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Abstract—The paper demonstrates the technical feasibility to de-
flect a 100 m diameter asteroid using a moderate size spacecraft
carrying a 1-20 kW solar-powered class laser. To this purpose,
a recent model of the laser ablation mechanism based on the
characteristics of both the laser systems and the asteroid has
been used to calculate the exerted thrust in terms of direction
and magnitude. This paper shows a preliminary deflection
uncertainty analysis for two different control logic and assuming
different laser mechanism capabilities. In particular, an optimal
thrust control direction and fixed laser pointing strategies were
considered with two laser optics settings: the first maintaining
the focus length fixed and the second able to exactly focus on
the surface. Preliminary results show that in general the fixed
laser pointing strategy at low power is less able to impart high
deflection. Nonetheless, when the power increases, the optimal
thrust method produces undesired torques, which reduces the
laser momentum coupling as side effects. However, the overall
efficiency is higher in the optimal thrust case. Since the collision
risk between an impacting asteroid and the Earth depends on
the probability distribution of the input uncertainty parameters,
it is necessary to study how the overall deflection will be affected.
Both aleatory and epistemic uncertainties are taken into account
to evaluate the probability of success of the proposed deflection
methods.
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1. INTRODUCTION

Deflection methods can be divided into two main categories:
impulsive and slow-push. Impulsive techniques are generally
modelled with an instantaneous change of momentum given
by, for example, a nuclear explosion (nuclear interceptor) or
the hypervelocity impact of a spacecraft (kinetic impactor)
with the asteroid. Slow-push methods, on the other hand, al-
low for a more controllable deflection manoeuvre by exerting

978-1-4673-7676-1/16/$31.00 c©2016 IEEE

a small continuous and controllable force on the asteroid over
an extended period of time. Also, downscaling the concepts
for slow-push deflection methods would in principle permit to
consider their use to the case the target is a man-made piece
of debris rather than an asteroid, something not feasible with
impulsive techniques.

Over the past years many slow-push concepts have been
proposed and studied at various degrees of accuracy. Many
of them are based on the use of electric propulsion and there-
fore require a dedicated propulsion system and propellant
to generate the necessary deflection. In contrast, slow-push
ablation-based methods (such as direct solar or laser ablation)
aim at exploiting the material which constitutes the asteroid,
thus generating the required thrust. In the work of Kahle
et al. [1] and Vasile et al. [2], however, it was shown that
the contamination of the solar collectors severely limits the
effectiveness of direct solar ablation. On the other hand,
if the deflection is achievable in a given time limit, laser
ablation techniques require a lower mass into space than
electric propulsion methods, as demonstrated by Vasile et
al. [3]. The use of lasers, compared to the direct focus of the
sun light on the object, implies higher conversion losses but it
has the distinctive advantage of providing high light intensity
at lower power and longer distances from the target.

The paper attempts to demonstrate the technical feasibility
of using laser ablation to deflect a 100-m-diameter asteroid
using a moderate size spacecraft carrying a 1-20 kW solar-
powered class laser. As it will be described in this paper, the
laser is mounted on a spacecraft that, after having acquired
the formation with the Near-Earth Object (NEO), will operate
at a safe 300 m distance from the asteroid. At this end, a
recent model of the laser ablation mechanism is integrated
into the dynamical model that allows predicting with more
accuracy the thrust delivered on the asteroid from the char-
acteristics of the laser systems (output power and focusing
ability) and from the geometrical, material, and dynamical
properties of the asteroid. In particular, the paper presents
a preliminary uncertainty analysis and a robust deflection
strategy that accounts for uncertainty in the key model param-
eters. A number of these key physical parameters, such as the
vaporization enthalpy or the thermal inertia, are affected by a
degree of uncertainty that can significantly affect the outcome
of a deflection. Generically, the uncertainty quantities are
assumed to follow a Gaussian distribution. However, this is
restrictive and requires a perfect knowledge of the model and
source parameters. In this work, a non-intrusive approach
based on truncated Tchebycheff series and Smolyak sparse
grids on Tchebycheff extrema has been used to build a nonlin-
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ear representation of the uncertainty region of the deflection.

Previous work [4] showed that when the size of the asteroid
is in the range of 100 m, the applied strategy in [5] cannot
deliver the necessary torque to control the rotation in order to
yield higher thrust and, as a consequence, also the desired
deflection. For this reason, we considered two different
deflection strategies based on the laser pointing. In the first
case the laser beam is pointed such that the resulting thrust
on the asteroid will be directed as much as possible in a
suitable direction. In the second case we consider a fixed
laser pointing to simplify deflecting operations. Moreover,
in the first case the targeting locations on the surface of the
asteroid are decided in real time using the combination of
information provided by a precise model of asteroid shape
and the laser-matter interaction, since the laser thrust tends
to align with the local normal. The second strategy is less
operationally demanding in this respect because no need
for pointing mechanisms or continuous adjustment of the
spacecraft attitude is required. For this reason we wanted also
to assess if it is possible for a fixed focusing laser to carry
on a deflection mission. In fact the area of the impinging
spot tend to change as the surface of the asteroid moves
back and forth with the rotation. This means that hundreds
of thousands of actuations would be required during the
mission. Eventually the paper will demonstrate the ability
of our system to deflect the selected target by one Earth
radius or more for different asteroid-spacecraft configurations
with actual radar-shape models scaled down to the considered
mean size.

The paper is organised as follows. Section 2 introduces
the deflection model with the different control strategies.
Section 3 briefly explains the finite volume model for the laser
ablation process. Then, Section 4 describes the uncertainty
model we used to perform uncertainty analysis with the help
of sparse grid and polynomial expansions. Finally, Section 5
shows the results. In particular, it shows the deflection
capabilities for each method, the ability of surrogate model
to evaluate their performance, and the preliminary results of
the uncertainty analysis.

2. DEFLECTION MODEL

Two control strategies have been considered. The first one
focuses the laser beam on different points on the asteroid
surface such that a desired direction can be achieved. The
second strategy keeps the laser pointing direction fixed. It
represents a simpler approach with respect to the first from
the operational points of view. In fact it does not require
a mechanism or spacecraft attitude manoeuvre to direct the
laser beam on specific surface points. In this way, there is no
need for the on-board system to keep a detailed surface map
to identify points and unit vectors normal to the surface, and
to estimate the relative attitude between the spacecraft and
the asteroid. The evolution of the coupled orbit and rotational
dynamics of the asteroid needs to be computed together with
the identification of the points on the asteroid surface. This
increased the computational complexity especially for long
period simulations. To overcome this problem, different
control schemes have been simplified by calculating averaged
quantities that were fed to a set of proximal motion equations
[6].

Control Strategies

In the first strategy the laser is pointed as close as possible to
the desired deflective direction:

min
s

arccos(n̂(s) · n̂∗) , (1)

where s is the position point on the asteroid surface, n̂ is the
unit vector normal to the surface in s, giving the direction of
the resulting thrust, and n̂∗ is the direction to achieve. For
example, one can point the laser along the orbit tangential
to maximize the overall displacement. Figure 1 shows an
example where the laser is aligned to the y-axis.

In the second strategy the laser is pointed on a fixed direction
towards the asteroid. Using a triangulation to approximate
the asteroid surface, the intersection point is defined as the
barycentre of the triangle of the asteroid mesh closest to the
spacecraft position vector. In formula:

min
s

arccos
( s · rlsr
‖s‖‖rlsr‖

)

, (2)

rlsr is the position of the laser with respect to the asteroid, and
‖ · ‖ is the Euclidean norm in R

3. Figure 2 shows an example
where the laser beam direction points towards the minimum
distance direction between the spacecraft center of mass and
the asteroid surface, assuming the laser points towards the
centre of the asteroid along the y-axis.
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Figure 1. Example of surface points producing thrust
directed along the y-axis
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Figure 2. Example of surface points producing thrust
directed along the laser beam direction

Deflection Efficiency

The efficiency of the laser beam is estimated as the magnitude
of the deflection displacement from its nominal position at
a given point along the unperturbed orbit. The deflection
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magnitude is calculated at predefined time intervals, called
checkpoints. Let tcheck be the instant of time corresponding
to a generic checkpoint, defined on the nominal trajectory
as the true anomaly of the asteroid θcheck. The variation of
the position of the asteroid after deviation, with respect to
its unperturbed position, can be written using the proximal
motion equations [6]:

δr(tcheck) = Acheck(θcheck)δα(tcheck) , (3)

where r = [δsr, δsθ, δsh]
T is the displacement in the radial,

transversal, and out of-plane directions in the Hill’s reference
frame centered at the unperturbed position of the asteroid
at the checkpoint, δα = [δa, δe, δi, δΩ, δω, δM ] is the
variation of the Keplerian orbital elements of the asteroid at
the checkpoint, and Acheck(θcheck) is the matrix transforma-
tion between the variation of the orbital parameters and the
trajectory displacements at the corresponding θcheck. The
magnitude of the total deflection δr = ||δr|| represents the
deflection parameter, which will be studied in the uncertainty
analysis. The assumption used to compute displacement is
that the variation of the relative position δr is small compared
to the unperturbed orbit radius rcheck, that is δr ≪ rcheck.

In order to perform fast simulations we used averaged quan-
tities to be used in Eq. (3), exploiting the fact that on several
rotations the mean direction and the fraction of useful thrust
will depend on the shape of the asteroid, angular velocity and
relative position of the laser. In fact the mean thrust calculated
over ∆t days of operations will be

F =
1

T

∫ t0+∆t

t0

F(ωt,pl,S, P ) dt , (4)

where F (ωt,pl,S, P ) descends from the strategies imple-
mented in Eqs. (1) and (2); ω is the angular velocity, p is
the position of the laser, S represents the geometry influence,
and Pl is the power available at the laser (see Section 3 for

details). The mean direction of thrust d and thrust efficiency
kl will be

d =
F

F
, (5)

kl =
F

F (ωt0,pl, r̄A, P )
, (6)

where F (ωt0,pl, r̄A, P ) is the magnitude of the nominal

thrust for a circular object of mean radius r̄A at t0, and F
is the magnitude of the mean thrust. In this way during the
propagation of Eq. (3), we can refer to the nominal available
thrust, which varies with the distance from the sun and the
contamination level during the duration of the mission.

Another important element whose effects could produce vari-
ation of the laser efficiency during the mission is represented
by the mean variation of the angular velocity

dω =
1

T

∫ t0+T

t0

I−1 (rl(t)× F(t)) dt , (7)

where I is the matrix of inertia of the asteroid and rl is
the application point of the laser (also of the force). For
simplicity, we do not consider the variation of the inertia
because it is not significant during our analysis, although it
will be consider in future works.

3. LASER-MATTER INTERACTION MODEL

This section describes the laser-matter interaction responsible
for the thrust imparted on the asteroid. We first show the
derivation of the moment coupling coefficient. Then we
explain how to predict the contamination resulting from the
fraction of the vaporized ejecta impinging on the solar arrays.
Eventually it is described the defocusing process, when the
distance between the laser and asteroid surface does not
coincide with the focal length of the focusing optics.

Mechanical Coupling

The aim of the laser model is to predict the change in
momentum imparted to the asteroid depending on its physical
and dynamical properties and the key parameters of the laser
system, namely the output power and the focusing capabili-
ties. The key metric of the ablative deflection method is given
by the thrust coupling coefficient, which is defined as

Cm =
F

P
, (8)

and represents the ratio between the thrust magnitude F and
the optical power P invested in the process.

To account for the tumbling rate of the asteroid, the cou-
pling coefficient is recovered after solving the 1D transient
equation. An enthalpy formulation is selected in Eq. (9),
allowing for a more convenient way to handle the different
phase transitions:

∂(ρH)

∂t
= −∂q

∂z
+
∂(ρuH)

∂z
, (9)

where ρ denotes the density in the condensed material, H is
the enthalpy, q is the heat flux, u is the recession speed, t is
the time, and z is the deep direction. The recession speed
u depends on the liquid/gas interface temperature Ts only
[7] and can be computed using the Hertz-Knudsen-Langmuir
formula. The heat flux q is expressed through the common
Fourier law q = −k dT/dz. Equation (9) can be solved
numerically by takingN cells along the depth direction z and
applying the conservation of the enthalpy to each of them as
follows:

d(ρH)i
dt

= −qi+1/2 − qi−1/2

∆z
+ u(T1)

(ρH)i+1 − (ρH)i
∆z

,

(10)
where i is the index of the cell and T1 is the surface tempera-
ture. The heat fluxes are then computed from the Fourier law
using central differences:

qi+1/2 = −kTi+1 − Ti
∆z

, (11)

qi−1/2 = −kTi − Ti−1

∆z
. (12)

For convenience, the enthalpy is defined from an arbitrary
reference value of 0 at the melting temperature Tm. With
this choice of reference, the temperature and the enthalpy are
linked through

Ti =



















Tm +
Hi

cs
if Hi ≤ 0 ,

Tm if 0 < Hi < Em ,

Tm +
Hi − Em

cl
if Hi ≥ Em ,

(13)
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where cs and cl are the heat capacities in the solid and liquid
phases, respectively. At each time-step, the temperature can
be recovered from the enthalpy and is fed into Eq. (11) which
allows computing the enthalpy at the next time-step. The
boundary conditions are then introduced through

q1−1/2 = AΦ− qrad(T1)− ρu(T1)Ev , (14)

qN+1/2 = −kT∞ − TN
∆z

. (15)

The boundary conditions for q1−1/2 simply states that the

heat flux conducted through the gas/liquid interface equates
the transmitted flux intensity AΦ to which is subtracted the
flux radiated qrad (approximated from the Stefan-Boltzman
law of emission of a black body) and the heat required to
vaporize the flow crossing the interface ρuEv . Equation (10)
is integrated in Matlab c© using ode23t, which is suitable
for moderately stiff problems. During the time-integration,
the pressure pe and velocity ve in the gas on the edge of the
Knudsen layer are reconstructed from the surface temperature
Ts using the jump conditions developed by Knight [7], which
allows for computing the real time evolution of the momen-
tum coupling coefficient

Ctr
m =

pe + ρev
2
e

Φ
=

(γ + 1)pe
Φ

. (16)

The actual coupling coefficientCm is then simply obtained by
averaging its value over the time of exposition of the surface

Cm =
0.87

τ

∫ τ

0

C tr
mdt , (17)

in which the 0.87 factor accounts for the losses due to the
Gaussian energy distribution of the main transverse electro-
magnetic mode (TEM00) in the laser beam [8]. Considering
the relative velocity of the ablated surface to the laser beam
vrel and the diameter φ of the laser beam, respectively, the
mean heating time τ can be computed as

τ =
π

4

φ

vrel
. (18)

Thus, an increased velocity of the illuminated surface with
respect to the laser beam will reduce the time available to
heat a given point.

We consider in this paper a rocky S-type asteroid essentially
made of forsterite for which the relevant properties can be
reviewed in Table 1. In particular, the mean value of the
vaporization enthalpy has been reconstructed from the ther-
mochemical properties of the different reactants and products
assuming a diatomic gas mixture of magnesium oxide, silicon
oxide and dioxygen is formed from the vaporization of the
forsterite molecule [1], [9]. While all these properties are
used in the computations, the importance of the absorptivity,
the thermal inertia, and the vaporization enthalpy can be
highlighted. The vaporization enthalpy Ev drives the min-
imum amount of energy required to vaporize one kilogram
of asteroid material. The thermal inertia, which is equal to
the square root of the product between the density ρ, heat
capacity c, and thermal conductivity k, drives the pace at
which the asteroid material reaches a thermal equilibrium
when heated. A lower value means thus that the steady-
state regime of Eq. (9) is reached quicker. The additional
conduction losses during the transient regime are also lower
in this case because the material needs to store less energy

before the standing evaporation wave of the regime state can
develop. Eventually, the absorptivity A of the material drives
how much of the laser energy in the incident beam is not
reflected (lost) by the surface of the asteroid.

Table 1. Assumed Physical Properties of an S-Type
Asteroid

Property Symbol Value Unit

Density ρ 3280 kg/m3

Thermal conductivity k 2 W m−1 K−1

Heat capacity (liquid) cl 1464 J kg−1 K−1

Heat capacity (solid) cs 1264 J kg−1 K−1

Vaporization enthalpy Ev 14.163 MJ kg−1

Melting enthalpy Em 0.508 MJ kg−1

Reference temperature Tref 3000 K
Saturation pressure (Tref ) pref 4448.9 Pa
Melting point Tm 2171 K
Gas constant R∗ 206.7 J kg−1 K−1

Heat ratio (gas) γ 1.26 -
Emissivity ǫ 0.9 -
Absorptivity A 0.8 -
Rest temperature T∞ 298 K

The results obtained by this model for forsterite are rep-
resented in Figure 3. The black dashed curve represents
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Figure 3. Thrust coupling coefficient as a function of the
mean heating time τ and the optical flux

the ablation onset for the forsterite material, which in log-
arithmic scales appears as a line such that Φ

√
τ = 0.106 ·

108 W m−2 s1/2.

Contamination

The contamination model was adapted from the work of
Kahle et al. [1]. From the surface temperature, the density
ρe and the velocity ve are computed on the edge of the
Knudsen layer where, for an expansion in vacuum, the flow
reaches the local speed of sound. The model assumes two
different flow regimes in the near field and in the far field.
According to [1], the density at an arbitrary distance r from
the reservoir and angle θ measured from the local surface
normal is approximately given in the continuum flow regime
as

ρ(r, β) = ρeAp
φ2

(2r + φ)2

[

cos

(

πβ

2βmax

)]
2

γ−1

. (19)
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The jet constant Ap and the limiting expansion angle βmax
are assumed to be equal to 0.345 and 130.45 degrees, respec-
tively. Considering an isentropic expansion of the plume, the
stagnation pressure p0 and density ρ0 can be computed using
the relations

ρe
ρ0

=

(

1 +
γ − 1

2

)

−1

γ−1

, (20)

pe
p0

=

(

1 +
γ − 1

2

)

−γ
γ−1

. (21)

Similarly, the Mach number M, pressure p, and the velocity
in the continuum regime are given by

M2 =
2

γ − 1

[

ρ

ρ0

1−γ
− 1

]

, (22)

p

p0
=

(

1 +
γ − 1

2
M2

)

−γ
γ−1

, (23)

v =

√

γM2p

ρ
. (24)

The transition from the continuum regime to the free molecu-
lar regime happens when the distances between the molecules
becomes too large for them to interact. In his simplified
model, Kahle et al. [1] proposes using a sudden transition
when the mean free path of the molecules lmfp becomes larger
than the beam diameter:

lmfp =
kT

p
√
24πr2mole

> φ , (25)

with the molecular radius rmole estimated around 2 · 10−10m.
Once the flow is in the free molecular regime, the assumption
is that the velocity becomes constant while the density still
decreases with respect to the inverse of the quadratic distance
to the spot. The contamination model then assumes that only
a fraction xs of the particle impinging on the solar array will
stick to it so that the growth of the contamination layer over
time can be predicted as

dmA

dt
= xs ·G(ψ) · v(r, β) · ρ(r, β) , (26)

where ψ represents the angle between the normal to the solar
panels and the impingement direction of the plume. The view
function G is defined as following:

G =

{

cos(ψ) if − π

2
< ψ <

π

2
0 otherwise

. (27)

Assuming the arrays are pointed towards the sun and laser
remaining in the same orbital plane during the operations, we
have

cos(ψ − β) = − he

a(1− e2)V
sin(θ) , (28)

where h is the angular momentum, e the eccentricity of the
orbit, V the velocity of the spacecraft, and θ the true anomaly.
Finally, a degradation factor χ can be computed using the
Beer-Lambert-Bougier law:

χ(t) = exp (−αmA(t)) , (29)

where α is the mass attenuation coefficient, which is about
104 cm2/g for forsterite [1]. From experimental investi-
gations, we found that this contamination model predicts
correctly the contamination level with a sticking coefficient
xs of 0.5 [10]. Over the course of the deflection action, a
contamination layer will grow on the solar arrays with the
degradation factor decreasing slowly from an initial value of
1. This will reduce over time the available input power to the
laser system.

Defocusing process

The variation of the deflection time with the defocus of the
beam is however a function of the rotation rate. A variation
of the distance will produce a bigger cross section Aspot
of radius w on the surface of the asteroid consistently with
the Rayleigh length lRayleigh, as shown in the following
equation:

w(l) = w0

√

1 +
|l − lfocusing|
lRayleigh

, (30)

Aspot = πw2 = πw2
0

(

1 +
|l − lfocusing|
lRayleigh

)

, (31)

where l is the distance from the spot, and lfocusing is the
focusing length. The light intensity at the spot decreases
as the distance of the laser source from the surface departs
from the focusing distance. If the incident laser beam is
not perpendicular to the surface, the spot deforms from a
circle to an ellipse and its area increases. Therefore, instead
of calculating the exact traveling time, the light intensity is
simply reduced by modifying Eq. (31) as follows:

Aspot = πw2
0

(

1 +
|l − lfocusing|
lRayleigh

) 1

cosθ̄
, (32)

where θ̄ is is the angle between the incident laser beam and
local normal. The area given by Eq. (32) is then used to
calculate the current power flux. As one can see as the cross
section increases with this angle, the power density decreases
and progressively reduces to zero for nearly tangential con-
figurations. In the following analysis, both perfect focus and
defocus were considered. Nonetheless, the effect from the
laser direction was held because it is not physically possible
to eliminate this undesired effect.

4. UNCERTAINTY MODEL

Unlike monoatomic substances such as aluminium, an aster-
oid can be composed of a variety of substances which are
loosely attached together. The exact composition as well
as the degree of porosity affects, in turn, a series of key
parameters driving the efficiency of the laser-matter inter-
action process. Since it is not possible to know the exact
composition and characteristics of the asteroid, we assume
that these key parameters are only known with some degree of
uncertainty. In the following analysis, we follow the approach
presented in [11] to perform preliminary uncertainty analysis
on a relevant subset of the parameters presented in Table 1.
Both aleatory and epistemic uncertainty have been considered
to assess the success of a deflection outcome.

Aleatory and Epistemic Uncertainty

Aleatory uncertainties account for the physical variability
present in the system or its environment and cannot be
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reduced; they are generically well quantified with a known
distribution. Epistemic uncertainties represent the potential
deficiency that is due to a lack of knowledge; they include
model uncertainties and uncertainty on the probability of an
event, therefore, they cannot be fully captured with a single
distribution or by assuming a known correlation among the
variables.

When all the uncertainties are aleatory, the probability of an
event A is given by

P (A) = E[IA] =

∫

A

p(u)du , (33)

where IA is the indicator of the set A defined as

IA(u) =

{

1 if u ∈ A
0 otherwise , (34)

and p(u) is the product of the marginal probability densities
associated with the uncertain quantities.

In our problem, we are interested in the probability of success
of a deflection using the methods explained in Sections 2 and

3, thenA is the subset in the initial uncertainty spaceU ⊆ R
N

such that the deflection parameter δr is greater than a fixed
threshold d∗, in formula

Ad∗ = {u ∈ U | δr(u) ≥ d∗} . (35)

The value d∗ belongs to the interval [d, d], with d, d the upper
and lower limits of the deflection parameter given by

d = min
u∈U

δr(u) , d = max
u∈U

δr(u) , (36)

which represent the worst- and the best-case scenario, respec-
tively, under uncertainty.

An approximation of the integral in Eq. (33) can be obtained
usingM sample points ui, i = 1, . . . ,M in the initial domain

U ⊆ R
N . Then the integral becomes

∫

Ad∗

p(u) du ≈ 1

M

M
∑

i=1

IAd∗
(ui) p(ui) , (37)

where IAd∗
is the indicator function of the setAd∗ in Eq. (35).

A possible choice for the sample points can be the Carte-
sian grid, thus the quadrature scheme becomes deterministic.
Such a grid, however, would require to decide in advance how
fine the grid should be, and all the grid points need to be
used, which is unfordable in high dimension. An alternative
approach is to use quasi-random number sequences, also
called low-discrepancy sequences, which have the flexibility
of pseudo-random number generators and the advantages of
a regular grid [12].

Epistemic uncertainties are included using a parametric dis-
tribution approach. The actual probability distribution is
unknown but belongs to a set whose upper and lower proba-
bilities are known. In this work, we used the beta distribution
functions with unknown real positive parameters α and β:

Bα,β(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 , (38)

for x ∈ [0, 1], where Γ(z) is the Gamma function.

The upper and lower probability distributions are the solu-
tions of the two optimization problems

min
α,β

∫

Ad∗

p(u) du , max
α,β

∫

Ad∗

p(u) du , (39)

where α and β are vectors of the same dimension of the
epistemic parameters and each marginal density mass pj , j =
1, . . . , N is now a beta distribution function with parameters
αj , βj for j = 1, . . . , N .

The computation of the the exact integral in Eq. (39) can
be approximated using low-discrepancy sequences, as in the
aleatory case,

min
α,β

∑

i

∏

j

pj(uj,i) ,

max
α,β

∑

i

∏

j

pj(uj,i) , (40)

where i ∈ {i|ui ∈ Ad∗} and j is a variable index. Once
the value of the two extreme beta distributions are found for
d∗, the exact upper and lower expectations can be refined
by solving the multidimensional quadrature problem with a
higher number of sample points.

The computation of the expectations requires to evaluate the
dynamical model in thousands of sample points. To speed
up the evaluation while maintaining an acceptable level of
accuracy, we use a nonlinear representation of the uncertainty
region of the deflection parameter given by a truncated series
in Tchebycheff polynomials defined on a Smolyak sparse
grid [13].

Uncertainty propagation

Uncertainty propagation methods can be divided into two
groups: intrusive and non-intrusive. Intrusive approaches
require a modification of the original problem by introducing
a new algebra or by directly embedding high-order polyno-
mial expansions of the uncertainty quantities in the governing
equations. Non-intrusive approaches are instead based on
a polynomial representation built on samples of the system
response to the uncertainty quantities. The latter have the
main advantage of working with generic models, also in the
form of black boxes, and with little requirements on the
coding of the models or on their regularity.

Following the work of Judd et al. [14], a non-intrusive
method with truncated Tchebycheff series on sparse grids
with Tchebycheff nodes has been used. Sparse grids al-
lows for the representation of points on a hyperrectangle
and further reducing the computation cost of the polynomial
approximation problem. For example, a complete polynomial
basis of maximum degree 4 in 10 unknown variables would
require 1 001 sample points, while the corresponding sparse
grid contains only 221 points.

Let n be the number of uncertainty variables and µ ∈ N
+

be the level of approximation of the sparse grid. Then the
complete polynomial basis is given by

B = {Tα1
, Tα2

. . . , Tαs
} , s ∈ N

+ , (41)

where αi = (αi1 , . . . , αin) denotes the multi-index array cor-
responding to the i-th multidimensional Tchebycheff polyno-
mial

Tαi
=

n
∏

j=1

Tαij
, (42)
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chosen in the space of all polynomials of degree at most 2µ in
n variables such that it satisfies the Smolyak rule at level µ;
Tαij

is the univariate Tchebycheff polynomial corresponding

to the variable of index j. For example, for n = 2 and µ = 1
the Smolyak rule gives

αi ∈ {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2)} , (43)

and the corresponding Tchebycheff polynomial basis is

T(0,0) = 1 , T(1,0) = x , T(1,0) = y ,

T(2,0) = 2x2 − 1 , T(0,2) = 2y2 − 1 . (44)

For a fixed the level of approximation µ, the maximum degree
of expansion is 2µ.

With a similar construction, Tchebycheff points on a Smolyak
sparse grid have been computed. In [14] a new method to
reduce the computation cost of the sparse grid and avoid
repetition has been presented. The number of polynomial
basis functions, which is equal to the number of points in the
sparse grid, are shown in Table 2 for different values of the
level µ and number of variables n.

Table 2. Number of Elements in a Sparse Grid

µ / n 1 2 3 4 5 6
0 1 1 1 1 1 1
1 3 5 7 9 11 13
2 5 13 25 41 61 85
3 9 29 69 137 241 389
4 17 65 177 401 801 1457
5 33 145 441 1105 2433 4865
6 65 321 1073 2929 6993 15121

Let us denote with u0 the initial uncertainty variables that
belong to an hyperrectangle and f(u0) the response function.
Then the latter can be approximated with the truncated series

f̂(u0) =
∑

α∈Hn,µ

cα Tα(u0) , (45)

where each cα represents the unknown coefficient with re-
spect to the element Tα, and Hn,µ as defined by the Smolyak
rule. The unknown coefficients can be computed by inverting
the linear system

HC = Y , (46)

with

H =





Tα1
(u1) . . . Tαs

(u1)
...

. . .
...

Tα1
(us) . . . Tαs

(us)



 , C =





cα1

...
cαs



 , Y =





Y1
...
Ys



 ,

where u1, . . . ,us are the Tchebycheff nodes in the sparse
grid and the components of Y are the evaluation of the
response function in these points. The system in Eq. (46)
cannot be inverted if the matrix H does not have full rank.
In most of the cases, this is guaranteed by choosing the
Tchebycheff nodes, which are equal in number to the number
of unknown coefficients.

5. NUMERICAL EXPERIMENTS

This section contains the outcome of a deflection using laser
ablation for a hypothetical impactor on four cases:

1. Optimal thrust with focus.
2. Fixed thrust with focus.
3. Optimal thrust with defocus.
4. Fixed thrust with defocus.

The difference between the first two cases and the the last
ones stands in the laser system capability of being able to
adjust its focus or not.

A suitable reference trajectory is the one of 2013XK22,
which is one of the few NEOs in the range of 50 m in

mean radius with Keplerian orbital elements2 (a, e, i,Ω, ω) =
(1.045 AU, 0.2034, 6.95◦, 182.636◦, 265.7034◦). All the
simulations start at the asteroid perigee. We used the shape
of the asteroid (433) Eros scaled down to the correspondent
mean size with 1708 facets of the discrete surface mesh. For
the laser we considered an optics able to produce a diffraction
limited beam of 3 mm at the focal length (300 m). With
these parameters, the Rayleigh length is approximately equal
to 6 m.

We restricted our uncertainty analysis to the parameters that
define the size and characteristic of the asteroid (mean ra-
dius r̄A, density ρ, and angular velocity ω) and three key
parameters that define the laser model (vaporization enthalpy
Ev , thermal conductivity k, and absorptivity A). The initial
uncertainty space is the same for all the cases. Table 3 reports
the upper and lower limit for each variables. Due to the lack
of precise information about the asteroid size drawn from the
imprecise optical observation for small objects, we assume
a maximum uncertainty of 20 m with respect to the nominal
size of the asteroid. For what concern the density, we consider
that the asteroid will be a S-type one. The variability here
can be due to the fact that the asteroid could be rubble-
pile porous and its density can be as low as 2000 kg/m3.
The angular velocity is then calculated as the self-attracting
asteroid, which is based on the density boundaries [15].

During the vaporization process, the properties of the mate-
rial can change substantially with the temperature. This is
the reason why the limits for the vaporization enthalpy are
placed at ±20% with respect to the nominal value reported in
Table 1. The same arguments apply to the case of the thermal
conductivity, which can undergo huge variations between the
different materials or simply because of the porous nature of
the material. The value of 5 can be considered as a worst-
case scenario while a value of 0.5 would be consistent with
the reported thermal inertia of asteroids. Hence, an order of
magnitude of possible variation between these two values was
considered. For the absorbivity the variation was assumed to
be about ±20% with respect to the nominal case, which is
consistent with the reported albedo values of S-type asteroids.

Table 3. Bounds for the Uncertainty Parameters

Variable Lower Limit Upper Limit

r̄A [m] 30 70
ρ [kg/m3] 2000 3300
ω [rev/day] 5.1411 26.4156
Ev [MJ kg−1] 11 330 400 16 995 600
k [W m−1 K−1] 0.5 5

A 0.7 0.9

The bounds of Table 3 define a 6-dimensional hyperrectangle
that has been sampled using the Smolyak sparse grid for dif-
ferent levels of approximation µ. The corresponding number

2An Astronomical Unit (AU) is about 149 570 870.7 kilometers.
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of sample points is shown in the last column of Table 2.
Figure 4 shows the points in the r̄A-ρ-ω space for µ = 3.
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Figure 4. Sparse grid points for µ=3

The other characteristics for simulating the laser ablation
processes are reported in Table 1. The quantity of interest is
the deflection parameter given by Eq. (3). Different deflection
periods T and available powers P have been tested. We
considered the discretisation T = 2, 4, 7, 9, 12, 16, 20 years
and P = 1, 2, 4, 7, 9, 10, 12, 14, 16, 18, 20 kW. Note that the
power is the input power at the laser, where a conversion
efficiency of 55% was applied.

Nominal Deflection

The deflection parameter has been computed for each point
in the sparse grid and each combination of period and power.
Figures 5, 6, 7, and 8 show the variation of the deflection
parameter as a function of period and power only and keeping
the uncertainty parameters fixed at their mean values. As
expected from [4], the performances of the laser deflection
decreases passing from an optimal thrust to a fixed thrust
direction. After 20 years, the maximum deflection due to the
fixed direction strategy reduces by 15% from about 16 Earth
radii. The focus/defocus strategies show similar results with
another overall 15% efficiency loss.
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Figure 5. Achieved deflection with optimal thrust with
focus (case 1)
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Figure 6. Achieved deflection with fixed thrust with
focus (case 2)
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Figure 7. Achieved deflection with optimal thrust with
defocus (case 3)
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Uncertainty Analysis

We are interested in studying the expected probability of
the success of the deflection method proposed in this paper,
that is, the quantity E[IAd∗

] given by Eq. (33) with the set
Ad∗ defined in Eq. (35). In our simulations the deflection
parameter is δr = ||δr(tcheck)||, i.e., the magnitude of
the deviation with respect to the nominal trajectory at the
checkpoint tcheck as given in Eq. (3). The fixed threshold
d∗ is defined as multiple of the Earth radius.

The surrogate model was built using the Tchebycheff poly-
nomial approximation explained in Section 4. The reliability
of this approximation is shown in Table 4. The accuracy is
represented with the root mean square error in km

σRMSE =

√

√

√

√

1

M

M
∑

i=1

(δ̂r(Xi)− δr(Xi))2 , (47)

where Xi, i = 1, . . . ,M are the evaluation points (different

from the sample points) and δr(Xi), δ̂r(Xi) are the exact and
predicted values, respectively, at each points. In the following
analysis we will use a polynomial approximation of level µ =
3 since it gives a maximum error of a half Earth radius for the
four cases.

Table 4. Tchebycheff Polynomial Approximation
Accuracy for the Four Cases for T = 7 Years and

P = 20 kW

µ Case 1 Case 2 Case 3 Case 4

1 8.48e3 1.04e4 4.91e3 9.16e3
2 1.45e3 3.32e3 1.76e3 3.98e3
3 8.07e2 5.22e2 6.72e2 3.328e3

Aleatory Expectation—We assume that the uncertainty as-
sociated with all uncertainty variables is aleatory and each
marginal probability mass is a beta distribution function with
parameters α = 1 and β = 1. The upper and lower limits
in Eq. (36) of the deflection parameter are computed using
a numerical solver called Inflationary Differential Evolution
Algorithm (IDEA) [16]. The expectation E[δr ≥ d∗] is com-
puted using the approximation formula in Eq. (37) with sam-
ple points taken in the Halton low-discrepancy sequence [17].
Figures 9, 10, 11, and 12 show the expectations for different
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Figure 9. Aleatory expectation for case 1 for T = 7 years

values of the available power and fixed deflection time at
T = 7 years.
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Figure 10. Aleatory expectation for case 2 for
T = 7 years
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Figure 11. Aleatory expectation for case 3 for
T = 7 years
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Figure 12. Aleatory expectation for case 4 for
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The cases with defocus reduce the maximum deflection by
about 3 Earth radii. We see that the fixed deflection case
presents more samples with higher deflection levels. At first
sight the results of the expectation could appear surprising,
contradicting the trend shown before with the mean values of
the grid. In fact the fixed direction cases (with or without
perfect focusing) present major deflections with respect to
the optimal ones. Looking into details this behaviour is
shown only by high power levels (i.e., P ≥ 10 kW). The
principal reason for this must be searched in Eq. (7), which
produces perturbing torques in the case of the optimal thrust
with subsequent rotational acceleration and efficiency drop.
This effect is appreciable in only a small number of samples,
when the inertia is small. Nonetheless, if we fixed d∗ = 1
Earth radius, and we compute the expectation E[δr ≥ d∗] as a
function of time and power, we see that the overall behaviour
works as expected from the previous mean values analysis.
In fact the results of Figures 13, 14, 15, and 16 show that
the time to deflect by one Earth radius is statistically inferior
in the case of optimal deflection, with the perfect focus case
clearly outperforming the defocusing one.
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Figure 13. Expectation to deflection of 1 Earth radius
for case 1
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Figure 14. Expectation to deflection of 1 Earth radius
for case 2

Upper and Lower Expectations—We now drop the assump-
tion of perfectly known a priori probability distributions and
assume that the uncertainty associated with all uncertainty
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Figure 15. Expectation to deflection of 1 Earth radius
for case 3
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Figure 16. Expectation to deflection of 1 Earth radius
for case 4

variables are epistemic. The marginal probabilities are as-
sumed to belong to sets of beta distributions with parameters
α and β such that 1 ≤ α, β ≤ 3. These parameters are
then numerically optimised by solving Eq. (40) with IDEA
for different values of the threshold deflection parameter d∗

to obtain the upper expectation Eu and lower expectation
El. The approximated integrals in Eq. (40) are computed
using 10 000 samples from the Halton low-discrepancy se-
quence [17]. Once the optimal α and β are found, the upper
and lower expectations are recomputed with 200 000 low-
discrepancy samples. A total of 20 values for d∗ are taken
to build an approximation of the whole curve. We applied
this approach to a T = 3 years deflection time and a fixed
power of P = 20 kW, respectively. Figures 17, 18, 19, and
20 show the results. As expected, the aleatory curve (dotted
line) corresponding to T = 7 years and P = 20 kW is inside
the region defined by the upper and lower expectations. The
outcome of a deflection can be significantly reduced by the
epistemic uncertainties. As for comparison, the probability of
a deflection greater than 1 Earth radius is reduced by 5% and
40% when the laser is optimally focused (case 1 and case 2),
while it is reduced by 20% and 50% when the laser defocuses
(case 3 and case 4).
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Figure 18. Upper and lower expectation for case 2

6. CONCLUSION

We presented and analysed two different control strategies
combined with two laser pointing optics settings in terms of
achieved deflection. The shape of asteroid (433) Eros scaled
down to the considered size was used to simulate a 100 m-
diameter real object. The interaction between the laser and
the asteroid was modelled using high-fidelity model.

The composition and characteristics of the asteroid, and some
key parameters of the laser matter model were assumed to
be known with some degree of uncertainty. Both aleatory
and epistemic uncertainties were taking into into account.
Aleatory uncertainties were modeled with known distribu-
tions. Epistemic uncertainties were treated using the para-
metric distribution in which the marginal distributions were
assumed to belong to a family of known distributions with
unknown parameters.

We first simulated the behaviour of the different deflection
systems using averaged quantities. Then, a surrogate model
was built using Tchebycheff polynomial expansion, which
gave a nonlinear map between the initial uncertainty space
and the deflection parameter. Thus, the actual dynamics and
laser model was replaced by a polynomial expansion in order
to reduce the complexity of the uncertainty analysis.
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Figure 19. Upper and lower expectation for case 3
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Figure 20. Upper and lower expectation for case 4

We saw that the uncertainties affecting the deflection play an
important role. Although the optimal focusing system yields
the best results in terms of overall deflection, the unfocused
system is still able to yield the one Earth radius deflection for
many cases. For high power densities, this can be achieved
in just a few years. From an operational point of view
keeping the laser pointing fixed with no mechanism to adjust
the focusing system will be preferable. Before sending an
actual demonstration mission to deflect a small asteroid the
deflection system will be known and these analyses could
be used to design the laser-carrying spacecraft. In fact,
the results of this paper can be applied to identify critical
parameters in terms of mission duration, available power,
asteroid control logic, and laser optics capabilities to achieve
a certain deflection with a desired probability of success.

Future works will carry out a full sensitivity analysis to iden-
tify which parameters most affect the deflection outcomes.
A possibility is to study the problem without assuming any
shape for the distribution. For this purpose, one could use
the belief and plausibility function [18], in which the actual
distribution is unknown but belongs to a set whose upper and
lower probability distributions are known.

Eventually, we will also consider the effects of the motion of
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a spacecraft carrying the laser on the overall efficiency. For
this purpose, onboard estimation and control systems will be
simulated and used for the sensitivity analysis.
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