, the relationships and the variables affected in

the company.

• Perform sensitivity analysis according to the impacts on the company‘

s top-level target variables. This helps to separate the important risk

factors from those with only minor leverage.

• Identify risk mitigation alternatives and perform steps above to anal-

yse the effects of these alternatives.

• Finally, steer the overall risk position by iterating these process steps.
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Chapter 10

Appendix-B: Risk Adjusted

Performance Measurement

Risk capital allocation can be used to asses and to improve the profitability of busi-

nesses with different sources of risk and different capital requirements. Risk capi-

tal allocation enables firm to measure performance by line of business to determine

whether each business is contributing sufficiently to profits and add value to the firm.

Once risk capital has been allocated by line, we can calculate a performance mea-

sures ‘return on risk capital’ (RORC) to maximize the firm value. The RORC can be

defined by the following

RORC =
E[X]

ρ(X)
. (10.1)

In contrast to a risk measure, this performance measure does not care about the abso-

lute value of the risk capital, but of its proportion to the mean return which is gained

on it.

Tasche (1999) considers the RORC1 of the pay-off of a portfolio u that is defined by

the following

f(u) =
E[X(u)]

ρ(X(u)
.

1Tasche (1999) call (10.1) the RORAC (return on risk adjusted capital)
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If E[Xi]
ai

> f(u) where ai is the risk capital allocated to the business line i and ei is the

i-th canonical unit vector in Rn, there should be an ǫ > 0 such that for all t ∈ (0, ǫ)

we have

f(u − tei) < f(u) < f(u + tei).

which implies that the relation between portfolio return and return of sub-portfolio

i ensures that the portfolio return will increase when the weight of sub-portfolio i is

increased.

Analogously, for E[Xi]
ai

< f(u), there should be an ǫ > 0 such that for all t ∈ (0, ǫ) we

have

f(u − tei) > f(u) > f(u + tei).

which implies that the relation between portfolio return and return of sub-portfolio

i ensures that the portfolio return will increase when the weight of sub-portfolio i is

decreased, see Tasche (1999).

Tasche (1999) shows that in the case of differentiable positively homogeneous risk

measures the gradient is the unique per-unit allocation and it is suitable for perfor-

mance measurement due to the risk adjusted return function.
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