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Abstract 
 

In the context of urban diffuse pollution a suburban road acts as a potential source of 

toxic pollutants among which heavy metals are very common, are found at elevated 

concentrations and are generally persistent. With a lack of detailed understanding of 

metal emission patterns on suburban roads, a detailed study is therefore essential for 

gaining an improved understanding to plug the knowledge gap in terms of urban diffuse 

pollution management. The present understanding of pollutant build-up and wash-off 

processes on road surfaces elucidates that these processes are highly site specific and 

are hard to generalise in certain aspects. Therefore, this study aimed to characterise 

heavy metal emissions and associated pollution levels at several road sites on the 

Riccarton Campus road network using road sediment collected during dry and wet 

weather periods. The heavy metal concentrations of Cd, Cr, Cu, Ni, Pb and Zn, are 

believed to be greatly toxic and are highly abundant in road traffic environments, were 

determined by strong nitric acid digestion and atomic absorption spectrometry.  

 
The study revealed that the pollutant build-up and wash-off processes were site specific 

and so also were the derived local build-up and wash-off parameters, as expected. 

However, these derived parameters were very different from those used in common 

urban drainage models suggesting that the default values are (significantly) 

inappropriate for the studied road network. The quantification of heavy metals in road 

sediments displayed significantly higher concentrations than local background 

concentrations. Their concentrations between weather types were found in the order of 

runoff, snow and dry road sediment, and also varied between sampling sites according 

to site-specific attributes, such as road lay-out inured traffic movement pattern, road 

surface condition and presence of road paint rather than due to traffic volume alone. The 

concentrations of all metals except Pb were significantly higher in finer sediment sizes 

than in larger sediment sizes. Correlation analyses revealed a similar pattern showing a 

greater number of statistically significant associations between metals in finer sediment 

sizes. An assessment of heavy metal contamination indicated that road sediment may 

likely pose a moderate to considerable level of ecological risk, if transported to the 

nearby water environment in the study area. The assimilation of the knowledge gained 

in this study should help to improve current understanding of environmental pollution 

from suburban roads and to provide better guidance for selecting appropriate control 

measures under the framework of sustainable urban drainage systems. 
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Chapter 1 – Introduction 

 

1.1 Background 

 

In recent years, urban areas have experienced severe environmental pollution. Roads, an 

integral part of any urban development, only use a small percentage of urban land, 

however they generate many types of pollutants, among which heavy metals, in 

particular Cd, Cr, Cu, Ni, Pb and Zn are very common (Barrett et al., 1993; Furumai et 

al., 2001). Heavy metals are important environmental pollutants and are regarded as 

potential hazards to human health and to natural ecosystems (Marcovecchio and Ferrer, 

2005). The heavy metals derived from roads originate from diverse sources (Banerjee, 

2003). From the study of Irish et al. (1995), atmospheric deposition, input from traffic, 

carriageway breakup and surrounding land uses are found to be the key sources of 

heavy metal pollution from roads. The urban pollution impact associated with 

transportation has become an important issue as road traffic in the UK has increased 

rapidly during last decade or so (Napier et al., 2008).  

 

Meanwhile, much research work has been undertaken to investigate pollutants, 

particularly heavy metals, derived from road surfaces all over the world. For example, 

studies carried out in Australia and New Zealand (Ball et al., 1998; Drapper et al., 2000; 

Mosley and Peake, 2001; Brown and Peake, 2006), America (Sartor and Boyd, 1972; 

Sartor et al., 1974; Sansalone et al., 1996; Brezonik and Stadelmann, 2002; Sutherland, 

2003; Lee et al., 2004), Asia (Kim et al., 1998; Lee et al., 2002) and Europe (Farm, 

2002; Westerlund et al., 2003; Backstrom et al., 2003; Deletic and Orr, 2005; Crabtree 

et al., 2006, 2008; Robertson and Taylor, 2007; Ewen et al., 2009; Helmreich et al., 

2010). Aspects of heavy metals and their quantification in road sediment are very 

commonly studied in the above studies. However, there is a lot of uncertainty regarding 

their concentrations in road sediment deposited during different types of weather, such 

as a dry spell, rain or snow. Such concentrations have been found to be highly variable 

and also appear to be site specific, being dependent on a wide range of factors including 

location, traffic volume, extent of antecedent dry spells, frequency of street sweeping, 

nature of road surface etc. Also where data is drawn from United States, Australia and 

Europe, these may not be very applicable to UK circumstances. While a few of the 
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above mentioned studies of heavy metal concentrations in dry and runoff sediment have 

been undertaken in the UK, there is no such data available for Edinburgh City. 

Moreover, there is no previous data on the quantification of heavy metals and associated 

contamination levels in snow derived sediment from roads in the UK.  

 

It is also well known from several studies that a significant proportion of road pollutants 

are associated with particulate matter, the rest being in a dissolved phase. Typically 40-

70% of many heavy metals are found in the particulate fraction and about 90% of 

polycyclic aromatic hydrocarbon (PAHs) can be associated with particles (Marsalek et 

al., 1997; Starzec et al., 2005). Once deposited, road sediment could be transported from 

the road surfaces to nearby water bodies by different cleansing events comprising 

mechanical (street sweeping) and natural (air, snow and rain) events, and thus in turn 

make a significant contribution to the local environmental pollution. Therefore, 

managing sediment from roads is required to control the associated environmental 

pollution (Heal et al., 2006). Moreover, recent road drainage practice has seen the 

introduction of sustainable urban drainage systems (SUDS) for roads, replacing or 

modifying conventional road drainage and aiming to address the water quality and water 

quantity issues, as a long-term robust option for urban pollution management (Heal et 

al., 2009). It is therefore useful to have information on pollutant concentrations from 

different perspectives that may inform road drainage designs and maintenance in the 

context of SUDS for roads. 

 

1.2 Justification of the Research 

 

Pollutants derived from the road-traffic environment are seen as a major contributor to 

urban diffuse pollution in receiving waters. The sediment derived from roads has been 

found to be highly contaminated and is therefore, often studied as an indicator of 

environmental pollution. From reviewing literature in this field of study, it has been 

revealed that profiles of pollutant concentrations are highly site specific. Furthermore, 

variability in rainfall pattern, number of preceding dry days, and roadway maintenance, 

that are considered as key drivers, makes the problem more complex and unique for 

specific regions or sites. Furthermore, a few studies have been found that report the 

importance of traffic movement patterns on heavy metal emissions (Hjortenkrans et al., 

2006; Ewen et al., 2009; Doung and Lee, 2011) on roads. Also from Ewen et al. (2009), 
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it is apparent that a higher pollution level is associated with sites on suburban roads than 

on busy urban roads or motorways. This finding warrants further research exclusively 

focused on metal emission patterns for different traffic movement patterns along a 

suburban road network. In addition, a piecemeal approach to reporting pollutant 

concentrations has limited direct comparison between studies and, therefore, 

recommendations available from different studies may not be widely applicable 

(Crabtree et al., 2006). Although a few studies of heavy metal concentrations in dry and 

runoff sediment from the road-traffic environment have been undertaken in the UK, no 

such information is available for heavy metals in snow derived sediment. Moreover, in 

particular to Edinburgh City, there is no previous data on heavy metals and associated 

contamination levels in dry or wet weather (runoff and snow) derived sediment from the 

road–traffic environment. It is understood that the quantification of heavy metals in dry, 

wet weather and snow derived sediments from roads has the potential to allow an 

improved understanding of diffuse heavy metal pollution, which has a continuing threat 

to the nearby aquatic environment.  

 

In order to meet regulatory water quality requirements set by the Water Framework 

Directive (WFD), a wide range of best management practices have been implemented 

and monitored to deal with pollution from the road-traffic environment. In Scotland the 

outcomes of this work practices were documented in the recently adopted road drainage 

guidance ‘SUDS for Roads’ (Pittner and Allerton, 2009). The performance of the 

various treatment options is often measured by quantifying the percentage removal of 

pollutant mass, and less attention has been placed on the toxicity for aquatic species in 

receiving waters. However, knowledge of the toxicity exerted by road runoff pollutants 

may be essential to accurately evaluate the effectiveness of SUDS treatment options 

with regard to removal of the toxic fraction of pollutants. A proper understanding of the 

pollutants and associated ecological risk at priority sites on a road network, to 

demonstrate how and where pollutants are dispersed, could be useful in selecting 

appropriate source/site control measures to improve stormwater runoff quality. An 

improved understanding of such issues particularly in the context of treatment trains 

would be a useful addition to the SUDS for roads manual. 
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1.3 Research Hypothesis 

 

Traffic movement patterns, which are conditioned by road lay-out, have a significant 

influence on heavy metal emission patterns and associated pollution from the road 

traffic environment. It is expected that pollutant concentrations would be higher at a 

site, where traffic is more likely to undergo stop-start manoeuvres than at a site where 

traffic flows are more likely to maintain steady speeds. 

 

1.4 Aims and Objectives 

 

The overall aim of this research is to characterise heavy metal emissions and associated 

pollution at several different road-layout sites on a suburban road network during dry 

and wet weather events. 

 

Major objectives to address the aim of the study are as follows: 

 

• To investigate the influence of traffic movement patterns on metal emission 

patterns. 

• To investigate the pollutant build-up pattern as a function of transverse sampling 

position and the number of antecedent dry days. 

• To investigate the wash-off pattern for rainfall events also with the influence of 

the number of antecedent dry days.  

• To measure heavy metal concentrations and associated environmental pollution 

in three different road sediment categories, namely dry, runoff and snow, as a function 

of particle size distribution. 

• To undertake a correlation analysis between heavy metals and relevant key 

variables. 

 

It is hoped that the findings of this study could further help to improve knowledge on 

environmental pollution under different site characteristics on suburban roads, and to 

provide better guidance to water professionals. 
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1.5 Scope and Limitations 

 

The research concerns heavy metal concentrations and their distribution in different 

particle size fractions of dry, runoff and snow sediment for several road lay-out sites on 

a typical suburban road network. Furthermore, heavy metal levels associated with the 

above categories of road sediment are discussed addressing environmental pollution in 

relation to ecological risk indices. Some important issues in relation to this research are 

as follows: 

 

• The research was confined to the Riccarton Campus of Heriot Watt University 

in Edinburgh, UK. This limits the research outcomes in terms of regional and climatic 

parameters. However, the generic knowledge gained is applicable outside of this region. 

• The field investigations were limited to a suburban road network with a low 

traffic density and a combination of rural and urban land-uses. This limits the wider 

applicability of some of the results where specialised land uses (e.g. metal industries) 

may likely have a significant influence on metal emission patterns. However, the 

understanding of metal emission patterns gained is applicable to other urban 

catchments. 

• The metals in focus were limited to Cd, Cr, Cu, Ni, Pb and Zn, which are often 

found in high concentrations in the road traffic environment. Additional constituents, 

including, but not limited to, metals (Al, Co, Hg and Mn), polycyclic aromatic 

hydrocarbons (PAHs), conventional pollutants (oil and grease, volatile suspended 

solids, organic matter contents, nutrients, pH, temperature etc.) and platinum group 

elements, are also important for road runoff pollution studies: however, they are not 

considered in this study for limited testing resources. 

• Any seasonal variability in traffic volume was not considered during the 

investigation, even though this might has the influence on seasonal variability of heavy 

metal concentrations studied. 

 

1.6 Organisation of the Thesis 

 

This thesis consists of 8 chapters. Following this introductory chapter, Chapter 2 

documents the outcomes of relevant published literature. It describes the background 

information to the research and identifies knowledge gaps. Chapter 3 outlines the study 
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area, sampling sites, field investigations, laboratory analyses and data analysis 

techniques, which all together describe the materials and methods used to carry out this 

research. Chapters 4, 5 and 6 contain the results and discuss the investigation of the 

pollutant build-up and wash-off patterns and the pollution potential of dry and wet 

weather derived road sediments. Chapter 4 focuses on the dry road deposited sediment 

(RDS) and RDS heavy metal build-up patterns on road surfaces. Chapter 5 presents 

detailed analysis of heavy metals in RDS. Chapter 6 presents and discusses the pollutant 

wash-off pattern for runoff events, heavy metals in runoff and snow samples. The 

comparative assessment of dry, runoff and snow sediment is discussed in Chapter 7. 

Chapter 8 reveals the major conclusions and classified conclusions based on the results 

obtained in Chapters 4 to 7, and gives recommendations for further research. Following 

Chapter 8, a few appendices are provided that contain relevant supporting data and 

information, additional to the main text, and abstracts of a few published papers that 

were based on the work described in this thesis. Finally references cited in the text 

throughout the thesis are listed. 
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Chapter 2 - Literature Review 
 
 

This chapter explores the current understanding available on urban diffuse pollution 

literature with the aim of identifying knowledge gaps relevant to the framework of the 

present study. 

 

2.1 Background 

 

During the 20th century, a wide range of infrastructure was built, such as roads, 

commercial and residential structures, urban amenities etc. At the same time, the effects 

of urbanisation on the response to the natural hydrological cycle were felt, for example 

an increased runoff volume with earlier peak discharge due to increased impervious 

area, and a wide range of pollutants was found in the runoff water. Part of the 

urbanisation process was designed to collect runoff during wash-off events (rainfall and 

snow precipitation), and convey it to a treatment plant by a storm sewer network, or in 

the absence of such facilities, in particular for road drainage, to discharge the largely 

untreated runoff to existing nearby surface water bodies, such as streams, lakes, rivers 

etc. By the end of the 1990s while point sources of pollution were well understood and 

reasonably controlled (SEPA, 1999), there was a concern for urban diffuse pollution 

that continued to pose a threat to the aquatic environment (Gray, 2004; Wilson et al., 

2005). A little later, in order to control sources of pollution with the aim of improving 

the water quality of all water bodies, the European Union (EU) adopted the Water 

Framework Directive (WFD) (2000/60/EC), which, among other things, aimed to set 

mandatory environmental quality standards on priority pollutants. Considering the 

objectives of the WFD, gaining an accurate knowledge of pollutants derived from the 

urban environment has proved necessary (Gasperi et al., 2009). Accordingly, for 

mitigation processes to be efficient and productive, the reliable estimation of relevant 

hydrological and pollutant transport processes is deemed important. Commonly, 

mathematical modelling approaches were used, which required the estimation of various 

generic parameters. However, due to the significant variability of natural hydrology, 

urban settings, pollutant management strategies etc. these models often could not 

replicate important site-specific aspects of particular urban environments, therefore, the 

necessity of collecting local data and information for enhancing the application of 

models became recognised. 
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2.2 Diffuse Pollution: Urban Development 
 

It is widely recognised that urbanisation has put huge pressures on both the quantity and 

quality of surface runoff. Diffuse pollution can come from many different sources, 

which are sometimes uniformly dispersed, but are often aggregated within a catchment. 

For example, pollutants entering the surface water system in urban settings are primarily 

derived from roads, pavements, roofs and yards, as reported by Ellis (1985, 1986); 

Heaney and Huber (1984); Goonettilleke et al. (2009). They also noted that diffuse 

pollution is closely linked to land use so that industrial, commercial, domestic and 

agricultural estates deliver different types of pollutants. Apart from water quality, 

diffuse pollution is also linked to air quality, for example acid rain in upland rural areas 

and impacts of industrial and traffic emissions locally in urban areas and also remotely 

(see atmospheric heavy metal deposition maps of the UK produced by Defra on 

http://pollutantdeposition.defra.gov.uk/image/tid/47). As a result of rainfall, pollutants 

are dislodged, transported and transformed before reaching the receiving waters. 

Although it seems that these sources may be individually minor, they are collectively 

significant. This form of diffuse source pollution has been identified as having a major 

adverse impact on receiving streams and rivers (Napier et al., 2008). Based on the 

published literature, urban surface water runoff typically contains a wide range of 

pollutants, among which heavy metals, for example cadmium (Cd), chromium (Cr), 

copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), are considered to be potentially hazardous 

(e.g. Folkeson, 1994; Pitt et al., 1995). ‘Heavy metals’ commonly refers to metals with 

a specific gravity that is at least 5 times the specific gravity of water (the specific 

gravity of water is 1 at 4°C, where simply stated, specific gravity is a measure of 

density of a given amount of a solid substance when it is compared to an equal amount 

of water).  

 

Urban impacts associated with transportation have become increasingly important in the 

UK as road traffic volumes have increased. The major share of urban diffuse pollution 

belongs to cars and other road vehicles (Napier et al., 2008). Despite cleaner technology 

developed for cars and other vehicles, the volume of traffic on the roads continues to 

increase, tending to undo some of the benefit of individually less polluting vehicles. 

Pollution caused by traffic appears in different forms: in a solid form as from abrasion 

or wear of tyres and corrosion of metal parts of vehicles, in a liquid form as leakages or 
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drips and in the gaseous state as vehicle exhaust (Shaheen, 1975; Herngren et al., 2006; 

Napier et al., 2008). Moreover, Patel and Atkins (2005) noted that the degradation of 

the road surface (due to ageing) and corrosion of crash barriers could also enhance 

metal emission in the road-traffic environment. In addition, atmospheric deposition and 

input from surrounding soils to the road traffic environment should not be overlooked. 

Runoff from roads during rainfall events carries with it many pollutants, including dirt 

and dust, which is associated with toxic heavy metals from the different sources 

mentioned above (Smolders and Degryse, 2002; Robetson and Taylor, 2007; Napier et 

al., 2008). Furthermore, salt from winter gritting can also act as a pollutant.  Apart from 

heavy metals, certain aromatic hydrocarbon groups from fuel discharged from vehicle 

exhausts can also be accumulated on roads and other urban surfaces, from which the 

contaminants are washed off into the drainage system and hence threaten aquatic 

species (Clements et al., 2000; FHA, 2000). 

 

2.3 Pollutant Sources in the Urban Setting 

 

Although urban surfaces act as sinks for pollutants, these pollutants are mainly 

generated from various anthropogenic activities. Summarising the studies by Pitt et al. 

(1995) and Göbel et al. (2007), the list of key anthropogenic activities contains traffic, 

industrial and commercial activities, construction and demolition works, and erosion 

and corrosion in the built-environment. In particular to road-traffic environments, 

traffic, road surface, atmospheric deposition and surrounding land use are found as most 

influential sources, as reported by Irish et al. (1995) and presented here in a pictorial 

form, see Figure 2.1. 

 

Among the listed sources, road-traffic is an obvious source of contaminants on roads 

and has been regarded as the major contributor to environmental pollution in urban 

areas. Due to the rapid growth of urbanization and increased traffic volumes during the 

last decades, in particular, urban environments have been modified and stressed with 

increased pollution, which has driven the need for better environmental protection 

(Napier et al., 2008; Ewen et al., 2009). Meanwhile, several researchers reported that 

road surfaces act as one of the key areas from which surface runoff, polluted with a 

wide range of pollutants, leads to the degradation of water quality for receiving waters 

(e.g. Ellis et al., 1987; Barrett et al., 1998). An earlier study by Hoffman et al. (1984) 
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noted that up to 80% of pollutant loadings to receiving waters came via road runoff in 

urban areas. Following the recommendations of the EU WFD directive, it is now 

obligatory that water protection should be strongly integrated with other domains of 

environmental strategy, including the area of transportation (Crabtree et al., 2008). 

 

 

Figure 2.1: Key sources of diffuse pollutants, emphasising heavy metals, on suburban 

roads (VOCs: Volatile Organic Carbons; PM: Particulate Matter) 

  

Conventionally pollutant loading has been thought to be exclusively related to traffic 

movement pattern, volume of traffic and type of road surface. As noted by Sartor et al. 

(1974), asphalt paved roads with fair to poor surface condition could have generated 

substantially higher pollutant loads than concrete paved roads with fair to good surface 

condition. Vehicle speed on roads, road geometry and surrounding road infrastructure 

may also affect the amount of pollutant load. Based on Novotny et al. (1985), 

Hjortenkrans et al. (2006) and Ewen et al. (2009) studies, it can be deduced that the 

amount of abrasion products derived by traffic on roads is at a higher level near traffic 

signals and other traffic related bottlenecks, such as bridges and bends compared to 
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straight road section sites. Brinkmann (1985) also suggested that road geometry and 

traffic movement patterns might have an influence on differences in pollutant 

accumulation between sites. 

 

Other than road surfaces, car parks are a large proportion of the runoff producing area in 

the urban environment, which are often contaminated with oil, petrol and heavy metals 

from vehicles. Conventionally all of this pollution would be washed off into drains, 

eventually polluting nearby watercourses. Industrial yards often deal with polluting 

substances on a larger scale than car parks, which makes them a potentially even greater 

producer of pollution. Oil is the cause of more than 20% of Scottish water pollution 

incidents. It can have serious affects on the fauna and flora of aquatic systems. Much of 

it comes from diffuse sources (Napier et al., 2008). 

 

Similarly, construction and demolition activities in urban settings are also found to have 

a significant impact on stormwater runoff, contributing a range of materials such as 

cement dust, fine sand, gravels and general litter. According to the US EPA (1993), 

construction sites potentially generate approximately 10 to 20 times more solids than 

agricultural land, and 1000 to 2000 times more than forests. The report also noted that 

the loading may vary with the scale of construction equipment, maintenance activities 

and site management practices.  

 

In addition, atmospheric deposition from industrial activities (depending on the industry 

type) could create much larger pollutant loadings in certain areas. The extent and type 

of depositions are dependent on both the nature of the industry, location and the climate.  

Briefly, atmospheric deposition can contribute a significant amount to pollutant load 

though this source of pollutant build-up is highly related with land use.  

 

Pollution from road operation and maintenances might include some pollutants. For 

example, regular maintenance includes de-icing and weeds control, which involves the 

use of chemicals (de-icing salts and herbicides) that will be flushed from the highway 

surface by runoff. Winter time salting and sanding practices, for example, may leave 

concentrations of chloride, sodium and calcium on road surfaces (Westerlund and 

Viklander, 2006). Additionally, these materials usually have associated chemicals 

including iron, nickel, chromium, lead, zinc and cyanide (Granato, 2003; Patel and 
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Atkins, 2005; Pihl and Raaberg, 2000; Norrstrom and Jacks, 1998; Olli, 2003). In 

contrast, structural maintenance, renewal and repairs are usually well planned 

operations for which appropriate precautions are often taken. 

 

Depending upon the exposure of building infrastructure such as gutters, roofs and 

fences to the atmosphere, wind, rainfall, and snow, corrosion from these products may 

result in particles that carry significant amounts of pollution (Brinkmann, 1985; Pitt et 

al., 1995). These corroded particles, which accumulate on the ground and on roof 

surfaces, are eventually washed-off in stormwater runoff (Göbel et al., 2007). When 

compared to road surfaces, roof surfaces are relatively less polluted (Van Metre and 

Mahler, 2003), however, pollutant concentrations from roof surfaces may be significant 

in densely populated housing areas, where houses take a dominant share of land use 

(Van Metre and Mahler, 2003). On the other hand, partially sealed areas, such as urban 

parks, porous paving, residential gardens and lawns could contribute to the stormwater 

pollutant load (particularly solid loads). Bannerman et al. (1993) studied the relative 

importance of surface type for stormwater pollution load and reported that street 

surfaces and parking lots are the most dominant sources for urban stormwater 

pollutants. They further noted that lawn areas are significant for organic loading, but 

roof surfaces are not significant compared to road surfaces for heavy metals. 

 

2.3.1 Pollutant Build-up 

Quantifying the relationship of pollutant build-up over antecedent dry days is difficult, 

but it is one of the important processes of urban environmental pollution. Based on the 

published studies (e.g. Egodawatta et al., 2007), it is clear that pollutant build-up is a 

complex process, as many variables influence the build up process. In the road 

environment, the pollutants primarily originate from traffic activities, the road surface 

itself, paints used for road markings, road side infrastructure, road operations and 

maintenance, and atmospheric deposition during dry and wet weather (Irish et al., 1995; 

Sansalone et al., 1996; Deletic and Orr, 2005). Also, road surface type, roughness, 

slope, antecedent dry days, land use and road lay-out play a significant role in the build-

up process. The accumulation of road sediment is often regarded as a spatially uniform 

process. However, due to wind and traffic turbulence, road sediment is often moved 

towards the edge of the road and accumulates in near curb areas (Novotny et al., 1985; 
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Namdeo et al., 1999). To link with this issue, a few researchers highlighted that a 

significantly higher load of sediment (often composed of the coarse size fraction) was 

found near the curb, while relatively finer sediment was found towards the middle of the 

road (Harrison et al., 1985; Grotteker, 1987; Viklander, 1998; Charlesworth et al; 2003; 

Deletic and Orr, 2005; Herngren et al., 2006). Furthermore, Johnston and Harrison 

(1984) and Deletic and Orr (2005) reported a transverse gradient of metals indicating 

that particle redistribution rate is always less than the particle deposition rate on roads. 

 

As mentioned earlier, the availability of the pollutants on road surfaces is influenced by 

a wide range of factors, which are associated with both natural and anthropogenic 

characteristics of the catchment. In the case of natural characteristics, climate variables, 

geomorphic characteristics, surrounding land, and the number of antecedent dry days 

(ADD), are a few examples, while variables that are more likely considered as 

anthropogenic factors include average daily traffic load (ADT) and number of vehicles 

during a storm (VDS). A common assumption is that the larger the ADD the higher is 

the sediment build-up on roads between any cleansing (e.g. street sweeping, rainfall) 

events. It has been considered that the ADD has a positive linear or non-linear 

relationship with pollutant build-up (Sartor and Boyd, 1972; Hewitt and Rashed, 1992; 

Irish et al. 1998; Kim et al., 2006). However, other studies found this relationship to be 

non-existent or insignificant (Harrison and Wilson, 1985; Kerri et al. 1985; Kim et al. 

2004). In general, pollutant concentrations have been reported to be well correlated with 

average daily traffic (ADT) (Driscoll et al. 1990; Wu et al. 1998). However, as noted by 

Barret et al. (1993), ADT alone is not sufficient to describe observed sediment build-up 

and associated pollutant data: site specific information is also required. Additionally, the 

road lay-out has also been found to have a significant influence on metal emission 

patterns and how and where metals are dispersed (Hjortenkrans et al., 2006; Ewen et al., 

2009). 

 

Meanwhile, many researchers have also investigated the mass distribution of road 

deposited sediment (RDS) in different particle size ranges (e.g. Lau and Stenstrom, 

2002; Charlesworth et al., 2003; Sutherland, 2003; Aryala et al., 2005; Deletic and Orr, 

2005; Robertson and Taylor, 2007) and report similar findings of particles smaller than 

250 µm accounting for a higher percentage of the total pollutant mass than the larger 

particles.  
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In recognition of the scope of these potential problems for cities, best management 

practices have identified source control of sediment generated from urban streets as a 

top water resources management priority. Subsequently, many field monitoring 

programs have been conducted in developing a set of pollution build-up models to guide 

selection, design and maintenance of these controls (Sartor et al., 1974; Moe et al., 

1978; Driscoll et al., 1990; Sutherland and Jelen, 1996; Ball et al., 1998; Deletic and 

Orr, 2005; Kim et al., 2006; Li et al., 2008; Li and Barrett, 2008). Based on Sartor et al. 

(1974) pollutant build-up on road surfaces can be replicated with an exponential 

function with ADD as a primary variable. This concept continues to be used in 

commercial software, such as SWMM and MIKE-Urban, with ADD being the major 

input parameter along with the catchment surface characteristics. In contrast, Ball et al. 

(1998) found a power law function or a reciprocal function was a better alternative to 

explain pollutant build-up. However, the pattern of build-up over several dry days 

(commonly asymptotic with a high build-up rate initially) was consistent from both 

studies.  

 

2.3.2 Pollutant Wash-off 

Wash-off is the process of erosion of constituents (that build-up during dry days) from a 

catchment surface during a period of runoff induced by rainfall or snow. To describe the 

wash-off process simply, it can be divided into three main phases: firstly the surfaces 

get wet and soluble pollutants start to dissolve in water films, secondly sediment starts 

to detach from the surface and thirdly, depending on the slope and topography of the 

surface, sediment is either dragged along the surface by the runoff or is carried in 

suspension entering the drainage system in overland flow. Rainfall energy (refer to 

kinetic energy in relation to rainfall intensity) seems to be the main agent for particle 

detachment and initiation of motion (Kayhnian et al., 2002; Pitt et al., 2004; Shaw et al., 

2006). In addition, other rainfall and runoff parameters (e.g. rainfall duration, rainfall 

volume and runoff volume) are also found to have an effect on wash-off loads (Sartor et 

al., 1974; Novotny et al., 1985; Mackay, 1999; Egodawatta et al., 2007). 

 

Furthermore, it is noted that the influence of the above mentioned parameters varies 

widely between studies. For example, Chiew and MacMahon (1999) reported that event 

mean concentrations of suspended solids showed a strong positive correlation 
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coefficient with total runoff volume, while, in contrast, Brezonik and Stadelmann 

(2002) and Kayhnian et al. (2002) reported that event mean concentrations of suspended 

solids can be better explained by the rainfall intensity. They also noted that the kinetic 

energy of rain drops (used to dislodge sediment from the surfaces) was strongly 

correlated with rainfall intensity, hence higher pollutant removal may occur with more 

intense rain even if it is a short duration event.  

 

The relative importance of each factor is dependent on the type of contaminant in 

question. For example, Irish et al. (1998) reported that solids concentration increased 

with an increase in the duration of the antecedent dry period and decreased with an 

increase in the intensity of the previous storm event. Other studies have shown that Cu 

and Pb concentrations are highly influenced by the volume of traffic during a storm, Fe 

concentration is controlled by conditions in the preceding dry period, and Zn 

concentration is influenced by the traffic count during the dry period and the runoff 

characteristics of the preceding storm (Kayhnian et al., 2002). It is therefore necessary 

to understand the effect of each factor to effectively control the pollution induced by 

runoff. Subsequently, some of the studies also reported seasonal variations of pollutants 

in stormwater runoff, which demonstrated that higher pollutant concentrations (in 

smaller sediment load) are commonly found to occur in the summer, particularly when 

high intensity rain is preceded by a long dry spell, compared to winter rainfalls, which 

are normally less intense and more frequent (Brezonik and Stadelmann, 2002; Deletic 

and Orr, 2005; Hallberg et al., 2007). 

 

Duncan (1995) followed by Pitt (2004) reported that pollutant wash-off loads (by mass) 

were found to be unusually high (a factor of 100 or more), if there were any 

construction activities nearby the catchment surface. Also, the effect of road cleaning on 

wash-off loads (by mass) was reported by several researchers (Sartor and Boyd, 1972; 

Vaze and Chiew, 2002). They found that conventional road cleaning techniques (e.g. 

street sweeping by brushes, municipal sweeping truck with fitted brushes) were only 

able to remove the larger sediment size fraction, probably significantly decreasing the 

wash-off mass load, however leaving sediment sizes less than the 250 µm available for 

wash-off in the next storm event. It has also been emphasized that smaller particle sizes 

could easily be blown around by the wind and, being inhalable, could pose potential 

human health hazards (Borrego et al., 2006 and Kaur et al., 2007). Subsequently, the 
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wet atmospheric deposition due to rain, snow, fog, dew may also add finer substances to 

the road surfaces from the surrounding land use and make them available for transport 

with surface runoff (Göbel et al., 2007).  

 

It has been understood that wash-off events only remove a fraction of the available 

pollutants from the catchment surfaces depending upon the characteristics of the runoff 

events. For, example, Vaze and Chiew (2002) found that only 35% of the total pollutant 

mass were washed-off from their controlled catchment by one event, while a subsequent 

event washed-off 40% of the total pollutant mass even though it had a smaller rainfall 

depth than the first event ( there were differences in intensity and antecedent dry spells 

between the rain events also). A similar suggestion was also reported by Egodawatta et 

al. (2007). 

 

Understanding the inherent complexity of the process, pollutant wash-off models 

require a wide range of information. Several mathematical equations are available to 

simulate wash-off load, however, the choice of which equation to use needs to be 

justified (Deletic et al., 1998; Massoudieh et al., 2008; Opher and Friedler, 2010). 

However, an exponential wash-off equation, proposed by Sartor et al. (1974) based on 

their research study on road surfaces in the USA, is often preferred for its ease of use 

and robustness (Rosener, 1982; Egodawatta et al., 2007). In terms of wash-off 

modelling it has been proposed that predicting the initial period of runoff, containing 

the ‘first flush’ (in which pollutant concentrations are believed to be significantly higher 

than later in the event) may well be a suitable way to explain the entire event (Lee et al., 

2002; Kim et al., 2004). However, the occurrence of the ‘first flush’ is not consistently 

observed and it is possible that a significant amount of dissolved pollutants appear at 

later phases of runoff events, as reported by Hoffman et al. (1984), Harrison and Wilson 

(1985) and Kim and Sansalone (2008).  

 

2.4 Road Runoff Pollutants 

  

Road runoff has been identified as a significant source of diffuse pollution for receiving 

waters, and road traffic has been found to play an important role in generating such 

contamination in numerous research studies during the last three decades (Hedley and 

Lockley, 1975; Laxen and Harrison, 1977; Hoffman et al., 1985; Lee et al., 2004; 
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Cabtree et al., 2006). De-icers, nutrients, heavy metals, polycyclic aromatic 

hydrocarbons (PAHs) and volatile organic compounds (VOCs) are often found at 

elevated levels in road runoff compared to natural background levels. The study carried 

out by Ellis et al. (1987) estimated that drainage from road surfaces contributes as much 

as 50% of the total suspended solids, 16% of total hydrocarbons and between 35 and 

75% of the total pollutant inputs to urban receiving waters in the UK. Deposition of oil, 

grease, rust, rubber particles together with wear and tear of vehicle parts are identified 

as common sources of these pollutants (Napier et al., 2008; Ewen et al., 2009), as also 

illustrated in Figure 2.1. A fraction of particulate contaminants that build up on the road 

surface may subsequently be dispersed by winds and/or traffic before they become 

washed into the road drainage system by wet weather events (rainfall or snow-melt 

runoff). In urban areas, the process of road cleaning, as mentioned in previous section, 

may also reduce the contaminant load in road runoff by rainfall or snowfall events. For, 

example, some particulates are permanently removed by suction devices. On the other 

hand washing procedures only serve to deliver pollutants to drains in sudden 

concentrated bursts.  

 

2.4.1 Sources of Stormwater Pollutants 

 

There are numerous sources of stormwater runoff pollutants from roads, including 

vehicles (exhaust emissions, fuel losses, lubrication system losses, brake wear and tyre 

wear), litter, spills, road surface wear, atmospheric deposition (dust fall and 

precipitation) and road operation and maintenance (salt, herbicides and road repairs) 

(Folkeson, 1994; Barrett et al., 1995). The most important groups of road runoff 

pollutants reported in the published literature include suspended particles, oxygen-

consuming pollutants, nutrients, heavy metals, organic pollutants, petroleum products 

and microorganisms (Folkeson, 1994). A list of the most frequently studied constituents 

in road runoff is as follows (Folkeson, 1994): 

• Total suspended solids (TSS) 

• Biological Oxygen Demand (BOD) 

• Chemical Oxygen Demand (COD) 

• Phosphorus (P) 

• Nitrogen (N) 
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• Cadmium (Cd) 

• Chromium (Cr) 

• Copper (Cu) 

• Iron (Fe) 

• Lead (Pb) 

• Nickel (Ni) 

• Zinc (Zn) 

• Hydrocarbons 

• Coliform bacteria 

• Sodium and chloride ions (if chemical de-icing agents are used) 

 

A list of common pollutants and their probable sources in the road traffic 

environment is summarised in Table 2.1. A few of these (particularly heavy metals) 

is shown in Figure 2.1. 

  

Table 2.1: Typical pollutants found in runoff from roads and highways* 
 

Pollutants Sources 
Particulate Pavement wear, vehicles, the atmosphere and maintenance activities, snow/ice 

abrasiveness and sediment disturbance 
Rubber Tyre wear 
Asbestos Clutch and brake lining wear 
Nitrogen and Phosphorous Atmosphere, roadside fertilizer application and sediments 
Lead (Pb) Leaded gasoline from auto exhaust, tire wear, lubricating oil and grease, bearing 

wear and atmospheric fallout 
Zinc (Zn) Tyre wear, motor oil and grease 
Iron (Fe) Auto body rust, steel highway structures such as bridges and guardrails and moving 

engine parts 
Copper (Cu) Metal plating, bearing and brushing wear, moving engine parts, brake lining wear, 

fungicides and insecticides 
Cadmium (Cd) Tyre wear and insecticide application 
Chromium (Cr) Metal plating, moving parts and brake lining wear 
Nickel (Ni) Diesel fuel and gasoline, lubricating oil, metal plating, bushing wear, brake lining 

wear and asphalt paving 
Manganese (Mn) Moving engine parts 
* Adapted from U.S. Environmental Protection Agency. Guidance Specifying Management Measurement 
for Sources of Non Point Pollution in Coastal Waters, Washington, D.C.: Office of the Water, U.S. 
Environmental Protection Agency, 1997 and Federal Highway Administration. Sources and Mitigation of 
Highway Runoff Pollutants, Washington, D.C.: Federal Highway Administration, 1984. 
 

2.4.2 Heavy Metals 
 

Among the variety of pollutants in the road traffic environment, heavy metals have been 

of great concern because they are found at elevated concentrations that possibly threaten 
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aquatic organisms and human health (Barrett et al., 1993; Furumai et al., 2001; Göbel et 

al., 2007; Ewen et al., 2009). Heavy metals in road runoff are the most persistent 

contaminants, accumulating in the environment rather than degrading and are believed 

to be one of the major diffuse pollutants from road and traffic activities. Emission 

patterns of road traffic related heavy metals need to be described and quantified in order 

to evaluate best management practices for optimal local treatment systems 

(Hjortenkrans et al., 2006; Napier et al., 2009). Heavy metals, such as Cd, Cr, Cu, Fe, 

Pb, Ni, and Zn, are some of the most frequently reported ones and are derived from the 

wear and tear of vehicle parts, road surface break up, oil and fuel drips and corrosion 

products, as seen in Table 2.1 and Figure 2.1 (Harrison and Wilson, 1985; USEPA, 

1995; Sansalone et al., 1996, Napier et al., 2008; Ewen et al., 2009). For example, tyre 

wear is a source of Zn and Cd. Brake wear is a source of Cr, Cu, Ni and Pb. Engine 

wear and fluid leakages are sources of Cr, Cu and Ni. Vehicular component wear and 

detachment are sources of Cr, Fe and Zn (Ball et al., 1991; Legret and Pagotto, 1999).  

 

Typical metal concentrations from traffic and road materials are shown in Tables 2.2 

and 2.3. Apart from the road-traffic, weathering of road infrastructure, such as sign 

posts, road markers and galvanised railings are also noted as metal emission sources by 

Smolders and Degryse (2002) and Hjortenkrans et al. (2006). Moreover, adoption of 

catalytic convertors, to avoid release of noxious gas from exhaust emissions, is believed 

to result in the emission of platinum group metals (such as, palladium, platinum and 

rhodium) into the road-traffic environment (Wiseman and Zereini, 2009).  

 

Table 2.2: Heavy metal concentrations (mg kg-1) from traffic and road materials 

(adapted from Legret and Pagotto, 1999) 

 
Sources Cd Cu Pb Zn 

Vehicles     
Leaded gasoline - - 200 - 
Unleaded gasoline - - 17 - 
Brake linings 2.7 142,000 3900 21,800 
Tyre rubber 2.6 1.8 6.3 10,250 
De-icing agent 0.2 0.5 3.3 0.5 

 

On the other hand, the concentration of Pb in runoff waters in recent years has shown a 

sharp decrease following the ban of tetra-ethyl lead (TEL), a petrol additive, due to 

health concerns (Legret and Pagotto, 1999). However, a few other studies after Legret 
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and Pagotto (1999), for example, still reported a reasonably high Pb emission from the 

road-traffic environment (e.g. Deletic and Orr, 2005; Napier et al., 2008; Ewen et al., 

2009). While Deletic and Orr (2005) pointed out that road paint (double yellow lines) is 

the probable source of this Pb, Napier et al. (2008) and Ewen et al. (2009) reported 

diesel fuel, car exhaust and brake pad erosion are also the likely sources. 

 

Table 2.3: Total heavy metals and PAHs estimate (tonnes) from passenger cars in the 

UK in 2003 (adapted from Napier et al., 2008) 

 
Metal Tyre erosion Brake erosion Oil losses Exhaust Total vehicular 

Cu 0.3 24 0.038 0.4 37.74 
Pb 1.0 1.5 0.02 1.1 3.62 
Zn 990 44 2.3 1 1037.30 
PAHs 21.7 - 320* 130 471.70 

* Value for all road vehicles 
 

The way these metals are transported to the receiving waters is highly variable and 

depends on the nature/type of the metal concerned, the prevailing hydrology, and the 

road surface characteristics. Cd, Cu and Zn are primarily found in soluble forms and are 

transported with the water, while Fe and Pb are mostly attached to sediment particles 

which, depending on the particle sizes, may be retained on the road surfaces (Sansalone 

et al., 1996; Kim and Sansalone, 2008; Helmreich et al., 2010). Runoff resulting from 

high intensity rainfall is likely to wash off all forms of the metals deposited on the road 

surface and may cause severe stress to the receiving water ecology. The fractionation of 

the metals into particulate and dissolved phases affects the impact of the runoff since 

their environmental mobility and bioavailability depends upon the aqueous 

concentration (Mungur et al., 1995). Soluble metals usually exert the greatest impact or 

toxicity to aquatic life (Clements, 2000). Clearly, this has implications for the 

development of control strategies to protect ecological communities. In contrast, 

Kayhanian et al. (2007) studied a wide range of 635 rainfall events during 2000 to 2003 

and reported that most of the metals in runoff were associated with the particulate phase 

rather than soluble forms. Based on their study, concentration of Pb was the highest 

proportion present in particulate (83%), while concentrations of Cd, Cr and Zn were 

found between 60% and 65% and Cu and Ni were between 50% and 55%.  
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Briefly, based on the above discussion, it can be noted that a significant variability 

exists between studies, which is why the need for site-specific data is extremely 

important. However, it can be reasonable to consider that more than half the proportion 

of metals may be effectively managed or removed by targeting the particulate fraction. 

A similar suggestion was also found from the study by Heal et al. (2006). 

 
The quantification of heavy metals in road sediment is found to be well documented in 

the literature covering different parts of the world, as few of these are collated and 

presented in Table 2.4. It has been seen that the heavy metal concentrations have been 

found to be highly variable and depend on a wide range of factors including location, 

sediment type, sediment collection method and metal extraction technique etc. It is also 

apparent from Table 2.4 that road sediment contains a significantly higher concentration 

of most of the metals than nearby soils (see, Paterson et al., 1996 and Deletic and Orr, 

2005). There are significant differences between studies (for example, Wilber and 

Hunter (1979) and Herngren et al. (2006), seen in Table 2.4) when viewed on a decadal 

basis, suggesting that changes have taken place due to changes in legislation to control 

road traffic pollution, such as, better road construction and maintenance practices, 

changes in vehicle manufacturing technology, banning of leaded fuel etc. (Napier et al., 

2008).  

 
The heavy metal concentrations in runoff and snow–melt samples from road surfaces 

are collated from a few previous studies, as seen in Table 2.5 along with some other 

pollutants. Clearly, for runoff studies (columns 2-10 in Table 2.5), there is a significant 

variability between previous studies, carried out in different countries, or even between 

different cities within the same country, which indicates the need for local data to select 

appropriate tools to control heavy metal pollution efficiently in the context of 

sustainable drainage systems at individual sites (Davis and Birch, 2010). Only two 

studies, from Sweden and Germany, are found for total heavy metals in snow-melt 

runoff and are presented in Table 2.5 (columns 11-12). Similar to runoff, snow studies 

are found to vary significantly. The variation in pollutant concentrations in snow is 

possibly linked to the nature of the winter weather in different regions and to the road-

traffic management practices. 
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Table 2.4: Ranges or mean concentrations of heavy metals in road deposited sediments in various cities around the world (mg kg-1 dry weight) 
 
Region Type of surface Method of collection  

(metal detection) 
Digestion Cd Cr Cu Fe  Ni Pb Zn References 

Aberdeen 
(Scotland) 

Paved residential Wet vacuuming (FAAS) HNO3 1.74  530 -  1900 1040 Deletic and Orr (2005) 

Aberdeen 
(Scotland) 

Roadside soil Soil coring (ICP-AES) HNO3, HCl  22.9 44.6 18116 15.9 172.9 113.2 Paterson et al. (1996) 

Kavalla 
(Greece) 

Paved urban Dry brushing (GF-AAS) HNO3 0.2 232.4 172.4 - 67.9 386.9 354.8 Christoforidis & 
Stamatis (2009) 
 Paved residential Dry brushing (GF-AAS) HNO3 0.1 110.4 76.0 - 48.9 120.8 198.9 

Urban roadside 
soil 

Soil coring (GF-AAS) HNO3 0.2 240.3 48.1 - 77.4 571.3 175.0 

Residential 
roadside soil 

Soil coring (GF-AAS) HNO3 0.1 167.7 28.1 - 31.0 105.2 79.1 

Lodi (New 
Zealand) 

Paved residential Dry street sweeping HNO3 - 43 80 - - 2110 460 Wilber and Hunter 
(1979) 

Paved industrial Dry street sweeping HNO3 - 1450 3170 - - 2520 2580 

Road junction Dry street sweeping HNO3 - 69 500 - - 8300 1100 

Gold coast 
(Australia) 

Paved residential Dry vacuuming (ICP-MS) HNO3 0.002 0.012 0.50 11.38 - 0.03 1.27 Herngren et al. (2006) 

Paved industrial Dry vacuuming (ICP-MS) HNO3 nd 0.044 0.70 32.10 - 0.70 1.70 

London 
(UK) 

Road surface Dry vacuuming (FAAS) HNO3 3.5 - 155 - - 1030 680 Schwar et al. (1988) 

London 
(UK) 

Road Dry vacuuming (FAAS) HNO3 0.1 - 50 - - 570 220 Beckwith et al. (1984) 

As above Dry vacuuming (FAAS) HNO3 0.9 - 50 - - 290 280 

Birmingham 
(UK) 

Road Dry street sweeping 
(Varian 1475 AAS) 

H2SO4, HNO3, 
HCl 

1.62 - 467 - 41 48 534 Charlesworth et al. 
(2003) 

Coventry 
(UK) 

Pelican crossing Dry street sweeping 
(Varian 1475 AAS) 

As above 0.9 - 226.4 - 129.7 47.1 385.7 

Manchester 
(UK) 

Road surface Dry street sweeping 
(FAAS) 

HNO3 - - 113 10125 - 265 653 Robertson et al. (2003) 

Lancaster 
(UK) 

Roundabout Dry vacuuming (FAAS) HNO3, HCl, 
HClO4 

8.6 56 76 - 76 1450 388 Harrison (1979) 
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Hawaii 
(USA) 

Road side soil Soil coring (ICP-AES) HNO3, HCl 0.5 436 162 - 260 313 439 Sutherland & Tolosa 
(2000) 

Marie 
(Canada) 

Road Dry vacuuming (ICP-AES) HCl - - 81 - - 141 393 Stone & Marsalek (1996) 

Glasgow 
(UK) 

Road Dry street sweeping 
(FAAS) 

HCl - - 32 - - 327 200 Gibson & Farmer (1984) 

Bratislava 
(Slovakia) 

Urban road Dry street sweeping (ICP-
AES) 

HNO3 0.4 21.3 170.7 12000 7.4 56.7 170.9 Krčmová et al. (2009) 

Madrid 
(Spain) 

Paved urban road Dry street sweeping (ICP-
MS) 

HNO3, HF, 
HClO4 

- - 188 - 44 1927 476 De Minguel et al. (1997) 

Aviles 
(Spain) 

Paved industrial  Dry street sweeping (ICP-
AES) 

HNO3, HF, 
HClO4 

22.3 42 183 - - 514 4829 Ordonez et al. (2003) 

Baoji 
(China) 

Road  Dry street sweeping (X-ray 
FS) 

na - - 123 - 49 408 715 Lu et al. (2009) 

Amman 
(Jordan) 

Urban road Dry street sweeping (ICP-
AES) 

HNO3, HCl 1.7 - 177 - 88 236 358 Al-Khashman (2007) 

Xian 
(China) 

Urban road Dry vacuuming (FAAS) HNO3, HCl, 
HClO4 

- 167 95 - - 231 421 Youngming et al. (2006) 

Shanghai 
(China) 

Urban road Dry street sweeping 
(FASS) 

HNO3, HF, 
HClO4 

0.97 264 257 - 66.5 236 753 Shi et al. (2010) 

Istanbul 
(Turkey) 

Urban road Dry street sweeping 
(FASS) 

HNO3 1-6.7 - 47-407 - 10-66 61-383 226-
1852 

Sezgin et al. (2003) 

Diff. sites 
(Bahrain) 

Road surface Dry street sweeping 
(FAAS) 

HNO3 72 144 - - 126 697 152 Akhter & Madany (1993) 

Kuala 
Lumpur 
(Malaysia) 

Urban road Dry street sweeping 
(FAAS) 

HNO3, HCl 3.0  - - - 2466 344 Ramlan & Badri (1989) 

Note: FAAs=Flame Atomic Absorption Spectrometry; ICP-AES=Inductively Coupled Plasma Atomic Emission Spectrometry; ICP-MS= Inductively Coupled Plasma Mass 
Spectrometry, FS= Fluorescent Spectrometry; GF-AAS=Graphite Furnace Atomic Absorption Spectrometry. 
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Table 2.5: Ranges of event mean concentrations of pollutants in road runoff from rainfall (columns 2 – 10) and in snow-melt runoff (columns 
11-12) around the world 

 

   Rainfall runoff Snow-melt runoff 

Constituent Driscoll et 
al. (1990) 
USA 

Barrett et 
al. (1998) 
USA 

Wu et al. 
(1998) 
USA 

Drapper et 
al. (2000) 
Australia 

Shinya et 
al. (2000) 
Japan 

DMRB 
(1998) 
UK 

WRc 
(2002) 
UK 

Crabtree et 
al. (2008) 
UK 

Others Westerlund 
et al. (2003) 
Sweden 

Helmreich et 
al. (2010) 
Germany 

AADT (vehicles/d) >30,000 33,465 17,300 <30,000 & 
>30,000 

75,000 >30,000 >30,000 5,000-
200,000 

 7400 57,000 

Total Suspended 
Solids, TSS (mg/l) 

12-135 19-129 14-215 60-1350 41-87 12-135 53-318 40-612 46a, 9b 228-551 10-1050 

Total Dissolved 
Solids, TDS (mg/l) 

  70-107         

Volatile Suspended 
Solids, VSS (mg/l) 

6-25 9-36    6-25      

pH  7.1-7.2          
COD (mg/l) 28-85 37-130 24-48   28-85 70-138 48-411 80b   
BOD (mg/l)  4-12     6.59     
TOC (mg/l) 4-17 46   11-55 3-17     5-195 

Oil and grease (mg/l)   2.7-27   1.1-3.3      
Metals (Total), µg/l            

Zn 35-185 24-222  150-1850 427-1191 35-185 53-322 34-903  83-1680 42-2500 
Cd   2.5  1-3  0.47   0.1-1.90  
Ni   2.5-9  2-9  5.81   6.3-177  
Cu 10-50 12-37 2.5-150 30-340 39-100 10-50 24-64 13-242  29-465 20-610 
Fe  249-2824   2.31-5.17       
Pb 24-272 3-53 6-15 80-620 17-39 24-272 4-45 0.46-114  8.5-168  
Cr   2.5-6.5  2-10       
Al     1394-

2727 
      

 Note: a Conventional pavement; Pagotto et al. (2000, AADT: 12,000); b Porous pavement highway; Pagotto et al. (2000, AADT: 12,000) 
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2.4.3 Polycyclic Aromatic Hydrocarbons (PAHs) 
 
It has now been established that storm water runoff from roads is a key source of 

hydrocarbon load to the environment (Gray and Becker, 2002).  Van Metre et al. (2000) 

showed that the combustion process drives the trend of PAHs in stormwater runoff. 

They observed that PAHs concentration increases with an increase in automobile use. 

However, Ngabe et al. (2000) demonstrated a close correlation of the chemical 

composition of PAHs in runoff with fuel, suggesting PAHs are products of the 

incomplete combustion of fuels.  

 

PAHs enter either directly from the air with dust and precipitation, or particles are 

washed from road surfaces by runoff. PAHs are slow to degrade in the environment, 

and sediment, in particular, are sinks where these chemicals tend to concentrate. The 

following 15 PAHs are considered as a group and are reported in road runoff studies: 

Acenaphthene, Acenaphthylene, Anthracene Benzo(a)anthracene, Benzo(a)pyrene, 

Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Fluoranthene, Fluorene, 

Indeno(1,2,3-cd) pyrene, 2-Methylnaphthalene, Naphthalene, Phenanthrene and Pyrene 

(Latimer et al. (1990) cited in Maltby et al. (1995). PAHs are of major concern because 

of their toxic nature, which is a potential threat to fresh water organisms. For example, 

Maltby et al. (1995) identified PAHs as the major toxicants in sediment contaminated 

with road runoff. Similar results were obtained by Datry et al. (2003) in France who 

found all 15 types of PAHs in sediment collected from stormwater detention basins, 

draining road runoff from major roads without any form of treatment. Moreover they 

also revealed that most of the hydrocarbons were associated with the particulate phase 

and were very rarely found in the dissolved phase. It can be concluded that targeting the 

removal of sediment from storm water runoff would have a direct impact on reducing 

environmental pollution from PAHs. A similar suggestion was also reported by Heal et 

al. (2006) and Napier et al. (2009) in their studies in the UK. 

 

2.4.4 Conventional Pollutants 

 

Road runoff contains significant loads of other pollutants such as suspended solids, 

dissolved solids, organic compounds and nutrients that can affect the quality of the 

aquatic environment. The total solid (TS) is defined as the material residue left in a 

vessel after evaporation of a sample and its subsequent drying in an oven at a defined 
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temperature (103oC-105oC). Total solids includes total suspended solids (TSS), the 

fraction of total solids that is retained on a filter of pore size 45 µm, and total dissolved 

solids, the portion that passes through the filter. Volatile suspended solids (VSS) consist 

of the organic fraction of TSS. Highway runoff studies typically report values for both 

TSS and VSS (APHA, 1998 and Irish et al., 1998). As seen for heavy metals 

concentrations of these pollutants show a wide variability between studies, see Table 

2.5. A few of these are discussed briefly in this section. 

 

2.4.4.1 Suspended Solids 
 

In an urban environment, the pollutants available on paved surfaces such as roads are 

mostly in particulate form. These particulate pollutants are commonly referred to as 

suspended solids. Rainfall is found to be the key driver to transport particulate matter to 

the nearby receiving waters. Suspended solids from roads, a part of total road sediment, 

serve as a sink or carrier for toxins, such as heavy metals and hydrocarbons. Solids 

therefore can affect aquatic life. For example, in addition to toxicity, water with higher 

concentration of solids retards photosynthesis due to loss of transparency (APHA, 

1998). 

 

The wash-off of solids by rainwater depends on rainfall volume and intensity, and also 

depends on the size of the particulate matter that varies from very fine to large. For 

example, finer particles remain in suspension for a longer time than coarser ones and, 

hence, are more likely to reach receiving water bodies (Dong et al., 1983). Andral et al. 

(1999) also note that satisfactory treatment for the finer particles that have a high 

potential to reach receiving waters would require a solids removal efficiency of 90%. 

Moreover, finer particles are not only actively available in water for a long time but also 

they are preferentially associated with pollutants commonly harmful for aquatic life, for 

example heavy metals and hydrocarbons.  

 

Relationships between pollutants and suspended solids are well understood from the 

literature. For example, Sartor et al. (1974) found a significantly higher percentage of 

nutrients and organic matter in the finer fraction (less than 43 µm) which only counted 

for 5.9% of the total mass of solids. The explanation of this is linked to finer particles 

having larger surface areas than larger ones and the presence of electrostatic charges. 
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Due to their importance fine particles get more attention from researchers on road 

runoff than coarse ones and play a significant role in designing best management 

practice in the field. Since the correlation of suspended solids to other pollutants is 

strong (Herngren et al., 2005), the use of suspended solids as a surrogate parameter to 

estimate other pollutants is common practice. Hence, the selection of suspended solids 

concentration as an indicator of stormwater quality has been advocated (Akan and 

Houghtalen, 2003).  

 

2.4.4.2 Organic Carbon & Others 

 

Organic carbon is very common in road runoff water and, if present in excessive 

amount, causes problems for aquatic life by significantly depleting dissolved oxygen 

(Warren et al., 2003). The organic content of road runoff is expressed by its biochemical 

oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon 

(TOC). BOD is the measure of the amount of oxygen consumed by microorganisms in 

decomposing organic matter in a water sample over a specified period of time, usually 

five days. BOD also measures the bio-chemical oxidation of inorganic matter taking 

place in the sample. Higher BOD values mean that there may be insufficient oxygen left 

for higher forms of aquatic life to survive. COD measures the oxygen required to 

completely oxidise all organic materials in a sample under thorough, hot and aggressive 

acid digestion. TOC is the measure of organic carbon in a sample. In many cases it is 

possible to correlate any two or three of BOD, COD and TOC (APHA, 1998).  

 

Gromarie-Mertz et al. (1999) found that urban road surfaces are an important source of 

large amounts of organic carbon, with levels depending on the number of antecedent dry 

days, occurrence of street cleaning or rainfall events and surrounding land uses. This is 

supported by a previous study by Sartor et al. (1974) who observed that organic matter 

accumulates on road surfaces much faster than inorganic matter. In addition Roger et al. 

(1998) found a high association of organic matter with the finer size fraction of road 

sediment, in particular for particle sizes less than 50 µm.  

 

Other parameters such as temperature, pH, dissolved oxygen content, and faecal 

coliform bacteria are reported in road runoff studies (Maltby et al., 1995; Barrett et al., 
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1998). These and the other parameters discussed above are also good indicators of likely 

water quality changes in receiving waters (Barrett et al., 1998).  

 

2.5 Factors Affecting Road Runoff Quality 

 

It can be speculated that the increased impervious surfaces, such as roads, driveways, 

car parks and building yards, will aid the accumulation of contaminants or potential 

pollutants on these surfaces by anthropogenic activities (e.g. traffic) along with human 

activities. Mostly these pollutants may be discharged directly to receiving water bodies, 

for example, lakes, streams or rivers etc. As discussed before, the levels of 

contamination are highly variable and site specific, and depend upon several factors, 

such as volume of traffic, design of road drainage, surrounding land use, and climate 

and local hydrology. Among a list of factors, traffic volume would seem to be an 

important factor for predicting runoff quality, as research studies found major roads 

carrying 30,000 vehicles daily produce runoff with two to five times the pollutant 

concentration levels compared to rural roads carrying 5000 vehicles daily, for example 

(CIRIA, 1994; Sansalone & Buchberger, 1997; Wu et al., 1998; Shinya et al., 2000). 

Fluxes of pollutants in highway runoff can be influenced by traffic conditions, traffic 

movement patterns, road condition, surrounding land use and weather (Folkeson, 1994; 

Barrett et al., 1995). Important precipitation and atmospheric characteristics that affect 

the quality of runoff include seasonal rainfall patterns, dry periods between rainfall 

events, rainfall intensity, rainfall duration and volume of runoff. A few of the above 

mentioned factors are discussed below. 

 

2.5.1 Traffic Volume 

 

Traffic volume is seen as the primary traffic related risk factor affecting contamination 

in road runoff. Usually traffic volume is measured as the annual average daily traffic 

(AADT) and several research studies in the past have classified roads according to the 

level of traffic, where commonly an AADT value more than 30,000 is classified as an 

urban road or highway and lower than this value is for rural or residential roads (CIRIA, 

1994; Sansalone & Buchberger, 1997; Wu et al., 1998; Shinya et al., 2000). The 

philosophy and attraction of such an approach are easy to understand. If pollutants, for 

example metals in stormwater, come from vehicles, the idea is that the more cars 
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travelling over the road, the greater the metal concentrations should be. For example, as 

presented in Table 2.6, event mean concentrations for a variety of pollutants at different 

traffic volumes demonstrated that highways with an average daily traffic (ADT) value 

more than 30,000  have 3-5 times higher pollutant concentration than highways with 

ADT value less than 30,000 (Driscoll et al., 1990). This is found consistent with first 4 

studies presented in Table 2.5. However, runoff pollutant data from around the world is 

rather inconsistent with the traffic volume and have revealed that the ADT or AADT-

pollutant concentration/load relationship is considerably more complicated than 

originally envisioned.  

 
Table 2.6: Typical event mean Concentration (EMC) for pollutants in highway runoff 

showing relationship with traffic volume [adapted from Driscoll et al. (1990)] 

 
Pollutant EMC for Highways with fewer 

than 30,000 vehicles/day (mg/l) 
EMC for Highways with more than 
30,000 vehicles/day (mg/l) 

Total Suspended Solids 41 142 
Volatile Suspended Solids 12 39 
Total Organic Carbon 8 25 
Chemical Oxygen Demand 49 114 
Nitrite and Nitrate 0.46 0.76 
Total Kjeldahl Nitrogen 0.87 1.83 
Phosphate phosphorous 0.16 0.400 
Copper 0.022 0.054 
Lead 0.080 0.400 
Zinc 0.080 0.329 

 

 
 
Figure 2.2: Correlation of TSS concentration to traffic volumes [Note single outlier, 

ignored in regression equation (adapted from Drapper et al. (2000)] 
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Figure 2.3: Correlation of acid-extractable zinc concentration to traffic volumes 

[adapted from Drapper et al. (2000)] 

 

Moreover, McKenzie and Irwin (1983) found that Zn concentrations were higher at a 

medium traffic flow site (50,000 AADT) than from either a low traffic flow site (4,000 

AADT) or a high traffic flow site (70,000 AADT) in a study of runoff from an urban 

highway in Florida, USA. They also noted that Cu concentrations at all three sites were 

comparable. Again these findings cast doubt on a simple relationship between ADT or 

AADT and pollutant loadings. A few more pieces of evidence to support this statement 

are also available. For example, Drapper et al. (2000) documented that in many of their 

study sites with AADT well below 30,000, the pollutant concentrations were as much as 

those from sites with higher AADT. Moreover, they found a poor correlation between 

chemical concentrations in road runoff and traffic volume (R2 = 0.377 for TSS, 0.243 

for Zinc), as seen in Figure 2.2 and 2.3. Although not presented, the strength of 

correlations for other pollutants and AADT are even smaller than 0.200. 

 

Somewhat similar findings were found from California Department of Transportation 

studies (Caltrans) (Kayhanian et al., 2003; Caltrans, 2003). Here no direct linear 

correlations between road runoff pollutants and AADT (ranging from 1,800 to 259,000) 

were identified. However, they found that AADT along with site specific attributes 

(such as, catchment characteristics, surrounding land uses) together can better explain 

most road runoff pollutants concentrations. 
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Similar evidence was given by Miller (2005) who concluded that pollutant 

concentrations in road runoff were not dependent on AADT alone though it was one of 

the key factors. He noted an overall increase in pollutant concentrations with an increase 

of AADT; however, no direct relationship could be made between two. Additionally 

Miller found an inverse relationship between metal concentrations and the age of the 

road surface. 

 

In addition, traffic congestion likely has a strong influence on the quality of road runoff. 

Congestion is a function of traffic movement and road capacity, and is influenced by 

road type, road lay out and traffic type. Compared with free flow conditions, a heavily 

congested section of road may generate a higher pollutant load because braking and 

acceleration are known to release greater levels of pollutants compared to steady motion 

(Hjortenkrans et al., 2006; Napier et al., 2008; Ewen et al., 2009). 

 

2.5.2 Sediment Particle Size and Water Quality 

  

As mentioned earlier, not all the sediment available from road surfaces is transported 

during wash-off events (Egodawatta et al., 2007). Whereas finer particles are easily 

carried by runoff, coarse ones are retained on the road surfaces and since not all particle 

size fractions are equally polluted, sediment particle size has a significant influence on 

runoff water quality. Briefly, smaller particles (clay and silt) contain high surface areas 

and negative charges in chemical composition, which give them a greater opportunity 

for absorbing more metals into their surface compared to larger particles (sand, grit) 

(Ellis and Hvitved-Jacobsen, 1996). Although several particle sizes (diameter) have 

been defined as a borderline to separate coarse and fine sediment, commonly a sediment 

diameter of 63 µm has been identified (Roger et al., 1998; Charlesworth and Lees, 

1999; Ellis, 2000; Sutherland, 2003; Zhu et al., 2008; Opher and Friedler, 2010). 

However, other classifications to separate fine and coarse particulates have also been 

recommended, e.g. Furumai et al. (2001) and Murakami et al. (2004) used 45 µm as a 

boundary, while Kim and Sansalone (2008) used 75 µm in keeping with conventions 

separating fine and coarse particulates specified in ASTM (2002). Furthermore, a few 

researchers divided sediment < 63 µm into several sizes up to as small as for example < 

2 µm, and found that the smallest sizes contain even higher metal concentration than the 
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63 µm sediment size (Greb and Bannerman, 1997; Deletic and Orr, 2005; Sansalone and 

Buchberger, 1997).  

 

Contrary to the above findings, a few other studies, for example, Stone and Marsalek 

(1996) and Heal et al. (2006) found that a greater amount of heavy metals and PAHs 

loads was associated with coarser sediment. Furthermore Marsalek (1996) found that 

pollutant concentrations between coarse and fine sediment size fractions were very 

similar. The consequences of high pollutant loads being associated with coarser 

sediment imply that road drainage systems should be designed not only to capture finer 

sediment but also to retain coarser sediment.  

 

2.5.3 Storm Characteristics 

 

Storms are the key driver of pollutant wash-off from road surfaces and are strongly 

associated with the potential impact or consequences. Storms can be described using 

several characteristics such as intensity of rainfall, duration of total storm and number of 

dry days preceding the event.  Correlations between concentrations of pollutants in 

runoff induced by rainfall and these factors have been reported in various studies 

elsewhere (e.g. Brezonik and Stadelmann, 2002; Kayhnian et. al., 2002). Storm 

intensity has been revealed as the most important of these as many pollutants are 

attached to particulates. As mentioned previously, the more intense the storm (the more 

the kinetic energy), the greater the movement of particulate matter and so pollutants 

(Patel and Atkins, 2005; Kayhanian et al., 2007; Gan et al., 2008; Zhu et al., 2008; 

Soonthornnonda and Christensen, 2008).  

 

2.5.4 Road Type and Surrounding land use 

 

The effect of road paving material (e.g. conventional impervious type such as concrete 

and tarmac versus pervious type such as porous asphalt and paving blocks) on the 

quality of highway runoff has not been studied in much detail. Rob et al. (1999) and 

Pagotto et al. (2000) demonstrated that porous pavements improved the water quality 

slightly for the main pollutants in runoff water (such as Cu, Pb, Zn, solids and 

hydrocarbons) from Dutch and French motorways. Moreover, it is generally believed 

that road surface type is relatively unimportant compared to such factors such as 
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whether the road is in a rural or urban location (Göbel et al., 2007). It has also been 

reported that the type of collection and drainage system, type of curbs and age of the 

road has a greater effect on runoff quality than road surface type (Wu et al., 1998). Road 

terrain (hills and bends) has a marked effect on contaminant loading. For example, 

Kennedy et al. (2002) quote tyre wear rates that vary from 100% on straight and level 

roads (representing full tyre life) to 76% on slightly hilly and curvy roads, and to 50% 

on hilly and curvy roads. Thus, compared with level straight sections, roads in more 

hilly terrain with a larger number of tight bends result in greater tyre wear, which causes 

increased zinc emission. Also the greater amount of braking required causes increased 

copper emission. Similar ideas were also reported by Ewen et al. (2009). On the 

contrary, Hjortenkrans et al. (2006) found no significant influence on elevated metal 

concentrations at road intersections, where more frequent braking is likely to occur in 

their study in Sweden. Therefore, it can be summarised that the effect of road type or 

traffic movement patterns (conditioned by road lay-out) on pollutant emission patterns 

are not well understood, though such information would be important in order to 

evaluate best management practice options for local road drainage: Clearly this needs 

further research. 

 

However, land used nearby roads seems have a great impact on the characteristics of the 

stormwater runoff (Goonetilleke et al., 2005). Furthermore, specialised land uses such 

as commercial and industrial areas, agricultural property, marine environment and 

airports may contribute additional pollutant loading (Goonetilleke et al., 2009). Göbel et 

al (2007) also suggested that in-depth studies for these special land uses are needed. 

 

2.5.5 Road Drainage Structures  

 

The type of road drainage infrastructure (curb, channel, gutters, and catch pit) plays a 

key role in controlling the contaminant load in runoff leaving the road, and therefore in 

controlling the risk to downstream receiving environments (Sansalone et al, 1998). 

Evaluating the source strength in terms of contaminant load needs to take account of 

road drainage systems, in order to determine the actual load entering the receiving 

environment. For example, curb and channel drainage systems collect high volumes of 

runoff and finally discharge via point sources, thereby having potentially intense but 

local impacts on the receiving environment (Li and Barrett, 2008). On the other hand, 
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although a significant proportion of rural roads have no storm water collection system, 

with the result that runoff is more spatially diffuse and because the pollutant load is 

distributed over a large area, the impact on nearby water bodies is unlikely higher than 

urban roads with conventional drainage systems. Therefore, road drainage systems have 

significant impacts on runoff water quality and need to be considered in studies on road 

runoff (Li and Barrett, 2008). 

 

2.6 Assessing Road Sediment Contamination 

 

Adverse effects of road runoff polluted by heavy metals and PAHs (Wilson et al., 2005) 

contamination on receiving waters (particularly on freshwater macroinvertebrates, 

aquatic species and fish species) are well documented (Clements et al., 2000; Beasley 

and Kneale, 2004). All of these studies reported that streambed sediments accumulated 

toxic pollutants among which heavy metals and PAHs are very common when runoff is 

associated with vehicle traffic, pavements, roofs, guttering and industry. These 

pollutants are believed to be persistent and often exert a wide-reaching stress on the 

freshwater ecosystem leading to the impairment of tolerant species and disappearance of 

sensitive macroinvertebrates.  

 

To deal with potential contamination associated with urban runoff, numerous guideline 

values for priority pollutants (e.g. toxic metals and PAHs) have been set to improve and 

maintain a better quality of effluent prior to discharge to nearby water environments 

(Wilson et al., 2005; Gasperi et al., 2009). The standard values are set to protect 

freshwater ecosystems and are available for dissolved pollutants and particulate 

pollutants (Wilson et al., 2005). Note that at present in the UK only environmental 

quality standards (EQS) for dissolved metals are available from the Environment 

Agency (EA, 2003), and no such standard is adopted for particle bound heavy metals. 

However, sediment quality guidelines (SQG) suggested by the Canadian Council of 

Ministers of the Environment (CCME, 2007), and Flemish SQG (de Deckere et al., 

2011) are relatively newly available and can be used to monitor hazard assessment 

relating to sediment quality. However, it has been found that two sets of trigger values 

from those guidelines are rather inconsistent. A point to be noted is that all these 

guideline values were derived for fluvial sediment with the aim of protecting fresh 

water ecosystems, as stated earlier. However, in the absence of particular guidelines for 
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road sediment, these alternatives can be used to gain an impression of how hazardous 

the road sediment could be in relation to ecological aspects, as evident from previous 

use in literature (e.g. Heal et al., 2006; Shi et al., 2010). 

 

Transforming heavy metal concentration levels into a single pollution index value is 

often preferred (rather than using several trigger concentration values) to derive better 

understanding and decision making tools in environmental pollution research. A variety 

of pollution indices for sediment associated heavy metals have been proposed to 

quantify the level of pollution and associated impacts on aquatic life (e.g. Yu et al., 

2003; Huang et al., 2009). However, the degree of contamination and potential 

ecological risk indices proposed by Hakanson (1980) have been found to be the best 

tools for assessing metal pollution in more holistic way. These indices were derived for 

natural sediment in fresh and/or marine/estuarine waters rather than road runoff. 

However, their robustness makes them suitable for road sediment (even in the absence 

of ecological data) to obtain an impression of the ecological risk, as evident from the 

previous studies in the literature elsewhere (e.g. Huang et al., 2009; Shi et al., 2010; 

Duong and Lee, 2011). However, a point to be noted is that the results obtained using 

these methods may not be sufficient enough to quantify actual ecological risk posed by 

road sediment without other relevant data and information, such as the type of aquatic 

species considered, exposure time with contaminated sediment, appropriate dilution 

factors, metal releasing mechanisms from sediment depending upon sediment-water 

chemistry, etc. (e.g. Kayhanian et al., 2008; de Deckere et al., 2011).   

 

2.7 Road Drainage - Water Quality Perspective 

 

Based on the literature, it is clear that although roads account for only a small portion of 

urban land use, they generate a considerable amount of runoff during rainfall, as road 

surfaces are commonly impervious in nature (Ball et al., 1998). It has also been revealed 

that road runoff transports a wide range of pollutants that are potentially harmful to the 

aquatic environment if discharged to nearby waters without any form of treatment. As 

seen in Figure 2.3, before 1975, traditionally urban drainage was focused on controlling 

the quantity of water with the aim of avoiding flooding while overlooking water quality 

aspects. This was done by routing surface runoff through underground pipe systems to 

either a treatment plant or to a discharge site on a water body. However, the 
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consequences of urban stormwater discharges for water bodies, in particular for aquatic 

life, came under consideration in the early 1980s. Water quality became an increasing 

issue in the management of stormwater drainage by the mid 1990s. The aim now was to 

control flooding and to ensure that surface runoff did not degrade the water quality of 

receiving waters.  

 

However, in last two or three decades rapid urbanisation sees a range of infrastructures 

to develop and a figure is set to increase indeed. Consequently, the urban environment 

is becoming heavily modified and stressed with even more pollution with a wide range 

of pollutants (some are new, for example, in the road traffic environment after the recent 

innovations in both car industry and the composition of fuel), as reported by Legret and 

Pagotto (1999), Hjortenkrans et al. (2006) and Krčmová et al. (2009). Following on the 

EU WFD (2000/60/EC) formulated a guideline which requires EU countries including 

the UK to control diffuse sources of priority pollutants with the goal of protecting water 

bodies including groundwater (Legret and Pagotto, 1999; Napier et al., 2008). The EU 

WFD documents added the urban amenity value along with quantity and quality.  

 

Within this context, various sustainable urban drainage systems (SUDS) have been 

proposed and developed over the last 15 years. These incorporate three key issues of 

urban drainage in the so-called SUDS triangle, namely, quantity, quality and amenity 

(Figure 2.4). Recently, using SUDS to deal with surface water discharges to water 

bodies has been enforced in law in Scotland under the ‘Water environment (controlled 

activities) (Scotland) Regulation 2011’ for all new development (Scotland Northern 

Ireland Forum for Environmental Research (SNIFFER), 2008).  

 

Briefly, SUDS are drainage systems designed to tackle water quantity (control flood 

risk), to address water quality (to protect ecological status), and to restore urban amenity 

and biodiversity. To deal with water quality and amenity issues, several generic 

treatment options have also been identified, as seen in Figure 2.5. The concept of a 

treatment train starts with source control, then site control and finally regional control 

with the aim of capturing stormwater and associated pollutants at sources or sites, 

leaving moderately clean water to flow to a regional control where amenity and bio-

diversity issues are catered for. The treatment train is a useful concept to attenuate 

flows, improve water quality and manage runoff close to its source (Ellis, 2000; 
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SNIFFER, 2008; Heal et al., 2009). Treatment in SUDS tools has focused primarily to 

retain water sediment and then allow sediment to undergo natural bio-chemical activity 

over the residence time in improving water and sediment quality. 

 

 
 
Figure 2.4: Changing concept of road drainage design over the time frame in the UK 
 
 

 
 
Figure 2.5: Conceptual diagram of sustainable urban drainage systems (SUDS) 
treatment train showing source, site and regional control (adapted from SUDS for Roads 
Manual)  
 

Within the context of SUDS for roads, a number of different SUDS tools are available, 

for replacing or modifying conventional road drainage to address water quantity, quality 
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and urban amenity issues, as a long-term robust option for urban pollution management. 

For example, filter drains, swales and permeable paving as source and site control 

measures, together with retention and detention ponds or wetlands as regional controls. 

However, source or site controls are often being preferred (SNIFFER, 2008). 

 

A few studies are available in the UK on the performance of an individual SUDS tool or 

use various tools as a unit called SUDS treatment trains. For example, Heal et al. (2009) 

reported that SUDS treatment trains performed better than a single SUDS tool for 

pollutant removal efficiency based on the monitoring of four SUDS treatment trains at 

the Hopwood Park Motorway Service Area in Central England. Napier (2009) reported 

the importance of soil-based SUDS, for example, swales or infiltration, for controlling 

traffic-related pollutants. A few other studies conducted elsewhere have focused on 

treating contaminated road runoff at their sources. For example, Zhu et al. (2003) found 

that incorporation of a peat filtration layer in a road gully decreased Zn concentration 

significantly in their study in Tennessee, USA, while Lau et al. (2000) showed that 

insertion of a bio-filter in road drains removed over 85% of dissolved Pb and Zn from 

road runoff waters. However, for source or site controls, it is necessary to identify the 

priority locations (with data for pollutants) along the road network. It is therefore useful 

to have such information on pollutant concentrations handy that may inform road 

drainage designs and maintenance in the context of SUDS for roads. 

 

2.8 Conclusions 

 

Based on the current state of knowledge of urban diffuse pollution with respect to the 

road-traffic environment in the literature, the following conclusions can be drawn. 

 

The focus on water quality issues associated with road runoff from the road network in 

a suburban area is relatively new, but a substantial amount of research has been 

undertaken to understand the fundamentals of the water quality issues. It is understood 

that urban pollution control and mitigation now needs to be more focused on diffuse 

source rather than point source pollution. It is recognised that a wide range of 

anthropogenic activities in urban areas generate a wide variety of pollutants and act as 

diffuse sources. Moreover, an increased area of impervious surfaces due to urbanisation 

generates a greater flux of pollutants to receiving waters.  
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Significant research has been carried out on pollutant build-up and wash-off processes, 

which are regarded as key mechanisms in urban water quality research. However, due to 

variability of pollutant build-up and wash-off processes, outcomes for most of this 

research are rather site-specific and often fail to fit into a general urban pollution 

framework. Moreover, significant variability is found between pollutant build-up and 

wash-off data between studies in different geographical regions and even between 

studies in the same region. Consequently, numerous predictive models have been 

developed so far for characterisation of urban stormwater quantity and quality. 

Although models for runoff volumes and flows are well developed, models for water 

quality are not reliable. For example, using default parameters embedded in available 

modelling tools may not always produce satisfactory results. Therefore, the information 

on the pollutant build-up and wash-off processes available in the literature may not be 

applicable for all cases, and thus needs for local data are emphasised. 

 

The primary pollutants identified in stormwater are commonly referred to as 

conventional pollutants (TSS, TDS, VSS, OC, nutrients etc.), heavy metals and PAHs. 

Among which heavy metals are most ubiquitous and are regarded as hazardous to 

human and aquatic life. In addition, heavy metals are often adsorbed to the particulate 

matter derived from the anthropogenic activities (e.g. traffic) on road surfaces, and their 

concentration are found to vary with different sediment particle sizes, which is an 

important issue for the transport and fate of pollutants associated with road deposited 

sediment by natural wash-off events (rain or snow).  

 

The sources and pathways of pollutants commonly found on urban catchment surfaces 

have been well documented in the literature. Among the various pollutant sources, the 

road traffic environment has been identified as the largest contributor to the pollutant 

load, although roads account for only a small percentage of urban land uses. The 

pollutant loading from the road traffic environment is highly variable, being influenced 

by several factors, among which different road lay-out, type of traffic movement 

patterns, traffic load, road surface condition, presence of road paints, surrounding land 

uses and atmospheric deposition are likely as key. Furthermore, the pollutant 

concentrations are also found to be influenced by different environmental conditions 

and are varied with road sediment derived during dry and wet weather (runoff and 
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snow) periods. On the other hand, other urban pervious and impervious surfaces 

together with specialised areas (industrial and commercial sites) are found to be 

dominant sources of pollutants under certain conditions. 

 

The knowledge of site-specific factors regarding pollutant emissions patterns (and 

associated contamination levels) from the road traffic environment is identified as a 

relatively new field of research. However, such information is deemed important for the 

design of road drainage in the context of sustainable urban drainage systems for roads in 

order to comply with the objectives of the EU WFD. Although a few of these studies 

exist in the literature, these are not particularly focused, and is difficult to transfer the 

results to other sites and to some extent the data is now out of date because it may not 

reflect recent changes to legislation (e.g. unleaded fuel use) and developments in vehicle 

design (e.g. catalytic convertors).  
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Chapter 3 – Materials and Methods 
 
3.1 Introduction 

 

The necessity for an in-depth investigation of pollutant processes, such as pollution 

build-up pattern, transformation and transportation, in stormwater quality research has 

been identified in Chapter 2. It has also been revealed that the techniques used to collect 

data in different studies, as reported in the literature, are highly variable. For example, a 

wide range of methods from street sweeping to vacuuming has been used to collect dry 

sediment from a catchment. The simplest street sweeping method is well documented in 

Kim et al. (1998), Charlesworth et al. (2003) and Robertson and Taylor (2007).  

However, street sweeping methods, although easy to use, may be biased against the 

collection of finer particles, as noted by Vaze and Chiew (2002) and Deletic and Orr 

(2005). As a result, Vaze and Chiew (2002) used dry vacuuming methods, while Deletic 

and Orr (2005) introduced a wet vacuuming technique with the aim of collecting dry 

sediment efficiently. Similarly, studies of pollutant wash-off during rainfall and snow 

precipitation also exhibit variability in concepts, scale, purposes of the study and 

apparatus used. For example, Sartor et al. (1974) used simulated rainfall for wash-off 

studies from roads, Vaze and Chiew (2002) sampled sediment before and after runoff 

during natural rainfall events and Crabtree et al. (2008) used automated water samplers 

at catchment outlets during rainfall.  

 

It is therefore clear that a wide range of techniques is available to conduct investigations 

into stormwater quality research. Each investigation technique has its advantages and 

disadvantages, and the most appropriate method can be selected by rating them 

according to preferences, suitability and scope of the study at specific locations. 

Although the techniques differ, they are all scientifically recognised and verified for use 

in specific research environments. In this regard, this study developed field 

investigation methods to obtain local data from the road network in the study area over 

a period of 12 months. Sites were selected on the road network with the aim of 

capturing emission patterns of heavy metals and associated pollution that in turn 

enabled further information to be derived (Vaze and Chiew, 2002). Due to the absence 

of any previous water quality data from the road-traffic environment in the study area, it 

was intended to use simple approaches for the investigations, so that future work could 
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be undertaken in a consistent manner. The apparatus for the field investigations of road 

sediment during dry, wet weather and snow periods were selected based on the 

resources available and the ease of their use considering health and safety requirements 

for work on roads. In addition, it was made sure that the selected methods and apparatus 

were reliable for their designated use.  

 

3.2 Study Area and Sampling Sites 

 
Edinburgh, a city in the southeast of Scotland, lies on the east coast of Scotland’s 
central belt, alongside the Firth of Forth, as seen in Figure 3.1. 
 

 

Figure 3.1: Location of the study area on Google map (UK map showing Edinburgh, 

Edinburgh City map showing Riccarton Campus road network at Heriot Watt 

University). 
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It has a temperate maritime climate (moderate summer and mild winter), the annual 

average temperature range is about 0.9 – 12.2 0C (1971-2000) and the annual average 

precipitation is about 668 mm (1971-2000) distributed evenly throughout the year (see 

Figures A4 and A5 in appendix). Heriot Watt University’s Riccarton Campus (latitude: 

55.910 N and longitude: -3.310 E) is located southwest of Edinburgh city (Figure 3.1) 

and has been developed during the last 40 years with good ecological and 

environmental perspectives. Continuing its successful progress as a provider of quality 

education, it is expanding with many infrastructure developments. Because it has been 

observed that road runoff goes directly or indirectly into the Murray Burn (see Figure 

3.2 and 3.3), which is a small stream running across the campus, there is a risk of it 

being contaminated by traffic related pollutants. No previous research has been carried 

out on the pollution potential of the campus roads.  

 

 

 

Figure 3.2: Additional flow to the Murray Burn stream through Campus drainage 

systems during rainfall events. 
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Figure 3.3: Surface overflow from Car Park A to Murray Burn during rainfall events. 

 

12 different sites were selected on the Riccarton Campus road network to represent 

typical road lay-outs, as seen in Figure 3.4. The sites comprise straight sections of road, 

roundabouts, a road bend, a road with speed control measures (speed bumps), a road 

intersection, bus stops and a car park. The sites were selected after careful consideration 

of the aims of the field investigations, the health and safety of personnel involved in 

field sampling and other road users, and the quick collection and transportation samples 

from the field to the laboratory. Road sediment was collected from these sampling 

locations during dry periods between 1 to 20 days long between a rainfall and any 

mechanical cleansing events. However, 4 of the 12 sampling sites were further selected, 

based on the study objectives, for long term monitoring (over the year) of road sediment 

during dry and wet weather (rainfall and snow precipitation). These four sites were a 

road bend (Site 3: RB), a section of road with active speed control measures (Site 6: 

RSC), a road intersection (Site 8: RI) and a straight road section (Site 9: SR). The road 

surface condition of these four sites can be defined as good except for the Site 6 at 

which increased degradation of road surface materials and paints was observed. In 

addition, four other sites were selected on roads which carry no traffic, for measuring 
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local background values for heavy metals. These sites were located no less than 200 m 

north-west of Site 3 to avoid any significant influence from other sampling sites. 

Figure 3.4: Sampling locations on Riccarton Campus road network at Heriot Watt 
University, Scotland (adapted from Google map). 

 
Double yellow lines are painted along the edge of the road for most of the 12 sites and 

additional white markings are found at a pedestrian crossing area at Site 6 and for the 

stop lines at Sites 5, 8 and 11 (see Appendix A). It should also be noted that Sites 8 and 

9 are very close to an entry and exit point of the campus. Based on the traffic movement 

pattern at the sites during the sampling period, primarily two types of ‘stop-start’ 

activities are found. Firstly, at a few sites, Sites 3, 5, 6 and 11, almost all traffic was 

observed to undergo braking as it passed through. Secondly, at a few other sites, Sites 1, 

8 and 10, the traffic movement pattern was found to be more controlled in terms of ‘stop 

and start’ activities and therefore, a lesser degree of braking occurred than at the 

previous type. At all other sites except Site 12, the traffic movement pattern was 

consistent with a steady speed.  

 

The roads are used by a variety of personal and commercial vehicles and some are parts 

of bus routes. Each of the sampling sites has 2 lanes of traffic with an asphalt road 
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surface, with low traffic densities ranging from 200 to 650 vehicles per hour during 

working days mainly, as measured during the sampling period. The surrounding land 

area is devoted to campus buildings, some farm land, foot paths and pavements. 

Mechanical street-sweeping and gully cleaning occur typically twice a year on the 

campus by the local council.  

 

Table 3.1: Site details on Riccarton Campus road network, Heriot Watt University, 
Edinburgh 
 

Site 
No. 

Site 
description 

Painted lines Road 
condition 

Road furniture 
near sampling 
points 

Traffic flow 
type passing 
sampling 
points 

Traffic 
load 
(vph) 

Surrounding 
areas near 
sampling points 

1 Roundabout 
(G-4) 

White/Red Good Lamp post/ 
signs/ gully  

Stop-start 200 AA, CP, OB, FP 

2 Straight 
Road  
(G-4) 

Yellow Good None Steady speed 200 AA, FPS 

3 Road Bend 
(RB) 

Yellow Good Gully/lamp post Braking 200 AA, FPS 

4 Straight 
Road (RAN) 

Yellow Good Lamp post/signs Steady speed 200 OB, FPS 

5 Bus Stop 
(RAN) 

Red/ 
blue/yellow 

Good Bus shelters/ 
sign post 

Stop-start 230 OB, CP, FP 

6 Road with 
speed 
controls 
(RSC) 

White/ 
yellow 

Poor Lamp post/ 
signs/ pedestrian 
crossing with 
barriers 

Braking 250 OB, CP, FPS 

7 Straight 
Road (RP) 

Yellow Good Sign post Steady speed 265 OB, CP, FPS 

8 Road 
Intersection 
(RI) 

White/ 
yellow 

Fair Traffic lights/ 
gully 

Stop-start 285 OB, MR. FP 

9 Straight 
Road  
(Avenue) 
(SR) 

Yellow Good Sign 
posts/barriers 

Steady speed 650 CP, MR, FP 

10 Roundabout 
(Avenue) 

White Good Road barriers/ 
sign post 

Stop-start 650 OB, FPS 

11 Bus stop 
(Avenue) 

Red/ 
blue/yellow 

Good Sign post Stop-start 550 SH, OB, FP 

12 Car Park White Fair Lamp post Stop-start -- -- 
G = Gait No., RAN= Research Avenue North, RP = Research Park, vph = vehicle per hour, AA = 

Agricultural area, CP = Car park, OB = Office buildings, FP = Foot path, FPS= Foot path separated by 

grass strips, MR = nearby main roads linked with campus roads, SH =Student halls. 

 

The approximate roadway width is 6 m with 2 lanes of traffic and, the speed limit is 20 

mph. The age of the campus road varied between 5 to 10 years (personal 
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communication with Estate Office, Heriot Watt University, Edinburgh). The typical 

road drainage pattern for campus road is found with conventional gutter and gully pot 

along the curb with 10 m spacing between them on both lanes. Therefore, it is assumed 

that 10 m × 3 m area of road draining to a road gully. However, from monitoring the 

sites, at no time during the study period was there any evidence of significant removal 

of road sediments by this process. The details of the sites are presented in Table 3.1. In 

addition, a photograph of each site is presented in Appendix A. 

 

3.3 Field Sampling 

 

3.3.1 Sampling Road Deposited Sediment (RDS) 

 

A number of different methodologies have been used to sample road deposited sediment 

in earlier studies on sediment build-up with each technique having its own individual 

advantages and disadvantages. The most commonly used techniques are dry street 

sweeping using a brush and dustpan (see Kim et al. 1998; Charlesworth et al. 2003; 

Robertson and Taylor, 2007) and road dust collection using a portable vacuum cleaner 

with a view scope (see Grottker, 1987; Ball et al. 1998; Deletic and Orr, 2005; 

Goonnetilleke et al. 2009). For ease of use, and noting the characteristics of the 

sediment to be sampled, the dry street sweeping method using a brush and dustpan was 

used in this study, although it may be biased against the collection of the finer particle 

size fractions due to disturbance and mobilisation of fine sediment induced by road 

sweeping instrument. Previously published work reveals that a primary variable of any 

investigation of pollutant build-up is the number of antecedent dry days. Although 

several studies looking into this aspect exist, for example Sartor et al. (1974) and Ball et 

al. (1998), it is not clear what the optimum duration is of undertaking a pollutant build-

up investigation. Based on these previous studies and knowledge of weather patterns in 

Edinburgh, it was decided to carry out the RDS build-up investigation over 14 days in 

April 2010 for this present study. The antecedent dry days considered were 1, 2, 3, 5, 7, 

9 and 14 days.  

 

Site inspection suggested that RDS particles originate primarily from vehicles, the road 

surface, atmospheric deposition and the surrounding land. Sampling plots comprising a 

1 m2 road surface area, near the curb and 1 m away from the curb, were initially cleaned 
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by repeated sweeping using brushes. However, RDS from a second position (1 m away 

from the curb) was collected at Sites 3, 6, 8 and 9 only to characterise the transverse 

variability of pollutant emissions on roads, as transverse gradient of pollutant 

concentration was found to occur across the road width discussed in section 2.3.1. For 

RDS build-up investigation study (results presented in Chapter 4) there were 7 × 1 m2 

plots for both sampling positions all within the same 10 m × 3 m area of road draining 

to a road gully, as mentioned earlier. The RDS samples were collected at the end of 

each antecedent dry period by sweeping the plots using a clean plastic dustpan and 

brush as outlined by Kim et al. (1998), Charlesworth et al. (2003) and Robertson and 

Taylor (2007). Several identical dustpan and plastic brushes were used in order to 

minimise cross contamination between the sites. The sweeping technique was also kept 

consistent to avoid sample variability. During sampling, care was also taken to 

minimize sweeping pressure so that (artificial) detachment of road particles could be 

avoided. Each plot was swept 3 times to maximise sample collection efficiency, and for 

which approximate time spent was 10 to 15 minutes. Samples were then transported 

back to the laboratory using self-sealing plastic bags to avoid contamination.  

 

3.3.2 Sampling Wet Weather Sediment  

 

Road runoff during storm events was collected from four monitoring sites, Sites 3, 6, 8 

and 9. Runoff samples were collected from 12 different rainfall events between May 

2010 and April 2011. 

 

3.3.2.1 Storm event characteristics 

 
The  focus was one of capturing data to explore monthly and seasonal variations and to 

cover a wide range of hydrological aspects, such as, low intensity long duration rainfall 

and vice versa. A range of antecedent dry periods from 15 hours to 20 days was also 

encountered. The details of the hydrological events monitored are summarised in Table 

3.2.  Data for the rain events were collected using a tipping bucket gauge which was 

installed on a building roof (for another research project) and located approximately 

1000 m from the runoff sampling sites. The tipping bucket measures the time required 

to produce a single tip (0.254 mm of rainfall) and corresponding data were stored in an 

attached data logger, which was connected telemetrically with an office computer. 



49 
 

Although data collection took place without going to the rain gauge, the rain gauge site 

was visited regularly, and more often after any significant rain event, to ensure its 

efficient operation. Recorded data were then collated to determine rainfall duration, 

total precipitation and the number of antecedent dry days since the last event. Average 

rainfall intensity was calculated as total precipitation divided by the total duration of the 

storm event, while the number of antecedent dry days was based on the days since the 

last event with a minimum of 2.5 mm of precipitation (Brezonik and Stadelmann, 

2002). 

 

Table 3.2: Summary of the rain events monitored at the study sites. 
 

Event date Storm 
duration (h) 

Precipitation 
(mm) 

Average 
intensity 
(mm/h) 

Peak 
intensity 
(mm/h) 

Antecedent 
dry days 
(days)1 

Runoff 
volume 
collected (l) 

26/5/ 2010 1.70 19.30 11.35 37 2 3.75 
01/7/ 2010 6.25 8.20 1.31 25 20 > 4 
04/7/2010 1.83 26.60 14.50 43 2 3.95 
14/7/2010 10.87 74.00 6.81 30 3 > 4 
01/8/2010 1.23 13.52 10.96 33 10 3.80 
12/8/2010 1.06 4.31 4.05 19 2 3.00 
21/8/2010 1.42 14.42 10.18 41 1 3.50 
07/9/2010 2.88 10.52 3.65 12 13 > 4 
11/9/2010 2.23 17.44 7.64 40 1 > 4 
20/11/2010 8.75 23.63 2.70 14 7.5 > 4 
12/3/2011 5.75 37.49 6.52 24 2.5 > 4 
23/4/2011 1.55 15.27 9.85 32 6 > 4 
Statistics for the rainfall events     
Mean 3.79 22.05 7.46 27.4 5.73  
Median 2.03 16.35 7.23 31.00 2.75  
SD2 3.31 18.60 4.02 12.57 5.99  
CV3 0.87 0.84 0.54 0.46 1.04  

1days since last event with precipitation ≥ 2.5mm (Brezonik and Stadelmann, 2002) 
2 SD, standard deviation of all 12 rainfall event 
3 CV, coefficient of variance 
 

3.3.2.2 Road-runoff collection 
 

Each sampling site has road gullies to collect road runoff from the road surface during 

rainfall periods. Preliminary investigation suggested that each gully drains an 

approximately 30 m2 road surface area, as noted before. The gullies at the experimental 

sites were modified to intercept stormwater inflow during runoff events. A trapezoidal 

shape plastic catch tray was designed to guide the road runoff as it left the road surface, 

to be collected in a 5 l bucket hanging inside the existing gully pot as seen in Figure 3.5. 

A hole at the 4 l mark was made to avoid flooding of the road surface caused by 

overflow during extreme rainfall events. 
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Figure 3.5: Schematic diagram and photographs of the experimental set-up used for 
runoff collection at sites with road gullies. 
 

As seen in Table 3.2, runoff volume more than 4 l was experienced in 7 of the 12 

rainfall events. Collection of 4 l runoff was limited by the experimental set-up adopted 

for this study. In such cases metal concentrations for dissolved and particulate phases, 

particularly for the finer sediment, may be underestimated due to loss of runoff sample 

as overflow. However, it may not be inappropriate to explain the pollutant loads 

associated with runoff samples based on the study by Stenstrom and Kayhnian (2005). 

They found that collection and treatment of the early phase of runoff (e.g. 1/3 of total 

runoff volume) is adequate for pollution control in terms of time, cost and practicality 

compared to monitoring entire rainfall-runoff events, which can be expensive and 

impractical.  

 

Subsequently, a few field trials of the experimental set-up using manually induced 

runoff were conducted prior to the collection of natural runoff events and tested. Results 
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of sediment particle size distributions from these trial experiments confirmed that a 

reasonable amount of sediment size fraction below 63 µm would be captured even in 

excessive storm events, which would well serve the present aims of the study. In 

addition, different set-ups were evaluated to optimise the runoff collection while 

avoiding leakage, and designs were modified accordingly. The gap between bucket and 

gully pot grid (see Figure 3.5) was sealed using water tight teflon tape. However, 

complete control of leakage could not be met in some circumstances.  

 

Nonetheless, this simple approach was found to be effective for runoff collection from 

the road surface with little modification of the existing road drainage systems. Runoff 

water stored in the bucket was collected after each event as soon as was practicable and 

was transported back to the laboratory for further analysis. Particles attached to the 

catch tray were washed into the bucket by using distilled water to minimise cross 

contamination. The volume of distilled water required to wash–off the catch tray 

deposits was recorded and added to the runoff volume collected into the buckets to get 

total sample volume, which was then used to measure concentrations in runoff. The 

collection bucket was pre-washed using distilled water prior putting into experimental 

set-up at sites. The buckets were deployed for the period between rainfall events. The 

buckets were monitored regularly to remove any unwanted deposition. However, 

background contamination from atmospheric deposition cannot be ruled out entirely. 

The details of the runoff monitoring and collection procedures followed for this study 

can be found in the Caltrans Guidance Manual: Stormwater Monitoring Protocols 

(Caltrans, 2003). 

 

3.3.3 Snow Sediment Sampling 

 

Snow samples from five snow events between November and December 2010 were 

collected from four sites, Sites 3, 6, 8 and 9, by plastic scoops. The samples were taken 

from the whole vertical profile including dust deposition as outlined by Hricko et al. 

(1993) and Krčmová et al. (2009). Sampling was undertaken at the end of the snow 

event and a total sample of about 2 kg of snow from each site was transferred into 

plastic bags and transported back to the laboratory.  
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3.4 Laboratory Analyses 

  

Preservation and analysis of dry, runoff and snow derived sediment samples were 

carried out in the analytical chemistry laboratory in the School of Life Sciences of 

Heriot Watt University. Standard laboratory procedures were followed for all testing 

and in order to ensure the accuracy of the test data standard quality control and quality 

assurance measures were also carried out.  

 

3.4.1 Sample Preparation 

 

The RDS samples were dried upon collection at room temperature for 24 hours and then 

weighed prior to particle size distribution (PSD) and heavy metal analysis. Runoff 

samples were sub-sampled after rigorous shaking to obtain 100 ml (out of up to 4 l from 

buckets plus added volume of water required to wash catch tray deposit, as mentioned 

earlier) of a representative sample, and 50 ml was used  for determining total suspended 

solids (TSS) and another 50 ml was for total heavy metal concentrations (unfiltered 

runoff). The filtered water from TSS analysis was used for dissolved metal 

concentrations analysis. The rest of each sample was wet sieved for PSD analysis and 

sediment retained on sieves was analysed for particulate heavy metal concentrations. 

Snow samples were allowed to melt at room temperature first and then similar steps 

were followed as for the runoff samples. 

 

3.4.2 Laboratory Testing 

 

Laboratory testing for the present study was primarily focused on the mass of dry, 

runoff and snow derived sediment on the roads and the quantification of heavy metals in 

it. The influence and importance of the particle size distribution on sediment associated 

metal concentrations are well documented from previous studies, which reveal that 

greater metal concentrations are found with decreasing particle size fractions (e.g. 

Robertson and Taylor, 2007; Sansalone et al., 2010). Hence, particle size distribution 

was given priority for particle bound metal analysis. In addition TSS for runoff samples 

and dissolved metal concentrations for runoff and snow samples were measured. The 

complete set of parameters tested during the laboratory analysis was as follows: particle 

size distribution (PSD), total suspended solids (TSS) for runoff samples, dissolved and 
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particle bound metal concentrations, as appropriate with different categories of road 

sediment. 

 

3.4.2.1 Particle size distribution 

 

Several techniques are available to measure particle size distributions of solids 

(Egodawatta, 2007). Among these methods, dry or wet sieving is most often used. 

Different ranges of standard sieves are used depending on study aims and purposes. The 

sieves used for this study included: BS 625 (20 µm), BS 350 (45 µm), BS 240 (63 µm), 

BS 120 (125 µm), BS 60 (250 µm) and BS 30 (500 µm). To obtain the PSDs, road 

sediments were passed through a range of standard sieves as mentioned above to get a 

representative sample mass retained on each sieve size. Sediment samples were wet-

sieved to separate them into fine and coarse fractions. Wet sieving has an advantage 

over dry sieving of better accuracy. More details can be found in Deletic and Orr 

(2005), Huang et al. (2009) and Karlsson et al. (2010). The aim was to evaluate the 

distribution pattern of heavy metal concentrations associated with fine (<63 µm), 

medium (250-63 µm) and coarse (500-250 µm) sediment fractions. The author believes 

that using 63 µm for differentiating fine sediment from medium and coarse sediment is 

reasonable because the particle sizes below 63 µm (representing clay and silt) all have a 

large surface area and contain negatively charged particles which have a high affinity 

for metals. This idea is also supported by other researchers, e.g. Roger et al. (1998), 

Sutherland (2003), Zhu et al. (2008), Opher and Friedler (2010). However, other 

classifications to separate fine particles have also been found, e.g. Furumai et al. (2001) 

and Murakami et al. (2004) used 45 µm as a boundary sieve size, while Kim and 

Sansalone (2008) used 75 µm in keeping with conventions separating fine particles 

specified in ASTM (2002). 

  

The mass retained on each sieve was then cleaned using distilled water, placed in a pan 

and left to dry for 24 hours prior to being oven dried at 103-1050C for 24 hours to 

obtain a dried sample for further analysis. However, no sediment of the largest fraction 

(500-250 µm) was found in any of the runoff and snow events sampled, and hence the 

250-63 µm size fraction was classified as coarse sediment, while the < 63 µm size 

fraction was treated as fine sediment. 
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3.4.2.2 Total suspended solids (TSS) 

 

TSS concentration was analysed for runoff and snow samples. After rigorous shaking to 

suspend all particulate matter, a 50 ml sample was decanted from the 100 ml sub 

samples, which was from collection bucket to a volumetric flask. The sample was then 

filtered immediately through a 0.50 µm teflon filter, and TSS was analysed using a 

gravimetric method by weighing the oven-dried residue on the filter with a detection 

limit of 0.1 mg/l. The filter papers and petri dishes used for this test were pre-washed 

and oven dried in the laboratory for 24 hours prior use. The oven temperature was kept 

at 103 0C to 105 0C. The details of the TSS analysis method followed in this study can 

be found in APHA (1998). Briefly TSS is measured by following the steps shown 

below: 

• Before sampling, prepare teflon filters by first soaking them in distilled water, 

drying them at 103o C, and weighing and recording their weights (A). 

• Place the dried, weighed teflon filter onto a filtering flask. Shake the bottle first, 

and then pour the sample volume of 50 ml (C).  

• Dry the filter at 103 to 105 0C, let it cool to room temperature and then weigh it. 

Dry it, cool it, and weigh it again. Continue until the filter reaches a constant 

weight. Record the end weight (B). 

• The increase in weight represents TSS. Calculate TSS by using the equation 

below. 

 
          TSS (mg/L) = ([A-B]*1000)/C                                                           (Equation 3.1) 

 
Where A = End weight of the filter; B = Initial weight of the filter; C = Volume of water 

filtered 

 

3.4.2.3 Particle bound metal concentration 
 
Figure 3.6 shows the flow chart of the analytical method followed for the determination 

of heavy metal concentrations. Particle bound metal concentrations for the elements Cd, 

Cr, Cu, Zn, Pb, Ni were determined by strong nitric acid digestion (Anala R 70%) 

followed by flame atomic absorption spectrometry (AAS) using a Perkin Elmer 200 

AAS analyser. 
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Figure 3.6: Analytical protocol for RDS metal determination. 

 

There are numerous and varied methods of sediment bound metal extraction procedures 

reported in the literature. For example, Charlesworth et al. (2003) used a mix of H2SO4, 

HNO3 and HCl, Sutherland and Tolosa (2000) used HNO3-HCl, and Ordonez et al. 

(2003) used a mix of HNO3, HF and HClO4 as metal extractants in their studies. In 

contrast, Akhter and Madany (1993), Deletic and Orr (2005), Robertson and Taylor 

(2007) used HNO3, and Gibson and Farmer (1984), Stone and Marsalek (1996) used 

HCl for metal extraction. A rigorous analysis of the impact of using different strength of 

reagents (0.05 M EDTA, 0.5 M HCl, concentrated HNO3) for metal extraction from 

road sediment can be found in Sutherland et al. (2001). They suggest that in some 

circumstances use of weak reagents (particularly HCl and EDTA) could better quantify 

metal contamination compared to using a strong reagent (HNO3). They also reported 

that extracting metals using strong reagents underestimated the metal contamination 

compared to the weaker reagents (e.g. Cu, Zn, Pb). 

 

Within this context, selected samples for this study were initially tested using HNO3, 

aqua regia (a mix of HCl-HNO3 in a ratio of 3:1 by volume) and HCl-HNO3-HClO4. 

The results obtained did not exhibit significant differences (Kruskal-Wallis test; p 

>0.05) due to the different extractants used (see appendix B). However, using aqua 

regia (a mix of HCl-HNO3 in a ratio of 3:1 by volume) was found to perform better for 
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Cr, Ni and Pb compared to HNO3 alone. However, popular use of concentrated HNO3 

as a metal extractant was already evident in previous research even though it is not a 

best alternative (Sutherland et al., 2001). To keep the metal extraction procedure 

consistent and logistically efficient, concentrated HNO3 was used as the metal extractant 

from sediment for this study. Furthermore, two different types of acid digestion 

procedures are found to be followed for particulate metals. These were open and 

microwave digestion, with microwave digestion being preferred if available (Sutherland 

et al., 2001). However, in the absence of a microwave digestion facility in the laboratory 

used for the present study, open digestion was employed. Briefly, 0.50 to 1.0 g of 

sample was digested in 10 ml of concentrated HNO3 and left for 24 hours prior to 

heating in a water bath at 850C for 1 hour. Following this, samples were cooled and 

filtered to a volumetric flask made up to 50 ml using deionised water.  

 

A Perkin Elmer 200 AAS was calibrated for the range of 0-2.5 ppm for all the metals 

analysed for this study using standard solutions which were made up from stock 

solution of 1,000 ppm. Calibration curves for metal solutions were maintained with high 

precision (R2 = 0.99). The mean of triplicate analyses was recorded as the metal 

concentration for all samples, for data quality purposes. Blank samples were tested 

repeatedly to avoid cross contamination between samples. Any sample that gave a 

reading beyond the calibrated ranges was diluted until a satisfactory reading was 

obtained. De-ionised water was used throughout for cleaning apparatus, preparing 

standard solutions and other related purposes of laboratory work in order to avoid cross 

contamination. The analytical procedure followed for this study was kept similar with 

Deletic and Orr (2005) and Robertson and Taylor (2007). However, necessary 

modifications were carried out when required in the analytical procedure. The 

modifications were checked with published methods, if available, otherwise they were 

validated in the laboratory.  

 

The calculation of heavy metal content in sediment from mass of dried sediment and 

metal concentration measured from a 50 ml of samples by FAAS is as follows: 

 
Metal concentration in mg kg-1 (dry weight) = D × E/F                              (Equation 3.2) 

 
Where, F is the weight of sediment mass used for acid digestion (g), E is the sample 

volume (ml) and D is the metal concentration reading obtained from the FAAS (mg/l). 
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3.4.2.4 Total and Dissolved metal concentration 

 

Total metal concentration was determined using unfiltered sub samples of runoff, as 

discussed in 3.4.1. The filtered water from the TSS analysis, as described in 3.4.2.2, was 

collected for dissolved metal concentration analysis. The filtered water was then 

preserved by adding 2.5 ml of concentrated nitric acid (HNO3) to a pH level less than 

2.0 for metal quantification (USEPA, 1986). Metal concentrations were determined by 

flame atomic absorption spectrometry (FAAS) using a Perkin Elmer 200 AAS analyser, 

as discussed in 3.4.2.3. 

 

3.5 Quality Assurance  
 

Standard laboratory quality control/quality assurance procedures were followed, which 

are illustrated in Caltrans (2003). The details of these procedures are discussed below 

under a few sub-headings. 

 

3.5.1 Analysis of Blanks 

 

The data for blanks presented for this study is distilled water which was tested for heavy 

metal concentration repeatedly to avoid cross contamination between samples. A few 

times (n = 10) heavy metal concentrations of Cd, Cr, Cu, Ni, Pb and Zn in distilled 

water were recorded. Average metal concentrations found in the distilled water were 

0.1, 8.7, 1.3, 0.7, 1.1 and 12.2 µg/l for Cd, Cr, Cu, Ni, Pb and Zn, respectively (see 

appendix B). The results suggested that there was no significant metal contamination 

associated with distilled water use in the laboratory analyses. 

 

3.5.2 Precision 

   

Good precision of the laboratory tests were maintained and checked by analyses of 

replicated samples on a routine basis. Relative percent difference (RPD) between 

original and duplicate concentrations was estimated as follows: 

 

��� � �����	
��

� 
 100               (Equation. 3.3) 
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Where, CO and CD are the metal concentrations in the original and duplicate samples 

respectively. RPD of 10% or less for a given pollutant, are considered reasonable 

(APHA, 1998). However, average RPDs for the present study were found to be 5% to 

10% for the samples checked on a routine basis. Moreover, good precision of the whole 

procedure (less than 5% relative standard deviation) was achieved. 

 

3.5.3 Accuracy 

 

The mean of triplicate analyses was recorded as the metal concentration for all samples, 

for data quality purposes. Moreover, the accuracy of the test results was determined by 

analysing reference material using the standard solutions prepared for metal analysis. A 

portion of certified reference material MESS-3 (NRC Canada Certified Marine 

Sediment Reference Material) was tested three times for total metal analysis of Cd, Cr, 

Cu, Ni, Pb and Zn by using the Perkin Elmer 200 AAS analyser. The mean of the metal 

concentrations from three tests was then compared with reference values, as presented 

in Table 3.3. As seen in the table, the mean value for each metal was very similar to 

their respective reference values and hence, the laboratory analysis was deemed to be 

accurate. 

 

Table 3.3: Heavy metal concentrations for standard reference sample MESS-3 from the 

laboratory testing compared with certified values. 

 

 Concentration of metals in MESS-3 (mg/l)  

Metal Laboratory test (n = 3) MESS-3 certified value  % difference 

Cd 0.24 ± 0.02 0.24 ± 0.01 +0.55 

Cr 106 ± 2.84 105 ± 4.00 +1.37 

Cu 34 ± 2.18 33.9 ± 1.60 +0.45 

Ni 47.9 ± 3.28 46.9 ± 2.20 +2.07 

Pb 21.8 ± 0.40 21.1 ± 0.70 +3.28 

Zn 158.4 ±9.60 159 ± 8.00 -0.40 
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3.5.4 Detection Limit 

 

The detection limits of Perkin Elmer 200 AAS for trace metals analysis are presented in 

Table 3.4. The detection limits were determined by analysing the results of standard 

deviation of triplicate concentrations of analytical blank (distilled water) using a low 

range concentration of calibration solution (0 – 0.50 mg/l) prepared from standard stock 

solution (as discussed in section 3.4.2.3) for each of the six metals. The 3 times of 

standard deviation obtained was used as the lowest detection limit. The lower detection 

limit of the Perkin Elmer 200 AAS analyser allowed quantifying trace metal 

concentrations with sufficient accuracy. For most of the laboratory testing, metal 

concentrations in road sediments were found to be well above the analytical reporting 

limit. However, very rarely Cd (in particular dissolved Cd in runoff and snow samples) 

showed values below the detection limit and were recorded as ‘Not Detected’. The 

values recorded as ‘Not Detected’ were substituted with the lowest detection limit 

concentrations for further analyses (Kayhanian et al., 2002). 

 

Table 3.4: The detection limit for trace metals analyses using Perkin Elmer 200 AAS 

 

Metal  Detection limit (mg/l) 

Cd 0.01 

Cr 0.03 

Cu 0.03 

Ni 0.05 

Pb 0.15 

Zn 0.02 

Fe 0.05 

 

 

3.6 Heavy metals Pollution Assessment 

 

With increasing urbanisation, the impact of heavy metal pollution on the nearby water 

environment has become a more serious issue, and so has received much attention in 

environmental research studies. A variety of pollution indices for sediment associated 

heavy metals have been proposed to quantify the level of pollution and associated 
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impacts on aquatic life (e.g. Yu et al., 2003; Huang et al., 2009). The degree of 

contamination (CD) and the potential ecological risk index (PERI) suggested by 

Hakanson (1980) were applied for this study with some necessary modifications. The 

methods proposed by Hakanson (1980) were derived for natural sediment in fresh 

and/or marine/estuarine waters rather than road runoff. However, their robustness makes 

them suitable for road sediment (even in the absence of ecological data) to obtain an 

impression of the ecological risk, as evident from the previous studies in the literature 

elsewhere (e.g. Huang et al., 2009; Shi et al., 2010; Duong and Lee, 2011). A point to 

be noted is that the results obtained using these methods may not be sufficient enough to 

quantify actual ecological risk posed by road sediment without other relevant data and 

information, such as, the type of aquatic species considered, exposure time with 

contaminated sediment, appropriate dilution factors, metal releasing mechanisms from 

sediment depending upon sediment-water chemistry, etc. (e.g. Kayhanian et al., 2008; 

de Deckere et al., 2011). Within this context, for the present study these indices were 

adopted to demonstrate the level of potential hazard posed by road sediment.  

 

The CD and PERI are defined by the equations shown below: 

 


� 
� � ���

��
�                                  (Equation 3.4) 

 

where: 
� 
�  is the (single metal) pollution index of metal i; 
�� is the concentration of 

metal i in the  sample; 
�
�  is the reference value for metal i. For this study, 
�

�  was taken 

to be the local background value from road sites which carry no traffic. 


� � ∑ 
�
��

���                    (Equation 3.5) 

 

where n is the total number of metals (n=6 for this study).  Categories of CD were 

adjusted and classified with modifications after Duong and Lee (2011), as seen in Table 

3.5. 

 

��� � ��� 
 
�
�                              (Equation 3.6) 
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Where, ���  is the monomial potential ecological risk factor, and ��� is the metal toxicity 

factor. According to Hakanson (1980), the toxic values for each metal are in the order of 

Zn (= 1) < Cr (= 2) < Cu = Ni = Pb (= 5) < As (=10) < Cd (= 30) < Hg (= 40). 

 

���� � ∑ ���
�
���                              (Equation 3.7) 

 

Where, PERI is the potential ecological risk index caused by the overall contamination 

signifying the sensitivity of the biological community to the toxic substances. As the 

number of pollutants considered in this study are different to Hakanson’s study (As and 

Hg are not being used here), an adjustment of the indices was made and categories were 

also classified accordingly, as seen in Table 3.5. Briefly, assuming 
� 
�  is 1 for all the 

metals analysed here will give PERI value 48 as a low level of ecological risk. To round 

off the indices value, the value of 50 was taken as the lowest PERI instead of calculated 

value of 48. Furthermore, in order to minimise inherent variability associated with 

measurement errors, the lowest level of PERI value (=50) was revised multiplied by 1.5 

(usually used to indicate considerable enrichment over background value), which in turn 

indicate a low level of ecological risk with PERI < 75. A similar approach of 

adjustment of the indices was also made by Hakanson (1980) in his study followed by 

others, for example, Zhu et al. (2008) and Duong and Lee (2011) in their studies 

elsewhere. 

 

Table 3.5: Categorization of standards for C�
 , CD, ���  and PERI 

  
Ci

f CD Degree of 
pollution 

Ei
r   PERI Levels of potential ecological 

risk of the aquatic environment 

Ci
f < 3 CD<6 Low/Unpolluted Eir <30 PERI<75 Low 

3≤ Ci
f<6 6≤CD<12 Moderate 30≤ Ei

r <60 75≤PERI<150 Moderate 
6≤ Ci

f<9 12≤CD<24 Considerable 60≤ Ei
r <120 150≤PERI<300 Considerable 

Ci
f>9 CD>24 High 120≤ Ei

r <240 PERI>300 High 


�  is the single metal pollution index; CD is the degree of contamination; ��  is the monomial potential 

ecological risk factor; PERI is the potential ecological risk index 

 

3.7 Statistical Analyses 

 

The present study generated a database of heavy metal analyses. In order to reveal a 

reliable outcome the resulting database needed to be analysed properly. The data 



62 
 

analysis techniques were selected carefully by considering the type of data to be 

analysed, the capabilities of different data analysis techniques and the type of analysis to 

be performed based on the study objectives. These techniques were selected to 

understand the nature of the variability in the data and to assess the relationship between 

variables for predictive purposes. Microsoft Excel and SPSS 16.0 were used to compute 

descriptive statistics, normality tests and box plots of the results. Normality tests for all 

the variables in the dataset were performed prior to further analyses. As the data did not 

follow Gaussian distribution, the Spearman rank-order correlation coefficient (a 

nonparametric correlation) was used to determine relationships between variables. Only 

statistically significant correlations are presented in the results. The Kruskal – Wallis 

test, which represents a nonparametric analogy of one-way ANOVA, was used to 

determine whether a significant difference existed for metal concentrations between 

sampling sites and between size fractions. A brief description of the statistical analyses 

follows is given in the following sub-sections. 

 

3.7.1 Descriptive Statistics 

 

Range, mean, standard deviation (SD) and coefficient of variation (CV) are often used 

to describe the characteristics of a single data set. The range defines the array of data 

between the minimum and maximum values. The mean is simply the arithmetic average 

of the data set, while the SD represents the dispersion of the data around the mean. The 

higher the SD value the more scattered is the data to the mean and vice versa. Similarly 

the CV explains the dispersion of the data set relative to the mean and can be obtained 

by expressing the standard deviation as a percentage of the mean. 

 

3.7.2 Correlation Analysis 

 

Correlation refers to a statistical relationship involving dependence. Correlations are 

useful because they can indicate a predictive relationship based on the degree of 

relationship between variables. The degree of association is expressed by the correlation 

coefficient, often denoted by r or ρ or τ. The most common of these is the Pearson 

correlation coefficient (r), which is most relevant when there is a linear relationship 

between two variables. The Pearson correlation coefficient is more suitable for 

parametric data (when data is normally distributed).  
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To deal with non parametric data and non-linear relationships, other correlation 

coefficients have been developed that are more robust than the Pearson correlation 

coefficient. Rank correlation coefficients, such as Spearman's rank correlation 

coefficient (ρ) and Kendall's rank correlation coefficient (τ) measure the extent to which 

variables are associated overlooking any relationship between the variables. In general, 

these rank correlation coefficients are used either to reduce the amount of calculations 

or to make the coefficient less sensitive to non-normality in the data distributions. 

 

The rule of thumb to interpret the statistical strength between variables using the value 

of the correlation coefficient is as: ± 1.0 (perfect), ± 0.90 to ± 0.99 (very high), ± 0.70 to 

± 0.90 (high), ± 0.50 to ± 0.70 (moderate), ± 0.30 to ± 0.50 (low), ± 0.10 to ± 0.30 (very 

low) and ±0.0 to ± 0.10 (markedly low or negligible). Here the ‘+’ and ‘-’ signs denote 

positive or negative correlation, respectively, between variables. The significance of the 

correlation coefficients were tested each time as data was analysed. However, it should 

be noted that a high correlation coefficient does not necessarily define a cause and effect 

relationship (there may be other factors not considered in the analysis), rather it reflects 

a quantitative relationship that has been logically established. 

 

3.7.3 ANOVA 

 

Analysis of variance (ANOVA) is commonly used for testing the statistical significance 

of differences in means (for variables). This is accomplished by analyzing the variance, 

that is, by partitioning the total variance into the component that is due to true random 

error and the component that are due to differences between means. These latter 

variance components are then tested for statistical significance, and, if significant, one 

can then reject the null hypothesis of no differences between means and accept the 

alternative hypothesis that the means (for variables or groups) are different from each 

other. The Kruskal-Wallis test, which represents a nonparametric analogy of one-way 

ANOVA, was used to determine whether a significant difference existed for metal 

concentrations between sampling sites and between size fractions. A confidence level of 

95% (p < 0.05) was set for the statistical significance for all analyses. The greater 

robustness of the Kruskal-Wallis test over other ANOVA tests makes it even more 

useful, for example, (1) the distributions of data do not have to be normal, (2) variances  

for data sets do not have to be equal, (3) it is not data intensive (as few as 6 data in a 
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data set may be sufficient) and (4) equal sample sizes are preferred but small differences 

in the sample sizes in the data sets are also allowed (Corder and Foreman, 2009). 

 

3.8 Conclusions 

 

This study adopted a simple method to collect field samples during dry, runoff and 

snow events followed by laboratory analyses. The collection of dry sediment was 

undertaken at two transverse sampling positions from a pre-cleaned 1 m2 area on roads 

for different numbers of antecedent dry days. The runoff samples for 12 different 

rainfall events were collected at four primary study sites using a simplified experimental 

set-up. Similarly, fresh snow rather than snow-melt runoff samples were collected for 5 

snow events.  

 

A part of the dry and runoff sediment data were used to study pollutant build-up and 

wash-off processes at the primary study sites to derive local build-up and wash-off 

parameters, while the remaining data were used for validation of the local parameters. 

The primary variable considered for the pollutant build-up was the number of 

antecedent dry days, while the rainfall intensity, the rainfall duration and the number of 

dry days between the rainfall events were used for the pollutant wash-off study.  

 

Samples collected in the field investigation were tested for six heavy metals, namely 

Cd, Cr, Cu, Ni, Pb and Zn, which are found abundant in road-traffic environments as 

reported in the literature and are toxic to aquatic species and persistent in nature. Heavy 

metals in sediment were determined by strong nitric acid digestion and atomic 

absorption spectrometry. In addition, dissolved heavy metal concentrations were 

measured for the runoff and snow samples. Total suspended solids concentration was 

measured for runoff sediment only. Particle size distributions were analysed for all 

categories of the road sediment. 

 

  



65 
 

Chapter – 4 Analysis of Dry Weather Pollutant Build-up  

 

4.1 Introduction 

 

The aim of this chapter is to report the results of heavy metal concentrations in dry road 

sediment collected from different sampling sites with the aim of examining spatial 

variability between sites and identifying pollutant hot spots for further in-depth 

investigations. Then pollutant build-up is studied in more detail for the selected (hot 

spot) sites (a road bend, a road with speed control measures, a road intersection and a 

straight road section), such as, road deposited sediment (RDS) mass build-up over 

antecedent dry days (ADD), and associated heavy metal build-up pattern with ADD, 

local build-up parameters for the relationship of RDS build-up during ADD and grain-

size characteristics of RDS with respect to two transverse sampling positions, near curb 

and 1 m from the curb. The results presented in this chapter are based on the RDS 

samples collected in April 2010 over 1 to 14 ADD. 

 

4.2 RDS Heavy Metal Concentrations 
 

The mean concentrations of the six metals (Zn, Cu, Cd, Cr, Ni and Pb) in RDS from 12 

sampling sites are presented in Table 4.1. The background concentrations of the metals 

from Riccarton Campus are also shown along with regional background values for 

Scotland (Appleton, 1995). The local background values for all the metals except Pb are 

similar to the regional background values. The accumulation index (AI), which is the 

ratio of the mean to the local background mean, is also presented in the table. The 

degree of contamination (CD) and the potential ecological risk index (PERI) are also 

shown on the bottom rows of the table for each site, which indicate the heavy metal 

contamination.  

 

As seen in Table 4.1, considering all the sites the highest mean concentration of metals 

are found in the order of 247, 140, 92, 16, 16 and 7 mg kg-1 for Zn, Pb, Cu, Cr, Ni and 

Cd, respectively. The mean concentrations reported here are very similar to the 

concentrations reported previously for residential catchments in the UK (Charlesworth 

et al., 2003; Deletic and Orr, 2005; Robertson and Taylor, 2007) and other parts of the 

world (Kim et al., 1998; Sutherland, 2003). Similarly, the highest accumulation index 
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(AI > 1.5) of metals Cd, Pb, Zn and Cu were approximately 7, 5, 2.2 and 2, respectively, 

for all sites. These ratios are also found to be consistent with other studies (e.g. 

Hjortenkrans et al., 2006; Zhu et al., 2008). Note that the accumulation index for Ni was 

either significantly less than 1 or only marginally greater than 1 for all sites. 

 

Table 4.1: Mean and standard deviation of heavy metal concentrations (mg kg-1) in 
RDS on road network in study area  
 

Site 
 

1 
(4) 

2 
(4) 

3 
(7) 

4 
(4) 

5 
(3) 

6 
(7) 

7 
(4) 

8  
(7) 

9 
(7) 

10 
(4) 

11 
(3) 

12 
(5) 

Local  
back-
ground 
mean a 

Regional 
back-
ground 
mean b TV c 200 200 200 200 230 250 265 285 650 650 550 -- 

Cd 1.3 0.7 1.5 0.7 7 1.7 1.3 2.0 1.8 0.4 6 1 1 1.4 
SD 0.8 0.4 0.5 0.4 4 1 0.9 1 0.8 0.3 4 0.7 0.3  
AI 1.3 0.7 1.5 0.7 7 1.7 1.3 2.0 1.8 0.4 6 1   
Cr 6 12 10 13 16 12 11 11 10 12 10 4 8 n.a. 
SD 3 4 5 4 10 3 4 5 4 8 7 2 2  
AI 0.8 1.5 1.2 1.5 2.0 1.5 1.2 1.2 1.2 1.5 1.3 0.5   
Cu 67 40 75 41 74 92 59 83 74 31 69 59 44 46 
SD 21 19 17 22 29 23 31 25 19 11 20 30 10  
AI 1.5 0.9 1.7 0.9 1.7 2.0 1.3 1.8 1.6 0.7 1.5 1.3   
Ni 6 5 14 6 5 16 9 11 20 22 24 4 20 n.a. 
SD 3 3 8 3 2 11 4 6 13 12 14 2 3  
AI 0.3 0.3 0.7 0.3 0.3 0.8 0.5 0.6 1.0 1.1 1.2 0.2   
Pb 35 77 101 112 66 140 68 62 60 35 23 43 28 115 
SD 10 25 41 53 29 21 30 19 26 18 11 20 12  
AI 1.3 2.8 3.6 4.0 2.4 5.0 2.4 2.2 2.1 1.3 0.8 1.5   
Zn 225 160 212 133 205 239 213 160 247 110 167 209 107 120 
SD 84 72 80 66 79 87 71 75 76 43 77 88 23  
AI 2.1 1.5 2.0 1.2 1.9 2.2 2.0 1.5 2.3 1.0 1.6 1.9   

CD 7 8 14 12 17 16 11 10 12 6 12 7   

PERI 56 46 90 60 241 98 68 95 91 32 202 51   

Value in brackets under site represents number of sample analysed   
a metal concentrations were measured in RDS from road sites which carry no traffic  
b Appleton, 1995  
c TV: Traffic volume in vehicles per hour; SD: Standard deviation  
AI: Accumulation index - number ≥ 1.5 in bold to identify sites where metal from anthropogenic sources 
may likely be key  
CD: Degree of contamination – number ≥ 12 in bold suggests considerable degree of contamination 
PERI: Potential ecological risk index – number ≥ 75 suggests moderate level of ecological risk 
 

As discussed in the literature, all of the metals presented in the table above are 

somewhat related to the road-traffic environment. Briefly, Zn is primarily linked with 

tyre wear, Cr and Cu are linked with brake wear, and Cd and Pb are linked to exhaust 

emissions (Charlesworth et al., 2003; Ward et al., 2004; Zanders, 2005), while the 

relatively low concentrations of Ni may be linked with the geological background of the 
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study site (De Minguel et al., 1997). However, significant Pb concentrations at a few 

sampling sites (e.g. Sites 3 and 6) are surprising, as the previous use of Pb in fuel was 

phased out more than a decade ago, but may be not unexpected elsewhere, as Pb is 

linked to road paint materials (particularly double yellow lines), as seen in Table 4.2. Pb 

is relied upon to provide the persistent brightness to yellow road markers exposed to 

any weather types before degradation. A similar suggestion was also reported by Deletic 

and Orr (2005) in their study in Aberdeen, UK. In contrast, elevated concentrations of 

Pb at some other sites (in absence of yellow lines e.g. Site 9), suggests that other traffic 

related inputs, such as wheel bearings, vehicle exhaust and car paints etc are likely 

sources of Pb in the study area (Napier et al., 2008; Ewen et al., 2009).  

 

Table 4.2: Pb concentration (mg kg-1) in yellow paint chips collected from road 

surfaces on studied road network 

 
Sample Pb (mg kg-1) 
1 1683 
2 1710 
3 1190 
4 1360 
5 933 
Mean ±standard deviation 1375 ± 330 

 

Furthermore, in relation to the above sources of metals at the study sites, it although the 

traffic volume varied between sites from 200 to 650 VPH, the mean metal 

concentrations were not found to vary accordingly. It was also observed that at some of 

the sites (see Table 3.1), traffic experiences frequent acceleration and deceleration, 

which may have an influence on larger metal emissions, as suggested by Ewen et al. 

(2009) for traffic undergoing ‘stop-start’ activities. As mentioned in Chapter 3, the 

traffic movement pattern at the sites exhibits two types of ‘stop-start’ activities, such as, 

at a few sites (Sites 3, 5, 6 and 11) almost all traffic was observed to undergo braking as 

it passed through, while at a few other sites (Sites 1, 8 and 10) the traffic movement 

pattern was found to be more controlled in terms of ‘stop and start’ activities, and 

therefore, a lesser degree of braking was required. At all other sites, except Site 12, 

traffic movement was at a steady speed. Hence, site-specific attributes may be the key 

drivers in the difference of the heavy metal concentrations across the sites rather than 

traffic volume alone. A similar suggestion was reported by Irish et al. (1995), Li and 

Barrett (1998) and Charlesworth et al. (2003).  
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4.3 Spatial Variability of RDS Heavy Metal Concentrations and Associated 

Contamination between Sites 

 

Table 4.1 reveals that metal concentrations show site specific variability across the road 

network. Among the 12 different sites, Sites 5, 6 and 8 show AI ≥ 1.5 for all metals 

except Ni, suggesting that RDS for these sites are highly contaminated by heavy metals 

related to road-traffic in addition to atmospheric deposition. Based on the average value 

of AI for all metals (except Ni) the order of the contamination is found as: Site 5 (AI = 

2.5) > Site 6 (AI = 2.2) > Site 3 (AI = 1.8) > Site 9 (AI = 1.7) > Site 8 (AI = 1.5).  

 

The degree of contamination (CD) caused by heavy metals, ranges from 6 to 17 across 

the sites as seen in Table 4.1. The CD value is found to be generally consistent with 

previous studies of RDS elsewhere (e.g. Zhu et al., 2008; Duong and Lee, 2011). 

However, the maximum values of CD here are occasionally exceeded in the 

aforementioned studies. As seen in Table 4.1, CD ≥ 12, suggesting considerable degree 

of contamination, was found at Sites 3, 5, 6, 9 and 11. RDS from both Sites 5 and 11 

demonstrated very high contamination by Cd, considerable contamination by Cr, and 

moderate contamination by Zn and Cu (Table 4.1). Similarly, Sites 3 and 6 are found 

contaminated mainly with Pb followed by Cr, Zn and Cu (Table 4.1).  

 

The potential ecological risk (PERI) caused by heavy metals at different sites in the 

study area shows a large spatial variability, ranging from 32 to 241 across the sites. The 

values are consistent with previous studies carried out by Zhu et al. (2008) and Duong 

and Lee (2011).  The assessment of ecological risk for metals in RDS for all sites (Table 

4.1) reveals that both bus stop sites (Site 5: PERI = 241 and Site 11: PERI = 202) have 

heavy metal emissions that may have a considerable level of ecological impact if 

transported to the nearby water courses. Both sites are highly dominated by Cd (toxic 

factor =30) as mentioned earlier. Moreover, from Table 4.1, Sites 3, 6, 8 and 9 may 

pose a moderate level of risk (PERI = 90-100), being primarily contaminated by Pb and 

Cu (toxic factor, Pb = Cu = 5) along with an influence from Cd and Zn (toxic factor = 

1). Metal contaminations for Sites 1, 2, 4, 7, 10 and 12, fall well below the low level of 

ecological risk. However, as the number of samples analysed across the sites are very 

small, the pollution assessment levels should be used with caution. 
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Considering Sites 3, 6, 8 and 9, it is interesting to note that except Site 9, all other sites 

experience acceleration and deceleration activities by traffic, which is likely to enhance 

metal emissions (Charlesworth et al., 2003; Ewen et al., 2009). Apart from these four 

and both bus stops sites,  all other sites show average AI ≤ 1.5, CD ≤ 12 and PERI ≤ 75, 

suggesting that RDS in these sites is less contaminated by heavy metals and is very 

unlikely to pose any threats to the nearby water environment at this stage. However, it is 

clear that traffic volume alone is not sufficient to explain the data unless site specific 

attributes (e.g. road lay-out, traffic movement patterns, road surface condition, presence 

of road paints etc) are taken into consideration. Similar suggestions were also noted by 

Irish et al. (1995) and Barrett et al. (1993).  

 

In accordance to the study objectives, 4 of the 5 hot spot sites (Site 3: a road bend, Site 

6: a road with speed control, Site 8: a road intersection and Site 9: a straight road 

section), representing different road lay-outs with different traffic loads and road surface 

conditions were used for in-depth studies. These 4 sites are the primary study sites for 

which long term monitoring data were collected. Site 5 (bus stop) was not used because 

of health and safety reasons for long term monitoring.  

 

4.4  Pollutant Build-up at Primary Study Sites 

 

Based on the previous research on stormwater quality and road-traffic pollution, as 

discussed in the literature review, it is apparent that the pollutant build-up and wash-off 

processes on roads are very complex and a lot more research is needed for these to be 

well understood (Sutherland and Jelen, 1996; Zoppu, 2001; Egodawatta, 2007). This 

section presents the outcomes from an in-depth field investigation of RDS and RDS 

associated heavy metals build-up over antecedent dry days (ADD). Sampling was 

carried out at two transverse positions, near the curb (A) and 1 m from the curb (B), for 

primary study sites, a road bend (RB), a road with speed control (RSC), a road 

intersection (RI) and a straight road section (SR), in order to provide an insight into the 

influence of sampling position, typical road lay-out and road condition on metal 

emissions over ADD. 
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4.4.1 RDS Build-up 

 

The RDS loading obtained from the primary study sites at both sampling positions A 

and B over 14 ADD are plotted in Figure 4.1. The RDS build-up patterns reveal site-

specific rates with significant variability according to road lay-out as with an influence 

from road surface condition, traffic volume and surrounding land for both sampling 

positions, as discussed below. It was also noted that for sampling position A, at all the 

sites the rate of build-up was initially high and then decreased as the number of 

antecedent dry days increased. The asymptotic build-up pattern is consistent with 

current understanding of RDS build-up over ADD. 

 

 

Figure 4.1: RDS build-up pattern at four different sites for both sampling positions. 

 

In contrast, at sampling position B, RDS build-up patterns were more erratic, in 

particular, at the RSC and RI sites, the sediment load increased steadily for about 5 

ADD and then decreased at a reducing rate over time. However, RDS build-up pattern 

at the RB and SR sites was similar to that for the sampling position A. The inconsistent 

patterns of RDS build-up at sampling position B might be due to the turbulence caused 

by the traffic flow (directly over this point) in addition to wind induced movement. The 

inconsistent patterns of RDS build-up may not be unexpected because similar 

inconsistent RDS build-up further away from the curb was also evident from the study 

by Deletic and Orr (2005). 
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Considering the individual sites, the sediment availability per square meter at sampling 

position A was in the ranges of 25 to 50 g at the RB site followed by 45 to 125 g at the 

SR site, 150 to 241 g at the RSC site and 49 to 242 g at the SR site over the 14 

antecedent dry days. At sampling position B, they were 5 to 25 g at the SR site followed 

by 8 to 35 g at the RB site, 10 to 45 g at the RI site and 15 to 48 g at the RSC site 

(Figure 4.1). The lower sediment loads at sampling position B to A are expected and are 

thought to reflect the input from a single source (traffic), while one or more sources 

(road surface itself, traffic, foot path, surrounding land) may contribute to sediment 

deposition at sampling position A. 

 

Sediment build-up at sampling position A after 1 day since the road surface was initially 

cleaned (Figure 4.1), was found in the range of 25 to 50 g/m2  for the RB, RI and SR 

sites, while for the RSC site the initial build-up was much higher (150 g/m2). In 

contrast, at sampling position B, the highest first day build-up was found as 15 g/m2 at 

the RSC site followed by 10 g/m2 at the RI site, 8 g/m2 at the RB site and 5 g/m2 at the 

SR site (Figure 4.1). The primary reasons behind the significantly higher initial build-up 

rate at the RSC site for sampling position A could be due to its rougher road texture 

(aiding the retention of RDS on the surface) and a poor road condition (providing a 

larger supply of non-vehicular particles) compared to all other sites.  

 

Based on the build-up trend over 14 days for sampling position A, it appears that the 

rate of build-up was highest at the RI site (see Figure 4.1). This site is close to an entry 

and exit point of the Campus, nearby office buildings and car parks, which may have 

some influence on sediment deposition when compared to the lowest overall build-up 

rate at the RB site which has nearby open space with farm land. Build-up patterns at 

sampling position A for the other sites were found to follow similar trends but with 

different magnitudes. For example, at the SR site, surrounding trees on both sides of the 

road may have reduced the effect of wind turbulence thus in turn increasing the 

retention of sediment on the road. 

 

Based on all sites, the sediment availability of 25 to 242 g/m2 at sampling position A for 

the present study compares well with earlier studies, as Sartor and Boyd (1972) 

observed around 4 to 113 g/m2 in USA, Ball et al. (1998) found 4 to 15 g/m2 in 

Australia, Vaze and Chew (2002) noted 8 to 40 g/m2 in Melbourne, Australia and 
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Deletic and Orr (2005) observed 150 to 225 g/m2 in Aberdeen, Scotland. Similarly, 

sediment availability of 5 to 70 g/m2 at sampling position B for the present study 

compared well with 20 to 115 g/m2 at 0.75 m from the curb (data for summer months) 

in Deletic and Orr (2005). The variation in observed sediment loading between studies 

is certainly understandable, and may be due to the variability in the sample collection 

procedure, regional climate, road condition and road maintenance, surrounding land 

uses, different ADD etc. Based on the results from this study it has been revealed that 

the site-specific attributes (e.g. road lay-out, road surface condition, surrounding land 

use) have had a significant influence on RDS build-up. Also the RDS build-up varies 

with transverse positions. 

 

4.4.2 Mathematical Replication of RDS Build-up 

 

Modelling the impact of road runoff pollution on receiving waters requires various 

processes to be simulated. These include the pollutant build-up on road surfaces during 

dry periods and subsequent wash-off during rainfall and snow events, followed by the 

transport into and through the drainage system to the end point of discharge.  

 

A wide variety of mathematical approaches and equations are used in commercial urban 

drainage models, such as MIKE URBAN, SWMM etc. in order to describe the RDS 

build-up on roads. For example, Sartor et al. (1974) found an exponential function to be 

suitable to replicate RDS build-up with reasonable accuracy and their concept was then 

modified and widely used in stormwater quality modelling software including SWMM 

(Huber and Dickinson, 1988). However, Ball et al. (1998) reported that RDS build-up 

could be better replicated using power law or saturation functions.  

 

Within this context, three forms of mathematical relationship for RDS build-up were 

investigated in depth. Moreover, due to inconsistency in the data found at sampling 

position B (as seen in Figure 4.1), it was decided to use RDS data collected at sampling 

position A for mathematical replication of the build-up process. RDS data collected 

over 1 to 14 ADD in April 2010 was used to develop the model, while the model 

parameters were then validated by using RDS data collected during May 2010 to March 

2011 from the same study sites. The three mathematical relationships used are as 

follows: 
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(a) Power function: Sediment load increases with increases in the number of ADD 

towards a maximum value (Ball et al., 1998; Charbeneau and Barrett, 1998; Rossman, 

2004). The mathematical expression can be defined as:   

 

Ct = C1t
n                            (Equation 4.1) 

  

where, Ct is the sediment load (mass per unit area), C1 is the build-up rate constant, n is 

the time exponent and t is the number of antecedent dry days (ADD) 

 

(b) Exponential function: Sediment load increases to a maximum value asymptotically. 

The mathematical expression for exponential function is shown in equation 4.2. Sartor 

and Boyd (1972) introduced this function for road sediment build-up over dry days in 

their study, which thereafter was used by others (e.g. Grottker, 1987; Deletic et al., 

2000; Egodawatta et al., 2007; Liu et al., 2010). 

 

 Ct = Cmax (1 - e-kt)                 (Equation 4.2) 

 

where, Ct is the sediment load (mass per unit area), Cmax is the maximum sediment load 

(mass per unit area), k is the build-up rate constant (1/day) and t is the number of 

antecedent dry days 

 

(c) Saturation function: sediment load starts building-up at a linear or nonlinear rate to a 

maximum value recognising a saturation value. Ball et al. (1998) found this function 

useful for their study in Australia. 

 

Ct = (Cmax ×t)/(p + t)                  (Equation 4.3) 

 

where, Ct is the sediment load (mass per unit area), Cmax is the maximum sediment load 

(mass per unit area), p is the half saturation constant (days to reach half of the maximum 

build-up load) and t is the number of antecedent dry days. 

 

The equations presented above were tested by developing best fit curves for each 

equation to the observed RDS data collected at sampling position A in April 2010, as 

seen in Figures 4.2 to 4.4.  
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To start with the power law function, the calibrated parameters are C1 and n as seen in 

Equation 4.1.  The values of C1 and n were derived from the equation of the trend line 

derived using MS Excel. The plots are shown in Figure 4.2. 

 

 

 

 

Figure 4.2: Road deposited sediment build-up parameters estimation using power 

function.  

 

The exponential function calibration parameters are Cmax and k (build-up rate constant). 

The largest value of the 7 RDS loads for each study site was taken as the Cmax 

(maximum sediment load per square meter area). To estimate the k value, equation 4.2 

was re-arranged as shown below. The final form of the equation generates a straight line 

and the slope of this line gives k directly. The graphs were plotted accordingly, as seen 

in Figure 4.3.  

 

 
��

����
 � 1 	 
��� 

 


��� � 1 	

�


���
 

 

0

50

100

150

200

250

0 3 6 9 12 15

T
ot

al
 S

ed
im

en
t 

Lo
ad

 (
g/

m2
)

Antecedent dry days

A road bend (RB)
A road section with active speed control measures (RSC)
A road intersection (RI)
A straight road section (SR)



75 
 

k � 	
1

t
ln�1 	

Ct

Cmax
� 

 

	 ln�1 	
Ct

Cmax
� � kt 

 

 

 

Figure 4.3: Road deposited sediment build-up parameters estimation using exponential 

function.  

 

Using the saturation function for pollutant build-up the only calibration parameter is p 

(half saturation constant). To estimate p equation 4.3 was modified as shown below and 

a graph was plotted, as seen in Figure 4.4. The final form of the equation, as shown 

below, indicates a linear relationship, from which p can be calculated by taking the 

reciprocal of the slope of the trend line (Figure 4.4). 
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Figure 4.4: Road deposited sediment build-up parameters estimation using saturation 

function.  

 

The build-up parameters derived from the above three models are presented in Table 

4.3. As seen in the table, there is a marked variability between sites for all the derived 

build-up parameters. The highest RDS build-up rate (C1) of 167 g/m2 was at the RSC 

site followed by 52, 50 and 26 g/m2 at the SR, RI and RB sites, respectively. The 

parameter, n (time exponent of build-up) was highest at the RI site (0.630) and lowest at 

the RSC site (0.127). The maximum sediment build-up load (Cmax) of 242 g/m2 was at 

the RI site, which was very close to 241 g/m2 at the RSC site, but was 2-times as high as 

125 g/m2 at the SR site and 5-times that of 47 g/m2 at the RB site. With the exception of 

the RSC site (0.423), the k (build-up rate constant (1/day)) at other sites did not exhibit 

significant variation (0.219 – 0.250). Similarly, p (half saturation constant (day)) was 

very close to 1 day at the RI and SR sites, while it was as low as 0.15 day (4 hours) and 

0.43 day (10 hours) at the RSC and RB sites, respectively. These findings reconfirm that 

site specific attributes, such as road lay-out and road surface condition are the key 
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drivers to explain the variability between calibrated parameters. As mentioned earlier 

(Table 3.1), the road surface condition was very poor at the RSC site (especially for 

sampling position A), where a larger supply of loose road particles was observed during 

sample collection compared to the other sites. Clearly, this is consistent with the 

magnitude of the build-up parameters at this site compared to the other sites in this 

study, as seen in Table 4.3. The significant influence of road texture and traffic flow 

condition on pollutant build-up on roads was also reported by Mahbub et al. (2010) in 

their study in Gold Coast region of Australia.  

 

Table 4.3: Local build-up parameters estimation for near the curb sampling positions 

from field monitoring data 

 
Site C1 (g/m2) n C max (g/m2) k (1/day) p (day) 

Road bend (RB) 26 0.228 47 0.238 0.43 

Road with speed controls (RSC) 167 0.127 241 0.423 0.15 

Road intersection (RI) 50 0.630 242 0.250 0.95 

Straight road (SR) 52 0.362 125 0.219 0.98 

C1: build-up rate constant for Power law function, n: time exponent for build-up, C max: maximum 

sediment build-up load, k: build-up rate constant for Exponential function, p: half saturation constant 

 

The RDS build-up parameters are now compared to the default values found in 

commercial urban drainage software and published results from previous studies 

elsewhere, as presented in Table 4.4. It appears that the build-up parameters derived for 

this study vary significantly with the default values used in MOUSE and SWMM5 

commercial software, and with other studies listed in the table. All the derived 

parameters except k are found to be significantly higher than their default values in 

MOUSE and SWMM5. The variability of the build-up parameters from other studies 

elsewhere is also evident, as presented in Table 4.4. 
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Table 4.4: Comparison of estimated local build-up parameters with the default values 

from MOUSE and SWMM5 and other studies 

 
Parameters Description Default values  This 

study 
 Other studies 

  MOUSE SWMM5    Liu et al. 
(2010) 

Hossain et 
al. (2010) 

Deletic et 
al. (2000) 

Maximum 
build-up 
(g/m2) 

The threshold 
of RDS build-
up 

50 5  47 - 
242 

 37.50 2.75 - 
5.30 

10 - 100 

Build-up rate 
(g/m2/d) 

Accumulation 
rate (MIKE 
URBAN)  

5 -  7.5 -19  3.20 - - 

Build-up rate 
constant, k 
(1/d) 

Exponential 
rate (SWMM) 

- 0.4  0.219 – 
0.423  

 - 0.210 – 
0.382 

0.045 – 
0.100 

RDS: Road deposited sediment, * irrespective of sampling positions 

 

Based on the discussion above, it can be inferred that the large variations of these 

derived parameters are primarily due to the different site specific charcteristics with an 

influence from RDS sampling procedures between build-up studies elsewhere (e.g. 

Deletic et al., 2000; Liu et al., 2010; Mahbub et al., 2010). In addition, as RDS build-up 

patterns are rather different at the two transverse sampling positions, as discussed in 

section 4.4.1, the transferability of the derived parameters must be questioned. 

 
4.4.3 Validation of Build-up Equations 

 
In order to check the accuracy of the build-up equations, which were derived from the 

site investigation data collected in April 2010, simulated values from the equations were 

compared with observed values from RDS at sampling position A, undertaken during 

May 2010 to March 2011. Exponential and power law functions were chosen for 

validation purposes because these methods were found to be used frequently in 

pollutant build-up studies in the literature (e.g. Ball et al., 1998; Deletic et al., 2000; Liu 

et al., 2010). Figures 4.5 and 4.6 show the observed and the predicted sediment build-up 

values. As seen in the figures (left hand side), for most of the cases, the ratio of 

observed and simulated solid loads fluctuates within the ratio of 0.5 to 1.5, which 

suggests that the simulated sediment loads are in close agreement with the observed 

data.  
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Figure 4.5:  Comparison of simulated RDS load using the power law function with 
observed RDS load at primary study sites (RB: road bend; RSC: road with speed control; RI: 
road intersection; SR: straight road section). 
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Figure 4.6:  Comparison of simulated RDS load using exponential function with 
observed RDS load at primary study sites (RB: road bend; RSC: road with speed control; RI: 
road intersection; SR: straight road section). 
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In contrast three specific cases were found for which the ratio of observed and simulated 

build-up loads are greater than 2. These occur for data collected during the winter 

season (typically, November to January) when normally road grit and salt were spread 

over the road surfaces, hence increasing the sediment load (by mass) significantly. This 

observation is a reminder that seasonal variations in road maintenance and degradation 

operations may have an influence on the water quality of road runoff.  
 

Removing outliers (ratio above 2.0) from the data, the simulated sediment loads are 

plotted against the observed data using the power law and the exponential function for 

all the primary study sites in Figures 4.5 and 4.6 (right hand side). The R2 values range 

from 0.77 to 0.91 using the power law function, while they are between 0.62 and 0.82 

using the exponential function, suggesting that simulated sediment build-up loads 

obtained from either model are reasonable. Comparing the two models, the power law is 

found to perform a little better than the exponential function for the present study. It is 

therefore clear that the derived parameters can provide guidance in the application of 

commercial software packages for urban drainage at a particular location instead of 

using the default values. Indeed, appropriate estimation of the local build-up parameters 

is crucial to ensuring the accuracy of water quality modelling, as noted by Egodawatta 

et al. (2007) and Liu et al (2010).  

 

4.4.4 Particle Size Distribution of RDS 

  
Table 4.5 displays particle size distributions for road deposited sediment (RDS) by 

averaging over all four primary study sites for both sampling positions A and B. As 

before, data is shown over a time span of 14 ADD. In general particle sizes of 250-63 

µm (medium to fine sand) are dominant at both sampling positions. At sampling 

position A weight percentage of the RDS varied over time from approximately 36% to 

41% (with an average value of approximately 38%) for the 500 - 250 µm size fraction, 

followed by approximately 56% to 60% (with an average of 58%) for the 250 - 63 µm 

size fraction and approximately 3% to 4.5% (with an average value of 3.75%) for the  < 

63 µm size fraction. At sampling position B, the RDS comprised approximately 21% to 

26% (with an average value of 23.5%) for the size fraction of 500 - 250 µm, 

approximately 71% to 75% (with an average value of 73%) for the size fraction of 250 - 

63 µm and approximately 3% to 4% (with an average value of 3.5%) for the size 
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fraction of < 63 µm. Therefore, sediment collected at sampling position B contained, on 

average, approximately 15% more mass for the 250 - 63 µm size fraction compared to 

sampling position A, while the reverse trend was found for the size fraction 500 - 250 

µm (course to medium sand). There was no significant difference between the sampling 

positions for the < 63 µm size fraction.  

 

Table 4.5: Grain size distribution of RDS at both sampling positions averaged over all 

four primary study sites. 

 

Near Curb (A)  1 m from the Curb (B) 
Antecedent  
dry days 

Percentage by weight at size 
fraction (µm) 

 Percentage by weight at size fraction 
(µm) 

500-250 250-63 <63  500-250 250-63 <63 

1 36.6 58.9 4.5  26.4 70.9 2.7 

2 36.3 59.1 4.3  25.0 71.9 3.1 

3 36.5 59.3 4.1  24.2 72.4 3.4 

5 37.3 58.9 3.6  23.0 73.4 3.6 

7 38.1 58.9 3.5  22.6 73.5 3.9 

9 38.7 58.1 3.1  21.5 74.4 4.1 

14 40.5 56.5 2.9  21.0 75.1 3.9 

 

The particle size distributions suggest that finer fractions (particularly 250-63 µm size 

fraction) are more dominant (by mass) at sampling position B, while larger particles are 

predominant (by mass) at sampling position A. This finding is consistent with previous 

studies elsewhere, for example, Shaheen (1975), Ellis and Revitt (1982), Grottker 

(1987), Viklander (1998), Deletic and Orr (2005), Mahbub et al. (2010). In particular, 

sampling near the curb, Sartor et al. (1974) reported approximately 6% particles were 

smaller than 45 µm and 43%  were below 250 µm in their study in the USA, while Ball 

et al. (1998) found 10 to 30% of particles were  less than 200 µm on suburban road 

surfaces in Sydney. In contrast, sampling further away from the road, Deletic and Orr 

(2005) noted approximately 50% of the RDS were smaller than the 250 µm size in their 

study in Aberdeen, Scotland. The amount of sediment in the < 63 µm size compared to 

the total load (by mass) for both sampling positions was a little lower than reported in 

the studies by Ball et al. (1998), Deletic and Orr (2005) and Vaze and Chew (2002). 

This variation may likely be caused by local conditions found at the sites and the 

methods of sediment collection. As noted by Deletic and Orr (2005) common methods 
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used to collect road sediment, such as dry vacuuming, brushing and sweeping the 

surface may not be very reliable for the collection of very small particles.  

 

Furthermore from Table 4.5, the grain size distribution did not show a marked temporal 

variation over the antecedent dry periods. However, it appears that some small degree of 

particle redistribution did occur. At sampling position B, as dry days progress the 

sediment becomes finer (4% and 1.4% increase in weight for 250-63 µm and < 63 µm 

sizes, respectively over 1 to 14 ADD). However, a reverse picture of redistribution for 

RDS at position A was observed. As discussed earlier, based on the general driving 

pattern on roads, sediment deposited along the curb sides is unlikely to undergo 

agglomeration of particles, as noted by Mahbub et al. (2010) in their studies.  

 

Particle size distribution curves for both sampling positions for each site are shown in 

Figure 4.7. The values used for the curves are averages of the data collected over the 14-

dry day period. The distribution patterns are similar to those published in earlier studies 

(e.g. Deletic and Orr, 2005; Egodawatta, 2007). These graphs were then used to 

calculate the d10 and d50 particle sizes, for which 10% and 50% of all particles are 

smaller, respectively. The values of d10 and d50 are presented in Table 4.6.  

 

Figure 4.7 shows that particle size distributions are different at both sampling positions 

for all primary study sites. Across the sites, the d50 and d10 values in RDS at sampling 

position A were found to be approximately 20 to 50% higher than their values at 

sampling position B. Variability between sampling sites were found to exist for these 

parameters. As displayed in Table 4.6, the smallest d10 and d50 (average over 14 dry 

days) were found at the SR site, whilst the largest values were at the RSC site. The d10 

and d50 at the RB and RI sites fall in between the smallest and largest values. This 

difference in d10 and d50 across the sites may be linked to the site specific attributes, as 

discussed in section 4.4.1, with an influence of degree of disturbance on RDS due to the 

traffic load, as noted by Mahbub et al. (2010). 

 

The median diameters, d50, of RDS reported here fall within published ranges in the 

literature noted as anything between 150 to 4000 µm (Sartor and Boyd, 1972; Pitt, 1979; 

Butler and Clark, 1995, Ball et al., 1998; Deletic and Orr, 2005). Based on the results, it 

can be speculated that sediment at the SR and RI sites may likely be more available 
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during runoff events compared to the slightly coarser particles at the RB and RSC sites. 

This finding may have site specific implications for the pollution potential of road 

drainage in the study area. 

 

 
Figure 4.7: Particle size distributions (average over 14 antecedent dry days) for both 

sampling positions at the primary study sites.  

 

Table 4.6: Values of d10 and d50 for both sampling positions (A: near curb & B: 1 m 

from curb) 

 

Particle diameter 
(µm) 

Sampling 
position 

Study sites 
Road bend 

(RB) 
Road with speed 
control (RSC) 

Road 
intersection (RI) 

Straight 
road (SR) 

d10 
A 75 78 75 72 
B 45 65 60 28 

d50 
A 225 255 185 160 
B 170 170 155 120 
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4.4.5 Heavy Metals Build-up 

 

In this section the relationship between heavy metal concentrations in RDS and 

antecedent dry days for both sampling positions is discussed. Out of six metals, Cd, Cu, 

Pb and Zn were considered for this investigation, primarily based on their accumulation 

index, AI > 1.5, (see Table 4.1), as discussed earlier in section 4.2. Initially, metal 

concentrations (irrespective of sediment size fraction) were averaged over all the 

primary study sites. These data are presented in Figure 4.8, where trend lines using the 

power law function (found most suitable for best fit of heavy metal concentration data), 

are also shown. Note that the concentration scales are different for each metal in Figure 

4.8. The R2 values, ranging from 0.002 to 0.655, vary according to individual metals 

and sampling positions. It should also be noted that except for Cu at sampling position 

B, the statistical strength of the relationships are in general weak to moderate (R2 <0.5). 

 

Based on the metal build-up results from Figure 4.8, both increasing and decreasing 

trends with increasing ADD were found. In general, at sampling position B, all the 

metal concentrations showed an increasing trend with increasing ADD, which is 

consistent with current thinking in literature of a positive linear, or non linear, pollutant 

build-up with ADD. In contrast, at sampling position A, all metal concentrations were 

found to decrease with increasing ADD (although the Cd concentration did not vary 

significantly over the ADD). The decreasing trend of heavy metal concentration with 

increasing ADD is surprising and differs from current thinking. A similar downward 

trend of pollutant constituents is also reported by Li and Barrett (2008) at College 

Station site in Texas, USA. They further noted that although this relationship is 

unexpected, it should not be overlooked. 

 

An increasing trend with increasing ADD for all metals, further from the curb towards 

middle of the road could be explained by a continuous input of smaller particles from 

traffic, while near curb sides RDS may likely altered its chemical composition through 

volatilization, biodegradation and chemical decay process and reduce pollutants 

attached to the road deposited sediments, as speculated by Li and Barrett (2008). 

Moreover, as discussed earlier in section 4.4.4, this difference in metal concentration 

may be linked to the particle size distribution of RDS, for which the mass of finer size 

fractions (< 63 µm) increased with increased ADD at sampling position B, whilst 



86 
 

y = 255.34x-0.107

R² = 0.2334

y = 188.92x0.107

R² = 0.257

150

200

250

300

350

0 3 6 9 12 15

C
on

ce
nt

ra
tio

n 
(m

g 
kg

-1
)

ADD

Zn

y = 62.272x-0.066

R² = 0.0725

y = 48.492x0.3121

R² = 0.6555

20

45

70

95

120

0 3 6 9 12 15
C

on
ce

nt
ra

tio
n 

(m
g 

kg
-1

)
ADD

Cu

y = 0.8984x-0.005

R² = 0.002

y = 1.5272x0.0857

R² = 0.2796

0

0.5

1

1.5

2

2.5

0 3 6 9 12 15

C
on

ce
nt

ra
tio

n 
(m

g 
kg

-1
)

ADD

Cd

y = 143.82x-0.208

R² = 0.2696

y = 28.572x0.2275

R² = 0.4068
20

50

80

110

140

170

200

0 3 6 9 12 15

C
on

ce
nt

ra
tio

n 
(m

g 
kg

-1
)

ADD

Pb

reverse scenarios was found at sampling position A. Therefore, the point is being re-

affirmed from the results of this study that pollutant build-up varies with transverse 

sampling positions. 

 

 

 
Figure 4.8: Relationship between heavy metal concentrations and ADD (squares and 

diamonds represent data for near the curb [A] and 1 m from the curb [B] sampling 

positions, respectively). 

 

Furthermore, considering the data in a different way, metal concentrations in RDS are 

now averaged over sampling positions for each individual primary site and are studied 

to gain supplementary insight into these relationships. Figure 4.9 shows RDS metal 

build-up over dry days in the same format as Figure 4.8 for all four primary study sites. 



87 
 

R² = 0.0554

R² = 0.437

R² = 0.0065

R² = 0.8177

0

1.5

3

4.5

6

0 3 6 9 12 15

C
on

ce
nt

ra
tio

n 
(m

g/
kg

)

ADD

Cd

R² = 0.6719

R² = 0.766

R² = 0.0541

R² = 0.54

0

30

60

90

120

150

0 3 6 9 12 15

C
on

ce
nt

ra
tio

n 
(m

g/
kg

)

ADD

Cu

R² = 0.2683

R² = 0.0347

R² = 0.4735

R² = 0.6934

0

50

100

150

200

250

0 3 6 9 12 15

C
on

ce
nt

ra
tio

n 
(m

g/
kg

)

ADD

Pb

R² = 0.5165

R² = 0.431

R² = 0.1773

R² = 0.0022

0

100

200

300

400

500

0 3 6 9 12 15

C
on

ce
nt

ra
tio

n 
(m

g/
kg

)

ADD

Zn

Road bend (RB)
Road with speed control (RSC)
Road intersection (RI)
Straight road (SR)

Figure 4.9: Heavy metal concentration in road deposited sediment over the antecedent 

dry days at the primary study sites (average over sampling positions and different size 

fractions). 

 

As seen in Figure 4.9, based on the statistical strength (R2), the pollutant build-up 

relationships varied between study sites. However the strength of the relationships (R2) 

were found to be improved in Figure 4.9 compared to the values in Figure 4.8. Aprat 

from Pb (at the RB and RSC sites), all other metals show an increasing trend with 

increasing ADD for all the sites. The build-up pattern was generally more consistent for 

Cu (except at the RI site) and Zn (except at the SR site), while they were rather 

inconsistent for Cd between the sites. For example, Cd build-up patterns at the RB and 

RI sites were not significantly different over the ADD based on the trend lines, while in 
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contrast Cd at the SR site showed a high rate of build-up over the entire build-up period. 

The nature of the diverse data found for Cd at the above site may not likely be well 

described by the trend lines using the power law function. However, the build-up 

pattern of Cd at the RSC site can still be replicated reasonably using this function, as 

seen in the figure. 

 

In contrast to other metals, Pb concentrations showed both positive and negative 

relationship with the ADD. While Pb concentrations at the RI and SR sites were found 

to increase with increasing ADD, they were found to decrease with increasing ADD at 

the RB and RSC sites, which is inconsistent with current understanding of the pollutant 

build-up pattern. However, this may not be surprising, as discussed earlier. The primary 

source of the Pb at the RB and RSC sites is likely to be the road paint (double yellow 

lines) rather than traffic, from which a continuous input of metals may better explain the 

pollutant build-up at the other sites (see Table 3.1 for detailed site description).  

 

Moreover, as discussed earlier, road lay-out, sediment particle sizes, presence of road 

paints and traffic movement pattern can influence site specific heavy metals emission 

(see Tables 4.1, 4.2), which may also explain the variability of heavy metal build-up 

over ADD between sites. 

 

4.5 Conclusions 

 

This chapter reveals that dry road deposited sediment (RDS) contains significant 

amounts of heavy metals compared to their background levels. A spatial variability of 

heavy metal concentrations were found on the studied road network according to site-

specific attributes rather than due to traffic volume alone. A road bend, bus stops, a road 

with speed control measures, a road intersection and a straight road were all found as 

pollutant hot-spot sites. RDS and RDS associated heavy metal build-up patterns were 

found to be site-specific. Hence, local build-up parameters were derived and compared 

with default values in commonly used commercial urban drainage software, suggesting 

that the default values are (significantly) inappropriate for a road network, such as 

Riccarton Campus. Furthermore, the analysis of the relationship between heavy metal 

build-up and antecedent dry days revealed that RDS sampling position was an important 
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factor. Although the pattern of pollutant build-up was common, a transverse distribution 

of sediment build-up was also observed. 
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Chapter – 5 Analyses of Heavy Metals in Dry Weather 

Derived Sediment 

 

5.1 Introduction 

 

In contrast to the previous chapter which concerned the analysis of information from a 

intensive data collection exercise, this chapter is concerned with the analysis of heavy 

metals in dry road deposited sediment (RDS) collected from the primary study sites at 

approximately monthly intervals over a year. The data from the short duration exercise 

(April 2010), as discussed in Chapter 4, also features part of the second month of the 

longer exercise (March 2010 to February 2011). The data set and all the analysis are 

based on the primary study sites, namely, the road bend (RB), road with speed control 

(RSC), road intersection (RI) and straight road section (SR). The data is analysed with 

the aim of quantifying heavy metals Cd, Cr, Cu, Ni, Pb and Zn in RDS and exploring 

the influence of sampling position and different sediment size fractions on heavy metal 

concentrations. The temporal (monthly) and seasonal variations of heavy metals in RDS 

are analysed and presented. Furthermore, evaluation of heavy metal contamination is 

also discussed.  

 

5.2 Grain Size and Sampling Position Specific Heavy Metals in RDS  

 

Table 5.1 presents the grain size specific heavy metal concentrations in RDS for both 

sampling positions (A: near the curb and B: 1 m from the curb) determined by 

averaging metal concentrations over the 4 primary study sites. The local background 

values of the metals from Riccarton Campus are also shown. The accumulation index, 

which is the ratio of the mean to the local background mean, is also presented in the 

table. The ranges, mean and median for heavy metal concentrations in all size fractions 

of RDS at both the sampling positions were found within the ranges of values reported 

by previous studies for residential catchments in the UK, such as Deletic and Orr (2005) 

and Robertson and Taylor (2007), and in other parts of the world (e.g. Kim et al., 1998; 

Sutherland, 2003). 
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Table 5.1: Descriptive statistics of grain size specific metal concentrations (average 

over sites) in mg kg-1 for both sampling positions (A: near curb & B: 1 m from curb) as 

measured between March, 2010 and February 2011 (n = 120). 

 

Metals Sampling 
position 

Size 
fraction 
(µm) 

 Range Median Mean ± 
Standard 
deviation  

Background 
mean1  

Accumulation 
index2 

Cd 

A 
500-250 0.0.16 –1.6 0.80 0.77 ± 0.38 

1 

0.77 
250-63 0.0.13 – 2.2 1.24 1.20 ± 0.47 1.20 
<63 0.0.56 – 4.1 2.16 2.06 ± 0.65 2.06 

     

B 
500-250 0.0.20 – 2.0 0.80 0.82 ± 0.38 0.82 
250-63 0.0.15 – 3.1 1.25 1.32  ± 0.46 1.32 
<63 0.0.71– 16.7 2.30  2.76 ± 2.14 2.76 

Cr 

A 
500-250 0.2 – 25 8 10 ± 6 

8 

1.25 
250-63 0.2 – 73 14 14 ± 8 1.75 
<63 0.6 – 47 23 23 ± 9 2.87 

     

B 
500-250 0.1 – 20 5 8 ± 5 1.00 
250-63 0.2 – 32 11 12 ± 6 1.25 
<63 0.0 – 54 20 19 ± 9 2.37 

Cu 

A 
500-250 0.10 – 82 35 38 ± 14 

44 

0.86 
250-63 0.16 – 154 72 75 ± 30 1.70 
<63 0.52 – 289 196 183 ± 53 4.16 

     

B 
500-250 0.14 – 89 41 45 ± 17 1.02 
250-63 0.28 – 185 87 94 ± 34 2.14 
<63 0.44 – 330 189 193 ± 56 4.39 

Ni 

A 
500-250 0.1 – 24 8 9 ± 5 

20 

0.40 
250-63 0.2 – 37 14 15 ± 7 0.75 
<63 0.9 – 64 26 28 ± 13 1.40 

     

B 
500-250 0.2 – 20 7 8 ± 5 0.40 
250-63 0.2 – 35 11 14 ± 7 0.70 
<63 0.0 – 54 22 24 ± 13 1.20 

Pb 

A 
500-250 0.12 – 275 69 93 ± 65 

28 

3.32 
250-63 0.13 – 669 102 132 ± 105 4.71 
<63 0.26 – 345 142 147 ± 60 5.25 

     

B 
500-250 0.4 – 90 24 32 ± 20 1.14 
250-63 0.10 – 180 53 58 ± 32 2.07 
<63 0.14 – 215 111 113 ± 37 4.04 

Zn 

A 
500-250 0.63 – 224 115 122 ± 38 

107 

1.14 
250-63 0.79 – 400 218 225 ± 82 2.10 
<63 0.190 – 907 523 501 ± 133 4.68 

     

B 
500-250 0.38 – 220 107 110 ± 41 1.03 
250-63 0.86 – 487 210 220 ± 82 2.06 
<63 0.89 – 893 499 483 ± 134 4.51 

1The background concentrations were measured in RDS from roads which carry no traffic 
2 Ratio of the mean to the local background mean 
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As seen in Table 5.1, the mean concentrations increased as sediment size fraction 

decreased for both sampling positions suggesting lower size fractions have greater 

attachment of heavy metals. In general, the mean and median heavy metal 

concentrations for the < 63 µm size fraction were approximately 2 to 5 times larger 

compared to the mean and median values for 250-63 µm and 500-250 µm size fractions, 

respectively, for both sampling positions. A significant difference for heavy metal 

concentrations always exists between the sediment size fractions (Kruskall-Wallis test; 

p ≤ 0.05). 

 

Based on the sampling positions, it has been found that Cd and Cu showed higher 

concentrations in RDS at sampling position B than sampling position A, while Cr, Ni, 

Pb and Zn displayed the opposite trend (Table 5.1). The differences between sampling 

positions varied between the heavy metals with Ni and Zn showing the smallest 

differences, and Cu and Pb showing the largest. Furthermore, Table 5.1 reveals an 

average 16% increase of Cd and Cu concentrations, and an average 25% and 50% 

decrease of Cr and Pb concentrations, respectively, between sampling positions A and 

B, while in contrast, Ni and Zn exhibit little or no differences between the two 

transverse sampling positions (particularly for both 250-63 µm and 500-250 µm size 

fractions). 

 

The accumulation indices for most of the metals (except Pb near the curb) in the 500-

250 µm size fraction were near 1.0, suggesting that the larger RDS are unlikely to be 

contaminated by heavy metals from road traffic activity. In contrast, all heavy metals 

except Ni showed elevated concentrations compared to background concentrations for 

250-63 µm and < 63 µm size fractions, indicating that there are indeed some local 

anthropogenic inputs (e.g. from the road-traffic environment) on top of atmospheric 

deposition. For the latter two size fractions, in general, at sampling position A, the order 

of accumulation coefficient is found as Pb > Zn > Cu > Cr > Cd, and at sampling 

position B, the order of increase is found as Zn > Cu > Pb > Cd > Cr.  

 

As discussed earlier in section 4.2, these heavy metals are somewhat related to road 

traffic and are found at elevated levels in urban road traffic environments. However, an 

unusually high level of Pb in the study area is surprising because a major source of Pb 

was phased out more than a decade ago as it had been added to fuel as an anti-knocking 
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additive. Additionally, any residual effect from the previous use of Pb is unlikely as 

road sediment is characterized by short residence times with recent accumulation on 

road surfaces (Harrison et al., 1985; Allott et al., 1990; Xiangdong et al., 2001). The 

only other likely source of Pb in RDS near curb sides is from particles of degrading 

road paint of the double yellow lines (see Table 4.2). The input of Pb from yellow road 

paint was first reported by Deletic and Orr (2005). However, elevated concentrations of 

Pb in particularly at sampling position B (especially for the size fraction < 63 µm), 

suggests that other traffic related inputs, such as wheel bearings, oil drips, vehicle 

exhaust, may still deliver Pb to the road traffic environment, as reported by Napier et al. 

(2008) and Ewen et al. (2009). 

 

The reason behind higher concentrations for Zn, Cu and Cd at sampling position B than 

sampling position A may be linked with vehicular emission, as it was observed that 

usually vehicles passed directly over position B, and hence any deposition of 

particulates, from e.g. tyres and brakes, containing heavy metals would most likely 

occur at this position (Deletic and Orr, 2005). Moreover, prevalence of transverse 

gradient of heavy metal concentrations in road dust was found to exist, as reported by 

Johnston and Harrison (1984) and Deletic and Orr (2005), suggests that the rate of 

redistribution (by vehicle induced turbulence or natural processes, such as wind) is 

always less than the rate of deposition. 

 

5.3 Variability of Heavy Metals across the Study Sites 

 

Following on section 5.2, this section describes the variability of heavy metals across 

the primary study sites. Figures 5.1 to 5.6 display box plots of Cd, Cr, Cu, Ni, Pb and 

Zn concentrations, respectively, at each site for different grain sizes and for both 

sampling positions. The influence of grain size and sampling position on metal 

emissions was discussed in the previous section, which are also evident from the figures 

plotted here. However, in this section site specific variability of heavy metal 

concentration is primarily discussed, which was absent in Table 5.1. As seen in Figures 

5.1 to 5.6, heavy metal concentration is found to vary between sites. In general, the 

metal concentrations are found to increase with decreasing particle size fractions except 

Pb. However, with a few exceptions, the mean concentrations for most of the metals in 

the largest size fraction of RDS (500-250 µm) are not significantly different to their 
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local background concentrations. The variation of each heavy metal is discussed briefly 

below. 

 

Cadmium (Cd) 

 

Figure 5.1: Box plots of grain size and site specific Cadmium (Cd) in RDS for both 
sampling positions (dashed line represents local background value). 
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Chromium (Cr) 

 

 

 

Figure 5.2: Box plots of grain size and site specific Chromium (Cr) concentration in 

RDS for both sampling positions (dashed line represents local background value). 
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Copper (Cu) 

 

 

Figure 5.3: Box plots of grain size and site specific Copper (Cu) concentration in RDS 

for both sampling positions (dashed line represents local background value). 
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Nickel (Ni) 

 

 

 

Figure 5.4: Box plots of grain size and site specific Nickel (Ni) concentration in RDS 

for both sampling positions (dashed line represents local background value). 
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Lead (Pb) 

 

 

 

Figure 5.5: Box plots of grain size and site specific Lead (Pb) concentration in RDS for 

both sampling positions (dashed line represents local background value). 
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Zinc (Zn) 

 

 

 

Figure 5.6: Box plots of grain size and site specific Zinc (Zn) concentration in RDS for 

both sampling positions (dashed line represents local background value). 
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As seen in Figure 5.1, generally the highest mean Cd concentrations were at the RSC 

site, while they were lowest at the RI site. Except the SR site, the mean concentrations 

were found very similar (particularly for the < 63 µm size fraction) at sampling position 

A between the sites, while at sampling position B they varied between the sites. The 

mean Cd concentrations were similar between the RSC and SR sites (≈2.8 mg kg-1), 

and between the RB and RI sites (≈2. mg kg-1). 

 

The variation of Cr across the sites was found in the order of the RSC > RB > RI > SR 

sites, as seen in Figure 5.2. For the sediment size fraction 250-63 µm, the highest mean 

Cr of 18 mg kg-1 (A) was at the RSC site, while the lowest was 7 mg kg-1 (B) at the RI 

site. Similarly for the smallest sediment size fraction (< 63 µm), the highest mean 

concentration of 28 mg kg-1 (A) was at the RSC site and the lowest concentration of 8 

mg kg-1 (B) was at the SR site. 

 

The Cu concentrations were found to vary widely between sites. As seen in Figure 5.3, 

generally Cu concentration was higher at the RSC site compared to the RI and SR sites 

in particular. However, Cu concentration at the RB site was only a little below that at 

the RSC site. For the sediment size fraction 250-63 µm, the highest mean Cu 

concentration of 120 mg kg-1 (B) was at the RSC site followed by 105 (B), 83 (B) and 

67 (A) mg kg-1 at the RB, RI and SR sites, respectively. Similarly, for the smallest 

sediment size (< 63 µm), the highest Cu concentration of 234 mg kg-1 (B) was also at 

the RSC site, while the lowest concentration of 161 mg kg-1 (A) was at the RI site, as 

seen in Figure 5.3.  

 

A site specific variability of Ni concentration revealed that the highest concentration 

was for the RB site and the lowest was for the SR site, see Figure 5.4. Based on the 

mean value, the concentration of Ni at the RSC site was a little smaller compared to the 

RB site. Similarly, the RI site showed a little higher value than in the SR site. For the 

sediment size fraction of 250-63 µm, the highest mean of 20 mg kg-1 (A) was at the RB 

and RSC sites, while the lowest was 8 mg kg-1 (B) at the RI and SR sites. Similarly, for 

the < 63 µm size fraction, the highest mean Ni concentration was approximately 43 mg 

kg-1 (A) at the RB site compared to the lowest concentration of approximately 11 mg 

kg-1 (B) at the SR site.  
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The variation of Pb concentrations between the sampling sites and between the 

sampling positions is rather inconsistent, as seen in Figure 5.5, compared to the 

variations found for other metals. Generally, Pb concentration was found higher in RDS 

collected from the sampling position A than B across the sites. Based on sites, except 

the RSC site, all others showed increased concentration with decreased sediment sizes. 

For the RSC site, the highest mean concentration of 261 mg kg-1 was in the 250-63 µm 

size fraction compared to the value of 177 mg kg-1 in the < 63 µm size fraction.  In 

contrast, the highest mean Pb concentrations were 156, 52 and 33 mg kg-1 in the 

sediment size fraction 250- 63 µm at the RB, SR and RI sites, respectively, while these 

were 180, 110 and 105 mg kg-1 in the sediment size fraction < 63 µm at the RB, RI and 

SR sites, respectively. Subsequently, a relatively high Pb concentration (particularly, in 

the < 63 µm sediment size fraction) at sampling position B was also evident across the 

sites showing concentrations range from 90 to 134 mg kg-1 across the sites.  

 

The Zn concentration across the sampling sites did not display much variation, as seen 

in Figure 5.6. Moreover, Zn concentrations were found very similar at both sampling 

positions at each site. Briefly, for both 250-63 µm and < 63 µm sediment size fractions, 

the highest Zn concentrations were found at the RB and RSC sites, while the lowest 

concentrations were at the RI site. The concentrations at the SR site were either 

marginally higher or lower compared to their values at the RSC site.  

 

Based on the discussion above, it has been revealed that RDS at the RSC site is more 

contaminated for most of the metals followed by the RB site. Similarly, RDS at the RI 

and SR sites have similar compositions with generally lower metal concentration 

compared to the aforementioned sites. As mentioned elsewhere, traffic volume for the 

SR site (650 VPH) is significantly higher than the RB (200 VPH) and RSC (250 VPH) 

sites, however, the higher metal concentration is not found in accordance with the traffic 

volume. This corroborates the idea that site-specific attributes (road lay-out, traffic 

movement patterns, road condition, and presence of road paints) are important 

influences in addition to the traffic volume. 
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5.4 Monthly Distribution of Heavy Metals 

 

5.4.1 Temporal Variation of Heavy Metals in RDS 

 

Recognizing the importance of the temporal variability of heavy metals to urban diffuse 

pollution from roads (Robertson and Taylor, 2007), this study carried out monthly metal 

analyses at the primary study sites. In the literature a few previous studies had focused 

on the spatial variability of heavy metals on road surfaces (Linton et al., 1980; Harrison 

et al., 1985; Deletic and Orr, 2005), while a number of studies also existed on the city 

scale (Robertson et al., 2003; Charlesworth et al., 2003; Carraz et al., 2006). However, 

only limited information was available on the monthly metal distribution pattern 

(Robertson and Taylor, 2007), while some seasonal variability of RDS heavy metals 

had been published (e.g. Hamilton et al., 1984; Fergusson and Kim, 1991). Figure 5.7 

shows the monthly mean metal distribution (averaged over sampling positions and all 3 

size fractions) at the primary study sites. A greater variability was apparent between the 

study sites for Cr, Ni and Pb compared to Cd, Cu and Zn. Additionally, metal 

concentrations throughout the year tended to be higher at the RB and RSC sites than at 

the RI and SR sites. Overall higher metal concentrations were found during summer 

months than in spring and autumn, and the lowest were found in late winter/early 

spring, as seen in Figure 5.7. A similar observation was reported by Robertson and 

Taylor (2007) from their study in Manchester, UK. 

 

In general for most of the sites, the highest metal concentrations were found to occur in 

July (except Cd in June at the SR site and Pb in April at the RSC site) and the lowest 

concentrations were in March. The peak concentration of the metals varied between the 

sites. Considering the overall trend, the high metal concentrations, for example, in July 

may be due to relatively long dry spells after rain events, while low concentrations, for 

example, in March may likely be linked to frequent rainfall for the study area (see the 

climate data in Appendix A). A similar suggestion was made by Robertson and Taylor 

(2007) in their study in Manchester, UK. Furthermore, Hamilton (1984) and Fergusson 

and Kim (1991) noted that weather patterns had a significant influence on RDS metal 

compositions stating that metal concentrations fell after heavy rain, while warmer and 

drier periods promoted pollutant accumulation.  
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Figure 5.7: Monthly mean metal concentrations for different sampling sites (RB: road 

bend; RSC: road with speed controls; RI: road intersection and SR: straight road 

section). 
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The only significant anomaly in the data is that Ni, in particular at the RB and RSC 

sites, showed an increasing trend during winter months. This may indicate that Ni is 

being released from the corrosion products of road infrastructures (crash barriers, lamp 

post, road signs etc.) and vehicles during the winter, as suggested by Göbel et al. 

(2007). 

 

5.4.2 Grain Size Specific Monthly Mean Metal Variation 

 

Figure 5.8 illustrates monthly mean metal concentrations (now averaged over primary 

sites) in different sediment size fractions for both sampling positions (A and B). The 

temporal variability of monthly mean metal concentrations in all 3 size fractions is 

consistent with each other. The highest concentrations occur in the summer, while the 

lowest concentrations are in late winter for most of the metals, with the exception of Ni 

which shows an increasing trend in the winter months.  

 

As seen in Figure 5.8, the distributions of monthly mean concentrations for any metal 

are similar for all size fractions. As expected however, metal concentrations increase 

with decreased sediment particle size fraction for both sampling positions, with the 

exception of Pb, for which the largest values are found in the 250-63 µm size fraction. 

The concentration differences between the sediment size fractions varied between the 

metals with Cu, Ni and Zn showing the largest differences and Cd, Cr and Pb showing 

the smallest.  

 

Considering the sampling positions, higher concentrations of Cd, Cr and Cu are found 

in RDS at B than A, while Ni and Pb show the reverse picture. Zn concentration only 

exhibits a small difference.  

 

The mean monthly metal concentrations in 250-63 µm and < 63 µm size fractions of 

RDS from the present study fall within the range of values reported in previous studies 

(Ellis and Revitt, 1982; Bris et al., 1999; Robertson and Taylor, 2007). However the 

monthly mean metal concentrations in the 500-250 µm (except Pb) size fraction fall 

well below the reported values from the above mentioned studies, some of which 

documented high metal concentrations associated with coarse grain-sizes. 
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Figure 5.8: Grain size specific monthly mean metal concentrations (average for all four 

sites) in mg/kg (A: near curb and B: 1 m from the curb sampling positions). 
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Based on the data presented in Figures 5.7 and 5.8, it is likely that any significant 

rainfall events during summer and autumn (preceded by prolonged periods of dry 

weather which allow pollutants to build-up) are likely to generate considerable metal 

loads from road surfaces that potentially pose a threat to nearby waters in the study area. 

Moreover, significant differences in monthly mean metal concentrations suggest that the 

potential control measures at study sites should not only be limited to summer and 

autumn runoff events.  

 

5.5 Correlation Analysis of RDS Heavy metals 

 
To assess the influence of traffic–related sources (tyres, brakes, corrosion, exhaust 

fumes and pavement wear), correlations between the metal concentrations (averaged 

over all sites) were analysed for both sampling positions using the entire metal data set 

derived from the RDS collected over a year at all the primary study sites. Firstly, 

correlation was tested between heavy metal concentrations for RDS (irrespective of 

sediment size fractions) for both sampling position, as seen in Table 5.2, showing 

Spearman’s rank correlation coefficients, r, (these being used because the experimental 

data did not follow a Gaussian distribution). The correlation coefficient, r, ranges from 

0.324 to 0.675, indicating poor to moderate strength of the relationships between 

metals. Although the r values are not very high from this study, they are still in the 

ranges of values reported by previous published work elsewhere (e.g. Deletic and Orr, 

2005).  

 
Table 5.2: Spearman rank correlation coefficient among metal concentrations in RDS  
 

 Cd Cr Cu Ni Pb Zn 

Position A: near curb (120 samples) 
Cd 1.000      
Cr  1.000     
Cu  0.544**  1.000    
Ni    1.000   
Pb    0.585**  1.000  
Zn 0.617**    0.528**  0.534**  1.000 
Position B: 1 m from curb (120 samples) 
Cd 1.000      
Cr  1.000     
Cu 0.423**  0.481**  1.000    
Ni  0.455**  0.324* 1.000   
Pb  0.657**    1.000  
Zn 0.429**  0.615**  0.639**  0.675**   1.000 

*Significant to 0.05%; **Significant to 0.01%; blanks indicate no significant correlation. 
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As seen in Table 5.2, concentrations of certain metals did correlate well with each other, 

and there were more statistically significant correlations between metals in RDS at 

sampling position B (9) than sampling position A (4). The most plausible explanation is 

that metals accumulating on the road surface farther from the curb may all be of the 

same origin (road-traffic), while the sources of the metals along the curb are more 

diverse (e.g. traffic – passed through very close to the curb side, redistribution of road 

sediment – from middle to edge of the road, nearby sources - foot path, surrounding 

land etc.). 

 

Furthermore, correlation analyses were carried out for both sampling positions but now 

separating samples into different particle size fractions, as presented in Tables 5.3 and 

5.4. It was found that the strength of the correlations was improved by separating metal 

concentration into separate size fractions of RDS. It was also found to increase with 

decreasing particle size fraction (Tables 5.3 and 5.4). For example, all metals in the < 63 

µm fraction size correlate with each other with r ≥ 0.50 for both sampling positions, 

while for the largest fraction size (500-250 µm) only Pb and Ni showed good 

correlation (r ≥ 0.50) in particular for RDS collected at sampling position A. With the 

exception of a few weak correlation coefficients, generally correlations were good 

between metal concentrations in the 250-63 µm size fraction of RDS at both sampling 

positions.  

 

Moreover, a greater number of statistically significant correlations between metal 

concentrations were found taking size fractions into account (see Tables 5.3 and 5.4) 

than were apparent in integrated samples (see Table 5.2). For example, at sampling 

position A, Pb was only found to correlate with Ni (Table 5.2), however, separating 

RDS into different sediment sizes, Pb (particularly in the 250-63 and < 63 µm size 

fractions) was correlated with all other metals (Table 5.3). Similarly, at sampling 

position B, Ni showed correlation with Zn only (Table 5.2) compared to Ni (in 250-63 

and < 63 µm size fractions of RDS), for which significant correlations existed with all 

other metals (Table 5.4).  
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Table 5.3: Spearman rank correlation coefficient between metal concentrations in different RDS size fractions from near curb sampling 

 

   Cd  
(500-250) 

Cd 
(250-63) 

Cd 
(<63) 

Cr  
(500-250) 

Cr 
(250-63) 

Cr 
(<63) 

Cu  
(500-250) 

Cu 
(250-63) 

Cu 
(< 63) 

Ni  
(500-250) 

Ni 
(250-63) 

Ni 
(<63) 

Pb  
(500-250) 

Pb 
(250-63) 

Pb 
(< 63) 

Zn 
(500-250) 

Zn 
(250-63) 

Zn 
(< 63) 

 Cd in 500-250 µm   1.000                  

Cd in 250-63 µm  0.555**  1.000                 

Cd in < 63 µm  0.535**  0.837**  1.000                

Cr in 500-250 µm    0.368 0.422 1.000               

Cr in 250-63 µm   0.277**  0.358**  0.518**  1.000              

Cr in < 63 µm  0.255**  0.451**  0.564**  0.467**  0.690**  1.000             

Cu in 500-250 µm   0.452**  0.580**  0.671**  0.318**  0.375**  0.572**  1.000            

Cu in 250-63 µm  0.421 0.573**  0.596**  0.333 0.461**  0.631**  0.699**  1.000           

Cu in < 63 µm  0.413**  0.528**  0.598**  0.325**  0.497**  0.561**  0.589**  0.780**  1.000          

Ni in 500-250 µm    0.199* 0.337**  0.478 0.257**  0.423**  0.201* 0.212* 0.212* 1.000         

Ni in 250-63 µm  0.263**  0.448**  0.519**  0.537**  0.446**  0.607**  0.422**  0.342**  0.355**  0.672**  1.000        

Ni in < 63 µm   0.279**  0.390**  0.563**  0.507**  0.606**  0.280**  0.285**  0.283**  0.728**  0.831**  1.000       

Pb in 500-250 µm     0.226* 0.358**  0.340* 0.502**  0.229*  0.209* 0.544**  0.576**  0.691**  1.000      

Pb in 250-63 µm   0.255**  0.397**  0.409**  0.603**  0.743**  0.506**  0.536**  0.532**  0.437**  0.495**  0.592**  0.620**  1.000     

Pb in < 63 µm   0.306**  0.478**  0.477**  0.474**  0.667**  0.368**  0.381**  0.464**  0.595**  0.577**  0.686**  0.689**  0.795**  1.000    

Zn in 500-250 µm   0.349**  0.426**  0.503**  0.245* 0.213* 0.366**  0.479**  0.414**  0.594**  0.356**  0.444**  0.296**  0.203* 0.306**  0.418**  1.000   

Zn in 250-63 µm  0.406**  0.446**  0.520**  0.320**  0.405**  0.474**  0.542**  0.420**  0.608**  0.244**  0.586**  0.347**  0.254**  0.392**  0.420**  0.686**  1.000  

Zn in < 63 µm  0.318**  0.523**  0.590**  0.549**  0.550**  0.688**  0.513**  0.537**  0.595**  0.432**  0.650**  0.481**  0.375**  0.599**  0.598**  0.571**  0.744**  1.000 

**. Significant to 0.01%; *. Significant to 0.05% 
Correlation coefficients ≥ 0.500 between metals are in bold. 
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Table 5.4: Spearman rank correlation coefficient between metal concentrations for different RDS size fractions from 1 m from the curb 
sampling. 
 

  Cd  
(500-250) 

Cd 
(250-63) 

Cd 
(<63) 

Cr  
(500-250) 

Cr 
(250-63) 

Cr 
(<63) 

Cu  
(500-250) 

Cu 
(250-63) 

Cu 
(< 63) 

Ni  
(500-250) 

Ni 
(250-63) 

Ni 
(<63) 

Pb  
(500-250) 

Pb 
(250-63) 

Pb 
(< 63) 

Zn 
(500-250) 

Zn 
(250-63) 

Zn 
(< 63) 

 Cd in 500-250 µm  1.000                  

Cd in 250-63 µm 0.572**  1.000                 

Cd in < 63 µm 0.483**  0.738**  1.000                

Cr in 500-250 µm   0.313**  0.425**  1.000               

Cr in 250-63 µm 0.296**  0.442**  0.483**  0.425**  1.000              

Cr in < 63 µm  0.435**  0.518**  0.597**  0.754**  1.000             

Cu in 500-250 µm  0.553**  0.576**  0.694**  0.343**  0.512**  0.559**  1.000            

Cu in 250-63 µm 0.347**  0.544**  0.649**  0.550**  0.519**  0.735**  0.704**  1.000           

Cu in < 63 µm 0.354**  0.437**  0.529**  0.423**  0.528**  0.697**  0.562**  0.771**  1.000          

Ni in 500-250 µm   0.241 0.401**  0.612**  0.445**  0.643**  0.411* 0.592**  0.620**  1.000         

Ni in 250-63 µm 0.183* 0.452**  0.531**  0.568**  0.482**  0.651**  0.557**  0.668**  0.637**  0.785**  1.000        

Ni in < 63 µm  0.379**  0.533**  0.592**  0.598**  0.672**  0.545**  0.566**  0.624**  0.724**  0.805**  1.000       

Pb in 500-250 µm  0.197 0.245 0.359**  0.365* 0.420**  0.549**  0.341**  0.436**  0.542**  0.482**  0.494**  0.600**  1.000      

Pb in 250-63 µm  0.186* 0.311**  0.312**  0.473**  0.520**  0.228* 0.387**  0.574**  0.519**  0.546**  0.599**  0.516**  1.000     

Pb in < 63 µm  0.202* 0.349**  0.398**  0.379**  0.552**  0.235**  0.444**  0.655**  0.581**  0.524**  0.596**  0.552**  0.796**  1.000    

Zn in 500-250 µm  0.264**  0.391**  0.486**  0.367**  0.355**  0.427**  0.492**  0.502**  0.514**  0.469**  0.505**  0.516**  0.352**  0.411**  0.346**  1.000   

Zn in 250-63 µm 0.340**  0.366**  0.463**  0.225* 0.506**  0.489**  0.591**  0.490**  0.548**  0.415**  0.550**  0.605**  0.396**  0.463**  0.360**  0.697**  1.000  

Zn in < 63 µm 0.357**  0.488**  0.598**  0.493**  0.654**  0.704**  0.662**  0.665**  0.668**  0.612**  0.735**  0.774**  0.518**  0.507**  0.523**  0.538**  0.661**  1.000 

 **. Significant to 0.01%; *. Significant to 0.05%;  
Correlation coefficients ≥ 0.500 between metals are in bold. 
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5.6 Heavy Metal Pollution Assessment 

 

With increasing urbanisation, the impact of heavy metal pollution on the nearby water 

environment becomes a more serious issue, and so has received much attention in 

environmental research studies. To control or regulate the pollution, countries usually 

specify up limits on levels of heavy metals in the environment that should not be 

exceeded. Monitoring trace metals has seen an upsurge of interest as a way to study 

environmental consequences derived from road traffic (Kadi, 2009). As a result, a 

variety of pollution indices for sediment associated heavy metals have been proposed to 

quantify the level of pollution and associated impacts on aquatic life (Yu et al., 2003; 

Huang et al., 2009). This section discusses the potential heavy metal pollution derived 

from the road traffic environment at the primary study sites using the entire data set for 

all the primary sites over a year. 

 

5.6.1 Environmental Significance  

 

For metals having an accumulation index > 1, the highest mean (and maximum) 

concentration obtained from all size fractions and both sampling positions (taken from 

Table 5.1) were compared with several trigger concentrations (used to monitor hazard 

assessment relating to soil quality), see Table 5.5. Note that the three sets of trigger 

values shown in Table 5.5 are rather inconsistent, but the soil guideline value (SGV) is 

used here because it is relevant to UK locations whereas the other trigger values apply 

to Canada. These indices, however, have previously been used to evaluate road 

sediment quality for environmental pollution assessment (e.g. Heal et al., 2006). The 

metals were arranged under two groups consistent with the format described in ICRCL 

(1983) based on their hazard potential. Briefly, the highest mean concentrations 

(averaged over the primary sites) were associated with the size fraction <63 µm at 

sampling position B for Cd and Cu, but at position A for Cr, Pb and Zn. These highest 

mean concentrations for Zn, Cu and Cd were found to exceed their respective values in 

the SGV, but those for Cr and Pb did not. Similar comments are also true for the 

maximum concentrations except for Pb (where the maximum concentration was found 

for the 250-63 µm size fraction). None of the mean or maximum concentrations of 

metals for the largest size fraction 500-250 µm were found to exceed any of the 

guideline values.  
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Table 5.5: Comparison of observed metal concentrations with published guide line 

values (A: near curb & B: 1m from the curb) 

 
Group 1: Contaminants which may pose hazard to health 

 
Contaminant   Metal concentration  Trigger concentrations (mg kg-1)  

Size fraction 250-
63µm  

Size fraction 
< 63µm  

SGVa SQGb SQGEHc 

Cd (B)  Mean  1.30  3  3* - - 

Max.  3.10  17  15** - - 

Cr (A)  Mean  14  23 600* 250* 64* 

Max.  73  47  1000** 750** 64**  

Pb (A)  Mean  132  147  500* 500* 140* 

Max.  669  345  2000** 375** 70** 

 
Group 2: Phytotoxic contaminants not normally hazardous to health 

 
Contaminant   Metal concentration  Trigger concentrations (mg kg-1)  

Size fraction 250-
63µm  

Size fraction 
< 63µm  

SGVa SQGb SQGEHc 

Cu (B)  Mean  94  193  130 100-150 63 
Max.  185  330     

Zn (A)  Mean  225  501  300 500-600 200-600 
Max. 400  907     

Mean concentrations exceeding trigger values are shown in bold  
a Soil Guideline values (SGV) (Inter-Departmental Committee on the Redevelopment of Contaminated 
Land, ICRCL, 1983); b Sediment Quality Guidelines (SQG) & c Sediment Quality Guidelines for 
Environmental Health (SQGEH) (CCME, 2007)  
* Open space, park, Playing ground & ** any places where plants grow 

 

Referring to Tables 5.1 and 5.5, it is interesting to see that the mean concentrations for 

metals in road deposited sediment (RDS) at sampling position A are generally lower 

than the trigger concentrations; however they are higher than the trigger values for RDS 

at sampling position B. Therefore, an assessment of hazard associated with metals in 

dry sediment might be misleading if only sampling near the curb side is taken. 

Furthermore, concentrations may be even higher further than position B towards the 

centre of the road, due to the effect of transverse gradient as reported by Johnston and 

Harrison (1984) and Deletic and Orr (2005), which was not studied here, so the figures 

presented here may be conservative also. However, considering the values outlined in 

Table 5.5, it is clear that RDS contaminated by heavy metals may have environmental 
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consequences for all users of the campus roads as well as for nearby farm land 

(Kalavrouziotis et al., 2007; Vissikirsky et al., 2008) and watercourses (Hjortenkrans et 

al., 2006; Zhu et al., 2008). 

 

5.6.2 RDS Heavy metal Contamination 

 

In order to achieve a general overview of heavy metal contamination levels across the 

primary study sites on the road network used for this study, the degree of contamination 

(CD) and potential ecological risk index (PERI) were calculated. As discussed in 

Chapter 3, both of these indices indicate overall contamination caused by the six heavy 

metals studied (Cd, Cr, Cu, Ni, Pb and Zn) incorporated in a single index value. To 

estimate these indices, the metal concentrations of Cd, Cr, Cu, Ni, Pb and Zn in RDS 

(averaged over sampling positions) from the entire data set for all the primary sites were 

used.  

 

 
Figure 5.9: (a) Box plots showing the degree of contamination (CD) caused by heavy 

metals in RDS [Grey, dotted and solid lines represent upper limits of low, moderate and considerable 

degree of contamination, respectively]; (b) Normalised CD index with respect to traffic 

volume ratio (TVR) [TVR = traffic volume at individual site/maximum traffic volume across the 

primary sites]. 
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Figures 5.9 (a) and 5.10 (a) show the box plots of CD and PERI, respectively across the 

primary study sites for the road network in the study area. Figures 5.9 (b) and 5.10 (b) 

illustrate box plots of the normalised CD and PERI with respect to traffic volume for 

the above indices. This was done to reveal the influence of site-specific attributes on 

metal emission patterns and so CD and PERI irrespective of traffic load. The values of 

CD and PERI for this study are found to be generally consistent with previous studies 

of RDS elsewhere (e.g. Zhu et al., 2008; Shi et al., 2010; Duong and Lee, 2011). 

However, the maximum values of CD and PERI here are occasionally exceeded in the 

aforementioned studies. Moreover, although the mathematical formulation to estimate 

the indices is similar between studies, there are differences between the number of 

heavy metals used, the sources of background values for heavy metals and RDS 

sampling techniques etc.   

 

The site specific similarities and dissimilarities for CD and PERI for the present study 

are now discussed. As seen in Figure 5.9 (a), the ranges of CD for all the primary sites 

fall between moderate to considerable degree of contamination (6 ≤ CD ≤ 24). 

Considering the mean value for each site, CD ≥ 12, suggesting considerable degree of 

contamination, was found for the RSC (CD =16) and RB (CD =15) sites. In contrast, 

the mean CD values for the RI and SR sites were approximately 8 and 10, respectively, 

indicating these sites are only moderately contaminated. The variability between the 

sites is certainly linked to the site-specific heavy metal emission pattern, which was 

found and discussed in section 5.3 (see Figures 5.1 to 5.6). Briefly, the RB and RSC 

sites are contaminated mainly with Pb followed by Cr, Zn and Cu. The site specific 

variability is even clearer from Figure 5.9 (b), showing the CD normalised with respect 

to traffic volume, CD/TVR, for which the normalised index is significantly higher at the 

RB, RSC and RI sites compared to the SR site. As mentioned earlier, traffic passing the 

above sites, except the SR site, experiences frequent ‘stop and start’ activities, which 

likely enhance metal emissions compared to the SR site with steady flow (Napier et al., 

2008; Zhu et al., 2008; Ewen et al., 2009; Duong and Lee, 2011). This again 

corroborated the fact that site specific attributes are important influences on metal 

emission patterns in addition to traffic volume. 
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Figure 5.10: Box plots display the potential ecological risk index (PERI) value caused 

by heavy metals in RDS [Grey, dotted and solid lines represent upper limits of low, moderate and 

considerable level of ecological risk, respectively]; (b) Normalised PERI index with respect to 

traffic volume ratio (TVR) [TVR = traffic volume at individual site/maximum traffic volume across 

the primary sites]. 

 

Similarly, Figure 5.10 illustrates the potential ecological risk (PERI) caused by heavy 

metals at different primary sites in the study area. PERI values show a large spatial 

variability, ranging from approximately 35 to 165 across the sites.  The assessment of 

ecological risk for metals in RDS for all sites (Figure 5.10 a) reveals that the RB and 

RSC (based on mean values, PERI ≈ 100) sites consist of heavy metal emissions that 

may have moderate levels of ecological impact (PERI ≥ 75), if transported to nearby 

water courses. As mentioned earlier, both these sites are primarily contaminated by Pb 

and Cu (toxic factor, Pb = Cu = 5) along with an influence from Cd (toxic factor = 30) 

and Zn (toxic factor = 1). Similarly, the mean PERI for the RI site indicates a low level 

of ecological risk (PERI < 75), while at the SR site it is on the border between low and 

moderate levels of ecological risk. Furthermore, at this site, a few extreme values of 

PERI are found (see outliers in Figure 5.10 a) to fall between the moderate and 

considerable levels of ecological risk, being primarily dominated by the highly toxic Cd 
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(toxic factor =30), as seen in Figure 5.1. The variability between sampling sites is even 

clearer for PERI normalised with respect to traffic volume, PERI/TVR, as shown in 

Figure 5.10 (b). The pattern of normalised PERI is consistent with the pattern of 

normalised CD across the primary study sites, as seen in Figure 5.9 (b). 

 

5.7 Conclusions 

 

This chapter noted that the distribution of heavy metal concentrations in road deposited 

sediment (RDS) varied with the sediment size fractions and the transverse sampling 

position. The concentrations for all the metals except Pb decreased with increasing 

sediment particle size fractions. A transverse distribution of metal concentrations in 

RDS was observed with higher concentrations of Cd, Cu and Zn in RDS collected at 1 

m from the curb, and higher concentrations of Cr, Ni and Pb near the curb. Temporal 

variability of heavy metal concentrations revealed July as the most polluted month, and 

March as the least polluted. Correlation analyses revealed a stronger correlation 

between heavy metals (in particular in the smallest sediment size fraction) at 1 m from 

the curb than near the curb, indicating different sources for the metals at the two 

sampling positions. Based on the pollution indices at the primary study sites, the road 

with speed control site (RSC) is found to be the most contaminated followed by the 

road bend (RB), straight road (SR), and road intersection (RI) sites. Site specific 

attributes were found to be drivers of the difference in heavy metal concentrations and 

so also of the pollution levels: primarily road lay-out with traffic movement patterns, 

along with influences from road surface condition and presence of road paint rather 

than due to traffic volume alone. 
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Chapter – 6 Analysis of Wet-weather Derived Sediments  

 

6.1 Introduction 

In the context of urban road water quality related research, two important aspects, 

namely pollutant build-up during dry days and wash-off during wet weather, need to be 

understood in depth. As noted by several researchers, pollutant wash-off is a complex 

process varying with rainfall duration, rainfall intensity, runoff volume and catchment 

surface characteristics (e.g. Vaize and Chiew, 2002; Brezonik and Stadelmann, 2002). 

Based on published research (Irish et al., 1995; Sansalone et al., 1996; Crabtree et al., 

2006; Westerlund et al., 2003), it has been identified that road runoff caused by rainfall 

and snow precipitation on roads are often found to contain significant quantities of 

heavy metals in both dissolved and particulate bound forms along with other pollutants, 

e.g. oil and grease, nutrients, suspended, colloidal and volatile fractions of particulates, 

hydrocarbons. Road surfaces, therefore, serve as a temporary sink for pollutants that are 

washed off during wet weather events to the surrounding water environment. Chapters 4 

and 5 discussed an in-depth investigation of dry road sediment and, in sequence, this 

chapter investigates wet weather issues using samples collected at the four primary 

study sites introduced earlier in section 4.4, namely a road bend (RB), a road with speed 

control (RSC), a road intersection (RI) and a straight road section (SR). Briefly, this 

chapter presents pollutant wash-off during rainfall events, characterising rainfall 

induced runoff and snow precipitate samples for dissolved and particulate heavy metals. 

In addition, particle size distribution (PSD), seasonal variability and contamination 

associated with runoff and snow samples are discussed. The samples were collected for 

12 different rainfall-runoff and 5 different snow events from the four primary study sites 

mentioned above. It is important to note that fresh snow samples rather than snow-melt 

induced runoff samples during snow precipitation were collected from the sites.  

 

6.2 Analysis of Wash-off Sediment 

 

This section presents results of runoff sediment load from rainfall events, some 

mathematical modelling to derive local wash-off parameters and information on particle 

size distributions of runoff sediment. The 12 rain events sampled had rainfall duration 
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ranging from 1 to 11 hours, rainfall intensity ranging from 1.3 to 14 mm/h and occurred 

between May 2010 and April 2011, as presented in Table 6.1. Details of sample 

collection, preservation and testing were discussed in section 3.3.2.  

 

6.2.1 Event Mass Load 

 

Table 6.1: Event mass load of road sediment transported in runoff events generated 

from different sampling sites in Riccarton Campus road network, Edinburgh 

 

Rainfall 
runoff 
event 

Intensity 
(mm/h) 

Duration 
(h) 

ADD Sediment load (g) Average 
sediment 
load (g) 

Average 
sediment 
load 
(g/m2) 

  RB RSC RI SR 

26/5/ 2010 11.35 1.7 2 251 841 442 610 536 18 

01/7/ 2010 1.31 6.25 20 530 1547 876 1243 1049 35 

04/7/2010 14.5 1.83 2 338 1026 487 710 640 21 

14/7/2010 6.81 10.87 3 297 687 375 430 447 15 

01/8/2010 10.96 1.23 10 765 1850 1050 1246 1228 41 

12/8/2010 4.05 1.06 2 205 478 280 408 343 11 

21/8/2010 10.18 1.42 1 142 352 187 253 233 8 

07/9/2010 3.65 2.88 13 841 2320 1260 1742 1541 51 

11/9/2010 7.64 2.23 1 110 269 167 188 183 6 

20/11/2010 2.7 8.75 7.5 670 870 702 778 755 25 

12/3/2011 6.52 5.75 2.5 330 574 363 420 422 14 

23/4/2011 9.85 1.55 6 465 695 428 487 519 17 

ADD: Antecedent dry days; RB: Road bend; RSC: road with speed control; RI: road intersection; SR: 

straight road section 

 

Table 6.1 displays event mass loads of sediment collected at the sites for all the rainfall 

events monitored along average rainfall intensity and event duration. It should be noted 

that the mass loads are total loads collected from the entire duration of the rainfall event. 

As mentioned earlier in section 3.2.2, due to limitations of the field set-up no more than 

4 l of runoff was collected for each event from each site. Hence the wash-off loads 

presented here may be biased against finer suspended sediment size fractions for the 

larger rain fall events. However, due to the relatively coarse nature of the RDS in the 

study area, it can be speculated that most of the sediment mass was captured even 

though in cases where the collection bucket overflowed some fine sediment was 
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probably lost. As seen in Table 6.1 there is a consistent trend in the data with the highest 

load of sediment being found at the RSC followed by SR, RI and RB sites. It is likely 

that local site specific attributes, such as road texture, road surface condition and slope 

of the road are responsible for this trend. For example, the road surface condition was 

poor at the RSC site, which is possibly the reason for significantly higher loads during 

wash-off events compared to the relatively smooth road surface at the RB and SR sites. 

However, the relatively high load at the SR site was also likely to have been influenced 

by the input of surrounding soil (observed during rainfall events) [as the sampling 

position at this site was at a lower elevation than nearby grass strip, foot paths and car 

park]. 

 

Comparing rainfall variables, there is no single variable found to be correlated with 

observed wash-off loads, as seen in Table 6.1. This may not be surprising, as sediment 

transport is a complex hydrodynamic process (beyond the scope for this study), and it is 

also well understood that rainfall intensity and duration are not enough to explain the 

relationship between wash-off loads and rainfall variables (e.g. Deletic et al., 1997, 

2000; Bouteligier et al., 2002; Shaw et al., 2006). However, it can be seen that generally 

a high intensity, short duration rainfall event generated more wash-off sediment than a 

less intense, longer duration rainfall event (Table 6.1). In both cases, of course, the 

number of antecedent dry days affects the mass of sediment available on the road 

surfaces, as discussed in Chapter 4. As would be expected for a small study area, wash-

off patterns could be very similar at all sampling sites.  

 

The wash-off loads for this study (110 to 2320 g) were of the same order of magnitude 

as those reported by Kim and Sansalone (2008). It should be noted however that Kim 

and Sansalone (2008) captured entire runoff events and found wash-off loads in the 

range 544 to 10592 g. Although this study only collected a limited volume of runoff (4 

l), the differences in the loads can also be affected by the other factors, such as road 

drainage pathways, rainfall patterns, road maintenance etc.  

 

Table 6.1 also shows the average wash-off load for the four primary study sites for each 

rainfall - runoff event, which was used to derive the average wash-off load per unit area 

(final column). The average wash-off load per unit area was calculated using total 

sediment load collected into the buckets after each runoff event divided by a drainage 
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area of 10 m × 3 m. These average wash-off loads per unit area data were used in two 

ways. Firstly, comparing results with the RDS build-up pattern data discussed in 

Chapter 4 (Figure 4.1), it can be confirmed that only part of the sediment was 

transported during rainfall events, and in particular, the finer fractions (see PSDs in 

Figure 6.4). The percentage of wash-off load per unit area was estimated as the ratio of 

predicted built-up load using the parameterised local build-up models as discussed in 

Table 4.3, for the different ADD between the runoff events. For example, on 01 July 

2010 (low intensity, large duration rainfall preceded by 20 dry days) the wash-off loads 

were 34%, 21%, 12% and 38% of the available loads per unit area, while on 01 August 

2010 (high intensity, short duration rainfall preceded by 10 dry days) they were 37%, 

27%, 24% and 60% for the RB, RSC, RI and SR sites, respectively. A similar range of 

values was also reported by Egodawatta (2007) in their study in Queensland, Australia. 

The second use of the wash-off load per unit area data is described in the next section. 

 

6.2.2 Mathematical Replication of RDS Wash-off  

 

Pollutant wash-off from road surfaces is more complex than build-up and is influenced 

by a wide range of hydrologic, flow hydraulic and sediment transport variables (Deletic 

et al., 2000; Shaw et al., 2006). Amongst different rainfall variables, it is believed that 

wash-off is primarily linked to rainfall intensity, rainfall duration and runoff volume, as 

noted by Egodawatta et al. (2007). A few other studies have looked into the relative 

degree of influence exerted by the above three rainfall variables on wash-off loads (e.g. 

Chui, 1997; Mackay, 1999). They found that these variables are highly correlated with 

each other and did not exhibit any marked influence between them. In contrast, 

Egodawatta et al. (2007) found that rainfall intensity and rainfall duration were more 

dominant variables than runoff volume for replicating sediment wash-off in their study 

in Queensland, Australia.  

 

Based on the above discussion, this study’s wash-off data was plotted against rainfall 

intensity, rainfall duration and dry days between rainfall events, as seen in Figure 6.1 

for the study sites. Note that only 5 of the 12 rain events monitored were used to 

generate these plots, for which it is believed that the entire runoff volume was collected 

in the bucket at the field experimental set-up at each site (see Table 3.2 and Figure 3.5). 
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Figure 6.1: Variation of wash-off load across the sites with rainfall intensity, rainfall 

duration and dry days for rain events. 

 

As seen in Figure 6.1, due to the highly scattered data, it is very difficult to identify any 

relationships between the sediment wash-off load and the rainfall variables (in particular 

rainfall intensity and rainfall duration). Although in general, a positive trend can be seen 

between wash-off loads and the aforementioned rainfall variables. This reflects the 

complexity of interrelating wash-off behaviour with single rainfall variables. On the 

contrary, plotting the wash-off data against dry days between the rainfall events shows a 

better correlation than for the rainfall variables. This finding suggests that there is an 

influence of the initial sediment availability on road surfaces on wash-off load prior to 

rainfall events.  

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

W
as

h-
of

f s
ed

im
en

t 
lo

ad
 (

g/
m2

)

Dry days between rain events



121 
 

An analysis of the combined effect of all three variables on wash-off loads was carried 

out using multiple linear regressions (MLR) revealed a stronger influence of dry days 

between the rain events than rainfall intensity and duration. Note that the use of a 

limited number of data for MLR may not be statistically appropriate and so its outcome 

may be dubious. However, it is clear that although the number of dry days between rain 

events was not found to be a direct input variable in any previously published pollutant 

wash-off formulae, this parameter indeed is of importance for the wash-off load (Gupta 

and Saul, 1996). Nevertheless, in order to compare the results with published work, it 

was decided to use rainfall intensity and duration (for the same 5 rainfall events were 

used in Figure 6.1) as input parameters for modelling sediment wash-off loads. 

However, antecedent dry days between rainfall events was used to predict the initial 

sediment load prior to wash-off events in Equation 6.1, as seen below. 

 

A wide variety of models have been proposed to replicate pollutant wash-off, each with 

varying levels of complexity and accuracy. Although the models are different in their 

formulation, they have the same target variable of total suspended solids (TSS) because 

it is believed that TSS can be used as a surrogate for other water quality pollutants, such 

as nutrients, heavy metals and hydrocarbons adsorbed to suspended solids (Sartor et al., 

1974; Akan and Houghtalen, 2003; Herngren et al., 2005). Among several mathematical 

formulations that are available for wash-off in the literature (e.g. Hossain et al., 2000), 

an exponential function was selected. The selection was based on two different reasons. 

Firstly, only a few rainfall-runoff variables, namely rainfall intensity and duration, were 

available for this study. Secondly to keep the mathematical formulation of pollutant 

wash-off simple, so as to be consistent with other studies and stormwater quality 

models, such as, SWMM and MOUSE. Moreover, using the exponential function has 

the added advantage of comparing the calibration parameters derived for this study with 

published values in the literature and with default values used in the SWMM and 

MOUSE models. 

 

The usual form of the exponential representation is as follows: 

 

W = Ci (1 - e-NIT)               (Equation 6.1) 
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where, W is the wash-off sediment load (mass per unit area), Ci is the initial sediment 

load (mass per unit area) predicted from Equation 4.2 derived in Chapter 4, N is the 

wash-off exponent, I is the average rainfall intensity (mm/h) and T is the duration of the 

storm. In predicting Ci, the antecedent dry days shown in Table 6.1 were used, while k 

values were from Table 4.2. 

 

As seen in Equation 6.1, the only calibration parameter is the wash-off exponent N, 

which can be estimated by modifying the equation as shown below. The modified 

equation transforms into a linear form, the slope of which gives the wash-off exponent 

N, as seen in Figure 6.2. 

 

��

��
� 1 � ��	
� 

 

ln�
�� ���

��
� � ���� 

 

�
1

T
ln�
�� ���

��
� � �� 

 

 

 

Figure 6.2: Road deposited sediment wash-off parameters estimation using exponential 

function. 
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The wash-off exponent, N derived from Figure 6.2 is tabulated in Table 6.2 for all the 

four primary study sites. The wash-off exponent reported by Egodawatta et al. (2007) 

and Hossain et al. (2010) from their studies in Queensland, Australia is also shown in 

the table for comparison. As seen in Table 6.2, the wash-off exponent estimated for this 

study ranges from 0.0041 to 0.0233 across the sampling sites. The wash-off exponents 

at the RB and SR sites are an order of magnitude higher than their values at the RI and 

RSC sites. The significant differences between sites may be linked with the RDS size 

distributions across the sites, as discussed in section 4.4.4 (see Table 4.5), for which the 

RB and SR sites contain the smaller d10 and d50 values than the RSC and RI sites. 

Furthermore from the table, it is seen that there is a significant variability for wash-off 

exponents between the studies. This is particularly true when comparing the present 

study with the values reported by Egodawatta et al. (2007); however, they are in better 

agreement with Hossain et al. (2010). Considering the wash-off exponents presented in 

Table 6.2, it is seen that the default value of 0.2 in the MOUSE and SWMM5 models is 

much higher when compared to the values found for this study at specific site and to the 

values reported by others. The difference between wash-off exponents in published 

studies and the models suggests that the wash-off process is more complex than 

previously assumed (Millar, 1999; Egodawatta, 2007). Consequently, based on the 

results presented in Table 6.2, it is clear that the wash-off exponent is site specific and 

proper calibration is necessary to get better replication of the wash-off loads at 

particular sites. A similar suggestion was also reported by Alley (1981), Huber and 

Dickinson (1988), Gupta and Saul (1996), Millar (1999) and Egodawatta et al. (2007).  

 

Table 6.2: Comparison of wash-off exponent, N (mm-1) estimated from field 

monitoring data with other published values 

 
Site N Default value Hossain et al. 

(2010) 
Egodawatta et al. 
(2007)   MOUSE SWMM5 

Road bend (RB) 0.0233 

0.2 0.2 0.011 – 0.028 

 

00.00056-0.00080 
Road with speed controls (RSC) 0.0082  
Road intersection (RI) 0.0041  
Straight road (SR) 0.0176  

 

6.2.3 Validation of Pollutant Wash-off Equation 

 
In order to check the accuracy of the pollutant wash-off equation derived from the 5 

rainfall events, as discussed in the previous section, the site specific exponents (Table 
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6.2) were now used in Equation 6.1 to calculate the simulated wash-off load values for 

the remaining 7 rainfall events. Simulated values were compared with observed values 

for all the primary study sites as shown in Figure 6.3.  

 

 

 

Figure 6.3: Comparison of simulated and observed wash-off load using exponential 

function at primary study sites. 

 

As seen in the figure, the overall performance of the wash-off equations is not very 

impressive and for all sites, the ratios of observed to simulated wash-off loads are 

widely scattered. In general, the model is under predicts the wash-off loads for some of 

the rainfall events for which ratios of observed to simulated wash-off loads are greater 
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than 1.5. This may likely be from the measurement error, unwanted inclusion of 

sediment from surrounding land apart from road runoff. 

 

Considering the sites, the results are a little better at the RB and SR sites than at the 

other two sites. For the former sites, the ratios of observed and simulated wash-off loads 

for 6 and 5 out of 7 rain events, respectively (Figure 6.3), fluctuate within the ratio of 

0.5 to 1.5, which suggests that the performance of the wash-off equations are reasonable 

although not satisfactory. In contrast, the performance of the equations is rather poor for 

the RSC and RI sites, for which predictions for only 3 out of 7 rain events showed 

satisfactory agreement with the observed data. 

 

6.2.4 Particle Size Distribution of Runoff Sediment 

 

Figure 6.4 displays the particle size distributions (PSDs) for runoff sediment (averaged 

over the sampling sites) for four selected storm events. The selection was based on 

identifying low intensity, large duration rainfall events and vice versa. It was also found 

that PSDs for the other 8 rainfall events fell within the range covered by the selected 

events. The PSDs were found to be consistent with previous research elsewhere (e.g. 

Egodawatta, 2007; Kim and Sansalone, 2008; Jartun et al., 2008). 

 

 

Figure 6.4: Particle size distributions for runoff sediment of selected storm events 
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As seen in Figure 6.4, a wide particle size range, from very fine to medium coarse 

sediment was entrained and transported during the monitored runoff events. Variability 

between event PSDs was also found. For example, the load of sediment finer than 63 

µm ranged from 24% to 44% (by mass) between the events shown in Figure 6.4. The 

data also reveal that a high intensity, short duration rainfall event (July 04 2010) was 

more able to transport coarse sediment compared to a low intensity, long duration 

rainfall event (July 01, 2010). It is not clear, however, how intensity and duration 

combine to enable the transport of coarser sediment. For example, the PSD for the 

second largest intensity event (21 August 2010) is closer to the PSD for the lowest 

intensity event than to the PSD for the highest intensity event. The number of 

antecedent dry days (ADD) between rainfall events probably plays a role (as seen in 

Figure 6.1 for sediment wash-off load) also, particularly since Chapter 4 highlighted a 

re-distribution of particles over ADD. Furthermore from analysing all the rain events, it 

was apparent that none of the sites were likely to derive a significant sediment load in 

size fraction greater than 500 µm. 

 

Table 6.3: Values of d10 and d50 for rainfall-runoff PSDs 

 
Rainfall – runoff 

event 

Average rain 

intensity (mm/h) 

Rainfall 

duration (h) 

Dry days between 

rain events 

d10 (µm) d50 (µm) 

July 01, 2010 1.31 6.25 20 15 68 

July 04, 2010 14.5 1.83 2 26 140 

July 14, 2010 6.81 10.87 3 23 96 

August 21, 2010 10.18 1.42 1 20 80 

Mean 8.20 5.10 6.25 21 96 

 

The characteristics of the PSDs for the selected events are summarised in Table 6.3. The 

mean d50 for all four events was 96 µm (medium to fine sand) with a range of 68 to 140 

µm. Similarly the mean d10 was 21 µm with a range of 15 to 26 µm. The range of d50 

and d10 for this study compare well with the range reported by Jartun et al. (2008) in 

their study in Norway. However, the mean d50 and d10 values found here are lower than 

in the aforementioned study. Compared to the values reported for RDS (dry sediment) 

in Chapter 4 (see Table 4.6), the mean d50 and d10 values for runoff sediment were 

significantly lower. As mentioned earlier, only some of the road sediment available on 

the road surfaces (from previous RDS build-up between rainfall events) was transported 
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by the rain events. Since this was dominated by the smaller particles, the smaller values 

of d50 and d10 for runoff sediment are expected. 

 

6.3 Total Heavy Metal Concentrations in Runoff  

 

To start with, mean total heavy metal concentrations (averaged over the 12 rainfall 

events monitored at all four primary sampling sites) measured for the unfiltered runoff 

samples (as defined in section 3.4.1) are presented in Table 6.4. This was done to 

compare the results with published heavy metal concentrations elsewhere. Heavy metal 

concentration data on road runoff studies are well documented in published literature 

from different parts of the world. Despite some intrinsic variability between studies (e.g. 

traffic volume, road drainage and maintenance, climate, condition of road surfaces), a 

few of these were identified with the aim of capturing a global representation, and are 

collated for compared with the outcomes of the present study, as seen in Table 6.4. Note 

that all of the data shown are for total metal concentrations (irrespective of different 

phases).  

 

Table 6.4: Comparison of mean heavy metals concentration (µg/l) and TSS (mg/l) in 

road runoff with previous published results  

 
Sources n1 Cd Cr Cu Ni Pb Zn TSS 

Crabtree et al. (2008) 340 0.60 7 91 10 37 353 244 

Gan et al. (2008) 11 1.60 40 140 23 118 1760 416 

Crabtree et al. (2006) 11 0.50 6 41 5 23 140 115 

Preciado and Li (2006) 5 - - 62 - 45 364 197 

Backstrom et al. ( (2003) 10 0.05 - 13 - 7 89 - 

Kayhanian et al. (2002) 32 0.20 2.4 13 4 5 73 148 

This study2 12 1.20 
±0.30 

56    
±18 

176  
±44 

27 
±7  

136 
±51  

1364 
±196 

243 
±164 

1 Number of monitored storm events; 2 mean ± standard deviation 
 

As seen in Table 6.4, the mean TSS concentration of 243 mg/l from the present study 

was very similar to the 244 mg/l reported by Crabtree et al. (2008) in their study in the 

UK, a little higher than the 197 mg/l found by Preciado and Li (2006), significantly 

greater than the 115 and the 148 mg/l reported by Crabtree et al. (2006) and Kayhanian 

et al. (2002) and significantly lower than the 416 mg/l found by Gan et al. (2008). 
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For metals in the current study, Zn showed the highest mean concentration of 1364 µg/l 

followed by Cu (176 µg/l), Pb (136 µg/l), Cr (56 µg/l), Ni (27 µg/l) and Cd (1.20 µg/l). 

The metal concentrations in this study are found significantly higher than the previously 

reported values with the exception of Zn and Cd reported by Gan et al. (2008), as seen 

in Table 6.4. This difference in metal concentrations is not surprising because of the 

significant variability between the site and climatic conditions under consideration. 

However, it is also important to note that the total mean concentrations for Cd, Ni and 

Pb in this study were lower than their lowest detection limits (LODs) (see Table 3.4). 

Furthermore, Cd concentration was an order of magnitude lower than its LOD, while 

mean total Ni and Pb concentrations were only marginally lower than their LODs. 

Analysing raw data for unfiltered runoff samples, it has been identified that the 30 out 

of 48 data for Cd (4 data for the 4 primary study sites for each runoff events) were 

below LOD, while for Ni and Pb they were 21 and 12 out of 48 lower than their LODs. 

Therefore, mean concentrations of these three heavy metals for total runoff samples 

(unfiltered) must be used with caution. 

 

6.3.1 Descriptive Statistics of Site-specific Heavy Metals  

 

Now summary statistics of heavy metal concentrations for both dissolved and 

particulate phases are presented for all four primary study sites, see Table 6.5. Standard 

values for dissolved and particle bound heavy metal concentrations associated with the 

protection of aquatic species are also shown in the table. Note that at present in the UK 

only environmental quality standards (EQS) for dissolved metals are available from the 

Environmental Agency (EA, 2003), and no such standard is adopted for particle bound 

heavy metals; hence sediment quality guidelines (SQG) suggested by the Canadian 

Council of Ministers of the Environment (CCME, 2007), and Flemish SQG (de Deckere 

et al., 2011) are used for this study. Note that there are some differences between the 

Canadian and Flemish standards (Table 6.5). The recent study by Zgheib et al. (2011) 

also used these guidelines to evaluate their results on stormwater quality in Paris, 

France. 

 

In general, the mean dissolved concentrations for Cu and Zn at all sites exceeds 

recommended values, while other metal concentrations fall significantly below their 

respective EQS values. In contrast, the mean concentrations of all the particle bound 
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heavy metals for most of the sites were found to be significantly higher than the 

recommended guideline values for the protection of aquatic life, as seen in Table 6.5. 

Overall, comparing metal concentrations in the present study to respective standard 

values, it can be noted that levels of Cd, Cr and Zn are unlikely to pose any acute 

danger, while Cu and Pb levels may have a fatal effect on sensitive aquatic species for 

short and long term exposure, as was also found by Clements et al. (2000). 

 

Table 6.5: Summary statistics of heavy metal concentrations in road runoff (a total of 

12 rainfall monitored) at the sampling sites along with standard guideline values 

 
Metal Dissolved concentration (µg/l) EQS1 

(µg/l) 
Particle bound concentration (mg Kg-1) SQG2 

(mg/kg) 
SQG3 
(mg/kg) RB RSC RI SR RB RSC RI SR 

Cd 0.098 
± 0.06 

0.120 
±0.091 

0.124 
±0.092 

0.099 
±0.07 

5 0.90 
±0.21 

1.11 
±0.28 

1.00 
±0.23 

1.13 
±0.27 

0.60 1 
 

Cr 7.500 
±2.541 

8.758 
±3.282 

8.172 
±2.250 

10.33 
±4.91 

20 57.67 
±13.93 

65.58 
±18.89 

59.79 
±20.07 

74.33 
±22.71 

37.3 62 
 

Cu 17.174 
±5.812 

19.834 
±6.356 

21.255 
±8.854 

22.25 
±7.52 

5 110.67 
±21.98 

145.79 
±27.76 

137.29 
±29.32 

142.63 
±31.26 

35.7 20 
 

Ni 1.654 
±0.590 

2.187 
±0.792 

1.984 
±0.672 

1.82 
±0.63 

30 28.75 
±5.28 

34.29 
±8.11 

31.79 
±6.24 

36.92 
±6.43 

- 16 
 

Pb 0.576 
±0.593 

1.248 
±1.220 

0.718 
±0.801 

0.92 
±1.06 

25 61.50 
±10.98 

95.42 
±27.67 

52.87 
±16.07 

66.83 
±16.73 

35 40 
 

Zn 41.425 
±8.652 

55.084 
±8.792 

56.504 
±13.92 

73.08 
±17.05 

40 193.42 
±23.38 

206.62 
±27.17 

204.17 
±25.66 

214.79 
±30.38 

123 147 
 

Metal concentration is presented as: mean ±standard deviation 
Site ID: RB = Road bend, RSC = Road with speed control measures, RI = Road intersection, SR = 
Straight road 
1 EQS = Environmental Quality Standard (Annual average value) in the UK (EA, 2003) 
2 SQG = Sediment Quality Guidelines for the protection of aquatic life (CCME, 2007) 
3 SQG = Final Flemish Sediment Quality Guidelines (de Deckere et al., 2011) 

 

The mean concentration of dissolved Cu ranges from 17 to 22 µg/l, which is 

approximately 3.5 to 4.0 times higher than the recommended EQS values. Similarly Zn 

concentrations (ranges from 41 - 73 µg/l) are 1.0 to 1.8 times greater than the EQS 

values. Conversely, dissolved concentrations of Cr are 1/3 to ½ of the EQS value, while 

concentrations of Cd, Ni and Pb are an order of magnitude lower than their respective 

EQS values. Concentration ranges for particle bound metals are found as 0.90 to 1.13, 

58 to 74, 111 to 143, 61 to 67 and 193 to 214 mg kg-1 for Cd, Cr, Cu, Pb and Zn, 

respectively, across the sampling sites, which are approximately 1.5 to 2.0, 1.6 to 2.0, 

3.0 to 4.0, 1.8 to 2.7, and 1.6 to 1.7, respectively, times greater than the Canadian 

standard values for protecting aquatic species (Table 6.5).  
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Apart from Pb, other metal concentrations did not exhibit any statistically significant 

difference between the sampling sites (p > 0.05 from the Kruskall - Wallis test). 

However, as seen in Table 6.5, the SR site contains the largest concentrations for most 

of the metals in both phases with the exception of dissolved and particulate Pb, 

dissolved Cd and Ni, and particulate Cu, for which greater concentrations were found at 

RSC site. The concentrations of metals at the RI site are marginally lower than the 

concentrations found at the RSC site, with the exception of Pb in both phases for which 

concentrations are significantly smaller, while dissolved Cd, Cu and Zn show 

marginally greater concentrations than those at the RSC site. The metal concentrations 

in both phases at the RB site display the lowest values for all the metals, but they are not 

significantly different to their values from the other three sites (with the exception of 

dissolved Zn). 

 

The greater concentrations at the SR site are probably due to the high traffic volume 

there. In addition, there is a greater availability of finer RDS at this site compared to the 

other sites (believed to be more chemically active for heavy metals), as seen in Chapter 

4 (Table 4.5). However, considering the traffic volumes of 200, 250 and 285 VPH at the 

RB, RSC and RI sites, respectively, which were approximately one third to one half of 

the SR site (650 VPH), heavy metal concentrations are not always found to vary in 

accordance with increasing traffic volume, rather a few metals were present at even 

higher concentrations at lower traffic volume sites (for example, RSC), as noted earlier. 

The higher metal concentrations at lower traffic sites suggest that site specific attributes 

(road lay-out, road condition, traffic movement patterns, and presence of road paints) 

are important influences on metal emission patterns in the road traffic environment. 

 
6.3.2 Influence of Particle Sizes on Particle-bound Metal Concentrations 

 
The distributions of metals on different particle sizes of road runoff sediment are of 

particular importance for urban diffuse pollution mitigation. The distributions of heavy 

metal concentrations (from 12 runoff events) for each of two particle size fractions for 

all four primary study sites are presented as box plots in Figure 6.5. Note that 

concentration scales vary between the metals presented. The concentrations vary 

significantly in magnitude between metals and are found in the order of Zn, Cu, Pb, Cr, 
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Ni and Cd for the present study. This pattern is generally consistent with previous 

studies elsewhere (e.g. Drapper et al., 2000; Hallberg et al., 2007; Crabtree et al., 2008). 

 

 

 

Figure 6.5: Box plot of size specific heavy metal concentrations in road runoff across 

the sites [RB: Road bend; RSC: Road with speed control measure; RI: Road intersection and SR: 

Straight road] 
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As seen in Figure 6.5, usually the highest mean concentration for all metals was 

associated with the finer size fraction (<63µm) for all four sites. It can be seen that the 

variation of all the metals between all the sampling sites was similar with the exception 

of Pb at the RSC site. The Kruskal-Wallis tests showed that there is always a significant 

difference (p <0.05) between the mean concentrations measured in the two size 

fractions. In general, the <63 µm size fraction contained 2 to 4 times larger 

concentrations of Cd, Cr, Cu and Zn than the 250-63 µm size fraction for all four sites, 

indicating the metals’ affinities to the finer fraction. 

 

For the smaller size fraction (<63 µm), the highest mean concentrations of Cr, Cu and 

Pb were found at the RSC site, while Cd, Ni and Zn were highest at the SR site. The 

mean metal concentrations of Cd, Cu, Ni and Zn at the RI site were close to the values 

at the RSC and SR sites, while at the RB they were found to be lower than their 

respective values at the RSC and SR sites. Mean Cr and Pb concentrations were more 

variable across the sampling sites.  

 

For the larger size fraction (250-63 µm) the mean concentrations for all metals except 

Pb showed only a very small variation across the RSC, RI and SR sites. However, all 

the metal concentrations were marginally lower at the RB site than at the other three 

sites. In the case of Pb, an unusually high level was found at the RSC site for both size 

fractions compared to all other sites.  

 

6.4 Seasonal Variability of Runoff Quality 

 

Table 6.6 shows the seasonal variability of metal concentrations in runoff water 

averaged over all four primary study sites.  For comparison, published studies are 

available in the literature. In particular, seasonal influence has been found to be studied 

extensively in Sweden (e.g. Backstrom et al., 2003; Westerlund and Viklander, 2006; 

Hallberg et al., 2007).  However, a few other studies are also available from the USA 

(Glenn and Sansalone, 2002; Lee et al., 2004), UK (Crabtree et al., 2006) and Germany 

(Helmreich et al., 2010). 

 

To start with, TSS concentrations were found to be highest in summer and lowest in 

autumn and winter. Note that the standard deviations of TSS concentrations are 
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relatively high which indicates that the TSS data were spread out over large ranges. The 

high TSS during summer months is probably associated with the number of dry days 

between rainfall events which allows sediment build-up on road surfaces, as found for 

dry sediment in Chapter 4. The TSS concentration for this study in winter, smaller than 

the expected values reported elsewhere (e.g. Westerlund et al., 2003), did not reflect a 

significant influence of using de-icing salt and road grits, which are typically greater 

than 500 µm in size. The possible explanation for this could be linked to the low 

intensity rain (2.7 mm/hr) of the single monitored winter rainfall event, which was 

unlikely to transport these particles during this runoff event. However, the seasonal TSS 

profile for this study was found to be consistent with other published studies by 

Brezonik and Stadelmann (2002) from the USA and Preciado and Li (2006) from 

Canada. 

 

Table 6.6: Seasonal variability of storm events and heavy metal concentrations 

(averaged over sampling sites) in road runoff 

 
 Summer (SUMM) Autumn (AUT) Winter (WINT)* Spring (SPR) 
n 16 20 4 8 
ADD (day) 2-20 0.2-13 7.5 2.5-6 
PRE (mm) 8-74 4-17.5 24 15-38 
DUR (hr) 1.7-10.87 1.06-2.88 8.75 1.55-5.75 
INT (mm/hr) 1.3-11.35 3.65-10.96 2.7 6.52-9.85 
     
TSS (mg/l) 302 ± 240 203 ± 100 209 ± 112 242 ± 107 
     
Metal Dissolved concentration (µg/l)  Particle bound concentration (mg kg-1) 

SUMM AUT WINT SPR  SUMM AUT WINT SPR 
Cd 1.00 

±1.00 
0.09 
±0.07 

0.26 
±0.03 

0.16 
±0.05 

 1.0 
±0.27 

1.11 
±0.33 

1.16 
±0.19 

0.94 
±0.16  

Cr 6.31 
±2.18 

8.30 
±2.13 

15.00 
±3.83 

11.25 
±2.82 

 70.88 
±20.09 

68.50 
±22.13 

49.37 
±7.74 

43.62 
±7.73  

Cu 20.81 
±5.50 

15.15 
±5.77 

29.00 
±2.58 

26.75 
±5.36 

 141.44 
±30.03 

130.73 
±36.44 

126.25
±8.54 

110.63 
±16.13  

Ni 1.57 
±0.56 

1.70 
±0.57 

2.90 
±0.26 

2.59 
±0.25 

 32.18 
±7.06 

34.75 
±8.23 

32.50 
±2.89 

24.62 
±4.40  

Pb 1.00 
±0.98 

0.14 
±0.15 

2.32 
±0.55 

1.65 
±0.61 

 79.84 
±27.36 

60.25 
±23.03 

66.25 
±14.36 

55.75 
±11.98  

Zn 59.75 
±21.31 

50.85 
±12.57 

67.75 
±17.84 

57.87 
±10.88 

 218.94 
±30.05 

197.75 
±24.25 

192.50 
±19.36 

182.87 
±18.07  

* Only a single rain event was sampled during winter; n – Total number of runoff samples collected and 
analysed; ADD- Antecedent dry days; PRE-Precipitation depth; DUR-Duration of rainfall; INT- Average 
rainfall intensity; TSS - Total suspended solids          
TSS and metal concentrations are presented as: mean ±standard deviation of all events occurring in each 
period 
 



134 
 

Considering heavy metal concentrations, all metals except Cd showed higher 

concentrations in the dissolved fraction during the winter followed by the spring, 

summer and autumn. For example, dissolved Ni, Pb and Cr were 1.85, 2.32 and 2.40 

times higher during the winter compared to their respective summer concentrations 

(Table 6.6). In contrast dissolved Cd was 4 times higher in the summer than in the 

winter, which shows disparity with other previous studies elsewhere (Westerlund et al., 

2003; Hallberg et al., 2007). Both dissolved Cu and Zn showed only a slight increase 

during the winter.  

 

On the other hand, the particulate Cr, Cu, Pb and Zn exhibited elevated concentrations 

in the summer. For example, concentrations of approximately 219, 141 and 80 mg kg-1 

in the summer compared to approximately 192, 126 and 66 mg kg-1 in the winter for Zn, 

Cu and Pb, respectively (Table 6.6). In contrast, the highest concentrations of Cd and Ni 

occurred in autumn and winter, respectively. Statistically significant differences (p< 

0.05 the Kruskal-Wallis test) were found for both metal partitions between seasons for 

all metals except Zn and Cu. 

 

Comparing the variability of seasonal metal concentrations with published studies 

elsewhere, the seasonal pattern of metal concentration is basically consistent with that 

reported by Lee et al. (2004), Crabtree et al. (2006) and Hallberg et al. (2007). 

However, a marked variation, particularly for the winter metal concentrations, is found 

in Swedish (Westerlaund et al., 2003) and German studies (Helmreich et al., 2010). This 

variation is not unexpected and is possibly linked to the nature of the winter weather in 

Sweden and Germany. It appears that the winter weather often stays as long as 4-6 

months in Sweden, which requires extensive use of road grit and road salt for road 

surfaces, and in addition, studded tyres are used on cars (e.g. Westerlund and Viklander, 

2006). Hence, increased corrosion of vehicles and road furniture (due to the longer wet 

exposure to a hostile environment) along with greater degradation of road surfaces may 

increase the metal concentrations during the winter in Sweden, compared to shorter 

spans of snow and ice in regions like the UK. A similar suggestion was reported by 

Helmreich et al. (2010) in their study in Germany. 
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6.5 Correlation Analyses 

 

6.5.1 Heavy metal Concentrations and TSS 

 

Figure 6.6: Correlation between metal and TSS measured on runoff samples. 

 

It is very common practice in road runoff studies to explore the relationship between 

metal concentrations and TSS with the aim of quantifying metal load by measuring 
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TSS. In this regard, a linear correlation between the mean metal concentrations and 

TSS, measured from the total runoff sample (as discussed in beginning of section 6.3), 

was explored (combining data from all four sampling sites), as seen in Figure 6.6. The 

results from a regression analysis for each metal are presented in the figure, showing the 

intercept and slope. The coefficients range from 0.20 to 0.78, suggesting weak to strong 

relationships between metal concentrations and TSS. While Zn, Ni, Cu and Cr showed 

moderate strength (R2 > 0.50), Cd and Pb indicated little or no relationship with TSS. 

 

The strength of relationship found for this study is significantly below what would be 

expected from the literature. In general, most of the earlier studies on road runoff 

elsewhere reported a very strong relationship (R2 > 0.90) between metal concentrations 

and TSS (e.g. Sansalone and Buchberger, 1997; Drapper et al., 2000; Shinya et al., 

2000; Hallberg et al., 2007). Although the findings from the present study differ (based 

on the strength of the correlation) with aforementioned studies, they are not unique, as 

they are in accordance with a few other previous studies. For example, Han et al. (2006) 

reported some weak to moderate relationships in their study in the USA.  In even 

greater contrast to much published work, Crabtree et al. (2008) found none of the 

analysed metals correlated well with TSS considering 340 runoff events at 30 different 

sites in the UK. Based on the discussion above, it is clear that using TSS as a sole 

surrogate parameter in the modelling of road runoff pollutants may not always generate 

a satisfactory result for all stormwater pollutants, unless other issues e.g. the dynamics 

of metals’ affinity to attach to sediment is well understood. However, in the context of 

this study, all metals except Cd and Pb can be modelled reasonably well with TSS. 

 

6.5.2 Correlations between Metal Concentrations and Storm Variables 

 

To evaluate the influence of rainfall variables on the road runoff metal concentrations, a 

correlation analysis was carried out. The explanatory variables considered for rainfall 

were precipitation depth (mm), rainfall duration (h), average rain intensity (mm/h) and 

days since last rain event. Initially, a correlation analysis was performed between total 

heavy metal concentrations found in unfiltered runoff samples (without separating into 

dissolved and particulate phases) and storm variables, however, not many statistically 

significant correlations were found. Therefore, separate correlations for dissolved and 

particle phases (for different size fractions) with explanatory variables were performed 
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for heavy metal concentrations data (averaged over all four primary study sites), as 

presented in Table 6.7. For the present study, the data did not display Gaussian 

distributions for most of the parameters; hence the non-parametric Spearmen rank-order 

correlation was used. Only statistically significant correlations at a 95% confidence 

limit between heavy metal concentrations and explanatory variables are presented in 

Table 6.7.  

 

As seen in the table, the correlation coefficient ranges from 0.195 to 0.805, indicating 

weak to strong statistical strength between metal concentrations and rainfall variables. 

This finding is consistent with other published studies, for which similar variability and 

ranges were also found for concentrations between pollutants in road runoff and rainfall 

variables (e.g. Brezonik and Stadelmann, 2002; Kayhnian et al., 2002). 

 

Table 6.7: Spearmen rank-order correlation coefficients between runoff pollutants and 

storm variables (only statistically significant correlations are shown here) 

 
Dissolved metals (n=48) 
 PRE DUR INT ADD 
Cd     
Cr     
Cu 0.406 0.707 -0.384  
Ni  0.328 -0.386  
Pb 0.372 0.805 -0.534 0.374 
Zn 0.396 0.434   
     
Particle bound metals for size fractions 250-63 µm (n=48) 
 PRE DUR INT ADD 
Cd   0.195 0.414 
Cr    0.389 
Cu   0.345 0.367 
Ni    0.387 
Pb   0.425  
Zn  0.309 0.359 0.548 

 
Particle bound metals for size fractions <63 µm (n=48) 
 PRE DUR INT ADD 
Cd   0.223 0.424 
Cr    0.407 
Cu   0.421 0.594 
Ni    0.417 
Pb 0.389  0.328 0.347 
Zn   0.485 0.697 

PRE=precipitation (mm); DUR=duration (h); 
INT=average intensity (mm/h); ADD= antecedent dry days since last event 
 

Furthermore from Table 6.7, the dissolved fraction of all metals except Cd and Cr were 

correlated with rainfall duration. The strongest relationships were for Pb (r = 0.805) and 
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Cu (r = 0.707). Cu, Pb and Zn were correlated with depth of precipitation. All metals 

except Zn were negatively correlated with rainfall intensity. Only Pb showed a 

relationship with the number of antecedent dry days. Dissolved Cd and Cr did not 

display any significant correlation with any of the explanatory variables. Overall rainfall 

duration was found to be the primary factor with some influence from precipitation 

depth and intensity for most of the dissolved metal concentrations. Similar suggestions 

were found from previous research. For example, Sansalone et al. (1996) found that less 

intense rain with longer duration was capable of generating runoff containing higher 

dissolved metal concentrations than shorter, more intense events. 

 

For particle bound metal concentrations, depth of precipitation and rainfall duration 

have almost no correlation with metal concentrations for both particle size fractions, as 

seen in Table 6.7. The strength of correlation with rainfall intensity and the number of 

dry days between rainfall events is found to be higher for the finer size fraction (< 63 

µm) than the larger size fraction (250-63 µm), although none of the correlations are 

strong. All metals except Pb in the 250-63 µm size fraction were correlated with the 

number of dry days, signifying the idea of a particulate metal build-up on roads, as 

discussed in Chapter 4. The strongest relationships were for Zn (r = 0.697) and Cu (r = 

0.594) for the size fraction below 63 µm. 4 out of 6 metals were correlated with rainfall 

intensity for both size fractions, which possibly suggests that intense rainfall is capable 

of dislodging sediments deposited on road surfaces over the dry period, which are then 

washed-off in the runoff (Irish et al., 1995; Sansalone et al., 1998; Shaw et al., 2006). 

These results highlight the different processes involved in generating metal pollution in 

the dissolved and particulate phases of runoff for a rainfall event. 

 

6.5.3 Correlations between Metal Concentrations 

 

Next, correlations between metal concentrations were assessed to explore any inter-

relationships that could help to describe several metal distributions from one other 

metal, thus removing the need to monitor all the pollutants. Table 6.8 shows the 

correlation coefficients between the metal concentrations. It shows that dissolved Cu 

shows a relatively good association (r ≥ 0.6) with all other metals except Cr (r = 0.418). 

The results suggest that dissolved Cu can be used as a surrogate parameter for other 
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dissolved metals, thus minimising time and cost in monitoring road runoff water quality 

pollutants.  

 

All particulate bound metals exhibit statistically significant relationships with each 

other with the exception of Pb and Cd in the 250-63 µm size fraction. The correlation 

coefficients range from 0.315 to 0.702 for the 250-63 µm size fraction. Relatively 

strong correlations (r ≈ 0.7) were obtained for Cr with Cd and Ni, and for Cd with Ni (r 

=0.697), while moderate relationships (r ≈ 0.6) were found for Cu with Zn and Ni 

(Table 6.8).  

 

Table 6.8: Spearmen rank-order correlation coefficients between runoff mean metal 

concentrations (only statistically significant correlations are shown here) 

 
Dissolved metals (n=48) 
 Cd Cr Cu Ni Pb Zn 
Cd  0.692 0.652 0.834 0.466  
Cr 0.692  0.418 0.609   
Cu 0.652 0.418  0.639 0.702 0.601 
Ni 0.834 0.609 0.639  0.528 0.323 
Pb 0.466  0.702 0.528  0.398 
Zn   0.601 0.323 0.398  
Particle bound metals for size fractions 250-63 µm (n=48) 
 Cd Cr Cu Ni Pb Zn 
Cd  0.702 0.544 0.697  0.586 
Cr 0.702  0.530 0.700 0.315 0.513 
Cu 0.544 0.530  0.586 0.540 0.603 
Ni 0.697 0.700 0.586  0.341 0.442 
Pb  0.315 0.540 0.341  0.372 
Zn 0.586 0.513 0.603 0.442 0.372  
Particle bound metals for size fractions <63 µm (n=48) 
 Cd Cr Cu Ni Pb Zn 
Cd  0.557 0.673 0.794 0.358 0.501 
Cr 0.557  0.675 0.705 0.527 0.487 
Cu 0.673 0.675  0.707 0.557 0.722 
Ni 0.794 0.705 0.707  0.386 0.459 
Pb 0.358 0.527 0.557 0.386  0.496 
Zn 0.501 0.487 0.722 0.459 0.496  

 

Although similar patterns of correlation were found for the size fraction below 63 µm 

compared to 250-63 µm size fraction, the strength of correlations for the finer fraction 

were found to be a little higher. The correlation coefficients range from 0.358 to 0.794 

for size fraction below 63 µm. The stronger relationships were for Ni with Cd (r = 

0.794) and Cr (r = 0.705) followed by Cu with Zn (r = 0.722) and Ni (r = 0.707). Cu 

shows good association with Cd, Cr, Ni and Zn, in which cases correlation coefficients 

were above 0.60. Similar correlations between the particulate phase of many metals can 
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be found elsewhere (Mosley and Peake, 2001; Hallberg et al., 2007; Helmreich et al., 

2010). Furthermore to note that, based on the strength of relationship between 

particulate metals (Table 6.8), it can be suggested that similar to dissolved metals 

particulate Cu can be used as a surrogate parameter for other particulate metals 

(particularly for the sediment size < 63 µm). 

 

The association of heavy metals with runoff sediment suggests that the implementation 

of infiltration trenches or retention basins, capable to retain finer sediment, could be a 

viable source/site control option for the study area, so mitigating the potential pollution 

exerted by runoff water on nearby receiving waters. 

 

6.6 Pollution Assessment for Runoff Sediment 

 

To better judge the potential environmental contamination, the degree of contamination 

(CD) and potential ecological risk (PERI) were calculated for the runoff sediment 

(irrespective of sediment size fractions), as shown in Figures 6.7 and 6.8. 

 

Figure 6.7: Bar chart of degree of contamination (CD) for metals in runoff sediment. 

(Grey, dotted and solid lines represent upper limits of low, moderate and considerable 

degree of contamination, respectively) [RB-Road bend, RSC-Road with speed control, RI-Road 

intersection, SR-Straight road] 
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From the CD values, it appears that sediment associated with runoff events falls within 

the considerable to high degree of contamination bands for all monitored events and 

sampling sites. The RSC and SR sites for 3 out of 12 monitored rain events had CD ≥ 

24 (suggesting high degree of contamination) and were the most contaminated sites. 

However, none of the monitored rain events at the RB and RI sites displayed CD ≥ 24. 

Furthermore, all 3 rainfall events with CD ≥ 24 occurred between the summer and early 

autumn. The highest CD of 29 was at the SR site followed by 28, 24 and 22 at the RSC, 

RI and RB sites, respectively, all for the 1 August 2010 rain event. This 1 August 2010 

rain event was a high intensity (10.96 mm/hr), short duration (1.23 h) event following a 

relatively long dry period (10 days), which may likely have transported more fine 

sediment and associated pollutants. Similarly, in two other rain events on 14 July 2010 

and 1 July 2010, the CD values were 25 and 24 at the SR and RSC sites, respectively. 

The degrees of contamination for other rain events monitored during late autumn, 

winter and spring, were lower than 24, suggesting low to moderate degrees of 

contamination. 

 

 

 

Figure 6.8:  Bar chart of potential ecological risk index (PERI) for metals in runoff 

sediment. (Grey and dotted lines represent upper limits of low and moderate level of 

ecological risk, respectively) [RB-Road bend, RSC-Road with speed control, RI-Road intersection, 

SR-Straight road section] 
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The potential ecological risk index, PERI, gives individual weights for the metals 

depending upon their toxic effect on healthy aquatic life, as proposed by Hakanson 

(1980). As seen in Figure 6.8 and as expected, PERI shows peaks for similar rain events 

as seen for CD. Based on the results, it has been found that in general the runoff water 

posed low to moderate levels of ecological risk. However, 1 July, 14 July, 1 August and 

7 September 2010 rain events, where all the sampling sites showed PERI ≥ 75, suggest 

an occasional significantly higher moderate level of risk from the runoff sediment that 

may in turn have a significant effect on sensitive aquatic species (Clements et al., 2000). 

The SR sampling site was most contaminated with a PERI ≥ 75 for 10 out of 12 

monitored rain events, followed by the RSC site with 9 events exceeding PERI ≥ 75, the 

RI site with 6 events, and the RB site with 4 rain events. However, considering the 

magnitudes of PERI from all 12 rain events, on average, the highest values are at the 

RSC, while the lowest are at the RB. The SR site has PERI values very close to the RSC 

site, while at the RI site they are marginally higher than the RB site. 

 

 

6.7 Analysis of Snow Samples 

 

Snow is another type of wet weather by which pollutants could be transported to the 

drainage system. This was studied at a limited scale to get an initial impression of 

pollutant wash-off during snow events. Note that fresh snow samples were collected 

rather than runoff induced by snow-melt on roads. Details of sample collection, 

preservation and testing methods were discussed earlier in Chapter 3. This section 

presents particle size distributions, dissolved metal and particle bound metal 

concentrations. Finally, pollution assessment for heavy metals in snow samples is also 

presented and discussed. 

 

6.7.1 Particle Size Distribution 

 

Figure 6.9 displays snow derived sediment size distributions from 5 monitored events 

sampled at the four primary study sites. As seen in the figure, the particle size 

distributions for all the snow events monitored were very similar, with few significant 

differences between them. The mean d50 was found as 38 µm (with a range of 35 - 42 

µm), indicating very fine sediment in comparison to that observed in dry sediment (d50 = 
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120 – 255 µm) and in runoff sediment (d50 = 68 – 140 µm). The difference between the 

rainfall and snowfall events may be linked to the kinetic energy required to transport the 

available sediment, for which the snow-melt runoff (although not sampled here) likely 

had the lowest. 

 

It is also apparent from Figure 6.9 that approximately 70% of the sediment had sizes 

below 63 µm. Dust particles in the atmosphere during snow precipitation may likely 

contribute to high percentage of fine particles along with particulate matter derived from 

the road traffic environment. Dust particles, derived from atmospheric deposition and 

from the car exhaust, often called particulate matter, PM10 for which d50 ≤ 10 µm, are 

more prone to be re-suspended due to wind and vehicular turbulence from the road 

surface. The proportion of this PM10 in atmosphere may likely be trapped and deposited 

on the road surfaces during snow and so be available on the road surfaces. However, in 

the case of the dry sediment, it is very likely that some of the PM10 sediment is lost prior 

to collection due to the turbulence induced by wind and traffic movement. 

 

  

Figure 6.9: Particle size distribution curve for snow derived sediment from road 

surfaces (average over all sites) 
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Considering the event mass loads from the snow samples, mass load ranged from 20 g 

to 400 g for all 5 snow events across the sites (from 2 kg of snow collected from each 

site), which is significantly below the range of 50 g to 6370 g, reported by Westerlund 

et al. (2003) in their study in Sweden. As discussed earlier in section 6.4, this difference 

may be explained the nature and extent of the winter in the two different climate 

regions. Based on the Swedish study by Westerlund and Viklander (2006), it is apparent 

that winter weather often lasts for as long as 4-6 months in Sweden, thus requiring 

extensive use of road grit and road salt for road surfaces, and studded tyres on cars. 

Therefore, any snowpack will remain for several months in Sweden and is likely to trap 

more particulates, whereas the snowpack in the UK is normally only present for a few 

days - week. 

 

6.7.2 Descriptive Statistics of Heavy metal Concentrations in Snow  

 
Summary statistics of both dissolved and particle bound heavy metal concentrations 

(irrespective of particle size fractions and averaged over all sites) are presented in Table 

6.9. Standard values for dissolved and particle bound heavy metal concentrations to 

maintain water quality for the protection of aquatic species, are also shown in the table. 

Details regarding the standard values were discussed earlier in section 6.3.1.  

 

Table 6.9: Descriptive statistics of heavy metal concentrations (averaged over the sites 

and sediment size fractions) in snow samples 

 

Metal Dissolved metals (µg/l) EQS1 

(µg/l) 

 Particulate metals (mg kg-1) Flemish SQG2 

(mg kg-1) Range Mean ± SD Range Mean ± SD 

Cd 0.01 – 0.07 0.04 ± 0.02 5  1 – 2  1.3 ± 0.30 1 

Cr 7 – 22 13 ± 3.7 20  15 – 28  21 ± 4 62 

Cu 4 – 20  11 ± 4 5  59 – 125  87 ± 19 20 

Ni 0.4 – 2.2  1.3 ± 0.4 30  13 – 27  21 ± 3 16 

Pb 0.06 – 0.75  0.22 ± 0.2 25  61 – 138  88 ± 22 40 

Zn 12 – 24  17 ± 4 40  185 – 292  233 ± 34 147 
1 EQS = Environmental Quality Standard (Annual average value) in the UK (EA, 2003) 
2 SQG = Final Flemish Sediment Quality Guidelines (de Deckere et al., 2011) 
 

As seen in Table 5.9, all the dissolved metals except Cu were significantly below their 

EQS values, while all the particulate metals except Cr were found to exceed the Flemish 
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SQG for protecting fresh water ecosystems. It is important to note that all the dissolved 

metal concentrations were lower than their LODs; therefore these results should be used 

with caution. 

 

The mean concentrations reported here are lower than in Swedish and German studies 

(e.g. Westerlaund and Viklander, 2006; Hallberg et al., 2007; Helmreich et al., 2010). 

As stated earlier, differences in climatic conditions (longer and colder winter in Sweden 

compared to the UK), and hence snow management measures required for roads (road 

salt and road grit, studded tyres for cars) may likely explain this variability. Moreover, 

snow subjected to prolonged exposure to road salt (NaCl) is found to behave differently 

than fresh snow, as found in Novotny et al. (1999), Glenn and Sansalone (2002), 

Reinsdotter and Viklander (2007). These authors also noted that the presence of road 

salt during snow-melt significantly influences the heavy metal concentrations, and their 

partition between dissolved and sediment phases.  

 

6.7.3 Site and Grain size Specific Heavy Metal Concentrations 

 

Grain size specific heavy metal concentrations in snow samples for each site are 

presented in Table 6.10. 

 

Table 6.10: Site and size specific metal concentrations (mg kg-1) in snow sediment 
 

Metal Particle size 250-63 µm  Particle size < 63 µm 

RB RSC RI SR  RB RSC RI SR 

Cd 1.3 ± 0.4 1.2 ± 0.3 1.3 ± 0.3 1.5 ± 0.3  1.4 ± 0.5 1.3 ± 0.6 1.5 ± 0.7 1.7 ± 0.9 

Cr 19 ± 11 22 ± 13 24 ± 10 19 ± 13  79 ± 23 109 ± 33 59 ± 18 95 ± 41 

Cu 72 ± 29 82 ± 22 87 ± 20 106 ± 21  184 ± 54 234 ± 64 178 ± 41 212 ± 59 

Ni 21 ± 4 21 ± 5 18 ± 3 23 ± 4  37 ± 13 33 ± 8 20 ± 5 34 ± 10 

Pb 64 ± 31 118 ± 61 46 ± 16 57 ± 17  109  ± 33 112 ± 37 87 ± 23 110 ± 40 

Zn 167 ± 40 209 ± 47 199 ± 38 219 ± 42  418 ± 101 521 ± 108 415 ± 110 487 ±  105 

Sampling sites: RB – Road bend; RSC – Road with speed control; RI – Road intersection; SR – Straight 
road section 
 

As seen in Table 6.10, snow sediment size fraction < 63 µm contains up to 5 times 

higher metal concentrations than the 250-63 µm size fraction  across the sampling sites 

(except Pb at the RSC site and for Cd at all sites). The distribution of heavy metals in 

different sediment size fractions is consistent with the results found for dry and runoff 
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sediment. For each sediment size fraction, there were no statistically significant 

differences between the site-specific metal concentrations (p > 0.05; Kruskal-Wallis 

test).  

 

Considering sites, for the < 63 µm size fraction, the highest concentrations for most of 

the metals were found at the RSC site followed by the SR, RB and RI sites. In contrast, 

for the sediment size fraction 250- 63 µm, the highest concentrations for all the metals, 

except Pb and Cr, were found at the SR site. The highest Cr and Pb concentrations were 

found at the RSC and RI sites. It was further noted that although Cr concentrations were 

similar at all sites, Pb concentrations were approximately 2 to 3 times higher at the RSC 

site than elsewhere. The weathering of road paints (particularly yellow lines) at this site 

may likely cause this difference, as commented on earlier.  

 

6.7.4 Correlations between Heavy Metal Concentrations 

 

Correlation analysis between heavy metal concentrations in snow samples were carried 

out averaging data over all 4 sites and all 5 snow events, as seen in Table 6.11. For 

dissolved metals, correlation coefficients range from 0.223 to 0.681 suggesting strength 

of correlation is weak to moderate. In general, it can be seen that dissolved Cu shows a 

relatively good association (r ≥ 0.5) with all metals (see Table 6.8). The results suggest 

that dissolved Cu can be used as a surrogate parameter for other dissolved metals, as 

also found for runoff samples.  

 

For particulate bound metals, only Ni exhibited statistically significant relationships 

with other metals in the 250-63 µm size fraction. In contrast, Cr showed the lowest 

number (2 out of 5) of statistically significant correlations, only for Cr with Cd and Cr 

with Ni. Cd, Cu and Zn, all display 4 out of 5 possible correlation coefficients with 

other metals, while for Pb the number of statistically significant relations was 3 in the 

250-63 µm size fraction (Table 6.11). The correlation coefficients range from 0.139 to 

0.591 indicating poor to moderate association between metals in the 250-63 µm size 

fraction. Only the correlation coefficient between Cd and Cu was found above 0.50, 

while relationships for other metals (0.1 < r < 0.5) were found as very poor to weak. 
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Table 6.11: Spearmen rank-order correlation coefficients between heavy metal 

concentrations in snow (only statistically significant correlations are shown here) 

 
Dissolved metals (n=20) 
 Cd Cr Cu Ni Pb Zn 
Cd  0.263 0.580 0.346 0.418 0.468 
Cr 0.263  0.681 0.485 0.507 0.590 
Cu 0.580 0.681  0.524 0.578 0.659 
Ni 0.346 0.485 0.524  0.461 0.540 
Pb 0.418 0.507 0.578 0.461  0.223 
Zn 0.468 0.590 0.659 0.540 0.223  
Particle bound metals for size fractions 250-63 µm (n=20) 
 Cd Cr Cu Ni Pb Zn 
Cd  0.318 0.591 0.395  0.327 
Cr 0.318   0.149   
Cu 0.591   0.463 0.420 0.478 
Ni 0.395 0.149 0.463  0.139 0.427 
Pb   0.420 0.139  0.403 
Zn 0.327  0.478 0.427 0.403  
Particle bound metals for size fractions <63 µm (n=20) 
 Cd Cr Cu Ni Pb Zn 
Cd  0.457 0.672 0.441 0.387 0.587 
Cr 0.457  0.702 0.356 0.495 0.664 
Cu 0.672 0.702  0.634 0.618 0.763 
Ni 0.441 0.356 0.634  0.319 0.602 
Pb 0.387 0.495 0.618 0.319  0.662 
Zn 0.587 0.664 0.763 0.602 0.662  

 

In contrast, for the size fraction below 63 µm, all the metals showed correlations with 

others, as seen in Table 6.11.  Moreover, the strength of correlations between metals 

was found to be higher. The correlation coefficients range from 0.319 to 0.763 for size 

fraction below 63 µm. The stronger relationships were for Cu with Zn (r = 0.763) and 

Cr (r = 0.702) followed by moderate relationships for Cu with Cd (r = 0.672) and Cr 

with Zn (r = 0.664). Briefly, Cu was found to show good association with other metals 

in snow sediment, with correlation coefficients above 0.60. Similar correlations between 

the many metals in the finer sediment size fractions of snow sediment can be found in 

Hallberg et al. (2007) and Helmreich et al. (2010). 

 

6.8 Pollution Assessment of Snow Sediment 

 

The degree of contamination (CD) and potential ecological risk index (PERI) were 

calculated for snow sediment (irrespective of sediment size fraction) to assess the 

contamination at the primary study sites. Figures 6.10 and 6.11 demonstrate the CD and 

PERI results (averaged over all 5 snow events), respectively, for snow samples. 
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Figure 6.10: Bar chart of degree of contamination (CD) for metals in snow sediment. 

(Grey, dotted and solid lines represent upper limits of low, moderate and considerable 

degree of contamination, respectively) [RB-Road bends, RSC-Road with speed control, RI-Road 

intersection, SR-Straight road] 

 

As seen Figure 6.10, snow sediment at all the sites except the RB site showed 

considerable level of contamination (CD ≥ 12). The highest degree of contamination 

was at the RSC site (CD = 16) followed by the RI (CD = 14) and the SR (CD = 13) 

sites. The higher CD at the RSC site was dominated by considerable contamination with 

Pb and Zn and moderate contamination of Cr and Cu in the snow sediment. As stated 

earlier, degradation of road paint (Pb) along with speed control measures (Zn, Cr, Cu) 

may explain the abundance of these metals in snow sediment at this site compared to the 

other sites.  

 

The potential ecological risk index, PERI, which uses individual weights for the metals 

depending upon their toxic effect on healthy aquatic life, as suggested by Hakanson 

(1980), was estimated with necessary modification for snow sediment. As seen in 

Figure 6.11 the results are consistent with the CD results, with the largest PERI being at 

the RSC and the smallest at the RB. 
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Figure 6.11: Bar chart of potential ecological risk index (PERI) for metals in snow 

sediment. (Grey and dotted lines represent upper limits of low and moderate level of 

ecological risk, respectively) [RB-Road bends, RSC-Road with speed control, RI-Road intersection, 

SR-Straight road] 

 

The PERI ranges from 72 to 92, suggesting low to moderate levels of ecological risk 

from the snow sediment at the study sites. The PERI values are not markedly varied 

between the sites. Based on the values of PERI at sites, it is seen that snow sediment in 

general posed marginally higher than a low level of ecological risk similar to runoff se 

diment discussed earlier in section 6.6, if being transported during snow-melt runoff or 

runoff from rain-in snow events (not monitored for the present study) to the nearby 

watercourse in the study area. However, a more extensive investigation is needed to 

increase the certainty of this conclusion. Indeed collection of runoff induced by snow-

melt (not sampled) rather than snow samples might be useful for pollution assessment. 

 

6.9 Conclusions 

 

It has been revealed that only part of the initially available sediment was transported 

during rainfall events, in particular, the finer fractions. The pollutant wash-off was 

found to be a site-specific issue: a local wash-off parameter was derived and compared 

with a default value commonly used in commercial urban drainage models, suggesting 

that the default value is (significantly) inappropriate for the studied road network. The 

metal concentrations in runoff, especially for the particulate phase, were significantly 
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higher at all the sampling sites than guideline values. A significant seasonal difference 

for the dissolved and particulate concentrations in runoff samples for most of the metals 

was observed between winter and summer rainfall events. An assessment of the 

contamination associated with the runoff sediment indicates a low level of ecological 

risk for most of the runoff events monitored during winter and spring, while a few 

summer rain events may likely pose a moderate (significantly higher) risk across the 

sampling sites. 

 

Heavy metal concentrations in snow samples exhibited similar patterns to runoff 

samples. An assessment of the contamination revealed that snow sediment posed a 

marginally greater than low level of ecological risk for most of the monitoring sites, if 

being transported during runoff induced by snow-melt. 

 

Considering wash-off events (runoff and snow), the strongest correlations between 

particulate metals were found to be associated with the smaller size fractions compared 

to larger size fractions. Based on the strength of the correlations, it appears that Cu can 

be used as a surrogate parameter for other metals in both dissolved and particulate 

phases (in particular for the sediment size fraction ≤ 63 µm) for wash-off events. 
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Chapter 7 – Comparative Assessment of Dry, Runoff and 

Snow Sediment 

 

7.1 Introduction 

 

This chapter summarises the key results from Chapters 4, 5 and 6 with the aim of 

discussing the comparative assessment of dry and wet weather (runoff and snow) 

sediment monitored at the four primary study sites during March 2010 to February 

2011. The quantification of heavy metals in dry, runoff and snow sediment from roads 

could provide more insight for an improved understanding of how best to tackle diffuse 

pollution using sustainable urban drainage systems for roads. Heavy metal 

concentrations and their distribution in different size fractions of the different categories 

of road sediment (dry, runoff and snow) at the four sites are compared and discussed. 

Note that the monitored runoff and snow sediment did not contain the largest sediment 

size fraction (500-250 µm), hence to keep the comparison consistent between the 

categories of the sediments, only 250-63 µm and < 63 µm size fractions are used here. 

Following on, an assessment of pollution caused by heavy metals in the different 

categories of road sediment is presented. A summary of the key findings should be 

helpful for getting an overview of sediment quality derived from the road-traffic 

environment. 

 

7.2 Particle Size Distributions 

 

Table 7.1: Summary statistics of d50 from the particle size distributions for road 

sediment 

 
Sediment type n1 Minimum (µm) Maximum (µm) Mean ± standard deviation (µm) 

Dry road sediment 120 85 250 165 ± 42 

Runoff sediment 48 68 140 96 ± 31 

Snow sediment 20 35 42 38 ± 3 

1 Number of samples 

 

Table 7.1 describes the range and mean d50 from the particle size distribution analyses 

for dry, runoff and snow road sediments. As seen in the table, the d50 lies between 85 – 
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250 µm, 68 – 140 µm and 35 – 42 µm, respectively for the dry, runoff and snow 

sediment sampled from the road surfaces (averaged over all events and all the primary 

study sites), as also discussed in detail elsewhere in Chapters 4 (Table 4.5) and 6 (Table 

6.3 and Figure 6.9). Similarly, the order of mean median diameter, d50 was found as 165 

µm, 96 µm and 38 µm, respectively. 

 

The median diameter of dry road deposited sediment values reported here fall within 

published ranges in the literature noted as anything between 150 to 4000 µm (Sartor and 

Boyd, 1972; Pitt, 1979; Butler and Clark, 1995, Ball et al., 1998; Deletic and Orr, 

2005). However, mean d50 values for runoff and snow sediments were significantly 

smaller compared to the dry sediment, suggesting that coarser particles, although 

available on the roads may not be transported to the drainage system by runoff from 

rainfall or snow-melt runoff at the study sites. This may also be due to the nature of 

rainfall at the study sites (usually low intensity). Similarly it can be speculated that the 

kinetic energy generated by runoff from the snow-melt event (although not studied) is 

usually much lower than that from the low intensity rainfall, and hence very unlikely to 

transport coarser particles. This finding indicates that only a fraction of initially 

available sediment on road, built-up between rain events (in particular), was being 

washed-off, for which smaller sediment size fractions were the key contributors, as 

evident in Table 7.1. 

 

7.3 Descriptive Statistics of Heavy Metals in Road Sediment 

 

The descriptive statistics of heavy metal concentrations (averaged over all sites and 

sampling events) in dry, runoff and snow derived sediment on road surfaces are 

presented in Table 7.2.  The background concentrations of the metals from Riccarton 

Campus are also shown along with the regional background values for Scotland 

(Appleton, 1995). The local background values for all the metals except Pb are found 

very similar to the regional background values. The lower background value for Pb is 

possibly Pb is phased-out of petrol nearly two decades or more in the UK. The mean 

concentrations for all the heavy metals except Ni show elevated concentrations 

compared to their local background values (Table 7.2) in dry, runoff and snow derived 

sediments, suggesting that the road sediments are highly contaminated by heavy metals 

related to the road-traffic inputs in addition to atmospheric deposition. 
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The mean concentrations reported here for heavy metals in dry and runoff sediment are 

consistent with previous studies in the UK (Charlesworth et al., 2003; Deletic and Orr, 

2005; Crabtree et al., 2006; Robertson and Taylor, 2007; Crabtree et al., 2008; Pal et al., 

2011), and other parts of the world (Ball et al., 1998; Kim et al., 1998; Drapper et al., 

2000; Brezonik and Stadelmann, 2002; Sutherland, 2003; Han et al., 2006; Gan et al., 

2008).  The metal concentrations in snow sediments for this study were lower than 

previously reported values in Swedish and German studies (Westerlund et al., 2003; 

Hallberg et al., 2007; Helmreich et al., 2010). The difference may be linked to a 

relatively longer winter spell with persistent snow coverage in Swedish studies 

compared to a rather short span of snow and quick melting in the Edinburgh study.  

 

Table 7.2: Descriptive statistics of heavy metal concentrations (mg kg-1) in road 

sediments (averaged over sites) 

 

Metal Dry sediment  
(n =120) 

 Runoff sediment  
(n = 48)  

 Snow sediment  
(n = 20) 

 Local 
background 
mean a  

(n = 4) 

Regional 
background 
mean b  Range Mean ±  

SD 
 Range Mean ± SD  Range Mean ± 

SD 

 

Cd 0-4.00 1.00 ±0.80  0.60-1.75 1.00 ± 0.26  0.90-2.00 1.32 ±0.3  1 1.4 

Cr 4-76 17 ± 11  35-120 64 ± 20  15-28 21 ± 4  8 n.a. 

Cu 20-220 67 ± 41  79-206 134 ± 30  59-125 87 ± 19  44 46 

Ni 3-33 12 ± 6  20-50 33 ± 7  13-27 21 ± 3  20 n.a. 

Pb 6-621 92 ± 101  30-140 69 ± 24  61-138 88 ±22  28 115 

Zn 99-460 212 ± 88  165-280 205 ± 27  185-292 233 ± 34  107 120 

n - Number of samples analysed 
SD – Standard deviation 
a   Metal concentrations were measured in RDS from road sites which carry no traffic 
b Appleton, 1995 

 

The distribution of the highest mean concentration of individual metals was found as 

follows: 1.32 and 233 mg kg-1 for Cd and Zn, respectively (in snow sediment); 64, 134 

and 33 mg kg-1 for Cr, Cu and Ni, respectively (in runoff sediment); 92 mg kg-1 for Pb 

(in dry sediment). On average, Cr and Cu concentrations in the runoff sediment were 

significantly higher compared to their concentrations in dry and snow derived 

sediments, while Cd, Ni and Pb exhibited little variation, and Zn showed even less 

variation among the three categories of sediment. These findings suggest that rainfall 

runoff derived sediment carry the highest load by mass for most of the metals, followed 

by the snow and dry sediment. 
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7.4 Site and Size Specific Heavy metal Concentrations 

 

The distribution of mean heavy metal concentrations in the different particle sizes of 

road sediments are of particular importance for best management practice regarding 

road drainage. The influence and importance of the particle size distribution on 

sediment associated metal concentrations have been extensively studied and are well 

documented in the published literature (e.g. Robertson and Taylor, 2007; Sansalone et 

al., 2010). The distributions of heavy metal concentrations for each of the two particle 

size fractions (250-63 µm and < 63 µm) of road sediment for the four primary study 

sites are presented in Table 7.3. Only heavy metals found at levels 150% higher than 

their respective local background values (based on Table 7.2), which is indicative of an 

anthropogenic input (traffic) in addition to atmospheric deposition, are presented here. 

 

As seen in Table 7.3, on average, the highest concentrations for most of the metals 

(across the sampling sites for both particle size fractions) were found in the order of 

runoff sediment > snow sediment > dry sediment. In general, sediment size < 63 µm 

usually contains approximately 2 to 4 times higher concentrations than the size fraction 

250-63 µm for most of the metals across the sampling sites. For example, particle size  

< 63 µm contains the highest mean concentrations for Zn and Cu with the value of 572 

and 320 mg kg-1, respectively, compared to their concentrations of 237 and 140 mg kg-1, 

respectively, in the size fraction 250-63 µm (for the runoff sediment at the RSC site). 

Similarly for Cr, the highest mean of 153 mg/kg in the < 63 µm size fraction compared 

to 56 mg/kg in the 250-63 µm size fraction (in the runoff sediment at the SR site). In 

contrast, the highest mean concentration of 250 mg kg-1 for Pb was in the 250-63 µm 

size fraction (in the dry sediment at the RSC site) compared to 195 mg/kg in the < 63 

µm size fraction (in the runoff sediment at the RSC site). This is consistent with the vast 

majority of previously published work (e.g. Ball et al., 1998; Kim et al., 1998; Drapper 

et al., 2000; Sutherland, 2003; Deletic and Orr, 2005; Han et al., 2006; Robertson and 

Taylor, 2007; Crabtree et al., 2008). 

 

Based on the sampling sites, a greater number of the highest mean concentrations for 

metals in different sediment categories for both sediment size fractions were found at 

the RSC site than at the SR site (Table 7.3). The RB and RI sites rarely contain the 

highest metal concentrations (only Cr and Zn in the < 63 µm of dry sediment, and only 
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Cr in the 250-63 µm of snow sediment). The concentrations for most of the metals in 

both runoff and snow derived sediments (for both particle sizes) were found to be 

similar at the RB and SR sites, while their concentrations in the dry sediment showed 

significant differences between the sites (in particular, all metals except Cr in the <63 

µm size fraction were found approximately doubled at the SR site, while Cr in the 250-

63 µm size fraction was tripled at the RB site). At the RI site all the metals (except Pb) 

for larger size fraction (250-63 µm) were marginally higher than their values at the RB 

site, while for finer size fractions (< 63 µm) concentrations were found relatively close 

to their values at the SR site (except Zn). 

 

Table 7.3: Site and grain size specific mean metal concentrations (mg kg-1) in road 

sediment 

 

Site  
(Traffic volume) 

Category Particle size fraction 250-63 µm  Particle size fraction  < 63 µm 

  Cr Cu Pb Zn  Cr Cu Pb Zn 
Road bend, RB 
(200 VPH) 

Dry Sediment 11 35 90 128  58 94 135 522 
Runoff sediment 42 103 71 202  130 254 125 494 
Snow sediment 19 72 64 167  79 184 109 418 

           
Road with speed 
controls, RSC 
(250 VPH) 

Dry Sediment 23 34 250 134  26 102 157 426 
Runoff sediment 51 140 132 237  149 320 195 572 
Snow sediment 22 82 118 209  109 234 112 521 

           
Road 
intersection, RI 
(285 VPH) 

Dry Sediment 7 45 34 121  21 114 115 287 
Runoff sediment 45 127 59 242  126 292 111 555 
Snow sediment 24 87 46 199  59 178 87 415 

           
Straight road, 
SR (650 VPH) 

Dry Sediment 12 65 49 217  21 142 137 518 
Runoff sediment 56 120 71 247  135 312 120 571 
Snow sediment 19 106 57 219  95 212 110 487 

 

Furthermore, although the traffic volumes at the RB, RSC and RI sites are about one 

third to one half that for the SR site (Table 7.3), the higher metal concentrations were 

not found in accordance with the higher traffic volume. The variations across the sites 

appear to be primarily due to site- specific attributes, such as road lay-out, road surface 

condition and presence of road paint rather than due to traffic volume alone. Taking Pb 

as an example, significantly higher Pb concentrations at the RB and RSC sites in dry 

road sediment were found compared to other sites. Since,  the previous use of Pb in fuel 

was phased out more than a decade ago, the only other likely source of Pb may be 
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linked to the road paint particles at these sites (such as double yellow lines), as 

presented in Table 4.2 and discussed in Chapter 4. The similar idea was also reported by  

Deletic and Orr (2005). In contrast, elevated concentrations of Pb in particular for the 

size fractions <63 µm at the other sites, suggests that other traffic related inputs, such as 

wheel bearings, car paints etc are likely sources of Pb in the road-traffic environment 

(Napier et al., 2008; Ewen et al, 2009). Similarly, the other heavy metals studied here 

are also found to be linked with road-traffic emissions in the literature. Briefly, Zn and 

Ni is primarily linked with tyre wear; while Cd, Cr and Cu are linked with brake wear 

and exhaust emissions (Charlesworth et al., 2003; Ward et al., 2004; Zanders, 2005). To 

relate these sources to the present study it can be noted that as traffic passed through all 

the above sites (except the straight road section), it experienced frequent acceleration 

and deceleration, which increase metal concentrations, as suggested by Ewen et al. 

(2009) for traffic undergoing ‘stop-start’ activities. This is true for the RB and RSC sites 

in particular (almost all traffic was observed to undergo braking during the sampling 

period) compared to the RI site (controlled braking) and the SR site (steady speed), as 

discussed in section 4.2.  

 

7.5 Metal Contamination  

 

7.5.1 Road Sediment Quality Assessment  

 

Heavy metal concentrations (combined from all sites and size fractions) in dry, runoff 

and snow derived sediments (taken from Table 7.2) were compared with several trigger 

concentrations (used for hazard assessment relating to sediment quality), see Table 7.4. 

Note that the two sets of trigger values from The Netherlands and Canada shown in 

Table 7.4 are rather inconsistent, but are used here, in the absence of such for the UK, 

for gaining an initial impression of sediment quality for the study sites. Another point to 

be noted is that all these guideline values were derived for fluvial sediment with the aim 

of protecting fresh water ecosystems, as stated earlier. However, in the absence of 

particular guidelines for road sediment, these alternatives can be used to gain an 

impression of how hazardous the road sediment could be in relation to ecological 

aspects, as evident from previous use in literature (e.g. Heal et al., 2006; Shi et al., 

2010). The mean suspended sediment associated metal concentrations from rural rivers 

in the UK are also shown alongside. Although the three sets of guidelines give rather 
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inconsistent metal concentration values, a few similarities are found in the order of 

metal concentrations. For example, for both triggers, the highest concentration is for Zn 

followed by Cr, while the lowest is for Cd, and Pb and Cu in the Dutch guideline are 

found in reverse order in the Canadian guideline. The UK rural river sediment quality 

values are consistent with the highest and lowest being for Zn and Cd, respectively. The 

order for the other metals is Pb, Cu and Cr.  

 

Table 7.4: Comparison of mean heavy metal concentrations with published guide line 

values 

 

Metal Dry 
sediment 
(n =120) 

 Runoff 
sediment 
(n = 48) 

 Snow 
sediment 
(n = 20) 

 Dutch 
sediment 
quality 
guideline* 

Canadian 
sediment 
quality 
guideline** 

UK rural river 
sediment 
quality*** 

Cd 1.00   1.00   1.32   1 0.60 3.98 

Cr 17   64   21   62 37.3 41.81 

Cu 67   134   87   20 35.7 48.88 

Ni 12   33   21   16 n.a. 67.54 

Pb 92   69   88   40 35 440.50 

Zn 212   205   233   147 123 682.91 

Data measured in mg kg-1; Data in bold indicate metal concentrations exceed or equal to at least one of 
the two guidelines, while bold and italic indicate concentrations exceed both guidelines, as shown in the 
table 
* (de Deckere et al., 2011) 

** Sediment Quality Guidelines for the protection of aquatic life (CCME, 2007)  
*** Neal and Robson (2000) 
 

As seen in Table 7.4, except for Cr and Ni, all metal concentrations in dry, runoff and 

snow derived sediments exceed or equal their guideline values in the Dutch and 

Canadian standards. Considering the exceptions, Cr in runoff sediment and Ni in both 

runoff and snow sediment were higher than their values in both guidelines. Cr in runoff 

and Cu in all different categories of road sediments from this study were well above 

their typical values in UK rural river sediment, while the other metal concentrations 

were found to be significantly lower in the road sediment than in the river sediment. 

Taking the different categories of road sediments into account, all the metals in runoff 

sediment were found to exceed the guideline values, indicating runoff as the dominant 

medium of pollutant transport from roads in the study area followed by the snow 

precipitation (except Cr) and the dry weather derived sediment (except Cr and Ni).  
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7.5.2 Pollution Indices for Heavy Metals  

 

Transforming heavy metal concentration levels into a single index value is often 

preferred to derive better understanding and to inform decision making tools in 

environmental pollution research. In this regard, the degree of contamination (CD) and 

potential ecological risk (PERI) indices were estimated and are presented in Table 7.5.  

It may be debatable to use these indices, as they were primarily designed for the 

assessment of aquatic toxicity of natural sediment. However, due to the robustness of 

the indices, they have previously been used (with necessary modification) to assess 

metal contamination for road sediment (e.g. Yu et al., 2003; Huang et al., 2009; Shi et 

al., 2010).  

 

Table 7.5 demonstrates the CD and PERI indices for three different categories of road 

sediments at the primary study sites. The last two columns contain these indices for 

integrated samples (defined as sediment irrespective of fractions), were derived by 

integrating the individual size fractions data (the metal concentrations were weighted by 

size fraction before calculation of integrated CD and PERI in the 250-63 µm and < 63 

µm size fractions), which are shown in columns 3 – 6. As the methods used here to 

calculate CD and PERI, proposed by Hakanson (1980), were for undisturbed sediment 

overlooking different size fractions. Estimating these indices for different size fractions 

is open to question. However, the intention here is to inform readers regarding the 

influence of the sediment size fractions on overall pollution levels. 

 

Based on the integrated samples (penultimate column in Table 7.5), the degree of 

contamination caused by metals in road sediments falls between 8 and 20, indicates low 

to moderate degree of contamination. CD ≥ 12, suggesting a considerable degree of 

contamination, was found at the RSC site for all three categories of road sediments. For 

the other 3 sites 1 of the 3 sediment categories fell below the same contamination level. 

The CD for the snow derived sediment at the RB site and for the dry sediment at the SR 

site are only marginally below 12, while only the dry sediment at the RI site was below 

moderate contamination level.  

 

Similarly, PERI (last column in Table 7.5) which indicates a metal toxicity for aquatic 

species, ranges from 72 to 100, indicating low to moderate levels of ecological risk 
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across the sites, and was found to be generally consistent with the pattern of CD. PERI 

≥ 75, suggesting a moderate level of ecological risk, was found for all sediment 

categories for all the sites with the only exception being at the RB site for snow 

sediment. However, even this exception was only marginally below the moderate 

ecological risk level mark. 

 

Comparing the different road sediment for the pollution indices, the runoff sediment 

was found to be the most contaminated followed by dry and snow sediment. 

 

Table 7.5: Pollution indices (Degree of contamination, CD and Potential ecological risk 

index, PERI) for the heavy metals associated with road sediment  

 
Site Category Sediment size 

fractions 250-63 
µm 

 Sediment size 
fractions < 63 µm 

 Integrated 
sediment a  

  CD PERI  CD PERI  CD PERI 
Road bend 
(RB) 

Dry Sediment 8 78  23 178  14 95 
Runoff sediment 14 68  36 160  16 75 
Snow sediment 10 70  25 116  11 72 

          
Road with 
speed controls 
(RSC) 

Dry Sediment 15 84  17 241  16 100 
Runoff sediment 19 81  44 204  20 94 
Snow sediment 13 79  31 129  16 92 

          
Road 
intersection 
(RI) 

Dry Sediment 5 66  15 92  8 75 
Runoff sediment 15 64  38 173  17 80 
Snow sediment 11 69  21 105  14 79 

          
Straight road 
(SR) 

Dry Sediment 9 86  18 124  10 80 
Runoff sediment 17 73  43 196  20 92 
Snow sediment 11 80  29 131  13 86 

          
a Irrespective of sediment fraction sizes 

 

In contrast to the integrated sediment (irrespective of size fractions), both the CD and 

PERI in the sediment size fraction < 63 µm (usually considered as the most chemically 

active) were values 1.5 to 3 times greater, raising the pollution level to the next 

hierarchy of ecological risk (columns 5 and 6 in Table 7.5). For example, at all 

sampling sites except the RI, CD ≥ 24, suggesting a high level of contamination for both 

runoff and snow sediment. Conversely, CD associated with the larger sediment size 

fraction (250-63 µm), displays a similar level of contamination as seen in the integrated 

sediment samples, but with a different magnitude. Taking the sediment size into account 
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on potential ecological risk index, the size fraction < 63 µm, PERI ≥ 150, suggesting 

considerable ecological risk needing immediate attention, was found at all the sites for 

the runoff sediment. A similar level of ecological risk was also found at the RB and 

RSC sites for the dry road sediment, while none of the snow sediment at the sites 

showed such a high risk. The low ecological risk for snow sediment was because of the 

lower concentration of the most toxic metals Cd (toxic factor = 30) and Pb (toxic factor 

= 5) compared to other two sediment categories. Furthermore, PERI associated with 

larger sediment size fraction (250-63 µm), displays a low to moderate level of 

ecological risk as found for the integrated sediment, but with a different magnitude. 

  

It is therefore clear that pollution indices based on integrated sediment (irrespective of 

size fractions) may underestimate the level of ecological risk. However, as the local 

background values of metals were derived for integrated RDS (not separating into 

different sediment size fractions) and these values were used for different sediment size 

fractions, the probable higher pollution indices for the finer sediment particles could be 

biased. Therefore these pollution indices derived for finer sediment fractions need to be 

used with caution. In future work related to this, local background values for metals in 

different size fractions could be used to derive the pollution indices, which may 

eliminate the present limitations. 

 

7.6 Conclusions 

 

This chapter identified that only a fraction of sediment built-up during dry days was 

washed-off during rainfall and snow events, for which smaller sediment size fractions 

were the key contributors. The road sediment contained significant amounts of heavy 

metals and their concentrations varied with sediment type in the order of runoff > snow 

> dry, and between the sampling sites as RSC > RB > SR > RI, irrespective of traffic 

volume. The contamination assessment suggested that road sediment may likely pose a 

moderate to considerable level of ecological risk to the nearby water environment: 

among which runoff from the rainfall event was the most dominant medium of pollution 

followed by the dry and snow sediment. 
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Chapter 8 - Conclusions and Recommendations 

 

8.1 Introduction 

 

This research study used an easy to replicate experimental methodology with the aim of 

characterising the heavy metal contamination of road deposited sediment. The 

investigation focused on the hypothesis that traffic movement patterns, which are 

conditioned by road lay-out, have a significant influence on heavy metal emission 

patterns and associated pollution. The intrinsic variability of the pollutant build-up and 

wash-off processes, and the unsuitability of applying data and information that are 

available in the literature to local conditions, warranted the study of these processes as 

part of the research study.  A total of 12 different sampling sites were initially selected 

on the Riccarton Campus road network at Heriot Watt University in Edinburgh to 

represent a range of typical road lay-outs. The sites comprised straight sections of road, 

roundabouts, a road bend, a road with speed control measures (speed bumps), a road 

intersection, bus stops and a car park. Based on the study objectives, 4 of the sampling 

sites were selected for long term monitoring (over a year). These four primary sites 

were a road bend (RB), a section of road with speed control measures (RSC), a road 

intersection (RI) and a straight road section (SR).  

 

The pollutant build-up at these primary study sites was studied in-depth by analysing 

road deposited sediment (RDS) and RDS associated heavy metals at two transverse 

sampling positions (near the curb and 1 m from the curb). Several wash-off events 

comprising 12 different rainfall events covering a year, and 5 snow precipitation events 

during winter were also monitored at the primary sites. The pollutant wash-off was 

studied by analysing sediment load derived from rainfall-runoff events only, as for snow 

events only fresh snow rather than snow-melt runoff was sampled.  

 

The data was used to derive calibrated parameters for the mathematical replication of 

the pollutant build-up and wash-off for the four primary study sites. These mathematical 

models were validated using independent data and the parameters were compared with 

default values used in commercial urban drainage models.  
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Subsequently, grain size and site specific heavy metal, temporal and seasonal 

variability, and relationships between heavy metals were studied and discussed. 

Furthermore contamination levels associated with heavy metals in the road sediment 

were assessed in relation to potential ecological risk for nearby receiving waters. Based 

on the results obtained the following conclusions can be drawn, which are presented 

below in a few sub sections. 

 

8.2 Major Conclusions 

 

• Road sediment on Riccarton Campus is highly contaminated by heavy metals 

compared to their local background values, signifying an anthropogenic input most 

likely from the road-traffic environment. The RB, RSC, RI and SR sites were all found 

as pollutant hot-spot sites. 

• The variations across the sites appear to be primarily due to site-specific 

attributes, such as road lay-out, road surface condition and presence of road paint rather 

than due to traffic volume alone. Moreover, as traffic passed through all the above sites 

(except the straight road section), it experienced acceleration and deceleration whilst 

undergoing ‘stop-start’ activities conditioned by road lay-out, which more likely 

influenced metal emission patterns than traffic volume. 

• The build-up of road deposited sediment over antecedent dry days is highly site-

specific and varies with position across the road. These are also true of the relationship 

between heavy metal build-up and the number of antecedent dry days. 

• The pollutant wash-off is site-specific and only part of the initially available 

sediment is transported during rainfall events, in particular, the finer fractions. There is 

also an influence from the type of rainfall and the number of dry days between rainfall 

events. 

•  Comparing site-specific build-up and wash-off parameters with default values 

in commonly used commercial urban drainage models suggests that the default values 

are (significantly) inappropriate for road networks, such as Riccarton Campus. 

• Heavy metal concentrations decrease with increasing sediment particle size 

fractions, which is consistent with current knowledge of trace metal distributions in 

sediment. 

• The concentrations of most of the heavy metals are significantly higher in runoff 

sediment followed by the snow and the dry sediment for all the sampling sites. 
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• Stronger correlations between heavy metals are associated with the lower 

fraction sizes (≤ 63 µm) than with the larger fraction sizes (> 63 µm). Based on the 

strength of the correlations between metals, it appears that Cu can be used as a surrogate 

parameter for other metals in both dissolved and particulate phases (in particular for the 

sediment size fraction ≤ 63 µm). 

• The contamination assessment reveals that runoff is the largest potential 

contributor of pollution followed by snow and dry sediment. The pollution risk levels 

vary from low to moderate, however they could reach considerable levels for a few 

rainfall events during summer and autumn months. 

 

8.3 Themed Conclusions 

 

This section outlines classified conclusions that can be drawn from the results presented 

in Chapters 4 to 7.  

 

8.3.1 Dry Road Sediment 

 
• RDS on the Riccarton Campus road network is highly contaminated with heavy 

metals, with larger concentrations compared to their local background values, 

suggesting an anthropogenic input (most likely from traffic) in addition to atmospheric 

deposition.  

• Spatial variations of heavy metal emission patterns were found across the 12 

monitoring sites on the road network. Based on the average values of pollution indices, 

RB, RSC, RI, SR and bus stops were found as the pollutant hot-spot sites. 

• RDS and RDS associated heavy metal build-up on roads were primarily site-

specific. The variability is primarily governed by road lay-out with influences from 

traffic movement patterns, road surface condition, presence of road paints and 

surrounding land use. 

• For the relationship between heavy metal build-up and the number of antecedent 

dry days (ADD), it was revealed that RDS sampling position had the major influence on 

this. Although the pattern of pollutant build-up was common, a transverse distribution 

of sediment build-up was also observed. Heavy metals analysed from RDS collected at 

1 m from the curb showed a generally increasing trend with increasing ADD as 

expected, however, near the curb the trends were found to be decreasing with increasing 
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ADD, which is surprising and contrary to current understanding derived from previous 

published work. 

• Generally, RDS collected at 1 m from the curb contained a larger percentage of 

smaller particles than RDS collected near the curb. Likewise, there was a greater 

percentage of larger particles in RDS near the curb than in RDS at 1 m from the curb. A 

similar distribution of metal concentrations was also observed with higher 

concentrations of Cd, Cu and Zn in RDS collected at 1 m from the curb, and higher 

concentrations of Cr, Ni and Pb in RDS near the curb. 

• The concentrations for all metals except Pb were found to decrease with 

increasing RDS particle size fractions, which is consistent with current knowledge of 

trace metal distributions in road sediment. Overall, particles in the < 63 µm size fraction 

made a dominant contribution to metal loading in RDS. 

• Correlation analyses revealed a stronger correlation between heavy metals (in 

particular in the smallest sediment size fraction) at 1 m from the curb than near the curb, 

indicating different sources for the metals at the two sampling positions. 

•  Furthermore, from a detailed study of the four primary study sites, using the CD 

and PERI, the degree of contamination and potential ecological risk index, respectively, 

revealed that the RSC is the most contaminated site followed by the RB, SR and RI 

sites. As mentioned earlier, site specific attributes were found to be drivers of the 

difference in heavy metal concentrations in the RDS and so it was the case for the 

pollution levels: primarily road lay-out with traffic movement patterns, along with 

influences from road surface condition and road paint rather than traffic volume alone. 

 

8.3.2 Wet Weather Samples 

 

8.3.2.1 Runoff Samples 

 

• Only the mean concentrations of dissolved Cu and Zn, among the 6 heavy 

metals studied, were found to exceed environmental quality standards, while all the 

particulate metals displayed significantly higher concentrations than recommended for 

most of the sampling sites.  

• Particles in the < 63 µm size fraction made a dominant contribution to the 

particulate metal concentrations of runoff sediments at all sampling sites. 
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• Significant seasonal variations of most of the heavy metal concentrations were 

found. Mean concentrations for most of the dissolved metals were higher in winter and 

spring than in autumn and summer, while reverse patterns were found for most of the 

particle bound metals. 

• In general, correlations between metal concentrations and storm variables were 

weak to moderate. Rainfall duration was found as a primary driving variable for most of 

the dissolved metal concentrations, while the number of antecedent dry days was key 

followed by rainfall intensity, for most of the particle bound metals. 

• The strongest correlations between metals were found to be associated with the 

smaller size fractions (< 63 µm) compared to larger size fractions (250-63 µm). 

However, the relationships between heavy metals and total suspended solids (TSS) were 

not very strong. 

• An assessment of the contamination indicated that runoff sediment posed a 

moderate to considerable degree contamination (based on the CD), for which the 

associated ecological risk (based on the PERI) indicated low to moderate ecological 

risks. However a few storm events during the summer and autumn were found to 

display a considerable level of contamination, and a moderate ecological risk, for most 

of the sampling sites, when a high intensity rainfall followed a long dry spell. 

 

8.3.2.2 Snow Samples 

 

• For all sampling sites, only the mean concentration of dissolved Cu, out of 6 

heavy metals studied, was found to exceed environmental quality standards, while all 

the particulate metals except Cr displayed higher concentrations than recommended. 

• The concentrations for most of the metals (except Pb) in the <63 µm size 

fraction were found to be up to 5 times as high as in the 250-63 µm size fraction. 

• The strongest correlations between metals were found to be associated with the 

smaller size fractions (< 63 µm) compared to larger size fractions (250-63 µm). 

• An assessment of the contamination revealed that snow sediment posed a 

marginally greater than low level of ecological risk for most of the monitoring sites on 

the studied road network, if being transported in runoff induced by snow-melt. 
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8.3.3 Comparative Assessment of Dry, Runoff and Snow Sediment  

 
• The median diameter of the dry road sediment was approximately 2 to 4 times 

larger than that of the runoff and snow sediment, respectively, suggesting that only a 

fraction of the initially available sediment was washed-off during rainfall-runoff events.  

• The smaller sediment size fraction (<63 µm) for the 3 different road sediment 

types contain up to 5 times greater concentrations for all the heavy metals (except Pb), 

compared to the larger sediment size fraction (250-63 µm ). 

• The pollutant concentrations for most of the metals are significantly higher in 

runoff sediment followed by the snow and dry sediment for all the sampling sites. 

Similarly, the heavy metal contamination assessment indicated that there is a low to 

moderate level of ecological risk associated with the road sediment; among which 

runoff from the rainfall event is the most dominant medium of pollution followed by the 

dry and snow sediment.  

• The pollution level could potentially reach a considerable level of ecological risk 

(the highest risk being associated for the < 63 µm size fraction of the runoff and dry 

road sediment), if the influence of sediment particle sizes is considered. 

 

8.4 Implications of the Research 

 
The identification of pollutant ‘hot spot’ sites on a suburban road network, quantified by 

heavy metal concentrations and associated pollution levels in different categories of 

road sediment derived by dry and wet weather, has a direct application on the selection 

of site/source control measures outlined in the ‘SUDS for Roads’ manual (Pittner and 

Allerton, 2009). The derived local build-up and wash-off models, although site-specific 

at this stage, may be used to establish a quick estimate of the pollutant build-up and 

wash-off loads with reasonable confidence for a given rainfall intensity, rainfall 

duration and antecedent dry days in other parts of Scotland and the UK. This should be 

possible given the reasonably uniform climate condition across the British Isle, although 

further studies may be required to fully establish this. A transverse gradient of RDS and 

RDS heavy metals was found to have a significant influence on the pollutant build-up 

process: hence the design of future monitoring of RDS needs to be specified in light of 

this. Additionally, the interpretation of already published data may need to be modified 

unless the transverse location of the sampling position was clearly specified. In terms of 
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monitoring heavy metals in wash-off from roads, the measurement of Cu alone can be 

taken, as a surrogate parameter of other heavy metals, to gain a reasonable 

understanding of other pollutants and thus to avoid time and cost involved in monitoring 

a full list of pollutants, if not necessary. 

 

8.5 Recommendations for Further Research 

 

The outcomes of this research have contributed to the current knowledge base on urban 

diffuse pollution from the road-traffic environment. Apart from the main findings, 

several areas are identified, where further research studies are recommended, as 

summarised below. 

• The understanding gained of the influence of site-specific attributes on heavy 

metal emission patterns is limited to a suburban road network with low traffic density 

and a combination of rural and urban land uses. Further investigations on roads with 

high traffic volumes, such as main roads and motorways, and with specialised land uses, 

such as industrial or commercial activities, would be a useful extension to this work, 

which would enable it to fit into urban diffuse pollution studies in a more holistic way. 

• Although pollutant build-up was investigated in detail, pollutant wash-off for the 

largest rainfall events was limited to only a part of the runoff volume. Hence, future 

research should focus on capturing the entire runoff volume. Furthermore, monitoring 

the composition of runoff during rainfall events could be useful. 

• A total of 5 snow events were monitored and sampling was limited to the 

collection of fresh snow. Collection of snow-melt and rain-in-snow induced runoff 

samples instead of fresh snow could be a better way to compare and contrast the 

characteristics of pollutants in snow derived sediment with those in rainfall induced 

runoff and in dry sediment. 

• The assessment of metal contamination was based on simplified methods and, 

therefore, the pollution levels reported may be rather conservative. For example, the 

bio-availability of metals (not studied), might be a useful issue to include in further 

research to gain a proper understanding of the actual impact of road runoff on the water 

quality of receiving waters. Other additional information might include the type of 

aquatic species present, the variability of bed sediment quality in receiving waters 

before and after storm events and the influence of surrounding soils. 
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• An investigation of the use of treatment trains of SUDS, at the sites that have 

been identified as hot-spot areas, would be a valuable extension of this research, which 

could provide a valid platform to translate the knowledge gained from this study into 

practical measures. 

• As the transverse gradient of road sediment has revealed that the chemically 

active finer sediment (< 250 µm) generally deposited away from the curb edge, the 

conventional street sweeping technique should be modified to also target to remove 

sediment deposited away from the curb rather than along the edges. 

• While the design of a typical road lay-out in suburban roads with more bends, 

more speed bumps, more intersections etc to restrict vehicle speed is believed to be 

safer for pedestrians, they are potentially environmental pollution hot-spot sites, as 

evident from this study. Therefore future road design in suburban area needs to assess 

the trade-off between road designs for safety vs. road design to minimise environmental 

pollution. 
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Appendix A – Study Area 

Site Description 

 

Edinburgh, a city in the southeast of Scotland, lies on the east coast of Scotland’s 

central belt, alongside the Firth of Forth, as seen in Figure A1. Heriot Watt University’s 

Riccarton Campus (latitude: 55.910 and longitude: -3.310) is located southwest of 

Edinburgh city (Figure A2) and has been developed during the last 40 years with good 

ecological and environmental perspectives.  

 

 

 

Figure A1: Map showing Edinburgh City (adapted from http://www.metoffice.gov.uk). 
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Figure A2: 3D view of Heriot Watt University Riccarton Campus in Edinburgh City 

(adapted from google earth map) 

 

 

 
Figure A3: Sampling sites on Campus road network. 
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Site Photos 

Site 1: Roundabout at Gait 4 on Boundary Road North 

 

 

Site 2: Straight road section on link road between Boundary Road North and Research 
Avenue North Road 
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Site 3: Road bend on Research Avenue North Road 

 

 

 

Site 4: Straight road section on Research Avenue North Road 
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Site 5: Bus stop on Research Avenue North Road 

 

 

 

Site 6: Road with Speed control measures on Research Avenue North road 
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Site 7: Straight road section on Research Avenue North Road 

 

 

 

Site 8: Road intersection on Research Avenue North Road 
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Site 9: Straight road section on Riccarton Avenue Road 
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Site 10: Roundabout on Riccarton Avenue Road 

 

 

 

Site 11: Bus stop on Riccarton Avenue Road 
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Site 12: Car park A (alongside Riccarton Avenue Road) 

 

 

 

Edinburgh Climate 

 

Edinburgh City has a temperate maritime climate (moderate summer and mild winter), 

the annual average temperature range is about 0.9 – 12.2 0C and the annual average 

precipitation is about 668 mm distributed fairly evenly throughout the year. The 

variation of mean daily maximum and minimum temperatures month by month, 

together with the highest and lowest temperatures recorded, is shown in Figure A4 for 

Edinburgh RBG (Royal Botanic Garden). The wettest months tend to be in autumn and 

early winter, whereas late winter and spring is normally the driest part of the year. The 

course of mean monthly rainfall for 1971-2000 for Edinburgh RBG site is shown in 

Figure A5. Over most of the area, snowfall is normally confined to the months from 

November to April with average number of days with snow falling is about 20 per 

winter. The depth of snow fall recorded at Edinburgh RBG site for 25 November to 12 

December 2010 is shown in Figure A6. 
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Figure A4: Variation of mean daily temperature averaged over 1971 to 2000 at 
Edinburgh RBG (adapted from http://www.metoffice.gov.uk).  

 

 

Figure A5: Mean monthly rainfall averaged over 1971 to 2000 at Edinburgh RBG 
(adapted from http://www.metoffice.gov.uk). 
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Figure A6: Rainfall intensity recorded at local rain-gauge (a tipping bucket type) setup 

near to Riccarton Campus of Heriot Watt University in Edinburgh for a period of May 

to December 2010 (Bars filled with red colour are some the monitored events during the 

study period). 

 

 

Figure A7: Snow depths measured at different sampling sites in eastern Scotland and 
north-east England during November and December 2010 (adapted from 
http://www.metoffice.gov.uk). 
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Appendix B – Laboratory Testing 

Laboratory Testing Equipments Photos 

 

Figure B1: Electric water bath to heat sediment samples followed by acid digestion. 

 

Figure B2: Perkin Elmer Atomic Absorption Spectrometer 200 Analyst.  
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Figure B3: Hollow cathode lamp (HCL) arrangement on Perkin Elmer 200 AAS 
analyst (adapted from Perkin Elmer 200 AAS manual). 

 

A photograph of four unit lamp mount on Perkin Elmer 200 AAS is shown in Figure 

B3. A single lamp can be made to generate characteristic radiation for up to two or three 

elements without interference problems.  

 

 

Figure B4: The basic system of a Flame Atomic Absorption Spectrometer (adapted 

from Perkin Elmer 200 AAS manual) 

 

A diagram of a Flame Atomic Absorption Spectrometer (FAAS) is shown in Figure B4. 

The light source is a cold hollow cathode lamp that produces the light that would be 
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naturally emitted by the element to be measured at a high temperature. Depending on 

the metals to be analysed, a large range of such lamps are available. Consequently, each 

of the lights contains specifically those wavelengths that the element in the flame will 

selectively absorb. The light passes through the flame, which is usually rectangular in 

shape for allowing an adequate path length of flame for the light to be absorbed, and 

then into the optical system of the spectrometer, as seen in Figure B4.  

 

The flame is fed with a combustible gas, customarily air/acetylene, nitrous 

oxide/acetylene or air/propane or butane. The sample, dissolved in a suitable solvent, is 

nebulised and fed into the gas stream at the base of the burner. The light, having passed 

through the flame, can be focused directly onto a photo-cell or onto a diffraction grating 

by means of a spherical mirror. The diffraction grating can be made movable, and so it 

can be set to monitor a particular wavelength that is characteristic of the element being 

measured, or it can be scanned to produce a complete absorption spectrum of the 

sample. After leaving the grating, light of a selected wavelength, or range of 

wavelengths, is focused onto the photocell. The position of the diffraction grating 

determines the wavelength of the light that is to be monitored. More details of the basic 

system of a flame atomic absorption spectrometry can be found in Perkin Elmer 200 

AAS manual. 

 

Analytical Test Results  

 

On 10 occasions blanks (distilled water) were tested for metals by using calibration 

solutions prepared from the standard stock solutions. The results obtained are presented 

in Table B1. 

 

Table B1: Test results of blank (distilled water) at laboratory using calibration solutions 
for metals 
 

Metal 
(µg/l) 

1 2 3 4 5 6 7 8 9 10 Average 
Standard 
deviation 

Cd 0.15 0.11 0.11 0.12 0.098 0.099 0.095 0.013 0.101 0.12 0.1 0.0 

Cr 8.4 8.98 8.14 7.95 8.68 9.32 8.67 9.54 8.23 8.95 8.7 0.5 

Cu 1.21 1.42 1.32 1.28 1.2 1.18 1.3 1.4 1.34 1.35 1.3 0.1 

Ni 0.75 0.72 0.7 0.65 0.71 0.64 0.72 0.7 0.7 0.71 0.7 0.0 

Pb 1.01 1.15 0.98 0.87 1.21 1.07 0.95 1.31 1.21 1.25 1.1 0.1 

Zn 12.5 12 11.78 13.02 12 11.18 12.87 12.68 12.95 11.24 12.2 0.6 
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Table B2 presents test results of certified reference material MESS-3 using metal 

calibration solutions for quality control and quality assurance purposes. 

 

Table B2: Test results of certified reference material MESS – 3 at laboratory using 
calibration solutions for metals 
 

Metal 
(mg/l) 

MESS-
3(1) 

MESS-
3(2) 

MESS-
3(3) 

Average 
Standard 
deviation 

Certified 
values (mg/l) 

% Recovery of 
reference value 

Cd 0.24 0.235 0.241 0.24 0.00 0.24 100 

Cr 109 103.4 107 106.5 2.84 105 101 

Cu 31.54 35.42 35.2 34.0 2.18 33.9 99.5 

Ni 51.05 44.5 48.12 47.9 3.28 46.9 102 

Pb 22.01 21.34 22.1 21.8 0.42 21.1 103 

Zn 157.5 168.4 149.2 158.4 9.63 159 99.6 

 

 

Table B3 illustrates the results obtained for the heavy metal concentration in RDS 

carried out for 12 initial RDS samples by using three different metal extractants, such as 

strong HNO3, aqua-regia (HCl-HNO3 in 3:1 by volume) and a mix of HCl-HNO3-

HClO4 (2:1:2 by volume). As seen in Table B3, there is no marked variation between 

metal concentrations for the three different metal extractants. 

 

Table B3: Descriptive statistics of the mean heavy metal concentration (mg/kg) in the 

road sediment for different strength extractions 

 

Metal Conc. HNO3 Aqua-regia (HCl-HNO3) HCl-HNO3-HClO4 
Cd 1.31 ± 0.51 0.92 ± 0.37 1.02 ± 0.29 
Cr 15 ± 7 18 ± 5 19 ± 8 
Cu 99 ± 32 87 ± 30 93 ± 41 
Ni 17 ± 8 19 ± 10 14 ± 7 
Pb 114 ± 101 89 ± 77 93 ± 81 
Zn 280 ± 82 267 ± 69 270 ± 58 
Values are in mean ± standard deviation (the number of samples analysed were 10) 
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Appendix – C (Supporting Results) 

 

 

Figure C1: Particle size distribution curve for initial sampling of dry road sediment 
(RDS) at several sites along the studied road network. 
 

 

Figure C2: Particle size distribution curve for wash-off sediment at the primary study 
sites for 01 July 2010 rain events. 
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Figure C3: Heavy metal concentrations in RDS over the antecedent dry days at the 
road bend site (squares and diamonds represent data from the near curb and 1m from 
the curb, respectively). 

Sediment fraction sizes: 250-63 µm Sediment fraction sizes: < 63 µm 
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Figure C4: Heavy metal concentrations in road deposited sediment over the antecedent 
dry days at the road with speed control site (squares and diamonds represent data from 
the near curb and 1m from the curb, respectively). 

Sediment fraction sizes: 250-63 µm Sediment fraction sizes: < 63 µm 
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Figure C5: Heavy metal concentrations in road deposited sediment over the antecedent 
dry days at the road intersection site (squares and diamonds represent data from the 
near curb and 1m from the curb, respectively). 

Sediment fraction sizes: 250-63 µm Sediment fraction sizes: < 63 µm 
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Figure C6: Heavy metal concentrations in road deposited sediment over the antecedent 
dry days at the straight road section site (squares and diamonds represent data from 
the near curb and 1m from the curb, respectively). 
 

Sediment fraction sizes: 250-63 µm Sediment fraction sizes: < 63 µm 
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Table C1: Steps showing calculation of pollution indices (CD: degree of contamination; PERI: potential ecological risk index) for heavy metals in 
dry, snow and runoff derived road sediment at four primary study sites as a function of sediment size fractions 

RDS cf 250-63 µm CD <63 µm CD Integrated CD 

Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn 

RB 0.76 1.34 0.79 0.7 3.21 1.19 7.99 0.78 7.32 3.38 1.65 4.82 4.87 22.82 0.76 2.99 1.16 0.96 3.64 2.21 11.72 

RSC 0.49 2.84 0.76 0.45 8.95 1.25 14.74 1.24 3.22 2.31 1.13 5.61 3.98 17.49 0.74 2.96 1.27 0.67 7.85 2.15 15.64 

RI 0.51 0.94 1.01 0.52 1.19 1.13 5.30 1.52 2.62 2.59 1 4.11 2.69 14.53 0.85 1.51 1.54 0.69 2.19 1.66 8.44 

SR 1.29 1.46 1.48 0.62 1.75 2.03 8.63 1.37 2.6 3.23 1.46 4.89 4.84 18.39 1.31 1.73 1.88 0.82 2.49 2.69 10.92 

Ef PERI PERI PERI 

RB 22.8 2.68 3.95 3.5 16.05 1.19 50.17 23.4 14.64 16.9 8.25 24.1 4.87 92.16 22.8 5.98 5.8 4.8 18.2 2.21 59.79 

RSC 14.7 5.68 3.8 2.25 44.75 1.25 72.43 37.2 6.44 11.55 5.65 28.05 3.98 92.87 22.2 5.92 6.35 3.35 39.3 2.15 79.22 

RI 15.3 1.88 5.05 2.6 5.95 1.13 31.91 45.6 5.24 12.95 5 20.55 2.69 92.03 25.5 3.02 7.7 3.45 11 1.66 52.28 

SR 38.7 2.92 7.4 3.1 8.75 2.03 62.9 41.1 5.2 16.15 7.3 24.45 4.84 99.04 39.3 3.46 9.4 4.1 12.5 2.69 71.4 

Snow cf 250-63 µm CD <63 µm CD Integrated CD 

Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn 

RB 1.3 2.37 1.64 1.07 2.29 1.56 10.23 1.42 9.87 4.18 1.85 3.89 3.91 25.12 1.3 2.37 1.64 1.07 2.64 1.96 10.98 

RSC 1.2 2.75 1.86 1.07 4.21 1.95 13.04 1.35 13.62 5.32 1.67 4.2 4.87 31.03 1.28 2.75 2.35 1.35 5.26 3.35 16.34 

RI 1.3 3 1.98 0.89 1.64 1.86 10.67 1.51 7.37 4.04 1 3.11 3.88 20.91 1.3 3 2.04 1.02 3.21 3.15 13.72 

SR 1.5 2.37 2.41 1.13 2.04 2.05 11.5 1.7 11.87 4.82 1.7 3.93 4.55 28.57 1.5 2.25 2.41 1.2 3.11 2.51 12.98 

Ef PERI PERI PERI 

RB 39 4.74 8.2 5.35 11.45 1.56 70.3 42.6 19.74 20.9 9.25 19.45 3.91 115.85 39 4.74 8.2 5.35 13.2 1.96 72.45 

RSC 36 5.5 9.3 5.35 21.05 1.95 79.15 40.5 27.24 26.6 8.35 21 4.87 128.56 38.4 5.5 11.8 6.75 26.3 3.35 92.05 

RI 39 6 9.9 4.45 8.2 1.86 69.41 45.3 14.74 20.2 5 15.55 3.88 104.67 39 6 10.2 5.1 16.1 3.15 79.5 

SR 45 4.74 12.05 5.65 10.2 2.05 79.69 51 23.74 24.1 8.5 19.65 4.55 131.54 45 4.5 12.1 6 15.6 2.51 85.61 
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Cf is contamination index for an individual metal; Ef is ecological risk index for an individual metal; Integrated-weighted average of different sediment size fractions; RB: road 
bend site; RSC: road with speed controls site; RI: road intersection site; SR: straight road section site 

 

Table C2: Dissolved heavy metal concentrations (µg/l) in snow samples monitored at the primary study sites 
 

RB RSC RI SR 

Date Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn 

26.115.10 0.07 12 15 1.4 0.14 18 0.07 14 17 2.2 0.65 22 0.03 12 12 1.6 0.21 15 0.06 17 18 1.5 0.24 24 

29.11.10 0.03 10 12 0.8 0.08 15 0.05 16 15 1.6 0.45 16 0.01 9 10 1.1 0.15 12 0.04 13 15 1.2 0.18 17 

06.12.10 0.03 15 7 0.6 0.06 14 0.03 12 9 1.2 0.25 19 0.04 7 8 0.9 0.08 10 0.02 11 10 1.0 0.15 14 

10.12.10 0.02 9 5 1.2 0.10 16 0.06 10 7 0.9 0.32 17 0.02 11 4 1.2 0.10 12 0.02 10 12 1.2 0.10 18 

20.12.10 0.08 12 9 2 0.12 21 0.05 20 15 1.8 0.75 15 0.05 14 9 1.8 0.15 16 0.03 22 20 1.6 0.18 26 
RB: road bend site; RSC: road with speed controls site; RI: road intersection site; SR: straight road section site 

Table C1 continued 
 
Runoff cf 250-63 µm CD <63 µm CD Integrated CD 

Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn 

RB 0.498 5.25 2.34 1.2 2.54 1.96 13.788 1.9 16.25 5.77 3.07 4.43 4.62 36.04 0.9 7.21 2.52 1.438 2.2 1.808 16.06 

RSC 0.64 6.37 3.18 1.49 4.71 2.21 18.6 2.4 18.63 7.27 3.7 6.96 5.34 44.3 1.11 8.198 3.31 1.715 3.4 1.931 19.67 

RI 0.62 5.62 2.89 1.34 2.1 2.17 14.74 2.2 16.12 6.64 3.4 3.96 5.19 37.51 1 7.474 3.12 1.59 1.89 1.908 16.98 

SR 0.75 7 2.77 1.47 2.55 2.15 16.69 2.45 19.12 7.09 3.95 4.71 5.34 42.66 1.13 9.292 3.24 1.846 2.46 2.007 19.98 

Ef PERI PERI PERI 

RB 14.94 10.5 11.7 6 12.7 1.96 57.8 57 32.5 28.85 15.35 22.15 4.62 160.47 26.9 14.42 12.6 7.188 11 1.808 73.85 

RSC 19.2 12.74 15.9 7.45 23.55 2.21 81.05 72 37.26 36.35 18.5 34.8 5.34 204.25 33.4 16.4 16.6 8.573 17 1.931 93.84 

RI 18.6 11.24 14.45 6.7 10.5 2.17 63.66 66 32.24 33.2 17 19.8 5.19 173.43 30 14.95 15.6 7.948 9.44 1.908 79.84 

SR 22.5 14 13.85 7.35 12.75 2.15 72.6 73.5 38.24 35.45 19.75 23.55 5.34 195.83 34 18.58 16.2 9.229 12.3 2.007 92.32 
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Table C3: Dissolved heavy metal concentrations (µg/l) in runoff samples monitored at the primary study sites 

 

RB RSC RI SR 

Date Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn Cd Cr Cu Ni Pb Zn 

26.05.10 0.04 4 15 1.4 0.12 48 0.0 6 17 2.2 0.26 62 0.04 7 12 1.6 0.09 45 0.05 8 18 1.5 0.18 74 

01.07.10 0.12 8 24 1.25 1.11 30 0.2 5 22 3.26 2.8 45 0.15 6 26 2.26 1.85 65 0.1 4 32 1.52 2.6 85 

04.07.10 0.08 8 17 1 0.12 34 0.1 10 19 1.2 0.3 49 0.07 8 15 1.3 0.14 60 0.06 10 20 1.4 0.15 64 

14.07.10 0.034 3 23 1.2 1.2 56 0.0 5 18 1.3 2.5 47 0.012 4 28 1.5 1.2 75 0.007 5 27 1.3 1.4 117 

01.08.10 0.08 6 11 1.1 0.12 36 0.1 7 16 1.5 0.75 55 0.057 7 13 1.8 0.15 46 0.063 8 15 1.6 0.18 66 

12.08.10 0.025 6 8 1 0.08 30 0.0 8 10 1.2 0.12 42 0.028 7 9 1 0.04 35 0.03 6 9 1 0.07 58 

21.08.10 0.045 7 10 1.5 0.1 38 0.1 6 12 1.6 0.15 48 0.048 8 12 1.5 0.08 52 0.055 8 14 1.4 0.1 64 

07.09.10 0.1 8 14 1.8 0.08 42 0.1 10 17 2.3 0.11 57 0.15 8 20 1.7 0.07 35 0.16 10 18 1.6 0.09 54 

11.09.10 0.18 10 18 2.2 0.13 55 0.2 12 22 2.6 0.18 62 0.23 10 25 2.86 0.1 68 0.18 14 30 2.75 0.1 74 

20.11.10 0.25 12 26 2.6 1.6 45 0.3 16 32 3.2 2.8 70 0.28 12 28 3 2.2 75 0.22 20 30 2.8 2.7 87 

12.03.11 0.12 8 22 2.3 1 39 0.2 9 28 2.8 2.5 64 0.22 10 35 2.4 1.2 62 0.16 15 26 2.6 2.2 72 

23.04.11 0.1 10 18 2.4 1.2 44 0.2 11 25 3.0 2.4 60 0.2 11 32 2.8 1.4 60 0.11 16 28 2.4 1.3 62 
RB: road bend site; RSC: road with speed controls site; RI: road intersection site; SR: straight road section site 
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Appendix – D (Abstracts of the Published Papers) 

 
 Journal Papers 

 
 

 Cent. Eur. J. Chem. • 9(2) • 2011 • 314-319 
DOI: 10.2478/s11532-011-0005-y 

Central European Journal of Chemistry 
 

Assessment of heavy metals emission from traffic on road surfaces 
 

Sudip K. Pal*; Steve Wallis and Scott Arthur 

 
* School of the Built-Environment, Heriot-Watt University, Edinburgh, UK, EH14 4AS  
Email:skp7@hw.ac.uk, Tel: +44(0) 131 451 4434; Fax: +44(0)131 451 4617 

 

Abstract: This study aims to analyse RDS heavy metal concentrations on road 
deposited sediment (RDS) using Riccarton Campus of Heriot-Watt 
University, Edinburgh, Scotland as a study site. RDS samples were 
collected at two transverse positions from different sites over a 4 month 
period in order to describe the influence of traffic on heavy metal 
emissions. The heavy metal concentrations of the RDS were determined 
by strong nitric acid digestion and atomic absorption spectrometry. The 
mean concentrations for Zn, Cu, Cd, Cr, Ni, Pb and Fe were found to be 
213, 57, 1, 16, 15, 118, and 13497 mg kg-1 from samples near to the curb 
and 211, 79, 2, 15, 9, 35, and 14276 mg kg-1 from samples 1 m from the 
curb respectively. Furthermore for both positions the highest 
concentrations for all metals were associated with the finer fraction 
(<63µm) and stronger correlations between the metals were found further 
from the curb than near the curb, indicating that metals accumulating on 
the road surface further from the curb may likely be from the same 
source (traffic), while the sources of metals near the curb are more 
diverse.  

 

Keywords: Edinburgh; Heavy metals; atomic absorption spectrometry; road 
deposited sediment; particle size. 
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Int. J. Environmental Engineering (Article in press) 
 

Emission patterns of traffic-related metals and associated 
contamination in road deposited sediment  

 
Sudip Pal*, Steve Wallis, Scott Arthur 
 
* School of the Built-Environment, Heriot-Watt University, Edinburgh, UK, EH14 4AS 
Email:skp7@hw.ac.uk, Tel: +44(0) 131 451 4434; Fax: +44(0)131 451 4617 
  

Abstract:    Road deposited sediment (RDS) is regarded as a sinks for metal pollutants 
derived from road-traffic that may pose a danger for the nearby water 
environment. The reported study aims to analyse RDS build-up and 
associated metal emission patterns using Riccarton Campus of Heriot 
Watt University, Edinburgh, Scotland as a study site. The RDS samples 
were collected from four different sites over a 4 month period to 
characterize the influence of road lay-out on metal emissions. The metal 
concentrations associated with the RDS were determined by strong nitric 
acid digestion and atomic absorption spectrometry. The outcomes of the 
investigation show highly site-specific variability of the RDS build-up 
primarily linked to road lay-out, and that road surface conditions and 
surrounding land use influenced the results. Similarly, irrespective of 
traffic volume, site attributes were found to be the drivers for the 
observed differences in metal concentration. Furthermore, a significant 
proportion of pollutants were found to be associated with finer particles 
(size <63 µm) and that RDS exhibited moderate to strong levels of 
pollution for Zn, Cu and Pb. 

 
Keywords:   Atomic absorption spectrometry; Contamination assessment; Heavy metal; 

Road-layout; Road deposited sediment 
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Water Environment Research (under review) 

Heavy metals in road sediment and associated contamination: a 
comparative assessment of the dry, runoff and snow derived sediment 
on road surfaces 
 
Sudip K Pal*; Steve G. Wallis and Scott Arthur 
 

* School of the Built-Environment, Heriot Watt University, Riccarton, Edinburgh, EH14 4AS  
Email:skp7@hw.ac.uk, Tel: +44(0) 131 451 4434; Fax: +44(0)131 451 4617 
 

Abstract:    The quantification of heavy metals in dry, wet weather and snow derived 
sediment from roads has the potential to allow improved understanding 
diffuse heavy metal pollution within the context of sustainable urban 
drainage systems for roads. With that aim, the reported study determined 
heavy metal concentrations in road sediment and associated pollution 
levels at four road different sites as part of a 12 month field study. The 
results reveal that road sediment contain significant amounts of heavy 
metals and their concentrations vary with sediment type (wet weather, 
snow and dry sediments) and between sampling sites according to the site 
specific attributes irrespective of traffic volume. Contamination 
assessment suggests that road sediment may likely pose a moderate to 
considerable level of ecological risk to the nearby water environment. 

 
Keywords:      Heavy metals; road lay-out; road sediment; contamination; Edinburgh 
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Environmental Monitoring and Assessment (under review) 
 

Assessing heavy metals and associated contamination in road runoff 
 

Sudip K Pal*; Steve G. Wallis and Scott Arthur 
 

* School of the Built-Environment, Heriot Watt University, Riccarton, Edinburgh, EH14 4AS  
Email:skp7@hw.ac.uk, Tel: +44(0) 131 451 4434; Fax: +44(0)131 451 4617 

Abstract:    The quality of road runoff at different road lay-outs on Riccarton Campus 
road network at Heriot Watt University in Edinburgh was studied for a 
year. Twelve storm events were sampled and analysed for Cd, Cr, Cu, Ni, 
Pb and Zn, both in dissolved and particulate form. The heavy metal 
concentrations were determined by nitric acid digestion and atomic 
absorption spectroscopy. Seasonal variability of metal concentrations 
was studied, and correlation analysis between metal concentrations and 
storm variables was also carried out. In addition the contamination levels 
of the heavy metals in runoff samples were evaluated. The outcomes of 
this study show that runoff samples contain significantly higher metal 
concentrations at all the sampling sites than guideline values. A 
significant seasonal difference in metal concentrations was observed for 
most of the metals. Correlation analyses revealed that rainfall duration is 
significant for most of the dissolved metals, while the number of 
antecedent dry days is a primary variable for particulate metals. An 
assessment of the contamination associated with the runoff sediment 
indicates a low level of ecological risk for most of the runoff events 
monitored during winter and spring, while a few summer rain events may 
likely pose a moderate to considerable risk across the sampling sites. 

 
Keywords:       Road runoff; Heavy metals; seasonal influence; contamination; 

Edinburgh  
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 Conference Papers 
 

 
12th International Conference on Urban Drainage, Porto Alegre/Brazil, 11-16 September 2011 

 
On the relationship between pollutant build-up on roads and 

antecedent dry days 
 
S. Pal1*, S. G. Wallis1& S. Arthur1 
 
1School of the Built Environment, Heriot-Watt University, Edinburgh, EH14 4AS, UK 
Corresponding author, e-mail skp7@hw.ac.uk 

 
ABSTRACT 

 
Heavy metal build-up patterns on roads were investigated using the Riccarton Campus 
of Heriot-Watt University as a study site. As well as observing the influence of the 
number of antecedent dry days on heavy metal concentrations on road deposited 
sediment, for the first time this study also considered the variability of pollutant build-
up with sampling position across the road. Total metal concentrations for Zn, Cu, Cd 
and Pb from road sediments were determined by atomic absorption spectrometry using 
strong nitric acid digestion. The outcomes of this study revealed that mean Cu and Cd 
concentrations were much higher at 1 m from the curb than near the curb, Pb showed an 
inverse picture, while Zn concentrations were similar for both sampling positions. 
Heavy metal build-up over dry spells showed both increasing and decreasing trends. 
Decreasing trend was found for all metals near the curb which was unexpected and is 
contrary to current understanding of pollutant build-up while an increasing trend was 
found for metals at 1 m away from the curb. This inferred that pollutants deposited 
away from the curb may have the same origin (traffic) with continuous input, while near 
the curb the sources are diverse. Correlation between metals for both positions also 
supported this fact. The results indicate that when deriving a relationship between 
pollutant build-up and antecedent dry days, it would be important to include the effect 
of transverse location. 
 
KEYWORDS:  Heavy metals; antecedent dry days; atomic absorption spectrometry; 
road deposited sediments; Edinburgh 
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International Conference on Environment 2010 (ICENV 2010)  

  

EMISSION PATTERNS OF TRAFFIC-RELATED METALS ON 
ROADS  

 
SUDIP K PAL*, STEVE WALLIS, SCOTT ARTHUR  

 
School of the Built-Environment, Heriot-Watt University  

Riccarton, Edinburgh, EH14 4AS, Scotland.  
* E-mail: skp7@hw.ac.uk  

 
ABSTRACT  

 
Road deposited sediments (RDS) are regarded as sinks for metal pollutants derived 
from road-traffic that may pose a danger for the environment. This study aims to 
analyse RDS metal concentrations using Riccarton Campus of Heriot-Watt University, 
Edinburgh, Scotland as a study site. RDS samples were collected from different sites 
over a 4 month period to characterize the influence of road layout on metal emissions. 
The metal concentrations of the RDS were determined by strong nitric acid digestion 
and atomic absorption spectrometry. The outcomes of the investigation show highly 
site-specific rates of build-up, and metal emissions that primarily varied with road lay-
out with also an influence from road surface conditions and surrounding land use. 
Further analysis revealed that a significant proportion of pollutants was associated with 
the finer particles (size <63 µm). A contamination assessment indicated that RDS from 
the study site exhibit moderate to strong levels of pollution for Zn, Cu and Pb.  
 
Keywords: Heavy metal; Road-layout; Atomic absorption spectrometry; Road 
deposited sediment; Contamination assessment. 
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SUDSnet National & International Conference 11th / 12th May 2011 
 

Spatial variation of heavy metal pollution on an urban road network 
 

Sudip K. Pal*; Steve G. Wallis and Scott Arthur 
 

School of the Built-Environment, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS 
*Corresponding author’s e-mail: skp7@hw.ac.uk 

 

ABSTRACT 
 
This study investigated the spatial variability of heavy metal emission patterns and 
associated measures of contamination on Riccarton Campus, Heriot-Watt University, 
Edinburgh, Scotland. Road deposited sediments were collected from 12-different sites 
representing typical road lay-outs over a 10 month period. The heavy metal 
concentrations of the road sediments were determined by strong nitric acid digestion 
and atomic absorption spectrometry. The contamination levels of the heavy metals in 
the road deposited sediments were assessed by the accumulation index, the degree of 
contamination and the ecological risk index. The outcomes of the investigation showed 
highly site-specific heavy metal emissions that primarily varied with road lay-out, with 
also influences from road surface condition, surrounding land use and traffic volume. 
The degree of contamination and the associated ecological risk index revealed that bus 
stops, a road bend, a road with speed control measures and a road intersection site were 
the pollutant hot-spot areas among all the sites that may likely pose moderate to 
considerable levels of pollution to the nearby water environment. 
 
Keywords: Heavy metal; road deposited sediments; atomic absorption spectrometry; 
metal contamination; Edinburgh. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

199 

  

SOURCES, EMISSIONS AND CONTROL OF HEAVY METAL                                15th  ICHMET 
 

Assessment of Heavy Metals Emission on Road Surfaces 
 

S.K. Pal1, S.G. Wallis2, S. Arthur3 
 
1School of the Built-Environment, Heriot-Watt University, Edinburgh, UK, 
skp7@hw.ac.uk  
2School of the Built-Environment, Heriot-Watt University, Edinburgh, UK, 
s.g.wallis@hw.ac.uk 
3School of the Built-Environment, Heriot-Watt University, Edinburgh, UK, 
s.arthur@hw.ac.uk 
 

Abstract 
Road deposited sediments (RDS) are regarded as sinks for metal pollutants derived 

from road-traffic that may find their way into nearby soils, plants, human beings or are 
washed-off by rain events to receiving streams posing danger for the environment. This 
study aimed to analyse RDS metal concentrations using Riccarton Campus of Heriot-
Watt University, Edinburgh, Scotland as a study site. RDS samples were collected at 
two positions from different sites over a 4 month period to characterize the influence of 
traffic. The metal concentrations of the RDS were determined by strong nitric acid 
digestion and atomic absorption spectrometry. The mean concentrations were found to 
be 213.22, 57.36, 0.80, 15.75, 15.19, 118.20, 13497 mg kg-1 respectively from samples 
near to the curb and 210.93, 78.81, 1.80, 15.31, 8.70, 34.57, 14276 mg kg-1 respectively 
from samples 1 m from the curb for Zn, Cu, Cd, Cr, Ni, Pb and Fe, respectively. 
Furthermore for both positions the highest concentrations for all metals were associated 
with the finer fraction (<63 µm) and significant correlations between the metals were 
found further from the curb than near the curb, indicating that metals accumulating on 
the road surface further from the curb may all be of the same origin (traffic), while the 
sources of metals in the gutter are far more diverse.  

 
Keywords: Heavy metals, atomic absorption spectrometry, road deposited sediment, 

particle size. 
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