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SMART-UQ: UNCERTAINTY QUANTIFICATION TOOLBOX FOR GENERALISED

INTRUSIVE AND NON INTRUSIVE POLYNOMIAL ALGEBRA

Ortega C., Riccardi A., Vasile M., Tardioli C.

University of Strathclyde

Department of Mechanical & Aerospace Engineering

Glasgow G1 1XJ, Scotland, United Kingdom

ABSTRACT

The paper presents a newly developed opensource toolbox

named Strathclyde Mechanical and Aerospace Research

Toolbox for Uncertainty Quantification (SMART-UQ) that

implements a collection of intrusive and non intrusive tech-

niques for polynomial approximation and propagation of

uncertainties. Non-intrusive approaches are mainly based on

building polynomial expansions of the quantity of interest

using sparse samples of the system response to the uncertain

variables. Intrusive methods instead modify the analysis by

redefining algebraic operators or by including polynomial

expansions directly in the model. The paper will present the

software architecture and development philosophy, its current

capabilities and will provide an example where the available

techniques are compared in terms of accuracy and computa-

tional cost on a test case of propagation of uncertainties in

space dynamics.

Index Terms— uncertainty quantification, uncertainty

propagation, polynomial algebra, polynomial interpolation,

intrusive methods, non-intrusive methods

1. INTRODUCTION

The problem of quantify regions of uncertainties and their

propagation through dynamics can be tackled numerically by

intrusive and non-intrusive techniques. Non intrusive meth-

ods such as Polynomial Chaos Expansion1 and Stochastic col-

location methods,2 do not require changes in the analysis code

since it relies on multiple system responses and post process-

ing of these information. Intrusive methods instead, such

as Taylor Models,3 Galerkin projection4 modify the analysis

code by redefinition of algebraic operators or embedding high

order polynomial expansions of uncertain quantities.

For the time being only polynomial algebra intrusive

methods and polynomial interpolation non-intrusive tech-

niques are considered. The main advantage of sampling-

based non intrusive methods is their range of applicability.

The model is treated as a black box and no regularity is

required. On the other hand, they suffer from the curse of

dimensionality when the number of required sample points

increases. Polynomial algebra intrusive techniques are able

to overcome this limitation since their computational costs

grow at a lower rate with respect to their corresponding poly-

nomial interpolation non intrusive counterpart. Nevertheless,

intrusive methods are harder to implement and cannot treat

the model as a black box. Moreover intrusive methods are

able to propagate nonlinear regions of uncertainties while non

intrusive methods rely on hypercubes sampling.

The most widely known intrusive method for uncertainty

propagation in orbital dynamics is Taylor Differential Alge-

bra.5 The same idea has been generalised to Tchebycheff

polynomial basis because of their fast uniform convergence

with relaxed continuity and smoothness requirements.6 How-

ever the SMART-UQ toolbox has been designed in a flexible

way to allow further extension of this class of intrusive and

non-intrusive methods to other basis.

In the paper the different intrusive and non intrusive tech-

niques integrated in SMART-UQ will be presented respec-

tively in section 3 and 4 together with the architectural de-

sign of the toolbox in section 2. Test cases on propagation

of uncertainties in space dynamics with the corresponding in-

trusive and non intrusive methods will be discussed in terms

of computational cost and accuracy in section 5 and as final

some conclusions and future development are presented.

2. SMART

The Strathclyde Mechanical and Aerospace Research Tool-

box is an open source project initiated in 2015 by the

Aerospace Center of Strathclyde University with the aim

of releasing to the open source community the algorithm

developed in the group, make research achievements freely

accessible to the scientific community and push research one

step further.

A modular approach has been preferred rather than de-

veloping one single comprehensive framework. Hence at the

current state of development, one toolbox for optimisation

and optimal control (SMART-O2C), one tool for astrodynam-

ics (SMART-ASTRO) and one tool for uncertainty quantifica-

tion and propagation (SMART-UQ) are being developed, see



Fig. 1: SMART family

Figure 1. This approach allow experts from different field to

benefit from accessing optimisation and uncertainty quantifi-

cation algorithms without the need of running the whole as-

trodynamical engine along with it. However it will be given

the possibility during compilation, to modify the configura-

tion file to link the toolbox in use against one or more of the

SMART tools to perform for example optimisation under un-

certainties for space trajectory problems. All toolboxes are

hosted on GitHub https://github.com/space-art.

SMART-UQ is the first toolbox of the above mentioned

to be released open source under the MPL license in Spring

2016. SMART-UQ is a generic framework for uncertainty

quantification and propagation. It has been developed in C++

with an heavy object oriented architecture. This allows the

tool to be flexible enough for the integration of new tech-

niques and test problems. The toolbox has been fully doc-

umented by the use of Doxygen 1 and few tutorials are avail-

able to get started. In Figure 2 the software layers are out-

lined.

On the top layer the information regarding documentation

and tutorial are accessible for the user that is only interested

in using the functionality of the tool for its own application.

One level below are the modules of interest for the develop-

ers, people who wish to integrate their own techniques in the

framework. One level more below is the unit test module,

controlled by SMART maintainers that will ensure the con-

sistency and quality of the code added by the developers.

At the current state of the art the core of the SMART-UQ

toolbox includes the following techniques:

• Sampling: random sampling, Latin Hypercube sam-

pling (LHS), low discrepancy sequence (Sobol).7

• Polynomial: Tchebycheff and Taylor basis

1www.doxygen.org

• Integrators: fixed stepsize integrators (first and second

order Euler, third, fourth and fifth order Runge-Kutta

methods)

• Dynamics: Lotka-Volterra, Van der Pol, Two-body

problem

The toolbox is at its first stage of development and it has been

used as bench-marking environment for the newly developed

intrusive techniques. The inclusion of new components for

each of the elements above is made easy by the object oriented

structure of the toolbox. If for example a new dynamical sys-

tem wants to be added it is enough to inherit from the base dy-

namics class and implement its virtual routines (evaluate

dynamic in this case). The toolbox relies on one external de-

pendency for fast multiplication in Tchebycheff basis FFTW3
2 and the C++ template library for linear algebra Eigen 3 that

is shipped with the toolbox. If FFTW3 is not found during

the configuration process direct multiplication will be used

instead.

For the time being only the C++ interface is available. The

user has to provide in the main function the list of uncertain

variables and their range of variability. At present only uni-

form distributions are handled. The toolbox will be expanded

in the future to allow the definition of aleatory and epistemic

uncertain variables and corresponding distribution(s). De-

pending on the type of analysis the user has to instantiate

either a sampling technique and a polynomial class or only

the latter one.

If non-intrusive techniques are used the interpolate

method need to be called. Two options are available: provide

a predefined set of points given as input and output matrices

or provide the analysis code. In this case the model will be

evaluated on specific sample points as specified by the sample

technique instantiated. The method interpolate is then

2https://github.com/FFTW/fftw3
3http://eigen.tuxfamily.org

Fig. 2: SMART-UQ software layers



called on this set of new points and the polynomial coefficient

of the interpolation, in the selected basis, are computed.

If intrusive methods are used the user has to initialise the

uncertain variables as first degree polynomial in that variable

in the selected basis. The analysis module need to be given as

template function. Once the analysis module is evaluated in

the initialised variables set the approximation is automatically

generated by operator overloading.

3. INTRUSIVE TECHNIQUES

The Generalised Intrusive Polynomial Expansion (GIPE) ap-

proach, implemented in the toolbox and presented here in the

paper, expands the uncertain quantities in a polynomial series

in the chosen basis and propagates them through the dynam-

ics using a multivariate polynomial algebra. Hence the oper-

ations that usually are performed in the space of real numbers

are now performed in the algebra of polynomials therefore

a polynomial representation of system responses is available

once the analysis code has been evaluated in the algebra.

To improve the computational complexity of the method,

arithmetic operations are performed in the monomial basis.

Therefore a transformation between the chosen basis and the

monomial basis is performed after the expansion of the ele-

mentary functions.

Multivariate polynomial expansions of d variables up to

degree n, are defined as

P (x) =
∑

i,|i|≤n

piαi(x) , (1)

where x ∈ Ω , i ∈ [0, n]d ⊂ N
d , |i| =

∑d
r=1 ir and

αi(x) is the polynomial basis of choice. The function space

Pn,d(αi) of all polynomials in the prescribed base, can be

equipped with a set of operations, generating an algebra on

the space of polynomial expansions. The multivariate basis

here considered are

• Taylor

Ti(x) =
d
∏

r=1

xir
r .

where x ∈ Ω = [−1, 1]d

• Tchebycheff

Ci(x) =

d
∏

r=1

Cir (xr) ,

where C0(xr) := 1, Cir (xr) := cos(ir arccos(xr))
and x ∈ Ω = [−1, 1]d

Being τ1 : Ω = [a,b] ⊂ R
d → Ω the linear mapping between

the two hyper-rectangular then the Tchebycheff polynomials

are defined over Ω as

Ci(x) = Ci(τ1(x)) ,

where x ∈ Ω. So without loss of generality the domain Ω
is considered for further considerations. Analogously Taylor

approximations can be considered expanded around zero, as

before the linear transformation τ1 can translate the initial in-

terval into one centered in zero

Ti(x) = Ti(τ1(x)).

The generalised approach here proposed extends to any

type of basis, hence the generic notation in equation 1 will be

used.

3.1. Polynomial Algebra

All elementary arithmetic operations as well as the elemen-

tary functions are defined on the function space Pn,d(αi).
This can be easily implement in C++ by overloading the al-

gebraic operators and elementary functions definition. There-

fore given two elements A(x), B(x) approximating any

fA(x) and fB(x) multivariate functions, it stands that

fA(x)⊕ fB(x) ∼ A(x)⊗B(x) ∈ Pn,d(αi) ,

where ⊕ ∈ {+,−, ·, /} and ⊗ is the corresponding operation

in the truncated series space. This allows one to define a new

algebra (Pn,d(αi),⊗), of dimension

N = dim(Pn,d(αi),⊗) =

(

n+ d

d

)

=
(n+ d)!

n!d!
,

the elements of which belong to the polynomial ring in d in-

determinates K[x] and have degree up to n. Each element of

the algebra P (x) is uniquely identified by the set of its coef-

ficients p = {pi : |i| ≤ n} ∈ R
N . The coefficients have

been ordered using the scheme in Giorgilli and Sansottera.8

Being that the result of any algebraic operation or evaluation

of elementary function still an elements of the algebra, addi-

tion and multiplication are defined as on the ring K[x] while

multiplication needs to be truncated. Division is treated as

elementary function through the definition of a composition

rule on the algebra such that

g(y(x)) ∼ G(x) ◦Y(x) ,

where ◦ is the composition function on (Pn,d(αi),⊗) and

g(x) and y(x) are, respectively, a multivariate function and

an array of d multivariate functions in the real space, with

G(x) and Y(x) their polynomial expansions. Hence being

h(x) any of the functions { 1/x, sin(x), cos(x), exp(x),
log(x), ... }, H(x) its univariate polynomial expansion and

F (x) an element of the algebra that approximates the mul-

tivariate function f(x), their composition is approximated

by

h(f(x)) ∼ H(x) ◦ F (x) ,

in which case ◦ denotes the composition of an element of the

algebra with an univariate polynomial.



Given that the computational cost of multiplying two

polynomials not in the monomial basis is generally higher,

the authors are proposing hereafter a methodology to over-

come this issue. Being H(x) the expansion of an elementary

function in the current polynomial basis and being

τ2 : Pn,d(αi) → Pn,d(φi)

the transformation from the current basis into the monomial

basis φi, given h(x) any of the functions { 1/x, sin(x),
cos(x), exp(x), log(x), ... } and f(x) a multivariate function

h(f(x)) ∼ τ2(H(x)) ◦ Fφ(x) ,

where Fφ(x) is the approximation in the monomial basis of

f(x). It needs to be noted that for the case of Tchebycheff ex-

pansions given that high order terms have contribution to low

order terms in the monomial basis1, H(x) is expanded up to

1.5 times the order of the algebra and τ2(H(x)) is truncated

afterwards. This guarantees to not lose in accuracy when the

changing of basis is performed. Hence just for the Tcheby-

cheff case the transformation τ2 is between the functional

spaces

τ2 : C1.5n,d(αi) → Pn,d(φi).

All other algebraic operations are then performed in Pn,d(φi)
and converted back to the current basis only at final. Note that

since H(x) is an univariate polynomial, the change-of-basis

matrix is of order n+1 (1.5n+1 in case of Tchebycheff) in-

stead of N , rendering the conversion computationally cheaper

than in the multivariate case.

From a software architecture point of view, if new polyno-

mial basis are added to the toolbox they need to implement a

method, virtually inherited from the base class, that performs

the change from the current basis to the monomial one and

viceversa.

3.2. Integration of dynamical systems

The aforementioned procedures allow one to create a new

computational environment where each function, that can be

defined by means of arithmetic operations and elementary

functions, can be represented as an element of (Pn,d(αi),⊗).
It follows that expanding the flow of the system of au-

tonomous ordinary differential equations of the form

{

ẋ = f(x)
x(t0) = x0

requires declaring the uncertain initial condition X0(x) =
(X1(x), . . . , Xd(x)) ∈ (Pn,d(αi),⊗)d as an element of the

1if we consider for example the 4th order term of the univariate basis

C4(x) = 8x4
− 8x2 +1, this has a contribution to the second order term of

the monomial basis

algebra:

X1(x) = α11
(x) ,

X2(x) = α12
(x) ,

. . .

Xd(x) = α1d
(x) ,

where α1j
(x) is the first order base in the j-th component,

and applying any integration scheme with operations in the

algebra to have at each integration step the full generalised

polynomial expansion of the current state. For example,

choosing forward Euler as integration scheme yields:

Xk(x) = Xk−1(x) + h f(Xk−1(x)), Xk(x),

Xk−1(x) ∈ (Pn,d(αi),⊗)d ,

where Xk(x) is the polynomial representation of the system

flow at the kth time-step.

4. NON-INTRUSIVE TECHNIQUES

Non intrusive methods have been implemented for a set of

sampling techniques for interpolation in the complete poly-

nomial basis.

Given a set of s sample point in the initial hyper-rectangular

Ω, s numerical integration need to be performed to compute

the polynomial expansion of the states at a given time. Hence

given the dynamics

{

ẋ = f(x)
x(t0) = x0

where x0 ∈ Ω. Being S0 = {x0,1, ...,x0,s} the point sam-

pled with one of the techniques available in the toolbox or

externally provided by the user, then applying a numerical in-

tegration scheme the set

S = {x1, ...,xs}

where xi = I(x0,i) is the solution at time t obtained with

initial guess x0,i and integration scheme I(·).
The generic polynomial interpolant on this set of nodes

has the form

F (x) =
∑

i,|i|≤n

pi αi(x) ,

where pi are the unknown coefficients computed by inverting

the linear system

HP = Y ,

with

H =







α0(x0,1) . . . αN (x0,1)
...

. . .
...

α0(x0,s) . . . αN (x0,s)






, P =







c0
...

cN






, Y =







x1

...

xs









where s = |S| is the cardinality of the set of grid points and

the components of Y are the true values obtained integrating

the dynamics in the initial sample points. The system cannot

be inverted if the matrix H has not full rank. The minimum

number of sample points is equal to the size of the space of

the polynomial basis N . If more points are provided a Least

Square approach is used to invert the system and find the un-

known coefficients.

From a software architecture point of view if we are

adding new polynomial basis to the toolbox a function that is

able to evaluate the polynomial in a prescribed set of points

is the only functionality need for using the non-intrusive

technique.

5. CASE STUDY: PROPAGATION OF

UNCERTAINTIES IN SPACE DYNAMICS

The toolbox capabilities are tested by applying the intrusive

and non-intrusive techniques available on the propagation of

uncertainties in a two-body dynamical problem where thrust,

drag and an unknown force are modeled to increase the num-

ber of uncertainties and the complexity of the problem. Ini-

tially only uncertainties in the states are considered, then the

uncertainties on the force parameters are added gradually to

increase the dimensionality of the problem and to compare

the available methods not only in terms of accuracy but also

in term of computational complexity.

5.1. Problem

The two-body problem here considered is taking into account

only three additional forces: a constant low thrust, atmo-

spheric drag and an unknown constant perturbation. In an

inertial reference frame the dynamical equations are

ẍ = −
µ

r3
x+

T

m
+

1

2
ρ
CDA

m
‖vrel‖vrel + ǫ

where r is the distance from the Earth, vrel is the Earth rela-

tive velocity and the mass of the spacecraft varies as

ṁ = −α‖T‖

5.2. Experimental set up

The dynamics is integrated with a fixed stepsize Runge-Kutta

4th order scheme, with nominal initial conditions

x(0) = 7338 · 103, vx(0) = 0 ,
y(0) = 0, vy(0) = 7350.21 ,
z(0) = 0, vz(0) = 0 ,
m(0) = 2000 .

Where all variables have I.S. units. This corresponds to a

circular Low Earth Orbit. Constant low thrust of 500 mN in

the y direction is considered with α = 3.33 ·10−5. Regarding

drag, ρ is computed by means of the exponential atmospheric

model

ρ = ρ0 · exp

(

−
r − r0
H

)

,

with ρ0, r0, H atmospheric parameters corresponding to the

initial altitude, and CDA = 4.4 . Constant perturbation ǫ is

nominally zero.

Intrusive and non-intrusive methods are compared against a

Monte Carlo sampling of 104 points. The Root Mean Square

Error (RSME) measure is used for the comparison defined as

RMSE =

√

√

√

√

1

N

N
∑

i=1

(x̂i − xi)2,

where N is the number of samples, xi is the true value of the

state (obtained by forward integration in the sampling points)

and x̂i is the approximated value computed evaluating the ob-

tained polynomial approximation. Four techniques are com-

pared:

• Non-intrusive with Tchebycheff basis and a LHS of N
samples over the uncertain hypercube

• Non-intrusive with monomial basis and a LHS of N
samples over the uncertain hypercube

• Intrusive with Tchebycheff basis over the uncertain hy-

percube

• Intrusive with Taylor basis centered in the mid point of

the uncertain hypercube

The order of all polynomial expansions has been set to 4

after performing accuracy analysis on a simplified problem.

5.3. Uncertainty on initial states and model parameters

Four instances of the problem have been evaluated with iden-

tical nominal dynamics and progressively increasing dimen-

sion of the uncertain region. Case 1 only presents uncertainty

on the initial states whereas cases 2 to 4 consider uncertainty

in up to 10 model parameters. Finally a fifth case with full

dimension but smaller uncertainty regions for the states has

been run to assess the impact of the magnitude of the uncer-

tainty on the accuracy of the methods. The definition of each

test-case is detailed in Table 1.

5.4. Results

Cases 1 to 4 present similar accuracy results. This is due to

the propagation being dominated by the uncertainties on the

initial states, which are identical in all these cases.

For case 4, depiction of the uncertain regions and RMSE

values in x and v are presented in Figures 3 to 5. The use of

Taylor basis yields errors 4 to 5 orders of magnitude higher



Table 1: Parameters and states uncertainties (% refers to the

nominal value, d is the number of uncertain variables)

Test-case 1 2 3 4 5

ux(0) [m] 103 103 103 103 10
uv(0) [m/s] 5.00 5.00 5.00 5.00 0.05

um(0) [Kg] 1.00 1.00 1.00 1.00 0.01

uT, uα – 5% 5% 5% 5%

uρ0
, uH , uCD

– – 1% 1% 1%

uǫ – – – 10−4 10−4

d 7 11 14 17 17

than other methods, i.e. comparable to the size of the uncer-

tain region. The uncertain space appears to be too large for

this approach to capture its growth; Figure 4 illustrates this

effect. The expansions obtained with the other three uncer-

tainty propagation techniques attain mean final approximation

errors of 10−1 m and 10−4 m/s in the plane of motion. [ht!]
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Figures 6 to 8 show analogous results for case 5. The re-

duction in volume of the initial uncertain space has a positive

impact on the absolute accuracy of the Taylor approach, but

the same effect is encountered when comparing to the size of

the propagated region. [ht!] [ht!]

These unexpectedly inaccurate results for the Taylor D.A.

method called for further investigation. Hence yet another

test-case is run, where the dynamics are identical to those of

case 4 but have now been expressed with non-dimensional

magnitudes. This aims at reducing the discordance in scale

between different variables, which can have a negative effect

in methods of local accuracy such as Taylor D.A.. The funda-

mental scaling factors are the planetary canonical units of the

Earth and the initial mass of the spacecraft, i.e.

DU = 6378136m, TU = 806.78 s , m0 = 2000 kg .
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Fig. 5: RMSE on x and v states, case 4.
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Fig. 7: Detail of the final uncertain region, case 5.

The results are shown in Figures 9 to 11. As can be ob-

served, all methods achieve accurate reproduction of the un-

certain region by means of the proposed scaling. For both in-

trusive methods, final errors are in the order of 10−5 m, 10−7

m/s in the plane of motion, non-intrusive techniques yielding

representations one to two orders of magnitude less accurate.

Figure 12 shows the simulation run-time necessary for

cases 1 to 4. Intrusive methods require more operations for a

single-step propagation than their non-intrusive counterparts,

but have overall lower computational complexity. Hence they

are advantageous for high-dimensional problems.

The two non-intrusive techniques present very simi-

lar times. The difference in run-time between Taylor and

Tchebycheff intrusive methods is due to the transformation

into monomial base of the latter for each of the elementary

functions used, while the rest of operations have equivalent

cost.
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Fig. 8: RMSE on x and v states, case 5.
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6. CONCLUSIONS

The paper presents a novel open source computational envi-

ronment for uncertainties quantification and propagation. A

set of intrusive and non-intrusive techniques have been inte-

grated in a flexible architecture that allows further extension

to different polynomial basis, sampling techniques, dynami-

cal systems and integration schemes.

The available techniques have been compared in terms of

accuracy and computational cost on a space-related problem

with 17 uncertain variables. Non-intrusive and Tchebycheff-

based intrusive techniques showed comparable results in

terms of accuracy. Taylor-based intrusive method however is

affected by a higher sensitivity to the scaling of the problem.

Both intrusive methods have a lower computational cost for

instances of the problem with more than 11 uncertain vari-

ables. Hence intrusive methods are recommended to be used

for high-dimensional problems, wherever the model need not

be treated as a blackbox but can be expressed in terms of
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Fig. 11: RMSE on x and v states, scaled case.
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algebraic operators and elementary functions.

Further work will be dedicated to the management of

model discontinuities in intrusive techniques by means of



domain splittings and to the introduction of intrusive and

non-intrusive methods on reduced set of polynomial basis.
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