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Abstract

This thesis describes the development of a large database of texture stimuli, the

production of a similarity matrix reflecting human judgements of similarity about

the database, and the development of three browsing models that exploit structure

in the perceptual information for navigation. Rigorous psychophysical comparison

experiments are carried out and the SOM (Self Organising Map) found to be the

fastest of the three browsing models under examination. We investigate scalable

methods of augmenting a similarity matrix using the SOM browsing environment to

introduce previously unknown textures. Further psychophysical experiments reveal

our method produces a data organisation that is as fast to navigate as that derived

from the perceptual grouping experiments.
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Chapter 1

Introduction

The overarching aim of this research is to produce an efficient1 texture browser whose

performance can be verified with robust psychophysical experiments. In the context

of this work texture is defined as 3D digital representations of real, homogeneous

surface textures with variation only due to surface relief, which may be rendered as

2D images of such surfaces using consistent illumination conditions and appearance

properties (for further detail see sections 2.3 and 3.2).

1.1 Motivation

Over the past thirty years there has been much activity in texture research in the

areas of digital capture, synthesis, segmentation, classification, perceptual dimension

analysis, computational features, search and retrieval. A very active area of texture

research in recent years concerns the development of Content Based Image Retrieval

(CBIR) systems [18, 37]. Such projects have focussed on building systems that allow

users to retrieve textures that are similar to a query texture [29]. Although these

have enjoyed various degrees of success, the approach is not without its limitations

[46, 65].

CBIR: Retrieve images in response to a query image

• Users may not have access to:

– a query image similar to those they wish to retrieve, or

– the tools or skills to create one.

• User simply may not know ahead of time what they are looking for

1With respect to the user’s time.
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• Repetitive queries can become trapped among small groups of undesirable

images

Browsing: Search by a user without an image query

• User browses freely until they recognise the images they want

Applications of texture browsing include (but are not limited to) browsing and

selection of:

• floor, wall and ceiling coverings by interior designers,

• building render, roofing and paving finishes by architects,

• synthesised leather grains and wood finishes for vehicle cockpit interiors, and

• wallpapers and textiles by consumers.

Such browsing environments may be designed and populated by product manufac-

turers, suppliers or retailers, and distributed to architects, designers, purchasers and

consumers on digital media (e.g. optical discs or flash drives) or through publication

on the internet or via electronic mail.

The motivation of this thesis is to investigate efficient browsing environments that can

assist users in quickly browsing a large texture database without being in possession

of a query texture or necessarily having previous knowledge about the type of texture

one wishes to find. By efficient, we mean the instrument must be accurate and quick

to use.

1.2 Mission and Goals

In order to establish a framework for assessing the success of this research project

we must establish a set of specific, measurable and outcome-targeted objectives.

The mission of this research project is to investigate perceptually relevant browsing

environments for large texture databases. As this can have a broad interpretation in

terms of intent, it is the purpose of this section to provide a sense of direction and

purpose by summarising the project goals.

Literature Survey: Review literature on browsing environments and related tex-

ture research with a view to discovering the current state of the art and areas

where new contributions could be made.

Large Texture Database: Develop a set of criteria to assess the eligibility of

existing texture databases to this project and if suitable database is not
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available, develop a large surface texture database that meets our criteria.

Human Judgements: Capture human judgements describing the similarity be-

tween members of our texture database and investigate if these can be used

to organise the database within browsing environments for the purpose of

efficiently navigating texture.

Develop and Evaluate Browsing Environments: Develop a variety of brows-

ing environments for navigating texture and subject these to psychophysical

experiments in an attempt to discover which, if any, is superior in terms of

minimising mean task time in a texture browsing task.

Investigate Scalable Methods: Investigating methods of performing perceptual

grouping experiments with prohibitively large datasets of images and developing

and testing methods of augmenting existing datasets with large numbers of

previously unknown textures.

1.3 Scope

It would be a large task indeed for this thesis to look at browsing of the whole world

of texture. As the research of the Texture Lab has focussed on surface texture, i.e.

variation only due to surface relief (ignoring albedo and reflectance function), we shall

restrict our stimuli database to images of this type. This has the significant benefit

of allowing us to render the textures using consistent viewpoint and illumination

conditions, variability in either of which are known to effect human perception of

texture. By capturing textures using photometric stereo and encoding them as height

maps we can also efficiently compute computational features for each texture (see

chapter 8).

It is entirely possible that the browsing environments we investigate may be applicable

to browsing data of other types but we make no attempt to verify this.

The focus of this research is solely on browsing environments and is not intended to

enhance the state of the art in CBIR or any other search-by-query approach.

Part of this thesis evaluates the suitability of using computational features to identify

structure in texture databases that can be exploited for navigation. We rely heavily

on the work of Emrith [25, ch. 5 & 6], whose techniques we use in a black box fashion.

No new contribution is offered in the areas of computational features or feature

selection.
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1.4 Novelties & Contribution

The products from this research project that may be regarded as novel and con-

tributing to the state of the art can be summarised as follows.

Database Development: Development of a database of five hundred surface tex-

tures with accompanying perceptual similarity data that can be used for future

research projects in the Texture Lab or by external researchers. The dataset

was later utilised in a project by the author with Clarke et al [14] Perceptual

Similarity: A Texture Challenge in 2011.

Rigorous Browser Comparison: Use of several best practice psychophysical ex-

periments and robust results analysis to evaluate the performance of browsing

models with a view to identifying whether, with statistical significance, any

could be deemed superior in terms of mean task time.

Scalable Dataset Augmentation: We developed and tested a scalable method

of augmenting a dataset with a large number of additional textures for use in

browsing environments by capturing human judgements on texture similarity

from members of a crowdsourcing community.

1.5 Thesis Organisation

Figure 1.1 has been provided to guide the reader through the thesis structure. Strong

associations between chapter topics are contained within a dotted outline and the

arrows between chapters reflect the chapter dependencies. In chapter 12 a more

detailed flowchart (figure 12.1) can be found which additionally provides the reader

with a summary of the thesis argument.

Conventionally, chapter 2 provides a survey of the current literature relating to the

topics of the thesis while chapters 3 and 4 deal with dataset development, capturing

human similarity judgements and preliminary inspection of the dataset for structure.

In chapter 5 we describe the development of three browsing environments that exploit

the structure found in chapter 4 for organisation and navigation. These are evaluated

in chapter 6 and the SOMG found to have the best performance. From that point

onwards we restrict future browsing environments to use the SOM browsing model

for brevity.

Chapters 6, 7 and 8 produce three browsing environments with differing methods

of structuring the data. In chapter 9 we evaluate these browsing environments and
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Figure 1.1: Thesis Organisation

find that our pilot augmentation approach (SOMA) has no significant degradation in

performance when compared with SOMG. However, the feature based organisation

(SOMF) has significantly reduced efficiency compared to the other two.

In chapter 10 we produce a browsing environment based on a scalable version of our

augmentation approach using crowdsourcing. A comparison in chapter 11 between

this (SOMA2) and the SOMG browsing environment reveals no significant degradation

in performance.

Finally, in chapter 12, we summarise the thesis argument textually and diagrammat-

ically.
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Chapter 2

Survey

2.1 Introduction

A study of perceptually relevant browsing environments for large texture databases

must draw from the state of the art in a number of disciplines in computer science

and cognitive psychology. In this survey we provide a comprehensive review of the

relevant literature which informs our selection of techniques for capturing human

judgements, analysing psychophysical data and mapping computational features to

perceptual space. We also evaluate the currently available texture databases, review

the limited research in the area of browsing environments, and identify a range

of candidate graphical user interface (GUI) components that may suggest suitable

browsing models for navigation.

As a large proportion of texture research has been in the area of content-based

image retrieval (CBIR) we review and contrast these approaches against perceptually

relevant browsing to give a flavour of how our research differs from search-by-query.

For completeness, a short section on image collection annotation is included and

we conclude our survey with a comprehensive treatment of the benefits and risks of

using crowdsourcing platforms for research experiments.

2.2 Browsing Environments

Browsing environments offer an alternative to conventional search-by-query, but

have received much less attention [11]. In general, a browsing environment seeks to

logically and predictably organise the database so that users can find the images that

they need. If users are provided with a spatial interface in which content similarity
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between images can be intuitively conveyed by their spatial proximity, then such

interfaces may help users to benefit more from a given image database [9].

The Collins English Dictionary gives a basic definition of the term browse,

to look through in a casual leisurely manner.

The Penguin Concise Dictionary of Computing offers the definition of a browser as,

a program that is used to view the contents of a large collection of files

or other software objects. It will typically present the user with a list of

such objects, selecting one of which will open it for inspection.

Combs et al [16] offers the following distinction between Image Retrieval (IR) Systems

and Image Browsers :

1. An Image Retrieval (IR) System is an application that returns one or more

images given some descriptive information. This information can be in the

form of:

(a) an image,

(b) keywords or phrases, or

(c) natural language.

2. An Image Browser is an application that allows users to select one or more

images from multiple images. This browser has to:

(a) be able to display multiple images at one time (possibly reduced resolution

versions), and

(b) support inspection of original full resolution versions of an image.

For databases with large numbers of images (N), it is not feasible to browse linearly

through the images in the database. A desirable characteristic is to let the user

navigate through the database in a structured manner [56].

Navigation would normally be considered to be the activity of finding one’s way

through an environment. In architecture, the term ‘wayfinding’ is preferred (and used

synonymously with the term ‘navigation’) [6]. From an architectural perspective,

Passini [78, p. 154] defines wayfinding as “a person’s ability, both cognitive and

behavioural, to reach spatial destinations”. This conception is based on Downs et al

[22] who see wayfinding as composed of four steps:

1. orienting oneself in the environment,

2. choosing the correct route,
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3. monitoring this route, and

4. recognising that the destination has been reached.

Rodden [91] recognised, with the popularity and affordability of digital cameras and

visual capture devices, that digital image collections would increase in size. Even

the personal collections of amateur photographers would need some organisational

approach to support finding items at a later date. Her early work asked the question

“how do people organise their photographs?” She discovered the importance of

browsing over conventional querying in this respect. Further work by the same author

and Sinclair [93] asked, “Does organisation by similarity assist image browsing?”

They found that arranging a set of thumbnail images according to their similarity

does indeed seem to be useful to designers. They also concluded that although labels

attached to media may be very helpful to finding particular images, that the process

was time consuming and prone to inconsistencies between those carrying out the

labelling task.

Chen et al [10] proposed a technique of browsing using similarity pyramids. The

similarity pyramid organises large image databases into a three dimensional pyramid

structure. Each level of the similarity pyramid contains clusters of similar images

organised on a 2D grid. As users move down the pyramid, the clusters become

smaller, with the bottom level of the pyramid containing individual images. Users can

also pan across a level to see images or clusters that are similar. Like much work in

this area, they used a similarity measure based on a distance function incorporating

colour, edge and texture features.

Pang [77] observed that colour pickers were convenient means of selecting colours

in a range of image editing software but that no similar selection tool existed for

texture. He proposed a texture picker for selecting binary textures for designing

manga artwork that included both a browsing component for choosing from a range

of textures in a palette and a query engine where a user could draw a texture and

select to see a range of similar or dissimilar (contrasting) textures. Texture similarity

in his application employed Gabor wavelets to quantify the texture characteristics.

Multidimensional scaling (MDS) was used to reduce the dimensionality of the feature

space and to allow the textures to be projected on the manifold required.

Holmquist et al [42] developed a hierarchical browser for browsing collections of

digital images including photographs, scanned document pages, drawings, renderings,

etc. Images are grouped into folders which can be brought in and out of focus

using a focus and context method called flip zooming, developed by Holmquist

[41]. The main image is displayed in the centre of the screen, surrounded by the

category containers. The hierarchical containers aspect of the browsing model may be
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applicable to our project but here the organisation of the data is based on meta data

– assigning a category and sub-category to each container rather than a perceptual

similarity model. The method was proposed as a useful alternative to traditional

image-browsing and no formal usability testing of the method was offered.

Chiu et al [12] presented the MediaMetro system for browsing document collections

in response to the rapid advances in technologies for content creation and wider

availability of digital media. MediaMetro employs a city metaphor where the user

navigates by flying around a 3D model of a city in a helicopter where the facade

of buildings show media storyboards or Video Manga [111] and the roofs display a

single representative keyframe of that building’s media content. By zooming and

then zeroing in on interesting buildings, the user can select the content to be played.

Although designed primarily for video media, this approach benefits from making

good use of screen real estate and could be adapted so that buildings are textured with

image thumbnails of similar images. Buildings would therefore represent perceptual

clusters of images. Problems include occlusion of content by nearer buildings and

loss of detail due to scaling. These problems could be addressed by approaches for

displaying large images on multi-projector display walls proposed by Jaing et al [45],

but not without considerable hardware costs and excluding internet applicability of

the solution. No formal measurement of efficiency was offered by the authors.

Martinez et al [66] proposed the use of Galois’ (or concept) Lattices to access

databases of images for browsing. A directed acyclic graph is created where the

nodes represent a set of descriptions. Sets of images can be produced which share

exactly the same description and at least the same description, for the purpose of

navigation. Like many browsing projects this endeavour is largely based on the

assignment of linguistic variables to the dataset, in other words meta data or labels.

However, this technique could also be used to model other measurable components

such as colour hystograms, and therefore may be able to model perceptual similarity

data. The implementation is a browsing / querying hybrid and further investigation

would have to be made to assess the applicaibility of this approach in pure play

browsing and navigation.

FABRIC is a project based at Dundee University that seeks to navigate image sets

in meaningful ways to provide design insperation to people in the fashion industry.

Ward et al [116] have been working on mapping image collections into 2 dimensional

or 3 dimensional space such as to preserve meaningful inter-image similarities. They

make the distinction that the project aim is browsing and navigation, although

they conceed that the process must be initiated with a query of some kind. They

use content-based image retrieval (CBIR) techniques such as colour histograms to

represent dimensions. They have failed to address problems of utilising screen real
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estate effectively, and highlight problems in displaying images in low dimensional

space, such as one image occluding another or others. They also do not address

perceptual relevance of the measures employed.

Strong et al [107] identified the difficulties of browsing through thousands of unor-

ganised photos and proprosed an approach that generates a feature vector for each

image in the collection which are then used to train a Self Organising Map (SOM).

The features they used were the global colour distribution and colour correlogram.

Similarity between images was calculated using the Euclidean distance between their

feature vectors. For smaller datasets the images are plotted centred at their best

matching unit (BMU) co-ordinate. As the collection gets larger, and images begin to

overlap, a dynamic collage interface is used to group clusters of images together and

produce a representative collage image in their place. The manifold on which the

images or collages are projected can be explored by scrolling and zooming. The use

of the Self Organising Map (SOM) has also been successful in other similar projects,

but concerns about occlusion have often remained unsolved. Quantized SOMs may

be a possible solution - where data is fitted to a grid or lattice structure. The use of

computational features to derive similarity between images has met with varying

degrees of success.

Plant et al [85] review and contextualise existing browsing approaches applicable

to image databases. They make the disctinction between horizontal browsing (all

images are available to the viewer, albeit some may be off-screen), vertical browsing

(images are clustered hierarchically), graph-based browsing (global view which can be

zoomed in on, such as Pathfinder by Chen et al [9]) and time-based browsing (images

clustered by time stamp). Horizontal browsing is achieved by panning, zooming,

magnification or scaling and can be applied to any single cluster of the other models.

No new work is offered but in their conclusions they highlight a lack of efficiency

and scalability testing of existing approaches.

A detailed comparison between the merits of using MDS (Multidimensional Scaling)

and PCA (Principal Components Analysis) for the purpose of creating low dimen-

sional information for browsing images was made by Keller et al [51]. They applied

these dimensionality reduction appraches to MPEG-7 descriptors and concluded

that the performance of PCA was powerful and sufficient for the compression of

high dimensional feature spaces to only three dimensions. However, their work was

not texture specific and the dataset was defined in computational feature space as

opposed to perceptual similarity space.

A Microsoft Research project, PhotoTOC (Photo Table Of Contents) is a system

that helps users browse photographs in their own collection of photographs. The
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authors, Platt et al [86], attempt to cluster collections into events based on two

clustering approaches. One is time-based clustering, where the creation time of the

digital image is used to cluster the photographs. Sometime this information is absent

or incorrect due to the digital capture device’s time being set incorrectly, or if the

image is scanned from an analogue source after the event. In this case, content-based

clustering is employed, clustering being performed using colour information in the

image. The project is focussed entirely on clustering by event, and these clustering

approaches are not applicable to our needs.

Rodden et al [92] made an evaluation of a visualisation of image similarity as a tool

for image browsing. A set of computational features giving a balance between global

image properties and local region based properties provided an image similarity

metric. MDS (Multidimensional Scaling) was used to approximate those features

into a low dimensional output configuration (2 dimensions) to allow thumbnails

of the images to be plotted at their MDS co-ordinates. 48 sets of 80 images were

subjected to this treatment, and a coresponding number of random arrangements

were generated. 16 subjects were tasked with a search task on each of the MDS /

random pairs and ANOVA applied to the result to discover statistical signifigance of

the difference. They found that the visualisation was more efficient than the random

case.

An investigation of visual structures for image browsing was made by Torres et al

[106]. Their approach was in the context of displaying results from a Content Based

Image Retrieval (CBIR) query, and so the browsing structure included the query

image along with the results of the query spacially organised with proximity by image

ranking. The two structures investigated are concentric rings and a spiral. With the

concentric rings visualisation, the results are displayed on concentric rings around

the query texture, in reducing order of ranking as the radius of the rings increases.

With the spiral approach, the query texture is positioned at the origin of the spiral

and the result textures are mapped on the spiral in reverse order of similarity. In

both cases images are thumbnail representations of the data and their size reflects

the similarity or ranking of the result. As this is not pure browsing and navigation,

but rather a means of displaying a query result, there is little to commend the use of

the approach in our project.

An atricle by Fan et al [26] with Microsoft Research Asia on image browsing on mobile

devices was examined and found to be concerned with browsing image contents

rather than browsing collections of images as the title may have suggested.

Work towards the effective use of limited display space for integrated multimedia

navigation was carried out by Walter et al [115]. They proposed using hyperbolic
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space, a non-Euclidean space with negative curvature, as the manifold onto which a

browsing model can be projected. Their approach relies on the recent development

of Hyperbolic MDS (HMDS) by Walter et al [114]. The resulting graphical user

interface allows the usual mouse interactions for visualisation control (navigation,

zooming, image scaling) as well as image set selection.

A next generation browsing environment was proposed by Schaefer [98] and tested

on a database of about 4500 images. His approach involved mapping thumbnails of

the dataset onto the surface of a sphere according to coordinates produced by an

angular hue feature. Images were organised into a grid structure to prevent negative

browsing effects of images being overlapped and therefore occluded by other images.

To ensure scalability, a hierarchical approach was utilised where zooming operations

reveal previously hidden images on a deeper level of the underlying browser tree

structure. Although this was an image (not texture) database, and the browsing

model was based on colour features rather than perceptual similarity, there are some

useful aspects of this project which could be of use to our project, in particular, the

spherical manifold, grid layout and hierarchical tree structure for scalability.

An atricle by Wu et al [120], Efficient Retrieval for Browsing Large Image Databases,

gave the titular impression that browsing may have been a key theme. The paper

actually describes the use of computational features for querying databases, rather

than browsing per se. Despite that, the performance evaluations they employed –

epsilon queries and nearest-neighbour queries – may have relevance in the event we

wish to test our data for perceptual retrievals at some stage in our project.

Lim et al [60] describe two methods of generating layouts for browsing a texture image

database. As these both involve deriving similarity information from computational

features and not perceptual information, we can discard these for the moment. Also,

like many articles reviewed so far in this chapter, they describe the use of MDS and

PCA in reducing the dimensionality of highly dimensional feature vectors, again

endorsing the suitability of these approaches in the literature, and strengthening

these as candidates in our project. The authors project their dataset of textures into

2 dimensional space to inspect mapping for structure and thereby assess the success

of the approach. However, no formal testing was done to measure the efficiency of

browsing.

Many authors have attempted to bridge the gap between query/search (where we

have a query feature vector, image or term to begin with) and browsing (where

we may be unsure at the start what we are looking for. Integrated browsing and

querying/searching has been proposed by Pecenovic et al [81] and Santini et al [97].

Pecenovic et al argued that a fully interactive real-time display of a hierarchically
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clustered collection, projected into a two dimensional space can bridge the gap

between the user and the system. Rather than supplying the browsing feature as a

solution in itself, however, it was merely supplied to allow users to select a query

image against which to retrieve similar images.

We failed to discover any specific research in the area of browsing texture databases

but we can draw from other researches in browsing environments as to candidate

techniques and approaches. Browsing invariably seeks to exploit obvious structure in

a dataset so we must examine approaches for the perceptual organisation of texture.

Ordinary image presentation has historically been in the structure of a grid. This

can be evidenced by the presence of such grids:

1. in operating system image file explorers,

2. in design/drawing/painting packages,

3. on web pages for thumbnail visualisation, and

4. as a GUI component in most graphical software development environments.

This is usually a good solution for a limited number of items, but it is not scalable

when dealing with many more images, in the order of hundreds or thousands.

Alternative methods for image browsing have been proposed by Demontis et al [20].

The five most visualisations from their scholarly article Experimental Interfaces for

Visual Browsing of Large Collections of Images were:

Cube: images are connected to the vertices of one or more virtual cubes, whose

rotation allows pictures in the foreground to continually change.

Snow: similarly to “snow flakes”, images “rain down” from the upper area of the

screen and disappear as the bottom is reached.

Snake: images move, with a perspective effect, along a sinuous path reminiscent of

a snake.

Volcano: like lava erupted by the crater of a volcano, images are “emitted” at the

centre of the screen and slide down along virtual slopes.

Funnel: images appear at the screen edges and disappear in the centre with a

perspective effect.

Experiments showed that these methods can reduce the browsing time with respect

to traditional solutions. The work was extended by one of the researchers, Porta

[87], who suggested a further seven visualisations in his scholarly article Browsing

Large Collections of Images through Unconventional Visualization Techniques :
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Elastic: a grid that can be independently scrolled and scaled horizontally and

vertically.

Shot: images are fired like bullets at the upper part of the screen and, with a

perspective effect, progressively reach the lower part of the screen.

Spot: images rapidly appear in random positions on the screen (also known in

other literature as Rapid-Fire Image Preview [118] or Rapid Serial Visual

Presentation (RSVP) [59].

Cylinder: images are randomly arranged on the lateral surface of a virtual rotating

cylinder.

Rotor: images are arranged within four grids on four different planes rotating around

a central axis.

Tornado: images move as if they were in a vortex.

Tornado of Planes: applies the Tornado principle to grids of images rather than

to single images.

Whilst the interfaces proposed by Demontis et al, or UI (user interface) components

as they are more widely recognised, allow many more images to be displayed on the

screen than the traditional grid structure, their research did not place any focus on

the organisation of the images within the display structure so as to assist in the

browsing experience. Instead the images were displayed in random order.

Rapid Serial Visual Presentation (RSVP) is the electronic equivalent of riffling a

book in order to assess its content. Evaluation RSVP in video-on-demand browsing

systems [59] suggests that electronic RSVP can be applied successfully within that

context. Most work on information navigation sheds little light on the world of image

browsing as the usual approach to navigating information spaces, such as internet

pages and websites, involves assigning or extracting keywords or analysis of textual

content. However one group, Wittenburg et al [118], investigated the use of rapid-fire

image previews to provide cues to users as to where they wish to navigate. This was

also the basis of Porta’s Spot visualisation technique described above. A modified

version of this component may well be a candidate for the hierarchical navigation of

texture/image databases.

In their paper on perceptual image similarity experiments, Rogowitz et al [95] com-

pared similarity matrices built from two different psychophysical scaling experiments

and two different algorithmic approaches in an attempt to gain insight into how the

dimensions human observers use for judging similarity differ from the algorithmic

methods. Although their findings in this respect are interesting, the method by
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which they visualised the data provides a good candidate user interface component

for work on browsing environments. Multidimensional scaling (MDS) was employed

to reduce the ND similarity matrix to 2 or 3 dimensions and either displaying them

in a 2D canvas or a 3D VRML (virtual reality modelling language) scene.

A survey of browsing models for content based image retrieval by Heesch [39] gives

an alternative discussion of browsing environments, including image retrieval, CBIR,

human-computer interaction, data visualisation, browsing, networks, clustering and

dimensionality reduction. Although it does not examine the specific works we have

selected here, it can be regarded as complimentary further reading for those who

would benefit from a wider overview.

2.3 Existing Datasets

Our search of the browsing environment literature failed to discover any projects that

had specifically produced a database of textures that we could use for this project.

We must therefore look to other areas of texture research in order to identify possible

candidate texture databases for use in our research. In section 3.2.1, we detail the

stimuli specification in full, but for the purposes of identifying suitable candidate

databases, the criteria can be summarised as follows.

1. Dataset must be sufficiently large to facilitate non-trivial browsing, i.e.

provide opportunity to fill several screens with texture images (say circa 500

samples)

2. Dataset should consist of surface textures – with variation due only to

surface releif

3. Textures should be homogeneous – it would be non-obvious from where on

any texture a small patch had been sampled

4. As illumination and viewpoint conditions are known to affect texture

perception, these need to be constant

5. Existing perceptual similarity data would be desirable

Brodatz (Textures - A Photographic Album for Artists and Designers)

The Brodatz [7] dataset was hitherto considered the de facto database for training

and testing retrieval models for texture. It consists of one-hundred and twelve

640× 640 pixel texture images, but the capture conditions are unspecified. As we
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know that changes in illumination conditions can significantly affect the perception

of observers and the values of computational features [8], and as we intend to use

both human judgements and feature extraction in this thesis, it is unlikely that the

Brodatz dataset will satisfy our requirements.

CuRET (Columbia-Utrecht Reflectance and Texture Database)

The CuRET database [17] consists of three specific texture databases for the investi-

gation of the visual appearance of real-world surfaces:

• BRDF (bidirectional reflectance distribution function) database

• BRDF parameter database

• BTF (bidirectional texture function) database

This database has been used for visual appearance, texture analysis and synthesis.

However, the stimuli have been captured under varying illumination and viewpoint

conditions, as well as containing specular and diffuse surfaces suggesting different

reflectance models have been used in rendering. These variables may contribute to

bias in human judgements leaving the database unsuitable for our purposes in its full

form, but we may be able to select a subset from the database which share the same

viewpoint and illumination conditions and reflectance model. However, is unlikely

that a subset satisfying our selection criteria would contain sufficient numbers to be

considered large.

MeasTex

MeasTex [69] is a collection of 2D texture images with unknown viewpoint and

illumination conditions. It is supplied with a quantitative measurement framework

for image texture analysis and synthesis. As viewpoint and illumination conditions

affect texture perception we cannot consider MeasTex as a candidate.

OuTex (University of Oulu Texture Database)

Generated to test texture segmentation and classification algorithms, the OuTex

database [75] reflects changes in illumination, surface rotation and resolution. Images

captured at three illumination positions are available but these are coplanar and

cannot be used to recover the surface height map using photometric stereo. However,

like the CuRET database, a subset of images could be selected which share the same

capture condition, rendering OuTex a possible candidate in all but the dataset size
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Dataset Criteria
Sufficiently Constant Constant Surface Homogeneous Similarity

Large Viewpoint Illumination Textures Textures Data Available

Brodatz 7 7 7 3 3 7

CuRET 7 7 7 3 3 7

MeasTex 7 7 7 3 3 7

OuTex 3 7 7 3 3 7

PhoTex 7 3 3 3 3 7

VisTex 3 7 7 3 3 7

Table 2.1: Eligibility of Existing Datasets by Criterion

criterion. A suitable subset would be significantly fewer than the 320 available, and

therefore could not be considered large.

PhoTex (Photometric Texture Database at Texture Lab)

The PhoTex database [84] consists of height maps that allows us to render controlled

texture stimuli, but its limitation of representing only one category of texture (namely

rough surfaces such as plaster or rock) causes it to fail our criterion that the database

should represent a wide range of textures and therefore it cannot be considered a

candidate dataset.

VisTex (Vision Texture Lab Database at MIT)

The motivation behind VisTex [113] was to provide a large set of high quality textures

for a range of texture processing applications. However, having been captured under

inconsistent studio lighting types and viewpoint it would be unsuitable as a candidate

in our research.

Table 2.1 sumarises that none of the existing datasets satisfies all our selection

criteria. Even those which contain subsets of textures which may be considered

suitable would not provide sufficient numbers to be regarded as a large dataset. We

resolve to generate a new database, the development of which is described in chapter

3.

2.4 Identifying Structure in Texture Databases

Although there are domain specific taxonomies, there are no generally accepted

taxonomies for texture [109, 50]. We have established that browsing environments
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must exploit obvious structure in a dataset for organisation and navigation. In

this section we examine candidate approaches for capturing human judgements and

methods of examining that raw data for structure.

2.4.1 Capturing Human Judgements

In order to develop perceptually relevant browsing environments, we must resolve

to involve human subjects in the process of acquiring a perceptual description of

any dataset we utilise. Human perception of similarity between objects has been

successfully recorded by cognitive scientists through psychophysical experiments

in the past, but a range of different approaches are available for capturing these

judgements. In this section we consider the candidate approaches for designing

psychophysical texture experiments.

Pairwise Comparison

Pairwise comparison involves the presentation of two stimuli to an observer who is

asked to compare some characteristic and offer their measure of the characteristic.

This could be as simple as stating whether the stimuli are similar (yes/no) or to value

the strength of the similarity on a scale. This is a popular approach in Content Based

Image Retrieval (CBIR) and has been used by Rogowitz et al. [95] to investigate the

perceptual similarity between each pair of a set of ninety-seven images. The number

of possible comparisons is dictated by combination theory as shown in equation 2.1.

c =
n(n− 1)

2
(2.1)

=
97× 96

2
= 4656

To reduce the number of comparisons, Rogowitz et al. modified the approach and

asked observers to compare a query texture with eight other textures from which

they were asked to select the four most similar in descending order of similarity. A

similar approach was undertaken by Payne et al. [80] using the Brodatz database.

Issues with scalability discount this approach from consideration for our project.
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Perceptual Ordering

Perceptual ordering is also part of Gestalt psychologists’ laws of perceptual organisa-

tion. Here, the interest is in how the human mind orders the perceptual environment

with respect to a visual stimulus [64]. Perceptual ordering tends to rely on a priori

knowledge of the query stimulus by the subjects, and their ability to recall having

seen something like it in the dataset before. In Content Based Image Retrieval

(CBIR) this human ability has been used to inform and improve the performance of

Query-by-Example (QBE) retrieval engines. Although this approach may be useful

to us in the ordering of textures having an equal similarity value to a given query

or example texture, this is unlikely to prove useful in obtaining a basic perceptual

description of our dataset.

Perceptual Grouping

Perceptual grouping was a term coined by Gestalt psychologists to represent the

ability of humans to group similar structural elements within images. Gestalt theory

also related to grouping with respect to characteristics such as similarity, proximity,

continuation, closure and symmetry [64]. Julesz [47] used the theory to investigate

how humans segregate homogeneous texture regions within an image. Lowe [64]

explained that perceptual grouping refers to the human visual ability to derive

groupings or structures from images without any a priori knowledge of the image

content. Beyond segmentation, some researchers such as Rao et al. [89] employed

the approach as a technique for grouping together images that are visually similar in

an attempt to identify the high level features of texture perception. Well used in

the literature, and providing sufficiently high resolution data, this is an acceptable

candidate for capturing human judgements in this project. This method was also

utilised by the author with Clarke et al [13] on The role of Wallpaper Groups in

Perceptual Texture Similarity in 2011.

2.4.2 Identifying Structure in Psychophysical Data

Typically, perceptual similarity is represented in a similarity matrix denoting the

strength of similarity between each pair of stimuli. As similarity space is sparse and

high-dimensional, it can be difficult to visualise or assess in any meaningful way. To

render the space accessible to analysis we must first reduce and compact the space.

Several techniques to facilitate this transformation are available to us, each having

particular merits depending on the type of analysis we wish to conduct.
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So that we might increase our potential for identifying a range of possible browsing

models, we would ideally like to select a collection of contrasting analysis approaches,

each of which is capable of reducing and compacting similarity space and is popular

and well regarded in the literature.

Cluster Analysis

Cluster analysis facilitates the partitioning of our data into meaningful subgroups

regardless of prior knowledge concerning the number of clusters or their composition

[31]. When the data in question is acquired from perceptual judgements, cluster

analysis provides a quick and reliable method of verifying that the perceptual data is

meaningful. In particular it helps discover whether sensible or believable groupings

exist within the dataset that can offer insight about its structural composition.

A survey by Jain et al. [44] identified two categories of clustering approaches: hi-

erarchical and partitional. In the pursuit of a taxonomy of texture categories,

psychophysicists have largely subjected their data to hierarchical cluster analysis.

This involves generating a sequence of data partitions where each sequence corre-

sponds to a particular number of clusters. Depending on whether the process involves

merging clusters to produce fewer clusters or splitting clusters produce more clusters,

the respective methods are known as agglomerative or divisive [33]. Agglomerative

approaches are more attuned to the way human observers create groups.

Dimensionality Analysis

Visualisation of multivariate data requires a dimension reduction to a two or three

dimensional representation [54]. It is important, if this visualisation is to be mean-

ingful, that the distances between points in low-dimensional space correspond to the

(dis)similarities between points in the original space [24, p. 573]. When attempting to

visualise multivariate data, it has been shown that the most suitable dimensionality

reduction algorithm or technique may only be discovered after studying the results of

all the others [100]. Here we consider a variety of dimensionality reduction methods.

Psychometric Method was an early method of tracking the correspondence

between human and computational rankings of texture and was used by Tamura

et al. [108] and Amadasun et al. [3]. By computing a representative ranking for

the texture features being considered, a comparison can be made with the rankings

captured from human judgements. The result is an indication of how well a texture

feature corresponds to human perception. The technique was more recently adopted
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by Abbadeni [1] in testing the performance of autocovariance-based features with

respect to human texture perception.

Principal Component Analysis (PCA) extracts the principal components of a

feature space by performing variance optimising rotation of the space. It was initially

applied to psychophysical data by Rao et al. [90] to investigate how much of the total

variance of physical texture space was accounted for by a set of twelve perceptual

properties. A more recent application saw Payne et al. [80] applying PCA to ranking

scales drawn by human observers to compare the similarity of regular textures and

discover any structure in the ranking scales.

Classification & Regression Trees (CART) is a non-parametric regression

technique for selecting variables and their interactions from a large set of variables

based on how well the variables model an expected outcome. It has been successfully

used by Rao at al. [90] to determine whether a prediction could be made as to cluster

membership given a series of responses on a sliding scale by which observers described

a texture.

Multidimensional Scaling (MDS) is a method presented by Kruskal [57] of

reducing the dimensionality of ordinal data. It has been extensively used in an

attempt to identify the principal perceptual dimensions of texture by projecting

selected low dimensional data in 2D or 3D space. The result is a visualisation of the

data which can be inspected for structural information that may indicate some trend

or progression. The assumption in this application of MDS is that perceived similarity

space can be translated into a form of psychological space where the proximity of

textures in psychological space approximate to their perceived similarity.

Motivation for the application of MDS to texture perception came after its successful

application to colour perception by Shepard [101]. He demonstrated after applying

MDS to perceptual colour space that he could organise the perceptual space in only

two dimensions, known as the Colour Wheel. In texture perception, MDS has become

the exploratory technique for bootstrapping the process of theorising about mental

representations of texture [38].

Direct Magnitude Estimation (DME) is a standard psychophysical rating

procedure that assumes the human mind processes information as magnitudes and

that cognitive categorisation is a means of delimiting magnitude information [21].

An example in texture perception is to ask observers to rate a texture for some
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characteristic compared to a reference texture with a pre-assigned rating of the

characteristic in question.

Self Organising Maps (SOM) are an alternative dimensionality reduction tech-

nique where similarity proximity can be preserved in two dimensions [53]. The SOM

is also known as the Kohonen map, after the Finnish professor, Teuvo Kohonen,

who first described it [53]. There have been numerous applications of the method,

from speech to finding patterns of poverty in the world [24]. Korpipaa [55] made

a visualisation of information space using the SOM. His multivariate data was a

vector of relative percentages of keyword occurrences in web page content. The tool

facilitated web site navigation by clicking nodes in the SOM representing the keyword

a user was interested in finding content about. An implementation of Kohonen’s

work is the SOM Toolkit for Matlab by Vesanto et al [112].

As multidimensional scaling (MDS) is a popular method that has had much success

in discovering structure in multivariate data we regard it as an obvious first choice for

preliminary inspection of the dataset for structure. Many of the other dimensionality

reduction approaches generate similarly structured output as MDS, with the exception

of self organising maps (SOM). We can therefore satisfy the criterion that our

collection of approaches should provide significant contrast by selecting MDS, SOM

and hierarchical clustering, although this is a largely pragmatic decision.

2.4.3 Image Collection Annotation

The part of this survey seeking to describe approaches for perceptually organising

a dataset would not be complete without a treatment of the web-based annotation

tools which have grown recently in popularity. These provide a way of building

large annotated datasets by relying on collaborative effort of a large population

of users. In the case of the Google Image Labeller [32] and Flickr Photo Sharing

Service [30] the goal is to improve image search by keyword. A somewhat more

sophisticated project, LabelMe [96], seeks to label objects in cluttered scenes, the

labels providing information about the object’s identity, shape, location, and possibly

other attributes such as pose. Their goal is to provide a dynamic dataset that will

lead to new research in the areas of object recognition and computer graphics, such

as object recognition in context and photo-realistic rendering. Fergus et.al. [27] used

the results of image keyword searches in Google Images to form datasets for their

research, although problems can arise when polysemes (e.g. ”iris“ can be iris-flower,

iris-eye, Iris-Murdoch) return images unrelated to the intended category.
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Bernard et.al. [5] remark that while text and images are separately ambiguous, jointly

they tend not to be. They offer that this is because writers of text descriptions of

images tend to leave out what is visually obvious (the colour of flowers, etc.) and

instead mention properties that are difficult to visually infer (the species of the flower,

say). The annotation task is also often a lengthy process and needs to be repeated

for images later added to a collection. Annotation also suffers from not providing

a predictable organisation of the collection for browsing. When investigating how

people organise their personal photograph collections, Schaffalitzky et. al. [99] found

that collections were often grouped by scene, whereas Rodden et. al. [94] found

chronological ordering was favoured by many.

Other researchers such as Kadobayashi et al [48] and Snavely et al [103] proposed

methods for 3D viewpoint-based photo search but as their work was based on

collections of images of buildings and scenes where a successful search would return

images of a scene from alternative viewpoints, it is not an applicable approach for

our dataset of homogeneous or near homogeneous textures.

Gordon [34] investigated the use of subject terms in the cataloguing of images. He

claimed that subject access to image collections in the online environment had faired

poorly due to difficulties in matching the vocabulary that people use to describe

their retrieval needs to the way that collection materials are catalogued by reference

librarians. He concludes that developing a rich browsing space of image subject

terms is a problem best solved by a thorough, manual analysis of the subject terms.

Given our aim of investigating intuitive and perceptually relevant browsing envi-

ronments for texture databases it would seem that image collection annotation,

which is largely based around labelling images with descriptions or keywords, rather

than capturing the strength of relationships between members of a dataset in some

perceptually relevant scale, it is unlikely to provide a good basis for organising our

dataset for browsing.

2.5 Mapping Computational Features to Percep-

tual Space

In generating a perceptually relevant feature-based organisation of a dataset it

is important that we integrate human judgements in the organisation generated

by the system. Known as the training stage, the system learns how suitable the

computational features are for predicting the perceptual organisation obtained from

psychophysical experiments. Used in combination, these features can achieve an
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increasingly accurate prediction model.

Little attention has been given to the mapping of similarity in perceptual space to

similarity in feature space and the main focus of previous research can be categorised

as classification and retrieval. Payne et al. [79] used Kendall’s tau to correlate

human rankings of Brodatz textures with rankings of a number of different features.

Here, no mapping was undertaken but rather the psychophysical data was used as

an evaluation of the features.

Long et al. [63] presented a neural network that was trained to optimize invariant

and perceptual mappings. Tests to assess the performance of the invariant network

showed that the invariant network can perform invariant and perceptual mappings

accurately and invariant and perceptual mappings improve the performance of texture

image retrieval.

Petrou et al. [83] used groupings by human observers to compute a measure reflecting

the stability of computational features. The measure accounts for the variability in

each class while applying a range of features and the method allows for the assignment

of weights to each feature representing how well it models each perceptual class.

The recent and most comprehensive work on mapping feature space to perceptual

space was by former member of the Texture Lab, Emrith [25]. Although his approach

was in pursuit of a perceptual retrieval engine, the output of his system was essentially

a similarity matrix, which has the possibility of being translated into a suitable

data organisation for use in a browsing environment. Rather than repeating his

work, we shall seek to make an evaluation of its applicability to the area of browsing

environments.

2.6 Crowdsourcing

Psychophysical experiments are vital to any research where perceptual descriptions

of a dataset underpin the analysis. Traditionally, observers for cognitive psychology

experiments are recruited from within the undergraduate student population at

the university where the research is carried out but it can be difficult to recruit in

sufficient numbers where extended trials are required. Kittur et al. [52] demonstrated

that hundreds of observers can be recruited for highly interactive tasks for marginal

costs within a time frame of days or even minutes using micro-task markets such as

Amazon’s Mechanical Turk (AMT) [4].

The micro-task market is a system in which small micro-tasks are made available for

selection and completion by users for some reward (micro-reward). Micro-tasks can
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typically be completed in a few minutes or even seconds while micro-payments may

range from a few cents to a dollar or two. In the context of AMT, the jobs are known

as human-intelligence tasks (HITs) and the users, some one hundred thousand from

over one hundred countries are often known as Turkers.

Gordon et al. [35] found that untrained Turkers evaluating natural language ver-

balisations of an open knowledge extraction system will generally give ratings that

correlate strongly with those of artificial intelligence (AI) researchers. Snow et al.

[105] found that in AMT natural language annotation tasks, only a small number of

non-expert annotations per item are necessary to equal the performance of an expert

annotator. These projects showed that many large tasks can be effectively designed

and carried out using AMT at a fraction of the usual expense.

When outsourcing a collection of tasks directly to individual workers via public

solicitation we must attempt to understand the relationship between financial incen-

tives and performance. Mason et al. [67] found when researching the performance

of crowds that increased financial incentives increased the quantity, but not the

quality, of work. The most important factor in work quality was the design of the

compensation scheme (e.g. a quota scheme versus a piece rate) even to the extent

that better work can be accomplished for less pay. Greater rewards were found to

get the work done faster, but not better.

Dekel et al. [19] introduced a data cleaning approach for datasets that are labelled by

crowds. They estimated the effect an observer has on a classifier by removing their

contribution, retraining and measuring the change in the classifier. A significant

change may indicate that the observer should be removed from the study. This

algorithm benefits from requiring no prior knowledge.

Mason et al. concluded that crowdsourcing permits broader and more representative

participation than the traditional pool of university students and could become a

useful tool for studying questions of interest to behavioural and social scientists as

well.

2.7 Discussion

With this survey chapter we have examined the state of the art with reference to

browsing environments with a view to discovering current browsing models that

may inform this research project. We have also made a thorough search of the

human computer interaction (HCI) literature for components that may contribute to

alternative browsing models for navigating large image/texture databases.
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As we are interested in perceptually relevant browsing we have reviewed techniques

for capturing human judgements and analysing psychophysical data. Perceptual

grouping has become a popular means of obtaining perceptual descriptions of datasets

but we anticipate that modifications to this approach may be required where the

target dataset is large. Scalability issues with pairwise comparisons and perceptual

ordering may discount these approaches from consideration. We have also discussed

the merits of a variety of approaches to analysing psychophysical data and there is

little evidence for singling out any particular approach. Instead it would be prudent

to use several approaches in order to make comparisons between the individual

approaches and to give the greatest potential for the discovery of new browsing

models for navigation.

Image collection annotation has grown in recent years with the collaborative nature

of the internet. However, our search of the relevant literature has discounted

this approach as a candidate for informing the data organisation of our dataset.

Annotation is much more applicable to databases of composite images where the

aim is to annotate each image with a list of keywords based on objects contained

within the image. This facilitates search by keyword or synonym which is highly

effective in language driven search engines but it would have little merit in obtaining

a perceptual organisation of a dataset based on strength of similarities between

member textures.

Most texture research has been in the area of content-based image retrieval (CBIR).

While it is sensible to use techniques and approaches previously used by researches

in that area, we also draw attention to the problems associated with CBIR and why

we wish to pursue the investigation of browsing environments as a distinct research

area.

We have reviewed the range of publicly available texture databases used by texture

researchers in the past and discovered that they are largely captured under unknown

viewpoint and illumination conditions. This poses problems with human perception

of texture and with deriving computational features from surfaces. We also failed

to discover a database that was sufficiently large to pose a suitable challenge to

perceptual browsing. We shall use this review to inform our decisions in section 3.2

on a way forward for identifying a suitable database to underpin our research.

Crowdsourcing has been used by researchers to recruit hundreds of observers for

highly interactive tasks at relatively low cost. It is therefore a candidate resource

where there are difficulties recruiting observers from the traditional pool of university

students. This is particularly true where we require a large number of trials and may

be of help in developing scalable models for capturing human judgements. Given
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the issues we highlighted concerning obtaining high quality results, we must develop

strategies that link observer compensation to performance.

Most conventional navigation in computing relies on classification of information and

the utilisation of wayfinding to move between the classified information. Way points

that indicate the type or nature of data to be encountered are important for dividing

the process up into manageable activities. There is a distinct gap in research where

navigation is directly related to any obvious perceptual structure in the dataset being

browsed. Such structure may be useful to users in eliminating large sections of a

dataset as irrelevant or in remembering where particular types of textures/images

may be found. Preserving a link between proximity in the navigation model and

perceptual similarity of data members may be helpful but must be balanced against

available screen real estate and quantity of interaction required of observers for

navigation.

A more comprehensive collection of works that span the breadth of knowledge in

texture analysis can be found in the book Handbook of Texture Analysis edited by

Mirmehdi et al. [70]. For a collection of articles that address the issues that concern

feature selection, Evolving Feature Selection [61], with foreword by Huan Liu, is of

value.

2.8 Conclusions

We have identified that browsing environments seek to exploit obvious structure

within a dataset for organisation and navigation. Since we wish our browsing

environments to be organised perceptually, we must identify a suitable means of

capturing human similarity judgements. Of the candidates considered we discovered

the most widely adopted approach to be perceptual grouping. However, we have

some concern over the scalability of this approach as all of the browsing and retrieval

projects that used the technique did so with relatively small datasets of around one

hundred samples. We anticipate that a modification may be required to introduce

scalability as our dataset must be considerable larger in order to sufficiently test

the efficiency of our browsing environments to the search tasks. In section 3.3 we

design and implement a pilot experiment and describe an adaptation that results in

a scalability improvement.

This project is focussed on perceptually relevant browsing of large texture databases,

and in our survey of the body of scholarly work we identified many papers, which

titularly suggest they are concerned in browsing, but on examination were found

to use the word browsing to mean examining retrievals from databases based on
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image or texture content, commonly referred to as content-based image retrieval or

CBIR. As we wish to browse a dataset without beginning with a query (commonly an

example texture, or a prototype or description of one), and indeed without knowing

ahead of time what the user might be looking for, we have been able to dismiss

some of these works in relation to browsing. However, we have included some of

these papers in our survey as other components of their work provided insight into

other widely adopted techniques, such as dimensionality reduction and hierarchical

clustering.

As browsing environments consist of data, a browsing model and a means of displaying

the data to users we also included a limited search of research on candidate GUI

(Graphical User Interface) components. Many of the recent novel approaches attempt

to maximise screen real estate by animating (position, perspective and scale) visual

stimuli so as to expose users to as many as possible. However, these were often

found to be one dimensional in terms of the data model linking images together (for

example Snake / Shot [20, 87]) and may be most suited to modelling the result of a

retrieval (in decending order of similarity) than non-query browsing. Others were

more suitable for modelling several dimensions and our search revealed three which

may be compatible with the approaches of examining raw similarity data above.

These are (respectively), projection in 2D or 3D space using VRML (virtual reality

modelling language), rapid-fire image previews [118, 87] and the classic grid layout

widely used in drawing packages, operating systems or web pages.

In order to design browsing environements that vary significantly in navigation

type we must identify approaches for examining raw similarity data that could

produce contrasting data organisations for browsing. Among other approaches that

we reviewed, we found that MDS (Multidimensional Scaling), Hierarchical Clustering

and SOM (Self-Organising Maps) satisfy this criterion, and that these were by far

the most widely adopted in recent works. In chapter 4 we use these techniques to

make a preliminary analysis of the results from our perceptual grouping environment

and describe their integration into browsing environments in chapter 5.

For completeness we made an brief examination of image collection annotation. As

this is largely used for labelling image content and associating meta-data for textual

based search we considered it unsuitable for gathering perceptual similarity data.

A well known problem with projects collecting data on human perception is finding

observers in sufficient numbers. We reviewed a number of projects where researchers

had made use of crowdsourcing communities to recruit large numbers of observers to

take part in short human intelligence tasks (HITs) using a variety of experimental

stimuli, and generally for low levels of compensation. We also surveyed a number of
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scholarly articles which had investigated the effictiveness of using crowsourcing com-

munities for academic research, tackling themes like the compensation-quality trade

off. A description of our use of crowdsourcing for capturing similarity judgements is

given in chapter 10 and an experiment to measure the effectiveness of the apprach is

described in chapter 11.
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Chapter 3

Dataset Development &

Capturing Human Judgements

3.1 Introduction

In our survey, a search of the browsing environment literature (section 2.2) failed to

discover any projects specifically for browsing texture. We then extended our search

to other areas of texture research in order to identify possible candidate texture

databases for use in our project (section 2.3). Broadly, our criteria for identifying

suitable databases were:

1. the dataset must be large enough to facilitate non-trivial browsing (circa 500

samples),

2. the dataset should consist of surface textures, and

3. the textures should be homogeneous. Additionally,

4. existing structural data would be desirable.

After considering the Broadatz, CuRET, MeasTex, OuTex, PhoTex and VisTex

datasets, none was found to be suitable with respect to our criteria. Our project

would require the development of a new dataset and in this chapter we describe the

detailed specification and capture of the dataset that shall be referred to in this

thesis as Tex500, and the design of an experiment to capture perceptual similarity

judgements from which we construct a similarity matrix describing the dataset. The

similarity matrix is vital to developing browsing environments for navigation of

the dataset as we will use a variety of interpretations of this data to form logical

organisations of the dataset for use as navigation schema. This data analysis will be

described in chapter 4.
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Throughout this research project we will use and display the Tex500 dataset in a

variety of ways. These include:

• printing on photographic paper for use in table-top sorting experiment,

• displaying at a variety of scales in browsing environments on computer screens,

and

• extracting computational features for automatic generation of similarity matri-

ces.

These, and particularly the last, give rise to a number of exacting requirements that

each texture in the dataset must meet. These requirements are described in full,

and we illustrate that none of the existing datasets featured in section 2.3 meets our

requirements.

Capturing human judgements of similarity can be done in a variety of ways as

discussed in section 2.4.1. We have elected to use a perceptual grouping experiment

where observers are asked to make groups of textures they perceive to be similar. We

discuss problems that arose due to the large size of the dataset and how we overcame

these problems by designing a scalable version of the grouping experiment.

3.2 Dataset Development

The aim of this research project is to investigate browsing environments for large

texture databases. But how do we define what constitutes a large database? Previous

research projects using textures as stimuli have typically utilised small datasets so

to simply aim to acquire more textures than that would not necessarily fulfil the

objective. To represent a significant improvement over previous datasets it was

decided that the dataset must contain more than one hundred and fifty textures but

limited to five hundred or fewer in order to facilitate the necessary psychophysical

experiments. Given a dataset of that size, we should reasonably expect to discover

any of the pitfalls and issues associated with developing browsing environments

for much larger collections. We begin our dataset development by discussing the

specifications of the stimuli.

3.2.1 Specifications

We decided to keep our stimuli as simple as possible, controlling the environmental

conditions to as great an extent as they could be, and to focus on our central issue:
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Figure 3.1: Example Textures from Tex500 Dataset

perceptual organisation of texture. In the simplest terms we want variation only due

to surface relief (ignoring albedo and reflectance function). Figure 3.1 shows some

examples from the Tex500 dataset.

Wide Range As large a variety of textures as possible and not limited to any

particular application domain

Even Sampling Uniform sampling of the texture space

Surface Textures Surface textures without confusing surface markings, i.e. mono-

chrome, constant albedo, lambertian surfaces

Homogeneous Samples should contain a single homogeneous or near homogeneous

texture to avoid problems with observers using different segments of a texture

for judging similarity

Constant Scale Samples should be of approximately the same granularity and

roughness

Real Surfaces Captured from real surfaces and not synthesised to prevent unstable

feature responses

Resolution High enough resolution to capture exact detail without giving rise to

storage difficulties

Constant Illumination Images for viewing must be rendered under a single set of

illumination conditions

Captured as Height Maps To ensure feature extraction is unbiased by illumina-

tion conditions

Believable Surface Texture

The human visual cortex is highly non-linear and optimised for textures that originate

from our environment or that can be thought of as originating from our environment.

In order to produce consistent results observers need to believe that the stimuli are
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Figure 3.2: Example Directional Textures from Tex500 Dataset

ecologically valid. We can satisfy this by capturing the digital images from real

textured surfaces.

Scale and Roughness

Scale and roughness have been identified in previous studies as important dimensions

of texture. We try to eliminate discrimination by observers using these dimensions

by limiting variation of scale and roughness between stimuli where at all possible.

Controlled Illumination, Viewpoint & Orientation

In chapter 2 we demonstrated that:

• illumination conditions can bias the outputs of computational features, and

• human perception of a surface can be significantly influenced by illumination,

viewpoint orientation.

Prior to the work of Emrith [25] on identifying computational features for texture re-

trieval, most psychophysical experiments in texture research used datasets comprising

texture images with unknown illumination and viewpoint conditions or with too few

member textures to be considered a large dataset. We shall replicate his constraint of

these properties by capturing our stimuli as digital height maps and rendering these

representations of our surfaces under constant illumination and viewpoint conditions.

Emrith also discovered that when presented with directional textures, observers would

group textures according to whether the directional quality was largely horizontal or

largely vertical. To avoid the risk of observers separating similar textures due to the

principal directional orientation we shall rotate all directional textures such that the

principal directional component is horizontal as shown in figure 3.2.
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Variety of Texture Samples

As we are attempting a general investigation of browsing environments for unbounded

texture space (and not an application-specific area of texture) we must follow the

work of Rao et al. [89, 90] and Emrith [25] in attempting to produce a dataset which

includes as much variety of texture types as possible and samples these types as

evenly as possible.

Matte Surfaces

It has been shown by Ho [40] that the degree of ‘glossiness’ of a surface can significantly

affect human perception of the surface characteristics. Specifically, the presence of

gloss can cause the surface to be perceived as being more curved [110]. To avoid bias

resulting from the perception of surface properties we shall render our surfaces for

experimentation using the simple Lambertian reflectance model [74] which produces

a matt surface.

Constant Albedo

Real surfaces are composed of patches that have different light energy absorption

capabilities. An area of high energy absorption will reflect less light than one of low

energy absorption. These reflectance differences are referred to as surface albedo

[71] and variations of albedo across a surface can influence human judgements when

making comparisons between stimuli. To avoid introducing such influences we must

render the dataset under constant albedo giving a monochrome appearance.

Image Size & Resolution

As we shall be using our images in printed form as well as on screen at full size

and thumbnail size we must give consideration to the print sizes and resolutions we

expect will be required to produce good quality display of our textures. We also

plan to perform computational feature extraction on our texture height maps, giving

rise to quality, storage and processing time considerations.

We wanted to ensure that our dataset represented an improvement in resolution over

the datasets discussed in chapter 2 which ranged from 256 × 256 pixels to 384 ×
384 pixels. Anticipating that some processing we may wish to carry out might be

more efficient with image resolutions that are 2n × 2n pixels, we considered 512 ×
512 pixels and 1024 × 1024 pixels. We discounted the possibility of using 2048 ×
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No. Component Summary

1 Number of samples Several hundred
2 Surface reflectance Lambertian, monochrome, constant albedo
3 Homogeneity Homogeneous or near-homogeneous
4 Realism Digitally captured real surfaces
5 Resolution & size 1024 pixels2 (8 bit), 4 inches2

6 Source capture type Height map
7 Environmental conditions Constant illumination and viewpoint
8 Scale & roughness Approximately constant

Table 3.1: Tex500 Dataset Requirements

2048 pixels as this could not be displayed at 1:1 scaling on the average computer

screen. We set the source image size to the highest of those considered suitable, 1024

× 1024 pixels.

Previous studies discovered that a printed image size of 4 × 4 inches was sufficient

for table top sorting. Given that we hope to have a much larger dataset than used in

previous texture perception experiments, increasing this size may make the table top

experiment unmanageable due to space constraints. We also did not want to make

the printed images smaller than previous projects. We therefore decided to make

printed stimuli 4 × 4 inches giving a printed resolution of 256 dots per inch (DPI).

3.2.2 Acquisition of Stimuli

This subsection describes the sourcing, sampling and preparation of stimuli for

experimentation. The stimuli comply with the requirements discussed in subsection

3.2.1 and summarised in table 3.1.

Sourcing the Samples

The author set about the task of collecting and digitising as many textured surfaces

as possible. These included embossed, blown vinyl and woven wall coverings, carpets

and rugs, window blinds and soft furnishings fabrics, building materials, product

packaging and any other moveable item bearing a suitable texture for capture. The

sourcing of samples was approached systematically by networking with a wide variety

of suppliers in the central belt of Scotland until the law of diminishing returns

dictated few additional samples would be discovered by continuing the search. Items

were either purchased, hired or borrowed then removed to the lab for digitisation.

This was a time consuming and challenging task, but the effort was rewarded with a

large, diverse, application non-specific dataset. The final count of surfaces obtained
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was five hundred and the dataset was labelled Tex500 to reflect the type of stimuli

(textures) and the size of the dataset.

Digital Capture of Surfaces

Using height maps to model our textures provides two significant benefits:

• texture features derived from height maps are independent of any imaging

conditions used to view the surfaces, and

• height maps derived from samples with glossy surfaces or surfaces with variable

albedo can be rendered to satisfy requirement no. 2 (table 3.1).

The capture method we selected was R. J. Woodham’s photometric stereo [119]. It

assumes:

• orthographic projection with the camera axis perpendicular to the surface

plane,

• constant light vector and intensity over the surface, and

• shadowing and occlusion are negligible and the surface is Lambertian.

Figure 3.3 illustrates the set up used to capture our surfaces. To recover the surface

topology, at least three images are required, taken with illumination at non coplanar

angles. By solving three simultaneous equations we can estimate the per-pixel scaled

surface normals, from which we can derive the unit surface normals and albedo

values. For each surface we captured four images, all at slant angle 60◦ and tilt

angles 0◦, 90◦, 180◦ and 270◦ as shown. An example of the images obtained can be

seen in figure 3.4 (for stimulus 067).

Figure 3.5 shows the height map resulting from the photometric stereo integration

and the rendered surface under Lambertian conditions at slant angle 45◦ and tilt

angle 135◦ for stimulus 067. Although the surface albedo for each surface was derived

after capture, constant albedo was applied in rendering to remove albedo variation.

Preparation of Samples for Experimentation

The psychophysical grouping experiments used throughout this thesis employ texture

samples presented to observers in the form of photographic prints. Each print is

scaled to 4 × 4 inches at a resolution of 1024 × 1024 pixels using a monochrome HP

LaserJet printer. A white space containing the stimulus reference number is included

at the bottom of the image so that observers can ensure they make comparisons from
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Flash: 0°

Flash: 90°

Flash: 180°

Flash: 270°

Surface

☼

☼☼

☼

Camera

Figure 3.3: Photometric Capture Set Up

the same viewpoint and illumination angles. A barcode is printed on the reverse of

each stimulus to facilitate efficient recording of the result using a barcode scanner.

An example of the front and reverse of stimulus 067 can be seen in figures 3.6 and

3.7. Both are shown at actual size.

3.3 Experimental Design

3.3.1 Perceptual Grouping Experiment

In chapter 2 we considered the different assessment techniques for capturing human

perceptual similarity judgements used by researchers in the past. We were persuaded

of the case for using perceptual grouping by its well known advantages, namely:

• perceptual grouping has previously been used in the field of texture perception

to determine perceptual dimensions,

• no complex set up is required,

• observers make their judgements in the context of the entire dataset which

they can see in full at all times,

• the user does not need to remember previous judgements such as would be
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Figure 3.4: Photometric stereo images of stimulus 067 illuminated at constant slant
angle 60◦ and tilt angles 0◦ (left), 90◦ (bottom), 180◦ (right), 270◦ (top)

Height Map Rendered

Figure 3.5: Height Map and Rendered Surface (Lambertian Slant 45◦ and Tilt 135◦)
for Stimulus 067

38



Figure 3.6: Printed Stimulus 067 (Front)

Figure 3.7: Printed Stimulus 067 (Reverse)
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Figure 3.8: Grouping Experiment Setting

necessary with pairwise comparisons,

• grouping is a time efficient method.

Implementation

In his thesis [25], Emrith, adopting the mothod of Rao et al [89], reported that a

grouping task on a dataset of one hundred and twenty textures could be carried out

by observers in 30–40 minutes. As our dataset is considerably larger, and the number

of possible comparisons grows exponentially with respect to number of comparators

in the set, we must anticipate that our experiment should take considerably longer.

We therefore set about conducting a pilot experiment with six observers who we

recruited for their sympathy to the work of the Texture Lab. This group consisted

of members or former members of the Texture Lab who could be relied upon to

maintain their concentration and effort over a relatively long experimental session.

Emrith was able to use a standard office sized desk for his grouping experiment

which, again due to the increased dataset size would not be suitable for our grouping

experiment. We commissioned a customised sorting surface made from two sheets of

medium-density fibreboard (MDF) each measuring 2400mm × 1200mm which were

joined along the short edge by a piano hinge to create a single flat sorting surface

measuring 4800mm × 1200mm. This was placed on top of several classroom desks to

support it at a comfortable height for observers to work. Figure 3.8 shows an observer

taking part in the pilot grouping experiment at the sorting surface described.
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Instructions

All observers were asked to complete a standard experiment consent form before

being issued with the following instructions for completing the experiment. Observers

were compensated at the rate of 5 GBP for every completed half hour of their time

by way of Amazon gift vouchers.

1. Researcher presents (next) fifty randomised textures to observer for grouping.

2. Make groups that you perceive to be similar and then stop.

(a) There is no restriction on the number of textures you place in any group.

(b) Do not group singletons or outliers together.

(c) The working surface is not large enough for all the textures so you will

need to overlap group members.

(d) You may split or merge groups, or move textures between groups at any

time.

3. If more textures need to be presented, return to (1), otherwise go to (4).

4. There are no more textures to present. Make sure you are happy with your

groups.

The groups made by each observer were recorded in a similarity matrix, normalised

to the number of observers to give values in the range 0–1. Equations 3.1, 3.2 and

3.3 show the properties of a similarity matrix where sij is the similarity coefficient of

textures ti and tj.

0 ≤ sij ≤ 1 (3.1)

sii = 1 (3.2)

sij = sji (3.3)

Figure 3.9 shows an excerpt from the similarity matrix featuring the similarity

coefficients of the first nine textures of the dataset. Notice that a texture always has

a similarity relationship with itself of 1 (6
6
).
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6/6 2/6
6/6

6/6 1/6 1/6
2/6 6/6 1/6

1/6 6/6 4/6
6/6

1/6 6/6
1/6 4/6 6/6

6/6

Figure 3.9: Pilot Experiment Similarity Matrix (Excerpt)

Problems

The observers who took part in the pilot experiment took between 21
2

and 4 hours

to complete the task. This long session time gave rise to the following problems and

concerns:

Mental Fatigue The extended session time was too long for the observer to remain

focussed on the task

Physical Fatigue Observers reported tiredness from having to walk back an forth,

and handling the textures over an extended period

Quality Risk If observers lose concentration they may be less willing or able to

discriminate effectively

Recruitment It was anticipated that it would be difficult to find observers willing

to take part in such a long experiment

Ethics The experiment simply did not represent a best practice ethical means of

capturing human judgements

We reached agreement that subjecting observers to such an arduous experiment was

not a viable option and to avoid the problems and concerns described above we must

find an alternative approach. We present this approach in subsection 3.3.2.

3.3.2 Scalable Grouping Experiment

All of the problems that emerged during the pilot experiment could be eliminated by

finding an approach that would be less time consuming for an observer to complete.

If we are to retain the grouping experiment as our means of capturing human

judgements then this can only be achieved by reducing the number of textures we

ask each observer to sort. Had we not already conducted the pilot experiment then
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we would not be in possession of any similarity data and we may have taken the view

that experiments should be conducted using random subsets of the Tex500 dataset,

of a size that we know to be possible for an average observer to complete in say one

hour.

However, we are not so disadvantaged as we do have the similarity matrix from the

pilot experiment, even if it does not have the resolution that we may have liked. By

using hierarchical analysis of this data (please see section 4.2 in the next chapter for

full details), we can partition the dataset into three clusters, and ask future observers

to sort only one of these clusters in a grouping experiment. We must also find a

way of aggregating the data from these experiments into the original pilot similarity

matrix.

Implementation

Essentially the task is exactly the same as the pilot grouping experiment with the

exception that observers will each work with around one third of the textures. This

allows us to dispense with the necessity to present observers with 50 textures at a

time. Instead, all the textures for sorting can be randomly placed on the sorting

table prior to the observer starting to produce their groups.

Sample Size

When we partitioned the dataset using the pilot similarity data we produced three

clusters of roughly equal size (153, 171 and 176 textures). Most observers were able

to complete a sorting experiment in under an hour and only a small number of

observers took slightly longer. By working with these smaller subsets of the dataset

we were able to eliminate all the problems experienced in the pilot experiment, while

retaining the valuable data from the pilot experiments. Each of the subsets was

presented to eight different observers for sorting, in addition to the six observers who

took part in the pilot experiment.

Aggregation of Data

To aggregate the new experimental data with the similarity data already collected in

the pilot experiment then we must consider two aspects of the relationship between

each texture and all other textures in the dataset:

Occurrence When an observer groups a texture with another texture, and
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Figure 3.10: Opportunity Matrix (Excerpt)

14/14 2/6
14/14

14/14 1/6 1/6
2/6 14/14 1/14 2/14

1/6 14/14 6/14
1/14 14/14 2/14
2/14 2/14 14/14

1/6 6/14 14/14
14/14

Figure 3.11: Augmented Similarity Matrix (Excerpt)

Opportunity When an observer is given the opportunity of grouping a texture

with another texture (in other words they are presented together in the same

experiment).

In the pilot experiment, the opportunity value for all texture pairs is six. This is

because all observer had the opportunity of pairing any texture in the set and there

were six observers. But in the scalable grouping experiment, this was not the case.

Observers only had the opportunity of pairing textures with the ones that appeared

in their pre-determined subset. Figure 3.10 shows an excerpt of the final opportunity

matrix. There are two possible values for each texture pair. The value six represents

those textures where they only had the opportunity of being paired in the pilot

experiment, while the value fourteen also means they were available for observers to

pair in the scalable grouping experiment.

By dividing the occurrence matrix by the opportunity matrix we obtain a new

normalised similarity matrix in the range 0–1 for all of the observations. An excerpt

of the final similarity matrix is shown in figure 3.11. To assist readability, we have

continued to show the fractional values rather than a decimal approximation. Note

the continued compliance with the properties described in equations 3.1, 3.2 and 3.3.
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3.4 Conclusions

In this chapter we described an experiment designed to capture human judgements

of similarity by using a perceptual grouping experiment. We described the problems

that emerged as a result of using this approach on a large dataset, and highlighted the

compromise between observer fatigue and precision. We proposed a new approach

that allowed us to experiment with smaller subsets of our dataset and to aggregate

the similarity matrix obtained from the pilot experiment with the data obtained in

the scalable experiments.

In chapter 4 we shall inspect the similarity data with a view to discovering any

obvious structure that might allow us to logically organise the dataset for display in

browsing environments.
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Chapter 4

Preliminary Analysis of Results

4.1 Introduction

The goal of this chapter is to validate the results from the psychophysical grouping

experiments in chapter 3 (section 3.3), identifying that meaningful structure emerged

from the data. Should we find some easily perceived structure we can employ it to:

• investigate the validity of the grouping experiment,

• suggest navigation methods that can exploit these structures, and

• determine how best to represent structure and images in browsing environments.

We will source the analysis approaches from those commonly used in the literature

for examining multivariate data. Candidate approaches were discussed in full in

section 2.4.2 of chapter 2. We shall not be carrying out any additional psychophysical

experiments in our effort to evaluate these visualisations and there is no ground truth

that we can measure perceived structure against. However, we shall be carrying out

experiments to compare browsing environments that take advantage of the products

of this chapter in chapter 6.

The result of the experiments described in chapter 3 is the set of similarity coefficients

between each pair of textures in the Tex500 dataset, represented by a 500 dimensional

similarity matrix. By analysing the quantisation of the similarity matrix we can

discover the range of possible similarity coefficients by opportunity incidence. We can

see in table 4.1 that pairings with an opportunity incidence of 6 (textures appearing

in different subsets in the scalable grouping experiment) had a range of values from 0
6

to 3
6
. This tells us that all texture pairs with a value of 4

6
and over were later placed

in the same subset, their opportunity incidence incrementing to 14 by the end of the

experiment.
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Opportunity Incidence Possible Similarity Coefficients

6 0/6, 1/6, 2/6, 3/6
14 0/14, 1/14, 2/14,. . . ,12/14, 13/14, 14/14

Table 4.1: Range of Possible Similarity Coefficients by Opportunity Incidence

The similarity matrix is a fairly raw representation of the perceptual data but it still

has its uses. For example, we might want to compare the similarity coefficient of two

known textures ti and tj to discover how alike, in the context of the variability in

the Tex500 dataset, observers considered them to be. This can be done by simply

looking up the sij value. A more sophisticated use of the similarity matrix would be

to find the set R, in descending order of similarity, of non-dissimilar textures to a

given query texture ti. Commonly known as a perceptual retrieval, the result set

can be seen in equation 4.1.

Ri = {tj : sij > 0} ordered by sij descending (4.1)

The similarity space itself, being sparse and high dimensional, cannot provide us

with any obvious way of organising or navigating the dataset. As organisation and

navigability is essential to the use of our perceptual data in browsing environments,

we must perform further analysis to translate the data into a useful format. The

criteria for selecting suitable approaches are that they must:

1. be capable of reducing and compacting similarity space,

2. be recognised in literature for visualising/organising multivariate data, and

3. as a collection, provide contrasting organisation schema (no two similar mani-

folds).

A collection of approaches drawn from section 2.4.2 that satisfy all four of the above

criteria are as follows. In the remainder of this chapter we describe the use of these

approaches to identify structure in our dataset.

Hierarchical Cluster Analysis A linkage algorithm is used to generate a hierar-

chical cluster tree representing the similarity matrix

Dimensional Analysis Multidimensional scaling (MDS) is used to project our

high dimensional data in low dimensional space

Neural Network Analysis The self-organising map approach is used to populate

a grid of neurons with our data members
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4.2 Hierarchical Analysis

Hierarchical clustering groups data across a range of scales by creating a hierarchical

cluster tree or dendrogram. The resulting tree is not a single set of clusters, but

instead a multilevel hierarchy where clusters at a lower level are joined to form larger

clusters at a higher level, and so on until at the top, or root, we have a single cluster

representing the whole dataset.

4.2.1 Dendrogram

A dendrogram allows us to partition a dataset into clusters of a given number

or dissimilarity level and thereby to inspect the data for any evident structure.

Dendrograms are a crisp approach to clustering, meaning that at any level of

clustering, a texture can be a member of only one cluster. We use the most

straightforward method of tree construction, UPGMA (Unweighted Pair Group

Method with Arithmetic Mean) [104, pp. 230-234] to produce a dendrogram as shown

in figure 4.1. To facilitate inspection, figure 4.2 shows a scaled view of the rightmost

fifty textures from the dendrogram (10% of the dataset).
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This affords us the opportunity to qualitatively appraise the result of our psychophys-

ical grouping experiment. Visual inspection by the author of the partial dendrogram

discovered an obvious cluster containing the rightmost nine textures at a dissimilarity

level of 0.8. This cluster is detailed in figure 4.3 and the similarity between textures

is obvious to the author. We were able to verify by cluster analysis, and inspection

of the clusters for similarity between cluster members, that the psychophysical ex-

periment described in chapter 3 produced a good description of the Tex500 dataset

with respect to perceptual similarity.

Despite the descriptive and pictorial nature of the hierarchical cluster tree, it does

not afford us any particularly obvious means of navigating the dataset. If we attach

a thumbnail of each texture to the leaf nodes of the tree, which is essentially what

those nodes represent, then we’d find it difficult to make use of the instrument to

browse the dataset. To the knowledge of the author, the dendrogram in its raw state

has not been used for direct navigation of a dataset.

However, if we recursively partition the dataset into smaller and smaller clusters,

we can use these various levels of clustering to refine our search through the dataset

towards very small and consistent clusters of similar textures. As the clusters at

any level can be joined to form the previous cluster in the hierarchy it is simple to

provide a reverse navigation to generalise our navigation at any point. We discuss

the application of hierarchical clustering in full in section 5.2.
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4.3 Dimensional Analysis

Although the data obtained from our experiments is organised in a similarity matrix,

it is distance-like [117], rather than numerically metric in the way we would expect,

say, of data modelled in n-dimensional Euclidean space. Nonmetric multivariate

data such as ours can be reduced in dimensionality and transformed into genuine

Euclidean distances using multidimensional scaling (MDS) [57].

MDS operates on dissimilarity data so we must first convert our similarity data

using equation 4.2. We perform non-metric multidimensional scaling on our dpilot

(pilot experimental data) and dpilot+scalable (pilot and scalable experimental data)

using Kruskal’s classic algorithm [57] which has been long regarded as the de facto

approach. It returns a N -dimensional configuration for each member of the dataset.

For the purposes of our analysis we generated 1–8 dimensions for each dissimilarity

matrix. We also generated a test dissimilarity matrix of 4 dimension metric random

data to help evaluate the method. The processing time and stress values for each

result generated is shown in table 4.2.

d = 1− s (4.2)

4.3.1 Stress

Stress is the term coined by Kruskal [57] to denote the loss function used to minimise

non-metric MDS models. Stress is defined in equation 4.3. S∗ is called the raw stress

of the configuration tested and T ∗ is a normalising factor that allows the stress value

to be dimension free. These terms are defined in equations 4.4 and 4.5.

Stress =

√
S∗

T ∗ (4.3)

S∗ =
∑
r,s

(drs − d̂rs)2 (4.4)

T ∗ =
∑
r,s

d2
rs (4.5)

d̂rs represents the dissimilarity values defined on an N ×N dissimilarity matrix such

that the mapping is always monotonic where as drs represents the distances computed
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Data Source Dims Time (s) Stress

Experimental

dpilot

..1 21 0.40

..2 86 0.26

..3 116 0.19

..4 292 0.15

..5 584 0.12

..6 718 0.10

..7 837 0.08

..8 1274 0.07

dpilot+scalable

..1 13 0.20

..2 182 0.16

..3 275 0.13

..4 454 0.11

..5 634 0.09

..6 716 0.07

..7 896 0.07

..8 1310 0.06

Generated drandom

..1 22 0.65

..2 324 0.44

..3 415 0.29

..4 433 0.16

..5 441 0.00

..6 685 0.00

..7 1013 0.00

..8 1410 0.00

Table 4.2: Convergence times and stress values from MDS
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Figure 4.4: Stress Plot

Stress Value Goodness Measure

Above 0.200 Poor
0.100 Fair
0.050 Good
0.025 Excellent
0.000 Perfect

Table 4.3: Stress Value Goodness of Fit Interpretation

from points in the spatial configuration. Since its conception by Kruskal, stress has

been widely used as a measure for the goodness of fit of a chosen configuration [68].

Figure 4.4 shows a plot of the stress values for each of the three dissimilarity matrices

against the dimensions extracted. To place these stress values in some context,

table 4.3 shows the goodness of fit interpretations for MDS stress values. Although

there was no identifiable ‘elbow’ in the final experimental data stress plot, it can be

described as approaching ‘fair’ at 3 dimensions.

Stress can also be interpreted as a measure for how much variability in the dataset

is modelled at a particular number of dimensions. As we can see from the generated

4-dimensional random metric data, the addition of a 5th dimension when performing

multidimensional scaling contributed nothing further in terms of variability described.

This was to be expected as we already knew ahead of processing that there were a

maximum of 4 dimensions to be found.

Our stress result for 3 dimensions on our dpilot+scalable dissimilarity matrix (0.11) tells

us this may be suitable for use in projecting the dataset in 3 dimensional space. We

can also determine that 3 dimensions describe 89.4% of the variability in the data
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and that the addition of a fourth dimension would only contribute a further 1.8%

to the variability described. We describe the use of this approach in constructing a

data organisation for a browsing environment in section 5.3.

4.3.2 Meaningful Dimensions

By projecting our 3-dimensional data onto three single 2-dimensional planes we

might expect to discover some significant trend in how the textures change as we

move in particular directions across these planes. Various researchers have in the

past been able to detect some tenuous trends by using this subjective analysis but

it seems likely to hold only for the most under sampled texture spaces or perhaps

for severely constrained datasets with a focus on a single class of textures that vary

over few parameters. The author’s findings for the Tex500 dataset was that we

could clearly observe a relationship between proximity in low dimensional space and

similarity between textures but that no obvious trends or ‘dimensions’ emerged as

we moved in any direction through low-dimensional space.

4.4 Neural Network Analysis

A well documented Artificial Neural Network approach to data analysis is the Self

Organising Map (also known as the Self-Organising Feature Map or Kohonen map

after its inventor, Teuvo Kohonen [53]). It is a vector quantisation method consisting

of neurons organised on a regular low-dimensional grid. Each neuron is represented

by a d-dimensional weight vector m = [m1, . . . ,md] where d is equal to the dimension

of the input vectors (in our case five hundred). The SOM training algorithm is similar

to vector quantisation algorithms like k-means [36]. In contrast, in addition to the

best matching weight vector, its topological neighbours on the map are updated and

the area around the best matching vector stretched towards the training sample (see

figure 4.5). Ultimately, neurons become ordered with neighbouring neurons sharing

the same weight vector.

During each step in the training phase one sample input vector x is chosen from the

input data set. The neuron with weight vector closest to the sample input vector is

called the best matching unit (BMU), denoted by c in equation 4.6 where || · || is the

distance measure (we use the typical Euclidian distance).

||x−mc|| = mini{||x−mi||} (4.6)
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Figure 4.5: Updating the Best Matching Unit (BMU)

Hexagonal Lattice Rectangular Lattice

Figure 4.6: Local Lattice Structures

The most appealing feature of the SOM with respect to our aim of data organisation

for navigation is that the neurons are connected to adjacent neurons by a neighbour-

hood relation which dictates the map’s topology. Not only are the data assigned to a

neuron based on some common strength of neural response to their input vector, but

neurons are positioned across the grid relative to their weight vector. The benefit

here is that we can envisage the possibility of navigating neurons then examining

their contents (in our case textures).

A well received implementation of the SOM method is the SOM Toolbox for Matlab

by Vesanto et al. [112]. Their implementation allows for two possible local lattice

structures as shown in figure 4.6 and three possible map shapes illustrated in figure

4.7.

In terms of topology, we can easily select an arrangement which has become familiar

to us through the use of any file browsing interface where thumbnails are displayed

on a computer screen. We are almost always presented with a rectangular lattice
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Figure 4.7: Map Shapes
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Figure 4.8: Neural Network Produced by SOM Analysis

inside a rectangular window, best represented by the sheet map shape shown. That

is not to say it would be impossible to navigate any of the other combinations on a

computer screen, but to keep interface development simple, and for all “neurons” to

appear on screen at all times and without occluding other neurons, we shall restrict

our investigation to the rectangular lattice sheet.

Figure 4.8 shows the SOM resulting from our perceptual similarity data. Neurons

whose weight vector did not maximise the input vector of any member of our dataset

are shown as unfilled circles while neurons containing one or more textures are shown

filled. The empty neurons signify areas on the manifold where there are gaps in the

texture space represented by the Tex500 dataset.

Figures 4.9 and 4.10 show the contents of the numbered neurons at the top left

and top right of figure 4.8 respectively. We can clearly see similarities between the

textures within each neuron, as well as their close relationship with their neighbouring
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Neuron (a)

002 229

Neuron (b)

393 399 400 459 476

Neuron (c)

036 106 142 228 460

Figure 4.9: Top Left Numbered Neurons from Figure 4.8

neurons.

Table 4.4 shows the outputs from processing the Tex500 SOM. The quantisation

error is the average distance between each data vector and its best matching unit

(BMU). It measures map resolution. Topographic error is the proportion of all data

vectors for which first and second BMUs are not adjacent units. It measures topology

preservation.

Measure Value

Quantisation error 1.188
Topographic error 0.054
Optimal Map size 14 × 8

Table 4.4: SOM Data Processing Result
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Neuron (d)

438 439 452 461

Neuron (e)

391 141 155

Neuron (f)

100 363 491 498 500

Figure 4.10: Top Right Numbered Neurons from Figure 4.8
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4.5 Conclusions

In this chapter we set out to validate the results of our perceptual grouping experi-

ments and to discover whether any obvious structures could be found in similarity

matrix describing the Tex500 dataset that we might exploit for navigation. We began

by selecting three contrasting approaches for the analysis of multivariate data, two

in the area of dimensionality reduction (multidimensional scaling and self organising

map) and one hierarchical clustering approach.

With all three of the approaches selected, inspection by the author detected the

presence of structures that suggested suitability for the organisation of the textures

in three different browsing models. Our initial analysis is subjective and conclusions

tentative, but it seems to validate the results. More rigorous investigation is required,

and we will address this in chapters 5 and 6 where we discuss the design of three

browsing environments (RFG, MDSG and SOMG) and an experiment to compare

the three in terms of accuracy and mean task time for a given task.

Although we have identified three possible browsing models, a number of issues need

to be addressed as we refine these into usable browsing environments:

• Limited screen real estate:

– How small can thumbnails be while still allowing users to correctly identify

the texture?

– What is the optimal SOM grid size: minimising topographic error vs.

scrollbar free display of grid?

– In hierarchical and SOM approaches, how should we represent collections

of textures represented by clusters or neurons?

– How do we manage scaling and occlusion when projecting textures in

2D/3D space using MDS co-ordinates?

• Navigation:

– For each model, what is the optimal behaviour when selecting a tex-

ture/cluster at navigating levels in the structure?

– Should we consider in advance the potential cost of wrong turns in the

navigation?

– Would a model benefit from redundancy in populating clusters/neurons,

i.e. a texture appearing in more than one location?
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Being particular to the design of browsing environments, these questions and issues

will be addressed in chapter 5.
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Chapter 5

Design Browsing Environments

5.1 Introduction

An early motivation for this thesis was a sparsity of commercial tools or learned

research in the area of computer browsing environments. A search of the browsing

environments literature in section 2.2 of the survey revealed few research projects in

the area of browsing texture databases. Many scholarly articles that made mention of

browsing in the title have been found to describe browsing in the context of displaying

the result of a content-based image retrieval (CBIR) query, rather than browsing an

image database per se. Some research was discovered about browsing environments

for image databases which were organised using content based features such as

the colour histogram distance metric [95], but there were no obviously transferable

approaches that would assist with our navigation of Tex500 in a perceptually relevant

way.

Chapter 4 described our preliminary inspection of the similarity matrix using three

visualisation techniques, from which we were able to identify the presence of plausible

structure in the Tex500 database. With this chapter we aim to develop three browsing

environments that:

• exploit the structures identified in chapter 4,

• organise textures plausibly (observers remember or anticipate organisation),

• optimise use of screen real estate,

• facilitate fast elimination of unwanted textures,

• links texture proximity to similarity, and
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• as a collection, provides sufficiently contrasting browsing environments for

worthwhile comparison.

Given that we have already produced three structures describing the relationship

between textures in the Tex500 dataset, two key questions present themselves:

1. could our structures be used to develop a variety of perceptual space browsing

environments? And if so,

2. could experiments be designed to discover which environment proves the most

efficient to use?

Recall from chapter 4 that we have processed our raw perceptual similarity data into

three distinct structural forms:

1. hierarchical data in the form of a dendrogram,

2. reduced dimensional co-ordinates using MDS, and

3. an artificial neural network using SOM.

In sections 5.2, 5.3 and 5.4 we describe the design of three browsing environments

based on these structures, including details of human-computer interaction (HCI)

component selection, navigation schema and layout design. The browsing environ-

ments will be referred to as SOMG, MDSG and RFG
1, the subscript ‘G’ denoting

that the basis of the data organisation within the these browsing environments is

our initial grouping experiment in chapter 3.

5.2 Rapid-Fire Browsing Environment (RFG)

If we had a dendrogram describing a sufficiently small dataset, it is possible to envisage

a navigation schema based around the user descending through the hierarchy towards

a particular texture or textures they may have in mind, refining their navigation

where each node divides into two or more branches. At each decision point the user

would have to be presented with all textures available along each branch in order to

decide which path to select. If they decide they have gone in the wrong direction

then an option to reverse one node at a time will allow them to ascend the structure

until they find a more preferable route. This would be inconceivable with a large

dataset, particularly at the higher levels of the hierarchy.

In order to navigate a tree structure, the user must know at each node what lies

1The RFG browsing environment is named after the rapid-fire component used in it’s implemen-
tation. This will be introduced later in this chapter.
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TL TR BR BL

TL TR BR BL TL TR BR BL TL TR BR BL TL TR BR BL

Figure 5.1: Rapid-Fire Tree Structure

down each of the branches ahead in order to decide which route they prefer. It would

be difficult to model a complex hierarchy such as our dendrogram using the limited

screen real estate available on the average computer monitor but there are steps

we could take to simplify the structure. Since a computer monitor is rectangular

we can easily segment it into smaller rectangles, and present in each an alternative

route downwards through the hierarchy. Such sub-division could result in two, four,

six, eight or more segments, but for reasons of simplicity and to provide sufficient

space to represent each navigation on screen we have opted for segmentation into

four quadrants.

We could make our perceptual hierarchy ready for such representation by partitioning

the dataset into four clusters by drawing a horizontal line across the dendrogram at

a point where it crosses four vertical branches. Hanging from each of these points is

a sub-dendrogram on which we can repeat the process. By continuing to apply this

process we will obtain a hierarchy of the form shown in figure 5.1. Finally, we can

map each level of refinement to an on-screen position, TL (top-left), TR (top-right),

BR (bottom-right), & BL (bottom-left).

The obvious problem here is that each of the clusters, particularly at the highest

level of partitioning, could contain large numbers of textures. Indeed at the highest

level we would have to somehow display four clusters for the user to choose from,

each of which contains an average of one hundred and twenty-five textures. Of course

we could choose to show only a random subset from the cluster such that all four

clusters could be easily displayed on the user’s screen. This is a poor solution in

the case of a cluster containing a large variety of texture types since it is plausible

that some key textures that may provide the essential cue for the user navigation

may be omitted. This is particularly likely to occur at the highest levels in the

hierarchy where the whole texture space encoded in the dataset must be represented.

To find a solution to this problem, the author investigated the area of advanced
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visual interfaces.

Figure 5.2: RFG Browsing Environment Top Level Screen Shot

Wittenburg et al. [118] proposed prototypes for a means of navigating information

spaces (such as collections of Internet sites) by presenting images that represent areas

of the information space to the user in rapid succession within a preview window.

The images, which are randomly positioned in the previewer, can be clicked upon by

the user to proceed to that location in the information space. The approach goes

some way to vastly increasing the number of possible out-links the user can follow in

relation to the available screen real estate. The visual metaphor is of photographs

being thrown randomly onto a table top. Over time the topmost photographs will

occlude those underneath but the user will already have a flavour of the particular

selection modelled. Although Wittenburg did not attempt to exploit any natural

structure within the data his interface provided out-links to, it does suggest a user

interface component which may be of high value for displaying example textures

from a particular cluster or subset or out dataset within a browsing environment.

Our approach is an adaptation of the approach proposed by Wittenburg et al. We

would display a distinct preview window for each cluster to be represented (see figure

5.2). Clicking on a particular preview window (not an individual image within the

preview as described by Wittenburg et al.) would navigate downwards by one level

in the hierarchy, and present four new preview windows from which to choose (see

figure 5.3). In the event that the user clicks on a cluster with four or fewer member

textures then they are presented with a detail view containing all member textures
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Figure 5.3: RFG Browsing Environment Next Level Screen Shot

(see figure 5.4). In all but the highest level, an up button is provided for the user to

reverse or step back up the hierarchy.

Figure 5.4: RFG Browsing Environment Detail Level Screen Shot

5.3 MDS Browsing Environment (MDSG)

The reduced dimensionality information obtained by performing multidimensional

scaling (MDS) on our perceptual similarity data is an obvious possible source of

structure for organising data within a browsing environment. For example, low

dimensional MDS data has been successfully used in the past to map texture space

in a 3D manifold [62]. It is also known to preserve the proximity information from

the original data [24, ch. 10]. The proximity of similar textures within a browsing

environment may suggest important navigational cues to assist the user.

Rogowitz et al. [95] conducted a variety of psychophysical experiments to measure

the similarities between members of a dataset of ninety-seven digitised photographic

images. They plotted thumbnail images first in flat 2D space using the 2D MDS
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Figure 5.5: MDSG Browsing Environment Top Level Screen Shot

co-ordinates obtained in order to perform analysis of the trends to be found in these

two dimensions. They also plotted thumbnails in 3D space using virtual reality

modelling language (VRML) which was viewed in an appropriate internet browser

plug-in. In both cases, they found that images appearing similar to each other appear

near to each other. As this fulfils our criterion that a browsing environment should

arrange data logically and predictably, we proceeded to plot our surfaces in 3D space

using the co-ordinates obtained from 3D MDS in an X3D (XML 3D) scene.

In order to make the 3D environment more intuitive, the texture thumbnails were

rendered using X3D billboard components. This causes the thumbnails to always be

displayed facing the scene camera (the user viewpoint). Figure 5.5 shows a screen

capture of the 3D rendered scene. From this level in the interface, the user can rotate

the scene in 3D space until they find the area containing the type of texture they

wish to find. They can then click on an individual thumbnail which takes them to

the detail level associated with the selected texture.

In the 3D scene three problems became evident while selecting textures:

1. thumbnails distant from the camera were barely distinguishable from one

another due to scaling,

2. densely populated areas of the scene resulted in some thumbnails being obscured

by others, and
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Figure 5.6: MDSG Browsing Environment Detail Level Screen Shot

3. thumbnail edges are sometimes difficult to determine resulting in a nearby

thumbnail being accidentally selected.

In cases where the wrong thumbnail was selected, the result is usually that one of its

nearest neighbours is selected. The impact of a wrong selection here was reduced

by displaying in the detail level (figure 5.6) the selected thumbnail along with all

other textures with a non-zero similarity value to the selection, in descending order

of similarity. Therefore, users need not be minutely accurate in selecting a texture

from the 3D scene to still find the texture they desire.

5.4 SOM Browsing Environment (SOMG)

An alternative approach to dimensionality reduction is the use of artificial neural

networks. These are normally used in classification tasks and an oft-used example is

the classification of Iris flowers into sub-species given the length and width measure-

ment of sepal and petal leaves. Data points representing each set of measurements

can be projected onto a variety of manifolds for analysis.

A particular artificial neural network approach is the self-organising map (SOM)

which has been successfully used to organise documents and website pages based

on relative percentages of keyword occurrences [55, 58, 43]. Prototype vectors are

placed on a regular low-dimensional grid. These prototype vectors, or neurons, are

d-dimensional weight vectors, where d is equal to the dimension of the input vector,

in our case, five hundred.

Neurons are connected to adjacent neurons by a neighbourhood relation, which

dictates the topology of the map. The topology consists of two factors: local lattice

structure, which can be hexagonal or rectangular, and global map shape, either sheet,

cylinder or toroid.

The most obvious choice of topology to be modelled on a computer screen would

be the rectangular sheet (essentially a grid). By supplying our similarity matrix

to a SOM implementation, a grid of neurons will be established which represents
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Figure 5.7: SOMG Browsing Environment Top Level Screen Shot

Figure 5.8: SOMG Browsing Environment Detail Level Screen Shot

the variability within the dataset. The size of the grid can be automatic (reflecting

dataset variability) or a particular grid size can be specified. In our case, the optimal

grid shape generated by the SOM implementation coincided with the optimal grid

shape that maximises screen real estate on the displays we selected for psychophysical

experimentation. Each data point will be allocated to a single neuron depending on

which neuron gives the strongest response. Each neuron (or grid position) will contain

zero or more data points. Empty neurons can be thought of as areas where the

measurement (texture) space was under-sampled. As each grid position represents

zero or more textures we must make a decision as to how that collection is to

be represented visually at the neuron level. The most straightforward solution is

to display a thumbnail of the centroid texture of the cluster, using the Euclidean

distance function. This provides a map view for our Tex500 dataset as shown in

figure 5.7.

On clicking one of these thumbnails, the user is taken to the detail level (figure 5.8)

where they can see all member textures of the selected neuron, in distance order

from the centroid texture whose thumbnail image they clicked on.

For a full description of the SOM please refer to Kohonen’s book [53]. The author
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used an implementation of SOM for Matlab by Vesanto et al. [112].

5.5 Conclusions

In chapter 4, we discussed the identification of structures in the similarity data

derived from our sorting experiments. With this chapter we described how these

structures were exploited to form data organisations and navigation schema in three

contrasting browsing environments:

RFG The rapid-fire browsing environment was based on the hierarchical clustering

structure identified in section 4.2. The dataset is repeatedly partitioned into

four clusters until the root nodes are reached and at each level the user is

presented with four rapid fire previews representing the clusters. Users navigate

by selecting a preview to descend further in the hierarchy or selecting an icon

to reverse to the previous level. The author found this the most preferable

browsing environment and found that he could easily navigate the dataset, and

was generally able to anticipate his position within the structure making few

wrong turns. Possible difficulties with this browsing environment are that it

may be hard to identify poorly represented clusters of textures, particularly at

higher levels in the hierarchy, and that wrong turns may be costly to operating

time.

MDSG The multidimensional scaling browsing environment was based on the di-

mensional analysis structure identified in section 4.3. Here the user is presented

with a 3D scene representing all of the textures in the dataset. Whilst there

certainly seems to be a strong correlation between proximity and similarity

there is often no obvious wayfinding cues between clusters of similar textures,

necessitating rotation of the view until the correct type of textures are found.

This may have a detrimental effect on operating time. There is also the prob-

lem of occlusion, which is particularly problematic in areas where there is

high representation of certain texture types. The author found this interface

convenient for general browsing but users may have problems searching for a

particular remembered texture.

SOMG The self-organising map browsing environment was based on the neural

network analysis structure identified in section 4.4. Users are presented with

a grid of textures, each of which is representative of a neuron containing

similar textures. By clicking on a texture they are presented with the neuron

contents. At the grid level similarity between neuron contents is reflected by

spatial proximity between grid items. A benefit of this model is that there is
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generally low cost in terms of wrong turns but there may be issues around how

representative the textures at grid level are of the neuron contents, particularly

where there is lower cohesion between neuron contents. The author found

this novel browsing environment easy to use but still favoured the rapid-fire

browser.

Although the author’s perception of the advantages and disadvantages of each

browsing environment is helpful in identifying potential issues for future users, we

must subject the browsing environments to further scrutiny before coming to any

conclusions. The author has considerable knowledge of the dataset, structures on

which the browsing environments were based and how the browsing environments

exploit these structures, so cannot be regarded as naive to the task of browsing

environment assessment. We can, however, use his findings to form the hypothesis

that the RFG browsing environment will perform best. We test this hypothesis in

chapter 6.

Given the high cost of obtaining perceptual data about a dataset using large grouping

experiments like those described in chapter 3, a desirable product would be a technique

for adding new textures to a dataset without repeating the grouping experiment.

Browsing environments may provide us with a basis for this function and in chapter 7

we propose a simple dataset augmentation approach that features one of our browsing

environments in a central role.
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Chapter 6

SOMG, MDSG & RFG Browsing

Environments Comparison

6.1 Introduction

In this chapter we describe the experiment used to test the performance of the

three browsing environments introduced in chapter 5. Having extensively used each

interface to browse the dataset, the author found a preference for the rapid-fire image

preview environment and formed the hypothesis shown in equation 6.1 (with respect

to mean task time). In fact these experiments disproved that hypothesis.

Hypothesis: RFG < SOMG, RFG < MDSG (6.1)

6.2 Experimental Design

The purpose of our experiment is to assess the efficiency of each of the browsing

environments in question and to discover which, if any, is statistically the most

efficient. We must therefore consider an appropriate task, stimuli and experimental

approach to make that assessment.

6.2.1 Task Specification

As we wish to assess the efficiency of various browsing environments, we must model

the kind of task that would be a core reason for using such a browsing environment in

the first place. It would therefore seem appropriate to ask users to find a particular
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texture from the dataset. The task stimulus could be a description of the surface

to be found but this would be open to the interpretation of individual observers

and it would be difficult to assess whether the observer had arrived at the correct,

or at least a plausible selection. We therefore decided that the task stimulus, or

query, should be an actual surface from the dataset that is present in the browsing

environment.

6.2.2 Interface Presentation

As observers would have a range of cognitive abilities in relation to the task we

decided it best to ask all observers test all three interfaces. To eliminate any learning

effects from the experiment the order of presentation would be balanced by equalising

the permutations available. As there were six possible permutations for three items,

we planned to use each permutation twice, giving a total of twelve observer sessions.

6.2.3 Stimuli Selection

A pilot experiment revealed that observers could comfortably complete a total of

twenty-four tasks in one hour without becoming fatigued. It was therefore decided

that twenty-four stimuli would be used in the experiment, eight for each browsing

interface.

To stabilise possible differences in task difficulty related to individual stimuli, the

same set of stimuli would be presented to all observers. These would be presented in

random order.

To ensure the stimuli represented a cross section of the dataset, the dataset was

partitioned into twenty-four clusters using the dendrogram from subsection 4.2.1

and a random texture selected from each cluster. This stimuli set has been labelled

Tex500[024] and can be found in full in Appendix A.1.

6.2.4 Sample Size

As we have already discussed, twelve observers would each carry out eight trials on

each browsing interface, giving a total of ninety-six trials per browsing environment.

Although we can never be certain from the outset that this is sufficient to reach a

statistically significant conclusion, it does seem like a fair sample size.
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6.2.5 Performance Measurement

Mean Task Time

Although we considered a number of ways to measure each task, by far the simplest

is the time, in seconds, from presentation of the stimulus to the selection by the

observer of their elected surface. We also recorded every navigation by users in

case analysis of actual navigations versus minimum possible navigations might prove

useful. However, the complexity of this analysis made it unsuitable for comparing

task efficiency due to the variability in the effects of ‘wrong turns’ in each of the

browsing environments.

Preferred Browsing Environment

For completeness, and in case measurement of mean task time proved not to be

statistically significant, users were also asked to identify their preferred browsing

environment at the end of the experiment.

Accuracy Assessment

As we have perceptual similarity data describing the relationship between all surfaces

in the dataset, we can easily make an assessment of the accuracy of observers’

selections. In the event they find the exact match to the stimulus, a score of one is

assigned. Otherwise the similarity value of the stimuli to their selection is assigned.

6.2.6 Observer Selection

Volunteers were invited from the student population of the School of Mathematical

and Computer Sciences at Heriot Watt University. No age or other restrictions were

placed on volunteers. Observers were informed they would have to use a mouse and

VDU and that they should make sure if they needed to use corrective eyewear that

they wore this for the experiment. No age data was collected from observers but in

the opinion of the author they all fell within the 18–35 years age group.

6.2.7 Instructions to Observers

Prior to taking part in the experiment each observer was asked to complete a consent

form with their name, address and email address and to sign an agreement in the
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following terms.

I have agreed to take part in an experiment on the navigation of large

texture databases. The procedure has been explained to me and I

understand that I am free to leave the experiment at any time. In

exchange I will receive 10 GBP worth of high street vouchers.

The same form continued with the following instructions which were read to the

observer by the author.

1. The researcher will present you with three different interfaces for navigating a

large texture database

2. You will be presented with 8 random query textures to search for using each of

the interfaces

3. The researcher will describe each navigation interface prior to your using it

4. Your mouse clicks will be recorded throughout the experiment for later analysis

5. At the end of the experiment the researcher will ask you which interface you

preferred using

The following description and an author-lead demonstration was given of each of the

interfaces at point of use.

SOMG This interface has a top level map where each grid square represents a

collection of one or more textures. You should notice that similar collections

of textures will be close to each other on this grid. Click on any grid square to

see the member textures [author clicks top left texture]. To return to the grid,

click on the arrow [author clicks arrow]. Double click a texture to select it in

the detail level [author demonstrates]

MDSG This interface has a 3D view showing every texture in the database. Navigate

to the type of texture you are looking for by clicking on white space and rotating

the 3D environment with your mouse [author demonstrates]. Click on the

texture you are looking for, or a similar texture, and you will be presented

with similar textures to the one you clicked. To return to the 3D view, click

the arrow [author clicks arrow]. Double click a texture to select it in the detail

view [author demonstrates]

RFG This interface is a multi-layered hierarchy split consecutively into four parts

at a time (the quadrants of the screen). Each quadrant has a rapid fire view

of the textures it represents. Click a quadrant to descend one level [author

demonstrates]. Each level has an arrow to return to the level before [author
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clicks arrow to demonstrate]. At the top level there is no arrow. Once there

are fewer than four textures left you will see all remaining textures in a grid

view. From here you can double click a texture to select it or return to the

hierarchical view by clicking the arrow. You do not need to wait until you see

the particular texture you are looking for to select a quadrant, as you may be

able to determine the correct route by identifying similar textures to the query

6.3 Analysis of Result

6.3.1 Mean Task Time

Result

Figure 6.1 shows the mean task time for each of the three browsing environments.

These were 51, 112 and 143 seconds respectively. Standard error bars are also

indicated on the plot, the standard error (σx̄) being calculated as shown in equation

6.2 where s is the sample standard deviation and N is the sample size. The intervals

are plotted as shown in equations 6.3 and 6.4. A table of mean task times for each

observer can be found in Appendix B.1.1.

σx̄ =
s√
N

(6.2)

lower bound = x̄− σx̄ (6.3)

upper bound = x̄+ σx̄ (6.4)

Statistical Significance and Experimental Effect

Although we can clearly see the differences in the mean task time between browsing

environments, we cannot draw any conclusions from this until we test the statistical

significance of the differences [28]. The statistical test we use is called the dependent

t-test, which is calculated from the mean difference between our samples (D̄) and

the standard error of differences (σD̄) as shown in equation 6.5.

t =

∣∣∣∣ D̄σD̄
∣∣∣∣ (6.5)
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Figure 6.1: Mean Task Time (with Standard Error Bars) from SOMG, MDSG &
RFG Browsing Environments Comparison Experiment

We estimate the standard error of differences from the standard deviation of differences

obtained within the sample (sD) and the sample size (N) as shown in equation 6.6.

σD̄ =
sD√
N

(6.6)

Once we have a value for t we can use this to calculate the effect size, r, as shown in

equation 6.7. df denotes degrees of freedom, which is derived from the sample size

N as shown in equation 6.8.

r =
t2

t2 + df
(6.7)

df = N − 1 (6.8)

The analysis of our experimental results is summarised in table 6.1. As we are

interested in an overall result reflecting 95% confidence (a p value of 0.05), and we

are comparing three pairs of browsing environments, we must achieve a p value for

each comparison of p < 1− 3
√

0.95 (p < 0.01695). As this p condition is achieved for

the SOMG over the other interfaces, it can be said that the differences between the

mean task time in the SOMG browsing environment and the others is statistically

significant. This is not the case for the RFG and MDSG environments, however, so

we cannot rank these with confidence. In terms of the r-values, by cross referencing

with table 6.2, we can also see that there is a large effect size of the SOMG over the
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Interfaces Compared t-test p-value Stat. Sig. r-value df

SOMG vs. MDSG 2.91 0.01 Y 0.66 11
SOMG vs. RFG 5.33 0.00 Y 0.85 11
MDSG vs. RFG 1.71 0.12 N 0.46 11

Table 6.1: Statistical Analysis of SOMG, MDSG & RFG Mean Task Time

r-value Effect

0.1 Small
0.3 Medium
0.5 Large

Table 6.2: Experimental Effect Sizes

other two browsing environments, indicating that the differences in mean task time

was due largely to the differences in the browsing environments, rather than variance

within the sample.

For detailed experimental results please see appendix B.1.1.

Preferred Browsing Environment

Table 6.3 shows the votes each browsing environment received when observers were

asked to name which they preferred. This measure correlates exactly with the mean

task time analysis.

6.3.2 Accuracy

Result

Of the twenty-four stimuli presented to observers, only four resulted in a non-exact

match being selected by observers. As can be seen in figure 6.2, the non-exact

selections (right of each pair) have a very high resemblance to the stimuli presented

(left of each pair), and also high perceptual similarity values. There were a total of

eight non-exact selections throughout all three browsing environments.

Browsing Environment Votes

SOMG 9
MDSG 3
RFG 0

Table 6.3: Observer Preference from SOMG, MDSG & RFG Browsing Environments
Comparison Experiment
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Query (106) Selected (142)
79% Similar

Query (117) Selected (466)
79% Similar

Query (045) Selected (412)
71% Similar

Query (066) Selected (481)
50% Similar

Figure 6.2: Non-Exact Observer Selections in SOMG, MDSG & RFG Browsing
Environments Comparison Experiment

Interfaces Compared t-test p-value Stat. Sig. r-value df

SOMG vs. MDSG 0.24 0.81 N 0.07 11
SOMG vs. RFG 0.27 0.79 N 0.08 11
MDSG vs. RFG 0.50 0.62 N 0.15 11

Table 6.4: Statistical Analysis of SOMG, MDSG & RFG Accuracy

By assigning a value of 100% to each accurate observer selection, and the percentage

similarity value to non-exact selections, we can analyse the mean accuracy of each

browsing environment as shown in figure 6.3.

Statistical Significance and Experimental Effect

Analysis of the statistical significance of differences in the accuracy of browsing

environments is shown in table 6.4. In all cases, p > 1 − 3
√

0.95 (p > 0.01695)

indicating no statistical significance in the accuracy of any interface over the others.

The r value shows very little experimental effect, suggesting the differences were

naturally present in the sample and not as a result of the issue under examination.

For detailed experimental results please see appendix B.1.2.
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Figure 6.3: Accuracy (with Standard Error Bars) from SOMG, MDSG & RFG

Browsing Environments Comparison Experiment

6.4 Discussion

In keeping with many PhD research projects, the author recruited observers for this

and the other browsing environment comparison experiments in this thesis from the

student population of his own department, in this case, the School of Mathematical

and Computer Sciences at Heriot Watt University. Although there is no evidence to

suggest this group were not naive to the task of texture search, it could be argued

they universally hold higher than average computer use skills and therefore would

perform better than population in the use of browsing environments. Potential

negative effects of this were minimised by the exclusive use of such observers for

these experiments and by using a repeated measures approach where all observers

tested all variables.

At the point of recruitment, observers were made aware of the estimated duration

of the experiment and the fixed payment they would receive to compensate them

for their particpation. Although there was no observable behaviour on the part of

participants to modify their performance to say, fill the time, we have no way of

knowing what effect the payment structure might have had on the outcome of our

experiment.

All of our experiments were based on a database of five hundred textures, which

we consider by comparison to other texture research projects to be large. However,

there is no guarantee that we would obtain similar results if the dataset size was

significantly increased or decreased. We also limited our browsing to a texture

database, but our results may well have been different given an alternative class of
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visual stimuli.

6.5 Conclusions

Our experiment revealed that the SOMG browsing environment was more efficient

than the MDSG and RFG interfaces, but that the MDSG and RFG interfaces could

not be ranked with any statistical confidence. There was an exact correlation between

this result and the number of votes received by each browsing environment when

observers were asked to identify which they preferred. Non-exact selections made by

observers revealed no statistically significant differences between the accuracy of the

browsing environments.

The success of the SOMG browsing environment in this experiment may be explained

by its relative simplicity and clarity. In terms of navigation this is positive as users

can quickly navigate between the two states of top (grid) level and group level in a

single click. This contrasts with the RFG browser where there are up to six levels

of hierarchical navigation between the root level and a particular group. This can

prove costly in the event of a wrong turn.

Although the MDSG browser also shares with SOMG the property of having only

two levels, its poorer performance may be explained by the organisation of the 3D

projection level. Occlusion is an obvious problem where textures near the viewpoint

mask or partially mask textures behind. Also, textures that are far from the viewpoint

are scaled according to perspective and properties important to their identification

may become undetectable with reduced resolution.

As the SOMG browsing environment has been identified as the most efficient of those

tested here, the remainder of the research in this thesis will use that model for the

implementation of browsing environments.

Although this chapter identifies an efficient browsing model with respect to mean

browsing time for a particular task, it does not in itself provide us with any scalable

solution for capturing perceptual similarity data for browsing large databases. In this

thesis we examine two scalable methods for obtaining perceptual similarity data. The

first is a technique for augmenting similarity matrices with additional data members

(chapters 7 and 10). The second is using computational features to calculate the

similarity between textures (chapter 8).
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Chapter 7

Pilot Dataset Augmentation

7.1 Introduction

In chapter 3 we demonstrated that obtaining similarity data about a texture dataset

can be costly, particularly as the dataset size increases. Although we described a

method of conducting grouping experiments on hierarchically partitioned subsets

of our Tex500 dataset, this approach was only possible as we had already obtained

similarity data about the whole dataset from 6 pilot grouping experiments where

users sorted the entire Tex500 dataset. These pilot grouping experiments were

not scalable and had to be abandoned due to problems (see subsection 3.3.1), and

although we retained the pilot data to develop our pseudo-scalable grouping approach,

it would be much more valuable to find an inexpensive method for inserting a new

texture into a dataset for which we already hold perceptual similarity data.

If we could find a method of augmenting an existing dataset with new previously

unseen textures we could avoid two significant problems:

• Initial grouping experiments could be restricted to a manageable size for the

average observer, and

• The addition of new textures would no longer require expensive grouping

experiments to be repeated.

Until now we have asked users to find a given query texture that they already know

to be present in the browsing environment, but there is no reason why the task

cannot be modified to browsing for similar textures to a given query texture. An

algorithm could then be developed for translating the similarity information we hold

about the selected textures into similarity information about the new surface.

In this chapter we describe a simple method for augmenting a dataset with new
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textures, design an experiment to simulate adding some new textures to the dataset

then build a browsing environment (SOMA) using the augmented dataset. Later, in

chapter 9, we shall compare the efficiency of the resulting browsing environment with

the browsing environment derived from our initial grouping experiment (SOMG) and

a browsing environment derived in chapter 8 from computational features (SOMF).

7.2 Relationship Between New Textures and Ex-

isting Textures

In considering approaches for inserting new textures in the dataset, we must first

understand the data we hold that describes the existing members of the dataset

and the type of translation we need to perform to describe the new texture in an

equivalent form. The Tex500 dataset is described with a 500 × 500 perceptual

similarity matrix where each texture has a similarity relationship with every other

texture in the dataset, including itself. The similarity values are in the range [0− 1]

where 1 is maximal similarity. Every texture has a similarity value with itself of 1.

Each texture in the dataset therefore has a 500-dimension similarity vector describing

its similarity with all textures in the dataset. Similarity vectors for the first three

textures in the dataset can be seen in equations 7.1, 7.2 and 7.3. Actual similarity

values have been replaced with variable s with a subscript denoting the texture

indexes of the similarity value.

sv1 =
[
1, s(1,2), s(1,3), s(1,4), · · · , s(1,500)

]
(7.1)

sv2 =
[
s(2,1), 1, s(2,3), s(2,4), · · · , s(2,500)

]
(7.2)

sv3 =
[
s(3,1), s(3,2), 1, s(3,4), · · · , s(3,500)

]
(7.3)

By asking observers to select the most similar existing textures to a new texture

with which we wish to augment the dataset, we can derive a similarity vector for

that new texture using the similarity vectors from the selected existing textures.

An obvious approach is to take the mean of each element in the similarity vectors

selected. The following paragraphs describe thress simple approaches to deriving the

new similarity vector using a simple mean, ordered mean or weighted mean as the

basis for the derivation.
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Mean Similarity Vector

The simplest conceivable solution to adding a new texture to the dataset would be

to assign it a similarity vector which represents the mean similarity values of the

textures selected by a user as those most similar to the new texture. If, for example,

a user is presented with new texture numbered 501 and they select textures 1, 2 and

3 as the most similar existing textures in the dataset, then texture 501 would be

assigned the similarity vector shown in equation 7.4. Observe that each time a new

texture is added, the length of all similarity vectors increase by 1 and the added

texture is assigned a similarity with itself of 1.

sv501 =
[
d(501,1), d(501,2), d(501,3), d(501,4), · · · , d(501,500), 1

]
=

[
1 + s(2,1) + s(3,1)

3
,
s(1,2) + 1 + s(3,2)

3
,
s(1,3) + s(2,3) + 1

3
,

s(1,4) + s(2,4) + s(3,4)

3
, · · · ,

s(1,500) + s(2,500) + s(3,500)

3
, 1

]
(7.4)

Ordered Similarity Vector

There may be occasions where an observer perceives that the most similar existing

textures to the new texture are not equally so. In a refinement to the above method,

we could give the observer the opportunity to order their response by strength of

similarity or to freely attribute weights to their responses. Ordering would necessitate

some predefined and somewhat arbitrary weighting method being applied to the

ordered texture selection. An example is shown in equation 7.5 where the textures are

weighted in decrements of 1 from the total number of textures selected. This ordered

approach may or may not offer improvement over the simple averaging approach

since the weights may not accurately reflect the observers perceived decrement in

similarity. Indeed these weights would be applied even in the unlikely event that the

observer considers their entire selection to be of equal similarity to the stimulus.

sv501 =
[
d(501,1), d(501,2), d(501,3), d(501,4), · · · , d(501,500), 1

]
=

[
3 + 2s(2,1) + s(3,1)

6
,
3s(1,2) + 2 + s(3,2)

6
,

3s(1,3) + 2s(2,3) + 1

6
,
3s(1,4) + 2s(2,4) + s(3,4)

6
,

· · · ,
3s(1,500) + 2s(2,500) + s(3,500)

6
, 1

]
(7.5)
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Weighted Similarity Vector

Equation 7.6 shows the algorithm where the observer is able to freely assign their own

weights to their selection. Although this approach could result in greater accuracy

and lower quantisation in the resulting similarity vector, it places considerable

additional judgement effort on the observer and may increase observer fatigue and

have a negative impact on our ability to recruit observers.

sv501 =
[
d(501,1), d(501,2), d(501,3), d(501,4), · · · , d(501,500), 1

]
=

[
w1 + w2s(2,1) + w3s(3,1)

w1 + w2 + w3

,
w1s(1,2) + w2 + w3s(3,2)

w1 + w2 + w3

,

w1s(1,3) + w2s(2,3) + w3

w1 + w2 + w3

,
w1s(1,4) + w2s(2,4) + w3s(3,4)

w1 + w2 + w3

,

· · · ,
w1s(1,500) + w2s(2,500) + w3s(3,500)

w1 + w2 + w3

, 1

]
(7.6)

Selected Method

Because of the potential problems highlighted in the ordered and weighting approaches

detailed above, and to keep this pilot augmentation experiment as simple as possible,

we decided to use the mean similarity method. We will aim to minimise the problems

in achieving the average human response by acquiring 10 individual observations per

stimulus.

Figure 7.1 shows an abbreviated similarity matrix illustrating the relationship between

existing dataset members (textures 1-500) and added textures (501-503). Here, s

values denote similarity values for existing dataset members while d values denote

the similarity values derived from the existing similarity values of those textures

judged by observers to be most similar to added textures. This is the same indexing

used in the first line of equations 7.4, 7.5 and 7.6.

7.3 Inter-Relationship Between New Textures

Having measured the perceptual similarity between pairs of textures in our existing

dataset, and proposed a method (section 7.2) of deriving the similarity values of new

textures with existing textures from these measured values, we need to develop a

method for deriving the similarity values reflecting the inter-relationship between

new textures to complete the augmented similarity matrix.
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1 m(1,2) m(1,3) · · · m(1,500) d(1,501) d(1,502) d(1,503)

m(2,1) 1 m(2,3) · · · m(2,500) d(2,501) d(2,502) d(2,503)

m(3,1) m(3,2) 1 · · · m(3,500) d(3,501) d(3,502) d(3,503)

· · · · · · · · · · · · · · · · · · · · · · · ·
m(500,1) m(500,2) m(500,3) · · · 1 d(500,501) d(500,502) d(500,503)

d(501,1) d(501,2) d(501,3) · · · d(501,500) 1 dd(501,502) dd(501,503)

d(502,1) d(502,2) d(502,3) · · · d(502,500) dd(502,501) 1 dd(502,503)

d(503,1) d(503,2) d(503,3) · · · d(503,500) dd(503,501) dd(503,502) 1

Figure 7.1: Mapping of Measured (m), Derived (d) and Double Derived (dd) Similarity
Values in the Augmented Similarity Matrix

Figure 7.1 shows our augmented similarity matrix mapped with the areas where the

similarity values are measured, derived and double derived. In this section we will

define the approach used to calculate similarity values in the double derived portion

of the augmented similarity matrix.

For each new texture with which we augment the dataset, we first seek existing

members of the dataset which most closely resemble these new additions. We

can estimate the similarity between those new textures by taking the mean of the

similarity values of all pairwise combinations of the textures they are judged to be

similar to. If, for example, we augment the dataset with two new textures, 501 and

502, and observers judge that 501 is similar to exisiting textures 1 and 2, and 502 is

similar to 5, 6 and 7, then the double derived similarity between 501 and 502 is as

shown in equation 7.7.

dd(501,502) = dd(502,501) =
m(1,5) +m(1,6) +m(1,7) +m(2,5) +m(2,6) +m(2,7)

6
(7.7)

7.4 Design Data Augmentation Experiment

7.4.1 Stimuli Selection

In section 6.2.3 we described the selection of a subset of the Tex500 dataset repre-

senting a cross section of all available textures. This subset, known as Tex500[024]

will also be used as the stimuli for this experiment. This stimuli set can be seen

in full in appendix A.1. We must also discard the existing similarity data for the

Tex500[024] textures in our perceptual similarity matrix.

87



7.4.2 Design SOMR Browsing Environment

In section 6.2.5, we concluded that the SOMG browsing environment was the most

efficient of those tested. We will therefore use this browsing environment (and its

underlying data organisation) as the instrument for capturing similarity perceptions

from observers here. As the object of the task is to assign a similarity vector to

textures not already part of the dataset, the Tex500[024] textures will be removed

from the browsing environment. The resulting reduced SOM browsing environment

will be referred to as SOMR.

7.4.3 Task Specification

For each stimulus, observers will be asked to use the SOMR browsing environment

to select those textures they consider to be most similar to the stimulus. They

must select two or more textures before continuing to the next trial. They record

their response by adding similar textures to a palette from which textures may also

be removed in the event they discover a more suitable selection. Once they have

submitted their response to a trial, no changes can be made.

7.4.4 Sample Size

The experiment will be conducted with ten observers, each of whom will be exposed

to all twenty-four stimuli. The stimuli will be presented in random order.

7.4.5 Observer Selection

Volunteers were invited from the student population of the School of Mathematical

and Computer Sciences at Heriot Watt University. No age or other restrictions were

placed on volunteers. Observers were informed they would have to use a mouse and

VDU and that they should make sure if they needed to use corrective eyewear that

they wore this for the experiment. No age data was collected from observers but in

the opinion of the author they all fell within the 18–35 years age group.

7.4.6 Instructions to Observers

Prior to taking part in the experiment each observer was asked to complete a consent

form with their name, address and email address and to sign an agreement in the
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following terms.

I have agreed to take part in an experiment on perceptual similarity of

textures. The procedure has been explained to me and I understand that

I am free to leave the experiment at any time. In exchange I will receive

10 worth of high street vouchers in return for my participation.

The same form continued with the following instructions which were read to the

observer by the author.

1. The researcher will present you with twenty-four query textures

2. Your task is to find the most similar textures using a grid interface. The query

texture does not appear in the interface

3. Once you have found two or more similar textures, click submit on your palette

to record your selection. Try to select all textures that are similar to the query

texture

4. Click ‘next stimulus’ to proceed to the next query texture

The following description and an author-lead demonstration was given of each of the

interfaces at point of use.

This interface has a top level map where each grid square represents

a collection of one or more textures. You should notice that similar

collections of textures will be close to each other on this grid. Click on

any grid square to see the member textures [author clicks top left texture].

To return to the grid, click on the arrow [author clicks arrow]. Double

click a texture to add it to your palette from the detail level [author

demonstrates]. You must find two or more similar textures for each query

texture.

7.5 Augmentation Experiment Data Analysis

7.5.1 Votes

The outcome of the similarity perception experiment is an array of similar texture

votes for each of the stimuli. This result can be viewed in full in appendix B.2.
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7.5.2 Build SOMA Browsing Environment

By applying our algorithm (see equation 7.4 above) to the result of the similarity

perception experiment we obtain a new similarity matrix which we use as the data

organisation for a new browsing environment. The browsing environment built on

this augmented data organisation is referred to as SOMA.

7.6 Conclusions

In this chapter we described the design of a simple augmentation approach for

inserting unknown textures in a dataset described by a perceptual similarity matrix.

We demonstrated proof of concept by removing a small subset of textures from our

dataset and conducting an augmentation experiment and assigned a similarity vector

to these ‘unknown’ textures thereby creating a new augmented similarity matrix

which we used to build browsing environment SOMA.

By using the SOMA browsing environment to browse the dataset, the author formed

the opinion that the data organisation was logical and did not represent an inferior

experience to the SOMG browsing environment. He was therefore able to form the

hypothesis shown in equation 7.8.

Hypothesis: SOMA ≈ SOMG (7.8)

This hypothesis, together with the hypothesis proposed in section 8.4 are tested in a

browsing environment comparison experiment in chapter 9.
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Chapter 8

Identifying Features for Data

Organisation

8.1 Introduction

We described in chapter 3 the technique we used to capture human judgements on

the perceptual similarity of the members of our Tex500 dataset. Previous researches

have sought to map this perceptual space to a corresponding space of computational

features for the purpose of automatic texture retrieval. With this chapter we aim to

borrow the techniques of these researches to produce a feature-based data organisation

on which we can build a browsing environment. We demonstrated in chapter 6 that

the most efficient browsing environment tested was that based on the self organising

map, and we shall continue using only this browsing environment to navigate the

resulting feature-based organisation. We shall label this browsing environment SOMF.

One notable recent piece of work on identifying perceptually relevant computational

features for surface texture is the PhD thesis of Emrith [25, ch. 5 & 6]. He describes

in detail the process of automated feature selection from a large set of features (i.e.

several thousands). He also investigates a number of candidate feature extraction

methods for inclusion in this large set of features and examines their merits and

weaknesses in relation to his selection criteria. As the main theme of our research

is the investigation of a variety of browsing environments and underpinning data

organisations, we shall be using the same pool of features and feature selection

techniques used by Emrith as something of a black box without introducing any new

ideas in his subject area. Our only difference in application is that we shall use his

approach to produce a data organisation for use in a browsing environment rather

than as a retrieval engine. Any work on texture retrieval and feature development
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and selection is beyond the scope of our research and this chapter should be read as a

précis of the two aforementioned chapters of his work and a report on the application

of his work to our application.

In chapter 7, we produced a SOM based on our pilot dataset augmentation approach,

SOMA. In order to examine the efficiency of the alternative data organisations we

have produced we shall compare browsing environments SOMG, SOMA and SOMF in

an experiment described in chapter 9. In each case the only changing variable is the

specific data organisation underpinning the browsing environment. That experiment

is expected to facilitate an evaluation of the applicability of our augmentation

approach and Emrith’s feature selection approach to the data organisation of browsing

environments.

8.2 Identifying Features for Texture Description

8.2.1 Feature Selection Criteria

Emrith’s feature selection criteria were developed for the avoidance of bias in selecting

texture descriptors and the restriction of candidate feature descriptions to those

already investigated and well described in the literature. Additionally the following

specific criteria were described in full.

Phase Sensitive Features: The phase spectrum contains most or all of the struc-

tural information in an image and contributes immensely in helping people to

recognise and interpret objects or structure within an image.

Power Spectral Sensitive Features: Different textures normally generate differ-

ent energy distributions in the frequency domain and that variation can be

efficiently captured within the power spectrum, which represents the strength

of each spatial frequency.

Position Independent Features: This refers to the ability of a feature descriptor

to recognise two samples with similar texture primitives as similar when the

texture primitives are displaced by a certain amount. Human observers have no

trouble in making such judgements but computational descriptors that mimic

this behaviour are rare.

Large Pool of Features: The smaller the number of features employed, the greater

the bias in representing the different texture categories in a dataset [83]. By

starting from the idea that we cannot know what low-level features might

contribute to the high-level descriptions of a texture then we must recognise
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that the larger the set of computational features, the less prejudiced the

potential high-level representation will be.

Avoidance of Redundant Features: Highly correlated features or features that

contribute in the same way to describe a particular texture characteristic

increase the computational complexity and degrade the performance of a

description system and must be avoided.

Inexpensive and Simple to Compute: This characteristic follows from the re-

quirement to have a large set of features.

8.2.2 Feature Extraction Methods

Emrith considered four classes of computational features as candidates for inclusion

in his large set of features. The following lists and summarises the classes considered.

For a complete description please see [25, pp. 90-100].

Local Binary Patterns: Generate binary codes that describe how the local texture

pattern is built and was first introduced as a complimentary measure for local

image contrast [72, 73]. Although LBP operators are simple to design and

implement and computationally cheap, they cannot capture large-scale features

and can result in histograms with a large number of bins.

Gabor Wavelets: Allow multi resolution (or multi spectral) decomposition through

proper tuning of orientation and radial frequencies. Can be designed to be

highly selective in both position and frequency [15, 23]. Although they share

common Human Visual System properties, they suffer from position sensitivity.

Simoncelli’s Features: Follow a number of texture models that are based on the

application of oriented linear kernels at multiple spatial scales. Features are

derived from fixed over-complete multi-scale complex wavelet representations

[102, 88]. Although they can generate large feature sets through varying scale

and orientation, they tend to contain considerable redundancy and many of

the phase sensitive features are also position sensitive.

Trace Transform Features: Tracing an image with straight lines along which

certain functionals of the image function are calculated. Different functionals

that can be used may be invariant to different transformations of the image

[49, 82]. By varying the types of functionals, the generation of thousands of

features is possible, but results in significant memory utilisation and disk space

requirements.
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Features Criteria
Position Phase Power No Inexpensive Large

independent sensitive Spectrum Redundancy & Simple Pool

Milti-scale LBP 3 3 3 7 3 7

Gabor
Power 3 7 3 7 3 7

Phase 7 3 7 7 3 7

Simoncelli 7 3 3 7 7 3

Trace Transform 3 3 3 3 3 3

Table 8.1: Eligibility of Feature Extraction Methods by Criterion

8.2.3 Feature Set Selection

By cross referencing his feature set criteria with the candidate feature extraction

approaches (see table 8.1), Emrith was able to eliminate all but the Trace Transform

features from his large set of features. We used exactly the same set of features in

generating our feature-based data organisation.

8.2.4 Feature Normalisation

When developing a large pool of features there is a risk of introducing a large

variation in the span between individual features. To address the potential problem

of computing distance values dominated by features with wide value ranges it is

sensible to apply some normalisation to the features included. After consideration

of a range of normalisation approaches [2], Emrith selected an approach where all

features have zero mean and unit variance. The features were finally scaled to the

range [0, 1]. His transformation is shown in equation 8.1.

x̃ =
(x− µ)/3σ + 1

2
(8.1)

8.3 Producing a Feature-Based Dataset Descrip-

tion

8.3.1 Similarity Matrix Dimensionality Reduction

Recall figure 4.4 from chapter 4 plotting the stress values for our 4D metric random,

pilot and final data after running multidimensional scaling (MDS). We again wish to

use this data to decide upon the correct number of dimensions to which we reduce

our final data before running linear regression for feature selection. We must be

94



Dimensions Stress

1 0.427
2 0.232
3 0.169
4 0.127
5 0.102
6 0.085
7 0.075
8 0.065

Table 8.2: Stress Values for Final Data from Figure 4.4

confident that the number of dimensions sufficiently describes the variability in

the similarity matrix being reduced such that we can have confidence in the linear

regression to follow. Figure 4.3 (chapter 4) details that a fair goodness of fit can be

achieved at a stress value of 0.1. Table 8.2 details the actual stress figures for the

final experimental data after subjecting it to MDS. We can see that a figure of 0.1 is

approached at 5 dimensions and we will use this number of dimensions to encode

the final experimental data before subjecting it to linear regression.

8.3.2 Feature Selection Training Set

It is customary when training a feature-based description of a dataset to train the

system using a subset of the textures in the dataset and to test the system using a

different subset. As we shall be using a browsing environment comparison experiment

to evaluate the effectiveness of the feature-based data organisation produced here,

and we shall be using the previously defined (section 6.2.3) Tex500[024] as the stimuli

for that experiment, it seems a reasonable approach to use the Tex500[476] subset

for training the system and Tex500[024] as the test subset.

8.3.3 Optimise Number of Features

If no limit was placed on the number of features used to model each dimension our

system would suffer from over-fitting, in other words we would continue selecting

features until a near exact representation of perceptual space would be modelled in

feature space. To avoid over-fitting, we should implement some means of limiting the

number of features per dimension such that there would be little additional benefit

to introducing further features. We can do this using Procrustes Analysis - checking

the alignment of the feature matrix with the perceptual matrix, and stopping when

the alignment error reduction begins to diminish.
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Figure 8.1: Alignment Error Analysis Plot

Figure 8.1 shows the alignment error for the first twenty features per dimension when

comparing our perceptual matrix with the resulting feature-space matrices. We can

see by inspection that the alignment error reduction begins to diminish after about

nine features per dimension. We can therefore confidently limit our feature-space

model to nine features per dimension.

8.3.4 Build SOMF Browsing Environment

Having used Emrith’s approach to select nine Trace Transform features per dimension

for the Tex500[476] training subset, we must complete the process by applying these

features to the remaining test subset of the Tex500 dataset (Tex500[024]. These two

subsets can then be reunited in a similarity matrix in feature space for use as a data

organisation on which we can build a feature-based browsing environment.

The resulting browsing environment is known as SOMF and the top level grid screen

can be seen in figure 8.2. Initial inspection of this top level view reveals that the

texture space appears fairly uniformly sampled across the extent of the grid and

that similarity/proximity relationship seems to hold for the exemplar textures of

the neurons. However, more in-depth inspection of the neuron contents where the

Tex500[024] stimuli can be found reveals a more varied level of similarity of textures

within these neurons, and in some cases, questionable representativeness of the

exemplar texture to the neuron contents. Figure 8.3 shows an example where there

is apparently good group similarity and an intuitive exemplar whereas figure 8.4

shows an example where there is apparently poor group similarity and an unintuitive

exemplar. Bearing in mind that this data organisation is formed from computational

96



Figure 8.2: SOMF Browsing Environment Top Level Screen Shot

features and that generally computational features do not take into account long

range interactions in the textures, we may hypothesise that the strong long range

interactions in the query texture in figure 8.4 might account for its apparently poor

placement in the data organisation we have developed.

A full set of results for the Tex500[024] stimuli in a similar format to figures 8.4 and

8.3 can be found in appendix B.3.

8.4 Conclusions

In this chapter we have précied the work of Emrith [25] in setting criteria for

developing a large set of computational features, identifying a number of candidate

classes of features, and summarising the eligibility of those classes against the criteria.

We went on to apply Emrith’s approach in feature selection to our Tex500 dataset

in order to produce a feature-based data organisation with which we can arrange

our dataset within a browsing environment. After building our SOMF browsing

environment we made some initial analysis of the data organisation resulting from

applying the feature selection approach and formed the hypothesis that some members

of the Tex500[024] stimuli set that we shall later use to test the feature selection

approach may, particularly in the case of stimuli with strong long-range interactions,

prove unintuitive for observers to find within the data organisation generated. We

therefore formed the hypothesis shown in equation 8.2 (with respect to mean task
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Stimuli Neuron Contents (Starting with Neuron Exemplar)

399 236 399 362 232

287 194 400 306

Figure 8.3: Neuron from SOMF with Similar Members and Intuitive Exemplar

Stimuli Neuron Contents (Starting with Neuron Exemplar)

022 375 429 360 022

447 376

Figure 8.4: Neuron from SOMF with Dissimilar Members and Unintuitive Exemplar

98



time), which we shall test in the browsing environment comparison experiment

described in chapter 9.

Hypothesis: SOMG < SOMF (8.2)
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Chapter 9

SOMG, SOMA & SOMF Browsing

Environments Comparison

9.1 Introduction

In this chapter we describe the experiment used to test the performance of the

SOMG, SOMA and SOMF browsing environments introduced in chapters 5, 7 and 8

respectively. Table 9.1 gives a summary of the data organisations on which these are

based.

Having extensively used each interface to browse the dataset, the author found that

the data organisation in SOMA was largely as plausible as the data organisation in

SOMG while the data organisation in SOMF caused that browser to be much less

intuitive to navigate. This informed the hypothesis shown in equation 9.1 (with

respect to mean task time).

Hypothesis: SOMA ≈ SOMG < MDSF (9.1)

Browser Underlying Data Organisation

SOMG Perceptual similarity data for Tex500 obtained using our
initial grouping experiment (chapter 3)

SOMA Perceptual similarity data for Tex500[476] obtained using
our initial grouping experiment (chapter 3) augmented
using the pilot dataset augmentation experiment (chapter
7)

SOMF Computational feature-based representation of the dataset
(chapter 8)

Table 9.1: Summary of SOMG, SOMA & SOMF Underlying Data Organisations
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9.2 Experimental Design

The purpose of our experiment is to assess the efficiency of each of the browsing

environments in question and to discover which, if any, is statistically the most

efficient. We must therefore consider an appropriate task, stimuli and experimental

approach to make that assessment.

9.2.1 Task Specification

As we wish to assess the efficiency of various browsing environments, we must model

the kind of task that would be a core reason for using such a browsing environment in

the first place. It would therefore seem appropriate to ask users to find a particular

texture from the dataset. The task stimulus could be a description of the surface

to be found but this would be open to the interpretation of individual observers

and it would be difficult to assess whether the observer had arrived at the correct,

or at least a plausible selection. We therefore decided that the task stimulus, or

query, should be an actual surface from the dataset that is present in the browsing

environment.

9.2.2 Interface Presentation

As observers would have a range of cognitive abilities in relation to the task we

decided it best to ask all observers test all three interfaces. To eliminate any learning

effects from the experiment the order of presentation would be randomised.

9.2.3 Stimuli Selection

For the reasons detailed in section 6.2.3 of chapter 6, and to maintain consis-

tency between browsing environment comparison experiments, the same stimuli set,

Tex500[024], will be used here.

9.2.4 Sample Size

As we have already discussed, twelve observers would each carry out eight trials on

each browsing interface, giving a total of ninety-six trials per browsing environment.

Although we can never be certain from the outset that this is sufficient to reach a

statistically significant conclusion, it does seem like a fair sample size.
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9.2.5 Performance Measurement

In contrast to the previous browsing environment comparison experiment (see section

6.2.5), we have elected only to measure the mean task time. Accuracy has been

incorporated in this measurement by restricting observers to selecting exact matches

only. If an incorrect selection is made they are informed of this and asked to

continue searching. As only the organisation of the data within each SOM browsing

environment varies in this experiment, and as browsers were presented in blind

random order, the observers could not be asked to identify their preferred browsing

environment.

9.2.6 Observer Selection

Volunteers were invited from the student population of the School of Mathematical

and Computer Sciences at Heriot Watt University. No age or other restrictions were

placed on volunteers. Observers were informed they would have to use a mouse and

VDU and that they should make sure if they needed to use corrective eyewear that

they wore this for the experiment. No age data was collected from observers but in

the opinion of the author they all fell within the 18–35 years age group.

9.2.7 Instructions to Observers

Prior to taking part in the experiment each observer was asked to complete a consent

form with their name, address and email address and to sign an agreement in the

following terms.

I have agreed to take part in an experiment on texture browsing environ-

ments. The procedure has been explained to me and I understand that I

am free to leave the experiment at any time.

The same form continued with the following instructions which were read to the

observer by the author.

1. You will be presented with twenty-four query textures (left screen)

2. Your task is to find an exact match using a grid browser (right screen)

3. Each texture in the grid browser represents a group of one or more similar

textures. Click on a texture in the grid to see the group of similar textures.

Click on the ‘up’ icon to return to the grid
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4. Double click a texture at the group level to select your answer. It will appear

in the answer box along with whether your selection is correct or not. If the

selection is incorrect, continue browsing until you find the correct texture

5. After a correct selection, once you are ready, click ‘continue’ to see your next

query

6. Note that for each query texture, the grid browser layout may change

7. After clicking ‘continue’ to see the next query texture, you should try to locate

it in the grid browser as quickly as possible

The following description and an author-lead demonstration was given of each of the

interfaces at point of use.

This interface has a top level map where each grid square represents

a collection of one or more textures. You should notice that similar

collections of textures will be close to each other on this grid. Click on

any grid square to see the member textures [author clicks top left texture].

To return to the grid, click on the arrow [author clicks arrow]. Double

click a texture to select it in the detail level [author demonstrates].

9.3 Analysis of Result

9.3.1 Mean Task Time

Figure 9.1 shows the mean task time for each of the three data organisations. These

were 73, 94 and 179 seconds respectively. Standard error bars are also indicated on

the plot, the standard error (σx̄) being calculated as shown in equation 6.2 where s

is the sample standard deviation and N is the sample size. The intervals are plotted

as shown in equations 6.3 and 6.4. The complete results of this experiment can be

found in Appendix B.4.

9.3.2 Statistical Significance and Experimental Effect

As with the previous browsing environment comparison experiment, we cannot draw

any conclusions from the differences in the mean task time until we test this for

statistical significance. The statistical test we use is called the dependent t-test, which

is calculated from the mean difference between our samples (D̄) and the standard

error of differences (σD̄) as shown in equation 6.5.
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Figure 9.1: Mean Task Time (with Standard Error Bars) from SOMG, SOMA &
SOMF Browsing Environments Comparison Experiment

Interfaces Compared t-test p-value Stat. Sig. r-value df

SOMG vs. SOMA 1.02 0.33 N 0.29 11
SOMG vs. SOMF 6.69 0.00 Y 0.90 11
SOMA vs. SOMF 3.92 0.00 Y 0.76 11

Table 9.2: Statistical Analysis of SOMG, SOMA & SOMF Mean Task Time

We estimate the standard error of differences from the standard deviation of differences

obtained within the sample (sD) and the sample size (N) as shown in equation 6.6.

Once we have a value for t we can use this to calculate the effect size, r, as shown in

equation 6.7. df denotes degrees of freedom, which is derived from the sample sizes

N as shown in equation 6.8.

The analysis of our experimental results is summarised in table 9.2. As we are

interested in an overall result reflecting 95% confidence (a p value of 0.05), and we

are comparing three pairs of browsing environments, we must achieve a p value for

each comparison of p < 1− 3
√

0.95 (p < 0.01695). As this p condition is achieved for

SOMG over SOMF and SOMA over SOMF, but not SOMG over SOMA we can say

that SOMG and SOMA are statistically equivalent and that both are statistically

more efficient than SOMF. In terms of the r-values, by cross referencing with table

9.3, we can also see that there is a large effect size of the SOMG and SOMA over

SOMF, indicating that the differences in mean task time was due largely to the

differences in the respective data organisations, rather than variance within the

sample.

For detailed experimental results please see appendix B.4.
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r-value Effect

0.1 Small
0.3 Medium
0.5 Large

Table 9.3: Experimental Effect Sizes

9.4 Conclusions

Our experiment revealed that the SOMG and SOMA browsing environments were

statistically more efficient than the MDSF browsing environment. This tells us that

the features proposed by Emrith [25], which we used in our feature-based data

organisation produced in chapter 8, do not sufficiently model human perception to

be useful in organising textures in browsing environments. A possible reason for this

is the failure of such features to account for long range interactions in the surfaces,

almost certainly an important aspect of human discrimination of texture.

The experiment also revealed there was no statistical significance to the differences

between mean task time in SOMG and SOMA. This suggests that the augmentation

approach proposed in chapter 7 has merit and may be able to produce a data

organisation for a SOM browsing environment that is as intuitive to users as the

costly perceptual data obtained from the initial grouping experiments in chapter

3. We will examine the possibility of producing a scalable augmentation approach

based on this pilot in chapter 10.
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Chapter 10

Scalable Dataset Augmentation

10.1 Introduction

In chapter 7 we proposed a method of augmenting an existing dataset with unknown

data members and proved this approach to be sound by conducting a browsing

environment efficiency experiment (chapter 9). The augmentation approach was

tested by removing twenty-four textures from our dataset (specified in appendix A.1),

then using our technique to reintroduce these ‘unknown’ textures into the dataset.

Although this appeared to be a fair sample to perform an initial proof of concept,

the difficulties discussed in chapter 3 around obtaining perceptual similarity data

using grouping experiments can only be solved by significantly reducing the number

of textures we ask observers to sort.

As our data augmentation technique has a relatively low time overhead for each

new texture presented to users, the key to making the approach scalable is to find

a large pool of observers who would willingly analyse a relatively small number of

textures over a short experimental session. If sufficiently motivated, individuals may

be persuaded to take part in multiple experimental sessions. There already exist a

variety of web based communities for exactly this purpose. Researchers feature tasks

they would like completed in return for a small fee. Observers browse these tasks and

choose to participate where they feel suitably interested, qualified, or remunerated.

The collective term for such networks is crowdsourcing and this has proven useful in

recruiting observers for a variety of research experiments. Crowdsourcing does not,

however, come without its problems. In this chapter we discuss in detail how we

designed a series of experiments to test the hypothesis that crowdsourcing could be

harnessed to augment a small dataset, bootstrapped using a grouping experiment,

with a large number of previously unknown textures. In chapter 11 we subject our
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scalable dataset augmentation experiment to robust statistical analysis by conducting

a browsing environment comparison experiment.

We utilised the Amazon Mechanical Turk [4] crowdsourcing community to employ

a large pool of observers for the purpose of augmenting our dataset with textures

unknown at the initial stage of bootstrapping.

10.2 New Grouping Experiment

In order to test the scalability of our augmentation approach, we must set realistic

parameters for the number of textures in the initial set and the number of unknown

textures to be inserted using the augmentation technique. In our pilot augmentation

experiment (chapter 7) we removed the Tex500[024] stimuli from the dataset and used

a perceptual similarity experiment and simple augmentation algorithm to introduce

the stimuli to the dataset. Although this was sufficient to provide proof of concept,

these figures would be unrealistic were we faced with the challenge of obtaining a

perceptual description of our dataset without experiencing the problems associated

with large grouping experiments.

As experience tells us that the average observer can easily perform a sorting task

on one-hundred textures in under an hour, we select this as our initial dataset size.

If we were starting this task with no previous perceptual description of the dataset

then we must reproduce this limitation here by drawing these one-hundred textures

randomly from the Tex500 dataset (as opposed to some representative cross section).

This randomly drawn subset is known as the Tex500[100] stimuli and can be seen in

full in appendix A.2.

As we wish to test this approach from end to end without the prior knowledge about

the dataset we already have, and because an observer’s perception of similarity may

be affected by the range of textures they are exposed to, we elected to conduct a

brand new similarity grouping experiment using 14 observers (matching previous

grouping resolution) rather than sub-sampling our original similarity matrix.

Figure 10.1 illustrates the dendrogram constructed from our new grouping experiment

on the Tex500[100] data subset. By inspecting this in comparison with figure 10.2,

illustrating the dendrogram constructed from a similarity matrix sub-sampled from

our original grouping experiment similarity matrix, we can observe some broad

similarities as detailed in table 10.1. This goes some way to reassuring us that given

sufficient observers, the average human perception of similarity in texture is broadly

consistent.
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Textures New Dendrogram Original Dendrogram

66, 129 Pair at height zero Pair at low merge height
384, 390 Pair at low merge height Pair at height zero
172, 176 Pair at low merge height Pair at low merge height
58, 117, 378, 466 Cluster at low merge height Cluster at low merge height
250, 304, 445 Cluster at low merge height Cluster at low merge height

Table 10.1: Comparison of Tex500[100] and sub-smapled Tex500 Dendrograms

10.3 Design Data Augmentation Experiment

10.3.1 Stimuli Selection

The stimuli for the data augmentation experiment is the four-hundred textures formed

by the compliment of the Tex500[100] subset used in our new grouping experiment.

This is labelled Tex500[400]. As we want 10 observations per stimulus we generate ten

separate random permutations of these textures which we partition into two-hundred

experimental sessions, each consisting of 20 stimuli. This ensures that no stimuli set

contains two identical stimuli while maintaining random presentation and separation.

10.3.2 Design SOMR2 Browsing Environment

In section 6.2.5, we concluded that the SOMG browsing environment was the most

efficient of those tested. We will therefore follow the design described in section 5.4

to build a SOM browsing environment using the similarity matrix produced by our

new grouping experiment on Tex500[100]. This browsing environment is known as

SOMR2.

10.3.3 Task Specification

For each stimulus, observers will be asked to use the SOMR2 browsing environment

to select those textures they consider to be most similar to the stimulus. They must

select between two and four textures before continuing to the next trial. They record

their response by adding similar textures to a palette from which textures may also

be removed in the event they discover a more suitable selection. Once they have

submitted their response to a trial, no changes can be made. Figure 10.3 shows a

screen capture of the interface presented to observers.
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Figure 10.3: SOMR2 Browsing Environment Screen Capture

10.3.4 Sample Size

In MTurk, observer sessions are known as Human Interface Tasks (HITs). Two

hundred of these will be offered, each one representing a similarity experiment on

twenty randomly ordered stimuli. Owing to the large user base of a crowdsourcing

platform like MTurk these HITs are consumed rapidly leaving no opportunity for the

same observer to carry out large numbers of sessions. For this reason, and because

there are no negative learning effects in this experiment, we decided not to restrict

the number of SOMR2 HITs account holders were permitted to engage in. Where an

experiment is not completed or where the response does not qualify for payment,

the stimuli set is made available to future users until a complete and satisfactory

response is received for each.

10.3.5 Payment Criteria

It is well known that some users in crowdsourcing networks will give ill considered

responses to tasks in order to proceed as quickly as possible to payment, and thereby

earn participation fees for little or no effort. In order to protect our valuable data

from corruption and to prevent wasting our limited research budget, we employed a

two tier payment authorisation algorithm. The criteria for payment were supplied

to users at the start of each experimental session and all session data tested before
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claims for payment authorised. As we had the benefit of our original perceptual

similarity matrix we were able to use this to assess whether or not the crowdsourcing

responses were plausible. Of course this would not be available to us had we not

already conducted the grouping experiments detailed in chapter 3. In subsection

10.3.5 we discuss possible solutions where previous perceptual data is not available.

It was made clear to observers that with reasonable consideration of the task, meeting

the minimum criteria AND the bonus criterion should be easily achievable.

Minimum Payment

The minimum payment was set at 0.75 USD and to qualify,

• the mean similarity value of all selected textures must be higher than the mean

similarity value of all non-zero similarity textures in SOMR2 for each stimulus

presented, and

• no more than 20% of all selected textures may have a zero similarity with their

respective stimulus.

Bonus Payment

A bonus payment of 0.25 USD will be earned if an observer makes an average of

three or more selections per query texture. The minimum is two and the maximum

if four.

No Previous Data Held

If we were not in possession of previous perceptual data captured in chapter 3, we

might have considered using either of the following two approaches to enforce quality:

• increase the size of our bootstrapping grouping experiment, randomly select

a number of these additional textures for inclusion in each HIT, and check

that all of these ‘test’ stimuli obtain a plausible response before authorising

payment, or

• if we assume that the majority of observers wish to give a genuine response

(we found this was the case), then we could test for sessions that represent

high deviation from typical response and exclude these from payment. This

approach necessitates completing the whole experiment before processing claims

for payment.
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10.3.6 Observer Selection

Volunteers were invited from the membership of the Amazon Mechanical Turk

(MTurk) [4] crowd-sourcing community. No age or other restrictions were placed on

volunteers. Observers were informed they would have to use their mouse and VDU

and that they should make sure if they needed to use corrective eyewear that they

wore this for the experiment. No age or other qualifying data was collected from

observers.

10.3.7 Instructions to Observers

Prior to taking part in the experiment each observer was asked to indicate implied

consent by clicking ‘OK’ on a series of instruction/information screens built in to the

Adobe Flex application deployed to run the experiment. The first of these explained

the task the observer would be required to undertake:

Instructions - please read very carefully

You will be presented with 20 query textures (labelled QUERY). You

need to use the BROWSER to find the most similar textures to the query.

You will need to select between 2 and 4 similar textures to continue to

the next trial.

In the browser (labelled BROWSER), each texture image represents a

group of 1 to 8 similar textures. Click on a texture to see the entire

group in a pop up window. To select a texture from the pop up window,

simply click on the texture. It will be added to your selection (labelled

SELECTED).

You can remove a texture from your selection by clicking on the texture.

After you have selected at least two textures, a ’NEXT’ button will

appear, but you should continue adding similar textures if they can be

found in the browser. Once you hit ‘NEXT’ your selection will be logged

and your next query texture shown.

DO NOT USE BROWSER NAVIGATION OR REFRESH AS YOUR

DATA WILL BE LOST!

To impress upon observers the importance of giving reliable observations of perceptual

similarity throughout the experiment, an additional message about payment criteria

was displayed. It was hoped that the strength of the wording here would deter those

observers who intentionally click on any stimuli to try and gain payment. If we were
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not in a position to check the data for reliability (i.e. we had no previous perceptual

data to test against) it may well be worth still making this statement as a deterrent.

IMPORTANT: Payment Crieria

We already hold high resolution similarity data on the dataset you are

about to be tested on. We will check that your similarity judgements

meet a minimum threshhold before authorising payment. Do not attempt

this experiment if you intend to rely on random chance as the threshold

is much higher.

The following criteria must be met for payment of 0.75 USD to be

authorised:

1. Your mean similarity value must be higher than the mean similarity

value of all possible non-zero similarity selections in the browser for

each stimuli presented

2. No more than 20% of your selections can have a zero similarity with

the stimulus

A bonus payment of 0.25 USD will be applied if you make an average of

2.5 selections per stimulus rather than the minimum of 2 (but the above

minimum criteria still apply).

If you intend to take the task seriously you will find that meeting the

minimum criteria AND the bonus criterion are easily achievable, indeed

we expect most observers to do so.

We also encourage you to return and participate in our experiment again

as we have a very large number of stimuli to experiment with.

At the end of your experiment you will be given a token which you must

send to us via MTurk to claim payment. We will endevour to authorise

payment for good quality submissions on the next working day after

taking part.

Thank you for you interest and enjoy the experiment!

Failing to click ‘OK’ on either of the above messages would stop the experiment

and return the observer to their account page. After completion of the experiment

the observer was presented with the following message and the payment token code

could be copied and pasted into their claim for payment.

Session completed
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Thank you for taking part.

Please copy and paste this token to claim your payment through mturk:

<TOKEN CODE>

Your payment will be authorised once the quality of your submission has

been checked by our processing system.

10.3.8 Completion Time

An intial pilot experiment consisting of 10 HITs were launched to test the experimental

apperatus and result logging server. This took minutes to complete. We then offered

the remaining 190 experimental sessions to the community and found that this

resolved in 2-3 hours. After removing spoiled or incomplete HITs or HITs which did

not achieve the minimum criteria for payment, a final offering was made to conclude

the experiment. Again this small number of HITs were completed in a few minutes.

The time taken to complete this experiment was a fraction of the time taken to

run experiments where observers are required to attend the research lab. It also

represents a deal of time saving on the part of the researcher as, even with the

overhead of producing a robust online experiment environment, the experiment can

be run without any significant further intervention.

10.4 Augmentation Experiment Data Analysis

10.4.1 Votes

The outcome of the similarity perception experiment is an array of similar texture

votes for each stimulus. Selected results from the crowdsourcing experiment can be

found in appendix B.5.1. An example of an observer response that did not meet the

minimum criteria for payment can be found in appendix B.5.2.

10.4.2 Build SOMA2 Browsing Environment

Figure 10.4 shows the dendrogram after augmenting the dataset using the crowdsourc-

ing experiment. We can clearly see that the structure contrasts with the structure of

the dendrogram from our original perceptual grouping experiment (figure 4.1). This

may be explained by the projection of a large (Tex500[400]) texture set onto the

relatively compact texture space representing the Tex500[100] stimuli.
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By applying our algorithm (see equation 7.4) to the result of the similarity perception

experiment we obtain a new similarity matrix which we use as the data organisation

for a new browsing environment. The browsing environment built on this augmented

data organisation is referred to as SOMA2.

10.5 Conclusions

In this chapter we described a scalable dataset augmentation experiment based on

our pilot experiment in chapter 7. We built on our proof of concept by significantly

adjusting the ratio of bootstrap dataset size to augmentation stimuli set size from

476:24 to 100:400. Again, we used the new data organisation to build an augmented

browsing environment SOMA2.

By using the SOMA2 browsing environment to browse the dataset, the author formed

the opinion that the data organisation was logical and did not represent an inferior

experience to the SOMG browsing environment. He therefore formed the hypothesis

shown in equation 10.1.

Hypothesis: SOMA2 ≈ SOMG (10.1)

This hypothesis is tested in a browsing environment comparison experiment in chapter

11.
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Chapter 11

SOMG & SOMA2 Browsing

Environments Comparison

11.1 Introduction

In this chapter we describe the experiment used to test the performance of the SOMG

and SOMA2 browsing environments introduced in chapters 5 and 10 respectively.

Table 11.1 gives a summary of the data organisations on which these are based.

Having extensively used each interface to browse the dataset, the author found that

the data organisation in SOMA2 was largely as plausible as the data organisation in

SOMG. This informed the hypothesis shown in equation 11.1 (with respect to mean

task time).

Hypothesis: SOMA2 ≈ SOMG (11.1)

Browser Underlying Data Organisation

SOMG Perceptual similarity data for Tex500 obtained using our
initial grouping experiment (chapter 3)

SOMA2 Perceptual similarity data for Tex500[100] obtained us-
ing our bootstrapping grouping experiment (section 10.2)
augmented using the scalable dataset augmentation ex-
periment (chapter 10)

Table 11.1: Summary of SOMG & SOMA2 Underlying Data Organisations

118



11.2 Experimental Design

The purpose of our experiment is to assess the efficiency of each of the browsing

environments in question and to discover which, if any, is statistically the most

efficient. We must therefore consider an appropriate task, stimuli and experimental

approach to make that assessment.

11.2.1 Task Specification

As we wish to assess the efficiency of various browsing environments, we must model

the kind of task that would be a core reason for using such a browsing environment in

the first place. It would therefore seem appropriate to ask users to find a particular

texture from the dataset. The task stimulus could be a description of the surface

to be found but this would be open to the interpretation of individual observers

and it would be difficult to assess whether the observer had arrived at the correct,

or at least a plausible selection. We therefore decided that the task stimulus, or

query, should be an actual surface from the dataset that is present in the browsing

environment.

11.2.2 Interface Presentation

As observers would have a range of cognitive abilities in relation to the task we

decided it best to ask all observers test both interfaces. To eliminate any learning

effects from the experiment the order of presentation would be randomised.

11.2.3 Stimuli Selection

For the reasons detailed in section 6.2.3 of chapter 6, and to maintain consis-

tency between browsing environment comparison experiments, the same stimuli

set, Tex500[024], will be used here. As this experiment compares two browsing

environments rather than three, each observer will experience twelve trials for each

browsing environment rather than the eight in chapters 6 and 9.

11.2.4 Sample Size

As we have already discussed, twelve observers would each carry out twelve trials

on each browsing interface, giving a total of one hundred and forty-four trials per
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browsing environment. Although we can never be certain from the outset that this is

sufficient to reach a statistically significant conclusion, it does seem like a fair sample

size.

11.2.5 Performance Measurement

For the same reasons given in the previous browsing environment comparison experi-

ment (see section 9.2.5), we again only measure mean task time.

11.2.6 Observer Selection

Volunteers were invited from the student population of the School of Mathematical

and Computer Sciences at Heriot Watt University. No age or other restrictions were

placed on volunteers. Observers were informed they would have to use a mouse and

VDU and that they should make sure if they needed to use corrective eyewear that

they wore this for the experiment. No age data was collected from observers but in

the opinion of the author they all fell within the 18–35 years age group.

11.2.7 Instructions to Observers

Prior to taking part in the experiment each observer was asked to complete a consent

form with their name, address and email address and to sign an agreement in the

following terms.

I have agreed to take part in an experiment on texture browsing environ-

ments. The procedure has been explained to me and I understand that I

am free to leave the experiment at any time.

The same form continued with the following instructions which were read to the

observer by the author.

1. You will be presented with twenty-four query textures (left screen)

2. Your task is to find an exact match using a grid browser (right screen)

3. Each texture in the grid browser represents a group of one or more similar

textures. Click on a texture in the grid to see the group of similar textures.

Click on the ‘up’ icon to return to the grid

4. Double click a texture at the group level to select your answer. It will appear

in the answer box along with whether your selection is correct or not. If the
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selection is incorrect, continue browsing until you find the correct texture

5. After a correct selection, once you are ready, click ‘continue’ to see your next

query

6. Note that for each query texture, the grid browser layout may change

7. After clicking ‘continue’ to see the next query texture, you should try to locate

it in the grid browser as quickly as possible

The following description and an author-lead demonstration was given of each of the

interfaces at point of use.

This interface has a top level map where each grid square represents

a collection of one or more textures. You should notice that similar

collections of textures will be close to each other on this grid. Click on

any grid square to see the member textures [author clicks top left texture].

To return to the grid, click on the arrow [author clicks arrow]. Double

click a texture to select it in the detail level [author demonstrates].

11.3 Analysis of Result

11.3.1 Mean Task Time

Figure 11.1 shows the mean task time for each of the two data organisations. These

were 65 and 82 seconds respectively. Standard error bars are also indicated on the

plot, the standard error (σx̄) being calculated as shown in equation 6.2 where s is

the sample standard deviation and N is the sample size. The intervals are plotted as

shown in equations 6.3 and 6.4.

11.3.2 Statistical Significance and Experimental Effect

As with the previous browsing environment comparison experiments, we cannot draw

any conclusions from the differences in the mean task time until we test this for

statistical significance. The statistical test we use is called the dependent t-test, which

is calculated from the mean difference between our samples (D̄) and the standard

error of differences (σD̄) as shown in equation 6.5.

We estimate the standard error of differences from the standard deviation of differences

obtained within the sample (sD) and the sample size (N) as shown in equation 6.6.
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Figure 11.1: Mean Task Time (with Standard Error Bars) from SOMG & SOMA2

Browsing Environments Comparison Experiment

Interfaces Compared t-test p-value Stat. Sig. r-value df

SOMG vs. SOMA2 1.04 0.32 N 0.30 11

Table 11.2: Statistical Analysis of SOMG & SOMA2 Mean Task Time

Once we have a value for t we can use this to calculate the effect size, r, as shown in

equation 6.7. df denotes degrees of freedom, which is derived from the sample size

N as shown in equation 6.8.

The analysis of our experimental results is summarised in table 11.2. As we are

interested in an overall result reflecting 95% confidence, and we are comparing one

pair of browsing environments, we must achieve a p value for the comparison of

p < 1−0.95 (p < 0.05). As this p condition is not achieved for SOMG over SOMA2 we

can say there is no statistically significant difference in efficiency between them. In

terms of the r-values, by cross referencing with table 11.3, we can also see that there

is a medium effect size, indicating that the differences in mean task time was due

largely to the differences in the respective data organisations, rather than variance

within the sample.

For detailed experimental results please see appendix B.6.

r-value Effect

0.1 Small
0.3 Medium
0.5 Large

Table 11.3: Experimental Effect Sizes
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11.4 Conclusions

Our experiment revealed there was no statistical significance to the differences

between mean task time in SOMG and SOMA2. This suggests that the scalable

augmentation approach proposed in chapter 10 has merit and produced a data

organisation for a SOM browsing environment that is as intuitive to users as the

costly perceptual data obtained from the initial grouping experiments in chapter 3.
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Chapter 12

Summary and Future Work

12.1 Summary of Thesis Argument

In section 1.2 we set out the goals of this research project. In addition to the

objectives of producing a comprehensive literature review and capturing human

similarity judgements and identifying structure, we also listed the following items,

elements of which we argue in this chapter contribute to the state of the art in

texture research:

1. Source or develop a large surface texture database

2. Develop and evaluate browsing environments

3. Investigate scalable methods of augmenting similarity matrices

Figure 12.1 illustrates the argument flow of this thesis. The solid rectangles represent

chapters and feature itemised lists summarising the outcomes associated with the

chapter. The chapters are linked by arrows representing the argument flow. These

arrows are annotated with a summary of argument leading from one chapter to

another. Chapters which have a strong association with other chapters are grouped

within a dotted outline. The remainder of this chapter summarises the key products

of this research and highlights important outcomes from the thesis argument.

Scalable Grouping Experiment [Ch. 3]

Observers who took part in the pilot grouping experiment on the Tex500 dataset

took on average three hours to complete the experiment. Due to mental and physical

fatigue, risk to quality of result and difficulties recruiting observers for such an

extended experiment, we had to alter the traditional grouping approach and design
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a more appropriate experiment. Our novel solution involved partitioning the dataset

into three clusters using the perceptual data collected in the pilot experiment (six

observers) and limiting each new observer to one of these three groups of textures.

To combine the result two matrices were recorded. The opportunity matrix was

incremented for each texture pair that an observer has an opportunity of pairing.

The occurrence matrix was incremented for each texture pair that an observer placed

in a group together. After the experiments were complete the occurrence matrix

was divided by the opportunity matrix to produce a normalised similarity matrix

in the range 0-1. We labelled the approach pseudo-scalable in recognition of the

partitioning stage requiring a set of grouping results from experiments using the

whole dataset. In this respect the approach is not strictly scalable but in our case as

we had access to this data anyway, we were able to take advantage of it. Had the

dataset been larger then we might have found it impossible for any observer to finish

the grouping task.

An Efficient Browsing Model [Ch. 5 & 6]

Three browsing models were developed that organised the textures in 3D space,

hierarchically and on a self organising map (SOM). These were tested for efficiency

and accuracy using a psychophysical experiment where observers were asked to use

each of the browsing environments to find a set of query textures. The mean task

time was analysed for each browsing model and subjected to a t-test. We found

that the SOM browsing model was statistically more efficient than the other two

models but that the other two models did not differ with statistical significance so

could not be ranked. In terms of accuracy we found no statistical significance in

accuracy difference between models. The SOM browsing model was a novel approach

to image/texture browsing by the author.

Novel Database Augmentation Technique [Ch. 7, 9, 10 & 11]

Given the difficulty in capturing human judgements about a large image/texture

database using a traditional grouping experiment we had incentive to develop an

approach where we could capture perceptual information about a subset of a database

then use an alternative technique augmenting the database with the remaining

textures. We approached this in two stages. Proof of concept was established with a

pilot experiment where a database of 476 textures was augmented with 24 textures.

A scalable experiment established that the technique was scalable when the balance

was changed to augmenting a dataset of 100 textures with 400 textures. Furthermore,
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we were able to establish that this approach could be successfully carried out using

crowdsourcing at low cost and with a short completion time.

Trace Transform Features not Effective for Browsing Environments [Ch.

8 & 9]

We were fortunate to have access to a further means of generating a data organisation

for us in browsing environments in the form of a feature bank and a feature selection

approach. These were developed by Emrith in his PhD thesis [25]. We applied

his technique to our dataset then compared a browsing environment based on

computation features with one based on our perceptual data. We found that the

difference in mean task time between the two data organisations was statistically

significant and that the feature based data organisation was much less efficient

than the perceptual organisation. Although we introduced no new research about

computational features and feature selection, we were able to demonstrate that

using computational features to model the data organisation for use in browsing

environments gave poor results.

Contributions to the State of the Art [Ch. 3, 6, 9, 10 & 11]

Broadly speaking, the novelties of this research that we regard as contributing to

the state of the art are detailed below.

Database Development: In our survey we identified the absence of any projects

specifically concerned in browsing texture. In order to identify candidate

databases for use in this project we searched other areas of texture research but

failed to find any sufficiently large dataset that satisfied our selection criteria.

Our development of a large dataset of surface textures (five hundred), together

with perceptual similarity data, can be regarded as novel in the field of texture

research as a dataset of this size, quality and consistency of capture conditions

is unprecidented and can be of use to future texture research projects.

Rigorous Browser Comparison: Our rigorous browsing model comparison ex-

periments identified that the SOM browsing model was the most efficient (in

terms of mean task time) for browsing the Tex500 dataset. Not only was the

SOM browser itself somewhat novel, but to the knowledge of the author no

other research has tested a variety of browsing environments in order to identify

the most efficient.

Scalable Dataset Augmentation: Given the high cost of obtaining perceptual
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similarity data about a large database of stimuli using lab based experiments,

we believe the development of a scalable method of augmenting similarity

matrices for browsing using crowdsourcing was a significant contribution to

the state of the art in texture research.

12.2 Future Work

Here we detail possible future work that was deemed to be beyond the scope of

this research project but which may be of interest to the community or represent

potential additional contribution to the state of the art. Some of these points were

known in advance of the research contained in this volume whilst others became

eveident as a result of conducting our research.

Dataset Size

The result we reported in respect of the most efficient model on which to base texture

browsing environments was obtained using our Tex500 database of 500 textures.

Whilst it is inviting to believe this result might hold for significantly larger databases

we feel that further experiments would need to be carried out to verify this. We tested

our dataset augmentation techniques at two specific ratios. The first was 476 : 24 (476

known textures to 24 new textures) in a lab based experiment and 100 : 400 where

similarity judgements were captured from members of a crowdsourcing community.

Our tests revealed there were no statistically significant differences between browsing

environments built using these data compared with our baseline browsing environment

built using perceptual grouping data. However, no assumptions can be made about

whether these results would hold for the same ratios applied to a significantly larger

dataset, or indeed different ratios. Again additional experiments would be required

to verify the efficacy of our apprach as the dataset size increases.

Stimuli Type

Our browsing environment research was entirely based on images of surface texture

as stimuli and we see no obvious reason why the results obtained should not hold

for other forms of visual stimuli such as photographs, non-grayscale texture, images

of 3D components, etc. Recently, Padilla [76], also in the Texture Lab, had success

in repeating the author’s techniques with a database of 500 thumbnails of abstract

colour artwork. There is scope for additional investigation to be made into the

128



applicability of these techniques to alternative visual stimuli such as video clips,

moving pictures and animations as well as non-visual stimuli such as sound, or any

other stimuli where it is costly to obtain perceptual similarity data from human

judgements.

Capture of Human Judgements

Our initial capture of human similarity judgements was through the use of perceptual

grouping experiments. We also relied on this method to bootstrap our scalable

augmentation (via crowdsourcing) approach. However, other methods, such as

pairwise comparison, perceptual ordering, ratio scaling, etc. are available. Use of

these methods may result in different findings and would need further investigation

in the context of browsing environments. Indeed, some of these approaches may be

suitable for deployment of the bootstrapping task to crowdsourcing environments,

allowing the whole process to be completed without the need for any observers to

attend lab-based experiments.

Applications

We used and tested our augmentated data only in the context of perceptual browsing

and navigation but it could conceivably be used and tested in other applications

such as retreival.

Observer Demographic

Further investigation would be required to verify that our experimental results held

for alternative observer demographics. For example, the use of participants from

other age groups, cultural backgrounds, cognitive abilities, etc.

Computational Features

Our use of the computational trace tranform features proved to be unsuccessful for

browsing and navigation. However, we may well have enjoyed greater success in

applying this approach to other applications such as retrieval, similarity estimation,

appearance measurement, etc. Likewise, other classes of computational features

may well be more suitable to the application of browsing. Further investigation is

required.
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Application Specificity

While we adopted an application independent apprach in this project, the capture of

similarity judgements and use of browsing environments may well be affected when

constrained to particular applications or texture types, e.g. food production, wood

laminate manufacture, etc. where quality control or defect detection is carried out by

visual inspection by experts. Domain specific applications may be an area of future

interest.
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Appendix A

Experimental Stimuli

A.1 Tex500[024]

These 24 textures are referred to as Tex500[024] in the text. The remaining 476

textures are known as Tex500[476].

008 013 022 026 045

059 066 091 099 106

117 177 207 215 257

283 298 361 371 399
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425 444 448 485

A.2 Tex500[100]

These 100 textures are referred to as Tex500[100] in the text. The remaining 400

textures are known as Tex500[400].

007 010 014 017 023

034 045 049 054 056

058 059 063 066 072

079 082 088 091 095
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099 101 102 105 109

116 117 120 127 129

136 141 146 159 166

169 172 176 184 187

191 197 200 201 204

213 221 222 225 228

236 243 249 250 252
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257 265 267 271 273

282 284 290 304 311

320 324 326 333 334

345 346 361 362 365

369 378 384 386 390

394 395 411 416 423

430 434 436 437 445
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446 447 451 455 462

466 468 479 482 499

A.3 Tex500

001 002 003 004 005

006 007 008 009 010

011 012 013 014 015

016 017 018 019 020
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021 022 023 024 025

026 027 028 029 030

031 032 033 034 035

036 037 038 039 040

041 042 043 044 045

046 047 048 049 050

051 052 053 054 055

136



056 057 058 059 060

061 062 063 064 065

066 067 068 069 070

071 072 073 074 075

076 077 078 079 080

081 082 083 084 085

086 087 088 089 090
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091 092 093 094 095

096 097 098 099 100

101 102 103 104 105

106 107 108 109 110

111 112 113 114 115

116 117 118 119 120

121 122 123 124 125
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126 127 128 129 130

131 132 133 134 135

136 137 138 139 140

141 142 143 144 145

146 147 148 149 150

151 152 153 154 155

156 157 158 159 160
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161 162 163 164 165

166 167 168 169 170

171 172 173 174 175

176 177 178 179 180

181 182 183 184 185

186 187 188 189 190

191 192 193 194 195
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196 197 198 199 200

201 202 203 204 205

206 207 208 209 210

211 212 213 214 215

216 217 218 219 220

221 222 223 224 225

226 227 228 229 230
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231 232 233 234 235

236 237 238 239 240

241 242 243 244 245

246 247 248 249 250

251 252 253 254 255

256 257 258 259 260

261 262 263 264 265
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266 267 268 269 270

271 272 273 274 275

276 277 278 279 280

281 282 283 284 285

286 287 288 289 290

291 292 293 294 295

296 297 298 299 300
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301 302 303 304 305

306 307 308 309 310

311 312 313 314 315

316 317 318 319 320

321 322 323 324 325

326 327 328 329 330

331 332 333 334 335

144



336 337 338 339 340

341 342 343 344 345

346 347 348 349 350

351 352 353 354 355

356 357 358 359 360

361 362 363 364 365

366 367 368 369 370
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371 372 373 374 375

376 377 378 379 380

381 382 383 384 385

386 387 388 389 390

391 392 393 394 395

396 397 398 399 400

401 402 403 404 405
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406 407 408 409 410

411 412 413 414 415

416 417 418 419 420

421 422 423 424 425

426 427 428 429 430

431 432 433 434 435

436 437 438 439 440
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441 442 443 444 445

446 447 448 449 450

451 452 453 454 455

456 457 458 459 460

461 462 463 464 465

466 467 468 469 470

471 472 473 474 475
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476 477 478 479 480

481 482 483 484 485

486 487 488 489 490

491 492 493 494 495

496 497 498 499 500
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Appendix B

Detailed Experimental Results

B.1 SOMG, MDSG & RFG Browsing

Environments Comparison

B.1.1 Mean Task Time

Observer
Mean Task Time

Preferred
SOMG MDSG RFG

1 62.500 62.000 77.875 MDSG

2 52.125 120.250 215.125 SOMG

3 67.875 54.375 116.875 MDSG

4 38.125 122.375 173.375 SOMG

5 26.625 226.875 122.625 SOMG

6 38.125 174.000 165.500 SOMG

7 53.875 37.750 66.625 SOMG

8 44.125 81.125 129.875 SOMG

9 90.500 59.375 212.875 MDSG

10 47.625 91.625 78.500 SOMG

11 36.000 187.000 239.500 SOMG

12 53.625 128.375 123.125 SOMG

Means & Most Preferred 50.927 112.094 143.490 SOMG
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B.1.2 Accuracy

Observer
Accuracy (%)

SOMG MDSG RFG

1 100.000 100.000 100.000

2 100.000 100.000 100.000

3 97.375 100.000 100.000

4 100.000 100.000 100.000

5 100.000 97.375 100.000

6 100.000 97.375 100.000

7 100.000 100.000 100.000

8 100.000 100.000 93.750

9 100.000 100.000 100.000

10 93.750 97.375 100.000

11 100.000 97.375 100.000

12 100.000 100.000 100.000

Means 99.260 99.125 99.480

B.2 Pilot Dataset Augmentation

Note: Figure in brackets denotes number of votes received.

Stimuli Responses

008 086 (7) 014 (7) 256 (6) 183 (2)

417 (1) 312 (1) 307 (1) 260 (1)
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054 (1)

013 085 (6) 358 (3) 148 (3) 149 (2)

138 (2) 004 (2) 493 (1) 474 (1)

406 (1) 405 (1) 385 (1) 380 (1)

369 (1) 368 (1) 249 (1) 188 (1)

176 (1) 174 (1) 172 (1) 169 (1)

147 (1) 121 (1) 034 (1)
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022 493 (10) 081 (10) 003 (3) 365 (2)

046 (2) 369 (1) 148 (1) 085 (1)

026 350 (9) 135 (9) 131 (7) 418 (5)

352 (3) 387 (2) 083 (1) 025 (1)

045 412 (8) 486 (5) 457 (4) 200 (4)

196 (4) 378 (3) 276 (3) 238 (2)
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052 (2) 470 (1) 430 (1) 401 (1)

337 (1) 333 (1) 323 (1) 248 (1)

235 (1) 213 (1) 209 (1) 174 (1)

173 (1) 144 (1) 118 (1) 035 (1)

059 410 (9) 182 (8) 377 (7) 096 (5)

479 (3) 407 (3) 473 (1) 348 (1)

325 (1) 322 (1) 317 (1) 284 (1)
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048 (1)

066 481 (8) 129 (8) 376 (6) 419 (4)

354 (2) 166 (2) 162 (2) 416 (1)

402 (1) 302 (1) 275 (1) 246 (1)

119 (1) 074 (1) 062 (1)

091 297 (5) 340 (3) 089 (3) 462 (2)

426 (2) 076 (2) 467 (1) 438 (1)
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395 (1) 373 (1) 332 (1) 323 (1)

318 (1) 310 (1) 248 (1) 161 (1)

112 (1) 092 (1) 088 (1) 080 (1)

077 (1) 063 (1) 033 (1) 006 (1)

099 356 (10) 030 (10) 133 (6) 482 (4)

417 (4) 347 (4) 082 (3) 132 (2)

079 (2) 054 (2) 366 (1) 015 (1)
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106 142 (9) 460 (3) 307 (3) 228 (3)

456 (2) 233 (2) 157 (2) 036 (2)

476 (1) 232 (1) 229 (1)

117 412 (6) 378 (6) 466 (4) 118 (4)

058 (3) 276 (2) 052 (2) 457 (1)

388 (1) 364 (1) 323 (1) 292 (1)

238 (1) 235 (1) 226 (1) 213 (1)
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200 (1) 191 (1) 169 (1) 109 (1)

035 (1)

177 178 (5) 004 (4) 394 (3) 176 (3)

360 (1) 268 (1) 216 (1) 211 (1)

175 (1) 172 (1) 168 (1) 149 (1)

141 (1) 138 (1) 094 (1) 093 (1)

090 (1) 039 (1) 007 (1)
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207 297 (7) 439 (2) 438 (2) 259 (2)

239 (2) 491 (1) 489 (1) 451 (1)

211 (1) 205 (1) 107 (1) 102 (1)

086 (1) 080 (1) 024 (1) 006 (1)

005 (1)

215 458 (4) 069 (4) 470 (3) 217 (3)

414 (2) 296 (2) 158 (2) 477 (1)
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409 (1) 395 (1) 378 (1) 332 (1)

251 (1) 237 (1) 233 (1) 226 (1)

220 (1) 216 (1) 181 (1) 167 (1)

152 (1) 002 (1)

257 493 (3) 299 (3) 292 (2) 288 (2)

285 (2) 252 (2) 349 (1) 284 (1)

282 (1) 219 (1) 213 (1) 206 (1)
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127 (1) 120 (1) 116 (1) 102 (1)

085 (1)

283 266 (9) 208 (8) 313 (6) 302 (5)

303 (3) 116 (2) 415 (1) 318 (1)

282 (1) 267 (1) 127 (1)

298 227 (6) 294 (4) 245 (3) 379 (2)

301 (2) 192 (2) 484 (1) 473 (1)
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443 (1) 413 (1) 410 (1) 402 (1)

370 (1) 340 (1) 261 (1) 212 (1)

210 (1) 153 (1) 057 (1) 051 (1)

040 (1)

361 159 (7) 068 (6) 405 (3) 365 (2)

493 (1) 391 (1) 385 (1) 383 (1)

358 (1) 282 (1) 280 (1) 176 (1)
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109 (1) 081 (1) 007 (1)

371 190 (4) 374 (3) 320 (3) 050 (3)

443 (2) 408 (2) 370 (2) 355 (2)

351 (2) 329 (2) 293 (2) 227 (2)

387 (1) 301 (1) 281 (1) 277 (1)

271 (1) 266 (1) 208 (1) 203 (1)

192 (1) 125 (1) 116 (1) 049 (1)
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018 (1) 010 (1)

399 400 (8) 393 (6) 476 (4) 459 (3)

296 (2) 232 (2) 002 (2) 460 (1)

458 (1) 362 (1) 186 (1)

425 369 (3) 432 (2) 406 (2) 149 (2)

493 (1) 442 (1) 440 (1) 428 (1)

427 (1) 422 (1) 421 (1) 398 (1)
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394 (1) 362 (1) 309 (1) 249 (1)

241 (1) 179 (1) 178 (1) 156 (1)

151 (1) 085 (1) 004 (1)

444 369 (6) 188 (3) 385 (2) 172 (2)

103 (2) 046 (2) 449 (1) 437 (1)

436 (1) 406 (1) 405 (1) 398 (1)

382 (1) 380 (1) 368 (1) 180 (1)
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174 (1) 169 (1) 143 (1) 100 (1)

085 (1) 004 (1)

448 437 (7) 436 (3) 005 (3) 249 (2)

242 (2) 449 (1) 432 (1) 398 (1)

394 (1) 380 (1) 369 (1) 330 (1)

295 (1) 181 (1) 149 (1) 093 (1)

086 (1)
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485 217 (9) 187 (8) 233 (3) 055 (3)

321 (2) 308 (1) 260 (1) 220 (1)

056 (1)

B.3 Neurons Containing Tex500[024] Stimuli in

SOMF Browsing Environment

Stimuli Neuron Contents (Starting with Neuron Exemplar)

008 008 344

013 013
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022 375 429 360 022

447 376

026 490 479 116 024

087 023 026 135

045 412 263 045 323

059 246 059 057
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066 083 040 467 129

027 354 066 416

091 380 225 240 207

060 297 089 091

086 278 094

099 099
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106 336 039 150 174

169 497 106 331

117 117 118 330

177 101 491 178 177

211 259 391 007

207 380 225 240 207
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060 297 089 091

086 278 094

215 215 305 358 109

332 185

257 299 298 301 245

284 288 257 312

283 277 387 318 281
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283 313 346

298 299 298 301 245

284 288 257 312

361 310 320 401 438

361 214 088 092

439 357

371 018 371 384 472

172



418

399 236 399 362 232

287 194 400 306

425 143 198 137 363

121 168 425 179

444 342 139 338 188

385 444
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448 448

485 199 262 319 485

252 289
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B.4 SOMG, SOMA & SOMF Browsing Environ-

ments Comparison

Observer
Mean Task Time

SOMG SOMA SOMF

1 47.000 143.375 209.375

2 33.500 81.125 115.250

3 71.500 32.125 160.625

4 48.000 53.125 72.125

5 83.000 235.625 226.250

6 102.875 165.500 148.375

7 94.500 39.500 162.000

8 97.125 46.500 146.500

9 48.375 123.375 187.625

10 97.500 50.500 290.875

11 109.375 48.750 213.250

12 47.750 113.500 213.375

Means 73.375 94.417 178.802

B.5 Crowdsourcing Dataset Augmentation

B.5.1 Acceptable Response Examples

As each of the 400 stimuli in this experiment elicited between 6 and 28 unique

responses, it would be much too space consuming to illustrate the complete result

here. Instead, one randomly selected example response is shown for each response

set size to illustrate the full range of observer agreement found in the experiment.

The possible unique response sizes are 6–21 (inclusive), 23, and 28.

Note: Figure in brackets denotes number of votes received.
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Stimuli Responses

287 345 (10) 236 (9) 056 (8) 362 (2)

221 (2) 378 (1)

474 176 (9) 369 (7) 101 (3) 172 (2)

169 (2) 447 (1) 088 (1)

002 482 (7) 099 (6) 345 (5) 079 (5)

395 (3) 056 (2) 228 (1) 095 (1)
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151 172 (5) 411 (4) 176 (4) 141 (4)

447 (3) 369 (2) 007 (2) 499 (1)

101 (1)

367 345 (7) 056 (6) 079 (5) 236 (3)

099 (3) 395 (2) 228 (2) 482 (1)

311 (1) 095 (1)
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408 271 (7) 290 (4) 201 (4) 384 (3)

324 (3) 204 (3) 197 (3) 390 (2)

250 (2) 320 (1) 304 (1)

231 369 (9) 411 (6) 499 (1) 447 (1)

252 (1) 249 (1) 169 (1) 146 (1)

109 (1) 102 (1) 101 (1) 088 (1)
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079 (1)

308 362 (5) 334 (4) 221 (4) 187 (4)

430 (2) 345 (2) 437 (1) 434 (1)

378 (1) 243 (1) 236 (1) 099 (1)

079 (1) 056 (1)

110 141 (6) 333 (5) 499 (3) 369 (3)

172 (3) 447 (2) 411 (2) 176 (2)

179



101 (2) 436 (1) 311 (1) 191 (1)

088 (1) 034 (1) 014 (1)

454 290 (6) 455 (4) 204 (3) 446 (2)

324 (2) 136 (2) 430 (1) 378 (1)

304 (1) 250 (1) 222 (1) 201 (1)

200 (1) 197 (1) 184 (1) 059 (1)

126 447 (6) 213 (3) 007 (3) 200 (2)
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141 (2) 451 (1) 378 (1) 365 (1)

282 (1) 273 (1) 236 (1) 191 (1)

184 (1) 146 (1) 136 (1) 117 (1)

091 (1)

114 007 (4) 447 (3) 141 (3) 451 (2)

411 (2) 345 (2) 146 (2) 499 (1)

482 (1) 462 (1) 311 (1) 184 (1)
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176 (1) 172 (1) 101 (1) 099 (1)

056 (1) 034 (1)

118 117 (6) 466 (5) 378 (2) 282 (2)

197 (2) 184 (2) 045 (2) 499 (1)

430 (1) 395 (1) 345 (1) 236 (1)

200 (1) 187 (1) 146 (1) 127 (1)

091 (1) 058 (1) 056 (1)

182



274 222 (4) 017 (3) 455 (2) 446 (2)

273 (2) 023 (2) 479 (1) 451 (1)

326 (1) 320 (1) 282 (1) 225 (1)

213 (1) 184 (1) 146 (1) 136 (1)

127 (1) 091 (1) 072 (1) 059 (1)

406 362 (4) 105 (4) 187 (3) 079 (3)

365 (2) 334 (2) 228 (2) 213 (2)
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466 (1) 447 (1) 437 (1) 311 (1)

252 (1) 249 (1) 243 (1) 176 (1)

169 (1) 159 (1) 141 (1) 099 (1)

007 (1)

153 290 (5) 304 (4) 455 (3) 446 (2)

197 (2) 059 (2) 482 (1) 468 (1)

430 (1) 326 (1) 250 (1) 222 (1)
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221 (1) 213 (1) 204 (1) 201 (1)

184 (1) 146 (1) 136 (1) 127 (1)

099 (1) 079 (1) 045 (1)

317 345 (2) 271 (2) 204 (2) 116 (2)

455 (1) 446 (1) 390 (1) 346 (1)

326 (1) 324 (1) 311 (1) 304 (1)

284 (1) 236 (1) 200 (1) 197 (1)
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187 (1) 184 (1) 169 (1) 136 (1)

109 (1) 072 (1) 059 (1) 056 (1)

054 (1) 049 (1) 017 (1) 010 (1)

B.5.2 Rejected Response Example

The following observer’s session was rejected as their result did not meet the minimum

criteria for payment.

Stimuli Response

048 099 447 345 017

289 099 063
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153 447 079 236 141

057 099 447 369 141

247 127 017 479 023

143 345 447 099 236

230 447 099 345 056

398 345 079 184 369
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315 447 430 176 411

461 447 010 250 141

126 213 017 063 166

272 079 056 141 176

376 127 129 479 116

103 236 176 369 141

188



356 127 479 129 017

472 345 236 141 176

018 221 066 072 447

245 079 430 176 369

312 345 430 099 176

321 447 236 184 411
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B.6 SOMG & SOMA2 Browsing Environments

Comparison

Observer
Mean Task Time

SOMG SOMA2

1 108.500 86.583

2 51.583 26.417

3 57.000 33.667

4 122.750 57.833

5 55.250 156.917

6 48.000 83.500

7 37.583 64.250

8 34.417 129.500

9 41.583 88.417

10 70.833 139.833

11 51.667 67.500

12 99.833 44.417

Means 64.917 81.569
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[72] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture mea-

sures with classification based on featured distributions. Pattern Recognition,

29(1):51–59, 1996.
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