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Abstract 

Linear and circular representations are widely used to define tool paths, however, the tangency discontinuity between the linear 

and circular segments leads to large fluctuations in velocity and acceleration, as a result, the machining accuracy and efficiency are 

degraded. It becomes the key problem in some micromachining situations where the quality of freeform surfaces is critical, such as 

moulds and knee implants, etc. This research aims to develop a local tool path smoothening scheme to achieve C2 continuity at the 

transition positions. This scheme applies to sections consisting of high density of short segments. These segments will be 

approximated by cubic B-splines. The approximation is carried out within the specific error tolerance. High frequency energy to be 

injected into the servo loop control system is greatly reduced by the C2 continuity. The proposed scheme is feasible to be 

implemented in real-time microcontrollers due to the computational efficiency and reliability of B-spline algorithms. 
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1. Introduction 

The conventional method to machine freeform surfaces relies 

on programs generated by commercial computer-aided 

manufacturing (CAM) software. To achieve the desired 

accuracy, the program usually consists of a large volume of 

short line and circular segments. The velocity discontinuity at 

each transition point between two segments will lead to 

unacceptable jerk. The common method used by commercial 

computer numerical controllers (CNC) is to decelerate first 

when approaching the transition point, and then accelerate to 

the specified feedrate at the start of the next segment. The 

frequent acceleration and deceleration will cause machine 

vibration that will degrade the surface finish and machining 

accuracy. Furthermore, the machining time is increased 

significantly due to the feedrate fluctuation. It is becoming an 

increasingly urgent issue to be solved in micromachining realm. 

Siemens has implemented a corner rounding technique in its 

CNCs [1], the C2 continuity is achieved at the transition point by 

inserting a spline between two segments. Similarly, Xavier et al. 

[2] developed corner rounding techniques for 5-axis milling 

based on cubic B-spline. However, the corner rounding makes 

little difference when dealing with high density of short 

segments, because the connection splines are too short to 

create smooth transitions. In recent years, Non-uniform 

Rational B-Spline (NURBS) and some other interpolators have 

been a hot research topic [3,4]. Unlike the corner rounding 

technique that still depends on the linear and circular 

interpolations, those interpolators are completely new 

interpolation methods that avoid the discontinuity problem. 

However, the lack of CAM software and CNC support is a 

severe limitation, it is also not attractive to industry engineers, 

because it is not as intuitive as linear and circular interpolations. 

This paper presents a scheme for smoothening the tool path 

with high density of short segments, the scheme uses cubic B-

splines to approximate the points, the approximation is an 

iterative process to limit the curve within the tolerance. 

The rest of the paper is organised as follows. A brief 

introduction of B-spline representation is given in section 2, 

then the approximation algorithm is described in section 3, 

finally this study is concluded in section 4. 

2. B-spline representation for tool path 

2.1. B-spline representation 

B-spline provides a relatively simple mathematical form 

capable of representing freeform curves. A kth-degree B-spline 

curve is given by Pሺtሻ ൌ σ ݀௜ ௜ܰǡ௞ሺݐሻ௡௜ୀ଴                        (1) 

Where Pሺtሻ  is the position vector along the curve as a 

function of parameter tሺa ൑ t ൑ bሻ. ݀௜ሺ݅ ൌ Ͳǡ ͳ ǥ ǡ ݊ሻ are the 

control points, connecting the control points in sequence yields 

a control polygon. ௜ܰǡ௞ሺݐሻሺ݅ ൌ Ͳǡͳǡ ǥ ǡ ݊ሻ are the kth-degree B-

spline basis functions, they are piecewise polynomials defined 

on knot vector U, U ൌ ሼݑ଴ǡ ଵǡݑ ǥ ǡ  ௡ା௞ାଵሽ is a nondecreasingݑ

sequence of real numbers. The basis functions are given by ቐ ௜ܰǡ଴ሺݐሻ ൌ ൜ͳǡ ௜ݑ ݂݅ ൑ ݐ ൑ ௜ାଵͲǡݑ ௜ܰǡ௞݁ݏ݅ݓݎ݄݁ݐܱ ൌ ௧ି௨೔௨೔శೖି௨೔ ௜ܰǡ௞ିଵሺݐሻ ൅ ௨೔శೖశభି௧௨೔శೖశభି௨೔శభ ௜ܰାଵǡ௞ିଵሺݐሻ(2) 

In Equation (2), The convention 
଴଴ ൌ Ͳ is adopted. There are a 

number of properties of B-splines that make the B-splines apt 

to represent freeform curves [5]. 

   

2.2. C2 continuity of tool path 

The smoothness of a parametric curve can be evaluated by 

the degree of parametric continuity, which depends on the 

continuity of derivatives. If two curves are joined together, 

then the zeroth-order of derivatives at the join point are equal, 

which implies C0 continuity. Apparently a tool path has C0 

continuity everywhere. If the tangent vectors (first-order 

derivatives) are identical (both direction and magnitude), then 

the resulting curve is C1 continuous at the join point. For tool 

paths using linear and circular representations, C1 continuity is 
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usually lost, i.e., the velocity of tool has an instantaneous 

change (both direction and magnitude or one of them) at the 

join point, this is highly undesirable for the aforementioned 

reasons. 

If a tool path has C2 continuity, viz. it has continuous second-

order derivatives, then both velocity and acceleration of the 

tool are continuous, jerk limitation is achieved. For many 

applications, C1 continuity is adequate, but for high-speed, 

high-precision micromachining, at least C2 continuity is 

required to satisfy the increasingly demanding accuracy 

requirement. 

Piegl and Tiller [5] proved that if Cr continuity is desired for a 

curve, then the chosen degree k must satisfy k ൒ r ൅ ͳ                                         (3) 

The precondition of Equation (3) is that the multiplicities of 

interior knots are not greater than 1. In this application, degree 

3 is chosen for the B-splines to satisfy the C2 continuity 

requirement, as well as to minimize the computation intensity. 

3. Tool path approximation 

Suppose a part of tool path is given by a set of line segments, 

the length of each segment is shorter than the predefined 

threshold ܮ . Then end points are extracted from these 

segments, the resulting set of points ሼ ௜ܲሽǡ ݅ ൌ Ͳǡ ǥ ǡ ݊, are the 

points to be approximated. Four basic steps are required to 

perform the approximation. 

 

3.1. Choose parameters ࢏࢚ 
The most widely used method to choose ݐ௞ is chord length 

method [5]. It gives a ͞good͟ parameterization to the curve. ܦ ൌ σ ȁ ௜ܲ െ ௜ܲିଵȁ௡௜ୀଵ ௜ݐ (4)                          ൌ ௜ିଵݐ ൅ ȁ௉೔ି௉೔షభȁ஽    ݅ ൌ ͳǡ ǥ ǡ ݊ െ ͳ          (5) 

Where ܦ is the total cord length. ݐ଴ ൌ Ͳǡ ௡ݐ ൌ ͳ. 

 

3.2. Choose knot vector ܷ 

Piegl and Tiller [5] recommended using averaging technique 

to choose the knot vector, the resulting knot vector ܷ reflects 

the distribution of    parameters ݐ௜. ݑ௝ା௞ ൌ ଵ௞ σ ௜௝ା௞ିଵ௜ୀ௝ݐ     ݆ ൌ ͳǡ ǥ ǡ ݊ െ ݇               (6) 

The other knots are: ݑ଴ ൌ ڮ ൌ ௞ݑ ൌ Ͳ ௡ାଵݑ , ൌ ڮ ൌݑ௡ା௞ାଵ ൌ ͳ. 

 

3.3. Compute unknown control points ࢏ࢊ 
The required number of control points depends on the 

specified tolerance ܧ. In this application, the initial number of 

control points starts from 4. The required control points are the 

only unknowns now, so they can be computed by solving the 

linear least square problem. 

 

3.4. Check the deviations ݁௜ 
If the maximum deviation from the approximated points to 

the fitting curve is within tolerance ܧ, then the curve is the 

desired one. Or the number of control points should increase 

by one until the deviation condition is satisfied. 

There is a trade-off when choosing tolerance ܧ, the smaller ܧ 

is, the more accurate the curve is, but it is at the expense of 

longer computing time and the sharper corners. Figure 1 

illustrates the iterative process. 

 

 
 

Figure 1. The iterative process 

4. Conclusion 

The paper presents a local tool path approximation method, 

which is based on cubic B-splines. This method applies to the 

tool path consists of high density of short segments. C2 

continuity is achieved within the approximated curve, which 

avoids the feedrate fluctuation problem comes with linear and 

circular interpolations. The approximation algorithms are 

discussed, if they are implemented in CNCs, then the currently 

widely used machining programming method keeps the same. 

The connections between the approximated curves and long 

line segments should be solved in the future work to make the 

scheme applies to the global tool path. 
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