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Rock fracture grouting with microbially induced carbonate

precipitation

James M. Minto1, Erica MacLachlan1, Gr�ainne El Mountassir1, and Rebecca J. Lunn1

1Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK

Abstract Microbially induced carbonate precipitation has been proposed for soil stabilization, soil

strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In

this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated

through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a

small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and

clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was

imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport

imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 lm, corresponding

to a transmissivity reduction of 1.71 3 1025 to 8.75 3 1029 m2/s, over a period of 12 days under constantly

flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in

transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial

fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent

clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate

that microbially induced carbonate precipitation can successfully be used to grout a fracture under con-

stantly flowing conditions and may be a viable alternative to cement based grouts when a high level of

hydraulic sealing is required and chemical grouts when a more durable grout is required.

1. Introduction

Rock fracture grouting can be used to both increase the strength of the rock mass and to decrease ground-

water ingress into tunnels and other underground engineering works. Traditionally cement based grouts

have been used for this purpose; however alternative grouts with the properties of low viscosity and particle

size are increasingly being employed. These alternative grouts can penetrate narrow aperture fractures

without the need for high injection pressures and can be used near-surface without causing ground heave.

Chemical based alternative grouts can be toxic, are typically more expensive in terms of material costs

[Gallagher et al., 2013] and have a design life limited to a few decades [Woodward, 2005].

A novel alternative grout that offers the potential for sealing small aperture fractures with the mineral calci-

um carbonate is microbially induced carbonate precipitation (MICP). This process utilizes three components:

a ureolytically active bacteria (Sporosarcina pasteurii), a calcium source (calcium chloride) and urea which,

when hydrolyzed by the urease enzyme, provides the carbon component of the calcium carbonate and

increases the pH facilitating the rapid precipitation of calcium carbonate [Ferris et al., 2003]. The MICP pro-

cess has been investigated for improving strength and stiffness of porous media while maintaining perme-

ability [Whiffin et al., 2007; van Paassen, 2009; DeJong et al., 2010a]; permeability reduction in porous media

[Tobler et al., 2012; Handley-Sidhu et al., 2013; Mitchell et al., 2013]; immobilizing pollutants [Mitchell and

Ferris, 2005; Fujita et al., 2008], producing self-healing concrete [Jonkers et al., 2010], and for geological

sequestration of CO2 [Mitchell et al., 2010; Cunningham et al., 2014; Phillips et al., 2016] to name a few.

The use of MICP for grouting rock fractures has been little studied to date. Using individual artificial fractures

20 cm in length, El Mountassir et al. [2014] investigated the influence of hydrodynamics on the spatial distri-

bution of CaCO3 precipitated using MICP under a constant flow rate. Their results demonstrate a feedback

mechanism between velocity and the development of stable channel-like structures within the CaCO3 pre-

cipitate, these channels remained open until flow rates were reduced to enable infilling. Cunningham et al.

[2009] investigated sealing in a small fracture network (8.5 cm long with 1 mm 3 1 mm diagonal channels
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etched into a polycarbonate surface) and found that the flow cell became completely plugged after 20 h

but with significant blocking close to the injection point. Few studies have focused on grouting fractured

rock at larger scales. Phillips et al. [2013] hydraulically fractured and then resealed a 74.3 cm diameter sand-

stone core under reservoir pressures by stimulating the growth of an S. pasteurii biofilm then injecting a sin-

gle pulse of CaCl2/urea solution, achieving four orders of magnitude reduction in permeability. Cuthbert

et al. [2013] sealed a natural fracture in dacite, 25 m below ground in a field test of MICP. Fracture sealing

effectiveness and CaCO3 distribution were inferred from cross-hole conductance tests between four bore-

holes. A 99% reduction in transmissivity occurred around the injection well, yet a significant decrease in

transmissivity (35%) also occurred at a distance of 2 m from the injection well. However, in both these

larger-scale experiments it was not possible to observe the spatial distribution of CaCO3 precipitation and

the influence of injection strategy on the resulting precipitation over a large fracture area.

The aims of this paper are to:

1. Identify, in a small-scale artificial fracture, a grout injection strategy that uniformly precipitates calcium

carbonate in a controllable manner under continuous flow conditions, and without the formation of

channeling within the fracture.

2. Experimentally evaluate the effectiveness of MICP at reducing fracture transmissivity over a large area by

sealing an experimental fracture that is close to field-scale.

3. Assess the distribution of CaCO3 precipitation within this fracture and demonstrate control over where

precipitation occurs by controlling fluid velocity.

4. To discuss how MICP might be used in practice to grout rock fractures for inhibition of groundwater

flow.

2. Experimental Methods and Rationale

2.1. Experimental Setup

A small-scale planar flow fracture composed of a polycarbonate top sheet and a dolerite base was devel-

oped for preliminary testing of injection strategies and to study the topography of CaCO3 precipitation with

overhead photography and laser scanning (Figure 1). The polycarbonate top sheet enabled visual observa-

tion of calcite precipitation within the fracture over time without disturbing the experiment. The flow cell

comprised a single fracture (length 394 mm, width 118 mm) with five injection ports and five outlet ports.

The fracture aperture was created by embedding a rubber seal into the upper polycarbonate sheet. The

Figure 1. Fracture flow cell (a) plan view and (b) schematic. Fluids injected from a stock reservoir to the fracture by peristaltic pump with

five individual injection and effluent lines ensuring uniform flow across the fracture width. Hydraulic head measurements made via

piezometers.

Water Resources Research 10.1002/2016WR018884

MINTO ET AL. ROCK FRACTURE GROUTING WITH MICP 2



upper and lower fracture surfaces were then fixed in place via ten bolts, which compressed the rubber seal

creating a watertight flow cell with a small fracture aperture. Pressure drop across the fracture flow cell was

measured via piezometers at the inlet and by fixing the elevation of the outlet.

Informed by the findings of the small-scale experiment, a large-scale radial flow experiment was developed

resembling a borehole intersecting a single planar fracture (Figure 2). The artificial fracture consisted of the

interface between a 1.75 m 3 1.75 m saw cut granite slab (unpolished) and a 10 mm thick transparent poly-

carbonate cover held in place at the center and around the perimeter with clamps. The surface roughness

and aperture of the initial artificial fracture differs from a natural fracture due to the saw cut lower granite

surface and smooth polycarbonate upper surface. The entire fracture was contained in a water-tight tank

and submerged beneath a constant water level (equilibrated to 208C6 18C in the temperature-controlled

laboratory) to maintain a fixed hydrostatic pressure at the fracture outlet. The bacterial suspension, conser-

vative tracer and cementing solution were injected into a central well and thus into the fracture by means

of a peristaltic pump. Pressure in the injection well was monitored by piezometer until the pressure

exceeded 2 kPa (200 mm H2O) after which a pressure transducer (sensitive to 0.2 kPa) connected to a data

acquisition system (GDS Instruments) recorded well pressure at 30 s intervals. An overhead DSLR camera

and lighting system triggered by a microcontroller (Arduino Uno) allowed the collection of a series of high

quality images through the polycarbonate fracture cover. In this way, the spatial extent of CaCO3 precipita-

tion based on color change and the transport of a fluorescein tracer were monitored.

2.2. Fracture Aperture and Transmissivity Monitoring

A single injection cycle consisted of first injecting the bacterial suspension followed by a pulse of tap water

and then the cementing solution (through a separate injection line), again followed by a pulse of tap water.

Multiple injection cycles were undertaken to build up layers of CaCO3 within the fracture and thus progres-

sively reduce the hydraulic aperture. From the well pressure measurements and considering the fixed pres-

sure at the fracture outlets, the hydraulic aperture (bh) after each injection cycle was calculated using the

cubic law for radial flow for the large fracture (equation (1)) and the planar form for the small fracture (equa-

tion (2)) [Witherspoon et al., 1980]. Fracture transmissivity (T) was calculated from the hydraulic aperture

(equation (3)). Fracture Reynolds number was calculated using an approximation for very long fractures in

which the hydraulic diameter is taken to equal twice the fracture aperture (equation (4)) [Singhal and Gupta,

2010]:

Qradial5
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Figure 2. Schematic representation of the large-scale fracture sealing experimental setup and representation of aperture distribution

within the artificial fracture.
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where Q is the volumetric flow rate at the well [m3/s], rw is the radius of the injection well [m], r0 is the radial

distance to a constant hydraulic head boundary [m], L is the planar fracture length [m], q is fluid density

[kg/m3], g is acceleration due to gravity [m/s2], l is fluid dynamic viscosity [kg/(ms)], Dh is the head loss

from injection well to constant hydraulic head boundary [m], V is fluid velocity [m/s], and b is fracture

mechanical aperture [m] which is distinct from the hydraulic aperture bh [m]. As the mechanical aperture of

the fractures could not be directly measured with the experimental setups used, hydraulic aperture (calcu-

lated with equation (1) or equation (2)) was used as a proxy when calculating Reynolds numbers.

2.3. Bacterial Suspension

Fresh bacterial suspensions were prepared on a daily basis in a procedure similar to that used by

El Mountassir et al. [2014], Ferris et al. [2003], Mitchell et al. [2013], and Tobler et al. [2014]. Brain heart infusion

(BHI) broth (Oxoid) was autoclaved in a Duran bottle then, after cooling, urea dissolved in deionized water

and sterilized by passing through a 0.2 lm syringe filter was added to the BHI broth giving a final concen-

tration of 37 g/L BHI, 20 g/L urea. The broth was inoculated with S. pasteurii (DSMZ, DSM-33) grown on BHI

agar amended with 20 g/L urea. The inoculated broth was then incubated at 288C on an orbital shaker at

80 rpm for approximately 26 h. Bacteria were harvested by centrifuging at 8000 rpm for six min then resus-

pended in sterile tap water to the required volume. The bacterial suspension was then injected into the

fracture within 2 h of resuspension. Immediately prior to injection, a 1 mL sample was taken for optical den-

sity measurement at a fixed wavelength of 600 nm (a measure of the light attenuating properties of the

bacterial suspension and hence a surrogate for bacterial cell concentration, hereafter referred to as OD600)

and for measurement of the ureolytic activity of the bacterial suspension.

The rate at which S. pasteurii can hydrolyze urea is termed the ureolytic activity. It is useful to monitor the

ureolytic activity of each bacterial suspension prior to injection to understand the potential for ureolysis

and to later make sense of any variation in CaCO3 precipitation and fracture transmissivity reduction. To

determine the ureolytic activity of each bacterial suspension, 1 mL of the suspension was added to 9 mL of

1.11 M urea and the change in electroconductivity was monitored over 30 min as nonionic urea was hydro-

lyzed producing ionic ammonia [Harkes et al., 2010]. Provided that there is sufficient urea to prevent the

reaction rate being limited, the following equation yields the specific ureolytic activity, i.e., the rate of ureol-

ysis normalized by the optical density of the bacterial suspension:

kUrea 5
DE:C:

Dt

C

OD600 � dilution factor
(5)

where kUrea is ureolytic activity normalized by OD600 [mM urea/min/OD600], DE.C. is the change in electro-

conductivity between measurements [mS/cm], Dt is the time interval between measurements [min], C the

conversion from E.C. change to mM urea hydrolyzed (in this case 10.62 mS/cm5 1 mM urea hydrolyzed),

OD600 is optical density of original bacterial suspension measured at 600 nm and dilution factor5 0.1 to

account for dilution when 1 mL of bacterial suspension was added to 9 mL of urea.

2.4. Injection Strategy

When bacteria, CaCl2 and urea are mixed prior to injection, CaCO3 precipitation begins almost immediately

in suspension, leading to clogging of the injection ports. Hence, to encourage CaCO3 to precipitate uniform-

ly with strong attachment to the fracture surface, it is necessary to adopt a staged injection strategy, inject-

ing first the bacterial suspension, followed by the CaCl2 and urea cementing solution, but with a small pulse

of water in between to prevent mixing and precipitation within the injection lines. This strategy with a rinse

step has been successfully employed by Phillips et al. [2013] and Sham et al. [2013] to minimize plugging of

the injection point.

Key to a successful grouting strategy is that the bacteria attach to the fracture surface, otherwise they may

be ejected from the fracture without hydrolyzing urea and without contributing to CaCO3 precipitation

(e.g., as nucleation sites). To encourage attachment in porous media such as sand, it is common to use a
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low concentration (50 mM) CaCl2 solution injected after the bacteria, often termed a ‘‘fixer,’’ that promotes

bacterial flocculation and attachment by reducing repulsive surface charges [Whiffin et al., 2007]. Alterna-

tively a long static period (with or without nutrients for the bacteria) between bacterial and cementing solu-

tion injection may be used to encourage attachment [Cunningham et al., 2009; Tobler et al., 2012]. Natural

fractures offer fewer opportunities for mixing than porous media and hence fewer opportunities for a CaCl2

fixer injection to diffuse and overlap with the bacterial injection. Fractures requiring grouting in subsurface

engineering works will typically be water-bearing and as such be subject to continuous groundwater flow

(i.e., ambient or redirected due to engineering works) preventing the use of a static period for attachment.

To overcome this while grouting a natural fracture in the field with MICP, Cuthbert et al. [2013] mixed the fix-

er directly with the bacterial suspension and found sufficient attachment for CaCO3 to precipitate. However,

while employing a similar procedure to seal a lab-scale fracture, El Mountassir et al. [2014] observed that pri-

or mixing resulted in flocculation of the bacteria before injection, producing large aggregates of CaCO3-

coated bacteria, which led to nonuniform precipitation in the form of dendritic-like flow channels within

the grouted fracture and poor attachment of CaCO3 to the fracture surfaces. In the experiments presented

in this paper, the bacteria were not flocculated and no fixer solution was used.

2.5. Small-Scale Fracture Cell Experiment

The small-scale fracture cell was deployed prior to the borehole-scale experiment to identify an injection

strategy that would inhibit the channeling observed by El Mountassir et al. [2014] and thus produce a more

uniform CaCO3 precipitation under continuous flow conditions. The injection strategy detailed in Table 1

was adopted. Previous MICP experiments in porous media found that biomass clogging alone was capable

of reducing permeability [Nemati et al., 2005; Tobler et al., 2012] due to bacteria cells accumulating in pore

throats; in contrast, Cuthbert et al. [2013] found that the volume of CaCO3 produced was orders of magni-

tude greater than the volume of bacteria biomass injected. Hence, for fractures, control experiments with-

out bacteria or with nonureolytic bacteria were not required.

Prior to CaCO3 precipitation, overhead photographs of the fracture surface were taken at 10 s intervals dur-

ing the injection of a fluorescein tracer to visualize flow paths and to measure tracer travel time.

Laser scans of the lower fracture surface (i.e., dolerite base) were taken using a scanCONTROL 2700 (Micro-

Epsilon) scanner before and after precipitation allowing measurement of the initial dolerite surface eleva-

tion and the subsequent spatial variation in thickness of the precipitated CaCO3. The scanner procured a

series of elevation profiles across the entire fracture width which, when combined, gave fracture surface

topography with an x,y resolution of 200 mm and an elevation resolution of 5 mm.

After dismantling the fracture, laser scanning, and collecting samples for SEM, both top and bottom fracture

surfaces were rinsed with tap water. Rinse water was collected, filtered and air dried on a preweighed filter

paper to measure mass of CaCO3 washed off. The top and bottom fracture surfaces were then air dried and

weighed before all CaCO3 was dissolved with weak (3%) hydrochloric acid. Finally, the top and bottom sur-

faces were dried and reweighed to calculate the total mass of CaCO3 in the fracture.

2.6. Borehole-Scale Experiments

The injection strategy for the large-scale

experiment was based on that employed

at the small-scale with the following

modifications:

1. Flow is radial, hence velocities are highest

at the injection point and approach zero at

distance. In order to promote bacterial set-

tling and attachment throughout the frac-

ture surface, the average velocity within the

fracture was designed to be equivalent to

that in the small-scale planar fracture

(0.55 mm/s, see section 3.1). Based on an

assumed initial average mechanical fracture

aperture of 500 lm, this was achieved with

Table 1. Small-Scale Fracture Cell Injection Details for a Single Cycle

Consisting of Bacteria Injection, Water Pulse to Clear Tubing, Cementing

Solution Injection, and Final Water Pulse Before the Following Injection

Cyclea

Cycle

Stage

Q

(mL/min) Time

Fracture

Volumes (–) Concentration

Bacteria 1.56 3 h 26 0.5 OD600

Water pulse 1.56 5 min 0.74

Cementing 1.56 21 hb 186 0.7 M urea,

0.5 M CaCl2, pH 6.5

Water pulse 1.56 5 min 0.74

aFracture volumes is the total volume injected per stage divided by

initial fracture liquid volume.
bAfter 3 h of cementing injection the effluent was recirculated to

create a closed system that could be left running overnight without a

cessation of flow.

Water Resources Research 10.1002/2016WR018884

MINTO ET AL. ROCK FRACTURE GROUTING WITH MICP 5



an injection flow rate of approximately

20 mL/min.

2. The 3 h bacterial injection was retained,

necessitating preparation of 4.6 L bacterial

suspension (three fracture volumes).

3. Due to the fixed hydrostatic outlet

boundary condition, it was not possible to

collect the entire effluent for recirculation,

yet continuous flowing conditions were still

required. Instead, the cementing solution

injection volume was increased to 23 L (15

fracture volumes) to allow continuous injec-

tion over a 21 h period.

4. The cementing solution was a 0.4 M CaCl2

and 0.4 M urea solution. To prepare 23 L of

cementing solution, 1021 g of CaCl2 (MW

110.99) and 553 g of urea (MW 60.06) were

added to 20 L of DI water then topped up to

23 L and mixed by overhead stirrer until fully

dissolved and equilibrated with the 208C

room temperature. Hydrochloric acid was

then added to adjust the pH to 6.5.

5. Bacteria and cementing solution injec-

tions were separated by a 0.3 L tap water

pulse to reduce mixing of bacteria and

cementing solution ensuring that only bac-

teria that attach to the fractures surfaces

contribute to CaCO3 production. This was

an important component of the injection strategy and it was envisaged that it would both reduce clogging

of the injection point and that the produced CaCO3 would be more strongly attached to a surface rather

than crystals produced in suspension and capable of washing out.

Two experiments were conducted at borehole-scale using the large fracture experimental setup; these are

termed borehole experiment 1 (BHExp1) and borehole experiment 2 (BHExp2). Table 2 details the flow rate

and OD600 used during each injection cycle in BHExp1 and BHExp2. In BHExp1, nine cycles were injected at

a flow rate of 18.6 mL/min followed by a further three cycles injected at a flow rate of 9.4 mL/min. Due to

slight differences in growth time and the amount of bacteria used to inoculate the broth the optical density

of the bacterial suspension varied during the 12 injection cycles with an average OD6005 0.64. Fluorescein

tracer was injected prior to the first injection cycle and toward the end of every third cementing cycle there-

after to visualize the flow paths. In BHExp2, five cycles were injected at a flow rate of 19.0 mL/min and fluo-

rescein tracer was injected before the first, then during the third and fifth cementing cycles. In order to

accelerate CaCO3 precipitation relative to BHExp1, in BHExp2 the first three injection cycles used bacterial

suspensions with double the OD600 (i.e., approximately double the amount of bacteria) while the remaining

two cycles had a similar OD600 to BHExp1. In BHExp2, the cap covering the injection well was fastened more

tightly so as to reduce the aperture at the well; this was done in order to increase the fluid velocity in this

region relative to BHExp1.

Based on the injection rate, well radius, and hydraulic aperture, maximum velocities of 3.25 mm/s were pre-

dicted to occur adjacent to the well. Using hydraulic aperture in place of mechanical aperture in equation

(4) results in Reynolds numbers of 2.0 3 1026. Even accounting for variations in mechanical aperture not

present when using hydraulic aperture, this is well below the onset of turbulent flow at Re5 100 [Singhal

and Gupta, 2010] and comfortably within the laminar regime.

By analyzing the images from the time series of overhead photographs, using the image analysis software

ImageJ [Rasband, 1997–2016], the change in color of each pixel could be measured. Images were first regis-

tered (aligned), intensity normalized based on areas outside the fracture surface and then corrected for the

Table 2. Details of Bacterial Injection Phases for the Large-Scale

Experimenta

Cycle

Flow Rate

(mL/min) OD600

Specific

Ureolytic Activity

(mM urea/min/OD)

Borehole

experiment 1

(BHExp1)

Tracer Prior to First Injection Cycle

1 18.6 0.67 2.47

2 18.6 0.60 2.65

3 18.6 0.51 2.61

Tracer During Third Cementing Cycle

4 18.6 0.56 2.85

5 18.6 0.76 2.68

6 18.6 0.64 2.31

Tracer During Sixth Cementing Cycle

7 18.6 0.68 1.92

8 18.6 0.76 1.92

9 18.6 0.63 2.22

Tracer During Ninth Cementing Cycle

10 9.4 0.81 2.76

11 9.4 0.88 2.23

12 9.4 0.54 3.08

Tracer During 12th Cementing Cycle

Average 0.64 2.48

Borehole

experiment 2

(BHExp2)

Tracer Prior to First Injection Cycle

1 19.0 1.19 3.87

2 19.0 1.09 2.23

3 19.0 1.30 2.98

Tracer During Third Cementing Cycle

4 19.0 0.65 0.79

5 19.0 0.60 2.05

Tracer During Fifth Cementing Cycle

aSpecific ureolytic activity is used to compare activity of each bacterial

injection.
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nonuniform background illumination. The intensity was then radially averaged around successive one pixel

thick bands extending outward from the injection well to determine how CaCO3 precipitation varies spatial-

ly and temporally within the fracture.

3. Experiment Results

3.1. Small-Scale Experiment Results

The results of all injection cycles in the fracture cell are shown in Figure 3. Nine injection cycles of bacteria

and cementing solution were completed before terminating the experiment when the hydraulic head at

the fracture inlet exceeded 1400 mm H2O (13.7 kPa) (the maximum height of the piezometers). Initial frac-

ture hydraulic aperture was calculated to be 228 lm. From the tracer transport, the velocity was also esti-

mated giving an average velocity of 0.55 mm/s at the time of tracer breakthrough (Figure 3a). Figure 3b

shows images of the CaCO3 precipitation over time at the end of injection cycles 0, 3, 6, and 9. By Cycle 3,

CaCO3 precipitation is clearly visible over the entire fracture surface. Until Cycle 6, the fracture transmissivity

reduction due to the CaCO3 precipitation was small (Figure 3c). At the end of Cycle 6, one of the five injec-

tion lines blocked with CaCO3 leading to a reduction in the inflow from 1.56 to 1.25 mL/min. A second injec-

tion line blocked midway through Cycle 8 (at the end of the bacteria injection) further reducing the flow

rate to 0.94 mL/min for Cycle 8 cementing injection and Cycle 9. What is clear from Figure 3c is that the

largest reductions in fracture transmissivity occur one whole cycle after the reduction in flow rate. Over the

full 9 injection cycles of the experiment fracture transmissivity reduced from 9.65 3 1026 to 3.72 3 1028

m2/s; a 99.6% reduction and the limit of what could be measured with the piezometers.

Following the collection of samples for SEM analysis, CaCO3 attachment to the dolerite base was assessed

by first gently, then vigorously, rinsing with tap water. Gentle rinsing removed 1.66 g of the 18.85 g

attached to the base (8.8%). Vigorous rinsing with a jet of tap water was unable to remove any additional

CaCO3 indicating strong attachment to the dolerite. The final mass of CaCO3 was measured as the weight

change upon acid digestion: this resulted in a final total mass of 21.51 g of precipitate, 18.85 g of which was

attached to the dolerite base and 2.66 g of which was attached to the polycarbonate upper surface.

Figure 3. Overhead photographs of the full flow cell surface. (a) Transport of a fluorescent green conservative tracer was photographed at ten second intervals prior to the first injection

cycle. Travel time was calculated by analysis of the tracer transport. (b) CaCO3 precipitation clearly visible over the entire fracture surface. (c) Fracture transmissivity was calculated from

pressure drop readings taken across the flow plate at the end of each 24 h injection cycle, accounting for reduction in flow rate due to blockage of injection tubing (indicated with

vertical dashed lines).
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Laser scans of the dolerite base prior to CaCO3 precipitation revealed the surface elevation to be normally

distributed with a mean of zero, a standard deviation of 47 mm, and a range of 235 mm over 2.5 standard

deviations (encompassing 99% of measurements). After CaCO3 precipitation, the range in surface elevation

was 1400 mm, greatly exceeding the calculated initial hydraulic aperture of 228 mm, suggesting that calcite

precipitation and crystal growth may have caused bowing of the upper polycarbonate surface. Neglecting

void space within the precipitate, the CaCO3 attached to the base, with a density of 2.71 g/cm3, would occu-

py 7.9 cm3 of the fracture volume. The initial fracture volume (based on initial hydraulic aperture) was

10.6 cm3.

Laser scans of the polycarbonate upper surface could not be made as reflection from, and transmission

through, the clear polycarbonate disrupted laser measurement. Hence, the spatial distribution of the mass

attached to the upper surface could not be measured (12% of the total CaCO3 precipitated). However, from

visual inspection, the polycarbonate appeared to have an almost even coating of CaCO3 over the entire

surface.

Figure 4a shows the results of the laser scan at the end of the experiment. For comparison, a section of the

initial surface is shown in Figure 4b. Close to the inlet the precipitated CaCO3 had entirely filled the gap

between the fracture base and the upper surface. While dismantling the fracture, attachment to the base

was greater than to the upper surface resulting in a relatively flat area of CaCO3 with a surface elevation

that varies smoothly between 800 and 1400 mm. Section A-A through this flat section (Figure 4c) reveals a

domed shape, possibly created by increasing pressure and/or crystal growth deforming the semiflexible

polycarbonate during later injection cycles.

The distribution in CaCO3 from inlet to outlet was calculated by dividing the image into a series of bands

4 mm in length and averaged over the entire fracture width. The results (Figure 4d) show greater precipita-

tion within the first 150 mm of the fracture with relatively constant precipitation thereafter.

Overhead photographs of the fracture surface (Figure 3) showed that initially the CaCO3 precipitation fol-

lowed the flow paths made visible by the Cycle 0 tracer. As CaCO3 was precipitated, these flow paths

changed leading to the more even distribution in CaCO3 visible in the laser scan (Figure 4). Despite the

Figure 4. (a) CaCO3 surface elevation relative to the dolerite base, (b) variation in surface elevation prior to CaCO3 precipitation, (c) variation in CaCO3 surface elevation across Section

A-A, and (d) average elevation of CaCO3 measured over 4 mm bands from inlet to outlet.
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constantly flowing conditions, the formation of stable, open channels observed by El Mountassir et al.

[2014] in a similar flow cell experiment were absent, presumably as fracture average fluid velocity was con-

siderably lower in the study presented here (0.55 mm/s versus 2–33 mm/s), hence bacterial attachment to

the surface was not inhibited.

3.2. BHExp1 Results

Photographs of the fracture taken by the overhead camera prior to the first injection cycle, and after cycles

3, 6, 9, and 12 are presented in Figure 5. Initially the upper polycarbonate fracture surface is transparent

and the lower Rosa Porrino granite is pink colored with small black, grey and white areas (Cycle 0). It is evi-

dent from Figure 5 that with an increasing number of injection cycles the overhead images become gradu-

ally lighter as the fracture becomes progressively filled with white CaCO3.

Analysis of the overhead photographs show the intensity of each pixel increases over time as CaCO3 is pro-

gressively precipitated within the fracture; it should be noted here that the relationship between intensity

and mass of CaCO3 within the fracture is not linear. From both the photographs and the image intensity

analysis it is also apparent that the amount of CaCO3 precipitated is greatest close to the injection well and

decreases with distance away from the injection well.

Point measurements of optical density of the fracture effluent (5 mL samples extracted from the midpoint

of each of the four fracture sides by syringe) showed no bacterial washout from the fracture during the first

injection cycle. Due to the fixed injection rate, as the fracture infills over time with CaCO3, and the fracture

aperture reduces, the fluid velocities necessarily increase in the remaining open pathways. This results in

Figure 5. Overhead view of fracture during CaCO3 precipitation. Images are smaller than 1750 mm due to a support frame around the perimeter of the fracture and the shadow this

cast. Increase in image intensity (lighter color) was due to CaCO3 precipitation. Amount of precipitation was greatest close to the well, particularly between cycles 9 and 12 when the

flow rate was reduced. Plotting the average pixel intensity with radial distance from the injection well center highlighted this trend. N.B. the red spot is paint on the granite surface used

by the supplier to identify the stone and does not significantly alter the fracture aperture or bacterial attachment. The tube extending from the injection well is for removing air from the

well and is located outside the fracture—above the upper polycarbonate fracture plate.
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bacterial attachment occurring further from the injection well between cycles 3 and 6 (shown in Figure 5)

and ultimately, in not all of the injected bacteria being retained within the fracture by cycles 7, 8, and 9. For

the final three injection cycles (10, 11, and 12), the injection rate was halved to 9.4 mL/min, reducing the flu-

id velocity within the fracture. This resulted in an increased amount of CaCO3 precipitated within the vicinity

of the injection well and ensured that all bacteria were once again retained.

Flow pathways within the fracture were delineated using a fluorescein tracer. To prevent density dependent

flow, the fluorescein was added to the cementing solution and injected at the end of the cementing cycle

when the fracture contained cementing solution only. All fluids were given ample time for temperature to

equilibrate in the temperature controlled room. Prior to any CaCO3 precipitation, flow paths were approxi-

mately uniform within the fracture with travel time increasing radially from the injection well (see cycle 0,

Figure 6). Travel time, defined as the time taken between commencement of tracer injection and the tracer

front reaching each and every point within the fracture, was determined from time-lapse photography

processed with ImageJ.

As CaCO3 precipitated over time within the fracture, the flow paths were altered. In cycle 3, low travel times

(indicated by ‘‘hot’’ colors white to orange) were observed in the left hand upper quadrant of the image.

However the flow paths in this quadrant had been significantly altered by the end of cycle 6, with very high

travel times (black and blue) being observed in this region. In other words, precipitation of CaCO3 during

cycles 3–6 has increased travel times in this area by reducing the fracture aperture and shifting the higher

flow rates to the bottom right quadrant of the fracture, with a corresponding reduction in travel times in

this area. This indicates that there is a positive feedback between flow and CaCO3 precipitation, which is

likely due to the increased supply of bacteria and cementing solution in regions of high flow (reduced travel

times). During cycles 10–12, the tracer was injected at half of the flow rate used in cycles 1–9, which

explains the much higher travel times (in black) over a larger area of the fracture in cycle 12.

Figure 7 shows the evolution of injection pressure with time as precipitation occurs within the fracture.

Results show a stepped increase in the injection well pressure recorded with each injection cycle. The

majority of the pressure change, and hence the majority of the CaCO3 precipitation, occurred within the first

3 h of the cementing phase of each injection cycle. Movement of the upper polycarbonate fracture surface

Figure 6. Tracer travel time (i.e., time required for the tracer to be transported from the injection point to each and every point in the

fracture) showing change in flow paths as CaCO3 is precipitated. Cycle 0 (top left) is prior to CaCO3 precipitation and represents the

baseline flow paths. Note the tracer at cycle 12 was injected at the reduced flow rate of 9.4 mL/min.
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occurred during cycle 2 when the pressure first reached 19 kPa. After this movement the pressure within

the injection well dissipated quickly returning to the pressure recorded at the beginning of the cementing

phase in cycle 2. Drops in well pressure occurred in cycle 11 when well pressure reached 69 kPa. Again this

was thought to be due to movement of the polycarbonate cover suggesting that 69 kPa is approaching the

upper range of injection pressure that can be evaluated with this experimental setup. Figure 5 shows the

corresponding reduction in transmissivity over time. Based on the cubic law for radial flow (equation (1))

the initial average hydraulic aperture was 276 lm, which was reduced to 22 lm after 12 injection cycles.

This translates to a reduction in average fracture transmissivity from 1.71 3 1025 to 8.75 3 1029 m2/s, a

three order-of-magnitude reduction. As shown in Figure 8, the majority of the transmissivity reduction (two

orders of magnitude) occurred by the end of the second cycle.

3.3. BHExp2 Results

Based on the results of BHExp1, a second experiment was conducted to determine whether fracture trans-

missivity reduction could be achieved more rapidly. In the first three cycles of BHExp2, the OD600 of the bac-

terial suspension was double that used in BHExp1 (Table 2). To reduce fracture sealing adjacent to the well

itself, the cap at the center of the slab was tightened slightly more than in BHExp1 creating a smaller frac-

ture aperture in the center and hence locally higher velocities for the same injection rate. Figure 9 presents

the time series photographs of CaCO3 precipitation within the fracture prior to injection and at the end of

cycles 3 and 5. As per the experimental design, in BHExp2 there was visibly less CaCO3 precipitation in the

vicinity of the injection well. The image intensity analysis indicates that while some CaCO3 was precipitated

close to the well, the highest precipitation rate was at a distance between 400 and 600 mm from the injec-

tion well where velocities were between 0.295 and 0.164 mm/s on average. This is in contrast to BHExp1

and the small-scale experiment (both of which were designed to have similar flow velocities), in which the

highest rates of CaCO3 precipitation were located close to the injection points. This change in spatial distri-

bution is attributed to reduced bacterial attachment near the well due to the higher velocities resulting

from the tightening of the central cap: velocities derived from the tracer transport photographs showed

that, within 200 mm of the injection well, the average velocity was 18% higher in BHExp2 than in BHExp1

(Figure 10). It should be noted that the concentration of bacteria attached to the surface is not the only fac-

tor contributing to the amount of CaCO3 precipitated; bacterial access to urea, temperature, pH, ionic

Figure 7. BHExp1 injection well pressure log divided into bacterial injection phase (blue), cementing injection phase (red), and tracer

injection (yellow bands). Injections 1–9 were at a flow rate of 18.59 mL/min while 10–12 were at 9.36 mL/min. Each cycle was approximately

24 h long (3.8 h bacteria injection followed by 20.2 h of cementing injection) with the exception of cycle 12 in which the cementing injection

time was extended to 40 h.
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strength, and dissolved oxygen are

also known to influence the ulti-

mate activity of the bacteria [Stocks-

Fischer et al., 1999; Lauchnor et al.,

2015].

In BHExp2, the hydraulic aperture

reduced from an initial value of 334

to 33 lm in five injection cycles.

This translates to a three order of

magnitude reduction in average

fracture transmissivity from 3.05 3

1025 to 3.10 3 1028 m2/s, i.e., simi-

lar to that achieved in 12 cycles dur-

ing BHExp1, with most of the

reduction occurring in the first

three cycles. As shown in Figure 11,

the majority of this transmissivity

reduction occurs in the first three

injection cycles when bacterial con-

centration was double that used in

cycles 4 and 5 and double that used

throughout BHExp1. An increase in

transmissivity was observed at the

end of cycle 4 which was due to a

constriction in the peristaltic pump

tubing causing a reduction in the

actual flow rate achieved, resulting in

an over-prediction of transmissivity. Furthermore cycle 4 had an unusually low specific ureolytic activity com-

pared to that expected for an OD600 of 0.65, (see specific ureolytic activity for all cycles in Table 2).

4. Discussion

With the polycarbonate cover of the large-scale fracture removed and the fracture air dried (Figure 12), it

was clear from the difference in color that CaCO3 was precipitated extensively in both experiments. As in

the small-scale experiment, CaCO3 was precipitated on both the rock and the smooth polycarbonate cover

and attachment to both surfaces was so strong that a high pressure water jet was unable to dislodge signifi-

cant amounts of CaCO3. BHExp1 demonstrated that MICP can be used to build up successive layers of

CaCO3 over the entire 3.1 m2 fracture surface with the effect of reducing fracture transmissivity by three

orders of magnitude in 12 injection cycles. BHExp2 showed that the injection strategy can be modified to

enable control over where the CaCO3 is precipitated most rapidly by ensuring flow velocities are above a

critical threshold and thus limiting bacterial attachment to the surface. BHExp2 also showed that the time

taken to grout could be reduced from 12 to three cycles, while still achieving a substantial three order of

magnitude reduction in transmissivity. In this respect, the artificial fracture has successfully been grouted

with MICP.

4.1. Influence of Injection Rate

In BHExp1, greater CaCO3 precipitation occurred closer to the well and this effect was further enhanced

when the injection rate was reduced for the last three cycles. This is in line with filtration theory which can

also be (loosely) applied to the transport of the bacteria within the fracture. Slower flow velocities increase

the chance that, within a given distance, Brownian motion and sedimentation will bring bacteria close

enough to the fracture surface for attachment via van der Waals, electrostatic, acid-base and hydrophobic

interaction forces [Becker et al., 2003; Redman et al., 2004; Tufenkji, 2007]. In addition, hydrodynamic shear

forces which act to prevent attachment are lowered [Boks et al., 2008]. Similar behavior (i.e., increased

Figure 8. Reduction in calculated fracture transmissivity due to CaCO3 precipitation.

A three order of magnitude reduction was achieved with 12 MICP injection cycles,

each cycle lasting 24 h.
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bacterial attachment with lower injection rates) of S. pasteurii transported through sandstone cores was not-

ed by Tobler et al. [2014].

In BHExp2, increasing the velocities close to the well reduced the precipitation rate in the vicinity of the

injection well. The highest precipitation rates were observed in a band 400–600 mm from the well, where

velocity had decreased sufficiently to facilitate bacterial attachment. In practice, higher velocities close to

the well could be achieved by increasing the injection rate up to a limit set only by the necessity to keep

pressure below a value which might cause the formation of new fractures. Due to the low viscosity nature

of the injection fluids, this limit is unlikely to be encountered in practice until sealing is well advanced as,

for example, the maximum injection pressure required in these experiments was 90 kPa. These observations

show that varying the injection rate will be a key parameter for design of a grouting strategy.

4.2. Influence of Bacterial Concentration

Increasing the OD600 of the first three injection cycles of BHExp2 reduced the number of cycles required for

a three order of magnitude reduction in transmissivity from 12 cycles in BHExp1 to three cycles in BHExp2,

but the initial reduction in transmissivity occurred at a slower rate in BHExp2 (Figures 8 and 11). This may

be because BHExp2 had an initially larger hydraulic aperture than BHExp1 (334 lm versus 276 lm), but also

because the region within which CaCO3 is precipitating at its highest rate in BHExp2 is at a greater radial

Figure 9. Overhead view of fracture during CaCO3 precipitation. Increase in image intensity (lighter color) was due to CaCO3 precipitation.

Amount of precipitation was greatest between 400 and 600 mm from the well with least CaCO3 precipitating in the first 200 mm from the

well and at the edge of the granite slab.
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distance from the well and hence covers

a larger surface area. As a consequence,

the time taken to achieve a similar aver-

age hydraulic aperture may be slightly

longer.

The majority of the transmissivity reduc-

tion of each cycle occurred within the first

3 h of the cementing injection, presum-

ably as bacteria become entombed in

CaCO3 [Stocks-Fischer et al., 1999] and

effectively become inactive. This suggests

that the remaining 17 h of cementing flu-

id were underutilized. A curtailed cement-

ing fluid injection of 3 h, followed by an

injection of fresh bacteria, could reduce

both cost and duration of grouting. More

work is required to determine optimum

concentrations of MICP injection fluids

and it should be noted that these may be

site specific: in some situations it may be

economically preferable to precipitate

CaCO3 as rapidly as possible with fre-

quent bacterial injections rather than

make the most efficient use of the bacte-

ria and cementing solutions.

4.3. Experimental Limitations

Limitations of this large-scale experiment

are its finite size, the requirement for a

constant pumping rate, that it is an artifi-

cial fracture with no initial filler material,

and that a single horizontal fracture was

investigated rather than a fracture net-

work. These limitations and their implica-

tions for fracture sealing by MICP are

discussed further.

Due to the finite size of this experiment,

as CaCO3 was precipitated and the fluid

velocity within the fracture increased,

bacterial attachment decreased, and bac-

teria were ejected from the fracture. How-

ever, if we consider injecting into the

subsurface, the bacteria would attach

eventually within the wider fracture net-

work and would be available to precipi-

tate CaCO3 at a more distant location

from the injection well further decreasing

transmissivity. Given the feedback between

CaCO3 precipitation and changes to the

preferential flow paths observed with the

tracers of BHExp1, this would result in

more even CaCO3 precipitation over a larg-

er rock volume.

Figure 10. Comparison of BHExp1 and BHExp2 radially averaged flow veloci-

ties. Velocities were derived from the time series of tracer transport photo-

graphs. Peak velocities were 18% higher in BHExp2 within 200 mm of the

injection well due to the reduction in aperture from tightening the well cap.

Further from the well, BHExp2 velocities drop below that of BHExp1 due to

the larger overall hydraulic aperture of BHExp2 (334 lm versus 276 lm) yet

similar injection flow rate.

Figure 11. Reduction in calculated fracture transmissivity due to CaCO3 pre-

cipitation. A three order-of-magnitude reduction was achieved with three

MICP injection cycles. A constriction in the peristaltic pump tubing during

cycle 4 is thought to have reduced the flow rate by an unknown amount

hence resulting in an over-prediction of transmissivity. Cycle 4 was discounted

from further analysis. Each injection cycle lasted 24 h, with the exception of

cycle 5 which was terminated 2.5 h into the cementing cycle.
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As shown in Figure 2, the experimental fracture surfaces differ from natural fracture surfaces in that the low-

er granite surface was saw cut and the upper surface was polycarbonate. Total CaCO3 precipitation on the

upper surface was less than on the lower surface. This is likely due to the upper surface being smooth and

only having a bacterial attachment mechanism of electrostatic charge, whereas on the lower surface attach-

ment can be due to electrostatic charge, gravitational settlement, and filtration from surface roughness.

The aperture distribution in the experiment is likely to be more regular than fracture surfaces created by

rock shearing, where natural constrictions and fill materials would be present. A less uniform surface and

the presence of fill material within the fracture are both more likely to result in more rapid transmissivity

reduction, as more surface area is available for bacterial attachment.

The experiments consisted of a single horizontal planar fracture whereas networks of interconnected frac-

tures of different aperture and orientation are likely to be encountered in the subsurface. When it comes to

uniformly grouting fracture networks, MICP has an advantage over many other grouts: with a viscosity simi-

lar to water and S. pasteurii particle size around 4 lm [DeJong et al., 2010b], the MICP injection fluids can

penetrate large and fine fractures easily and in most cases the density of the bacterial suspension and

cementing fluid can be adjusted to match the groundwater so that density driven flow does not occur.

Larger aperture fractures may fill first due to the greater supply of bacteria and cementing fluid but, as was

Figure 12. With the polycarbonate cover removed, the granite surface and any CaCO3 precipitated on the lower fracture surface is visible

(a) before CaCO3 precipitation, (b) after the 12 injection cycles of BHExp1, and (c) after the five injection cycles of BHExp2. The CaCO3

precipitation on the polycarbonate cover after BHExp1 is visible in Figure 12d i.e., the upper fracture surface matching the lower fracture

surface shown in Figure 12b.
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observed in BHExp1, with each injection cycle the CaCO3 precipitates in layers redirecting flow paths as it

does so. In a fracture network, there will come a point when the initially large aperture fractures have been

sufficiently sealed such that flow is redirected toward finer fractures. By sealing large and small fractures,

the precipitated CaCO3 would form a much more resilient and durable grout than if only the large fractures

in the fracture network had been sealed.

4.4. Application of MICP for Fracture Sealing

Through the experiments described above we have shown that MICP is a viable alternative to current tech-

nologies for grouting rock with several advantages. The cementation fluid used in MICP is near neutral

(adjusted to pH 6.5) and while urea hydrolysis may raise pH closer to 9.3, this is still considered low com-

pared to cement grouts. This makes MICP suitable for construction of radioactive waste geological disposal

facilities, where high pH is unacceptable as it interferes with the long-term performance of other safety criti-

cal barriers, in particular compacted bentonite. MICP may also be more suitable for construction in environ-

mentally sensitive locations; here the presence of high pH cements could have a negative impact on fragile

or valuable ecosystems. However, this must be balanced against the production of ammonium, a by-

product of urea hydrolysis that could also harm sensitive environments and may require removal by pump-

ing [Tobler et al., 2011] then treatment at a wastewater treatment plant.

Where pH is not an issue, but a high level of hydraulic sealing is desirable, MICP could be applied in combi-

nation with an initial phase of cement grouting. As a secondary grout, MICP could be used to seal fine aper-

ture fractures into which microfine cements are unable to penetrate, and to seal shrinkage cracks within the

cement-grouted fractures to improve hydraulic performance.

Currently low viscosity grouting is performed using chemical grouts. These provide rapid hydraulic sealing,

however, they are often highly toxic and durability is in the order of 10–20 years. In contrast, natural calcium

carbonate filled veins and faults have been dated in the 35,000–450,000 year age range [Flott�e et al., 2001;

Lin et al., 2003; Boles et al., 2004; Watanabe et al., 2008] indicating that, unless groundwater is highly acidic,

calcite veins can resist dissolution. Further, if tectonic events cause shearing of a calcite filled fracture, the

fracture is likely to remain full of calcite crystals, mobile sheared crystal fragments, CaCO3 saturated pore

water, and would have a large reactive surface area. Shearing is often accompanied by an increase in tem-

perature (due to friction) and pressure drop (where there is fracture dilation); hence there may be condi-

tions suitable for crystal growth and subsequent grout healing. Our experiments also show that CaCO3

attachment to the fracture surface was very strong, a high-pressure water jet could not remove it, and to

clean the fracture for BHExp2 several washes with 3% hydrochloric acid were required. Core-scale experi-

ments are ongoing to determine the shear strength of MICP grouted fractures.

The final advantage of MICP grout is the low injection pressure. The maximum injection pressure reached in

these experiments was 90 kPa during the final stages of BHExp1, injection cycle 12, when the fracture

hydraulic aperture had reduced to 22 lm. To inject a microfine cement under comparable conditions,

assuming a viscosity of approximately 50 mPa s would require an injection pressure of around 3 MPa. Typi-

cal maximum grouting pressures are usually in the range of 100–250 kPa per meter overburden, thus pre-

cluding the injection of cementitious grouts at depths less than 10–12 m due to the potential for ground

heave [Tolppanen and Syrj€anen, 2003]. By comparison, MICP fluids have a viscosity of, at most, 1.1 mPa s

and thus could be used near-surface without risk of uplift.

The main disadvantage of MICP for rock grouting is the time taken to fully grout the rock mass. For some

applications, such as geological disposal, tunnels, and shafts are accessible for long time periods and this

would not be a major issue. For other infrastructure developments, the advantages of increased durability,

improved hydraulic sealing, increased fracture shear strength and reduced environmental impact would

need to be weighed up against the additional time required for project completion. As discussed, it may be

possible to significantly reduce the grout time by decreasing the duration of the cementation injection

stage.

Finally, unlike all other grouts, using MICP the viscosity of the injected fluid does not increase with time; the

injected fluid does not begin to set. This opens the door to different injection strategies. For example, it

should be possible to grout a far larger rock volume from a single borehole. To achieve this, the initial injec-

tion rate would be designed such that the initial fluid velocity was favorable for maximum rates of CaCO3

Water Resources Research 10.1002/2016WR018884

MINTO ET AL. ROCK FRACTURE GROUTING WITH MICP 16



precipitation at the furthest extent of the design rock volume to be grouted. Injection would then proceed

using a constant injection pressure, this would result in a gradual reduction in the flow rate due to fracture

sealing at distance and hence in the fluid velocities. As a consequence, precipitation should gradually infill

the fracture network from the outside in, i.e., starting at the maximum grouted extent and approaching the

injection hole until the entire design rock volume is sealed. Such an approach could significantly reduce the

time taken and number of boreholes required for an MICP grouting campaign.

5. Conclusions

MICP is a promising process for sealing rock fractures. We have shown that CaCO3 can be precipitated even-

ly over a large area, that the rate and location of precipitation can be controlled, and that a significant

reduction in fracture transmissivity can be achieved. Due to the low viscosity and low injection pressures,

MICP could be applied where use of traditional cementitious grouts is precluded. When a high level of dura-

bility, high levels of hydraulic sealing, low pH or minimal injection pressures are desirable, MICP may be a

viable secondary grout or even an alternative to current rock grouting techniques.
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