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ABSTRACT 

 
Artificial embryonic stem cell niches were made from murine embryonic stem cells (ESCs) 

and SAOS-2 osteoblast-like cells (a human osteosarcoma cell line) by constructing aggregates 

with well-defined architectures with dielectrophoresis between the castellations of 

interdigitated oppositely castellated electrodes.  This combination of the cells was chosen to 

mimic the bone marrow endosteal niche that harbours haematopoietic stem cells in a quiescent 

stage, with the aim of transforming the embryonic stem cells into hematopoietic precursor 

cells.  Within aggregates made with dielectrophoresis cells are in very close contact, allowing 

strong cell-cell interactions to occur.  Puramatrix gel was used to immobilize the cells; a 

concentration of 25% Puramatrix was found to be optimal.  Aggregates consisting of only 

ESCs formed embryoid bodies upon aggregation with dielectrophoresis within 24 hours. The 

size of the electrodes determines the size of embryoid bodies. Embryonic bodies formed at 

electrodes with a characteristic size larger than 100 µm tended to split; electrodes smaller than 

75 µm gave embryonic bodies which tended to merge.  75 to 100 µm was optimal.  When 

aggregates were made containing both SAOS-2 and ESCs, the reorganization of the two cell 

types after their aggregation was found to be controlled by the different adhesive-cohesive 

properties of the two cell types and their initial position.  Optimum cell-cell interaction was 

obtained in an aggregate with a layered architecture with the osteoblasts initially in bottom 

position, and the ESCs in top position.  The study of differentiation in ESCs was made by 

conducting experiments with Bry ESCs, which mark the onset of differentiation along 

mesenchymal lineage with the production of GFP. The results indicated that aggregation with 

dielectrophoresis causes the ESCs to take the first steps towards differentiation along the 

mesenchymal lineage, and that the differentiation is stronger in aggregates formed at 

electrodes of 75 µm than at electrodes of 100 and 50 µm. Co-culture with SAOS-2 cells did 

not lead to differentiation along the mesenchymal lineage.  Lastly it was shown that optical 

tweezers could be combined with dielectrophoresis to move individual cells between niches. 
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CHAPTER 1  

Preface to the thesis 

1.1 General introduction 

Haematopoietic stem cells (HSCs) are cells that are capable of self-renewal and forming 

all types of blood cells that can be found in an adult (Spangrude et al., 1988).  The 

hematopoietic lineage is one of the earliest to arise in mammalian development, being 

specified from the first set of mesodermal precursors generated by gastrulation. Gastrulation is 

this process in the early phase in embryo formation during which a single layered blastula 

organizes itself into three germ layers namely ectoderm, mesoderm and endoderm, the 

structure collectively termed as gastrula. The tiny number of hematopoietic founder cells in the 

murine embryo makes molecular and cellular analysis difficult (Kyba and Daley, 2003).  

Conventional sources of HSCs are therefore bone marrow and umbilical cord blood, from 

which HSCs can be derived in relatively large numbers.  Adult-derived HSC can be induced to 

form blood in vitro, but unfortunately they cannot be induced to self-renew.  Embryonic stem 

cells (ESCs), however, can be grown in large numbers and differentiated synchronously.  ESC 

can be induced to form hematopoietic stem cells, and the induction of mature blood cells ESC-

derived HSCs could potentially provide an inexhaustible supply of blood cells.  ESC-derived 

HSCs also have a number of other advantages over HSCs from conventional sources.  ESC 

derived HSCs would be more immature compared to bone marrow derived HSCs, enabling 

more efficient production of specific blood types.  ESC may eventually be derived by 

reprogramming of somatic cells, overcoming ethical issues, making the blood produced 

patient-specific, and giving less immunological response.  The unlimited expansion of ESCs 

not only allows large absolute numbers of HSC to be generated but also enables the 

replenishment of banked samples (Sudo et al., 2000).   

 

Unfortunately, although HSCs can be derived from ESCs, and different types of blood 

cells from HSCs, our ability to control the differentiation process is not yet very good.  The 

problem is that many different factors can affect the fate of stem cells.  These factors could be 

chemical signals including soluble factors (such as growth factors, chemokines, cytokines), 

direct cell-cell and cell-matrix interactions or physical forces like mechanical stresses and 

strains or even electric impulses (Underhill and Bhatia, 2007).  Various studies are now being 
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done to investigate the behaviour of stem cells in response to these factors.  Altering any factor 

could affect the behaviour of stem cells, but investigations are difficult because of the time-

dependent and multi-factorial behaviour of many of the responses.   

 

For stem cells to achieve their potential in regenerative medicine it is thus necessary for 

scientists to be able to not only isolate them efficiently, but also to propagate them in culture 

and then differentiate them efficiently and completely into many different cell types.  In order 

to do so it is important to understand how stem cells interact with other cells, not only in vivo 

in their natural microenvironment, the so called stem cell niche, but also in vitro (Fuchs et al., 

2004).   

1.2 Aim of the project  

The aim of the project is to create an artificial embryonic stem cell microniche for the 

in-vitro investigation of the factors that affect stem cell behavior, and study the long term 

behavior of the cells in it.   

 

It has previously been shown that an AC technique dielectrophoresis can be used to 

make aggregates of cells which can act as artificial stem cell niches (Markx et al., 2008).  This 

technique will be used in this project to make artificial stem cell microniches for HSC 

production.  Study of the fate of stem cells in these artificial micro niches could be 

extrapolated to assess in vivo situations.  Manipulation of stem cells accordingly could have 

therapeutic significance for curing many diseases.   

1.3 Objectives of the project  

To achieve the aim of the project, the following objectives will have to be met: 

 

1) Optimise conditions for niche construction. 

How to construct artificial stem cell microniches using dielectrophoresis (DEP) is already 

known from previous work (Venkatesh & Markx, 2007; Sebastian et al., 2007; Markx et 

al., 2008).  However, the long-term study of cell behaviour in artificial stem cell 

microniches has not been studied.  Procedures for the formation of optimal aggregates and 

their immobilisation need to be established before their long term study can be explored.   
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2) Study long-term behaviour of ESC in aggregates formed by DEP. 

Murine embryonic stem cells were chosen for this study because of their easy accessibility 

and the availability of many genetically modified (GM) markers cells and protocols.  In 

absence of leukaemia inhibitory factor (LIF) murine ESCs form EBs.  The effect of 

different factors on EB formation will need to be studied, including growth factors such as 

LIF, aggregate size and surface treatment.  

 

3) Study long-term behavior of support cells in aggregates formed by DEP. 

Support cells are cells that are not directly involved in blood production, but have still have 

a role in it.  For this study osteoblasts were chosen as support cells in the artificial stem cell 

niches.  The behavior of cells when co-cultured in 3D aggregates formed by DEP will need 

to be studied and depending upon the adhesive-cohesive properties of different cells in 

question, the niche construction would be determined. The diffusion co-efficient of the cells 

could give an idea of how quickly the cells would diffuse out from an aggregate. 

 

4) Study the long-term behavior of cells in aggregates formed with DEP 

containing both ESC and support cells. 

Using DEP aggregates can be made with different architectures.  Changes in the position of 

the cells after the formation of the aggregates with DEP will need to be studied, and the 

architecture that gives the largest amount of cell-cell interaction determined. 

 

5) Study of differentiation (whether cells differentiate, and along which 

lineage). 

GM ESC marker cells (Brachyury ESCs) can be used to determine whether the cells 

differentiate along the HSC lineage.  

 

6) Combining dielectrophoresis and optical tweezers for future investigation 

of stem cell commitment to their fate. 

When a stem cell is placed in an artificial niche it receives signals from within its niche 

which may put it on a different developmental path; its fate may therefore change over 

time.  Moving the stem cell from its niche to other niches could be used to determine 

whether the cell has committed to its new fate or whether it is just specified.  Optical 

tweezers can be as a tool to move cells in between niches.   
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CHAPTER 2 

Review of literature  

2.1 Introduction to stem cells 

The existence of stem cells was first postulated by the Russian histologist Alexander 

Maksimov in 1908 with their practical manifestation first demonstrated in bone marrow by 

McCulloch and Till at the University of Toronto in the 1960‘s (Becker et al., 1963; 

Siminovitch et al., 1963).   

 

Stem cells are found in all multicellular organisms.  They are unspecialised cells that 

have the capacity not only to produce other stem cells by way of mitosis but also to 

differentiate into specialised cells.  Terminally differentiated cells, in contrast, cannot 

differentiate any further, are often unable to divide and may have short life spans.  The unique 

abilities of stem cells, i.e. self-renewal and the formation of differentiated progeny, has led to 

strong interest in their exploration as regards the potential these cells harbour for medical 

applications.   

 

Mammalian stem cells are often broadly divided into two types: embryonic stem cells 

and adult stem cells.  The former are stem cells which have been isolated from very early 

embryos; often the term is used in reference to pluripotent stem cells isolated from the inner 

mass of blastocysts.  Adult stem cells, on the other hand, are found in various tissues of more 

grown-up organisms (including children).  A third type, fetal stem cells, is also sometimes 

mentioned and refers to stem cells which have been isolated from fetuses and associated 

tissues (e.g. placenta, umbilical cord and amniotic fluid).  These cells have less developmental 

potential than embryonic stem cells. 

2.2 Basic characteristics of stem cells  

2.2.1 Stem cells are unspecialized 

One of the fundamental properties of a stem cell is that it is devoid of any tissue-specific 

structures that allow it to perform specialized functions.  Stem cells are divided into four 

categories based on the capacity of the cells to differentiate into other cell types. 
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Totipotent: Totipotent cells are capable of both forming completely new embryo and of 

developing into a new embryo.  Such cells can create a complete viable organism (Scholer, 

2007).  A fertilized egg cell, and the cells formed from the fertilized egg cell after the first few 

divisions are examples of cells that are totipotent (Mitalipov, 2009). 

 

Pluripotent: These are stem cells which can give rise to all the cell types found in the adult 

body (Scholer, 2007), i.e. the cells derived from any of the three germ layers of the embryo 

(Ulloa-Montoya et al., 2005), including heart muscle cells, blood cells or nerve cells.  

Embryonic stem cells isolated from the inner cell mass of blastocysts are pluripotent, but it is 

thought that some other cells (e.g. some cells isolated from bone marrow) may also be 

pluripotent.  However, pluripotent stem cells lack the ability to develop into any of the 

extraembryonic tissues, such as the placenta. 

 

Multipotent: Multipotent stem cells have the potential to develop into a number of somewhat 

closely related cell types (Scholer, 2007).   

 

Oligopotent: Oligopotent stem cells can only differentiate into a very small number of 

different cell types (Scholer, 2007). 

 

Unipotent: This variant of stem cells can produce only one type of cells (Scholer, 2007).  

They can be distinguished from non-stem cells through their capacity for self-renewal.  An 

example is muscle stem cells which only produce muscles. 

2.2.2 Stem cells are capable of renewing themselves and producing differentiated 

progeny 

A stem cell is capable of renewing itself indefinitely whilst producing progeny that 

matures into more specialized organ-specific cells.  Symmetric divisions give rise to identical 

stem cells which have equivalent properties to the original stem cell.  Symmetric divisions lead 

to an expansion of the number of stem cells.  However, if a division is asymmetric, one of the 

two daughter cells retains the stem cell characteristics whilst the other, the progenitor cell, 

takes the path of differentiation.  The progenitor cell is destined to undergo a limited number 

of divisions which will produce more organ-specific cells.  Said cells can undergo several 

cycles of cell division before terminally differentiating into mature cells (Beckman et al., 

2007).  A good example is blood formation.  Cells found in blood include platelets, 
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erythrocytes, white blood cells and lymphocytes.  These cells have limited life spans in the 

body.  To replace them, the haematopoietic stem cell undergoes asymmetric division to 

produce a stem cell as well as a primitive progenitor cell (see Figure 2.1).  The progenitor cell 

then divides rapidly and at the same time becomes increasingly specialized.  This rapid 

division leads to an amplification of the number of cells which are produced from any given 

haematopoietic stem cell.  The specialization, which occurs along specific lineages, ensures 

that cells of specific cell types are formed once the differentiation process has entered its final 

stages.  What factors induce the haematopoietic stem cells to renew or differentiate along a 

specific lineage is currently the subject of intense investigation. 

 

 

 

 

 

 

 

 

Figure 2.1: A model of stem cell division. 

The stem cells divide asymmetrically, generating one cell that repeats the feature indefinitely 

and another that continues to divide symmetrically, dividing each time into two equal daughter 

cells. 

Which cell type a stem cell differentiates into (i.e. its fate) is determined by a multitude of 

factors, both internal (intrinsic factors) and external (extrinsic cues).  The asymmetric 

partitioning of cell fate determinants in the mother cell can produce daughter cells aligned to 

different cell fates, even though the two daughter cells reside in the same microenvironment 

(Watt and Hogan, 2000).  External signals for cell differentiation include chemicals secreted in 

the medium by other cells, physical contact with neighboring cells, physical contact with 

surfaces and other factors.  As many factors contribute to the fate of a cell, it can prove 

difficult to ascertain the effect of any individual factor. 

2.3 The stem cell niche 

The concept of a stem cell niche arose from the observation that many adult stem cells 

lose the potential to continue self-renewal when removed from their habitual cellular 
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SYMMETRIC DIVISIONS 
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environment, and that different signalling microenvironments can direct daughter cells to 

adopt different fates (Schofield, 1978; Morrison et al., 1997). 

 

The precise spatial organisation of the stem cells with respect to the surrounding 

support cells plays an important role in the ability of the niche to adequately provide 

proliferative and anti-apoptotic signals and to exclude factors that promote differentiation.  In 

either case, the stem cells are in intimate contact with surrounding support cells which serve as 

a source of critical signals controlling stem cell behaviour.  Adhesion between stem cells and 

either an underlying basement membrane or the support cells themselves appears to play a 

significant role in harnessing the stem cells within the niche and close to self renewal signals.  

In addition, the niche could provide polarity cues to orient stem cells within its confines, so 

that, upon division, one cell is displaced outside the niche and into an alternative environment 

which encourages differentiation (Deng and Lin, 1997; Yamashita et al., 2003).   

Some examples of stem cell niches that can be found within mammalian tissues 

Specialised niches have been proposed to regulate the behaviour of stem cells in several 

mammalian tissues including the male germline, the epidermis, the intestinal epithelium and 

the hematopoietic system. 

2.3.1 Mammalian testis 

The seminiferous tubules of the mammalian testis are the site of spermatogenesis in the 

adult.  Figure 2.2 shows the organisation of germ cells and somatic cells within a seminiferous 

tubule.  In males, a Primordial Germ-line Cell (PGC) is known as a gonocyte.  At the 

embryonic stage, the PGCs divide and migrate to the genital ridges.  Gonocytes 

(spermatogonia) are found at the basement membrane of the seminiferous tubules where they 

differentiate into spermatogonial stem cells.  Spermatogonia are presumptive stem cells which 

are found in the vicinity of supporting somatic cells known as the sertoli cells and the myoid 

cells.  These cells may contribute to the stem cell niche (Brinster, 2002).   

 

When spermatogonial stem cells were taken from a fertile mouse and transplanted into 

the seminiferous tubules of an immunodeficient mouse recipient they were able to migrate 

through layers of differentiating germ cells and sertoli cell tight junctions to find the stem cell 
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niche at the basement membrane and were also able to establish colonies of donor-derived 

spermatogenesis (Clouthier et al., 1996; Shinohara et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.2: Organisation of germ cells and somatic cells within a seminiferous tubule (Caires et al. 

2010) 

2.3.1.2 Mammalian epidermis 

Skin has a well-organised structure which provides an excellent platform from which to 

study the molecular mechanisms that regulate the stem cell self-renewal, proliferation, 

migration and lineage commitment (Fuchs and Serge, 2000).  The mammalian epidermis is 

comprised primarily of keratinocytes, a subpopulation of which is the stem cells.  The stem 

cells form a layer which is a single cell thick at the interface between the dermis and the 

epidermis.  They are in continuous contact with a protein layer, the basal lamina, which 

provides signals that are thought to maintain stemcellness.  Stem cells that divide either stay in 

contact with the basal lamina, or leave it.  Stem cells that are no longer in contact with the 

basal lamina undergo terminal differentiation into keratinocytes.  Skin is also home to various 

appendages, including hair follicles.  Each hair follicle is composed of an area which includes 

sebaceous glands and the bulge area lying underneath (Figure 2.3).  It undergoes 

developmental cycles consisting of an anagen phase (period of active growth), catagen phase 

(apoptosis-driven retraction), and telogen phase (a short period of rest) (Hardy, 1992).  The 

bulge area functions as a stem cell niche (Niemann and Watt, 2000) where follicular epidermal 
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stem cells are maintained and harboured (Cotsarelis et al., 1990; Sun et al., 1991).  These stem 

cells are multipotent.  They produce progeny that can differentiate into interfollicular 

epidermis and sebocytes and contribute to all the differentiated cell types involved in the 

formation of the hair follicle, including the outer root sheath, inner root sheath and the hair 

shaft (Oshima et al., 2001; Ghazizadeh and Taichman, 2001). 

 

 

 

  

Dermal papilla (DP), Inner root sheath (IRS), Outer root sheath (ORS) 

Figure 2.3: Mammalian epidermal stem cells. 

A hair follicle and a segment of adjacent skin are illustrated.  Approximately two-thirds of the 

way up an anagen follicle lies the bulge — an expanded region that contains long-term stem 

cells (red).  These cells periodically replenish (arrows) the matrix cells, and also help 

maintain the Sebaceous Gland (SG) and the epidermal stem cells (red, top layer) which lie 

against the basement membrane (not shown) overlying the basal layer in interfollicular 

regions. 

Source: http://www.nature.com/nature/journal/v414/n6859/fig_tab/414098a0_F5.html 

2.3.1.3 Gut epithelium  

Within the small intestine, the epithelial lining forms numerous crypts or finger like 

invaginations called villi.  In the colon, there are many crypts which vary in size throughout 

the colon.  Four main epithelial cell lineages exist in the colon, these being: columnar cells, 

mucin-secreting cells, endocrine cells and paneth cells (in the small intestine).  Goblet cells 

containing mucin granules are found throughout the colonic epithelium, secreting mucus 

http://www.nature.com/nature/journal/v414/n6859/fig_tab/414098a0_F5.html
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throughout the lumen.  It is hypothesised that all differentiated cells in the gastrointestinal 

epithelium originate from a common stem cell located in the intestine.  Evidence suggests that 

the stem cells are situated at the base of the crypt of Lieberkuhn, in the small intestine, just 

above the paneth cells (Figure 2.5).  In the large intestine however, they are located at the 

midcrypt of the ascending colon and the crypt base of the descending colon.  The multipotent 

stem cells may reside at the base of the crypt to offer protection against toxins passing through 

the gut lumen.  Crypts serve as a niche to support the stem cells, whilst also providing an 

environment to support the self-renewal of the intestinal stem cells.  The cells lying close to 

the intestinal stem cells could be the source of the signals.  As the stem cells differentiate into 

intestinal cells they migrate into the lumen of the gut.  Around 200-300 cells leave the crypt 

into the ciliated villi of the lumen per day.   

 

 

 

 

 

 

 

 

 

Figure 2.4: Transverse section of the gut. 

 

 

Figure 2.5: Schematic of the small intestinal and colonic crypts showing the location of the stem 

cells.(A) In the small intestine, stem cells are thought to be located at position 4-5 distal to the Paneth 

cells.  (B) In the colon, they are at the base of the crypt. 

Source: http://www.medscape.com/viewarticle/532504_3 
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2.3.1.4 Neural system 

Neural stem cells have the capacity to self-renew and produce precursors which will 

differentiate into both neurons and glia.  They have been isolated from the Sub-Ventricular 

Zone (SVZ) and hippocampus of the adult brain, but suggestions have been made that neural 

stem cells are not only located in the adult brain but also distributed throughout the adult 

central nervous system.  When cultured in vitro, neural stem cells can generate free-floating 

spherical clusters called neurospheres, which contain mixed populations of stem cells and 

precursor cells.  Growth factors such as FGF-2 and EGF have been found to support the 

growth of neurospheres (Penvy and Rao, 2003; Lois and Alvarez-Buylla, 1994), although it is 

not yet known whether these molecules also play a role in vivo. 

2.3.1.5 The Hematopoietic system  

The process of blood production is known as hematopoiesis.  In adults, this process 

requires the replenishment of 7×10
9
 blood cells per kg of body weight per day.  All blood cells 

are ultimately derived from Haematopoietic Stem Cells (HSCs).  It is thought that the whole 

body may contain no more than a few million HSC and, in some cases, as little as a few 

thousand (McCarthy, 2003).  Blood contains a variety of different blood cells, including 

erythrocytes, platelets and a wide range of white blood cells of the lymphoid and myeloid 

lineages, which ultimately all derive from HSCs (Figure 2.6).  The hematopoietic system 

achieves this remarkable feat by strongly regulating HSCs self-replication and differentiation, 

and amplification of the initial HSC differentiation by repeated division of progenitor cells.  

Haematopoiesis occurs in different anatomical sites during the different stages of development 

of an organism (Cumano and Godin, 2001; Mikkola and Orkin, 2006; Kaplan et al., 2007).  

The following sections will elaborate further on the hematopoietic stem cell niche. 

 

.   
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Figure 2.6: Hematopoiesis. 

A hematopoietic stem cell is affected by various growth factors to initiate differentiation into 

different mature blood cell types. 

Source: 

http://www.d.umn.edu/~jfitzake/Lectures/DMED/CytAnt/Cytokines/HematopoieticAgents.ht

ml 

2.4 Introduction to HSC niche 

The hematopoietic stem cell niche is the anatomical location in which the HSCs both 

reside and self renew.  Maintenance of these HSCs and regulation of their self renewal and 

differentiation in vivo is thought to depend on their specific microenvironment, which has been 

http://www.d.umn.edu/~jfitzake/Lectures/DMED/CytAnt/Cytokines/HematopoieticAgents.html
http://www.d.umn.edu/~jfitzake/Lectures/DMED/CytAnt/Cytokines/HematopoieticAgents.html
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historically referred to as the haematopoietic inductive microenvironment (Curry et al., 1967) 

or ‗stem–cell niche‘ (Schofield, 1978).  Once the HSCs are outside their niche they cease to 

self-renew, instead commencing the process of differentiation to produce mature blood cells.  

Little is known regarding the HSC niches in the liver and placenta.  However, interest has been 

strong in the AGM niche (as it may give clues on how HSC may be derived from embryonic 

stem cells) and the HSC niches in bone marrow (because it may tell us how the various blood 

cell types are formed, and why things sometimes go wrong e.g. in leukemia, contributing to 

greater insight into how bone marrow transplants can be better performed).   

 

During the lifetime of an organism, two separate hematopoietic systems exist.  Both 

arise during embryonic development, although only one persists throughout the lifetime of an 

organism.  The primitive system develops first.  It emerges in the extraembryonic yolk sac and 

is characterized by the presence of nucleated erythroid cells which carry oxygen to the 

developing embryonic tissue.  Primitive haematopoiesis leads to nucleated erythrocytes which 

express embryonic haemoglobin and do not require erythropoietin for differentiation (Cumano 

& Godin, 2001).  The haematopoietic system in adults does not appear to be derived from the 

primitive haematopoietic system in the yolk sac.  Instead, adult-type or definitive 

haematopoiesis appears to develop separately in the aorta-gonad-mesonephros (AGM) region 

(Ohneda et al., 1998; Takeuchi et al., 2009), where it can first be detected at day 10.5.  It is 

characterised by the formation of enucleated erythrocytes and adult-type hemoglobin and cells 

of all the myeloid and lymphoid lineages; later differentiation and maturation stages are 

controlled by erythropoietin (Cumano & Godin, 2001).  Definitive haematopoiesis first 

emerges in a region of the para-aortic splanchnopleural mesoderm containing the dorsal aorta, 

gonadal ridge and mesonephros, referred to as the Aorta-Gonad-Mesonephros or AGM region.  

During the latter stages of embryonic development, definitive haematopoiesis moves to the 

fetal liver (Takeuchi et al., 2009); and the fetal spleen, some haematopoiesis also occurs in the 

placenta (Rhodes et al., 2008; Gekas et al., 2010).  Near birth the bone marrow (BM) becomes 

the main centre of haematopoiesis (Figure 2.7 and 2.8).   
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Figure 2.7: The route of definitive Hematopoietic Stem Cells (HSCs). 
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Figure 2.8: A pictorial presentation of an HSC migration from a primitive system to a definitive 

system. 
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2.4.1 Bone marrow architecture  

BM tissue fills the cylindrical cavities of long bones and occupies the spaces of 

cancellous bones.  The BM consists of the HSCs and their offspring, reticular cells, 

adipocytes, macrophages, fibroblasts and their fibrils and a network of blood vessels including 

the sinusoids (Wickramasinghe et al., 2003).  The bone marrow can be subdivided into a 

hematopoietic cell compartment and the stroma, which is mainly composed of fibroblasts, 

adipocytes, nerves and the BM‘s vascular system (Fliender et al., 2002).  The hematopoietic 

tissue is localized in the extravascular compartment (Figure 2.9).  Early myeloid precursors lie 

close to the endosteal surface and the arterioles.  Megakaryocytes and erythropoietic islands 

are seen to be associated with the marrow sinusoids in the central region of the marrow 

cavities (Thiele et al., 1993).  The BM sinusoids are unique and cannot be compared to normal 

veins.  The sinusoidal walls consist of a single layer of endothelial cells and are devoid of any 

supporting cells.  This lack of a regular vessel wall makes the sinusoids highly permeable, 

facilitating the movement of the newly produced blood cells into the blood stream.  Nerve 

fibers are associated with these blood vessels and are the source of various chemotactic factors 

which aid in the migration of mature cells from the marrow to the peripheral blood. 

 

Figure 2.9: Vascular blood supply in the bone marrow (Travlos, 2006). 

2.4.2 HSC niches in bone marrow 

A large body of evidence suggests that HSCs are not randomly distributed in the BM.  

Rather, higher concentrations are found close to the endosteum of the bone (Calvi et al., 2003; 
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Fliedner et al., 2002; Lord et al., 1975) and in association with the vascular system (Kiel et al., 

2005; Palmer et al., 2000; Shen et al., 2004).  It has therefore been proposed that at least two 

niches exist in bone marrow (Li and Yin, 2006).  One such niche is found close to the 

endosteum of the bone and is characterized by the presence of osteoblasts.  Said niche is hence 

known as the endosteal or osteoblast niche.  The other is found close to the sinusoids of the 

bone marrow‘s vascular system and is known as the vascular or the endothelial niche. How the 

HSCs migrate from the homing niche (endosteal niche) to the vascular niche is shown in 

Figure 2.10.   

 

 

Figure 2.10: Model of bone marrow niches.   

The endosteal bone surface is lined with stromal cells which serve niche HSC cells in 

maintaining quiescence and preventing differentiation of attached HSC cells.  In response to 

injury, quiescent cells might be activated and recruited to the vascular niche.  The endosteal 
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self renewal niche produces Multi-Potent Progenitors (MPPs) either by division or by 

environmental asymmetry.  Symmetric division of HSCs produce further HSCs which can 

potentially provide the vascular niche with new HSCs.  HSCs within the vascular niche 

promote differentiation and expansion along megakaryotic or myeloid lineages in response to 

injury.  MPPs give rise to all hematopoietic lineages, including B-cell precursors.  

Unidentified T-cell precursors migrate to the thymus, thereby entering a new 

microenvironment where T-cell maturation takes place. 

2.4.2.1 The endosteal or the osteoblastic bone-marrow HSC niche 

The mammalian bone marrow architecture places the HSCs in close proximity to the 

endosteal surfaces, with more differentiated cells arranged loosely towards the central 

longitudinal axis of the bone (Emerson and Zhu, 2004).  The weight of evidence suggests that 

HSCs are not randomly distributed in the BM but rather are localized close to the endosteum 

of the bone (Calvi et al., 2003; Fliedner et al., 2002; Lord et al., 1975). Two groups have 

verified the presence of this niche.  Zhang et al. (2003) used a BMP receptor 1A conditional 

KO transgenic mouse to demonstrate that the down regulation of BMO signaling resulted in 

ectopic trabecular bone formation in the long bone and an increase in the HSC number.  Calvi 

et al. (2003) investigated the endosteal niche using a transgenic mouse with constitutively 

expressed PTH and PTH-related receptors (PPRs) with a collagen-α1 promotor in osteoblastic 

cells.  These PPR stimulated osteoblasts showed an increase in proliferation which correlated 

with an increase in the HSC number.  Further verification of this niche was carried out by Arai 

et al. (2004) whose studies demonstrated that adhesion of HSCs to osteoblasts on the endosteal 

surface was essential in maintaining HSCs in a quiescent state.  These works confirm that the 

osteoblastic niche provides signals for the maintenance of repopulating cells in an 

undifferentiated state (Calvi et al., 2003; Zhang et al., 2003; Arai et al., 2004).   

 

The osteoblasts lining the cancellous and trabecular endosteum serve as an essential 

location in the maintenance of HSCs.  Although in practice multiple subsets of osteoblastic 

cells and mesenchymal progenitor cells constitute the endosteal niche (Nakamura et al., 2010), 

because of the prominence of osteoblastic cells in this niche the endosteal niche is also called 

the osteoblastic cells niche.  The HSC and osteoblast relationship can be traced back to 

embryogenesis, where the HSC is derived from the mesodermal dorsal aorta with the bone 

precursors originating from the surrounding mesenchyme, therefore establishing a partnership 
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of the two tissues early in their development (Taichman, 2005).  The osteoblastic niche 

provides the HSCs with a quiescent environment ideal for HSC maintenance.   

2.4.2.2 The vascular niche  

The vascular niche serves as a location which allows differentiation and ultimately 

mobilization to the peripheral circulation (Abkowitz et al., 2003).  It is composed of at least 

two variants of cells: HSCs and the endothelial cells.  During embryogenesis, both cell types 

follow a similar but distinct pattern in their development (Ueno and Weissman, 2006) as both 

lineages arise from the hemangioblast, a common embryonic precursor (Kiel et al., 2005).  In 

adults, the endothelial cells contribute to the maintenance of HSCs in vitro (Li et al., 2004).  In 

vivo, they are required for hematopoiesis (Avecilla et al., 2004).  More recent work suggests 

that HSC niches are located around blood vessels (Kiel et al., 2005; Palmer et al., 2000; Shen 

et al., 2004).  Ultra-structural studies suggest that mature rather than immature HSCs have 

close associations with the BM microvasculature (Shirota et al., 1991; Tavassoli et al., 1992).  

In contrast, vascular endothelial cells which are isolated from various adult non-

haematopoietic organs have little or no ability to maintain HSCs in vitro (Li et al., 2004).  

Therefore, BM sinusoidal Endothelial Cells (BMECs) are functionally and phenotypically 

distinct from the microvasculature endothelial cells of other organs (Kopp et al., 2005).  

BMECs express cytokines such as CXC-chemokine Ligand 12 (CXCL12) and adhesion 

molecules such as endothelial cell selectin and Vascular Cell Adhesion Molecule 1 (VCAM1) 

which are important for HSC mobilization, homing and engraftment (Sipkins et al., 2005; 

Avecilla et al., 2004; Rafii et al., 1997). 

 

The vascular niche thus represents an alternative niche for mobilized stem cells, 

promoting proliferation and further differentiation or maturation and their entry into the blood 

circulatory system.  The sinusoids, which consist of single layered endothelial cells are 

designed for blood cell penetration, are also an ideal location for HSCs because they allow 

rapid response to hematopoietic stress or cytokine stimulation. 

2.5 Introduction to stem cell fate 

There are a range of different stem cell niches within the mammalian adult body.  Each 

niche will have a different composition, will provide a different microenvironment for the 

stem cells, and has a different role to play in the maintenance of the organ wherein it is 
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present.  The following sections will discuss the various factors within the microenvironment 

which could affect the fate of stem cells in their niches. 

2.5.1 Factors determining the fate of stem cells 

A complex set of signals from the cellular microenvironment determines stem cell fate.  

They include soluble factors present in the surrounding tissue or culture media, the 

composition of the Extra-Cellular Matrix (ECM), the biophysical environment and the 

presence of nearby cells which can elicit cell-to-cell signaling (Figure 2.11).   

 

Cell signalling involves three steps: reception, transduction and response.   

 

Reception of a signal involves a change in the receptor by the signal, for example the 

attachment or association of a chemical molecule to a protein in the plasma membrane. 

 

Transduction is the conversion of the signal at the surface of the cell to a signal that mediates 

a specific intracellular signal that makes the cell respond.  Signal transduction can involve 

many complicated steps.   

 

Response varies according to the signals received by the cell.  It involves turning on or off, 

one or many enzymatic activities.  The response depends on a cell‗s particular collection of 

signal receptor proteins, relay proteins, and proteins needed to carry out the response 

(Campbell and Reece, 2002).   

 

Together the factors act on the stem cells by both initiating and influencing a multitude 

of intracellular signaling pathways which ultimately govern whether a cell divides, 

differentiates, or dies (Metallo et al., 2007).   

 

 

 



 

21 

 

Figure 2.11: Interaction of the stem cells with different inputs from the microenvironment 

(Underhill and Bhatia, 2007). 

2.5.1.1 Soluble chemical signaling molecules 

Soluble factors play crucial roles in determining the fate of stem cells and are probably 

the best characterized environmental signals impacting stem cell behavior (Metallo et al., 

2007).  They are easily isolated, produced and (re)introduced.  Growth factors and 

morphogens can exert potent long term effects in the stem cell microenvironment.  Their 

downstream signal transduction pathways are the best characterized determinants of stem cell 

fate and have been extensively used in in vitro stem cell culture systems.   

 

Studies have shown that in vivo growth factors and morphogens are immobilised to the 

extracellular matrix by binding to specific hairpin–binding domains or directly to ECM 

molecules such as collagen or fibronectin.  Also, they can be directly anchored to cell 

membranes (Rider et al., 2006).  These effects have been used to immobilise cytokines in high 

concentrations in the vicinity of the cell surface, and to reduce the levels of growth factor 

necessary to elicit a potent cellular response (Li et al., 2006; Saha and Schaffer, 2006). 

 

An example of a soluble signaling molecule which affects stem cells is the Leukemia 

Inhibitory Factor (LIF).  LIF is a class six interleukin cytokine affecting cell growth and 

development.  It is traditionally expressed in the trophectoderm of the developing murine 

embryo with its receptor (LIFR) expressed throughout the inner cell mass.  As embryonic stem 

cells are derived from the inner cell mass at the blastocyst stage, their removal from the inner 
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cell mass also removes their source of LIF.  The function of LIF is to maintain the stemness of 

murine embryonic stem cells.  Removal of LIF thus pushes ESCs into differentiation.  

Therefore, LIF is used in maintaining mouse ESCs cell lines in vitro cultures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some of the most important signalling molecules responsible for stem cell 

differentiation and the determination of the fate of cells are basic Fibroblast Growth Factor 

(bFGF or FGF2).  bFGF is vital for the maintenance of neural stem cell population in the brain 

of the mouse (Zheng et al., 2004).  It can also enhance neural progenitor proliferation in vitro 

in several species (Ray et al., 2006).  bFGF was a key factor in the maintenance of human 

Embryonic Stem Cells (hESCs) in the undifferentiated state (Xu et al., 2005).  In the case of 

Mesenchymal Stem Cells (MSCs), bFGFs have been found to mediate the formation of 

various different phenotypes.  The MSCs proliferate when bFGFs are added to the culture 

medium and they were also found to favour an osteogenic lineage (Sotiropoulou, 2006). 

 

Transforming Growth Factor-β (TGF- β) is the growth factor molecule most frequently 

used by tissue engineers (Barry et al., 2001).  It induces a variety of responses in different 

stem cell lineages (Metallo et al., 2007) and is used to stimulate stem cells in their 

transformation into chondrocytes. 

 

+LIF 

STEM 

CELL 

SELF RENEWAL DIFFERENTIATION 

Figure 2.12: Characteristic role of Leukemia Inhibitory Factor (LIF) in embryonic stem 

cell self-renewal. 
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All-trans Retinoic Acids (RAs) are strong differentiating agents involved in 

organogenesis and development (Niederreither, 2001; 2002).  Fuchs (1981), during his work 

on human keratinocytes, discovered that these compounds prevented the terminal 

differentiation of epidermal stem cells.  In 2005, Li et al. found that, in vitro, the RAs could 

direct neural stem cells to become neurons depending upon the concentration and the stage of 

development. 

 

In vitro soluble factors can be added independently or as a mixture.  However, it has 

been found that a sequence of soluble factors can be used to program stem cell differentiation.  

The generation of functional motor neurons and pancreatic cells can be used as illustrative 

examples of how the sequential addition of soluble factors can be used to program stem cell 

differentiation.  Differentiation of motor neurons from primitive ectoderm requires progression 

through two intermediate stages, each guided by a distinct set of soluble factors.  Ectodermal 

cells first acquire an anterior neural fate through signalling by BMP, FGF and Wnt proteins 

(Munoz-Sanjuan and Brivanlou, 2002).  The next transition involves the induction of a 

posterior fate in ectodermal cells by retinoic acid (Yamada, 1994).  This is followed by 

progression to the formation of terminally differentiated motor neurons in the presence of 

Sonic hedgehog (Shh) (Briscoe and Ericson, 2001).  In a landmark study, Jessell (2002) was 

able to guide mouse ESC down this pathway by applying the soluble factors involved in a 

step-by-step manner which emulates natural neural development, resulting in the in vitro 

generation of motorneurons that can survive and engraft in vivo (Wichterle et al., 2002). 

 

The development of the pancreas takes place as buds appear at two sites of the gut tube 

in the embryonic endoderm.  To progress to the next stage of development, the embryonic 

mesoderm secretes Shh-antagonists (an inhibitor) (Hebrok et al., 1998; Kim et al., 1997).  The 

pancreatic buds then grow and branch out; this is mediated by FGF10 (Bhushan et al., 2001).  

This is followed by a formation of endocrine cells which is mediated by soluble signals from 

the surrounding endothelium which inhibit Notch signalling and initiate the expression of a 

cascade of transcription factors leading to the differentiation of insulin-producing cells (Gu et 

al., 2004; Lammert et al., 2001).  When this sequence of signalling molecules was mimicked 

in vitro, scientists were able to generate functional insulin-producing cells from ESCs (D‘ 

Amour et al., 2005; D‘ Amour et al., 2006). 
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2.5.1.2 Cell and Extracellular Matrix (ECM) interactions 

The Extra-Cellular Matrix (ECM) is the gel-like material which surrounds cells.  The 

ECM not only serves to provide structural and organizational guides for tissue development 

but also defines and maintains cellular phenotypes and drives cell fate decisions.  ECM also 

plays a critical role in defining cell shape, which in turn impacts upon cell survival (Huang et 

al., 1998),
 
proliferation (Dike et al., 1999), and differentiation (McBeath et al., 2004).   

 

ECM is composed of three major classes of molecules.  These are: 

 Structural proteins such as collagen and elastin;  

 Specialized proteins such as fibronectin and laminin; 

 Proteoglycans consisting of a protein core attached to long chains of repeating 

disaccharide units named glycosaminoglycans (GAGs) (Krause, 2002). 

 

However, the actual composition of ECM varies within different tissues.   

 

Adhesion of cells to the extracellular matrix is mediated by integrins.  These are 

membrane proteins which span the cell membrane and act as receptors.  The integrins bind not 

only with molecules in the extracellular matrix, but also associate with actin and intermediate 

filaments in the cell‘s cytoskeleton.  They are thus able, not only to transmit information 

concerning the composition of the extracellular environment, but also, through their contact 

with the cytoskeleton, to impact upon cell shape, motility, metabolism and differentiation 

(Wolpert, 2007).   

 

n example of a group of molecules in the ECM which influence cell differentiation, 

migration, adhesion and survival are the laminins.  These are glycoproteins and can be found 

in almost every tissue of an organism.  Laminins are major components of the basal lamina, a 

typical example being the protein layer between epidermis and dermis in skin.  Signals from 

the basal lamina are necessary for the skin stem cells to maintain their stemness, while any loss 

of contact with the basal lamina will cause the skin stem cells to undergo a pathway of 

terminal differentiation into keratinocytes.  Recombinant human laminin isoforms have been 

shown to support undifferentiated growth of human embryonic stem cells (Miyazaki et al., 

2008).  Laminin has also been shown to play a role in the neural stem cell niche (Powell and 

Kleinman, 1997). 
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Array based methods have been employed in identifying the proteins (Soen et al., 

2006), peptides (Orner et al., 2004), and polymers (Anderson et al., 2004) in the ECM that are 

capable of directing stem cell fate.  A common problem in stem cell work, however, is that 

stem cell substrates are often complex undefined mixtures.  Therefore, recent work has 

focused on establishing synthetic matrices which will be capable of sustaining stem cell 

growth or differentiation (Metallo, 2007).  Combining artificial protein engineering, molecular 

biology and recombinant deoxyribonucleic acid technology has made it possible to produce 

artificial proteins with functional domains derived from naturally occurring proteins.  Because 

these matrices are synthetic, the exact composition is known and synthetic ECM can be 

formulated comprised of polymer backbones functionalised with adhesion motifs to dissect the 

mechanism by which ECM support stem cell fate decisions.  Its future applications could 

include development of bioactive biomaterials, in vitro processing of stem cells before 

transplantation, and also supporting and programming the cells after transplantation.   

 

The use of synthetic ECMs, has shown that the effect of a given growth factor can 

depend on the substrate background in which it is presented (Nakajima et al., 2007).  For 

example, in erythropoiesis, adhesion of primary erythroid progenitors to the niche ECM 

protein fibronectin is mediated by α4β1 integrin which is necessary for proliferation in vitro 

(Eshghi et al., 2007).  The signals from the ECM, therefore, cooperate with signals from the 

soluble factor erythropoietin to activate signaling pathways vital for terminal differentiation 

and proliferation.   

 

Because of the direct link between the ECM and the cytoskeleton through membrane 

receptors such as the integrins, there is also a direct link between the mechanical properties of 

the matrix and stem cell fate (Ngalim et al., 2010).  Thus, differences in the mechanical 

properties of the substrate are known to influence the fate of a differentiated cell type (Discher 

et al., 2005).  For example, Engler (2006) studied the effect of matrix stiffness on MSC 

differentiation in non-inductive and tissue specific inductive media.  Matrix stiffness by itself 

was shown to induce MSC differentiation when plated on matrices of different elasticities.  

Engler also showed that the soluble induction factors are less selective than the matrix stiffness 

in determining lineage specification.  In tissue-specific inductive media, by matching the 

stiffness of the matrix to the cells, the level of various tissue specific protein marker levels 

could be raised to standards comparable to in vivo levels.  Actin structures NMM IIA-C were 

likely to be involved in sensing matrix elasticity.  It was not possible to reprogram MSCs that 
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were pre-committed for weeks on a given matrix.  The overall result obtained was that, by 

controlling the thickness of the gel, one can establish how far stem cells can feel and their 

microenvironment could thus be defined (Engler et al., 2006).   

 

Straight and co-workers also showed that actin element NMM II was one of the other 

contributing factors in determining the fate of the cells.  When the actin was inhibited by 

Blebbistatin it blocked differentiation of the cells (Straight et al., 2003). 

 

 In vitro, the matrix elasticity can be mimicked with inert polyacrylamide gels.  The 

elasticity of the gel is determined by a concentration of bis-acrylamide crosslinking (Pehlam 

and Wang, 1997).  Mylona (2008) utilized substrates that were chemically identical but 

different in their physical parameter of rigidity.  He showed that primary cells derived from 

human osteosarcoma responded to alterations in the mechanical properties of their substrate 

both morphologically and functionally. 

2.5.1.3 Cell-cell interactions 

In multicellular organisms cell-cell interaction plays an important role in the making of 

tissues, organs and the organism itself.  Cell-cell interaction is one of the most important 

factors that affect the regulation of stem cell characteristics within the stem cell niche.   

Cell-cell interactions can occur in three different ways.   

 

1) Cell-cell interaction at a distance, in which the signals is transmitted through the 

extracellular space between cells.  Typically these are chemical signals that can diffuse 

between cells.   

 

2) Cell-cell interaction in which direct contact between the cells occurs, but there are no 

junctions between cells.  Signals are transmitted by mediators on the cell surface.   

  

3) Cell-cell communication via junctions directly linking adjacent cells.  The signal passes 

directly from cell to cell.   

 

Cell-cell interaction at a distance can occur at short range or at long range.  At short 

range, soluble molecules, called local regulators, affect cells in the immediate vicinity only.  

Long range cell-cell communication is possible, however, via soluble molecules such as 
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hormones and growth factors.  Soluble messengers are transported throughout the organism by 

the circulating blood but, only affect the cells that have the cognate receptors for that specific 

messenger molecule.  The cell surface receptors bind to the messenger molecule and move it 

to the nucleus, where it affects the gene expression program of the cell.  Within a local stem 

cell microenvironment, differentiated cells can express soluble proteins to exert negative 

feedback control over stem cell proliferation hence maintaining a balance of signals and cell 

type.  For example a TGF-β family member was identified which inhibits neurogenesis in the 

olfactory epithelium, and it was subsequently shown that it was produced by differentiated 

neurons (Wu et al., 2003).  Short range chemical signalling, also known as paracrine 

signalling, is also known to regulate human Embryonic Stem Cell (hESC) cultures.  For 

example, when hESCs are grown in the absence of embryonic fibroblast or other feeder cells, 

they grow in heterogenous colonies which are composed of undifferentiated cells and hESC 

derived fibroblast-like cells which do not express ES cell markers (Stewart et al., 2006).  

Recent work has shown that fibroblast-like cells secrete factors necessary for hESC self-

renewal (Bendall et al., 2007).   

 

A typical example of cell-cell signalling in which signals are transmitted through direct 

contact between membranes is signalling through Delta-Notch interaction.  Delta is a 

membrane-bound signalling molecule, whilst Notch is a membrane-bound receptor.  Notch 

signalling is known to play a crucial role in the expansion of the hematopoietic stem cell 

compartment during bone development and participates in the commitment of mesenchymal 

cells to the osteoblastic lineage.  Notch plays a leading role in hematopoietic stem cell 

maintenance and renewal (Nobta et al., 2005).  Within the brain, there are locations where the 

Neural Stem Cells (NSCs) and the Neural Progenitor Cells (NPCs) are harboured.  They are 

located in the sub-ventricular zone of the lateral ventricle and the dentate gurus of the 

hippocampus.  

 

 The Notch signalling pathway is known to maintain self-renewal and identity in NSCs 

within the brain and Epidermal Growth Factor Receptor (EGFR) affects the proliferation and 

migration of NPCs.  Together, both signalling pathways help in maintaining the balance 

between NSC and NPC numbers.  It is by the functional cell-to-cell interaction between NPCs 

and NSCs, via Notch signalling and EGFR that the balance between the two cell populations 

in the sub-ventricular zone within the brain is maintained (Aguirre et al., 2010).  Whilst 
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essential for maintenance of the mammalian neural stem cells, they are not involved in their 

generation (Hitoshi et al., 2002). 

Cell junctions occur in three variations, they are briefly discussed below. 

 

Adherens junctions or desmosomes are defined as cell junctions whose cytoplasmic face is 

linked to the cytoskeleton.  Adherens junctions comprise of cadherin and catenin proteins 

(Figure 2.13).  They can appear as bands encircling the cells or as spots of attachment to the 

extracellular matrix.  Adherens junctions provide a strong mechanical attachment between 

adjacent cells through homotypic binding between cadherin molecules on adjacent cells 

(Yeatman, 2004).  For example, they hold cardiac muscle cells tightly together as the heart 

contracts and expands.  Vasioukhin
 
et al. (2001) and Huelsken

 
et al. (2002) observed that 

epithelial cells formed adherens junctions with their closest neighbouring cells.  This event 

caused a triggering of cell signalling pathways, resulting in changes to cell density, or loss of 

function mutations in adherens junctions which could also result in the initiation of cell 

divisions, mediating growth or tumour formation (Conacci-Sorrell et al., 2003). 

 

 

 

 

 

 

Figure 2.13: Cadherin molecule bonding between two adjacent cells (Yeatman, 2004). 

 

Song et al. (2002) provided a working model to explain how Germline Stem Cells 

(GSCs) were recruited and anchored in their niche.  They demonstrated that DE-cadherin-

mediated cell adhesion was required for anchoring GSCs in the Drosophila ovary niche.  

Removal of these proteins from the GSCs thus resulted in stem cell loss. 

 

Gap junctions are intercellular channels which permit free passage between cells to ions and 

small molecules (for example Calcium ions, Figure 2.14).  They are 1.5-2 nm in diameter.  

Gap junctions in invertebrates are composed of proteins from the innexin family whereas 

vertebrate gap junctions consist of transmembrane proteins called pannexins and connexins 

(Levin et al., 2007).  As gap junctions are capable of passing on ions, they allow cells to pass 

on membrane potentials, for example during rhythmic contractions of the heart muscles.  A 

CADHERIN MOLECULES  
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prime example is the development of an embryo.  From a single celled embryo as the cell 

starts to divide, short range cell-cell communication starts to emerge.  In this case short range 

cell-cell interaction is aided by gap junctions which links cells to its neighbours through 

common transmembrane channels.  The gap junctions then create a common intracellular 

environment between subcell population to ensure rapid cell-cell propagation of membrane 

permeability changes and intracellular messenger cell. 

 

 

 

 

 

 

 

 

 

Figure 2.14: Transfer of calcium ions from one cell to another via gap junctions. 

 

The role of Gap Junction Intercellular Communication (GJIC) in the regulation of stem cell 

proliferation, differentiation and apoptosis has been reviewed (Trosko et al., 2002).  Gap 

junction-permeable signals have been implicated in embryonic morphogenesis and neoplasm 

(Bruzzone et al., 2003).  New methods to study gap junctions in hESC, from the expression of 

gap junction proteins to the study of GJIC in hESC proliferation, apoptosis, colony growth and 

pluripotency has also recently been introduced (Wong and Pebay, 2010). 

 

Tight junctions are the major regulators of permeability in simple epithelia where they play a 

major role in skin barrier integrity (Furuse et al., 2002).  They are composed of 

transmembrane and intracellular molecules that include occluding, junction adhesion 

molecules and claudins (Bazzoni and Dejana, 2001).  Due to their capacity to control 

membrane permeability, tight junctions also have an important part to play in maintaining cell 

polarity.  They act as a barrier to the diffusion of solutes through the intercellular space and 

create a boundary between the apical and basolateral plasma membrane domain (Tsukita et al., 

2001), whilst also displaying charge and size selectivity in their permeability.  Ion exchange in 

tight junctions is cationic selective.  Non-charged material such as water and sucrose moves 

readily across them.   
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Mammalian spermatogenesis is a prime example of a stem cell system in which tight 

junctions are important.  The spematogonial stem cell niche is located at the basal lamina of 

the seminiferous tubules.  They perpetually divide to self-renew and differentiate.  The 

spermatogonia or the presumptive stem cells are found very close to several groups of 

supporting somatic cells (like the peritubular myoid and the sertoli cells) that may contribute 

to the stem cell niche (Kiger and Fuller, 2001).  The sertoli cells lining the tubules are 

continuously joined to the germ stem cells by tight junctions that regulate the movement of 

cells and large molecules between the basal compartment and the lumen of the seminiferous 

tubules.   

 

 

 

 

 

 

 

Figure 2.15: Junction proteins joining two cells very tightly (tight junctions). 

 

Cell-cell interaction is one of the important factors that affect the regulation of stem cell 

characteristics within the stem cell niche.  The interaction between stem cells, as well as 

interactions between stem cells and neighbouring differentiated cells could determine the fate 

of the stem cell.  Bosnakovski et al. (2006) studied chondrogenic differentiation of bovine 

bone marrow Mesenchymal Stem Cells (MSCs) in different hydrogels.  He and his coworkers 

showed that the strong cell-to-cell interactions established during pellet culture facilitated 

MSC differentiation towards chondrocytes, hence proving that cell-to-cell interaction is an 

important factor in fate determination. 

2.5.2 Physical forces that affect stem cell fate 

Physical effects which may influence stem cell behaviour include mechanical, magnetic, 

optical and electrical effects.  The effects of mechanical forces and electrical fields are the 

factors that have been most frequently subjected to study. 

TIGHT JUNCTION 

PROTEINS 

CELL  2 CELL 1 

PLASMA 

MEMBRANE 

INTERCELLULAR 

SPACE 



 

31 

2.5.2.1 Mechanical forces 

It has long been recognised that different kinds of mechanical forces have an effect on 

cell differentiation.  Mechanical signalling can control the gene transcription and 

differentiation programes. Mechanical signals are received by the cells and converted into 

biochemical signals (also known as mechano-signalling or mechano-transduction), that in turn 

switches on signalling cascades in response to the stimuli.   

 

There are various ways by which cells respond to a mechanical stress (Figure 2.16). The 

mediators for cellular mechanotransduction include: 

 

 Cell-cell adhesions, e.g. cadherins, gap junctions (Wang and Ingber, 1995; Yoshida et 

al., 1996; Potard et al., 1997; Ko et al., 2001); 

 Cell-matrix adhesions, e.g. intergrins, focal adhesion (Balaban et al., 2001; Bershadskyt 

et al., 2003); 

 Surface processes, e.g. stereocilia, primary cilium (Kacahr et al., 1990; Wilson and Paul, 

1990); 

 Membranes, e.g. ion channels, surface receptors, caveolae (Anderson, 1998) 

 ECM components, e.g. fibronectin, collagen, basement membrane (Traub and Berk, 

1996); 

 Cytoskeleton filaments, e.g. actin filaments (Beningo et al., 2001; Tamada et al., 2004), 

microtubules, intermediate filaments (Ingber, 2003). 

Source:  

http://www.learningmethods.com/downloads/pdf/ingber-cellular.mechanotransduction.pdf  
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Figure 2.16: Mediators of mechanotransduction (Ingber, 2006). 

Souce: 

http://www.learningmethods.com/downloads/pdf/ingber--cellular.mechanotransduction.pdf  

 

Much research on mechanotransduction in cells has been dedicated to exploring the 

effect of matrix stiffness.  Studying how cells respond to varied matrix stiffness has enabled 

researchers to study the matrix stiffness-dependent changes in fibroblast, neural, bone cells 

and stem cells and their differentiation (Engler et al., 2006).  It has also been found that focal 

adhesion structures and the cytoskeleton are strongly affected by variations in the matrix 

stiffness (Bershadsky et al., 2003; Cukierman et al., 2001; Discher et al., 2005; Engler et al., 

2004; Lo et al., 2000; Pelham and Wang, 1997).   

 

Mechanical forces can take different forms.  Figure 2.17 shows the major types of 

mechanical forces that can act on a piece of tissue. 
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Figure 2.17: Mechanical forces on tissue. 

A) Hydrostatic force (Fh) B) Compressive force (Fc) C) Tensile force (Ft) and D) shear 

force (Fs) acting on a piece of tissue. 

 

Hydrostatic pressure is the pressure exerted or transmitted by a fluid at rest.  Hydrostatic 

pressure increases directly with the density and the depth of the fluid.  Changes in hydrostatic 

pressure could affect cells in different ways.  For example, Tagil and Aspenberg in 1999 

proved that when a mesenchymal tissue was subjected to controlled hydrostatic stress of 2 

MPa and decreasing oxygen tension, a cartilage tissue would form.  They also proved that in 

specimens without the mechanical load no cartilage was formed.  They went on to hypothesise 

that persistent intermittent mechanical stimulation is required to maintain the differentiation of 

cartilage or else the cartilage would be replaced by bone (Tagil and Aspenberg, 1999).  

Hydrostatic pressure has been shown to enhance differentiation of MSCs in the presence of 

multipotent differentiation factors in vitro and it has been suggested that this particular loading 

regime may play a critical role during cartilage development and regeneration in vivo (Wanger 

et al., 2008).   

 

Tensile forces are the forces which, when applied to a substrate at both its ends, pull the ends 

of the substrate away from each other, causing elongation of the substrate.  Tensional forces 
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are prominent in the skeletal system and usually arise due to the movement of articulated 

tissue for example, flexing of tendons or muscles contractions pulling on bones.  Roux, in 

1895 and 1912, hypothesized that mechanical stress was responsible for the differentiation of 

connective tissue.  He proved that tensile stress resulted in fibrous tissue, whereas compressive 

stress resulted in bone formation, with the combination of the two resulting in cartilage 

formation.  In instances where osteochondral progenitor cells or mesenchymal stem cells were 

subjected to tensile forces, they differentiated along the osteoblast lineage (Takahashi, 1996).  

When applied ectopically, tensional forces appeared to transform cartilaginous tissue into bone 

(Glucksmann, 1942; Takshashi, 1996; 2003). 

 

Compressive stresses are the opposite of tensile stresses.  Compressive stresses arise in 

tissues when cells proliferate or deposit large amounts of ECM in regions where expansion of 

the tissue is resisted by the presence of rigid external boundaries.  These forces help to 

maintain the balance between cell growth and differentiation.  Krompecher, in his work in 

1937 and 1955, stated that hyaline cartilage formation was a result of compressive stress (Estes 

et al., 2004).  Kobayashia et al. showed in 2004 that compressive stress was a more potent 

stimulant of stromal cell differentiation towards the smooth muscle cell lineage than shear 

stress, as indicated by the expression of smooth muscle cell-specific cytoskeletal proteins.  

Applying mechanical compression resulted in the reprogramming of MSC- like cells from an 

osteogenic to a chondrogenic fate (Saitoh et al., 2000). 

 

Shear stress In 1924, Benninghoff hypothesized that cartilage formation was a result of shear 

stress.  High liquid shear stress is known to occur in developing myocardium (Hove et al., 

2003), fetal lung epithelium (Liu and Post, 2000) and the kidney (Serluca et al., 2002).  

However, the most robust studies of the effects of shear stress have been carried out on the 

vascular endothelium (Orr et al., 2006).  Hove et al. (2003) found that altering the 

hydrodynamic forces of the flow into the heart of a zebrafish caused cardiac defects.  Such 

defects included failure in valve formation, absence of heart looping and formation of a third 

chamber.  Mechanical strain may be a key stimulus for the initiation of differentiation 

programs in stem cells (Sauer, 2006).  Experimentally applied mechanical strain has been 

shown to stimulate cardiovascular differentiation of embryonic stem cells (Sauer, 2006). 
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2.5.2.2 Electric fields effects 

The effect of electric fields on cells is complex, and the effects are also highly frequency 

dependent.  In general, very high electric field strengths kill cells.  Lower, sublethal field 

strengths can lead to various electrokinetic effects including cell movement (electrophoresis 

and dielectrophoresis), electro-orientation and cell elongation (electrostriction).  Such effects 

are physical rather than biological.  However, even quite small electric fields can lead to 

various long-term biological effects on cells including elongation, alignment, migration, 

adhesion, and other tissue responses including differentiation (Jhans et al., 2007; Rice et al., 

2007; Dube et al., 2005).  Disruption or alteration of ion gradients or cell surface charges by 

an applied electric field can lead to changes in cell signaling pathways and gene expression, 

resulting in differences in differentiation, proliferation, and mobility (Levin, 2003; Sun et al., 

2006; 2007).  Electric stimulation of stem and/or progenitor cells can initiate signaling 

pathways that enhance osteogenic differentiation (McCullen et al., 2010).  hMSCs respond to 

electric field stimulation by osteogenic differentiation (Kim et al., 2009; Sun et al., 2007; Tsai 

et al., 2009; Hronik-Tupaj et al., 2011).  The strength of an AC electric current at 60 kHz, 20 

mV has been reported to increase osteogenic and chondrogenic differentiation markers, such 

as TGF-β1, type 2 collagen, proteoglycan, bone morphogenetic proteins, as well as hMSC 

proliferation (Xu et al., 2009; Wang et al., 2004; Zhuang et al., 1997; Lorich et al., 1998; 

Brighton et al., 2008).  Exogenous electric fields have been implied in cardiac differentiation 

of mouse embryonic stem cells and the generation of reactive oxygen species (ROS) (Serena et 

al., 2009).   

 

Another response of stem cells to electric field exposure could be expression of heat shock 

proteins.  The presence of heat shock proteins can affect osteodifferentiation (Brown et al., 

2007; Berge et al., 2008; Nogaard et al., 2006).  Small heat shock proteins (molecular mass 

between 15 - 30 kDa), such as hsp27 are known to be expressed and regulated during 

differentiation and development in many organisms including humans, mice, and zebrafish 

(Brown et al., 2007). 

2.6 Microfabrication in tissue engineering 

Most cell culture is done in 2D.  However, over the course of time the limitations of 2D 

culture have become obvious.  Even when grown in monolayer (2D), cells are still 3D 

structures and, as such, are influenced by the complete spectrum of their environment (Lund et 
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al., 2009).  Three-dimensional matrices in vitro and in vivo define the structural, mechanical 

and biochemical make-up of the cellular microenvironment and are crucial for allowing 

bidirectional interplay to exist between the cell and tissue during development (Griffith and 

Swartz, 2006).  2D systems allow precise control of (chemical) cues but are compromised by 

their inability to ask questions related to the complex spatial and temporal patterning of the 

cues that are seen in vivo. 

 

Traditional tissue engineering strategies involve seeding cells on biodegradable 

polymeric scaffolds such as Poly-Glycolic Acid (PGA).  In said approach, the cells would 

repopulate the scaffold and create the appropriate extra-cellular matrix (ECM) of a specific 

architecture with the help of growth factors, mechanical stimulation and perfusion.  The 

drawback of this technique, however, is the difficulty in creating the intricate microstructural 

features of the tissue.  With the aid of microfabrication techniques, however, engineers can 

now create more controlled environments, for example by making self-assembled aggregations 

in microwells or channels, creating cell sheets, or direct printing of tissue and microfabrication 

of cell-laden hydrogels by micro-moulding cells.  Once the tissue is created it can be 

assembled by way of a number of methods such as random packing, stacking of layers or 

directed assembly. 

2.6.1 Micromanipulation techniques 

Micromanipulation involves performing delicate operations on and with cells under the 

high magnification of a microscope and through the co-ordinated movement of specialized 

tools.  Micromanipulation techniques have found applications in cell biology, 

electrophysiology, clinical sciences and genetic engineering.  Micromanipulation systems have 

been used in the production of chimeric animals through blastocyst injection with Embryonic 

Stem (ES) cells and the introduction of specific genes into the genomes of domestic and 

laboratory animals (Thuan, 2006).  They have been used to isolate cells to obtain pure cultures, 

to elicit physical measurement of cells, to probe the shape or arrangement of organelles in 

living cells, to alter cell membrane permeability for drug design processes and much more. 

 

There are several different methods of micromanipulating particles, of which some are 

direct while others are indirect.  Direct micromanipulation of particles involves microchannels, 

inkjet printers and micropipettes etc whereas indirect micromanipulation techniques involve a 
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transducer placed at a distance from the particle and works by creating a force field.  Some of 

the indirect techniques most widely used are as follows: 

 

A. Ultrasound;  

B. Dielectrophoresis; 

C. Magnetophoresis; 

D. Optical tweezers.   

 

Each of the above mentioned micromanipulation techniques will be explained and 

discussed as to their suitability for this research. 

2.6.1.1 Ultrasound 

Ultrasound can be defined as ―a sound with a frequency greater than 20000 Hz, 

approximately the upper limit of human hearing‖ (Neild et al., 2006).  Ultrasound can be used 

for particle manipulation.  An obvious advantage of this technique is that it is free from 

external contact, i.e. the particles are moved by the ultrasonic forces acting on them at a 

distance rather than through contact with an object.  As the particles under consideration could 

be fragile (cells), any moisture in the atmosphere could mean they stick to any instruments 

being employed to move them directly (Haake and Dual 2002).  A further advantage is the fact 

that the force can be applied to a large area and not just to small regions. 

 

Ultrasonic forces have been successfully used to manipulate particles in suspension.  For 

example, when compressional (ultrasound) waves are produced by a transducer and the sound 

waves constructively interfere with another wave (this can be the same wave reflected from a 

surface, or a wave generated by another transducer, ultrasonic standing waves are produced.  

When particles, such as cells, are suspended in a fluid in an ultrasonic standing wave they 

acquire a position dependant potential energy.  The particles then tend to migrate to positions 

of minimum particle acoustic potential energy i.e. at half wavelength intervals (Coakley et al., 

2000).  On the application of a standing wave ultrasound field to a suspension, a predictable 

heterogeneous distribution is created by the particles which are moved towards areas of 

minimal acoustic pressure (Gherardini et al., 2005).  This effect has been used to effect in 

numerous biotechnological applications such as mammalian cell filtering and red blood cell 

sedimentation, but has also been used to create patterns of cells for the study of cell-cell 

interaction.   
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Researchers have focused their studies on the one dimensional movement of particles.  

For example, research conducted by Groschl in 1998 observed the formation of columns of 

particles separated at half-wavelength from which they can be extracted.  In this type of 

manipulation, a resonator containing two parallel piezo disks placed at either end is used.  

Similarly, Haake and Dual (2002) studied the forces experienced by a spherical particle in a 

one-dimensional plane standing wave.  As shown in figure 2.18, the particles to be 

manipulated are placed inside this resonator and the piezo disks create the planar standing 

waves (Haake and Dual, 2002).   

 

It is not always necessary to generate compressional ultrasound waves.  For example, 

studies by Haake and Dual (2005) have shown that, by applying an ultrasound field excited by 

a surface wave, small particles can be positioned in one or two dimensions.   

 

Ultrasound has been used for patterning stem cells.  Work carried by Haake and Bazou 

(Haake et al., 2005; Bazou et al., 2004) has successfully identified the ability of ultrasound to 

concentrate human cells using both standing waves and an ultrasonic pressure field.  The 

results prove that the viability of the cells is neither affected nor modifies in vitro expression 

of surface receptor interactions on the application of ultrasonic pressure fields. Other works 

include Kim et al. (2004) working with HeLa cells and mesenchymal stem cells, aliquoted 50 

µl of the cell solution into the milliscale chamber of the ultrasonic device.  The applied 

frequency of the excitation signal was 1.2 MHz.  Initially, randomly distributed HeLa cells and 

hMSCs aligned themselves into straight lines within a minute of being subjected to ultrasound 

standing waves.  The lines were not equidistant as the sound field was not fully uniform in the 

chamber, though other disturbances such as convection from gravitationally, thermally, and 

acoustically generated hydrodynamic streaming currents as well as non-uniform properties of 

the medium could have contributory factors.   

2.6.1.2 Dielectrophoresis 

Electrical techniques have been used extensively for particle and cell manipulation.  

They have several advantages over optical tweezers and ultrasound techniques as they employ 

a much higher resolution than ultrasound and exemplify a much better ability to manipulate 

many cells simultaneously than optical tweezers (Markx, 2003).  Moreover, different 

frequencies and variants of electric fields can be used, thus inducing different types of 

behaviour in the cells.  The main disadvantage is that its application directly in growth media 



 

39 

is often difficult.  Unlike ultrasound and optical tweezers, electrical techniques often work best 

in low conductivity media (Sebastian et al., 2006).   

 

The term dielectrophoresis encompasses a number of different AC electrokinetic 

techniques.  DEP manipulation of particles includes normal dielectrophoresis (often simply 

called dielectrophoresis or DEP), rotating dielectrophoresis (electro-rotation), orienting 

dielectrophoresis (electro-orientation), and travelling wave dielectrophoresis (TWD).   

 

Normal dielectrophoresis 

 

Normal dielectrophoresis – also commonly referred to simply as dielectrophoresis or 

DEP - is the induced motion of a neutral or charged, but polarisable object (such as a cell) 

(Pohl and Crane, 1971) in a non-uniform electric field (AC or DC).  The magnitude and 

polarity of the dipoles induced in a particle determines the dielectrophoretic motion.   

 

In the presence of an electric field a charged particle faces a Coulomb force and moves. 

At the same time a dipole is induced in a polarisable body which may or may not induce 

motion in the particle. Coulomb‘s law states that: "The magnitude of the Electrostatics force of 

interaction between two point charges is directly proportional to the scalar multiplication of 

the magnitudes of charges and inversely proportional to the square of the distances between 

them." 

 

The force exerted on a charge q by another charge Q is given by Coulombs Law: 

 

    
  

  
      (2.1) 

 

Where r is the distance between the two charges and Ke  is the proportionality constant also 

called the Coulombs constant. 

 

In a homogenous field, the polarisable body does not feel a net force since both the 

charges q and Q feel the same force acting in opposite direction. However in a non-

homogenous field each charge experiences a different force creating a net force, called the 

dielectrophoretic force. When a neutral particle is placed in a non-homogenous electrostatic 

field   E, the particle gets polarised and a dipole is formed of equal and opposite charges +q 
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located at a distance r+d, and –q at a distance r. the two values face a different field due to the 

vector field E.  Therefore force experienced by +q is given by the equation: 

 

                  (2.2) 

 

And theforce experienced by –q is given by the equation: 

 

                 (2.3) 

 

Combining the two equations: 

                         (2.4) 

 

By simplifying the first term in taylor series in equation (2.4) we get 

 

                                                 (2.5) 

 

The higher order terms have been neglected since |d| is very small compared to them. Now if 

we substitute equation 2.5 into 2.4, we get 

 

                                 (2.6) 

 

               (2.7) 

 

Since the dipole moment is given by the equation        the force acting on the dipole 

can be represented as  

                       2.8 

 

For neutral particles which are completely immersed in dielectric medium in a non- 

homogenous electric field   , the particle gets polarised and experiences a net electric force 

given by  

                     (2.9) 
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Where       is the effective dipole moment. In case of a spherical particle such as a cell 

the effective dipole moment is given by  

 

             
  
      

 

  
       

         (2.10) 

 

Where εm is the medium permittivity, r is the radius of the cell;    
  is the complex permittivity 

of the particle and and   
                                            .   is the strength of the 

electric field.  

 

As the time averaged dielectrophoretic force is expressed in terms of the complex forms 

of the dipole moment and the electric field, written as 

 

       
 

 
                   (2.11) 

 

Therefore by substituting equation 2.10 in to 2.11 the dielectrophoretic force on a particle can 

be described by the following equation: 

 

              
  
      

 

  
       

       
 

    (2.12) 

 

And Clausius-Mossotti factor is given by,  

 

           
  
      

 

  
       

       (2.12) 

 

Therefore                             
 

    (2.13) 

 

Where εm is the medium permittivity, r is the equivalent radius of the cell and Re is ‗the 

real part of‘ the complex Clausius-Mossotti factor      .  The term ‗∇E
2

 rms‘ defines the 

average local non-uniform field strength and the gradient, and is dependent on the applied 

voltage and the electrode geometry and size. In which:- 
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             an imaginary number 

 

ε is the permittivity of the particle, ζ the conductivity of the particle and ω the radial 

frequency.  The subscripts refer to the particle (p) and the medium (m) (Sebastian et al., 2006).  

Equation (1) indicates that if Re [K
*
(ω)] > 0, the particle is attracted towards the strong electric 

fields.  This phenomenon is referred to as positive dielectrophoresis or positive DEP where the 

particles move towards areas of high electric field indicated by a high density of electric flux 

lines.  On the other hand, if Re [K
*
(ω)] < 0, the particle is pushed away from the strong 

electric field regions to regions of weak electric field.  This phenomenon is known as negative 

dielectrophoresis or negative DEP.  The particles move towards areas of low electric field 

strength, indicated by a low density of electric flux lines (Washizu and Kawabata, 2005). 

 

Whether a material shows positive or negative DEP depends on three parameters 

(Washizu and Kawabata, 2005):  

1) Frequency of the electric field applied; 

2) Conductivity and permittivity or dielectric constant of medium;  

3) Conductivity and permittivity or dielectric constant of substance.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18: A polarisable particle in a non uniform electric field. 

 

nDEP 

 pDEP 



 

43 

In the earlier work on dielectrophoresis metal sheets, wires, rods and pins were used as 

electrodes, whereas more recently microelectrodes have predominantly been used.  There are 

several advantages to the downsizing of equipment.  Firstly, a decrease in the electrode size by 

100 fold will decrease the required operating voltage by roughly 1000 fold.  Lower operating 

voltages are more easily generated, and also reduce electrical heating and electrochemical 

effects.  A reduction in the surface area of the electrodes in contact with the fluid reduces any 

electrochemical processes that may occur (Pethig and Markx, 1997). 

 

Applications of dielectrophoresis 

 

DEP has found applications in many areas, although the primary interest resides in its 

use in biological applications.  Due to the type of structure of biological cells, materials with 

very different electrical properties are found adjacent to one other.  For example, the relative 

permittivity of the medium is around 80, whilst that of the cell membrane is approximately 5.  

The conductivity of cells can vary from 10
-7

 S m
-1

 at the membrane to 1 S m
-1

 at the interior 

(Pethig and Markx, 1997).  At these boundaries, large interfacial polarizations are formed 

which are conducive to large induced-dipole moments.  Moreover, these moments are highly 

dependent on the frequency of the applied field.  Normal DEP of cells can be carried out in 

two ways, either with positive or with negative dielectrophoresis.  Which one of them occurs 

depends on the physiology of cells - whether the cells are living or dead (Li et al., 2002; 

Markx et al., 1999), the frequency of the applied AC field and the relative complex 

permittivity of the cells and the suspending medium.  Trapping by way of positive 

dielectrophoresis is more common and rapid than trapping through negative DEP (Albrecht et 

al., 2004; Pohl et al., 1978).  Pohl explains for this can be attributed to the fact that the field 

distribution usually varies with the position in the field.  Attractive forces tend to pull particles 

into a smaller region of higher attractiveness, whereas repulsive forces tend to repel the 

particles into large regions where the field rapidly becomes ineffective and the negative 

dielectrophoretic effect is readily dissipated.   

 

Dielectrophoresis is now being applied for the selective spatial manipulation and 

separation of mixtures of bacteria, viable and unviable cells, cancerous and normal cells and 

red and white blood cells (Pethig and Markx, 1997; Doh and Cho, 2005; Hughes, 2002; 2003; 

Arnold, 2010).  Recent studies have demonstrated the use of DEP in separating homogenous 

mixtures of neural stem cell populations.  Neural Stem/Progenitor Cell (NSPC), neurons and 
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astrocytes can be separated owing to the fact that different electric phenotypes of cells respond 

differently to electric fields, allowing cell separation based on cell polarizability (Prieto et al., 

2010; Valero et al., 2010). 

 

In 1978, Pohl showed that AC micromanipulation techniques could be used to 

construct tissue-like materials from cell suspensions.  This work was not built on until Pethig 

and co-workers took up this work again in the late 80s-early 90s.  They showed that 

dielectrophoresis could be used to aggregate bacteria, blood cells and other cell types (Price et 

al., 1988; Burt et al., 1990; Markx et al., 1994 a&b).  Markx et al. (2006) used DEP to 

artificially construct bacterial biofilms.  Multispecies biofilms could be constructed with well 

defined architectures.  The first description of a tissue-like material with gel-immobilised 

animal cells was described by Matsue et al., in 1997.   

 

Since then, dielectrophoresis has been used quite regularly in the creation of artificial 

mammalian tissues.  Dielectrophoresis (DEP)-based cell patterning technique improves tissue 

engineering efficiency and quality by offering advantages such as ease of operation, low 

degree of cell damage, and precision, thus facilitating the exploration of 3-D cell-to-cell 

interaction (Lin, 2006).  Dielectrophoresis–based techniques can be used to manipulate single 

cells (Gray et al., 2004; Rosenthal and Voldman, 2005; Mittal et al., 2007) as well as many 

cells simultaneously.  For example, Gray et al. (2004) used very high fidelity micro fabrication 

techniques to create electrode arrays for trapping thousands of single individual cells between 

electrode castellations with a characteristic size of 3 µm.  The dielectric force was capable of 

holding each cell against a destabilising fluid flow. 

 

Recent work has shown that the application of positive DEP under conditions of high 

electric field strength and low medium conductivities can be used in the formation of multi-

layered aggregates of mammalian cells (Sebastian et al., 2006).  In these experiments, 

microelectrodes with a size range of 50 to 250 µm were used and frequencies varying from 0 

to 40 Vpk-pk.  Voltages above 30-40 V should be avoided as they lead to cell death.  They also 

showed that by using a continuous flow of fresh sorbitol iso-osmotic buffer through the 

chamber, an increase in the medium conductivity by ion leakage from cells could be overcome 

and a high positive DEP force could be maintained throughout the formation of the aggregates.  

It was shown that, at low flow rates, the construction of aggregates of mammalian cells with 

heights over 150 µm was feasible using relatively low voltages (20 Vpk-pk, 1 MHz).   
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Ho et al. (2010) developed an integrated microfluidic platform for actively patterning 

mammalian cells.  A system was developed with embedded arrays of PEG microwells 

fabricated on a planar ITO electrode.  Due to their dielectric properties, PEG microwells define 

electrical energy landscapes thereby forming positive dielectrophoresis traps in a low 

conductivity environment.  The group achieved efficient patterning of particles and cells like 

mouse embryonic stem cells in combination with external flow.  With a seeding density of 10
7 

cells/mL and a flow rate of 3 µL/min, trapping of cells in microwells was completed in tens of 

seconds after initiation of DEP.  The viability of the cells was checked and was found to be 

positive as the cells formed homogeneous monolayer patterns.  They suggested the approach 

could be used fabricating various cell microarrays for applications such as cell-based 

biosensors, drug discovery and cell microenvironment studies (Ho et al., 2010). 

 

Masato and co-workers (2010) showed that negative dielectrophoresis can be used to 

create versatile cell micropatterns without any pre-treatment of a culture slide for the study of 

cell-cell interactions.  They constructed electrode arrays with four independent microelectrode 

subunits from indium-tin-oxide (ITO).  A suspension of C2C12 cells was introduced into the 

patterning device and a negative DEP force was induced by applying a voltage (12 Vpk-pk at 1 

MHz) to interdigitated microelectrodes to direct cells to weaker electric field regions.  The AC 

voltage was applied for five minutes to allow the cells to adsorb onto the culture slide.  The 

voltage was then switched off and the device was flushed with pure medium to remove any 

non-adherent cells.  A second cell type was then introduced, forming patterns parallel to the 

first lines and between the first lines by switching the way the voltage was applied.  The two 

different cell types were patterned within 15 minutes (Masato et al., 2010).  Other work done 

by this group shows that when the adsorbed cell lines were cultured negative DEP had not 

significantly damaged the cells as the cell number increased readily (Masato et al., 2010). 

 

Albrecht et al. (2005) encapsulated living cells within PEG-based hydrogels to create a 

local 3-D microenvironment.  This could be achieved using two techniques: first 

‗photopatterning‘ – selectively crosslinking hydrogels with photosensitive initiators by 

exposure through a mask; the gel contains living cells; and second, ‗electropatterning‘ utilizing 

DEP forces to position cells within a prepolymer  solution before crosslinking, forming cell 

patterns with micron resolution.  Combination of these two methods enabled thm to achieve 

hierarchical control of cell positioning over lengths scales ranging from microns to 

centimetres.  Using these techniques Albrecht et al. (2006) showed that changing cell-to-cell 
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interactions in 3D cell aggregates regulated bovine articular chondrocyte biosysnthesis.  

Albrecht et al. (2007) also formed a multiphase tissue consisting of micro-scale tissue sub-

units in a ‗local phase‘ biomaterial, which would in turn be organised by DEP forces in a 

separate, mechanically supportive ‗bulk phase‘ material. 

 

Other forces acting on particles during dielectrophoresis 

 

For the description of the DEP forces in the previous sections it was tacitly assumed that 

the particles are far ways from each other.  In practice this is often not the case.  The 

interaction between the dipoles and the non-uniform electric fields created around the particles 

cause mutually attractive forces to occur between particles, causing pearl-chain formation.  

Pearl-chain formation has strong (mainly detrimental) effects on DEP separations (Markx et 

al., 2004), but plays mainly a positive role in the formation of aggregates (Sebastian et al., 

2007b).   

 

If a particle has a net charge then the particle may show electrophoresis.  Electrophoresis 

can be prominent at lower radio frequencies, but becomes less important at higher radio 

frequencies (Price et al., 1988).   

 

Apart from DEP and electrophoretic forces many other forces act upon particles when 

exposed to non-uniform electric (AC) fields.  These forces include buoyancy and gravitational 

forces, viscous drag forces, and electro hydrodynamic forces such as electro-osmosis.   

 

Buoyancy and gravitational forces are caused by gravitational field exerted by the Earth.  

The two forces always act in opposite directions, with the gravitational forces acting 

downward, and the buoyancy force upward.  The two forces play important roles in the 

accumulation of particles in the electric fields generated near microelectrode arrays.  For 

example, if the electrode array is placed at the bottom of the chamber, when particles are 

attracted to high field regions by positive DEP gravity aids the aggregation of particles 

whereas in negative DEP buoyancy helps the particles levitate (Flores-Rodrigues et al., 2004).   

 

When DEP forces induce a particle to move in an electric field, the fluid in which the 

particle is suspended exerts a viscous drag force on the particle.  The viscous drag force on the 

particle moving through the medium is opposite but directly proportional to the velocity of 
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particle, causing the particle to reach its terminal velocity (which is directly proportional to the 

magnitude of the force propelling through the medium) in a few nanoseconds.  Similarly, if the 

fluid in the chamber flows relative to the particle, viscous drag forces are exerted on the 

particle that will drag it along.  Viscous drag forces play important roles during aggregate 

formation during DEP.  Steric drag forces produced by a gentle fluid flow in the chamber can 

be used to separate cells by selectively lifting cells from potential energy wells produced by 

the electric field (Markx et al., 2004).  The fluid velocity is largest in the middle of the 

chamber and lowest at the walls; this effect has been used to advantage in DEP-Field Flow 

Fractionation, where particles lifted further away from the chamber wall move faster through 

the chamber than those closer to the wall (Hughes, 2002; 2003).  Viscous drag forces also play 

important roles during aggregate formation when collecting particles from flow, as the viscous 

drag will remove any particle for which the viscous drag force is stronger than the sum of 

forces keeping it in the aggregate.      

 

When an electric field is applied to sets of microelectrodes fluid movement is often 

induced by the electric field, which is described under the general term of 

electrohydrodynamics (EHD).  Reviews of EHD forces generated near microelectrode 

structures have been given previously (Ramos et al., 1998), but include electrothermal effects 

(fluid movement induced by density changes due to heating of the fluid in the electric field) 

and electro-osmotic effects (fluid movement induced by the movement of ions in the tangential 

electric field generated across the double layers at the electrodes).  As a result of EHD forces 

on the liquid near microelectrodes a vortex of liquid is formed over the electrode edge that can 

often be seen to push particles onto the electrode surface (Gonzales et al., 2000; Green et al., 

2002) at low frequencies.  At the electrode edge the field gradient (and hence DEP force) is 

greatest, therefore the particle gets drawn by DEP force towards the electrode edge, whilst the 

EHD force pulls the particle inwards on top of the electrode edge (Hoettges et al., 2003).  

Collection of particles on top of electrode pads is slower at higher frequencies where the 

influence of DEP may be stronger (Hughes, 2003).  EHD motion of fluids is particularly 

significant in a relatively small electrode regions and volumes.  EHD motion is dependent on 

the pH and temperature of the electrolyte and also the frequency. 

2.6.1.3 Magnetophoresis 

The magnetic analogue of dielectrophoresis is magnetophoresis – the manipulation of 

particles by the means of non-uniform magnetic fields. 
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The use of magnetic particles in numerous biological and medical applications has 

been established by the research carried by several researchers.  Magnetite nanoparticles have 

been successfully used in the separation of biological materials using magnetically labelled 

beads.  Moreover, the application of such particles in drug delivery and medicine or cell 

sorting has also been discovered (Honda, 2004). 

 

Magnetophoresis has been used extensively in biological separations techniques such 

as the Magna-Sep separation system from Invitrogen.  This is done by creating 

superparamagnetic nanometre-size particles of magnetite or maghemite which are treated with 

substances such as antibodies so they will adhere to a specific biological species (molecule or 

cell).  With the help of strong magnetic fields created using a permanent magnet or an 

electromagnet these highly paramagnetic beads can be separated out of a solution along with 

the biological entity of interest.  Biological materials are either diamagnetic or only weakly 

paramagnetic; this property aids the separation in being more specific.  It is rather impractical 

to carry out magnetophoresis with permanent magnetic beads as they would attract one another 

and agglomerate so the experiments only work with superparamagnetic beads with no 

permanent magnetic dipole (Mikkelsen, 2005). 

 

Magnetic forces have been used in the field of tissue engineering to construct 

multilayered keratinocyte sheets and harvest the sheets without enzymatic treatment (Ito et al., 

2004).  In these experiments magnetite cationic liposomes were used to improve the 

absorption by cells as these liposomes have a positive surface charge which were then taken up 

by the target cells.  A further study by Ito in 2004 involved the application of magnetic forces 

for the construction of a heterotypic and layered coculture system of rat hepatocytes and 

human aortic endothelial cells (HAECs) that was not limited by cell type.  Ito et al. referred to 

the technique as ―magnetic force-based tissue engineering (Mag-TE)‖. 

 

Studies have also proved that magnetic forces can be used, for preconditioning bone 

and stem cell seeded constructs and thus to produce a tissue engineered bone.  El Haj and 

Cartmell (2002) employed magnetic beads to understand the mechanical stimulation of human 

osteoblasts and the influence on osteoblastic activity when magnetic particle technology was 

applied.  Cartmell employed magnetic microparticles attached to primary bone cells via 

specific membrane receptors.  On the application of an oscillating magnetic field, the 
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magnetite beads attached to the cells moved along the magnetic field and the cells experienced 

a force them as a result of the permanent magnet movement (Cartmell et al., 2003). 

2.6.1.4 Optical tweezers 

Optical tweezers are very sensitive instruments able to exert small but highly 

controllable forces on particles.  The principle of an optical tweezers‘s mode of action can be 

explained in two ways.  Like any electromagnetic radiation light has both particle and wave 

characteristics.  The particle characteristics cause light to carry momentum that is proportional 

to its energy and in the direction of propagation.  If there is a change in the direction of light 

either by reflection or refraction then there is a change in the momentum of light.  When an 

object comes in the way of a light beam, it changes its momentum by bending it.  Conservation 

of momentum requires that the object must undergo an equal and opposite momentum change.  

This gives rise to a force acting on the object.  In a highly focused laser beam the net 

momentum force near a focal point is always in the direction of the focal point.  A particle in 

the laser beam would therefore be directed to the focal point.  An alternative explanation is 

that a focused light beam causes a very strong electric field gradient concentrated at the very 

tip of the focused beam, termed a beam waist.  Dielectric particles are attracted towards the 

strongest electric field along the beam, in the same way as particles are attracted to high 

electric field regions by positive dielectrophoresis (Curtis et al., 2002). 

The optical tweezer is nowadays an established tool in many fields of science, 

particularly in the life sciences for the entrapment and movement of microscopic volumes of 

matter.  A great level of control can be used on a range of particles with sizes ranging from 

tens of nanometres to tens of micrometers.  Optical tweezer-based techniques play a vital role 

in biotechnology for the manipulation of biological particles such as single viruses, single 

living cells and even organelles within cells (Ashkin, 1997), and non-living materials such 

metal or plastic spheres.  Optical tweezers have been used to study shape recovery of red blood 

cells (Bronkhorst et al., 1995), and for measuring strectching forces on DNA (Bennink et al., 

199l; Wang et al., 1997).  Optical tweezers used for cell manipulation normally work in the 

near infrared (NIR) regions (0.75-1.4 micro meter wavelength) to avoid absorption that cause 

thermal and chemical deterioration that occurs at lower wavelengths.  Pigmented skin however 

is comparatively absorbent in the NIR and cannot be used with this technique (Jacques and 

McAuliffe, 1991).  Unlike dielectrophoresis, optical tweezers work well in high conductivity 

media but are typically only able to manipulate a single or very few particles at a given time.  



 

50 

However, techniques are under development which enable manipulation of many particles 

simultaneously.  For example, Holographic Optical Tweezers (HOTs) have been developed 

with improved human-computer interfaces which can be used to manipulate many particles at 

the same time (Grieve et al., 2009). 
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CHAPTER 3 

Materials and Methods 

3.1 Introduction 

This chapter provides information about materials and methods used throughout the 

work described in the thesis.  More detailed information specific to individual experiments is 

given in each results chapter. 

3.2 Culturing embryonic stem cells 

Growth medium was made in aliquots of 500 mL of GMEM medium supplemented with 

10% fetal calf serum (FCS), 1% of 1× non essential amino acids, 1 µg mL
-1

 β-mercaptoethanol 

and 10 µg ml
-1

 sodium pyruvate, and kept at -20
o
C.  Before the cells were passaged, all the cell 

culture solutions (growth medium, trypsin, serum, gelatine, PBS) were thawed in a 37˚C water 

bath.  The culture flask was taken from the incubator and the cells were observed using an 

Olympus inverted microscope.  If the confluency of the cells in the flask was more than 80% 

(a confluent T25 flask contained 5 to 7 million cells) or the medium had changed colour from 

pink to an orange hue, and there was no sign of infection, then the cells were passaged.  First 

the growth medium was carefully aspirated off.  The cells were given a wash with Phosphate 

Buffered Saline solution (PBS) 2 mL.  2 mL Trypsin buffer TVP (1% trypsin, 1% chick serum, 

8.4 × 10
-4

 EDTA and 1× PBS (phosphate buffer saline) was added to the T25 flask.  The flask 

was incubated for 2-5 minutes at 37
o
C.  The flask was then tapped on the bottom to suspend 

the cells.  Later on, the clumps of cells after trypsin treatment are made into single cells by 

tituration with 8 mL fresh growth medium.  The cells were then centrifuged at 1200 rpm for 5 

mins.  The pellet formed was dispersed with 10 mL growth medium and a cell count was 

performed with a hemocytometer.  1 million cells were added to T25 culture flasks, which 

were previously coated with 5 mL of 0.1% gelatine (Sigma) for 10-20 mins.  Growth medium 

was added until to a total volume in the flask of 10 mL.  10 μl of LIF (Leukaemia Inhibitory 

Factor) was then added (1/1000 dilution).  The cells were incubated in a 5% CO2 incubator at 

37°C for 40–48 hours until near 80% confluence was obtained.   
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To prepare cells for DEP, after trypsinizing and washing the cells in fresh growth 

medium, the cells were washed twice in 300 mM sorbitol solution.  They were spun each time 

at 1200 rpm for 4 mins. 

3.3 Culturing osteoblast-like cells (SAOS-2) 

3.3.1 Growth medium 

A cell line of adherent human osteoblast-like cells, SAOS-2, was grown in RPMI 1640 

medium supplemented with 10% FBS, 2 mM L-glutamine, 10 units ml
-1

 penicillin and 

streptomycin solution (Sigma). 

3.3.2 Trypsin EDTA  

Before subculturing all the cell culture solutions (growth medium RPMI 1640, trypsin, 

serum, gelatine, PBS) were thawed in a 37˚C water bath.  The culture flask was taken from the 

incubator and the cells were observed using an Olympus inverted microscope.  If the 

confluency of the cells in the flask was more than 80% (a confluent T25 flask contained 

approximately 4 to 6 million cells or the medium had changed colour from pink to an orange 

hue, and there was no sign of infection, then the cells were passaged.  First the growth medium 

was carefully aspirated off.  The cells were given a wash with 2 mL Phosphate Buffered Saline 

solution (PBS).  2 mL trypsin EDTA (filter sterilised 0.5% trypsin and 0.5% ethylene diamine 

tetra acetic acid (EDTA) dissolved in 1 × PBS) was added to T25 flasks (3 mL trypsin EDTA 

was added to T75 flasks) for detachment of cells from the flask surface.  The flask was 

incubated for 2-5 minutes.  The flask was then tapped on the bottom surface to get cells into 

suspension.  The clumps of cells after trypsin treatment are made into single cells by tituration 

with 8 mL fresh growth medium and cells are centrifuged at 1600 rpm for 5 mins.  2500 

cells/cm
2
 were seeded into a T25 flask and growth medium assed until the total volume was 10 

ml.  The flasks were incubated for 4 days in a humidified chamber with 95% air and 5% CO2 

at 37°C until near 90% confluence was obtained (3-4 days).  Medium was exchanged every 2 

days.   

 

To prepare the cells for DEP, after the trypsinisation step the cells were washed in fresh 

medium and then washed twice with 300 mM D-sorbitol in order to lower the conductivity to 

allow patterning with positive dielectrophoresis. 
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3.4 Cell staining  

SAOS-2 cells were stained with PKH26 (red cell membrane stain) obtained from Sigma.  

The concentrations of PKH26 stain was 8 x 10
-6

 M for 10 million cells. 

Cell staining was done using protocols from Sigma.  After staining the cells were washed 

twice with 300 mM Sorbitol solution for patterning with positive DEP. 

3.5 Microelectrodes 

Microelectrodes (Figure 3.1) of the interdigitated oppositely castellated design with 

characteristic sizes between 50 and 250 μm were fabricated using photolithography from 

indium tin oxide (ITO) coated microscope slides (Delta Technologies Inc, Stillwater, USA) as 

described by Venkatesh et al. (2007).  Photolithography was done as described previously 

(Flores-Rodriguez and Markx, 2004).  A chamber was constructed on top of the slide from two 

strips of insulating tape and a microscopic slide coverslip.  The chamber covered a single 

microelectrode region at a time.  The height of the chamber was 560 μm, its length 20 mm and 

its width 5 mm.   

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Sketch of a 50 µm electrode region (shaded region is ITO); all sides of the electrode 

measure the same. 

 

 

50 µm 

 

50 µm 
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Figure 3.2: An ITO microelectrode slide with the connections made to supply voltage to the 75 µm 

regions only. 

3.6 Dielectrophoretic formation of cell aggregates 

A DEP set-up was used to form aggregates as described previously (Sebastian et al., 

2007 a & b) (Figure 3.3 & 3.4).  The chamber was autoclaved prior to use.  The chamber was 

filled with the low conductivity 300 mM D-sorbitol solution, and following this electric fields 

were generated between the microelectrodes using signals of 1 MHz frequency and voltages of 

10 Vpk-pk for electrodes of 25-100 µm, and 20 Vpk-pk for electrodes of 125-200 µm.  Electric 

signals were generated using a Thurlby-Thandar TG120 function generator.  Cells were 

introduced into the chamber and allowed to be attracted to the high field regions between the 

electrodes.  Fresh sorbitol solution was passed through the chamber to redistribute the cells, 

remove non-attracted cells and maintain a low conductivity in the chamber.  For aggregates 

containing a single cell type more cells were introduced until the height of the aggregate 

became constant.  Methodology used for creating aggregates containing more than one cells 

type will be described in detail in the relevant chapters.  It involved either introducing two cell 

types simultaneously, or stopping the aggregation of cells of one type before the final height 

was achieved, and then introducing the second type. 

 

The total time needed to form the aggregates depended on the voltage and the electrode 

size, but was typically 5 min for aggregates of size 25 – 75 µm and 10 to 20 minutes for 

aggregates of size 100 – 200 µm.   

 



 

55 

 

Figure 3.3: Overall set up for carrying out dielectrophoresis. 

 

 

Figure 3.4: Pictorial representation of a dielectrophoresis setup. 

A) Chamber under the microscope, with two pipette tips at both end of the chamber for the 

inlet and outlet of fluids.  The electrode is connected to the frequency generator.  B) A 

magnified view of the electrodes and the cells in patterned aggregates.  C) Longitudinal 

section of an aggregate composed of different cell types. 

 

 

A 

C 

B 

Inlet of cells 
outlet of cells 
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3.7 Cell immobilization 

After the stem cells and/or osteoblast-like cells had been aggregated with 

dielectrophoresis between the castellations of electrodes under a flow of 300 mM D-sorbitol 

the electric field was maintained for a further 10–15 min, in order to induce adhesion between 

the cells (Sebastian et al., 2007).  Following this, the sorbitol solution was replaced by a 

Puramatrix solution.  Puramatrix precursor solution was prepared at concentrations ranging 

from 20% to 50%, but typically 25%, by mixing pure Puramatrix as obtained from the supplier 

with 300 mM sorbitol solution.  The Puramatrix precursor solution selected was brought into 

the chamber with a pipette tip, and at the same time sorbitol solution was withdrawn with a 

pipette from the other end of the chamber.  The electric field was then removed and growth 

medium (GMEM for aggregates with only stem cells, RPMI 1640 for osteoblast-like and 

mixed cultures) was introduced at the edge of the chamber.  Gel formation took 5 to 15 

minutes (depending upon the concentration, less time for higher concentration and vice versa) 

from the introduction of the growth medium.   

3.8 Aggregate culture 

The chamber was placed in a sterile petri dish containing cell growth medium and 

incubated in mammalian cell culture incubator at 37
o
C, 5 % CO2.  Over a period of 24-72 

hours the petridish was regularly removed from the incubator and the aggregates were 

observed using a Nikon E600 fluorescence microscope fitted with a Nikon Coolpix 4500 

digital camera or a Leica TCS2 confocal microscope.   
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CHAPTER 4 

Optimisation of conditions for niche construction: Electrode size 

and Puramatrix
TM

 concentration 

4.1 Introduction 

The induction of haematopoietic cells (HSCs) from embryonic (ESCs) or induced 

pluripotent stem cells (iPSCs) can give us information on how haematopoietic stem cells are 

formed during embryogenesis, and could potentially be used for the creation of production 

methods for blood-based products, including the different types of blood cells.  The 

conventional method for the induction of HSCs from ESCs is a two step procedure in which 

the ES cells are differentiated as embryonic bodies (EBs) for 5-20 days, followed by 

dispersion of the cells into a single cell suspension and plating them in Macrophage 

conditioned medium (MCM) in the presence of appropriate cytokines for hematopoietic 

colony formation (Wiles & Keller, 1991; Keller et al., 1993).  Previous studies have revealed 

that ES cells have been converted to primitive nucleated erythrocyte cells, followed by the 

formation of definitive erythroid, myeloid cells, neutrophils, mast cells and megakaryocyte 

cells (Wiles & Keller, 1991; Keller et al., 1993; Lieschke & Dunn, 1995).  The literature 

suggests that the differentiated ES cells or the embryonic bodies can contribute to all the 

hematopoietic lineages (Potocnik et al. 1994; 1997; Bichet et al. 1999).  

 

A recent review of the methods used for the formation of embryonic bodies from 

embryonic stem cells has been given by Bratt-Leal et al., (2009).  The three basic methods for 

making embryoid bodies are liquid suspension culture in bacterial-grade dishes (Ramirez et 

al., 2007), culture in methylcellulose semisolid media, and culture in hanging drops (Dang et 

al., 2002; Dang et al., 2004).  Unfortunately, these methods provide poor control over the 

(initial) cell distribution, and pose limitations to further manipulation of the suspending 

medium or cells.  Physical micromanipulation of cells, on the other hand, potentially is able to 

allow the formation of aggregates containing stem cells with a high level of control over the 

initial distribution of the cells without limitations to further manipulation of the cells in the 

aggregates or to making changes in the composition of the suspending medium (Desai et al., 

2007; Markx et al., 2005; Markx, 2008; Khademhosseini et al., 2006).  This is particularly 
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important in attempts to induce the differentiation of haematopoietic cells from ESC or iPSC 

by coculture with other cells (Krassowska et al., 2006; Ledras et al., 2008).   

 

The application of dielectrophoresis for the construction of three dimensional cell 

aggregates containing has previously been demonstrated (Venkatesh et al., 2007; Sebastian et 

al., 2007 a & b; Markx, 2009; Markx et al., 2009).  Such aggregates can be used as artificial 

stem cell niches (Markx et al., 2009).  Although it has been demonstrated in previous studies 

that the viability during the construction of the aggregates can be maintained (Sebastian et al., 

2007), the long term behavior of the cells after the formation of the aggregates has not been 

explored.  In this chapter we will describe study of the long term behavior of osteoblast-like 

cells and study of the use of positive dielectrophoresis for the formation of aggregates of 

embryonic stem cells at interdigitated oppositely castellated electrodes and the formation of 

EBs after the construction of the aggregates.  

4.2 Materials and methods 

4.2.1 Cells 

ESCs used in the experiments were mouse embryonic stem cells of cell line 7a.  Active 

7a embryonic stem cells express green fluorescence protein (GFP) regardless of their 

differentiation state.  The cells were grown as described previously (Chapter 3).  For 

dielectrophoretic experiments the cells were washed with 300 mM D-sorbitol in deionised 

water twice to reduce the medium conductivity, and finally resuspended in 300 mM D-sorbitol 

solution (σ = 4.7 × 10
−4

 S m
−1

) for patterning with positive dielectrophoresis.   

4.2.2 Dielectrophoretic formation of cell aggregates 

A dielectrophoresis setup was used as described previously in chapter three. The system 

was based around glass slides with ITO microelectrodes of the interdigitated oppositely 

castellated design with characteristic sizes between 50 and 250 µm.  A chamber was 

constructed on top of the slide from two strips of insulating tape and a microscopic slide 

coverslip.  The chamber covered a single microelectrode region at a time.  The height of the 

chamber was 560 μm, its length 20mm and its width 5 mm.  The chamber was autoclaved 

prior to use.  The chamber was filled with the low conductivity 300 mM D-sorbitol solution, 

and following this electric fields were generated between the microelectrodes using signals of 
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1 MHz frequency and voltages of 10 Vpk-pk for electrodes with a characteristic size of 25-100 

µm, and 20 Vpk-pk for electrodes of 125-200 µm.  Electric signals were generated using a 

Thurlby-Thandar TG120 function generator. Cells were introduced into the chamber and 

allowed to be attracted to the high field regions between the electrodes.  Fresh sorbitol solution 

was passed through the chamber to redistribute the cells, remove non-attracted cells and 

maintain a low conductivity in the chamber. 

 

Puramatrix 

Concentration 

DEP voltage 

and 

frequency 1 

MHz 

Culture 

conditions for 

SAOS-2 cells 

Electrode 

size 

Repeats with 

SAOS-2 cells 

Repeats 

with ESCs 

50 % 10 Vpk-pk 37º C, 5 % CO2 100 µm 4 3 

30 % 10 Vpk-pk 37º C, 5 % CO2 100 µm 4 3 

25 % 10 Vpk-pk 37º C, 5 % CO2 75 µm 4 7 

20 % 10 Vpk-pk 37º C, 5 % CO2 100 µm 4 3 

 

Table 4.1: Parameters for determining Puramatrix concentrations. 

 

Electrode size for 

EB formation. 

DEP voltage 

and frequency 1 

MHz 

Culture 

conditions for 

SAOS-2 cells 

Puramatrix 

Concentration 

Repeats with 

ESCs 

200 µm 20 Vpk-pk 37º C, 5 % CO2 25% 5 

100 µm 10 Vpk-pk 37º C, 5 % CO2 25% 5 

75 µm 10 Vpk-pk 37º C, 5 % CO2 25% 5 

50 µm 10 Vpk-pk 37º C, 5 % CO2 25% 5 

 

Table 4.2: Parameters for determining correct electrode size for EB formation. 

4.2.3 Surface treatment of sides 

In some experiments, to minimize cell adhesion to the surface, glass slides with ITO 

microelectrodes were incubated for 48 hours in 1-hexadecanethiol (Sigma-Aldrich), washed 

thoroughly with deionised water, and wiped carefully with water soaked tissue paper.  The 

slides were then checked for defects and the presence of any particles prior to use.   
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Electrode size for 

Thiolised slides. 

DEP voltage 

and frequency 1 

MHz 

Cells Puramatrix 

Concentration 

Repeats with 

ESCs 

250 µm 20 Vpk-pk SAOS-2 25% 3 

200 µm 20 Vpk-pk SAOS-2 & ESCs 25% 3 

75 µm 10 Vpk-pk 7a ESCs 25% 3 

 

Table 4.3: Parameters for Thiol treated slides.  

The Puramatrix concentration and the cell culture conditions were unchanged. 

4.3 Results 

4.3.1 Formation of aggregates of SAOS-2 osteoblast-like cells with DEP 

Immobilization of the cells in the aggregates after the formation of the aggregates by 

DEP forms an essential step of any attempt to form stem cell microniches; without it, cells 

would soon disperse.  Previous experiments involving the construction of stem cell 

microniches using DEP had primarily used fibrin gels as the hydrogel for cell immobilization 

(Sebastian et al., 2007 a & b, Markx 2008; Markx et al., 2009).  BD Puramatrix
TM  

(3 DM Inc, 

Cambridge, USA) was chosen as the immobilization agent here because of the low viscosity of 

the precursor solution and because it is fully synthetic.  Puramatrix is a peptide composed of 

16 amino acids residues and contains no detectable growth factors or cytokines, allowing one 

to investigate the reproducibly investigate the effects of added growth factors or cytokines.  It 

is supplied as a low ion solution.  After addition of medium it forms a nano-fibrous scaffold 

resembling collagen in aqueous solution by hydrophobic and ionic bonding of the amino acids, 

causing the formation of the hydrogel. 

 

To establish the most suitable concentration of Puramatrix, aggregates of osteoblast-

like cells were made using DEP at the 75 and 100 μm electrode regions, and different 

concentrations of Puramatrix were used to immobilise the cells.  The concentrations of 

Puramatrix tested were 50%, 30%, 25% and 20%.  Figures 4.1-4.4 show the effects of 

different Puramatrix concentrations on the distribution of the osteoblast-like cells after 24 hour 

incubation in RPMI growth medium.   
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Figure 4.1: SAOS-2 cells immobilized with 50% Puramatrix. 

Bright field images of aggregates of SAOS-2 cells formed with DEP between interdigitated 

oppositely castellated ITO microelectrodes on glass.  The microelectrodes had a characteristic 

size of 100 μm.  The electric field between the microelectrodes was induced by applying a 10 

Vpk-pk, 1 MHz signal to the electrodes.  A) Aggregates of osteoblast-like cells at 0 hours.  B) 

Aggregates after 24 hours. The Arrows point no movement of cells in the same aggregates. 

 

 

Figure 4.2: SAOS-2 cells immobilized with 30% Puramatrix. 

Bright field images of aggregates of SAOS-2 cells formed with DEP between interdigitated 

oppositely castellated ITO microelectrodes on glass.  The microelectrodes had a characteristic 

size of 100 μm.  The electric field between the microelectrodes was induced by applying a 10 

Vpk-pk, 1 MHz signal to the electrodes.  A) Aggregate at 0 hours.  B) Aggregate after 24 hours. 

 

At 50% and 30% concentration the Puramatrix precursor solution is very viscous.  This 

causes some cells to become dislodged from the aggregates DEP when the Puramatrix solution 

is introduced.  After 24 hours of incubation the cells can be seen to remain rounded.  SAOS-2 

osteoblasts normally grow adherently; rounding is usually an indication that the cells are not 
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satisfied with the growing conditions.  There is little evidence of cell movement or of cells 

adhering to the glass or ITO surface. 

 

 

Figure 4.3: SAOS-2 cells immobilized with 25% Puramatrix. 

Bright field images of aggregates of SAOS-2 cells formed with DEP between interdigitated 

oppositely castellated ITO microelectrodes on glass.  The microelectrodes had a characteristic 

size of 75 μm.  The electric field between the microelectrodes was induced by applying a 10 

Vpk-pk, 1 MHz signal to the electrodes.  A) Aggregates at 0 hours.  B) Aggregates after 24 

hours. 

 

 

Figure 4.4: SAOS-2 cells immobilized with 20% Puramatrix. 

Bright field images of aggregates of SAOS-2 cells formed with DEP between interdigitated 

oppositely castellated ITO microelectrodes on glass.  The microelectrodes had a characteristic 

size of 100 μm.  The electric field between the microelectrodes was induced by applying a 10 

Vpk-pk, 1 MHz signal to the electrodes.  A) Aggregates at 0 hours.  B) Aggregates after 24 

hours.   
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At Puramatrix concentrations of 25 and 20%, after 24 hours the cells close to the 

microelectrode surface had adhered to the electrode surface and had started spreading over the 

surface.  There was no difference between the ITO and glass.  Cells further away from the 

microelectrode surface could sometimes be seen to have started to adhere to each other 

forming dense aggregates; this was particularly prominent at the lower gel concentration 

(20%) and larger electrode size (100 μm).  The gel formed at the lower Puramatrix 

concentration of 20% was mechanically weak and difficult to handle without disturbing the 

integrity of the gel or disturbing the aggregates. 

 

The results indicate that the most suitable concentration of Puramatrix for the 

immobilization of osteoblast-like cells was 25%.  At higher concentrations there were 

problems with cells becoming dislodged from the aggregates during the assembly process.  

Also the osteoblast-like cells remained rounded, indicating the cells are not satisfied with the 

growing conditions.  Concentrations below 25% did not have sufficient mechanical strength.  

Therefore all further experiments were carried out at a concentration of 25%. 

 

Figure 4.5 shows aggregates of SAOS-2 osteoblast-like cells in 25 % Puramatrix, at 

time zero immediate after their formation and after 24, 48 and 72 hours.  At 24 hours the cell 

can be seen to have started to spread from the aggregates, but the initial location of the DEP 

aggregated can still be observed.  This becomes increasing difficult at later times. 
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Figure 4.5: Bright field images of aggregates of SAOS-2 cells formed with DEP between 

interdigitated oppositely castellated ITO microelectrodes on glass. 

The microelectrodes had a characteristic size of 75 μm.  The electric field between the 

microelectrodes was induced by applying a 10 Vpk-pk, 1 MHz signal to the electrodes.  The cells 

were immobilized with 25% Puramatrix.  A) Aggregates at 0 hours.  B) 24 hours.  C) 48 

hours.  D) 72 hours. 

4.3.2 Formation of aggregates of 7a murine ES cells with DEP  

Aggregates were made of murine ES cells at microelectrodes of different sizes ranging 

from 50 to 250 μm, and immobilised in 25% Puramatrix.  Following this, the cells were 

incubated in GMEM growth medium with and without LIF.  Also, control experiments were 

performed in which the cells were subjected to the same procedure as the DEP- immobilised 

cells, except that they were not aggregated. 

 

Figure 4.6 shows green fluorescent images of ESC aggregates formed in regions of 

microelectrodes with a characteristic size of 50 μm.  After 24 hours of incubation the cells 

within the aggregates seen to agglomerate with each other, with non-uniform embryoid body-

like structures embedded in the cell agglomerates (Figure 4.5).  This happened because the 
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space between the aggregates was less and the aggregates were closer to each other, making it 

possible for the single aggregates to merge and form larger aggregates. 

 

 

Figure 4.6: Aggregates of 7a ESCs formed by DEP at 10 Vpk-pk, 1 MHz in the 50 μm microelectrode 

regions. 

The aggregates were immobilised in 25% Puramatrix, and provided with medium without LIF. 
 

A) Bright field image of aggregates at 0 hours; cells were introduced from right to left, and 

more cells can be seen to have accumulated in the aggregates at the right hand side than on 

the left hand side.  B) Green fluorescent image of aggregates after 24 hours of incubation.  

Aggregates can be seen to have merged, especially in regions where more cells were in the 

aggregates at the start. 

 

When microelectrodes with characteristic sizes of 75 or 100 μm were used the initial 

distance between the ESC aggregates was slightly larger and the aggregates typically formed 

single EBs of regular shape and size (Figure 4.7 & 4.8).  Since 75 and 100 μm regions showed 

similar EB formation only 75 μm results are displayed in this chapter.  
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Figure 4.7: Aggregates of 7a ESCs formed by DEP at 10 Vpk-pk, 1 MHz in the 75 μm microelectrode 

regions. 

The aggregates were immobilised in 25% Puramatrix, and provided with medium without LIF.  

A) Aggregate at 0 hours.  B) Aggregate after 24 hours of incubation. 
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Figure 4.8: A closer look at the EB. 

Aggregate of 7a embryonic stem cells formed by DEP at 10 Vpk-pk, 1 MHz in the 75 μm 

microelectrode regions.  The aggregates were immobilised in 25% Puramatrix, and provided 

with medium without LIF.  A) Aggregate at 0 hours.  B) Aggregate after 24 hours of 

incubation.  A single embryoid body can be seen.  C) Green fluorescent image of the embryoid 

body. 

 

Figure 4.9 shows aggregates formed at microelectrodes with a characteristic size of 200 

µm.  At regions above 100 μm the cells within an individual aggregate condensed into several 

high density regions, causing the aggregates to split. 
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Figure 4.9: Aggregates of 7a ESCs formed by DEP at 20 Vpk-pk, 1 MHz in the 200 μm microelectrode 

regions.   

The aggregates were immobilised in 25% Puramatrix, and provide with medium without LIF.  

A) Aggregates at 0 hours.  B) Aggregates after 24 hours of incubation.  Within the aggrates 

many small cell clumps can be seen to have formed. 

 

The experiments were conducted both in medium containing LIF and without LIF.  

Aggregates cultured in medium without LIF showed rapid EB formation, typically within 24 

hours.  Aggregates cultured in medium containing LIF showed delayed formation of EB, 

however EB formation still occurred, typically within 48 hours.  In control experiments cells 

were exposed to the same procedure as the cells which were aggregated with DEP, but electric 

field exposure was omitted, and no aggregation therefore occurred.  When grown in medium 

with LIF the cells resumed undifferentiated growth as a monolayer, indicating that the 

handling of the cells, including their temporary suspension on a low conductivity sorbitol 

solution, did not change the characteristics of the stem cells.   

 

Figure 4.10 shows aggregates of ESCs at 50 µm region at zero, 24, 48 and 72 hours.  At 

24 hours the aggregates start forming EBs and at 48 hours the EBs are seen to move towards 

closer EBs and agglomerate.  At 48 hours the EBs still merge with nearby EBs and also grow 

in size. 
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Figure 4.10: Agglomeration of EBs.   

Aggregates of ESCs formed by DEP at 10 Vpk-pk, 1 MHz in the 50 μm microelectrode regions.  

The aggregates were immobilised in 25% Puramatrix.  With time the aggregates form EBs and 

the EBs are move and agglomerate with other nearby EBs.  A) Aggregates at 0 hours.  B) 

Aggregates after 24 hours of incubation.  C) Aggregates after 48 hours.  D) Aggregates after 

72 hours. 

4.3.3 Influence of properties of the electrode surface on the merging of aggregates 

The experiments with the 50 micron electrodes indicated that, when the aggregates are 

close, merging may occur between aggregates.  The electrode surface might play a role in the 

movement of the EBs within the chamber.  Therefore, to investigate the role of the electrode 

surface in the merging process, DEP slides were treated with 1-hexadecanethiol.  Treatment 

with 1-hexadecanethiol would make the surface highly hydrophobic and could be expected to 

prevent cells from adhering to the surface and travelling between aggregates.   

 

Figure 4.11 shows aggregates formed with DEP of SAOS-2 osteoblast-like cells on 

hexadecanethiol treated electrode surfaces.  Treatment of the surface with 1-hexadecanethiol 

appears to make the electrode surface unsuitable for the attachment of SAOS-2 osteoblast-like 

cells.  The cells were rounded, stayed mainly in their original position, and there was no 
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evidence of cells attachment or spreading over the surface.  This behaviour was seen at all 

electrode sizes. 

 

 

Figure 4.11: Aggregates of SAOS-2 cells formed by DEP at 10 Vpk-pk, 1 MHz in the 250 μm 

microelectrode thiolized regions. 

The aggregates were immobilised in 25% Puramatrix.  A) Aggregates at 0 hours.  B) 

Aggregates after 24 hours of incubation.  No cell adherence to the glass or the ITO surface 

can be seen. 

 

From Figure 4.12 it can be seen that after 24 hours on untreated surfaces embryonic 

bodies formation have been formed, but significant numbers of cells can also be seen between 

aggregates.  After 72 hours there is evidence of significant cell growth; also merging of 

aggregates and movement of cells between aggregates has led to significant coarsening of the 

original pattern.  Figure 4.13 and 4.14 shows the effects of microelectrode surface treatment on 

the behaviour of ES cells after the formation of cell aggregates with DEP.  Figure 4.13 shows 

the effect of treating the surface with 1-hexadecanethiol.  Unlike the previous experiment, 

although there is evidence of cell growth, there is no evidence of the exchange of cells 

between embryonic bodies, and merging of aggregates did not occur. 
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Figure 4.12: Aggregates of 7a murine ESCs and SAOS-2 cells formed by DEP at 10 Vpk-pk, 1 MHz in 

the 75 μm microelectrode regions (untreated slide). 

The aggregates were immobilised in 25% Puramatrix, and provided with growth medium 

without LIF.  A1 & A2) 0 hours bright field and fluorescent image respectively.  B1 & B2) 24 

hours bright field and fluorescent image respectively, the top 3 rows of aggregates from image 

A1, are zoomed in on the image B1.  The SAOS-2 cells are seen to spread on the substrate 

surface. 
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Figure 4.13: Aggregates of 7a murine ESCs formed by DEP at 10 Vpk-pk, 1 MHz in the 75 μm 

microelectrode regions, treated with 1-hexadecanethiol. 

The aggregates were immobilised in 25% Puramatrix.  A) 0 hours B) 24 hours C) 48 hours. 
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Figure 4.14: Aggregates of 7a ESCs and SAOS-2 cells formed by DEP at 20 Vpk-pk, 1 MHz in the 200 

μm microelectrode regions on a thiolised slide. 

The aggregates were immobilised in 25% Puramatrix, and provide with medium without LIF.  

A) Aggregates at 0 hours.  B) Aggregates after 24 hours of incubation.  Within the aggrates 

many small EBs can be seen to have started to form. 

4.4 Discussion 

The experiments showed that considerable cell rearrangement occurs after the formation 

of aggregates with DEP.  Although some cell growth was also observed, adhesive forces 

appear to play the most dominant roles in the cell rearrangement process. 

 

Adhesive forces can be divided into the cell-cell adhesion and adhesion between cells 

and the surrounding materials- in this case the Puramatrix gel and the microelectrode surface.  

The behaviour of the osteoblast-like cells can most simply be explained on the basis of their 

preference for (in this order) adherence to the microelectrode surface, each other, and the 

Puramatrix gel.  The behavior of the stem cells is more complex.  Upon aggregation the stem 

cells initiate the differentiation process and change the production of cell adhesion molecules, 

resulting in a loss of adhesion to the microelectrode surface, and an increase in cohesive 

forces, leading to the formation of embryonic bodies.  Such behavior is similar to surface 

tension forces in mixed immiscible fluids (Steinberg et al., 2007). 

 

After aggregation with DEP embryonic body formation occurs in medium with LIF as 

well as medium without LIF.  The presence of LIF slows the onset of differentiation and 

embryoid body formation down, but does not prevent it.  This indicates that aggregation by 

DEP initiates the differentiation process.  It is well known that all human and murine ES cells 

need aggregation to initiate EB formation (Dang et al., 2002; Itskovitz-Eldor et al., 2000).  
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Engineered aggregation of stem cells has been shown to accelerate EB formation (Gothard et 

al., 2009), a finding which has been confirmed in our experiments.  Established protocols for 

suspension culture technique, for producing EBs takes 3-5 days incubation of cells suspended 

in differentiation medium, where as hanging drop method requires 2 days incubation period 

(Kursad, 2006).  However, with DEP the maximum required time depends upon the electrode 

size.  For an average 100 -50 µm electrode size, the time required for ESCs to form EB 

without LIF is 24 hours, which is comparatively quicker than suspension culture and hanging 

drop method. 

 

Although very low frequency (1 Hz) AC sinusoidal electric field have been shown to 

affect stem cell differentiation (McCullen et al., 2010), the AC fields used in this study were of 

a much higher frequency (1 MHz).  It is not known from the experiments whether the electric 

field used to aggregate cells induces ESC differentiation, or the fact that the cells are 

aggregated. 

 

The size of the aggregates plays an important role in the formation and survival of 

embryoid body-like structures and also determines the fate of the ES cells (Hwang et al., 

2009).  It is known that ES cell differentiation is affected by cues from the microenvironment, 

which directly or indirectly depend on the size of the EB (Watt et al., 2000; Falconnet et al., 

2006; Ng et al., 2005).  Because we did not investigate what cell type the cells differentiate 

into after the differentiation process has been started, it isn‘t known whether the formation of 

different sized aggregates with DEP affects cell fate. 

 

Merging of EBs is known to hinder efficient cell growth and differentiation (Dang et 

al., 2002).  Several ways have been introduced to prevent the agglomeration of EBs as they 

hinder the growth of the cells and the differentiation, including the use of hanging drops and 

encapsulation in various matrices (Magyar et al., 2001; Dang et al., 2004; Fernandes et al., 

2007; Carpenedo et al., 2009; Nonaka et al., 2008; Levenberg et al., 2003).  In the case of EBs 

formed with DEP, merging of the EBs can be prevented by making the surface of the substrate 

unsuitable for adhesion. 

4.5 Conclusions 

The work done concludes that dielectrophoresis can be used as a technique to make 

artificial aggregates of embryonic stem cells and induce them to not only to form embryoid 
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bodies, but also form at a faster speed when compared to the hanging drop method.  This work 

has also looked into optimizing the factors essential for maintenance of EBs, like the 

concentration of the immobilizing agent being 25 % and the electrode sizes for embryonic 

body formation appearing to be around 75-100 micron.  These parameters will be used in 

further experiments. 

 

 The existence of an embryonic stem cell niche in the presence of SAOS-2 cells showed 

different cell behavior.  It is proposed that the behavior of the cells in the aggregates formed 

by DEP is mainly controlled by the adhesive properties of the cells to the different surfaces 

that are available to the cells, similar to the Differential Adhesion Hypothesis of Steinberg and 

co-workers (Steinberg, 1970; 1978; Foty and Steinberg, 2004).  Cell rearrangement after their 

DEP patterning there appears to be controlled by their need to minimize their free adhesive 

energy.  Therefore it becomes highly important to address this issue, to maintain maximum 

cell-cell interaction, the diffusion of cells from an aggregate need to be studied and initial 

rearrangement of cells would be experimented with, to maintain an embryonic stem cell niche, 

involving maximum cell-cell communication. 
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CHAPTER 5 

Application of image analysis to the investigation of the movement 

of cells in artificial stem cell niches created with DEP 

5.1 Introduction 

Cell aggregates are important tools in the study of tissue development, permitting the 

correlation of cell-cell interactions with cell differentiation, viability, and migration, as well as 

subsequent tissue formation.  Aggregate morphology permits re-establishment of cell-cell 

contacts normally present in tissues; therefore, cell function and survival are often enhanced in 

aggregate culture (Cirulli et al., 1993; Peshwa et al., 1994; Koide et al., 1989; Parsons-

Wingerter and Saltzman, 1993; Falascaa et al., 2001).  Because of this, cell aggregates may 

also be useful in tissue engineering, enhancing the function of cell-base hybrid artificial organs 

(Nyberg et al., 1993; Shimizu et al., 2003; Kelm and Fussenegger, 2004) or reconstituted 

tissue transplants (Langer, 1993).  

 

Cell migration is the process by which cells translate from one location to another.  

Migration of individual cells from an aggregate or within a tissue is important in tissue 

engineering, and a critical element in the formation of the architecture of organs and organisms 

(Trinkhaus, 1984).  Except for a small number of exceptions (e.g. sperm) mammalian cells 

cannot swim, and to migrate the cells need to attach to their surroundings.  Cell-cell adhesion 

and cell-matrix adhesion is therefore important for cell motility.  Cell migration involves a 

repetitive process of lamellipodial adhesions at new surface site, followed by detachment from 

an old site.  Cell adhesion and traction helps the cell to pull itself forward.  The rate of 

migration of cells is influenced by the presence of local signals in the form of diffusible factors 

and the composition of the extracellular matrix (Ablamunits et al., 1990; Geho et al., 2005). 

 

Cell migration is often thought to be the result of a persistent random walk (Patlak, 

1953).  In the short term cell movement is persistent, i.e. continues in a specific direction.  

After a certain time the cell, however, reorients itself, and then continues in another direction.  

In a pure random walk the direction of the cell is purely random and the persistence time 

constant.  This type of unbiased movement can be described like Brownian motion and can be 
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modeled using the standard diffusion equation.  Random walks in which there is a bias in a 

preferred direction are termed biased random walks (BRWs).  The bias may be due to different 

reasons.  They include external physical fields, for example gravity (e.g. bottom heavy micro-

organisms moving upwards under gyrotaxis (Hill & Hader, 1997); spatially varying factors, 

such as chemical gradients (Alt, 1980; Othmer et al., 1988), mean-reversion mechanisms, such 

as movement within a home range (Blackwell 1997), or a choice of direction by individuals at 

each step (Benhamou, 2003).  Directed movement of mammalian cell is important in many 

phenomena, including metastasis (Poste and Fidler, 1980), embryogenesis (Trinkhaus, 1984), 

angiogenesis (Carmeliet and Jain, 2000), and immune response (Wilkinson and Lackie, 1979).  

The movement of cells which show BRW can be described by the drift–diffusion (Codling et 

al., 2008).   

 

The physiological significance of cell migration has motivated numerous experimental 

studies (Bellairs et al., 1982; Lackie, 1986), beginning with seminal time-lapse studies of 

Comandon (Comandon, 1917).  Imaging techniques have since permitted observation of 

movement of individual cells within living tissue in vivo and in vitro.  Fluorescent dyes are 

often used to label cells.  Immunological or genetic markers such as green fluorescent proteins 

(GFPs) can be introduced into specific cell populations by transfection (Misteli and Spector, 

1997; Huang et al., 1998), to permit tracking of lineages during development and migration 

(Okada et al., 1999).  Natural cell markers, example melanin, expressed by only a specific cell 

type are also used to track cells in vivo (Chambers et al., 1992; Luzzi et al., 1998).  Tracking 

can be done by time-lapse microscopy (Okada et al., 1999; Kulsea et al., 1998; Kulsea et al., 

2002) or conventional microscopy after sectioning (Sheen et al., 1995) or collecting tissue 

samples (Andrade et al., 1998).  The time lapse technique permits quantitative analysis of 

movements of individual cells and can provide insights into the mechanisms of cell migration.  

Time lapse migration studies have been performed to evaluate cell migration in 2 dimensions 

(Cukierman et al., 2002) or 3 dimensions (Knapp et al., 2000; Schreiber et al., 2001; 2003).  

Techniques that have been used for cell tracking include laser scanning microscopes which 

enable visual analysis and measurement of submicron dynamic processes inside living cells 

and tissues.  Non-linear laser microscopy based on two-photon imaging can be used to view 

DNA stains in developing embryos and cells (Denk et al., 1995; Williams et al., 1994).  

Automated image analysis systems have been used to record data to fit a persistent random 

walk model to cell migration experiments (Dunn and Brown, 1987).  Dickinson and Tranquillo 

(1993) developed algorithms to estimate the migration and the traction of a population of cells 
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separately as time-invariant values, which made statistical comparisons among experiments 

easier.  Barocas and Tranquillo (1997a) quantified cell migration by modeling cell movement 

as a persistent random walk analyzed with a generalized least squares regression (GLSR) 

algorithm.  Knapp et al. (2000) developed an in vitro isometric cell traction assay that made it 

possible to collect the required data to calculate the random cell migration coefficient and the 

cell traction parameter for the same population of cells.  

 

 In previous work (this work, chapter 4) it was shown that aggregates could be made of 

mammalian cells using dielectrophoresis.  It was also shown that dielectrophoresis can be used 

to create 3-dimensional artificial stem cell niches from osteoblast cells on a microelectrode 

surface.  Cell movement occurred after the formation of aggregates. The adhesion of cells to 

the microelectrode surface and their spread from an aggregate, however, modifies the niche 

structure and affects cell-cell contacts. The cell movement in previous experiments was only 

observed intermittently, as aggregates could only be observed after prolonged intervals.  In this 

chapter it is described how aggregates were formed of SAOS-2 cells with DEP, immobilized 

in Puramatrix gel, and then continuously monitored for 24 hours to study the the time-

dependent movement of these cells from aggregates after the formation of the aggregates.  

Image analysis was used to analyse the movement of individual cell.  It was attempted to 

interpret the movement of the cells in terms of a random walk.  Such studies were expected to 

help in optimising the formation of cell aggregates for use as artificial stem cells niches.   

5.2 Material and methods 

5.2.1 Cells 

SAOS-2 adherent osteoblast-like cells were grown in RPMI 1640 medium supplemented 

with 10% FCS, 12 mM glutamine, 100 units ml
-1

 penicillin and 100 µg ml
-1

 streptomycin in a 

humidified chamber with 5% CO2 at 37°C until near 90% confluence was obtained (3-4 days).  

Medium was exchanged every 2 days.  The cells were harvested using filter sterilized 0.5% 

trypsin and 0.5% EDTA dissolved in 1X PBS.  Following this, the cells were washed twice 

with 300 mM D-sorbitol in order to lower the conductivity to allow patterning with positive 

dielectrophoresis.   
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5.2.2 Dielectrophoretic formation of cell aggregates 

A DEP set-up was used to form aggregates as described previously (chapter 3; Sebastian 

et al., 2006).  Microelectrodes were of the interdigitated oppositely castellated design; only 

microelectrodes with a characteristic size of 75 μm were used in the experiments.  The 

chamber was autoclaved prior to use.  The chamber was filled with the low conductivity D-

sorbitol solution, and following this electric fields were generated between the microelectrodes 

using signals of 1 MHz frequency and voltages of 10 Vpk-pk generated using a Thurlby-

Thandar TG120 function generator.  Cells were introduced into the chamber and allowed to be 

attracted to the high field regions between the electrodes.  Fresh sorbitol solution was passed 

through the chamber to redistribute the cells, remove non-attracted cells and maintain a low 

conductivity in the chamber.  More cells were introduced until the height of the aggregate 

became constant.  The electric field was then maintained for a further 10 minutes to force the 

cells to adhere to each other and the glass surface.  The electric fields could then be removed.   

 

To immobilize the cells, 25% Puramatrix, mixed with 300 mM sorbitol solution was 

introduced into the chamber.  RPMI 1640 medium was introduced at the edge of the chamber 

in order to initiate gel formation.  Gel formation took 5 to 10 minutes from the introduction of 

the medium.  The chamber was placed in a sterile petri dish on top of a microscope stage 

containing 60 mL RPMI1640 cell growth medium; HEPES buffer was added to the medium at 

a final concentration of 25 mM to maintain the pH level in the medium.  The microscope had a 

heated stage and was covered by a transparent hood to keep temperature constant at 37
o
C.  A 

small vessel with water was placed inside the hood to maintain humidity inside the chamber.   

5.2.3 Image analysis 

A CCD video camera was used to take live video of the cells over a period of 24 hours.  

The video camera was connected to a laptop to simultaneously view and record images.  The 

video would only run actively for one hour and then would automatically stop.  Therefore 

every hour the video had to be reactivated; at this time a check was made whether the lens was 

accurately focused on the aggregate.   

 

From the video the position of a given cell was traced onto graph paper (see Figure 

5.1) and its position (x and y axis co-ordinates) at 15 minutes time intervals was extracted 
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from the trace.  The data was then put into Matlab and plotted using the algorithm given in 

appendix II and III.   

 

 

Figure 5.1: Trajectories of randomly selected cells plotted every 15 minutes on a graph sheet A & B 

show path of cells. 

Each dot represents a 15 minutes time period. 

 

It was assumed that the movement of the cells could be described by a random walk 

with short-term directional persistence.  The movement of a given cell was therefore expected 

to persist in whatever direction a cell was migrating at short observation times, but at long 

observation times the migration would be random.  The path chosen by the cell was therefore 

impossible to predict in the long term, however if a number of cells were tracked in the same 

lattice the average manner in which cells moved should be predicable.  The mean squared 

displacement of the cells in the random walk would be expected to increase linearly with time 

(Denny, 1993). 

 

In this study the cells were embedded in a 3D tissue construct which was observed from 

the top only.  The average mean squared displacement was calculated from the cell position (x 

and y coordinate) by the equation  

222 )()( nnXnX yx      (5.1) 

 

Where Xx(n) and Xy(n) are the x and y coordinates, respectively, relative to the starting 

position at step n (see Appendix I for a derivation of the equation).  δ is the distance travelled 

by a cell during a step.  If it is assumed that a cell takes a constant step δ every η seconds, and 

the number of steps taken is equal to t/η, where t is the time since the particle started its walk, 

then inserting this expression for n in equation 7.1 gives: 
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    (5.2) 

 

The mean squared distance travelled by the cell increases directly with time at a rate that 

is dependent on the ratio of δ
2
 to τ.  This ratio is equivalent to a diffusion coefficient (Denny, 

1993). 

 

Diffusion coefficient D =  
  

 
   (5.3) 

 

In a purely random walk, the average displacement should be zero.  However, during the 

experiment it was observed that the average displacement was not zero.  The most likely cause 

for this fact was most likely drift of the gel matrix during the experiment.  The drift velocity 

could be estimated by dividing the total measured average displacement by the total time.  The 

drift velocity (in direction i = x, y) was therefore: 

 

   
                          

          
   (5.4) 

  

Assuming that the drift velocity was approximately constant during the experiment, the 

displacement due to drift (xid = Vi × t) was subtracted from the measured displacement to find 

the displacement due to the random walk only.   

5.4 Results  

After forming the aggregates the cells were monitored for 24 hours.  Two randomly 

chosen aggregates were studied.  Active cell movement was observed in the first 7 hours.  The 

movement of the cells then slowed down.  Cell lysis was observed near the end of the 24 hours 

period.  This indicated that the conditions on the microscope and the medium composition 

were not optimal for the cells.  Only data from the first 7 hours were analysed.   

 

Figure 5.2 shows stills of the video of the cells obtained at different time intervals.  It is 

clear from the stills that the cells at different regions of the electrode move differently within 

the immobilized gel over time. 
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Figure 5.2: Real time imaging of SAOS-2 cell aggregates formed by DEP at 75 µm electrode region, 

10 Vpk-pk and 1 MHz. 

The cells were observed under the Nikon E60 microscope for 24 hours but image up to 7 hours 

only are shown. 

 

To investigate this further, the paths of a number of single cells within the aggregates 

were traced and plotted.  Results are shown in Figure 5.3. 
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Figure 5.3: Migration trajectories of random SAOS-2 cells. 

A) Image of two aggregates at time zero in the 75 µm region, immobilized in 25% 

Puramatrix.  B) Image of two aggregates after 7
th

 hour.  C) and D) Migration trajectories of 

cells from the centre (C) and the periphery (D) of the aggregates.  All the cells are in different 

colors and have a different marking style.  Each point on the line roughly indicates a 15 

minute gap.  The starting position of a given cell is indicated by a circle and the end point is 

indicated by a square.  The arrows indicate the overall direction of migration/drift.  In C) cells 

in the centre of the aggregate can be seen to either perform a random walk within the 

aggregate, or migrate towards the top right hand side of the image.  In D) cells on the 

periphery can be seen to perform a random walk over the microscope slide surface, with a 

significant drift/migration towards the top right hand side of the image. The Oval structure 

represents the initial aggregates size and shape. 
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B) From the video, and the analysis of the movement of single cells, the following picture 

now emerges: 

 

- Most if not all cells made short term random movements during the observation period.  

These short term random movements were more prominent for the cells at the periphery 

(which had more space to move, and also could propel themselves easily over the electrode 

surface to which they adhered) than for the cells in the centre of the aggregates, which 

were inhibited in their movement by neighbouring cells, and often did not have direct 

access to an electrode surface to adhere to. 

 

- Cells in the centre of the aggregate had a tendency to clump together.  This was 

particularly prominent for cells at the top of the aggregate.  The cells at the top in each 

aggregate had formed separate clumps by 4.5 hours after the start of the experiment, but 

near the end of the experiment the two clumps had come closer together and the two 

clumps had started to merge. 

 

- Many cells appeared to drift during the experiment towards the top right hand corner of the 

image.  This was particularly prominent for cells in the clumps formed at the top of the 

aggregates, but was also quite prominent for some cells on the periphery. 

 

Equation 5.2 predicts that there should be a linear relation between the mean square 

displacement of the cells and time, and that the slope would represent an equivalent diffusion 

coefficient for the movement of the cells.  A plot of the mean square displacement as a 

function of time, as shown in Figure 5.4 (with and without compensation for drift), shows that 

this indeed is the case, though a line is obtained with two gradients.  The first part, up to 5000 

seconds, has a smaller gradient, indicating that cell movement at first was slow.  The second 

part (after 5000 seconds) has a larger gradient, indicating that the cells speeded up during the 

later part of the experiment.   
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Figure 5.4: Mean square displacement of osteoblast cells from aggregates formed with DEP as a 

function of time. 

Data are shown with and without compensation for drift.  After compensation for drift the 

equivalent diffusion coefficient is found to be 1.71 ± 0.13 × 10
-11

cm
2 

s
-1

 for the period up to 

5000 seconds, after which it increases to 5.08 ± 0.11 × 10 
-11

cm
2 

s
-1

. 

5.5 Discussion 

Cell movement in aggregates created with DEP has been proven to be quite complex, 

with different types of behavior occurring in different regions.  A crucial factor appears to be 

access to a surface to adhere to.  Cells in the periphery were close to and had direct access to 

the electrode surface, and therefore moved at greater speed.  Cell at the top did not have direct 

access to the electrode surface (because it was too far away, and other cells were in the way).  

Puramatrix on the other hand is a quite soft gel and SAOS-2 osteoblastic cell cells did not 

adhere to it, as no stretching of the cells in the Puramatrix was observed.  Instead the cells 

appeared to prefer to adhere to each other, as shown by their tendency to clump together.   

 

A significant drift was observed in both the cells that had clumped together away from 

electrode surface and the cells in the periphery that had adhered to the electrode surface.  It is 

unlikely that this drift is directed migration of the cells as there was no obvious migratory cue 

for cell movement.  Instead, the drift is most likely caused by creep of the gel matrix.   
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After the drift velocity of the gel was deducted from the average mean square 

displacement of the cells, a value for the equivalent diffusion coefficient for the SOAS-2 

osteblast-ike cells was obtained of 5.08 ± 0.11 × 10
-11 

cm
2 

s
-1

. 

 

 

Table 5.1: Estimated diffusion coefficient of NIH-3T3 mouse embryonic fibroblast cells and SAOS-2 

human epithelial-like osteosarcoma cells on various treated surfaces (from Cooper-White et al., 

2010). 

 

Table 5.1 compares diffusion coefficient values of mouse embryonic fibroblasts of cell 

line NIH-3T3 with human epithelial-like osteosarcoma cells of cell line SAOS-2, on different 

surfaces.  Fibroblasts travel faster than SAOS-2 cells on untreated surfaces as the value of the 

diffusion coefficient D for fibroblast cells for untreated surfaces is 2.5 ± 0.2 × 10
-9 

cm
2 

s
-1 

whereas for SAOS-2 cells it is 1.0 ± 0.1 × 10
-9

cm
2 

s
-1

.  Lower values for D ranging between 

1.22 and 2.23 × 10
−9

 cm
2
 s
−1

 have been determined for rat osteoblasts on RGDS and RDGS-

modified glass, respectively (Dee et al., 1999).  Work done by Sengers et al. (2007) showed a 

value of D 4.9 ± 0.7×10
-9 

cm
2 

s
-1

 for an MG-63 human osteosarcoma cell line.  The value of 

the diffusion coefficient for SAOS-2 cells that was determined in our studies was 5.08 ± 0.11 

× 10
-11 

cm
2 

s
-1

.  This is lower than any value in the previously mentioned study, indicating that 

cell movement was slower compared to the data available in literature.  It was noted that cell 

viability declined in the later part of the experiment, however at the start cell viability 

appeared strong, and loss of viability can therefore be discounted as a reason for the lower 

equivalent diffusion rate.  The main reason for the slow movement compared to the literature 

data is likely to be due to the fact that the cells in this study were immobilized in a gel, and 

cells in the experiment described in the literature were not.  The rigid nature of the gel is likely 

to pose a challenge to cell movement.  No literature data was found on the diffusion coefficient 

of SAOS-2 cells in gels.  However Barocas et al. (1994) showed that fibroblasts had a 

diffusion coefficient of 1.7 × 10
−10 

cm
2 

s
-1

 in a collagen microsphere.  Given a typical value of 
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D for fibroblast cells in Table 7.1 of 2.5 ± 0.2 × 10
-9 

cm
2 

s
-1

 this suggests cells may move more 

slowly in a gel by a factor 10.  Given a typical value of D for osteoblasts on a surface of 1.0 ± 

0.1 × 10
-9 

cm
2 

s
-1, 

a value of D of 5.08 ± 0.11 × 10
-11 

cm
 
s

-1
 for SAOS-2 cells in Puramatrix gel 

seems justified.   

5.6 Conclusions 

Digital time-lapse video microscopy was employed to monitor the migration of the 

SAOS-2 cells immobilized in Puramatrix.  The trajectories of the cells were reconstructed with 

MATLAB. By constantly observing the cell movement it was clear that the cells near the top 

of the aggregate appeared to congragte into clumps which then drifted with the gel while the 

cells near the microelectrode surface appeared to first move slowly whilst they attempted to 

adhere to it and then move over it rapidly once they did.  The cells were shown to move with 

an equivalent diffusion coefficient of 5.08 × 10
-11

 cm
2 

s
-1

 over the glass surface once they had 

adhered to the surface.  This value was lower than the literature values for the equivalent 

diffusion coefficient for SAOS-2 cells on surfaces, and is most likely due to the presence of 

the Puramatrix gel matrix, which slows the cells down.    
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CHAPTER 6 

Optimization of architecture of artificial stem cell niches using 

dielectrophoresis  

6.1 Introduction 

Haematopoiesis during development shifts to different locations in the body indicating 

that many different tissues are capable of providing suitable environments for haematopoiesis.  

This raises important questions as to what factors are common or different in the different stem 

cell niches in the different tissues (Durand et al., 2007; Chan et al., 2009).   

 

The fate of the HSCs within tissues is determined by interaction of stem cells with its 

specialised microenvironment or stem cell niche (Schofield, 1978).  Major components of the 

haematopoietic stem cell microenvironment are the non-haematopoietic cells, which from part 

of the niche but do not directly partake in haematopoiesis (Wilson and Trumpp, 2006; Ohneda 

et al., 1998; Takeuchi et al., 2009).  Each different niche is likely to have different cells 

involved.  For example, AGM derived stromal and endothelial cells have been shown to play 

important roles in the maintenance and expansion of the earliest definitive HSCs (Harvey and 

Dzeirzak, 2004).  Coculture of hESC cells with fetal liver derived stromal cells line has been 

shown to lead to an increase in the formation of blood cells and HSC precursors (Ledran et al., 

2008).  Support for this hypothesis has been given by the fact that purified osteoblastic cells 

support HSC survival and limit proliferation (Taichman et al., 1994; 1996; Calvi et al., 2003).  

Active HSC differentiation and migration in bone marrow, on the other hand, is thought to be 

associated with the vascular niche which is formed by the small arterioles and sinusoids that 

spread throughout the marrow.  The sinusoid wall consists of single layer endothelial cells and 

does not have any supporting cells, and endothelial cells are thought to play major roles in the 

vascular niche (Butler et al., 2010). 

 

Osteoblastic cells can be the source of signals that guide stem cells (Emerson and Zhu, 

2004; Durand et al., 2007; Dzierzak et al., 2009; Nakamura et al., 2010).  We will describe 

how we have made mixed aggregates of embryonic stem cells and osteoblastic cells, and 
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discuss the effects of aggregate architecture on the observed redistribution of cells after the 

formation of the aggregates.   

6.2 Materials and methods 

6.2.1 Cells 

Oct-4 mouse embryonic stem (ES) cells were used in the experiments.  Oct-4 embryonic 

stem cells express Green Fluorescent Protein (GFP); GFP production is linked with Octamer-4 

production.  The production of Octamer-4 is essential for the self-renewal of undifferentiated 

embryonic stem cells and its presence can therefore be used as a marker for undifferentiated 

cells.  Loss of fluorescence marks the onset of differentiation in the cells (Niwa et al., 2000). 

 

Murine embryonic stem (ES) cells and osteoblastic cells (SAOS-2) were grown in T25 

flasks as described previously in chapter 3.  The cells were washed twice with 300 mM D-

sorbitol in order to lower the conductivity to allow patterning with positive dielectrophoresis.  

The osteoblastic cells were stained with PKH26 red fluorescent membrane stains according to 

the protocols provided by the distributor (Sigma-Aldrich).  The concentration of PKH26 was 4 

× 10
−6

 M, for 10 million cells per mL.  After staining the cells were washed with 300 mM D-

sorbitol twice and then transferred to 300 mM D-sorbitol for patterning with positive 

dielectrophoresis.  Oct-4 Embryonic stem cells expressed GFP, and did not need staining.   

6.2.2 Dielectrophoretic formation of cell aggregates 

A DEP set-up was used to form aggregates as described previously (chapter 3; see also 

Sebastian et al., 2007 a & b).  The chamber was autoclaved prior to use.  The chamber was 

filled with the low conductivity 300 mM D-sorbitol solution and, following this, electric fields 

were generated between the microelectrodes using signals of 1 MHz frequency and voltages of 

10 Vpk-pk for electrodes of 50-100 µm, and 20 V pk-pk for electrodes of 125-200 µm.  Electric 

signals were generated using a Thurlby-Thandar TG120 function generator.  Cells were 

introduced into the chamber and allowed to be attracted to the high field regions between the 

electrodes.  Fresh sorbitol solution was passed through the chamber to redistribute the cells, 

remove non-attracted cells and maintain a low conductivity in the chamber.   
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For constructing layered aggregates in which cells of one type were covered by cells of 

another cell type, the cells that were to be patterned as the bottom layer on the electrode 

surface were introduced first and attracted with positive dielectrophoresis at 1 MHz frequency 

and 10 Vpk–pk at 100 and 20 Vpk–pk at 200 μm electrode regions.  When a small aggregate had 

formed in the high field regions between the electrodes the cells of the second type that were 

to form the top layer were introduced, and layered on top with DEP until the aggregate reached 

its maximum height.  The aggregates were immobilized in 25% Puramatrix gel and the whole 

chamber was immersed in growth media and placed inside a humidified incubator.  The 

Experiments for each niche architectural construct was repeated three times to confirm the 

results.  

6.3 Results 

6.3.1 Formation of aggregates containing both ES cells and osteoblastic cells 

Aggregates with 3 different architectures (Figure 6.1) were formed of mouse embryonic 

stem cells and SAOS-2 osteoblastic cells with positive DEP at 1 MHz 10 Vpk-pk at 

microelectrodes with 75 μm castellations.  The first architecture, shown in Figure 6.2, 

consisted of an inner core of embryonic stem cells surrounded by osteoblastic cells.  The 

second architecture, Figure 6.3, consisted of osteoblastic cells surrounded by embryonic stem 

cells.  The third type of aggregates Figure 6.4, was formed simply by introducing mixture of 

both cell types at the same time.  The initial distribution of stem cells and osteoblastic cells 

within these aggregates was therefore random.   

 

 

Figure 6.1: Pictorial presentation of the different architectural constructs of an artificial stem cell 

niche.  

(a) Layered aggregate with OCT-4-GFP cells surrounding osteoblasts. (b) Layered aggregate 

of Osteoblasts surrounding the OCT-4-GFP cells (c) Mixture of both the cell types. 
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In all the aggregates, the stem cells condensed into embryoid body-like structures, and 

the osteoblastic cells spread out over the surface of the electrode.  However, significant 

differences were observed in the behavior of cells in the different architectures.  These 

differences related mainly to the ease by which the osteoblastic cells could reach and spread 

over the slide surface, and stem cells could find and adhere to each other without steric 

hindrance.   

 

In a layered aggregate in which a core of stem cells was surrounded by osteoblastic cells 

(Figure 6.2), the stem cells were all close to each other in the centre of the aggregate at the 

start of the experiment.  A single large embryonic body was therefore formed.  The 

osteoblastic cells at the periphery of the aggregate near the electrode surface adhered to the 

surface and spread; osteoblastic cells near the top of the aggregate, however, were too far from 

the substrate surface and were also impeded from moving to the surface by the presence of the 

stem cells.  The lack of a surface to adhere to, appears to cause the osteoblastic cells to round 

up and/or adhere to each other.  There was little evidence of any adherence between 

osteoblastic cells and stem cells.   

 

 

Figure 6.2: Aggregates of Oct-4 stem cells (green) surrounded by SAOS-2 osteoblastic cells (red). 

Aggregates formed by DEP in a 75 micrometer electrode region using an applied signal of 1 

MHz frequency and 10 Vpk-pk.  The SAOS-2 osteoblastic cells were stained red with PKH26 

membrane dye; the Oct-4 cells produced GFP, and therefore fluoresced green.  A) Aggregate 

formed at time zero.  B) Aggregate after 24 hours.  The osteoblastic cells that were near the 

slide surface at the start have spread out over the slide surface; those further away from the 

surface have rounded up; some osteoblastic cells have adhered to each other.  The stem cells 

have condensed into an embryonic body.   
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In a layered aggregate in which the osteoblastic cells form the inner core, and the stem 

cells the outer layer, the observed behavior depended on the number of stem cells in the 

aggregate.  When a relatively small number of stem cells were used, the stem cells were thinly 

spread over the aggregate surface at the start of the process.  In this case many smaller 

embryonic bodies were often formed spread across the aggregate.  When a larger number of 

embryonic stem cells were used, single embryonic bodies tended to be formed.  In contrast to 

the previous architecture, the osteoblastic cells did not spread over the surface.  Instead they 

tended to stay closely associated with the ES cells, presumably because steric hindrance and 

movement of the stem cells during the condensation process prevented them from spreading.  

The result was that after 24 hours most aggregates were round and consisted of both 

osteoblastic cells and ES cells. 

 

 

Figure 6.3: Aggregates of SAOS-2 osteoblastic cells surrounded by Oct-4 stem cells. 

Aggregates formed by DEP in a 75 micrometer electrode region using an applied signal of 1 

MHz frequency and 10 Vpk-pk.  The SAOS-2 osteoblastic cells were stained red with PKH26 

membrane dye; the Oct-4 cells produced GFP, and therefore fluoresced green.  A) Aggregate 

formed at time zero.  B) Aggregate after 24 hours.  The aggregate can be seen to have formed 

a ball shaped structure composed of both ES cells and osteoblastic cells.  The osteoblastic 

cells did not spread out to a major extent over the slide surface. 

 

Mixed aggregates of ES cells and osteoblastic cells were also formed.  Embryonic body 

formation in mixed aggregates was intermediate to the previous aggregates.  Some of the 

osteoblastic cells (presumably those close to the surface at the start) tended to spread, whilst 

those further away from the substrate surface or hindered from reaching the surface tended to 

round up or adhere to each other.  Condensation of the stem cells into embryonic bodies still 

occurred, but some steric hindrance of the condensation process occurred by the osteoblastic 
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cells.  This often resulted in the formation of several small embryonic bodies within an 

individual aggregate rather than a single one. 

 

  

Figure 6.4: Aggregate consisting of a mixture of SAOS-2 and embryonic stem cells. 

Aggerates formed by applying a 1 MHz, 10 Vpk-pk signal to interdigitated oppositely castellated 

with a characteristic size of 75 micrometer.  A) Aggregate at zero hour B) After 24 hours the 

aggregate shows surface adherence and spreading of some of the osteoblastic cells and 

rounding/aggregation of others.  The stem cells tended to form several embryonic bodies in 

this architecture. 

6.4 Discussion 

The interaction between different cell types is an important factor in the determination of 

stem cell fate (Hwang et al., 2009).  To construct microniches which are functionally efficient 

it is important to provide conditions that will enhance cell-cell communication.  The 

construction of aggregates with DEP enhances cell-cell communication as the mutually 

attractive dielectrophoretic forces bring the cells together.  After the formation of the 

aggregates by DEP and their immobilization in a gel, however, the cells will rearrange 

themselves.  The two cell different cell types used in this study, i.e. osteoblastic cells and 

embryonic stem cells, have very different adhesive properties.  Once the differentiation 

process has been initiated the stem cells appear to become strongly cohesive.  They do no 

longer adhere to the glass surface, and condense into tight aggregates.  With osteoblastic cells, 

on the other hand, under normal circumstances the adhesive forces between the cells and the 

substrate surface appear to dominate.  Only when adhesion of the cells is not possible (because 

the surface does not allow cell adhesion, is too far away, or the osteoblastic cells are prevented 

from reaching the substrate surface by other cells) do cohesive forces dominate; osteoblastic 
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cells appear to prefer adhering to each other to adhering to the extracellular matrix formed by 

dilute Puramatrix.  The reorganization of cells after the formation of aggregates with 

dielectrophoresis thus appears to be regulated by the initial distribution of the cells and the 

adhesive forces between the cells and their microenvironment, i.e. the substrate surface, the 

extracellular matrix, and each other.   

 

The role of adhesive forces between cells has previously been explored in Steinberg‘s 

Differential Adhesion Hypothesis (DAH) (Foty et al., 1996, Steinberg, 1963; 2007).  The 

DAH theory proposes that the cells of different kind adhere to each other with different 

strengths.  Cells in mixed populations are thought to rearrange themselves to minimize their 

total adhesive free energy.  In embryos the differential adhesion is thought to lead to the 

sorting of embryonic cells according to differences in the strengths of their intercellular 

adhesions, with less adhesive cells enveloping more adhesive cells (Steinberg, 1963; 1970; 

1996; 2007).  Extensions of the DAH theory have been proposed, and the theory has 

previously been used to explain cell rearrangement in other engineered tissues (Mironov et al., 

2003; 2009).  In our case an extension is needed to include the interaction between the cells 

and the surrounding materials, i.e. the microelectrode surface and the Puramatrix.   

 

Surprisingly, the optimum aggregate for niche formation appears to be when the 

osteoblastic cells are at the microelectrode surface, and the stem cells in a thick layer on top.  

A simple explanation for this fact could be that in an aggregate with a thick layer of stem cells 

on top and osteoblastic cells at the bottom the osteoblastic cells are swept into the embryonic 

body as it is formed.  In an architecture with osteoblastic cells on top and stem cells at the 

bottom, however, the osteoblastic cells at the top have too much for manoeuvre, which allows 

them to spread rather than be taken up in the embryonic body. 

6.5 Conclusions 

It was shown that aggregates could be made with dielectrophoresis with different 

architectures, for potential use as artificial stem cell niches.  It is proposed that the optimal 

architecture for the formation of an artificial niche is an aggregate with osteoblastic cells at the 

bottom, and a relative large number of embryonic stem cells at the top as this leads to the 

formation of a single embryonic body with osteoblastic cells in close association with 

embryonic stem cells.   
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The reorganisation of the cells in the aggregates appears to be mainly determined by the 

adhesive forces between the cells and the surrounding materials, and can be adequately 

described by an extension of the differential adhesion hypothesis.  
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CHAPTER 7 

Investigation of the differentiation of the embryonic stem cells in 

aggregates formed using DEP  

7.1 Introduction 

Recreation of stem cell niches in vitro could help to achieve a better understanding of 

the roles of support cells in stem cell differentiation, quiescence and expansion, and could be a 

powerful tool for developing therapies based on stem cells (Peerani and Zandstra, 2010; Lund 

et al., 2009; Bowman and Zon, 2009).  The natural environment of stem cells is 3-

dimensional, and although 2D co-cultures are often used for investigating the interaction 

between cells, they cannot be expected to be representative of the stem cells‘ natural 

environment.  Indeed, a recent study directly comparing haematopoietic differentiation in a 2D 

and 3D system has shown that optimal haematopoietic cell differentiation occurs when a three-

dimensional system is used (Zhang et al., 2005).  Attempts at recreating the stem cell niche in 

vitro should therefore involve methods for creating 3D microenvironments.   

 

When differentiating, embryonic stem cells often go through a stage in which they 

form spherical cell condensates called embryonic bodies.  In order to make stem cell 

differentiation reproducible it is necessary to control EB formation.  Amongst the methods 

used to reproducibly create EB, the hanging drop method is the most extensively used (Karmer 

et al., 2000; 2003; 2005; 2005b; Nieden et al., 2003).  The hanging drop method involves 

plating drops of a cell suspension on the inside cover of a petridish.  The cells in each droplet 

aggregate to form an EB.  The final size of the EB is mainly determined by the number of cells 

initially put into the hanging droplet.  The inclusion of other cell types in hanging drops is 

straightforward; however the hanging drop method does not give one control over the (initial) 

architecture of the EB.   

 

EB size can affect fate decisions (Leahy et al., 1999; Koike et al., 2007), as can the 

composition and architecture of the initial aggregates.  To obtain more direct control over stem 

cells fate in EB many microscale technologies have also been developed such as surface 

patterning, hydrogel microwells, and microfluidic systems (Khademhosseinni et al., 2006; 
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Park et al., 2007; Peerani et al., 2007; Torisawa et al., 2007).  Micropatterning has been used 

to evaluate the effect of EB size on ES cell differentiation.  For example Park et al. (2007) 

microfabricated adhesive stencils used to pattern ES cells to control the initial ES cell 

aggregate size.  Aggregate size was shown to influence the early differentiation of different 

germ layers (Park et al., 2007).  In another study Hwang et al. (2009) regulated EB-size using 

non adhesive polyethylene glycol (PEG) hydrogel microwells of various diameters (150, 300 

and 450 µm), forming homogenous EBs of different sizes.  They found that ES cell 

differentiation into cardiac and endothelial lineage was a highly size dependent response 

(Hwang et al., 2009). 

 

In the previous chapters it was shown that dielectrophoresis - the movement of particles 

in non-uniform electric fields – can also be used to form EBs.  The method allows one to 

create aggregates of stem cells and non-stem cells on their own, and in various combinations 

in aggregates with well-defined architectures.  However, in the experiments described only the 

redistribution of the ESC after the creation of the aggregates was investigated.  The formation 

of EB by the ESC indicates that they have initiated their differentiation, but is does not tell one 

whether the ESC have differentiated along a specific lineage. 

 

In this chapter we will use Brachyury marker ESCs to indicate if the cells are moving 

towards the mesenchymal lineage.  This will be done by aggregating Bry ESCs using 

dielectrophoresis and then by using image analysis, production of the level of green 

fluorescence in the aggregates will give an indication of their mesenchymal fate determination.  

Also the Bry ESCs will be co-cultured with SAOS-2 cells, aggregated by DEP, to study the 

affect of support cells in fate determination of ESCs. 

7.2 Materials and methods 

7.2.1 Cells 

Brachyury mouse embryonic stem cells (Bry ESC) and SAOS-2 osteoblast-like cells 

were used in the experiments.  The Bry ESCs were genetically modified cells.  Under normal 

circumstances the Bry ESCs do not fluoresce.  However, when the cells commit to the 

mesenchymal lineage they express green fluorescence protein (GFP).  The SOAS-2 osteoblast 

cells did not normally fluoresce.  The murine Bry embryonic stem cells and osteoblasts cells 

were grown in T25 flasks as described previously in chapter 3.  The cells were washed twice 
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with 300 mM D-sorbitol in order to lower the conductivity to allow patterning with positive 

dielectrophoresis.  The osteoblast cells were stained with PKH26 red fluorescent membrane 

stains according to the protocols provided by the distributor (Sigma-Aldrich).  The 

concentrations of PKH26 was 4 × 10
−6

 M, for 10 million cells per ml.  After staining the cells 

were again washed with 300 mM D-sorbitol twice and then transferred to 300 mM D-sorbitol 

for patterning with positive dielectrophoresis.  Embryonic stem cells were not stained.   

7.2.2 Dielectrophoretic formation of cell aggregates 

A DEP set-up was used to form aggregates as described previously (chapter 3, see also 

Sebastian et al., 2007 a & b).  The chamber was autoclaved prior to use.  The chamber was 

filled with the low conductivity 300 mM D-sorbitol solution.  Electric signals (1 MHz, 10 Vpk-

pk) were generated using a Thurlby-Thandar TG120 function generator and applied to 

interdigitated oppositely castellated microelectrodes made from ITO on glass.  To form 

aggregates of ES cells of different sizes ESC were introduced into the chamber and attracted 

by dielectrophoresis to the high field regions between the castellations of micro electrodes 

with characteristic sizes of 50 µm, 75 µm, and 100 µm.  Fresh sorbitol solution was passed 

through the chamber to redistribute the cells, remove non-attracted cells and maintain a low 

conductivity in the chamber.  Once the cells reached the maximum height, the aggregates were 

immobilized in 25% Puramatrix gel and the whole chamber was immersed in GMEM growth 

medium and placed inside a humidified incubator.   

 

To investigate the response of the Brachyury stem cells to the presence of osteoblasts, 

layered aggregates were constructed with SAOS-2 cells at the bottom/centre and Brachyury 

cells on top surrounding the SAOS-2.  The protocol used for constructing these layered was 

previously described in chapter 5; see also Sebastian et al. (2007).   

7.2.3 Image analysis 

Images were taken with a Leica TCS2 confocal microscope.  All settings of the confocal 

microscope were kept the same throughout all the experiments to ensure reproducibility of the 

results.  Analysis of the images obtained with the confocal microscope was done with Fiji.  Fiji 

is an open source image analysis programme based on ImageJ.   
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The protocol was as follows: 

 

Three pictures were taken at zero hours and 24 hours for all three electrode region (50, 

75 and 100 µm) were taken.  All images were taken at the same magnification.  The images 

were loaded into the Fiji software (the image was in TIFF format, JPEG images cannot be used 

by the software).  A square block was placed in the picture in the centre of an aggregate in 

order to delineate the region of interest (ROI) where intensities values were to be measured.  

The ROI size was kept constant for every picture used in this set of data, simply by copying 

the block and pasting it on fresh image every time.  Once the ROI was pasted onto the desired 

area, the analysis tool was selected within the software and; histogram and plot profiles of the 

areas were made.  A histogram is a graph showing the number of pixels in an image at each 

different intensity value found in that image.  For an 8-bit greyscale image there are 256 

different possible intensities, and so the histogram will graphically display 256 numbers 

showing the distribution of pixels amongst those greyscale values.  Figure 7.1 shows an 

example of what that histogram looked like.  The mean and the standard deviation are also 

displayed.  These data are very useful as the list of the values can be saved on Microsoft excel 

file and then the calculations for the data can be made. 

 

Typically, there are 256 shades of gray ranging from black to white.  These shades of 

gray are coded as unsigned one-byte integer values with 0 corresponding to black and 255 

corresponding to white.  The minimum intensity value is 0 and the maximum is 255.  These 

pixel values can also be thought of as the intensity of the light where a greater intensity 

corresponds to a brighter pixel.  The total number of pixels in the ROI is 9672.  The frequency 

of number of pixels lying in the respective intensity is generated through the histogram.  To 

get the true intensity, the frequency is multiplied with the respective intensity value.  The sum 

of this value is divided by the total number of pixels in the ROI (9672) to get the average 

intensity value, which is plotted on the graph.  The standard error is then calculated using the 

standard deviation equation. 
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Figure 7.1: Example of the histogram. 

 

Pixel and intensity values were plotted in excel graphs.  The average was obtained 

from three images for each set of data, and the standard average standard deviation value was 

calculated.  The average standard deviation from all the three set of intensity values 

represented the standard error.  To obtain a 95% confidence level, the average standard 

deviation was multiplied with 1.96.   

 

The Experiments were repeated three times at least to confirm the results.  

7.3 Results 

7.3.1 Formation of aggregates of different sizes containing Brachyury ES cells only 

Aggregates were made with Brachyury stem cells in order to investigate whether 

differentiation along the mesenchymal lineage (as demonstrated by the production of GFP) is 

triggered by their aggregation by DEP, and whether EB size has any role to play in the onset of 

differentiation. 

7.3.1.1 50 µm electrode size 

The aggregates of Bry ESCs formed embryoid bodies when subjected to DEP.  The 

embryoid bodies were formed over a period of 24 hours in the absence of LIF.  The aggregates 

formed at the 50 µm electrode regions were seen to have negligible fluorescence 24 hours later 

(Figure 7.2 and 7.3), under the confocal microscope.  On analysing the data with image 

analysis software, there was a slight increase in the green fluorescence (Figure 7.8).  At zero 

hour the calculated average intensity value was 10 ± 4 (Figure 7.1 C), but after 24 hours it was 

12 ± 7.5 (Figure 7.2 C). 
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Figure 7.2: Aggregate of Brachyury embryonic stem cells at 50 µm electrode region at zero hours. 

The aggregate was formed by applying a 1 MHz, 10 Vpk-pk signal to interdigitated oppositely 

castellated electrodes.  A) Green fluorescent image of an aggregate at zero hours, showing the 

ROI.  B) Bright field image of an aggregate at zero hours. 

 

 

Figure 7.3: Aggregate of Brachyury embryonic stem cells at 50 µm electrode region at 24 hours. 

The aggregate was formed by applying a 1 MHz, 10 Vpk-pk signal to interdigitated oppositely 

castellated electrodes A) EB formation takes place, but after 24 hours there is observable 

green fluorescence.  B) Bright field image showing EB formation in an aggregate at 24 hours.   

7.3.1.2 75 µm electrode size 

Aggregates formed in the 75 µm region also formed embryoid bodies (Figure 7.5).  On 

analysing the data with the Fiji image analysis software, there was found to be a significant 

increase in the average fluorescence intensity in embryoid body after 24 hours.  At zero hour 

the average intensity value calculated was 9 ± 5 (Figure 7.8), but after 24 hours it was 

calculated to be 36 ± 17 (Figure 7.6 C) which shows an increase in the value.  The increase 

was significantly higher than in the 50 µm region. 
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Figure 7.4: Aggregate of Brachyury embryonic stem cells at 75 µm electrode region at zero hours. 

Formed by applying a 1 MHz, 10 Vpk-pk signal to interdigitated oppositely castellated 

elctrodes.  A) Green fluorescence image of an aggregate at zero hours showing ROI.  B) 

Bright field image of an aggregate at zero hours.   

 

 

Figure 7.5: Aggregate of Brachyury embryonic stem cells formed at 75 µm electrode region after 24 

hours. 

The aggregate was formed by applying a 1 MHz, 10 Vpk-pk signal to interdigitated oppositely 

castellated electrodes.  A) Green fluorescent image of an aggregate at 24 hours showing the 

ROI.  B) Bright field image of an aggregate forming an EB after 24 hours. 

7.3.1.3 100 µm electrode size 

Aggregates at 100 µm region also showed fluorescence in the centre of the embryoid 

body after 24 hours (Figure 7.7).  An analysis of the data with the Fiji image analysis software 

and calculation of the average intensity at zero and 24 hours showed a negligible increase in 

the fluorescence (Figure 7.8).  At zero hour the average intensity value calculated was 8.5 ± 5 

and after 24 hours the average intensity calculated was 34 ± 18.  The increase in the value was 

significantly larger than that in the 50 µm region but less than that in the 75 µm region.   
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Figure 7.6: Aggregate of Brachyury embryonic stem cells at 100 µm electrode region at zero hours. 

The aggregate was formed by applying a 1 MHz, 10 Vpk-pk signal to interdigitated oppositely 

castellated electrodes.  A) Green fluorescence image of an aggregate at zero hours with ROI.  

B) Bright field image of an aggregate. 

 

 

Figure 7.7: Aggregate of Brachyury embryonic stem cells at 100 µm electrode region at 24 hours. 

Aggregates were formed by applying a 1 MHz, 10 Vpk-pk signal to interdigitated oppositely 

castellated electrodes.  A) Green fluorescent image of an aggregate at 24 hours.  At this time 

the aggregates have formed embryonic bodies.  B) Bright field image of an aggregate which 

had formed an EB at 24 hours. 

 

The average intensity values of the three electrode regions, at 0 and 24 hours were 

plotted on a graph, showing the standard error bars (Figure 7.8).  The graph clearly shows the 

difference in the intensity values in each aggregate for the different electrode region over 24 

hours time.  The 50 µm region showed a negligible increase where as the 75 µm region 

showed a significant increase in intensity values and 100 µm showed slightly less increase in 

intensity values when compared to 75 µm electrode region.  The increase in intensity values in 

the 100 µm region was also significantly higher than 50 µm region.   
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Figure 7.8: Comparative study of the average intensity values in Bry ESC aggregates. 

Data were plotted at 0 and 24 hours for Brachyury ESC aggregates formed at different 

microelectrode regions.  Also shown are 95% confidence values in the form of error bars. 

7.3.2 Formation of layered aggregates containing Brachyury ES cells above the osteoblast 

cells (SAOS-2). 

It has previously been found that the long-term bone marrow (BM) repopulating (LTR) 

HSCs are located in bone marrow trabecular bone surface, and that an osteoblastic (OB) cell is 

a critical component for sustaining HSCs.  (Calvi et al., 2003; Zhang et al., 2003).  In vitro 

coculture of HSCs with osteoblasts can expand the HSC population (Taichman and Emerson, 

1998), and depletion of osteoblasts leads to loss of HSC tissue (Visnjic et al., 2004).  The 

adhesion molecules osteoblasts express may facilitate adhesive interactions between 

osteoblasts and HSCs.  These include VCAM-1 and ICAM-1, 10-15 CD44, CD164, and 

osteopontin 7, 16-18 In addition, Shh, N-cadherin, Wnt signaling pathways, Notch-1/Jagged-1 

interactions, TGF-β/BMP pathways and Ang-1/Tie2–mediated events are believed to be 

crucial to establishing HSCs within a particular niche (Gomes et al., 2002; Ivanova et al., 

2002; Park et al., 2002; Ramalho-Santoes et al., 2002; Akashi et al., 2003; Calvi et al., 2003; 

Zhang et al., 2003; Arai et al., 2004; Duncan et al., 2005).  Cell- cell interaction between 

osteoblasts and HSCs are therefore important in the process of the anchoring and maintenance 

of the HSC population in the bone marrow.  Given the role that osteoblasts play in HSC 

upkeep in bone marrow, a possible role of osteoblasts in ESC commitment to a HSC lineage 

could justifiably be proposed.   
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To investigate whether the ESCs differentiate quicker along the mesenchymal linage 

with osteoblast cells in proximity layered aggregates were made with DEP of Brachyury ESC 

with SAOS-2 osteoblasts in the 100 µm microelectrode region (Figure 7.9).  In chapter 5 it 

was previously shown that the strongest interaction between ESC and SAOS-2 cells should 

occur in aggregates in which SAOS-2 cells were initially in the centre of the aggregates and 

ESCs at the top, and the aggregates were constructed accordingly.  After 24 hours the ESCs 

can be seen to become EBs with a few SAOS-2 cells in the core and a few on the periphery 

(Figure 7.10).  Histograms of the fluoresecence intensity in the ROI were obtained at 0 and 24 

hours, and their intensity values were plotted against the average intensity values of 100 µm 

pure ESC aggregates (Figure 7.11). 
 

 

 

 

 

Figure 7.9: Aggregate of Brachyury ESCs and SAOS-2 cells, formed at 100 µm electrode region at 0 

hours. 

By applying a 1 MHz, 10 Vpk-pk signal to interdigitated oppositely castellated.  A) Green 

fluorescent image of an aggregate with ROI.  B) Bright field image of aggregate.  C) Red 

stained SAOS-2 cells lie under the aggregate. 

 

 

Figure 7.10: Aggregate of Brachyury ESCs and SAOS-2 cells after 24 hours. 

The aggregate was formed at the 100 µm electrode region by applying a 1 MHz, 10 Vpk-pk 

signal to interdigitated oppositely castellated electrodes.  A) Green fluorescence image 
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showing EB formation with ROI.  B) Bright field image of an aggregate having formed an EB.  

C) Red stained SAOS-2 cells lying underneath the ESC cells. 

 

Figure 7.11: Comparative study of the average intensity values. 

Data obtained at 0 and 24 hours were plotted for aggregates containing only Brachyury ESC 

(right) and aggregates containing both SAOS-2 and ESCs.  Aggregates were formed at 100 

µm electrode regions. 

 

Figure 7.11 shows that the co-cultured aggregates of ESCs and SAOS-2 cells did not 

show the same intensity values as aggregates containing only ESC.  At zero hours the intensity 

value for mixed aggregate was 7 ± 3.5 and at 24 hours the value was 14.75 ± 7.  Reduction in 

intensity values could be a result of the reduction of ESCs in number, in order to accommodate 

SAOS-2 cells within the same aggregate region.  The number of the cells could play an 

important role in fate determination, or the presence of SAOS-2 cells could have made the 

ESCs skip the early mesenchymal lineage fate and jumped to a fate down the mesenchymal 

lineage or it could also be too early to determine the fate and a long term study should be 

considered. 

 

For long term study, the same combination of cells was used but was left for incubation 

for seven days. Because the aggregates were quite fragile data were only obtained 0 hours 

(figure 7.12) 76 hours (Figure 7.13) and 7 days (Figure 7.14) after the initial construction of 

the aggregate.  No data was obtained at intermediate times.  Like the previous experiments, 

histograms of the results at 0 hours, 76 hours and after 7 day were compared, and their 

intensity values were plotted (Figure 7.15).  The results show a small increase in the intensity 

after 76 hours and then a drop on the 7
th

 day to an intensity value that is insignificant. 



  

107 

 
  

 

Figure 7.12: Aggregate of Brachyury embryonic stem cells and SAOS-2 osteoblast like cells at zero 

hours. 

The aggregate was formed at 100 µm electrode region by applying a 1 MHz, 10 Vpk-pk signal to 

interdigitated oppositely castellated electrodes.  A) Green florescent image of an aggregate at 

zero hours, showing the ROI on the image for image analysis.  B) Red fluorescent image of 

SAOS-2 cells forming the core of the aggregate.  C) Combined fluorescence image of A and B. 

 
  

 

Figure 7.13: Aggregate of Brachyury embryonic stem cells and SAOS-2 osteoblast like cells, formed 

at 100 µm electrode region at 76 hours.   

A) Green fluorescent image of EB after 76 hour showing ROI.  B) Red fluorescent in SAOS-2 

cells forming the core of the aggregate seen to be in the middle of the aggregate and some on 

the outside.  C) Combined image of the aggregate at 76 hours showing both red and green 

fluorescence.   
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Figure 7.14: Aggregate of Brachyury embryonic stem cells and SAOS-2 osteoblast like cells, formed 

at 100 µm electrode region at day 7. 

A) Green fluorescent image with no green fluorescence seen in aggregate after 7 days in 

the ROI.  B) Red fluorescent in SAOS-2 cells found in the periphery of the EB.  C) Combined 

fluorescence image of A and B. 

 

 

Figure 7.15: Comparative study of the intensity values of layered Bry ESCs and SAOS-2 aggregate. 

Data were plotted for Brachyury ESC aggregates inside layered SAOS-2 and ESCs aggregates 

formed at 100 µm regions.  Data are shown at 0 and 76 hours and after 7 days.  The graph 

shows an increase of the intensity value after 76 hours, and then a drop to the background 

level on the 7
th

 day. 

7.4 Discussion 

The experiments indicate that Bry murine ESCs may be induced to commit to the 

mesenchymal lineage and show a quicker GFP response when aggregated with DEP than when 
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they are aggregated using the hanging droplet-method.  The effect appears to be dependent on 

the aggregate size.   

 

It is difficult to pin point a single factor that could have resulted in the earlier onset of 

GFP production in Brachyury marker ESCs.  The cells have been subjected to a) low salt 

conditions in the osmotic buffer; b) mechanical stresses during centrifugation and DEP; c) 

high strengths electric fields during the DEP assembly process.  The cells have also been d) 

aggregated, forcing the cells into close contact with each other. 

 

Previous experiments (chapters 4 and 5) have shown that the preparation stages (i.e. 

centrifugation and temporary suspension in low salt buffers) do not affect stem cell 

differentiation, and that it was solely the aggregation (with DEP) that led to embryoid body 

formation.  It is therefore unlikely that a) and b) are major factors.  Cells are exposed to strong 

electric fields during the DEP assembly process.  Electric fields have been shown to affect 

stem cell differentiation (Hronik-Tupaj et al., 2011), but in the main these are DC or low 

frequency AC fields, and not high-frequency AC fields.  Given that electric field exposure 

during the DEP assembly process is also temporary, the most likely cause of the early onset of 

differentiation is d), i.e. the fact that the cells are brought into close contact with each other in 

the aggregate.  This conclusion is given further credence by the observation that the 

fluorescence was seen to increase with the electrode size, indicating that the size of the 

embryonic body has a role to play in the differentiation of the cells (see also Hwang et al., 

2009).   

 

Murine hematopoietic stem cells (HSCs) originate from mesoderm and blood cell 

development during embryogenesis is initiated within the mesodermal germ layer.  The Bry 

marker only marks the onset of mesoderm formation, but does not give any indication what 

type of mesodermal cell will ultimately be formed.  Because the experiments were only 

conducted for 24 hours, it is not known whether there was a decrease or increase in the 

fluorescence after the first 24 hours.  Therefore, even though the experiments show a positive 

result, i.e. GFP expression in cells, it was not possible to confirm that the cells were 

differentiating along the HSC lineage.  Use of marker cells indicating HSC lineage would be 

required in future studies to establish this. 
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The experiment combining murine Bry ESCs and SOAS-2 osteoblasts was inconclusive.  

The architecture of the niche, designed in chapter 5, was shown to work well with Brachyury 

cells, and osteoblasts were seen to be in close contact with ESC cells.  However, the change in 

the level of the green fluorescence from day 0 to 3 from 3 to 7 was insufficient to draw any 

definite conclusions.  The reason for this lack of GFP response is unknown.  A possible reason 

is that the number of ESC was quite small, and that there were simply insufficient numbers of 

Esc to elicit a response.  However, the other possibility that cannot be excluded is that SAOS-2 

cells to not express the right signals. 

 

SAOS-2 cells do express bone morphogenetic proteins (BMPs)-1, 2, 3, 4 and 6 

(Anderson et al., 1998).  The bone morphogenetic protein (BMP) signal plays an essential role 

in inducing haematopoietic tissue during embryogenesis (Maeno et al., 1996; Davidson et al., 

2000).  Osteoblasts also produce haematopoietic growth factors (Taichman and Emerson, 

1994; Taichman et al., 1996; 2001) and are activated by parathyroid hormone (PTH) or the 

locally produced PTH-related protein (PTHrP), through the PTH/PTHrP receptor (PPR) (Calvi 

et al., 2003).  However, no PTH or PTHrP was added, and anyway Murray et al.  (1987) 

showed that the SAOS-2 osteoblast-like cell line exhibited limited responsiveness to steroid 

hormones.  A possible explanation is therefore simply that the SAOS-2 cells do not produce 

the right or sufficient amounts of the necessary signals.  This hypothesis is further given 

credence by that fact that although osteoblasts (OBs) express many types of molecules that 

may facilitate adhesive interactions between OBs and HSCs (including VCAM-1 and ICAM-

1, 10-15 CD44, CD164, and osteopontin (Nilsson et al., 2005; Stier et al., 2004; Balduino et 

al., 2005; Verfaillie, 1998), only N-cadherin-positive spindle-shaped osteoblastic cells (SNO 

cells) are HSC niche cells (Zhang et al., 2003).  It may therefore be essential to use specific 

osteoblasts such as the SNO cells to elicit HSC differentiation of ESC rather than SAOS-2. 

7.5 Conclusion  

It has been shown that aggregation by DEP induces murine ESC to produce embryoid 

bodies more rapidly than the hanging droplet method, and that the cells were differentiate 

towards mesenchymal lineage.  It is not known, however, whether the cells differentiate 

further along the HSC lineage, and further experiments are needed to determine this.  The 

introduction of osteoblasts in the aggregates did not result in (faster) differentiation along the 

mesemchymal lineage, and it is not known whether this is due to the fact that the aggregate 
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contained too few ESC, or whether it was because the SOAS-2 osteoblast-like cells did not 

produce the right signals.  Further experiments are needed to establish this. 
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CHAPTER 8 

Combined use of DEP and optical tweezers to swap embryonic 

stem cells between niches 

8.1 Introduction 

Commitment of cells to their fate during embryonic development is commonly assessed 

by transplant experiments, in which cells are first marked and then transplanted from their 

normal tissue into another tissue.  Depending on whether the fate of the cell has just been 

specified or has already been determined and the cues a cell receives from the new 

environment it finds itself in, the cell may maintain its current course of differentiation, or 

change it.  What environmental factors provide the cues for changing cell fate is currently an 

area of strong research interest.   

 

Stem cells normally reside in niches in the body which provide a microenvironment 

which controls the cell‘s path of differentiation.  The same questions concerning commitment 

of the cell to their fate can also be asked of stem cells and other progenitor cells.  Compared to 

mature cells, progenitor and stem cells may have even more rigid requirements for their niches 

(Fuchs et al., 2004; Jones and Wagers, 2008).  Even mature stem cells often have a lot of 

plasticity, and changes in the environment can lead to changes in stem cell fate.  For example, 

HSCs of bone marrow have been shown to become hepatic oval cells (Lasagge et al., 2000; 

Petersen et al., 1999; Alison et al., 2000).  Mesenchymal stem cells from bone marrow have 

been shown to travel to and differentiate into skeletal muscle (Ferrari et al., 1998), 

differentiated into neuronal tissue (Azizi et al., 1998; Kopen et al., 1999) supplied mesangial 

cells during repair processes (Ito et al., 2001), and given rise to cardiomyocytes in vitro 

(Fukuda, 2002; Makino et al., 1999).  Glial progenitors from the rat optic nerve normally have 

the ability to produce only oligodendrocytes and some astrocytes.  However, under appropriate 

in vitro culture conditions, these progenitors can give rise to neurospheres capable of 

generating neurons, astrocytes and oligodendrocytes (Kondo and Raff, 2000).  These 

observations strongly imply a critical influence of microenvironmental cues on cell fate.   
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Study of stem cells in their natural environment is often wrought with difficulties, but 

with the help of microfabrication and manipulation techniques artificial microniches can be 

created that could enable one to change and study the stem cell microenvironment in vitro.  To 

study the commitment of cells to their fate in the artificial niche it will be necessary to 

transplant cells from one artificial niche into another.  Preferentially this would be done one 

cell at a time. 

 

We have previously shown that dielectrophoresis (DEP) can be used to create artificial 

microniches for stem cells (Markx et al., 2009; this thesis, chapters 6, 7).  Optical tweezers 

(OTs) can be used for the manipulation of cells (Grier, 2003; Ashkin et al., 1987; Macdonald 

et al., 2003; Curtis et al., 2002; McGloin et al., 2003; Graces-Chaves et al., 2005; Paterson et 

al., 2007).  Optical tweezers offer a high resolution tool for trapping single particles, but have 

a limited manipulation area is limited owing to tight focusing requirements; on the other hand, 

electrokinetic forces (DEP) provide high throughput manipulation, but lack the flexibility or 

the spatial resolution necessary for controlling individual cells easily.  Whilst optical tweezers 

on their own could be used to create artificial stem cell niches (Zhou and Melton, 2008), the 

combination of DEP and OT setups may have advantages in terms of the size and number of 

aggregates that can be formed in a single step and the costs of the equipment (Markx, 2008).  

Hence, the aim of the study is to find out whether optical tweezers can be used in combination 

with dielectrophoresis to exchange of cells between niches for the study of the commitment of 

individual stem cells to their fate. 

8.2 Materials and methods 

8.2.1 Cells 

7a stem cells were cultured as described in chapter 3; 7a stem cells emit GFP at all 

times, and can therefore be easily located by their green fluorescence.  Simulated 

microenvironments were created using stained and unstained SAOS-2 osteoblastic cells.  A red 

Sigma Aldrich PKH26 cell membrane stain was used for staining.  

8.2.2 Dielectrophoresis 

Microelectrodes were of the interdigitated oppositely castellated type as described 

previously (Venkatesh and Markx, 2007).  In the experiments only microelectrodes in the 300 
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µm and 250 µm regions were used; the two microelectrode regions were adjacent to each 

other, with a gap of approximately 600 µm between the closest ends of the two electrode 

regions.  Standard glass microscope slide cover slips were cut to a size that would cover the 

width of 250 µm region and another cover slip cut to the width of the 300 µm region.  A small 

space was left between both the electrode regions and which would allow the introduction of 

stem cells into either of the regions. 

 

The slide was autoclaved prior to use, and placed on the stage of a Nikon E2000 

fluorescence microscope.  The OT used did not have a fluorescence microscope attached to it; 

hence the DEP experiment was first carried out under a fluorescence microscope to make sure 

all the aggregates formed well at the desired location.  The space between the microelectrodes 

and the cover slips was filled with the low conductivity 300 mM D-sorbitol solution.  Electric 

fields were generated between the 250 µm microelectrodes using signals of 1 MHz frequency 

and voltages of 20 Vpk-pk for electrodes, and unstained SAOS-2 cells were introduced and 

attracted to the high field regions between the electrodes.  Fresh sorbitol was passed through 

the chamber to redistribute the cells, remove non-attracted cells and maintain a low 

conductivity in the chamber.  The time required for aggregates to form and reach their 

maximum height was approximately 20 minutes.  Following this and aggregate was made of 

stained SAOS-2 cells using the same methodology in the 300 µm region.  The time required 

for the aggregates to reach their maximum height in the 300 µm region was approximately 25 

minutes.  A sketch of the final structure is shown in Figure 8.1. 
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Figure 8.1: Slide. 

Pictorial presentation of the experimental setup showing the microelectrodes with cell 

aggregates, before tweezing.  Aggregates of stained (left) and unstained (right) osteoblastic 

cells were made with DEP at the 250 µm and 300 µm electrode regions, respectively, by 

applying a 20 Vpk-pk, 1 MHz signal to the electrodes. 

 

 8.2.3 Optical tweezer set up 

 

Figure 8.2 shows a sketch of the combined set up of DEP and OT.  Figure 8.3 shows the 

actual setup. 
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Figure 8.2: Optical tweezer setup with integrated dielectrophoresis chamber. 

A) Setup.  B) Zoomed in pictorial presentation of DEP chamber showing the two electrode 

regions.  Red indicates the 300 µm region for stained SAOS-2 cells and blue the 250 µm 

region for unstained SAOS-2 cells.  Inflow and outflow of cells was done using a 10 µl Fine 

pipette. 
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Figure 8.3: OT and DEP set up. 

A) Laser emitter.  B) Device for controlling laser power.  C) Video + TV .D) electrical switch/ 

controls and connections to microelectrode slide.  E) CCD camera F) AC signal frequency 

generator.  G) Sample stage, with X, Y and Z axis control knobs.  H) LED light source. I) 

Turret with objective lens. 
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After the formation of the aggregates with DEP the slide with aggregates was moved to 

the optical tweezer setup.  For this it was necessary to disconnect the electrical supply from the 

DEP setup.  In most cases there was little or no loss of cells from the aggregates during the 

move, but after reconnection of the frequency generator to the microelectrodes any cells that 

had come away from the aggregate were re-attracted to the aggregates with DEP. 

 

Once both the aggregates had been formed 10 µl of a highly diluted suspension of 7a 

stem cells in sorbitol was introduced in the gap between the two electrode regions.  The 

electric currents were still allowed to pass through the electrodes in order to keep the 

aggregates intact.  The optical tweezer was then used to tweeze the stem cells into the SAOS-2 

aggregate that was stained with a red fluorescent stain. 

 

To do this a stem cell was trapped by the tweezer, pulled up on the z-axis, moved over 

the stained cell aggregate that had been formed at the 300 µm electrode region and then 

carefully dropped into one of the stained cell aggregates.  During all this time the electric field 

remained switched on.  Once the stem cell had been dropped into the selected aggregate, the 

AC electric current was switched off and electrical connections were removed.  The slide was 

then moved to a Leica TCS2 confocal microscope to confirm a stem cell had been placed in an 

aggregate.  Care was taken not to disturb the aggregates as they were moved.  The chamber 

was then placed back in the OT setup and reconnected to the function generator.  As the 

camera with the OT setup was black and white only, the aggregate concerned and the location 

of the stem cell in the aggregate was determined by locating the right electrode and counting 

the number of cells from one of the edges.  Once spotted the stem cell was again trapped in the 

laser beam and lifted from the aggregate and moved towards the closest aggregate in the 250 

µm region.  The cell was dropped into this (unstained) aggregate and both the chambers were 

filled with 25% Puramatrix gel to keep the aggregates in position.  The AC electric field was 

then switched off and 40 µl of fresh medium was added to the sides of each chamber to 

gelatinise the Puramatrix solution.  Once again the chamber was disconnected from the wires 

and moved to the confocal microscope to confirm the location of the stem cell.   

8.3 Results and discussion  

Preliminary experiments with optical tweezers showed that it was relatively easy to 

move the cells with the laser in a sorbitol solution.  In GMEM growth medium the cells tended 

to stick to the surface.  It was difficult to move the cells around in Puramatrix gel due its high 
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viscosity.  Therefore optical tweezing of cells was conducted while they were in the sorbitol 

solution.   

 

Initial experiments indicated that the laser posed a threat to the ITO electrodes.  When 

the NIR laser was focused on an ITO layer the electrode region tended to overheat, destroying 

the ITO layer.  To avoid any contact of the focused beam with the electrodes the cells were 

first picked up on the z axis by the OT and then moved above the electrode region into the 

selected aggregates.  For this reason aggregates were selected that were close to each other, 

and without much ITO surrounding them.   

 

Following the construction of the aggregates of stained and unstained SAOS-2 

osteoblasts, stem cells were introduced into the area in between the aggregates.  A single stem 

cell was chosen randomly and tweezed into the stained aggregate of osteoblastic cells as 

shown in figure 8.4.   
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Figure 8.4: Introduction of a stem cell in niche 1. 

A) Aggregate of unstained osteoblastic cells formed with DEP by applying a 20 Vpk-pk, 1 MHz 

signal to the 250 µm region.  B) Aggregate of osteoblastic cells stained with PKH26 cell 

membrane stain at 300 µm electrode region formed by DEP 20 Vpk-pk, 1 MHz; a green 7a stem 

cell incorporated by optical tweezer into the aggregate.  C) Pictorial presentation of the 

optical tweezing of cells into a stained osteoblastic aggregate. 

 

Following confirmation with the confocal microscope, that a single stem cell had been 

moved into the first niche (formed by stained osteoblasts) the stem cell was lifted from the first 

niche with the tweezer and then moved into the aggregate of unstained osteoblastic cells 

(Figure 8.5).   
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Figure 8.5: Movement of a stem cell between niches. 

A) Green fluorescent image of unstained osteoblastic cell aggregate formed by DEP at 250 

µm region at 20 Vpk-pk, 1 MHz showing the transfer of the 7a stem cell from the stained 

osteoblastic aggregate into the unstained aggregate, by optical tweezer.  B) Aggregate of 

osteoblastic cells stained with PKH26 cell membrane stain at 300 µm electrode region formed 

by DEP 20 Vpk-pk, 1 MHz; without any green 7a stem cell.  C) Pictorial presentation of the 

optical tweezing of cell into unstained osteoblastic aggregate from stained osteoblastic 

aggregate. 
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8.4 Conclusions and suggestions 

The experiments conducted in this chapter were only a preliminary study of combining 

DEP and OT to construct artificial stem cell microniche.  The study confirmed that OT can not 

only be used to control the insertion a particular number of stem cells into the micro niche, but 

also withdraw a given cell from the niche and transport it to another microniche.  Although, 

the same cell type was used in this study in both niches (SAOS-2 with and without stain); in 

future work different cell types could be used to make an entirely different niches, e.g. 

osteoblasts and endothelial cell to create osteoblast and vascular niches.  By using embryonic 

stem cell with marker genes as the switching on and off of genes could mark the lineage 

progression of the stem cell during this process.  All experiments were performed in an 

unsterile atmosphere which means that long term culture of the cells was not possible.  

However, it is entirely possible to work sterile and perform long-term studies.  Thus it is 

feasible to use a combination of DEP and OT to pursue long term studies of the commitment 

of stem cells to their fate. 
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CHAPTER 9 

Conclusions and Suggestions for Future Work 

9.1 Conclusions 

In this study it has been shown that an artificial stem cell microniche can be created 

using the dielectrophoresis technique.  The study showed that DEP could be used to create 

aggregates of cells of different sizes and offered more control in making different architectural 

constructs of aggregates comprising two different cell types.  The construction of artificial 

niche could give an excellent opportunity to study the effect of chemical, physical or various 

environmental cues on the fate of stem cells, in vitro. 

 

 This study has focused on the optimization of conditions for the niche construction, 

giving a generalized view on how cells would behave in a compact 3D environment when 

assembled by DEP.  It has also tried to study the long term behavior of cells in the niche, both 

ESCs and SAOS-2 cell individually and when co-cultured.  By using ESC marker cells, the 

study of fate determination was also made possible. 

 

 One of the main findings of this research was the effect of DEP assembly on ESCs and 

the study of the effect of the electrode size on the EB formation.  When the ESCs were 

assembled using DEP, they formed embryonic body (EB).  The size of the electrode 

determines the size of the EBs.  At electrode regions lower than 75 µm the aggregates merged 

or agglomerated with adjacent EBs to form larger EBs and at regions above 100 µm, the 

aggregates were seen to split into smaller EBs.  At 100 and 75 µm regions of the electrode, the 

ES cells formed EBs which did not spilt and did not agglomerate easily with the neighboring 

EBs.  They yielded good sized EBs, thus making these two electrode regions the ones most 

suitable for further study.   

 

Secondly the study of the behavior of ESCs and SAOS-2 cells when co-cultured in 3D 

aggregates, gave an understanding of the interaction between the two cell types.  The 

difference in their adhesive and cohesive properties made it difficult to form an aggregate that 

would keep both the cell types in close proximity and provide greater chances of close 

association, while the ESCs underwent the process of differentiation.   
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The findings suggested that the reorganisation of the cells in the aggregates was mainly 

determined by the adhesive forces between the different cells and between cells and the 

surrounding materials.  To construct an artificial microniche, it appeared therefore vital to 

balance the adhesive and cohesive properties of both the cells and their surroundings and their 

initial position, to achieve maximum cell-cell contact.  To achieve this study was conducted to 

determine the diffusion co-efficient of SAOS-2 cells and eventually led to the determination of 

the architecture of the stem cell niche constructs.  Three main types of architectures were 

constructed.  1) Stem cells forming the core and SAOS-2 cells on the outside.  2) Stem cells on 

the outside and SAOS-2 cells forming the core and 3) a mixture of both cell types.  Out of the 

three the second architecture worked the best, as SAOS-2 cells were swept into the EBs as 

they were formed.   

 

Once the architecture was determined focus was made on stem cell fate determination.   

Previous experiments gave no indication of whether the stem cells were actually 

differentiating along the right path.  The study was now taken a step further by using 

Brachyury ESCs.  These cells could indicate, by producing GFP, when they were moving 

towards the early mesenchymal lineage.  Differentiation along the mesenchymal lineage is the 

first step in the direction towards the hematopoietic stem cell lineage.  Upon aggregation with 

DEP the ES cells formed EBs within 24 hours which showed GFP production (compared to 2-

3 days in hanging droplets).  GFP production started in the centre of the EB, and depended on 

the size of the EB.  Maximum green fluorescence was seen in aggregates formed in the 75 µm 

and 100 µm electrode regions, with little or none seen at the 50 µm region.   

 

In the next set of experiments, aggregates were made with SAOS-2 cells at the bottom of 

the aggregate covered by the Brachyury embryonic stem cells.  An increase in the GFP level 

was seen on the 3
rd

 day of incubation but on the 7
th

 day the GFP level had started to decline.  

The reason for the delay in GFP production in mixed aggregates and the decline are unknown.   

 

The combination of the optical tweezers and DEP is potentially quite powerful, as DEP 

allows aggregation of many cells at the same time, whilst OT on the other hand can be used to 

manipulate single cells with high precision.  To demonstrate this, an optical tweezer was used 

to move cells from one niche created with DEP to another niche created with DEP.  Two 

microniches were constructed next to each other, composed of stained and unstained SAOS-2 

cells.  Although it was shown that OT could be  used to move a stem cell into one niche and 
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then, move the same cell into another niche the technique was not very straight forward and 

will require a lot of modification to be effectively used in future. 

 

In general the research showed that the size of the aggregates and its composition along 

with the architecture had an important role to play in the ESC differentiation and niche 

maintenance.  By manipulating these aspects variety of results could be achieved.  The study 

would therefore serve as a base for future studies.  With the basic parameters optimized, in 

future the affect of more complex factors such as chemical cues and physical forces could be 

measured/ studied on the niche constructs.   

9.2 Limitations of current work and suggestions for future work 

In this study only one type of microelectrodes (interdigitated oppositely castellated 

electrodes with a distance between electrodes and castellations equal to the castellation size) 

were used to generate DEP forces and form cell aggregates.  Different kinds of DEP 

microelectrodes could be designed with varying electrode distance, sizes, shapes and patterns 

to see the effect of these factors on the formation of embryonic bodies/stem cell 

differentiation.  The size of the embryoid bodies and their homogeneity are known to have an 

effect on the differentiation and fate determination.   

 

Hwang et al. (2009) used microengineered hydrogel microwells to direct ES cell 

differentiation and also determined the role of WNT signaling pathway in directing the 

differentiation.  The results elucidated that the EB size played a role in the differentiation and 

found that endothelial cell differentiation was increased in smaller EBs (150 µm in diameter) 

whereas cardiogenesis was enhanced in larger EBs (450 µm in diameter).  Microwells could be 

fabricated onto slides to make aggregates of a well-defined structure and size; this could help 

in making homogenous EBs of accurately the same size and help prevent the agglomeration of 

EBs, as agglomeration has a negative effect on the proliferation and differentiation of ESCs 

(Dang et al., 2002). 

 

In EBs, as they grow, the supply of nutrients and oxygen to the centre of the aggregate 

becomes limited.  Due to the anoxic condition in the centre the cells start showing apoptosis 

followed by fluid filled cavitation, called ―cystic EBs‖.  This is a part of the differentiation 

process and is normal.  However for long term culture of EBs, it is vital that the cells get a 

fresh supply of nutrients.  Therefore while designing electrodes, microchannels could be 
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incorporated between the adjacent aggregates, to make sure that the cells receive proper supply 

of oxygen, growth factors and nutrients. 

 

Real time imaging could be a very useful tool to study the cells without disturbing the 

experimental setup.  This could tell exactly how the cells are migrating from one niche to 

another or how the events involved in the agglomeration and splitting of EBS proceed.  For 

this to be possible the microscope needs to be fitted with a closed chamber in which the 

temperature and atmosphere is much better controlled than in the current system.  A 

microscope stage with XYZ control would help in keeping track of the cell, reproducibly move 

between areas, and have better focal control.  Identification of stained cells under the OT 

would be very important in future studies.  The OT used in the experiments did not allow 

coloured image viewing therefore it became very challenging to identify the different cell 

types. 

 

To create an artificial microniche containing many types of cells, it is important to be 

able to identify the cells using different markers stains.  Some simple modifications of the 

optical tweezer setup could significantly enhance its potential.  Combining it with confocal 

imaging or even a standard epifluorescent microscope would make it much easier to spot cells 

with (fluorescent) markers.  The camera that is currently attached to the OT setup only takes 

black and white images; its replacement with a colour camera would be beneficial. 

 

In the studies shown in this thesis the OT is only used for manipulating one single cell at 

a time.  However, OTs could be very useful in handling larger numbers of cells at a time.  For 

example, recent studies have shown the utility of holographic optical tweezers (HOTs) for 

simultaneously manipulating many particles at the same time.  The spatial light modulator 

employed for the generation of the holograms involves the use of a computer interface to 

control traps; this allows the control of the motion of the tweezers to be completely automated.  

New multitouch interface systems allow interactive real-time control of a HOT system and 

provide the user with the ability to interact with a computer in multiple locations 

simultaneously.  This way several digital objects can be controlled independently (Grieve et 

al., 2009).  Microfluidic system (MFS) when incorporated with HOTs, form a platform which 

can potentially be used to investigate chemo-mechanical processes, by using a reconfigurable 

force sensor array with piconewton resolution (Uhrig et al., 2009).  This new technique may 
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provide a powerful tool for multi-cellular manipulation in the formation of cell arrangements 

and the creation of stimuli of engineered tissue (Zhang et al., 2008). 

 

Microfluidic systems can be easily integrated with microphotonics such as optical traps 

to form micro-opto-fluidic system (MOFS) for single cell manipulation (Monat et al., 2008).  

Cultivating single cells in MOFS can produce daughter cells which are all the same - which is 

important for stem cell therapy.  The method can potentially be applied to stem cell delivery or 

the creation of stem cell niches (Noort et al., 2009). 

 

In order to understand lineage commitment it is important to use marker ES cells.  In this 

study E14, 7a, Oct-4 and Brachyury ESCs were used.  All these cells marked the onset of 

differentiation except for E14 ESCs.  Brachyury cells were the ones that were most specific, 

marking the onset of mesenchymal lineage.  Other more precise marker ESCs could be used 

that could directly show the onset of a HSC lineage.   

 

Protein/DNA/RNA analysis of the differentiating cells should be used to prove the 

lineage commitment of cells.  Similarly protein/DNA/RNA analysis could help in elucidating 

the role of various adhesion molecules in the stem cell niche.  The effect of the addition of 

growth factors such as BMP4 could be also studied with respect to Brachyury cells, as these 

cells definitely progress towards mesenchymal fate in the presence of BMP4 growth factor.   

 

Incorporating different cell types that are typical of the type of niche in consideration 

could be the next step to create a more functional and specific microniches.  For example, 

stromal cells could be inserted to see whether the AGM niche can be recreated and endothelial 

cells for the vascular niche.  Likewise architecture of the niches could also be modified by 

using three cell types or more instead of two. 

 

The main limitation of this study was the limited availability of cells to experiment with.  

This study was conducted with embryonic stem cells which have different characteristics as 

compared to multipotent stem cells.  ESCs tend to form embryoid bodies their interaction with 

other type of cells is very different than the multipotent stem cells which would not tend to 

form embryoid bodies.  This means that basic adhesive-cohesive properties of different stem 

cells would change the whole niche construction.  As embryonic stem cells were used in this 

study the niche construction depended on the adhesive-cohesive properties of ESCs and its 
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neighboring SAOS-2 cells.  Hence, effort was made to try and increase cell-cell interaction, 

(an important factor in fate determination) as efficiently as possible.  Further study would be 

required to establish the behavior of multipotent stem cells, for example HSCs in the niche 

constructs tested in this research. 
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APPENDIX I 

For cells in one dimension 

 

In a one dimensional random walk the cell (particle) moves along the x axis only.  The 

particle starts from its origin x = 0, and every η seconds, the particle steps a distance δ along 

the axis.  Thus the average speed of the particle is δ/η.  The direction of the particle is matter of 

chance. 

 

To calculate the average, we track the random walk of N cells.  Let xi (n) be the location 

on the x axis after the cell has taken n steps.  Therefore from the previous assumption, we get 

the equation: 

                                                     (5.1) 

In other words, each step the cell moves either left or right by δ, on the axis. 

The average position of the cells after n steps is calculated by 

         
                   

 
      (5.2) 

 
 

  
       

       (5.3) 

Where ∑ means that the position of all the cells numbered 1 – N is added up, after n steps. 

Therefore the equation can be expanded by replacing xi (n) with xi (n-1) ± δ which is: 

        
 

 
             

       (5.4) 

 
 

 
         

    
 

 
     

      (5.5) 

But since half the time δ is to the right and half the time it is to the left, the average of ± δ 

should be 0.  Therefore  

                     (5.6) 

It can be said that the average position of the cell after n steps is the same as the position 

after n - 1 steps.  This means that on average, the cells starting at the origin remain at the 

origin.  Since this suggests that the cells, on average, go nowhere, this does not imply that all 

particles remain at the origin.  This only tells us that for every cell, that is at a position x = + 5, 

on average there is a cell at position x = - 5.  Therefore, although there is considerable spread 

of cells, the average net movement is 0.   

 

The distance of the cell from its origin can be calculated in a separate way.  Taking the 

absolute values of the each cell‘s location after n steps and squaring the values would always 
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give a positive value.  The squares of all the locations can be averaged; the average distance 

travelled by the cell from the origin can be calculated.   

The number of steps n in terms of the location n-1 steps could be expressed as 

 

  
                     (5.7) 

 

   
                       (5.8) 

 

On averaging the value for N cells, we get 

 

         
 

 
    

                     
     (5.9) 
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        (5.11) 

 

                   (5.12) 

Note: the average value of ± δ = 0. 

 

The result shows that the average/mean square of position after n steps is greater by δ
2 

than the average square of position after n-1 steps.  It was assumed before that the mean square 

position after 0 steps is 0.  After 2 steps, the average square position is 2δ
2
.  Thus:  

                (5.13) 

It also means that the square of the displacement from the starting point increases 

directly with the number of steps taken.  Therefore by taking the square root of the equation:  

                    (5.14) 

 

The value          is called the root mean square or rms displacement.  It is a 

measure of how far, on average, the cells have travelled from their origin after taking n steps.  

The rms displacement is also the standard deviation. 
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Regarding the random walk, the original assumption was that the cell takes a step every 

η seconds, the number of steps taken being equal to t/ η, where t is the time since the particle 

started its walk.  Inserting this expression for n in 6.13 gives: 

        
  

 
       (5.15) 

The mean squared distance travelled by the cell increases directly with time at a rate that is 

dependent on the ratio of δ
2
 to τ (Denny, 1993). 

 

Diffusion coefficient D =  
  

 
 



180 

APPENDIX II 

MATLAB calculation for cells in the centre of the aggregate 

clear all 
close all 
%x1 y1 x2 y2 x3 y3 x4 y4 are theco-ordinates of different cells x1y1 and 
%x2y2 being in aggregate A and x3y3 and x4y4 in aggregate B; scale is 
%multiplied by 10 to represent the micrometer scale;  
x6=[16.5,17.7,18,19,20,21.7,23,24,25.2,26.4,27,28.3,28,29,29.8,31,30,29.6,29

.9,30.4,29.4,28.7,29.1,28.1,28.3]; 
y6=[13.6,13.7,14.6,15,16,16.1,16,16.8,17,17.8,18.8,18.8,17.7,18,17.6,17.9,18

.8,18.7,18.4,18.9,19.4,19.8,20.5,20.6,20.1]; 
x6=x6*10; 
y6=y6*10; 
x7=[17,17.2,17.9,18.9,19.9,21.2,22.1,22.9,24.2,23.6,24.4,23.9,24,24.6,25.5,2

4.8,23.3,23.4,23.7,22.1,21.6,21.1,21,20.4,20.7]; 
y7=[17.1,16.4,16.7,17.1,17,17.6,17.9,19.1,20.2,20.3,21.5,21.2,22.9,24.2,23.6

,23.5,25,26.7,28.8,31,30,28.9,30.1,29,27.9]; 
x7=x7*10; 
y7=y7*10; 
x9=[31.1,32.1,32.8,33.5,33.5,34,34.1,33.4,33,33.7,33.4,33.7,32,32.2,31.9,31.

3,31,31.1,30.9,31,31.3,32.1,31.1,31.3,31.2,30.5,30,30.9,29.1,30.9]; 
y9=[19,19.8,18.9,19.9,21,21.9,23.1,22.7,23,23.6,24.4,24.9,26.8,27.2,27.6,27.

2,27.5,27.9,28,28.6,28.8,29.9,30.8,31.4,32,31.8,31.9,32.9,32.4,32]; 
x9=x9*10; 
y9=y9*10; 
x13=[36.1,35.5,36,36.8,36.5,34.9,36.1,36.9,37.1,37,37.6,37.6,37.9,37,37,36,3

6.2,35.9,36.6,36.5,35.7,36,35.2,35.3,34.9,33.5,33]; 
y13=[16.9,17,16,17,17.5,18,18.8,19,19.8,20.8,21,22,22.9,23.1,24.1,24.5,25.5,

26,26.2,27,27.5,28.1,28.9,30.9,31.5,31.2,30.5]; 
x13=x13*10; 
y13=y13*10; 
x15=[29.8,29.2,28.5,29.5,29.7,30,30.3,30.9,31.3,31.6,31.1,31.5,31.1,31,31.5,

31.1]; 
y15=[14,13.4,14,14.9,15.8,16.5,17.2,17.9,18.3,19,19.9,20.5,21.2,21.2,22.2,23

.3]; 
x15=x15*10; 
y15=y15*10; 
x17=[32.2,33.1,34.4,34.9,35.7,35,34.4,35,35,34,34.8,35.1,34.7,35.1,35.8,35.8

,36.2,35.1,36.5,36,37.2,38.2]; 
y17=[13,14,14.7,15.7,16.8,17.5,18.5,19.7,21.1,22,22.7,23.7,24.6,25.5,26.8,27

.9,28.8,29.7,30.5,31.1,30,31]; 
x17=x17*10; 
y17=y17*10; 
x18=[20.2,20.8,21.8,21.7,22,21.2,22,21.1,21.2,19.8,18.2,17.3,16.2,15.5,16,16

.2,16,15.2,14.8,15.2,14.5,13.8,14.2,13.5,14.7,15,16,17,18]; 
y18=[16.8,17.8,18,19,19.8,20,20.8,21.2,22.2,22.8,22.1,23,23.8,23.2,22.3,23,2

3.1,22.1,23.2,24.4,24.8,23.5,22.8,22,21.8,21,21.2,22,24]; 
x18=x18*10; 
y18=y18*10; 
x19=[14.1,14.4,13.8,14.5,14.2,15.5,16,15.4,16.1,15.6,14.5,13.5,13.2,14.1,15.

5,15.2,15.8,15,15.5,16.4,16,17.1,17]; 
y19=[10.7,11.9,12.1,13,13.5,13.9,12.5,12,14,14.5,14.7,14.2,15.1,15.5,16,16.9

,17.9,18.3,20,19.2,18.5,18.4,19.5]; 
x19=x19*10; 
y19=y19*10; 
x20=[13,12.1,12.1,13,12,12.1,11.5,12,11.6,12.5,12.9,13.4,12.5,14,14.1,13.5,1

4.5,14.9,12.5,14,14.2,13.2,15.5,16.2]; 
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y20=[11,11.5,12.5,13,14,14.8,15,16,16.8,17,16,16.9,17.5,17.6,16.5,15.9,15.9,

17.1,18,18.9,19.8,19.4,18.9,20]; 
x20=x20*10; 
y20=y20*10; 
x21=[37.9,38.5,38,37.2,38.3,39.2,40.5,41.2,40.6,39.9,39.7,39.7,39,38.6,38,37

,36.4,37,37.3,38.1,37.7,38.8,40,41]; 
y21=[22,22.5,21.5,21.1,20.9,20.7,20,20.2,20.8,20.8,21.5,22.7,23.7,24.5,25.5,

26,27,28,29,30,30.7,31.2,31.5,32]; 
x21=x21*10; 
y21=y21*10; 
x22=[20.9,20,19.5,20.5,19.1,19.5,18,17.8,18.9,18,18.7,17.5,17,16,16.2,15,16.

3,17]; 
y22=[9.9,10,10.9,11,11.1,12.1,12,13.5,14.7,15,15.5,14.2,15,15.9,14.8,15.2,16

.7,13.9]; 
x22=x22*10; 
y22=y22*10; 
x23=[18,19,19,18,19,18,17.5,16.5,15.5,15,16,15.5,14,13,13.5,14.4,12.8,13.8,1

3.7,15]; 
y23=[10,9.5,10.7,11.1,12,12.8,12.5,11.9,11,12,12.5,13.4,13.7,13,13.7,13,13.5

,14,15,14.5]; 
x23=x23*10; 
y23=y23*10; 
x27=[16,16.7,17.7,18,18.5,18.6,18,19.7,19.5,20.1,21.4,22.4,22.4,23.2,24.4,25

.4,26.2,26.2,26.4,27,26.9,27.8,28,29,30,31.5,33,34.2]; 
y27=[18.5,19.5,19.5,19,19.5,20.1,21,22,21.5,22,22.4,23.2,24.5,24.9,24.5,25.2

,26.4,28,29,29.5,31,32,33,33.2,34,34,33.8,33]; 
x27=x27*10; 
y27=y27*10; 
% r,b are the colours of the lines; '.' are for the points on the line 
% and 's'is to indicate the starting position of every cell ans numel is the 

number of elements in the vector/matrix 
plot(x6,y6,'r.-', x7,y7,'k.-', x9,y9, 'k*-', x13,y13, 'rx-', x15,y15,'b.-

',x17,y17,'c.-',x18,y18,'g.-',x19,y19,'m.-',x20,y20,'bx-',x21,y21, 'b*-

',x22,y22,'y.-',x23,y23,'k.-',x27,y27,'cx-',x6(1),y6(1),'o', 

x7(1),y7(1),'o', x9(1),y9(1), 'o', x13(1),y13(1), 'o', 

x15(1),y15(1),'o',x17(1),y17(1),'o',x18(1),y18(1),'o',x19(1),y19(1),'o',x20(

1),y20(1),'o',x21(1), y21(1), 

'o',x22(1),y22(1),'o',x23(1),y23(1),'o',x27(1),y27(1),'o',x6(numel(x6)),y6(n

umel(y6)),'s',x7(numel(x7)),y7(numel(y7)),'s',x9(numel(x9)),y9(numel(y9)),'s

',x13(numel(x13)),y13(numel(y13)),'s',x15(numel(x15)),y15(numel(y15)),'s',x1

7(numel(x17)),y17(numel(y17)),'s',x18(numel(x18)),y18(numel(y18)),'s',x19(nu

mel(x19)),y19(numel(y19)),'s',x20(numel(x20)),y20(numel(y20)),'s',x21(numel(

x21)),y21(numel(y21)),'s',x22(numel(x22)),y22(numel(y22)),'s',x23(numel(x23)

),y23(numel(y23)),'s',x27(numel(x27)),y27(numel(y27)),'s') 
xlabel('Distance in micrometers') 
ylabel('Distance in micrometers') 
% axis is to manipulate the area of the matrix 
axis([0,550,0,350]) 
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APPENDIX III 

MATLAB calculation for cells in the periphery of the aggregate 

clear all 
close all 
%x1 y1 x2 y2 x3 y3 x4 y4 are the co-ordinates of different cells x1y1 and 
%x2y2 being in aggregate A and x3y3 and x4y4 in aggregate B; scale is 
%multiplied by 10 to represent the micrometer scale;  
x1=[10.5,11.3,10.5,9.5,9.3,8.2,9.1,8,9,11.2,12.2,16.1,19.4,21,22.6,25.2,27.6

,28.7,29.5]; 
y1=[22,21.5,23,21.6,20.4,21.9,22.2,24.5,25.6,27,29.2,30.4,30.1,28.8,28.2,28.

4,28.7,29.8,31]; 
x1=x1*10; 
y1=y1*10; 
x2=[22.5,20.8,22.8,24,25.2,25.4,26.8,27.7,29,30.4,30.3,29.9,32.1,32.3,34,36,

37.2,38.1,40.4]; 
y2=[24.8,23.2,23.7,24.5,25.8,27,27.8,27.3,28.5,29.2,28.8,28.4,30,28.7,30,30.

2,31.1,32.4,32.6]; 
x2=x2*10; 
y2=y2*10; 
x3=[24,25,26.2,25.1,26.8,27.6,27.8,28.7,29.3,30.1,29.4,28.9,30]; 
y3=[6.5,6.7,7.7,8.5,8.4,6.7,5.1,4.7,4,4,3.2,3.8,4.6]; 
x3=x3*10; 
y3=y3*10; 
x4=[38.3,39.9,41.2,42.6,44.3,44.8,45.2,44.8,44.6,44.9,45.4,46.3,47,47.1,47.6

,47.3,48.9,49.3,47.9]; 
y4=[9.2,9.8,9,8.5,8.3,7.2,6.9,6.5,6.8,7,5.9,5,4,3.4,3.6,4,4.7,5.6,5.4]; 
x4=x4*10; 
y4=y4*10; 
x5=[15.2,14.2,14.5,14,14,14.2,14,14.1,13.5,12.2,11,10.3,9.3,9.9,9,10,10.1,10

.9,11.8,12.2,13.2,13.4,12.8,12.6,11.8,12.2,13,12.2,11.5]; 
y5=[25,25,25.5,25.7,24.5,24,24.3,24.8,23.8,23.2,23.8,23.9,23.2,24.6,25.2,26,

27,27.2,28.2,28.5,29,28,27.7,26.9,26.5,25.8,26.1,25.4,26]; 
x5=x5*10; 
y5=y5*10; 
x8=[33,34,36,37,37.5,38.2,37.9,38.6,38,38.2,38.2,38.9,38.5,38,37.5,38,38.2,3

7.5,37.5,37.9,37.5,37.9,38.2,37.2,37,37.9,38.2,38,37.6,38.3]; 
y8=[11.5,12,12.5,13.5,15,15.9,17,17.3,18.2,19.2,20.3,21,21.3,21.2,21.7,22.2,

23,24.2,25.7,26.9,27.2,28.2,28.9,29.2,29.8,30.1,29.8,29.5,29.8,30.5]; 
x8=x8*10; 
y8=y8*10; 
x10=[15.9,16.3,16.8,17.2,16.4,16.5,15.4,16,17.3,17.8,19.1,20.2,21.3,22.9,23.

8,25.1,26.5,28,29,31,31.1,32.2,33.3]; 
y10=[28.2,28,28.2,29.5,30,29,29.2,30.2,30.2,31,31.2,31.3,30.5,30.8,31.9,31,3

1.8,32,31.7,31.9,31.7,32.2,33]; 
x10=x10*10; 
y10=y10*10; 
x11=[28.5,29.1,29,29.8,29.2,29.5,29,29.6,29.4,29.6,29,29.3,28.7,29,29.1,29.8

,29.4,30,29.2,29.8,29,29.5]; 
y11=[18.5,19.3,20,21,22,22.8,23.9,24,25,26,26.8,27,27.5,28,28.5,29,29.8,30,3

0.2,31,31.2,33]; 
x11=x11*10; 
y11=y11*10; 
x12=[32.2,33,33.5,34.4,34.3,34.5,34.2,34.9,34.5,34.9,34.4,35.2,35,35.2,35,35

.5,35.4,34.8,35.1,34.5,34.5,33.8,33.9,34.5,34.2,34.3,33.8,34.2,33.2,33.4]; 
y12=[11,10,9,9.5,10,11,12.2,13.5,15,16,16.8,17.9,19,20.1,21,22,23.1,24.1,25,

26,27.1,28,28.9,29,30,31,31.7,32.2,32.8,32]; 
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x12=x12*10; 
y12=y12*10; 
x14=[36,37.1,38,36.9,36.2,38.2,39,40,40.9,41.9,41,41.5,40.2,42,42.8,43,43.2,

44.5,43.5,42.5,44,43.7,44.5,43.6]; 
y14=[10.9,10.2,9.2,7.5,9,10.2,9,8.6,9.6,10.1,11,12,12,11,10,11,12.1,11.5,11,

12.2,12.8,11.5,10.4,9.9]; 
x14=x14*10; 
y14=y14*10; 
x16=[22,22.9,22.2,23.2,24.2,25.4,26,26.2,27.2,27.2,28,27.9,28.8,29.1,28.5,28

.9,27.9,28,27,27.5,28.2,28.2]; 
y16=[10,9.9,11.3,12,13,13.7,14.8,15.5,16,17.1,18,19.9,21,22,23.2,24.8,25.5,2

7,27.4,28.7,29.5,30.5]; 
x16=x16*10; 
y16=y16*10; 
x17=[32.2,33.1,34.4,34.9,35.7,35,34.4,35,35,34,34.8,35.1,34.7,35.1,35.8,35.8

,36.2,35.1,36.5,36,37.2,38.2]; 
y17=[13,14,14.7,15.7,16.8,17.5,18.5,19.7,21.1,22,22.7,23.7,24.6,25.5,26.8,27

.9,28.8,29.7,30.5,31.1,30,31]; 
x17=x17*10; 
y17=y17*10; 
x21=[37.9,38.5,38,37.2,38.3,39.2,40.5,41.2,40.6,39.9,39.7,39.7,39,38.6,38,37

,36.4,37,37.3,38.1,37.7,38.8,40,41]; 
y21=[22,22.5,21.5,21.1,20.9,20.7,20,20.2,20.8,20.8,21.5,22.7,23.7,24.5,25.5,

26,27,28,29,30,30.7,31.2,31.5,32]; 
x21=x21*10; 
y21=y21*10; 
x24=[21.2,20.5,21.8,23.2,24.5,26.7,28,29.5,31,32,33,34.5,35.3,37,38]; 
y24=[24.8,24.2,25.8,26.2,27.7,28.2,28.4,30,30.9,30.9,32,32,33,33.2,33]; 
x24=x24*10; 
y24=y24*10; 
x29=[31.1,31.4,32.2,32.2,32.5,33,34,33.5,33.4,33.4,34.2,34,34.9,34.5,33,33,3

2,32.9,33.1,33.8,34.8,35.8]; 
y29=[7.8,8.7,8.9,10,11,12,13,14,15.7,17,18,19,20,21,22,23,24,25,24.8,25.5,26

,25.9]; 
x29=x29*10; 
y29=y29*10; 
x30=[30.5,30.5,31.2,32,33.5,33.5,33,32.5,33,32,31.5,32.3,32.7,32]; 
y30=[25.4,26.4,27,26,26.8,28,29.4,28.2,27.5,27,27.8,27.9,27,26.5]; 
x30=x30*10; 
y30=y30*10; 
% r,b are the colours of the lines; '.' are for the points on the line 
% and 'o'is to indicate the starting position of every cell 
plot(x1,y1,'b+-',x2,y2,'g.-',x3,y3,'gx-',x4,y4,'c*-',x5,y5,'m.-',x8,y8,'y.-

',x10,y10,'rx-',x11,y11,'cx-',x12,y12,'b.-',x14,y14,'k.-',x16,y16,'r*-

',x17,y17,'c.-',x21,y21, 'r.-',x24,y24,'bx-',x29,y29,'mx-',x30,y30,'kx-', 

x1(1),y1(1),'o',x2(1),y2(1),'o',x3(1),y3(1),'o',x4(1),y4(1),'o',x5(1),y5(1),

'o',x8(1),y8(1),'o',x10(1),y10(1),'o',x11(1),y11(1),'o',x12(1),y12(1),'o',x1

4(1),y14(1),'o',x16(1),y16(1),'o',x1(19),y1(19),'s',x21(1),y21(1),'o', 

x17(1),y17(1),'o',x24(1),y24(1),'o',x29(1),y29(1),'o',x30(1),y30(1),'o',x2(1

9),y2(19),'s',x3(13),y3(13),'s',x4(19),y4(19),'s',x5(29),y5(29),'s',x8(30),y

8(30),'s',x10(23),y10(23),'s',x11(22),y11(22),'s',x12(30),y12(30),'s',x14(24

),y14(24),'s',x16(22),y16(22),'s',x17(numel(x17)),y17(numel(y17)),'s',x21(nu

mel(x21)),y21(numel(y21)),'s',x24(numel(x24)),y24(numel(y24)),'s',x29(numel(

x29)),y29(numel(y29)),'s',x30(numel(x30)),y30(numel(y30)),'s') 
xlabel('Distance in micrometers') 
ylabel('Distance in micrometers') 
% axis is to manipulate the area of the matrix 
axis([0,550,0,350]) 
%legend is to indicate which line is what cell 
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