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ABSTRACT

Fluid flow and transport in fractured geological formations is of funda-
mental socio-economic importance, with applications ranging from oil
recovery from the largest remaining hydrocarbon reserves to bioreme-
diation techniques. Two mechanisms are particularly relevant for flow
and transport, namely spontaneous imbibition (SI) and hydrodynamic
dispersion. This thesis investigates the influence of SI and dispersion
on flow and transport during immiscible two-phase flow.

We make four main contributions. Firstly, we derive general, exact ana-
lytic solutions for SI that are valid for arbitrary petrophysical properties.
This should finalize the decades-long search for analytical solutions
for SI. Secondly, we derive the first non-dimensional time for SI that
incorporates the influence of all parameters present in the two-phase
Darcy formulation - a problem that was open for more than 9o years.
Thirdly, we show how the growth of the dispersive zone depends on the
flow regime and on adsorption. To that end we derive the first known
set of analytical solutions for transport that fully accounts for the effects
of capillarity, viscous forces and dispersion. Finally, we provide numeri-
cal tools to investigate the influence of heterogeneity by extending the
higher order finite-element finite-volume method on unstructured grids
to the case of transport and two-phase flow.
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INTRODUCTION

1.1 FUNDAMENTAL CONTROL OF FLOW AND TRANSPORT IN FRAC-
TURED RESERVOIRS

The transport of dissolved chemical components (e.g., CO,, NaCl, CHy)
in different fluid phases (e.g., water, oil, gas) occupying the pore space
of geological formations underground (Figure 1.1) is of fundamental
importance to a large number of geological and reservoir engineering
processes. These include, but are not limited to, enhancing the recovery
of oil and gas from hydrocarbon reservoirs through the injection of
chemicals [Austad et al., 2008], storing greenhouse gases such as CO; in
saline aquifers and oil and gas fields [Bickle, 2009], flow in the vicinity
of radioactive waste repositories [Tsang et al., 2009], remediation of
toxic contaminants in groundwater aquifers [Mulligan et al., 2001], or
mineral scale formation in oil reservoirs [Sorbie and Mackay, 2000].

In many of these applications, flow and transport in fractured reservoirs
are of particular significance. A fractured reservoir consists of a set
of fractures that usually are less than 1 cm wide, and different rock
layers of varying permeability (Fig. 1.1). In naturally fractured reser-
voirs these fractures were formed during the geological evolution over
time. Carbonate reservoirs, such as the reservoirs of the Middle East,
are typically fractured and host about 60% of the world’s remaining
petroleum reserves. However, they are difficult to produce and recovery
factors for traditional waterflooding can be less than 10% [Schlum-
berger, 2007]. If a reservoir has a low permeability then either to remove
hazardous non-aqueous phase liquids (NAPLs) or to produce oil [Frank
and Barkley, 1995], fractures are propagated by a technique known as
hydraulic fracturing. This method has sparked an extensive debate in
the public due to the unclear trade-off between utility on the one hand
and risk to the environment on the other hand [Howarth et al., 2011].
Obviously, in either case - to protect the subsurface, and for making
hydrocarbon production more efficient - an improved understanding of
flow and transport in fractured reservoirs is crucial.



1.1 FUNDAMENTAL CONTROL OF FLOW AND TRANSPORT IN FRACTURED RESERVOIRS

Layers Fractures

Figure 1.1: Photograph of the fractured carbonate outcrop (dimensions of
30 x 10 m). Similar rocks like these, but buried underground in
approximately 1 to 4 kilometres depth, contain the world’s largest
oil reservoirs in the Middle East. The outcrop consists of a set of
fractures that connect different rock layers of varying permeability.
Fractures are usually less than 1 cm wide. Fluid phases (e.g., oil
and water) and dissolved chemical components (e.g., CO,, NaCl,
CHj4) mainly flow through the connected fractures that act as fluid
conduits which can bypass the low-permeability rock layers. The
discretization of this outcrop is used in the numerical Test Case V
(Figure 5.16).

Two processes are of particular significance for the control of flow and
transport in fractured reservoirs.

The first process is spontaneous imbibition. Spontaneous imbibition
(SI) is a key mechanism central to many flow process - ranging from
oil recovery from the largest remaining oil reservoirs, to CO, storage
to water uptake in plant seeds - and also well known from daily life:
If a sugar cube is dipped into tea, the fluid ‘imbibes’ by spontaneous
capillary flow. Just as tea imbibes the porous sugar cube, in a fractured
reservoir water imbibes from the high-permeability fractures into the
oil-rich, low-permeability rock layer. Since water otherwise bypasses
the matrix blocks through the high-permeability fractures, spontaneous
imbibition often is - besides gravity - the only production mechanism.

The second process is hydrodynamic dispersion. If more than one
chemical component is present, both miscible and immiscible displace-
ment occur (Fig. 1.2), and dispersion governs how well the miscible
fluids mix [Dentz et al., 2011]. Thus, dispersion limits the amount of
reactants available and hence it limits fast chemical reactions [Dentz
et al., 2011].

When performing imbibition studies in sandstone, Jadhunandan and



1.2 STRUCTURE AND CONTRIBUTIONS OF THIS THESIS

Morrow [1991] noticed that the composition of injection brine can im-
prove recovery and Yildiz and Morrow [1996] amplified these studies
to core flood studies with low-salinity injection. This resulted in a large
number of core-flood studies [Webb et al., 2005, 2004, Yildiz and Mor-
row, 1996, Morrow et al., 1998, Tang and Morrow, 1999, Zhang and
Morrow, 2007, Agbalaka et al., 2009] at different conditions (ambient
and reservoir condition, secondary and tertiary mode) and tests at the
tield scale [McGuire et al., 2005] that showed an improvement in recov-
ery in the range of 15 —40%. Fundamental to this improvement was
initially oil-wet conditions, crude oil and the presence of clay particles.
Motivated by these results for clastic rocks, many experiments for imbibi-
tion (for a recent overview see [Austad et al., 2008]) and fewer coreflood
studies [Yousef et al., 2010] for carbonate rocks were performed. As for
the case of clastic rocks, many of these studies showed that simply
adding or removing ions to the injection water can significantly increase
oil recovery. On contrary to the experiments for clastic rocks, however,
it was not the salinity level of the brine itself that was important, but
rather the combination of different ions - in particular Ca’*, Mg?~
and SOfl+ - that had an impact, and which led to the name controlled
salinity effect. Tweaking the ion composition might thus be a simple
and possibly cheap way to improve recovery in a fractured reservoir.
Obviously, the efficiency of this so-called salinity effect depends on how
fast the dispersive zone 5(t) grows depending on the interplay between

the flow regimes and the subsurface heterogeneity.

1.2 STRUCTURE AND CONTRIBUTIONS OF THIS THESIS

Despite the outstanding importance of capillarity and dispersion during
two-phase flow in fractured (carbonate) reservoirs, most published con-
tributions for two-phase, multicomponent flow ignore either capillary
effects or dispersion or both. The reasons for this are clear: Dispersive
and capillary effects give rise to highly non-linear second order deriva-
tives that make the numerical and analytical treatment of the governing
partial differential equations challenging.

This thesis therefore investigates the influence of capillary forces and
dispersion on flow and transport during immiscible two-phase flow.
The thesis is equally divided into two parts: In the first part we investi-
gate the influence of capillarity on flow without transport. In the second
part, we study flow with transport. More specifically, the rest of this
thesis is structured as follows:



1.2 STRUCTURE AND CONTRIBUTIONS OF THIS THESIS
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Figure 1.2: Schematic representation of one-dimensional, uni-directional dis-
placement of a non-wetting phase by a wetting phase with satura-
tion S,, with an initial wetting saturation S;. Behind the wetting
front, a mixing zone between the ‘old” composition of the wetting
phase and the ‘new’ one of length 5(t) develops. In most cases, the
solute front trails the saturation front (Chapter 4).

1. Analytical solutions for spontaneous imbibition In Chapter 2, we re-
peat known [McWhorter and Sunada, 1990] analytical solutions for
two-phase flow with capillarity for arbitrary capillary-hydraulic
properties. We show that the boundary conditions are such that
these solutions in fact describe the situation of spontaneous co-,
and counter-current imbibiton which previously had been over-
looked. We demonstrate that the solutions may be interpreted as
the long missing capillary analogue to the well-known Buckley-
Leverett solutions [Buckley and Leverett, 1942] for viscous domi-
nated flow. This should finalize the decades-long search for ana-

lytical solutions for spontaneous imbibition (Table 2.1).

2. Scaling of spontaneous imbibition for arbitrary petrophysical properties
Based on these analytical solutions, we define a dimensionless
time or scaling group that characterizes SI for arbitrary petro-
physical properties - a question that was open for more than
9o years. We validate our group against 45 published SI exper-
iments for a wide range of properties. Our results give strong
evidence that the standard Darcy model is suitable for describing
SI contrary to what recently has been hypothesized. Two key ap-
plications of the group are discussed: First, the group can serve as

the long sought-after general transfer rate for imbibition used in



1.2 STRUCTURE AND CONTRIBUTIONS OF THIS THESIS

dual-porosity models. Second, it is the proportionality constant in

imbibition-germination models for plant seeds.

3. The influence of flow regimes on mixing. In Chapter 4 we consider
flow and transport in a homogeneous, horizontal 1D medium.
The growth of the dispersive zone 5(t) (Fig. 1.2) is influenced
by the interplay of three mechanisms: The flow regime, chemical
reactions and heterogeneity. In this chapter, we resolve how the
flow regime and a simple chemical reaction affects 5(t). To that
end, we derive the first known set of analytical solutions for
transport that fully accounts for the effects of capillarity, viscous
forces and the effects of hydrodynamic dispersion for the variable
two-phase flow field.

4. Higher order FEFV methods on unstructured grids for transport and
two-phase flow In order to resolve the influence of heterogeneity,
flexible numerical methods are imperative. In Chapter 5 we ex-
tend higher-order finite-element-finite volume (FEFV) approach
to the case of two-phase flow with transport. The higher-order
FEFV method that we propose resolves three major challenges
in this context, namely the ability to discretize highly fractured
reservoirs, the ability to resolve the strong non-linear coupling
between fluid and component transport, and finally the ability to
give an accurate discretization such that numerical dispersion is

small.

Chapters 2-5 contain a literature review for the specific aspect of disper-
sion and capillarity that is treated in the respective Chapter. We finish
this thesis with some conclusions and recommendations for future work
in Chapter 6.



Part I

TWO-PHASE FLOW



EXACT ANALYTICAL SOLUTIONS HONOURING
CAPILLARY PRESSURE: THE BUCKLEY-LEVERETT
ANALOGUE

2.1 PROBLEM FORMULATION: TWO-PHASE FLOW AND TRANSPORT

In many of the applications we are interested in - and in particular
the controlled-salinity effect [Austad et al., 2010, Yildiz and Morrow,
1996] - the aqueous phase additionally transports components, such
as polymers or salts, that change the fluid properties of the aqueous
phase. The equations describing the flow of two phases and multiple
components through a porous medium can be obtained from combining
a continuity equation for both the flow and the components with Darcy’s
equation for immiscible two-phase flow [Bear, 1972]. The continuity

equation for any specific conserved conserved quantity C is

oC
5 TVI=9 (2.1)

where JF its flux vector, and G the source/sink term.
We consider immiscible, incompressible, isothermal two-phase flow
through a rigid, three dimensional porous medium. For the fluid phase

o, flux satisties Ty = pxq,, and thus equation (2.1) becomes

0 (PaS«)

d)at

= —V : (pocq(x) 7 SW + STL = ]/ (2'2)

for o« € {w, n} where the subscripts w and n denote the aqueous and the
non-aqueous phase, respectively. ¢ denotes the porosity, px the phase
density, Sy the phase saturation, and q, the phase velocity. We assume
that the fluid velocity q, is given by the extended Darcy equation
[Muskat, 1949]

Ay = Aa(Sa, OK(VPa(Sa, C) — pag) - (2.3)

The mobility Ay = kr«(S«, C)/u«(C) is the ratio between the relative
permeability k.« of phase « and its viscosity 4, and it describes the
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impairment of the flow of one phase by the other. K is the permeability
tensor of the porous medium, py is the fluid pressure of phase «, and
g=1000— g]T is the gravitational acceleration vector. The fluid pres-
sures are related through the capillary pressure p. = pn — pw.

C is the vector of n components, that represents the varying chemical
composition, e.g. water phase salinity, added chemicals such as poly-
mers, or a simple non-partitioning tracer. In the following, we assume

that the components
(i) do not alter the porous medium (e.g. through chemical reactions),
(ii) that they do not partition into the other phase, that

(iii) the solute mass flux due to hydrodynamic dispersion within a
phase is described by a Fickian model, that

(iv) the volume fraction of the components is small compared to that
of the wetting phase, and finally that

(v) the only chemical interaction between the rock and the compo-

nents can be described by equilibrium adsorption [Pope, 1980].

Then the flux of an individual component C;, i =1,...,n contains
contributions from advection and dispersion, and the dispersion is
modelled by including the effect of the local velocity field [Bear, 1972,
Gerritsen and Durlofsky, 2005]:

Fe.

1

= CiFw—$SwDVC;, i=1,...,1n. (2.4)

where D is the tensor of hydrodynamic dispersion [Bear, 1972]

D = o ||qy || 815 + (o — 1) @y iy / ||| 1<4,j <3 (25)

Here, 8;; is the Kronecker delta, «; and «t are the longitudinal and
transversal dispersivity constant, respectively, that are determined ex-
perimentally. The modelling of D accounts for the effects of the local
velocity fields, but ignores the effects of molecular diffusion. Ignoring
molecular diffusion is reasonable since — as long as the flow field is
non-zero — molecular diffusion normally is orders of magnitude smaller

than dispersive effects [Bear, 1972].
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Altogether, we obtain n advection-dispersion-reaction (ADR) equations

for n components

0 (pwCiSw) i o((1—¢) pTAs,ipw) _

¢ ot ot
Reagion (2.6)
—V - (Cipwgu) + V- (#SwpwDV (),
Advection Disp;sion

where we denoted the rock density by p, and the adsorption of C; per
unit mass of rock by A, ;. Since the components do not influence each
other, we will assume n = 1, simplify the notation, and write C and A;
instead of C, and A, ;, respectively.

If C describes the concentration of a tracer, the fluid properties of water
stay constant, i.e. p,,(C) = p,, = const, p,(C) = w,y = const, whereas
for other chemical compositions (C=polymers or salts), empirical rela-
tions that can be expressed as analytical expressions or lookup tables
may be used (e.g. Herbert et al. [1988]). We further set

(1—¢)

[=
¢

PrAs. (2.7)

For thermodynamic equilibrium, the isotherm is a function of C only,
i.e. ' =T(C) [Bedrikovetsky, 1993], and is described through a linear or
non-linear isotherm depending on the components considered.

We assume that the Oberbeck-Boussinesq approximation holds, i.e.
that variations in density due to a change in component concentration
only need to be taken into account for the gravity term [Nield and
Bejan, 2006]. Combining equation (2.3) with the definition of capillary
pressure, we obtain a parabolic partial differential equation (PDE) to

model the water pressure p,, [Peaceman, 1977]

opw

P V- (th(sw, C)Vpw — KAn(Sw, C)Vpe

(2.8)
— (PwAw(Sw, C) 4 Prdn(Sw, C)) ),

where c; is the total compressibility of the fluid-rock system, and we set
Ao = Kro/ U, & € {W, 0} and A¢ = Ay, + An. Oil and water are assumed
to be incompressible which on the reservoir scale leads to ctAp, < 1,
such that the left hand side of equation (2.8) can be approximated as
zero [Durlofsky, 1993].

We introduce the fractional flow function

krn(sw)lln —1
krw(Sw,C)uw(C)> ’ (2.9)

£(Sy, C) = (1 +
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and the total velocity q, = q,, + q,,- The equation for g, and S,, can be
turther simplified to

Vpe +
Un pe At

q, =fq,—K (Pw —pPn)g, (2.10)

and

fk
Hro Vpc)

n

0% =~V (1a) + 7 (K

(2.11)
-V ( " (pw—pn)g> o’
Equation (2.6) for the components becomes
9(CSy)  or fKro
G2+ = ==V (Cf(Sw, C)q, — CK 2 (Sw, C)Vpe
AwA
+CR (S, CK (pw(C) —pn) 8) (2.12)

+V - ($S,DVC).

Before we proceed, three remarks on the assumptions made above are
in order. First, equations (2.1) and (2.2) are laws, i.e. they can be derived
rigorously from first principles [Muskat, 1949]. In contrast, equation
(2.3) is an assumption that cannot be derived from first principles. This
recently has led to intensive research on if equation (2.3) is suitable
to describe two-phase flow, and to the question whether and how the
parametrizations in Darcy’s equation should be supplemented with
additional parameters (e.g. [Barenblatt et al., 2003]). We further discuss
this in chapter 3, and give strong evidence that for capillary dominated
flow no further parameters are necessary, contrary to what recently has
been hypothesized.

Secondly, while there is an extensive debate concerning the modelling
of dispersion in single phase flow (for a recent overview see e.g. [Dentz
et al., 2011, Berkowitz, 2002]), the effect of two phases on transport and
dispersion is unclear. It has been established that for solute transport
in single phase flow, the parametrization used for D in general is no
good representation of dispersion on the continuum scale, and that
in general no representative values for o; and o« can be found. There,
the interplay between spatial heterogeneity, temporal fluctuations and
local dispersion leads to a macroscopic dispersion effect and to arrival
distributions that do not conform to Gaussian solutions which is known
as ‘anomalous transport’. For transport and two phase flow, however, the
situation is less clear. For two phase flow without transport and under

the condition that capillary effects can be ignored, it has been shown

10
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[Bolster et al., 2009] that the macroscopic dispersion effect becomes
negligible. Thus, the effect of spatial heterogeneity and dispersion
on a tracer carried by a two phase flow field can be fundamentally
different from the single phase case, and its not clear if and under
which conditions D can be parametrized according to equation (2.5).
We therefore assume that equation (2.5) is reasonable, and develop
analytical and numerical methods that may help in evaluating the
reliability of a classical dispersion description for transport and two
phase flow.

Finally, for most practical applications, like different ion-compositions,
assumption (iv) is an excellent approximation [Pope, 1980].

In Part I of this thesis we consider flow only, i.e. the situation where
C =0, and the equations (2.11) and (2.8). In Part II, we consider flow

with components, i.e. C > 0.

2.2 THE BUCKLEY-LEVERETT SOLUTION FOR THE VISCOUS LIMIT

In this section, we repeat some of the main results of the Buckley-
Leverett theory that will prove to be useful for our understanding of
section 2.2. A full account of the Buckley-Leverett theory can be found
in any standard textbook on multiphase flow through porous media
(e.g. [Helmig, 1997, Lake, 1989]) and therefore is omitted.

The Buckley-Leverett theory and the corresponding Buckley-Leverett
solutions [Buckley and Leverett, 1942] are analytical solutions for equa-
tion (2.11) obtained under additional simplifying assumptions, most
importantly for the assumption that capillary effects can be ignored.
They have proved to be imperative for the understanding of many
two-phase flow phenomena, such as enhanced oil recovery techniques
or core flood studies [Lake, 1989].

The additional assumptions are:

(1) There are no dissolved components, i.e. C =0,
(2) the porous medium is homogeneous;

(3) the porous medium is one-dimensional and horizontal, such that

in particular gravity can be ignored;
(4) there are no sources or sink terms.

This reduces equation (2.11) to

35, ar d 2 dpe 95w
Pw __ H9g 9 (p 9w |
S T L T R ( (5wl gs,, ot ) (2.13)

11
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where

dpc

D(Sy) = —fAq (2.14)

and D(S,,) can be thought of as a "capillary dispersion coefficient” of
the fluid phases. Note that the common extension

O0pc _ dpc 9Sw
0x dS,, ox

requires that the saturation field is smooth and thus that the medium is
homogeneous. This point is further discussed in Chapter 5.
Additionally to (1)-(4) stated above, we make the assumption:

(5) Viscous effects dominate, i.e. capillary pressure effects are negligi-
ble.

Then the second term in the right hand side of equation (2.13) becomes
zero, and the conservation equation changes its character from a second

order parabolic PDE into a first order hyperbolic one

df oS,

4)? = _ntW' (2.15)

For the case where capillary effects can be ignored, we have pn = py,
and both can be denoted by p. For this case, the name fractional flow

function” becomes clear, since

-1
f(Sy) = (1 + w)
Kyw n

B K?\W%E _ Qw
- 0 op '
KAWSE + KA SE  dt

(2.16)

The PDE (2.15) is supplemented with the following initial and boundary

conditions for S,,:

Swx=0,t) =S
(2.17)
SW(X/t = O) = SW(OO,t) = Swi,
and for the velocity
qw(x =0,1) = q¢(t). (2.18)

The velocity q,, then satisfies [Buckley and Leverett, 1942]

Gw = qef'(Sw), (2.19)

12
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and consequently the x(S,,, t) profile is (Fig. 2.1b)

t t

G (S )dT = JO Ge(0)F(Sw)dr

x(Sy, t) :J

0

_ V(b
=0 £ (Sw),

where V,,(t) is the cumulative volume of the injected wetting phase

(2.20)

at time t. Since the velocity depends on the derivative f’, it can be
non-monotonic if f” shows non-monotonic behaviour like an s-shape
that is typical for many parametrizations of kr,, and k. (Fig. 2.1a). The
saturation level S,,; at which the shock front occurs can be determined
graphically by the Welge tangent [Welge, 1952] (Fig. 2.1a).

2.3 ANALYTICAL SOLUTIONS HONOURING CAPILLARY PRESSURE:

THE BUCKLEY-LEVERETT ANALOGUE
Introduction

While an analytical solution to equation (2.9) for viscous dominated
flow has long been known - the Buckley-Leverett solution [Buckley and
Leverett, 1942] (section 2.2 ) -, the counterpart for capillary-dominated
flow has been missing, and the derivation of solutions for capillary
dominated two-phase flow stayed to be the matter of ongoing intensive
research over the last decades (Table 2.1).

The reasons for this strong interest are clear: Just like the Buckley-
Leverett solutions they are imperative for understanding which pa-
rameters control a flow process, and thus are the starting point for
understanding enhanced oil recovery (EOR) techniques. They form
the basis for scaling groups (chapters 3 and 4), are used to derive
transfer functions essential for predicting one of the most important
production mechanism in fractured reservoirs, and are important for
benchmarking numerical code (chapter 5.) The obtained solutions fall
into two categories: In the first category, additional assumptions on
equation (2.21) are made, like specific functional forms of D(S,,), that
flow occurs under steady-state, and so forth (Table 2.1). In the second
category [McWhorter and Sunada, 1990], no additional assumptions
on the physics or D(S,,) are made. Instead, an additional boundary
condition on the inflow rate is imposed that at the first sight makes the
obtained solutions look like another specific case.

In the following, we first introduce the situation of co,- and counter-

current imbibition. Assuming that (1) — (4) holds, we then derive exact

13
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Figure 2.1: (a) Fractional flow function, and Welge tangent [Welge, 1952] vs.
saturation and (b) the resulting saturation profiles vs. distance
for counter-current SI and viscous dominated, unidirectional flow.
The fractional flow function f for the viscous dominated case is
s-shaped which according to equations (2.20) and (2.19) leads to
a shock in the saturation profiles at S,, = S,,+ as determined by
the Welge tangent [Welge, 1952]. F can be viewed as the capillary
counterpart to f for SI, and is concave. This results in a smooth
saturation profile according to equation (2.29).

analytical solutions for equation (2.9) with (2.17) following [McWhorter
and Sunada, 1990].

Subsequently, we show that for spontaneous imbibition (SI) the im-
posed boundary condition is redundant which previously had been
overlooked (Table 2.1). Our published results (see Publications, in par-
ticular paper [Schmid et al., 2011]) show that the boundary condition is
redundant for the case of counter-current imbibition only. However, it
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Author and year

Assumption

Fokas and Yortsos [1982],
Yortsos and Fokas [1983],
Philip [1960], Chen [1988],
Ruth and Arthur [2011],
Wu and Pan [2003]

Specific Functional Forms
for Krw, Kro, Pc

Kashchiev and Firoozabadi [2002]

Steady-State, i.e. ag—,‘c” =0

Li et al. [2003]

Piston-like Displacement, i.e.
F(x,t) = Gw(x*t)

_ qw(O,t)
Barenblatt et al. [1990], Approximate Solution
Zimmerman and Bodvarsson [1989], | for the Weak Form

Tavassoli et al. [2005b],
Tavassoli et al. [2005a],
Mirzaei-Paiaman et al. [2011]

Handy [1960], Chen et al. [1995],
Sanchez Bujanos et al. [1998],
Rangel-German and Kovscek [2002]

Existence of an Equivalent Constant
Capillary Diffusion Coefficient

Ruth et al. [2007]

Self-Similarity Behaves According to
to Specific Functional Form

Cil and Reis [1996],
Reis and Cil [1993]

Linear capillary pressure, i.e.

dpe _ Pc(So)
dx — L

Rasmussen and Civan [1998],
Civan and Rasmussen [2001]

Asymptotic Approximation
of Laplace Transformation for S,,

Zimmerman and Bodvarsson [1991]

Piecewise Linear S,, Profile

Table 2.1: Previously derived analytical solutions for two-phase flow with
capillary effects. To resolve the influence of capillarity, all of them
need to employ additional, non-essential assumptions that restrict
their applicability. On contrary, it can be shown 2.5 that the solution
given in [McWhorter and Sunada, 1990] is general. It can be viewed
as the 'Buckley-Leverett Analogue” for countercurrent SI (see 2.2).
This makes the derivation of further specific solutions unnecessary.

is easy to extend the argument to the case of spontaneous co-current

imbibition, which we therefore also state for the sake of completeness.

Furthermore, the obtained solutions are the exact early time solutions

for spontaneous imbibition, i.e. they are valid until the wetting front

reaches the end of the matrix block at some time t* for which an explicit

expression can easily be derived. Finally, we show that the solutions

may be viewed as the Buckley-Leverett analogue for two-phase flow

with capillarity.
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Figure 2.2: Situation of co-current imbibition where the displacement is unidi-
rectional (left), and counter-current imbibition (right).

Co- and countercurrent imbibition

For the case where capillary effects occur, we discern between two
different flow scenarios: Co-, and countercurrent imbibition. In the
former, the flow occurs in unidirectional manner, i.e. g+ = qw + gn,
and the conservation equation for S,, is given by the PDE (2.13). For
the countercurrent case, the tow phases move in opposite directions,
i.e. qw = —(qn, and thus q; = 0. This reduces the PDE (2.13) to the

nonlinear dispersion equation:

oS 0 0Sy
d)w = <D(SW)K>' (2.21)

2.4 EXACT INTEGRAL SOLUTIONS FOR TWO-PHASE FLOW

We derive exact integral solutions for the conservation equation (2.13).
The derivation follows [McWhorter and Sunada, 1990], and we only will
repeat the main ingredients for obtaining the solutions. Details for all
the intermediate steps can be found in [McWhorter and Sunada, 1990].
We consider the initial and boundary conditions (2.17), and additionally
assume that the inflow rate for q,, is given by

qo =gqw(x=0,t) = At~V (2.22)

where A cannot be chosen freely but depends on the fluid and porous
media characteristics, and will be determined below. From equation

(2.22) we immediately obtain for the net accumulated volume of wetting
fluid

t t

(qo(t) — F(S i) qu)dt = j GolT)(1 — f(Sw)R)dr

Vult) = J 0 (2.23)

0
= 2A(1 —f(S,i)R)tT1/2,
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where R = q¢/qp. Note that for unidirectional displacement, q; = qo
and consequently R = 1, and for counter-current flow, q; = R = 0. We

introduce the similarity variable
A=xt"/2, (2.24)

Since the saturation profile S,,(x, t) is a monotone function of (x,t), we
have S,, = S\w(A), or A = A(Sy).

Next, we want to introduce a fractional flow function for the case
of capillary dominated flow. Obviously, we cannot simply relate g,
to the total flow q¢ as we did for f(S,,), since for the counter-current
case we have q; = 0. Instead, we can relate q,,(x, t) to the total inflow
gqw(x = 0,t) = qo. Then for the case of co-current imbibition we have
gt = qo, but also can describe counter-current flow. For the case that the
initial wetting phase saturation is higher than the residual saturation,
the fractional flow function for the viscous case, f(S,,), is bigger than
zero. Thus, a part of the wetting phase would flow as described by
the viscous fractional flow function. Since we are only interested in
measuring the flow due to capillary effects, we subtract the contribution
of f. Altogether, we define a fractional flow function for spontaneous
imbibition as [Philip, 1973, McWhorter, 1971]

F(x, ) = W—W‘W, (2.25)
where f; = f(S,1), and we have normalized F by 1 — fiR such that
F(x=0,t) =1.

Employing the definition of F, equation (2.25), and using that qo =
At 12, the conservation equation for S,,, equation (2.13), can be ex-

pressed as

OSw _1)2 oF
—how 1—fR)—. .

() m At ( ﬂR)aX (2.26)

Then, the similarity variable A allows equation (2.26) to be written as

an ODE [McWhorter and Sunada, 1990]

2A(1—fiR) dF
¢ dSy’

A(Sw) = (2.27)

17
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Since F is defined in terms of g, and q,, depends on S,,, the ODE (2.27)

is subject to

1 forS,, =S
F= b ° (2.28)

0 forS,, =S§S;.

Employing the definition of A we can rewrite equation (2.27) to obtain

an expression for the x(S,,, t) profile (Fig. 2.1)

2A(1 — f;R)

3 F/(Sy)t"/2. (2.29)

X(SW/ t) -
Thus, if A and F(S,,) are known, the an analytical solution for the
X(Sw, t) profile can be obtained from equation (2.29).

To eliminate A from the ODE (2.27), we take the derivative of (2.27) with
respect to S,, which after some algebraic manipulations yields a second
order ODE for F(S,,)

d’F ¢ D

dSZ ~ T 2A2(1 —fiR) (F—fn) (2:30)

subject to (2.28). Here, f, = (f — ;)R- (1 — f;R)~! is the normalized
fractional flow function. Direct integration of the ODE (2.30) yields the

non-linear integral equation [McWhorter and Sunada, 1990]

Fo _Sw=Si & {(1 sw—si>

T So—Si | 2AZ(1—f;R)2 T S—S;
S0 (B—SUD . [ (B—Sy)D (231
|, e | ey dﬁ}

In the above equation, A is still unknown. Depending on A, F/(Sy) can
show three different behaviours, namely F/'(Sp) < 0, F/(Sy) = 0, and
F/(So) > 0. Equation (2.29) requires that no backflow of the wetting

phase occurs which is the case if F'(Sw) = 0 for all S,,; < Sw < So.

McWhorter and Sunada [1990] demand that F’(S,,) = 0. This gives an
explicit expression for A,

A? =

So _
d) J (Sw SO)D(SW)dSW. (2.32)

2(1—1iR) Js,  (F—1n)(Sw)
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Inserting A into equation (2.31) simplifies the expression for F

(1 s as)

(5-50)D(B)
(s “F=in)(B) dﬁ)

This completes the analytical solution. To calculate the x(S,,, t)-profile,

F(Sw) =

(2.33)

one first has to calculate F as in (2.33). Equation (2.33) is a non-linear
equation, and therefore has to be solved through some iteration (Table
2.2). Then A can be calculated from equation (2.32), and finally x(S,,, t)
can be obtained from equation (2.29) (Fig. 2.1). While the physical mean-
ing of F as a fractional flow function is clear from its original definition,
(equation (2.25)), the equation for A does not allow for an immediate
interpretation of its physical meaning. However, as we will see in the
next subsection, A is such that q is the inflow due to spontaneous
imbibition, and A therefore quantifies the porous material’s ability to
spontaneously imbibe.

In order to relate f to fractional flow, p. had to be negligible (equation
(2.16)). For F, no assumptions on pc, or the relative permeabilities have
to be made. Thus, F may be thought of as the capillary counterpart
to f in the Buckley-Leverett solutions (Figures 3.3,2.1). The analogue
to the Buckley-Leverett theory can be further clarified, if one rewrites
the expression for x(S,,, t) in terms of the net accumulated volume of
wetting fluid

X’(SWIt) = F/(SW)/ (234)

and consequently

qw = qoF'(Sw)- (2.35)

Thus, equation (2.34) and (2.35) are the analogue to equation (2.20),
and (2.19), respectively (Table 2.2). Observe that q,, satisfies equation
(2.35), and F is concave since F” < 0 for all Sy,. This property of F
and F” is independent of the actual parametrization for the capillary-
hydraulic properties according to equation (2.30). Thus, the profile
x(Sw, t) cannot develop a shock front for any parametrization (Fig. 2.1).
This is different from the Buckley-Leverett solutions where a shock front
might establish depending on the actual parametrization employed and
thus on the shape of f (for an example where f is not s-shaped for
the parametrization taken from [Bourbiaux and Kalaydjian, 1990] see
Figure 3.3). Indeed, if one naively tried to draw a Welge tangent to F
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2.5 EXACT ANALYTICAL SOLUTIONS FOR SPONTANEOUS IMBIBITION

in order to obtain S,,¢ for the case where capillarity is not ignored, the
concave shape of F would yield S, = S,,i. Mathematically, this is not
surprising, as the conservation equation (2.9) is parabolic, and thus all

its solutions are smooth.

2.5 EXACT ANALYTICAL SOLUTIONS FOR SPONTANEOUS IMBIBITION

In the previous section, it was assumed that the inflow of the wet-
ting phase adheres to qo(t) = At™'/?, and that A satisfies equation
(2.32). Thus, the analytical solution for the x—profile (2.29) derived by
McWhorter and Sunada [1990] together with the expression for A and F
derived by them, equation (2.33) until very recently was believed to de-
scribe the situation of forced imbibition with a specific time-dependence
of the inflow-rate (Table 2.1). However, as we will show in this section,
it is easy to prove that the t~/? time together with A according to
equation (2.32) are exactly such that the analytical solution describes
spontaneous imbibition, i.e. the situation where an inflow occurs due
to the gradient in saturations and the resulting gradients in capillary
pressure only. This should finalize the long search for an exact analytical
solution for spontaneous imbibition. For the case of counter-current
imbibition, this is part of our published results (see Publications, and
[Schmid et al., 2011]). However, it is easy to show that the boundary
condition also is redundant for the case of co-current imbibition, and

for the sake of completeness we will state this part, too.

To see why the boundary condition on the inflow is redundant, we
tirst look at a very simple thought experiment. Consider the situation
where we have a rock, saturated with a non-wetting liquid. We now
immerse that rock sample in a bath with wetting liquid, but do not
apply any pressure, i.e. we do not pump as we would in a core-flood
experiment. Let us assume, we want to model what happens to this
sample in a Buckley-Leverett system, i.e. gravity and capillary forces
are absent. What happens to that immersed sample? The answer is
simply: No flow would occur since gravity and capillary pressure are
absent. Now, let us consider the same situation, but when capillary
pressure is taken into account, and we ask the same question: What
happens to the immersed sample? Now the answer is of course: The
wetting phase will spontaneously imbibe into the rock. Thus, contrary
to the Buckley-Leverett system, for a model with capillary pressure
there exists an intrinsic inflow rate through the boundary of the sam-
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2.5 EXACT ANALYTICAL SOLUTIONS FOR SPONTANEOUS IMBIBITION

ple, determined by the capillary-hydraulic properties of the rock-fluid
system. In the analytical solution for imbibition presented in the last
section, however, we imposed an inflow rate through the boundary
condition by specifying qo and A. Obviously, this can only be consistent
with the intrinsic inflow rate if A and the \/’E—dependence describe the
intrinsic inflow rate. Indeed, this can be shown rigorously by exploiting
some of the features of the solution.

First, we discuss the v/t-dependence. Notice that if the inflow occurs

spontaneously, then it needs to adhere to Darcy’s equation, i.e.

wlx = 0,8) = 1(S0) gy — D(50) 5
s (2:36)
= £(S0)awlx = 0, )R ~ D(S0) &

which is equivalent with

D(So) 9Sw
(1—f(So)R) ox
B D(Sy)  dS, OA
T (1—f(Sg)R) dA ox
D(SO) dS,, tq/z
(1—f(Sg)R) dA ’

qW(X - O/t) - -

(2.37)

where the derivatives here denote the right hand side limes lim, o only
since the porous medium ends at x = 0. Equation (2.37) explains the
t~1/2-dependency: If Darcy’s equation for g, holds, then the conserva-
tion equation with capillarity satisfies (2.13). Non-linear equations of
(2.13) allow for self-similar solutions for S,, with similarity variable A
(equation (2.24)), and this in turn allows ¢, (x = 0,t) to be written as in

(2.37).

That A = —%dg—f follows from the condition F/(Sy) = 0. If an
inflow rate according to qo = At~'/? is imposed, such that the wet-
ting phase only flows into positive x-direction (Fig. 2.2), this requires
A > —%dg—){v. Otherwise we see from (2.37) that the imposed
unidirectional flow of the aqueous phase would be smaller than the
spontaneous inflow. Physically, this is only possible, if a fraction of the
wetting phase flows back, i.e. F/(Sy) < 0 according to equation (2.29).
A= —UP&%‘%—{V is therefore the smallest A that does not result in
back flow of qy,. Similarly, F/(So) = 0 is the smallest derivative value
that results into F'(S,,) > 0 for all S,,, and thus into q,, only flowing

into one direction. On the other hand, F/'(Sp) = 0 if and only if A is
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given by (2.32) such that A = —%dg—{” and A as in (2.32) must be
the same.
Altogether, we arrive at
D(S ds
do = quw(x =0,t) = — (So) Wi1/2 = At1/2, (2.38)

(1—f(So)R) dA

and equations (2.29) together with (2.33) and (2.32) are exact analytical
solutions for spontaneous imbibition, valid for arbitrary petro-physical
properties. A according to (2.32) measures the porous medium’s ability
to spontaneously imbibe a wetting phase.

Note that for the case that Sy — Sy, we have f — 0, but dpc/dS,, —
0o, and thus it is not immediately clear that D(Sy;) in the above is well
defined. However, it can be shown analytically [Chen et al., 1992] that
limg, 5. A(So) = Acr where

1/2

Acr = ds,, < 0. (2.39)

b Jsm (Sw—Si)D
2(1—1,)?

Si F_le

Thus, since equation (2.38) holds, it also must be true that limg s, . D(So) <

Q.

While the solutions have been derived for an infinite medium according
to the initial condition (2.17), the x—profile for any time 0 < t < oo has
a finite extend (Fig. 2.1). Thus, the solution is valid in a finite matrix
block as long as the water front has not reached the end of the block,
which is sometimes referred to as the "early acting period” of imbibition.
The time t* when the solutions stop to be valid in a finite matrix block
of length L can be obtained from setting x(S,,;, t*) = L which yields

2
. _ Lo
b <2AF’(Si)(1—ﬂR)) | (2.40)

For any t > t*, the end of the block influences the saturation profile,

and the profiles are no longer given by (2.29).

2.6 SUMMARY

Analytical solutions for spontaneous imbibition are central for many
applications. Due to the non-linear parabolic terms many attempts were
made to derive analytical solutions or approximations valid under specific
assumptions (Table 2.1).
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Buckley-Leverett Buckley-Leverett analogue
for viscous dominated flow | for spontaneous imbibition

x—profiles

x(Sw, 1) = L2l /(s,,) x(Sw, 1) = L2UF/(S,,)

e V,,: total volume injected | e V,,: total volume imbibed
e f can be s—shaped, e F is concave, no shock
shock front might develop | front

Fractional

flow f= %% F= —qw1/ i?:RﬁR
e viscous dominated flow | e capillary dominated flow
e co-current flow only e co-current flow: gy = q¢

e counter-cur. flow: g, = qo

o f given by a linear e I given by a nonlinear
equation equation

Inflow rate
e chosen by e intrinsic imbibition rate
experimentalist e quantified by A

Table 2.2: Overview and comparison between Buckley—Leverett solution and
the Buckley-Leverett analogue for spontaneous imbibition.

¢ We showed that the solutions derived in [McWhorter and Sunada,
1990] are an exact solution for spontaneous co-and counter-current
imbibition which previously had been overlooked. They are valid
for general petrophysical properties. This should finalize the decades-

long search for an analytical solution for spontaneous imbibition

¢ The saturation profiles can be calculated from equation (2.29) with
fractional flow function F (equation (2.33)). A given by equation

(2.32) measures a porous medium’s ability to imbibe.

¢ The analytical solution may be viewed as the capillary analogue
to the Buckley-Leverett equations with fractional flow function F
(Table 2.2)f. In contrary to the viscous fractional flow function f,
F is concave independent of the parametrization used for kp,, kin
and p¢; hence, the saturation profiles cannot develop a shock front,
but are smooth (Figure 2.1a, 2.1b).

Based on the analytical solutions for SI, we next derive a non-dimensional
time or scaling group for spontaneous imbibition that is valid for arbi-

trary petrophysical properties.



UNIVERSAL SCALING OF SPONTANEOUS
IMBIBITION FOR ARBITRARY PETROPHYSICAL
PROPERTIES

"I don’t know Karen, all these analytical solutions are really nice,
but I don’t think they can give you anything that experiments
or even some smart numerical code can't tell you.’

- A befriended experimentalist during a tea/coffee break

"The value of an idea lies in its usefulness.’

- Thomas A. Edison

If a sugar cube is dipped into tea, the fluid imbibes by spontaneous
imbibition, a physical mechanism central to many processes ranging
from oil recovery to seed-germination. The observation of the sugar-
cube already reveals a characteristic of SI, namely an initially fast in-rush
of the fluid that quickly slows down - i.e. a v/t—scaling in time. While
this behaviour has been known for more than 9o years, several dozen
scaling groups have been proposed in an attempt to resolve the influence
of other key parameters like wetting characteristics or viscosity ratios. To
resolve this influence, the complex underlying nonlinear physics and the
sheer number of possible parameter combinations, make an approach
solely based on experiments or numerical simulations infeasible, and
the influence of other key parameters needs to be resolved analytically.
Previously, this was not possible since a general analytical solution for
SI was missing.

In this chapter, we will rigorously derive the first scaling group for
counter-current SI that characterizes the influence of all parameters
included in the Darcy formulation, and provide the first closed theory
to predict the validity of specialized groups. Furthermore, we will
give strong evidence that the standard Darcy formulation is suitable
for describing SI, contrary to what has been hypothesized. Scaling

groups are central for many applications, and we will present two key



3.1 INTRODUCTION

applications: First, the group can serve as the long sought-after general
transfer rate for imbibition used in dual-porosity models. Second, it is
the so far missing proportionality constant in imbibition-germination
models for plant seeds. Note that throughout this chapter, we will focus
on spontaneous, counter-current SI only, and will denote it as SI for

simplicity.

3.1 INTRODUCTION

Spontaneous imbibition occurs if a wetting fluid (like water or brine)
enters a porous medium, and displaces a non-wetting fluid (like oil, gas
or CO,), driven by capillary forces only. It is a process that is of crucial
importance for the evaluation of the wettability of a rock [Jadhunandan
and Morrow, 1991, Morrow et al., 1994], and also is the key production
mechanism in the world’s largest remaining oil reservoirs [Morrow and
Mason, 2001]. Over 60 % of the world’s remaining oil reserves are stored
in naturally fractured carbonate rocks [Beydoun, 1998]. There, the oil
is locked in the low permeability rock matrix, surrounded by high
permeability fractures, and SI of water is often the only way by which
the oil is displaced from the rock matrix into the fractures and can be
produced. It also is important for the trapping of CO; in coal seams
and the creation of methane [Chaturvedi et al., 2009], steam migration
in geothermal reservoirs [Li and Horne, 2009], the mechanical stability
and distribution of gas hydrates [Clennell et al., 1999, Anderson et al.,
2009].

Scaling groups are used to characterize the influence of key parameters
on SI, and are essential in any context where SI needs to be understood.
For example, they are the bottleneck for an appropriate upscaling of
laboratory data [Morrow and Mason, 2001], lie at the heart of modelling
and simulating flow in fractured and heterogeneous reservoirs [Baren-
blatt et al., 1960, Warren and Root, 1963], or are needed as the starting
point for evaluating the feasibility of water injection into geothermal
reservoirs [Li and Horne, 2009].

The enormous practical importance of SI and scaling groups has led to
major research activity in that field. In order to resolve how key param-
eters influence SI and how they should be incorporated into specific
scaling groups, a great number of numerical studies on the continuum
scale [Pooladi-Darvish and Firoozabadi, 2000, Behbahani et al., 2006,
Ruth et al., 2000, Standnes, 2006, Hazlett, 1995, Delijani and Pishvaie,
2010] and the molecular scale [Martic et al., 2002], experiments (see
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Tables 3.3,3.4,3.6), and analytical solutions for special cases of SI (Table
2.1) have been proposed (Table 3.1). As mentioned above, however, de-
spite this intense research activity, and although the research on scaling
groups and SI spans more than 9o years [Lucas, 1918, Washburn, 1921],
not even apparently simple questions - like the influence of viscosity
ratios on SI - have been resolved satisfactorily.

In this chapter we derive the first universal scaling group for sponta-
neous, counter-current imbibition for arbitrary petrophysical properties.
We show the validity of our group by applying it to 45 published SI
studies for water-oil and water-air experiments for a wide range of
viscosity ratios, initial water content, wettability states, different rock
types and different boundary conditions (Tables 3.3,3.4,3.6).

Our group is derived rigorously from the general, exact solution of
the two-phase Darcy equation for the case of counter-current imbi-
bition, namely the solutions Buckley-Leverett analogue derived in
[McWhorter and Sunada, 1990] (section 2.3). No assumptions other
than those needed for Darcy’s model are made. No fitting parameters
are introduced. All the information present in the two-phase Darcy
equation is incorporated into our group. Consequently, our group acts
as a ‘'master equation’ that contains many of the previously defined
scaling groups as special cases (Tables 3.1, and 3.2). Due to the special-
ized nature of previously defined scaling groups, the question of their
range of validity was often left wide open, and we demonstrate how the
generality of our approach allows the prediction of the validity range
of specialized groups by the derivation of a proportionality constant
c (Table 3.2). This is the first predictive theory for evaluating scaling
groups.

Furthermore, we show that Handy’s conjecture is wrong. In an attempt
to link scaling groups to some physical property of the SI process,
[Handy, 1960] and subsequent authors [Schembre et al., 1998, Cil et al.,
1998, Li et al., 2002, Babadagli and Zeidani, 2004, Li and Horne, 2009]
speculated that SI can be characterized by the frontal movement of the
wetting phase. We show rigorously that although a scaling based on
the frontal movement gives better results than some previously defined
methods, SI systems are best characterized by the total volume of the
wetting phase imbibed.

Besides resolving these crucial ‘practical” questions on how key petro-
physical properties affect SI, our scaling group serves as a theoretical
tool to assess the validity of Darcy’s equation for describing SI. During
recent years, the theoretical framework on how to model SI itself has
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been debated. Both in the oil-community [Barenblatt et al., 2003], and
in related areas such as hydrology, physics and engineering [Mirzaei
and Das, 2007, Le Guen and Kovscek, 2006, Hall, 2007], it has been
proposed that the extended Darcy model is not suitable for describing
SI, and should be replaced by some extended Darcy model ([Mirzaei
and Das, 2007, Barenblatt et al., 2003], for a recent overview see [Hall,
2007]). Since our group is based on the validity of Darcy’s equation for
two-phase flow, the ability of our group to correlate experimental data
can be used to measure whether the Darcy formulation is suitable to
describe SI, and our results strongly suggest that accounting for these
non-Darcy effects is unnecessary.

Finally, we show that an exponential model for mass transfer closely
correlates experimental data independent of petrophysical properties.
This yields the first general expression for mass transfer due to SI.

The remainder of this chapter is structured as follows: In section 3.2 we
review known scaling groups, and related open questions. In section
3.3 we introduce two scaling groups that comprise all the information
present in the two-phase Darcy formulation: The first one, tq tront based
on an analytical expression for the frontal movement of the wetting
phase, and the second one, tg infiow based on on an analytical expres-
sion for the total volume of wetting phase imbibed. We correlate 45
published SI experiments with both groups, and show that while tg ront
already strongly improves previously proposed groups, it is tq inflow
that gives the best results, contrary to what has been conjectured by
Handy [1960]. Since tq4 infiow has a general form, this strongly indicates
that the standard Darcy model is suitable for describing SI, in contrast
to what has been speculated [Barenblatt et al., 2003, Mirzaei and Das,
2007, Hall, 2007]. In section 3.7 we extend the results to the case of
mixed-wet systems. In section 3.8 we show how this can be applied to
obtain a mass-transfer function for dual-porosity models that is valid
for arbitrary petrophysical properties and therefore overcomes all the
major limitations of previously proposed transfer functions for SI. We
finish the chapter with some conclusions.

3.2 PREVIOUSLY PROPOSED SCALING GROUPS AND OPEN QUESTIONS

Introduction

Scaling groups for SI were derived mainly by two ways. Either a curve
was fitted against a large body of experimental data where only one
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parameter, (like the characteristic length) was varied (e.g. [Zhang et al.,
1996]), or simplifying theoretical assumptions in the form of scaling
laws [Rapoport, 1955, Mattax and Kyte, 1962] or other non-essential
assumptions (Table 2.1) were employed. Both approaches yield scaling
groups whose applicability is strongly restricted. On the one hand, a
general theoretical understanding on which conditions are required
that a certain group is applicable, and when it would fail were often
left unanswered. On the other hand, the incorporation of three aspects
into scaling groups remain open which play a central role in practical
applications, namely the influence of viscosity ratios, the influence of

the initial water saturation, and the influence of wettability effects.

Viscosity ratios

The viscosities of the phases act as a weighting factor for the relative per-
meabilities, and it is unclear how this weighting should be formulated
depending on the viscosity ratio. It has long been known [Lucas, 1918,
Washburn, 1921] that for a negligible non-wetting phase viscosity pn, SI
is proportional to 1/,/1,,. Motivated by this result, a scaling group for
two-phase flow was proposed that assumed a scaling proportional to
1/y/Wwiin [Ma et al.,, 1997]. However, a great number of experimental
studies [Behbahani and Blunt, 2005, Fischer and Morrow, 2006, Fischer
et al., 2006] and numerical results [Behbahani and Blunt, 2005] showed
that for a viscid non-wetting phase, a scaling with the geometric mean
does not hold in general. Although subsequently many attempts have
been made to generalize predictions for arbitrary viscosity ratios [Ruth
et al., 2004, Hognesen et al., 2004, Fischer and Morrow, 2006, Fischer
et al., 2006, Mason et al., 2010, Standnes, 2010b,a, Reis and Cil, 1993], a
scaling group for arbitrary viscosity ratios, based on rigorous physical
considerations, remains unknown. Similarly, the question on how a
single relative permeability value should be chosen in dependence of
the viscosity ratio and such that it characterizes the strong non-linear
dependence on the wetting saturation over the whole saturation range

remains open [Morrow and Mason, 2001, Mason et al., 2010].

Initial water saturation

The influence of initial water saturation S,,; is two-fold: On the one side,
if a rock is aged at a certain S,,;, the ageing time t,, the rock and the oil

properties will influence the capillary-hydraulic properties depending
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on S,,; [Zhou et al., 2000, Xie and Morrow, 2001, Graue et al., 1999].
This is discussed in the next subsection. On the other hand, if a rock
is not aged, S,,; does not change the basic petrophysical properties
[Narahara et al., 1993], and can be at either residual water saturation
Swr or above. If Sy,; > Sy, then competition occurs between the low
capillary pressure force and the high phase mobilities.

Also, since the establishment of an S,,; > 0 can be difficult, many SI
experiments are performed for the case where the core is fully saturated
with oil or air [Zhang et al., 1996, Zhou et al., 2002], i.e. Sy = O,
while one would like to understand SI behavior under actual reservoir
conditions where S,,; > 0.

So far, both the effect of competition and the effect of different S,,,’s
have only been characterized for cases where the ratio of non-wetting
to wetting phase viscosity is close to one, and if the capillary pressure
and the wetting behavior can be characterized by a single value [Li and
Horne, 2006], which is unlikely in realistic porous media [Valvatne and
Blunt, 2004, Jackson et al., 2003]; it also blurs the difference between
different rock types, i.e. different capillary-hydraulic properties.

Wettability effects & mixed-wet systems

Capillary pressure curves and the phase mobilities not only depend on
the fluids, but also on the geometry of the pore structure [Valvatne and
Blunt, 2004, Jackson et al., 2003]. Consequently, even for the water-wet
case, they are different for different materials (Fig. 3.3,3.2). Up to now,
however, scaling groups try to characterize the influence of capillary
pressure and wetting by some single value that is representative of
the entire porous medium [Tavassoli et al., 2005a, Li and Horne, 2006,
Marmur, 2003, Zhou et al., 2002].

Even for the same rock type, however, this approach is unsatisfactory
if different wettabilities need to be compared. If a rock sample is aged
at different initial water saturations, S,,; controls how many pores are
exposed to the non-wetting phase, and thus S,,; controls how many
pores can change their wettability by the adsorption of the non-wetting
phase [Zhou et al., 2000, Xie and Morrow, 2001, Graue et al., 1999].
At the end of the ageing process, the rock contains both water-wet
(WW), and oil-wet (OW) pores, known as ‘mixed-wet” (MW) behavior
[Salathiel, 1973]. MW systems are of enormous practical importance
since the majority of the oil reservoirs are not WW, but MW [Anderson,
1987a,b]. SI experiments for MW systems show differences in recov-
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ery times that can be several orders of magnitude compared to WW
experiments [Zhou et al., 2000, Xie and Morrow, 2001, Graue et al.,
1999], specific relative permeabilities and p. curves (Figures 3.7a, 3.7b),
and are also characterized by two different residual oil saturations (Fig.
3.8). Although several attempts have been made to develop scaling
groups for a MW scenario, most of them try to lump these different
effects - differences in recovery times, different Sy,;’s, particular relative
permeabilities - into a single ‘wettability factor’ [Cil et al., 1998, Gupta
and Civan, 1994, Zhou et al., 2002, Lavi et al., 2008, Xie and Morrow,
2001]. This factor is derived from a mere empirical fit to experiments,
lacks any physical meaning, does not allow any theoretical insights and
has only limited predictive powers [Anderson, 1987a, Behbahani and

Blunt, 2005, Marmur, 2003].

Can Darcy’s model describe SI?

In addition to these three practical issues discussed in the previous
sections, the theoretical framework for describing SI itself has recently
become the centre of a debate in physics and engineering. While the
single-phase Darcy model can be derived rigorously from first principles
[Hassanizadeh, 1986], this is not the case for the multiphase extension
of Darcy’s equation [Hassanizadeh and Gray, 1993, Muskat, 1949], and
it has been proposed that it should be replaced by some anomalous dif-
fusion model [Barenblatt et al., 2003] (for recent reviews see [Hall, 2007,
O’Carroll et al., 2010]). A number of alternative formulations have been
proposed [Hall, 2007, O’Carroll et al., 2010] that introduce additional
parameters into the classical Darcy formulation. But it is unclear, if and
under which conditions which parameters should additionally be taken

into account.

The Buckley-Leverett analogue, universal scaling group and the validity of
Darcy’s equation

In the following, we rigorously derive a scaling group that is valid for
arbitrary petrophysical properties. For the first time, all three aforemen-
tioned practical aspects - the influence of viscosity ratios, the influence
of initial water saturation, and the influence of wetting characteristics -
will be accounted for.

Our scaling group is derived rigorously from an exact solution of the

extended Darcy equation (Chapter 2). We do not make any assumptions
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other than those needed for Darcy’s model. We do not introduce any
titting parameters. We show that our group is a ‘'master equation’ for
scaling groups, that contains many of the previously defined groups as
special cases, and we demonstrate how the generality of our approach
allows the prediction of the range of validity of specialized groups
(Table 3.2). Furthermore, we will give strong evidence that the classical
Darcy description for SI is appropriate.

3.3 DEFINING A UNIVERSAL SCALING GROUP FOR SI: CUMULATIVE

INFLOW VS. FRONTAL MOVEMENT
Introduction

The analytical solutions for two-phase flow with capillarity introduced
in section 2.3 can be used to introduce a scaling group that incorporates
all the information present in the two-phase Darcy equation. There
are two possibilities: The scaling group can be based on the frontal
movement of the wetting phase, or on the cumulative inflow Q. (t).
Handy [1960] and subsequent authors [Cil et al., 1998, Schembre et al.,
1998, Li et al., 2002, Babadagli and Zeidani, 2004] conjectured that it
is the frontal movement that characterizes imbibition. Since we can
resolve the nonlinear equations exactly, we can rigorously show that
although this scaling already gives correlations superior to some of
the previously defined scaling groups, SI is characterized best by the
cumulative inflow.

To derive a scaling group from equation (2.29), we first normalize x by
the characteristic length L. through x/L. where [Ma et al., 1997]

_ |V
L. = ST AL (3-1)

Vy is the bulk volume of the matrix, A; the area open to imbibition with
respect to the ith direction, and 14, is the distance that the imbibition
front travels from the imbibition face to the no-flow boundary (Fig.
3.1). While the question of how to incorporate the influence of viscosity
ratios, wettability information, and so forth into scaling groups is open,
the correct incorporation of different boundary conditions (Fig. 3.1)
with the help of L. has been confirmed [Ma et al., 1997, Zhang et al.,,
1996]. For cases where A; is not constant in time, but grows because of
for example slowly filling fractures, this time-dependency needs to be

included in L. [Rangel-German and Kovscek, 2002, 2006]. However, this
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Figure 3.1: Counter-current SI in cores with different boundary conditions. (a)
one end open (OEO), (b) two-ends open (TEO), (c) two ends closed
(TEC), and (d) all faces open (AFO).

dependency can be treated independently of petrophysical properties,
and therefore we will not discuss it here.

In the following, we first will introduce two new scaling groups - one
based on the frontal movement of the wetting front, one based on the
cumulative inflow of the wetting phase. Subsequently, we compare them
to the commonly used group by Ma et al. [1997] for the data set shown
in Tables 3.3 and 3.4. Then we will demonstrate how the generality of
our approach can be used to predict the range of validity of specialized
groups, and how the generality of the scaling group based on Q,, can
help to measure the validity of Darcy’s equation.

Scaling groups

We first introduce the scaling group tq ront that is based on the frontal
movement. The position of the front follows from equation (2.29) with

Sw = Swi, and motivates the introduction of tg front as

td,front = (%ﬁ)z = <£€CF/(Swi))2t- (3-2)

If in contrast the normalized cumulative inflow Q.,(t)/($L.) is used,

then we obtain

S = G

— Tct.

td,inflow - (
(3-3)

Two remarks are in order. First, the above scaling groups try to predict
the influence on recovery over time if all the parameters are known.
This approach is fundamentally different from dimensionless groups
that try to predict parameters like S, from dimensionless groups (e.g.
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Figure 3.2: Capillary-hydraulic properties vs. effective saturation. Capillary-
hydraulic properties of Berea sandstone and a synthetic porous
material (-) [Valvatne and Blunt, 2004] from pore-scale predictions ,
a history match that assumes a Darcy model for sandstone (-) [Bour-
biaux and Kalaydjian, 1990], and a non-Darcy-model [Schembre
and Kovscek, 2006] for diatomite (-). (a) Dimensionless J-function.
(b) Relative permeability for the wetting (—) and non-wetting phase

(=)

[Anton and Hilfer, 1999]).

Second, the scaling group based on normalized volume conceptually
is the same as the one used EOR for viscous dominated flow (e.g.
[Lake, 1989, Chapter 5]). The difference of course lies in the fact that
we consider capillary driven flow. This results in a v/t—dependency of
the inflow (Chapter 2.5), and requires that Q,(t) be squared contrary
to the t—dependency for viscous dominated floods where Q,,(t) is not
squared.

We next show that tg infiow is suited best to describe SI by correlating 42
published experiments, and comparing tq front, td inflow and the often
used group by Ma et al. [1997]. This comparison shows that tg infiow iS
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Figure 3.3: Fractional flow functions f (——) without capillarity and its capillary
counterpart F (—) vs. effective saturation. The three cases are for
pore-scale predicted [Valvatne and Blunt, 2004] capillary pressure
and relative permeability functions for Berea sandstone and a
synthetic porous material (-) and parameter set AAo1, a history
match that assumes a Darcy model for sandstone (-) [Bourbiaux and
Kalaydjian, 1990] and parameter set GVB-3, and a non-Darcy-model
[Schembre and Kovscek, 2006] for diatomite (-) and parameter set
Z-2. The parameter sets are listed in Tables 3.3 and 3.4, and the
capillary pressure and relative permeability functions are shown in
Figure 3.2.

the general scaling group for SI, and forms the so far missing center
piece for upscaling, modelling and simulating diverse systems where SI
plays a role. T can be thought of as an inverse characteristic time that
quantifies both the influence of the capillary-hydraulic properties and
the characteristic physical dimensions. Also, tg4 inflow can be used as a
theoretical tool to assess the validity of Darcy’s equation.

3.4 VALIDITY OF THE UNIVERSAL SCALING GROUP FOR THE WA-
TER-WET CASE

To demonstrate the validity of our scaling groups, we correlated them
with 42 published imbibition studies for water-wet conditions. (For the
correlation of the different degrees of mixed-wet systems, see section
3.7). In the experiments the recovery Rec of the non-wetting phase was
measured over time, and we correlated the physical time with tg frontat
and tq inflow, respectively. The experimental data sets were chosen such
that the three central open aspects of scaling groups - a wide range of

viscosity ratios with the special case of u, tending towards zero, the
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presence of an initial wetting phase, and different capillary-hydraulic
properties - are covered. The experiments were performed on three dif-
ferent porous materials, a synthetic porous medium, Berea sandstone,
and diatomite (Fig. 3.2), a wide range of non-wetting phase to wetting
phase viscosity ratios (0.008 < pnw/mw < 64), initial water content
(0% < Sp < 40%), characteristic length-scales (0.54 cm < L. < 40cm),
and water potential (18% < 1 —Sy,,i —Snr < 70%, where Sy, is the
residual saturation of the non-wetting phase). The wetting phase was
water and the non-wetting phase oil or air. Tables 3.3 and 3.4 list all
experimental conditions.

Figures 3.4 and 3.5 show the correlation of the data with tg infiow and
td front- FOr comparison, we also correlated the data with one of the
most commonly used scaling groups tqmq (Figures 3.4 and 3.5, and
Table 3.1 for the definition of ); the improvement is significant and
immediately apparent. The correlation achieved by tqinfiow gives the
best results and indicates that SI is characterized best by the cumulative
inflow and not by the frontal movement that previous authors assumed
as a starting point for deriving specialized scaling groups [Handy, 1960,
Cil et al., 1998, Schembre et al., 1998, Li et al., 2002, Babadagli and
Zeidani, 2004]. In the remaining parts of this thesis we therefore will
only discuss tgq inflow, and refer to it as tq for simplicity. tq reduces
the maximal horizontal scatter (i.e. the one for a fixed recovery rate)
from a factor of greater than 100 down to approximately 5, and the
maximal vertical scatter (i.e. the one for a fixed t4) from approximately
0.8 to 0.3. This is a remarkably good result given the widely different
experimental conditions and thus experimental noise.

To further improve the scaling, one should use the capillary-hydraulic
properties for the specific sample when calculating t4. Most data sets
available in the literature only report SI measurements or (K, ki)
relationships, or p. curves. In order to calculate t4 we therefore as-
sumed that the (kyw, krn, pc) sets measured for a certain rock type are
representative for a given material, see section 3.6.

It is also interesting to note that the data in Figure 3.5 (b) scatters
around the curve given by the analytical solution that has been calcu-
lated for data where the sample-specific capillary-hydraulic properties
are known. It is not clear, whether this is true only for particular data
sets, or shows that the analytical solution is a ‘'master curve’ for early
times on which all data would collapse if sample-specific predictions
for the capillary-hydraulic properties were known. One would have to
calculate the analytical prediction for more data sets where the sample
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specific properties are known. As we explained, however, complete data

sets are rare.

(a)

Recovery %
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Recovery offg the displaced fluid vs. dimensionless time. (a) Time
scaled according to Ma et al. [1997]. The scaling does not result in
the collapse of the data onto a single curve. The scaling group can
only result in a good correlation if the proportionality constant ¢
(Table 3.2) is the same for all the data sets. (b) Time scaled with
ta front. This scaling results in an improved scaling compared to
the one shown in (a).
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Figure 3.5: Recovery of the displaced fluid vs. dimensionless time. (a) Time
scaled according to Ma et al. [1997] (repeated from Fig. 3.4 (a)). The
scaling does not result in the collapse of the data onto a single curve.
(b) Time scaled with tg inf1ow. This scaling results into a curve with
little scatter of the data that strongly reduces both the horizontal
and the vertical scatter compared to tqmaq and tq front (Fig. 3.4
(b)). This indicates that SI is best described by the cumulative
inflow of the wetting phase rather than the frontal movement. Since
td,inflow comprises all the data present in the Darcy formulation
this also indicates that the Darcy model is suitable for modelling
SI. The analytical solution is valid as long as tq < tjj = t.t*. To
correlate the behaviour for the whole time range, an exponential
model [Aronofsky et al., 1958] is used.
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3.5 PREDICTION OF THE VALIDITY OF SPECIALIZED GROUPS

The Lucas-Washburn correlation together with some of the previously
defined scaling groups are listed in Table 3.1. Previous scaling groups
are related to our scaling group through a proportionality factor c (Table
3.2). Since our group is the general one, explicit expressions for c can
be derived. It is now apparent that previous authors (unknowingly)
derived successively better approximations to the integral in equation
(2.32), making the proportionality constant c increasingly simple. Many
of the previously derived t4q can be obtained from simple back-of-the-
envelope calculations as special cases of equation (3.3) (see Appendix
A).

Equation (3.3) can also be used to derive new scaling groups that are
tailored for a specific SI system by using an approximation for A that
is appropriate for that specific case. The ability of such a special ty4
to correlate a set of experiments depends on the similarity of ¢ for
the individual data sets, and thus allows for a rigorous prediction of
their validity and a judgment as to which parameters are negligible.
This property can be used to derive the validity of some of the phe-
nomenologically derived groups like that of [Ma et al., 1997] (Table
3.2, Figures 3.4 and 3.5). The scaling group in Figure 3.5(a) can only
give a good correlation if the proportionality constant ¢ (Table 3.2) is
similar for the different data sets. This is the case for some of the SI
experiments on sandstone (x in Fig. 3.5(a)) and the synthetic material
(+ in Fig. 3.5(a)) from which Ma et al. [1997] derived the correlation
phenomenologically. Here, the viscosity ratio is approximately one, the
initial fluid content is similar, and the capillary hydraulic properties
were the same. These conditions result in a similar functional form of F,
similar integral boundaries, and the same integrand for c, respectively.
Depending on which assumption is violated, five sub-groups differ-
ent from the (x,4)-curve emerge: The sub-group for (i) different Sy,
different capillary-hydraulic properties (diatomite with (ii) high and
(iil) low pnw/pw), (iv) sandstone with strongly varying pn/py,, and (v)
sandstone containing gas, i.e. a non-wetting phase with neglectable p,,.

36 DO WE NEED DYNAMIC EFFECTS IN p TO MODEL S1?

While the main part of this chapter is dedicated to derive the first
scaling group that rigorously includes all the information given in the
standard Darcy formulation, the validity of t4 for such a wide range
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Author Dimensionless time Assumption
Lucas [1918], tq o %L]—%ruiwt Un < My
Washburn [1921]

Rapoport [1955], ta o 5/ §is Hn = Hw
Mattax and Kyte [1962]

Ma et al. [1997] tg o L2 \/W Hn &ty

Zhou et al. [2002]

ey Bt () = ()

Behbahani and Blunt [2005] tq o t21/§0A,t MW: Ay, < Ay
Li and Horne [2006] tq o L1_2 %G(%)* F(x,t) = qu:v% tt))

- (Sgc—So)t

This work

J*
tq O<(¢L >2t -

Author

Table 3.1: The Lucas-Washburn scaling and some of the recently defined t4.

Characteristic values are denoted by ()*, and S(t) = f:dfg) SerrdSecrs-
It is now apparent, how previous authors (unknowmgly) have de-
rived successively better expressions for t4 by giving approximations
to the integral in equation (2.32). A specific tq will give a good scal-
ing if ¢ (Table 3.2) is the same for the different data sets, and thus
c can be used to predict the validity of a special scaling group (Fig.

3.5).

Proportionality constant

Lucas [1918],

c~ J‘SBC (Sw— S0 krw] (Sw) dS

(Sw)

Washburn [1921]

Rapoport [1955],

c = J‘SBC Sw SO \/krnkrw] [Sw)ds

F(Sw) w
Mattax and Kyte [1962]
Ma et al. [1997] c fgg’c (SW*SO)\Q‘ST;YWI/(SW) dsS,,
~ SBC (SW*SOH/(SW)
Zhou et al. [2002] c fso Sy dSw
Behbahani and Blunt [2005] ¢ ~ fgg’c st
Li and Horne [2006] C~ F(S1* ]

This work c=

—

Table 3.2: The proportionality constant c for the Lucas-Washburn scaling and

for some of the recently defined tq4 (Tables 3.1 and 3.2). A specific tq
will give a good scaling if ¢ is the same for the different data sets,
and thus ¢ can be used to predict the validity of a special scaling

group (Fig. 3.5).

of data sets also has theoretical implications: It strongly indicates that
a functional relationship for p. which additionally includes dynamic
effects is not necessary for describing SI at the core scale.

In the foregoing analysis, it was assumed that p. is a unique func-
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Figure 3.6: Recovery of the displaced fluid vs. square root of dimensionless
time for (a) WW, and (b) MW data. The individual data sets can
be correlated by a linear function that emanates from zero. Conse-
quently, dynamic effects in capillary pressure can be neglected. Cor-
relating data for t, =48 hrs with t4 leads to more scatter caused
by weaknesses in the pore-scale predicted capillary-hydraulic prop-
erties.

tion of S,, only. Recently, the dependence of p. on S,, only has been
questioned by several authors (for recent overviews see e.g. [Goel and
O’Carroll, 2011, Bottero et al., 2011, Manthey et al., 2008]), and it has
been proposed that an additional dependence on T - 9S,,/0t should
be included, where 7 is a proportionality factor that possibly depends
on material characteristics, the fluid saturations, and the length scale.
Some authors ([Barenblatt et al., 2003, Le Guen and Kovscek, 2006], for
a recent overview see [Hall, 2007]) argue that non-equlibrium effects are
especially important for the case of counter-current SI due to the filling
process of the pores by the wetting fluid. Several models have been
proposed to incorporate this dynamic effect. For example Hassanizadeh
and Gray [1990] and Kalaydjian [1992] consider the linearized form

0Sy

Pn—Pw—Pc = —T(Sw) - ot (3.4)

Obviously, T determines the importance of the dynamic effects, and
while it is known that T can vary over several orders of magnitude
[Manthey et al., 2008], the functional dependence of 1, and when/if
dynamic effects have to be considered, remains unclear. Thus, recent
work has tried to shed light on the exact dependence of T, to resolve the
in part conflicting results for different models, and provide the often
missing experimental confirmation for the theoretical considerations
[Goel and O’Carroll, 2011]. In this context, the scaling group t4 can
be used to measure the validity of the standard formulation for p
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for describing SI. If dynamic effects are not negligible, this has two
consequences for the scaling with t,.

First, the incorporation of the saturation change makes equation (2.21)
pseudoparabolic whose solutions would deviate from the v/t depen-
dence [Spayd and Shearer, 2011, Hulshof and King, 1998] the more
important dynamic effects become. Consequently, the v/t given through
tq as such should fail. Solutions to equations of the non-linear disper-
sion type like that for SI, equation (2.21), show self-similar behaviour
according to S,, o xv/'t ((McWhorter and Sunada, 1990], see previous
chapter). There has been a considerable debate in the literature (for
recent reviews see e.g. [Alava et al., 2004, Cai and Yu, 2011, Hall, 2007])
as to when the v/t scaling first proposed by Lucas [1918] and Washburn
[1921] for describing counter-current imbibition holds. However, pub-
lished experimental data strongly suggests that deviations from this
scaling in time only occur for cases where either the porous medium
was not rigid (e.g. imbibition into paper, textiles, or rock samples with
clay inclusions) [Alava et al., 2004, Cai and Yu, 2011, Hall, 2007], or grav-
ity and evaporation played a role, which leads to pinning of the wetting
fronts at late times (e.g. [Alava et al., 2004, Delker et al., 1996, Dubé
et al., 2001]). Indeed, plotting recovery against /t4 for the experimental
results given in Tables 3.3, 3.4, and 3.6 reveals that for early times recov-
ery depends linearly on v/t for data sets obtained under widely varying
experimental conditions (Figure 3.6). Thus, assuming a Vit scaling and
consequently assuming that dynamic effects in capillary pressure are
negligible, is strongly supported. What is more important, however,
is the fact that the data sets we chose vary all the key parameters. If
dynamic effects played any role, one would expect that at least one data
set significantly diverges from the v/t scaling. We do not observe this.

Second, if T really depends on material properties as has been sug-
gested, then the wide parameter variation of the data sets we use should
also lead to a wider horizontal spread in Figure 3.5. As the scaling with
tqmq has shown, failing to account for relevant parameters results in
the emergence of different subgroups for the different data sets. While
the maximal horizontal scatter for t4 (Fig. 3.5(b)) is still around 5, the
reported values for T vary several orders of magnitude [Manthey et al.,
2008]. Thus, if dynamic effects matter for SI at the core scale, one should
obtain a significantly worse horizontal spread. We also note here, that
although we speak of length-scales typical for the core scale, we chose
data sets where L. varies by an order of magnitude (Tables 3.3 and
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3.4). Thus, if T depended on the length-scales as has been suggested
[Bottero et al., 2011], this also should result in a wider horizontal spread.

To rigorously test the second part, the method used for calculating
the capillary-hydraulic properties in A must not presume the validity of
the standard Darcy equation. It is common practice [Gummerson et al.,
1979], to obtain kyw, krn, and p. from solving an inverse problem that as-
sumes the validity of the standard Darcy equation. Obviously, if all the
capillary-hydraulic relationships in the sample dataset were obtained
this way, then t4 defined in equation (3.3) would give an excellent cor-
relation, since it is based on an exact solution of Darcy’s equation, and
the constitutive relations would have been determined to fit the data
set, possibly hiding the missing of T. The question whether the stan-
dard Darcy model without dynamic p. relations model is applicable for
capillary flow would thus be bypassed. For the experiments performed
on Berea sandstone and the synthetic porous medium, we therefore use
pore scale predictions of the relative permeabilities and the capillary
pressure [Valvatne and Blunt, 2004] (Fig. 3.2), rather than modelling
(Krw, K, pc) through inverse simulation of experimental data.

For the synthetic material, only k;,, and k;» have been measured. How-
ever, the curves closely resemble that for the sandstone, which indicates
that the two materials have a similar pore structure. Therefore the pore
scale predictions made for the sandstone sample were used. For the
water-air experiments on sandstone, the measured and pore scale pre-
dicted k;,, and k., were similar to that of the water-oil system [Valvatne
and Blunt, 2004]. Hence, we used the same (kyy, ki, pc)-set as for the
water-oil system. To account for effects of K and surface tensions o, we

used a Leverett |—scaling [Bear, 1972]

Pc=0 9](86)/ (3-5)

where S = (Sw — Swr)/(1 — Sty — Sir) is the effective saturation, and
Swr is the residual water phase. We note again, that we used the same
(Krw, ke, J)-set for a certain material, rather than direct measurements
for the specific sample. To further reduce the scatter, sample specific
relations should be used. For comparison with the pore scale predicted
relations, the capillary-hydraulic properties obtained from a standard
Darcy and a history match that includes a dynamic p. were used for
some of the sandstone experiments and the diatomite experiments,
respectively. For the general scaling tq, the data sets collapses onto a
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Sample BC L. K [0) Ly n o So
[em]  [mD] [-]  [Pa-s] [Pa-s]  [mN/m] [-]

AAo1 AFO 0.5364 5108 0.218 9.67-107% 0.03782 50.62 0
AAo2 AFO 08029 4985 o0.219 9.67-107* 0.03782 50.62 0
AAo3 AFO 0.9723 5198 0222 9.67-107* 0.03782 50.62 0
AAog AFO 1.089 5217 0224 9.67-107% 0.03782 50.62 0
AAos AFO 1.1837 505.5 o0.215 9.67-107* 0.03782 50.62 0
AA06 AFO 13059 501.6 0218 9.67-107* 0.03782 50.62 0
BC21 OEO 6.092 481.9 0.213 9.67-107% 0.00398 47.38 0
BC13 OEO 4.998 503.6 0.209 9.67-107% 0.03782 47.38 0
BC22 OEO 5.687 496.8 0.208 9.67-107* 0.1563 5177 0
BD15 TEC 13506 523.8 o0.214 9.67-107* 0.00398 47.38 0
BD14 TEC 13506 518.9 0.218 9.67-107* 0.03782 50.62 0
BD18 TEC 13506 509.7 0.218 9.67-107% 0.1563 5177 0
BA3 TEO 13.87 9o7.1 o0.214 9.67-107* 0.03782 50.62 0
A1o0 OEO 9.7 4000  0.472 0.001 0.0115  49.0 0.189
A10-20 OEO 19.7 3430 0.453 0.001 0.0115  49.0 0.187
A10-30 OEO 30.0 3830 0.453 0.001 0.0115  49.0 0.151
A10-40 OEO 40.0 3550 0.478 0.001 0.0115  49.0 0.172
A10-85 OEO 84.7 3000 0.478 0.001 0.0115  49.0 0.164
A10-VI-20o TEO 9.8 3200 0.456 0.001 0.0115  49.0 0.164
A10-X-20 AFO 0.85 2300 0.458 0.001 0.0115  49.0 0.132

Table 3.3: Parameter sets and experimental boundary conditions (BC) used
in [Zhang et al., 1996, Hamon and Vidal, 1986], respectively. The
porous material in [Zhang et al., 1996] was a Berea sandstone, the
ones reported in [Hamon and Vidal, 1986] were performed on a
synthetic porous material. For all the experiments, the wetting-phase
was water, and the non-wetting phase was oil, and for the ones
reported in [Babadagli and Hatiboglu, 2007] the non-wetting phase
was air. The respective parameters A for these are listed in Table 3.5.

curve with little scatter (Fig. 3.5) showing that the behaviour is well

characterized by t4. Since t4 contains all the information present in

the Darcy model, and its validity has not been assumed to calculate

the capillary-hydraulic properties in A, this strongly indicates that the

Darcy model is suitable for characterizing and modeling SI at the core

scale.

However, it is important to point out, that for viscous or gravity domi-

nated flow the rate of change in saturation would be higher, and there-

fore the influence of non-equilibrium effects might not be negligible

any more.
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Sample BC L. K [0) oy Un o So
em] [mD] [-] [Pa-s] [Pa-s]  [mN/m] []

Z-2 OEO 9.5 6.1 072 0001 84-107% 514

Z-3 OEO 95 7.9 077 0001 25-107%2 457

Z-4 OEO 9.5 2.5 078 o0.001 84-107% 514
Z-5 OEO 9.5 6.0 068 o0.001 84-107% 514
GVB-3 OEO 29.0 124.0 0.233 0.0012 0.0015 35.0

GVB-4 TEO 145 1180 0.233 0.0012 0.0015 35.0

EV6-22 OEO 7.18 109.2 0.18 0495 0.0039 28.9
EV6-18 OEO 7.62 1400 0.181 0.001  0.063 51.3
EV6-21 OEO 7.7 107.3 0.187 0.0278 0.0039 34.3
EV6-13 OEO 7.75 1132 0.187 0.001  0.0039 50.5
EV6-14 OEO 7.66 1272 0.178 0.0041 0.0039 41.2
EV6-20 OEO 7.52 1329 0.181 0.0041 0.0633 41.7
EV6-16 OEO 7.78 136.8 0.181 0.0278 0.0633 34.8
EV6-23 OEO 7.36 132.1 0.179 0.0977 0.0039 31.3
EV6-15 OEO 7.3 107.0 0.183 0.4946 0.0633 29.8
EV6-17 OEO 754 128.1 0.19 0.0977 0.0633 32.1

F-11 OEO 10.16 500.0 021 0.001 1.8-10 729
F-12 OEO 1524 500.0 021 0.001 1.8-107 729
F-14 OEO 10.16 500.0 0.21 0.001 1.8-107 729
F-16 OEO 508 5000 o0.21 o0.001 18-107 729
F-16 OEO 10.16 500.0 021 ©0.001 1.8-107 729

© © O O O OO0 0 oo o0 0 o o 0 0|0 0|0 o o o

F-18 OEO 1524 5000 o0.21 o0.001 1.8-107 729

Table 3.4: Parameter sets and experimental boundary conditions (BC) used in
[Zhou et al., 2002, Bourbiaux and Kalaydjian, 1990, Fischer et al., 2006,
Babadagli and Hatiboglu, 2007], respectively. The porous material in
[Bourbiaux and Kalaydjian, 1990, Fischer et al., 2006, Babadagli and
Hatiboglu, 2007] was a Berea sandstone, and for the ones reported in
[Zhou et al., 2002] a diatomite rock was used. For all the experiments,
the wetting-phase was water, and for the experiments reported in
[Zhou et al., 2002, Bourbiaux and Kalaydjian, 1990, Fischer et al.,
2006] the non-wetting phase was 0il, and for the ones reported in
[Babadagli and Hatiboglu, 2007] the non-wetting phase was air. The
respective parameters A for these are listed in Table 3.5.

3.7 SCALING GROUP FOR MIXED-WET SYSTEMS
Introduction: Induction times and two different Sy,
The data set used in Figures 3.4, 3.5 were for widely varying conditions,

but excluded one scenario: Mixed-Wettability (MW). The majority of

reservoirs are not water-wet, but mixed-wet [Anderson, 1987b]. The
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Sample A Sample A Sample A

[(m/y/sl [(m/y/sl [(m//s]
AAo1 |7.307-107° || A1o=20 | 3.1-107 | EV6-21 | 1.86-107°
AAo2 |7.287-107° | A1o-30 |3.18-107 || EV6-13 | 7.48-107°
AAo3 | 7.44-107° A10o-40 |[3.33-107 || EV6-14 | 4.45-107°
AAog | 745-107° A10-85 |[3.13-107 || EV6-20 | 245-107°
AAos | 7.21-107° | A10-VI-20 | 3.17-107° || EV6-16 | 1.36-107°
AAo06 | 7.27-107° || A1o-X-20 | 2.92-107> || EV6-23 | 9.92-10~

BC21 | 1.25-107° Z-2 3.41-107 || EV6-15 | 3.93-107
BC13 | 7.05-107° Z-3 1.35-107 || EV6-17 | 8.59-1077
BC22 | 4.46-107° Z-4 272-10 || F-11 |275-107°
BD15 | 1.28-107 Z-5 286-107° || F-12 |2.81-107

BD14 | 7.34-107° GVB-3 [948-10° || F-14 |1.95-107
BD18 | 4.65-107° GVB-4 |9.67-107 | F-16 |229-107
BA3 | 4.65-107° EV6-22 |4.29-10~7 || F-16 | 1.60-107
Aio | 3.36-107 EV6-18 | 3.74-107% || F-18 |2.07-107

Table 3.5: A for the data sets listed in Tables 3.3 and 3.4.

term ‘mixed-wet” was coined by Salathiel [1973] for rock that contains
both water-wet (WW) and oil-wet (OW) pores. On the macro-scale, MW
systems are characterized by a pc-curve that becomes negative for some
Sw > S}, (Fig. 3.8). If the flow is only driven by capillary forces, then
SI stops although S,, < Sy, i.e. when the oil is still mobile [Anderson,
1987a,b]. If S,, > S;,, then p. < 0 would result into oil being imbibed
until S,, is such that p. = 0. The difficulty of deriving a scaling group
for MW-systems is therefore twofold: First, the behavior of the p. curve
(Figs. 3.7b,3.8), results into two different residual oil saturations: One
at which SI stops Sy, s1, and one to which S, could be reduced after
a water flood, Sy, wr. So far, it is unclear, how a scaling group should
account for that. Second, SI experiments for MW systems show that the
time until imbibition in a MW system starts can be up to four orders
of magnitude different compared to a strongly WW system [Xie and
Morrow, 2001, Zhou et al., 2002, Tong et al., 2002]. Previous authors
tried to include this retarded behavior, known as ‘induction time’, by
including an expression on the dynamic oil-water contact angle [Cil
et al., 1998, Gupta and Civan, 1994, Zhou et al., 2002, Lavi et al., 2008,
Xie and Morrow, 2001], as suggested in the original Lucas-Washbburn
equation [Lucas, 1918, Washburn, 1921].

However, Behbahani and Blunt [2005] showed that this approach is
flawed. They performed pore-scale simulations on MW Berea Sand-
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stone from which the obtained relative permeability and p. curves. The
curves were then used in a continuum-scale simulation that could re-
produce the MW SI data reported in [Zhou et al., 2002]. The pore-scale
predictions for k., kro and pe (Figs. 3.7b,3.7a) revealed that although
pc declines for increasingly MW systems, this decrease is less than one
order of magnitude, and thus negligible compared to the several orders
of magnitude decline in induction time. In contrast, they found that
the decrease in relative permeabilities was significant (Fig. 3.7a), and
concluded that a simple change in contact angle and thus p. could
not explain the induction times, and that any attempt to include the
characteristics of MW systems via an effective contact angle would be
flawed. Similarly, other pore-scale studies [Van Dijke and Sorbie, 2003,
2002, Valvatne and Blunt, 2004, Jackson et al., 2003] reveal that in the
pore-space there is a wide range of advancing contact angles, and not
just a single one.

In summary, if one tries to capture the behavior of a MW system via
a single, effective contact angle, this angle is merely an empirical fit
without any physical meaning [Anderson, 1987a, Behbahani and Blunt,
2005, Marmur, 2003]. Any tq for MW systems must combine the infor-
mation on phase mobilities and p. and account for the role of Sy, 51 and
Snr,WF-

In the following subsection, we propose two simple methods for in-
corporating the information on Sy, s; and Sy, wr such that the com-
plete information on the capillary-hydraulic properties is included. We
validate both methods, by correlating some of the MW experiments
reported in [Zhou et al., 2002], compare the correlation with the one
obtained for the WW experiments, and give recommendations on which
method to use. Furthermore, we show how the specific group tqgen
proposed by Behbahani and Blunt [2005] is another special case (Tables
3.1, 3.2) of our universal scaling group that can be used if the complete
information on Ky, kro and p. is not known. We derive the respective

proportionality constant and discuss its implications for the validity of

ta,Ben-

Defining an appropriate D(S,,) for MW systems

The analytical solution in equation (2.29) was derived assuming bound-
ary conditions of some Sgc > Sp. The difference in saturation level will
be ‘smoothed out” as long as D(S,,) > 0, resulting in S,, being trans-
ported into the porous medium. In a WW system, p. > 0, dp./dS.,, <0,



3.7 SCALING GROUP FOR MIXED-WET SYSTEMS

=4 hrs

8 —— t,=48hrs f

t,=72 hrs

[k Pa]

1k, -]

P
c

k
i

—— t;=4 hrs

10 —— t,=48hrs |3

t,=72hrs -6

L L L L L L Y B I I Il L L L L Il L I
0 01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
S - S -

(a) (b)

Figure 3.7: Capillary-hydraulic properties vs. effective saturation for different
degrees of mixed wetttability as predicted by pore-scale simulations
[Behbahani and Blunt, 2005] for the experiments reported in [Zhou
et al.,, 2000]. (a) Relative permeabilities of the aqueous (—) and
non-aqueous phase (——), and (b) p. for different ageing times t.
Initial water saturation was S,,; = 0.15.

and D(Sy) > 0 for Syv < Sw < 1 =Sy, and Spr = Snrst = Snrwr
In an experiment for a MW system, the same Sy > S; would only be
transported into the porous medium, as long as p. > 0, i.e. as long as
Sw < 1 —Syx; 1. However, the mathematical setting given in equation
(2.29) together with (2.17) does not use a pressure boundary condition,
and therefore for the MW system would wrongly predict that SI occurs
even when S,, > 1— Sy, g1, since for that case too dp./dS,, < 0, and thus
D(Sw) > 0 over the whole saturation range (Fig. 3.7b). Nevertheless, an
analytical solution for (2.21) that somehow employs pressure boundary
conditions is unknown, and the setting of equation (2.21) together with
(2.17) so far allows for the only analytical solution for a general form
of D(S\) (Table 2.1). We therefore propose a physically motivated way
of incorporating the information on p. and the resulting end of SI at
Sw = Snrs1 into D(S,,) that leaves the boundary conditions intact, such
that the analytical solution given in equation (2.29) remains valid.

We propose two simple methods. In the first method (termed "Equiv-
alent p.’), we define an equivalent capillary pressure curve p. such
that it agrees with the original one up to S,, = 1 — Sy, 51, but then is

constantly zero (Fig. 3.8a)

Pe(Sw) if Sw < 1—Snrsi

0 otherwise.
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Figure 3.8: Illustration of the two different methods for modifying D(S.,) for
MW systems. (a) "Equivalent p.” concept: p. is set to zero for all
Sw > S}, but the relative permeabilities are left unchanged. (b)
Equivalent Sy,» concept: Sy is set to Snr = Snr,s1, and the relative
permeabilities are truncated at S},. For MW systems, p. < 0 for
some S,, < 1 — Snrwr, such that SI stops at S, = Sy 51 although
the non-aqueous phase is still mobile, and would be reduced to
Sn = Snr,wr during a water-flood.

The relative permeabilities are left unchanged, and we also keep the
residual saturation at the level, where the oil becomes immobile, i.e.
Snr = Snrwr. The resulting non-linear dispersion is identical with the
original D(S,,) up to S},, and then becomes zero. Consequently, equa-
tion (2.29) correctly predicts that SI stops for p. < 0, Sy, > 1 — Sprs1.
WW systems are contained as a special case, since then pc%" = p. over
the whole saturation range.

In the second method (termed "Equivalent S,,;"), we take Snr = Snr s1.
That way, only the information on p. for S,, < 1— Sy,s1 is used,
and the relative permeabilities and p. are only evaluated up to S,, =
1 — Snrs1, but otherwise are left unchanged (Fi. 3.8b). Obviously, with
this (Sm, D(SW))—set, equation (2.29) correctly predicts that SI stops
at S,y = 1—Snr 51 = 1 — Spr. As for the first method, WW systems are
contained as a special case.

To show the validity of both approaches, we correlated the MW data re-

ported in [Zhou et al., 2002] for the cases where a suitable <krw, km,pc> -

set is known (Table 3.6). We used the (krw, km,pc> -set derived from a
pore-scale model [Behbahani and Blunt, 2005] that gave a reasonable
prediction of the measured recoveries of the SI experiments.

Figure 3.9 shows the result for both proposed methods, and the scaling
proposed in [Ma et al., 1997] as a comparison. For both methods, the

48



3.7 SCALING GROUP FOR MIXED-WET SYSTEMS

ta Lc K ¢ W Wn So
[hrs] [em] [mD] [-] [Pa-s] [Pa-s] [-]

4 7.62 3550 0.215 9.67-107% 0.0398 o0.151

48 7.6 3650 o0.214 9.67-107* 0.0398 o0.159
72 7.6 4000 0.2125 9.67-107* 0.0398 0.169

Table 3.6: Parameter set used for the MW experiments reported in Zhou et al.
[2000]. The rock was a Berea sandstone and the samples were aged
for different times t, yielding different MW states. Brine was used
as the aqueous phase, and Soltrol 220 was used as non-aqueous
phase, and o = 24.2 mN/m.

tq AEqu. Pe AEqu. Shr

[(hrs]  [m/+/s] [m/+/s]

4 1.25-107% 5.76-107
48  5.64-1077 6.48-1077
72 3.73-1077 125-1077

Table 3.7: Scaling parameters for the MW experiments reported in [Zhou et al.,
2000] (Table 3.6). AMethod A apnd AMethod B are calculated by the two
different methods for adjusting D(S,y) (section (3.7 )), Fig. 3.8.

data for ageing time t, = 4 hrs falls onto the same master curve as the
scaled data for WW conditions, showing that both methods capture the
physics of the MW system. The data for t, = 48 hrs and tq = 72 hrs
give slightly more scatter but still fall onto the same master curve, i.e. tq
is able to catch the increase in induction time. The increased scatter for
tq =48 hrs and ty, = 72 hrs stems from the pore-scale predictions of the
<krw, km,pc> -set. For tq = 48 hrs and t, = 72 hrs, the agreement of the
continuum scale simulations in Behbahani and Blunt [2005] degraded
compared to the very good agreement achieved for t, = 4 hrs with the
experimental data, which leads to the increased scatter.

The constant A is independent of the sample geometry, and therefore is
a measure for the behavior of induction times for different MW states.
The SI process gets more and more retarded with increasing t,, and
A decreases in a comparable extend (Table 3.7). For the "Equivalent
Sn’ method, A between t, = 48 hrs and t, = 72 hrs does not decrease,
i.e. A for tq = 72 hrs is slightly too big. As can be seen from Figure
3.8b, the scaling for t, = 48 hrs gives more scatter at early times, and
indicates as well, that A is slightly too big stemming again from the
weaknesses in the pore-scale predictions for the hydraulic properties.
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Figure 3.9: Scaling of experimental data for the MW case. The data in blue is
for the WW case and serves as reference. (a) Time scaled according
to Ma et al. [1997]. The scaled MW data leads to an even further
increase in scatter. (b) Time scaled according to the "Equivalent
pc’ concept, and (c) according to the "Equivalent S;,;” concept.
The results for both methods fall onto the same curve as for the
WW data but the “Equivalent S;,;” only used information naturally
present in an SI system. It therefore should be preferred although
for the data set presented here it results in more scatter than the
Equivalent p. concept. For k.o, krw and p. pore-scale predictions
[Behbahani and Blunt, 2005] were used. The best (kyw, Kro, Pc)—
set was obtained for t, = 4 hrs, which therefore gives the best
correlation while t, = 48 hrs and t, = 72 hrs leads to more scatter.
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A special group for the MW case, and the influence of gravity

The "Equivalent p.” method was based on artificially forcing D(S,,) =0
for S, > 1 — Sy while the ‘Equivalent S,,” method was obtained by
simply truncating information at a point where an SI process would
naturally stop. Therefore, while both give comparable results, we recom-
mend the equivalent S,,;” method since it is based on all - but exclusively
on - the information present in an SI system, and therefore has a sound
physical justification.

For a MW system, the oil mobility exceeds the water mobility by orders
of magnitudes (Fig. 3.7a), i.e. Aw(Sw) < An(Sw) for S, < T—Snrs1.
This can be used to derive the scaling group for MW systems given in
Behbahani and Blunt [2005] (Appendix A) as another special case of
equation (3.3),

K *
taBeh = \/ —7\ (3.7)

which provides the (so far missing) physical justification for that group.
From the proportionality constant c for tqgen (Table 3.2, Appendix A),
the following predictions for the validity of t4 gen can be made: A good
correlation can be achieved independent of viscosity ratios, but for
systems with the same initial fluid distribution, and the same capillary
hydraulic properties. In particular: The correlation will be satisfactory
only if the experiments were obtained under the same degree of mixed
wettability.

In the aforementioned analysis, SI due to gravity segregation was
ignored. While in WW systems, p. is strong enough that gravity is
negligible, the decrease in p. for MW systems (Fig. 3.7b) makes gravity
more important [Xie and Morrow, 2001] as described by an increase in

the dimensionless Bond number

hydrostatic pressure  ApgHv/K

Bo = =
© capillary pressure 20V] 7

(3-8)

where Ap is the density difference between the oil and the water phase,
g is the gravity constant, H is the height. Since the focus of this work
is on describing the physics of counter-current SI, we do not discuss
gravity segregation any further, but merely remark that it usually is
taken into account by defining [Xie and Morrow, 2001]

tda,complete = ta,s1 1+ ta,grav, (3.9)
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and

R ER/ Ty

where Ly is the characteristic height. It remains open, however, in how

Apg, (3.10)

far this approach can describe recovery if instabilities, like gravity driven
tingers [Cueto-Felgueroso and Juanes, 2008] or gas-gravity drainage
[Di Donato et al., 2007] occur, or whether t4 g:qv gives a good correlation
for experiments where the parameters are varied as suggested by section

3.2.

3.8 APPLICATIONS

Scaling groups are essential in any situation where SI needs to be un-
derstood, described and modelled which is the case for a wide range
of geophysical and petrophysical applications. Examples include the
upscaling of laboratory data [Morrow and Mason, 2001], the charac-
terization of a porous rock [Marmur, 2003, Jadhunandan and Morrow,
1991, Morrow et al., 1994], feasibility studies for geothermal reservoirs
[Li and Horne, 2009] and even applications not related to petrophysical
applications at all [Finch-Savage et al., 2005, Finch-Savage and Leubner-
Metzger, 2006].

In the following, we discuss two applications. Our first application are
dual-porosity models where scaling groups build the center piece in
transfer functions. The second application considers a model not related
to petrophysical applications at all, namely the important process of the
water uptake and following germination of plant seeds [Finch-Savage
et al., 2005, Finch-Savage and Leubner-Metzger, 2006].

Dual-porosity models and the first general transfer rate

A key application are dual-porosity models where scaling groups build
the center piece in transfer functions. Dual-porosity models are field-
scale representations of fractured reservoirs that separate the subsurface
model into stagnant, low permeability regions (the matrix blocks) and
high-permeability regions (the fracture network), and the fluid trans-
fer between the two regions is modelled by some transfer function T
[Warren and Root, 1963, Kazemi et al., 1976]. Since many expressions
of T rest upon an analytical expression for SI and/or a scaling group
t4, the numerous transfer functions for SI that have been proposed to
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date [Abushaikha and Gosselin, 2008, Babadagli and Zeidani, 2004, Cil
et al., 1998, Kazemi et al., 1992, Unsal et al., 2010] experience similar
challenges as the scaling groups themselves: It is unclear how a model
can describe the heterogeneity in a reservoir that stems from differences
in initial water content, wettability and phase mobility effects, and how
SI data obtained for a certain viscosity range translates into the condi-
tions found in the field.

Since our t4 overcomes all these challenges, it is easy to derive an
improved transfer rate, as well. In a dual-porosity model, the mass

conservation equations for the fracture and the matrix are

0S
rgi+ e Vg = =T

3o (3.11)
d)m - T/

ot

where the subscripts m and f stand for matrix/stagnant region and
fracture/flowing region, respectively. To obtain an expression for T
based on t4, we use that the recovery Rec satisfies

Rec i Swm — Swmi

, (3-.12)

Roo 1— Sm'm - Swim

where Ry is the final recovery.

To predict the shape of Ry, over the whole time range, the analytical
solutions for x(Sy, t) and Q. (t) presented in section 2.3 cannot be used
since they are only valid as long as t < t*. Thus, instead of predicting
the s-shape of the correlated data (Fig. 3.5), they instead would predict
that Q,, increases indefinitely. Therefore, to fit the data we instead use

an exponential model
R = Roo(1—e %), (3.13)

Note that while the exponential model does predict recovery over the
whole time range, its prediction of early-time recovery is too pessimistic.
From fitting the recovery curve in Figure 3.9, we obtain « ~ 70. From

equations (3.11) and (3.12), we obtain [Di Donato et al., 2007]

aswm o . ta
Py T =« T (1—Snrm — Swm) (3.14)
= aTc(1 — Snrm — Swm)-

bdm

The significance of this result is the following: The value for « is ob-
tained for arbitrary experimental conditions, i.e. « is independent of

wettability states, rock material and so forth. Therefore, the model given
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in equation (3.14) is the first one, where « does not have to be ‘re-fitted’
to different experimental conditions as has been the common strategy
so far [Di Donato et al., 2007, Abushaikha and Gosselin, 2008, Babadag]li
and Zeidani, 2004, Cil et al., 1998, Kazemi et al., 1992, Unsal et al., 2010].
It therefore simply can be incorporated into any dual-porosity model
without the need for further experiments that would be necessary for
obtaining a modified «. Furthermore, equation (3.14) shows that an
exponential Aronofsky model for recovery is capable to incorporate the
physics of Sl if t4 is appropriately chosen, in contrast to what has been
claimed before [Chen et al., 1995].

Furthermore, as A contains all the information about the capillary-
hydraulic properties and the initial fluid content, but is independent
of L., it shows the influence of the porous structure and fluid char-
acteristics on SI. For sandstone with water as the wetting phase and
oil as the non-wetting phase (un/uw = 39,Swi = 0), we found A =
7-107°m//s, while for diatomite (with pn/tw = 25, Syi = 0) we found
A~ 1.5-107°m//s, i.e. the fluxes Q,,(t) differ by an order of magni-
tude. This shows that geological heterogeneity present in the subsurface
can give rise to widely different time-scales, independent of different
length scales or fluid viscosities. The coefficient A can be used to rig-
orously capture this behavior through a multi-rate model [Di Donato
et al., 2007, Haggerty and Gorelick, 1995].

tq is based on laboratory results where the core used was surrounded
by a constant saturation. In fractured systems, the saturation changes
depending on the speed of the fracture flow which leads to different
fracture flow regimes [Rangel-German and Kovscek, 2006, 2002, Ferno
et al., 2011]. Therefore, accounting for heterogeneities in petrophysical
properties alone might not be sufficient, and additionally the character-
istic lengths might have to be modified [Rangel-German and Kovscek,

2006, 2002].

Imbibition-germination models for plant seeds

The second application considers imbibition damage during water up-
take in porous plant seeds. Since the main focus of this work lies on
modelling petrophysical processes, this applications is only shortly
discussed.

The transient behaviour of the SI process is crucial for the field emer-
gence of commercial seeds, and determining favorable conditions for

SI with the help of coupled imbibition-germination models is of great
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practical interest [Finch-Savage et al., 2005]. In imbibition-germination
models, the water content in a seed is estimated from an imbibition
model. The so-obtained value for the water content is then used to cal-
culate the germination time, i.e. the time until the seed starts growing.
For these models, the product B = adT. is an explicit expression for
the proportionality constant used in coupled imbibition-germination
models [Finch-Savage et al., 2005]. Contrary to the phenomenologically
derived constant however, 3 can be used for example to predict how
the seed-imbibition depends on L. and thus on seed size without the
need to perform the lengthy and difficult laboratory experiments on

plant seeds that up to now have been necessary.

3.9 CONCLUSIONS

While it has been known for over go years that SI scales with v/t in
time, the properties of this scaling were unknown. We derived the first
universal scaling group that rigorously accounts for the influence of all
parameters on SI that are present in the two-phase Darcy formulation.
This allows for the following conclusions:

* Sl is best characterized by the cumulative inflow and not by the frontal
movement. Based on the analytical solution two scaling groups for
SI can be derived - one based on the cumulative inflow, one based
on the frontal movement of the wetting front. No fitting parame-
ters need to be introduced. The group based on the cumulative
wetting phase gives an excellent correlation which is superior to a
characterization based on the frontal movement, contrary to what
has been speculated previously [Handy, 1960].

* Our group serves as a 'master equation’ that predicts the validity of
specialized groups. Due to its generality, many of the previously
defined groups are contained as special cases, and the validity of
a special group can rigorously be predicted through the propor-
tionality constant c. Any new specific scaling group with a sound

physical foundation necessarily is a special case of our group.

® Darcy’s model can describe SI. Our group comprises all the infor-
mation present in the Darcy model, and to calculate necessary
parameters (e.g. k), the validity of Darcy’s model was not pre-

sumed. The scatter in the correlated data is small compared to the
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reported several-orders-of magnitude range for coefficients for dy-
namic capillary pressure. This indicates that the Darcy model can
characterize SI and no further parameters, like non-equilibrium

effects in p., are necessary.

Applications: A general transfer rate for dual-porosity and imbibition-
germination models. An exponential model for the transfer can be
fitted that correlates 45 published water-oil and water-air SI stud-
ies for water-wet systems, different degrees of mixed-wettability,
a wide range of viscosity ratios, initial water content, different
porous media and different boundary conditions. This is the
first general transfer rate, and readily can be used in any dual
porosity simulator. Also, tq yields the proportionality constant for

imbibition-germination models.

Limitations. The group tq has been derived making the standard
assumptions used for analytical modes (section 3.1). In particular,
viscous and gravity forces were ignored. Whether the presence
of these forces can be accounted for through e.g. equation (3.9),
and whether non-equilibrium effects in p. would then have to be
considered, remains open. Also, t4 is based on laboratory results
where the core used was surrounded by a constant saturation. If
and how t4 should be changed for e.g. fractured systems, where
the saturation changes depending on the speed of the fracture
tflow, is open. Finally, the analytical solution is only valid as long
as t < t*.



Part II

FLOW AND TRANSPORT DURING
TWO-PHASE FLOW



THE INFLUENCE OF FLOW REGIMES ON MIXING:
SEMIANALYTICAL SOLUTIONS FOR IMBIBITION
AND DISPERSION OF SOLUTES IN IMMISCIBILE
TWO-PHASE FLOW

Understanding the growth of the dispersive zone 5(t) (Fig. 1.2) is crucial
for many applications where both the flow of immiscible phases and
miscible displacement occur. §(t) is influenced by the interplay of three
mechanisms: The flow regime, chemical reactions and heterogeneity. In
this chapter, we resolve how the flow regime and a simple chemical
reaction affects 6(t). To that end, we derive the first known set of ana-
lytical solutions that fully account for adsorption, capillary and viscous
effects, and hydrodynamic dispersion. Dispersion is parametrized using
a Fickian model (equation (2.5)). While there is an extensive debate
concerning the modelling of dispersion in single phase flow (for a recent
overview see e.g. [Dentz et al., 2011, Berkowitz, 2002]), the effect of the
added non-linearities due to two phases on transport and dispersion is
unclear ([Bolster et al., 2009] and chapter 2). Thus, the analytical solu-
tions developed in this chapter may help in evaluating the reliability of
a classical dispersion description for transport and two phase flow.

We show for the first time that for spontaneous imbibition without
dispersion the solute front can be located graphically by a modified
Welge tangent on the fractional flow function F. For transport with
dispersion, we derive approximate analytical solutions by the method
of singular perturbation expansion. The solutions reveal that for the
viscous dominated regime, the growth of §(t) is proportional to t'/2.
This confirms earlier numerical results [Arya et al., 1985]. Furthermore,
the analytical solutions show for the first time that for spontaneous
imbibition the spreading has a temporal order proportional to t'/4,
and that for both viscous and capillary dominated flow adsorption
leaves the temporal order unchanged, but decreases the proportionality

constant which has been unknown.
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4.1 INTRODUCTION: FLOW AND TRANSPORT

The movement of solutes within two phase systems is important in
many environmental and engineering applications since in almost all
cases each fluid phase consists of different components rather than just
one. Consequently, both the unsteady flow of the two phases and at
the same time miscible displacement within each phase occur. Displace-
ment processes of this kind take place, for example, if water is pumped
into a geological formation or aquifer contaminated with non-aqueous
phase liquids (NAPLs) and the ionic composition of the connate water
is different from that of the injected water. In that scenario, both for
the purpose of bioremediation and cleanup of NAPLs and enhanced
oil recovery, surfactants and polymers are dissolved in the injected
aqueous phase to mobilize the NAPLs [West and Harwell, 1992, Khan
et al., 1996, Sorbie, 1991]. Here, the appropriate design of an efficient
chemical flood crucially depends upon the brine composition, since the
interfacial activity, phase behavior, and mobility control of the chemical
flood depends as much on the concentration of the chemicals as it
depends on the composition and mixing behavior of the ionic envi-
ronment itself [Lake and Helfferich, 1977]. Similarly, for the design of
aquifer remediation schemes, a vital step is to identify the location and
distribution of the NAPLs. To this end, tracer tests can be performed
where a range of both partitioning and non-partitioning solutes are in-
jected into the subsurface and recovered down gradient at the extraction
wells [Datta-Gupta et al., 2002]. Another example is carbon sequestra-
tion. Recent years have seen a growing awareness of the hazardous
consequences of anthropogenic greenhouse gases, and one helpful miti-
gation method seems to be the sequestration of carbon dioxide in the
subsurface, i.e. the reaction of carbon dioxide molecules (CO;) with
mineral grains [Javadpour, 2009, Xu et al., 2006]. In this case, CO; is
dissolved in the water phase and the mixing with the brine triggers a
number of aqueous reactions which lead to the CO; being trapped by
the minerals. If water is pumped into a hydrocarbon reservoir in order
to produce oil, the two aqueous solutions mix while replacing the oil,
and the otherwise inert brine components react. In many reservoirs, this
leads to the precipitation of minerals, like barium sulphate (BaSOj),
and formation of scale [Sorbie and Mackay, 2000, Mackay, 2003]) that
can hinder production. In other scenarios, different ionic compositions
have been shown to enhance oil recovery, if the injected brine has a

salinity different from that of the connate brine [Zhang and Morrow,
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2007, Austad and Standnes, 2003, Hiorth et al., 2010] and a good un-
derstanding of the transport of the different compositions within the
two phases due to the interplay of dispersion, viscous and capillary
forces builds the fundament for appropriate upscaling of transport and

for determining its field efficiency [Stoll et al., 2008, Stephen et al., 2001].

In all these cases, a proper understanding of miscible displacement
and dispersive mixing is fundamental to properly asses the amount
of reactive solutes involved in chemical reactions (e.g. [Emmanuel and
Berkowitz, 2005, De Simoni et al., 2005, 2007, Cirpka, 2002, Dentz et al.,
2011]). Although the effects of dispersion and even spatial heterogeneity
on miscible displacement and mixing for single-phase flow are increas-
ingly well understood and a significant body of literature exists (e.g.
[Werth et al., 2006, Rahman et al., 2005, Bolster et al., 2011, Paster and
Dagan, 2008, Willingham et al., 2008]), investigations for two-phase
systems so far only focus on the spreading of the phases themselves
([Neuweiler et al., 2003, Cvetkovic and Dagan, 1996, Langlo and Espedal,
1994, Panfilow and Floriat, 2004]). This is surprising given the practical
importance of simultaneous flow and transport in two-phase systems,
but can be explained with the complexity of the governing equations
where both capillary, viscous and dispersive terms are coupled in a
highly non-linear way.

Our solutions provide the framework for the common situation of two-
phase core-floods, where both flow rates and breakthrough curves of
tracers are available, and where all physical mechanisms - viscous and
capillary forces and hydrodynamic dispersion - are considered.

The outline of this chapter is as follows: In section 4.3, we solve the
advection problem exactly by two different methods: Based on the
analytical solutions for two-phase flow with capillarity presented in
chapter 2, we first combine a variable transformation with the physical
notion that for the dispersion-free limit, the solutes can be written as
functions of their carrying fluid only; second, we use the method of
characteristics. We show that for spontaneous imbibition, the solution to
the transport equation can be represented by a modified Welge tangent
[Welge, 1952] to the factional flow function with capillarity F.

In section 4.5, we use a perturbation expansion to derive analytical
expressions for hydrodynamic dispersion for the case where the dis-
persion coefficient is small compared to the characteristic length of the
system. Based on these equations, we are able to obtain an analytical

expression for the growth rate of the dispersive mixing zone, and show
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how the spreading behaviour depends on the flow regime, on how it is
influenced by the chemical reaction of the solute. These solutions are
the first known analytical expressions for hydrodynamic dispersions
in two-phase flow. In section 4.6 we compare the obtained solutions
against numerical references solution for the cases of spontaneous co-
, and counter-current imbibition and for the capillary-free limit, the
Buckley-Leverett problem ([Buckley and Leverett, 1942], see chapter 2)

and finish with some conclusions.

4.2 MATHEMATICAL MODEL

In the following, we assume that for the flow (2)-(4) hold (see section
2.2). Also, we assume that (i)-(v) holds for the components (section 2.1),

and additionally we demand that
(vi) the components do not change the flow parameters.

Note that since we consider a horizontal, one-dimensional medium,
density effects can also be ignored. Then the continuity equations for
the components C can be written as [Acs et al., 1985, Gerritsen and
Durlofsky, 2005]

3(S.,C) 9 B

GTI 21— plosAll = »
0 0 oC '
- a(qw -C)+ o~ (‘waDH,W&) :

As stated above, the components are assumed to not change the flow
tield. If chemical flooding with surfactants, polymers, foams, etc., is
considered, the constitutive relationships depend on both saturation
and component concentration. For this case, analytical solutions can be
derived, if both capillarity and hydrodynamic dispersion are ignored.
This leads to a system of hyperbolic conservation laws and the method
of characteristics or the method of chromatography can be used to
derive analytical solutions (e.g. [Pope, 1978, 1980, Johansen and Winther,
1988, Juanes and Blunt, 2006, LaForce and Johns, 2005, Seto and Orr,
2009]). As explained in the introduction, our primary interest is the
mixing of the adsorbing but otherwise inert components (Figure 1.2).
We hence assume the capillary-hydraulic properties to be functions of
saturation only. We denote the one dimensional tensor of hydrodynamic
dispersion (equation (2.5)) as Dy,

DH,V = oq,y%/ Y € {nlw} (42)
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In the analysis that follows we mainly will focus on the case where
the non-wetting phase has a homogeneous composition and is com-
pletely described by the restriction S,, + S, = 1. To simplify notation,
we will write Dy instead of Dyy,,. For small concentrations I" can be

approximated by a linear sorption isotherm [Bedrikovetsky, 1993]

r=r(C) = (%2) -C=Ds-C, (4-3)

where D can be thought of as a "retardation” term. Both the conserva-
tion equation for the fluid phase and the solutes are of parabolic type,
and consequently the resulting solutions are smooth. Therefore, we can

expand (4.1) to arrive at

oC oC 0 oC
G(Sw+Ds)— =—qu—+—"- <¢SWDH_) .

ot ox | ox ox (4-4)

We derive an analytical solution for the transport equation (4.1) that
tully considers linear adsorption, capillary effects and hydrodynamic
dispersion. Thus, all the physical mechanisms that account for solute
transport and mixing in a homogeneous two-phase system are taken
into account. The solution is obtained from two main ideas. First, we
note that for cases where S,, and q,, in the conservation equation for C,
equation (4.1) are known either from analytical or numerical solutions,
the problem of solving the conservation equation for S,, and the cou-
pled conservation equation for C (equation (4.1)) reduces to solving one
advection-dispersion-reaction equation (ADRE) for the concentration
C, namely equation (4.4). Sw and q,, are fully determined by equations
(2.11) and (2.10) and are not affected by the adsorption of the solute.
For describing the flow and saturation field q,, and S,,, we choose
the analytical solutions presented in Chapter 2. Thus, our solutions
contain three important and common situations, namely: The situa-
tion where a sorbing solute is transported during spontaneous, co-and
counter-current imbibition, and the situation where a sorbing solute
is transported during viscous dominated flow where capillary effects
become negligible.

The only time when we make specific use of the special form of these
solutions, however, is for the explicit determination of the saturation
level at which the solute advective front breaks through and in the
examples given in section 4.6. The nonlinear expressions derived for the
characteristics and the hydrodynamic dispersion and reaction are valid

for any flow and saturation field known either from numerical solutions
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like streamline simulations [Blunt et al., 1996, King and Datta-Gupta,
1998, Datta-Gupta and King, 1995] or analytical considerations.
Although this significantly reduces the complexity of the problem, the
ADRE (4.4) has still time- and space-dependent coefficients, and no
analytical solutions are known. Secondly therefore, to derive a solution
for it we separate the two physical transport mechanisms in (4.1), i.e the
advective motion due to viscous and capillary forces, and dispersive
mixing.

The advective part is solved for exactly by two different approaches:
First, we use the physical notion that if dispersion can be ignored, i.e.
Dy = 0in (4.1), C is a function of S,, only, and an explicit expression
for the location of the solute front can be derived. Secondly, we use
the method of characteristics. Both approaches yield the same result.
We show that if q,, and S,, describe spontaneous imbibition, then the
solution has a particular simple, graphical solution: The location of the
solute front can be determined graphically by a modified Welge tangent
[Welge, 1952] on the fractional flow function F. This is the first analytical
solution that accounts for adsorption and spontaneous imbibition on
tracer transport.

Next the effect of hydrodynamic dispersion is superimposed on the
advective motion via a singular perturbation expansion around the ad-
vective front of the solute. Singular perturbation techniques have been
used previously for describing dispersion in unsteady flow fields of a
single-phase [Gelhar and Collins, 1971, Dagan, 1971, Eldor and Dagan,
1972, Nachabe et al., 1995, Wilson and Gelhar, 1981, 1974]. We show
that if the dispersion is small compared to a characteristic length of the
system, very good agreement between our analytical approximation
and a numerical reference solution is achieved. While we are mainly
concerned with the combined effects of adsorption, capillary, viscous
and dispersive processes, and adsorption in this chapter, the equations
derived for the characteristics and the hydrodynamic dispersion are
valid for any given flow field and for illustration, we also combine
them with the solution for the capillary-free limit, the Buckley-Leverett
problem ([Buckley and Leverett, 1942], see chapter 2). This is the first
analytical solution that fully describes the complex dependence of the
effective dispersion on adsorption and the simultaneous and unsteady
flow of the two phases.

From these analytical expressions we finally obtain equations for the
growth rate of the dispersive zone both for the case of spontaneous
imbibition, and for the viscous limit depending on the strength of ad-
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4.3 SOLUTION OF THE ADVECTIVE PROBLEM

sorption. The solutions reveal that for the viscous dominated regime,
the growth of §(t) is proportional to t'/2, while for spontaneous imbibi-
tion it is is proportional to t'/4. Adsorption leaves the temporal order

unchanged, but decreases the proportionality constant.

4.3 SOLUTION OF THE ADVECTIVE PROBLEM

We first consider the dispersion-free limit of equation (4.4), i.e. the case
Dy = 0. We will show that if an initial wetting phase is present, the
solute front travels behind the fluid displacement front, and breaks
through at a certain saturation value S;,. We will show that the retarda-
tion is due to the combination of the initial wetting saturation that acts
as a storage for the solute and the adsorption, i.e. that adsorption alone
cannot explain the retardation of solutes.

Two possibilities exist for deriving an analytical solution. The first one
uses the physical notion that C is carried by the respective fluid phase,
and thus we can write C = C(S,,). This together with a variable trans-
formation leads to a simple ODE for C. From this, we obtain an explicit
expression for the saturation value Sj, at which the advective front
occurs that can be represented graphically by a modified Welge tangent
[Welge, 1952]. We can obtain the same result for the location of the
jump, if we employ the method of characteristics for solving equation
(4-4). This has two advantages: First, it gives a mathematically rigorous
justification for the physical notion that for the dispersion-free limit,
C must be a function of S,,. Second, we obtain analytical expressions
for the characteristic coordinates. They will prove to be central for the
derivation of the dispersion approximation.

For the solute, we consider the boundary and initial conditions

C(X = O/t) = CO/
C(OO/ t) = Ci/ (45)
C(X/O) = Ci/

and for q,, and S,, we use the same initial and boundary conditions as

in Chapter 2 (equations (2.17)).

Solution as a Welge tangent

In this section we solve (4.4) together with (4.5) by employing the phys-
ical notion that for purely advective transport, a fixed value of C will
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be transported at some fixed saturation level, i.e. C can be written as a
function C = C(S,,).

To that end, we again use the similarity variable A (equation (2.24)).Then
the conservation equation (4.4) for C can be rewritten as an ODE
(Apendix B.1)

dC 2A (F(1 —f4R) + fiR)

— | A+ =0 6

as, BSw +Ds) o)
subject to

CO for S = So,
C= " (4.7)
C; forS,, =S,

Equation (4.6) describes the transport of the jump from the initial
concentration Cj to the injected concentration Cy depending on the

saturation, and has the simple solution

Cop for$S,, < S*
ClSw) =4 ° w (4.8)
Cy for S, >S;,.

Since the jump C occurs at Sj,, the value of S}, must occur where the
expression in the bracket of the ODE (4.6) becomes zero. This yields a

non-linear expression for S,

F(S%) ;R dF

De+ S5 | (1—fR)SH, aS., Si (4.9)
respectively for S,,; = Sy, and f,,(Sywi) = fi = 0:
F(S:, F
(5;)  d 10)

D+ St aS,, Si

All the functions and parameters in equations (4.9) and (4.10) are
known explicitly, and the solution can easily be obtained by prescribing
So, determining F from equation (2.33) and then solving the non-linear
equation (4.9). Any capillary-hydraulic properties can be used. For ar-
bitrary functions, the integrals of the exact solution need to be solved
numerically. Determining S}, can also be performed graphically by
drawing a straight line from (0, “ji—fER]) tangent to the fractional flow
curve F, see Figure 4.1. Note that if initially a wetting phase is present,
which is the case for most realistic geological formations and reservoirs,
the component front gets retarded even if Ds = 0 and does not travel
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Figure 4.1: Fractional flow functions and corresponding modified Welge tan-
gents [Welge, 1952] for purely viscous, spontaneous co-, and
counter-current flow for different inlet saturations Sy. For the
viscous and the counter-current case, So = 1 — S,+, and for the
co-current case So < 1— Sy;. The straight lines give the satura-
tion values for the respective cases at which the component, that
adsorbs with rate D, jumps from its initial value to the injected
concentration for the dispersion free limit.

along with the phase front. This is intuitively obvious, since if the con-
nate wetting phase has a composition different from the injected one,
the ‘new” composition needs to fill the ‘old” phase first and thus breaks
through behind the wetting front (Figure 1.2).

Whether spontaneous co-, or counter-current imbibiton occurs is de-
termined by the ratio R = q¢/qw(x =0, t) (chapter 2). In the foregoing
analysis, R was not set to a specific value, and therefore the semi-
analytical solution for C directly follows from (4.8) for the appropriate
expressions for A and F with

F(S;,) dF

CESAN dSWI(Si‘v)- (4.11)

4.4 SOLUTIONS FOR SOLUTES DISSOLVED IN THE NON-WETTING
PHASE

In the previous sections we focused on solutes in the wetting phase.
However, the solutions given above easily can be extended to the case

where components x are dissolved in the non-wetting phase, and satisfy
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assumptions (i)-(vi). Their movement is described by the conservation

equation
9(Snx) 0 o
d)a—t‘f'a' [(1—d)prBs] = 12)
0 0 ox ’
- &(qn -X) + Pl (d)SnDH,na) P

where B denotes the adsorption per unit mass of rock of component.
For the case where Sy < 1, the saturation of the non-wetting phase at
the left boundary is non-zero and we can prescribe the following initial
and boundary conditions for solutes in the non-wetting phase:

X(x =0,1) =xo,
x(00,t) = xi, (4.13)
X(x,0) =Xi,

which immediately gives
Xo for Sn < S}

X(Sn) = (4.14)
xi for Sp > S},

where S, satisfies

Sn=1-53, (4.15)

and

sy = _ —, (416)
Sy (1=Sz+Ds)  (1—fiR)(1—S& + Dy)

where we use

3 1— 3 3
M= (—d)) prBs, and  T'(x) = Ds-x. (4.17)

Method of characteristics

Next, we derive the location of the jump in C at S}, by the method of
characteristics, and show that the so derived value for S}, agrees with
the one given in equation (4.9). The method of characteristics is more
technical and lengthy than the intuitive approach taken above, where
we simply assumed that C is carried along with the saturation and

wrote C as a function of S,, only. However, it has two advantages: First,
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it yields a rigorous mathematical justification for the analytical solution
given in equations (4.8)-(4.10). Second, it results in the introduction of
characteristic coordinates T and 0 that will prove to be useful when we
solve for dispersion in section 4.5.

The equation for characteristics for the equation (4.4) is
qwdt — (Sy + ¢Dg) dx = 0. (4.18)

Equation (4.18) has an analytical solution in the sense that there exists
a function n(x, t) such that

—dn = gndt — (dpSw + ¢Dg)dx,

om om (4.19)
Y —qw, and x (dSw + ¢Dy)
if and only if
0 (dSw + ¢Ds) o 0 (dSw) i 0qw
ot ~ ot ox (4-20)

The above is simply the continuity equation for the wetting phase, and
thus n as specified above exists. The characteristic can be determined
from equation (4.19). From the second equation of (4.19), it follows

X
0%t = | (9Sw(E 1)+ $Ds) dE+-2(0) (4.21)
The function &(t) must be determined from the first equation in (4.19).
It follows
D [ osue )+ 9D ag+ Y
ot oty ) dt
=[5 @sule+n ag+ = (422)
oot T ° a +
[ oqw dc
=J,okaer g

Altogether, we arrive at

X t
0o t) = L (GSw(E, 1) + $Ds) dE — L G0, o). (4.23)

In the following it will be useful to transform the first integral on the
right hand side of n onto the (S,,,t) coordinate system, i.e. to use the
fact that x = x (S, t). By substitution, we thus get

t

(@Su(E, 1)+ D) 5 1edE— | an(000dx (424

Sw

(St = |

So
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We set

Sw

0(Sw, t) = J (GSw(E, 1)+ dDy) 2|, de, and
>0 W (4.25)
t |

T(t) == Jo qdw(0, o) dex.

The characteristic coordinates given in equation (4.24) are valid for
arbitrary initial and boundary conditions, and any q,, Sw, and S,, that
satisfy equation (2.11). To derive an explicit expression for the value S,,
at which the solute front occurs in the case where capillary effects are
fully considered, we now capitalize on the features of the solutions for
spontaneous imbibition (Chapter 2).

By construction, 6 and T are the coordinates along which equation (4.1)

reduces to the simple form

oC oC
a + % =0. (4.26)
If C is given by the function H(x) at time t = 0, then the above PDE has

the simple solution
C(0,T) =H(O—71) (4-27)

and an inital solute front travels along the curve which satisfies 6 =1 ie.
S}, is such thatn = 0. If the physically motivated approach of assuming
C = C(Sy) is valid, then the saturation S}, is again given by equations
(4.9) and (4.10), respectively. This is indeed the case, see Appendix
B.2. Before we derive the dispersion approximation, we discuss some

features of the solution for the advective case.

The extended Buckley-Leverett problem

As discussed in Chapter 2, there is a strong analogy between solutions
derived by Buckley and Leverett [1942] for viscous dominated flow and
teh solutions derived by McWhorter and Sunada [1990] for capillary
dominated flow. The McWhorter & Sunada solutions may be thought of
as the capillary analogue to the Buckley-Leverett solutions. It is easy to
expand this analogy to the so-called extended Buckley-Leverett problem,
i.e. the case where a solute is transported according to equations (4.4),
but capillarity and dispersion are ignored.

The extended Buckley-Leverett problem also satisfies (4.8), where for

69



4.5 DISPERSION APPROXIMATION

Si = Sywr the constant S, is given in [Pope, 1978, 1980, Johansen and
Winther, 1988]:

f(S3,) df

S D] = as, /S (428)

i.e. we again have the same structure of the solution with the only dif-
ference that the fractional flow function f(S,,) neglects capillary forces
where F(S,,) can be viewed as a ‘'modified’ fractional flow function that

incorporates both viscous and capillary effects.

4.5 DISPERSION APPROXIMATION

The analytical solution derived above is valid if hydrodynamic disper-
sion can be ignored and we will now derive an approximate analytical
solution for the case where dispersion is accounted for, i.e. for the
ADRE (4.4). The solution is constructed in the same way the solution to
the linear ADRE would be constructed, with the only difference that
the parameters depend on the solution for the saturation profile. This
introduces a strong time and space dependency of the coefficients, for
which no exact analytical solutions for dispersion are known, and we
will give an approximate analytical solution through an asymptotic
expansion. Note again, that although we will focus on the case where
the non-wetting phase is homogeneous and consists of one component
only, the same analytical procedure can be used for analyzing the effect
of hydrodynamic dispersion in the non-wetting phase.

We first normalize the ADRE by introducing ¢ := C/Cy, % = x/Ly,
t = t/Tp and §w = qw/Vo, where Ly, Ty and V; are a characteristic
length, time and velocity, respectively such that O(Ty) = O(Ly) = O(V))
[Wilson and Gelhar, 1974]:

oc _0c 0 _ 0Oc
(dSw + dDy) ﬁ = _qu& + EV& <quw£) ’ (4.29)
with
€= X and v:= —VOTO
=L =

For the case where dispersion needs to be taken into account, the only
known analytical solutions for the ADE are valid for the single-phase
case with a constant flow field where the fact that Dy is constant is
heavily exploited to derive a solution [Carslaw and Jaeger, 1959]. We
therefore employ a different approach: Singular perturbation expan-

sion. Singular perturbation techniques have been used in many areas of
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applied mathematics and fluid mechanics [Kevorkian and Cole, 1981,
Van Dyke, 1975] and have been used before for treating the effect of
non-uniform flow fields on dispersion of inert and adsorbing tracers
in saturated and unsaturated single-phase flow through porous media
[Gelhar and Collins, 1971, Dagan, 1971, Eldor and Dagan, 1972, Nach-
abe et al., 1995, Wilson and Gelhar, 1981, 1974].

While the details are technical (Appendix B.4 and B.3), the fundamental
idea is very simple: For small ¢, dispersion can be thought of as a
perturbation to the advection equation. For ¢ # 0, the mathematical
character of equation (4.29) fundamentally changes from a hyperbolic
PDE to a parabolic one, and thus the perturbation is of singular na-
ture. The solution (4.8) to the advection problem (4.4) is viewed as an
‘outer solution” to the ADRE that is a good approximation away from a
boundary layer. The boundary layer is characterized as the zone where
dispersive effects are strong and thus will be located around the advec-
tive front. By ‘'magnifying’ this zone through appropriate coordinate
transformations, and by using the notion that around the front, g,
and S,, can be approximated by their values at the front, the PDE (4.4)
reduces to the well-known heat equation. Then inner and outer solution
are matched and a uniformly valid, closed form analytical solution is
obtained.

Formally, equation (4.1) is the same as for the unsaturated single-phase
case, where ¢S,, corresponds to the soil-moisture content and no re-
striction for a second phase is present. Thus, formally the dispersion
approximation for equation (4.1) can be derived in the same manner
as the one employed in [Wilson and Gelhar, 1981, 1974], and we will
only give a rough outline. However, the characteristic length L, for
the two-phase case is the distance between the wetting front and the
point where the solutes start to break through. This is different from the
single-phase case, where L is the total distance traveled by the solute
front [Gelhar and Collins, 1971, Dagan, 1971, Eldor and Dagan, 1972,
Nachabe et al., 1995, Wilson and Gelhar, 1981, 1974].

Obviously, the idea of finding an approximate solution through a pertur-
bation expansion does not only apply to hydrodynamic dispersion, but
to any situation where a sharp front described by a hyperbolic PDE is
smeared out by some parabolic terms. Consequently, earlier attempts to
account for solute dispersion and capillary effects used a perturbation
expansion around the jump in C and around the Buckley-Leverett shock
in S,, [Bedrikovetsky, 1993, Barenblatt et al., 1990, Zazovskii, 1985].
However, this approach is unsatisfactory for two reasons. First, the per-
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4.5 DISPERSION APPROXIMATION

turbation expansion for the capillary part is only an approximation and
leads to a loss of some of the information on the flow field. Second, to
be able to use a perturbation approach, the flow must develop a discon-
tinuity which can serve as the outer solution. While for the co-current
situation the outer solution would be the Buckley-Leverett solution, it
is not clear what can serve as outer solution for the counter-current
case. There, one has q¢ = 0, and the conservation equation for S,, (2.11)
only comprises parabolic terms according to the nonlinear dispersion
equation (2.21) for S,,. Indeed, none of the earlier attempts can account
for the situation of spontaneous, counter-current imbibition despite its
tremendous practical importance for fractured reservoirs (Chapter 3),
but rather give an approximate solution for the co-current case only.
To the best of our knowledge, the solutions we present here therefore for
the first time describe the situation where all the physical mechanisms
- co, and counter-current imbibition, viscous effects, and dispersion
- that account for the transport of a sorbing solute and mixing in a
homogeneous two-phase system are taken into account.

Dispersive effects are strong around the jump in C which travels along
the characteristic coordinates (0, T), where the overbar denotes normal-
ized variables. Thus, to obtain an inner solution, it makes sense to first
transform equation (4.29) onto the (6,T) coordinate system. Through

usage of the Leibnitz rule and the product rule we obtain (Appendix

B.3)
@ n % € [ 1 0
0T 00  Qwo L(Sw+ Ds)(0%/3Sy) 3Sy

aZ
+ (O(Sw+Ds)Swln) 355 |

oc

((sw + @s)swqw) a—& .

Note that if ¢ = 0 in equation (4.30), we indeed obtain the normalized
version of the hyperbolic advection equation (4.26).

To magnify the region around the solute front, we introduce the coordi-
nate transformation

0—1
E=—w (431)

The exponent m determines the "thickness’” of the boundary layer and
can be determined either from physical or mathematical reasoning.
Physically, it needs to be such that within the boundary layer dispersive
changes are of same order of magnitude as temporal changes. Mathe-
matically, it follows from the principle that it must be possible to match

the inner solution ‘around” the boundary region with the outer one
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4.5 DISPERSION APPROXIMATION

close to the boundary region. Formally, this leads to Van Dyke’s prin-
ciple of least degeneracy [Van Dyke, 1975, Kevorkian and Cole, 1981],
which yields the same boundary-layer thickness as the one obtained
from the physical approach. Transforming equation (4.30) onto the (7, &)
coordinate system yields (Appendix B.4)

oc 1 gm 0 _\ O0c
9T Quoe?™ T | (Sy + D) () ASw (St D0)5u) d¢,
v 22 (4.32)
~ c
+ (d)(sw + ®s)quw> 6_52] .

The order of temporal change of the left hand side of (B.21) needs to be
the same as the one of the right hand side which leads to m = 1/2. This
is the same value for m as for the case without adsorption as expected
since adsorption does not affect the flow field. The PDE (B.21) was
derived through a number of coordinate transformation and thus is
equivalent to (4.1).

We now seek an approximate analytical solution for equation (4.29)
through an asymptotic expansion

C(T, &) ~ Colt, &) + 12 Cy (%, 8) + O(e). (4-33)

Inserting this in equation (B.21) with m = 1/2 and only retaining terms
of zeroth order in ¢ leads to

o1
0T qu

o%c

FEa (4-34)

(&Sw(Sw+Ds)aw)

This is the well-known diffusion equation and for the case where the
coefficients on the right hand side are functions of T only, many ana-
lytical solutions are known [Crank, 1979, Carslaw and Jaeger, 1959]. To
arrive at that form of the diffusion equation, we use the heuristic notion
that S,, and §,, will undergo small changes around the solute front,
and thus can be approximated by their values at the front. Formally,
this corresponds to a Taylor expansion around the solute front that is
truncated after the first term and thus gives the same order O(¢'/?) as

the perturbation expansion. Altogether, we arrive at

o
082’

ac 1 . . _x
a_”f - m <(|)(Sw + DS)quw> (435)
where ()* denotes that the value is taken at the solute front. The con-
sequences and limitations of this approximation are discussed below.

To be complete, the diffusion equation (4.35) needs to be supplemented
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4.5 DISPERSION APPROXIMATION

with initial and boundary conditions. They follow from the inner and
outer solution and for the case of the step profile coinciding with
(4.5). The diffusion equation (4.35) together with (4.5) written in the

(x, t)—coordinate system, has the solution [Dagan, 1971, Carslaw and
Jaeger, 1959]

C(x,t) = %erfc(

3 (@Sw(&, 1) + dDs)dE — [§ quw(0,8)dd )( 0
20(1/2 |:J'O(t) d)(S;,kV‘F‘D )S* (qW(SSO)))dt]

By construction, the solution given in equation (4.36) is valid for the
region around the boundary layer, whereas the solution given through
equation (4.8) is valid away from the boundary layer.

For the initial- and boundary conditions as specified in (4.5), the
uniformly-valid composite solution for the zeroth-order approximation
coincides with equation (4.36). This is obtained as follows: To acquire
a zeroth-order approximation that is uniformly valid throughout the
whole region, we need to construct the composite solution which is
given by [Kevorkian and Cole, 1981, Van Dyke, 1975]

comp(é ) “(é,ff)—{-cout(é, ) match(é )

Al

(4-37)

where the superscripts comp, in, out, and match denote the composite,
the inner, the outer, and the matched solution, respectively. The inner
solution ¢ (8, T) has been derived above, and is given in equation (4.36)
in the (x,t) coordinate system. The outer solution c°**(, T) is the so-
lution to the hyperbolic PDE, and is given by a step profile, equation
(4.27). The matched solution ¢c™3t"(§, 7) is the function that overlaps
with c°%(8, %) in the boundary layer, and with c(0,T) away from it
[Kevorkian and Cole, 1981, Van Dyke, 1975]. Given the functional form
of c°*(8,t) and c'"(6, T), we therefore obtain that c™®"(§, T) must be
the step function, i.e. c™*"(§,%) = H(0 — 7). Alltogether, from equa-
tion (4.37) we obtain that c*°™P(0,%) = c¢™(0, ©), and thus the solution
uniformly valid throughout the whole region c®°™ (9, T) is given by
equation (4.36) in the (x,t) coordinate system.

As in the purely advective case, for the derivation of the first equation
in (4.36), no features of the solutions for the flow field q,, or S,, were
used. Consequently, this expression is valid for the initial and boundary
conditions given in (4.5) and any qw, Sw, and S, that satisfy equations
(2.11). The respective expressions can stem from either analytical so-
lutions or could be combined with numerical calculations from e.g.
streamline simulations [Blunt et al., 1996, King and Datta-Gupta, 1998,
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Figure 4.2: Capillary-hydraulic properties for the Brooks-Corey parametriza-
tion for Agc = 3 and for residual saturations S.,; and Sy . (a)
Relative permeability functions kr, kyn. (b) Capillary pressure
function pc.

Datta-Gupta and King, 1995]. In case boundary and initial conditions
other than equation (4.5) are used, the matching function and the com-
posite solution need to be modified accordingly.

From equation (4.36), we can obtain an expression for the growth of the
dispersive zone (Figure 1.2), . Dispersion only plays a role around the
solute front, i.e. where x = x(S;,, t), and thus 6 can be described by the
rate of change around that front. This gives

-1
~ (ac/cy
5(t)——< i ) : (4-38)
x=x(S%,,t)

46 FLOW REGIME DEPENDENT MIXING AND DISCUSSION OF VA-

LIDITY

In this section we combine the definition of 5(t) with the analytical
expressions derived for C for the case of viscous dominated flow and
imbibition. Moreover, we compare our analytical expressions to some
numerical solutions and discuss under which condition the solutions
are valid. For the numerical simulations, we use the algorithm described
in Chapter 5.

For the perturbation expansion to be valid, 2 = (ar/ Lo)]/ 2 <
needs to be satisfied. We show that for the two-phase case L is the
distance between the wetting front and the point where the solutes start
to break through. This is different from the single-phase case, where L,

is the total distance travelled by the solute front.
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Furthermore, we discuss the difference between the growth rate 5(t)
of the dispersive zone (Figure 1.2) for the cases with and without cap-
illary pressure. We show that for the case of spontaneous imbibition
the dispersive zone grows with order t(1/4) while for the viscous limit,
i.e. the Buckley-Leverett case, the order is t(1/2), Furthermore, we show
that while adsorption does not affect the temporal order, it decreases
the constant multiplier in the order, and thus the growth of (t) itself.
The parametrizations for D(S,,), f(Sw) and P.(S,,) are either deter-
mined from experimental measurements or described analytically, see
Figure 4.2. Several models exist to algebraically describe them. In the
foregoing analysis, no assumptions for the functions D, f and P. were
used other than what is known from the underlying physics and thus
any description for them can be used in our context. One of the most
common models employed in both hydrological applications and the
petroleum literature, the Brooks-Corey model [Brooks and Corey, 1964]

uses the relations

K (Se) = siFt3rec)/Aec (4-392)
Krn(Se) = (1= Se)2(1 — siuc)/Aec, (4-39b)
Pe(Se)/pa = SeMse, P> pa. (4-39¢)

Here, pq is the entry pressure for the non-wetting fluid and Agc is the
Brook- Corey parameter, Agc € [0.2,3.0], see Figure 4.2. In the following
examples, we restrict ourselves to the Brooks-Corey model, but as

pointed out several times any choice for kv, ki and p. is applicable.

SPONTANEOUS CO-CURRENT AND COUNTER-CURRENT IMBIBITION

For spontaneous imbibition, equations (4.36) and (4.38) become

[o(dSw + dDs) (&, 1)dE — 2At!/2

76

C(x,t f
(x,t) 5 er C( ]/z (d)s* (@ —|—S* ))1/2 (ZAt]/Z(F(S;‘V)(] _fiR) _|_fiR))

5(t)_2_(m‘1) ( S )2 1/2
=219 ) \spxm, ) 2t

[ (e Sw B
_2_(¢)-(S%+DS)ZA\/_ )(1 —f;R) +fiR)

12

Figure 4.3 shows the comparison between numerical solutions and the
analytical solution for the cocurrent flow and transport of sorbing and
inert solutes for times t = 0.7 days, 1.5 days, 2.5 days and the parame-
ter set given in Table 4.2. Figure 4.4 shows the comparison for the case

1/2)

(4.40)



46 FLOW REGIME DEPENDENT MIXING AND DISCUSSION OF VALIDITY
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Figure 4.3: Dispersion approximation for cocurrent imbibition and transport
for (a) a sorbing solute (Ds = 0.5 m?lui d /mf,v) and (b) an inert
solute (D = 0) at times t = 0.7 days, 1.5 days, 2.5 days. The corre-
sponding ¢ is (a) ¢ = 0.12,0.056,0.03, and (b) ¢ = 0.4,0.3,0.14.
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Figure 4.4: Dispersion approximation for cocurrent imbibition and transport
for (a) a sorbing solute (Ds = 0.3 m3, ;4 /m%v) and (b) an inert
solute (Ds = 0) at times t = 0.7 days, 1.7 days, 17 days. The corre-
sponding ¢ is (a) ¢ = 0.64,0.25,0.044, and (b) ¢ = 0.4,0.3,0.1.

of counter-current imbibition for times t = 0.7 days, 1.7 days, 17 days
and the parameter set given in Table 4.1. The perturbation expansion as-
sumes e'/? << 1,& = &1 /L. The characteristic length of the system Ly is
the distance between the wetting front and the point where the concen-
trations start to break through. This is different from the perturbation
expansions derived for the saturated and under-saturated single-phase
case, where the characteristic length is the distance travelled by the
solute front [Gelhar and Collins, 1971, Dagan, 1971, Eldor and Dagan,
1972, Nachabe et al., 1995, Wilson and Gelhar, 1981, 1974]. Figure 4.5
shows the comparison for spontaneous imbibition and the parameter
set given in Table 4.1 for times t = 2 days, 17 days, 34 days. In this case,
the connate wetting saturation is smaller than the ones in the previous
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Table 4.1: Parameter sets for counter-current, spontaneous imbibition as shown
in Figures 4.4, and 4.5.

Parameter Unit Set I (Figure 4.4) Set II (Figure 4.5)
Si [—] 0.25 0.11
So [—] 0.85 0.85
Sy [—] 0.22 0.1
Snr (-] 0.15 0.15
ABC (] 3.0 3.0
Pa [Pa] 1.5-103 15103
oL [m] 0.02 0.02

¢ (-] 0.25 0.25
T [Pa-s] 1.0-1073 1.0-1073
In [Pa-s] 0.5-1073 0.5-1073
Dy [m3/m3, ] 0.3 0

Table 4.2: Parameter set for cocurrent case and viscous limit (Buckley-Leverett
(BL) problem) as shown in Figures 4.3 and 4.7.

Parameter Unit Cocurrent case (Figure 4.3) BL (Figure 4.7)
Sy [—] 0.22 0.85
So [—] 0.81 0.78
Swr [—] 0.22 0.22
Snr (-] 0.15 0.15
Pd [Pa] 1.5-103 -
ABC [—] 3.0 3.0
L [m] 0.01 0.00488
qt [(m/s] - 2.1-1077
¢ [—] 0.25 0.25
Ly [Pa-s] 1.0-1073 1.0-103
n [Pa-s] 1.0-1073 0.5-1073
D m?/m3, ] 0.5 0.3
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I
Seff []as.
- - Seff [=] num. sol.
C/C0 [-],a.s. with D "
c/C o [-], num. sol. with D ul

0.9

 ——————————————— L e T
0 0.2 0.4 0.6 0.8 1 12 1.4 16 1.8 2

Distance ([m])

Figure 4.5: Dispersion approximation for spontaneous imbibition and param-
eter set II (Table 4.1) with o = 0.02m at times t = 2d, 17d, 34d.
At time t = 2d, the distance between the solute and the wetting
front is zero, which yields €1 = oo and thus the condition ¢ << 1
is violated. Consequently, the dispersion is overestimated and a
dispersion of the components ahead of the solute front is wrongly
predicted. For t; = 17d and t3 = 34d, e; =0.43 and e3 = 0.2, and
the comparisons show good agreement.

two examples, and D = 0, and consequently the retardation between
the wetting front and the point where the solutes start to break through
is smaller. At time t = 2 days, the distance travelled by the solute front
is already longer than for t = 0.7 days for the case shown in Figure 4.4.
However, the perturbation expansion for the case shown in Figure 4.5
overestimates the dispersion for this time, and predicts that the compo-
nents disperse ahead of the solute front. This is physically impossible
since there g,, = 0 and shows that the characteristic length for the two-
phase system is not the distance traveled by the solute front but rather
the distance between the wetting front and the point where the solutes
start to break through. For later times, this distance increases, yielding
declining values for ¢ and a good agreement between the numerical
and the analytical solution is achieved.

Adsorbing components get retarded, and hence according to equa-
tion (4.10) ‘see” a flow field different from the one for the inert solutes.
Consequently, although the order over time for the growth of the dis-
persive zone stays the same, the slope will not. Adsorption results in a
slightly higher S}, and thus a slightly higher flow rate. However, at the
same time, (t) according to equation (4.40) is diminished by a factor
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Figure 4.6: Comparison of growth of dispersive zones for spontaneous,
counter-current imbibition, different adsorption rates D, and the
parameter set I given in Table 4.1 and for the viscous limit for the
parameter set given in Table 4.2 with Dg = 0.

(S5,/(S;, + Ds)) which is a stronger effect than the increase in gy, and
altogether adsorption results in §(t) growing more slowly compared to

the inert case (Figure 4.6).

BUCKLEY-LEVERETT PROBLEM  For the Buckley-Leverett problem
with constant inflow rate q¢, and boundary conditions for S,, and C as

specified in (2.17) and (4.5), respectively, equation (4.36) becomes

Sw+Ds)d
Clx, t) = zerfc( Jo & - i & 1/2)
2(S5, (S5, +Ds))V [qutfw(sm -t

N 1/2
5(1) ﬁ[(”ﬁ‘) (525) ~qtfw(s:v)t] .

For the Buckley-Leverett problem with constant inflow, the dispersive

(4.41)

zone grows with order O(t"?) compared to order O(t"4) for sponta-
neous imbibition. Consequently, 5(t) for the situation of both laboratory
setting of spontaneous imbibition and the situation in the field where
spontaneous, (co-, or counter-current) imbibition is the dominant pro-
cess (e.g. for the exchange between high- and low-permeability regions)
and thus the rate of dispersive mixing, is smaller than that for the
viscous case (Figure 4.6). Hence, for cases where the transport of com-
ponents is considered whose mixing triggers reactions (e.g. wettability

changes due to surface reactions), the amount or reactants available is
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Figure 4.7: Dispersion approximation for for viscous limit and transport for
(a) a sorbing solute (Ds = 0.3 m;i‘lui a/ mgv) and (b) an inert solute
(Ds = 0) at times t =5 days,8 days, 14 days. The corresponding
e is (a) € = 0.09,0.02,0.009, and (b) ¢ = 0.51,0.06, 0.02.

much smaller than for viscous dominated processes.

Figure 4.7 shows the comparison between numerical solutions and the
analytical solution for times t = 5 days, 8 days, 14 days and the param-
eter set given in Table 4.2. The characteristic lengths are such that the
condition e'/? << 1 is satisfied, and an excellent agreement between

the numerical solution and the analytical one of this chapter is achieved.

4.7 SUMMARY AND CONCLUSIONS

We derived the first known set of semi-analytical solutions for solute
transport in immiscible two-phase systems that describe the influence
of adsorption, spontaneous co-, and counter-current imbibition, viscous
forces and the time- and space dependent hydrodynamic dispersion.
The solutions reveal for the first time a fundamental difference between

the temporal order of spreading in viscous and capillary dominated
tflow.

* Derivation via a singular perturbation expansion. The closed-form
analytical expressions for C(x,t) (equation (4.36)) were obtained
through a singular perturbation expansion. They are valid if the
dispersion coefficient is small compared to the distance between
the wetting front and the point where the solutes break through.

* Representation as a Welge tangent. For the dispersion-free limit, the
solution with capillarity can be represented as a Welge-tangent to
the capillary fractional flow function F (Fig. 4.1). This extends the
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graphical representation for the extended Buckley—Leverett prob-
lem from the viscous case [Pope, 1980] to the case of spontaneous
imbibition, and completes the analogue with the Buckley-Leverett
solutions.

d(t) depends on the flow regime (Fig. 4.6) and the chemical reaction
(Fig. 4.6). The growth rate 5(t) for the viscous dominated regime is
proportional to t'/?, and for imbibition it is is proportional to t'/*
(equations (4.40) and (4.41)). The temporal order for the viscous
limit confirms earlier numerical results [Arya et al., 1985]. The
temporal order t'/4 was previously unknown. As a consequence
of the different temporal orders, the amount of mixing is far
smaller for spontaneous imbibition than for the viscous case.
Adsorption leaves the temporal order unchanged, but decreases

the proportionality constant.

Application in numerical approximations. The solutions for C (equa-
tion (4.36)) can be employed in connection with any solution for
qw and S,,. Thus, they also could act as building block for numer-
ical schemes when numerical approximations for the flow and

saturation field are used.

Dispersion and anomalous transport. We used the classical parametriza-

tion of dispersion, equation (2.5). While there is an extensive
debate concerning the modelling of dispersion in single phase
flow, the effect of the added non-linearities due to the two phase
tflow field is unclear. Thus, the analytical solutions developed in
this chapter may help in evaluating the reliability of a classical
dispersion description for transport and two phase flow.
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HIGHER ORDER FEFV METHODS ON
UNSTRUCTURED GRIDS FOR TRANSPORT AND
TWO-PHASE FLOW WITH VARIABLE VISCOSITY IN
HETEROGENEOUS POROUS MEDIA

Analytical solutions for flow and transport are central for our under-
standing of flow and transport but they cannot resolve heterogeneous
domains. In this chapter we therefore derive higher order methods for
the numerical modelling of two-phase flow with simultaneous transport.
The components we consider are adsorbing, viscosifying species within
the individual phases. The algorithm we propose was implemented
in the Complex System Modelling Platform (CSMP) which previously
could resolve multiphase flow but not simultaneous transport and the
associated challenging non-linearities.

The numerical scheme presented addresses three major challenges in
simulating this process. Firstly, the component transport is strongly
coupled with the viscous and capillary forces that act on the movement
of the carrier phase. The discretization of the capillary parts is especially
difficult since its effect on flow yields non-linear parabolic conservation
equations. These are amenable to non-linear finite elements (FEs), while
the capillary contribution on the component transport is first-order
hyperbolic, where classical FEs are unsuitable. We solve this efficiently
by a Strang splitting that uses finite volumes (FVs) with explicit time-
stepping for the viscous parts and a combined finite element-finite
volume (FEFV) scheme with implicit time-stepping for the capillary
parts.

Secondly, the components undergo hydrodynamic dispersion and dis-
cerning between numerical and physical dispersion is essential. We
develop higher-order formulations for the phase and component fluxes
that keep numerical dispersion low and combine them with implicit
FEs such that the non-linearities of the dispersion tensor are fully incor-
porated.

Thirdly, subsurface permeable media show strong spatial heterogeneity,
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with coefficients varying over many orders of magnitude and geometric
complexity that make the use of unstructured grids essential. In this
work, we employ node-centered FVs that combine their ability to re-
solve flow with the flexibility of FEs. Numerical examples of increasing
complexity are presented that demonstrate the convergence and robust-
ness of our approach and prove its versatility for highly heterogeneous,

and geometrically complex fractured porous media.

5.1 INTRODUCTION: NUMERICAL METHODS FOR FLOW AND TRANS-
PORT

The unsteady flow of two phases and the simultaneous transport of
chemical components within each individual phase occurs in many en-
vironmental and engineering applications (Chapter 4). While analytical
solutions play an important role in shedding light onto the underlying
non-linearities (Chapters 3, 4) they often cannot resolve heterogeneity.
Hence, efficient numerical schemes are necessary that can accurately
capture the complex non-linearities of flow including changes in fluid
properties and transport processes while allowing for highly flexible
discretizations to represent the subsurface.

In recent years, combinations of Finite Element-Finite Volume (FEFV)
methods [Huber and Helmig, 1999, Geiger et al., 2004, Matthdi et al.,
2007, Durlofsky, 1993, Monteagudo and Firoozabadi, 2007, Reichen-
berger et al., 2006] have been developed to simulate laminar two-phase
tflow in heterogeneous porous media (e.g. oil and ground water reser-
voirs). FEFV methods unite the geometric flexibility of finite element
(FE) discretizations necessary for the complex geological structures
found in the subsurface (Fig. 1.1) with the capabilities of finite volume
(FV) techniques to give a stable, locally mass-conservative approxima-
tion of the flow processes. Thus, these methods are ideally suited for
multi phase flow simulation in realistic subsurface porous media (Fig.
1.1). In the FEFV approach, the FEs are used to solve the parabolic
pressure equation from which the element-wise constant velocity field
is obtained. This leads to flux continuity on the dual FV grid (Fig. 5.1).
The velocities are then used in the FV scheme to transport the phases
which guarantees mass conservation. Another advantage is that lower
order elements can readily be applied to model high aspect ratio struc-
tures such as fractures and faults [Martin et al., 2005, Lee et al., 2001,
Hoteit and Firoozabadi, 2008, Niessner and Helmig, 2007, Geiger et al.,
2004, Matthdi et al., 2007] which are present in porous media but are
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notoriously difficult to discretize with reasonable computational cost
(Fig. 1.1). The FEFV methods proposed so far focus on either resolving
multi-phase flow or single-phase transport but do not treat the simulta-
neous transport of chemical species and their impact on the flow field
through component-induced viscosity changes. The latter effect is a key
flow behavior in many environmental and engineering applications. In
this chapter, we extend the FEFV method such that it can account for
both flow and transport of adsorbing species dissolved in the water
phase, where the transported solutes affect the viscosity of the carrying
fluid, while reducing numerical dispersion.

First-order FV schemes introduce strong numerical dispersion which
makes the distinction between the numerical and the actual physical dis-
persion difficult. We formulate two different second-order methods of
the monotone upwind-centered scheme for conservation laws (MUSCL)
type for the transport and flow equations. The conservation equation
for the components is of advection-dispersion-reaction type, and we
use a Strang splitting [Strang, 1968]. The hyperbolic advection-reaction
part is solved using explicit in time, second order FV schemes. Together
with the equation for the adsorption isotherm, this yields a system of
non-linear equations that is solved via a Newton method combined
with a line-search method to achieve better convergence [Nocedal and
Wright, 1999]. The full space and time dependency of hydrodynamic
dispersion on the flow field is modelled through a Fickian dispersion
tensor and is solved via an implicit FE scheme. The situation we treat is
different from that of two-phase multicomponent simulations. In our
situation, the concentrations are reconstructed from the saturations,
whereas for multicomponent simulations the phase components and
pressure are used in flash calculations to reconstruct the saturations
[Niessner and Helmig, 2007, Mallison et al., 2005, MikySka and Firooz-
abadi, 2010, Karimi-Fard et al., 2006, Geiger et al., 2009, Moortgat et al.,
2011, Moortgat and Firoozabadi, 2010].

Three other common methods developed during recent years for the
simulation of multiphase flow include finite difference methods, com-
bined FV-transmissibility tensor methods and the streamline method.
As a starting point for the extension to a scheme for flow and transport,
alternative to the FEFV method, flux-based finite difference methods or
FV-transmissibility tensor methods may be used. For the finite differ-
ence methods, multipoint flux approximations are used to obtain correct
discretizations of the flow equations for heterogeneous media and gen-
eral non-orthogonal grids (e.g. [Aavatsmark, 2002, Lie et al., 2011]).
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In the combined FV-transmissibility tensor methods, transmissibilities
relate the pressure difference between adjacent FV cells to the flow
between these cells (e.g. [Edwards and Zheng, 2010, Edwards, 2002]),
an approach that can also be coupled with higher-order methods (e.g.
[Lamine and Edwards, 2008]). The streamline method seems unsuitable
for two-phase multicomponent flow. It transforms the flow equations
onto a coordinate system that is aligned with the principal axis of flow
which makes them one-dimensional, resulting in a fast solution method
[Blunt et al., 1996, King and Datta-Gupta, 1998]. This approach makes
accounting for dispersion of components orthogonal to the principal
axis difficult.

The remainder of this chapter is structured as follows: First, we de-
scribe the numerical solution. The numerical discretization of two-phase
flow without transport via FEFV-schemes has been described previously
[Huber and Helmig, 1999, Geiger et al., 2004, Matthii et al., 2007], and
we show how the formulation is extended to the case where compo-
nents affect the fluid properties. Then we first describe how the pressure
and velocity field is obtained. Subsequently, we describe how the phase
saturations and components are discretized. For the FV scheme, we
initially describe the first order single-point upstream method, and then
introduce two second order methods. The algorithm is summarized in
section 4. We then give five numerical test cases that show the conver-
gence of the different schemes and their versatility to resolve flow and
transport in fractured, highly heterogeneous domains. In particular, we
show the dependence of the resolution on the grid Peclet number. We

tinish the chapter with some a summary and conclusions.

5.2 NUMERICAL SOLUTIONS

The phase pressure equation for incompressible porous media, equation
(2.8), and the equations for fluid flow, (2.11) and the ADRE equation
(2.12) form a strongly coupled, non-linear system of PDEs. We com-
pute the solutions of these PDEs numerically by solving implicitly in
pressure and explicitly in saturation and in components (IMPEC ap-
proach, [Aziz and Settari, 1979, Gerritsen and Durlofsky, 2005]). This
approach decouples the equations. Thus, the equations can be treated in
a sequential manner which allows for the usage of different numerical
solution techniques for the different equations. We use a combination
of a higher order FV scheme for advection dominated problems and a
FE approximation for diffusion-like problems.

86



5.2 NUMERICAL SOLUTIONS

We will first introduce the discretization method we use, then describe
how the pressure field is calculated and how we obtain the velocity
tield from it. Subsequently, we describe, how the new component and
saturation values are calculated.

For simplicity, we assume that the capillary pressure curves are func-
tions that do not depend upon the spatial heterogeneity of the domain.
Different capillary pressure curves lead to jumps in the saturation
profiles along material interfaces [Nayagum et al., 2004, Hoteit and
Firoozabadi, 2008]. For flow without the transport of a dissolved com-
ponent, the influence of an inhomogeneous p. can be incorporated by
solving for two additional conditions across material interfaces that
guarantee flux continuity and continuity of capillary pressure, but pose
a major difficulty for the actual implementation [Reichenberger et al.,
2006, Hoteit and Firoozabadi, 2008, Niessner et al., 2005]. Obviously, the
case of homogeneous p. curves is a special case of the general scenario,
and thus any scheme that resolves the influences of heterogeneous p.
on both saturation and components necessarily has to build upon the
simple, albeit often unrealistic homogeneous case discussed here. Also,
since even the numerical resolution of the influence of homogeneous p,
and dispersion on unstructured grids on flow and transport so far has
not been solved, the treatment of the situation of general p. curves for
both the saturations and the components is clearly beyond the scope of
this chapter and will be discussed in forthcoming work.

We implemented the numerical schemes described here in the Com-
plex System Modeling Platform (CSMP++) [Matthi et al., 2007] library
designed for modelling fluid flow in structurally complex geological
geometries.

Discretization

The computational domain Q C R4, d € {2,3) comprises two subdo-
mains Q,, and Q;. For simplicity, we will assume Q C R? but our
approach immediately carries over to three dimensions [Paluszny et al.,
2007]. Q. C R? is the subdomain for the matrix, and Q¢ C R! is the set
of fractures {fy, ..., fn,} of width o so that [Reichenberger et al., 2006,
Monteagudo and Firoozabadi, 2007]

Q=0,+030;. (5.1)

The pressure equation (2.8) and the mass-conservation equation for the

saturation, equation (2.11) and the components, equation (2.12) apply to
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both fractures and matrix. Hence, the integration over the domain can
be written as [Reichenberger et al., 2006, Monteagudo and Firoozabadi,
2007]

J SdO_:J Sde—i—éJ GdQ¢ (5.2)
Q m Qg

where § stands for one of the unknowns p,,, Sy, or the unknown prod-
uct for the components S, - C.

We discretize the domain Q,,, with constrained conforming Delaunay
triangles and/or quadrilaterals. Based on this FE mesh, a node cen-
tered FV subgrid is generated [Durlofsky, 1994, Huber and Helmig,
1999] through a barycentric tessellation [Paluszny et al., 2007] where
the barycenter of each element is connected with the midpoints of the
associated edge (Figure 5.1). High aspect ratio structures such as frac-
tures are modelled as lower dimensional elements, i.e. 1D lines in IR?,
and 2D surfaces in IR®. Material properties are defined on the elements
(Figure 5.1) so that this approach makes their integration from element
to element possible, and it yields FV cells that can be represented in
parametric space [Paluszny et al., 2007] and thus is well-suited for the
simulation of flow and transport in complex geometries.

In the following, the calculation of the left-hand side of equation (5.2)
for the unknowns py, Sw, C by FEs and FVs is described. The influence
of the fractures is then accounted for by extending the integral [,
according to equation (5.2). Since Q = Q. + 8Qy, the integral over Q,,
is identical to the integral over () whereas the integral over Q¢ must be
multiplied by the width 9.

Pressure-, and velocity field

The calculation of the pressure field by the FE method is described first.
We introduce the space of piecewise linear functions V which is spanned
by the nodal basis {®;};"; C V,

1 fori=j,
Oi(x5) = (5-3)
0 otherwise,

where x;j is the coordinate vector of node j. After transforming the
pressure equation into weak form and applying the Galerkin projection

onto V, equation (2.8) becomes
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Figure 5.1: Discretization of the domain with conforming Delauny triangles
and node-centered FV subgrid. The shaded region represents seg-
ment j of FV V; and the respective normal vector nj. The pressure,
saturation and components are defined on the nodes, and material
properties, such as permeability k and porosity ¢ on the elements.
q is computed as an element-wise constant property by interpo-
lating S,, and C to the FE bary center. Note that the fluxes then
are continuous across the FV interfaces. The red lines represent
fractures which are modelled as lower dimensional elements.

J AVPwkVO;dx = —J AnVpckVO; dx
Q Q

_J V'[(pn)\n+pw}\w)g]'®idx, i=1,...,m
Q

with the basis representation of p,,,

Pw(x) =Y Pu®;(x), (5:5)
j=1

where py,; = pw(xi). Equation (5.4) together with (5.5) can be written
as a system of linear equations Ap = b, where

Pwi= Pw(xi), Pw € R™,

b; = —J A Vp kVO; dx —J V- [(pnAn + pwAw) gl - @3 dx, b eR™,
Q Q

Ai]' = J AtV(leV(D) dx, Ace€ R™*™,
Q
(5:6)
A is the stiffness matrix, and is symmetric and positive definite [Ciarlet,

1979] and thus the linear system is uniquely solvable. Furthermore, the
matrix A is sparse which allows for fast solving strategies. We use the

(5-4)
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algebraic multigrid method implemented in CSMP++ for large problems
that arise for geometrically complex domains [Stiiben, 2001, Krechel
and Stiiben, 2001] and a classical Gauss solver for simple domains. The
influence of the fractures is accounted for by simply expanding the
integrals over Q) above according to equation (5.2). The oil pressure p,
is computed in the same manner. Once the pressure equations have
been solved, the velocity field can be obtained which then is piecewise
constant on the FEs. In CSMP++, the velocity is calculated by element-

wise differentiation of the pressure-field

n,d

Ao = Z —KkijAx (Pai VD — Pag) , (5.7)

ij

which leads to velocities that are element-wise constant and hence con-
tinuous between adjacent node-centered finite volumes (Fig. 5.1). Thus
they can resolve discontinuities in material properties since material
properties are defined on the FEs [Geiger et al., 2004]. Here, i and j
are indices over the n nodes of element e, respectively, and d is its
dimension. V @ is a matrix of size d x n holding the derivatives of ®@;.
A« is assumed to be constant for e. This method has been successfully
employed in high-resolution fluid flow in complex reservoirs [Huber
and Helmig, 1999, Geiger et al., 2004, Matthdi et al., 2007, Geiger et al.,
2009, Paluszny et al., 2007, Matthdi et al., 2009]. Note that k and ¢ must
be scaled by the fracture aperture to obtain the right volumetric flux

and pore-volume for lower-dimensional elements.

Phase saturations

Equation 2.11 consists of a first-order hyperbolic advective part, and
a second-order parabolic diffusion part [Huber and Helmig, 1999]. If
an explicit time discretization is applied on 2.11, a necessary condition
for stability is that the time-step At satisfies the Courant-Friedrich Levy
(CFL) condition. If only the hyperbolic contribution in equation (2.11)
is resolved, the CFL condition has the form [LeVeque, 2002]

: Ly )
At < min , .8

max V ( qt/Vmax (5 )
where Ly is the length of the principal axis in finite volume V that is
aligned with the direction of flow and v, v, . is the maximal velocity
inV.
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It is well known [Aziz and Settari, 1979, LeVeque, 2002] that while the
CFL condition for a pure advection problem, equation (5.8), leads to the
requirement At = O(Ax), the presence of the diffusive term in equation
(2.11) leads to a CFL condition of the form At = O(Ax?), where Ax is
the smallest cell diameter for the grid used. Thus for a fully explicit
scheme, the diffusion leads to prohibitively small time-steps for fine
grids. We avoid this problem by applying a Strang splitting [Strang,
1968, LeVeque, 2002]: We discretize the time-derivatives with the explicit

Euler scheme and then alternately solve the problems

0Syw . f(Sw, C)ken dpc
(As) =2 = v. (k » dswvsw) and o
9S,, _ '
(Bs) &= =V (f(Sw,Cla) =V (Alpw—pn)kVg),

where we write Ay = }‘WM . This splitting has been applied to two-phase
flow in porous media before [Nayagum et al., 2004, Siegel et al., 1997].
It provides us with the advantage that we can solve problem (Ags) with
an unconditionally stable implicit scheme and (Bs) with an explicit
scheme where the time step only has to satisfy At = O(Ax). Alterna-
tively, problem (Bs) also could be solved implicitly, but the use of an
implicit method with higher order schemes is challenging, and therefore
not employed here [Blunt and Rubin, 1992].

If (As) is solved with a full time step preceded by a full time step for
(Bs), the resulting splitting error is of order O(At). For the sequence
half-time step (As), full time-step (Bs), half time-step (Ag) the splitting
error can be decreased to O(At?) [LeVeque, 2002, Strang, 1968].

We first deal with the solution of problem (Ag). This is a parabolic prob-
lem, and can be solved in the same manner as the pressure equation.
We use an explicit Euler scheme for the time derivatives in (Ag) in
equation (5.9), and then apply the Galerkin projection onto V, which
yields

/N

At fken dpe
N0 = (kR EEEVSE L VO, =
J et (b JQ( Hn dsw SW ldX)>

@;SL dx (5.10)

%

(_a
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where the saturation of the previous time step has been denoted by St,,
and we use the basis representation Sj, = Z]- S1 (%) @;(x). We can write

(5.10) as a system of linear equations

(As +Ms)S;, = bs (5.11)
with

At d
Asij = —J (Ack Peva,. Vo;) dx, A € R™™,

(b Q dsw
Ms i = J @i - ;5 dx, M c R™™,

Q (5.12)

Swi = Sw(xi), S: ¢ R™,
bs; = J @;S?, dx, beR™

Q

M; is the mass matrix, and it has been shown that mass lumping, i.e.
diagonlization of Mg, is essential to avoid spurious oscillations of un-
saturated flow [Celia et al., 1990]. To evaluate the integrals over ), A¢, k
and %’—fv need to be evaluated on the elements. To this end, one value
for the saturation and the component per element is needed, which we
obtain by interpolating S, and C at the barycenter of one element with
a linear interpolation. We solve the linear system of equations in the
same manner as for the pressure equation. As for the pressure equation
the influence of the fractures is accounted for by simply expanding the
integrals over () above according to equation (5.2). If the initial S,, is
close to the residual saturation S,,, the change in capillary pressure
can be steep, and evaluating p. at the previous time-step can introduce
large errors. An easy way of overcoming this, is to use a predictor-
corrector scheme which after solving problem (As) re-evaluates the
flow parameters with the updated S,,, and solves problem (As) again.
We found that this procedure leads to good approximations after only
few iteration steps.

The discretization of problem (Bg) in equation (5.9) is discussed next.
The numerical approximation of advection dominated problems with
classical FEs introduces spurious oscillations and is therefore unsuitable
and a FV scheme or discontinuous FE methods should to be applied
[Nayagum et al., 2004, Hoteit and Firoozabadi, 2008]. However, contrary
to an FE-FV approach, discontinuous FE methods cannot readily be
incorporated into an existing FE code and require several degrees of
freedom per variable and node. We therefore employ an FE-FV ap-

proach. We use the element-wise constant velocities calculated from
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equation (5.7) to compute the mass balance of the fluid phases. Discretiz-
ing equation (5.9) via an explicit Euler scheme in time and integration

over a finite volume V; yields

JV. (st —st,) av =

- % (Jv V- (fq,) dV) (5.13)

i

- E (J'Vi V- [(pw - pn)xthg} dV)

where for the evaluation of f, C and S,, from the previous time-step are
used, and a summary of the algorithm is given in section 4. Applying
the divergence theorem, equation (5.13) leads to the accumulation of all

segment fluxes in and out of V;

JV. (sﬁv“ - sﬁv) dv =

At Ngi A‘t MNgi _ (514)
— Y [hay) w7 X [(ew(Si € —pu)i kVg] - my
j

)

where Z;‘Si is the summation of all fluxes [fjvy] - nj at segment j
belonging to the group of segments ng; of finite volume V;. A; is the
area of the control volume, and nj is the outward normal vector to j-th

segment, scaled by the area of the segment (Figure 5.1).

Components

Next, we discretize the conservation equation for the concentration
with the ADR equation (2.12) describing the spatial-temporal evolution
of a reacting component. It consists of three contributions: The first
describes the movement of a concentration due to advection and ad-
sorption; the second describes the transport due to capillary forces; the
third describes the effects of dispersion. As for the saturation equation
(2.11), the movement due to advection is a hyperbolic first order term.
Since capillary pressure is only a function of the saturation and not
the components, however, the contribution of the capillary part for the
components, is also a first-order hyperbolic part, and thus must be
discretized via a FV technique. The values of the component concen-
trations are calculated in the same time step as the saturation values.
This poses a major difficulty, since the discretization of the capillary

pressure contribution on the saturations only yield saturation values
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at times t and t + At, where t + At is a global time step that can be
chosen freely, and as for the implicit scheme, no CFL criterion needs to
be adhered to. On the contrary, the explicit discretization of the advec-
tive part needs to satisfy the CFL restriction (5.8) which leads to many
more intermediate calculations with time steps At* < At. One solution
would be to solve problem (As) of the preceding paragraph at all the
intermediate calculations which the time-steps condition (5.8) requires,
and then use these saturation values to solve for the components with
an explicit-in-time scheme. Obviously, this would be computationally
inefficient. A second way would be to solve the system of equations
(2.11) and (2.12) fully implicitly. Achieving convergence for implicit
tirst or higher-order schemes for two-phase flow without transport
is already challenging [Jenny et al., 2009, Blunt and Rubin, 1992]. If
in addition several components need to be considered, the resulting
non-linear system grows even larger and convergence becomes a major
challenge. We therefore use a third way: We split the advective part
of the component equations into the contribution of the viscous forces
and that of capillary pressure. The dispersive part is again of parabolic
nature, and to obtain a stable discretization, the same reasoning as
for the saturation equation applies, and we again use an additional
operator splitting for the dispersive part.

Altogether, we alternately solve the problems

0 (Sw

A o252 = v (gs.DvCy,
a w 3 C

(Bc,Pc) ¢ (SatC) = V'(CAt;E) VSW)/ (5.15)
0(S,,C or

(Ber) @ (at )+a = —V-(Cfvt).

In the remainder of this section, we first describe how problem (A.) is
solved via an explicit FE method. Subsequently, we show how problem
(Be,pc) is solved using an implicit FV scheme to get a stable discretiza-
tion of the capillary contribution on the same time levels as the capillary
contribution of the saturations. Then, the discretization of problem
(Be,r) is solved via an explicit FV method.

Utilizing an implicit Euler scheme, and the Galerkin-projection onto

V, we obtain the discrete formulation and have to solve

(M +A.)C=b,, (5.16)
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where

1
Mewj = ¢ L) ST DL D; dx, M e R™™

1
Ackj = EJ SLAV O, DV O; dx, A e R™™

o (5.17)
and
1

bk = A JQ GSHA D, dx, b e R™

For the mass matrix M. we again apply mass lumping [Celia et al.,
1990], and the linear system is solved in the same manner as the one
resulting from the discretization of the pressure and the saturation
equations. As for the pressure and saturation equation, the influence of
the fractures is accounted for by simply expanding the integral over Q
above according to equation (5.2).

Integration of (B¢ p¢) in equation (5.15), i.e. the hyperbolic part arising
from capillary forces, and the divergence theorem lead to the accumu-
lation of all segment fluxes, and we have to solve the system of linear

equations
Apc - C = Dby, (5.18)

where the off-diagonal entries of A, contain the capillary fluxes in and

out of the finite volume, i.e.

ALY Sy, mikh(cl S, ) gBelse i £ K

Apc,ik - (5 . 19)

S:):v,i ifi=Kk,
and
b; = (C- Sw)it. (5.20)

The linear system is again sparse, and solved in the same manner as

that for the pressure equation.
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Integration of (B ) in equation (5.15), i.e. the hyperbolic part arising
from viscous forces, and the divergence theorem lead to the accumula-
tion of all segment fluxes

JV. (Sﬁj At~ CES;[/\)) av +J | <Ft+ At _ rt> av =

Vi
At MNsi
A2 [Cijfwive] - mj (5.21)
At MNgi _
+ A Z [Cxj(pw — Pr)At; V] - 1
j

which has to be solved together with the equation for the reaction
isotherm

[HAL _ p(Ct+At), (5.22)
We reiterate that flux continuity is guaranteed because of how vy is
calculated, and how the FV stencils are chosen (Fig. 5.1). For general
functional forms of the isotherm, equations (5.21) together with (5.22)
build a system of two non-linear equations for the two unknowns '+4t
and C**4t that we solve with a Newton method combined with a line-
search algorithm to achieve global convergence [Nocedal and Wright,
1999]-
The CFL criterion for the admissible time-steps in calculating the ad-
vective parts is obtained from equation (5.8) The maximal velocity
depends on the gradient of f(S,,, C). For viscosifying components, the
fractional flow function shifts from the function f(S,,, (C/Cy)) = 0)
to f(Sw, (C/Co) = 1), see Figure 5.2, where the latter has the steeper

change in S,,. We therefore use an estimate of the maximal velocity in
V.

df
Jt,max = Max (—!sw(x-),(C/co):lqt) (5.23)
dsS,, J

node j

Higher order approximations

The flow parameters f, ky, lw and p,, in the discretizations given above
are evaluated at each FV for some values C* and S;, from the last time-
step. In principle, two possibilities exist to obtain suitable values. First,
C* and S}, can be assumed as constant on a FV. This method gives a first

order approximation. It is computationally inexpensive for that case
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Figure 5.2: Two fractional flow functions for the Brooks-Corey model equation
(4.39) with Agc = 3 and the viscosity-relationship given in equation
(5.35) for the case where the concentration C/Cy of the viscosifying
component is zero and where it is one. Due to dispersion, C/Cyp
varies continuously between 0 and 1, and consequently the wa-
ter viscosity and the fractional flow function vary continuously
between the bounding fractional flow functions shown.

because the values stored during the last time-step at the FE node can
simply be used. However, for the resolution of sharp fronts that occur
in viscous dominated problems, this is often insufficient. If the water
viscosity depends on the component concentration, the water saturation
forms two jumps. The first one appears due to the nonlinear dependence
of gy on S,y. It is a self-sharpening front that can be well resolved even
with the upstream scheme [LeVeque, 1992]. The resolution of the second,
non self-sharpening front with the upstream scheme leads to highly
diffusive, non-physical fronts. For the component equation it introduces
strong numerical diffusion. Since the effect of mixing on components
due to dispersion and spatial heterogeneity is of major interest in many
applications, an accurate computation is of central importance. In the
following, we therefore describe two ways of obtaining a second-order
approximation for S, and C through a linear reconstruction. For the
linear reconstruction, we can choose between two parameter sets: We
can either determine a better approximation for the state parameters
f, Krw, tw and py,; or we can approximate the primary variables S,, and
C. We found the linear reconstruction of S,, and C already gives very
good results and additionally it is computationally half as expensive
as the first approach as only two rather than four variables have to
be reconstructed. We therefore chose the second possibility. We use

two different methods for calculating a local linear reconstruction of
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C and S,, for a given FV. In both approaches, slopes for C and S,, are
calculated first. These slopes are then limited in order to prevent the
creation of new local maxima or minima of the reconstructed C and
Sw. For constructing the slope, we compare two approaches: The first
one uses a least-squares fit of a plane through the local values of C
and S,,. The second one calculates an estimate of the slope given the
minima and maxima of C and S,, in the respective FV and its neighbors.
Other methods exist but are computationally more expensive without
yielding a significantly better resolution, see [Buffard and Clain, 2010,
Hubbard, 1999] for a recent overview and discussion. The least-square
method is then combined with a MINMOD limiter [Hubbard, 1999],
and the estimated gradient with a normalized variable diagram (NVD)
limiter [Leonard, 1988]. Limiters were first introduced as total variation
diminishing methods (TVD) for 1D advection problems [Van Leer, 1974],
and further developed in [Roe, 1981, Harten, 1983, Sweby, 1984] and
later generalized as Local Extrema Diminishing (LED) methods for
higher dimensions and unstructured grids [Arminjon and Dervieux,
1993, Jameson, 1995, Batten et al., 1996]. The NVD limiter needs to be
employed in connection with the estimated gradient [Leonard, 1988].
Obviously, even for the first order case different limiters may be chosen
that result in different degrees of compression of a sharp front. Among
these limiters the MINMOD limiter is the least compressive one, and it
might be worthwhile to use the least square method in connection with a
different limier in future work. Both the NVD and the MINMOD scheme
belong to the family of Monotone Upstream Schemes for Conservation
Laws (MUSCL) that have been used previously for the simulation
of two-phase flow problems [Huber and Helmig, 1999, Geiger et al.,
2004, Lamine and Edwards, 2008]. Note that while we directly apply the
higher methods to reconstructions of S,, and C, an alternative possibility
can be to write the conservation laws for S,, and C in vector notation

and use higher-order reconstructions of the eigenvalues [Bell et al.,
1989].

LEAST SQUARE GRADIENT AND MINMOD LIMITER We determine

a linear reconstruction of a variable within a FV via

Wi(x) =Ui+[a- (x—xi)], (5-24)

where U can stand for either S,, or C, and x € V;, and x; is the center

of mass of V. In order to avoid the creation of new, unphysical local
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extrema, the gradient a needs to be limited with 0 < ¢ < 1, which

yields the reconstruction

Ui(x) = Ui+ - fa- (x—x3)]. (5.25)
We use the MINMOD limiter to calculate ; as

P; = min [r;, 1], (5.26)

and r; is determined from

;

(u{nax _ ul)/ <ﬁ0(,j — u)> for C[(X’]' > ui.r

= (UMt y)/ (ﬁm _ uj) for Uy < Uj, (5.27)

1 for ﬂoc,j = Ui,

\

and Ugn, Ug}{lx are the minimum and maximum value of U, respec-
tively, at finite volume i. The flow parameters f, ky, 1y and p,, are then
evaluated for the resulting S,, and C.

The slopes are obtained from a hyperplane that minimizes the distance
between the points (x;, U;) and (x;, U;),j = 1, ..., ng;, by minimizing the

functional [Geiger et al., 2004, Buffard and Clain, 2010]

MNsi
2
E@ =) [W—(W+a(xi—x))]". (5.28)
j=1
In two dimensions, this gives a linear system of equations for a =

(a1, az)

M-a=0b,
Msi
My, = Z(Xjk —Xix) (X1 —xit), and
=1 (5.29)
Nsi
b= (Uj—Us) (g —xix) -
=1

ESTIMATED GRADIENT AND NVD-LIMITER The least-squares method

combined with the MINMOD limiter requires the determination of the
minimal and maximal values of S,, and C at a given finite volume, the
calculations of 1j, and the solution of a d x d linear system, where d
is the dimension, for every FV to solve the minimization problem. For
two dimensions, the linear system (5.29) can be solved explicitly, and
thus the total computational burden is that of determining the local
extrema of S,, and C plus O(n) for the d x d linear system. A slightly
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less expensive scheme is achieved by directly calculating an estimate
of a one-dimensional gradient a for the variation of U, given only the
local maxima and minima. First, the auxiliary variables y; and vy, are
calculated via [Leonard, 1988, Matthai et al., 2009]

ui_uu

Y1 = Ug— U, (5.30)
U —u

vy =, (5.31)
Ug — Uy

where the subscripts d and k stand for U taken at the downstream node
and the facet integration point, respectively. U, is an estimate of the

upstream node value determined from

umer if Ug < Uy

U, = (5-32)

umn - if Uy > W

From y; and y,, we obtain a gradient such that an overestimation of
U; is avoided. To this end, the gradient for the estimate of a linear
variation of U is then obtained from a Normalized Variable Diagram
(NVD) which gives

_ min (&yq, 1, max(0,v,)) ify; €10,1]
a= (5-33)
min (&y1, 1, max(0,v;)) else

for some parameter £, and and we choose & = 2. The approximation U
is then obtained from

Ui = a(Ug — Uy) + Uy, (5-34)

Like the MINMOD-limiter approach, U, is then used to evaluate f, Ky, Hhy

and py,.

5.3 ALGORITHM

The computational steps are as follows:

1. Read the initial pressure, saturation and component values, and

set the boundary conditions.

2. Solve equation (5.6) to obtain the initial pressure field; solve equa-

tion (5.7) for the initial velocity field.
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5.3 ALGORITHM

3. Repeat the following steps until the specified end-time is reached:
4. Determine new CFL criterion from equation (5.23).

5. Dispersion of components: Solve problem A. in equation (5.15) with
time step At/2, obtain C4isP.
6. Transport and flow due to viscous and capillary forces:

e Capillary part: Advance Sf, and C%*P from t to (t+ At)
with time step At/2

pes

- Evaluate the flow parameters at time t and solve problem

(As) in equation (5.9) for the effect of capillary pressure

. o t+At
on the saturations; this yields Siv :

- Evaluate VS,, for S&erAt)

eters for S}, C'; solve problem (B ) in equation (5.15)

<! and the other flow param-

for the effect of capillary pressure on the components;
this yields C (A per

. A
e Viscous part: Advance S$+ Yret and AVt from (t+ At)P°!
to (t + At)"*¢ with time step At

— Calculate the second-order fluxes from equation (5.25) or
(5.34)
tHAL) e

— Evaluate the flow parameters with ng and accumu-
late the fluxes for the saturations and solve the non-linear
equations (5.14) and for the (5.22) components; obtain
S£$+At)visc C(t+At)

visc,

o Capillary part: Advance SETise and C(H+Athvise to obtain

SLHAt and CtHAUviscape with time step At/2

— Evaluate the flow parameters at time (t + At),isc and
solve problem (Ag) in equation (5.9) for the effect of

capillary pressure on the saturations; this yields gitran

— Evaluate VS,, for Si4t, and the other flow parameters
for S&er)”i“, Ct+Ablvise; solve problem (Be,pe) in equa-

tion (5.15) for the effect of capillary pressure on the com-
t+AL)

visc&pc

ponents; this yields C (

7. Dispersion of components: Solve problem (A.) in equation (5.15)
for time step At/2, obtain CtT4t,

8. Solve the pressure equation equation (5.6) to obtain the new pres-
sure field; Solve equation (5.7) for the new velocity field.

9. Go back to step 4.
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5.4 NUMERICAL TESTS

5.4 NUMERICAL TESTS

In this section, we show the accuracy and convergence of the numerical
schemes presented above, and demonstrate their viability for resolving
flow and transport in complex geometries. The numerical problems
solved here are of increasing difficulty, starting with two 1D examples
that show the convergence of our schemes for the cases with and
without dispersive terms, and the dependence of the convergence on
the grid Peclet number. Test cases III, IV and V present 2D results.
Test case III presents the homogeneous quarter-of-five-spot problem
that tests the schemes’ insensitivity to grid orientation. Test case IV
shows the versatility of our schemes to resolve flow and transport on a
fractured geometry. Test case V shows the performance of the schemes
for simulating flow and simultaneous transport in a realistic fracture

network with a highly-heterogeneous rock matrix.

Test Case I: Extended Buckley-Leverett problem

If gravity and dispersion are neglected, the multiphase-multicomponent
problem reduces to the extended Buckley-Leverett problem for which
analytical solutions can be derived [Johansen and Winther, 1988] (Chap-
ter 4). The relationships for p,,(C) and I'(C) used in this test case, are

bw(C) = w0 +5 10_4C—,
0
ar (5.35)

The relative permeabilities for this test case is the Brooks-Corey model
(equation (4.39)).

The residual water and oil saturation, S,,; and Sy, together with the
other parameters used for this test case, can be found in Table 5.1.
Figure 5.4 shows the comparison between the analytical solution and
the three different numerical methods described in this chapter.
Although the component and the aqueous carrying phase are injected
together, the component gets retarded due to adsorption and due to the
presence of the initial water phase and does not travel together with
the injected water [Pope, 1980]. As a consequence, the saturation forms
two jumps. Going from downstream to upstream the water saturation
jumps from its initial saturation to a value of constant saturation to
form a water bank in which the component concentration stays at its
initial value. Then the component breaks through, the viscosity of the
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log, ()

—€— UPS
—+— NVD
—#*— MINMOD

107k = -
10 10 10

Ax[-]

Figure 5.3: Convergence of the {; norm as a function of the grid size Ax for
Test Case 1.

water increases according to equation (5.35), and the water saturation
forms a second jump followed by a rarefaction wave. The first front is a
self-sharpening shock front that forms as a consequence of the fact that
the velocities of S,, depend on f(S,,, C = 0) [LeVeque, 1992, Johansen
and Winther, 1988], and the second jump forms as a consequence of
the change from f(S,,, C = 0) to f(S,,, C = 1). Since the first front is
self-sharpening, the upstream scheme resolves it well, but shows strong
numerical diffusion effects for the second, non self-sharpening jump in
water saturation and the jump in component concentration. Figure 5.3
shows the convergence of the error ¢; in the discrete {; norm

m

2

i=1

Ci - Ca.s.(xi)

€1 := Ax Co

m
+ Z |Sw,i - Sw,a.s.(xi)|

i=1

Both the NVD and the MINMOD scheme show a far better resolution of
the jumps in water saturation and the component, where the MINMOD

scheme gives a slightly better compression than the NVD scheme.

Test Case 1I: Dispersion of tracers in two-phase flow

The accuracy of our scheme for dispersion is shown next. For the
case, where gravity is neglected and the components are adsorbing
but otherwise inert solutes, analytical solutions for the 1D case can be

developed for the case with and without capillary pressure (Chapter 4).

The implicit scheme for accounting for capillary pressure additionally
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Parameter Unit Test Case I (Extended BL Problem)

Swr [~] 0.22
Snr [—] 0.15
ABC (-] 3.0

¢ [—] 0.25
Lty [Pa - s] 1073
L [Pa-s] 5-10~%
Dy [m‘;’/mgv] 0.2
qt [m/s] 21078
k [m?] 10-14

Table 5.1: Parameter set for the extended Buckley-Leverett (BL) case.

introduces some numerical dispersion. Since we are interested in the
accuracy of the upstream scheme, the MINMOD scheme and the NVD
scheme, respectively, we consider one case where viscous forces domi-
nate, capillarity can be ignored and the only errors are introduced by
the explicit schemes (Test Case Ila); and a second one where capillarity
is fully taken into account and the numerical error stems from both the
implicit scheme and the explicit scheme (Test Case IIb). For case (a), we
additionally study the maximum error in dependence of the grid Peclet
number.

Note that in the previous chapter, we used the NVD scheme presented
here to test the validity of the solutions while now we use the analytical
solutions to test convergence of the numerical schemes. However, a
‘circular argument’ is avoided since in this chapter we test three different
schemes. In particular we compare two higher-order schemes. Thus,
it is reasonable to assume that the schemes are correct if the higher-
order NVD scheme and the MINMOD scheme yield comparable results.

TEST CASE II (A) Here, we ignore capillary pressure, and use the
Brooks-Corey model for the relative permeabilities and the parameter
set given in Table 5.2. Figures 5.5a and 5.5b show the comparison
between the analytical solution and the numerical methods. To study
the interplay between numerical diffusion, controlled by grid size, and

physical dispersion of the components, governed by the dispersivity

constant o, we introduce the grid Peclet number as Pe = ochX . For the

isp
case of the small dispersivity constant agisp = 0.001 m and Pe = 1.3

(Figure 5.5a), the upstream scheme greatly overestimates the dispersion
of the components, whereas both the NVD and the MINMOD scheme
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Parameter Unit Test Case 1II (a)

So [—] 0.85
Syr [—] 0.22
Snr (] 0.15
ABC [—] 3.0

¢ [~] 0.25
Ly [Pa-s] 1073
Ln [Pa-s] 1073
Ds [mf / m%v] 0.3

k [m?] 10712
dt [m/s] 2.1-1077

Table 5.2: Parameter set for adsorbing solutes in two-phase flow if dispersion
is taken into account (Figures 5.5a and 5.5b). Sy is the value for S,
at the left boundary.

show a very good agreement. Figure 5.5b shows the same test case as
Figure 5.5a but with agisp = 0.01, and a grid Peclet number of Pe = 10.3.
Compared to the NVD and the MINMOD scheme, the upstream scheme
still overestimates the actual dispersion of the components but to a lesser
degree than that for the smaller grid Peclet number. Figure 5.6 shows
the behavior of the maximum error versus grid Peclet number. Since
we are mainly interested in the dispersion of the components, we only
consider the maximum error in the components, defined by

Emax ‘=  Max [(Ci — Caus.(x1))/Col . (536)

i=1,--,m

As in the pure advective test case, the MUSCL schemes clearly outper-
form the upstream scheme. The piecewise slopes of the NVD scheme
and the MINMOD scheme are comparable, i.e. the order of the con-
vergence with respect to the maximum norm is the same, but overall
the NVD scheme performs slightly better than the MINMOD scheme.
The smaller the grid Peclet numbers, the better the MUSCL schemes
compared to the upstream scheme become with respect to emqx. For a
given agisp, this can be used to roughly assess the grid size required to
achieve a certain accuracy. If the dispersivity oisp is small, the MUSCL
schemes are clearly preferable since the upstream scheme would lead
to a grid size that is prohibitively small. For example, to achieve the
same accuracy with the upstream scheme that the NVD scheme shows
for Pe = 10, a ten times finer grid size would be needed.
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Parameter Unit Test Case II (b)

So ] 0.81
Swr [—] 0.22
Snr [—] 0.15
Pa [Pa] 1.5-10°
ABC (-] 3.0
XL (m] 0.01
¢ (-] 0.25
Lty [Pa - s] 1073
L [Pa - s] 1073
Dy [mf:’ / mf,v] 0.5
k [m?] 10712

Table 5.3: Parameter set for cocurrent case as shown in Figure 5.7. Sp is the
value for S,, at the left boundary.

TEST CASE II (B) In this example, we take capillary pressure into
account, where we use the Brooks-Corey model for the relative perme-
abilities, equation (4.39). The parameters are given in Table 5.3. Figure
5.7 shows the comparison between the analytical solution and the vari-
ous numerical methods. For resolving the capillary front of the water
saturation, the difference in accuracy between the three methods is
minor, whereas the upstream scheme again overestimates the disper-
sion of the components. Both the NVD and the MINMOD scheme give

comparably good results.

Test Case I1I: Homogeneous five spot problem

The next case tests the sensitivity of the numerical schemes to grid
orientation because the flow direction is not necessarily aligned with
the grid. We consider the homogeneous quarter of a five spot problem
[Spivak et al., 1977]. In the original setting, gravity is ignored, and
water is injected into the lower left corner of a square domain such
that principal flow direction is diagonal to the grid, displacing the oil
which is extracted from the upper right corner. In our case, the injected
water additionally transports a dissolved component. If the numerical
scheme is insensitive to grid orientation effects, the scheme should
reproduce quarter circle shaped saturation and concentration patterns
of the components. Since we are also interested in how well a sharp
front is reproduced by the higher order methods on an unstructured
grid, the dispersivity constants were set to zero, see Table 5.4.
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Grid orientation effects arise from three different causes [Kozdon et al.,
2008]: (a) rotationally dependent errors in the numerical scheme, (b) the
flow in the immediate neighbourhood of a source, and (c) the physical
instability of adverse mobility ratio flow. In the following we therefore
tirst consider the case of stable displacement, i.e. the case where the
grid orientation errors only stem from (a) and (b) (Test Case III a,
tn/Hw = 1/2, see Table 5.4). Then we investigate how well the schemes
perform for unstable displacement (Test Case III b, pn/p, = 20, see
Table 5.4). Figure 5.8 shows the grid used for this case.

Figure 5.10 shows the numerical results for the water saturation and
the component for the three numerical schemes and stable displacement.
All schemes show a good reproduction of the quarter circle shapes for
both the saturation and the component. The front of the component
concentration obtained from the upstream scheme is spread out over
several cells, while both the NVD scheme and the MINMOD scheme
significantly reduce this spread. Figure 5.12 shows the breakthrough
curves at 25m,50m and 75m for the flux-weighted oil saturation S, the
water cut WTC, i.e. the ratio of the volumetric water flux over the total
volume flux, and the flux-weighted normalized concentration C/C.
The oil saturation stays at its initial level up to when the water breaks
through at approximately 200d, 500d and 1300d at the points 25m, 50m
and 75m, respectively, and then declines with increasing water cut.
The increase in water cut sharply rises when the water reaches the
upper boundary at approximately 2500d, 2700d and 2900d at the points
25m, 50m and 75m, respectively. Compared to the water breakthrough,
the breakthrough of the components is retarded, and the retardation
becomes more pronounced with increasing distance from the injector.
Compared to the UPS scheme, the NVD and the MINMOD scheme
result in a later breakthrough and less smeared out breakthrough curve
of the component since the higher schemes result in a better resolution
of the front. For the water cut, the differences between the UPS scheme,
the NVD scheme and the MINMOD scheme are less pronounced since
the water front is self-sharpening and thus can be well resolved with a
tirst-order scheme [LeVeque, 1992].

Figure 5.11 shows the numerical results for the water saturation
and the component for the three numerical schemes and unstable
displacement. Here, the viscosity ratio is pn/p, = 20 which results
in a frontal mobility ratio of A¢(Sy¢)/At(Swi) = 1.2 > 1, and thus an
unstable displacement [King and Dunayevsky, 1989]. As for the case
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Parameter Unit TestCasellla TestCaselllb

Pinj [Pa]  1.37-107 1.37-107
Pprod [Pa]  1.1032-107 1.1032-107
Swr -]  0.22 0.22

Snr -] 0.1 0.1

ABC -] 3.0 3.0

oed m] O 0

T [m] 0 0

¢ -] 02 0.2

Ly Pa-s] 1073 5.-1074
n [Pa-s] 5-107* 1072

k (m? 10713 10°13

Table 5.4: Parameter sets for quarter of five-spot problem for stable displace-
ment (case a) and unstable displacement (case b) as shown in Figures
5.10, and 5.11. Pinj and Pproq are the fluid pressures at the lower
left and upper right corner, respectively.

of stable displacement, the higher order schemes significantly reduce
the numerical dispersion. However, the saturation front deviates from
the quarter circle shape for all schemes. For the higher—order schemes,
this effect becomes even stronger since they better resolve the front
in S,,. The NVD scheme results in a slightly better reproduction of
the quarter circle. In future work, this grid orientation effect could be
further reduced by using a local treatment of flow around the fluid

source [Kozdon et al., 2008].

Test Case IV: Fractured five spot problem

This test case shows the versatility of our schemes for resolving flow
and transport in a fracture geometry. The setting is the same as for the
five-spot problem, with the only difference being that some fractures of
permeability k = 10~ m? are embedded in the model (see Figure 5.9).
The fractures are discretized as 1D line elements in the 2D geometry.
This approach allows for reasonable grid size even close to the high-
permeability regions [Geiger et al., 2004]. Figures 5.13-5.15 show the
numerical results for both the saturation and the component. Since the
permeability of the fractures is orders of magnitude higher than that
of the unfractured matrix, where k = 10713 m?, the fractures build a
network of preferential flow paths, and the fluid and the component
tirst travel along the fractures and from there are slowly transported

into the rock matrix. As in the previous test cases, the second order
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Parameter Unit Test Case V
P [Pa] 1.01-107
Pr [Pa] 1.0-107
Swr [—] 0.2
Shr [—] 0.1
ABC [—] 3.0
Pa [Pa] 1.3-103
¢ [—] 0.2
U [Pa-s] 1073
Ln [Pa - s] 5.107%
o (m] 102
T (m] 1073
Dp s [m3/m3, ] 0.5

Table 5.5: Parameter set for realistic fracture system, Test Case V (Figures 1.1
and 5.16). py and p, are the fluid pressures at the left and the right
boundary, respectively. The components A and B have the same
dispersivity data o1 and o, and the adsorption of component B
follows an isotherm with constant Dg .

schemes result in a significantly better resolution of the saturation and
component fronts, and the MINMOD and the NVD schemes yield
similar resolutions. At t = 500d, the differences between the results
obtained from the UPS scheme and the second order schemes are still
negligible while at t = 1600d, the predictions for the saturation and
especially the component distributions in the domain made by the UPS

scheme compared to the second order schemes show major differences.

Test Case V: Flow and transport in a realistic fractured system

This test case shows the versatility of our schemes for resolving flow
and transport of two components A and B in a complex realistic fracture
system for the outcrop shown in Figure 1.1. The heterogeneous rock ma-
trix consists of different geological layers (depicted by different colors
in Figure 5.16) with permeabilities of k = 107""mZ,k=10""3m? k =
05-107Pm%k =10 P mik =2-10"5m%k =15-107"m? k =
2-107"m?, and k = 1.5- 107" m?, respectively, going from the top to
the bottom layer. The embedded low-permeability region (depicted in
red in Figure 5.16) has a permeability of k = 1.5-107* m?, and the frac-
tures have a permeability of k = 8.3 - 107" m2. Component A is inert,
while component B adsorbs through a linear isotherm with Dg ¢ = 0.5.

The numerical results are shown in Figures 5.17-5.20, where the left
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column shows the results at time t = 150 d when the water has started
to flood the fracture network, and the right column shows the results
at time t = 420 d when the flow has started to bypass the embedded
low-permeability part to reach the connected higher-permeability layers
and fractures. Figure 5.17 shows the reference solution obtained with
the NVD scheme for the fine grid discretization shown in Figure 5.16
(b). Compared to the fine-grid solution, both the MINMOD scheme and
the NVD scheme produce a saturation and component fields whose
concentration and extent in great parts agree with the reference solu-
tion, but give a slightly inferior front resolution. On the coarse grid,
both the NVD scheme and the MINMOD scheme yield comparable
results as in the previous test examples. The vertical flow from layers
of high permeability into those of low permeability due to advection
is small because of the permeability contrast, and thus both flow and
transport in vertical direction are governed by capillary and transversal
hydrodynamic dispersion. While both higher order schemes resolve the
fronts between these layers well, the UPS scheme results in smeared-out
fronts that overestimate the flow and especially the transport into the
low permeability layers. As already described in test case I, compared to
the movement of the saturation front, component A is retarded because
some water is already present in the reservoir which must be displaced.
The retardation becomes stronger for the adsorbed component B, as
expected.

5.5 SUMMARY AND CONCLUSIONS

In this chapter, we extended the FEFV scheme for the modelling of two-
phase flow and the transport of viscosifying and reacting components
in permeable porous media. We presented two higher order methods
of the MUSCL type, a MINMOD scheme and an NVD scheme, and
compared them to a classical single-point upstream method. We fully
accounted for viscous forces, capillary pressure, hydrodynamic disper-
sion and adsorption. We used a mass-conservative and flux-continuous
node-centered FEFV scheme and gave numerical examples that show
that this scheme is capable of resolving flow and transport even in
fractured, highly heterogeneous geometries. The scheme presented can
easily be parallelized [Geiger et al., 2009, Coumou et al., 2008]. We
assumed a homogeneous p.. Working with inhomogeneous p. fields is
challenging, but can be resolved if the state variables are incorporated
as discontinuous at interfaces between media with different properties
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Figure 5.4: Comparison of the 1D analytical solution for the extended Buckley-
Leverett problem to the three different numerical methods of this
chapter at time t = 25d. Water together with a viscosifying com-
ponent is injected at the left and displaces oil in a homogeneous
porous medium.
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Figure 5.5: Comparison of 1D analytical solutions for the case where the so-
lutes adsorb but otherwise do not change the flow field (Test Case
ID). (a) shows the case for Pe = 1.3, and (b) the case Pe = 10.3.

[Reichenberger et al., 2006, Hoteit and Firoozabadi, 2008, Niessner et al.,
2005, Nick and Matthéi, 2011]. The 2D test examples show the methods’
ability to resolve flow and transport on unstructured grids both for the

case without fractures and for the case where fractures are embedded
as lower-dimensional elements.

* Hydrodynamic dispersion and Strang splitting. The tensor of hydro-

dynamic dispersion strongly depends upon the two-phase flow
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Figure 5.7: Comparison of the 1D analytical solution for the extended Buckley-
Leverett problem to the three different numerical methods of this
chapter at time t = 2.5d. Water together with an adsorbing solute is
injected at the left and the water displaces the oil in a homogeneous
porous medium.

field and thus is highly non-linear. We incorporated its effect using
a Strang splitting where we use first or second order explicit FVs
for the viscous part and implicit FEs for the effects of dispersion.
Numerical tests show the strong dependence of the accuracy on
the grid Peclet number. The NVD scheme slightly outperforms the
MINMOD scheme while both clearly outperform the upstream
scheme. For purely advective problems, the MINMOD scheme
gives a slightly better compression than the NVD scheme, and the

upstream scheme introduces very strong numerical dispersion.

* Influence of p.. Incorporating the effect of capillary pressure on
both the fluid flow and the components is challenging. p. in the
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Figure 5.8: Grid used for the quarter of five-spot problem (Test Case III). The
injector is in the lower left corner, and the producer in the upper
right corner, both indicated by a square.
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Figure 5.9: Grid used for Test Case IV. The long solid lines represent the high-
permeability fractures discretized as 1D FEs and FVs. The injector
is in the lower left corner, and the producer in the upper right
corner, both indicated by a square.

fluid conservation equations leads to a second-order parabolic
term with a CFL number of order O(Ax?). This which would lead
to prohibitively small time-steps for an explicit scheme, and we
used implicit FEs to solve for this part of the problem. The capil-
lary influence on the component transport, however, is a first-order
hyperbolic term and FEs cannot be used. Since the component
conservation equation is strongly coupled with that for the fluid
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phase, both need to be resolved at the same time-levels. To that
end, we introduced an implicit FEFV scheme that splits between
the viscous and the capillary parts, bypassing the restrictive CFL
condition while obtaining a stable, mass-conserving scheme for
both the saturations and the components. Comparisons with ana-
lytical solutions showed the robustness and convergence of our
approach.

Other numerical methods for flow and transport. While we chose an
FEFV method here as a starting point for the extension to a scheme
for flow and simultaneous transport, overall the combination of
different techniques, like the splitting approach to tackle capillary
and hydrodynamic dispersion or the setup for higher order meth-
ods, can also be used to develop numerical schemes for flow and
transport based on other methods such as MPFA schemes.
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Figure 5.10: Numerical results for the homogeneous five-spot problem for
stable displacement (Test Case III a). Contour plots for the water
saturation at time t = 2200d for the three different numerical
schemes are shown on the left, and contour plots of the concentra-

tion are shown on the right.

115



Distance [m]

Distance [m]

Distance [m]

100

80

60

40

20

|—0.6

UPS, Sy [
—\ﬁ

\

_1,8'0/
0

—_S0

— V0

100

o |—9

20 40 60 0 100
Distance [m]

(a)

80

(o)}
o

N
o

20

]
[
|

100

20 40 60 80
Distance [m]

(©

100

o
S

8|

o
S

[
N

N
o

20t

MINMOD, Syy [

20 40 60
Distance [m]

(e)

100

5.5 SUMMARY AND CONCLUSIONS

100
UPS, C/Co [-]
80—0.1
\Ql
= 60 7—0.88\ \0 ]
= %
g d
*
& 4o ]
_O o
% 2
20 \ 1
0 . . . .
0 20 40 60 80 100
Distance [m]
(b)
100 -
NVD, C/Cq [-]
80 7'0 .
. 8\0.7
.88 \
. ol —0. \Q8 ),
g \
=
o]
8 40 >
[a) ng >,
201
0 - - - ‘ -
0 20 40 60 80 100
Distance [m]
(d)
100 T -
MINMOD, C/Cq [-]
801
—0.1
— 88\'70
E 60 .8(,\0
3 \j
=
o]
8 40 >
%
20} ‘3\
0 . . . .
0 20 40 60 80 100
Distance [m]
()

Figure 5.11: Numerical results for the homogeneous five-spot problem for
unstable displacement (Test Case III b). Contour plots for the
water saturation at time t = 3000d for the three different nu-
merical schemes are shown on the left, and contour plots of the
concentration are shown on the right.
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Figure 5.13: Numerical results for the fractured quarter of a five-spot problem
(test case IV) obtained with the UPS scheme for times t = 500 d
(left column) and t = 1600 d (right column) just before the water
breaks through at the producer. The injector is in the lower left
corner, and the producer in the upper right corner, both indicated
by a square. Figures (a) and (b) show the result for the water
saturation and (c) and (d) the concentration.
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Figure 5.14: Numerical results for the fractured quarter of a five-spot problem
(test case 1V) obtained with the NVD scheme for times t = 500 d
(left column) and t = 1600 d (right column) just before the water
breaks through at the producer. The injector is in the lower left
corner, and the producer in the upper right corner, both indicated
by a square. Figures (a) and (b) show the result for the water
saturation and (c) and (d) the concentration.
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Figure 5.15: Numerical results for the fractured quarter of a five-spot problem
(test case IV) obtained with the MINMOD scheme for times t =
500 d (left column) and t = 1600 d (right column) just before
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water saturation and (c) and (d) the concentration.
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Figure 5.16: a) Discretization of the outcrop shown in Figure 1.1, and used for
Test Case V. The FE grid has been refined around the fractures.
The heterogeneous rock matrix consists of different geological
layers (depicted by different colors) with different permeabilities.
The permeabilities vary over four orders of magnitude. (b) The
fine grid discretization used for generating a reference solution.
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Figure 5.17: Numerical reference solution for flow and transport through the
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and (f) an adsorbing component B.
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Figure 5.18: Numerical results for flow and transport through the outcrop
shown in Fig. 1.1 obtained with the NVD scheme for the dis-
cretization shown in Figure 5.16 (a) at times t = 150d (left column)
and t = 420d. Figures (a) and (b) show the water saturation S,,,
(c) and (d) the inert component A, and (e) and (f) an adsorbing

component B.
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Figure 5.19: Numerical results for flow and transport through the outcrop
shown in Fig. 1.1 obtained with the MINMOD scheme for the dis-
cretization shown in Figure 5.16 (a) at times t = 150d (left column)
and t = 420d. Figures (a) and (b) show the water saturation S,,,
(c) and (d) the inert component A, and (e) and (f) an adsorbing

component B.
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Figure 5.20: Numerical results for flow and transport through the outcrop
shown in Figure 1.1 obtained with the UPS scheme for the dis-
cretization shown in Figure 5.16 (a) at times t = 150d (left column)
and t = 420d. Figures (a) and (b) show the water saturation S,,,
(c) and (d) the inert component A, and (e) and (f) an adsorbing
component B.



SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY AND CONCLUSIONS

Two mechanisms are of fundamental importance for flow and transport
in fractured media. Spontaneous imbibition (SI) is often the only way by
which an aqueous phase can enter the oil-rich rock, and thus is often
the only recovery mechanism for the oil or contaminant. Hydrodynamic
dispersion limits mixing and reaction of different components and thus
controls the efficiency of any chemical flood. This thesis therefore in-
vestigates the influence of capillary forces and dispersion on flow and

transport during immiscible two-phase flow:

* Buckley-Leverett analogue for SI. The long-missing exact analytical
solutions for spontaneous co-, and counter-current imbibition
were derived. They are valid in homogeneous, horizontal media
for arbitrary capillary-hydraulic properties. The solutions may be
viewed as the capillary analogue to the Buckley-Leverett solutions
for viscous dominated flow (see the overview in Table 2.2 and Fig-
ure 4.1). This should finalize the decades-long search for analytical
solutions for spontaneous imbibition. The analogue carries over
to the extended Buckley—Leverett theory of flow and transport.

* Universal scaling group for SI. We derived the first scaling group tq
for SI that rigorously incorporates the influence of all parameters
present in the two-phase Darcy formulation - a problem that was
open for more than go years. No fitting parameters were intro-
duced. tq is based on an analytic expression for the total volume
imbibed as given by the Buckle-Leverett analogue. We presented
two key applications of tq4: First, the group can serve as the long
sought-after general transfer rate for imbibition used in dual-
porosity models. Second, it is the so far missing proportionality

constant in imbibition-germination models for plant seeds.
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* The standard Darcy model can describe SI. t4 was validated against
45 published water-oil and water-air SI studies for water-wet
systems, different degrees of mixed-wettability, a wide range of
viscosity ratios, initial water content, different porous media and
different boundary conditions. The ability of t4 to correlate such a
wide range of data sets strongly indicates that accounting for non-
equilibrium effects in capillary pressure is unnecessary, contrary
to what has been hypothesized.

* Influence of adsorption and flow regime on mixing. To resolve how
the flow regime and a simple chemical reaction affects 5(t) in a
homogeneous medium we derive the first known set of analytical
solutions for transport that fully accounts for the effects of capil-
larity, viscous forces and the effects of hydrodynamic dispersion.
If dispersion is ignored the solute front can be located graphically
by a modified Welge tangent on the fractional flow functions F
and f. For transport with dispersion the solutions reveal that for
the viscous dominated regime the growth of 6(t) is proportional
to t'/2. This confirms earlier numerical results [Arya et al., 1985].
On contrary, for spontaneous imbibition the analytical solutions
for the first time show that the temporal order is proportional to
t!/4, and that adsorption leaves the temporal order unchanged,
but decreases the proportionality constant.

* Higher order FEFV methods on unstructured grids for transport and
two-phase flow. To investigate for heterogeneity (see Chapter 1), we
extended the FEFV scheme for the modelling of two-phase flow
implemented in CSMP such that it can describe both flow and
the transport of viscosifying and reacting components in perme-
able porous media. We presented two higher order methods of
the MUSCL type, a MINMOD scheme and an NVD scheme, and
compared them to a classical single-point upstream method. We
tully accounted for viscous forces, capillary pressure, hydrody-
namic dispersion and adsorption. We used a mass-conservative
and flux-continuous node-centered FEFV scheme and gave numer-
ical examples that show that this scheme is capable of resolving
flow and transport even in fractured, highly heterogeneous ge-
ometries. Dispersion and capillary pressure were resolved via a
Strang splitting.
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6.2 FUTURE WORK

Obviously, the subject of capillary forces and dispersion on flow and
transport allows for many fascinating and important directions for

future work. We only pick a few:

* Gravity, time-dependent imbibition areas, and late time effects. Besides
SI, gravity is the other most important recovery mechanism in
fractured reservoirs tq has been derived making the standard
assumptions used for analytical modes, and in particular, viscous
and gravity forces were ignored. Whether the presence of these
forces can be accounted for through e.g. equation (3.9) remains
open. Also, tq is based on laboratory results where the core used
was surrounded by a constant saturation. If and how t4 should be
changed for e.g. fractured systems, where the saturation changes
depending on the speed of the fracture flow, is open. Finally, the
analytical solutions are valid for early times only and currently

no exact analytical model for late times exists.

* Inhomogeneous p. and the controlled-salinity effect. For the numerical
algorithm we worked with homogeneous p.. However, in hetero-
geneous media p. often also is inhomogeneous. Similarly, if the
components change the wetting behaviour, this also will change
Pc- How to account for that efficiently in numerical simulations is

open.

* Anomalous dispersion. It is well established that tracer transport in
single phase flow through heterogeneous porous media shows
anomalous behaviour that cannot be modelled through a simple
up scaling of Fickian dispersion. Two phase flow, however, adds
complex non-linearities that have been shown to fundamentally
change the influence of heterogeneity. It is not clear how that
affects transport. Since our analytical and numerical solutions
have been derived assuming that dispersion is Fickian, these tools
might be used to evaluate the validity of a Fickian model and the
t!/2 and t'/* scaling for transport during two phase flow.

* 3D simulations and field-scale analysis. The numerical scheme has
been implemented for 2D and should be extended to 3D. This
then could be used to perform field-scale analyses of the interplay
between heterogeneity, viscous, capillary and chemical effects and
dispersion.

128
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* Multirate dual-porosity models” The classical dual-porosity models
miss some key physics of fracture-matrix fluid exchange due to
spontaneous imbibition, and it should be investigated how t4 can

be incorporated efficiently in a multi-rate mass-transfer model.

1 C. Maier, K. S. Schmid, and S. Geiger: Multi-rate mass-transfer dual-porosity modelling
using the exact analytical solution for spontaneous imbibition, ECMOR XIII
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APPENDIX



The appendix has no known function [...] Evidence suggests that our
evolutionary ancestors used their appendixes to digest tough food like tree
bark [...] [It] can cause acute pain, fever, nausea [...] and loss of appetite
[which] can be cured easily by removing the appendix.

- from the BBC online fact files on the human body and mind



PREVIOUSLY DEFINED GROUPS ARE SPECIAL
CASES OF Tp

In this chapter, we show how the different specialized groups can be
obtained from tg if the respective assumptions used for the specialized
groups are evoked (Table 3.1).

A.1 THE GROUP OF Lucas [1918] AND WASHBURN [1921]

The Lucas-Washburn equation follows if the original assumption Lucas
[1918], Washburn [1921] of an inviscid non-wetting phase is invoked,
ie. Uo < Hy. Then

}\WAT\.W — 1 V kTWkTO ~ kTW
At VB VM 4+ 1/VM - i

since VM < 1/vM, where M = *:‘W—]]?:OV, and the capillary radius is
substituted by the Leverett-radius Bear [1972], v = \/% . This then gives

s =1 ([ Egee) ([ s

w

(A.1)

and thus
A 2 /K 1 JSO (Sw — Si) k]’ JSO (Sw — Si)kew]’

~ Oy — ds ds

((bl—c) (bFLwL% Si F(Sw) h S; F(Sw) "

5 K 1 c
(bliwl—% '
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A.2 THE GROUP OF RAPOPORT [1955], MATTAX AND KYTE [1962]

Mattax and Kyte [1962] used the scaling laws developed by Rapoport
[1955] to derive a scaling group for the case where p, = w,,. This yields

AwA 1
2 = V krwkro
21y

At

which gives

St )VKrwkroPe So )VKrwkroPe
F(SW):1_<LW F(sj) “Pap). <L F(s;) wePeas,)
and thus

() =g [ oy,
' (A.3)

Y L S
¢ L2y,

A.3 THE GROUP OF MA ET. AL, [1997]

Ma et al. [1997] use the assumption that w,, ~ p, which together with

MAo 1

~ Kewke A.
N 2, Ve A4
leads to
Si w)VEKmwkrop? Si)vVKrwKroP! -
F(S,) ~ 1— roPe roPe 4g .
(5] <LW F(sw) ap)- <Li F(sw) au)
Therefore,

() = oy [ [ (S S Emal g
dLe ¢ L2y/Mwio Js, F v

. S
&Ly

Note that the influence of viscosities in equation (A.4) could only be

(A.5)

eliminated because matched viscosities were assumed. If that assump-
tion does not hold for all the data sets that are correlated, then F does
not have the form given above, and c is different for the different data
sets.



A.4 THE GROUP OF ZHOU ET AL. [2002]
A.4 THE GROUP OF ZHOU ET AL. [2002]

Zhou et al. [2002] used the assumption (%) (Sw) z(%)* which

immediately yields
2AN2 KT AwAe\* [% (Sw—Si)]
((bLC) ”ZG\/;L_g< A > JSi F Bw
=204 —— .
U\/;L§< A ) ¢

A.5 THE GROUP OF BEHBAHANI AND BLUNT [2005]

(A.6)

Behbahani and Blunt [2005] considered MW systems, where they found
from pore-scale studies that A,, < A, and consequently

At

~ Aw.

If furthermore is assumed that (although this assumption was not stated
explicitly) Aw(Sw) =~ A(S;,), then

2A\2 K1 S (Sw—si)xw(sw)]/
~ 2 \| =13
K1 50 (Sy —Sy)]’
~ * “Wow o Yv) A.
zcy,/—q) L%AW L. =———dSy (A.7)

1

K1,
=20 $L_%)\WC
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A.6 THE GROUP OF LI AND HORNE [2006]

Li and Horne [2006] considered piston-like flow, i.e. they assumed that

F(Sy) = % and p.(Sw)' = g—fv F(x,t) can be re-written in terms of

saturation as F(S,,) = % = const. = 1/c. Consequently
(22 g [ 08B
K1 (% J
=20 ——CJ (Sw—Si) ds
\ﬁL% S 8
2 K JSO ds
=204] ——cC
o1,
K1
~ 200 —=J(So—Si)-¢
\ﬁ E 1
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TRANSFORMATIONS EMPLOYED IN CHAPTER 4

B.1 THE CONSERVATION EQUATION FOR C CAN BE WRITTEN AS AN

ODE

For transformation (2.24) and with the notion that the components are
transported with the respective fluid phase, i.e. C = C(S,,), the equation
for C can be transformed into an ordinary differential equation:

dC 2A (F(1 —FR) +f;R
— | —A =0. B.
dSW< & (Sw+Dy) ) (B.2)
subject to
C =Cy Sw =S (B.2a)
C =C  Sw =S (B.2b)

This follows from

dC 8Sw  qw dC 3Sy
dS,, ot &S, dS,, 0x 3)
EdS_W(_lxt—s/z) __Q[F(I—fR)+ iRl dC dSy 1)y
dS,, dA ' 2 $Sw dS,, dA ’

and further we can assume, that dg—{” cancels out, i.e. that dg’—)t” # 0, and

with qo = At~"/? we then arrive at:

dC 1 [F(1—f;R) +f;R] dC

—— (—axt3/?) = —At!

as,, ) (@Sw + GD;)  dSy,

—(xt -t) =2A

as, X ) (@Sw + $Ds)  dSy B0
E(Xt—vz) _ AP0 —FiR) +fiR] dC 4
dSy (GSw + dD;)  dS,

dac 2A (F(1 —;R) + fiR)

A+

as.. (@SwtoDy) |
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B.2 AGREEMENT BETWEEN PHYSICAL AND MATHEMATICAL APPROACH

The value for the saturation S}, at which the advective front travels as
determined by our physically motivated approach and by the method
of characteristics, agree. For determining S;, from the method of char-
acteristics, we have:

Sw

! 0x ro(t
nLo @J pe X ae - j 4w (0, T) T (B.5)
So & 0

where for q,,(0,t) = At~'/2 the right hand side becomes t(t) = 2AL/2,
The left hand side becomes

Sw 0x

LO d>£a—£da
S .

=t]/ZJ (baMF”(E)d&
: ! (B.6)
Sw  2A(1—f;R) o . |

_ 2 R

=1t JSO d)a (b 2A2(1_f1R)2F—fn dE,

[ D(&)

B JSO d)aA(] — fiR)(F(&) — fn) de&.

Taking the expression for the right hand side T and the left hand side 0
we thus obtain that S,, needs to be such that

2A2(1—fiR)é JSOB D(B)
¢ w  (F(B)—"fn)

The left hand side of (B.7) contains the constant A as determined by

dp. (B.7)

the analytical solution derived by McWhorter & Sunada (Chapter 2.3).



B.3 TRANSFORMATION OF EQUATION (4.29) ONTO THE (0,T) COORDINATE SYSTEM

Successively inserting explicit expressions for A, F and F’ shows that

equation (B.7) is satisfied. In detail, these steps are as follows:

2A2(1d)— fiR) _: . _1% Eo (a(—FS_iLI:)(a) aE

- [ [ By [ s
T :(SWF'(SW) LS O ay)+

[ el ]
SR =t

(1—FR) ~ Js; (Fly)—fn)

JSO BD fiR JSO (y —SyD

s, F—f)dy  (1—fiR) Js, (F—fn)

S0 (4 — .
. x| (v sl)Dmd]

dy

B 1
- (1—1iR)

Thus, for the case S,i = Swr, fi = 0 equation (B.7) is satisfied if S,,
satisfies (4.10) which yields the mathematical rigorous justification for
the assumption C = C(S,,) for the advective case made initially. Since

the assumption C = C(S,,) stays valid for f; # 0, we obtain (4.9).

B.3 TRANSFORMATION OF EQUATION (4.29) ONTO THE (0,%) COOR-
DINATE SYSTEM

In this section, we transform equation (4.29) onto the (6, T) coordinate
system. To that end, it is helpful, to first transform equation (4.29) onto
the (S, T) coordinate system. Subsequently, the transformation onto
the (6, T) coordinate system is performed. Only basic calculus is used
(triple product rule and the Leibnitz rule). All the tranformations are
exact. Thus, the result is a normalized conservation equation for c in

the (0, T) that is equivalent to the PDE written in the (, x) system.

Transforming the PDE (4.29) from the (X, t)-coordinate system onto

the (S, t) coordinate system we obtain

oSw 6SW> oc

oc _
(d)sw + ¢Dy) ﬁ + <(¢Sw + q)Ds)W + qug E =

B.
0, 0 (¢ oS, )
x2S MR s,
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B.3 TRANSFORMATION OF EQUATION (4.29) ONTO THE (0,T) COORDINATE SYSTEM

where we used the product rule

I
ox S, 0%
0 00w, 0 (B0
ot  0S, ot 0ot
which in an intermediate step gives
oc 90S,, Oc
D - —
(@S +¢Ds) <E)SW ot at>
(B.11)

y0¢ 3w Sw 8 0Sw 0c
wV3s. ox ax 0S, "W a5 3s,

The system (B.g) together with the continuity equation for water is
completely described by two of the three variables (S, %, t) and one
variable can be expressed as implicit function of the other two, e.g.
X = X(Sw, t), and thus, the triple product rule holds

0Syw ot ox
G )i (s.)e (Ge)s, = (B-12)
where subscripts here denote that this variable is kept constant. Using
this in (B.9) yields

0x \ Oc ~ 0x\ Oc B
((‘bs +¢D )as >at+<vqw_(¢sw+¢Ds)ﬁ>E—

S, I as )

In the next step, we transform equation (B.13) from the (S,,, t) co-

(B.13)

ordinate system onto the (6, T)-coordinate system. The product rule

yields
L_iaé+iaé_iaé
0S,, 000S,, 000S,, 0200S,
) 000 0 ot
—_: - = - = B
0T 200t atot (B-14)
9 (d)_ (2203 200 (a)_ 20
20 000S,,/ 06 0S,, 00 \ 08/ 0S,, 002"
We have
aé 0 Sw 0% Lelbmtz
—_ = D Sw——o B.
3s., GSW(LO (b8 +Ds) 57 ) ¢ (B.15)
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and

a_f_irv— (x = 0, £)dE = vauw(x = 0,T) = viu(So,T). (B.16)
a{_afoqw—/ = Vawlx =0, = Vqwloo, 1) ’

For the calculation of 96/0t we need the relationships

6 ox ox

5 (0040005 ) —0sron0 T = @)
a o% o%
a5 (@Sw+oDaTE )~ 0, (Ba7b)
0qw _ 0qwdSw 3Sw Bz , ()

ox ~ Vas, ox Yot “b(a_x) (B.170)

oS

S, 0Swdx S, 0Sy_  3Sy (ay)

& oxar ot oxdwtar — O (B.17d)
and
dSo . 0So Bz ()
at 0T ar T _< >so' (B.17¢)

Then 00/0t becomes

00 0 /S %
== E(LO (& + ans)Eda)

oo rSw
e |5 (e 000 57 ) de (105, + 9D )
So ot 0§ S

38w s dt
ox dSy
((d)so—d)D )as >SOE
s —
(B.17b) X\ ox ox d_SO
(B.1_7d)J (aa ((")Hd’ )at) ¢35t )de <(¢S°+¢D 35, )SO dt
(B.170) JSW 0
=) %

0% ox ds
= ((d)SW + q;Ds)a—’{‘ —qu) o — ((cho + ¢Ds )asx ) |sod—{0
ox ox

®B179 (s, + Ds) e ls, — (6So + dDs) s,
) Iso

0S

ox
()

ox _ _
= (pSw + ¢Ds)ﬁ|Sw + qu(SO/ t) — qu(sw/ t).

—
o)l@
1| R
N—

+ qu(SO/ t)— qu(sw/ﬂ + ((d)sw + ¢Dy)

=i

{(¢£+d> )a- vqw} i — ((¢so+¢D)ax> d;‘) (B.18)
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With the above relations, the PDE (B.13) can be transformed onto the
(8, T)-coordinate system:

ox oc 00 Ocot _ oc 00
<(¢S w oDy 5e )l%'ﬁﬂwmh( Vaw = [0S+ ¢Ds) 57 >aeas

[0 (g g 35w\ 8 dc) | . OSw (3% (20 +%az_9
35 VM ox )9S, 96 Wiz 1926 '\ 23S, ) 90052

(B.14<)£§>B.15)
(B.16),(B.18)

oc

ox ox oc
) {(((bsw + d)Ds)_—|Sw +Vqwo — qu) % + quoa—f]

((¢Sw+¢Ds)g

oS

0 _ 0SS, ox oc
[V€F((¢S + $Ds)Swq w7y a5, )]£+ Ve

G, O] 0%
vIvox )| a8z

=

ox ac 0
<(¢s +¢Ds) 55 )qon <d>5 )qwovaf—

((cbs +¢D)a_>{ (S + $D) }gg

% \?
((¢sw+¢Ds)—)

OSw

) ) oc ox d%c
[vsg (48w + daDs)qu)} =+ ((¢Sw 0Dy 5g ) (swqw)] -5
and thus
oc Oc € 1 oc
2t 738 Gwo {(sw + D;)(9%/0S) Sy <(SW +Ds)S qw) 20
aZ
+ (¢(sw+Ds)swqw)a—9§].

Note that if ¢ = 0 in equation (4.30), we obtain the normalized version

of the hyperbolic advection equation(4.26).

B.4 TRANSFORMATION ONTO THE (0,§) COORDINATE SYSTEM

We next transform equation (B.20) onto the (6, &) coordinate system.

The product rule yields

0 90& 90t 10
30 0£00 ' 0T08  emoE (B.20)
0 92 02093 2 19
ot 950t ot emof
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Inserting this into equation (B.20) yields

gm 0
(Sw+ D) () 95w

ac
0¢,
(B.21)

o 1
ot qWO€2m—1

((sw + Ds)quw)

+ (cp(sw + DS)SWqW> g%:]
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NOMENCLATURE

Greek symbols
x dispersivity constant, p.8 [m]
) fracture width, p.84 [m]
d(t) dispersive zone, p.3 (m]
8i; Kronecker delta, p.7 [—]
13 dimensionless parameter, p.68 [—]
€1 error in l; norm, p.100 [—]
Emax error in maximum norm, p.102 [—]
0(Sw,t) characteristic coordinate, p.66 [m]
A similarity variable, p.16 [mt=1/2]
Ax mobility of phase «, p.7 [s/Pal
ABC Brooks-Corey parameters, p.74 [—]
At total mobility, p.9 [s/Pal
At shorthand for }‘in‘“, p.88 [Pa/s]
Ho viscosity of phase «, p.7 [Pa/s]
v dimensionless parameter, p.68 [—]
§ coordinate transformation, p.7o inflow dep.
Pu density of phase «, p.7 [kg/m3]
or rock density, p.8 kg/ m3)
o surface tension, p.40 [N/m]
T(t) characteristic coordinate, p.66 inflow dep.
T(Sw) coefficient for dynamic p,p.39 [Pa-s]
Te characteristic time,p.31 [1/s]
¢ porosity, p.7 (-]
P MINMOD limier, p.96 —

{®i};_; nodal basis

(-]
I isotherm, p.8 -]
(-]
Q computational domain, p.84 [—]



NOMENCLATURE

Roman symbols

> T o ®

> &

gradient of linear reconstruction, p.95
stiffness matrix, p.88

right-hand side vector, p.86
measurement of a porous medium’s
ability to imbibe, pp.12,18

adsorption of C; per unit of mass rock
area open to imbibition

adsorption of x per unit of mass rock, p.65
Bond number, p.50

vector of component

concentration in phase w, p.8

vector of component

concentration in phase n, p.64
proportionality constant

total compressibility of the

fluid-rock system, p.8

tensor and 1D hydrodynamic dispersion, pp.8,59
slope of isotherm, p.59

capillary dispersion, p.11

fractional flow function without p¢, p.9
f(Swi), p-16

normalized fractional flow function, p.16
fractional flow function with p., pp.16,18
gravitational acceleration vector, p.7
gravitational constant, p.7

Leverett J—function, p.40

tensor of and 1D permeability, p.7
characteristic length, p.30

characteristic length, p.7o0

length of the principal axis in a FV, p.88
distance between A; and now-flow boundary, p.30
mass matrix, p.88

normal vector on segment j, p.85

fluid pressure, p.7

vector of nodal points for p, p.86

grid Peclet number, p.101

entry pressure, p.74

cumulative 1D volume of

wetting phase injected /imbibed

[ms—1/2]

[(m3/kg]
[m?]
[m3/ kg]
[—]
[mol/L]

(mol/L]
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NOMENCLATURE

Roman symbols

Qo

9t
R

Rec

vector of fluid velocity of phase «, p.7
vector of total velocity, p.7

ratio between total flow and inflow, p.16
recovery, p.51

ultimate recovery, p.51

saturation, p.7

effective saturation, p.41

initial water saturation, p.12

water saturation at left boundary, p.12
residual saturation of the phase o

time

ageing time, p.27

time when the analytical solutions

stop to be valid, p.21

dimensionless time, p.31

dimensionless time, p.31

dimensionless time, p.31

space of piecewise linear functions, p.86
linear reconstruction of a variable at node i, p.96
linear reconstruction of a variable at node i, p.96
the bulk volume of the matrix, p.30
coordinate vector of node j

— —
wv »n
[V R S

145



NOMENCLATURE 146

Subscripts
o x € {w,n}, p.7
c capillary
C  concentration
L  longitudinal
m  matrix
f fractures
S saturation
SI  spontaneous imbibition, p.41
T transversal
w  non-wetting, p.7
w  wetting, p.7

WF  water flood, p.41

Superscripts

comp  composite
equiv. equivalent
in inner

match matched

max maximal
min minimal
out outer

* characteristic value
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