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Abstract

A large number of biological systems are intrinsically random, in particular, biolog-

ical excitable membranes, such as neuronal membranes, cardiac tissue or models for

calcium dynamics. The present thesis is concerned with hybrid stochastic models of

spatio-temporal dynamics of biological excitable membranes using Piecewise Deter-

ministic Markov Processes (PDMPs). This class of processes allows a precise mathe-

matical description of the internal noise structure of excitable membranes. Overall the

aim of the thesis is two-fold: On the one hand, we establish a general hybrid modelling

framework for biological excitable membranes and, on the other hand, we are inter-

ested in a general advance of PDMP theory which the former necessitates. Regarding

the first aim we exemplify the modelling framework on the classical Hodgkin-Huxley

model of a squid giant axon. Regarding the latter we present a general PDMP theory

incorporating spatial dynamics and present tools for their analysis. Here we focus on

two aspects.

Firstly, we consider the approximation of PDMPs by deterministic models or contin-

uous stochastic processes. To this end we derive as general theoretical tools a law of

large numbers for PDMPs and martingale central limit theorems. The former estab-

lishes a connection of stochastic hybrid models to deterministic models given, e.g., by

systems of partial differential equations. Whereas the latter connects the stochastic

fluctuations in the hybrid models to diffusion processes. Furthermore, these limit

theorems provide the basis for a general Langevin approximation to PDMPs, i.e., cer-

tain stochastic partial differential equations that are expected to be similar in their

dynamics to PDMPs.

Secondly, we also address the question of numerical simulation of PDMPs. We present

and analyse the convergence in the pathwise sense of a class of simulation methods

for PDMPs in Euclidean space.
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Chapter 1

Introduction

It is widely recognised that a large number of processes occurring in biology are

in fact intrinsically random. Particularly, in dealing with ever smaller structures

the influence of noise on the behaviour of the systems becomes ever stronger and

thus should not be neglected in mathematical modelling. To capture and model the

dynamics of biological systems, such as, e.g., neuronal membranes, a wide range of

different mathematical descriptions are used. Among these models are deterministic

ordinary differential equation (ODE) / partial differential equation (PDE) models,

stochastic Markov chain models and stochastic ordinary differential equation (SODE)

/ stochastic partial differential equation (SPDE) models. A particularly interesting

new class of models are stochastic hybrid systems which combine continuous evolution

of macroscopic variables with Markov chain models for smaller structures. In recent

years the number of applications of hybrid stochastic processes to model systems in

mathematical biology, (bio-)chemical reaction kinetics and mathematical neuroscience

have increased rapidly. These models either stem from a direct modelling approach,

e.g., models of excitable biological membranes [32, 106], or result from a multiscale

approximation to more accurate particle models, e.g., in biochemical reaction systems

[3, 58, 70, 107] or in gene regulatory networks [123], gene transcription [83], DNA

modelling [85] or cell biology [49].

The present thesis is concerned with hybrid stochastic processes and their application

to modelling the spatio-temporal evolution of excitable biological membranes such

as neuronal membranes, cardiac tissue or membranes involved in calcium dynamics.

We focus on models employing Piecewise Deterministic Markov Processes (PDMPs),

which are an important class of hybrid systems including those considered in most of

the aforementioned studies. In particular we show in the present thesis that PDMPs

are the appropriate mathematical models to exactly capture the stochastic dynam-

ics arising from smaller building blocks of an excitable membrane model. PDMPs

were originally introduced by M. Davis in [36, 37] as a general class of non-diffusive

stochastic processes. They are strong Markov processes, taking values in a Euclidean
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Chapter 1: Introduction

space, which combine continuous deterministic time evolution and discontinuous, in-

stantaneous, random ’jump’ events. Specifically, the dynamics of the two components

are intrinsically intertwined. On the one hand, the continuous time-evolution, de-

fined by ordinary differential equations (ODEs) in Davis’ framework, depends on the

outcomes of discrete events, e.g., randomly changing parameters or initial conditions,

and, on the other hand, the probability of the discrete events happening, e.g., a

random, instantaneous change in a parameter, depends on the time-evolution – the

path – of the continuous variables. Davis provided a theoretical framework for the

mathematical study of PDMPs as well as applications to stochastic control problems.

PDMPs were further investigated in several directions and applications can be found

in diverse fields apart from biosciences: stationary distributions [33, 40], communica-

tion networks [60], internet traffic [30], financial mathematics [64] and ecology [120]

to cite a few.

Regarding neuronal activity in particular, we are interested to model the impact of

ion channel stochasticity termed intrinsic noise or channel noise on action poten-

tial generation and propagation. The initial motivation of the present thesis was

the observation that PDMPs are particularly well suited for modelling stochastic

neuronal membranes. A fact that was simultaneously and independently observed by

K. Pakdaman, M. Thieullen and G. Wainrib in [96]. PDMPs naturally combine the

stochastic Markov chain models of single ion channels and a deterministic biophysical

model of the currents across and along neuronal membranes. Thus they provide an

exact description of the channel noise based on the stochasticity of the individual

channels. However, we go further than the authors in [96], who take only temporal

dynamics into account, by extending the model to include also spatial dynamics. In

biological excitable membranes a wide range of spatio-temporal effects are observed

and they are an essential functional feature of the biological system.

In deterministic PDE models these effects are incorporated as dynamical phenomena

and extensively studied. For example, spatio-temporal dynamics are encountered as

travelling waves in models of axons modelling the propagation of the action potential

from the soma to the dendrites. Further, travelling waves arise in models of calcium

dynamics and spiral waves are an important feature in models of cardiac tissue. It

is thus a natural question to consider how these effects are affected by channel noise

and, as a necessary starting point for these investigations, how spatial dynamics can

be incorporated into hybrid stochastic models.

1.1 Aims of the thesis

With respect to modelling of excitable membranes we focus in this thesis on the

following aspects:

2



Chapter 1: Introduction

– Our aim is to present an exact mathematical description of an excitable mem-

brane derived from the building blocks of, on the one hand, continuous-time

Markov chain models of ion channels, and, on the other hand, deterministic ODE

or PDE models for the flow of current across or across and along the membrane,

respectively.

– In particular we show that the underlying physiological model of a neuron

incorporating channel noise can be precisely described by the mathematical model

class of PDMPs and we provide an explicit example using the Hodgkin-Huxley

model for the squid giant axon.

As spatio-temporal models are usually presented in terms of partial differential equa-

tions the classical framework of PDMPs as presented by Davis is not sufficient. It

only accounts for dynamics of the deterministic component which are generated by

systems of ODEs. In general this corresponds to purely temporal models. There-

fore a natural starting point of this thesis is to discuss PDMP theory and extend

the general theory such that it accounts for the stochastic processes suitable for de-

scribing spatio-temporal stochastic hybrid systems. This idea was also stimulated by

T. Austin’s article [7] wherein the author presents to the best of our knowledge the

only spatial hybrid model of a neuronal membrane so far. However, the connection to

PDMPs and thus a more general approach is not established in this study. In Section

3.1 we show that the model in [7] is a special case of our PDMP formulation. For

models without spatial dynamics the main advantage of the formulation as PDMPs

is that there already exists an extensive mathematical theory for its treatment, e. g.,

[37, 64, 68], in contrast to the case of most other ad-hoc hybrid models in the liter-

ature. In particular the theory allows the derivation of diffusion approximations and

large deviation results, as presented in [50, 96] and [95], respectively, for the finite-

dimensional case. A formulation of spatio-temporal models as PDMPs then provides

a suitable starting point to extend the above results to spatially extended models.

This motivates a further aim of this thesis. Thus we may say that overall the aim of

the present thesis is two-fold. On the one hand, we are interested in presenting exact

models of excitable media. On the other hand, this necessitates a general advance of

PDMP theory which is the second general aim of the present thesis. Our contributions

to the general theory of PDMPs are the following which are always connected, as they

are motivated by, the applicability to excitable membrane models.

– We present a general theory of PDMPs that combine and extend previously pub-

lished approaches. Whereas often the analysis of PDMPs is restricted to processes

taking values in Euclidean space we put a special emphasise on the generality

of the state space in view of the application to spatio-temporal hybrid models.

An extension of the classical PDMP framework to include spatial dynamics was

3



Chapter 1: Introduction

initially presented by E. Buckwar and the present author in [27]. In this thesis

we provide a substantially updated version of this approach. We provide a rig-

orous framework for a wide class of stochastic spatial models in which discrete

random events are globally coupled via continuous space-dependent variables

solving PDEs.

– In particular we present as a central result the characterisation of the extended

generator of a general class of PDMPs. The extended generator is a central

object in the study of Markov processes and allows a precise characterisation of

the process. We further discuss the families of PDMPs considered in previous

studies as well as those which arise in applications to excitable membranes.

In general an analysis of the effects due to channel noise can be pursued by analytical

or numerical means. As PDMPs are rather complex stochastic processes it is generally

very difficult to obtain analytical results. Therefore one central aspect is the derivation

of approximations to PDMPs by simpler stochastic processes which are expected to

preserve the PDMP’s qualitative and quantitative features of interest. For numerical

studies of the models numerical simulation algorithms have to be derived and an error

analysis has to be performed. Within the general PDMP framework we have dealt

with these aspects in the following way.

– We present a law of large numbers for PDMPs taking values in Hilbert spaces

within the fluid limit setting, i.e., increasing frequency of jumps of decreasing size

and variation. It establishes convergence in probability of a sequence of PDMPs

to the solution of a deterministic system of abstract evolution equations. Further

we present a martingale central limit theorem that provides the convergence of

important martingales associated with a PDMP to Hilbert space valued diffusion

processes. These theorems allow the derivation of a Langevin approximation to

PDMPs in terms of a system of stochastic partial differential equations.

– We present a general class of numerical methods for the pathwise simulation of

PDMPs taking values in Euclidean space. We analyse the pathwise error and the

asymptotic order of convergence.

With respect to applications to models of neuronal membranes these theoretical find-

ings provide the basis to rigorously derive and analyse analytical and numerical ap-

proximations to PDMP models, some of which are already used in the literature. We

exemplify the application of these methods to neuron models at the respective places

in this thesis.

Finally we briefly comment on the terminology employed throughout this thesis. We

use finite-dimensional PDMPs to denote PDMPs in the original sense of Davis, i.e.,

taking values in an Euclidean, i.e., finite-dimensional, space and inter-jump dynamics

4



Chapter 1: Introduction

generated by systems of ODEs. In contrast the PDMPs we establish in this thesis are

denoted as infinite-dimensional PDMPs as they take values in an infinite-dimensional

Hilbert space and inter-jump dynamics generated by abstract evolution equations,

e.g., parabolic PDEs. Hence finite-dimensional PDMPs are connected to models of

excitable membranes without spatial dynamics and infinite-dimensional PDMPs to

models admitting spatio-temporal dynamics.

1.2 Motivation: Stochastic models of neuronal membranes

In this section we discuss the relevance of stochastic hybrid models for neuronal mem-

branes and motivate that PDMPs are the accurate class of stochastic processes to cast

these models into a mathematical framework. We briefly review the basic building

blocks of membrane models and various approaches that are used to derive a stochastic

model of channel noise.

1.2.1 Modelling neuronal excitability

The physiologically important parts of a neuron for its excitability are the cell mem-

brane and various families of ion channels immersed in it, which allow for current flows

across the membrane. Then the complex interplay of the transmembrane potential

mediated gating of the ion channels gives rise to the excitable dynamics in the trans-

membrane potential itself. Further, of biological interest are not only local changes in

the transmembrane potential but also how these current flows are propagated along

spatially extended structures, i.e., how the signal is transmitted along the axon from

the soma to the synapses. As the dynamics of ion channels are intrinsically random

they introduce variability into the biological system, which is termed channel noise.

For large, homogeneous neuronal structures like the squid giant axon, purely deter-

ministic equations modelling the combined behaviour of the transmembrane potential

and the macroscopic average behaviour of channel gating provide a reasonably good

description of the excitable dynamics and its propagation. The large number of ion

channels involved and the homogeneity of their distribution average out the effect of

channel noise. However for small neuronal structures, e.g., as in the central nervous

system of vertebrates, purely deterministic modelling is not sufficient, see, e. g. [46],

and moreover there appears to be experimental evidence that channel noise plays a

functional role [39].

Therefore the task is to find a mathematical model that incorporates both functionally

important components and, on the one hand, describes the actual biological system

with a sufficient degree of biophysical realism and, on the other hand, is analytically

and numerically still tractable.

5



Chapter 1: Introduction

1.2.2 Review of existing modelling approaches

Efforts have been made to introduce stochasticity into neuronal models from var-

ious perspectives. On the one hand from a practical or computational point of

view stochastic algorithms have been derived that reproduce a noisy deterministic

behaviour. On the other hand from a mere theoretical perspective one wants to de-

rive the deterministic equations as a limit (in some sense) of stochastic models. To

derive the intermediate stochastic models we can roughly distinguish between two

approaches.

Firstly, an often followed approach, which one might call a top-down approach, con-

sists of adding (small) noise to the deterministic equations, e.g. [117], obtaining an

SODE or SPDE model. The original macroscopic system can then easily be retrieved

from the stochastic equations by taking the noise intensity to zero. Further, by this

approach trial-to-trial variation in the model behaviour and more ’realistic’ outcomes

of simulations are obtained very simply. Though well suited for external noise, i.e.,

fluctuations affecting directly the transmembrane potential this ansatz is not suited

for modelling channel noise. The drawback is that it does not provide an intrinsic

justification for the noise used, its intensity and its type, from physical principles.

This means, that introducing noise at this stage of the modelling cannot answer ques-

tions such as how in realistic situations microscopic channel noise is transported to

and influences the macroscopic level of the system.

In a second, more realistic, bottom-up approach, which we will also follow in our

considerations, researchers base their models again partly on deterministic equations

for the macroscopic, average behaviour, but also make use of well established micro-

scopic models for the single channels. Single ion channels are successfully modelled by

Markov chains with transition rates depending on the transmembrane potential [54].

Now, researchers construct an approximate discrete, stochastic model for a collection

of single ion channels interconnected with a deterministic equation for the trans-

membrane potential where the two parts mutually influence each other. This type

of stochastic hybrid models is in general considered for membranes without spatial

dynamics [110, 32, 38, 105, 31], except for [7]. Most authors cast their models into so

called pseudo-exact algorithms using ad-hoc approximations for the dynamics of the

coupled systems. Even if these approximations are avoided, as in [32], the lack of a

rigorous mathematical formulation of the stochastic process to be simulated prevents

serious investigations of convergence of the simulation algorithm. For example, no

proof of the strong Markov property of the resulting process in [32] is given, which is

an essential property for the numerical analysis of these processes.

The modelling of the ion channels as individual objects, but using a macroscopic

approximation for the flow of ions is well supported by the numbers appearing in

biological reality: 104−105 ions may flow through a single open channel per millisecond

6
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but channel densities are down to less than 10 channels of a certain type per square

micrometer [74]. Hybrid models generally take the form of a discrete-time algorithm

and it is then shown computationally that a noisy excitable behaviour similar to

deterministic models emerges.

Starting from a certain hybrid model proposed in [38] the authors in [50] showed that

macroscopic equations can be derived as a deterministic limit by expansion of the

generator and taking the number of ion channels to infinity. Another approach using

fluid limits and finite dimensional PDMPs has been pursued in [96]. Further, in both

works the authors have derived intermediate scale approximations of hybrid models

by diffusion processes, i.e., by solutions of SODEs.

We would like to mention that it is possible to extract channel dynamics from macro-

scopic models of the channel gating and define Markovian kinetics for the distinct

classes of ion channels in the membrane. Hence, stochastic hybrid models obtained in

this way have the initial macroscopic model as their deterministic limit in the sense

of [50, 96]. The rate functions, given in Section A, for the Hodgkin-Huxley model,

which we discuss in Section 3.1, are based on this procedure.

We follow this bottom-up approach and propose PDMPs as a precise mathematical

formulation of the model of a membrane subject to channel noise. We now moti-

vate this proposition analysing the building blocks of a membrane model in the next

subsection.

1.2.3 Derivation of exact models

The first building block of the model is a mathematical formulation of the spatio-

temporal dynamics of the transmembrane potential u, and as described in [74] this is

in general given by the nonlinear cable equation

Cu̇ = D∆u +
∑

i

gi(u)(Ei − u) , (1.2.1)

a second-order parabolic PDE, where ∆ is the Laplacian and · denotes differentiation

with respect to time. If we assume that the potential is homogeneous over the spatial

domain, ∆u ≡ 0, which we refer to as a space-clamped membrane in reference to the

experimental technique used by Hodgkin and Huxley, then the cable equation reduces

to the membrane balance equation

Cu̇ =
∑

i

gi(u)(Ei − u) , (1.2.2)

an ordinary differential equation. In both of these equations each summand

gi(u)(Ei − u) corresponds to a different current source with gi(u) denoting its conduc-

tance. Current sources are in particular single or families of ion channels in open, i.e.,

7
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4an 3an 2an an

n0 ! n1 ! n2 ! n3 ! n4

bn 2bn 3bn 4bn

3am 2am am

m0h0 ! m1h0 ! m2h0 ! m3h0
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ah "# bh ah "# bh ah "# bh ah "# bh

3am 2am am

m0h1 ! m1h1 ! m2h1 ! m3h1

bm 2bm 3bm

(a) (b)

Figure 1.1: Markov kinetic scheme of (a) potassium and (b) sodium ion channels in
the classical Hodgkin-Huxley model of a squid giant axon. The states n4 and m3h1

are the conducting states of the potassium and sodium channel, respectively. The
rates ax = ax(u), bx = bx(u) are dependent on the transmembrane potential u.

conducting, states. The conductances gi(u) depend on an associated model for the

channel gating. The stochastic, microscopic modelling of the conductances based on

individual channel dynamics gives rise to the second stochastic building block. This is

in contrast to macroscopic, deterministic models of the conductances where a coupled

system of ODEs gives the second building block, cf. Section 3.3.

Single, stochastic ion channels subject to constant transmembrane potential are mod-

elled on a mesoscopic scale of magnitude by continuous-time, discrete-state Markov

chains [54] which are most easily described by a state diagram, cf. Fig. 1.1. Therein,

e.g., m2h1 ⇀ m3h1 with transition rate am indicates that a channel which is in state

m2h1 changes its state to m3h1 at a random time τ , the distribution of which is given

by

P[τ > t] = exp
(
−amt
)
, (1.2.3)

i.e., an exponential distribution with parameter am. An independent collection of ion

channels can be simulated using the stochastic simulation algorithm (SSA) [53].

In the next step we combine these building blocks to model a space-clamped mem-

brane, that is, we have to combine equation (1.2.2) and Markov chain models for

single channels, where now the time-evolution of the former is coupled to the latter

and vice versa. Then, on the one hand, for the conductances in (1.2.2) the depen-

dence of the time-evolution of u on the ion channels is modelled by defining gi(u) to

be the number of open channels nstate from the respective family of channels times

the conductance of a single channel denoted gi. For example, for the current due to

sodium (Na) channels defined in Fig. 1.1 we obtain

gNa(u) ≡ gNanm3h1
. (1.2.4)

On the other hand, the transition rates of the channels now also depend on the

evolution of the transmembrane potential u. Thus incorporating this dependence

8
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yields the mathematically exact waiting time distribution

P[τ > t] = exp
(
−
∫ t

0

am(u(s)) ds
)

(1.2.5)

for the example considered in (1.2.3). Such a model with the time-evolution coupled

in this way is what we consider and refer to as an exact model for a (space-clamped)

membrane.

In Chapter 2 when discussing piecewise deterministic processes it will become appar-

ent that the building blocks of stochastic hybrid ODE models, (1.2.2) and Fig. 1.1, and

their coupling via (1.2.4) and (1.2.5), exactly fit the components of finite-dimensional

PDMPs. Moreover, by considering PDMPs on infinite-dimensional state spaces we

can cast models of spatially extended system, i.e., considering equations (1.2.1) in-

stead of (1.2.2), into a PDMP framework. The coupling of the building blocks for

spatial dynamics, in other words, the modelling of the conductances gi(u) in the PDE

(1.2.1), is discussed in Section 3.1.

To conclude this introduction we briefly revisit the class of pseudo-exact models, which

contains most hybrid models used in the literature, and comment on their connection

to exact models. To define pseudo-exact models an ad-hoc approximation concerning

the distribution (1.2.5) is employed, see [31, 38, 110]. This approximation is based

on the assumption that the transition rates ax(u), bx(u) do not change significantly

during the time interval between successive state changes in the channel configura-

tion and thus can be considered constant on that interval. Using (1.2.3) instead of

(1.2.5) for the distribution of the inter-jump intervals pseudo-exact algorithms become

straight-forward to implement and essentially reduce to a version of the SSA. These

pseudo-exact algorithms have been used in a vast number of studies, e.g., for the

simulation of the transmembrane potential at Nodes of Ranvier in auditory nerves

[63, 94]. An exact algorithm has also been proposed in [32]. But to the best of our

knowledge this algorithm has only been used in the four studies [12, 56, 88, 105], as it

is computationally very expensive compared to pseudo-exact algorithms [93]. Com-

puter experiments comparing simulation statistics for a simple test model suggest that

only a reasonable error seems to be introduced when using pseudo-exact algorithms

[93]. However, as already mentioned, for the general case a theoretical analysis of the

error of this approximation has yet to be performed. As a necessary prerequisite it

needs a mathematical framework of the stochastic processes it approximates. Con-

cerning the exact algorithm we have mentioned that it lacks a rigorous justification,

as a strong Markov property for stochastic hybrid model is employed which a-priori

is not necessarily given. Anticipating a description of exact models by PDMPs we

note that this exact algorithm is essentially equivalent to a theoretical method for

the exact simulation of finite-dimensional PDMPs which we discuss in Chapter 5.

9
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In that chapter we also present a numerical error analysis for a large class of actual

implementations of this theoretical exact method as in practice an exact simulation

is rarely possible.

1.3 Outline of the thesis

A broad outline of the thesis is given by the following. In Chapter 2 we present

the general theory of PDMPs. We note that a summary of necessary preliminary

results to PDMP theory which builds on the theory of random counting measures

is presented in Appendix B. The initial Section 2.0.1 of Chapter 2 contains a brief

introduction to Markov processes wherein we recall some central aspects of Markov

process theory. We define general PDMPs in Section 2.1 and prove the strong Markov

property for PDMPs. In Section 2.1.2 we discuss some special cases of PDMPs and

derive a characterisation of the extended generator for a large class of PDMPs in

Section 2.2.

In Chapter 3 we are concerned with stochastic hybrid models of neuronal membranes

given by PDMPs. We first discuss in Section 3.0.1 in more detail the appropriate fam-

ily of PDMPs which is employed. Then Section 3.1 exemplifies on the Hodgkin-Huxley

model how models of excitable membranes are cast into the PDMP framework. We

discuss how this approach can be used for more general excitable systems, cf. Section

3.1.1. Further, we also show how spatial models reduce to PDMP models as consid-

ered in [96] when they are spatially homogeneous, cf. Section 3.1.2. A second type

of PDMP models of spatial neuronal membranes is presented in Section 3.2. Finally,

this chapter also contains in Section 3.3 a general existence and uniqueness theorem

for deterministic systems of excitable membranes which is a necessary reference for

the subsequent chapter.

Next, in Chapter 4 we consider limit theorems for sequences of PDMPs of the form

used in spatio-temporal models of excitable membranes. Certain martingales that are

associated with PDMPs play a central role for the study of limit theorems. Therefore

we present a discussion of these martingales in Section 4.1. Then, the law of large

numbers is presented in Section 4.2 which establishes convergence in probability to

the solution of a deterministic system of abstract evolution equations. Subsequently

martingale central limit theorems are presented in Section 4.3 and the derivation of

the Langevin approximation is discussed in Section 4.3.2. We apply these results to

compartmental-type models of excitable membranes discussed in Section 3.2. Here

the deterministic limit arising in the law of large numbers is the solution to a general

excitable membrane system of the type discussed in Section 3.3.

Chapter 5 deals with numerical approximations to PDMPs in Euclidean space. We

first present in Section 5.1 a theoretical simulation algorithm which takes the role of

10
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an ’exact solution’ in numerical analysis. In Section 5.2 we suitably discretise this

theoretical algorithm and obtain a class of numerical simulation methods based on

continuous ODE methods (methods with dense output). This section also contains

the central result which gives conditions that guarantee pathwise convergence of the

numerical methods and establishes an asymptotic order of convergence. Then in

Section 5.4 we extend this convergence result to a more general class of PDMPs.

Finally, in Section we present examples of applications of the numerical methods we

presented and analysed to models of neuronal membranes.

The thesis is concluded in Chapter 6 wherein we briefly recapitulate the results we have

established and discuss directions for further research motivated by these. Finally,

Appendix A contains the precise definition of rate functions and parameter values for

particular neuron models employed in this thesis. As already mentioned Appendix

B contains an account of theory of random counting measures which is a prerequi-

site of PDMP theory. Appendix C presents a brief review of existence theory for

linear parabolic partial differential equations. It states some classical results that are

frequently employed in the present thesis.
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Chapter 2

Piecewise Deterministic Markov

Processes

In this chapter we present a concise introduction to the general theory of piecewise

deterministic Markov processes (PDMPs). This class of stochastic processes was in-

troduced by Davis [36, 37] in 1984. Davis’ original approach is very much related

to switching systems as are the applications that motivated his study of PDMPs.

This relation is particularly expressed in the specific structure of the processes he

discusses which incorporate a piecewise constant component that jumps among iso-

lated states. Also the discussion is restricted to Rd-valued, homogeneous processes. A

recent monograph on PDMPs by Jacobsen [64] overcomes these restrictions to some

extent. Therein PDMPs are considered inhomogeneous Markovian jump processes

taking values in Borel measurable spaces, cf. Section B.1, that move deterministically

in between random jump times. In general, Jacobsen’s approach is much more in the

sense of general càdlàg Markov processes and more accessible for an analysis. This is

a resemblance to differential equations with Markovian switching – a special case of

PDMPs – which for analytical purposes are represented as solutions to jump-diffusion

equations, cf., e.g., [86] in a more general context. However, a drawback in Jacobsen’s

presentation is that random initial conditions for PDMPs are neglected and, although

a general existence result is stated, with regards to further theory and analysis the

class of PDMPs is as in Davis [36, 37] restricted to Rd-valued processes. For the

application of PDMPs to model spatially extended excitable membranes, which we

pursue in the present thesis, this restricted class of PDMPs is not sufficient as– in

anticipation of Chapter 3 – infinite-dimensional function spaces are the appropriate

state spaces for PDMPs in this context. We note that further relevant, early pub-

lications concerning PDMPs are [29] and [68] which discuss more general classes of

piecewise deterministic processes in contrast to Davis allowing for processes that are

non-regular, i.e., countably many jumps in a finite time interval may occur. In partic-

ular, the authors in [68] present a completely different, complementary approach to

12
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PDMPs. Their approach allows the derivation of necessary conditions for a process

to be piecewise deterministic and Markov whereas authors in [36, 37, 64] only present

sufficient conditions.

In our presentation of PDMPs in Section 2.1 we follow for the existence results the

presentation of Jacobsen [64], but most importantly extend the results to allow for

random initial conditions. We note that the existence theory is largely based on

the theory of random counting measures a brief account of which we present in the

Appendix B.2. The constructive approach to PDMPs, as employed by Davis [37], is

extended in Section 2.1.1 to the general class of PDMPs we consider. It is of particular

importance for numerical analysis of simulation methods for PDMPs, cf. Chapter 5.

Finally, in Section 2.2 we present as a main result a precise characterisation of the

extended generator for a general class of PDMPs which extends the corresponding

results of [37, 64]. The proofs of the two main results in this chapter, the strong

Markov property of a PDMP and the characterisation of the extended generator of

a PDMP, are, together with two minor helpful results, deferred to the end of the

chapter, Section 2.3

Before we proceed to the precise definition and discussion of PDMPs we briefly recall

in Section 2.0.1 some general theory concerning Markov processes. For a general

theory of Markov processes we refer to the monographs [20, 41, 109] on which the

presentation in the subsequent section is based but the essentials can also be found

in [37, 64]. For a more thorough presentation of the connections of semigroups and

Markov processes we refer to Ethier and Kurtz [41] wherein also the martingale /

local martingale problem is discussed in detail.

2.0.1 Markov processes

Let (Ω,F , (Ft)t≥0, P) be a filtered probability space and (Xt)t≥0 be a càdlàg1 process

defined thereon taking values in a Borel measurable space (E, E). Further, (FX
t )t≥0

denotes the natural filtration generated by a process (Xt)t≥0, i.e., FX
t = σ(Xs; s ≤ t)

for all t ≥ 0. Clearly, here right-continuity and the existence of left limits for the

paths are understood in the sense of metric spaces, i.e., R+ equipped with the usual

Euclidean metric and for the Borel space E we choose any metric compatible with

the topology. In view of applications this slight ambiguity in the continuity definition

1càdlàg is an abbreviation for ’continu à droite, limité à gauche’, so these are continuous-time
stochastic processes with sample paths that are almost surely everywhere right continuous with lim-
its from the left existing everywhere. We note that the càdlàg property of a stochastic process is not
essential for the theory of Markov processes. However, it simplifies some definitions, e.g., we can omit
conditions for processes being progressively measurable (with respect to a given filtration) as every
right-continuous, adapted process is progressively measurable. A second condition regularly em-
ployed is for general processes to be optional (with respect to a given filtration), e.g., [66, 68]. Again,
this condition can be omitted as, by definition, cádlág adapted processes are optional. Furthermore,
all processes considered in this thesis are càdlàg.
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does not arise as E is always a (Borel subset of a) normed vector space and continuity

holds with respect to the metric induced by the norm.

Definition 2.0.1. (a) The process (Xt)t≥0 is called a Markov process with respect to

the filtration (Ft)t≥0 if there exist Markov kernels pst on E for all s ≤ t such that

for all C ∈ E
P[Xt ∈ C|Fs] = pst(Xs, C) a.s. (2.0.1)

A Markov process is called homogeneous (or with stationary transition probabil-

ities) if in addition one can choose pst such that it depends on t, s only via the

difference t− s. In this case (2.0.1) reads for all 0 ≤ s ≤ t and all C ∈ E

P[Xt ∈ C|Fs] = pt−s(Xs, C) a.s. (2.0.2)

In these definitions we always take for the Markov kernels pss(x, ·) = δx or

p0(x, ·) = δx, respectively, where δx denotes the Dirac measure at x.

(b) Markov kernels pst, pt are also called the transition functions of the process. A

family of transition functions pst, pt satisfies the Chapman-Kolmogorov equations

if for all s ≤ t ≤ u and all x ∈ E, C ∈ E

psu(x, C) =

∫

E

ptu(y, C) pst(x, dy), (2.0.3)

or, in the homogeneous case, if for all s, t and all x ∈ E, C ∈ E

ps+t(x, C) =

∫

E

pt(y, C) ps(x, dy) . (2.0.4)

In particular, the Chapman-Kolmogorov equations are for every s ≥ 0 and all

C ∈ E satisfied for x = Xs by the transition functions of a Markov process almost

surely. Further, two Markov processes are called equivalent if they have the same

transition functions.

(c) A Markov process with respect to (Ft)t≥0 with transition functions pst or pt in

the homogeneous case satisfies the strong Markov property if for all Ft-stopping

times τ on the set [τ <∞] it holds that for all C ∈ E

P[Xτ+t ∈ C|Fτ ] = pτ,τ+t(Xτ , C) a.s. (2.0.5)

or in the homogeneous case

P[Xτ+t ∈ C|Fτ ] = pt(Xτ , C) a.s. (2.0.6)

(d) The marginal probability of the initial condition X0, i.e., the probability measure
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ν on E given by ν(C) = P[X0 ∈ C], is called the initial law of the Markov

process. Note that equivalent Markov processes which, in addition, possess the

same initial law, are versions of each other.2

We next comment briefly on the definition of Markov processes presented above.

Clearly, if a process is a Markov process with respect to some filtration, then it

is also Markov process with respect to any coarser filtration. In particular, every

Markov process satisfies the Markov property with respect to its natural filtration.

The opposite is in general not true, that is, a Markov process need not be Markov

with respect to a finer filtration. Further, there are several equivalent definitions

in the literature for a stochastic process to be a Markov process. E.g., Ethier and

Kurtz [41] define a Markov process by the property that for all C ∈ E the conditional

probabilities satisfy

P[Xt ∈ C | Fs] = P[Xt ∈ C |Xs] a.s. (2.0.7)

A second often used definition, e.g., Davis [37], is that for all bounded, measurable

real-valued functions f : E → R it holds for all 0 ≤ s ≤ t

E[f(Xt) | Fs] = E[f(Xt) |Xs] a.s. (2.0.8)

This last property (2.0.8) is a special case of the generalisation of the Markov property

presented in Proposition 2.0.1, which corresponds to the definition of a Markov process

in Sharpe [109, p. 3]. Finally, a process (Xt)t≥0 is Markov if for a family of transition

functions it holds that for all bounded, measurable, real-valued f and all 0 ≤ s ≤ t it

holds that

E[f(Xt)|Fs] =

∫

E

f(y) pst(Xs, dy) a.s. (2.0.9)

It is easily seen that the defining conditions (2.0.1) and (2.0.7) – (2.0.9) are equivalent.

Firstly, we find that, on the one hand, (2.0.7) implies (2.0.8) and (2.0.1) implies (2.0.9)

due to the monotone convergence theorem [20, 41]. On the other hand, (2.0.7) is a

special case of (2.0.8) and (2.0.1) is a special case of (2.0.9). Secondly, as the right

hand sides of (2.0.1) and (2.0.9) are measurable with respect to σ(Xs) it follows

immediately that (2.0.1) implies (2.0.7) and (2.0.9) implies (2.0.8). Finally, (2.0.7)

implies (2.0.1) and (2.0.8) implies (2.0.9) as E is a Borel measurable space and thus

the existence of Markov kernels pst is guaranteed as regular conditional probabilities

always exist. Further, the properties of the conditional distribution imply that the

Markov kernels have to satisfy the Chapman-Kolmogorov equations almost surely.

2We recall, that two stochastic processes, which need not be defined on the same probability
space, are versions of each other, if they have the same finite-dimensional distributions. For Markov
processes the finite-dimensional distributions are given uniquely by the initial law and the transition
functions, see, e.g., [41].
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For a more detailed explanation of these arguments we refer to [20, 109].

To conclude, we note that the property (2.0.1) or (2.0.2), respectively, does not nec-

essarily define the Markov kernels pst, pt uniquely. Nevertheless, as E is a Borel space

it is guaranteed that two Markov kernels both satisfying the Markov property define

the same probability on E for all x outside of a null set for Xs, cf. [20, p. 15].

Proposition 2.0.1. (Xt)t≥0 is a Markov process with respect to (Ft)t≥0 if and only

if for all σ(Xu, u ≥ t)-measurable, bounded, real-valued random variables U it holds

that

E[U |Ft] = E[U |Xt] a.s.

In Sharpe [109, p. 3] such a condition as in Proposition 2.0.1 but for positive, σ(Xu, u ≥
t)-measurable random variables U is stated as a definition of the Markov property.

Then, the Proposition 2.0.1 is inferred via a decomposition of bounded random vari-

ables into positive and negative part. We further note, that the sufficient part of

Proposition 2.0.1, i.e., the condition of the statement implies the Markov property,

follows by (2.0.8). This holds as for every bounded, measurable f the random variable

f(Xt) is of the form assumed for U . The necessary part of the statement is proven in

Jacobsen [64, p. 145].

In the remainder of this section we restrict the presentation to homogeneous Markov

processes as this is sufficient for the application of the results following in later sec-

tions. Furthermore, it is always possible to transform an inhomogeneous Markov

process (Xt)t≥0 via an extension of the state space into a homogeneous process. This

is accomplished considering the associated space-time process (Zt)t≥0. The process

(Zt)t≥0 is defined by Zt := (t, Xt) for all t ≥ 0.

Hence, first of all, note that the space-time process it is adapted to the same filtration

as (Xt)t≥0 and it satisfies for any Borel set C ⊆ [0,∞)× E that for all s, t,≥ 0

P[Zs+t ∈ C|Fs] = p̂t(Zs, C) ,

where p̂t((s, x), C) := ps,s+t(x, projE
(
{t + s} × E ∩ C)

)
. Here projE denotes the

projection of a subset of [0,∞) × E on its E-component. One the one hand, p̂t is

measurable3 with respect to (s, x) for fixed C and, on the other hand, for fixed (s, x)

it defines a probability on [0,∞)× E. Hence, by Definition 2.0.1(iii) the space-time

process is a homogeneous Markov process. It follows immediately that the space-

time process is a strong Markov process in case (Xt)t≥0 satisfies the strong Markov

property. Within the general theory of Markov processes space-time processes are

3This can be shown by a Dynkin class argument (see the proof of Lemma 2.3.2 for such a method
of proof) or we simply tacitly assume that the transition functions pst are jointly measurable as
mappings (s, t, x) +→ pst(x, C) for any fixed Borel set C, cf. [41] wherein this property is part of the
definition of a transition function.
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considered in [109, Sect. 16] where the time component is not (fully) deterministic

but performs a uniform motion to the right from a random initial condition, i.e.,

Z0 ∈ [0,∞) × E instead of Z0 ∈ {0} × E as is sufficient for our purposes. In this

general case the definition of the process via a transition function follows immediately

from the definition of p̂t.

We repeat and emphasise that for the remainder of this section (Xt)t≥0 always denotes

a homogeneous Markov process. An important object in the study of homogeneous

Markov processes is the associated semigroup of operators on the set of bounded,

measurable real-valued functions on E, which we denote in the following by B(E, R).

This function space is a Banach space when equipped with the supremum norm,

denoted by ‖ · ‖0. A family of operators (Pt)t≥0 forms a semigroup if each operator Pt

maps B(E, R) on itself and, in addition, they satisfy the functional relations

P0 = id and Pt+s = Ps ◦ Pt ∀ t, s ≥ 0 .

The semigroup is strongly continuous if it is continuous (from the right) at the origin,

i.e., if for all f ∈ B(E, R) it holds that

lim
t↓0
‖Ptf − f‖0 = 0 .

Moreover, a strongly continuous semigroup has continuous paths, i.e., t +→ Ptf is

continuous for all f ∈ B(E, R), cf. [103, p. 397]. It is proven in [37] that the set

B0(E, R) ⊂ B(E, R) on which any semigroup is strongly continuous is a closed sub-

space of B(E, R), hence itself a Banach space, and the semigroup Pt maps B0(E, R)

onto B0(E, R). Finally, a semigroup is a contraction semigroup if ‖Pt‖0 ≤ 1 for all

t ≥ 0, where ‖·‖0 denotes the induced operator norm, and the semigroup is measurable

if the map t +→ Ptf is measurable for all f ∈ B(E, R).

The connection to Markov processes is established by the following observation. Due

to the Chapman-Kolmogorov equations (2.0.4) it follows that the operators Pt, t ≥ 0

defined by

Ptf(x) := E[f(Xt)|X0 = x] =

∫

E

f(y) pt(x, dy) ∀x ≥ E (2.0.10)

define a measurable contraction semigroup of linear, bounded operators. More gen-

erally we define the following.

Definition 2.0.2. Let (Pt)t≥0 be an arbitrary semigroup defined on a closed subspace

L ⊂ B(E, R). We say that the Markov process (Xt)t≥0 corresponds to the semigroup

(Pt)t≥0 or the semigroup is associated to the Markov process if for all t, s ≥ 0 and all
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f ∈ L

E[f(Xs+t)|FX
s ] = Ptf(Xs). (2.0.11)

Obviously, if the semigroup (Pt)t≥0 is defined by (2.0.10) than condition (2.0.11) is just

(2.0.9) and thus satisfied for all f ∈ B(E, R). The importance of the associated semi-

group lies in the fact that it defines a Markov process uniquely as finite-dimensional

distributions define a stochastic process uniquely.

Proposition 2.0.2. ([41, Chap. 3, Prop. 1.6]) Let (Xt)t≥0 be a Markov process taking

values in E with given initial law ν. The process corresponds to a semigroup on a

closed subspace L of B(E, R). If L is separating4, then the semigroup and the initial

law determine the finite-dimensional distributions of the process.

With the transition semigroup of a Markov process we can associate its full generator,

which is called the generator of the Markov process. In general, the full generator of

a measurable contraction semigroup is given by the set

D(Â) :=
{

(f, g) ∈ B(E, R)2
∣∣Ptf − f =

∫ t

0

Psg ds
}

. (2.0.12)

The full generator is in general not single-valued. Here, single-valued means heuris-

tically that for each f there exists only one g such that the pair (f, g) is in the full

generator. Precisely, the full generator is single-valued if (0, g) ∈ D(Â) implies that

g = 0. In this case we may understand Â as an operator on B(E, R) mapping f to the

unique function g such that (f, g) ∈ D(Â) and write for a pair (f, g) = (f, Âf). Then,

in a slight abuse of notation D(Â) is understood as the domain of the operator Â.

Additionally we have associated to any semigroup its infinitesimal strong generator

A. Heuristically, the strong generator is the derivative at t = 0. Denote by D(A) the

set of all bounded measurable functionals f for which the limit Af in the following

sense exists

lim
t↓0

∥∥∥
Ptf − f

t
−Af
∥∥∥

0
= 0. (2.0.13)

Thus Af is the Fréchet derivative (from the right) of the map t +→ Ptf between the

Banach spaces R+ and B(E, R) and it holds that D(A) ⊂ B0(E, R). Moreover, the

infinitesimal generator of a strongly continuous semigroup is contained in the full

generator, cf. [41, Chap. 1, Prop. 1.5].

The importance of the generator of a Markov process is contained in the observation

that its elements have the following property.

4A subset L ⊆ B(E, R) of bounded, real-valued functions on E is called separating if for two
probabilities P1, P2 on E the property

∫

E

f dP
1 =

∫

E

f dP
2 ∀ f ∈ L

implies that P1 = P2, cf., e.g., [14, 37, 41].
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Proposition 2.0.3. ([41, Chap. 3, Prop. 1.7]) Let (Xt)t≥0 be a Markov process tak-

ing values in E with transition functions pt. Further, let (Pt)t≥0 be a corresponding

semigroup and Â its full generator. Then for (f, g) ∈ D(Â) the process defined by

t +→Mt := f(Xt)− f(X0)−
∫ t

0

g(Xs) ds (2.0.14)

is an FX
t -martingale.5 Further, the function g is uniquely defined up to sets of zero

potential6 and, in particular, if (f, g) is in the infinitesimal generator, then g = Af .

Since the finite dimensional distributions of a Markov process, which uniquely char-

acterise a process, are determined by a corresponding semigroup due to Proposition

2.0.2 and the semigroup in turn is determined by its full generator D(Â) or a suffi-

ciently large set A ⊂ D(Â), cf. Hille-Yosida Theorem, see, e.g. [41], it follows that a

Markov process is uniquely defined by a sufficiently large subset of the full generator

of a semigroup. The mathematical task of characterising a Markov process to a given

set of pairs of functions (f, g) such that the process (2.0.14) is a martingale is called

the martingale problem. We say a stochastic process or, equivalently, a probability

measure on the canonical space of càdlàg functions is a solution to the martingale

problem posed by a set of pairs (f, g) if the process (2.0.14) is a martingale for all

such pairs. For a discussion of the martingale problem and in particular existence

and uniqueness of solutions we refer to [41, 113].

To conclude this introduction to Markov processes, we note that there may be some

measurable functions f not in the domain of the generator for which a property akin

to Proposition 2.0.14 holds true. This leads to the following definition.

Definition 2.0.3. Let D(A) denote the set of all real-valued measurable functions

f on E such that there exists a real-valued measurable function g on E with the

property that t +→ g(Xt) is almost surely integrable and the process

t +→Mt := f(Xt)− f(X0)−
∫ t

0

g(Xs) ds

is an FX
t -local martingale. If such a g exists it is unique up to sets of zero potential

and thus we may write Af := g. We call A the extended generator of the process

5We note that in [41, Chap. 3, Prop. 1.7] the martingale Mt is defined without subtracting f(X0)
in the right hand side of (2.0.14). However, the definition we employ is equivalent as f(X0) is only an
addition of an FX

0 -measurable function, i.e., (Mt + f(X0))t≥0 is a martingale if and only if (Mt)t≥0

is a martingale. The advantage of definition (2.0.14) is that the process (Mt)t≥0 satisfies Mt = 0.
6A Borel set A ⊂ E is said to be of zero potential if for every x ∈ E

P
0,x
[∫ ∞

0
IA(Xs) ds = 0

]
= 1

where the probability P0,x is such that P0,x[X0 = x] = 1. This means that the process ’spends’
almost surely no time in A regardless of the initial condition.
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(Xt)t≥0 and D(A) its domain.

The advantage of the extended generator over the full generator is that it is usually

easier to specify its domain exactly. Further, as every martingale is a local martingale

it holds that D(Â) ⊂ D(A) and the extended generator does ’extend’ the full gen-

erator. Akin to the martingale problem also the extended generator can be used to

characterise a Markov process uniquely which is called the local martingale problem,

cf. [41, p. 224] or the monograph [66]. A solution to the local martingale problem

is understood analogously to solutions to martingale problems. We remark that in

Chapter 4 we employ the local martingale problem to uniquely characterise the limit

in distribution of a sequence of martingales.

2.1 Definition of PDMPs

Let (Ω,F , (Ft)t≥0, P) be a filtered probability space with right-continuous filtration

and (E, E) be a Borel measurable space. Further we have that µ is an adapted,

regular7 random counting measure defined on this probability space as defined in

Appendix B.2. We refer to Appendix B.2 for an introduction of the notation used in

connection with random counting measures throughout the subsequent sections. The

random counting measure µ also defines a marked point process (τn, Yn)n≥1 and an

adapted counting process (Nt)t≥0, cf. Section B.2.7. That is, Nt = µ((0, t], E) counts

the number of events up to and including time t. In particular, one should keep in

mind that µ is an (H,H)-valued random variable directly defined on (Ω,F , P) and

all other random variables, i.e., τn, Yn, n ≥ 1, Nt, t ≥ 0 as well as the PDMP defined

subsequently, are defined as measurable mappings of µ. Furthermore, the probability

space supports an E-valued random variable X0. We generally assume that the set of

events Ω is sufficiently rich, by which is understood that Ω contains enough events to

exhaust the state space of random variables defined thereon and thus all information

on the random variables is purely contained in their law. Finally, without loss of

generality we may assume that F = σ(X0)∨Fµ
∞, i.e., the σ-field on Ω is generated by

the random variables X0 and µ. It is an almost trivial extension to consider σ-fields F
are generated by which X0 and µ additional random variables independent of these.

Then the filtration (Ft)t≥0 is given by Ft := σ(X0) ∨ Fµ
t for all t ≥ 0 which is of the

form as discussed in Section B.2.7 in connection with random counting measures on

arbitrary probability spaces.

Definition 2.1.1. We call a stochastic process (Xt)t≥0 piecewise deterministic if it

can be constructed from a marked point process in the following way:

7We use the attribute regular to emphasise the fact that the random counting measure has only
finitely many events in any finite time interval almost surely, which holds for a canonical random
counting measure by definition, see Section B.2.1.
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(i) There exists an F0-measurable initial condition X0 taking values in E,

(ii) for every n ≥ 0 there exists a measurable function

fn
x0

: Kn × [0,∞)
∣∣
tn≤t, tn<∞ → E : (zn, t) +→ fn

x0
( t |zn),

which may depend on the initial condition x0 ∈ E, such that the process (Xt)t≥0

satisfies on the set [X0 = x0]

Xt = fNt
X0

( t |ZNt) , (2.1.1)

where ZNt =
(
(τ1, Y1), . . . , (τNt , YNt)

)
according to the definition in (B.2.2). Further,

we always assume that the functions f are càdlàg8 and satisfy for all zn ∈ (R+×E)n,

n ≥ 0, the boundary conditions

f 0
x0

(0) = x0 and fn
x0

( tn |zn) = yn .

This corresponds to the fact that the marks Yn give the position of the PDP after

the nth jump. Other choices of the interpretations of the marks are also possible,

e.g., if E is a vector space one may choose to identify via Yn = Xτn −Xτn−, i.e., the

size of the jump that a process performs at the jump time τn. Finally, a piecewise

deterministic process is called piecewise continuous if t +→ fn
x0

( t |zn) is continuous on

[tn,∞) for all n ≥ 0, zn ∈ Kn.

Remark 2.1.1. We note that in this thesis by definition a PDP is always a regular

jump process. Nevertheless, we frequently use the attribute ’regular’ in connections

with PDPs to emphasise this important fact. Clearly, it is possible to define PDPs also

from exploding random counting measures, however, such PDPs cannot constitute a

Markov process in the sense of Section 2.0.1 and the additional concept of finite life-

times of Markov processes has to be introduced. This class of processes does not

occur for the models we are considered with in this thesis, hence, we do not discuss

this issue any further.

Clearly, the law of a PDP (Xt)t≥0 is determined by the joint distribution of µ and

the initial condition X0 via the pushforward measure and FX
t ⊂ Ft for all t ≥ 0.

However, the possible dependence of the law of the random counting measure on the

initial condition X0 complicates matters for the existence of such a process compared

to the presentation in [64] wherein only constant initial conditions are considered.

Moreover, the existence theorem of random counting measure in Appendix B.2 only

covers laws independent of the initial condition. Thus, in order to guarantee the

well-definedness of general PDPs with arbitrary initial law we first have to prove that

8Here the càdlàg property is understood with respect to a suitable metric on E which exists as
every Borel space is metrizable.
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there exists probability measure on (Ω,F) possessing the given marginal for X0 and

the marginal with respect to µ being a canonical random counting measure. That is,

(W) for every initial law ν on E there exists a probability Pν on (Ω,F) such that

Pν [X0 ∈ C] = ν(C) for all C ∈ E and Pν [µ ∈ D|X0] = P0,X0(D) for all D ∈ H
where P0,x, x ∈ E, is a probability on (H,H) defined from Markov kernels

(P n
x )n≥0 and (πn

x)n≥0 due to Theorem B.2.1.

Now, given Pν as in (W) the law of a PDP is defined via the pushforward measure.

Thus, the problem (W) poses is to construct a joint probability distribution for (X0, µ)

from given marginals. We show in the following that this is always possible in the

current context.

Given the families of Markov kernels (P n
x )n≥0 and (πn

x)n≥0 we argue, in a first step,

that a probability as in (W) exists for initial conditions given by the Dirac measure

at any point x ∈ E: Clearly, there exists a probability on (Ω,F) such that P0,x is the

marginal of the random counting measure µ and the initial condition satisfies X0 = x

almost surely. We denote such a probability on (Ω,F) also by P0,x. That the law of

a PDP under this probability is well-defined, i.e., that the marginals fully define the

joint distribution of (X0, µ) is implied by Lemma 2.3.1 in Section 2.3.1.

In a next step we use the family of probabilities (P0,x)x∈E to define a probability as

in (W) for any law ν on E by

P
ν(A) :=

∫

E

P
0,x(A) ν(dx) ∀A ∈ F . (2.1.2)

The probability defined in (2.1.2) is unique and well-defined due to [13, Prop. 7.28]

as (x, A) +→ P0,x(A) is a Markov kernel as P0,x is a probability for each x ∈ E and

x +→ P0,x(A) is a measurable map for all A ∈ F due to Lemma 2.3.2 in Section 2.3.1.

Moreover, P0,x is a regular conditional distribution with respect to the marginal law

ν on E.

Hence, having completed the discussion of well-definedness of a PDP we next state

sufficient conditions that guarantee that a PDP in the sense of Definition 2.1.1 is a

strong Markov process, see Theorem 2.1.1. To this end we have to consider a special

structure for, on the one hand, the measurable functions fn that define the process

between successive jumps, and, on the other hand, the Markov kernels (P n
x )n≥0 and

(πn
x)n≥0, x ∈ E, defining the random counting measure µ conditional on the initial

condition, cf. Theorem B.2.1. For the former,

(S) let D denote the set

D = {(s, t, y) ∈ [0,∞)2 × E| s ≤ t}
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and ϕ : D +→ E : (s, t, y) +→ ϕs,t(y) be a measurable function such that ϕs,t

forms a two-parameter semigroup of (usually nonlinear) operators on E, i.e.,

for all 0 ≤ s ≤ u ≤ t <∞

ϕs,s = id ϕs,t = ϕu,t ◦ ϕu,r . (2.1.3)

We set fn
x0

(t|zn) = ϕτn,t(yn) and note that this choice of fn
x0

is independent of n and

the initial condition x0 and depends on zn only via the most recent jump time and

mark. Then a PDP (Xt)t≥0 is defined according to Definition 2.1.1 by

Xt :=






ϕ0,t(X0) if t < τ1,

ϕτn,t(Yn) if τn ≤ t < τn+1.
(2.1.4)

For the families of Markov kernels (P n
x )n≥0 and (πn

x) defining the random counting

measure we impose the following structure which guarantees that the jump times and

the marks of µ depend on the ’past’ only via the most recent jump time and mark.

(P1) In general the Markov kernels (P n
x )n≥0 from Kn into [0,∞] are uniquely defined

by their survivor functions S
n
x,zn

. That is, S
n
x,zn

(t) states the probability that

the (n + 1)th jump occurs after time t conditional on the the point process up

to the nth event being zn.

Then, we assume there exists a family of survivor functions Ss,y, s ≥ 0, y ∈ E,

such that Ss,y(s) = 1 for all y ∈ E and every s ≥ 0. Further it satisfies for all

y ∈ E and s ≤ u ≤ t the functional relation

Ss,y(t) = Ss,y(u) Su,ϕs,u(y)(t) . (2.1.5)

Then, the survivor functions defining (P n
x )n≥0, satisfy

S
0
x(t) = S0,x(t), S

n
zn,x(t) = Stn,yn(t) ∀n ≥ 1 . (2.1.6)

(P2) As a condition on the Markov kernels (πn
x)n≥1 from Jn to E we assume that

there exists for each t ∈ [0,∞) a Markov kernel rt from E to E such that

(t, x) +→ rt(x, C) is measurable for every C ∈ E . Then, for all t ≥ 0, C ∈ E ,

the kernels πn satisfy

π0
x(t, C) = rt(ϕ0,t(x), C), πn

x((zn, t), C) = rt(ϕtn,t(yn), C) ∀n ≥ 1 .

(2.1.7)

(P3) It will turn out that a PDP is a homogeneous Markov process if the semi-

group ϕs,t, the Markov kernels rt, and the survivor functions Ss,x reduce to the
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following special cases:

ϕs,t = φt−s ∀ t ≥ s, (2.1.8)

where (φt)t≥0 is a one-parameter semigroup of operators on E, i.e., φ0 = id

and φt+s = φt ◦ φs,

rt(y, C) = r(y, C) ∀ t ≥ 0, (2.1.9)

where r is a Markov kernel from E to E independent of t, and

Ss,y(t) = Sy(t− s) ∀ t ≥ s (2.1.10)

for a family of survivor functions Sy, y ∈ E supported on [0,∞] for which the

identity (2.1.5) reads9

Sy(t− s) = Sy(u− s) Sφu−s(y)(t− u) ∀ s ≤ u ≤ t . (2.1.11)

We are now in the position to state the central theorem of this section, stating that

a PDP (2.1.4) generated by a random counting measure with the specific structure

(2.1.5)–(2.1.7) is a strong Markov process with respect to the filtration (Ft)t≥0. We

call a PDP which is a strong Markov process a piecewise deterministic Markov process

(PDMP). A proof of the following theorem is deferred to Section 2.3.2.

Theorem 2.1.1. A PDP (2.1.4) generated by a semigroup (ϕt,s)s≥t≥0 and a random

counting measure with regular conditional probabilities satisfying (2.1.5)–(2.1.7) is a

strong Markov process with initial law ν with respect to the filtration (Ft)t≥0 and the

measure Pν. If the semigroup and the Markov kernels reduce to (2.1.8)–(2.1.11) then

the PDMP is a homogeneous Markov process.

We call the triple (ϕ, S, r) consisting of the semigroup (ϕs,t)0≤s≤t, the survivor func-

tions (Ss,y)s≥0,y∈E and the Markov kernels (rt)t≥0 which uniquely characterises the

transition functions of a PDMP the characteristics of the PDMP . The characteris-

tics together with an initial law ν on E define a PDMP uniquely up to versions,

cf. Definition 2.0.1 (d).

2.1.1 Davis’ construction procedure on the Hilbert Cube

Mark Davis [37] uses a constructive method to define the paths of a stochastic process

on the Hilbert Cube taking values in a particular subset of an Euclidean space. Here

the Hilbert Cube denotes the canonical probability space of an independently, identi-

cally distributed sequence of standard uniform random variables, cf. [13, 37]. He then

proceeds to shows that the process defined in this way is a homogeneous PDMP in the

9Equivalently we can also impose for Sy that for s, t ≥ 0 it holds that Sy(t + s) = Sy(t)Sφt(y)(s),
which, in particular, states that S satisfies a cocycle property with respect to the flow φ.
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sense of the preceding section. In the following we have adapted the original proce-

dure to the current setting, that is, now considering general, inhomogeneous PDMPs

on an arbitrary Borel measurable space and allowing for a random initial condition.

This constructive definition of a PDMP on the Hilbert Cube is particularly important

for numerical analysis of simulation methods for PDMPs. In general sampling algo-

rithms for paths of stochastic processes rely on samples of certain defining random

events, e.g., in the case of PDMPs, the jump times and marks. These are usually

generated by transformations of standard uniform random variables simulated by a

pseudo-random number generator. Thus Davis’ construction procedure allows the

definition of a version of a PDMP for given characteristics and an initial law from

a sequence standard uniform random variables thus providing a theoretical sampling

algorithm. In particular, for numerical analysis of approximation methods it provides

the notion of an exact solution, see Chapter 5 for a further discussion.

Before we present the construction procedure itself we need the following lemma

which allows us to obtain any probability measure on a Borel space via a pushforward

measure from the standard uniform distribution. The following lemma is taken from

[37, Cor. 23.4] where it is stated only for Borel spaces being Borel subsets of an

Euclidean space. However, it obviously holds also for general Borel spaces. For the

sake of completeness we also present its proof.

Lemma 2.1.1. Let ν be a probability measure on the Borel measurable space (E, E).

Then there exists a Borel measurable function ψ : [0, 1]→ E such that the pushforward

measure of the Lebesgue measure with respect to ψ on (E, E) equals ν.

In particular, note that the Lebesgue measure on the unit interval is the law of the

standard uniform distribution. Further, the function ψ is not necessarily uniquely

defined and choosing different functions for the construction procedure below results

in pathwise different PDMPs which, however, are versions of each other defined on

the same probability space.

Proof. As E is a Borel measurable space, there exists by definition a bimeasurable

bijection ψ̂ between E and a Borel subset of [0, 1]. As ψ̂ is a bijection on a subset of

[0, 1] it is clear that ψ̂ is one-to-one (injective) into [0, 1], as well as measurable: It

holds for any Borel set A ⊆ [0, 1] that ψ̂−1(A) = ψ̂−1(A∩ψ(E)) which is a Borel subset

of ψ̂(E), hence as ψ̂ is measurable thereon, it is contained in E . Thus ψ̂ : E → [0, 1]

is one-to-one and measurable.

We then define F (t) := ν(ψ̂−1([0, t])) ∈ [0, 1], which is a cumulative distribution

function on [0, 1], and its generalised inverse β is given by β(u) := inf{t : F (t) ≥ u}.
Next, define

χ(t) :=





ψ̂−1(t) t ∈ ψ̂(E),

y0 t /∈ ψ(E),
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where y0 is an arbitrary point in E. Then, for λ denoting the Lebesgue measure on

[0, 1] it holds that λ◦ψ−1 = ν where ψ = χ◦β, i.e., ν(A) = λ({u ∈ [0, 1] : ψ(u) ∈ A})
for all A ∈ E .

Definition 2.1.2. (Davis’ Construction procedure) Let the probability space (Ω̂, F̂ , P̂)

be the Hilbert Cube, that is, the space of all sequences U0(ω̂), U1(ω̂), U2(ω̂), . . . with

each random variable Un taking values in [0, 1] such that each Un is uniformly dis-

tributed on [0, 1] and Ui, Uj are mutually independent for all i 1= j. We note that we

index the sequence of uniform random variables starting from 0 instead of the more

common notation with starting at 1. However, this is an obvious choice in view of

the construction procedure we present in the following.

Further, the semigroup ϕs,t, the Markov kernels rt and the survivor functions St,y

satisfy (2.1.5)–(2.1.7). Further, let u +→ ψν(u) be a measurable function on [0, 1]

connected to ν in the sense of Lemma 2.1.1 where ν is the law of the initial condition.

Next, we extend rt for all t ≥ 0 to a Markov kernel from [0,∞] onto E ∪ {∇} by

setting rt({∞}, {∇}) = 1. Then, for all t ≥ 0, y ∈ E we denote by u +→ ψt(y, u) a

measurable function on [0, 1] connected to the distribution on E given by rt(y, ·) in

the sense of Lemma 2.1.1.

Then, we construct a marked point process recursively by the following algorithm:

Step 1. Use U0 to define a random initial condition by

X̂0(ω̂) := ψν(U0(ω)) .

Step 2. Define the first jump time by

τ̂1(ω̂) := inf
{
t ≥ 0
∣∣∣S0, bX0(bω)(t) ≤ U1(ω̂)

}
.

Obviously, τ̂1 has a distribution on [0,∞] as specified by the survivor function

S0,X0(bω). Next, we define the first mark by

Ŷ1(ω̂) := ψbτ1(bω)

(
ϕ0,bτ1(bω)(X̂0(ω̂), U2(ω̂))

)
.

Step 3. Let τ̂i, Ŷi for i = 1, . . . , n be the first n times and marks of a marked point

process. Then we define the (n + 1)th time by

τ̂n+1(ω̂) := inf
{
t ≥ 0
∣∣∣Sbτn(bω),bYn(bω)(t) ≤ U2n+1(ω̂)

}

and the (n + 1)th mark is defined by

Ŷn(ω̂) := ψbτn(bω)

(
ϕbτn(bω),bτn+1(bω)(Ŷn(ω̂)), U2n+2(ω̂)

)
.
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It is clear that this construction procedure generates a marked point process, cf. Def-

inition B.2.1, on the Hilbert Cube. A stochastic process (X̂t)t≥0 is then defined from

the thus constructed marked point process (τ̂n, Ŷn)n≥1 and the initial condition X̂0 ∈ E

by 2.1.4, that is,

X̂t =






ϕ0,t(X̂0) if t < τ̂1,

ϕbτn,t(Ŷn) if τ̂n ≤ t < τ̂n+1.

Hence, due to Theorem 2.1.1 the process (X̂t)t≥0 is a PDMP on the Hilbert Cube

with characteristics (ϕ, S, r) and initial law ν.

2.1.2 Some special PDMPs

When defining particular classes of PDMPs one has to consider two mechanisms:

Firstly, the Markov kernels defining random counting measure, i.e., its jump times

and post-jump values and, secondly, the semigroup for the inter-jump dynamics. In

the following we discuss some special classes of PDMPs as considered in the relevant

literature, e.g., [36, 37, 64], or classes used in mathematical neuroscience, cf. Chapter

3. Here, as this is also the case in the remainder of the thesis, we assume that the

semigroups are continuous, i.e., the mappings t +→ ϕs,s+t(y) or t +→ φt(y), respectively,

are continuous for all y and all s ≥ 0. We start with a discussion of two special case

for the stochastic mechanism determining the jump times.

Example 2.1.1. As a first example we present PDMPs that move in all of the phase

space E and admit jumps at instantaneous random times. This is the usual class

of PDMPs encountered in models of biophysical neuronal membranes or chemical

reaction networks. The instantaneous random jump times correspond to the random

times when an ion channel switches its state or, in chemical reaction systems, a

reaction occurs changing the number of different molecules. The connection of PDMPs

and exact models of neuronal membrane is elucidated in comparing the subsequent

discussions to (1.2.5). In particular, in these models the distribution of jumps is

governed by a ’local’ or ’instantaneous’ jump rate, which in chemical reaction system

corresponds to the usual reaction rate. In mathematical terms this means that the

distribution of the waiting time distribution until the next jump has a density with

respect to the Lebesgue measure on [0,∞). This does not exclude the possibility of a

positive probability at {∞} in the case that the process stops jumping after finitely

many jumps. For further details we refer to the discussion of intensity processes

in connection with random counting measures in Section B.2.6 and hazard rates of

survivor functions in Section B.3. We note that the majority of the results in [64]

are restricted to this type of PDMP with an Euclidean space as the state space. Let
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λt(y) ≥ 0 denote the local intensity of a jump from y ∈ E at time t, satisfying that

(t, y) +→ λt(y) is B⊗E-measurable and locally integrable from the right, i.e., for every

y ∈ E and all t ≥ 0 there exists an ε = ε(t, y) such that for h ∈ [0, ε)

∫ t+h

t

λs(ϕt,s(y)) ds < ∞ .

Further, we assume that the intensity along the semigroup, i.e., t +→ λs+t(φs,s+t(y)),

is càdlàg for all y ∈ E and s ≥ 0. Then we define a family of survivor functions

Ss,y, s ≥ 0, y ∈ E by

Ss,y(t) := exp
(
−
∫ t

s

λu(ϕs,u(y)) du
)

. (2.1.12)

Note, that t +→ λt(ϕs,t(y)) I[t>s] is the hazard rate corresponding to the survivor

function Ss,y.

For the distribution on (s,∞] defined by the survivor function (2.1.12) there are,

depending on the termination time

t†(s, y) :=inf
{
t > s
∣∣∣
∫ t

s

λu(ϕs,u(y)) du = ∞
}

= sup
{
t > s
∣∣∣
∫ t

s

λu(ϕs,u(y)) du < ∞
}

,

(2.1.13)

where inf ∅ =∞, the following possibilities:

(i) If t†(s, y) < ∞ or t†(s, y) = ∞ with
∫∞

s λu(φs,u(y)) du =∞, then the distribution

corresponding to Ss,y is supported on (s, t†(s, y)) and absolutely continuous with

respect to the Lebesgue measure.

(ii) Otherwise, if t†(s, y) = ∞ with
∫∞

s λu(ϕs,u(y)) du < ∞, then the distribution

corresponding to Ss,y is supported on (s,∞] with non-zero probability at {∞}.

In both cases, however, the survivor functions (2.1.12) satisfies the functional relation

(2.1.5). Thus for a family of Markov kernels rt satisfying condition (P2) and any E-

valued initial condition X0 there exists a PDMP which, in addition, is homogeneous

if rt and λt are in fact independent of t and the semigroup satisfies ϕs,t = φt−s. In the

homogeneous case the survivor functions (2.1.12) read

Sy(t− s) = exp
(
−
∫ t−s

0

λ(φu(y)) du
)

.

The definition of the compensator (B.2.18) and the considerations in Example B.3.1

yield for the survivor function (2.1.12) that the random counting measure possesses
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the compensator

Ñt =
Nt−1∑

n=0

∫ τn+1

τn

λs(ϕτn,s(Yn)) ds +

∫ t

τNt

λs(ϕτNt ,s(YNt)) ds ,

which, employing definition (2.1.4) of the PDMP (Xt)t≥0, equals

Ñt =

∫ t

0

λs(Xs) ds .

We note that Ñt is predictable as it is continuous. Moreover, as by assumption

the intensity λt along the paths of the PDMP (Xt)t≥0 is càdlàg we can change the

evaluation of the intensity along the PDMP to an evaluation along the left limit

without changing the value of integral. Thus, consistently to Section B.2.6 we obtain

Ñt =

∫ t

0

λs−(Xs−) ds ,

where the integrand process is left continuous and thus predictable. Furthermore, we

obtain a representation of the Ft-compensating measure Ñ for the random counting

measure µ determining the jumps of the PDMP by

Ñ(dt, dy) = λt−(Xt−) rt−(Xt−, dy) dt ,

and each compensator ÑC
t , for C ∈ E has an Ft-predictable intensity process given

by

ΛC
t = λt−(Xt−) rt−(Xt−, C) .

Finally, in the homogeneous case the intensity process becomes

ΛC
t = λ(Xt−) r(Xt−, C) .

and thus the compensator of the counting process (NC
t )t≥0 is given by

ÑC
t =

∫

(0,t]

λ(Xs−) r(Xs−, C) ds =

∫ t

0

λ(Xs) r(Xs, C) ds .

Example 2.1.2. We next describe a class of processes which correspond to PDMPs

as originally considered in [36, 37] and, in the context of General Stochastic Hybrid

Systems, in [9, 10, 28]. However, generalising these authors, we allow for an arbitrary

Borel space as a state space of the process instead of restricting ourselves to specific

subsets of Euclidean spaces. The difference to Example 2.1.1 is that the PDMP does

not move in all of E but is restricted to a subset of the state space. In addition to

instantaneous jumps the process also exhibits ’forced’ jumps when it hits the boundary
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of the set it moves in. This class of PDMPs finds extensive use in control theory where

usually a control parameter and the value of the quantity of interest is reset when it

reaches a certain threshold. However, this type of PDMP also arises in mathematical

neuroscience, e.g., integrate-and-fire neuron models with random reset value. In these

neuron models a spike is emitted every time the voltage variable hits a prescribed

boundary and is instantaneously reset to a value below the threshold.

Let B be some closed, measurable set in E and for all y ∈ E, s ≥ 0, we define the

hitting time

tB(s, y) := inf{t > s |ϕs,t(y) ∈ B} , (2.1.14)

where, as always, we set inf ∅ = ∞. Note that tB(s, y) > s for all y ∈ Bc and

tB(s, y) = s for all y ∈ B\∂B. We define

B+(s) :=
{
y ∈ E : tB(s, y) > s

}
⊆ Bc ∪ ∂B,

i.e., starting at y ∈ B+(s) the semigroup ϕs,t(y) leaves into the exterior of B for

t > s. Now, let for any y ∈ B+(t) the measurable mapping λt(y) ≥ 0 be an intensity

satisfying the conditions as in Example 2.1.1. Then we define for any y ∈ B+(s) a

family of survivor functions by

Ss,y(t) := I[t<tB(s,y)] exp
(
−
∫ t

s

λu(ϕs,u(y)) du
)

. (2.1.15)

This family satisfies the functional relation (2.1.5) and the distributions such survivor

functions define on (s,∞] are of one of the following types, where t†(t, y) is given by

(2.1.13):

(i) If tB(s, y) < ∞ and t†(s, y) = ∞, then the distribution corresponding to Ss,y is

supported on (s, tB(s, y)] with non-zero probability at {tB(s, y)}.

(ii) If t†(s, y) < ∞ and tB(s, y) < ∞ then the distribution corresponding to Ss,y is

supported on (s, t†(s, y)∧ tB(s, y)] and either absolutely continuous with respect

to the Lebesgue measure if t†(s, y) < tB(s, y) or with non-zero probability at

{tB(s, y)} if tB(s, y) ≤ t†(s, y).

(iii) If tB(s, y) =∞ and t†(s, y) =∞ with
∫∞

s λu(ϕs,u(y)) du = ∞, then the distribu-

tion corresponding to Ss,y is supported on (s,∞) and absolutely continuous with

respect to the Lebesgue measure.

(iv) If tB(s, y) = ∞ and t†(s, y) = ∞ with
∫∞

s λu(ϕs,u(y)) du < ∞, then the distri-

bution corresponding to Ss,y is supported on (s,∞] with non-zero probability at

{∞}.

(v) If tB(s, y) = ∞ and t†(s, y) < ∞ then the distribution corresponding to Ss,y is

supported on (s, t†(s, y)) and absolutely continuous with respect to the Lebesgue
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measure.

We continue defining the Markov kernels rt for the distribution of the mark of the

random counting measure µ or, equivalently, the post-jump value of the PDMP.

Obviously, for the PDMP to be well defined a jump cannot yield a post-jump value

y′ in the interior of the set B as then tB(s, y′) = 0 and another jump would occur

instantaneously. Therefore, we have to impose additional conditions on the family

of Markov kernels rt satisfying condition (P2) restricting their support as probability

measures on E. That is, in addition, we assume that for all t ≥ 0, y ∈ Bc ∪ ∂B

supp rt(y, ·) ⊆ B+(t) . (2.1.16)

Note that here we have to consider the probabilities defined for all y ∈ Bc ∪ ∂B as

a jump can either leave from the exterior of B or its boundary. Further, condition

(2.1.16) allows that a jump may yield a position at the boundary of B, however, only

to such values y ∈ ∂B for which there exists an ε = ε(t, y) > 0 such that ϕt,t+h(y) /∈ B

for all h ∈ (0, ε), that is, the process leaves from y into the exterior of B, cf. the

definition of the sets B+(t).

Then, with these definitions of survivor functions and Markov kernels there exists

a PDMP for any initial condition x0 ∈ B+(0) which does not leave Bc ∪ ∂B and,

moreover, does not spend any time at the boundary, i.e., the process only touches the

boundary or restarts from the boundary after a jump leaving into Bc immediately.

In addition, the PDMP is homogeneous if rt and λt are independent of t and the

semigroup satisfies ϕs,t = φt−s.

The definition of the compensator (B.2.18) and the considerations in Example B.3.2

yield for the survivor function (2.1.15) that the random counting measure possesses

the compensator

Ñt =
Nt−1∑

n=0

∫ τn+1

τn

λs(ϕτn,s(Yn)) ds +
Nt−1∑

n=0

I{tB(τn,Yn)}(τn+1) +

∫ t

τNt

λs(ϕτNt ,s(YNt)) ds ,

which, using the definition (2.1.4) of the PDMP (Xt)t≥0, equals

Ñt =

∫ t

0

λs(Xs) ds +
Nt∑

n=1

IB(Xτn−) . (2.1.17)

This yields for the counting process (NC
t )t≥0 the compensator

ÑC
t =

∫ t

0

λs(Xs)rs(Xs, C) ds +
Nt∑

n=1

rτn(Xτn−, C) IB(Xτn−), (2.1.18)
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which in the homogeneous case reduces to

ÑC
t =

∫ t

0

λ(Xs)r(Xs, A) ds +
Nt∑

n=1

r(Xτn−, C) IB(Xτn−) . (2.1.19)

Note that, analogously to Example 2.1.1, we can change to left limits in the inte-

grand processes in the compensators (2.1.17)–(2.1.19) to obtain predictable integrand

processes without changing the values of the integral. Moreover, the compensator is

a predictable process as, on the one hand, the integral in (2.1.19) is continuous and

thus predictable and, on the other hand, the sum is piecewise constant changing its

values only at hitting times of the set B which are predictable stopping times.

We now continue describing examples for defining the deterministic motion of a PDMP

in between two random jumps. Of major and almost exclusive importance for the

mechanism of inter-jump behaviour are semigroups that are generated by dynamical

systems. In the following we restrict ourselves to homogeneous PDMPs, thus one-

parameter semigroups, and distinguish between finite-dimensional semigroups, i.e.,

PDMPs taking values in Euclidean space Rd, d ≥ 1, and semigroups on an infinite-

dimensional Hilbert space H . The former corresponds to the classical PDMPs encoun-

tered in the general literature [36, 37, 64] and the later are particularly motivated by

applications to spatio-temporal models in mathematical neuroscience. In the context

of dynamical systems one-parameter semigroups usually arise from autonomous evo-

lution equation whereas, if we consider dynamical systems arising, e.g., as solutions

to non-autonomous differential equations, the resulting processes are two-parameter

semigroups, cf. [73]. With respect to the applications we consider the restriction to

one-parameter semigroups is well justified, as in these the survivor functions S and

the Markov kernels r are always autonomous. Further, by an extension of the state

space by a time component we can always transform a two-parameter semigroup into

a one-parameter semigroup (on a larger space) which allows to cast models into the

framework of homogeneous Markov processes. Nevertheless, if explicitly needed all

results can also be derived for non-homogeneous processes.

Definition 2.1.3. A dynamical system on a metric space E is a one-parameter semi-

group (φt)t≥0 of nonlinear operators such that φt : E → E is continuous for all t ≥ 0.

If in addition the mappings t +→ φt(y) are continuous for all y ∈ E we call (φt)t≥0 a

continuous dynamical system.

A general Borel measurable space (E, E) which is the state space for the PDMP and

thus the space the semigroup is acting on is easily made into a metric space choosing

a metric which is compatible with the topology. Usually, and always in the present

thesis, the Borel measurable space E is a separable Hilbert space or a subset thereof

and hence the appropriate metric is given by the norm. We briefly comment on
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Definition 2.1.3 as the assumptions on what constitutes a dynamical system slightly

vary in the literature. The conditions for a semigroup to be a dynamical system as in

Definition 2.1.3 correspond to the minimal assumptions made for a dynamical system

in [116, Chap. 1.1]. In [104, Chap. 10, p. 262] only continuous dynamical systems

are considered, termed simply dynamical systems therein. The authors in [73] assume

joint continuity for (t, y) +→ φt(y) for a dynamical system. Further, dynamical systems

defined only forward in time, i.e., for t ≥ 0 in contrast to t ∈ R, are termed semi-

dynamical systems therein. It is noted in [104] that the continuity in t and in y

does not necessarily imply joint continuity. However, the necessary condition for a

semigroup defining the deterministic motion of a PDMP, cf. condition (S) in Section

2.1, is that the map (t, y) +→ φt(y) is jointly measurable with respect to t and y.

The connection between continuous dynamical systems and inter-jump dynamics of

PDMPs is provided by the following proposition.

Proposition 2.1.1. A continuous dynamical system (φt)t≥0 on a Borel measurable

space E is jointly measurable in t and y.

Proof. Equipped with a compatible metric a Borel space E is a separable metric space.

Further, [0,∞) is a measurable space together with its Borel-σ-field. By definition

the continuous dynamical system (φt)t≥0 satisfies that y +→ φ(t, y) is continuous for all

t ≥ 0 and t +→ φ(t, y) is measurable for all y ∈ E as continuity implies measurability.

Such a function is a special case of a Carathéodory function, cf. [4, Sect. 4.10]. As

E is separable and a metrisable topological space it follows by [4, Lemma 4.51] that

(t, y) +→ φt(y) is jointly measurable.

Example 2.1.3. We first consider dynamical system that arise as solutions of or-

dinary differential equations. This is the setup that is encountered in most PDMP

applications as it is part of the original setup of Davis [36, 37]. In mathematical

neuroscience this will be used to model the transmembrane potential which follows

the membrane balance ODE, cf. (1.2.2), in models neglecting the spatial dimension.

In chemical reaction system modelling the evolution of molecule concentration by the

reaction Reaction Rate Equation yields an ODE system. Let E ⊆ Rd be an open

Borel set which is a Borel space itself equipped with the d-dimensional Borel σ-field

restricted to E. We then consider for a function g : E ⊆ Rd → Rd the initial value

problem

ẏ = g(y), y(0) = y0, (2.1.20)

and assume that it has a global solution for every initial condition y0 ∈ E which

we denote by φt(y0). Then φ defines a one-parameter semigroup on E if the solution

remains in E for all positive times for any initial condition y0 ∈ E. Furthermore, [114,

Sect. 2] note that for most standard assumptions leading to existence and uniqueness

of a solution to (2.1.20) also continuity with respect to initial data follows, e.g., if g
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is globally Lipschitz or locally Lipschitz and the solutions are bounded. Hence the

Carathéodory measurability condition implies that (t, y) +→ φt(y) is jointly measurable

and the semigroup satisfies the condition (S) of the existence Theorem 2.1.1. The

situation is completely analogous if E is a separable Banach space and (2.1.20) is an

ordinary differential equation on the Banach space E. However, this does not cover

most interesting infinite-dimensional examples, cf. the subsequent Example 2.1.4.

Bearing in mind the considerations in Example 2.1.2 it is not necessary for the semi-

group to remain in the set E for all positive times. To define a PDMP one has to

’force’ a jump every time the solution leaves the domain E. Clearly, in this case it is

sufficient that the semigroup property holds only for t ≥ 0 such that t < t†(y0) for

every initial condition y0 ∈ E. This approach to the definition of a PDMP can also

be used for E = Rd and (2.1.20) allows only for local solutions. In this case one forces

a jump every time a solution explodes, i.e., the trajectory hits the ’boundary’ {∞}.
Note that Rd ∪ {∞} is a Borel space and {∞} a closed Borel set. Such a PDMP

can be used to describe an exponential integrate-and-fire neuron model where a spike

occurs every time the voltage variable diverges.

Example 2.1.4. For applications to excitable media we are usually interested in the

spatio-temporal evolution that arises from parabolic partial differential equations,

cf. (1.2.1). Considered as abstract evolution equations the state space of the PDMP

is a suitable function space over some spatial domain D ⊆ Rd. Normally such equa-

tions cannot be considered as (strong) ODEs in a Banach or Hilbert space but an

appropriate setup is the theory of weak solutions to abstract evolution equations.

The choice of considering weak solutions is not based on an intrinsic necessity but al-

lows to consider more general equations as when dealing with mild, strong or classical

solutions, cf. a discussion of this aspect in [122, Chap. 23.1]. The important property

for the definition of the inter-jump dynamics of a PDMP is the semigroup property of

solutions which is, in particular, satisfied for mild solutions. The subsequent presen-

tation reflects standard existence theory of parabolic evolution equations, cf. [43, 122],

and, in particular, as it is discussed in infinite-dimensional dynamical systems theory,

cf. [104, 116].

Let X ⊂ H ⊂ X∗ be an evolution triple10 of separable, real Hilbert spaces and

10Let X, H be a real, separable Hilbert spaces such that X is continuously and densely embedded
in H . Then the triple X ⊂ H ⊂ X∗ is called an evolution triple. Here H∗ is identified with H
and from the density of X in H it follows that H∗ ↪→ X∗ and thus H ↪→ X∗. Moreover as X is
reflexive it is valid that H is dense in X∗. The central property of an evolution triple, however, is
the connection of the scalar product in H and the duality pairing of X , i.e.,

〈φ, u〉X = (φ, u)H ∀φ ∈ H, u ∈ X . (2.1.21)

For example, in the case of abstract evolution equations generated by parabolic partial differential
equations on a domain D ⊂ Rd equipped with suitable boundary conditions the appropriate evolution
triple is given by the spaces X = H1(D) and H = L2(D).
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consider the abstract, linear, inhomogeneous initial value problem

u̇ = Au + b, u(0) = u0 ∈ H , (2.1.22)

where A : X → X∗ is a linear, bounded operator and b ∈ X∗. A function u ∈
L2((0, T ), X) ∩H1((0, T ), X∗) ⊂ C0([0, T ], H) is called a weak solution to (2.1.22) if

u(0) = u0 in H and

∫ T

0

〈u̇(t), v(t)〉X dt =

∫ T

0

〈Au(t), v(t)〉X + 〈b, v(t)〉X dt

for all v ∈ L2((0, T ), X). A general existence theorem, cf. [104, 116, 122] guarantees

under coercivity and suitable boundedness conditions the unique existence of a weak

solution depending continuously on the initial condition. Hence, the solution generates

a continuous dynamical system in H and the Carathéodory measurability condition

implies that it is jointly measurable. Therefore, the semigroup defined by the abstract

initial value problem (2.1.22) satisfies the condition of the existence Theorem 2.1.1.

2.2 Extended generator and Itô formula

The generator of a Markov process is an important object in the study of Markov

processes as it allows, e.g., a unique characterisation of the process via the Martin-

gale Problem. For certain special classes of PDMPs the infinitesimal and / or the

extended generator are derived and discussed in [37, 64, 68]. At this point we present

a unified derivation of the extended generator and subsequently of an Itô formula

for homogeneous PDMPs with survivor functions as considered in Example 2.1.2 and

jointly-measurable semigroups (φt)t≥0 on E. That is, jumps of the PDMP occur in

a random instantaneous fashion as well as upon the trajectory hitting a prescribed

boundary. For ease of presentation we briefly repeat the definitions. Firstly, let B be

a closed Borel set of a Borel measurable space (E, E). We define the hitting time of

the boundary with respect to the initial condition by

tB(y) := inf{t > 0 |φt(y) ∈ B} ,

and the set including parts of the boundary which is a target for post jump values is

given by

B+ :=
{
y ∈ E : tB(y) > 0

}
⊆ Bc ∪ ∂B.

Then for each y ∈ B+ we define a survivor function by

Sy(t) = I[t<tB(y)] exp
(
−
∫ t

0

λ(φs(y)) ds
)

, (2.2.1)
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where λ : Bc ∪ ∂B ⊂ E → R+ is a non-negative, measurable function which is locally

integrable along the trajectories of the semigroup, cf. Example 2.1.1. For a further

discussion of the jump rate we refer to Example 2.1.2. Next, the termination time of

the corresponding survivor function Sy is given by

t†(y) := inf{t > 0 : Sy(t) = 0} = tB(y) ∧ inf
{
t > 0
∣∣∣
∫ t

0

λ(φs(y)) ds = ∞
}
.

Finally, for the Markov kernel r from E to E we assume that for all y ∈ Bc ∪ ∂B

it holds that supp r(y, ·) ⊆ B+. That is, the distribution of the post-jump value is

always supported on the set B+ of initial conditions such that the trajectories of the

semigroup started at such a value leave into the exterior of B.

2.2.1 The generator of piecewise continuous PDMPs

Before we present the theorem fully characterising the extended generator we intro-

duce properties of real, measurable functions used in the following.

Definition 2.2.1. We call a measurable function f : E → R path-continuous if the

mapping t +→ f(φt(y)) is continuous for all y ∈ E and if, in addition, this function

is continuously differentiable we say f is path-differentiable. For path-differentiable f

we define the path derivative or, alternatively, the derivative along the flow by

dφf(y) := lim
s↓0

f(φs(y))− f(y)

s
, (2.2.2)

where the limit exists by definition and it follows that for all t ≥ 0

d

dt
f(φt(y)) = dφf(φt(y)) , (2.2.3)

Finally, a mapping f is called almost everywhere (a.e.) path-differentiable if for each

y ∈ E the map t +→ f(φt(y)) is differentiable with respect to t for Lebesgue-almost

every t ≥ 0.

Note that absolute continuity of the function t +→ f(φt(y)) is equivalent to a function

being almost everywhere path-differentiable, hence stronger than path-continuity but

weaker than path-differentiability.

The PDMP (Xt)t≥0 is a stochastic process on B+ ⊆ E, hence as potential elements

of the extended generator we consider measurable, bounded real-valued functions on

B+ which in addition satisfy

lim
t→tB(y)

f(φt(y)) < ∞ ∀ y ∈ B+ : tB(x) <∞ , (2.2.4)
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i.e., the evaluated along the trajectories of the semigroups the function possesses a

limit when approaching the boundary. Moreover, it is clear that all conditions on f

need to hold only on a set of values that can be attained by the PDMP. The proof of

the following theorem is deferred to Section 2.3.3.

Theorem 2.2.1. Let (Xt)t≥0 be a piecewise continuous PDMP with initial law ν and

characteristics (φ, S, r) as specified above. Then the domain of the extended generator

D(A) is given by all bounded, measurable functions f : B+ ⊆ E → R satisfying (2.2.4)

such that

(i) t +→ f(φt(y)) is a.e. path-differentiable on [0, t†(y)),

(ii) f satisfies for every y ∈ B+ ∩ ∂B the boundary condition

f(y) =

∫

E

f(x) r(y, dx) , (2.2.5)

(iii) (y, t, ω) +→ f(y) − f(Xt−(ω)) is a valid integrand for the compensating measure

Ñ .11

Then, for f ∈ D(A) the extended generator is given by

Af(y) = dφf(y) + λ(y)

∫

E

f(x)− f(y) r(y, dx) . (2.2.6)

We remark that the a.s. path-differentiability of f implies that the process in (iii),

which is adapted to (Ft)t≥0, is left-continuous and thus Ft-predictable for each fixed

y ∈ E. Further, we note that the domain of the generator is always non-empty as

it contains all constant functions which satisfy Af ≡ 0. Moreover, if Af ≡ 0, then

f(Xt) is an Ft-martingale.

An immediate consequence of the extended generator is Dynkin’s formula. Let f be

in the domain of the extended generator such that its integral with respect to the

compensated measure M = N − Ñ is an Ft-martingale, then it holds for all t ≥ 0

E[f(Xt)|X0] = f(X0) + E

[∫ t

0

Af(Xs) ds
∣∣∣X0

]
. (2.2.7)

Example 2.2.1. As a first example we discuss PDMPs taking values in Euclidean

space, i.e., E = Rd, for which the semigroup is generated by a system of ordinary

differential equations, cf. Example 2.1.3. Thus φt(y0) is the solution of the initial

value problem

ẏ = g(y), y(0) = y0,

11This means that the compensated stochastic integral is an Ft-local martingale.
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where g : Rd → Rd. Obviously we obtain that the semigroup has continuously

differentiable paths (we tacitly assume that g is continuous). If we assume that

f ∈ D(A) is continuously differentiable, then the extended generator (2.2.6) is given

by

Af(y) = ∇f(y) · g(y) + λ(y)

∫

E

f(x)− f(y) r(y, dx)

where ∇f(y) denotes the gradient of f evaluated at y. This is precisely the result of

[37, Thm. 26.14].

Example 2.2.2. We continue the Example 2.1.4, i.e., we suppose that the separable

Hilbert spaces X ⊂ H ⊂ X∗ form an evolution triple and the semigroup φt on H

is generated by a weak solution of an abstract initial value problem (2.1.22). In

contrast to the finite-dimensional case considered in Example 2.2.1 the structure of

the generator as in (2.2.8) and (2.2.9) does not follow immediately from the chain

rule of differentiation as the trajectories of the semigroup φ and thus the paths of the

process lack the necessary differentiability. As the solution is only a weak solution

in general φ is not in C1([0, T ], H). However, under certain conditions on f we can

derive an expression for the extended generator which we formulate in the following

theorem.

Theorem 2.2.2. Let f be in the domain of the extended generator and additionally

be in C1(H, R). Further, let fy(x) denote the unique element of H such that

df

dy
[x](z) =

(
z, fy(x)

)
H

∀ z ∈ H,

where df
dy [x] denotes the Fréchet-derivative of f in H at x ∈ H. Further, we assume

for f that fy(x) ∈ X if x ∈ X and the composition operator is locally bounded in

L2((0, T ), X).12 Then for almost every t ∈ [0, T ] the extended generator A of the

Hilbert space valued PDMP is given by

Af(y) = 〈Ay + b, fy(y)〉X + λ(y)

∫

H

f(z)− f(y) r(y, dz) . (2.2.8)

If in addition φ is a strong solution, i.e., φ̇ ∈ L2((0, T ), H), then for any function

f ∈ C1(H, R) the extended generator is given for almost all t by

Af(y) =
(
Ay + b, fy(y)

)
H

+ λ(y)

∫

E

f(z)− f(y) r(y, dz) . (2.2.9)

The Fréchet derivative at a point x ∈ H is a linear functional on H , hence the

existence and uniqueness of such an element fy(x) ∈ H is guaranteed by the Riesz

12An example of such a function f is ‖ · ‖2H in which case d‖·‖2

H

dy
[x] = 2(·, x)H .
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Representation Theorem. We note that Theorem 2.2.2 extends in a straightforward

way if we consider an abstract nonlinear equation u̇ = Au+G(u), where G : X → X∗

is a nonlinear operator, instead of (2.1.22).

Proof. In order to prove equations (2.2.8) and (2.2.9) we have to show that the path-

derivative dφf in (2.2.6) possesses the proposed structure. As already mentioned

this structure would follow immediately from the chain rule of differentiation if the

trajectories of the semigroup itself were sufficiently smooth. Thus we introduce the

concept of mollifiers which regularise the trajectories and then obtain the desired

result for the trajectories as a limit of the results for the smooth ones.

We denote by µ ∈ C∞(R) the mollifier on R given by

µ(t) :=

{
C exp
(

1
t2−1

)
|t| < 1

0 |t| ≥ 1,

where the constant C is selected such that
∫

R
µ(t) dt = 1. Further, we define that

µε(t) := ε−1µ(t/ε). Then for any locally integrable function u on [−ε, T + ε], that is,

any u ∈ L1
loc((−ε, T + ε), X), the mollification of u is the function uε defined on [0, T ]

by the convolution

uε(t) :=

∫

[−ε,T+ε]

µε(t− s)u(s) ds . (2.2.10)

It follows that uε ∈ C∞([0, T ], X).

Considering the path-derivative the initial condition y for the trajectories t +→ φt(y)

is fixed and thus for simplicity of notation we use in the following φ(t) := φt(y).

Further, we denote by φε the mollification of the trajectory of the semigroup, i.e.,

φε ∈ C∞([0, T ], X) as well as in C∞([0, T ], H). From considerations in [43, p. 287] it

follows for T <∞ and ε→ 0 that

φε → φ in L2((0, T ), X), φ̇ε → φ̇ in L2((0, T ), X∗). (2.2.11)

Moreover, φε also converges to some element w ∈ C([0, T ], H). Thus we can con-

clude that φ(t) = w(t) in H for almost every t, i.e., φ = w in L2((0, T ), H). These

results provide the necessary convergence properties of the smoothed trajectories of

the semigroup.

To obtain the representation (2.2.8) for the derivative of t +→ f(φ(t)) in (2.2.6) we start

with the Fréchet derivative df
dy (x) of f evaluated at x ∈ H . This is a linear, continuous

map H → R, hence it is an element of H∗. Therefore, by the Riesz Representation

Theorem, we obtain that we can identify

df

dy
[x] = (·, fy(x))H ,
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where fy(x) denotes the unique element u ∈ H such that

df

dy
[x](z) = (z, u)H ∀ z ∈ H.

Hence, by the chain rule we obtain

df ◦ φε
dt

[t] =
df

dy
[φε(t)] ◦ φ̇ε[t] =

(
φ̇ε[t], fy(φε(t))

)
H

.

Next we identify φ̇ε[t] ∈ H with an element of X∗ in the canonical sense, that is

φ̇ε[t] : X → R : y +→ (φ̇ε[t], y)H ,

and therefore we can write

df ◦ φε
dt

[t] = 〈φ̇ε[t], fy(φε(t))〉X , (2.2.12)

where we have used the assumption that fy(x) ∈ X for x ∈ X.

Next we fix a point t1 ∈ (0, T ) such that φε(t1) → φ(t1) in X for ε→ 0 and integrate

(2.2.12) for t2 > t1 to obtain

f(φε(t2))− f(φε(t1)) =

∫ t2

t1

〈φ̇ε[s], fy(φε(s))〉X ds. (2.2.13)

Thus taking the limit for ε → 0 we find the left hand side of (2.2.13) converges to

f(φ(t2))− f(φ(t1)) for almost all t2 in (0, T ).

For the integrand on the right hand side of (2.2.13) note that for almost all s it is

valid due to (2.2.11) that φ̇ε[s] converges to φ̇[s] strongly in X∗. Furthermore, as f

is continuously differentiable, i.e., the mapping x +→ df
dy [x] is continuous from H into

H∗, it holds that

lim
ε→0

∥∥∥
df

dy
[φε(s)]−

df

dy
[φ(s)]
∥∥∥

H∗
= 0 .

As strong convergence implies weak∗-convergence we have that

df

dy
[φε(s)](z) → df

dy
[φ(s)](z) ∀ z ∈ H ,

which by definition of fy is equivalent to

(
z, fy(φε(s))

)
H
→
(
z, fy(φ(s))

)
H

∀ z ∈ H.

As H is dense in X∗ and fy(φε(s)) is bounded in X – φε[s] is strongly convergent in

X, thus also weakly convergent, thus bounded and by assumption fy is bounded in

X for bounded arguments – it follows that fy(φε(s)) converges to fy(φ(s)) weakly in
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X [122, Prop. 21.23(g)]. Hence, [122, Prop. 21.23(j)] implies that

〈(φ̇ε[s], fy(φε(s))〉X → 〈(φ̇[s], fy(φ(s))〉X

for almost all s ∈ (t1, t2). Finally, dominated convergence yields

∫ t2

t1

〈φ̇ε[s], fy(φε(s))〉X ds→
∫ t2

t1

〈φ̇[s], fy(φ(s))〉X ds ,

and hence for almost every t2 we have

f(φ(t1)) = f(φ(t2)) +

∫ t2

t1

〈φ̇[s], fy(φ(s))〉X ds .

This implies for almost every t in (0, T ) that

d

dt
f(φ(t)) = 〈Aφ(t) + b, fy(φ(t))〉X .

Hence the representation (2.2.8) of the extended generator is proved.

If, in addition, φ̇ ∈ L2((0, T ), H) we obtain for the mollified version the limits

φε → φ in L2((0, T ), H), φ̇ε → φ̇ in L2((0, T ), H).

Just as before we find that

(z, fy(φε(s)))H → (z, fy(φ(s)))H ∀ z ∈ H,

hence fy(φε(s)) converges weakly to fy(φ(s)) in H . Then a repetition of the same

arguments as above yields

(φ̇ε[s], fy(φε(s)))H → (φ̇[s], fy(φ(s)))H ,

and by dominated convergence it follows that for almost all t2

f(φ(t1)) = f(φ(t2)) +

∫ t2

t1

(
φ̇[s], fy(φ(s))

)
H

ds .

This completes the proof of the representation (2.2.9).

2.2.2 Itô formula

The following version of an Itô-formula for PDMPs is a generalisation of the corre-

sponding result in Davis [37, Thm. 31.3] to the state space E being an arbitrary Borel

measurable space. Subsequently we also show how the Itô-formulae in Jacobsen [64,
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Thm. 7.6.1(a), Prop. 7.7.1] are derived as special cases.

Theorem 2.2.3. We assume that f ∈ B(E, R) is a valid integrand function for the

martingale measure M , cf. Section B.2.4, associated with the PDMP (Xt)t≥0 and that

f is almost surely path-differentiable. Then for all t ≥ 0 it holds that

f(Xt)− f(X0) =

∫ t

0

Af(Xs) ds +

∫ t

0

∫

E

f(y)− f(Xs) M(ds, dy) (2.2.14)

+
∑

τi≤t

∫

E

f(y)− f(Xτi−) r(Xτi−, dy) I[Xτi−∈B],

where Af is given by the characterisation of the extended generator (2.2.6).

Proof. Observe that the function f satisfies conditions (i) and (ii) in Theorem 2.2.3 for

being in the extended generator. Then, the Itô-formula (2.2.14) follows immediately

from the considerations in part (a) of the proof of Theorem 2.2.1, see Section 2.3.3,

where the additional last term in (2.2.14) arises as f does not satisfy the boundary

condition (2.2.5).

We note that the stochastic integral in (2.2.14) is a local martingale and under certain

conditions, cf. Theorem B.2.6, it is even a martingale. Further by definition of the

martingale measure M = N − Ñ equation (2.2.14) is equivalent to

f(Xt)− f(X0) =

∫ t

0

d

ds
f(Xs) ds +

∫ t

0

∫

E

f(y)− f(Xs−) µ(ds, dy) . (2.2.15)

We remark that one has to be cautious with the interpretation of the formula (2.2.15).

The counting measure µ therein is the counting measure associated with the PDMP

(Xt)t≥0 and thus depends on the path of the PDMP via its defining objects, the

survivor functions Sy and the Markov kernel r. Hence, there is a clear difference

to stochastic differential equations of jump type which may take a similar form to

(2.2.15). In connection with stochastic differential equations of jump type the occur-

ring counting measure µ is a Poisson random measure. However, there is also some

overlap. The Poisson random measure is a random counting measure connected in the

sense of Section 2.1 for which the defining Markov kernels and survivor functions are

as in (P3) and in addition independent of y ∈ E. Thus, a Poisson random measure is a

special type of random counting measure and hence we obtain that solutions to certain

stochastic differential equations are also PDMPs, or, conversely, certain PDMPs solve

stochastic differential equations. We refer to [64, Sec. 7.4.3] for a further discussion.
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2.3 Section Appendix

2.3.1 Two helpful results

Lemma 2.3.1. For every x ∈ E it holds that the σ-field σ(X0) is independent of Fµ
∞

under the probability P0,x.

Proof. First note that X−1
0 (E) is an ∩-stable13 generator of σ(X0). Therefore, if we

show that each A ∈ X−1
0 (E) is independent of Fµ

∞, then by [8, Cor. 30.4] it follows

that σ(X0) and Fµ
t are independent σ-fields.

Let A be an arbitrary set in Fµ
∞ and C ∈ E then, either x /∈ C and the probability

P
0,x
(
[X0 ∈ C] ∩A

)
= 0 = P

0,x[X0 ∈ C] P0,x(A)

as the event [X0 ∈ C] has probability zero under P0,x0, or x ∈ C, then x /∈ Cc and

P
0,x
(
[X0 ∈ C] ∩ A

)
= P

0,x
(
[X0 ∈ C] ∩ A

)
+ P

0,x
(
[X0 ∈ Cc] ∩ A

)

= P
0,x(A) = 1 · P

0,x(A) = P
0,x[X0 ∈ C] · P

0,x(A) .

Thus, overall, it holds for arbitrary C ∈ E , A ∈ Fµ
∞ and any x ∈ E that

P
0,x([X0 ∈ C] ∩ A) = P

0,x[X0 ∈ C] P0,x(A),

which completes the proof.

Lemma 2.3.2. The map x +→ P0,x(A) is measurable for all A ∈ F .

Proof. We first note that the set of all A ∈ F such that x +→ P0,x(A) is measurable

forms a Dynkin system.14 Hence, if we prove measurability for all A in an ∩-stable

generator of F the Dynkin Class Theorem15 implies Lemma 2.3.2.

Firstly, it is straightforward to see that x +→ P0,x(A) is measurable for all A ∈ σ(X0):

Let C ∈ E then P0,x[X0 ∈ C] = IC(x) which is measurable in x and hence x +→ P0,x(A)

is measurable for all A ∈ X−1
0 (E), which is an ∩-stable generator of σ(X0). Hence

due to the Dynkin Class Theorem measurability holds for all A ∈ σ(X0).

Secondly, we consider the σ-field Fµ
∞ generated by the random counting measure. For

any finite, increasing selection of indices n1, . . . , nm ∈ {1, 2, . . .}, m ∈ N, it holds that

13A family of sets S is called ∩-stable if it is closed with respect to intersections, i.e., for A, B ∈ S
it holds that A ∩B ∈ S.

14A familiy of sets D is called a Dynkin system if (i) Ω ∈ D, (ii) A, B ∈ D and A ⊂ B implies
B\A ∈ D and (iii) An ∈ D for all n ≥ 1 and An ⊂ An+1 implies

⋃
n≥1 An ∈ D [8, 41].

15The Dynkin Class Theorem states that if S is an ∩-stable subset of a Dynkin class D then
σ(S) ⊂ D, see [8, 41].
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the mapping

x +→ P
0,x
[
(τn1

, Yn1
) ∈ In1

× Cn1
, . . . ,
(
τnm , Ynm) ∈ Inm × Cnm

]
(2.3.1)

is measurable, where each Inj is a Borel subset of [0,∞) and Bnj ∈ E for all

j = 1, . . . , m, as the probability in (2.3.1) satisfies by definition of the regular condi-

tional distributions

P0,x
[
(τn1

, Yn1
) ∈ In1

× Cn1
, . . . ,
(
τnm , Ynm) ∈ Inm × Cnm] =

=

∫

(0,∞)

∫

E

. . .

∫

In1

∫

Cn1

∫

(0,∞)

∫

E

. . .

∫

Inm

πnm
tm (ym−1, Cnm) P nm

(
(ynm−1, tnm−1), dtnm

)
. . .

. . . πn1+1
tn1+1

(yn1+1, dyn1+1) P n1+1
(
(yn1

, tn1
), dtn1+1

)

πn1

tn1
(yn1

, dyn1
) P n1
(
(yn1−1, tn1−1), dtn1

)
. . . π0

t1(x, dy1) P 0(x, dt1) ,

which is measurable with respect to x due to the properties of the Markov kernels.

Hence, the Dynkin class of all sets such that the measurability condition holds, con-

tains all sets of the form

[
(τn1

, Yn1
) ∈ In1

× Cn1
, . . . ,
(
τnm , Ynm) ∈ Inm × Cnm

]
(2.3.2)

for any m ∈ N, indices n1, . . . , nm arbitrarily in {1, 2, . . .} and each Inj , Cnj being

any Borel set of [0,∞) or E, respectively. Clearly, the family of sets of the form

(2.3.2) is ∩-stable. Further, as in part (c) of the proof of Theorem B.2.8 we find

that each counting variable N t
C , t ≥ 0 and C ∈ E , is measurable with respect to the

σ-field generated by the sets (2.3.2). Thus, in particular, Fµ
∞, which is by definition

the smallest σ-field, such that all counting variables are measurable, is contained –

actually equal – to the σ-field generated by the sets (2.3.2). Hence it follows by the

Dynkin Class Theorem that x +→ P0,x(A) is measurable for all A ∈ Fµ
∞.

Thus, overall, we have shown that the measurability property holds for all sets in

σ(X0) and Fµ
∞.

Next, it is easy to see that the measurability property also holds for all sets of the

form A1 ∩ A2 with A1 ∈ σ(X0) and A2 ∈ Fµ
∞ as due to indepence of the σ-fields

x +→ P0,x(A1 ∩ A2) = P0,x(A1)P0,x(A2). The latter is a measurable function as it

is a product of two measurable functions. Hence, as all such sets form an ∩-stable

generator of F we infer that the masurability property holds for all A ∈ F , which

completes the proof.
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2.3.2 Proof of Theorem 2.1.1 (The strong Markov property)

The proof is split into three main parts. First we prove (a) for the process (Xt)t≥0 the

simple Markov property with respect to the filtration (Ft)t≥0 under the probability P0,x

for any x ∈ E. Then, (b) we infer the simple Markov property under the probability

Pν , where ν is an arbitrary initial law, using the definition of this probabilities by

(2.1.2) and the results established in part (a). For later use, we also show, using the

shift operators defined in Definition B.2.3, how the Markov property translates into

conditions on the distribution of the random counting measure that defines a PDP. In

the last part (c), we then prove the strong Markov property in terms of conditions on

the random counting measure using the already established simple Markov property.

This then implies the strong Markov property for the PDP.

We note that the central arguments of the proof establishing the simple and strong

Markov property in parts (a) and (c), respectively, are adapted from [64, Thm. 7.3.2,

7.5.1] to the present setup. However, in [64] only processes with deterministic initial

conditions, i.e., corresponding to laws P0,x, and adapted to the natural filtration

of the random measure, i.e., corresponding to the Markov property with respect to

the filtration (Fµ
t )t≥0, are considered. Therefore, we have added to the proof the

considerations at the beginning of part (a) and part (b) which allow to infer the

Markov property with respect to the filtration (Ft)t≥0 under any law Pν .

(a) For the simple Markov property to hold we have to show that the distribution

of the process (Xt)t≥s conditioned on Fs depends only on Xs for all s ≥ 0. To this

end we first recall the following statement from [8, Thm. 54.4]: Let (Ω,F , P) be a

probability space, G1 and G2 are sub-σ-fields of F and Y be an integrable random

variable. Then, if σ(Y ) ∨ F2 is independent of G1 it holds almost surely that

E[Y |G1 ∨ G2] = E[Y |G2] .

We apply this result to the random variable Y = I[Xt∈C] for C ∈ E where t ≥ s and

the σ-fields G1 = σ(X0) and G2 = Fµ
s , hence, G1∨G2 = Fs. An analogous argument as

employed in the proof of Lemma 2.3.1 shows that σ(X0) is independent of σ(Xt)∨Fµ
s

under the measure P0,x. Hence, we can conclude that F0 is independent of σ(Xt)∨Fµ
s

under the measure P0,x. Therefore it holds for all 0 ≤ s ≤ t that

P
0,x[Xt ∈ C|Fs] = P

0,x[Xt ∈ C|Fµ
s ] . (2.3.3)

The conditional probability in the right hand side almost surely equals the conditional

probability with respect to Fµx
s of a PDP started at x (for all (!) trajectories) and

defined via a random counting measure µx given by the kernels (P n
x )n≥0 and (πn

x)n≥0.

For this additional process we can therefore proceed as in [64] and all results are
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immediately transferable to the original process (Xt)t≥0.16 Due to Corollary B.2.1

conditioning on Fµx
s then amounts to conditioning on the events [Ns = k, Zk = zk]

for all k ∈ N0 and zk ∈ Kk. Moreover, as the distribution of the process in this case

is fully determined by the law of the random counting measure it suffices to consider

the conditional distribution of the random counting measure θsµ. Given the event

[Ns = k, Zk = zk] this conditional distribution is due to Theorem B.2.2 given by the

probability defined by the Markov kernels

P 0
x|k,zk

:= P k
x (zk, · |(s,∞]), (2.3.4)

π0
x|k,zk

(t, ·) := πk
x((zk, t), ·) ∀ t ≥ s, (2.3.5)

and

P n
x|k,zk

(z̃n, · ) := P k+n
x (zk 9 z̃n, · ) ∀n ≥ 1, (2.3.6)

πn
x|k,zk

((z̃n, t), · ) := πk+n
x ((zk 9 z̃n, t), · ) ∀n ≥ 1, t > t̃n. (2.3.7)

Note, that in addition to Theorem B.2.2 we may have an a-priori dependence of the

Markov kernels on the initial condition x which we have accounted for in the notation

employed in (2.3.4)–(2.3.7). Hence, establishing the simple Markov property for a

PDP now amounts to showing the following: Firstly, the Markov kernels (2.3.4) and

(2.3.5) and the measurable function

t +→ fk
x ( t | zk), t ≥ s (2.3.8)

which, on the set of conditioning, defines the value of the process until the first jump

after s, depend on Xs = fk
x (s|zk) only. Secondly, we need to prove that the Markov

kernels (2.3.6) and (2.3.7) and the measurable functions

t +→ fk+n
x ( t |zk 9 z̃n) ∀n ≥ 1, t ≥ t̃n (2.3.9)

depend on k, zk and x through yk only.

We start with the condition on the measurable function (2.3.8) which by definition

16The insertion of this additional process starting at x for all trajectories is a technical necessity in
order to employ in part (a) the method of proof of [64]. It presupposes that the process is adapted to
(Fµ

t )t≥0 and hence the initial condition is adapted to {∅,Ω}. Thus, we have two PDPs, one starting
in x for all trajectories and the other starting in x for almost all trajectories and the random counting
measure depends only on the initial condition. It is obvious that these two processes possess the
same law (up to null sets) and their conditional probabilities with respect to the respective canonical
filtration do coincide almost surely.
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(2.1.4) satisfies

fk
x (t|zk) = ϕtk,t(yk) = ϕs,t(ϕtk,s(yk)) = ϕs,t(Xs) (2.3.10)

and hence depends on Xs only. Next we consider for t ≥ s the survivor function for

the Markov kernel (2.3.4) which satisfies

P 0
x|k,zk

((t,∞]) = P k
x

(
zk, (t,∞]

∣∣(s,∞]
)

=
P k

x (zk, (t,∞] ∩ (s,∞])

P k
x (zk, (s,∞])

=
S

k
zn,x(t)

S
k
zn,x(s)

=
Stk ,yk

(t)

Stk ,yk
(s)

=
Stk,yk

(s) Ss,ϕtk,s(yk)(t)

Stk,yk
(s)

= Ss,ϕtk,s(yk)(t)

= Ss,Xs(t) . (2.3.11)

Here we have used the definition of the survivor function (2.1.6) for the Markov kernels

(P n
x )n≥0 and the functional property of the survivor function (2.1.5). As survivor

functions completely define probabilities it follows that P 0
x|k,zk

depends on Xs only.

Further, for t ≥ s the kernel (2.3.4) satisfies for all C ∈ E by definition (2.1.7)

π0
x|k,zk

(t, C) = πk
x((zk, t), C) = rt(ϕtk ,t(yk), C) = rt(ϕs,t(Xs), C) . (2.3.12)

Therefore, also the conditional probability (2.3.5) depends on Xs only.

Next, completely analogous manipulations show that for all n ≥ 1 the measurable

function in (2.3.9) and the Markov kernels in (2.3.6) depend on t̃n and ỹn only and

the Markov kernels in (2.3.7) depend on t̃n and ỹn and t only. In particular, all these

quantities are independent of x and zk which completes the proof of the simple Markov

property. Further all considered quantities are independent of the initial condition x.

Hence, it follows that the PDP possesses transition probabilities that are independent

of the initial condition.

Finally, for a PDP to be a homogeneous Markov process the quantities (2.3.4)–(2.3.9)

can depend on s, t only through the difference t − s. We immediately find that this

holds inserting into (2.3.10)–(2.3.12) the definitions of the one-parameter semigroup

ϕs,t = φt−s, the survivor function Ss,y(t) = Sy(t−s) and the Markov kernels rt(y, ·) =

r(y, ·), cf. (2.1.8)–(2.1.11).

(b) So far we have shown that the PDP (Xt)t≥0 satisfies the simple Markov property

with respect to the filtration (Ft)t≥0 for every probability measure P0,x, x ∈ E. We
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next extend the simple Markov property to any measure Pν . First, the simple Markov

property states that for each x ∈ E and for all C ∈ E and s ≤ t it holds almost surely

with respect to the measure P0,x that

P
0,x[Xt ∈ C|Fs] = pst(Xs, C)

where ps,t are the transition probabilities of the process. Note that their existence is

guaranteed and that they are independent of the initial condition x ∈ E which was

established in part (a) of the proof. In order to show that (Xt)t≥0 is a Markov process

with respect to Pν we have to show that pst(Xs, C) is a version of the conditional

probability with respect to Fs under Pν , i.e., for all F ∈ Fs it holds that

∫

F

P
ν [Xt ∈ C|Fs] dP

ν =

∫

F

pst(Xs, C) dP
ν . (2.3.13)

On the one hand, by definition of the measure Pν we obtain for the right hand side

in (2.3.13) that

∫

F

pst(Xs, C) dP
ν =

∫

E

∫

F

pst(Xs, C) dP
0,x ν(dx) .

On the other hand, due to the Markov property of (Xt)t≥0 with respect to the measures

P0,x the left hand side in (2.3.13) yields

∫

F

P
ν [Xt ∈ C|Fs] dP

ν =

∫

F

I[Xt∈C] dP
ν

=

∫

E

∫

F

I[Xt∈C] dP
0,x ν(dx)

=

∫

E

∫

F

P
0,x[Xt ∈ C|Fs] dP

0,x ν(dx)

=

∫

E

∫

F

pst(Xs, C) dP
0,x ν(dx) .

Hence, equality (2.3.13) holds and the Markov property with respect to the measure

Pν is established.

Finally, we comment on how the Markov properties are presented in terms of the

random counting measure µ the PDP (Xt)t≥0 is constructed from. In particular, in

part (a) it is shown that the conditional probability with respect to Fs of θsµ depends

on Xs only, where θs is the shift operator on H as given in Definition B.2.3.

For all s ≥ 0 and all x ∈ E let Ps,x denote the probability for µ which is generated
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by the survivor functions and Markov kernels

S
0
s,x(t) :=





1 t < s

Ss,x(t) s ≤ t,
π0

t|s,x := rt(ϕs,t(x), · ) ,

and for n ≥ 1, t ≥ tn

S
n
zn|s,x(t) := Stn,yn(t), πn

zn,t|s,x := rt(ϕtn,t(yn), · ) .

That is Ps,x is the probability of a random counting measure / PDP such that there

is almost surely no point / jump up to time s ≥ 0 and, in addition, the PDP is at

position x at time s almost surely, i.e., Ps,x[Xs = x] = 1. Then the simple Markov

property can be expressed as

P
ν [θsµ ∈ A | Fs] = P

s,Xs[µ ∈ A] ∀A ∈ H . (2.3.14)

Moreover, in the homogeneous case set Px := P0,x, i.e., for the random counting

measure µ this is the distribution defined by the Markov kernels

S
0
s,x(t) :=





1 t < s,

Sx(t− s) s ≤ t,
π0

t|s,x := r(φt−s(x), · ) ,

and for n ≥ 1, t ≥ tn

S
n
zn|s,x(t) := Syn(t− tn), πn

zn,t|s,x := r(φt−tn(yn), · ) .

This yields the general, homogeneous Markov property

P
ν [θ∗t µ ∈ A|Ft] = P

Xt [µ ∈ A] ∀A ∈ H , (2.3.15)

where θ∗t denotes the translated shift operator defined in (B.2.13). Note that the

Markov properties (2.3.14) and(2.3.15) hold simultaneously for all A ∈ H such that

P
ν [θtµ ∈ · |Ft] = P

t,Xt [µ ∈ · ] and P
ν [θ∗t µ ∈ · |Ft] = P

Xt [µ ∈ · ] .

Thus in each case these are the same probability measures on (H,H) for all ω outside

a null set.

(c) In this part of the proof we show the strong Markov property (2.0.5) for the

PDMP (Xt)t≥0. First, note that the Markov properties in terms of the random count-

ing measure, i.e., (2.3.14) and(2.3.15), yield a straightforward definition of a strong

Markov property in terms of the random counting measure: A PDP constructed from
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a random counting measure µ satisfies the strong Markov property if it holds for any

Ft-stopping time T on [T < ∞] almost surely (with respect to Pν) that

P
ν [θT µ ∈ A|FT ] = P

T,XT [µ ∈ A] ∀A ∈ H . (2.3.16)

In case of a homogeneous PDP this reduces to

P
ν [θ∗T µ ∈ A|FT ] = P

XT [µ ∈ A] ∀A ∈ H (2.3.17)

almost surely (with respect to Pν) on [T <∞].

Therefore, in order to prove the strong Markov property for the PDP it suffices to

show that condition (2.3.16) holds for any Ft-stopping time T . Next we invoke the

equivalence of random counting measures and marked point processes, cf. Prop. B.2.1.

Then, according to Jacobsen [64, p. 168] the property (2.3.16) is in turn implied if for

all n ∈ N and all measurable, bounded functions gi : [0,∞]× E → R, i ≤ n, it holds

that

E
ν
[ n∏

i=1

gi(τi, Yn) ◦ θT µ
∣∣∣FT

]
= E

T,XT

[ n∏

i=1

gi(τi, Yn)
]
, (2.3.18)

i.e., the term in the right hand side is a version of the conditional expectation with

respect to the stopped σ-field FT . In (2.3.18) the expectation operators Eν and Et,x

denote integration with respect to the probabilities Pν and Pt,x, respectively.

We now prove property (2.3.18) by induction with respect to n. Thus, proceeding

along a standard approach to establish a strong Markov property, we first (c.1) prove

the strong Markov property directly for stopping times taking only countably many

values and approximating an arbitrary stopping time from above. This result is then

used to (c.2) derive the initial condition for the induction and finally in (c.3) we prove

the induction step. In the following let T be an arbitrary but fixed Ft-stopping time.

(c.1) We define a sequence of stopping times Tn taking only countably many values

that approximates T from above by

Tn :=
∞∑

i=1

i

2n
I[ i−1

2n ≤T< i
2n

] +∞ I[T=∞] .

Obviously, T ≤ Tn by definition and even Tn < T on the set [T < ∞]. Furthermore,

it holds that [ i−1
2n ≤ T ] ∩ [T < i

2n ] = [Tn = i
2n ] ∈ Fi/2n .

We now show that the strong Markov property holds for all stopping times Tn. To

this end we prove that for all A ∈ H the random variable PTn,XTn [µ ∈ A] is a version

of the conditional expectation Eν [I[θTnµ∈A]|FTn]. Let F ∈ FTn and define the sets
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Fi = F ∩
[
Tn = i

2n

]
. Then Fi ∈ Fi/2n and

F =
∞⋃

i=1

Fi

is a countable union of disjoint elements of F . Further it holds that

∫

Fi

P
Tn,XTn [µ ∈ A] dP

ν =

∫

Fi

P
1
2n ,Xi/2n [µ ∈ A] dP

ν

=

∫

Fi

I[θi/2nµ∈A] dP
ν

= P
ν(Fi ∩ [θTnµ ∈ A]) ,

where the second equality is due to the simple Markov property (2.3.14). Hence due

to the σ-addidivity of a probability measure it follows that

∫

F

P
Tn,XTn (A) dP

ν = P
ν(F ∩ [θTnµ ∈ A]) =

∫

F

I[θTnµ∈A] dP
ν . (2.3.19)

Since (2.3.19) is valid for all F ∈ FTn it follows by definition of the conditional

expectation that on the set [Tn <∞] = [T <∞] it holds

P
ν
[
θTnµ ∈ A

∣∣FTn

]
= E

ν
[
I[θTnµ∈A]

∣∣FTn

]
= P

Tn,XTn [µ ∈ A] . (2.3.20)

As (2.3.20) holds simultaneously for all A ∈ H we have shown the strong Markov

property (2.3.16) for all Tn, n ≥ 1, i.e.,

P
ν
[
θTnµ ∈ ·

∣∣FTn

]
= P

Tn,XTn [µ ∈ · ].

(c.2) We next use the strong Markov property with respect to the stopping times

Tn, n ≥ 1, to prove the initial condition of the induction for the stopping time T . On

[T < ∞] it is valid that

E
T,XT [g1(τ1, Y1)] =

∫

(T,∞]

∫

E

g1(t, y) rt(ϕT,t(XT ), dy) FT,XT (dt) , (2.3.21)

where FT,XT = 1 − ST,XT is the cumulative distribution function of the first jump

time. Similarly on [Tn < ∞] = [T < ∞] it holds that

E
Tn,XTn [g1(τ1, Y1)] =

∫

(Tn,∞]

∫

E

g1(t, y) rt(ϕTn,t(XTn), dy) FTn,XTn
(dt) .

Further, it holds on the set [NT = NTn ] ∩ [T < ∞] that the path starting in XT at
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time T satisfies due to (2.1.4) for all t ≥ Tn until the first, subsequent jump

ϕT,t(XT ) = ϕTn,t

(
ϕT,Tn(XT )

)
= ϕTn,t(XTn) ,

and the survivor function of the first jump after T , which on this set is also after Tn,

satisfies due to (2.1.5)

ST,XT (t) = ST,XT (Tn) STn,XTn
(t) .

Therefore, we obtain on the set [NT = NTn ] ∩ [T < ∞] from (2.3.21) that

E
Tn,XTn [g1(τ1, Y1)] =

∫

(Tn,∞]

∫

E

g1(t, y) rt(φTn,t(XTn), dy) FTn,XTn
(dt)

=
1

ST,XT (Tn)

∫

(Tn,∞]

∫

E

g1(t, y) rt(φT,t(XT ), dy) FT,XT (dt) .

As n →∞ implies Tn ↓ T and ST,XT (Tn) → 1 pointwise for all ω ∈ Ω, we obtain that

on the set [NT = NTn ] ∩ [ T < ∞] it holds pointwise

lim
n→∞

E
Tn,XTn [g1(τ1, Y1)] = E

T,XT [g1(τ1, Y1)] . (2.3.22)

Let F ∈ FT ∩ [T <∞] and set Fn := F ∩ [NTn = NT ]. Therefore, as IFn is dominated

by I[T<∞], ETn,XTn [g1(τ1, Y1)] is a bounded random variable as g1 is bounded and since

limn→∞ I[NTn=Nt]∩[T<∞] = I[T<∞] holds pointwise, it follows from (2.3.22) that

lim
n→∞

E
Tn,XTn [g1(τ1, Y1)] IFn = E

T,XT [g1(τ1, Y1)] IF

holds pointwise on Ω. Moreover, the sequence ETn,XTn [g1(τ1, Y1)] IFn is dominated,

thus the dominated convergence theorem yields

lim
n→∞

∫

Fn

E
Tn,XTn [g1(τ1, Y1)] dP

ν = lim
n→∞

∫

Ω

E
Tn,XTn [g1(τ1, Y1)] IFn dP

ν

=

∫

Ω

E
T,XT [g1(τ1, Y1)] IF dP

ν

=

∫

F

E
T,XT [g1(τ1, Y1)] dP

ν . (2.3.23)

Next, as we have established the strong Markov property for the stopping times Tn
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in part (c.1) and as FT ⊂ FTn implies Fn ∈ FTn, we obtain due to (2.3.23)

lim
n→∞

∫

Fn

g1(τTn,1, YTN ,1) dP
ν = lim

n→∞

∫

Fn

g1(τ1, Y1) ◦ θTnµ dP
ν

=

∫

F

E
T,XT [g1(τ1, Y1)] dP

ν . (2.3.24)

Finally, as (τTn,1, YTN ,1) → (τT,1, YT,1) holds pointwise on Ω and g1(τTn,1, YTN ,1) is

bounded, the dominated convergence theorem yields

lim
n→∞

∫

Fn

g1(τTn,1, YTN ,1) dP
ν =

∫

F

g1(τT,1, YT,1) dP
ν . (2.3.25)

Therefore it follows due to (2.3.24) and (2.3.25) that

∫

F

E
T,XT [g1(τ1, Y1)] dP

ν =

∫

F

g1(τT,1, YT,1) dP
ν ,

which is valid for all F ∈ FT ∩[T <∞]. Hence, due to the definition of the conditional

expectation we obtain

E
ν
[
g1(τT,1, YT,1)

∣∣FT

]
= E

T,XT [g1(τ1, Y1)] .

Thus the initial condition for the induction is proved, i.e., equality (2.3.18) holds for

n = 1.

(c.3) We assume the induction hypothesis (2.3.18) holds for n− 1, n ≥ 2, that is,

E
ν
[n−1∏

i=1

gi(τi, Yn) ◦ θT µ
∣∣∣FT

]
= E

T,XT

[n−1∏

i=1

gi(τi, Yn)
]
. (2.3.26)

Recall that TT,n−1, i.e., the time of the (n − 1)th jump after time T , is a stopping

time and hence for U :=
∏n−1

i=1 gi(τi, Yi) it follows due to (2.3.26) that

E
ν
[
(U ◦ θT µ) gn(TT,n, YT,n)

∣∣FTT,n−1

]
= (U ◦ θT µ) E

ν
[
gn(TT,n, YT,n)

∣∣FTT,n−1

]

= (U ◦ θT µ) E
TT,n−1,XTT,n−1

[
gn(τ1, Y1)

]
.(2.3.27)

Note that U ◦ θT µ is clearly FTT,n−1
-measurable. As T ≤ TT,n−1 it follows that FT ⊂

FTT,n−1
and thus by (2.3.27)

E
ν
[
(U ◦ θT µ) gn(TT,n, YT,n)

∣∣FT

]
= E

ν
[
(U ◦ θT µ) E

TT,n−1,XTT,n−1

[
gn(τ1, Y1)

] ∣∣FT

]
.

(2.3.28)

Note that the inner expectation in the right hand side of (2.3.28) is a bounded,
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measurable function of (τn−1, Yn−1)◦ θT µ. Hence the induction hypotheses yields that

E
ν
[
(U ◦ θT µ) E

TT,n−1,XTT,n−1

[
gn(τ1, Y1)

] ∣∣FT

]
= E

T,XT
[
U E

τn−1,Yn−1 [gn(τ1, Y1)]
]
.

(2.3.29)

Now, the inner expectation in the right hand side of (2.3.29) is a version of the

conditional expectation with respect to the probability PT,XT , i.e., with respect to the

conditional probability PT,XT it holds that

E
τn−1,Yn−1[gn(τ1, Y1)] = E

T,XT [gn(τn, Yn) | FTn−1
] a.s.,

where Tn−1 is understood as the (n− 1)th jump time of the probability PT,XT . Thus

overall we obtain

E
ν
[
(U ◦ θT µ) E

TT,n−1,XTT,n−1

[
gn(τ1, Y1)

] ∣∣FT

]
= E

T,XT
[
U E

T,XT [gn(τn, Yn) | FTn−1
]
]

= E
T,XT
[
U gn(τn, Yn)

]

= E
T,XT

[ n∏

i=1

gi(τi, Yn)
]
.

Hence, the induction step is proved and consequently the proof of Theorem 2.1.1 is

completed.

2.3.3 Proof of Theorem 2.2.1 (The extended generator)

To characterise the extended generator we have to show that, on the one hand, for

functions f satisfying conditions (i)–(iii) of Theorem 2.2.1 the process defined by

Mf
t := f(Xt)− f(X0)−

∫ t

0

Af(Xs) ds (2.3.30)

is an Ft-local martingale. And, on the other hand, functions f for which (2.3.30) is

an Ft-local martingale necessarily meet the conditions specified in the theorem. The

proof we present subsequently follows along the line of the corresponding proof in

Davis [37, Thm. 26.14]. We have adapted the method of proof to the more general set-

up for PDMPs we employ and to the construction of PDMPs from random counting

measures following Jacobsen [64].

We now first provide arguments that allow to simplify the problem. Note that due

to analogous considerations as in part (b) of the proof of Theorem 2.1.1 we can first

establish the local martingale property with respect to the probability measures P0,x,

for all x ∈ supp ν. Once this is established, integration with respect to the initial ν law

establishes the martingale property with respect to the law Pν . Moreover, under the
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laws P0,x conditional probabilities with respect to elements of Ft equal almost surely

the conditional probabilities with respect to Fµ
t , cf. part (a) of the proof of Theorem

2.1.1. Hence, in a further reduction of the complexity of the problem it is sufficient to

consider Fµ
t -local martingales. That is, in order to characterise the extended generator

it is sufficient to prove that the conditions (i)–(iii) of Theorem 2.2.1 are (a) sufficient

and (b) necessary for the process (2.3.30) to be a local martingale with respect to the

filtration (Fµ
t )t≥0 under the probability P0,x for every x ∈ supp ν.

(a) In this part of the proof we show that conditions (i)–(iii) imply the local mar-

tingale property for the process (2.3.30), i.e., the conditions are sufficient. We assume

that (iii) holds, i.e., (t, x, ω) +→ f(x) − f(Xt−(ω)) is a valid integrand for the Fµ
t -

predictable compensator Ñt which is for the considered class of survivor functions

(2.2.1) given by (2.1.19). Then due to Theorem B.2.6(b) it follows that the compen-

sated stochastic integral (B.2.26) is given by

∫

(0,t]×E

f(x)− f(Xs−) M(dt, dx) =

=

∫

(0,t]×E

f(x)− f(Xs−) µ(ds, dx)−
∫

(0,t]×E

f(x)− f(Xs−)dÑs(ds, dx)

=
∑

τi≤t

(
f(Xτi)− f(Xτi−)

)
−
∫ t

0

∫

E

(
f(x)− f(Xs−

)
r(Xs, dx) λ(Xs)ds

−
∑

τi≤t

∫

E

f(x)− f(Xτi−) r(Xτi−, dx) I[Xτi−∈B] (2.3.31)

is an Fµ
t -local martingale. Note that in the Lebesgue integral in the right hand side of

(2.3.31) we can change the integrand from left to right continuous, i.e., we integrate

with respect to s instead of s−, leaving the value of the integral unchanged as Xs and

λ(Xs) are càdlàg. Next we show that the right hand side of (2.3.31) is of the form

(2.3.30) which implies that f ∈ D(A).

First note that due to the boundary condition (2.2.5) the last sum in the right hand

side of (2.3.31) vanishes. Further on the set [Nt = k] the first sum in the right hand

side of (2.3.31) can be expanded to

f(Xt)− f(X0)−
[
f(Xt)− f(Xτk

) +
k∑

i=1

(
f(Xτi−)− f(Xτi−1

)
)]

. (2.3.32)

To evaluate the terms in the square brackets recall from the definition of the PDMP

(2.1.4) that

Xτi− = φτi−τi−1
(Xτi−1

) ,
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and thus, as the map t +→ f(φt(x)) is a.s. path-differentiable on [0, t∗(x)) due to

condition (i), we immediately obtain

f(Xτi−)− f(Xτi−1
) =

∫ τi

τi−1

d

ds
f(Xs) ds .

As we sum integrals over all the intervals between successive transitions in (2.3.32)

the right hand side of (2.3.31) finally equals

f(Xt)− f(X0)−
∫ t

0

[ d

ds
f(Xs) + λ(Xs)

∫

E

(
f(x)− f(Xs)

)
p(Xs, dx)

]
ds , (2.3.33)

which holds on all sets [Nt = k], k ≥ 1. This is an Fµ
t -local martingale of the form

(2.3.30) and hence, the conditions of Theorem 2.2.1 are sufficient for f to be in the

domain of the extended generator with extended generator given by (2.2.6).

(b) In this part we show that the conditions (i)–(iii) are also necessary. Let f ∈ D(A)

which means that the process

f(Xt)− f(X0)−
∫ t

0

K(Xs) ds (2.3.34)

is an Fµ
t –local martingale with K denoting the extended generator applied to f .

From the Martingale Representation Theorem, Theorem B.2.6(a), it follows that there

exists an Fµ
t -predictable integrand k(s, x, ω) such that (2.3.34) equals almost surely

the stochastic integral

∫

(0,t]×E

k(s, x) M(ds, dx) =
∑

τi≤t

k(τi, Xτ1)−
∫ t

0

∫

E

k(s, x) r(Xs−, dx) λ(Xs) ds

−
∑

τi≤t

∫

E

k(τi, x) r(Xτi−, dx) I[Xτi−∈B] . (2.3.35)

Note that the process (2.3.34) is zero for t = 0, hence M0 = 0 in Theorem B.2.6(a).

As (2.3.34) and (2.3.35) are equal, their jumps have to be equal. The integral in

(2.3.34) is continuous therefore jumps can only occur when Xt jumps, i.e., only at

times t = τi, i ≥ 1. In the case of the process (2.3.34) the jump heights are given by

f(Xt)− f(Xt−) (2.3.36)

whereas in the case of the process (2.3.35) they are given by

k(t, Xt)−
∫

E

k(t, x) r(Xt−, dx) I[Xt−∈B] . (2.3.37)
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Thus on the set [Xt− /∈ B] we obtain that k(t, Xt) = f(Xt) − f(Xt−) which implies

that k(t, x) = f(x)− f(Xt−) for all (t, x) outside a set G ⊂ [0,∞)× E to which the

process never jumps, i.e., Eµ(G) = 0.

Comparing the jumps heights (2.3.36) and (2.3.37) on the set [Xt− ∈ B] yields

f(Xt)− f(Xt−) = k(t, Xt)−
∫

E

k(t, x) r(Xt−, dx) ,

which in turn yields

f(y)− f(Xt−) = k(t, y)−
∫

E

k(t, x) r(Xt−, dx) (2.3.38)

for all y except on a set A ∈ E such that r(Xt−, A) = 0. We integrate both sides of

equation (2.3.38) with respect to the probability r(Xt−, dy) of the post-jump value

and obtain

∫

E

f(y) r(Xt−, dy)− f(Xt−) =

∫

E

k(t, y) r(Xt−, dy)−
∫

E

k(t, x) r(Xt−, dx) .

As the right hand side vanishes it follows that f satisfies the boundary condition

(2.2.5). Next we fix z ∈ B+ ∩ ∂B. Then the boundary condition yields

k(t, x)− (f(x)− f(z)) = k(t, x)−
(
k(t, x)−

∫

E

k(t, y) r(z, dy)
)

=

∫

E

k(t, y)− (f(y)− f(z)) r(z, dy) ,

where the term in the right hand side is independent of x. Thus there exists a

predictable process k̂ such that

k̂(t, z) = k(t, x)− (f(x)− f(z)).

and a combination with the result on the set [Xt− /∈ B] yields that in general

k(t, x) = f(x)− f(Xt−) + k̂(t, Xt−) I[Xt−∈B] . (2.3.39)

57



Chapter 2: Piecewise Deterministic Markov Processes

We insert expression (2.3.39) into the right hand side of (2.3.35) and obtain

(2.3.35) =
∑

τi≤t

[
f(Xτi)− f(Xτi−)

]
+
∑

τi≤t

k̂(τi, Xτi−) I[Xτi−∈B]

−
∫ t

0

∫

E

f(x)− f(Xs−) r(Xs−, dx) λ(Xs) ds

−
∫ t

0

∫

E

k̂(s, Xs−) I[Xs−∈B] r(Xs−, dx) λ(Xs) ds

−
∑

τi≤t

∫

E

f(x)− f(Xt−) r(Xτi−, dx) I[Xτi−∈B]

−
∑

τi≤t

∫

E

k̂(τi, Xτi−) I[Xτi−∈B] r(Xτi−, dx) I[Xτi−∈B]

=
∑

τi≤t

[
f(Xτi)− f(Xτi−)

]
−
∫ t

0

∫

E

f(x)− f(Xs−) r(Xs−, dx) λ(Xs) ds

−
∑

τi≤t

∫

E

f(x)− f(Xt−) r(Xτi−, dx) I[Xτi−∈B] ,

which is independent of k̂. Thus we can choose k̂ = 0 and obtain for the structure of

the integrand k that

k(x, t, ω) = f(x)− f(Xt−(ω)) ,

which holds for all x ∈ E except on a set the process does not jump to almost surely.

This in particular implies that (t, x, ω) +→ f(x) − f(Xt−(ω)) is a valid integrand for

the compensating measure. Therefore condition (iii) is satisfied.

Finally, it remains to show condition (i). To this end we consider the sample paths of

the processes (2.3.34) and (2.3.35) for t ∈ [0, τ1) and obtain that almost surely

f(φt(X0))− f(X0)−
∫ t

0

K(φs(X0))ds =

= −
∫ t

0

∫

E

(
f(x)− f(φs(X0)

)
r(φs(X0), dx)

)
λ(φs(X0))ds .

As P[τ1 > t] > 0 for all 0 ≤ t < t∗(X0), we infer that the mapping t +→ f(φt(X0))

is absolutely continuous, hence f is a.e. path-differentiable on [0, t∗(X0)). We can

repeat this comparison for all inter-jump intervals [τi, τi+1), i > 1, and obtain that

t +→ f(φt(x) is a.e. path-differentiable on [0, t∗(x)) for all x except on a set A ∈ E
where the process never jumps to, i.e., Eµ([0,∞) × A) = 0. Hence, condition (i)
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characterising the domain of the extended generator is satisfied.

We thus obtain for K that

∫ t

0

K(Xt) dt =

= f(Xt)−f(XτNt
)+
∑

τi≤t

f(Xτi−)−f(Xτi−1)+

∫ t

0

∫

E

f(x)−f(Xs−) r(Xs−, dx) λ(Xs−) ds

=

∫ t

0

[ d

dt
f(Xs) + λ(Xs)

∫

E

f(x)− f(Xs) r(Xs, dx)
]
ds .

Therefore K is for Lebesgue almost all t ≥ 0 of the proposed form for the extended

generator (2.2.6) almost surely.
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Hybrid stochastic models of

excitable media

The processes and results in the preceding section are derived with the aim to con-

struct an analytically tractable hybrid model of excitable membranes, particularly

neuronal membranes. In Section 3.1 we describe as an instructive example how to

cast the classical Hodgkin-Huxley model for the squid giant axon into the framework

of PDMPs in infinite-dimensions. The main result in Theorem 3.1.1 is that such

models form a standard PDMP, cf. Definition 3.0.1. Although illustrated on the clas-

sical example of the Hodgkin-Huxley axon equation, the modelling approach extends

immediately to similar channel based stochastic models, e.g., stochastic versions of

models of cardiac tissue or models in Calcium dynamics [47], e.g., the Kaizer-DeYoung

model. At the end, in Section 3.1.2 we also comment how the infinite-dimensional

PDMP model reduces to a finite-dimensional PDMP model in the special case of

space-clamped patches of membrane and discuss compartmental-type membrane mod-

els which play an important role for simulation studies, cf. [45, 94].

In terms of modelling, Section 3.1 picks up where we left off at the end of Section 1.2 in

order to discuss the general class of stochastic processes that the specific structure of

the modelling problem demands. However, prior to this we discuss briefly the specific

class of PDMPs we employ modelling these systems. At the end of this chapter we also

very briefly discuss deterministic models of excitable media. In particular, we present

an existence theorem of solutions of general excitable media equations. We further

present results on the qualitative properties of the solutions to membrane equations.

These are important preliminary results for the derivation of limit theorems to PDMP

models of excitable media which we pursue in Chapter 4.
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3.0.1 An appropriate class of PDMPs

In the following we restrict ourselves to consider homogeneous processes, which corre-

spond to models of excitable media without time-dependent input current. To include

time-dependent input does not pose an additional problem resulting in inhomogeneous

PDMPs, cf. Section 2.1. These can be easily reduced to homogeneous PDMPs via

the usual state space extension, cf. the discussion of the space-time process in Sec-

tion 2.0.1. Thus, let (Ω,F , (Ft)t≥0, P) be a filtered probability space and (Xt)t≥0 be

a PDMP on a Borel measurable space E, i.e., a càdlàg strong Markov process the

trajectories of which possess the following distinct features: They have discontinuities

at random times τn and random post-jump values Xτn but move deterministically in

phase space in between jumps as defined by a semigroup of mappings (ϕt,s)s≥t≥0. The

subclass of PDMPs that is employed for the purpose of modelling biological excitable

media in the subsequent sections exhibits this general dynamics in the following form:

The homogeneous PDMP (Xt)t≥0 consists of two components Xt = (Yt, θt) taking

values in the state space E = H ×K. The first component, Yt, taking values in H ,

possesses continuous sample paths and we call Yt the continuous component of the

PDMP. The space H is a separable, real Hilbert space. In applications it is either an

infinite-dimensional function space, e.g. H = L2(D) on some spatial domain D, for

models incorporating spatial dynamics, or, in the reduction to models without spatial

dynamics, it is finite-dimensional, i,e, H = Rd, 1 ≤ d < ∞. The second component,

θt, takes values in K, possesses piecewise constant sample paths and we denote it as

the piecewise constant component of the PDMP. Here K denotes an at most countable

set of distinct states. For models of excitable media it is a finite set of integer vectors

that denote the collection of physiological states different ion channels are in. Thus,

note that for this type of PDMPs jumps occur only in a fixed subset of components

which in addition are otherwise constant.

Hence, a full, precise definition of the dynamics of the PDMP requires us to consider

two constituents making up the characteristics of the process. One that governs the

deterministic evolution of the continuous component Yt and a second one that defines

the random jumps of the piecewise constant component θt. These components are as

considered in Examples 2.1.4 and 2.1.1 which we now briefly recall.

Firstly, the deterministic evolution of the continuous component in between jumps is

governed by a family of abstract evolution equations. In the membrane model this

component describes the dynamics of the transmembrane potential and is usually

given by a reaction-diffusion equation defining an abstract evolution equation. What

distinguishes hybrid model from deterministic or SDE models is the description of

the gating system using an exact description of the channel dynamics based on their

kinetic schemes, cf. Fig. 1.1. Hence, channel states change instantaneously at random
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times and are constant in between. Let X ⊂ H ⊂ X∗ be an evolution triple of real,

separable Hilbert spaces with the embeddings being continuous and dense. Then, for

the construction of the continuous component Yt of the PDMP we consider nonlinear

abstract evolution equations

ẏ = A(θ) y + B(y, θ) (3.0.1)

for all θ ∈ K, where A(θ) : X → X∗ is a linear operator and B(·, θ) : X → X∗ is a

nonlinear operator. For the applications in Section 3.3 the operators A(θ) are second

order elliptic partial differential operators with time-independent coefficients, as in

the nonlinear cable equation (1.2.1). The parameter θ corresponds to the coefficients

gi which change every time a channel opens or closes. We denote by ψ(t, (y, θ)) the

solution to the abstract initial value problem (3.0.1) with initial condition u(0) = y,

y ∈ H . Given any initial condition y ∈ H we assume that there exists a unique

global weak solution, i.e., ψ ∈ L2((0, T ), X) ∩ H1((0, T ), X∗) ⊂ C0([0, T ], H) with

ψ̇ ∈ L2((0, T ), X∗) for every T <∞, which forms a dynamical system in H . Moreover,

as the component θt of a PDMP is constant in between jumps it follows that in between

jumps the paths of the complete PDMP (Yt, θt)t≥0 generate a dynamical system, i.e.,

for x = (y, θ) ∈ E we define the mapping φt(x) := (ψ(t, (y, θ)), θ) and it is easy to see

that (φt)t≥0 is a dynamical system on E.

Secondly, the stochastic jump mechanism is given by a jump rate Λ governing the jump

times and a probability µ for the distribution of the post-jump values describing the

random state transitions of the ion channels. Thus Λ : E → R+ is such that at any

time t ≥ 0 the distribution of the waiting time until the next jump possesses the

survivor function

S(s, Xt) = P
[
θt+r = θt, ∀ r ∈ [0, s]

∣∣Xt

]

= exp

(
−
∫ s

0

Λ
(
φr(Xt)

)
dr

)
. (3.0.2)

That is, S(s, Xt) states the probability conditional on Xt that there does not occur

a jump in [t, t + s]. Further, the transition probability µ takes the form of a Markov

kernel1 µ : E × BK → [0, 1] from E into K defining the distribution of the PDMP’s

1We note that we make at this point a fundamental change of notation which remains in place for
the remainder of the thesis. We no longer use the symbol ’µ’ to denote a random counting measure
which is used to define a PDMP as in Chapter 2 and Appendix B.2. In particular, for the remainder
of thesis we do not use explicitly the random counting measure underlying (or associated) with a
PDMP anymore. Therefore the symbol ’µ’ is from now on used to denote the Markov kernel defining
the post-jump values of a PDMP. In Chapter 2 this Markov kernel was denoted by r, cf. conditions
(P2) and (P3) in Section 2.1. The reason for this change in notation is partly due to an attempt
to keep the notation of the individual parts of the thesis easily comparable to the respective main
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t

t

θt

Yt

0 τ1 τ2 τ3

ψ(t,(y0,θ0))
ψ(t−τ1,(y1,θ1))

ψ(t−τ2,(y2,θ2))

ψ(t−τ3,(y3,θ3))

y0

y1

y2y3

θ0

θ1θ2θ3

Figure 3.1: Sketch of the construction of a PDMP (Yt, θt)t≥0 where the bold grey
curves form its trajectory. The continuous component Yt is shown in the upper part
and the piecewise constant component θt in the lower part of the figure. The transition
times τn and the transition targets θτn are random variables depending on the past of
the sample path.

post-jump values conditional on the pre-jump values, i.e., for all A ∈ BK

P[θt ∈ A | θt− 1= θt] = µ(Xt−, A) . (3.0.3)

Here BK denotes the Borel sets on K. We note that some care has to be taken defining

Λ and µ for a specific model. In general, H is a function space and uniqueness of

solutions to (3.0.1) is only given with respect to equivalence classes with respect to

the norm on the spaces they belong to, i.e., L2((0, T ), X) or C0([0, T ], H). Therefore,

one has to ensure that functions of solutions to (3.0.1), that is, the jump rate Λ and

the point probabilities of the Markov kernel µ, are well defined in the sense that they

are invariant with respect to equivalence classes.

Using these mechanisms a trajectory of the process is then constructed piecing to-

gether the continuous deterministic components at the random jump times as indi-

cated by the definition of a PDMP, see Definition 2.1.1, or Davis’ construction proce-

dure, see Section 2.1.1. The structure of trajectories of such PDMPs is illustrated in

Figure 3.0.1. The following definition presents conditions on the characteristics (3.0.1)

– (3.0.3) which guarantee the well-definedness of the PDMP by Theorem 2.1.1.

Definition 3.0.1. Let H be a real, separable infinite-dimensional Hilbert space. An

references, e.g., [64] for the more theoretical Chapter 2 and Appendix B.2 or [79, 80, 96] for Chapter
4. Further, in our opinion using Greek letters for the closely connected objects ’jump rate’ and the
’transition kernel’ facilitates their identification and understanding of the formulae, particularly for
Chapter 4. Once again, we emphasise, that being aware of this change of notation we are of the
opinion that no ambiguities or confusion should arise.
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H × K–valued PDMP (Xt)t≥0 = (Yt, θt)t≥0 of the type described in this section is

called a standard infinite-dimensional PDMP on H if the following conditions are

met.

(i) The abstract initial value problem (3.0.1) is well-posed for every θ ∈ K, i.e., it

admits a unique global solution ψ(·, (y, θ)) continuous in H for every initial value

y ∈ H and ψ(t, (y, θ)) depends continuously on the initial condition for all t ≥ 0.

(ii) The transition rate Λ : E → R+ is measurable and path-integrable, i.e., for all

x ∈ E it holds that

∫ t

0

Λ(φs(x)) ds < ∞ ∀ t < ∞,

but the integral diverges for t →∞.

(iii) The transition measure µ is a Markov kernel from E to K which satisfies

µ((y, θ), {θ}) = 0 for all (y, θ) ∈ E.

(iv) The PDMP (Xt)t≥0 is regular, i.e, the number of jumps in the piecewise constant

component during any finite time interval is finite almost surely.

Note that the semigroup defining the inter-jump motion of the PDMP is uniquely

defined by the operators A, B, hence it is consistent with Section 2.1 to call the

quadruple (A, B,Λ, µ) the characteristics of a standard inifinite-dimensional PDMP.

We briefly comment on the conditions in Definition 3.0.1. First, note that we choose

the space H as the phase space of the PDMP as this results in a càdlàg stochastic

process by definition of a weak solution. However, we note that regularity results on

solutions to (3.0.1) can be carried forward to the paths of PDMPs. That is, e.g., if so-

lutions to (3.0.1) are continuous with respect to a stronger norm than the norm in H ,

e.g., the norm in X, then also the PDMP is càdlàg with respect to this stronger norm.

That is, if the conditions (i)–(iii) are satisfied with respect to the space X then we can

obviously say that the process is a PDMP in X. Further, we remark that condition

(ii) ensures that for all x ∈ E the survivor function satisfies limt→∞ S(t, x) = 0 which

is sufficient for the survivor function to completely define a probability distribution

of a non-negative, real random variable. Also the condition ensures that successive

jumps cannot occur simultaneously and there is always some positive time in be-

tween. Moreover, it guarantees that the piecewise constant component does not stop

jumping and is trapped in a final state for all time with positive probability. Finally,

measurability of real valued functions on E in conditions (ii) and (iii) is understood

as measurability with respect to the product σ-field obtained from the Borel sets on

H and the discrete σ-field on K. Also in the image set R+ and [0, 1], respectively, the

Borel σ-field is used to obtain a measurable space. We note that in the remainder of

this section measurability is always understood in these terms. Therefore, continuity
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of the solutions of (3.0.1) with respect to t and with respect to the initial condition

(as part of well-posedness) is sufficient for the jointly measurablility of the semigroup,

i.e., measurability of the map (t, x) +→ φt(x). Finally, we remark on condition (iv). A

simple, sufficient condition for regularity of the process, which is easy to show in most

relevant cases, is that the transition rates are bounded along the solutions φ(·, x) for

all x ∈ E.

If we consider neuron models without a spatial dimension, then the equations for the

excitable media reduce from a partial differential equation to an ordinary differential

equation, cf. equations (1.2.2) and (1.2.1) in Section 1.2.3, and the state space is given

by H = Rd with 1 ≤ d < ∞. That is, for the definition of the inter-jump dynamics

we consider a family of ordinary differential equations

ẏ = g(y, θ) (3.0.4)

with constant parameter θ ∈ K and g(·, θ) : Rd → Rd. Here each g is such that for any

initial condition a unique global solution exists depending continuously on the initial

condition. In the membrane model this corresponds to the one-dimensional ODE

(1.2.2) with coefficients gi changing every time a channel opens or closes. However,

we consider a multi-dimensional state space Rd, as, e.g., in membrane models which

also include calcium gated ion channels, we have a two-dimensional system (3.0.4)

also describing the calcium dynamics in addition to the transmembrane potential. In

addition, as the component θt of a PDMP is constant in between jumps it follows that

in between jumps a PDMP’s paths satisfy a system of ODEs of the form

(
ẏ

θ̇

)

=

(
g(y, θ)

0

)

. (3.0.5)

We denote by t +→ φ(t, x) the unique, global solution of the system (3.0.5) with respect

to the initial value x = (y, θ) ∈ E. This generates a dynamical system.

In the case of a finite-dimensional state space the conditions of Definition 3.0.1 reduce

to the following which correspond to the conditions originally given by Davis [37,

Def. 24.8]. We note that the statements in the remarks following Definition 3.0.1

remain valid for the finite-dimensional case.

Definition 3.0.2. A finite-dimensional stochastic process (Xt)t≥0 = (Yt, θt)t≥0 of the

type described in this section is called a standard finite-dimensional PDMP on Rd if

the following conditions are met.

(i) The system of ordinary differential equation (3.0.5) admits a unique global solu-

tion φ(·, x) for every initial conditions (y, θ) ∈ Rd×K which depends continuously

on the initial condition.

65



Chapter 3: Hybrid stochastic models of excitable media

(ii) The transition rate λ : Rd ×K → R+ is measurable and path-integrable, i.e., for

all x ∈ E = Rd ×K it holds that

∫ t

0

λ(φs(x)) ds <∞ ∀ t <∞,

but the integral diverges as t →∞.

(iii) The transition measure µ is a Markov kernel from E to K which satisfies

µ((y, θ), {θ}) = 0 for all (y, θ) ∈ E.

(iv) The PDMP (Xt)t≥0 is regular, i.e, the number of jumps in the piecewise constant

component during any finite time interval is finite almost surely.

We remark that it is consistent with earlier definitions to call the triple (g, λ, µ) the

characteristics of a standard PDMP.

3.1 An exact spatio-temporal model of neuronal membranes

In this section we present an exact hybrid model of neuronal membranes using PDMPs.

We employ the classical Hodgkin-Huxley model of the squid giant axon to exemplify

the modelling approach. The section is concluded with a discussion on how to gen-

eralise the approach presented to models of arbitrary neuronal membranes and also

on multi-dimensional spatial domains where two- and three-dimensional domains are

of particular physical interest. In particular we find that also the model presented

in [7], to the best of our knowledge the only spatial hybrid model so far considered

for neuronal membranes, can be cast into a PDMP framework. In the following we

first consider the appropriate modelling of the ion channels, i.e., the stochastic jump

mechanism for the PDMP, and then discuss the modelling of the conductances in the

equation for the transmembrane potential.

In the classical Hodgkin-Huxley model the axon is considered as a spatially homo-

geneous cable in one space dimension, i.e., along the length of the axon [74]. Thus

for the spatial domain we take an open interval D in R. Further, in this model two

families of voltage-gated ion channels are considered causing the excitable dynamics:

sodium (Na) and potassium (K) channels. The kinetic schemes for these channels

are given in Fig. 1.1. We provide in Appendix A the precise definition of the rate

functions and the numeric values of the constants.

To start with the modelling we define the state space K of the piecewise constant

component which we take to be a collection of n ∈ N ion channels. Let C denote the

set of all states a single channel can be in, that is, all states of the two kinetic diagrams

in Fig. 1.1. Here we consider the two diagrams as one Markov chain, consisting of

two irreducible parts. That means, we do not need to differentiate between K– and
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Na–channels as this characterisation is done by the state the channels are in and by

the convention that transitions from states belonging to an Na–channel to states of

a K–channel do not occur with probability one and vice versa. Thus we characterise

each channel by a pair θi = (ci, xi), i = 1, . . . , n, where ci ∈ C indicates the (time-

varying) state of the channel and xi ∈ D its (fixed) spatial position. Therefore the

elements of the state space K = Cn of the piecewise constant component of the PDMP

are the channel configurations θ = (θ1, . . . , θn), i.e., n–tuples collecting the states the

single channels are in. One obtains a new configuration, which corresponds to ‘a

state’ of the piecewise constant component θ(t) in the membrane model, every time

one channel changes its state.

The spatio-temporal dynamics of the transmembrane potential on D are governed by

the cable equation
r

2R

∂2u

∂x2
= C

∂u

∂t
−
∑

i

gi(u, x)(Ei − u) . (3.1.1)

Here the positive constants r, R, C denote the axon radius, the resistance of the cy-

toplasm and the capacitance of the membrane, respectively, [74]. Additional to the

currents due to Na– and K–channels, this model also contains a third current due to

leakage (L) of charge independent of the ion channels. Therefore, in equation (3.1.1)

we have the summation in the right hand side over i ∈ {Na,K, L}. We introduce the

dependence of the conductances on the channel configuration, i.e., gi(u, x) = gi(θ, x)

for i = Na,K and gL(u, x) = gL(θ, x) ≡ gL/|D|, and rearrange (3.1.1) to

∂u

∂t
=

r

2CR

∂2u

∂x2
+ C−1

∑

i

gi(θ, x)(Ei − u) . (3.1.2)

This is an evolution equation of the form (3.0.1) where the linear operator A(θ) is

given by

A(θ) =
r

2CR

∂2

∂x2
− C−1

∑

i

gi(θ, x)

and the nonlinearity B(θ, u) is independent of u and given by the non-autonomous

term

B(θ, u) ≡ C−1
∑

i

gi(θ, x)Ei .

Next we model the dependence of the conductances gNa(θ, x), gK(θ, x) on the channel

configuration θ ∈ K. To the best of our knowledge the only published article dealing

with hybrid spatial models in the context of neuron models is [7]. In the context

of calcium dynamics the authors in [47, 115] consider a hybrid spatial model which

allows a description by PDMPs. These studies provide us with two possibilities of

modelling the conductances.

According to [7, 115] a single channel is modelled as a point source generating current
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if it is in its conducting state, which yields conductances of the form

gNa(θ, x) = gNa

∑

j: cj=m3h1

δ(x− xj), gK(θ, x) = gK

∑

j: cj=n4

δ(x− xj), (3.1.3)

where as before the pair (cj , xj) denotes the state and position of the jth channel,

gNa, gK are the conductances of a single Na– or K–channel, respectively, and δ is

the Dirac delta function. Using this definition for the conductances the resulting

equations (3.1.2) are of the form as considered in [7]. For a second possibility of

defining conductances, it can be argued that the concentration of sodium or potassium

is essentially homogeneous in a spatially extended domain around an open channel

similarly as it is the case for calcium dynamics. Therefore the current through a

channel is not modelled as a point source but as being present in a neighbourhood

U(xj) for a channel at point xj . In this case we obtain conductances defined as

gNa(θ, x) = gNa

∑

j: rj=m3h1

|U(xj)|−1
IU(xj)(x) ,

gK(θ, x) = gK

∑

j: rj=n4

|U(xj)|−1
IU(xj)(x) .

(3.1.4)

Here IA denotes the indicator function for the set A. The distinctive effect of choosing

(3.1.4) over (3.1.3) as a model for the conductances is that one obtains different spatial

regularity for the solutions of (3.1.2). In particular, the smoother gi(θ, x) is chosen,

the higher is the resulting spatial regularity. Hence, if high regularity of the membrane

variable is required from a modelling point of view, it is reasonable to consider smooth

enough approximations d(x, xj) to δ(x − xj) to define the conductances, i.e., d are

non-negative functions whose integral over D equals one. From this point of view

d(x, xj) = |U(xj)|−1 IU(xj)(x) can also be considered as an approximation to the

Dirac delta function.

For now, we consider conductances defined by (3.1.3) as this is the least smooth choice

– hence the most general case – but still sufficiently smooth for the model to be a

standard infinite-dimensional PDMP. Further, in accordance with [7]

– we assume Dirichlet boundary conditions, i.e., u(t, x) = 0 on ∂D for all t ≥ 0,

physiologically corresponding to an axon cut open at its ends, cf. [74];

– we choose for the evolution triple X ⊂ H ⊂ X∗ the spaces H = L2(D) and

X = H1
0 (D). Note that ∂/∂x2 maps H1

0 (D) into H−1(D) and also δ ∈ H−1 due

to the Sobolev Embedding Theorem as the spatial domain is one-dimensional.

This choice of function spaces guarantees the existence, uniqueness and minimal

sufficient smoothness of solutions to (3.1.2), cf. Theorem 3.1.1, and appropriately

captures the Dirichlet boundary conditions.
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To finish the definition of a PDMP it remains to define the transition dynamics of the

piecewise constant component, i.e., a transition rate Λ and a transition measure µ.

Recall that for single ion channels the transition dynamics are defined by rates ai, bi,

i = n, h, m. These yield waiting time distributions for a transition in a single channel

of the form (1.2.5), i.e.,

P[τ > t] = exp
(
−
∫ t

0

ai(u(s, x))ds
)

for u(s, x) denoting the time varying transmembrane potential at x ∈ D. Obviously

rates are additive, i.e., if from a state c ∈ C several other states can be reached the

rate of leaving c, denoted by qc, is given by the sum of all rates of possible transitions.

For example, a sodium channel from Fig. 1.1 located at x ∈ D in state m2h0 leaves

this state with rate qm2h0
= 2bm + ah + am and the waiting time distribution of the

time until it switches to any target state is given by

P[τ > t] = exp
(
−
∫ t

0

qm2h0
(u(s, x))ds

)
.

Moreover, for a collection of independent channels the rate of the first of these chan-

nels to change its state is given by the sum of all rates for single channels leaving

their present state. Therefore the rate of the first transition of a single channel in a

configuration θ is given by

Λ(u(t, ·), θ) =
n∑

j=1

qcj(u(t, xj)) , (3.1.5)

which yields the transition rates Λ(·, θ) : H1
0 (D)→ R+ of the PDMP.

Finally we define the transition measure µ. This is a discrete probability distribution

on K conditionally on the point in phase space that the process occupies at the

transition time τ . Recall that a transition in the configuration θ happens when a

single channel switches its state c. Thus to define a distribution on the set of all

configurations we associate with each possible transition c ⇀ ĉ, c and ĉ in C, that

can occur for single channels, i.e., for all transitions that can happen for each single

channel θi, i = 1, . . . , n, a probability

µ
(
(θ, u(τ, ·)), {θ̂}

)
=

qc⇀bc(u(τ, xj))

Λ(u(τ, ·), θ) , (3.1.6)

where qc⇀bc is the rate for the transition c ⇀ ĉ for a single channel. Hence the

probability (3.1.6) is associated to the transition of configurations θ → θ̂ in K with

θ̂ denoting the configuration one obtains if the channel at position xj switches from

state c to ĉ. These probabilities thus define for every (u, θ) ∈ H1
0 (D)×K a probability
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distribution on K which give the transition measure µ.

The above definition of the transition rates obviously necessitates that the membrane

potential is pointwise uniquely defined in (0, T )×D. That is, the special structure of

the transition rates (3.1.5) and transition probabilities (3.1.6) evaluates the solution

ψ along t at individual points xj . Therefore, in order to be well-defined the solution

necessarily needs to take for all t ≥ 0 values in the space H1
0 (D) which is embed-

ded in C0(D), cf. [7] and also the proof of Theorem 3.1.1 below. However, similar

to modelling the conductances by (3.1.4) it can be argued that the transmembrane

potential around the location of a channel governs its gating behaviour. This then

yields transition rates of the form, e.g.,

qc⇀bc

(
|U(xj)|−1

∫

U(xj)

u(t, x) dx
)
. (3.1.7)

Such rates are continuous and invariant with respect to values of the solution in the

coarser space L2(D). Using (3.1.7) it is straightforward to define the transition rate

Λ and the transition measure analogously to (3.1.5) and (3.1.6). Anticipating the

discussion in Section 3.1.1, we note that the approach of modelling the conductances

by (3.1.4) and the transition rates by (3.1.7) is better suited for extensions to multi-

dimensional spatial domains than the model in [7].

We now state the central result of this section, that is, that the stochastic hybrid

membrane models discussed are standard infinite-dimensional PDMPs (Yt, θt)t≥0. We

further obtain, that under physiological reasonable initial conditions the transmem-

brane potential component Yt remains bounded, a fact known for the deterministic

Hodgkin-Huxley model. To this end we define the bounds u− = min{ENa, EK, EL},
u+ = max{ENa, EK, EL}. The interval [u−, u+] is called a physiological domain for

the transmembrane potential [42].

Theorem 3.1.1. The initial condition of the continuous component u0 satisfies

u0(x) ∈ [u−, u+] for all x ∈ D. Then it holds:

(a) For initial conditions u0 ∈ H1
0 (D) the stochastic hybrid membrane model as dis-

cussed above, with any choice of conductance model and transition rates, is an

infinite-dimensional standard PDMP on H1
0(D). Moreover, the continuous com-

ponent satisfies that u(t, x) ∈ [u−, u+] for all (t, x) ∈ R+ ×D.

(b) For initial conditions u0 ∈ L2(D) the stochastic hybrid membrane model consist-

ing of any choice of conductance models and transition rates as defined in (3.1.7)

is a standard infinite-dimensional PDMP on L2(D). Moreover, the continuous

component satisfies for all t ≥ 0 that u(t, x) ∈ [u−, u+] for almost all x ∈ D.
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Proof. We have to prove that the defining properties of the process satisfy the con-

ditions (i)–(iv) of Definition 3.0.1 which we do step by step in parts (A)–(D) in the

following.

(A) We can use standard existence theory of linear parabolic equations, cf. Theorem

C.0.2, to obtain that there exists a unique weak solution ψ(t, (y, θ)) to (3.1.2) to every

initial value y ∈ L2(D) for every T < ∞ and all configurations θ ∈ K. In particu-

lar, the solutions satisfy ψ ∈ L2((0, T ), H1
0(D)) ∩ H1((0, T ), H−1(D)) which implies

ψ ∈ C0([0, T ], L2(D)) and the dependence on the initial condition is continuous with

respect to the norm in L2(D). Moreover, for conductances (3.1.3) the additional reg-

ularity result Proposition 3.4.3 implies that the solution is in fact in C0([0, T ], H1
0(D))

for initial conditions y ∈ H1
0 (D). For conductances gi(θ) ∈ L2(D) the same holds due

to general existence theory of parabolic PDEs, see Theorem C.0.3 (a). This means

that there exists a unique continuous function ψ̂ ∈ C0([0, T ], H1
0(D)) such that each

element of the equivalence class of solutions in L2((0, T ), H1
0(D)) coincides with ψ̂ in

L2((0, T ), H1
0(D)). Note, that for each t ∈ [0, T ] the value ψ̂(t, (·, θ)) is an equivalence

class in H1
0 (D). However, the Sobolev Embedding Theorems states that H1

0 (D) is

embedded in C0(D). Hence, for each t there exists a unique ψ̃(t, (·, θ)) ∈ C0(D) such

that ψ̂(t, (·, θ)) = ψ̃(t, (·, θ)) in H1
0 (D). We always identify ψ = ψ̃r and thus ψ is

continuous as a function [0, T ]×D → R. Moreover, in this case it holds that also the

dependence on the initial condition is continuous with respect to the norm in H1
0 (D).

Thus it holds that condition (i) is satisfied with respect to the space L2(D) in the

case that the initial condition is in L2(D) and with respect to the space H1
0(D) in the

case that the initial condition is in H1
0 (D).

Further, due to Proposition 3.4.2 the solution ψ satisfies ψ(t, (y, θ))(x) ∈ [u−, u+] for

all t ≥ 0, all x ∈ D and every (y, θ) ∈ E as long as the initial condition satisfies

y(x) ∈ [u−, u+]. We refer to Section 3.4.3 for more details wherein we prove a type

of weak maximum principle for excitable membrane PDEs. However, this immedi-

ately implies that the membrane component of the hybrid stochastic model remains

bounded within the interval [u−, u+] for a suitable initial condition u0 as the succes-

sive initial conditions after jumps in the piecewise constant component are solution

values of the preceding PDE and thus also within these bounds.

(B) Next, Λ defined as (3.1.5) is invariant with respect to equivalence classes of

solutions which can be identified with a pointwise uniquely defined function, i.e.,

for solutions in C0([0, T ], H1
0(D)). Further, for continuous, bounded transition rates

ax, bx, x = n, m, h the transition rate Λ is continuous with respect to the norms in

H1
0 (D) × K and R and thus Borel-measurable. We remark that the rates for the

Hodgkin-Huxley model, cf. Appendix A, are continuous, positive but unbounded.

However, as the range of possible values for the transmembrane potential is bounded,

see part (A) of the proof, the transition rates can be considered bounded without loss
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of generality. Further, as they are strictly positive we can consider them to be bounded

away from zero. Hence, Λ can be considered bounded and thus Λ is path-integrable

over all finite intervals [0, T ] , T ≥ 0. Finally, as we can consider the individual rates

ax, bx to be bounded away from zero so is the transition rate Λ. Thus, the integral

of Λ along the trajectories of the semigroup diverges for T → ∞. Condition (ii) is

satisfied for initial conditions u0 ∈ H1
0 (D) which are in [ui, u+] pointwise.

On the other hand, Λ as defined by the transition rates (3.1.7) is invariant with respect

to equivalence classes of solutions taking values in C0([0, T ], L2(D)). Note that this

space possesses insufficient spatial regularity for the rates (3.1.5) being invariant as

they necessitate pointwise uniquely defined potential variables, i.e., u(t) ∈ H1
0 (D) for

all t. Just as argued before we find that Λ defined by (3.1.4) is a suitable transition

rate for a PDMP with paths continuous in L2(D). Thus for the above model condition

(ii) is satisfied for both conductance models (3.1.3) and gi(θ) ∈ L2(D) and any initial

condition of the membrane variable u0 ∈ L2(D) which is in [ui, u+] pointwise.

This, particularly, shows that initial conditions u0 ∈ L2(D) and transition rates de-

fined by (3.1.5) do not define a PDMP.

(C) By definition there is a close connection between the transition rate Λ and the

point probabilities. That is Λ is a finite sum and the point probabilities correspond to

the individual summands of Λ weighted by Λ−1 such that they sum up to 1. There-

fore, making the same distinctions corresponding to part (a) and (b) of Theorem 3.1.1

as in part (B) of the proof we infer that also condition (iii) is satisfied: The point

probabilities are continuous functions with respect to the appropriate norms and they

are invariant with respect to equivalence classes of solutions. Further, the probabili-

ties of remaining in the same state after a transition are zero as the probabilities of

individual channels remaining in the same state upon switching are zero, i.e., qc⇀c = 0

for all c ∈ C.

(D) Finally, for condition (iv) to hold it is sufficient that the transition rate Λ is

bounded [37, Prop. 24.6]. This follows immediately from having bounded transition

rates ax, bx, which completes the proof.

3.1.1 Generalisation and discussion

We remark again that the above formulation of a spatial hybrid model is, to the best

of our knowledge, the second one in the literature in addition to [7]. The results in

[7] rely on the very specific structure of the special case treated therein, particularly

the explicitly given transition semigroup of the PDE solutions, cf. a discussion of the

model in Section 3.4.1. The last section of [7] includes a discussion on desirable exten-

sions and analytical results for spatial hybrid models and comments on the limitations
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of the author’s formulation of the model. We address these topics form the point of

view of the formulation as PDMP models and collect some remarks on extensions

of the described modelling approach to general conductance based stochastic hybrid

models in spatial domains.

(i) The author in [74] gives a good review of why it is sufficient and a reasonably good

approximation to consider long and thin nerve fibres as one-dimensional cables,

neglecting their actual three-dimensional extent. In contrast to the description of

a hybrid axon model as presented in [7] one major advantage of the PDMP formu-

lation is that it can be readily extended to include the actual three-dimensional

shape of a nerve fibre. An extension to two-dimensional membranes is of par-

ticular interest for modelling calcium dynamics [47, 115] and hybrid versions of

cardiac tissue models [48]. Using the infinite-dimensional PDMP formulation we

are not only able to capture dynamics in the plane but can also consider arbi-

trary, sufficiently smooth manifolds, e.g., the surface of a cylinder for the realistic

shape of an axon.

(ii) We have so far considered only a spatially homogeneous model for an axon.

The model presented, or general multi-dimensional models, respectively, can be

extended in a straightforward fashion to include spatial dependence in the coeffi-

cients of the partial differential operator. This is achieved by simply replacing the

Laplacian by an arbitrary autonomous second order partial differential operator.

This can account for, e.g., changing fibre diameter or variations in the resistance

or capacitance. Spatial inhomogeneity also includes spatial variation in the dis-

tribution of ion channels for which there is no restriction inherent in the model.

This allows using the closed description of PDMPs to model extremely inhomo-

geneous structures such as myelinated nerves with a concentration of channels

at the Nodes of Ranvier. It is also possible to consider random distributions of

channels which yields random ordinary / partial differential equations for the

dynamics of the continuous components of the PDMP between transitions of its

piecewise constant component.

(iii) Clearly it is possible to consider different boundary conditions for the PDEs

(3.1.2), e.g., Neumann boundary conditions modelling sealed ends of a fibre,

which is most realistic for neurons in living tissue [74].

(iv) Finally, for the PDMP framework it does not pose any difficulty to deal with time-

dependent input currents into the neurons, i.e., more general, time-dependent

right hand sides in the membrane balance equation (3.1.2) or even time-dependent

boundary conditions. The resulting process is simply a non-homogeneous PDMP

as covered by the general PDMP theory discussed in Section 2.1. Moreover, by a

simple state space extension the process can be transformed into a homogeneous
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Markov process, cf. the discussion of ’space-time processes’ in Section 2.0.1.

Mathematically, the extensions of the model we mentioned above essentially reduce

to appropriately modelling the coefficients in the partial differential operator and

the conductances of the ionic currents such that a solution exists and the transition

dynamics of the piecewise constant component are well defined. That is, on the

one hand, using the transition rates (3.1.5) which are evaluated along the membrane

variable at specific points in the domain coefficients of the PDE and the conductance

model has to be such that the solution space is embedded in C0([0, T ], C0(D)). On

the other hand, considering the less restrictive transition rates (3.1.7) it is sufficient

that the membrane PDE possesses solutions in C0([0, T ], L2(D)).

3.1.2 Models without spatial dynamics

If we consider a space-clamped neuron model, that is, the transmembrane potential

is assumed to be homogeneous in space, u(t, x) ≡ u(t) ∈ R for all x ∈ D, the abstract

evolution equations (3.1.2) reduce to an ordinary differential equation at every point

in x ∈ D, cf. (1.2.2). Integrating these equations over the spatial domain yields the

family of one-dimensional ODEs

u̇ = C−1
∑

i

gi(θ) (Ei − u) , θ ∈ K, (3.1.8)

where the conductances are given by gL(θ) = gL and

gNa(θ) =

∫

D

gNa(θ, x) dx = gNann4
, gK(θ) =

∫

D

gK(θ, x) dx = gKnm3h1
.

Here nc denotes the number of channels in state c ∈ C out of all channels in the

current configuration θ. Thus the conductances in the space-clamped model are given

by the conductance of a single channel times the number of channels in the open

state, cf. (1.2.4). This is the prevalent method of modelling conductance in hybrid

models and algorithms [110, 32, 38, 105, 31, 96]. We remark that it is easy to see that

the boundedness of the membrane component within [u−, u+] also holds for equations

(3.1.8) with initial conditions u(0) ∈ [u−, u+].

Further, as all rates of all single channels in the same state coincide the rate of a

transition in the configuration (3.1.5) reduces to the simpler form

λ(u(t), θ) =
∑

c∈C

ncqc(u(t)) . (3.1.9)

Here the summation is over the different states the channels can be in. Moreover, only

the different possible transitions for one channel in each state have to be considered
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independent of the individually identified channels. Thus, the distribution of the

occurring configurational change is fully described by the probabilities

µ
(
(u(τ), θ), {θ̂}) =

ncqc→bc(u(τ))

λ(u(τ), θ)
. (3.1.10)

In this case θ̂ denotes the configuration one obtains from the initial configuration θ if

one arbitrary channel in state c switches to ĉ. Hence, the dynamics of the configura-

tional changes are completely described by the number of channels in the individual

states alone. It is thus sufficient for space-clamped models to consider a reduced

state space K = {1, . . . , n}|C|, where each element θ ∈ K is a |C|-tuple with ev-

ery entry recording the number of channels in one specific state c ∈ C. We remark

that simulation algorithms for space-clamped membranes that make use of this re-

duced description are called channel number tracking algorithms in the literature [31].

This is in contrast to algorithms that keep track of all the individual channels called

channel state tracking algorithms, which are necessary for models including spatial

time-evolution.

As finite-dimensional PDMPs can be considered a special case of infinite-dimensional

PDMPs we can readily conclude from Theorem 3.1.1 that the above model of a space-

clamped membrane is a standard PDMP (Yt, θt)t≥0 on the phase space R×{1, . . . , n}|C|

for all initial conditions u(0) ∈ [u−, u+] in the sense of Definition 3.0.2.

3.2 Compartmental-type models

In this section we present a second, conceptionally different approach to spatial hy-

brid membrane models which we call compartmental-type models. To the best of our

knowledge this class of models have not been analytically described in the literature so

far, however, there is a close connection to ad-hoc models used in numerical simulation

studies, cf. a discussion at the end of this section.

As for exact spatial models discussed in the preceding section, we consider each sin-

gle channel, however, group together those channels that are physically close to each

other. Further, we assume that for channels close to each other their switching rates

are the same and are governed by the average membrane potential over an area around

the channels. Moreover, we suppose that the membrane current due to the single chan-

nels can be treated as the total current over the group of channels. These assumptions

are motivated from considering channel current and switching rates as modelled by

(3.1.4) and (3.1.7). For two channels very close to each other the neighbourhoods

overlap in a large area and essentially coincide. Hence, the current over this patch of

membrane is essentially given by the sum of the two single currents and the switching

rates of the channels also effectively coincide. In particular for myelinated neurons
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where ion channels are closely packed at Nodes of Ranvier but effectively absent at

the inter-nodal, myelinated areas this approach provides a reduction in complexity

compared to exact models but are still expected to retain a high accuracy. Further,

these classes of spatial models are also of particular interest to calcium dynamics for

which it is a prominent feature that calcium channels form clusters on the membrane,

i.e., isolated spots where individual channels are packed together very closely.

We now define the model components. As before let D ∈ R be a bounded interval

for which we consider a partition Dk, k = 1, . . . , n by mutually disjoint, Lebesgue

measurable subintervals such that D =
⋃n

k=1 Dk. Further, each compartment Dk con-

tains a fixed number of channels which are in their specific states c ∈ C. As channels

in the same compartment possess the same stochastic dynamics there is no need to

track the state of each individual channel, i.e., use channel tracking, but it is suffi-

cient to record the number of channels in the individual states for each compartment.

Hence, θk
c denotes the number of channels in compartment Dk which are in state

c. Thus, the total channel configuration is described by the n|C|–dimensional vector

θ = (θk
c )k=1,...,n,c∈C taking values in a finite state space K. Note that the number of

channels in each compartment is fixed over time and it is clearly possible that there

are no channels in certain compartments. To finish the discussion of the channels it

remains to consider the switching rates and the transition measure which we define

analogously to (3.1.7). Thus the rate of a channel in compartment Dk to switch from

state c to state ĉ is given by

qc→bc

(
|Dk|−1

∫

Dk

u(t, x) dx
)

.

Hence the rate such that a change in the configuration θ occurs of one channel in

compartment Dk to switch from state c to state ĉ is given by

θk
c qc→bc

(
|Dk|−1

∫

Dk

u(t, x) dx
)

.

Clearly the total rate Λ is thus given by the sum over all individual rates, i.e.,

Λ(u, θ) =
m∑

k=1

∑

c∈C

θk
c qc→bc

(
|Dk|−1

∫

Dk

u(t, x) dx
)

, (3.2.1)

and the transition measure µ is defined by the point probabilities accordingly. That

is, the probability that a certain event occurs is given by the rate of this event divided

by the total rate.

Finally, it remains to state an appropriate definition of the conductances gi for the

membrane equation (3.1.2) which in the case of the Hodgkin-Huxley model are given
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by

gNa(x, θ) = gNa

n∑

k=1

θk
m3h1

IDk
(x), gK(x, θ) = gK

n∑

k=1

θk
n4

IDk
(x) , (3.2.2)

which satisfy gNa(x, θ), gK(x, θ) ∈ L2(D). All remaining unspecified properties are

assumed to be as for Theorem 3.1.1.

Theorem 3.2.1. For initial conditions u0 ∈ L2(D) compartmental-type hybrid mem-

brane models are standard infinite-dimensional PDMPs on L2(D). Moreover, the

continuous component satisfies for all t ≥ 0 that u(t, x) ∈ [u−, u+] for almost all

x ∈ D.

Proof. This follows by the same arguments as employed to prove Theorem 3.1.1.

We conclude this section by a brief discussion of compartmental-type models. Firstly,

we note that these type of models can be immediately generalised to higher spatial

dimensions, particular domain geometries and more general membrane equations with

different boundary conditions. The decisive property is that the solutions of the

membrane property for any possible conductance generate a semigroup in L2(D)

which is usually implied by the most basic existence and uniqueness theorems for

weak solutions.

In some sense compartmental-type models occupy an intermediate position between

exact models as discussed in Section 3.1 and models without spatial domain, see

Section 3.1.2. For compartmental models we can think, heuristically speaking, of

space being ’discretised’ in the channel model and ion channels in the same space

compartment being ’lumped together’. Regarding the channels each compartment is

then treated as a model without spatial extension and the transmembrane potential

at this ’point’ in space is given by the average potential across the compartment.

However, the channel dynamics of the different compartments are coupled by the

membrane equation which extends across all compartments and influences the local

dynamics. Further, spatially discretising also the membrane equation, e.g., using

finite differences, yields a finite-dimensional PDMP system which is the description

of axon models that are used in numerical studies on the effects of channel noise

on axon reliability, see, e.g., [45, 44, 94]. However, we note that in implementations

these authors always employ the pseudo-exact formulation, i.e., substituting the exact

waiting time distributions by exponentially distributed waiting times, cf. Section 1.2.3.

Finally, similar models are also employed for stochastic models of chemically reacting

particles which also perform a diffusive motion, see, e.g., [6] and references therein.
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3.3 Deterministic models of excitable media

In this section we first briefly discuss the Hodgkin-Huxley model to illustrate the

class of excitable media models. Then in Section 3.3.1 we prove well-posedness2 for

a general excitable media system. This class of equations includes as special cases

further biophysical realistic neuron models, e.g., the Morris-Lecar model, models of

cardiac cells, see [48] for a comprehensive collection of models, and models in calcium

dynamics, e.g., the DeYoung-Kaizer model. The common feature of all these models

based on the common underlying cell physiology is that the dynamics of channel

proteins are coupled and influenced by a macroscopic variable, the transmembrane

potential or the calcium concentration, which itself is influenced by the dynamics of

the channels.

The Hodgkin-Huxley model was introduced by A. L. Hodgkin and A. F. Huxley [62]

as a model for the experimentally observed electrical properties of the squid giant

axon. Hodgkin and Huxley received for their work the Nobel Price in Medicine and

Physiology in 1963. The model incorporates electrical currents across the neuronal

membrane due to sodium (Na) and potassium (K) ions and a constant leakage current

(L). In its spatially homogeneous form the model is given by a four-dimensional system

of coupled nonlinear ordinary differential equations. Based on physical principles they

derived the membrane balance equation

Cu̇ = gNa m3h (ENa − u) + gK n4 (EK − u) + gL (EL − u) + I(t) (3.3.1)

describing the time evolution of the transmembrane potential of a space-clamped

membrane. That is, the variable u measures the displacement of the transmembrane

potential from an equilibrium value which is usually set to zero. The parameter

values in (3.3.1) were experimentally fitted (gi denoting the maximal conductance of

the membrane with respect to the specific current and Ei is the Nernst equilibrium).

Further, the variables m, n, h in the nonlinear terms m3h, n4 denoting the strength

of the conductance (∼ the fraction of open channels) satisfy the coupled equations

ṁ = am(u)(1−m)− bm(u) m,

ḣ = ah(u)(1− h)− bh(u) h, (3.3.2)

ṅ = an(u)(1− n)− bn(u) n .

Here m corresponds to an activation of the sodium current, h an inactivation of the

sodium current and n is the potassium current. The rates ai, bi along with the powers

2As usual well-posedness (of an initial-value problem) is understood as the existence of a unique
solution which depends continuously on the initial data.
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in m3h, n4 were experimentally fitted to current measurements, however, they proved

to have a physiological interpretation. The powers correspond to four subunits of a

single channel. For the channel to be in an open state each subunit has to be in

one of two possible states. We remark that the Hodgkin-Huxley model also arises as

the limit of more accurate stochastic models, see, e.g., [50] for a derivation from an

master equation expansion but, in particular, [96, 119] for a mathematically precise

limit theorem. The parameter values for the standard Hodgkin-Huxley model are

reported in Appendix A.

In order to quantitatively describe and explain the propagation of an impulse along

the axon, Hodgkin and Huxley also introduced in [62] a spatial version of their model

based on the cable equation. Due to the physical shape of an axon, a very long and

extremely thin object, it is sufficient to consider only one space dimension. For a

further discussion of the approximation that yields this model, its limitations and

references to primary literature we refer to [74]. The equation is given as follows

Cu̇ =
r

2R
∆u + gNa m3h (ENa − u) + gK n4 (EK − u) + gL (EL − u) + I(t) , (3.3.3)

where m, h, n are again given by the coupled system (3.3.2). Here the potential

variable u is dependent on space and time, i.e., u : [0,∞) × D → R where D ⊆ R

is a one-dimensional interval. Note that the second part in (3.3.3) is just the right

hand side of the membrane balance equation (3.3.1) in the model without spatial

dimension. Thus, the cable equation is an example of a reaction-diffusion equation

with reaction term given by the right hand side of the membrane balance equation.

The aim of the equation is to describe the propagation of an action potential along the

axon, which, in dynamical terms, is a travelling wave solution to the coupled system

(3.3.3), (3.3.2).

A straightforward generalisation of the original Hodgkin-Huxley model yields general

conductance based models which incorporate an arbitrary number m ∈ N different

current sources through a membrane. To this end we consider a general membrane

balance equation

u̇ =
m∑

i=1

gi(p) (Ei − u) + I(t) , (3.3.4)

where the non-negative conductances gi : R → R+ are functions depending on time-

dependent gating variables p ∈ Rm. Naturally the generalised spatial version on a

domain D ⊆ Rd of this equation is given by

u̇ = Au +
m∑

i=1

gi(x, p) (Ei − u) + I(t, x) (3.3.5)

where I(t, x) is a space-time dependent externally applied current and A is a second
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order elliptic partial differential operator (C.0.2). As before p are space-time depen-

dent gating variables and the conductances gi : D × R → R+ may also be space

dependent. There is no modelling reason at this point to consider operators A that

include first and zeroth order terms, i.e., bi, c 1= 0 in (C.0.2). However, there is also

no mathematical reason not to include these operators, as the theory of partial differ-

ential equations of the type (3.3.5) is generally developed for arbitrary second order

elliptic operators.

For the system defining the gating variables there are usually two possibilities. A first

one is the definition of the gating variables by solution of the uncoupled, inhomoge-

neous system

ṗi = ai(u)(1− pi)− bi(u) pi , (3.3.6)

where the rates ai, bi are R → R+ and in general unbounded and locally Lipschitz.

In particular, this is the form of the system for the gating variables as originally

introduced by Hodgkin and Huxley, cf. (3.3.2), and encountered almost exclusively

when deterministic models are discussed in the literature. However, a second possible

choice is a coupled linear system derived from a reaction rate approximation, e.g., the

van Kampen system size expansion [118], of the dynamics of the channels. That is,

we obtain the coupled, linear system

ṗi =
m∑

j=1

pj qji(u) (3.3.7)

where each qji : R → R is continuous, unbounded and locally Lipschitz. Further,

Q(u) = (qji(u))j,i=1,...,m is a matrix with diagonal entries which are non-positive and

off-diagonal elements which are non-negative for all u ∈ R. That is, in vector form we

can write the system (3.3.7) as ṗ = Q(u)T p. Further, the matrix Q satisfies Q(u)e = 0

for all u ∈ R, i.e., qjj = −
∑

i,=j qji. This implies that eT p(t) = const. over time and

– usually, as it is physiologically meaningful – it holds that eT p(t) ∈ N. This integer

corresponds to the number the different families of ion channels in the model. Then

each entry of pj , corresponding to one state of a channel from a particular family,

is the proportion of channels out of all channels in this family which are in this

particular state. The value qji corresponds to the rate of a channel switching from

state j to state i. We note that for analytical purposes it is sufficient to consider gating

variables that satisfy eT p = 1, that is, we do not distinguish between different channel

families.3 The property Q(u)e = 0 then states that the total mass, i.e., the sum of

all proportions being 1, is conserved over time.4 This stems from the interpretation

3When gating systems of the form (3.3.7) are considered then the conductances gi are usually
linear in p. Hence a simple transformation of variables always yield an equivalent system such that
eT p = 1.

4In a probabilistic interpretation Q(u) is, for fixed u, the intensity matrix of the continuous time
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of a set of individual channels as a chemical reaction system. The different channel

states are different ’molecules’ and a ’reaction’ is a state change of a channel. It is

clear that in this system a ’reaction’ does not destroy or generate a ’molecule’. Thus

the total number is conserved.

Further, for both cases of the gating systems the variables pi are interpreted as frac-

tions of channels in a particular state. Therefore, the values of the variables should

remain bounded within [0, 1]. Assume that the gating variables are continuously dif-

ferentiable with derivatives specified by the right hand sides of (3.3.6) or (3.3.7), re-

spectively. Then it is easy to see that pi(t) ∈ [0, 1] for all t ≥ 0 as long as pi(0) ∈ [0, 1],

as the derivative evaluated at pi = 1 is negative and positive for pi = 0. Additionally,

normally the transmembrane potential variable u remains within a bounded interval

[u−, u+] for initial conditions inside [u−, u+]. This property was first proven in [42]

for the original Hodgkin-Huxley axon model (without current input). After the proof

of well-posedness of excitable media equations in the next section we also present a

proposition that makes these arguments precise.

We conclude this section by a brief comment on the connection between the two

types of equations for the gating system. The first form of the gating system (3.3.6)

is usually obtained from a system of the form (3.3.7) by an appropriate transformation

of variables. The transformation then yields a state space reduction corresponding to

an equilibrium distribution of channels over their respective states within one family.

Technically this means that for appropriate initial condition the solution of the gating

system (3.3.7) remains on a manifold which can be described by a lower dimensional

equation. For example, in the Hodgkin-Huxley model this reduction technique reduces

the full 13-dimensional model to a one-dimensional equation for the K-channel and a

two-dimensional uncoupled system for the Na-channel, cf. (3.3.2). This is well known

and exemplified, e.g., in [96]. Therefore we refer to the system (3.3.6) as the reduced

gating system and to the system as the (3.3.7) the full gating system. In terms of

channel modelling the dimension of the reduced gating system corresponds to the

number of different, independent subunits in the channel models. Then the fraction

of open channels is given by the product of fractions of open subunits.

As normally a substantial simplification of the model is achieved it is clear that

the reduced form of the gating system is preferred in the deterministic literature on

excitable media equations. However when dealing with stochastic equations the full

form is important as connections of hybrid stochastic to deterministic models can

only be derived using the full gating system, cf., [7, 50, 96]. We note that it is an

important point to distinguish between the two gating system, particularly, when

Markov chain which models a single channel. The vector p(t) contains the point probabilities of
the channel being in a particular state at time t and the system ṗ = Q(u)T p is the corresponding
Kolmogorov forward equation.
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a top-down approach to channel noise is applied. Adding any type of noise to the

reduced gating system cannot be justified by a Langevin, linear noise or moment

equation approximation. These bottom-up methods, see Section 1.2.2, always lead

to an SDE version of the full gating system, see [96] in the context of stochastic

hybrid systems and, e.g., [89] for a discussion of general Langevin approximation to

the chemical master equation.

3.3.1 Well-posedness of deterministic equations for excitable media

To conclude this brief introduction into deterministic axon equations we consider

the well-posedness of the general cable equation (3.3.5) as an initial-boundary value

problem. Theorem 3.3.1 extends earlier results derived in [42, 81, 87, 102]. Therein

the authors consider excitable media systems on the whole real line [42], bounded

one-dimensional domains [81, 87] and bounded domains of up to dimension three

[102]. However, all studies are restricted to the case of the linear operator A being

the Laplacian and for the nonlinear term in the membrane equation and the gating

system either a Lipschitz assumption is introduced [42, 102] or the particular choice for

the Hodgkin-Huxley model is considered [81, 87]. The result we present in Theorem

3.3.1 avoids these restrictions and we aim for sufficient generality including most

general possibilities of excitable media system. On a more technical note the authors

in [42, 81, 87] approach existence and uniqueness within the semigroup approach

to PDEs whereas we, as always in this thesis, deal with weak solutions to PDEs.

We note that Hodgkin-Huxley type systems are also considered in the monographs

[111, 116]. Therein well-posedness and invariant regions, cf. the discussion of the

pointwise bounds on the solutions in the preceding section, are proved. However, the

particular equations discussed are different to the system (3.3.3), (3.3.2), as diffusion

terms are included in the gating variables.

In the following, D denotes, as always, an open, bounded domain in Rd where due

to physical relevance it is sufficient to restrict the spatial dimension to d ≤ 3. The

most interesting cases are a one-dimensional cable d = 1 for axon equations or a two-

dimensional surface d = 2 for models of cardiac tissue and in calcium dynamics. In

order for the general cable equation to be well-posed we introduce boundary conditions

that govern the behaviour of the potential variable u on the boundary ∂D of the

domain. In particular, to be consistent with the presentation in the preceding section

we consider Dirichlet boundary conditions, i.e.,

u(t, x) = 0 ∀x ∈ ∂D, t ≥ 0 . (3.3.8)

This type of boundary conditions refers to an experimental setup where the nerve end

is cut open and thus the membrane potential is equal to the surrounding environment
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(killed end boundary condition), hence constant with value zero. We note that usually

in excitable media equations u(t, x) ≡ 0 is a steady state for the membrane balance

equation. Before we state a general existence and uniqueness theorem for excitable

media systems, we first briefly collect a list of technical assumptions on the coefficients

of the general excitable media equation. These are normally satisfied for specific

examples of excitable media systems such as the Hodgkin-Huxley system. The proof

of Theorem 3.3.1 is deferred to Section 3.4.2.

(EC1) Let A be an elliptic second order differential operator (C.0.2) with time-

independent coefficients aij, bi, c ∈ L∞(D) for i, j ≤ d, which, in case of d = 2, 3,

are additionally twice continuously differentiable on D. Further, when d = 1

the spatial domain D is a bounded interval and when d = 2, 3 it is a bounded

C3–domain.

(EC2) The conductances gi : D × Rm : (x, p) +→ gi(x, p) are for all i = 1, . . . , m

globally bounded for x ∈ D and locally bounded and locally Lipschitz continuous

in p. Further, they are twice partially differentiable with respect to p having

derivatives locally bounded in p and globally bounded for x ∈ D.5

(EC3) The rate functions qij : R → R+, i 1= j, for the full gating system (3.3.7)

or ai, bi : R → R+, i, j = 1, . . . , m, for the reduced gating system (3.3.6) are

locally bounded, bounded away from zero, locally Lipschitz continuous and satisfy

a polynomial growth condition, i.e., there exists a γ ∈ N and C > 1 such that

|qij(y)| + |ai(y)|+ |bi(y)| < C(1 + |y|γ) ∀ y ∈ R, i, j = 1, . . . , m . (3.3.9)

Moreover, they are twice continuously differentiable with derivatives being locally

bounded and locally Lipschitz continuous.6

(EC4) The initial condition p0 for the gating variable satisfies p0 ∈ [0, 1]m. If the full

gating system (3.3.7) is considered then the initial conditions satisfy additionally

eT p = 1.

5For functions arising in models of excitable media these conditions are usually satisfied. In these
models using the reduced gating system these functions are polynomials, thus obviously differentiable.
For example, in the Hodgkin-Huxley model we have p = (m, h, n) and gNa = gNam

3h and gK = gKn4.
Hence, the gradients are given by ∇gNa = (3gNam

2h, gNam
3) and ∇gK = 4gKn3 which have the

bounds ∇gNa · (m, h, n) ≤ 4gNa and ∇gNa · (m, h, n) ≤ 4gK for (m, h, n) ∈ [0, 1]3. For the full gating
system gNa and gK are even linear in p and so the conditions are also satisfied.

6We note that the rate functions defined on R may not be bounded away from zero or satisfy
a polynomial growth condition, cf., e.g., the rate functions of the Hodgkin-Huxley model given in
Appendix A which are exponentially increasing and decrease to zero for either u →∞ or u → −∞.
This, however, does not make the existence theorem inappropriate. Usually, the values of the trans-
membrane potential variable are bounded pointwise within a finite interval, cf. Proposition 3.3.1.
Hence, changing the rate functions outside this interval does not change the solution. In this way
we easily find that rate functions are bounded away from zero and satisfy a polynomial growth
condition. Moreover, they could even be chosen bounded.
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Theorem 3.3.1. Assume that conditions (EC1)–(EC4) are satisfied and that the

system (3.3.5) coupled to either the full or reduced gating systems, that is, to (3.3.7)

or to (3.3.6), is equipped with Dirichlet boundary conditions (3.3.8).

(a) Let d = 1, then for every T > 0, every set of initial conditions u0 ∈ H1
0 (D)

and pi(0) ∈ H1(D), i = 1, . . . , m, satisfying the conditions connected with the

respective type of gating system, and any input current I ∈ L2((0, T ), L2(D)),

the generalised excitable media equation possesses a unique weak solution (u, p)

satisfying

u ∈ L2((0, T ), H2(D)) ∩H1((0, T ), L2(D)) ⊂ C0([0, T ], H1
0(D))

pi ∈ C1([0, T ], H1(D)) ∀ i = 1, . . . , m.

(b) Let d = 2, 3, then for every T > 0, for every set of initial conditions

u0 ∈ H1
0 (D) ∩H2(D) and pi(0) ∈ H2(D), i = 1, . . . , m, satisfying the condi-

tions connected with the respective typo of gating system, and any input current

I ∈ H1((0, T ), L2(D)) ∩ L2((0, T ), H1
0(D)), the generalised excitable media equa-

tion possesses a unique weak solution (u, p) satisfying

u ∈ L2((0, T ), H3(D)) ∩H1((0, T ), H1(D)) ⊂ C0([0, T ], H2(D)) ∩ C1([0, T ], L2(D))

pi ∈ C1([0, T ], H2(D)) ∀ i = 1, . . . , m.

In addition, for both (a) and (b) the solution (u, p) depends continuously on the initial

data u0, p0 and the current input I.

Finally, as has been already heuristically argued we can derive a-priori pointwise

bounds on the solutions of the general membrane equation. Therefore we obtain an

invariant rectangle for solutions of the excitable media system. We propose bounds

u−, u+ ∈ R for the solution satisfying the following relations

c(x)u− +
m∑

i=1

gi(x, p)(Ei − u−) + I(t, x) ≥ 0 ∀x ∈ D, t ∈ [0, T ], p ∈ [0, 1]m,

c(x)u+ +
m∑

i=1

gi(x, p)(Ei − u+) + I(t, x) ≤ 0 ∀x ∈ D, t ∈ [0, T ], p ∈ [0, 1]m,

(3.3.10)

where c is the zeroth order coefficient of the operator A. Clearly, the existence of

such bounds is guaranteed if c is non-positive and together with the input current I

pointwise bounded. Moreover, for classical conductance-based models the operator A

is a pure diffusion operator (in particular, c ≡ 0) and in the absence of any current

84



Chapter 3: Hybrid stochastic models of excitable media

input we can choose the bounds u− = min Ei and u+ = maxEi as were first proved

for membrane equations in [42].

Proposition 3.3.1. Assume that u−, u+ satisfy conditions (3.3.10). Then, if the ini-

tial condition satisfy u0(x) ∈ [u−, u+] and p0(x) ∈ [0, 1]m for all x ∈ D, the solutions

in the sense of Theorem 3.3.1 remain within this rectangle, i.e.,

u(t, x) ∈ [u−, u+], p(t, x) ∈ [0, 1]m ∀ (t, x) ∈ [0, T ]×D .

Here each u(t), p(t) is identified with the unique continuous element of its equivalence

class.

Proof. The result for the gating variables is already a by-product of Theorem 3.3.1,

see Lemma 3.4.1, and the result for the variable u follows from an application of

Theorem 3.4.2 which proves such an assertion in a more general way.

Remark 3.3.1. Firstly, the regularity obtained for the solutions in Theorem 3.3.1 is

physically meaningful. The Sobolev Embedding Theorems guarantees that for d = 1

it holds that H1(D) ↪→ C0(D) and for d ≤ 3 it holds that H2(D) ↪→ C0(D) and these

embeddings are optimal. Thus the solution can be identified with the unique element

in the equivalence class that is continuous over time as a Banach space valued function

with values u(t) that are continuous functions over the spatial domain. As the variable

u denotes a difference in an electrical potential or, as in the case of calcium dynamics,

the concentration of some chemical substance, it is physically reasonable to require

u to be continuous and bounded. Further, employing standard methods of deriving

higher spatial and temporal regularity of solutions, see, e.g., [43], we could proceed

demanding higher regularity on the coefficients and current input function as well as

the initial condition. However, we do not need them in this thesis so we do not pursue

this path any further.

Secondly, we have considered the membrane balance equation equipped with Dirichlet

boundary conditions (3.3.8). Certainly, other types of boundary conditions also make

perfect sense for excitable media equations, e.g., Neumann or Robin boundary condi-

tions. Neumann boundary conditions that set the outward normal at the boundary to

zero are referred to as sealed end boundary conditions for neuron models. These refer

to models of neurons such that the end of the fibre is covered with neuronal membrane.

Its resistance is so large that it can be assumed infinite. Finally, arbitrary Neumann or

Robin boundary conditions give the leak current through the boundary and describe

more accurately the physical situation. For a further discussion of boundary condition

with respect to the (linear cable equation) we refer to [74, Chap. 2]. We note that

in [102] the well-posedness for a particular excitable media system – A = ∆, m = 1,

and the nonlinear reaction term in the membrane equation and the right hand side
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in the gating system are globally Lipschitz continuous – with boundary conditions on

the outward normal given by du
dn = a(x)u is discussed for spatial dimensions d ≤ 3.

The result is analogous to the above Theorem 3.3.1 (b) and the author states that it

can be extended in a straightforward way to more general systems.

Thirdly, Theorem 3.3.1 only covers a one-dimensional macroscopic variable, i.e.,

u(t, x) ∈ R, which is the setup for equations of excitable media modelling usual neu-

ronal membranes or cardiac tissue. In models which additionally take also calcium

dynamics into account it may be necessary to have multi-dimensional macroscopic

variables, e.g., one for the transmembrane potential and a second for the calcium

concentration. We expect the existence and regularity results of Theorem 3.3.1 to

extend to these cases.

3.4 Section Appendix

3.4.1 The Austin model

In this section we briefly discuss the particular type of membrane balance equation

considered in [7]. This type of model is restricted to one-dimensional spatial domains

only, i.e., in this section D is an open, non-empty interval in R. The initial-boundary

value problem which models the evolution of the membrane potential in between state

changes of single ion channels is given by

u̇ = Av +
m∑

i=1

gi · (Ei − u) · δxi,

u(t, x) = 0 ∀x ∈ ∂D, t ≥ 0,

u(0) = u0 ,

(3.4.1)

where A : H1
0 (D) → H−1(D) is a coercive operator, gi are smooth, non-negative

functions and Ei ∈ R are constants. The model in [7] is a particular case where

A = ∆ and gi(x) ≡ gi are constants. This type of models corresponds to using (3.1.3)

as a model for the conductances and thus δxi in (3.4.1) is the Dirac delta function

with mass at the point xi ∈ D. In order to prove well-posedness we employ Theorem

C.0.2 and thus consider the equation (3.4.1) as an abstract evolution equation

u̇ = Âu + f ,

where the linear operator A and the inhomogeneous term f are given by

Âu = Au−
( n∑

i=1

gi · δxi

)
· u, f =

n∑

i=1

Eigi(x)δxi . (3.4.2)
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As usual the evolution triple is given by H1
0 (D) ⊂ L2(D) ⊂ H−1(D). Before proving

well-posedness in Proposition 3.4.2 below, we briefly comment on the use of the Dirac

delta function. Being a generalised function it is well defined as a linear functional

on the space of test functions C∞
c (D). However, an application of the Dirac delta

function to a function v makes sense for all continuous functions v ∈ C0(D) and thus,

particularly, to elements of Sobolev spaces Hs(D) where s > d/2. Moreover, due to

continuous embedding of Hs(D) into C0(D) it follows that δ ∈ H−s(D). Further, a

pointwise multiplication of generalised functions is well-defined for smooth functions,

hence f as defined in (3.4.2) is in H−1(D). However, for the definition of the operator

Â in (3.4.2) this assumption needs to be relaxed.

Proposition 3.4.1. Let D ⊂ R be a bounded interval. Then, for u ∈ C0(D) the

linear functional u · δx defined as

〈u · δx, ϕ〉 = u(x)ϕ(x)

for test functions ϕ on D is a distribution. Moreover, u · δx is a distribution for all

u ∈ H1(D) and u · δx ∈ H−1(D).

Remark 3.4.1. The same remains true for bounded domains D ⊂ Rd with sufficiently

regular boundary and Sobolev spaces Hs(D) with s > d/2.

Proof. Firstly, if ϕn → ϕ then (u · δx, ϕn) → (u · δx, ϕ), hence u · δx is a distribution.

Secondly, due to the Sobolev Embedding Theorem H1(D) ↪→ C0(D) and hence u·δx is

a distribution for all u ∈ H1(D). It remains to show that u ·δx belongs in fact to H−1,

thus is a linear, bounded functional on H1(D). Linearity is clear and boundedness

follows as for every v ∈ H1(D)

|〈u · δx, v〉| = |u(x)v(x)| ≤ ‖uv‖∞ ≤ C2 ‖u‖H1‖v‖H1 ,

where C is the constant from the continuous embedding H1(D) ↪→ C0(D).

The next proposition gives well-posedness of the initial-boundary value problem (3.4.1)

the proof of which we have deferred after the discussion of the result compared to [7].

Proposition 3.4.2. (a) The operator Â satisfies Â ∈ L(H1
0 (D), H−1(D)) and the

associated quadratic form is coercive.

(b) The equation (3.4.1) is well posed, i.e., for every initial condition u ∈ L2(D) it

possesses a unique weak solution u ∈ L2((0, T ), H1
0(D)) ∩H1((0, T ), H−1(D)) ⊂

C0([0, T ], L2(D)), which depends continuously on the initial condition in L2(D).

Remark 3.4.2. This existence result extends the hybrid approach of using Dirac delta

functions as current inputs to a much broader class of one-dimensional models. Fur-

ther, the result obviously remains valid when adding an input current
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I ∈ L2((0, T ), L2(D)) to the right hand side of the equation (3.4.1). However, we note

that Proposition 3.4.2 is not the same existence result as postulated in Austin [7]

wherein there the existence of a (mild) solution u ∈ C0([0, T ], H1
0(D)) is proved. This

additional regularity, which implies u(t) ∈ C0(D) for very t ∈ [0, T ], is indispensable

for the definition of the model with choices of jump rates and Markov kernels given

by (3.1.3). Unfortunately, we cannot use the usual methods of improving the regular-

ity of weak solutions based on the general Hilbert space theory of abstract evolution

equations to infer u ∈ C0([0, T ], H1
0(D)). These require u̇ ∈ L2((0, T ), L2(D)), which

by definition of the problem (3.4.1) does not hold. In order to prove the additional

regularity Austin employs a completely different method of proof. His approach de-

pends on the specific form of the membrane equation (3.1.2), in particular the choice

of A = ∆ and the explicit knowledge of the semigroup generated by the Laplacian

with Dirichlet boundary conditions. The essential step are estimates of the norm

of the semigroup applied to the Dirac delta function in the variational formula of

the solution. If this can be proved for more general semigroups then his model may

be extendable to general equations and multi-dimensional domains. For the sake of

completeness we cite his result.

Proposition 3.4.3. [7, Prop. 3.4] The initial-boundary value problem (3.4.1) with

A = ∆ and gi being constant has a unique mild solution u ∈ C0([0, T ], H1
0(D)) for

every initial condition u ∈ H1
0 (D).

Further, it is an immediate consequence of the definition of a mild solution that it

depends continuously on the initial condition. Therefore, we can use the result in

Proposition 3.4.3 for the definition of inter-jump dynamics for a PDMP.

As stated it remains open how the approach by Austin can be used in order to gen-

eralise the model to membrane equations of the type (3.4.1). That is, e.g., equations

on two-dimensional domains, different types of boundary conditions and more general

diffusion operators A. A further investigation in this direction is not within the scope

of this thesis which provides a general modelling framework. In any case, any results

will heavily depend on the knowledge of properties of the semigroup that is generated

by the linear part of the equation and such detailed investigations should be strongly

motivated by a particular application that demands this particular model.

Proof of Proposition 3.4.2. First note that given part (a) the statement in part (b) is

a consequence of Theorem C.0.2. Thus it remains to prove (a), i.e., the operator Â is

linear, bounded and coercive, i.e., the associated quadratic form

a(u, v) := −〈Âu, v〉H1 = −〈Au, v〉H1 +
n∑

i=1

〈gi · δxi · u, v〉H1 ∀ u, v ∈ H1
0 (D), (3.4.3)
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satisfies for all u ∈ H1
0 (D)

a(u, u) ≥ C1‖u‖2
H1 − C2‖u‖2

L2

for some constants C1, C2 > 0.

Firstly, due to Proposition 3.4.1 the product gi ·δx ·u is in H−1(D) for any u ∈ H1
0 (D).

Hence, the operator Â does map into H−1(D). Next, the linearity of Â is obvious,

thus it remains to consider boundedness which for linear operators between Banach

spaces is equivalent to continuity. Let un be a sequence converging to u strongly in

H1
0 (D), then

‖Âun − Âu‖H−1
0

=
∥∥∥A(un − u)−

n∑

i=1

gi · δxi · (un − u)
∥∥∥

H−1
0

≤ ‖A(un − u)‖H−1 +
n∑

i=1

‖gi · δxi · (un − u)‖H−1.

The estimate in the right hand side converges to zero for ‖un − u‖H1 → 0 as, on the

one hand, the operator A is bounded by assumption, and, on the other hand, for each

summand in the second term in the right hand side we have the estimates

‖gi · δxi · (un − u)‖H−1 = sup
v∈H1

0 (D)
‖v‖H1=1

|〈gi · δxi · (un − u), v〉H1
0
|

= sup
v∈H1

0 (D)
‖v‖H1=1

|gi(xi)(un(xi)− u(xi))v(xi)|

≤ C |un(xi)− u(xi)| |gi(x)| .

Here C is the constant arising from the Sobolev Embedding Theorem which yields

|v(xi)| ≤ ‖v‖0 ≤ C‖v‖H1 for all xi ∈ D due to the continuous embedding of H1
0 (D)

into C0(D). Finally, |gi(xi)| is bounded due to the smoothness of the functions gi and

|un(x)−u(x)|→ 0 for un → u in H1
0 (D) again due the Sobolev Embedding Theorem.

Therefore, it is left to prove the coercivity condition for the quadratic form a. Due

to the coercivity of the operator A there exist constants C1, C2 > such that for all
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u ∈ H1
0 (D) we obtain the estimate

a(u, u) = −〈Au, u〉H1 + C
n∑

i=1

〈gi · δxi · u, u〉H1
0

≥ C1‖u‖2
H1 − C2‖u‖2

L2 +
n∑

i=1

gi(xi)u
2(xi)

≥ D

c
‖u‖2

H1

as gi(xi)u2(xi) ≥ 0 for all i = 1, . . . , n. Hence the coercivity condition is satisfied and

the proof is completed.

3.4.2 Proof of Theorem 3.3.1 (Well-posedness of det. equations)

In this section we prove Theorem 3.3.1 stating the well-posedness of the coupled

system of equations for deterministic models of excitable media. The proof employs

a fixed point argument following the general outline used in [81]. In contrast to the

approaches by [42, 87, 102] this approach directly addresses the problem of having

non-globally Lipschitz reaction term as is frequently the case in models of excitable

media.

We present the proof of parts (a), the case of d = 1, and (b), the case of d = 2, 3, of the

theorem simultaneously, as well as simultaneously consider the full and the reduced

gating system. Essentially the techniques employed are analogous for the different

spatial dimension and the different types of gating system. If we need to distinguish

between the two cases then the different points are marked by (a) and (b). The

proof is split into the following steps and we present intermediate results in individual

lemmata. First we present in (A) preliminary considerations and initial definitions.

Then, in (B) we consider for a given solution of the cable equation the well-posedness

of the gating systems (3.3.7) and (3.3.6), respectively. This part of the proof contains

a major difference in technique to the approach of [81] on which we comment at the

appropriate place. Next, in (C) we show for given solutions of the gating system that

equation (3.3.5) is well-posed and the map allocating a solution to the membrane

equation to every solution of the gating system is a contraction. Finally, in part (D)

first a local existence result is proved using a fixed point argument. Then the local

existence result is used to prove global existence. The proof is concluded sketching the

proof of the continuous dependence of the solution on the initial data. The additional

effort that arises in parts (C) and (D) concerns estimation procedures which for multi-

dimensional domains have to be extended from the space L2((0, T ), L2(D)), which

is sufficient for one-dimensional domains, to Sobolev spaces of higher order in the

temporal as well as the spatial domain.
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Before we start the actual proof we recall the conditions imposed in Theorem 3.3.1

and straight-forward consequences. For ease of notation we omit space domains when

dealing with function spaces, i.e., we abbreviate, e.g., L2 := L2(D), H1
0 := H1

0 (D) and

C0 := C0(D). First of all, the conditions on the initial data are

(a) u0 ∈ H1
0 , p1(0), . . . , pm(0) ∈ H1 and I ∈ L2((0, T ), L2);

(b) u0 ∈ H1
0 ∩H2, p1(0), . . . , pm(0) ∈ H2 and I ∈ H1((0, T ), L2) ∩ L2((0, T ), H1).

For simplicity we use for the reaction term in the membrane equation (3.3.5) the

notation

f1(x, p)u + f2(x, p) :=
m∑

i=1

gi(x, p) (Ei − u) , (3.4.4)

where f1, f2 : D × Rm → R. Given the conditions (EC2) in Section 3.3.1 these func-

tions satisfy the Carathéodory condition, that is x +→ fi(x, p) is measurable for all

p ∈ Rm and p +→ f(x, p) is continuous for almost all x ∈ D. This implies that the

composition (t, x) +→ fi(x, p(t, x)) is jointly measurable for any p(t, x) being jointly

measurable. Further f1, f2 satisfy all the conditions assumed for the conductances gi

in (EC2). Clearly, the same applies to the rate functions of the gating system. Partic-

ularly, the compositions qij(u(t, x)), ai(u(t, x)) and bi(u(t, x)) are jointly measurable

functions for any jointly measurable u.

Further, throughout the proof we use q(ε) and L(ε) to denote a local bound and a

local Lipschitz condition on particular functions which satisfy such a condition, i.e.,

the rate functions qij , ai, bi with respect to u, the functions f1, f2 and their derivatives

as specified in (EC2) and (EC3) with respect to p. We use the same constants for all

of these functions. The argument ε is used to indicate the dependence on local bounds

of the arguments of the functions which should be self-explanatory in the context. For

example, in part (A) we introduce for every ε > 0 the pointwise bounds K + εK1 on

the membrane variable for fixed K, K1 and a dependence on this bound is denoted

only by ε, i.e.,

|qij(u)| + |q(1)
ij (u)| ≤ q(ε) ∀ |u| ≤ K + K1ε . (3.4.5)

or

|qij(u)− qij(v)| + |q(1)
ij (u)− q(1)

ij (v)| ≤ L(ε) |u− v| ∀ |u|, |v| ≤ K + K1ε . (3.4.6)

When dealing with bounds or Lipschitz conditions on fi and its derivatives with

respect to the variable p we omit the dependence of the bound and the Lipschitz

constant on an argument ε as it will always be the case that the arguments p are

bounded by one, i.e., for example

|fi(x, p)| + |∂pk
fi(x, p)| ≤ q ∀ p ∈ [0, 1]m, x ∈ D
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and

|fi(x, p)− fi(x, q)| ≤ L
m∑

i=1

|pi − qi| ∀ p, q ∈ [0, 1]m, x ∈ D .

Finally, we briefly comment on the chain and product rule in connection with weak

derivatives. In general we distinguish between weak derivatives of real-valued func-

tions on D with respect to the spatial variables and L2-valued functions on a time-

interval [0, T ]. In the first case the chain rule holds in the sense that for f ∈
C1(R) such that f ′ ∈ L∞(R) and u ∈ H1(D) it holds that f(u) ∈ H1(D) and

Dxi(f(u)) = f ′(u)Dxiu. Obviously, when u is bounded, then it is sufficient that f ′

is bounded over the values u attains. The product rule holds in the sense that for

u, v ∈ H1(D) such that uv ∈ L2(D) and u′v, uv′ ∈ L2(D) it follows that uv ∈ H1(D)

and (uv)′ = u′v + uv′.

Finally, we need the chain rule for L2-valued functions. Let f ∈ C1(R) such that

f ′ ∈ L∞(R)) and u ∈ H1((0, T ), L2) then

d

dt
f(u(t)) = f ′(u(t))u̇(t) ∈ L2

in the sense that ( d
dtf(u(t)))(x) = f ′(u(t, x)) u̇(t, x) almost everywhere on D. Ob-

viously in case u(t, x) is pointwise bounded it is sufficient that f ′ is bounded over

the range of values p attains. The product rule holds analogously, i.e., if u, v ∈
H1((0, T ), L2) and uv, u̇v, uv̇ ∈ L2((0, T ), L2) then also uv ∈ H1((0, T ), L2) and the

weak derivative is given by u̇v + uv̇.

(A) The passive membrane equation

Initially we consider the solution of the membrane balance equation uncoupled to the

gating system, i.e.,

ẇ = Aw + I(t),

w(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D,

w(0) = u0 ,

(3.4.7)

which is obviously a special case of the full system (3.3.5) when ḡi = 0. The system

(3.4.7) is the equation for a passive membrane. By assumption the linear operator A is

uniformly elliptic and the inhomogeneous term I is in L2((0, T ), L2), therefore due to

Theorem C.0.2 there exists a unique weak solution w ∈ L2((0, T ), H1
0)∩C0([0, T ], L2)

for every initial condition u0 ∈ L2. In addition, under the conditions as presented in

Theorem 3.3.1 (a) and (b) we obtain the improved regularity due to Theorem C.0.3

and Remark C.0.1:
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(a) For an initial condition u0 ∈ H1
0 the solution satisfies w ∈ C0((0, T ), H1

0) and

in particular w(t) ∈ H1
0 for all t ∈ [0, T ]. As the Sobolev Embedding Theorem

implies for d = 1 that H1
0 ↪→ C0, there exists an element ŵ in the equivalence

class of the solution w such that ŵ(t) ∈ C0 and supx∈D |ŵ(t, x)| ≤ K for all

t ∈ [0, T ] and a suitable constant K < ∞. We always identify the solution with

this unique element ŵ of its equivalence class.

(b) For an initial condition u0 ∈ H1
0 ∩ H2 and an inhomogeneous term I ∈

H1((0, T ), L2)∩L2((0, T ), H1) the solution satisfies w ∈ C0([0, T ], H2). Again the

Sobolev Embedding Theorem then implies for d ≤ 3 that H2 ↪→ C0. Hence there

exists an element ŵ in the equivalence class of the solution such that ŵ(t) ∈ C0

and supx∈D |w(t, x)| ≤ K for all t ∈ [0, T ]. We always identify the solution with

this unique element of its equivalence class.

Note that by identifying the solution with the particular element of its equivalence

class the solution is uniquely defined pointwise. Moreover, the regularity of the so-

lution guarantees that there exists a constant K > 0 which bounds the solution

pointwise, i.e., for all t ∈ [0, T ] and all x ∈ D

|w(t, x)| ≤ K .

Given the unique solution w of (3.4.7) we define for the cases (a) and (b) the sets

B(a)(ε, T ) :=
{
v ∈ L2((0, T ), L2) : ‖w − v‖L∞((0,T ),H1

0 ) ≤ ε} ,

B(b)(ε, T ) :=
{
v ∈ L2((0, T ), L2) : ‖w − v‖L∞((0,T ),H2) ≤ ε} .

(3.4.8)

That is, these sets are the subset of functions in L2((0, T ), L2) which are inside a closed

ε-ball in the spaces L∞((0, T ), H1
0) or L∞((0, T ), H2), respectively, around the solution

w of the passive membrane equation (3.4.7). Due to the continuous embedding of these

spaces into L2((0, T ), L2) the sets B(a)(ε, T ) and B(b)(ε, T ) are closed in L2((0, T ), L2).

Moreover, being a closed subset of a complete metric space they are a complete metric

space itself. For simplicity we use the notation B•(ε, T ) when referring to either

B(a)(ε, T ) or B(b)(ε, T ).

Finally, we obtain a pointwise bound almost everywhere for elements v ∈ B•(ε, T ).

Note that the Sobolev Embedding Theorem implies H1 ↪→ C0 when d = 1 and

H2 ↪→ C0 when d ≤ 3. Hence, B•(ε, T ) ⊂ L∞((0, T ) × L∞) and it holds for all

v ∈ B•(ε, T )

‖v‖L∞((0,T )×D) ≤ ‖w‖L∞((0,T )×D) + ‖v − w‖L∞((0,T )×D) ≤ K + K1ε

for some constant K1 resulting from the Sobolev Embedding Theorem. Moreover, on
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the one hand, it holds that for almost all t ∈ (0, T )

‖v(t)‖L∞ ≤ ‖w(t)‖L∞ + ‖v(t)− w(t)‖L∞ ≤ K + K1ε .

On the other hand, it holds that for almost all x ∈ D the map t +→ v(t, x) is bounded

by K + K1ε for almost all t ∈ (0, T ).

(B) The gating system

Next we consider for a given transmembrane potential trajectory v ∈ B•(ε, T ) solu-

tions to the non-autonomous initial value problem resulting from the system of gating

variables. That is, with respect to the two types of gating system, we consider either

the linear, non-autonomous system

ṗ = Q(v(t))T p,

p(0) = p0

(3.4.9)

corresponding to the full, coupled gating system (3.3.7) or for every i = 1, . . . , m the

inhomogeneous, non-autonomous equation

ṗi = ai(v(t)) (1− pi)− bi(v(t)) pi,

pi(0) = p0
i

(3.4.10)

corresponding to the reduced, uncoupled gating system (3.3.6). The following lemma

provides the existence of a unique solution to these systems and their continuous

dependence on v ∈ B•(ε, T ). We note that in the following lemma the distinguished

statements in the parts (a) and (b) relate to parts (a) and (b) of Theorem 3.3.1. This

is understood in the sense that for proving part (a) of the theorem we need part (a)

of the following lemma, analogously for parts (b), and each part only assumes the

conditions as in the corresponding parts of the Theorem 3.3.1. This convention is

also employed in the further lemmata and theorems in the remainder of the proof.

Lemma 3.4.1. (a) For every v ∈ B(a)(ε, T ) and every set of initial conditions p0
i ∈

H1, i = 1, . . . , m, a unique solution p to the gating system exists, such that the

components satisfy

pi ∈ H1((0, T ), H1) ⊂ C0([0, T ], H1) ∀ i = 1, . . . , m .

If in addition v ∈ C0([0, T ], H1) then it holds that pi ∈ C1((0, T ), H1) for every

i = 1, . . . , m.

(b) For every v ∈ B(b)(ε, T ) and every set of initial conditions p0
i ∈ H2, i = 1, . . . , m,
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a unique solution p to the gating system exists, such that the components satisfy

pi ∈ H1((0, T ), H2) ⊂ C0([0, T ], H2) ∀ i = 1, . . . , m .

If in addition v ∈ C0([0, T ], H2) then it holds that pi ∈ C1((0, T ), H2) for every

i = 1, . . . , m.

Further, for p0(x) ∈ [0, 1]m for all x ∈ D it holds that p(t, x) ∈ [0, 1]m for all x ∈ D and

every t ∈ [0, T ]. In addition, if in the case of the full gating system
∑m

i=1 pi(0, x) = 1

for all x ∈ D, then it holds
∑m

i=1 pi(0, x) = 1 for all x ∈ D and every t ∈ [0, T ].

Moreover, the solutions in (a) and (b) satisfy for two trajectories v, u ∈ B•(ε, T ) and

for two sets of initial condition pv
i (0), pu

i (0) that it holds for all t ∈ [0, T ]

m∑

i=1

‖pv
i (t)− pu

i (t)‖Lp ≤ C
( m∑

i=1

‖pv
i (0)− pu

i (0)‖Lp +

∫ t

0

‖v(s)−u(s)‖Lp ds
)

, (3.4.11)

where 1 ≤ p ≤ ∞. Further, for all t, h > 0 such that t + h ≤ T the Lipschitz-type

inequality

m∑

i=1

‖pv
i (t + h)− pv

i (t)‖Lp ≤ C
(
h +

∫ t

0

‖v(s + h)− v(s)‖Lp ds
)

(3.4.12)

holds, where the constant C < ∞ depends only on ε and T . In case (b), if in addition

v ∈ C0([0, T ], H1), then it holds that

m∑

i=1

‖pv
i (t + h)− pv

i (t)‖2
H1 ≤ C

(
h2 +

∫ t

0

‖v(s + h)− v(s)‖2
H2 ds
)

, (3.4.13)

where the constant C < ∞ depends on ε, T , ‖v‖C0([0,T ],H1) and
∑m

i=1 ‖pi(0)‖H1. In

particular, the constant C in each of (3.4.11) – (3.4.13) is finite for finite values of

the quantities it depends on and the dependence is monotonic.

Proof of Lemma 3.4.1. We consider the gating system as an equivalent system of

integral equations, which is coupled in the full form and decouples in the reduced

form. We only discuss the full gating system in detail. The results for the reduced

gating system follow by fully analogous arguments. Moreover, as the reduced gating

system usually arises as a transformation of the full gating system, existence and

uniqueness of the reduced system can be inferred from the existence and uniqueness

of a corresponding full system. The central differences of the present setup and the

setup [81] is that we consider a coupled system instead of scalar equations. Further,

the proposed regularity of the solution to the excitable media equation in spatial

dimensions d ≤ 3 necessitates that we derive higher spatial regularity results for the

gating system, i.e., solutions with components taking values in H1 in the case of
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(a) and H2 in the case of (b), compared to [81] wherein only solutions in L2 are

derived. In the subsequent proof we employ the Banach Fixed Point Theorem to

establish existence and uniqueness of solutions and the proposed regularity. This is a

completely different approach than employed in [81]. For the same reason that allows

lesser spatial regularity in [81], that is, a restriction to one-dimensional domains,

the Lipschitz-type inequalities (3.4.11) and (3.4.12) are only considered for the space

L2 therein. For the excitable media system discussed here the general inequalities

(3.4.11) and (3.4.12) in Lp are necessary. Moreover, additionally we have to derive

the inequality (3.4.13) in the case of (b).

Successively, we prove in the following that (i) in case (a) and (b) there exists a unique

solution using the Banach Fixed Point Theorem and show (ii) that this solution

satisfies the proposed pointwise bounds. The dependence on the initial data and

the Lipschitz-type inequalities (3.4.11) and(3.4.12) are shown in part (iii) and the

additional inequality (3.4.12) in case of (b) is proven in (iv). For simplicity of notation

we omit the superscript v denoting a fixed element v ∈ B•(ε, T ) whenever there is no

risk of confusion.

(i) We prove existence and uniqueness of a solution via the Banach Fixed Point

Theorem in the space C0([0, T ], H1) in case of (a) and in the space C0([0, T ], H2) in

case of (b) for all T > 0. Here the gating system (3.4.9) is considered an integral

equation in the Hilbert space (H1)m or (H2)m, respectively. To this end we first show

(i.1) the necessary prerequisite that v ∈ B•(ε, T ) implies qij(v) ∈ L∞((0, T ), H1) or

qij(v) ∈ L∞((0, T ), H2), respectively. This guarantees that the right hand side of

(3.4.9) takes values in the respective Sobolev space. Then part (i.2) presents the

existence result and (i.3) provides the improved regularity for continuous paths v.

(i.1) First of all, as qij is locally bounded it holds that ‖qij(v(t))‖L2 ≤ q(ε). Secondly,

for the first derivatives we get that

∥∥Dxk
qij(v(t))

∥∥2
L2 =

∥∥q(1)
ij (v(t))Dxk

v(t)
∥∥2

L2

≤ qij(ε)
2 ‖Dxk

v(t)‖2
L2 .

Overall, these estimates imply that there exists a constant C depending on ε such

that

‖qij(v(t))‖2
H1 ≤ C(ε)(1 + ‖v(t)‖2

H1) for a.e. t ∈ (0, T ).

That is, for case (a) and (b) it holds that ‖qij(v)‖L∞((0,T ),H1) is bounded by a bound

depending only on ε and the norm ‖v‖L∞((0,T ),H1). Finally, for the stronger result in
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case (b) it remains to additionally consider the second derivatives of qij(v(t)):

Dxkxl

(
qij(v(t, x))

)
= q(2)

ij (v(t, x))Dxl
v(t, x)Dxk

v(t, x) + q(1)
ij (v(t, x))Dxkxjv(t, x) .

Employing the uniform bounds and Cauchy-Schwarz inequality we obtain that

|Dxkxl
qij(v(t, x))|2 ≤ q(ε)2

(
|Dxl

v(t, x)|4 + |Dxk
v(t, x)|4

)
+ q(ε)2|Dxkxjv(t, x)|2

almost everywhere in D. Taking the integral over D we find

‖Dxkxl
qij(v(t))‖2

L2 ≤ C(ε)
(
‖Dxl

v(t)‖4
L4 + ‖Dxk

v(t)‖4
L4 + ‖Dxkxjv(t)‖2

L2

)

for a suitable constant C depending only on ε. As the Sobolev Embedding Theorem

implies that H1 ↪→ L4 for d ≤ 3 we find that

‖Dxkxl
qij(v(t))‖2

L2 ≤ C(ε)
(
‖Dxl

v(t)‖4
H1 + ‖Dxk

v(t)‖4
H1 + ‖v(t)‖2

H2

)

for a suitable constant depending only on ε. This implies qij(v(t)) ∈ H2 for v(t) ∈ H2.

Furthermore, it follows ‖qij(v(t))‖H2 is bounded depending only on ε and ‖v(t)‖H2 .

This in turn implies that qij(v(t)) ∈ L∞((0, T ), H2) with norm depending only on ε

and ‖v‖L∞((0,T ),H2).

(i.2) Next we proceed to prove existence of a solution to the gating system. In the

following we use X to denote either the space H1 or H2. We define for every initial

condition y ∈ Xm and every v ∈ B•(ε, T ) an operator V y,v by

V y,v : p ∈ C0([0, T ], Xm) +→ V p

where for all i = 1, . . . , m and t ∈ [0, T ]

(V y,vp)i(t) := yi +

∫ t

0

m∑

j=1

pj(s)qji(v(s)) ds . (3.4.14)

We first show that the integral in the right hand side is well defined in the sense of

Bochner. It then follows that V y,v maps the Banach space C0([0, T ], Xm) into itself.

Obviously the integrand in (3.4.14) is measurable as a sum of a pointwise product

of measurable functions. Furthermore, the pointwise multiplication of functions is a

bilinear, continuous map for the Sobolev spaces in question, i.e., for H1 in the case

d = 1 and H2 in the case d ≤ 3. Thus it holds for a suitable constant K <∞ that

∥∥pj(s)qji(v(s))
∥∥

X
≤ K ‖qji(v(s))‖X ‖pj(s)‖X ≤ K ‖qji(v)‖L∞((0,T ),X) ‖pj‖C0([0,T ],X) .

(3.4.15)
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Here the right hand side is an integrable majorant and we infer that the integrand in

(3.4.14) is integrable.

Clearly, the map t +→ (V y,vp)(t) is continuous and hence V y,vp ∈ C0([0, T ], Xm). We

next show that V y,v is even a Lipschitz continuous operator on C0([0, T ], Xm). Let

p, p̂ ∈ C0([0, T ], Xm) then

‖V y,vp− V y,vp̂ ‖C0([0,T ],Xm) = sup
t∈[0,T ]

m∑

i=1

∥∥∥
∫ t

0

m∑

j=1

(
pj(s)− p̂j(s)

)
qji(v(s)) ds

∥∥∥
X

≤ sup
t∈[0,T ]

m∑

i,j=1

∫ t

0

∥∥(pj(s)− p̂j(s)
)
qji(v(s))

∥∥
X

ds .

Due to (3.4.15) we further obtain

‖V y,vp− V y,vp̂ ‖C0([0,T ],Xm) ≤
(
mT max

j,i
‖qji(v)‖L∞((0,T ),X)

)
sup

t∈[0,T ]

m∑

i=1

‖pi(t)− p̂i(t)‖X

≤
(
mTK max

j,i
‖qji(v)‖L∞((0,T ),X)

)
‖p− p̂‖C0([0,T ],Xm) .

Note that maxj,i ‖qji(v)‖L∞((0,T ),X) is finite due to part (i.1). Furthermore for small

enough T ∗, i.e.,

T ∗ <
1

mK maxj,i ‖qji(v)‖L∞((0,T ),X)
,

the map V y,v is a contraction on the Banach space C0([0, T ∗], Xm). In particular

note that T ∗ is independent of the initial condition y. Now the Banach Fixed Point

Theorem guarantees the existence of a unique fixed p ∈ C0([0, T ∗], Xm) such that

p(t) = y +

∫ t

0

Q(v(s))T p(s) ds in Xm ∀ t ∈ [0, T ∗],

which also implies p(0) = y. It is straightforward to extend this local existence result

to a global existence result as the time T ∗ does not depend on the initial condition:

For 2T ∗ < T we obtain a solution on [0, 2T ∗] by defining t → p(T ∗ + t) to be the

unique fixed point of the operator

(V p̃)(t) = p(T ∗) +

∫ t

0

Q(v(T ∗ + s))T p̃(s).

Repeating this procedure we obtain a unique solution p ∈ C0([0, T ], Xm) for every

T > 0.

Finally, as p is a solution of an integral equation we infer that it is absolutely contin-
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uous and satisfies

ṗi(t) =
m∑

j=1

pj(t)qji(v(t)) for a.e. t ∈ [0, T ], i = 1, . . . , m .

This gives pi ∈ H1((0, T ), X).

(i.3) We assume that in fact v ∈ C0([0, T ], X). Then it holds that pi ∈ C1([0, T ], X):

Estimating the term ‖qji(v(t)) − qji(v(s))‖X analogously to part (i.1) we find that

v ∈ C1([0, T ], X) implies qji(v) ∈ C0([0, T ], X). Then it is straightforward to infer

that the pointwise product pjqji(v) is continuous in X and hence ṗi is a continuous

function.

(ii) We next prove the proposed pointwise bounds pi(t, x) ∈ [0, 1] and the conser-

vation property
∑

i pi(t, x) = 1 which hold for almost all x and all t. Note that the

Bochner integral can be evaluated pointwise as pi ∈ L2((0, T ), L2) which is isomorphic

to L2((0, T )×D). That is for any i = 1, . . . , m and all t ∈ [0, T ] it holds that

(∫ t

0

m∑

j=1

pj(s)qji(v(s)) ds
)
(x) =

∫ t

0

m∑

j=1

pj(s, x)qji(v(s, x)) ds for a.e. x ∈ D .

We first show the conservation property. To this end we define a linear, bounded

operator T : (L2)m → L2 by T p =
∑m

i=1 pi. Then, as the Bochner integral allows for

changing integration and the application of linear, bounded operators, it holds that

T p(t) = T p(0) +

∫ 0

t

T
(
Q(v(s)T p(s))

)
ds

=
m∑

i=1

pi(0) +

∫ t

0

m∑

j=1

pj(s)
(∑

i=1

qji(v(s))
)

dx

= 1 + 0 .

Thus T p(t)(x) = 1 for almost all x ∈ D which in fact holds for all x as due to the

regularity of p and the Sobolev Embedding Theorem it holds that T p(t) ∈ C0(D).

We next show that the solution remains pointwise within the interval [0, 1]. By

definition pi(0, x) ∈ (0, 1). Then let t0 > 0 be the infimum of times t > 0 such

that for some i = 1, . . . , m either pi(t, x) ≥ 1 or pi(t, x) ≤ 0 on a set D′ ⊂ D of

non-zero Lebesgue measure. If t0 finite then we always take T > t0 in the following.

First, we assume that t0 is finite and the former holds, i.e., it holds that pi(tn, x) ≥ 0

on a set D′ of non-zero Lebesgue measure for a sequence of times tn ≥ t0 decreasing

to t0. Next, the continuity pi ∈ C0([0, T ], L2) implies that the set of all x such that

pi(t0, x) > 1 is a set of measure zero: We assume otherwise which implies that on
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this set pi(t0) − 1 is positive. Then, the assumption that for all t < t0 it holds that

pi(t, x) ≤ 1 for almost all x is a contradiction to pi ∈ C0([0, T ], L2). Analogously, also

pi(t0) = 1 on a set of measure zero is a contradiction to pi ∈ C0([0, T ], L2). Hence,

we infer that t0 is the first time such that pi(t0, x) = 1 on a set D′ ⊂ D of non-zero

Lebesgue measure. This characterisation of t0 implies that there exists a δ > 0 such

that

0 <
∑

j=1

pj(t, x)qji(v(t, x)) = pi(t, x)qii(v(t, x)) +
∑

j ,=i

pj(t, x)qji(v(t, x)) (3.4.16)

for almost all t ∈ (t0 − δ, t0) and almost everywhere on D′. As the rate functions

qji, j 1= i, are bounded and bounded away from zero, say larger than qmin, and as

qii = −
∑

j ,=i qij it follows that

pi(t, x)qii(v(t, x)) +
∑

j ,=i

pj(t, x)qji(v(t, x)) < −(m− 1) qmin pi(t, x) + q
∑

j ,=i

pj(t, x) .

Now as pj ∈ C0([0, T ], L2) for all j = 1, . . . , m and
∑m

j=1 pj = 1 it follows that the

upper bound in the right hand side becomes negative for t close enough to t0 which is

a contradiction to (3.4.16). Hence, t0 cannot be finite. An analogous argument yields

that t0 cannot be finite also in case it is the infimum of times such that pi(t, x) ≤ 0

for some i = 1, . . . , m. Overall, we have proved that for all t ≥ 0 it holds that

pi(t, x) ∈ [0, 1] for almost all x ∈ D. Moreover, as the Sobolev Embedding Theorem

implies that pi(t) ∈ C0(D) the bounds hold everywhere on D.

(iii) Next we show the continuous dependence of the solution p on v, i.e., (3.4.11),

and the Lipschitz-type inequality (3.4.12). We reintroduce the upper indices for the

gating variables to indicate the given v ∈ B•(ε, T ). Thus, let pu, pv denote the unique

solutions of the gating system with respect to two functions u, v ∈ B•(ε, T ) and note

that embedding theorems imply that pu, pv ∈ C0([0, T ], L∞) and u, v ∈ L1((0, T ), Lp)

for all p ≤ ∞. Thus we obtain for all i = 1, . . . , m the estimate

‖pv
i (t)− pu

i (t)‖Lp ≤ ‖pv
i (0)− pu

i (0)‖Lp +

∫ t

0

m∑

j=1

∥∥pv
j (s)qji(v(s))− pu

j (s)qji(u(s))
∥∥

Lp ds .

(3.4.17)
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It remains to estimate the summands in the integrand in the right hand side. Using

∥∥pv
j (s)qji(v(s))− pu

j (s)qji(u(s))
∥∥

Lp ≤
∥∥(pv

j (s)− pu
j (s)
)
qji(v(s))

∥∥
Lp

+
∥∥pu

j (s)
(
qji(v(s))− qji(u(s))

)∥∥
Lp

≤ ‖qji(v(s))‖L∞

∥∥pv
j (s)− pu

j (s)
∥∥

Lp

+ ‖pu
j (s)‖L∞

∥∥qji(u(s))− qji(u(s))
∥∥

Lp

we obtain due the pointwise bounds almost everywhere for qji(v), cf. (3.4.5), and pv
j

and the Lipschitz continuity of the rate functions qji, cf. (3.4.6), that

∥∥pv
j (s)qji(v(s))− pu

j (s)qji(u(s))
∥∥

Lp ≤ q(ε)
∥∥pv

j (s)− pu
j (s)
∥∥

Lp + L(ε)
∥∥v(s)− u(s)

∥∥
Lp .

(3.4.18)

We use this estimate for the integrands in the right hand side of (3.4.17) and sum the

inequalities (3.4.17) over all i = 1, . . . , m to obtain

m∑

i=1

‖pv
i (t)− pu

i (t)‖Lp ≤
m∑

i=1

‖pv
i (0)− pu

i (0)‖2
Lp + m2L(ε)

∫ t

0

‖v(s)− u(s)‖Lp ds

+ mq(ε)

∫ t

0

m∑

i=1

‖pv
i (s)− pu

i (s)‖Lp ds .

Then an application of Gronwall’s inequality yields

m∑

i=1

‖pv
i (t)−pu

i (t)‖Lp ≤
( m∑

i=1

‖pv
i (0)−pu

i (0)‖Lp +m2L(ε)

∫ t

0

‖v(s)−u(s)‖Lp ds
)

emq(ε)t .

This proves the estimate (3.4.11) with C = max{1, m2L(ε)} emq(ε)T .

In order to prove the Lipschitz-type inequality (3.4.12) we set u(t) := v(t + h) and

pu(0) := pv(h) then pu(t) = pv(t + h) and we obtain from the last estimate that

m∑

i=1

‖pv
i (t + h)− pv

i (t)‖Lp ≤ C
( m∑

i=1

‖pv
i (h)− pv

i (0)‖Lp +

∫ t

0

‖v(s + h)− v(s)‖Lp ds
)
.

Obviously we can estimate

‖pv
i (h)− pv

i (0)‖Lp ≤
∫ h

0

m∑

j=1

‖pj(s)qji(u(s))‖Lp ds ≤ m q(ε)|D|1/p h,

and hence (3.4.12) holds with a different C as before, however, still depending only

on ε and T .
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(iv) We now consider only case (b), i.e., v ∈ L∞((0, T ), H2), and the additional

assumption v ∈ C0([0, T ], H1) is satisfied. Under these assumptions it remains to

show the Lipschitz-type estimate (3.4.13). To this end we require two preliminary

estimates which we derive in the parts (iv.1) and (iv.2) below. In part (iv.3) these

are used to establish (3.4.13).

(iv.1) We first establish a bound on the norm

‖pv
i (t)‖H1 =

(
‖pv

i (t)‖2
L2 +

d∑

k=1

‖Dxk
pv

i (t)‖2
L2

)1/2
.

The differential operator Dxk
, k ≤ d, is a bounded linear operator from H2 to H1 and

we can change its application and integration in the sense of Bochner. Thus it holds

for k ≤ d that

Dxk
pv

i (t) = Dxk
pv

i (0) +

∫ t

0

Dxk

( m∑

j=1

pv
j (s)qji(v(s))

)
ds .

Clearly, the product and chain rule hold such that

Dxk
pv

j (t)qji(v(t)) = pv
j (t)q

(1)
ji (v(t))Dxk

v(s) + qji(v(t))Dxk
pv

j (t)

and thus we obtain the estimate

∥∥∥Dxk

( m∑

j=1

pv
j (s)qji(v(s))

)∥∥∥
2

L2
≤ 2m2q(ε)2‖Dxk

v(s)‖2
L2 + 2mq(ε)2

m∑

j=1

‖Dxk
pv

j (s)‖2
L2 .

(3.4.19)

A summation over all k ≤ d and j = 1, . . . , m yields

m∑

i=1

(
‖pv

i (t)‖2
L2 +

d∑

k=1

‖Dxk
pv

i (t)‖2
L2

)
≤

m∑

i=1

‖pv
i (0)‖2

H1 + C

∫ t

0

‖v(s)‖2
H1 ds

+ C

∫ t

0

m∑

i=1

(
‖pv

i (t)‖2
L2 +

d∑

k=1

‖Dxk
pv

i (t)‖2
L2

)
ds .

where the constant C depends only on T and a bound to the norm ‖v‖L∞((0,T )×D).

Here we used the estimates (3.4.19) and that it holds for all j = 1, . . . , m that

‖pv
i (t)‖L2 ≤ ‖pv

i (0)‖L2 + q(ε)

∫ t

0

m∑

j=1

‖pv
j (s)‖L2 ds.

These estimates yield the constant C and its dependencies; recall that ε refers to a
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bound on the norm ‖v‖L∞((0,T )×D). Next we apply Gronwall’s Lemma and obtain

m∑

i=1

‖pv
i (t)‖2

H1 ≤ C
( m∑

i=1

‖pv
i (0)‖2

H1 + ‖v‖2
L2((0,t),H1)

)
eCt ∀ t ≤ T . (3.4.20)

(iv.2) Secondly, let u denote another function with the same regularity as v. Then we

estimate the norm

∥∥∥Dxk

m∑

j=1

(
pu

j (t)qji(u(t))− pv
j (t)qji(v(t))

)∥∥∥
L2

≤
m∑

j=1

(
q(ε) ‖pu

j (t)− pv
j (t)‖L∞ ‖Dxk

v(s))‖L2

+‖q(1)
ji (u(t))− q(1)

ji (v(t))‖L∞‖Dxk
v(s)‖L2 + q(ε) ‖Dxk

u(s)−Dxk
v(s)‖L2

+ ‖qji(u(t))− qji(v(t))‖L∞‖Dxk
pv

j (t)‖L2 + q(ε)‖Dxk
pu

j (t)−Dxk
pv

j (t)‖L2

)
.

Moreover, due to the continuous embedding of H2 ↪→ C0 and the local Lipschitz

continuity of qji and q(1)
ji , cf. (3.4.6), there exists a constant L(ε) such that

‖qji(u(t))− qji(v(t))‖L∞ + ‖q(1)
ji (u(t))− q(1)

ji (v(t))‖L∞ ≤ L(ε) ‖u(t)− v(t)‖H2 .

Therefore, using (3.4.11) to estimate ‖pu
j (t) − pv

j (t)‖L∞ and (3.4.20) to estimate

‖Dxk
pu

j (t)‖L2, we overall obtain that

∥∥∥Dxk

m∑

j=1

(
pu

j (t)qji(u(t))− pv
j (t)qji(v(t))

)∥∥∥
L2

≤ C
(
‖pu

j (0)− pv
j (0)‖L∞ + ‖u(t)− v(t)‖H2 + ‖Dxk

u(t)−Dxk
v(t)‖L2

+

∫ t

0

‖u(s)− v(s)‖H2 ds +
m∑

j=1

‖Dxk
pv

j (t)−Dxk
pv

j (t)‖L2

)
, (3.4.21)

where the constant C depends only on ε, T , ‖v‖C0([0,T ],H1) and
∑m

i=1 ‖pv
i (0)‖H1.

(iv.3) Now we proceed to establish the Lipschitz-type estimate (3.4.13). We apply the

inequality (3.4.21) derived in (iv.2) to estimate the derivatives

Dxk
(pu

i (t)−pv
i (t)) = Dxk

(pu
i (0)−pv

i (0))+

∫ t

0

Dxk

( m∑

j=1

pu
j (s)qji(u(s))−pv

j(s)qji(v(s))
)

ds
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and also (3.4.11) to obtain

m∑

i=1

(
‖pu

i (t)− pv
i (t)‖2

L2 +
d∑

k=1

‖Dxk
(pu

i (t)− pv
i (t))‖2

L2

)

≤ C
m∑

i=1

(
‖pu

i (0)− pv
i (0)‖2

H1 + ‖pu
i (0)− pv

i (0)‖2
L∞

)
+

∫ t

0

‖u(s)− v(s)‖2
H2 ds

+ C

∫ t

0

m∑

i=1

(
‖pu

i (s)− pv
i (s)‖2

L2 +
d∑

k=1

‖Dxk
(pu

i (s)− pv
i (s))‖2

L2

)
ds ,

where the constant C depends only on ε, T , ‖v‖C0([0,T ],H1) and
∑m

i=1 ‖pv
i (0)‖H1. Once

again we apply Gronwall’s Lemma and obtain for all t ≤ T the estimate

m∑

i=1

‖pu
i (t)− pv

i (t)‖2
H1 (3.4.22)

≤ C
( m∑

i=1

(
‖pu

i (0)− pv
i (0)‖2

H1 + ‖pu
i (0)− pv

i (0)‖2
L∞

)
+

∫ t

0

‖u(s)− v(s)‖2
H2 ds
)
eCt

for a suitable constant C depending on ε, T , ‖v‖C0([0,T ],H1) and
∑m

i=1 ‖pv
i (0)‖H1 .

To infer (3.4.13) from the estimate (3.4.22) we set u(t) := v(t+h) and pu(0) := pv(h).

We estimate the terms ‖pv
i (h)−pv

i (0)‖L2 and ‖pv
i (h)−pv

i (0)‖L∞ using (3.4.12). Finally,

it remains only to consider the terms ‖Dxk
(pv

i (h) − pv
i (0))‖L2. To estimate these we

use (3.4.19) in combination with (3.4.20) and obtain

‖Dxk
(pv

i (h)− pv
i (0))‖2

L2 ≤ Ĉh2 (3.4.23)

for a constant Ĉ which depends on ε, T , ‖v‖C0([0,T ],H1) and
∑m

i=1 ‖pv
i (0)‖H1. Thus

overall we find that

‖pv
i (h)− pv

i (0)‖2
H1 + ‖pv

i (h)− pv
i (0)‖2

L∞ ≤ C
(
h2 +

∫ t

0

‖v(s + h)− v(s)‖2
H2 ds
)

for a suitable constant C. Hence, we have proven (3.4.13).

(C) The active membrane equation

For a given v ∈ B•(ε, T ) let pv denote the unique solution of the gating system given by
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Lemma 3.4.1. We then consider the non-autonomous initial boundary value problem

u̇v =
(
A− f1(pv(s))

)
uv + f2(pv(t)) + I(t),

uv(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D,

uv(0) = u0 .

(3.4.24)

Due to Lemma 3.4.1 it holds that pv
i satisfies pv

i ∈ H1((0, T ), L2) ∩ C0([0, T ], L2).

Moreover, ‖pv‖L∞((0,T )×D) ≤ 1 yields that ‖f1(pv)‖L∞((0,T )×D) is bounded indepen-

dently of v. Finally, f1(pv) ∈ H1((0, T ), L2) and due to the chain rule we obtain for

almost all t ∈ [0, T ] that

d

dt
f1(p

v(t)) =
m∑

i=1

∂pif1(p
v(t)) ṗv

i (t) ,

where each individual term, i.e., pv, ∂pif1 and ṗv
i (t), is almost everywhere bounded.

Thus, the norm ‖ d
dtf1(pv)‖L∞((0,T )×D) can be bounded independently of v ∈ B•(ε, T ).

Obviously, analogous results hold for f2(pv(s)) ∈ H1((0, T ), L2).

(a) Therefore, it follows that under the assumptions of part (a) of Theorem 3.3.1,

that is, u0 ∈ H1
0 and I ∈ L2((0, T ), L2), there exists for every v ∈ B(a)(ε, T ) a

unique solution uv to (3.4.24) such that

uv ∈ L2((0, T ), H2) ∩ L∞((0, T ), H1
0) .

(b) The assumptions of part (b) in Theorem 3.3.1, that is, u0 ∈ H1
0 ∩ H2 and I ∈

H1((0, T ), L2), imply that for every v ∈ B(b)(ε, T ) there exists a unique solution

uv to (3.4.24) such that

uv ∈ L∞((0, T ), H2) .

Obviously the solution u depends on the choice of v ∈ B•(ε, T ). Thus we can define a

solution map P which assigns to every v the corresponding unique solution uv of the

active membrane equation (3.4.24), that is,

P : B•(ε, T ) ⊂ L2((0, T ), L2) → L2((0, T ), L2) : v +→ P (v) := uv.

In order to prove the existence of a solution to the coupled system of the membrane

equation and the gating variables we aim to apply a fixed point theorem on the

solution map P . To this end we have to prove the following properties: P maps into

B•(ε, T ) and it is a contraction thereon. The statement is presented in the following
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lemma.

Lemma 3.4.2. For every ε > 0 there exists a time T (ε) > 0 such that for all T < T (ε)

the solution map P maps B•(ε, T ) into itself and it is a contraction in L2((0, T ), L2),

i.e., there exists a γ < 1 such that for all v, u ∈ B•(ε, T ) it holds that

‖P (v)− P (u)‖L2((0,T ),L2) ≤ γ ‖v − u‖L2((0,T ),L2) . (3.4.25)

Proof. The proof is split into two parts. We show (i) that for small enough T the

solution map P maps B•(ε, T ) into itself and (ii) that it is a contraction.

(i) Firstly, we want to find a T (ε) such that P maps B•(ε, T ) into itself for all

T < T (ε). To this end we have to consider the difference of a solution P (v) of

(3.4.24) for a given v ∈ B•(ε, T ) to the solution w of the passive membrane equation

(3.4.7). Define z := P (v) − w and observe that z solves the initial-boundary value

problem

ż =
(
A− f1(pv(s))

)
z − f1

(
pv(s)
)
w(s) + f2

(
pv(s)
)
,

z(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D,

z(0) = 0 .

Thus z satisfies due to Theorem C.0.3 in case (a) the estimate

‖P (v)− w‖L∞([0,T ],H1) ≤ C1

∥∥f1(p
v)w + f2(p

v)
∥∥

L2((0,T ),L2)
,

or in case (b) the estimate

‖P (v)− w‖L∞([0,T ],H2) ≤ C1

∥∥f1(p
v)w + f2(p

v)
∥∥

H1((0,T ),L2)

for an appropriate constant C1 < ∞ depending only on T , the domain D, the co-

efficients of the operator A and the L∞((0, T ) × D)–norm of f1(pv(t)) and its first

derivative with respect to t, cf. Remark C.0.1. This yields that the constant C1 can

be chosen independently of v ∈ B•(ε, T ). We next consider the bounds in the above

right hand sides which depend on v and derive estimates independent of v ∈ B•(ε, T ).

Note that the dependence on w is irrelevant as w is fixed for a fixed initial condition

u0 and current input I.

(i.1) We start considering the norm in L2((0, T ), L2). Then the pointwise bounds

almost everywhere yield the estimate

∫ T

0

‖f1(p
v(s))w(s)‖2

L2 dt ≤ |D|
∫ T

0

‖f1(p
v(s))‖2

L∞‖w(s)‖2
L∞ dt ≤ q2K2|D| T ,
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where K < ∞ is the pointwise bound on w, cf. part (A). Analogously we obtain

‖f2(pv)‖2
L2((0,T ),L2) ≤ q2|D| T .

(i.2) Next, we consider the norm in H1((0, T ), L2). First of all note that w, f1(pv)

and f2(pv) are in H1((0, T ), L2). Furthermore for the product f1(pv)w the chain rule

applies as both factors as well as the first temporal derivative of f1(pv) are almost

everywhere bounded and thus f1(pv)w and w d
dtf1(pv) + f1(pv)ẇ are in L2((0, T ), L2).

Furthermore, the regularity of w implies that ẇ is bounded in L2((0, T ), L2). Hence,

in order to estimate the norm of f1(pv)w in H1((0, T ), L2) it remains to estimate

‖ d
dtf1(pv)‖L2((0,T ),L2). For this term the chain rule gives, in the case of the full gating

system,

d
dtf1(p

v(t)) =
m∑

i=1

∂pif1(p
v(s))

m∑

j=1

pv
j (s)qji(v(s)) .

Here each individual term, i.e., ∂pif1, qij and pv
i , is almost everywhere bounded by

assumption or the preceding considerations. Particularly, the bounds are independent

of v ∈ B•(ε, T ). Therefore the derivative d
dtf1(pv(t)) is bounded almost everywhere

independently of v ∈ B•(ε, T ). Analogously we obtain a bound for d
dtf2(pv) indepen-

dently of v ∈ B•(ε, T ). Obviously, analogous reasoning yields the same result for the

reduced gating system.

Hence, we infer that there exists a constant C(ε, T ) < ∞ depending on ε and T such

that
(a) ‖P (v)− w‖L∞((0,T ),H1

0 ) ≤ C(ε, T )
√

T ,

(b) ‖P (v)− w‖L∞((0,T ),H2) ≤ C(ε, T )
√

T .

In each case we set T (ε) := (ε/C(ε, T ))2 which yields that for all T ∗ ≤ T (ε) the

solution P (v) is in B•(ε, T ∗).

(ii) We proceed to prove that the solution map forms a contraction. Let T < T (ε) as

derived in (i) and v, u be in B•(ε, T ) which implies that P (v), P (u) ∈ B•(ε, T ). Next,

define z := P (v) − P (u) and observe that z is the solution to the initial-boundary

value problem

ż =
(
A− f1(pv(t))

)
z + F (t),

z(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D,

z(0) = 0 ,

where the inhomogeneous term F is given by

F (t) :=
(
f1(p

u(t))− f1(p
v(t))
)
P (u)(t) + f2(p

v(t))− f2(p
u(t)). (3.4.26)

Due to preceding regularity results we infer that F ∈ L2((0, T ), L2). Thus taking the
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duality pairing of ż(t) with z(t) in H1
0 we obtain

〈ż(t), z(t)〉H1 = 〈Az(t), z(t)〉H1 − (f 1(v)z(t), z(t))L2 + (F (t), z(t))L2 .

We next estimate this equality considering each term in the right hand side separately.

To estimate the first we employ the coercivity of the linear operator A, i.e., there exist

ξ1, ξ2 > 0 such that −〈Az(t), z(t)〉H1 ≥ ξ1‖u‖2
H1− ξ2‖z(t)‖2

L2 . For the second term we

employ the fact that (f1(v)z(t), z(t))L2 is non-negative as f1 is non-negative. Finally

the third terms is estimated using the Cauchy-Schwarz in combination with Young’s

inequality. Then we obtain

d

dt
‖z(t)‖2

L2 ≤ (2ξ2 + 1) ‖z(t)‖2
L2 + ‖F (t)‖2

L2 .

Integrating both sides of this inequality over [0, t] and setting Ĉ := 2ξ2 + 1 yields

‖z(t)‖2
L2 ≤ Ĉ

∫ t

0

‖z(s)‖2
L2 ds +

∫ t

0

‖F (s)‖2
L2 ds .

We apply Gronwall’s Lemma to this inequality and obtain for all t ≤ T

‖z(t)‖2
L2 ≤ e

bCt ‖F‖2
L2((0,T ),L2) .

Again, integrating both sides of this inequality over [0, T ] we obtain

‖z‖2
L2((0,T ),L2) ≤ Ĉ−1(eCT − 1) ‖F‖2

L2((0,T ),L2) . (3.4.27)

Finally, we estimate the norm of the inhomogeneous term F by

‖F‖2
L2((0,T ),L2) =

∫ T

0

∥∥P (u)(t)
(
f1(p

u(t))− f1(p
v(t))
)

+ f2(p
v(t))− f2(p

u(t))
∥∥2

L2 dt

≤ 2‖P (u)‖2
L∞((0,T )×D)

∫ T

0

‖f1(p
v(t))− f1(p

u(t))‖2
L2 dt

+ 2

∫ T

0

‖f2(p
v(t))− f2(p

u(t))‖2
L2 dt .

Due to the local Lipschitz continuity of the functions f1, f2 and the estimate (3.4.11)

– note that we have the same initial conditions for the two solutions of the gating
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system – we obtain from this last inequality that

‖F‖2
L2((0,T ),L2) ≤ 4

(
LTC
)2 (

1 + ‖P (u)‖2
L∞((0,T )×D)

) ∫ T

0

‖v(s)− w(s)‖2
L2

ds

≤ 4
(
LTC
)2

(1 + K + K1ε)
2 ‖v − w‖2

L2((0,T ),L2) ,

where the constant C depends only on ε and T . Here the second inequality is valid

as K + K1ε is a pointwise bound almost everywhere for all elements v ∈ B•(ε, T ),

cf. part (A). A combination of this last estimate with (3.4.27) yields

‖P (v)−P (u)‖2
L2((0,T ),L2) ≤ 4

(
LTC
)2

(1 + K + K1ε)
2 Ĉ−1 (e

bCT − 1) ‖v− u‖2
L2((0,T ),L2).

Thus contractivity follows for the map P for T (ε) sufficiently small such that

γ2 := 4
(
LTC
)2

(1 + K + K1ε)
2Ĉ−1(e

bCT − 1) < 1 ∀T < T (ε) .

We note that it is guaranteed that γ2 → 0 for T → 0 as the specific structure of the

constant C arising from an application of (3.4.11) is decreasing for T → 0.

(D) Local and global existence of solutions

To finish the proof we first present a local existence result, which is afterwards

extended to a global result.

Lemma 3.4.3. (a) Let d = 1, then for every set of initial conditions u0 ∈ H1
0 and

pi(0) ∈ H1, i = 1, . . . , m, and any input current I ∈ L2((0, T ), L2), there exists

a T > 0 such that the generalised excitable media system (3.3.5), equipped with

Dirichlet boundary conditions and coupled to (3.3.7) or (3.3.6), possesses a unique

weak solution (u, p) on (0, T ) satisfying

u ∈ L2((0, T ), H2) ∩H1((0, T ), L2) ⊂ C0([0, T ], H1
0),

pi ∈ C1([0, T ], H1) ∀ i = 1, . . . , m .

(b) Let d ≤ 3, then for every set of initial conditions u0 ∈ H1
0 ∩H2 and pi(0) ∈ H2,

i = 1, . . . , m, and any input current I ∈ H1((0, T ), L2) ∩ L2((0, T ), H1
0), there

exists a T > 0 such that the generalised excitable media system (3.3.5), equipped

with Dirichlet boundary conditions and coupled to (3.3.7) or (3.3.6), possesses a
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unique weak solution (u, p) on (0, T ) satisfying in addition to (a)

u ∈ L2((0, T ), H3) ∩H1((0, T ), H1) ⊂ C0([0, T ], H2) ∩ C1([0, T ], L2),

pi ∈ C1([0, T ], H2) ∀ i = 1, . . . , m .

Proof. We have split the proof into two parts. First, (i) the Banach Fixed Point

Theorem is used to establish existence of a solution, then in (ii) uniqueness of this

solution is shown.

(i) Due to Lemma 3.4.2 and under the conditions of the above lemma the solution

map v +→ P (v) is a contraction on the complete metric space B•(ε, T ) for small

enough T > 0. Hence, due to the Banach Fixed Point Theorem there exists a unique

fixed point u ∈ B•(ε, T ) of the solution map, i.e., u = P (u). Thus, u solves the

initial-boundary value problem

u̇ = Au− f1(pu(t)u + f2(pu(t)) + I(t),

u(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D,

u(0) = u0 .

Here (a) pu ∈ H1((0, T ), H1) or (b) pu ∈ H1((0, T ), H2), respectively, is the unique

solution to the gating system such that u is the input function out of B•(ε, T ) in

the sense of Lemma 3.4.1. Hence (u, pu) is a solution to the general excitable media

system (3.3.5), equipped with Dirichlet boundary conditions and coupled to (3.3.7)

or (3.3.6), satisfying, in particular,

(a) u ∈ C0([0, T ], H1) , (b) u ∈ C0([0, T ], H2) . (3.4.28)

Statement (a) in (3.4.28) follows immediately from Theorem C.0.3 (a) and Remark

C.0.1. In order to employ these results we reason in the following way: We have

already established that u is a weak solution to (3.3.5), almost everywhere bounded

and satisfying certain regularity conditions weaker than (3.4.28). To proceed we in-

terpret u as a solution to a linear parabolic PDE where the zeroth order term c̃ of

the linear operator is given by c̃(t) := c + f1(pu(t)) and the inhomogeneous term by

f2(pu(t)) + I(t). To this linear PDE we can now apply the results in Appendix C.

Similarly as (a) we infer (b) in (3.4.28) as stated in Remark C.0.1. To this end we

have to check for the conditions that arise on f1(pu) and f1(pu): Firstly, note that

pu ∈ L∞((0, T ), H2) implies due to the chain rule that d
dtf1(pu) ∈ L4((0, T ), L4) and

f2(pu) ∈ H1((0, T ), L2). Secondly, the chain rule and the fact that pu ∈ C0([0, T ], H2)

further allows to infer that f1(pu) ∈ L∞((0, T ), H1) ∩ L2((0, T ), H2). Thirdly, analo-
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gously we obtain f2(pu) ∈ L2((0, T ), H2) ∩H1((0, T ), L2). This completes the set of

conditions necessary to infer (b) in (3.4.28). Overall, we have obtained the proposed

regularity of the solution component u as proposed in Lemma 3.4.3.

Finally note that due to Lemma 3.4.1 the regularity (3.4.28) of u implies the improved

regularity of the gating variables, i.e., (a) pu
i ∈ C1([0, T ], H1) or (b) C1([0, T ], H2),

respectively. Hence, the existence part of Lemma 3.4.3 is proved.

(ii) It remains to show uniqueness of the solution u in L2((0, T ), L2). This is accom-

plished using the same argument as in [81] which we repeat for the sake of complete-

ness. Assume that ũ is another solution, then it has to hold |ũ(t, x)−w(t, x)| ≤ K+K1ε

for small enough t. Further assume that t∗ is the largest time t ≤ T such that ũ is in

the set B•(ε, t). Due to the uniqueness of the fixed point in the Banach Fixed Point

Theorem it follows that ũ = u in L2((0, t∗), L2). Then, on the one hand, if t∗ = T we

have obtained uniqueness of the solution on [0, T ]. On the other hand if t∗ < T we

apply the same argument again for the local solution started at the new initial point

u∗
0 = ũ(t∗) = u(t∗) and obtain a contradiction to the maximality of t∗.

The proof of well-posedness of the general excitable media system is completed by

the following result extending local existence and uniqueness of a solution to a global

existence result.

Theorem 3.4.1. (a) Let d = 1, then for every T > 0, every set of initial conditions

u0 ∈ H1
0 , pi(0) ∈ H1, i = 1, . . . , m, and any input current I ∈ L2((0, T ), L2),

the generalised excitable media system (3.3.5), equipped with Dirichlet boundary

conditions and coupled to (3.3.7) or (3.3.6), possesses a unique weak solution

(u, p) on (0, T ) satisfying

u ∈ L2((0, T ), H2) ∩H1((0, T ), L2) ⊂ C0([0, T ], H1
0)

pi ∈ C1([0, T ], H1) ∀ i = 1, . . . , m.

(b) Let d ≤ 3, then for every T > 0, every set of initial conditions u0 ∈ H1
0 ∩

H2, pi(0) ∈ H2, i = 1, . . . , m, and any input current I ∈ H1((0, T ), L2) ∩
L2((0, T ), H1

0), the generalised excitable system, (3.3.5), equipped with Dirichlet

boundary conditions and coupled to (3.3.7) or (3.3.6), possesses a unique weak

solution (u, p)on (0, T ) satisfying in addition to (a)

u ∈ L2((0, T ), H3) ∩H1((0, T ), H1) ⊂ C0([0, T ], H2) ∩ C1([0, T ], L2)

pi ∈ C1([0, T ], H2) ∀ i = 1, . . . , m.
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Moreover, in both cases the solution depends continuously on the initial data u0, p0

and the current input I.

Proof. The proof is again split into two parts. Firstly, (i) we prove the existence and

uniqueness of a global solution and secondly, (ii) we show the continuous dependence

on the initial data u0 and I. We note that throughout the subsequent proof we

regularly use the same symbol C to denote different finite constants. The dependence

of constants C is always explained in the context.

(i) In order to prove global existence of a solution, i.e., existence for for ever T > 0,

we employ the local existence result in Lemma 3.4.3 and piece together local solutions.

That is we use the endpoint of the first solution as the new initial value of the following

and thus obtain existence on a larger interval. The difficulty here is that the time

T ∗ for which a local solution exists depends on the initial condition. Hence, with

varying initial conditions it is possible that the times of existence of subsequent local

solution pieced together become smaller and smaller and sum up approaching a finite

value T0 < ∞. Then, a global solution does not exist. In the following we prove by

contradiction that this scenario cannot be the case motivated by the method of proof

employed in [81].

Let T0 be the maximal time in [0,∞] such that a solution (u, p) to the excitable media

system exists for all T ∈ [0, T0) and assume T0 <∞. Then we define

‖u‖C0([0,T0],L2) := lim
T→T0

‖u‖C0([0,T ],L2) ,

‖u‖C0([0,T0],H1) := lim
T→T0

‖u‖C0([0,T ],H1) .
(3.4.29)

It holds that these two limits are finite for T0 < ∞ due to the estimates in Theorem

C.0.3 (a) and Remark C.0.1, cf. the explanation of the applicability of these results in

the present situation following (3.4.28). In case d = 1, i.e., under the assumptions of

part (a), the finiteness of the limits (3.4.29) now implies that there exists a constant

κ <∞ such that it holds |u(t, x)| ≤ κ almost everywhere on (0, T )×D for all T < T0.

Under the assumptions in part (b) we define the limits

‖u‖L∞([0,T0],H2) := lim
T→T0

‖u‖L∞([0,T ],H2) ,

‖u̇‖C0([0,T0],L2) := lim
T→T0

‖u̇‖C0([0,T ],L2) .
(3.4.30)

Again these limits are finite due to Theorem C.0.3(b) and Remark C.0.1 as the norms

‖ d
dtf1(p)‖L4((0,T ),L4) and ‖f2(p)‖H1((0,T ),L2) can be bounded independently of T < T0:

We start showing the former. Considering, for example, the full gating system the
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chain rule yields the derivatives

d
dtf1(p(t)) =

m∑

i=1

∂pif1(p(t))
m∑

j=1

pj(t)qji(u(t)) .

The terms ∂pif1(p(t)) and pj(t) are almost everywhere bounded independently of

T < T0. Thus in order to estimate the norm ‖ d
dtf1(p)‖L4((0,T ),L4) it suffices to estimate

the norm ‖qji(u)‖L4((0,T ),L4). Due to the polynomial growth condition (EC3) on qji we

obtain for a γ ∈ N

‖qji(u)‖4
L4((0,T ),L4) ≤ C

∫ T

0

∫

D

(1 + |u(t, x)|γ)4 dx dt ≤ 6CT + 6C
4∑

l=1

∫ T

0

‖u(t)‖lγ
Llγ dt

for a suitable constant C. The Sobolev Embedding Theorem states that H2 ↪→ Lp for

all p ≤ ∞ and thus , in order to bound the above norm, it suffices to derive estimates

of the form

‖u‖Llγ((0,T ),H2) ≤ M̃ ∀T < T0, l = 1, . . . , 4 (3.4.31)

for some finite constant M̃ . An obvious modification of the estimation procedure in

the proof of [43, Chap. 7,Thm. 5(a)]7 shows that

∫ T

0

‖u(t)‖lγ
H2 dt ≤ C

(∫ T

0

‖f2(p(t)) + I(t)‖lγ
L2 dt + ‖u0‖lγ

H1

)
,

where the constant C depends only on the coefficients of the linear operator A.

Now the statement (3.4.31) follows as, on the one hand, the term f2(p(t)) is al-

most everywhere bounded independently of t < T0 and, on the other hand, I ∈
H1((0, T ), L2) implies I ∈ C0([0, T ], L2) ⊂ Llγ((0, T ), L2). Overall, we have obtained

that ‖qij(u)‖L4((0,T ),L4) is bounded independently of T < T0. This in turn implies that

‖ d
dtf1(p)‖L4((0,T ),L4) is bounded independently of T < T0.

Analogously we obtain that ‖ d
dtf2(p)‖L2((0,T ),L2) is bounded independently of T < T0

and hence we infer that ‖f2(p)‖H1((0,T ),L2) is bounded independently of T < T0.

Finally, we remark that completely analogous considerations apply to the reduced

gating system. Overall, these considerations show that the limits (3.4.30) exist.

Finally, the finiteness of ‖u‖L∞([0,T0],H2) implies that also in case d ≤ 3 and under the

assumptions of (b) there exists a constant κ <∞ such that |u(t, x)| ≤ κ holds almost

everywhere on (0, T )×D for all T < T0. As the pointwise bound κ depends only on

7This result in [43] proves, in the notation of the present situation, that

∫ T

0
‖u(t)‖2H2 dt ≤ C

(∫ T

0
‖f2(p(t)) + I(t)‖2L2 dt + ‖u0‖2H1

)
.

This should give an idea what kind of modifications in the estimation procedure are needed.
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T0 we subsequently subsume a dependence on κ and T0 as a dependence on T0 only.

We emphasise that the ’norms’ ‖·‖C0([0,T0],•) in (3.4.29) and (3.4.30) are just a notation

for the limit of the respective norms for T ↑ T0 because a priori the existence of u(T0)

is not given. The latter is precisely what we prove in the following. That is, we prove

that the limit

u(T0) := lim
t→T0

u(t)

exist and u(T0) ∈ X where X denotes either (a) H1
0 or (b) H2. Given the existence

of u(T0), which implies that u ∈ C0([0, T0], X), we immediately obtain that the limits

pj(T0) of the gating variables exist in (a) H1 and (b) H2, respectively, due to Lemma

(3.4.1). Hence we infer that there exists a solution to the excitable media system on

the interval [0, T0]. Then, due to the local existence result starting at time T0 with

the initial condition (u(T0), p(T0)) we obtain that there exist a solution on [0, T0 +T ∗)

for some T ∗ > 0. This is a contradiction to T0 being the maximal finite time such

that a solution exist. Hence a global solution exists.

Therefore it remains to prove in the remainder of part (i) that the limit u(T0) exists.

To this end it suffices to prove that the function u is uniformly continuous, that is,

∀ ε > 0 ∃ δ > 0 : ‖u(t + h)− u(t)‖X < ε ∀h < δ, t, t + h < T0 , (3.4.32)

as every uniformly continuous function on a metric space has a unique continuous

extension to the completion of its domain of definition.

In the following we use pu := p to denote the gating component of the local solution

(u, p) to the excitable media system to emphasise the dependence on the component

u. We set v(t) := u(t + h), then v(t) solves the initial-boundary value problem

v̇ =
(
A− f1(pu(t + h))

)
v + f2(pu(t + h)) + I(t + h),

v(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D,

v(0) = u(h) .

Here we can identify pv(t) = pu(t + h) with pv(0) = pu(h). Next we define uh(t) :=

v(t)− u(t) and observe that uh solves the initial-boundary value problem

u̇h =
(
A− f1(pu(t + h))

)
uh + Fh(t),

uh(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D,

uh(0) = u(h)− u0 ,

(3.4.33)
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where

Fh(t) := −
(
f1(p

u(t+h))−f1(p
u(t))
)
u(t)+
(
f2(p

u(t+h))−f2(p
u(t))
)
+
(
I(t+h)−I(t)

)
.

Due to Theorem C.0.3 and Remark C.0.1 the solution uh satisfies for all t ≤ T such

that T + h < T0 the estimate (a)

‖u(t + h)− u(t)‖2
H1 ≤ Ca

(
‖u(h)− u0‖2

H1 + ‖Fh(t)‖2
L2((0,T ),L2)

)
, (3.4.34)

and (b)

‖u(t + h)− u(t)‖2
H2 ≤ Cb

(
‖u(h)− u0‖2

H2 + ‖Fh(t)‖2
H1((0,T ),L2) + ‖Fh(t)‖2

L2((0,T ),H1)

)
.

(3.4.35)

Most importantly the constants Ca, Cb can be chosen independently of T ∈ [0, T0):

Initially, as provided by Theorem C.0.3 (a) a constant Ca satisfying (3.4.34) depends

on T, D, the operator A and ‖f1(pu(h + ·))‖L∞((0,T )×D). However, this last norm can

be bounded independently of T ∈ [0, T0). Therefore the constant Ca can be chosen

independently of T ∈ [0, T0).

In addition to the dependencies of Ca the constant Cb in (3.4.35) depends also on

‖ d
dtf1(pu(h+ ·))‖L∞((0,T )×D) and ‖f1(pu(h+ ·))‖L∞((0,T ),H1). As the solution u is almost

everywhere bounded by κ independently of T ∈ [0, T0) it follows that the first of

these norms is bounded almost everywhere independently of T ∈ [0, T0). That also

the second can be bounded independently of T ∈ [0, T0) holds due to (3.4.20) as

‖u‖L∞((0,T )×D) and ‖u‖C0([0,T ],H1) are bounded independently of T ∈ [0, T0) due to the

existence of the limits (3.4.29) and (3.4.30).

The next step in the proof is to derive estimates for the norms of the term Fh in the

right hand sides of (3.4.34) and (3.4.35) such that Fh → 0 for h → 0. To this end we

split Fh(t) = fh(t) +
(
I(t + h)− I(t)

)
where

fh(t) := −
(
f1(p

v(t))− f1(p
u(t))
)

u(t) +
(
f2(p

v(t))− f2(p
u(t))
)

and consider the two terms separately starting with fh. That is we first estimate (i.1)

the norm ‖fh‖L2((0,T ),L2) and in the case of (b) also the norms (i.2) ‖fh‖H1((0,T ),L2)

and (i.3) ‖fh‖L2((0,T ),H1). Then in (i.4) the same norms are considered for the term

I(t + h) − I(t). Finally, in part (i.5) these estimates are combined and applied to

(3.4.34) and (3.4.35) and we infer uniform continuity of u.

(i.1) Note that the term fh(t) has the same structure as the term F , see (3.4.26), in

the proof of Lemma 3.4.2. Hence by analogous considerations and using the inequality
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(3.4.11) we obtain the estimate

‖fh‖2
L2((0,T ),L2) ≤ 4L2(m+T 2) (1+κ)2 C2

( m∑

i=1

‖pv
i (0)−pu

i (0)‖2
L2+

∫ T

0

‖v(s)−u(s)‖2
L2 ds
)
,

where the constant C depends only on κ and T0. As pv(0) = pu(h), an application of

the Lipschitz-type estimate (3.4.12) yields overall the estimate

‖fh‖2
L2((0,T ),L2) ≤ C

(
h2 +

∫ T

0

‖v(s)− u(s)‖2
L2 ds
)

, (3.4.36)

where the constant C <∞ can be chosen independently of T ∈ [0, T0).

(i.2) We next estimate the norm ‖ d
dtfh‖L2((0,T ),L2). In earlier considerations we have

already established that under the additional assumptions of (b) the chain and product

rule applies. Thus it holds for almost all t ∈ (0, T0) that

‖ d
dtfh(t)‖2

L2 = (2m + 1)
(∥∥(f1(p

v(t))− f1(p
u(t))
)
u̇(t)‖2

L2

+
m∑

i=1

∥∥(ṗv
i (t) ∂pif1(p

v(t))− ṗu
i (t)∂pif1(p

u(t))
)
u(t)‖2

L2 (3.4.37)

+
m∑

i=1

∥∥ṗv
i (t) ∂pif2(p

v(t))− ṗu
i (t) ∂pif2(p

u(t))
∥∥2

L2

)
.

We estimate each term in the right hand side if (3.4.37) separately. Firstly, due to

the local Lipschitz condition on f1 we obtain

∥∥(f1(p
v(t))− f1(p

u(t))
)
u̇(t)
∥∥2

L2 ≤ ‖f1(p
v(t))− f1(p

u(t))‖2
L∞‖u̇(t)‖2

L2

≤ q(κ)2 ‖u̇‖2
C0([0,T0],L2)

m∑

j=1

‖pv
j (t)− pu

j (t)‖2
L∞ ,

where we have employed that ‖u̇(t)‖2
L2 ≤ ‖u̇‖C0([0,T0],L2) for all t < T0. Furthermore,

as v(t) = u(t + h) we obtain due to the Lipschitz-type inequality (3.4.12)

m∑

j=1

‖pv
j (t)− pu

j (t)‖2
L∞ ≤ C

(
h2 +

∫ t

0

‖v(t)− u(t)‖2
L∞ ds
)

,

where the constant C depends on κ and T0. Finally, using the continuous embedding

H2 ↪→ C0 yields overall the estimate

∥∥(f1(p
v(t))− f1(p

u(t)))u̇(t)
∥∥2

L2 ≤ C
(
h2 +

∫ t

0

‖v(t)− u(t)‖2
H2 ds
)

(3.4.38)
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for a suitable constant C < ∞ independent of T ∈ [0, T0).

Next we extend the individual terms in the sums in the second and third row in the

right hand side of (3.4.37) by ±(ṗu
i ∂pif1(pv))u and ±ṗu

i ∂pif2(pv), respectively, and

estimate analogously as above. That is, we use the fact that |u(t, x)| ≤ κ almost every-

where, the local Lipschitz and boundedness assumptions on the functions f1, f2, their

first derivatives and the rate functions qij and the Lipschitz-type estimate (3.4.12) to

obtain

∥∥(ṗv
i (t) ∂pf1(p

v(t))− ṗu
i (t)∂pif1(p

u(t))
)
u(t)
∥∥2

L2

≤ C
(
h2 + ‖v − u‖2

L2 +

∫ t

0

‖v(s)− u(s)‖2
L2 ds
)

, (3.4.39)

and

‖ṗv
i (t) ∂pif2(p

v(t))− ṗu
i (t) ∂pif2(p

u(t))‖2
L2

≤ C
(
h2 + ‖v − u‖2

L2 +

∫ t

0

‖v(s)− u(s)‖2
L2 ds
)

(3.4.40)

for suitable constants C < ∞ independent of T ∈ [0, T0).

Then, a combination of the inequalities (3.4.37) – (3.4.40) and employing the contin-

uous embedding H2 ↪→ L2 yields that overall it holds

‖ d
dtfh(t)‖2

L2 ≤ C
(
h2 + ‖v(t)− u(t)‖2

H2 +

∫ t

0

‖v(t)− u(t)‖2
H2 ds
)

for a suitable constant C < ∞ independent of T ∈ [0, T0). Integrating both sides of

this inequality over (0, T ) we obtain the estimate

‖ d
dtfh‖2

L2((0,T ),L2) ≤ C
(
h2 +

∫ T

0

‖v(t)− u(t)‖2
H2 ds
)

(3.4.41)

for a suitable constant C < ∞ independent of T ∈ [0, T0). We emphasise at this point

that the constant C, however, does depend on T0.

(i.3) Finally, we estimate ‖fh‖L2((0,T ),H1). As we have already estimated the norm

‖fh‖L2((0,T ),L2) in part (i.1) it remains to consider the norms ‖Dxifh‖L2((0,T ),L2) for
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i ≤ d. For almost all t we get the sequence of estimates

∥∥Dxi

(
f2(p

v(t))− f2(p
u(t))
)∥∥2

L2

≤ 2m
m∑

j=1

(
‖
(
Dxip

v
j (t)−Dxip

u
j (t)
)
∂pjf2(p

v(t))‖2
L2

+ ‖Dxip
u
j (t)
(
∂pjf2(p

u(v))− ∂pjf2(p
u(t))
)
‖2

L2

)

≤ 2m
m∑

j=1

(
q(κ)2 ‖Dxip

u
j (t + h)−Dxip

u
j (t)‖2

L2 +

+ ‖Dxip
u
j (t)‖2

L2 ‖∂pjf2(p
u(t + h))− ∂pjf2(p

u(t))‖2
L∞

)

≤
m∑

j=1

(
q(κ)2 ‖Dxip

v(t)−Dxip
u(t)‖2

L2 +

+ Cpj(T )2 L2
m∑

k=1

‖pv
k(t))− pu

k(t))‖2
L∞

)
,

where L is an appropriate local Lipschitz constant for p +→ ∂pjf2(p) and Cpj(T ) :=

‖pu
j ‖L∞((0,T ),H1) for all j = 1, . . . , m. Moreover, as T0 an ‖u‖C0([0,T0],H1) are finite,

(3.4.20) implies that there exists a common upper bound to the constants Cpj(T ) for

all j = 1, . . . , m, independent of T ∈ [0, T0).

Hence, after employing the Lipschitz-type estimate (3.4.12) a summation over all i ≤ d

and adding an analogous Lipschitz-type estimate for ‖f2(pu(t + h))− f2(pu(t))
∥∥2

L2 we

obtain that

∥∥f2(p
v(t))− f2(p

u(t))
∥∥2

H1

≤ C
m∑

j=1

(
‖pv

j (t) + pu
j (t)‖2

H1 + h2 +

∫ t

0

‖v(s)− u(s)‖2
H2 ds
)

for a suitable constant C < ∞ independent of T ∈ [0, T0). Finally, employing the

Lipschitz-type estimate (3.4.13) we obtain

∥∥f2(p
v(t))− f2(p

u(t))
∥∥2

H1 ≤ C
(
h2 +

∫ t

0

‖v(s)− u(s)‖2
H2 ds
)

(3.4.42)

for a suitable constant C < ∞ independent of T ∈ [0, T0).
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Ultimately, for the only term left to consider we obtain the estimate

∥∥Dxi

(
(f1(p

v(t))− f1(p
u(t))) u(t)

)∥∥2
L2

≤
∥∥Dxi

(
f1(p

v(t))− f1(p
u(t))
)∥∥2

L2 ‖u(t)‖2
L∞ + ‖f1(p

v(t))− f1(p
u(t))‖2

L∞ ‖Dxiu(t)‖2
L2

≤ κ ‖Dxi

(
f1(p

v(t))− f1(p
u(t))
)∥∥2

L2 + ‖u(t)‖2
H1L2

f

m∑

j=1

‖pv
j (t)− pu

j (t)‖2
L∞ .

Now, ‖u(t)‖2
H1 ≤ ‖u‖2

C0([0,T0],H1) and the first difference in the last right hand side can

be estimated just as the analogous difference for f2 yielding (3.4.42). We apply the

Lipschitz-type inequality (3.4.12) to the difference in the gating variables and overall

obtain

∥∥f1(p
v(t))− f1(p

u(t)) u
∥∥2

H1 ≤ C
(
h2 +

∫ t

0

‖v(s)− u(s)‖2
H2 ds
)

for a suitable constant C < ∞ independent of T ∈ [0, T0) and hence

‖fh(t)‖2
H1 ≤ C

(
h2 +

∫ t

0

‖v(s)− u(s)‖2
H2 ds
)

.

Integrating both sides of this inequality over (0, T ) we obtain the estimate

‖fh‖2
L2((0,T ),H1) ≤ C

(
h2 +

∫ T

0

‖v(t)− u(t)‖2
H2 ds
)

(3.4.43)

for a suitable constant C < ∞ independent of T ∈ [0, T0).

(ii.4) Next, we estimate the input current term in Fh. To this end note that for all

t ≤ T0

∫ t

0

‖I(t + h)− I(t)‖2
L2 dt ≤

∫ T0

0

‖I(t + h)− I(t)‖2
L2 dt ≤ o(h) , (3.4.44)

as the shift operator is continuous in L2, see [81]. In case (b) it further holds that

İ(· + h) − İ ∈ L2((0, T0), L2) and I(· + h) − I ∈ L2((0, T0), H1). Hence, due to the

continuity of the shift operator we obtain in this case also that

‖I(· + h)− I‖2
H1((0,T0),L2) = o(h), ‖I(· + h)− I‖2

L2((0,T0),H1) = o(h) . (3.4.45)

(ii.5) We next combine the estimates derived in (i.1)–(i.4) and use them to estimate

the right hand sides (3.4.34) and (3.4.35). Thus in case (a) we infer from (3.4.34)
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using the estimate (3.4.36) and (3.4.44) that

‖uh(T )‖2
H1 ≤ C

(
‖uh(0)‖2

H1 + o(h) +

∫ T

0

‖uh(s)‖2
L2 dt
)

and in part (b) we infer from (3.4.35) using additionally the estimates (3.4.41), (3.4.43)

and (3.4.45) that

‖uh(T )‖2
H2 ≤ C

(
‖uh(0)‖2

H2 + o(h) +

∫ T

0

‖uh(s)‖2
H2 dt
)

for all T ∈ [0, T0) such that T + h ∈ [0, T0) and the constant C depends only on T0.

Then an application of Gronwall’s Lemma yields

(a) ‖uh(t)‖2
H1 ≤ CeCT0

(
o(h) + ‖uh(0)‖2

H1

)
,

(b) ‖uh(t)‖2
H2 ≤ CeCT0

(
o(h) + ‖uh(0)‖2

H2

)
.

Finally, as (a) u ∈ C0([0, T ], H1) and (b) u ∈ C0([0, T ], H2) for all T < T0 it follows

that ‖uh(0)‖X = ‖u(h)− u0‖X becomes arbitrarily small for h → 0 in the respective

norm X = H1 or X = H2. In particular, for every ε > 0 there exists δ > 0 such that

‖uh(t)‖X < ε for all h < δ and any t such that t + h < T0, i.e., uniform continuity

(3.4.32) holds.

Overall we infer that the limit u(T0) exists in the space H1
0 or H2 respectively and

the contradiction to the maximality and finiteness of T0 follows. The existence part

of the proof is completed. Finally, uniqueness follows from the uniqueness of the local

solution.

(iii) It remains to show the continuous dependence on the initial data. Let (u, pu)

and (v, pv) denote the solutions to two different set of initial conditions (u0, pu
0), (v0, pv

0)

and two different input currents Iu and Iv. Then the difference z := u − v between

the two solutions satisfies the equation

ż =
(
A− f1(pu(t))

)
z + F (t),

z(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D,

z(0) = u0 − v0 ,

where

F (t) := −
(
f1(p

v(t))− f1(p
u(t))
)
v(t) +

(
f2(p

u(t))− f2(p
v(t))
)

+
(
Iu(t)− Iv(t)

)
.

We note that this is exactly the same structure as the initial-boundary value problem
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(3.4.33) we consider in part (ii). Therefore using the same arguments we obtain for

all t ≥ 0 the estimates (a)

‖u(t)− v(t)‖2
H1 ≤ C1

(
‖u0 − v0‖2

H1 +
m∑

i=1

‖pu
i (0)− pv

i (0)‖2
H1 + ‖Iu − Iv‖2

L2((0,T ),L2)

)

+ C1

∫ t

0

‖u(t)− v(t)‖2
H1ds

and (b)

‖u(t)− v(t)‖2
H2 ≤ C1

(
‖u0 − v0‖2

H2 +
m∑

i=1

‖pu
i (0)− pv

i (0)‖2
H2 + ‖Iu − Iv‖2

H1((0,T ),L2)

+ ‖Iu − Iv‖2
L2((0,T ),H1)

)
+ C1

∫ t

0

‖u(t)− v(t)‖2
H2ds ,

where the constants C1, C2 may depend on t. An application of Gronwall’s inequality

yields the proposed dependence of u on the initial data. Finally, the continuous

dependence on the initial data of the gating variables can be established along the

lines of establishing the Lipschitz-type estimates of Lemma 3.4.1. For the sake of

brevity of presentation and avoiding repetition we omit the detailed calculations.

The proof of well-posedness of the general excitable media system is completed.

3.4.3 Invariant regions equations of excitable media

One of the statements of Theorem 3.1.1 is that the membrane variable, i.e., solutions

to the PDE problem (3.1.2) with coefficients (3.1.3) or (3.1.4), remains bounded,

that is, it stays in the physiological domain, whenever the initial values are in this

domain. The consequence of modelling the conductances as, e.g., point sources (3.1.3)

or by (3.1.4), is that we have to deal with non-smooth coefficients. The usual way

of treating this is to approximate the solutions of the problem by smooth functions

satisfying the same PDE problem, prove the desired results in this case, and then

ensure that the result carries over in the limit of the smooth approximations to the

solution of the original problem. In particular, we prove a more general statement,

which is formulated in Theorem 3.4.2 below, than the boundedness of solutions to

the cable equation (3.1.2) in the sense that we consider general parabolic PDEs on

arbitrary domains D ⊂ Rd. Then this result can be readily applied to the various

extensions of the models discussed in Section 3.1.1 as well as, with slight adaptations,

for deterministic models of excitable media. This provides the proof of Proposition

3.3.1 as announced. The proofs we present in this section mainly rely on results from
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functional analysis and we refer to [2, 122] for the theoretical background.

Next we first describe the setting generalising that of hybrid stochastic models con-

sidered in Theorem 3.1.1, and the approximating smoothed sequence. Then Theorem

3.4.2 is stated and proved. Finally, at the end of the section we discuss the various

applications of the theorem in Sections 3.1 and 3.3.

Subsequently D denotes a bounded domain in Rd with sufficiently smooth boundary

∂D with D = D ∪ ∂D denoting the closure of D. Function spaces always refer to

spaces of real-valued functions over the domain D, e.g., H1
0 = H1

0 (D), or the closure

D for spaces of continuous functions, respectively, e.g., C0 = C0(D). Further, we

note that the duality pairing 〈·, ·〉H1 in H1
0 is understood as the inner product on L2

whenever the inner product is well defined.

Let u ∈ L2((0, T ), H1
0) ∩ H1((0, T ), H−1) be the unique solution of the initial value

problem

u̇ = Au +
∑

i
gi di (Ei − u), ,

u(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D ,

u(0) = u0 ∈ H1
0 .

(3.4.46)

The parameters gi are non-negative, real weights and di are elements of H−1 such that

each summand gi di (vi − u) in (3.4.46) is well defined as an element of H−1. Here A

is a strongly elliptic second order partial differential operator of the form

Au =
m∑

i,j=1

(aij(x)uxi)xj +
m∑

i=1

bi(x)uxi + c(x)u (3.4.47)

with coefficients aij , bi and c sufficiently smooth, i.e., they have to be at least in L∞.

Further we consider a sequence of approximations un ∈ C2([0, T ] × D) for n ∈ N to

the solution u of (3.4.46), which are themselves solutions to the initial value problems

given by
u̇n = Anun +

∑
i
gi d

n
i (x) (Ei − un) ,

un(t, x) = 0 ∀ (t, x) ∈ [0, T ]× ∂D ,

un(0) = un
0 ∈ C∞ .

(3.4.48)

Here An are strongly elliptic second order partial differential operators of the form

Anu =
m∑

i,j=1

(an
ij(x)uxi)xj +

m∑

i=1

bn(x)uxi + cn(x)u (3.4.49)

with coefficients an
ij , bn

i and cn in C∞. Finally we state the pointwise bounds we aim
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to prove for the solution u. Let u− ≤ 0 and u ≥ 0 be such that for all n ≥ 1

cn(x)u− +
m∑

i=1

gi d
n
i (x) (Ei − u−) ≥ 0 ∀x ∈ D,

cn(x)u+ +
m∑

i=1

gi d
n
i (x) (Ei − u+) ≤ 0 ∀x ∈ D.

(3.4.50)

In particular for models of excitable media we have that c(x) ≡ 0 and thus we may

choose u− = min Ei and u+ = maxEi. Also it is typically satisfied that then u− < 0

and u+ > 0. The existence of such bounds is guaranteed if cn are non-positive and

uniformly bounded.

To establish the convergence of un to u we assume the following conditions to hold.

(i) The sequence of initial conditions un
0 converges to u0 in L2 which in particular

implies that un
0 is bounded in L2.

(ii) The coefficients an
ij , bn

i , cn converge to aij, bi and c such that An → A in the

operator norm for linear operators from H1
0 to H−1.

(iii) The sequence of operators An satisfies the uniform energy estimate

∃ C1 > 0 : |〈Anu, v〉H1| ≤ C1‖u‖H1
0
‖v‖H1

0
∀ u, v ∈ H1

0 , n ≥ 1, (3.4.51)

as well as a uniform coercivity condition, i.e.,

∃ C2 > 0, C3 ≥ 0 : −〈Anu, u〉H1 ≥ C2‖u‖2
H1

0
− C3‖u‖2

L2 ∀ u ∈ H1
0 , n ≥ 1.

(3.4.52)

We note at this point that the choice of Dirichlet boundary conditions for (3.4.46)

and (3.4.48) only reflects the setup as discussed in Section 3.1. In general the

statement of the theorem below is valid for other choices of boundary conditions

as long as the uniform conditions (3.4.51) and (3.4.52) are satisfied. In particular

this holds for the boundary conditions discussed in Section 3.3.1. For different

boundary conditions we obviously have to consider the space H1 and its dual

instead of H1
0 .

(iv) The approximations dn
i ∈ C∞ converge to di weakly in H−1 and satisfy the

uniform bounds

‖dn
i ‖L1 ≤ K1 and ‖dn

i v‖L1 ≤ K2‖v‖H1
0
∀ v ∈ H1

0 (3.4.53)

for constants K1, K2 independent of n. Finally, dn
i is such that for sequences vn

which in L2((0, T ), H1
0) converge weakly to v with v̇n converging weakly to v̇ in
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L2((0, T ), H−1), it holds that for almost all t ∈ [0, T ]

〈dn
i vn(t), φ〉H1 → 〈div(t), φ〉H1 ∀φ ∈ H1

0 . (3.4.54)

Theorem 3.4.2. Under the assumptions (i) - (iv) and if the initial conditions are

such that u− ≤ u(0, x), un(0, x) ≤ u+ for all, respectively, almost all x ∈ D and all

n ∈ N, the solutions un and u of (3.4.48) and (3.4.46), respectively, satisfy

u− ≤ un(t, x) ≤ u+ for all (t, x) ∈ [0, T ]×D (3.4.55)

for all n ∈ N, and

u− ≤ u(t, x) ≤ u+ for almost all x ∈ D for all t ∈ [0, T ] . (3.4.56)

If, in addition, u(t) ∈ C0 for all t ∈ [0, T ] then the bounds u−, u+ are valid everywhere,

i.e., (3.4.56) holds for all (t, x) ∈ [0, T ]×D.

Proof. We split the proof into four parts. In part (a) we show that the smooth

solutions un satisfy the imposed bounds [u−, u+]. In part (b) we show that under

the assumptions (i)–(iv) the sequence of problems (3.4.48) possesses a subsequence

that converges weakly to a limit u∗. Then in part (c) we show that the limit satisfies

u∗ = u and thus solves (3.4.46). We complete the proof in part (d) where we show

that the weak convergence in this case implies that also u satisfies the bounds [u−, u+]

almost everywhere.

(a) We proof (3.4.55) by contradiction. Let t0 be the infimum of the times t such

that there exists an x ∈ D with either un(t, x) ≥ u+ or un(t, x) ≤ u−. Assume that

t0 is finite. Then it holds due to the continuity of un that u− ≤ un(t0, x) ≤ u+

for all x ∈ D and that there exists an x0 ∈ D such that either un(t0, x0) = u− or

un(t0, x0) = u+.

We consider the case that un(t0, x0) = u+, the case that un(t0, x0) = u− is then

analogous. Thus the point x0 is a maximum of the map x +→ un(t0, x) and thus its

first derivatives vanish. Further, we apply the fact that the entrywise product of

positive semidefinite matrices is positive semidefinite to the entrywise product of the

Hessian matrix and the matrix of the coefficients an
ij of the elliptic operator An and

obtain that
m∑

i,j=1

an
ij(x0)(un(t0, x0))xixj ≤ 0 .

Next, as by definition of u+ it holds that

c(x)u+ +
m∑

i=1

gid
n
i (x)(Ei − u+) ≤ 0,

124



Chapter 3: Hybrid stochastic models of excitable media

we infer that u̇n(t0, x0) ≤ 0. This is a contradiction to un(t, x) < u+ for all t < t0.

Hence t0 cannot be finite. The property (3.4.55) is proven.

(b) In this part of the proof we show that the sequence un admits a limit in the

appropriate sense, i.e., it possesses a subsequence which is weakly convergent in

L2((0, T ), H1
0) and H1((0, T ), H−1). To this end we have to show boundedness of

the sequence un in these two spaces.

In order to obtain the boundedness result in the first space we apply the inner product

in L2 with un(t) to both sides of equation (3.4.48) and arrive at

(
u̇n(t), un(t)

)
L2 −
(
Anun(t), un(t)

)
L2 =
∑

i

gi

(
dn

i (Ei − un(t)), un(t)
)

L2 . (3.4.57)

Using the uniform coercivity condition (3.4.52) we get

1

2

d

dt
‖un(t)‖2

L2 + C2‖un(t)‖2
H1

0
≤ C3‖un(t)‖2

L2 +
∑

i

gi

(
dn

i (Ei − un(t)), un(t)
)

L2 .

Thus an application of Gronwall’s inequality yields for ‖un(t)‖2
L2 the estimate

‖un(t)‖2
L2 ≤ e2C3t

(
‖un(0)‖2

L2 + 2
∑

i

gi

∫ t

0

∣∣(dn
i (Ei − un(t)), un(t)

)
L2

∣∣ dt
)

.

Integrating both sides of (3.4.57) from 0 to T and using the just established estimate

in the right hand side yields

1

2

(
‖un(T )‖2

L2 − ‖un(0)‖2
L2

)
+ C2

∫ T

0

‖un(t)‖2
H1

0
dt

≤ C3

∫ T

0

e2C3t dt ‖u0‖2
L2 +
(
2C3

∫ T

0

e2C3t dt + 1
)∑

i

gi

∫ T

0

∣∣(dn
i (Ei − un(t)), un(t)

)
L2

∣∣ dt

=
1

2
(e2C3t − 1) ‖un(0)‖2

L2 + e2C3t
∑

i

gi

∫ T

0

∣∣(dn
i (Ei − un(t)), un(t)

)
L2

∣∣ dt.

Hence it remains to bound the integrands in the right hand side. Due to the pointwise

bounds on un obtained in part (a) we obtain for every integral using (3.4.53)

∫ T

0

∣∣(dn
i (Ei − un(t)), un(t)

)
L2

∣∣ dt ≤
∫ T

0

∫

D

dn
i (x)
∣∣(Ei − un(t, x)) un(t, x)

∣∣dx dt

≤
∫ T

0

∫

D

dn
i (x) 2u2 dx dt

≤ 2TK1u
2,
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where u = max{|u−|, |u+|}. Therefore, we have obtained the estimate

1

2
‖un(T )‖2

L2 + C2‖un‖2
L2((0,T ),H1

0 ) ≤ e2C3T
(
‖un(0)‖2

L2 + 2TK1u
2
∑

i

gi

)
. (3.4.58)

The boundedness of un in L2((0, T ), H1
0) now follows from the boundedness of the

sequence of initial conditions, cf. condition (i).

Secondly, we show the boundedness of un in H1((0, T ), H−1), i.e., we have to show

that the sequences un and u̇n are bounded in L2((0, T ), H−1). Since H1
0 is continuously

embedded in H−1, i.e., there exists c > 0 such that ‖v‖H−1 ≤ c‖v‖H1
0

for all v ∈ H1
0 ,

the boundedness of the sequence un in L2((0, T ), H−1) follows from the just established

boundedness of un in L2((0, T ), H1
0).

Thus it remains to show that u̇n is bounded in L2((0, T ), H−1). To this end we fix

some v ∈ H1
0 such that ‖v‖H1

0
≤ 1. Then we obtain by applying the inner product in

L2 with v to both sides of equation (3.4.48)

(
u̇n(t), v

)
L2 =
(
Anun(t), v

)
L2 +
∑

i

gi

(
dn

i (Ei − un(t)), v
)

L2 .

Employing the uniform energy estimate (3.4.51) yields

∣∣(u̇n(t), v
)

L2

∣∣ ≤ C1‖un(t)‖H1
0

+
∑

i

gi

∣∣(dn
i (Ei − un(t)), v

)
L2

∣∣ ,

where each summand in the right hand side is uniformly bounded as

∣∣(dn
i (Ei − un(t)), v

)
L2

∣∣ ≤
∫

D

∣∣dn
i (x) (Ei − un(t, x)) v(x)

∣∣ dx

≤ ‖Ei − un(t)‖L∞ ‖dn
i v‖L1

≤ 2uK2 .

Here we have used Hölder’s inequality for the second and the condition (3.4.53) for

the third estimate. Since the norm on H−1 is defined as

‖w‖H−1 = sup
v∈H1

0 :
‖v‖

H1
0
=1

|〈w, v〉H1| ,

it follows by the identification of H1
0 with its dual H−1, where we employ that

〈u̇n, v〉H1 = (u̇n, v)L2 for all v ∈ H1
0 as u̇n ∈ L2, that

‖u̇n(t)‖H−1 ≤ C1‖un(t)‖H1
0

+ 2uK2

(∑

i

gi

)
.
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Hence squaring both sides of this inequality and integrating over (0, T ) yields

∫ T

0

‖u̇n(t)‖2
H−1dt ≤ 2C2

1‖un‖2
L2((0,T ),H1

0 ) + 4TK2
2u

2
(∑

i

gi

)2
. (3.4.59)

Finally, the boundedness of u̇n in L2((0, T ), H−1) follows by the already established

boundedness of un in L2((0, T ), H1
0).

Overall we now infer that there exists a subsequence of un which converges weakly

to a limit u∗ in L2((0, T ), H1
0) as well as in L2((0, T ), H−1). For the remainder we

identify un with its convergent subsequence.

(c) We next show that u∗ = u, that is, the weak limit solves equation (3.4.46).

Recall that equations (3.4.46) and (3.4.48) are interpreted in the sense of H−1–valued

distributions, that is, e.g., u satisfies (3.4.46) if for all test functions ϕ taking values

in H1
0 it holds that

∫ T

0

〈u̇(t), ϕ(t)〉H1 dt =

∫ T

0

〈Au(t), ϕ(t)〉H1 +
∑

i

gi〈di (Ei − u(t)), ϕ〉H1 dt (3.4.60)

and u(0) = u0 in L2. We now consider for the convergent subsequence un for each

term in the definition of its solution, i.e., the weak formulation of the problem (3.4.48),

the convergence to the corresponding term in (3.4.60) separately.

As for all test functions ϕ the mapping u →
∫ T

0 〈u̇, ϕ〉H1 dt defines a continuous, linear

functional on H1((0, T ), H−1), it follows from the weak convergence of u̇n to u̇∗ that

for n →∞ ∫ T

0

〈u̇n(t), ϕ(t)〉H1 dt →
∫ T

0

〈u̇∗(t), ϕ(t)〉H1 dt. (3.4.61)

Further, for every ϕ we can define continuous, linear functionals on L2((0, T ), H1
0) by

u +→
∫ T

0

〈Anu(t), ϕ(t)〉H1 dt, u +→
∫ T

0

〈Au(t), ϕ(t)〉 dt. (3.4.62)

It is easy to see [122, Thm. 21.23] that for n →∞

∫ T

0

〈Anun(t), ϕ(t)〉H1 dt →
∫ T

0

〈Au∗(t), ϕ(t)〉H1 dt

as An converges to A strongly in L(H1
0 , H

−1) and un is bounded in L2((0, T ), H1
0).

Next we consider the terms dn
i un. The weak convergence of un to u∗ in L2((0, T ), H1

0)

implies the weak convergence of un(t) in H1
0 for almost every t ∈ (0, T ). Thus (3.4.54)

yields that for almost all t ∈ (0, T )

〈dn
i un(t), ϕ(t)〉H1 → 〈di u

∗(t), ϕ(t)〉H1 .
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Therefore by dominated convergence we obtain

∫ T

0

〈dn
i un(t), ϕ(t)〉H1 dt →

∫ T

0

〈di u
∗(t), ϕ(t)〉H1 dt .

Finally, as dn
i converges weakly to di in H−1 for all i, it is valid by dominated conver-

gence that ∫ T

0

〈dn
i , ϕ(t)〉H1 dt →

∫ T

0

〈di, ϕ(t)〉H1 dt .

Hence overall we obtain

∫ T

0

〈Anun(t), ϕ(t)〉H1 +
∑

i

gi〈dn
i (Ei − un(t)), ϕ(t)〉H1 dt

→
∫ T

0

〈Au∗(t), ϕ(t)〉H1 +
∑

i

gi〈di (Ei − u∗(t)), ϕ(t)〉H1 dt.

As in this formula the left hand side equals
∫ T
0 〈u̇n(t), ϕ(t)〉H1 dt we obtain by (3.4.61)

that

∫ T

0

〈u̇∗(t), ϕ(t)〉H1 dt =

∫ T

0

〈Au∗(t), ϕ(t)〉H1 +
∑

i

gi〈di (Ei − u∗(t)), ϕ(t)〉H1 dt,

(3.4.63)

that is, the weak limit u∗ satisfies equation (3.4.60).

It just remains to show that u∗ also satisfies the initial condition, that is u∗(0) = u0

in L2, which we obtain using similar argumentation as in [104, Ch. 7.4.4]. Choosing

a test function ϕ that satisfies ϕ(T ) = 0 and integration by parts yields for the

approximating sequence

−
∫ T

0

〈un(t), ϕ̇(t)〉H1 dt−〈un
0 , ϕ(0)〉H1 =

∫ T

0

〈Aun(t)+
∑

i

gi di (Ei−un(t)), ϕ(t)〉H1 dt,

(3.4.64)

and for the limit in (3.4.63)

−
∫ T

0

〈u∗(t), ϕ̇(t)〉H1 dt−〈u∗(0), ϕ(0)〉H1 =

∫ T

0

〈Au∗(t)+
∑

i

gi di (Ei−u∗(t)), ϕ(t)〉H1 dt.

(3.4.65)

Note that un
0 converges strongly to u0 and we have already established the convergence

of the integral terms in (3.4.64) to the corresponding terms in (3.4.65). Hence, it

follows by comparison that u∗(0) = u0 in L2 since ϕ(0) is arbitrary.

(d) So far we obtained that there exists a subsequence of un which converges weakly

to u and satisfies un(t, x) ∈ [u−, u+] pointwise for all n. To complete the proof we

show that the bounds remain valid for the weak limit. To this end we employ the
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following fact [61, p. 336]: Let K be a convex subset of a normed vector space V .

Then, if x∗ ∈ V is the weak limit of a sequence in K, there exists a sequence in K

such that x∗ is its strong limit.

We take K to be the set

K = {v ∈ C∞([0, T ]×D) | u− ≤ v(t, x) ≤ u+ ∀ (t, x)} ,

which is a convex subset of L2((0, T ), L2). As just established in part (c), u is the

weak limit of a sequence in K, thus there exists a sequence ûn in K such that

lim
n→∞

∫ T

0

‖ûn(t)− u(t)‖2
L2 dt = 0 .

This implies that for almost every t ∈ [0, T ] the limit u(t, x) satisfies the bounds

[u−, u+] for almost every x ∈ D. Next, recall that we always identify a weak solution

with the unique element in its equivalence class which is in C0([0, T ], L2). Next

assume that t∗ is such that u(t∗, x) does not satisfy the bounds [u−, u+] for almost

every x ∈ D. Then, however, there exists a sequence of tn in (0, T ), tn → t∗ for

n → ∞, such that u(tn, x) ∈ [u−, u+] for almost all x ∈ D for all n ≥ 0. As the

solution u is in C0([0, T ], L2) it follows that u(tn) converges strongly to u(t∗) in L2.

This is a contradiction to u(t∗, x) /∈ [u−, u+] on a set of positive measure. Hence

(3.4.56) is proved.

Finally, if in addition u(t) ∈ C0 for all t ∈ [0, T ] the validity of the pointwise bounds

for all x ∈ D follows immediately. Assume that for some t there exists a point x∗

such that u(t, x∗) /∈ [u−, u+]. Then there exists a neighbourhood of x∗ in D such that

u(t, x) /∈ [u−, u+] for all x in that neighbourhood. A neighbourhood has non-zero

measure which yields a contradiction to (3.4.56). The proof is completed.

We conclude this section with a discussion of the various applications of Theorem

3.4.2 in this thesis.

Application 1: The first application is to hybrid stochastic models of axons as

presented in Section 3.1. The membrane equations (3.1.2) for these models in between

successive channel switchings together with a model for the conductances, i.e., (3.1.3)

or (3.1.4), is a special cases of the setting presented above for d = 1, i.e, the domain D

is an interval in R. We first discuss the conductances (3.1.3) modelled as delta inputs

and defer the discussion of other, more regular, conductance models, see Application

2 below. Then the equation (3.4.46) reduces to the specific problem (3.1.2) with

conductances (3.1.3), the coefficients of A possessing the specific form a11 ≡ r/2RC

and b1 ≡ c ≡ 0 and the weights gi ≡ gi,θ for each channel configuration θ. Regarding

the approximating solutions un we remark that condition (i) is satisfied as for every
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initial condition u0 ∈ H1
0 an approximating sequence of smooth functions can always

be found due to C∞ ∩H1 being dense in H1 [2]. Further, conditions (ii) and (iii) are

easily satisfied for the choice of coefficients an
11 = a11 for all n ≥ 1.

It remains to consider condition (iv) for a one-dimensional domain and the choices

of conductances (3.1.3). For the conductances di = δ(· − xi) being the Dirac delta

function at xi we consider as an approximation the standard mollifier µn, i.e.,

dn
i (x) = µn(x− xi) =

{
n Cn

i exp
(

1
n2|x−xi|2−1

)
n2|x− xi| < 1

0 n2|x− xi| ≥ 1,

where the constants Cn
i are selected such that

∫
D dn

i (x) dx = 1. The Sobolev Em-

bedding Theorem implies that δ(· − xi) ∈ H−1 and further dn
i converges weakly to

the delta function in H−1. For the uniform bounds (3.4.53) we can obviously choose

K1 = 1, and Hölder’s inequality together with the Sobolev Embedding Theorem yield

‖dn
i v‖L1 ≤ ‖dn

i ‖L1‖v‖L∞ ≤ C‖v‖H1
0

for a suitable constant C <∞.

Finally, for a sequence vn as in (iv) we apply [104, Thm. 8.1] for a choice of spaces

H1
0

c
↪→ C0 ↪→ H−1 and obtain that there exists a subsequence of vn which converges to

a limit v strongly in L2((0, T ), C0). Here the compact embedding of H1
0 into C0 holds

due to the Sobolev Embedding Theorem [2] as d = 1 and the continuous embedding

of C0 into H−1 follows from the continuous embedding of C0 ↪→ L2 where the latter

space in turn is continuously embedded in H−1. Without loss of generality we can

identify each sequence vn with the strongly convergent subsequence. Next note that

dn
i and δ are elements of the dual of the Banach space C0 and that in this space dn

i

converges weakly∗ to δ(·− xi). Moreover it holds that

〈dn
i vn(t), φ〉H1 =

∫

D

dn
i (x) vn(t, x) φ(x) dx = 〈dn

i , vn(t)φ〉C0

and due to the weak∗ convergence in the dual of C0 and as vn(t)φ converges strongly

to v(t)φ in C0 it follows by [122, Thm. 21(e)] that

〈dn
i vn(t), φ〉H1 = 〈dn

i , vn(t)φ〉C0 → 〈δ(·− xi), v(t)φ〉C0 = 〈δ(·− xi)v(t), φ〉H1 .

Therefore also (3.4.54) is satisfied.

Application 2: Next, we consider the same model setup as in Application 1 however

with conductances as in (3.1.4) and we allow for the spatial domain all physically

reasonable dimensions, i.e., D ⊂ Rd with d ≤ 3 and sufficiently smooth boundary. For

indicator functions di = |Ci|−1ICi , where Ci ⊂ D, possible choices for approximations

are their mollifications which converge weakly to di, i.e., dn
i = µn ∗di, where ∗ denotes
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the convolution of functions, cf. (2.2.10). Then Young’s inequality for convolutions8

yields that ‖µn ∗ di‖L1
≤ ‖µn‖L1‖di‖L1 = 1 and thus K1 = 1. For the second estimate

we first consider Hölder’s inequality which yields ‖µn ∗ di v‖L1 ≤ ‖µn ∗ di‖L2‖v‖L2

where ‖v‖L2 can be estimated by ‖v‖H1
0

due to the embedding H1 ↪→ L2. Further,

another application of Young’s inequality yields that ‖µn∗di‖L2 ≤ ‖µn‖L1‖di‖L2 where

‖µn‖L1 = 1 and hence we can choose K2 = maxi |Ci|−1/2. Hence conditions (3.4.53)

are satisfied.

It remains to consider (3.4.54). To this end we apply [104, Thm. 8.1] for the choice

of spaces H1
0

c
↪→ L2 ↪→ H−1 which yields that a sequence vn as in (iv) possesses a

subsequence that converges strongly to v in L2((0, T ), L2). Here the embedding of H1

into L2 is compact for d ≤ 3 [116, p. 45]. Then by [122, Thm. 21(e)] it follows that

〈dn
i vn(t), φ〉H1 = (dn

i φ, vn(t))L2 → (diφ, v(t))L2 = 〈di v(t), φ〉H1

as dn
i φ converges strongly to diφ in L2. Thus, also in this case condition (iv) is

satisfied.

We note that the exact same line of argument shows that Theorem 3.4.2 is also

applicable to compartmental type hybrid stochastic models, cf. Section 3.2.

Application 3: Finally, we can also employ this setup to prove an invariant rectangle

for the membrane component of the deterministic axon equations (3.3.5), that is, to

prove Proposition 3.3.1. We can assume there exists a sequence of operators An with

smooth coefficients and also a sequence of smooth initial conditions such that condi-

tions (i)–(iii) are satisfied. For most models, in particular for all models considered

in this thesis, the operator A itself possesses smooth coefficients. Thus it remains to

discuss condition (iv). For deterministic axon equations we set di(x) = gi(x, p(t, x))

and dn
i = gn(x, pn

i (t, x)) where gn(x, p) and pn(x, t) are smooth approximations con-

verging pointwise to gi and p, respectively. Moreover, we can assume that the

approximations satisfy the same pointwise bounds, i.e., for all i = 1, . . . , m and all

n ∈ N it holds that pn
i (t, x) ∈ [0, 1] for all (t, x) ∈ [0, T ]×D and gn

i (x, p) ≤ g for all

(x, p) ∈ D × [0, 1]m. This choice implies that the weights gi in (3.4.46) and (3.4.48)

satisfy gi = 1.

Further, concerning the conditions in (vi) the uniform boundedness in L1 is obvious as

the gating variables are pointwise bounded by one and thus gn
i is pointwise bounded,

hence K1 = |D| g. The second condition in (3.4.53) with K2 =
√

K1 follows from the

Cauchy-Schwarz inequality and the continuous embedding of H1 into L2. Finally dn
i

converges strongly to di in L2 for almost all t, hence as an application of the inner

product, i.e., considered as (di
n, ·)L2, it converges strongly in H−1. Thus by [122,

8For 1 ≤ p, q, r ≤ ∞ such that 1/p + 1/q = 1/r + 1 it holds for all f ∈ Lp and g ∈ Lq that
‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq
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Prop. 21.23(j)] condition (3.4.54) is satisfied.

However, one striking difference that necessitates minor technical adaptation in the

proof of Theorem 3.4.2 is the additional time-dependence, on the one hand, in the

functions dn
i and, on the other hand, as the generalised membrane equation (3.3.5)

possesses an additional time-dependent inhomogeneous term in the right hand side

given by the input current. Such a term is not accounted for in (3.4.46). Firstly, we

note that a time-dependence in the functions dn
i and di does not alter the proof as

the conditions in (iv) are satisfied with constants independent of t.

Secondly, however, the occurrence of the input current does demand additional atten-

tion. First of all, in accordance with the general setup we substitute I ∈ L2((0, T ), L2)

by a smooth approximating sequence In ∈ C∞([0, T ] × D) for the approximating

sequence of equations (3.4.48). Due to the density of the latter space in the former

such an approximation always exists. Further, we define the proposed pointwise

bounds [u−, u+] such that instead of (3.4.50) they satisfy (3.3.10), that is,

cn(x)u− +
m∑

i=1

gn(x, p)(Ei − u−) + In(t, x) ≥ 0 ∀x ∈ D, t ∈ [0, T ], p ∈ [0, 1]m,

cn(x)u+ +
m∑

i=1

gn(x, p)(Ei − u+) + In(t, x) ≤ 0 ∀x ∈ D, t ∈ [0, T ], p ∈ [0, 1]m.

The existence of such bounds is guaranteed if cn are non-positive and are, together

with the input current In, uniformly bounded.

Finally, in the proof of Theorem 3.4.2 the additional time-dependent inhomogeneous

term In has to be considered in the estimation and convergence procedures. The

necessary additions are the following: For the estimates in part (b) an additional

term arises in the right hand side which can be estimated by

∫ T

0

(In(t), v)L2 dt ≤ 1

2
|D|TI +

1

2

∫ T

0

‖v‖2
L2 dt ,

where I is a pointwise bound to the input current. The remaining integral in the

right hand side of this inequality can be bounded by a-priori estimates as it holds

that either ‖v‖L2 ≤ 1 or v = un, in which case the pointwise bound u provides an

a-priori uniform estimate. Finally, for part (c) we need to guarantee the additional

convergence ∫ T

0

〈In(t), ϕ(t)〉H1 dt →
∫ T

0

〈I(t), ϕ(t)〉H1 dt

for all test functions ϕ. However this immediately follows from the convergence of In

to I in L2((0, T ), L2).
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Chapter 4

Limit Theorems for PDMPs

In the present chapter we establish limit theorems for sequences of PDMPs with values

in a Hilbert space. In view of applications this part of the thesis is motivated by the

interest in the derivation of a Langevin approximation to spatio-temporal stochastic

hybrid models of excitable membranes. To this end we establish a law of large numbers

and a martingale central limit theorem for certain martingales associated with the

PDMPs. We further show how to represent the stochastic process arising as the limit

in the central limit theorem as a solution of a stochastic partial differential equation

(SPDE) which then yields a Langevin approximation for PDMPs by a system of

SPDEs. The theoretical results of this chapter are of general interest to PDMP

theory.

We briefly describe the general idea of our framework. We consider a family of fully

coupled, Hilbert space-valued PDMPs in the sense of Section 3.0.1 indexed by n,

n ∈ N. Here fully coupled means that the rates of the jump part depend on the

state of the full system and the continuous component depends on the state of the

jump component. For the limit theorems we rely on two key assumptions. Firstly,

we assume jumps with height decreasing to zero for n → ∞ which occur at a high

frequency roughly inversely proportional to the jump size. We are therefore in the fluid

limit setting, cf. [79, 80]. Secondly, we assume that for each n the continuous dynamics

in between jumps depends on the piecewise constant component only via finitely

many (Hilbert space-valued) functions thereof, which we call coordinate functions. A

precise definition of this notion follows in the next section. Typically for applications

to biological excitable membranes the coordinates are the proportions of individual

channels in a given state at given location of the axon. That is, for a simplified channel

model when each channel can be either open or closed, the coordinate functions state

the fractions of open and closed channels across the membrane. Further for a sequence

of membrane models, taking the limit for n → ∞ is understood as increasing the

channel numbers to infinity (jump rate increases) and simultaneously reducing the

single channel conductance (jump size decreases). We refer to Section 4.5 for a more
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detailed discussion of the interpretation of the limit theorems in the application to

neuronal membranes.

The first limit theorem we present is a weak law of large numbers for PDMPs in

infinite-dimensional Hilbert spaces where the deterministic limit is given by a solution

of an abstract evolution equation. Next we proceed to the presentation of a central

limit theorem for the martingales associated with a PDMP. This central limit theorem

gives the basis for an approximation of PDMPs by diffusion processes which are so-

lutions of stochastic partial differential equations. The new results presented extend

previous results for PDMPs and pure jump processes in Euclidean space [80, 41, 96].

The main difficulties extending the fluid limit theorems in [79, 80, 96] to processes

taking values in infinite-dimensional Hilbert spaces arise, on the one hand, in the

appropriate treatment of Hilbert space-valued martingales. These arise by splitting

a PDMP, being a semi-martingale, into a sum of a part with finite variation and a

local martingale. As these considerations are essential we have devoted a full sec-

tion, Section 4.1, to the discussion of the martingales. On the other hand, the more

complicated existence theory of solutions to abstract evolution equations compared to

solutions of ordinary differential equations in Euclidean space demands for additional

technical rigour.

Next, we briefly comment on related work in the infinite-dimensional setting. For a

model of linear chemical reactions by jump Markov processes a law of large numbers

[6] and a central limit theorem [75] have been proven based on the original work

of [79, 80] for finite-dimensional jump-processes. In these cases the deterministic

limit is a reaction-diffusion partial differential equation and the central limit theorem

yields diffusion processes given by stochastic partial differential equations. Limit

theorems for variations of this model have been investigated in two series of studies,

cf. [76, 77, 78] and [15, 16, 17, 18, 19]. A central difference between spatial models

of excitable media to models of chemical reactions is that the latter exhibit diffusive

motion of the reactants (∼ channels) which is absent in the former. Additionally

excitable media equations exhibit non-local interaction of channels as their dynamics

are coupled via the membrane potential. The limit theorems we establish have to

account for these differences. Further, there is also a difference on the technical side.

The author in [75] and all subsequent work is based on the semigroup approach to

stochastic / deterministic evolution equations. In contrast, we pursue in the present

thesis the approach of a weak formulation. Finally, we also mention a central limit

theorem for Hilbert-valued martingales in [91] and a diffusion approximation of SDEs

on nuclear spaces driven by Poisson random measures in [71]. The methods of proof

we employ for the theoretical results in this chapter are motivated by the two last

references, but differ as the classes of stochastic processes considered therein and in

the present thesis are different.
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The remainder of the chapter is organised as follows. We first precisely state the

assumptions for a sequence of PDMPs in Section 4.0.1 and then discuss in detail

the associated martingale process in Section 4.1. Limit theorems and the diffusion

approximation are presented in Sections 4.2 and 4.3. We have deferred the proofs

of the main results to Section 4.4. Finally in Section 4.5 we discuss applications of

these limit theorems to compartmental-type models of excitable membranes. The end

of the chapter contains in Section 4.6 the proof of the technical Theorem 4.1.1 that

guarantees the square-integrability of the associated Hilbert space valued martingales

and establishes an appropriate Itô-isometry.

4.0.1 An appropriate sequence of PDMPs

Let X ⊂ H ⊂ X∗ be an evolution triple of separable, real Hilbert spaces and E be

another separable, real Hilbert space. Further, for a certain m ∈ N (its significance is

explained in the next paragraph) we denote by H =×m
i=1 H , E =×m

i=1 E the direct

products of the Hilbert spaces H and E which are Hilbert spaces themselves. Finally

we set E∗ =×m
j=1 E∗ which is the dual space to E .

We now define the structure of the sequence of processes for which we derive the limit

theorems. For all n ∈ N let (Ωn,Fn, (Fn
t )t≥0, Pn) be a filtered probability space satis-

fying the usual conditions and the processes (Xn
t )t≥0 = (Y n

t , θn
t )t≥0 defined thereon are

regular standard PDMPs, cf. Definition 3.0.1, taking values in H×Kn with path prop-

erties as defined in Section 3.0.1. Correspondingly, the characteristics of the PDMPs

are given by (An, Bn,Λn, µn), cf. the remark immediately following Definition 3.0.1

in Section 3.0.1. Note that the state space Kn for the piecewise constant component

changes with varying index n whereas the state space H for the continuous component

remains fixed. Therefore, in order for such a sequence of processes to allow for a limit

we need to impose a special structure on the characteristics referring to the contin-

uous component. To this end we assume there exists an m ∈ N introduced above,

such that for each PDMP (Y n
t , θn

t )t≥0 there exists a family of coordinate functions

zn
i : Kn → E, i = 1, . . . , m, such that the characteristics An(θ), Bn(θ) depend on the

piecewise constant component and on the index n only via the E–valued coordinate

process zn(θ) = (zn
1 (θ) , . . . , zn

m(θ)). That is, there exists operators A, B : E×X → X∗

such that for all n ∈ N, all u ∈ H and all θ ∈ Kn

An(θ) u = A(zn(θ)) u, Bn(θ, u) = B(zn(θ), u). (4.0.1)

The coordinates zn can be interpreted as a ’sufficient statistic’ of the piecewise con-

stant component for the evolution of the continuous component. In statistics a suf-

ficient statistic for a quantity of interest is a function of the observations that is

sufficient to estimate this particular quantity. For example, the sample average of in-
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dependently and identically distributed real random variables is a sufficient statistic

for the mean of their distribution. In the present setting, this means that the coordi-

nate functions contain all information about the vector θ that is needed to determine

the continuous dynamics in between jumps. Further, the essence of the subsequent

limit theorems is that the sequence of coordinate processes on the space E allows

for a limit under certain conditions. As E is a Hilbert space itself we note that no

generality would be lost if instead of the family of coordinate functions we assumed

the existence of Hilbert space-valued functions zn taking values in the same Hilbert

space for each n. However, we decided to use this more detailed notation since in

examples one usually encounters that it is a set of coordinate functions that encodes

the information necessary for defining the dynamics of the continuous component.

Finally, we assume that the operators A, B satisfy a global one-sided Lipschitz-type

condition in the sense that for all T > 0 there exists a constant L1 > 0 such that for

all u, v ∈ L2((0, T ), X) and all p, q ∈ L2((0, T ), E) it holds that

∫ T

0

〈A(q) v −A(p) u, v − u〉X + 〈B(q, v)− B(p, u), v − u〉X dt

≤ L1

∫ T

0

‖v − u‖2
H +

m∑

i=1

‖qi − pi‖2
E dt . (4.0.2)

Here we have omitted the argument t in the functions u, v, p and q.

Remark 4.0.3. In the proof of the law of large numbers, see Section 4.4.1, this

Lipschitz condition is applied such that one pairing (v, q) refers to a path segment of

the continuous component of a PDMP and the coordinate process and the second (u, p)

to the deterministic limit functions. Thus for the application of (4.0.2) in the proof

it is sufficient that it holds only for pairings (v, q) out of a set containing almost all

paths of the sequence of PDMPs and (u, p) being the deterministic limit, i.e., one (!)

distinguished pairing. This restriction of (4.0.2) to be satisfied only for particular

pairings (v, q) and (u, p) out of the whole path space has a decisive advantage: We are

able to incorporate additional qualitative results on the trajectories of the PDMPs and

the deterministic limit in order establish (4.0.2). For example, in the case of hybrid

neuron models such an additional qualitative result that allows to derive (4.0.2) in this

application is that the components corresponding to u, v, p, q are pointwise bounded.

4.1 The associated martingale process

For the limit theorems we derive in this chapter, the central estimation concerns cer-

tain martingales associated with the PDMP. As these are of such central importance

we discuss them in this separate section. The principle aim is, on the one hand, to
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derive conditions that imply the convergence in probability of the associated martin-

gales as needed for the law of large numbers (cf. condition (4.2.4) in Theorem 4.2.1)

and, on the other hand, we present some necessary structure for the central limit

theorems. Therefore we define for all j = 1, . . . , m the E-valued stochastic process

Mn
j by

Mn
j (t) := zn

j (θn
t )− zn

j (θn
0 )−
∫ t

0

[
An〈 · , zn

j (·)〉E
]
(Y n

s , θn
s ) ds , (4.1.1)

where the integrand in the right hand side is given by

[
An〈 · , zn

j (·)〉E
]
(Y n

s , θn
s ) = Λn(Y n

s , θn
s )

∫

Kn

(
zn

j (ξ)− zn
j (θn

s )
)

µn
(
(Y n

s , θn
s ), dξ
)

= Λn(Y n
s , θn

s )
∑

ξ∈Kn

(
zn

j (ξ)− zn
j (θn

s )
)

µn
(
(Y n

s , θn
s ), {ξ}

)
.

Hence the integrand is a countable convex combination of elements in E with time-

dependent coefficients. Moreover, in between jumps it depends continuously on s.

Anticipating condition (4.1.3) below, which we generally assume to hold, we find

that the integral in the right hand side of (4.1.1) almost surely exists in the sense of

Bochner. For an application of a functional φ ∈ E∗ to (4.1.1) we obtain

〈φ, Mn
j (t)〉E = 〈φ, zn

j (θn
t )〉E − 〈φ, zn

j (θn
0 )〉E −

∫ t

0

[
An〈φ, zn

j (·)〉E
]
(Y n

s , θn
s ) ds , (4.1.2)

where the integrand is

[
An〈φ, zn

j (·)〉E
]
(Y n

s , θn
s ) = Λn(Y n

s , θn
s )

∫

Kn

〈φ, zn
j (ξ)〉E − 〈φ, zn

j (θn
s )〉E µn

(
(Y n

s , θn
s ), dξ
)
.

Thus the integral has the form of the extended generator, cf. Theorem 2.2.1, ap-

plied to the mapping (u, θ) +→ 〈φ, zn
j (θ)〉E. This already suggests that the processes

(4.1.2) are martingales under suitable boundedness conditions. In fact we are able

to establish that the processes Mn
j are E–valued càdlàg martingales. We refer to

[35, 100] for a brief discussion of martingales in infinite-dimensional spaces. The

easiest way to validate the martingale property is due to the following result [100,

Sec. 2.3]: If En‖Mn
j (t)‖E < ∞ for all t ∈ [0, T ], the Hilbert space-valued martingale

property holds if and only if 〈φ, Mn
j (t)〉E is a real-valued martingale for all φ ∈ E∗.

The following theorem gives a condition that guarantees that the processes (4.1.1)

are square-integrable martingales and satisfy an Itô-isometry. The proof is rather

technical and thus we have deferred it to the end of the chapter into Section 4.6.1.
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Theorem 4.1.1. Let n ∈ N be fixed and assume that for all t > 0 it holds that

E

∫ t

0

[
Λn(Y n

s , θn
s )

∫

Kn

‖zn
j (ξ)− zn

j (θn
s )‖2

E µn
(
(Y n

s , θn
s ), dξ
)]

ds < ∞ . (4.1.3)

Then the process Mn
j is a square-integrable martingale and satisfies the Itô-Isometry

E
n‖Mn

j (t)‖2
E =

∫ t

0

E
n
[
Λn(Y n

s , θn
s )

∫

Kn

‖zn
j (ξ)− zn

j (θn
s )‖2

E µn
(
(Y n

s , θn
s ), dξ
)]

ds .

(4.1.4)

We continue the investigation of the processes Mn
j as Hilbert space valued martin-

gales. From now on we always assume that assumption (4.1.3) holds. Note that the

finiteness of the second moments of the jump sizes is a standard condition in related

limit theorems [79, 96, 91]. We introduce a concept akin to the quadratic covariance

operator in Euclidean spaces. This concept is important for the central limit theo-

rems in, on the one hand, establishing weak convergence, and, on the other hand,

characterising the limit. For further reference we refer to [90].

Definition 4.1.1. For the square-integrable, E–valued, càdlàg martingale Mn
j we

denote by (@Mn
j A t)t≥0 its quadratic variation process, i.e., the unique (up to

indistinguishability), predictable L1(E∗, E)-valued1 process which satisfies that for

all φ, ψ ∈ E∗ the real-valued process

t +→ 〈φ, Mn
j (t)〉E 〈ψ, Mn

j (t)〉E − 〈φ,@Mn
jAtψ〉E (4.1.5)

is a local martingale.

The aim now is to obtain an explicit formula for the quadratic variation process. To

this end we define for j = 1, . . . , m the mappings

ψ +→ Gn
jj(u, θn)ψ := (4.1.6)

:= Λn(u, θn)

∫

Kn

〈ψ, zn
j (ξ)− zn

j (θn)〉E
(
zn

j (ξ)− zn
j (θn)
)

µn
(
(u, θn), dξ) .

These are linear, bounded operators mapping E∗ → E and depend measurably on

(u, θn) ∈ H × Kn. Each operator is non-negative, i.e., 〈φ, Gn
jj(u, θn)φ〉E ≥ 0 for all

φ ∈ E∗, and symmetric, i.e., 〈ψ, Gn
jj(u, θn)φ〉E = 〈φ, Gn

jj(u, θn)ψ〉E for all φ, ψ ∈ E∗.

Let (ϕk)k∈N denote an orthonormal basis in E∗. Then we find due to the Riesz Rep-

1L1(E∗, E) denotes the space of trace class operators from the Hilbert space E∗ into E.
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resentation Theorem and Parseval’s identity that the trace of each operator satisfies

Tr Gn
jj(u, θn) = Λn(u, θn)

∫

Kn

∑

k∈N

(
〈ϕk, z

n
j (ξ)− zn

j (θn)〉E
)2

µn
(
(u, θn), dξ)

= Λn(u, θn)

∫

Kn

∥∥zn
j (ξ)− zn

j (θn)
∥∥2

E
µn
(
(u, θn), dξ) . (4.1.7)

Proposition 4.1.1. The quadratic variation of the martingale Mn
j satisfies

@Mn
jAt =

∫ t

0

Gn
jj(Y

n
s , θn

s ) ds . (4.1.8)

Proof. First of all note that due to the characterisation of the trace (4.1.7) and con-

dition (4.1.3) it holds that the process (4.1.8) takes values in L1(E∗, E) almost surely.

Further, it holds that @Mn
jAt satisfies for all φ, ψ ∈ E that

〈φ,@Mn
jAtψ〉E =

=

∫ t

0

Λn(Y n
s , θn

s )

∫

Kn

〈ψ, zn
j (ξ)− zn

j (θn
s )〉E 〈φ, zn

j (ξ)− zn
j (θn

s )〉E µn
(
(Y n

s , θn
s ), dξ) ds

as the right hand side is, due to Proposition B.2.5, the unique real-valued process such

that the product 〈φ, Mn
j (t)〉E 〈ψ, Mn

j (t)〉E is a local martingale. Here 〈φ, Mn
j (t)〉E

and 〈ψ, Mn
j (t)〉E are understood as real-valued stochastic integrals with respect to

the associated martingale measure of a PDMP. Thus we infer that for all φ, ψ ∈ E it

holds

〈φ,@Mn
jAtψ〉E =

∫ t

0

〈φ, Gn
jj(Y

n
s , θn

s )ψ〉E ds .

Finally, the linearity of the Bochner integral (note that L1(E∗, E) is a Banach space)

implies

@Mn
jAt =

∫ t

0

Gn
jj(Y

n
s , θn

s ) ds .

Further, a second property of the quadratic variation is that the process

t +→ ‖Mn
j (t)‖2

E − Tr @Mn
jAt

is a local martingale. We note that the trace process t +→ Tr @Mn
j At is the unique,

predictable increasing process exhibiting this property. Using the characterisation

(4.1.8) of the quadratic variation we thus obtain that the process

t +→ ‖Mn
j (t)‖2

E−Tr
(∫ t

0

Gn
jj(Y

n
s , θn

s ) ds
)

= ‖Mn
j (t)‖2

E−
∫ t

0

Tr Gn
jj(Y

n
s , θn

s ) ds (4.1.9)
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is a local martingale vanishing almost surely at t = 0.

We are now in a position to state a lemma which establishes the convergence in

probability (4.1.11) of the processes (Mn
j )t≥0 necessary for the law of large numbers,

cf. condition (4.2.4) in Theorem 4.2.1.

Lemma 4.1.1. Assume that for all T > 0

lim
n→∞

E
n

∫ T

0

[
Λn(Y n

s , θn
s )

∫

Kn

‖zn
j (ξ)− zn

j (θn
s )‖2

E µn
(
(Y n

s , θn
s ), dξ
)]

ds = 0 . (4.1.10)

Then the process (4.1.9) is a martingale and for all T, ε > 0, it holds that

lim
n→∞

P
n
[
sup t∈[0,T ] ‖Mn

j (t)‖E > ε
]

= 0 . (4.1.11)

Proof. As the process Mn
j is an E-valued càdlàg martingale, it holds that ‖Mn

j ‖2
E is a

càdlàg submartingale. Thus an application of Markov’s and Doob’s inequalities yield

the estimates

P
n
[
sup t∈[0,T ] ‖Mn

j (t)‖2
E > ε
]
≤ 1

ε
E

n
[
sup t∈[0,T ] ‖Mn

j (t)‖2
E

]
≤ 4

ε
E

n‖Mn
j (T )‖2

E .

Now, the Itô-isometry (4.1.4) and condition (4.1.10) imply the convergence in proba-

bility (4.1.11).

It remains to show that the process (4.1.9) is a martingale. A sufficient condition2 is

that for all T > 0 it holds

E
n
[
supt∈[0,T ]

∣∣∣‖Mn
j (t)‖2

E −
∫ t

0

Tr Gn
jj(Y

n
s , θn

s ) ds
∣∣∣
]

< ∞ . (4.1.12)

Estimating the term inside the expectation we obtain

sup
t≤T

∣∣∣‖Mn
j (t)‖2

E −
∫ t

0

Tr Gn
jj(Y

n
s , θn

s ) ds
∣∣∣

≤ sup
t≤T

‖Mn
j (t)‖2

E + sup
t≤T

∫ t

0

Λn(Y n
s , θn

s )

∫

Kn

∥∥zn
j (ξ)− zn

j (θn
s )
∥∥2

E
µn
(
(Y n

s , θn
s ), dξ) ds .

The expectation of the first supremum term in the right hand side is bounded due

to Doob’s inequality and the square-integrability of the martingale. The term inside

the second supremum is increasing, thus its expectation is finite due to condition

(4.1.10).

To conclude this section we briefly discuss the vector-valued process of all martingales

2A sufficient condition for a real, càdlàg local martingale (Mt)t≥0 to be a martingale is
E sups≤t |Ms| <∞ for all t ≥ 0, see, e.g., [64, p. 308].
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Mn
i , i.e., the E–valued process

t +→Mn(t) =
(
Mn

1 (t), . . . , Mn
m(t)
)
,

and, in particular, its quadratic variation. To this end we define analogously to (4.1.6)

for all i, j = 1, . . . , m, i 1= j, operators Gn
ij(u, θn) ∈ L(E∗, E) by

ψ +→ Gn
ij(u, θn)ψ :=

Λn(u, θn)

∫

Kn

(
〈ψ, zn

i (ξ)− zn
i (θn)〉E

)(
zn

j (ξ)− zn
j (θn)
)

µn
(
(u, θn), dξ) . (4.1.13)

If the operators (4.1.6) are of trace class, then each of these operators is of trace class,

as it follows from Young’s inequality that

Tr Gn
ij(u, θn) ≤ 1

2
TrGn

ii(u, θn) +
1

2
TrGn

jj(u, θn) .

Let Φ = (φ1, . . . , φm) and Ψ = (ψ1, . . . , ψm) be elements of E∗. Summing over all

operators (4.1.6) and (4.1.13) applied to the components of Φ, Ψ as indicated by the

indices, i.e.,

〈Φ, Gn(u, θn)Ψ〉E :=
m∑

i,j=1

〈φi, G
n
ij(u, θn) ψj〉E, (4.1.14)

we obtain a linear, bounded operator Gn(u, θn) mapping E∗ to E . This operator is sym-

metric as the family of operators (4.1.13) satisfy 〈φ, Gn
ij(u, θn)ψ〉E = 〈ψ, Gn

ji(u, θn)φ〉E
for all i, j. Moreover, the operator Gn(u, θn) is non-negative as it holds that

〈Ψ, Gn(u, θn)Ψ〉E = Λn(u, θn)

∫

Kn

( m∑

i=1

〈
ψi, z

n
i (ξ)− zn

i (θn)
〉

E

)2
µn
(
(u, θn
)
, dξ) .

Finally, the operator Gn(u, θ) is of trace class if the operators (4.1.6) are of trace class,

as a simple estimate on its trace in terms of the trace of its diagonal elements (4.1.6)

is given by

Tr Gn(u, θn) ≤ m
m∑

i=1

Tr Gn
ii(u, θn),

and further, the trace satisfies

Tr Gn(u, θn) = Λn(u, θn)

∫

Kn

‖zn(ξ)− zn(θ))‖2
E µn
(
(u, θn), dξ

)
. (4.1.15)

141



Chapter 4: Limit Theorems for PDMPs

4.2 A weak law of large numbers

In order to propose a deterministic limit for the sequence of PDMPs we consider

functions Fj : E × H → E for all j = 1, . . . , m. In combination with the operators

A, B these functions are used to defined a coupled system of deterministic abstract

evolution equations

u̇ = A(p) u + B(p, u),

ṗj = Fj(p, u), j = 1, . . . , m .
(4.2.1)

We assume that to suitable initial condition (u0, p0) ∈ H × E there exists a unique

weak solution (u(t), p(t))t≥0 in C0(R+, H×E) of (4.2.1). Particularly, we assume that

for all j = 1, . . . , m the components pj satisfy

〈φ, pj(t)〉E = 〈φ, pj(0)〉E +

∫ t

0

〈φ, Fj(p(s), u(s))〉E ds ∀ t ∈ [0, T ], φ ∈ E∗ . (4.2.2)

Finally, we assume that the functions Fj , j = 1, . . . , m, satisfy a global Lipschitz

condition on L2((0, T ), E × X), i.e., for every T > 0 there exists a constant L2 such

that for all v, u ∈ L2((0, T ), X) and all p, q ∈ L2((0, T ), E) it holds that

(∫ T

0

‖Fj(q, v)− Fj(p, u)‖E dt
)2
≤ L2

∫ T

0

‖v − u‖2
H +

m∑

i=1

‖qi − pi‖2
E dt (4.2.3)

where we have omitted the arguments t of the functions u, v, p and q. Note it is only

necessary for the Lipschitz condition to hold on a certain subset of the path space,

cf. Remark 4.0.3.

We now present a weak law of large numbers in Theorem 4.2.1 below. The proof of the

theorem follows the lines of previously published limit theorems considering processes

in finite dimensions [79, 96]. The main difficulties arising in infinite-dimensional

phase space concerns the bounds on the martingale part, cf. condition (C1), which

is rarely a problem in finite dimensions. However, using the appropriate martingale

theory in Hilbert spaces these can be kept to a minimum. Then the difficulties are

mainly of a technical nature as martingale theory in connection with PDMPs in

infinite-dimensional spaces gets more involved and is not covered by previous results,

which are reviewed in Section B.2.4. We have established the necessary theory in the

preceding section and addressed the question of the convergence of the martingale

part (C1) within this framework. Most importantly, Lemma 4.1.1 states a sufficient

condition for (C1) to be satisfied. In particular, the sufficient condition (4.1.10) we

have proven is a natural extension of the condition employed in finite dimensions,

cf. [79, 96].
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A different approach to establishing condition (C1) which avoids using martingale

theory in Hilbert spaces is exemplified in the law of large numbers proved in [7]. In

infinite-dimensional space this approach encounters the problem of simultaneously

controlling countably many real martingales compared to only finitely many in the

case of its finite-dimensional counterpart. This problem can be overcome with an in-

tricate compactness argument which relies on the assumption that the dual space E∗ is

compactly embedded in some additional normed space and all estimates – especially an

estimate which also implies condition (4.1.10) – have to be derived in the norm of this

additional space. Furthermore, the condition, that all martingales (〈φ, Mn
j (t)〉E)t≥0,

j = 1, . . . , M and φ ∈ E∗, possess almost surely uniformly bounded paths, has to

be introduced. We are of the opinion that our approach is more elegant, but, more

importantly, it avoids the introduction of additional conditions.

Finally, consistently with the notation in Section 4.1 we use in the subsequent theorem

and its proof the notation

[
An〈φ, zn

j (·)〉E
]
(Y n

s , θn
s ) = Λn(Y n

s , θn
s )

∫

Kn

〈φ, zn
j (ξ)〉E − 〈φ, zn

j (θn
s )〉E µn

(
(Y n

s , θn
s ), dξ
)
.

Next, for given (u, θ) ∈ H × Kn functionals
[
An〈 · , zn

j (·)〉E
]
(u, θ) on E∗ are defined

by the mappings φ +→
[
An〈φ, zn

j (·)〉E
]
(u, θ). As usual we identify the bidual E∗∗ with

E and thus
[
An〈 · , zn

j (·)〉E
]
(u, θ) ∈ E. Furthermore, D([0, T ], Kn) denotes the space

of càdlàg functions on [0, T ] taking values in Kn. Then we characterise for all n ≥ 0

and all T > 0 a set S(n, T ) ⊂ C0([0, T ], H) × D([0, T ], Kn) by the property that it

satisfies Pn
[
(Y n

t , θn
t )t∈[0,T ] ∈ S(n, T )

]
= 1. Clearly, all such sets differ only by a set of

measure zero and the smallest is called the support of (Y n
t , θn

t )t∈[0,T ].

Theorem 4.2.1. We assume that the following conditions hold:

(C1) For all j = 1, . . . , m it holds that for fixed T, ε > 0

lim
n→∞

P
n
[
sup t∈[0,T ] ‖Mn

j (t)‖E > ε
]

= 0 . (4.2.4)

(C2) The functions Fj satisfy for all j = 1, . . . , m

lim
n→∞

sup
S(n,T )

∫ T

0

∥∥[An〈 · , zn
j (·)〉E
]
(u, θ)− Fj(z

n(θ), u)
∥∥2

E
dt = 0 , (4.2.5)

where we have omitted the argument t of the functions u and θ.

(C3) The initial conditions (Y n
0 , θn

0 ) of the sequence of PDMPs converge in probability
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to the initial conditions of the deterministic limit in the sense that for all ε > 0

lim
n→∞

P
n
[
‖Y n

0 − u0‖H +
m∑

j=1

‖zn
j (θn

0 )− pj(0)‖E > ε
]

= 0 .

Then, for every ε > 0 and every fixed T > 0 it holds that

lim
n→∞

P
n
[
sup t∈[0,T ]

(
‖Y n

t − u(t)‖2
H +

m∑

j=1

‖zn
j (θn

t )− pj(t)‖2
E

)
> ε
]

= 0 . (4.2.6)

Remark 4.2.1. The result (4.2.6) implies convergence in probability of the processes

(Y n
t , zn(θn

t ))t≥0 to the deterministic function (u(t), p(t))t∈[0,T ] in the Hilbert space

L2((0, T ), H × E). If the differences of the components are almost surely bounded

independent of n the convergence even holds in the mean, cf. the application of the

law of large numbers in Theorem 4.5.1.

Further, the conditions (C1)–(C3) are generalisations from Euclidean space to infinite-

dimensional Hilbert spaces of those employed in the corresponding theorems for

PDMPs in Euclidean space [96] and, in particular, of the original formulation in

case of pure jump processes in Euclidean space [79]. In these cases the conditions

above reduce to the corresponding assumptions.

4.3 The central limit theorem and the Langevin approxima-

tion

We proceed to the presentation of the central limit theorem for associated martin-

gales (Mn
t )t≥0 defined in (4.1.1). The central limit theorem provides the theoretical

basis for an approximation of spatio-temporal PDMPs by Hilbert-space valued diffu-

sion processes where the latter can be represented by solutions of stochastic partial

differential equations.

Proving central limit theorems usually involves two tasks: On the one hand, on has to

show the existence of a limit and, on the other hand, one has to provide a characterisa-

tion of the limit as a certain stochastic process. The former is equivalent to the prob-

lem of tightness of the sequence of random variables, cf. [41, Chap. 3, Thms. 2.2,7.8].

For E-valued càdlàg processes this means tightness in the space of càdlàg functions

on E , denoted by D(R+, E). We note that necessary and sufficient conditions for

tightness in D(R+, E) are that the sequence of E-valued random variables obtained

from the processes for t fixed is tight for all t out of a dense subset of R+ and the

convergence in probability of the modulus of continuity, cf., e.g., [69, Sec. 2.1.3] or [41,

Chap. 3, Thm. 7.2]. Usually in applications there are sufficient conditions which are
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easier to validate. Particularly in case of tightness of martingales the author in [91]

states sufficient conditions depending on the quadratic variation process. Secondly,

in order to characterise the limit there exist different approaches, showing either that

the limit solves a given martingale or local martingale problem which is known to have

a unique solution (cf. [71, 91]) or proving weak convergence of the finite dimensional

distributions, which, due to Levy’s Continuity Theorem, is implied by the convergence

of the characteristic functions (cf. [75, 96]). We present two central limit theorems

employing the two different methods. The two theorems differ in additional technical

assumptions to the central condition of the convergence of the quadratic variations.

These different conditions may be suitable for different applications and moreover the

two theorems show that the extension to infinite-dimensioanl spaces we present are

compatible with both approaches to establish central limit theorems.

Finally, we emphasise that in the following the space E need not necessarily be the

same space for which the law of large numbers is satisfied. However, clearly, the space

E in the present section contains the space in the law of large numbers as subspace.

In applications, usually, the law of large numbers holds in a space with a stronger

norm, for example, for the neuron model considered in Section 4.5 the law of large

numbers holds in L2(D) whereas the central limit theorem holds in the distributions

space H−2s(D).3 This is a major difference to the corresponding results in finite-

dimensional space where both limit theorems hold in the same space.4

4.3.1 A martingale central limit theorem

In this section we present a central limit theorem for the scaled E–valued martingales

(
√

αn Mn
t )t≥0 associated with a sequence of PDMPs where αn ∈ R+, n ∈ N, is a

suitable rescaling sequence. In the following let t +→ G(u(t), p(t)) ∈ L
(
E∗, E
)

be a

Bochner-integrable operator-valued map such that each G(u(t), p(t)) is a symmetric,

positive trace class operator. Particularly this implies for all Φ ∈ E∗ and all t > 0,

that it holds that ∫ t

0

〈
Φ, G(u(s), p(s))Φ

〉
E ds <∞ . (4.3.1)

Here (u(t), p(t))t≥0 is the deterministic limit obtained in Theorem 4.2.1 and the use

of this notation for the – at this point – arbitrary time-dependent operator G only

illustrates that in applications the time-dependence is due to a dependence on the

deterministic limit system. The operator-valued map G is used to define a unique

centred diffusion process on E , i.e., an E–valued Gaussian process with independent

increments, continuous sample paths and zero expectation. In general a centred Gaus-

3Here H−2s(D) is the dual space to the Sobolev space H2s(D) where D ⊂ Rd and s > d/2.
4Note also that in finite-dimensional spaces all norms, and hence also all norms on subspaces, are

equivalent which does not hold in the case of an infinite-dimensional Hilbert space.
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sian process is uniquely defined by its covariance operator and due to a theorem of Itô

stated in [75] every family of trace class operators C∗(t) ∈ L1(E , E) which are increas-

ing and continuous in t define a centred diffusion process. In the present situation we

define C∗ in the following way. We denote by ι : E → E∗ the canonical identification

of a Hilbert space with its dual, hence we can define for x, y ∈ E

(
x, C∗(t) y

)
E =

∫ t

0

〈
ι(x), G(u(s), p(s)) ι(y)

〉
E ds ,

which is continuous and increasing for all x ∈ E and C∗(t) is a trace class operator

on E . Moreover, for operators C(t) ∈ L1(E∗, E), defined by

〈
Φ, C(t)Ψ

〉
E =

∫ t

0

〈
Φ, (G(u(s), p(s))Φ

〉
E ds , (4.3.2)

there is obviously a one-to-one relationship between C∗ and C. Hence, we may say

that also the latter defines a diffusion process on the space E .

We proceed to the statement of the central limit theorem. The proof of the theo-

rem employs a characterisation of the limit via the local martingale problem. The

condition which is essential for the convergence is the convergence of the quadratic

variation processes (4.3.6). The second condition (4.3.7) is a technical condition on

the jump heights which arises due to the method of proof and is usually satisfied in

applications. The remaining conditions are such that (D1) guarantees tightness of the

sequence of processes and in combination with (D2) that any limit is a continuous

stochastic process. The proof of the following theorem is deferred to Section 4.4.2.

Therein we also comment on the differences in the techniques employed compared to

previous results.

Theorem 4.3.1. We assume that the following conditions hold:

(D1) For all t > 0 it holds that

sup
n∈N

αn E
n

∫ t

0

[
Λn(Y n

s , θn
s )

∫

Kn

‖zn(ξ)− zn(θn
s )‖2

E µn
(
(Y n

s , θn
s ), dξ
)
ds
]

<∞ ,

(4.3.3)

and there exists an orthonormal basis (ϕk)k∈N of E∗ such that for all k ∈ N

αn E
n

∫ t

0

〈ϕk, G
n(Y n

s , θn
s )ϕk〉E ds ≤ γk C , (4.3.4)

where the constants γk > 0, independent of n and t, satisfy
∑

k∈N
γk < ∞, and

the constant C > 0 is independent of n and k but may depend on t.
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(D2) For all β > 0 and every Φ ∈ E∗ it holds that

lim
n→∞

E
n
[∫ t

0

Λn(Y n
s , θn

s )

∫

√
αn |〈Φ,zn(ξ)−zn(θn

s )〉E |>β
µn
(
(Y n

s , θn
s ), dξ
)
ds
]

= 0 .

(4.3.5)

(D3) Further, for all Φ ∈ E∗ and all t > 0 it holds that

lim
n→∞

∫ t

0

E
n
∣∣〈Φ, G(u(s), p(s))Φ

〉
E − αn

〈
Φ, Gn(Y n

s , θn
s )Φ
〉
E

∣∣ ds = 0 . (4.3.6)

Finally, we assume that the jump heights of the rescaled martingales are almost

surely uniformly bounded, i.e., there exists a constant C < ∞ such that it holds

almost surely for all n ∈ N that

sup
t≥0

√
αn ‖zn(θn

t )− zn(θn
t−)‖E < C . (4.3.7)

Then it follows that the process (
√

αn Mn
t )t≥0 converges weakly to an E–valued centred

diffusion process characterised by the covariance operator (4.3.2).

Below we state a second version of the martingale central limit theorem wherein the

limiting process is characterised by the convergence of the characteristic functions

of the one-dimensional marginals. The central condition of the convergence of the

quadratic variation processes (4.3.6) is unchanged, however, the second, technical

condition (4.3.7) in (D3) is changed due to the different method of proof. That is,

condition (4.3.8) arises instead of (4.3.7) as an assumption on the distribution of the

jump heights employing a characterisation of the limit process using convergence of

characteristic functions instead of the local martingale problem. The significance for

applications of condition (4.3.8) in contrast to (4.3.7) is that the former avoids the

almost sure uniform bound on the jump heights in the latter. That is, arbitrarily large

jumps are possible for each martingale in the sequence as long as their probability

decreases sufficiently fast. Note that (4.3.8) is stronger than the similar condition

(D2) in the preceding theorem. The proof of the following theorem is deferred to

Section 4.4.3.

Theorem 4.3.2. Assume that the laws of the martingales (
√

αn Mn
t )t≥0 form a tight

sequence, e.g., condition (D1) is satisfied, and (4.3.3) holds.

(D3’) The convergence (4.3.6) holds and there exists a sequence βn > 0 decreasing to
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zero such that for all Φ ∈ E∗

lim
n→∞

αn E
n
[∫ t

0

Λn(Y n
s , θn

s )

∫

√
αn |〈Φ,zn(ξ)−zn(θn

s )〉E |>βn

∣∣〈Φ, zn(ξ)− zn(θn
s )〉E
∣∣2

µn
(
(Y n

s , θn
s ), dξ
)
ds
]

= 0 .

(4.3.8)

Then it follows that the process (
√

αn Mn
t )t≥0 converges weakly to an E–valued centred

diffusion process characterised by the covariance operator (4.3.2).

4.3.2 Langevin approximation

We have discussed in Section 4.0.1 that the coordinate functions zn
i , i = 1, . . . , m, can

be considered sufficient statistics, i.e., they carry all the information needed for the

dynamics of the continuous component (Y n
t )t≥0. Usually, e.g., in models of excitable

membranes, one is ultimately interested in the dynamics of the continuous component.

Therefore, the knowledge of the coordinate process (zn(θn
t ))t≥0, or a close approxima-

tion thereof, is sufficient. From this point of view the significance of the martingale

central limit theorem and the law of large numbers is that they provide a justification

of an approximation of the processes (Y n
t , zn(θn

t ))t≥0 for large enough n by a diffusion

process.

To this end we first discuss representations of the limiting diffusion process in the

martingale central limit theorem as a stochastic integral. By definition G(u(s), p(s))

is a non-negative, self-adjoint trace class operator acting on E , hence there exists a

unique non-negative square root, i.e., a non-negative operator
√

G(u(s), p(s)) such

that G(u(s), p(s)) =
√

G(u(s), p(s)) ◦
√

G(u(s), p(s)) where ◦ denotes the composi-

tion of operators. Let (Wt)t≥0 be a cylindrical Wiener process on E with covariance

operator given by the identity (cf. [35, 100]). Then, as

E

∫ t

0

Tr
(√

G(u(s), p(s))
√

I
)(√

G(u(s), p(s))
√

I
)∗

ds =

∫ t

0

TrG(u(s), p(s)) ds <∞ ,

the mapping t +→
√

G(u(s), p(s)) is a valid integrand process for a stochastic integral

with respect to (Wt)t≥0. That is, the process (Zt)t≥0 defined for all t ≥ 0 by

Zt :=

∫ t

0

√
G(u(s), p(s)) dWs (4.3.9)

is an E–valued Gaussian process with continuous sample paths and independent in-

crements which, in addition, is also a square-integrable martingale. Moreover, the
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process has the covariance given by the operator
∫ t

0 G(u(s), p(s)) ds. Therefore, due

to unique definition of Gaussian processes via their covariance operators, the process

(Zt)t≥0 coincides in distribution with the limiting diffusion identified in Theorems

4.3.2 and 4.3.1 for the sequence of martingales (
√

αn Mn
t )t≥0.

The Langevin approximation (Ỹ n
t , P̃ n

t )t≥0 of (Y n
t , zn(θn

t ))t≥0 is given by the solution

of the system of stochastic partial differential equations

dỸ n
t =

(
A(P̃ n

t ) Ỹ n
t + B(P̃ n

t , Ỹ n
t )
)
dt

dP̃ n
t = F (P̃ n

t , Ỹ n
t ) dt + 1√

αn

√
G(Ỹ n

t , P̃ n
t ) dWt .

(4.3.10)

In order to analyse properties of the Langevin approximation, clearly, well-posedness

of the system (4.3.10) has to be addressed first. This is suitably done within the vari-

ational approach to stochastic partial differential equations. It reflects the approach

of using weak solution to abstract evolution equations defining the deterministic inter-

jump motion of PDMPs generally taken in this thesis. We refer to [84, Sec. 1.3.1] for

a concise introduction to the variational approach to SPDEs containing an existence

and uniqueness theorem as well as further references. We do not pursue the issue

of well-posedness of the Langevin approximation any further at this point, as we

are of the opinion that this question is best addressed when analysing the Langevin

approximation for particular models.

Finally, we remark that the sequence of Langevin approximations (Ỹ n
t , P̃ n

t )t≥0 pos-

sesses the same asymptotic behaviour as the sequence of processes (Y n
t , zn(θn))t≥0 as

discussed in the preceding sections. Firstly, it is obvious that for n → ∞ and thus

αn →∞ the noise term in (4.3.10) vanishes and the system approximates the deter-

ministic solution (u(t), p(t))t≥0 of the system (4.2.1), just as was proven in the law

of large numbers Theorem 4.2.1 for the sequence of PDMPs. It poses no difficulties

to make this statement precise in the form of a law of large numbers analogous to

Theorem 4.2.1.

Remark 4.3.1. The process (4.3.9) is not necessarily the only stochastic integral

process which coincides with the limiting diffusion in distribution. Let U be another

separable, real Hilbert space, where U = E is possible, and assume there exists an

operator Q ∈ L1(U, U) (or Q cylindrical) and a function5 g ∈ L2((0, T ), L2(U, E)) for

all T > 0 such that G(u(t), p(t)) = g(u(s), p(s))◦Q◦g∗(u(s), p(s)) for all t ≥ 0. Then,

the process (ZQ
t )t≥0 defined by the stochastic integral

ZQ
t :=

∫ t

0

g(u(s), p(s)) dW Q
s , (4.3.11)

5Here, L2((0, T ), L2(U, E)) denotes the space of square-integrable functions on (0, T ) taking values
in the Hilbert-space of Hilbert-Schmidt operators from U to E .
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where (W Q
t )t≥0 is an E-valued Q–Wiener process, has the same quadratic variation as

(Zt)t≥0 hence the processes coincide in distribution. Further, we remark that starting

from the representation (4.3.11) the Langevin approximation is given by (4.3.10) with

the obvious changes in the diffusion term. We note that in finite dimensions the non-

uniqueness, see, e.g., [5, Chap. 8], of a stochastic integral to a given covariance matrix

can be exploited to improve the speed of numerical approximations in Monte-Carlo

simulations of diffusion approximations by choosing an optimal diffusion coefficient

structure, see [89]. In infinite-dimensions the question of a practical implication of

choosing a diffusion approximation based on (4.3.11) over (4.3.10) needs, to the best

of our knowledge, still to be addressed.

4.4 Proofs of the main results

4.4.1 Proof of Theorem 4.2.1 (Law of large numbers)

The central argument of the subsequent proof is an appropriate application of Gron-

wall’s Lemma such that the upper bound satisfies the convergence in probability. Here

the estimating procedure yielding the estimate to which Gronwall’s Lemma is applied

necessitates careful attention due to more intricate regularity aspects of solutions to

abstract evolution equations in contrast to solutions of ODEs in Euclidean space.

The continuous component Y n
t of each PDMP is in between successive jump times the

weak solution of an abstract evolution equation. Similarly u(t) is the weak solution

of the abstract evolution equation (4.2.1). Therefore also the difference of the two

paths is in between jump times the weak solution of an abstract evolution equation.

Therefore, it holds due to [43, Sec. 5.9, Thm. 3] for almost all t that

d

dt
‖Y n

t − u(t)‖2
H

= 2
〈
A(zn(θn

t )) Y n
t + B(Y n

t , zn(θn
t ))−A(p(t)) u(t)−B(u(t), p(t)) , Y n

t − u(t)
〉

X
.

Integrating this equation we obtain the integral equation

‖Y n
t1 − u(t1)‖2

H = ‖Y n
t0 − ut0‖2

H

+2

∫ t1

t0

〈
A(zn(θn

s ))Y n
s +B(Y n

s , zn(θn
s ))−A(p(s))u(s)−B(u(s), p(s)), Y n

s − u(s)
〉

X
ds,

(4.4.1)

which is valid for almost all t0, t1 in between two successive jump times. Since both

sides of equation (4.4.1) are continuous the equality (4.4.1) even holds for all t0, t1

between successive jump times. Moreover, as Y n
t is continuous also at jump times it
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follows that equation (4.4.1) holds for all t ∈ [0, T ], i.e., we have

‖Y n
t − u(t)‖2

H = ‖Y n
0 − u0‖2

H

+2

∫ t

0

〈
A(zn(θn

s ))Y n
s +B(Y n

s , zn(θn
s ))−A(p(s))u(s)−B(u(s), p(s)), Y n

s − u(s)
〉

X
ds .

(4.4.2)

Next we employ the one-sided Lipschitz conditions (4.0.2) to estimate the integral in

the right hand side of equation (4.4.2). This yields the inequality

‖Y n
t −ut‖2

H ≤ ‖Y n
0 −u0‖2

H +2L1

∫ t

0

‖Y n
s −u(s)‖2

H ds+2L1

m∑

j=1

∫ t

0

‖zn
j (θn

s )−pj(s)‖2
E ds.

(4.4.3)

The overall aim is to apply Gronwall’s inequality to the growth inequality (4.4.3).

Therefore, in the next step we derive a control on the terms ‖zn
j (θn

s )− pj(s)‖2
E in the

right hand side of inequality (4.4.3). As p is a solution of (4.2.1) satisfying (4.2.2) we

obtain for every functional φ ∈ E∗ a decomposition

〈φ, zn
j (θn

t )− pj(t)〉E = 〈φ, zn
j (θn

0 )− pj(0)〉E (4.4.4)

+

∫ t

0

[
An〈φ, zn

j (·)〉E
]
(Y n

s , θn
s ) ds−

∫ t

0

〈φ, Fj(p(s), u(s))〉E ds + 〈φ, Mn
j (t)〉E ,

where the term 〈φ, Mn
j (t)〉E has precisely the form (4.1.2) for all t ∈ [0, T ]. Next we

expand the decomposition (4.4.4) to obtain

〈φ, zn
j (θn

t )− pj(t)〉E =

= 〈φ, zn
j (θn

0 )− pj(0)〉E + 〈φ, Mn
j (t)〉E +

∫ t

0

[
An〈φ, zn

j (·)〉E
]
(Y n

s , θn
s ) ds

±
∫ t

0

〈φ, Fj(z
n(θn

s ), Y n
s )〉E ds−

∫ t

0

〈φ, Fj(p(s), u(s))〉E ds

= 〈φ, zn
j (θn

0 )− pj(0)〉E + 〈φ, Mn
j (t)〉E

+

∫ t

0

[
An〈φ, zn

j (·)〉E
]
(Y n

s , θn
s )− 〈φ, Fj(z

n(θn
s ), Y n

s )〉E ds

+

∫ t

0

〈
φ, Fj(z

n(θn
s ), Y n

s )− Fj(p(s), u(s))
〉

E
ds .

We take the supremum over all φ ∈ E∗ with ‖φ‖E∗ ≤ 1 on both sides of this equation,
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square both sides and apply the inequality |a1 + . . . + ak|2 ≤ k(|a1|2 + . . . + |ak|2) and

the Cauchy-Schwarz inequality to the right hand side which yields

‖zn
j (θn

t )− pj(t)‖2
E

≤ 4 ‖zn
j (θn

0 )−pj(0)‖2
E+4 ‖Mn

j (t)‖2
E+4
(∫ t

0

∥∥Fj(z
n(θn

s ), Y n
s )−Fj(p(s), u(s))

∥∥
E

ds
)2

+ 4T

∫ t

0

∥∥[An〈 · , zn
j (·)〉E
]
(Y n

s , θn
s )− Fj(z

n(θn
s ), Y n

s )
∥∥2

E
ds .

We next apply the Lipschitz condition (4.2.3) on F and obtain the estimate

‖zn
j (θn

t )− pj(t)‖2
E (4.4.5)

≤ ‖zn
j (θn

0 )− pj(0)‖2
E + 4L2

∫ t

0

‖Y n
s − u(s)‖2

H ds + 4L2

m∑

i=1

∫ t

0

‖zn
i (θn

s )− pi(s)‖2
E ds

+ 4T

∫ t

0

∥∥[An〈 · , zn
j (·)〉E
]
(Y n

s , θn
s )− Fj(z

n(θn
s ), Y n

s )
∥∥2

E
ds + ‖Mn

j (t)‖2
E .

To further estimate this inequality we employ the convergence (4.2.4) of the term

‖Mn
j ‖E and the uniform convergence (4.2.5) of the generator. It follows by definition

of these limits that for every ε1 > 0 and every δ > 0 we can find an Nε1,δ such that

for all n ≥ Nε1,δ it holds due to (4.2.4) for all j = 1, . . . , m and all t ∈ [0, T ] that

‖Mn
j (t)‖E ≤

√
ε1

m
,

and due to (4.2.5) that

∫ T

0

∥∥[An〈 · , zn
j (·)〉E
]
(Y n

s , θn
s )− Fj(z

n(θn
s ), Y n

s )
∥∥2

E
ds ≤ ε1

m

on a set Ω1 ⊂ Ω satisfying Pn(Ω\Ω1) ≤ δ for all n ≥ Nε1,δ. Thus continuing to

estimate only for paths on the set Ω1 we obtain from (4.4.5) the inequality

‖zn
j (θn

t )− pj(t)‖2
E ≤ 4 ‖zn

j (θn
0 )− pj(0)‖2

E + (4T + 1)
ε1

m
(4.4.6)

+ 4L2

∫ t

0

‖Y n
s − u(s)‖2

H ds + 4L2

m∑

i=1

∫ t

0

‖zn
i (θn

s )− pi(s)‖2
E ds.

In order to finally obtain the growth estimate suitable for an application of Gronwall’s
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inequality we add inequality (4.4.3) and inequalities (4.4.6) for all j = 1, . . . , m which

yields

‖Y n
t − u(t)‖2

H +
m∑

j=1

‖zn
j (θn

t )− pj(t)‖2
E ≤ ‖Y n

0 − u0‖2
H + C1

m∑

j=1

‖zn
j (θn

0 )− pj(0)‖2
E

+ C2ε1 + C3

∫ t

0

‖Y n
s − u(s)‖2

H ds + C3

m∑

j=1

∫ t

0

‖zn
j (θn

s )− pj(s)‖2
E ds

(4.4.7)

with constants given by C1 = 4, C2 = 4T + 1 and C3 = 2L1 + 4L2m. An application

of Gronwall’s inequality to (4.4.7) yields

sup
t∈[0,T ]

(
‖Y n

t − u(t)‖2
H +

m∑

j=1

‖zn
j (θn

t )− pj(t)‖2
E

)
≤ K1 eK2 T , (4.4.8)

where K2 = C3 and

K1 = ‖Y n
0 − u0‖2

H + C1

m∑

j=1

‖zn
j (θn

0 )− pj(0)‖2
E + C2ε1 .

Finally, due to (C3), i.e., the convergence in probability of the initial conditions, it

holds that for every ε2 > 0 we can find to every δ > 0 an Nε2,δ such that on a set

Ω2 ⊂ Ω with Pn(Ω\Ω2) < δ it holds for all n ≥ Nε2,δ that

‖Y n
0 − u0‖2

H ≤
ε2

m + 2
, ‖zn

j (θn
0 )− pj(0)‖2

E ≤
ε2

C1(m + 2)
∀ j = 1, . . . , m . (4.4.9)

Let ε, δ > 0 be arbitrary. Then we obtain choosing ε2 = ε e−K2T and ε1 = ε2
C2(m+2) ,

thus K1 = ε2, that for all n ≥ Nε,δ := Nε1,δ ∨Nε2,δ it holds that

supt∈[0,T ]

(
‖Y n

t − u(t)‖2
H +

m∑

j=1

‖zn
j (θn

t )− pj(t)‖2
E

)
≤ ε

on the set Ω1 ∩ Ω2. Therefore it holds for all n ≥ Nε,δ that

P
n
[
supt∈[0,T ]

(
‖Y n

t − u(t)‖2
H +

m∑

j=1

‖zn
j (θn

t )− pj(t)‖2
E

)
> ε
]
≤ 2δ .

As δ and ε are arbitrary the statement (4.2.6) follows and the proof is completed.
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4.4.2 Proof of Theorem 4.3.1 (Central limit theorem)

The proof of Theorem 4.3.1 is split into three successive steps. In the first step we

proof tightness of the sequence of martingales which guarantees the existence of a

limit. Secondly, we show that any limit is a continuous process. Finally, in the last

step we prove that the limit is the specific diffusion process as stated in the theorem.

The conditions (D1)–(D3) in Theorem 4.3.1 are such that each, in addition, to the

preceding is needed in the successive steps of the proof. In particular, that means

that (D1) is sufficient for tightness of the martingale sequence.

Tightness

In order to prove tightness of the sequence of E–valued martingales (
√

αn Mn
t )t≥0 it

suffices to show that the following conditions are satisfied, cf. [91] wherein general con-

ditions for tightness of sequences of Hilber space valued processes and, in particular,

martingales are considered:

(T1) The sequence of initial conditions (
√

αn Mn(0))n≥0 is tight.

(T2) For all t ≥ 0 it holds that

lim
δ→∞

sup
n∈N

P
n
[
Tr @

√
αn MnAt > δ

]
= 0 , (4.4.10)

and there exists an orthonormal basis (ϕk)k∈N of E∗ such that for each ε > 0

lim
m→∞

sup
n∈N

P
n
[∑

k>m
〈ϕk,@

√
αn MnAt ϕk〉E > ε

]
= 0 . (4.4.11)

(A) The sequence of the real-valued trace processes (Tr @√αn MnAt)t≥0, n ≥ N,

satisfies the Aldous condition: For every T, ε, δ > 0 there exists a h > 0 and an

N > 0 such that for any sequence of stopping times6 (σn)n≥0 with σn ≤ T it is

valid that

sup
n≥N

sup
0≤s≤h

P
n
[
|Tr@

√
αn MnAσn+s −Tr @

√
αn MnAσn | ≥ δ

]
≤ ε . (4.4.12)

In connection to the necessary and sufficient conditions for tightness, briefly mentioned

in the introduction of Section 4.3, it holds that conditions (T1) and (T2) imply that

the sequences (
√

αn Mn
t )n∈N are tight in E for almost all t ∈ R+ and the Aldous

condition (A) implies the convergence of the modulus of continuity.

We proceed to proving the above conditions. First note that condition (T1) is trivially

satisfied as Mn
0 = 0 for all n > 0. Hence we proceed to condition (T2). In order to

6Here every σn is a stopping time on the respective probability space (Ωn,Fn, Pn) with respect
to the given filtration (Fn

t )t≥0
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establish the first condition (4.4.10) we use Markov’s inequality to obtain the estimate

P
n
[
Tr @

√
αn MnAt > δ

]
≤ αn

δ
E

n
[∫ t

0

Tr Gn(Y n
s , θn

s ) ds
]
,

where the right hand side is finite due to (4.3.3) in condition (D1) and taking the

supremum on both sides the same condition implies (4.4.10).

Next, to show the second condition (4.4.11) we employ Markov’s inequality, the mono-

tone convergence theorem (in order to change the order of expectation and the count-

able summation over all k > m), the form of the quadratic variation (4.1.8) and

inequality (4.3.4) to obtain for the term in the left hand side the estimates

P
n
[∑

k>m
〈ϕk,@

√
αn MnAt ϕk〉E > δ

]
≤ αn

δ
E

n
[∑

k>m
〈ϕk,@MnAt ϕk〉E

]

≤ 1

δ

(∑
k>m

γk

)
C ,

where the upper bound is independent of n ∈ N. Moreover, the property
∑

k∈N
γk < ∞

implies that limm→∞
∑

k>m γk = 0 and hence (4.4.11) holds for all t ≥ 0.

Finally, it remains to show (A). Let T, δ > 0 and σn < T be an arbitrary sequence of

stopping times, then for all h > 0 it holds that for s ≤ h

P
n
[ ∣∣Tr @

√
αn MnAσn+s −Tr @

√
αn MnAσn

∣∣ ≥ δ
]

= P
n
[
αn

∫ σn+s

σn

Tr Gn(Y n
r , θn

r ) dr ≥ δ
]

≤ αn

δ

(
E

n
[∫ σn+h

0

Tr Gn(Y n
r , θn

r ) dr
]
− E

n
[∫ σn

0

Tr Gn(Y n
r , θn

r ) dr
])

.

Here the upper bound is finite due to (4.3.3), independent of s ≤ h and strictly

decreasing in h. Moreover, taking the supremum on both sides over all n ∈ N the

upper bound is still finite and strictly decreasing in h. Hence, for every ε > 0 we can

find an h small enough such that (4.4.12) holds. Condition (A) is thus satisfied.

Limit is a continuous process

In the preceding part of the proof we have established that the laws of the sequence of

martingales (
√

α Mn
t )t≥0 are tight which is equivalent to there existence of a weakly

convergent subsequence. We now prove that under the additional condition (D2)

any cluster point of the sequence is a measure supported on C0(R+, E). That is, the

limit is a process with almost surely continuous paths. The method of proof follows

the outline of [71, Lemma 3.2] adapted for the stochastic processes being PDMPs on

Hilbert spaces, the general setup in this chapter and the particular conditions (D1)
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and (D2) in Theorem 4.3.1 which differ from [71]. Furthermore, we have extended the

result in [71, Lemma 3.2], which only considers convergence on finite time intervals

[0, T ], to convergence on D(R+, E). In the following we employ the abbreviations

Zn
t :=

√
αn Mn

t and ∆tZn := Zn
t − Zn

t−, i.e., (∆tZn)t≥0 denotes the process of jump

heights. Note that ∆tZn =
√

αn ∆tzn(θn).

Further, let P∗ denote an accumulation point of the sequence (Pn)n∈N. Without loss of

generality we use Pn, n ≥ 1, to also denote the subsequence converging weakly to P∗.

Furthermore, here Pn is understood as a law on the Skorokhod space D(R+, E) given

by the pushforward measure of the process (
√

αn Mn
t )t≥0. Then due to the Skorokhod

Representation Theorem, e.g., [41, Chap. 3,Thm. 1.8], there exists a probability space

(Ωo,F o, Po) supporting D(R+, E)–valued random variables ζn, n ≥ 1 and ζ∗ with

distributions Pn and P∗, respectively, such that ζn converges to ζ∗ almost surely with

respect to Po. Further, it clearly holds that, e.g., Enf(Zn) = Eof(ζn) for suitable

functionals f .

We begin the proof with preliminary estimates on functions evaluated along the path

of the PDMPs. These ultimately allow to infer that the process of jumps heights

converges to the function being constantly zero. Let g be a measurable, bounded,

non-negative function g : R → R, that vanishes in a neighbourhood of 0 and of ∞,

that is, there exists a finite constant Cg := supx∈R

g(x)2

x2 < ∞. For such a function g

and any Φ ∈ E∗ we define the process

Gn
t (〈Φ, Zn〉E) :=

∑

s∈(0,t]

g
(
〈Φ,∆sZ

n〉E
)

−
∫ t

0

Λn(Y n
s , θn

s )

∫

Kn

g
(√

αn〈Φ, zn(ξ)− zn(θn
s )〉E
)
µn
(
(Y n

s , θn
s )
)
ds

=

∫ t

0

∫

Kn

g
(√

αn〈Φ, zn(ξ)− zn(θn
s−)〉E
)
Mn(dξ, ds) ,

where Mn is the martingale measure associated with the PDMP. Hence we infer that

the Gn
t (〈Φ, Zn〉E) is a martingale. Note that the above summation over all s ∈ (0, t]

is well-defined as the PDMPs are regular and thus g
(
〈Φ,∆sZn〉E

)
is non-zero for only

finitely many s ≤ t.

The proof now proceeds as follows. We first show (a) that for all t ≥ 0 the random

variables Gn
t (〈Φ, ζn〉E), n ∈ N, are uniformly integrable and (b) that they converge to

∑
s∈(0,t] g

(
〈Φ,∆sζn〉E

)
in probability. This allows to infer that the convergence result

also holds as convergence in mean.7 In part (c) we then use these results to show that

7For real-valued random variables convergence in the mean is equivalent to convergence in prob-
ability and uniform integrability.
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the jump heights of the canonical process of the law P∗ are constantly zero almost

surely. This implies that P∗(C0([0, t], E)
)

= 1 for every t > 0 where C0([0, t], E) is

understood as the subset of D(R+, E) consisting of those càdlàg functions which are

continuous up to and including time t. The proof is completed by (d) extending this

result to P∗(C0(R+, E)
)

= 1.

(a) To show that the sequence of random variables Gn
t (〈Φ, ζn〉E), n ∈ N, is uni-

formly integrable in the space (Ωo,F o, Po) it is sufficient that the second moments are

uniformly bounded, cf. [41, Appendix, Prop. 2.2]. The Itô-isometry for real-valued

stochastic integrals with respect to the associated martingale measures, which is im-

plied by taking the expectation of the processes in Proposition B.2.5, yields

sup
n∈N

E
o|Gn

t (〈Φ, ζn〉E)|2 = sup
n∈N

E
n|Gn

t (〈Φ, Zn〉E)|2

= sup
n∈N

E
n
[∫ t

0

Λn(Y n
s , θn

s )

∫

Kn

g
(√

αn〈Φ, zn(ξ)− zn(θn
s )〉E
)2

µn
(
(Y n

s , θn
s ), dξ
)
ds
]
.

Therefore, employing the special structure of the map g we obtain the estimate

sup
n∈N

E
o|Gn

t (〈Φ, ζn〉E)|2

≤ Cg sup
n∈N

αnE
n
[∫ t

0

Λn(Y n
s , θn

s )

∫

Kn

∣∣〈Φ, zn(ξ)− zn(θn
s )〉E
∣∣2 µn
(
(Y n

s , θn
s ), dξ
)
ds
]
,

where the right hand side is finite for every t > 0 due to condition (4.3.3) in (D1).

(b) In this part of the proof we establish convergence in probability of the random

variables Gn
t (〈Φ,∆ζn〉E). Let β > 0 be such that g(x) = 0 for |x| ≤ β, i.e., the interval

(−β, β) is contained in the neighbourhood of 0 whereon g vanishes. Then we obtain

using Markov’s inequality and due to the boundedness of g the estimates

P
o
[∑

s∈(0,t]
g(〈Φ,∆sζ

n〉E)−Gn
t (〈Φ, ζn〉E) > δ

]

= P
n
[∫ t

0

Λn(Y n
s , θn

s )

∫

Kn

g
(√

αn 〈Φ, zn(ξ)− zn(θn
s )〉E
)
µn
(
(Y n

s , θn
s ), dξ
)
ds > δ

]

≤ 1

δ
E

n
[∫ t

0

Λn(Y n
s , θn

s )

∫

Kn

g
(√

αn〈Φ, zn(ξ)− zn(θn
s )〉E
)
µn
(
(Y n

s , θn
s )
)
ds
]

≤ supx∈R |g(x)|
δ

E
n
[∫ t

0

Λn(Y n
s , θn

s )

∫

√
αn |〈Φ,zn(ξ)−zn(θn

s )〉E |>β
µn
(
(Y n

s , θn
s ), dξ
)
ds
]
.
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Thus due to condition (4.3.5) in (D2) it holds that

lim
n→∞

P
o
[∑

s∈(0,t]
g(〈Φ,∆sζ

n〉E)−Gn
t (〈Φ, ζn〉E) > δ

]
= 0 .

Moreover, it holds in (Ωo,F o, Po) almost surely that

lim
n→∞

∑

s∈(0,t]

g(〈Φ,∆sζ
n〉E) =

∑

s∈(0,t]

g(〈Φ,∆sζ
∗〉E) .

Therefore, combining these two convergence results we obtain that

Gn
t (〈Φ, ζn〉E) −→

∑

s∈(0,t]

g(〈Φ,∆sζ
∗〉E) (4.4.13)

holds as convergence in probability.

(c) From parts (a) and (b) we infer that(4.4.13) also holds as convergence in mean.

Together with Jensen’s inequality this implies

lim
n→∞

∣∣∣Eo
(
Gn

t (〈Φ,∆sζ
n〉E)−

∑

s∈(0,T ]

g(〈Φ,∆sζ
∗〉E)
)∣∣∣

≤ lim
n→∞

E
o
∣∣∣Gn

t (〈Φ,∆sζ
n〉E)−

∑

s∈(0,t]

g(〈Φ,∆sζ
∗〉E)
∣∣∣ = 0 ,

and hence we infer that

E
o
∑

s∈(0,t]

g(〈Φ,∆sζ
∗〉E) = lim

n→∞
E

oGn
t (〈Φ, ζn〉E) . (4.4.14)

Furthermore, Gn
t (〈Φ, Zn〉E) is a martingale which satisfies Gn

0 (〈Φ, Zn〉E) = 0, This, in

turn, implies that EnGn
t (〈Φ, Zn〉E) = 0 for every n ∈ N. Therefore we obtain due to

(4.4.14)

E
∗
∑

s∈(0,t]

g(〈Φ,∆sZ〉E) = E
o
∑

s∈(0,t]

g(〈Φ,∆sζ
∗〉E) (4.4.15)

= lim
n→∞

E
oGn

t (〈Φ, ζn〉E) = lim
n→∞

E
nGn

t (〈Φ, Zn〉E) = 0 .

In a next step, let gm be a sequence of functions satisfying the properties for functions

g proposed above. Further we assume that the functions gm(x) increase pointwise to

x2 for m → ∞ (for an example of such functions we refer to [71]). Then due to the
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monotone convergence theorem it holds that

lim
m→∞

E
∗
∑

s∈(0,t]

gm(〈Φ,∆sZ〉E) = E
∗
∑

s∈(0,t]

|〈Φ,∆sZ〉E |2 .

Furthermore, the limiting expectation in the right hand side is zero as each element

of the sequence of expectations in the left hand side is zero due to (4.4.15). Next we

choose Φ to be an element of an orthonormal basis (ϕk)k∈N of E . Then we sum the

expectations for all elements of the basis, i.e., we obtain the term

∑

k∈N

E
∗
∑

s∈(0,t]
|〈ϕk,∆sZ〉E |2 .

Due to the dominated convergence theorem we can interchange the countable summa-

tion and the expectation and as the PDMP is regular we can afterwards interchange

the resulting two summation inside the expectation. Then Parseval’s identity yields

E
∗
∑

s∈(0,t]

‖∆sZ‖2
E = 0 .

As the non-negative random variable inside the expectation is zero only for continuous

paths of the process (Zs)s∈[0,t] we infer that almost all paths are continuous, i.e.,

P∗(C0([0, t], E)
)

= 1.

(d) To conclude the proof let tk, k ∈ N, be a sequence of times increasing to infinity

then

C0(R+, E) =
⋂

k∈N

C0([0, tk], E) ,

and the events in the right hand side satisfy C0([0, tk+1], E) ⊆ C0([0, tk], E). The

properties of a probability measure thus yield

P
∗(C0(R+, E)

)
= lim

k→∞
P
∗(C0([0, tk], E)

)
= 1 ,

that is a process with distribution given by the limit P∗ possesses almost surely con-

tinuous paths.

Limit is a diffusion process

In the final part of the proof we uniquely characterise the limit of the sequence of

martingales (
√

αn Mn
t )t≥0 under the additional assumptions (D3). The method of

proof is via the local martingale problem motivated by a proof presented in [91],

i.e., the limiting probability measure is the unique solution to a particular martin-

gale problem. The author in [91] considers Hilbert space valued stochastic integral

equations driven by Hilbert space valued martingales with state dependent quadratic
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variation. A central limit theorem for the martingales is presented. The arguments

of the subsequent proof are closely related to [91]. This is as the general result on

martingales associated with PDMPs, which we have proven in Section 4.1, result in

the problem in this part of the proof to be of the same underlying structure as in [91].

One difference, however, is that the present conditions (D1)–(D3) are more general

than the conditions in [91] and adapted to the PDMP setup, hence some estimates

differ.

In this part of the proof we interpret the sequence of martingales (
√

αn Mn
t )t≥0 de-

fined on the probability spaces (Ωn,Fn, (Fn
t )t≥0, Pn) as random variables on the space

D(R+, E) equipped with its natural σ-field D. Further, laws on the canonical space

are given by the pushforward measure. In order to simplify the notation we denote the

laws on the canonical space also by Pn. Due to results in the preceding two parts of

the proof we know the sequence Pn, n ∈ N, admits a limit P∗ supported on C0(R+, E).

We use (ζt)t≥0 to denote the canonical process8 on D(R+, E) which is a version of the

martingale (
√

αn Mn
t )t≥0 under the push-forward maesure Pn for all n ∈ N or of the

weak limit under the measure P∗.

In the following we prove that the limit P∗ is a solution to a local martingale problem

the unique solution of which is an E–valued centered diffusion process with covariance

operator C(t) ∈ L1(E∗, E) as given in (4.3.2). For any twice continuously differentiable

function f : E → R the extended generator Af of such a diffusion is given by

Af(x, t) =
1

2
Tr (D2f(x) ◦G(t)) .

Then, as in [91] in order to uniquely characterise the solution to the local martingale

problem connected with this generator and supported on the space C0(R, E) it suffices

to consider mappings f of the form 〈Φ, ·〉E and 〈Φ, ·〉2E for all Φ ∈ E∗.9 That is, we

8The canonical process on D(R+, E) is similar to the concept of a canonical random counting
measure or a canonical marked point process considered in Appendix B.2. To be precise, the canonical
process is a probability on the space D(R+, E) equipped with its natural filtration (Dt)t≥0 where
Dt := σ(w(s), s ≤ t, w ∈ D(R+, E)) and D :=

∨
t≥0 Dt. Then we define on the canonical space we

the E-valued ’process’ (ζt)t≥0 by ζt : D(R+, E) → E : w +→ ζt(w) := w(t) . Each E–valued continuous
process defines a unique canonical process via its pushforward measure and the ’process’ (ζt)t≥0

with respect to the canonical process given by the pushforward measure is a version of the original
process.

9The considerations in the following are generally valid although we use the particular notation
of the present chapter. First of all, in the case of an one-dimensional diffusion it is known that the
functions x→ x and x→ x2 are sufficient to uniquely characterise the solution of the corresponding
martingale problem. Now, suppose that a process (ζt)t≥0 is a Hilbert space-valued diffusion with
covariance operator C(t). This is equivalent to each (〈Φ, ζt〉)t≥0, where Φ is an arbitrary element of
the dual space, being a diffusion process with covariance operator 〈Φ, C(t)Φ〉. Hence, each of these
is the unique solution to the martingale problem such that the processes t +→ 〈Φ, ζt〉 and

t +→ 〈Φ, ζt〉2 − 〈Φ, C(t)Φ〉

are martingales. Conversely, it is now clear that if there exists a probability such that we obtain
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have to show that the canonical process ζt in C0(R+, E) is such that for all Φ ∈ E∗

the processes 〈Φ, ζt〉E and

〈Φ, ζt〉2E −
∫ t

0

〈Φ, G(us, ps)Φ〉E ds (4.4.16)

are P∗-local martingales. We start introducing some notation and then show in parts

(a) and (b) the martingale properties of the two indicated processes on the canonical

space D(R+, E). First, however we have to introduce some more notation and a useful

result employed in the remainder of the proof.

As before we use Zn
t :=

√
αn Mn

t and ∆tZn := Zn
t −Zn

t−. Further, as indicated above

the notation is such that we use Pn and En to denote probabilities and expectations

on the original given measurable spaces (Ωn,Fn) as well as on the canonical space

(D(R−+, E),D). That is, e.g., Enf(Zn
t ) = Enf(ζt) for any bounded function f ,

where the former is the expectation taken on the original space (Ωn,Fn, Pn) and the

latter the expectation on the canonical space of càdlàg processes with respect to the

pushforward measure.

We also employ the Itô-formula [90, Thm. 25.7] for smooth10 functions f ∈ C∞
c (R)

applied to semi-martingales. For the particular choice of the semi-martingales being

the real martingales 〈Φ, Zn
t 〉E the Itô-formula reads

f
(
〈Φ, Zn

t 〉E
)

=
1

2

∫ t

0

f ′′(〈Φ, Zn
s−〉E
) (
〈Φ, αn@MnAtΦ〉E

)
ds

+
∑

s≤t

[
f(〈Φ, Zn

s 〉E)− f(〈Φ, Zn
s−〉E)− 〈Φ,∆sZ

n〉E f ′(〈Φ, Zn
s−〉E)
]

−1

2

∑

s≤t

[
〈Φ,∆sZ

n〉sE f ′′(〈Φ, Zn
t 〉E)
]
+Mf,n

t (4.4.17)

where (Mf,n
t )t≥0 is a particular martingale on (Ωn,Fn, (Fn

t )t≥0, Pn) depending on Zn

and f .

Next, we introduce on the canonical space for all positive ρ the stopping times

τρ := inf{t ∈ R+ | ‖ζt‖E > ρ} and note that due to the bound (4.3.7) in (D3) on the

jump heights we have that for any law Pn, n ≥ 1, it holds almost surely

‖ζτρ‖E ≤ ρ + C . (4.4.18)

Analogously we define the stopping times τn
ρ := inf{t ∈ R+ | ‖Zn

t ‖E > ρ} on the spaces

a family of diffusion processes {(〈Φ, ζt〉)t≥0,Φ being a bounded, linear fuctional} then this familiy
defines a unique Hilbert space-valued diffusion given by (ζt)t≥0.

10The set C∞
c (R) denotes the space of infinitely often differentiable real-valued functions with

compact support in R.
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(Ωn,Fn, (Fn
t )t≥0, Pn).

Finally, as already mentioned (Dt)t≥0 denotes the natural filtration on the canonical

space. Then for A ∈ Dt we define An := (Zn)−1F ∈ Fn
t its preimage with respect to

the random variable Zn. We now proceed to show that the two processes 〈Φ, ζt〉E and

(4.4.16) are indeed martingales with respect to the limit measure P∗.

(a) Let Φ ∈ E∗ be fixed and we choose for every ρ a smooth function fρ ∈ C∞
c (R)

which satisfies fρ(x) = x if |x| ≤ ‖Φ‖E∗(ρ + C) and thus f ′(x) = 1 and f ′′(x) = 0

for |x| ≤ ‖Φ‖E∗(ρ + C). Therefore it holds for t < τn
ρ , which implies the estimate

|〈Φ, Zn
t−〉E | ≤ ‖Φ‖E∗(ρ + C), that

f ′′
ρ (〈Φ, Zn

t−〉E) = 0

and

fρ(〈Φ, Zn
t 〉E)− fρ(〈Φ, Zn

t−〉E)− 〈Φ,∆tZ
n〉E f ′

ρ(〈Φ, Zn
s−〉E) = 0.

It follows that applying the Itô-formula (4.4.17) to the function fρ and the martingale

Zn
t∧τn

ρ
all terms besides the martingale Mn,fρ vanish in the the right hand side.

Therefore we obtain for t2 ≥ t1 and all A ∈ Dt1 that

E
n
[
IA

(
〈Φ, ζt2∧τρ〉E − 〈Φ, ζt1∧τρ〉E

)]
= E

n
[
IA

(
fρ
(
〈Φ, ζt2∧τρ〉E

)
− fρ
(
〈Φ, ζt1∧τρ〉E

))]

= E
n
[
IAn

(
fρ
(
〈Φ, Zn

t2∧τn
ρ
〉E
)
− fρ
(
〈Φ, Zn

t1∧τn
ρ
〉E
))]

= 0 . (4.4.19)

The proof of the first martingale property is concluded as in [91]: The mapping

ζ → fρ(〈Φ, ζt2∧τρ〉E) is almost surely (with respect to the probability P∗) continuous

and as Pn converges weakly to P∗ it holds due to (4.4.19) that

E
∗
[
IA

(
〈Φ, ζt2∧τρ〉E − 〈Φ, ζt1∧τρ〉E

)]
= 0 .

We infer from the definition of the conditional expectation that the stopped processes

are martingales. Furthermore, as ζt possesses continuous paths almost surely under

the measure P∗ it holds that τρ diverges to ∞ almost surely for ρ → ∞. Hence, we

can find a sequence of stopping times τρk
, k ∈ N, such that τρk

→ ∞ almost surely

for k → ∞. Thus it holds that the process 〈Φ, ζt〉 is a local martingale with respect

to P∗.

(b) For the second class of processes we consider smooth functions gρ ∈ C∞
c (R)

such that gρ(x) = x2 for all |x| ≤ ‖Φ‖E∗(ρ + C). Starting from the definition of the
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conditional expectation as in (4.4.19) we obtain

E
n
[
IA

(
〈Φ, ζt2∧τρ〉2E −

∫ t2∧τρ

0

〈Φ, G(u(s), p(s))Φ〉E ds− 〈Φ, ζt1∧τρ〉2E

+

∫ t1∧τρ

0

〈Φ, G(u(s), p(s))Φ〉E ds
)]

= E
n
[
IA

(
〈Φ, ζt2∧τρ〉2E − 〈Φ, ζt1∧τρ〉2E −

∫ t2∧τρ

t1∧τρ

〈Φ, G(u(s), p(s))Φ〉E ds
)]

= E
n
[
IAn

(
〈Φ, Zn

t2∧τρ
〉2E − 〈Φ, Zn

t1∧τρ
〉2E −
∫ t2∧τρ

t1∧τρ

αn 〈Φ, Gn(Y n
s , θn

s )Φ〉E ds
)]

+ E
n
[
IAn

(∫ t2∧τρ

t1∧τρ

αn 〈Φ, Gn(Y n
s , θn

s )Φ〉E − 〈Φ, Gn(u(s), p(s))Φ〉E ds
)]

.

Here the first expectation in the final right hand side vanishes due to the Itô-formula

(4.4.17): We apply the Itô-formula for the function gρ and the martingales Zn
t∧τn

ρ
to

the terms 〈Φ, Zn
t2∧τρ

〉2E and 〈Φ, Zn
t1∧τρ

〉2E . Then we find – similarly to part (a) – that

the summands in the right hand side of the Itô-formula vanish. Therefore we are left

with only the martingale Mn,gρ and the integral term, wherein g′′
ρ(〈φ, Zn

t−〉E) = 2 for

all t < τn
ρ . The martingale term vanishes due to the martingale property and the

remaining integral is cancelled by the integral in the above expectation. Overall this

shows that the first expectation vanishes.

Next we take the absolute value on both sides of the above equality and obtain,

estimating the second expectation and extending the integration interval to [0, T ],

the inequality

∣∣∣En
[
IA

(
〈Φ, ζt2∧τρ〉2E −

∫ t2∧τρ

0

〈Φ, G(u(s), p(s))Φ〉E ds− 〈Φ, ζt1∧τρ〉2E

+

∫ t1∧τρ

0

〈Φ, G(u(s), p(s))Φ〉E ds
)]∣∣∣

≤
∫ t

0

E
n
∣∣∣αn 〈Φ, Gn(Y n

s , θn
s )Φ〉E − 〈Φ, G(u(s), p(s))Φ〉E

∣∣∣ ds .

The convergence of the upper bound to zero for n→∞ follows by assumption (4.3.6).

Hence we have proven an analogous result to (4.4.19) in part (a). The same line of

argument that concluded part (a) also concludes part (b). The proof is completed.

163



Chapter 4: Limit Theorems for PDMPs

4.4.3 Proof of Theorem 4.3.2 (Central limit theorem II)

For the alternative version of the martingale central limit theorem, Theorem 4.3.2,

the convergence of the finite-dimensional distributions is employed to characterise the

limit as the diffusion process given by the covariance operator C(t) given by (4.3.2).

This is in contrast to the use of the local martingale problem for the proof of Theorem

4.3.1. The difference in conditions to the first martingale central limit theorem is that

condition (D3’) is assumed instead of condition (D3) and thus avoids the assumption

that the jump heights of the martingale sequence are uniformly almost surely bounded.

First of all note, that as we assume in Theorem 4.3.2 tightness for the sequence

(
√

αn Mn
t )t≥0 , e.g., condition (D1) of Theorem 4.3.1 is satisfied, the existence of a

limit is guaranteed.

As we have discussed in the introduction to Section 4.3 the limit is uniquely char-

acterised by the convergence of the finite-dimensional distributions. Due to Lévy’s

Continuity Theorem, for an appropriate version in Hilbert spaces see [97], the con-

vergence of the finite-dimensional distributions is implied by the convergence of their

characteristic functions. In the present situation this task can be further simplified.

Analogously to [75, 80, 96] it is sufficient to consider the convergence of the one-

dimensional diffusion: Assume that
√

αn Mn
t converges in distribution to the corre-

sponding one-dimensional marginal of the limiting diffusion for all t ≥ 0. Completely

analogous arguments, as we employ below to establish the convergence of the one-

dimensional distributions, establish that for each t, s ≥ 0 the sequence of random

variables
√

αn (Mn
s+t −Mn

s ) converges in distribution to the corresponding increment

of the limiting diffusion. We can now use this property in combination with the

strong Markov property of the sequence of PDMPs to infer that the characteristic

function of the two-dimensional vector (
√

αn Mn
s ,
√

αn Mn
s+t) converges to the charac-

teristic function of the corresponding two-dimensional vector of the limiting diffusion.

As this holds for all t, s ≥ 0 we have shown the convergence of the two-dimensional

marginals. Repeating this procedure we are able to show the convergence of the

finite-dimensional distributions.

Thus, in the following it remains to show the convergence of the one-dimensional

characteristic functions of the martingales (
√

αn Mn
t )t≥0 to the characteristic function

of the one-dimensional marginals of the diffusion process. The latter are given for all

Φ ∈ E∗ and all t ≥ 0 by

ϕ(t,Φ) = exp
(
−1

2

∫ t

0

〈Φ, G(u(s), p(s))Φ〉E ds
)

. (4.4.20)

The individual steps in the subsequent proof follow the outline of [80, 96] wherein

finite-dimensional processes are considered. That this method of proof is also appli-

cable for infinite-dimensional PDMPs relies on the general results for these processes
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we have derived in Chapter 2. Particularly the characterisation of the extended gen-

erator, cf. Theorem 2.2.1 and the resulting Dynkin’s formula (2.2.7).

We split the remainder of the proof in two parts. In a first step (a) we derive a formula

for characteristic function ϕn of the random variables
√

αn Mn
t , t ≥ 0 and n ∈ N. In

the second step (b) we show that the conditions (D3’) imply the convergence of ϕn

to the characteristic function of the diffusion ϕ given in 4.4.20.

(a) We first derive a formula for the characteristic function of the one-dimensional

marginals of the martingales (
√

αn Mn
t )t≥0. To this end we consider for every n ≥ 1 the

process (Y n
t , θn

t , Mn
t )t≥0 which is a PDMP on the state space H×Kn×E . That is, the

process (Y n
t , θn

t , Mn
t )t≥0 is the original PDMP extended by components containing the

associated martingales. By definition the components Mn
t are càdlàg and the jumps

in the two discontinuous components θn and Mn occur at the same times. Moreover,

the jump heights satisfy the relation Mn
τk
n
−Mn

τk
n− = zn(θn

τ )− zn(θn
τ−) for τk

n denoting

the kth jump time of the process (Y n
t , θn

t , Mn
t )t≥0.

Let f : Kn × E → R be a function in the domain of the extended generator of

(Y n
t , θn

t , Mn
t )t≥0, see Theorem 2.2.1, which is Fréchet-differentiable with respect to

the second component taking values in E . In the following this component is denoted

by η. As Mn
t is absolutely continuous in E and hence almost everywhere differentiable,

the generator of (Y n
t , θn

t , Mn
t )t≥0 applied to such an f , cf. Theorem 2.2.1, is given by

Anf(θn, η) =

= −
m∑

j=1

〈
fηj (θ

n, η),An〈 · , zn
j (θn)〉E

〉
E

+Λn(u, θn)

∫

Kn

[
f(ξ, zn(ξ)− zn(θn) + η)− f(θn, η)

]
µn
(
(u, θn), dξ

)

= Λn(u, θn)

∫

Kn

[
f(ξ, zn(ξ)− zn(θn) + η)− f(θn, η) (4.4.21)

−
〈
zn(ξ)− zn(θ), fη(θ

n, η)
〉
E

]
µn
(
(u, θn), dξ

)
.

Here the second equality holds as

〈
fηj (θ

n, η),An〈 · , zn
j (θn)〉E

〉
E

= An〈fηj (θ
n, η), zn

j (θn)〉E .

We next use the generator (4.4.21) to obtain a formula for the characteristic function.

165



Chapter 4: Limit Theorems for PDMPs

The characteristic function ϕn of
√

αn Mn
t is for all t ≥ 0 and Φ ∈ E∗ defined by

ϕn(t,Φ) = E e i〈Φ,
√
αnMn

t 〉E (4.4.22)

with 〈Φ, z〉E =
∑m

j=1〈φj, zj〉E for any z = (z1, . . . , zm) ∈ E and Φ = (φ1 , . . . , φm) ∈ E∗.

The chain rule of Fréchet differentiation yields that for all j = 1, . . . , m the Fréchet

derivative of y +→ ei〈φj ,y〉 at a point x ∈ E is an element of E∗ and given by

D ei〈φj , · 〉E [x] : E → C : h +→ i〈φj , h〉E ei〈φj ,x〉E .

That is the mapping (u, θn, η) +→ ei〈Φ,η〉E is continuously Fréchet differentiable with

respect to η. Moreover, it is also bounded as |e−ix| = 1 for all x ∈ R and thus it is in

the domain of the extended generator of the process (Y n
t , θn

t , Mn
t )t≥0.

Due to the Fréchet differentiability we now obtain from (4.4.21) and Dynkin’s formula

(2.2.7) that

ϕn(t,Φ)− 1 =

∫ t

0

E
n
[
Λn(Y n

s , θn
s )

∫
ei

√
αn〈Φ,zn(ξ)−zn(θn

s )+Mn
s 〉E − ei

√
αn〈Φ,Mn

s 〉E

− i
√

αn ei
√
αn〈Φ,Mn

s 〉E
〈
Φ, zn(ξ)− zn(θn

s )
〉
E µn
(
(Y n

s , θn
s ), dξ
)]

ds.

The definition of the operator Gn and the equality (4.1.14), that is,

Λn(u, θn)

∫
〈Φ, zn(ξ)− zn(θn)〉2E µn

(
(u, θn), dξ

)
= 〈Φ, Gn(u, θn)Φ〉E ,

yields for the characteristic function ϕn the representation

ϕn(t,Φ)− 1 =

∫ t

0

E
n
[
−1

2
αn 〈Φ, Gn(Y n

s , θn
s )Φ〉E ei

√
αn〈Φ,Mn

s 〉E
]
ds + Kn(t,Φ)

= −
∫ t

0

1

2

〈
Φ, G(u(s), p(s))Φ

〉
E ϕn(s,Φ) ds + Jn(t,Φ) + Kn(t,Φ) ,

(4.4.23)

where the terms Jn(t,Φ) and Kn(t,Φ) are given by

Jn(t,Φ) :=
1

2

∫ t

0

E
n
[(〈

Φ, G(u(s), p(s))Φ
〉
E − αn〈Φ, Gn(Y n

s , θn
s )Φ〉E

)
ei

√
αn〈Mn

s ,Φ〉E
]
ds
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and

Kn(t,Φ) := En

∫ t

0

[
Λn(Y n

s , θn
s )

∫

Kn

ei
√
αn〈Φ,Mn

s 〉E k
(√

αn

〈
Φ, zn(ξ)− zn(θn

s )
〉
E

)

αn

〈
Φ, zn(ξ)− zn(θn

s )
〉2
E µn
(
(Y n

s , θn
s ), dξ
)]

ds .

The function k in the definition of the term Kn is given by

k(y) =
eiy − 1− iy + 1

2y
2

y2
.

Note that k is bounded and satisfies k(y) = o(y).

(b) Next we prove the convergence of the characteristic functions. First of all observe

that the characteristic function ϕ of the limiting diffusion given in (4.4.20) satisfies

ϕ(t,Φ)− 1 = −
∫ t

0

1

2

〈
Φ, G(u(s), p(s))Φ

〉
E ϕ(s,Φ)ds .

Subtracting this equality from equality (4.4.23) we obtain

ϕn(t,Φ)− ϕ(t,Φ)

= Jn(t,Φ) + Kn(t,Φ)−
∫ t

0

1

2

〈
Φ, G(u(s), p(s)),Φ

〉
E

(
ϕn(s,Φ)− ϕ(s,Φ)

)
ds.

Next, taking the absolute value on both sides and estimating the right hand side –

note that operator G(u(s), p(s)) is positive – we obtain the inequality

|ϕn(t,Φ)− ϕ(t,Φ)|

≤ |Jn(t,Φ) + Kn(t,Φ)| + 1

2

∫ t

0

〈
Φ, G(u(s), p(s))Φ

〉
E

∣∣ϕn(s,Φ)− ϕ(s,Φ)
∣∣ds.

We use Gronwall’s Lemma to infer

|ϕn(t,Φ)− ϕ(t,Φ)| ≤ exp

(
1

2

∫ t

0

〈
Φ, G(u(s), p(s))Φ

〉
E ds

)
sup

s∈[0,t]

∣∣Jn(s,Φ) + Kn(s,Φ)
∣∣.

The exponential function in the right hand side of this inequality is finite due to

condition (4.3.1). The proof is completed showing that the supremum terms, that is,

the terms sups∈[0,t] |Jn(s,Φ)| and sups∈[0,t] |Kn(t,Φ)| converge to zero for n →∞.

On the one hand, the convergence of the first term sups∈[0,t] |Jn(s,Φ)| follows imme-

diately by condition (4.3.6) and the boundedness of the exponential function. On the

other hand, for the term Kn(t,Φ) we employ condition (4.3.8) in (D3’).
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In more detail, as the exponential is bounded it remains to estimate the term

αnEn

∫ t

0

Λn(Y n
s , θn

s )

∫

Kn

|〈φ, zn(ξ)− zn(θn)〉E|2

∣∣k(
√

αn〈φ, zn(ξ)− zn(θn)〉E)
∣∣µn
(
(u, θn), dξ

)
ds

≤ k αn En

∫ t

0

Λn(Y n
s , θn

s )

∫
{
θn∈Kn

∣∣√αn|〈φ,zn(ξ)−zn(θn
s )〉E |>βn

}

|〈φ, zn(ξ)− zn(θn
s )〉E |2 µn

(
(Y n

s , θn
s ), dξ
)
ds

+ |k(βn)|αn En

∫ t

0

Λn(Y n
s , θn

s )

∫
{
θn∈Kn

∣∣√αn|〈φ,zn(ξ)−zn(θn
s )〉E |≤βn

}

|〈φ, zn(ξ)− zn(θn
s )〉E |2 µn

(
(Y n

s , θn
s ), dξ
)
ds

where k is a bound to k(y). Now the first term in the right hand side converges to

zero for n →∞ due to condition (4.3.8) in (D3’). The second term in the right hand

side converges to zero as |k(βn)| = o(βn), βn → 0, and the expectation is bounded for

n ∈ N due to condition (4.3.3). The proof is completed.

4.5 Application to models of excitable membranes

As an example for the application of the limit theorems presented in Sections 4.2

and 4.3 we consider a compartmental-type stochastic model for spatially extended

neuronal membranes, cf. Section 3.2. We note that the law of large numbers that is

presented in [7] for a particular one-dimensional exact hybrid model serves as another

example for the application of Theorem 4.2.1.

4.5.1 The setup for compartmental type models

We consider the equation for the membrane potential on a bounded domain D ⊂ Rd

for the physically reasonable dimensions d ≤ 3 with sufficiently smooth boundary.

The most interesting choices for the applied sciences are, in particular, d = 1 and

d = 2, as discussed elsewhere in more detail. One-dimensional domains are regularly

used for models of axons, and d = 2 is employed in models of cardiac tissue and

calcium dynamics. The family of abstract evolution equations defining the dynamics

of the PDMP’s continuous component Y n are given for this model by the parabolic,

linear, inhomogeneous second order partial differential equations

u̇ =
d∑

i,j=1

aij(x)uxixj +
m∑

i=1

gi(x) zn
i (θn) (Ei − u) (4.5.1)
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where the coefficient functions aij and gi are smooth on D and the differential operator

is strongly elliptic. These non-constant values for the diffusion coefficients and the

conductances account for spatially inhomogeneous models, e.g., myelinated axons. To

conform with the preceding sections of the thesis we equip the equation (4.5.1) with

Dirichlet boundary condition. This particular choice is of no particular importance for

the considerations that follow and can be readily changed. We define the operators

A, B depending on θn only via suitable coordinate functions zn(θn), cf. (4.0.1) in

Section 4.0.1, by

A(zn(θn)) u :=
d∑

i,j=1

aij(x)uxixj

B(zn(θn), u) :=
m∑

i=1

gi(x) zn
i (θn) (Ei − u) .

(4.5.2)

We defer the precise definition of the coordinate functions zn for compartmental-type

models and first discuss the deterministic limit system. As the deterministic limit we

propose the solution to the membrane equation

u̇ =
d∑

i,j=1

aij(x)uxixj +
m∑

i=1

gi(x) pi (Ei − u) , (4.5.3)

with pi, i = 1 . . . , m, given by solutions of the coupled equations

ṗi = Fi(p, u) :=
∑

j ,=i

(
pj qji(u) − pi qij(u)

)
. (4.5.4)

This deterministic system is the usual deterministic model for axon equations coupled

to the full gating system, cf. Section 3.3. Analogously as for the PDMP model we

choose Dirichlet boundary conditions for the potential component, i.e., u(t, x) = 0 for

all t ∈ [0, T ] and all x ∈ ∂D. Further, we assume that the rate functions satisfy the

conditions (EC3) in Section 3.3.1. We choose initial conditions u0 ∈ H1
0 (D) ∩Hs(D)

and pi(0) ∈ Hs(D) where s > d/2. These satisfy u(0, x) ∈ [u−, u+] for all x ∈ D

and pi(0, x) ∈ [0, 1],
∑m

i=1 pi(0, x) = 1 for all x ∈ D and i = 1, . . . , m. Here we set

u− := mini Ei ≤ 0 and u+ := maxi Ei ≥ 0. Finally, in the case d = 2, 3 we assume

that the domain possesses a C3–boundary.

Then it holds that the deterministic system (4.5.3), (4.5.4) is well-posed due to The-

orem 3.3.1. The unique solution (u, p) is in C0([0, T ], Hs(D)) componentwise and, in

particular, is pointwise bounded due to Proposition 3.3.1, i.e., u(t, x) ∈ [u−, u+] and

pi(t, x) ∈ [0, 1] for all (t, x) ∈ [0, T ]×D and all i = 1, . . . , m.

We briefly recollect the essential features for the sequence of PDMPs (Y n
t , θn

t )t≥0,

n ∈ N, defined on the probability spaces (Ωn,Fn, Pn) being the compartmental-type
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models. First of all, an integral component of the sequence of models is the sequence

of compartmentalisation. Thus, for each n ∈ N let p(n) ∈ N denote the number of

compartments of the spatial domain D, i.e., for each n the sets Dk,n, . . .Dp(n),n form a

partition of the domain D which is the basis of the models. Moreover, we assume that

each Dk,n is convex. The convexity of individual compartments is a technical assump-

tion which allows to employ Poincaré’s inequality in the proof of the limit theorems

with a known optimal Poincaré constant [1, 98]. Secondly, a fundamental aspect is

the channel distribution across the compartments, that is, the coordinate functions

zn(θn) and the stochastic jump dynamics. Recall that in compartmental-type models

the individual components θk,n
i (t) of the piecewise constant PDMP component θn

t

denote the number of channels located in the domain Dk,n which are in state i at time

t. We assume that compartments either contain no channels or a fixed deterministic

number. To this end let l(n) ∈ N denote this fixed, deterministic number of channels,

i.e.,
m∑

i=1

θk,n
i = l(n) ,

for k denoting compartments containing channels. Obviously for k denoting a com-

partment that does not contain channels it holds that θk,n
i = 0 for all i = 1, . . . , m.

Summarising we note that the states θn = (θk,n
i )i=1,...,m, k=1,...,p(n) for the piecewise

constant component of the PDMP are mp(n)-dimensional vectors which take only

finitely many values the set of which is denoted by Kn. On the set Kn we define for

i = 1, . . . , m the coordinate functions

zn
i (θn) =

1

l(n)

p(n)∑

k=1

θk,n
i (t) IDk,n

∈ L2(D) . (4.5.5)

The coordinate process zn(θn
t ) is càdlàg with each component taking values in L2(D).

Moreover, each zn
i (θn

t ) is for every t ≥ 0 a piecewise constant function on the spatial

domain D taking values in [0, 1].

As two channel switchings do not occur simultaneously, the only jumps in the piece-

wise constant component configuration θn
t with non-zero probability are transitions

concerning one single channel. That is, these are events for which in one particular

subdomain one particular channel changes its state. The rate that one channel in

subdomain Dk,n switches from state i to state j is given by

θk,n
i Qk,n

ij (u) ∈ R+ , (4.5.6)
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where Qn
ij(u) is a functional of the transmembrane potential u defined as

Qk,n
ij (u) := qij

( 1

|Dk,n|

∫

Dk,n

u(x) dx
)

.

That is, Qk,n
ij (u) is the instantaneous rate evaluated at the average value of the trans-

membrane potential on the subdomain Dk,n. Hence the instantaneous rate (4.5.6)

is the number of channels in state i in domain Dk,n times the rate of one channel

switching from i to j. This definition yields, by summing over all events, the total

instantaneous rate

Λn(Y n
t , θn

t ) :=
m,p(n)∑

i=1,k=1

m∑

j=1

θk,n
i (t) Qk,n

ij (Y n
t ) .

Note that the total instantaneous rate is proportional to the total number of channels

in the model, i.e., Λn = O(p(n)l(n)). Moreover, it is bounded, hence the PDMP is

regular

Finally, we note that due to Theorem 3.2.1 the membrane variable of the stochastic

model is almost everywhere pointwise bounded , i.e., Y n
t (x) ∈ [u−, u+] for almost all

x ∈ D and all t ≥ 0, analogously to the deterministic limit u.

4.5.2 Limit theorems for compartmental-type models

The limit theorems derived in the preceding sections take the following form for the

compartmental models. We recall that it is a general assumption for the hybrid models

that the initial conditions satisfy for all n ∈ N almost surely that Y n
0 (x) ∈ [u−, u+]

for all x ∈ D.

We denote by δ(n) the maximal diameter of the elements of the partition correspond-

ing to the nth model containing channels, i.e.,

δ(n) = max
k=1,...,p(n)

diam(Dk,n) I[Pm
j=1 θ

k,n
j ,=0
] ,

where the diameter of a set Dk,n is defined as supx,y∈Dk,n
|x − y|. Obviously, the

sequence is bounded by the diameter of the domain D. Moreover, for limn→∞ δ(n) = 0,

which we always assume, the sequence of models is defined on ever finer partitions.

It is clear that a vanishing diameter δ(n) → 0 for n → ∞ implies that the number

of compartments tends to infinity, i.e., limn→∞ p(n) = ∞. The law of large numbers

in Theorem 4.5.1 provides a connection of the stochastic models to the deterministic

excitable membrane system in the following sense: For neuronal membranes with a

high channel density and if the contribution of an individual channel to the total

conductance of small patches of membranes is small, the stochastic spatio-temporal
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dynamics of the membrane are close to the deterministic model with a high probability.

Theorem 4.5.1. Assume that the sequence of partitions satisfy that

lim
n→∞

δ(n) = 0, lim
n→∞

l(n) = ∞, (4.5.7)

and that the initial conditions (Y n
0 , zn(θn

0 )) converge in probability to (u0, p0) in the

space L2(D)m+1. Then the compartmental-type models converge in probability to the

deterministic solution of the excitable media system in the sense that it holds for all

ε > 0 that

lim
n→∞

P

[
supt∈[0,T ] ‖Y n

t − u(t)‖L2 +
m∑

i=1

sup
t∈[0,T ]

‖zn
i (θn

t )− p(t)‖L2 > ε
]

= 0 . (4.5.8)

Moreover, the convergence also holds in the mean in the space L2((0, T ), L2(D)), i.e.,

lim
n→∞

E
n
[
‖Y n

t − u(t)‖L2((0,T ),L2) +
m∑

i=1

‖zn
i (θn

t )− p(t)‖L2((0,T ),L2)

]
= 0 . (4.5.9)

We proceed to present the appropriate quadratic variation process for the martingale

central limit theorem applied to compartmental-type models. For the definition of

the limiting diffusion we consider for u, pi ∈ C0(D) the bilinear form

(Ψ,Φ) +→
(
G(u, p)Ψ,Φ

)
L2 =

m∑

j=1

∑

i,=j

∫

D

pi(x) · qij(u(x)) · ψj(x) · φj(x) dx

+
m∑

j=1

∑

i,=j

∫

D

pj(x) · qji(u(x)) · ψj(x) · φj(x) dx

−
m∑

j=1

∑

i,=j

∫

D

pj(x) · qji(u(x)) · ψi(x) · φj(x) dx

−
m∑

j=1

∑

i,=j

∫

D

pi(x) · qij(u(x)) · ψi(x) · φj(x) dx .

(4.5.10)

Note that this is finite for all φi, ψi ∈ L2(D) as pi and qij(u) are bounded functions.

Hence, for every given Ψ ∈ L2(D)m the mapping Φ +→ (G(u, p)Ψ,Φ) is a linear,

bounded functional on L2(D)m and, conversely, for every given Φ ∈ L2(D)m the

mapping Ψ +→ (G(u, p)Ψ,Φ) is a linear, bounded functional on L2(D)m.

Proposition 4.5.1. The operator G(u, p) defined via (4.5.10) is a trace class operator

mapping Hs(D) into H−s(D) for s > d/2. Moreover, the operator-valued mapping

t +→ G(u(t), p(t)) defines a unique centred diffusion process on H−s(D).
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Finally for the subsequent central limit theorem we define

ν+(n) := max
0≤k≤n

|Dk,n| I[P
m θk,n

m ,=0
],

i.e., ν+(n) is the maximum volume of compartments that contain channels. Analo-

gously we define ν−(n) being the minimum volume of compartments containing chan-

nels. Finally, note that in the following the coordinate functions zn are considered as

maps from Kn into the space H−2s(D).

Theorem 4.5.2. Let s be the smallest integer such that s > d/2. If in addition to

(4.5.7) and the convergence of the initial conditions the sequence of partitions satisfies

lim
n→∞

ν−(n)

ν+(n)
= 1 (4.5.11)

then the sequence of H−2s(D)–valued martingales
(√

l(n)
ν+(n) Mn

t

)

t≥0
converges weakly

to the (H(D)−2s)m–valued diffusion defined by (4.5.10).

Remark 4.5.1. We close this section with brief remarks concerning two aspects of the

Theorems 4.5.1 and 4.5.2: the sequence of compartmentalisations and the sequence

of initial conditions.

First of all, the conditions guarantee that spatial areas where there are no channels

do not matter for the limit behaviour. In the present example, where only spatially

homogeneous channel distributions are considered for the limiting model, this is not

such a crucial aspect. However, it gains in importance when inhomogeneous structures

are considered where there are large membrane areas without channels. For example,

this concerns models of myelinated neurons, where channels are clustered at Nodes

of Ranvier, or in Calcium dynamics, where channels also regularly form individual

clusters on the membrane. The fact that the behaviour of compartments that do

not contain channels do not affect the limiting behaviour conforms with the intuitive

understanding of a limit in connection with the underlying biological physiology. Next,

on the one hand, the condition (4.5.7) in the law of large numbers is intuitively

quite accessible: It essentially allows that a sequence of step functions defined via

the compartments (Dk,n)n=1,...,p(n), n ∈ N, taking only finitely many values in [0, 1]

converges to a continuous function taking values in [0, 1]. On the other hand, condition

(4.5.11) in the central limit theorem seems more technical. Essentially, it imposes the

necessity that the sequence of compartmentalisations is homogeneous in the sense

that the size of the compartments has to be roughly uniform. Particularly, condition

(4.5.11) is not satisfied if for every compartmentalisation there is one compartment

which, say, is only half the size as another.

Next, we note that for a large class of domains D ⊂ Rd a sequence of compartmen-
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talisations that satisfies the conditions of the Theorems 4.5.1 and 4.5.2 exist. Let D

be Jordan measurable and Tn the smallest cover of D by d-dimensional cubes with

edges of length 1/n. We obtain a compartmentalisation of D by the elements of Tn

intersected with D. Then we place channels only in those compartments which are

a complete cube. Obviously, the first condition in (4.5.7) and condition (4.5.11) are

satisfied. Note that due to the Jordan measurability of D the sequence of subset of

D which is generated along its boundary by a union of compartments not containing

channels is such that its Lebesgue measure converges to zero. This is important for

the necessary convergence of the sequence of initial conditions on which comment

next.

In particular, we argue that for all initial conditions of the deterministic limit system a

sequence converging in probability trivially exist showing that there exists a suitable

sequence of deterministic initial conditions. Firstly, for the membrane variable we

can simply use Y n
0 ≡ u0 for all n ∈ N. Secondly, for the gating variables pi(0) this

is not possible as zn
i (θ) is a step function in L2(D) by definition but higher spatial

regularity is assumed for pi(0). However, for every pi(0) an approximating sequence

of appropriate step functions is easily found. We set

θk,n
i (0) = argminj=1,...l(n)

∣∣∣
j

l(n)
− 1

|Dn,k|

∫

Dn,k

pi(x) dx
∣∣∣ .

Then we obtain using Poincaré’s inequality and denoting the average of pi(0) over the

domain Dk,n by p
Dk,n

i that

‖zn
i (θn

0 )− pi(0)‖2
L2 =

p(n)∑

k=1

∫

Dn,k

∣∣∣
θk,n

i (0)

l(n)
− pi(0, x)

∣∣∣
2
dx

≤ 2
p(n)∑

k=1

∫

Dn,k

∣∣∣
θk,n

i (0)

l(n)
− p

Dn,k

i

∣∣∣
2
+
∣∣pDn,k

i − pi(0, x)
∣∣2 dx

≤ 2
p(n)∑

k=1

|Dn,k|
l(n)2

+ π−2δ(n)2‖∇pi(0)‖2
L2(Dn,k)

= 2
|D|
l(n)2

+ 2π−2δ(n)2‖∇pi(0)‖2
L2,

which converges to zero under the assumptions (4.5.7). Such a sequence can be defined

for all i = 1, . . . , m−1, and to define θk,n
m we use the condition

∑m
i=1 θk,n

i = l(n). Then,

the m sequences converge simultaneously to the respective initial conditions pi(0). We

note that it is clear that the convergence still holds if for each partition there is a

collection of compartments not containing channels the measure of which converges
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to zero for n → ∞. This is the case, e.g., for the sequence of partitions for Jordan

measurable domains and corresponding channel distributions we have discussed above.

4.5.3 Proofs of Theorem 4.5.1 (Conditions for the LLN)

We apply Theorem 4.2.1 for the choice of spaces X = H1
0 (D), H = L2(D) and

E = L2(D). Hence, we have to prove in the following that the assumptions therein

are satisfied, i.e., (i) the one-sided Lipschitz condition (4.0.2) on the operators A and

B defined by (4.5.2), (ii) the Lipschitz condition on the right hand side of the gating

system (4.5.4), (iii) the uniform convergence of the generator and (iv) the martingale

convergence. Finally, in (v) we extend the convergence in probability due to Theorem

4.2.1 to convergence in the mean (4.5.9). For simplicity of presentation we assume

that all compartments Dk,n contain channels. If otherwise, the proof is completely

analogous the only difference is that every summation over k = 1, . . . , p(n) has to

be replaced by a summation over only those indices k that refer to a compartment

containing channels.

(i) We start considering the one-sided Lipschitz conditions for operators A, B of the

evolution equation governing the inter-jump behaviour. For the nonlinear operator B

we find that the left hand side in the Lipschitz condition is for almost all t given by

a finite sum of terms

〈pi · (Ei − u)− p̂i · (Ei − v), u− v〉H1, (4.5.12)

with u, v ∈ H1
0 (D) and pi, p̂i ∈ L2(D). Hence, the duality pairing corresponds to

the inner product in L2(D). We estimate each of the summands of the type (4.5.12)

separately. Using the triangle inequality we obtain

∣∣〈pi ·(Ei−u)−·p̂i ·(Ei−v), u−v〉H1

∣∣ ≤ |Ei|
∣∣(pi− p̂i, u−v)L2

∣∣+
∣∣(pi ·u− p̂i ·v, u−v)L2

∣∣ .

The first term in the right hand side of this inequality is further estimated using

Cauchy-Schwarz and Young’s inequality which yield

∣∣(pi − p̂i, u− v)L2

∣∣ ≤ 1
2

∥∥pi − p̂i

∥∥2
L2 + 1

2

∥∥u− v
∥∥2

L2 .

For the second term we obtain, making use of the triangle inequality, the Cauchy-

Schwarz and Young’s inequality and the pointwise bounds on pi and v, the sequence
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of estimates

∣∣(pi · u− p̂i · v, u− v)L2

∣∣ ≤
∣∣(pi · (u− v), u− v)L2

∣∣ +
∣∣(pi − p̂i, v · (u− v))L2

∣∣

≤
∥∥pi · (u− v)

∥∥
L2

∥∥u− v
∥∥

L2 +
∥∥pi − p̂i

∥∥
L2

∥∥v · (u− v)
∥∥

L2

≤
∥∥u− v

∥∥2
L2 + u2

2

∥∥u− v
∥∥2

L2 + 1
2

∥∥pi − p̂i

∥∥2
L2 .

A summation over all these estimates for i = 1, . . .m yields

〈B(p, u)−B(p̂, v), u− v〉H1 ≤ m
(
1 + u+u2

2

)
‖u− v‖2

L2 +
1 + u

2

m∑

i=1

∥∥pi − p̂i

∥∥2
L2 .

Adding the estimate

〈A(u− v), u− v〉H1 ≤ −γ1‖u− v‖2
H1 + γ2‖u− v‖2

L2 ≤ γ2‖u− v‖2
L2

for some γ1, γ2 > 0, which holds as the linear operator A is coercive and independent

of p, we obtain

〈A(u− v), u− v〉H1 + 〈B(p, u)−B(p̂, v), u− v〉H1 ≤ C
(
‖u− v‖2

L2 +
m∑

i=1

∥∥pi − p̂i

∥∥2
L2

)

for a suitable constant C. Finally, integrating over (0, T ) we find the one-sided Lip-

schitz condition (4.0.2) is satisfied.

(ii) Next we consider the Lipschitz condition (4.2.3) for the deterministic limit

(4.5.4). Due to the triangle inequality it suffices to consider differences of the form

‖pi · q(u)− p̂i · q(v)‖L2, where q substitutes for an arbitrary rate function qjk. Using

the triangle inequality, the pointwise boundedness of p̂i and q by 1 and q, respectively,

and the Lipschitz condition on the rate functions q (with common Lipschitz constant

L) we obtain

‖pi · q(u)− p̂i · q(v)‖L2 ≤ ‖pi · q(u)− p̂i · q(u)‖L2 + ‖p̂i · q(u)− p̂i · q(v)‖L2

≤ q ‖pi − p̂i‖L2 + L ‖u− v‖L2 .

A summation over all such separate estimates, integrating and squaring both resulting

sides yield the Lipschitz condition (4.2.3).

(iii) In order to prove the convergence of the generators (4.2.5) we employ in the

following two technical results which we collect in a separate proposition. Firstly, the

purpose of the formula (4.5.13) is to transform the generator of the PDMP into a
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form that allows comparison with the deterministic limit system (4.5.4). Secondly,

the inequality (4.5.14), which bounds the norm ‖Y n‖L2((0,T ),H1) by a deterministic

constant uniformly over n ∈ N, is used repeatedly in the subsequent estimation

procedures.

Proposition 4.5.2. (a) The generator of the PDMP satisfies

Λn(Y n
t , θn

t )

∫

Kn

(
zn

i (ξ)−zn
i (θn

t )
)

µn
(
(u, θn), dξ

)
=
∑

j ,=i

(
zn

j (θn
t )·qn

ji(Y
n
t )−zn

i (θn
t )·qn

ij(Y
n
t )
)

(4.5.13)

where

qn
ij(Y

n
t ) =

p(n)∑

k=1

Qk,n
ij (Y n

t ) IDk,n
∈ L2(D) .

(b) For all n ∈ N and all T > 0 it holds that

∫ T

0

‖Y n
t ‖2

H1 dt ≤ C1(1 + T )e2C2T , (4.5.14)

where the constants C1, C2 are deterministic and independent of n ∈ N.

Proof. (a) We denote by θn
k,i→j(t) for all k = 1, . . . , p(n) and all i 1= j, i, j = 1, . . .m,

the configuration in Kn that arises from the configuration θn
t through the event that

a channel in state i located in domain Dk,n switches to state j. Then simple reorgani-

sation of finite sums yields

Λn(Y n
t , θn

t )

∫

Kn

zn
i (ξ)− zn

i (θn
t ) µn
(
(Y n

t , θn
t ), dξ
)

=
p(n)∑

k=1

∑

j ,=i

(
zn

i (θn
k,j→i(t))− zn

i (θn
t )
)

θk,n
j Qk,n

ji (Y n
t )

+
p(n)∑

k=1

∑

j ,=i

(
zn

i (θn
k,i→j(t))− zn

i (θn
t )
)

θk,n
i Qk,n

ij (Y n
t )

=
p(n)∑

k=1

∑

j ,=i

( 1

l(n)
IDk,n

)
θk,n

j (t) Qk,n
ji (Y n

t ) +
p(n)∑

k=1

∑

j ,=i

(
− 1

l(n)
IDk,n

)
θk,n

i (t) Qk,n
ij (Y n

t )

=
∑

j ,=i

zn
j (θn

t ) ·
( p(n)∑

k=1

Qk,n
ji (Y n

t ) IDk,n

)
−
∑

j ,=i

zn
i (θn

t ) ·
( p(n)∑

k=1

Qk,n
ij (Y n

t ) IDk,n

)
.

Thus we obtain that the generator satisfies (4.5.13).

(b) By definition of a PDMP it holds that the component (Y n
t )t≥0 is the weak
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solution of the evolution equation

Ẏ n
t = AY n

t +
m∑

i=1

gi z
n
i (θn

t ) (Ei − Y n
t )

with initial condition Y n
0 . Therefore using an estimation procedure as in Section 3.4.3,

which yields inequality (3.4.58) in that section, we obtain

∫ T

0

‖Y n
t ‖2

H1 dt ≤ K1e
2K2T
(
‖Y n

0 ‖2
L2 + 2u2

∑

i

‖gi‖L∞

∫ T

0

‖zn
i (θn

t )‖L1 dt
)
,

where the constants K1, K2 are deterministic and depend only on the domain D and

the coefficients of A. Further, by definition ‖zn
i (θn

t )‖L1
≤ |D| and the sequence of

initial conditions is bounded by assumption as Y n
0 (x) ∈ [u−, u+] for all x ∈ D almost

surely. The inequality (4.5.14) follows.

We now proceed to the actual proof of the convergence (4.2.5). To this end we need to

consider for almost every t and all i = 1, . . . , m the convergence in L2(D) of (4.5.13)

to Fi(zn(θn
t ), Y n

t ) where Fi is as defined in (4.5.4). That is, we have to estimate

∥∥∥
∑

j ,=i

(
zn

j (θn) · qn
ji(Y

n
t )− zn

i (θn) · qn
ij(Y

n
t )
)
−
∑

j ,=i

(
zn

j (θn) · qji(Y
n
t )− zn

i (θ) · qij(Y
n
t )
)∥∥∥

L2
.

(4.5.15)

We find that the single summands in the two summations match up and thus it suffices

to consider each of them separately. Employing the boundedness of the coordinate

functions, i.e., ‖zn
j (θn)‖L∞ ≤ 1 we obtain the estimate

∥∥zn
j (θn

t ) · qn
ji(Y

n
t )− zn

j (θn
t ) · qji(Y

n
t )
∥∥2

L2 = ‖zn
j (θn

t )
∥∥2

L∞

∥∥qn
ji(Y

n
t )− qji(Y

n
t )
∥∥2

L2

≤
∥∥∥

p(n)∑

k=1

IDk,n
Qk,n

ji (Y n
t )− qji(Y

n
t )
∥∥∥

2

L2

=

p(n)∑

k=1

∫

Dk,n

∣∣Qk,n
ji (Y n

t )− qji(Y
n
t (x))
∣∣2 dx .

(4.5.16)

For the last equality we have used that

(p(n)∑

k=1

Qk,n
ji (Y n

t ) IDk,n
(x)
)
− qji(Y

n
t (x)) =

p(n)∑

k=1

(
Qk,n

ji (Y n
t )− qji(Y

n
t (x))
)

IDk,n
(x),
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and that the summands are mutually orthogonal in L2(D). Next we estimate each of

the remaining integrals in (4.5.16) using the Lipschitz continuity of qji and Poincaré’s

inequality in L2(Dk,n), i.e.,

∫

Dk,n

∣∣∣qji

( 1

|Dk,n|

∫

Dk,n

Y n
t (y) dy

)
− qji(Y

n
t (x))
∣∣∣
2
dx

≤ L2

∫

Dk,n

∣∣∣
1

|Dk,n|

∫

Dk,n

Y n
t (y) dy − Y n

t (x)
∣∣∣
2

dx

≤ L2π−2diam(Dk,n)
2 ‖∇Y n

t ‖2
L2(Dk,n),

where ‖∇Y n
t ‖L2 is the norm in L2(D) of the Euclidean norm of the gradient vector

∇Y n
t . Here we employed that for convex domains the optimal Poincaré constant

is given by π−1diam(Dk,n) [98]. Hence, a summation over all k = 1, . . . , p(n) and

employing that ‖∇Y n
t ‖2

L2 ≤ ‖Y n
t ‖H1 , yields

∥∥qn
ji(Y

n
t )− qji(Y

n
t )
∥∥2

L2 ≤ δ(n)2 L2π−2‖Y n
t ‖2

H1 .

Integrating over (0, T ) we therefore obtain for (4.5.15) the estimate

∫ T

0

∥∥∥
[
A(φ, zn

i (·))L2

]
(Y n

t , θn
t )− Fi(z

n(θn
t ), Y n

t )
∥∥∥

2

L2
dt

≤ δ(n)2 L2π−2 2(m− 1)

∫ T

0

‖Y n
t ‖2

H1 dt.

Finally, the norm ‖Y n‖L2((0,T ),H1) is bounded independently of n ∈ N by a determin-

istic constant due to Proposition 4.5.2(b). This upper bound then holds for almost

all paths of the PDMPs (Y n
t , θn

t )t≥0. Thus there exists a constant C > 0 independent

of n such that

sup
u,θn

∫ T

0

∥∥∥
[
A(φ, zn

i (·))L2

]
(u(t), θn)− Fi(z

n(θn), u(t))
∥∥∥

2

L2
dt ≤ δ(n)2 C , (4.5.17)

where the supremum is taken over a set that contains almost all paths of the PDMP.

Due to the assumption (4.5.7) the estimate in the right hand side converges to zero

for n →∞ and the convergence (4.2.5) follows.

(iv) Next we consider convergence in probability of the martingale part. To this end

we employ Lemma 4.1.1. As before we denote by θn
k,i→j(t) the channel configuration

that arises from the configuration θn
t if a channel in compartment k switches from
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state i to state j. Then it holds that

Λn(Y n
t , θn

t )

∫

Kn

‖zn
i (ξ)− zn

i (θn
t )‖2

L2 µn
(
(Y n

t , θn
t ), dξ
)

=

p(n)∑

k=1

∑

j ,=i

(
‖zn

i (θn
k,i→j(t))− zn

i (θn
t )‖2

L2 Qk,n
ij (Y n

t ) θn
i (t)

+ ‖zn
i (θn

k,j→i(t))− zn
i (θn

t )‖2
L2 Qk,n

ji (Y n
t ) θn

j (t)
)

≤ q
p(n)∑

k=1

|Dk,n|
l(n)2

∑

j ,=i

(
θn

i (t) + θn
j (t)
)
.

This implies that

E
n

∫ T

0

[
Λn(Y n

t , θn
t )

∫

Kn

‖zn
i (ξ)− zn

i (θn
t )‖2

L2 µn
(
(Y n

t , θn
t ), dξ
)]

ds = O
(
l(n)−1

)
.

Hence, under condition (4.5.7) the condition of Lemma 4.1.1 is satisfied and the

martingale convergence follows.

(v) Finally, we extend the convergence in probability to convergence in the mean for

the individual components being in the space L2((0, T ), L2), see the remark following

Theorem 4.2.1. First of all note that the components are bounded, i.e.,

‖Y n
t − u(t)‖L2 ≤ 2u |D|, ‖zn

i (θn
t )− pi(t)‖L2 ≤ 2 |D| .

Therefore it holds that

‖Xn −X‖ := ‖Y n − u‖L2((0,T ),L2) +
m∑

i=1

‖zn
i (θn)− pi‖L2((0,T ),L2) ≤ C

for a suitable deterministic bound C < ∞ independent of n ∈ N. Then for all ε0 > 0

it holds that

E
n‖Xn −X‖ = E

n
[
‖Xn −X‖ I[‖Xn−X‖≤ε0]

]
+ E

n
[
‖Xn −X‖ I[‖Xn−X‖>ε0]

]

≤ ε0 + M P
n
[
‖Xn −X‖ > ε0

]
.

Next choose ε0 < ε/2 and note that due to the convergence in probability there exists

an Nε such that M Pn
[
‖Xn −X‖ > ε0

]
≤ ε/2 for all n > Nε. Hence, for every ε > 0

there exists an Nε such that En‖Xn − X‖ < ε for all n > Nε. Convergence in the

mean is proven.
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4.5.4 Proof of Theorem 4.5.2 (Conditions for the CLT)

In order to prove Theorem 4.5.2 we employ Theorem 4.3.1 for the space E = H−2s(D)

where s is the smallest integer such that s > d/2. We usually employ the simpler

notation E and E = Em throughout the proof however occasionally switch to H−2s(D)

if we want to emphasise the specific choice of the Hilbert space. The reason choosing

this particular s is that it is the smallest integer such that the embedding of H2s(D)

into Hs(D) is of Hilbert-Schmidt type11 due to Maurin’s Theorem [2, Thm. 6.61] and

Hs(D) is embedded in C0(D) due to the Sobolev Embedding Theorem. These two

properties are essential in order to prove the conditions (4.3.3) – (4.3.7) of Theorem

4.3.1. All conditions except (4.3.6), which establishes the convergence of the quadratic

variation, are straightforward consequences of the assumptions of the theorem. These

are shown in part (i) of the subsequent proof. For condition (4.3.6) more involved

estimation procedures are necessary which are presented in part (ii). Analogously to

the proof of Theorem 4.5.1 we assume for simplicity of presentation that all compart-

ments Dk,n contain channels and the adaptations to the proof for the general case are

as explained in the proof of Theorem 4.5.1.

(i) We first show condition (4.3.3). Recall that θn
k,i→j(t) denotes the element of Kn

that differs from θn
t by one channel in the kth compartment being in state i instead

of state j. Then, the Sobolev Embedding Theorem yields the estimate

‖zn
i (θn

k,i→j(t))− zn(θn
t )‖E = sup

‖φ‖H2s=1

∣∣l(n)−1〈φ, IDk,n〉H2s

∣∣ ≤ C

l(n)
|Dk,n|, (4.5.18)

where C is a constant resulting from the continuous embedding of H2s(D) into C0(D).

Using this estimate for the jump heights in the space H−2s(D) we find similarly to

part (iv) of the proof of Theorem 4.5.1 that it holds

αn E
n

∫ T

0

[
Λn(Y n

t , θn
t )

∫

Kn

‖zn(ξ)− zn(θn
t )‖2

E µn
(
(Y n

t , θn
t ), dξ
)
dt
]

= O(1) .

Hence, condition (4.3.3) is satisfied. Moreover, we infer from (4.5.18) that the rescaled

jump sizes are bounded almost surely uniformly, i.e., condition (4.3.7) is satisfied.

Particularly, it holds that
√

αn ‖zn
i (θn

k,i→j(t))− zn
i (θn

t )‖E = O(l(n)−1/2). This implies

that for arbitrary β > 0 and any Φ ∈ (H2s(D))m there exists an Nβ such that for all

n ≥ Nβ ∫

√
αn|〈Φ,zn

i (ξ)−zn
i (θn)〉E |>β

µn
(
(u, θn), dξ

)
= 0

holds for all values (u, θn) the PDMP attains. Therefore, due to the dominated conver-

11The embedding of a Hilbert space X into another Hilbert space H is of Hilbert-Schmidt type if∑
k∈N

‖ϕk‖2H < ∞ for every orthonormal basis (ϕk)k∈N of X .
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gence theorem we infer that also condition (4.3.5) is satisfied. It remains to consider

condition (4.3.4). To this end let (ϕk)k∈N be an orthonormal basis in (H2s(D))m

where ϕk = (ϕ1
k, . . . , ϕ

m
k ) and hence (ϕi

k)k∈N is an orthonormal basis in H2s(D) for all

i = 1, . . . , m. Then we obtain the estimate

〈ϕk, G
n(Y n

t , θn
t )ϕk〉E

= Λn(Y n
t , θn

t )

∫

Kn

( m∑

i=1

〈ϕi
k, z

n
i (ξ)− zn

i (θn
t )〉H−2s

)2
µn
(
(Y n

t , θn
t ), dξ
)

≤ m
m∑

i=1

‖ϕi
k‖2

Hs

(
Λn(Y n

t , θn
t )

∫

Kn

‖zn
i (ξ)− zn

i (θn
t )‖2

H−s µn
(
(Y n

t , θn
t ), dξ
))

.

Here we have employed for the single summands in the right hand side that for

zn
i (ξ) − zn

i (θn) ∈ L2(D) the duality pairing in H2s(D) equals the duality pairing in

Hs(D). Further, note that ‖zn
i (θn

k,i→j(t))−zn
i (θn

t )‖H−s satisfies an estimate analogous

to (4.5.18) due to the continuous embedding of Hs(D) in C0(D). Therefore we overall

obtain that

αn 〈ϕk, G
n(Y n

t , θn
t )ϕk〉E ≤ C

m∑

i=1

‖ϕi
k‖Hs

for a suitable non-random constant C independent of n. Finally, set γk :=
∑m

i=1 ‖ϕi
k‖Hs

then it holds that
∑

k∈N
γk < ∞ as the embedding H2s(D) ↪→ Hs(D) is of Hilbert-

Schmidt type. We infer that condition (4.3.4) is satisfied.

(ii) In this second part of the proof we show that also the central condition (4.3.6)

holds, which is the convergence of the quadratic variation. For simplicity of notation

we omit the time argument t of the PDMP paths and the deterministic solution and

note that the following estimates hold for almost all t. First of all we expand the

quadratic variation of the martingales into the finite sum

Λn(Y n, θn)

∫

Kn

〈Φ, zn(ξ)− zn(θn)〉2E µn
(
(Y n, θn), dξ

)

= Λn(Y n, θn)

∫

Kn

m∑

j=1

〈φj, z
n
j (ξ)− zn

j (θn)〉2E µn
(
(Y n, θn), dξ

)

+ Λn(Y n, θn)

∫

Kn

m∑

i,j=1
i,=j

〈φj, z
n
j (ξ)− zn

j (θn)〉E〈φi, z
n
i (ξ)− zn

i (θn)〉E µn
(
(Y n, θn), dξ

)

=
m∑

j=1

m∑

i=1
i,=j

p(n)∑

k=1

( θk,n
j

l(n)2
Qk,n

ji (Y n) + θk,n
i Qk,n

ij (Y n)
)
〈φj, IDk,n

〉2E

−
m∑

i,j=1
i,=j

p(n)∑

k=1

( θk,n
i

l(n)2
Qk,n

ij (Y n) + θk,n
j Qk,n

ji (Y n)
)
〈φi, IDk,n

〉E〈φj, IDk,n
〉E .
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We find that the terms in this summation match with the integral terms in the

definition of the operator G(u, p) in (4.5.10). Thus, due to the triangle inequality it

suffices to consider the convergence of the single summands separately. That is we

consider, on the one hand, for all j = 1, . . . , m and i 1= j the differences

∣∣∣
∫

D

pj(x) qji(u(x)) φ2
j(x) dx − αn

p(n)∑

k=1

θk,n
j

l(n)2
Qk,n

ji (Y n)〈φj, IDk,n
〉2E
∣∣∣ , (4.5.19)

and, on the other hand, for all i, j = 1, . . . , m such that i 1= j the differences

∣∣∣
∫

D

pi(x) qij(u) φi(x)φj(x) dx− αn

p(n)∑

k=1

θk,n
i

l(n)2
Qk,n

ij (Y n)〈φi, IDk,n
〉E〈φj, IDk,n

〉E
∣∣∣ .

(4.5.20)

We next estimate these terms separately in parts (ii.1) and (ii.2). Finally, in part

(ii.3) the estimates are combined to prove the convergence of the quadratic variation.

(ii.1) A further application of the triangle inequality to the term (4.5.19) yields

(4.5.19)

=
∣∣∣
∫

D

pj(x) qji(u(x)) φ2
j(x) dx −

∫

D

zn
j (θn)(x) qji(Y

n(x)) φ2
j(x) dx

∣∣∣

+
∣∣∣

p(n)∑

k=1

θk,n
j

l(n)

∫

Dk,n

qji(Y
n(x)) φ2

j(x) dx − αn

p(n)∑

k=1

θk,n
j

l(n)2
Qk,n

ji (Y n)〈φj, IDk,n
〉2E
∣∣∣ .

(4.5.21)

We estimate the two resulting differences separately and obtain for the first term in

the right hand side of (4.5.21) that

∣∣∣
∫

D

pj(x) qji(u(x)) φ2
j(x) dx −

∫

D

zn
j (θn)(x) qji(Y

n(x)) φ2
j(x) dx

∣∣∣

≤
∣∣∣
∫

D

pj(x) qji(u(x)) φ2
j(x) dx−

∫

D

zn
j (θn)(x) qji(u(x)) φ2

j(x) dx
∣∣∣

+
∣∣∣
∫

D

zn
j (θn)(x) qji(u(x)) φ2

j(x) dx−
∫

D

zn
j (θn)(x) qji(Y

n(x)) φ2
j(x) dx

∣∣∣

≤ q ‖φj‖2
L∞ ‖pj − zn

j (θn)‖L1 + L ‖φj‖2
L∞ ‖u− Y n‖L1 . (4.5.22)

For the second term in the right hand side of (4.5.21) we obtain by using θk,n
j /l(n) ≤ 1
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the estimate

p(n)∑

k=1

∣∣∣
∫

Dk,n

qji(Y
n(x)) φ2

j(x) dx− αn

l(n)
qji

( 1

|Dk,n|

∫

Dk,n

Y n(x) dx
)(∫

Dk,n

φj(x) dx
)2∣∣∣ .

(4.5.23)

We continue estimating each summand therein separately. We begin employing the

Mean Value Theorem to expand the rate function qij in the integral in the left hand

side such that

qji(Y
n(x)) = qji

( 1

|Dk,n|

∫

Dk,n

Y n(y) dy
)

+ q′ji(ϑ
k,n(x))

(
Y n(x)− 1

|Dk,n|

∫

Dk,n

Y n(y) dy
)
,

(4.5.24)

where ϑk,n(x) denotes an appropriate mean value. For now we omit the remainder

term, i.e., the second term in the right hand side of (4.5.24), a consideration of which

is deferred. Hence, we obtain for the absolute value in each summand in (4.5.23) the

estimate

qji

( 1

|Dk,n|

∫

Dk,n

Y n(y) dy
) ∣∣∣
∫

Dk,n

φ2
j(x) dx− αn

l(n)

(∫

Dk,n

φj(x) dx
)2∣∣∣ .

We note that qji is bounded by q and continue to estimate

≤ q |Dk,n|
∣∣∣

1

|Dk,n|

∫

Dk,n

φ2
j(x) dx− αn|Dk,n|2

l(n)|Dk,n|

( 1

|Dk,n|

∫

Dk,n

φj(x) dx
)2∣∣∣

≤ q

∫

Dk,n

(
φj(x)− 1

|Dk,n|

∫

Dk,n

φj(y) dy
)2

dx (4.5.25)

+ q |Dk,n|
∣∣∣
(
1− αn|Dk,n|2

l(n)|Dk,n|

)( 1

|Dk,n|

∫

Dk,n

φj(x) dx
)2∣∣∣ . (4.5.26)

The term (4.5.25) is now estimated by Poincaré’s inequality which yields an upper

bound by q π−2 diam2(Dk,n) ‖∇φ‖2
L2(Dk,n). For the term (4.5.26) a summation over all

k = 1, . . . , p(n) yields

q
p(n)∑

k=1

|Dk,n|
∣∣∣1−

αn|Dk,n|2

l(n)|Dk,n|

∣∣∣
( 1

|Dk,n|

∫

Dk,n

φj(x) dx
)2
≤ q
∣∣∣1−

ν−(n)

ν+(n)

∣∣∣ ‖φn
j ‖2

L2 , (4.5.27)

where φn
j is a piecewise constant approximation to φj defined by

φn
j :=

p(n)∑

k=1

( 1

|Dk,n|

∫

Dk,n

φj(x) dx
)

IDk,n
.

As φn
j converges to φj in L2(D) it holds that the sequence of norms converge, hence
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‖φn
j ‖L2 is a bounded sequence. Therefore the right hand side in (4.5.27) is a compo-

nentwise product of convergent sequences. The sequence |1− ν−(n)/ν+(n)| converges

to zero, cf. condition (4.5.11), thus the right hand side in (4.5.27) converges to zero

for n →∞.

Finally, it remains to consider the term arising from the remainder in the expansion of

qji, see (4.5.24), inserted into (4.5.23). By assumption q′ji is bounded (by a constant

q). Therefore we obtain an upper bound on the respective term by

q ‖φj‖2
L∞

p(n)∑

k=1

∫

Dn,k

∣∣∣Y n(x)− 1

|Dk,n|

∫

Dk,n

Y n(y) dy
∣∣∣dx

≤ q ‖φj‖2
L∞

p(n)∑

k=1

δ(n)

2
‖∇Y n‖L1(Dn,k)

≤ q ‖φj‖2
L∞

δ(n)

2
‖∇Y n‖L1 ,

where we have employed the Poincaré inequality in L1 with the optimal Poincaré

constant is given by diam(Dk,n)/2 [1].

A combination of the estimates yields an estimate to (4.5.19) by

(4.5.19) ≤ CΦ
(
‖pj−zn

j (θn)‖L1 +‖u−Y n‖L1 +δ(n)2‖∇Y n‖L1 +δ2(n)+δ(n)+R(n)
)

,

where the term R(n) is given by the right hand side of (4.5.27) and converges to zero

for n → ∞. The constant CΦ < ∞ is a suitable deterministic constant independent

of n ∈ N which depends on Φ ∈ (H2s(D))m via the norm in Hs(D) of the components

of Φ.

(ii.2) Next we consider the mixed terms (4.5.20). Analogously to part (ii.1) we apply

the triangle inequality and obtain

(4.5.20) ≤
∣∣∣
∫

D

pj(x) qji(u(x)) φj(x) φi(x) dx−
∫

D

zn
j (θn)(x) qji(Y

n(x)) φj(x) φi(x) dx
∣∣∣

+
∣∣∣

p(n)∑

k=1

θk,n
j

l(n)

∫

Dk,n

qji(Y
n(x)) φj(x) φi(x) dx

− αn

p(n)∑

k=1

θk,n
j

l(n)2
Qk,n

ji (Y n)〈φj, IDk,n
〉E〈φi, IDk,n

〉E
∣∣∣.
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As in (ii.1) we obtain for the first term in this right hand side an upper bound by

q ‖φi‖L∞‖φj‖L∞‖pj − zn
j (θn)‖L1 + L ‖φi‖L∞‖φj‖L∞‖u− Y n‖L1 .

Also the second term is treated as in (ii.1), i.e., applying the Mean Value Theorem

and estimating the resulting terms accordingly. In particular the remainder term is

estimated completely analogously. Therefore, the only term we are left to estimate is

q |Dk,n|
∣∣∣

1

|Dk,n|

∫

Dk,n

φi(x) φj(x) dx−
( 1

|Dk,n|

∫

Dk,n

φi(x) dx
)( 1

|Dk,n|

∫

Dk,n

φj(x) dx
)∣∣∣

(4.5.28)

+ q |Dk,n|
∣∣∣
(
1− αn|Dk,n|2

l(n)|Dk,n|

)( 1

|Dk,n|

∫

Dk,n

φi(x) dx
)( 1

|Dk,n|

∫

Dk,n

φj(x) dx
)∣∣∣ .

(4.5.29)

First of all, using Young’s inequality we obtain for the second term the estimate

(4.5.29) ≤ q

2

∣∣∣1−
ν−(n)

ν+(n)

∣∣∣
(
‖φn

i ‖2
L2 + ‖φn

j ‖2
L2

)
, (4.5.30)

which converges to zero for n →∞.

We next estimate the term (4.5.28). Firstly, we note that as in part (a) we find using

Poincaré’s inequality an upper bound to the term

|Dk,n|
∣∣∣

1

Dk,n

∫

Dk,n

(
φi(x)− φj(x)

)2
dx−
( 1

Dk,n

∫

Dk,n

φi(x)− φj(x) dx
)2∣∣∣ (4.5.31)

and the upper bound is proportional to δ(n)2. Next, expanding the two squared terms

in (4.5.31) we find using the reverse triangle inequality that the term (4.5.31) is an

upper bound to

|Dk,n|
∣∣∣∣
∣∣∣

1

Dk,n

∫

Dk,n

φi(x)2 dx +
1

Dk,n

∫

Dk,n

φj(x)2 dx

−
( 1

Dk,n

∫

Dk,n

φi(x) dx
)2
−
( 1

Dk,n

∫

Dk,n

φj(x) dx
)2∣∣∣

− 2
∣∣∣

1

|Dk,n|

∫

Dk,n

φi(x)φj(x) dx−
( 1

Dk,n

∫

Dk,n

φi(x) dx
)( 1

Dk,n

∫

Dk,n

φj(x) dx
)∣∣∣
∣∣∣∣.

Thus also this term possesses an upper bound which is proportional to δ(n)2. For

n → ∞ the upper bound converges to zero. As for δ(n) → 0 also the term spanning
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the first and second line converges to zero which was established in (ii.1), necessarily

also the term in the third line converges to zero. Therefore we infer that the term

(4.5.28) converges to zero proportional to δ(n)2.

Now, a combination of these estimates yields analogously to (4.5.4) in (ii.1) that

(4.5.20) ≤ CΦ
(
‖pj−zn

j (θn)‖L2 +‖u−Y n‖L2 +δ(n)2‖∇Y n‖L1 +δ2(n)+δ(n)+R(n)
)
.

(4.5.32)

Here R(n) is a term converging to zero for n →∞ arising from (4.5.30) and it is of the

same type as the term R(n) in (ii.1). The deterministic constant CΦ is independent

of n ∈ N and depends on Φ via the norm in Hs(D) of the components of Φ.

(ii.3) A combination of the final results (4.5.4) and (4.5.32) in (ii.1) and (ii.2) yields

that there exists a constant CΦ < ∞ such that for almost all t it holds that

∣∣〈Φ, G(u(t), p(t))Φ
〉
E − αn

〈
Φ, Gn(Y n

t , θn
t )Φ
〉
E

∣∣

≤ CΦ
( m∑

i=1

‖pi(t)−zn
i (θn

t )‖L2 + ‖u(t)−Y n
t ‖L2 + δ(n)2

(
1+‖∇Y n

t ‖L2

)
+ δ(n)+R(n)

)
.

Here we have also employed the continuous embedding of L2(D) ↪→ L1(D). We next

square both sides of this inequality and integrate over (0, T ). Afterwards we take the

square root of the integral terms and further take the expectation of the resulting

inequality. Finally, appropriate applications of Jensen’s inequality yields that

∫ T

0

E
n
∣∣∣〈Φ, G(u(t), p(t))Φ

〉
E − αn

〈
Φ, Gn(Y n

t , θn
t )Φ
〉
E

∣∣∣ ds

≤ CΦ,T

(
δ2(n) + δ(n) + R(n)

+ En
[
‖u− Y n‖L2((0,T ),L2) +

∑m
i=1 ‖pi − zn

i (θn)‖L2((0,T ),L2)

])

(4.5.33)

for an appropriate constant CT,Φ < ∞. Note that in order to arrive at the estimate

(4.5.33) we have further employed that the random term ‖∇Y n‖L2((0,T ),L2) can be

estimated by a deterministic bound independent of n ∈ N due to Proposition 4.5.2

(b). Finally, due to the law of large numbers, i.e., Theorem 4.5.1, the sequence of

PDMPs converges to the deterministic limit in the mean. Hence the expectation in the

right hand side in (4.5.33) converges to zero for n →∞. Furthermore, δ(n) converges

to zero by assumption (4.5.7), as does the term R(n). Thus, overall the right hand

side in (4.5.33) converges to zero. The convergence of the quadratic variation is proved

which completes the proof of Theorem 4.5.1.
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4.6 Section Appendix

4.6.1 Proof of Theorem 4.1.1 (Itô-isometry)

In this proof we show that under condition (4.1.3) the processes Mn
j , j = 1, . . . , m,

n ∈ N, defined in (4.1.1) are square-integrable, càdlàg martingales which satisfy the

Itô-isometry (4.1.4). Throughout the proof we fix a j = 1, . . . , m and n ∈ N and the

results holds for any such j and n. Therefore, speaking of a PDMP in the following

always refers to the PDMP (Y n
t , θn

t )t≥0 corresponding to the fixed n. Further, for

notational simplicity we omit the indices n and j discriminating processes and char-

acteristics of PDMPs, i.e., Mn
j and zn

j (θn) are denoted simply by M and z(θ). Finally,

recall that τk, k = 1, 2, . . ., denotes the sequence of increasing random jump times of

the PDMP which are stopping times satisfying limk→∞ τk =∞ almost surely.

First of all, note that the process M is càdlàg by definition. The proof of the remaining

open results is split into three parts. In the first, part (a), we prove the martingale

property for the real process (〈φ, M(t)〉E)t≥0 for every φ ∈ E∗. Then, the first main

statement of Theorem 4.1.1, the square-integrability of the process M(t), is proved

in part (b). Moreover, as square-integrability implies integrability, the Hilbert space

martingale property follows. Finally, the second main statement, the Itô-Isometry

(4.1.4), is established in part (c). The proof we present in part (b) is motivated by

the proof of [64, Prop. 4.5.3] which states the corresponding results for real-valued

martingales associated with PDMPs, cf. Proposition B.2.4. In the extension of the

method of proof employed therein to the present setup one has to ensure, on the one

hand, that the employed results and estimation procedures all have corresponding

analoga in the infinite-dimensional setting. On the other hand, one has to carefully

make sure that only the weaker regularity results available in infinite-dimensions are

used. Finally, the introduction of random initial conditions also necessitates some

adaptations.

(a) First note that for all φ ∈ E∗ the real-valued processes 〈φ, M(t)〉E satisfy

〈φ, M(t)〉E = 〈φ, z(θt)〉E − 〈φ, z(θ0)〉E (4.6.1)

−
∫ t

0

Λ(Ys−, θs−)

∫

K

〈φ, z(ξ)〉E − 〈φ, z(θs−)〉E µ
(
(Ys−, θs−), dξ

)
ds .

Equation (4.6.1) is obtained from (4.1.2) due to the regularity of the PDMP as the

set of jump times in [0, t] is almost surely finite for all t ≥ 0. Therefore the integrands

in the right hand sides of (4.1.2) and (4.6.1) differ only on a set of Lebesgue measure

zero almost surely. Moreover, the integrand in the right hand side of (4.6.1) has the
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form of the extended generator, cf. Theorem 2.2.1, applied to the map

〈φ, ·〉E : Kn → R : θ +→ 〈φ, z(θ))〉E (4.6.2)

which is indepndent of u. Thus it follows that the process 〈φ, M(t)〉E is a local

martingale if the map (4.6.2) is in the domain of the extended generator. Obviously,

path-differentiability almost everywhere, cf. condition (i) in Theorem 2.2.1, is trivially

satisfied as the mapping t +→ 〈φ, z(θt)〉E is piecewise constant. Furthermore, as there

are no jumps upon hitting a boundary, the boundary condition (ii) in Theorem 2.2.1

is redundant. Hence, for (4.6.2) to be in the domain of the extended generator it

remains to consider the integrability condition, cf. (iii) in Theorem 2.2.1, for which it

is a sufficient condition that the expectation

E

∫ t

0

Λ(Ys−, θs−)

∫

K

∣∣〈φ, z(ξ)− z(θs−)〉E
∣∣µ
(
(Ys−, θs−), dξ) ds (4.6.3)

is finite for all t > 0, cf. Section B.2.4. Using Young’s inequality we obtain an upper

bound to (4.6.3) by

1

2
E

∫ t

0

Λ(Ys−, θs−) ds

+
1

2
E

∫ t

0

Λ(Ys−, θs−)

∫

K

∣∣〈φ, z(ξ)− z(θs−)〉E
∣∣2 µ
(
(Ys−, θs−), dξ) ds .

Here the first expectation in the right hand side is finite due to the PDMP being

regular and the second is finite by an immediate consequence of assumption (4.1.3).

Next, we show that the process is not only a local martingale but even a martingale.

As we have mentioned above the process 〈φ, M(t)〉E satisfies

〈φ, M(t)〉E =

∫ t

0

∫

K

〈φ, z(ξ)− z(θs−)〉E M̃(ds, dξ) ,

where M̃ := N−N̂ is the random martingale measure associated with the PDMP with

counting measure N and compensator N̂(dξ, ds) = Λ(Ys−, θs−) µ
(
(Ys−, θs−), dξ) ds.

We have just shown above that the process 〈φ, z(ξ) − z(θs−)〉E is a valid integrand

for M̃ . Thus the process 〈φ, M(t)〉E has the form of a stochastic integral with respect

to the martingale measure associated with the PDMP. Furthermore, due to Theorem

B.2.6 it holds that the process is a martingale if (4.6.3) is finite for all t ≥ 0. We have

already shown that this holds due to the regularity of the PDMP and assumption

4.1.3.

(b) We now prove the square-integrability of the processes M . In a first step we
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prove in (b.1) that M stopped at the first jump τi is square-integrable. Subsequently

in part (b.2) this result is extended to M stopped at any jump time τk, k ∈ N. Then

we are able to infer square-integrability of the process M . As square-integrability

implies integrability it follows from the results in part (a) that M is a Hilber space

valued martingale.

(b.1) Note that prior to τ1 the θ-component of the PDMP remains constant. We

introduce the notation

Ñ(s) :=

∫ s

0

Λ(Yr, θ0)

∫

K

z(ξ)− z(θ0) µ
(
(Yr, θ0), dξ) dr

which implies that s +→ ‖Ñ(s)‖2
E is almost surely absolutely continuous with derivative

d

ds
‖Ñ(s)‖2

E = 2
(

d
dtÑ(s), Ñ(s)

)
E

= 2Λ(Ys, θ0)

∫

K

(
z(ξ)− z(θ0), Ñ(s)

)
E

µ
(
(Ys, θs), dξ

)
. (4.6.4)

Due to the structure of a PDMP we obtain for the conditional expectation with respect

to the initial condition

E
[
‖M(τ1 ∧ t)‖2

E | F0

]
= ‖Ñ(t)‖2

E exp
(
−
∫ t

0

Λ(Yr, θ0) dr
)

+

∫ t

0

[∫

K

∥∥z(ϑ)− z(θ0)− Ñ(s)
∥∥2

E
µ
(
(Ys, θ0), dϑ)

) ]
Λ(Ys, θ0)

exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)

ds .

That is, the first term in the right hand side is the position of the stopped process

‖M(τ1 ∧ t)‖2
E at time t if t < τ1 times the conditional probability that the first jump

does not occur before t. The second term is its position after the jump integrated over

the conditional density that a jump occurs in [0, t]. We apply integration by parts to

the first term (note that Ñ(0) = 0) and find that

‖Ñ(t)‖2
E exp
(
−
∫ t

0

Λ(Ys, θ0) ds
)

=

∫ t

0

[
2( d

dtÑ(s), Ñ(s))E exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)

− ‖Ñ(s)‖2
E Λ(Ys, θ0) exp

(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds .
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Therefore we obtain

E
[
‖M(τ1 ∧ t)‖2

E | F0

]

=

∫ t

0

[
2( d

dtÑ(s), Ñ(s))E exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds

+

∫ t

0

[(∫

K

∥∥z(ϑ) − z(θ0)− Ñ(s)
∥∥2

E
−
∥∥Ñ(s)

∥∥2
E

µ
(
(Ys, θ0), dϑ)

) )

Λ(Ys, θ0) exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds .

Note that ‖z(ϑ)−z(θ0)−Ñ(s)‖2
E = ‖z(ϑ)−z(θ0)‖2

E+‖Ñ(s)‖2
E−2(z(ϑ)−z(θ0), Ñ(s))E

and thus

E
[
‖M(τ1 ∧ t)‖2

E | F0

]

=

∫ t

0

[
2( d

dtÑ(s), Ñ(s))E exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds

− 2

∫ t

0

[(∫

K

(
z(ϑ)− z(θ0), Ñ(s)

)
E

µ
(
(Ys, θ0), dϑ)

) )

Λ(Ys, θ0) exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds

+

∫ t

0

[(∫

K

‖z(ϑ)− z(θ0)‖2
E µ
(
(Ys, θ0), dϑ)

) )

Λ(Ys, θ0) exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds .

Due to the form of the derivative (4.6.4) the first two terms cancel and we are left

with the equality

E
[
‖M(τ1 ∧ t)‖2

E | F0

]
=

∫ t

0

Λ(Ys, θ0)

∫

K

‖z(ϑ)− z(θ0)‖2
E µ
(
(Ys, θ0), dϑ)

)
(4.6.5)

exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)
ds .

Next we calculate the expectation of the real-valued process

Ñ2(s) :=

∫ s

0

Λ(Yr, θ0)

∫

K

‖z(ϑ)− z(θ0)‖2
E µ
(
(Yr, θ0), dϑ

)
dr

191



Chapter 4: Limit Theorems for PDMPs

stopped at τ1. The process Ñ2 is connected to the process Ñ defined at the beginning

of part (b.1) inasmuch as the integrand of the former is the squared norm of the

latter. Furthermore note that Ñ2 is the term inside the expectation in the right hand

side of the Itô-isometry (4.1.4). Thus the aim is now to show that the conditional

expectation of Ñ2(t ∧ τ1) equals the conditional expectation of ‖M(t ∧ τ1)‖2
E . Again

due to the particular structure of the PDMP we obtain for the conditional expectation

E
[
Ñ2(τ1 ∧ t) | F0

]
= Ñ2(s) exp

(
−
∫ t

0

Λ(Yr, θ0) dr
)

+

∫ t

0

[
Ñ2(s)Λ(Ys, θ0) exp

(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds .

Integration by parts applied to the integral term yields

∫ t

0

[
Ñ2(s)Λ(Ys, θ0) exp

(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds = −Ñ2(t) exp
(
−
∫ t

0

Λ(Yr, θ0) dr
)

+

∫ t

0

[
Λ(Ys, θ0)

∫

K

‖z(ϑ)− z(θ0)‖2
E µ
(
(Ys, θ0), dϑ

)
exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)]

ds .

Therefore we obtain that

E
[
Ñ2(τ1 ∧ t) | F0

]
=

∫ t

0

Λ(Ys, θ0)

∫

K

‖z(ϑ)− z(θ0)‖2
E µ
(
(Ys, θ0), dϑ

)
(4.6.6)

exp
(
−
∫ s

0

Λ(Yr, θ0) dr
)

ds .

A comparison of the right hand sides in equalities (4.6.5) and (4.6.6) shows that

they are equal and thus we obtain after taking the expectation of both conditional

expectation that

E‖M(τ1 ∧ t)‖2
E = EÑ2(τ1 ∧ t) . (4.6.7)

As Ñ2 is increasing and thus Ñ2(τ1 ∧ t) ≤ Ñ2(t) almost surely, we obtain that the

right hand side in this equation is finite due to condition (4.1.3). Note that (4.6.7) is

the Itô-Isometry (4.1.4) for the stopped process M(t ∧ τ1).

(b.2) In this part of the proof we show the square-integrability for the process M

stopped at an arbitrary jump time τk, k ∈ N, and finally for the non-stopped process

M . To this end we first note that Analogously to part (b.1) we find that

E

[∥∥M(τk+1 ∧ t)−M(τk ∧ t)
∥∥2

E

∣∣Fτk

]
= E

[
Ñ2(τk+1 ∧ t)− Ñ2(τk ∧ t)

∣∣Fτk

]
.
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Thus taking the expectation on both sides of this equality yields

E ‖M(τk+1 ∧ t)−M(τk ∧ t)
∥∥2

E
= E Ñ2(τk+1 ∧ t)− E Ñ2(τk ∧ t) <∞ , (4.6.8)

where the right hand side is finite as due to(4.1.3) both expectations are finite.

By induction we next show that each M(τk ∧ t) is square-integrable. Assume that

E‖M(τk ∧ t)‖2
E < ∞, where the induction basis for k = 1 holds due to part (b.1).

Then the reverse triangle inequality yields that

E‖M(τk+1 ∧ t)‖2
E + E‖M(τk ∧ t)‖2

E − 2E
(
‖M(τk+1 ∧ t)‖E ‖M(τk ∧ t)‖E

)

≤ E‖M(τk+1 ∧ t)−M(τk ∧ t)‖2
E .

Here the right hand side is finite due to (4.6.8) and an application of Young’s inequality

to the product in the left hand side yields that for all ε > 0

(1− 2ε)E‖M(τk+1 ∧ t)‖2
E+
(
1− 1

2ε

)
E‖M(τk ∧ t)‖2

E < ∞ .

Assume that E‖M(τk+1∧t)‖2
E = ∞. Then choosing ε < 1/2 we obtain a contradiction

due to the induction hypotheses.

In a final step of this part of the proof we show square-integrability for the non-

stopped process. Using Fatou’s Lemma and monotone convergence for interchanging

limits and expectation we obtain the following upper estimate

E‖M(t)‖2
E = E lim inf

k→∞
‖M(τk ∧ t)‖2

E (4.6.9)

≤ lim inf
k→∞

E‖M(τk ∧ t)‖2
E = lim

k→∞
EÑ2(τk ∧ t) = EÑ2(t)

where the final term is finite due to condition (4.1.3). Moreover, as square-integrability

implies integrability, the martingale property for the Hilbert space valued process M

now follows due to part (a).

(c) Finally, in the last part of the proof we establish the Itô-Isometry. To this end

we first show that equality (4.6.7) holds for all τk ∧ t, k ∈ N. Again we proceed by

induction with the induction basis given by (4.6.7). We observe that

‖M(τk+1 ∧ t)−M(τk ∧ t)‖2
E = ‖M(τk+1 ∧ t)‖2

E − ‖M(τk ∧ t)‖2
E (4.6.10)

− 2
(
M(τk ∧ t), M(τk+1 ∧ t)−M(τk ∧ t)

)
E

.

Taking the conditional expectation with respect to the stopped σ-field Fτk∧t we find
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that the second term in the right hand side of (4.6.10) vanishes as it holds

E
[(

M(τk ∧ t), M(τk+1 ∧ t)−M(τk ∧ t)
)

E

∣∣Fτk∧t

]
=

=
(
M(τk ∧ t), E

[
M(τk+1 ∧ t)−M(τk ∧ t)

) ∣∣Fτk∧t

])
E

= 0

due to the following property of the conditional expectation: Firstly, for E–valued

random variables X, Y such that E‖X‖E‖Y ‖E <∞ it holds for G–measurable X that

E
[
(X, Y )E|G

]
=
(
X, E[Y |G]

)
E

[112, Lemma 2.1.2]. Secondly, the Optional Sampling

Theorem, i.e., E
[
M(τk+1∧ t)

∣∣Fτk∧t

]
= M(τk∧ t)

)
in the above application, also holds

for Hilbert space-valued martingales12. Thus we obtain

E
[
‖M(τk+1 ∧ t)‖2

E

∣∣Fτk∧t

]
− E
[
‖M(τk ∧ t)‖2

E

∣∣Fτk∧t

]

= E
[
Ñ2(τk+1 ∧ t)

∣∣Fτk∧t

]
− E
[
Ñ2(τk ∧ t)

∣∣Fτk∧t

]
.

Taking the expectation on both sides of this equality and using the induction hy-

potheses, i.e., the second expectations on both sides of the above equality equate,

yields

E‖M(τk+1 ∧ t)‖2
E = EÑ2(τk+1 ∧ t) . (4.6.11)

We conclude the proof extending the Itô-isometry (4.6.11) from the stopped pro-

cesses to the non-stopped process. We have already obtained the upper estimate

E‖M(t)‖2
E ≤ EÑ2(t), cf. (4.6.9). Hence it remains to prove that a lower bound is

given by the same term. As ‖M(t)‖2
E is a real-valued submartingale it holds for all

k ≥ 1 due to the standard Optional Sampling Theorem for càdlàg submartingales

that

E‖M(t)‖2
E ≥ E‖M(τk ∧ t)‖2

E = EÑ2(τk ∧ t) .

Hence, for k → ∞ we obtain by monotone convergence E‖M(t)‖2
E ≥ EÑ2(t) which,

combined with the upper bound (4.6.9), yields the Itô-isometry (4.1.4). The proof is

completed.

4.6.2 Proof of Proposition 4.5.1

We show that the operator G(u, p) defined by (4.5.10) defines a centred Gaussian

random variable via being its covariance and that the map t +→ G(u(t), p(t)) defines

a diffusion process. To this end we have to show that G(u, p) is self-adjoint, of

trace class and positive, cf. Section 4.3.1. To this end, first note that the mappings

12The Optional Sampling Theorem can be proved similarly to the methods employed for [112,
Lemma 2.1.2] relying on the linearity properties of the Bochner integral and the monotone conver-
gence theorem.
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Gij(u, p) : L2(D)→ L2(D) defined by

Gij(u, p) ψ = I[i=j]

(∑

k ,=i

pk · qki(u) · ψ +
∑

k ,=i

pi · qik(u) · ψ
)

− I[i,=j]

(
pj · qji(u) · ψ + pi · qij(u) · ψ

)
(4.6.12)

are linear and bounded. Further, the mapping (Ψ,Φ) +→
(
G(u, p)Ψ,Φ

)
L2 is a sum-

mation of the operators (4.6.12) acting on the components of Ψ and Φ, i.e.,

(
G(u, p)Ψ,Φ

)
L2 =

m∑

i,j=1

(
Gij(u, p) ψi, φj

)
L2

.

Obviously, the operators Gij are symmetric, i.e., (Gij(u, p) ψ, φ)L2
= (Gij(u, p) φ, ψ)L2

,

and moreover the symmetry Gij(u, p) = Gji(u, p) holds. Hence, it follows that G(u, p)

is a symmetric operator on L2(D)m and thus self-adjoint due to the Hellinger-Toeplitz

Theorem. Clearly, the same holds for G considered as an operator mapping Hs(D)

into H−s(D) due to the continuous embeddings Hs(D) ↪→ L2(D) ↪→ H−s(D).

We proceed to show the trace class property of G(u, p) as an operator mapping Hs(D)

into H−s(D) where s > d/2. As usual the identification of an element of Hs(D) with

a linear functional is via the inner product in L2(D), i.e., 〈v, u〉Hs = (v, u)L2 for

all u, v ∈ Hs(D). Let (ϕk)k∈N denote an orthonormal basis in Hs(D). Then an

application of the Cauchy-Schwarz inequality yields for all i, j = 1, . . .m, that

∞∑

k=1

|〈Gij(u, p)ϕk, ϕk〉Hs| ≤ C
∞∑

k=1

‖ϕk‖2
L2

for a suitable constant C depending only on a pointwise bound of the rates qij .

This upper bound is finite as the embedding Hs(D) ↪→ L2(D) is of Hilbert-Schmidt

type due to Maurin’s Theorem. Hence the operators Gij are of trace class. Next

we extend the trace class property from its summands to G(u, p). To this end let

ϕk = (ϕ1
k, . . . , ϕ

m
k ) denote the elements of an orthonormal basis of Hs(D)m where

each component is an orthonormal basis in the component space Hs(D). Then we

obtain

〈G(u, p)ϕk, ϕk〉(Hs)m =
∞∑

k=1

m∑

i,j=1

|〈Gij(u, p)ϕi
k, ϕ

j
k〉Hs|

=
m∑

i=1

∞∑

k=1

|〈Gii(u, p)ϕi
k, ϕ

i
k〉Hs| +

m∑

i,=j

∞∑

k=1

|〈Gij(u, p)ϕi
k, ϕ

j
k〉Hs|,

where the finiteness of the first sum follows immediately from Gii being trace class
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operators. For the second sum we observe that the summands satisfy due to the

Cauchy-Schwarz and Young’s inequality

|〈Gij(u, p)ϕi
k, ϕ

j
k〉Hs| ≤ C ‖ϕi

k‖L2‖ϕj
k‖L2 ≤ C

2
‖ϕi

k‖2
L2 +

C

2
‖ϕj

k‖
2
L2

for a suitable constant C. Hence, a summation over these terms is again finite due to

the Hilbert-Schmidt embedding. Therefore, we infer that G is a trace class operator.

Finally, it only remains to show that the operator G is positive, that is, it satisfies

〈G(u, p)Φ,Φ〉(Hs)m ≥ 0 for all Φ ∈ Hs(D)m. This is easily seen by an appropriate

reorganisation of summands:

(
G(u, p)Φ,Φ

)
L2 =

m∑

i,j=1

(
Gij(u, p) φi, φj

)
L2

=
m∑

i=1

m∑

j=1
j ,=i

(
φ2

i , piqij + pjqji

)
L2 −

m∑

i=1

∑

j>i

(
2φiφj, piqij + pjqji

)
L2

=
m∑

i=1

m∑

j>i

(
φ2

i + φ2
j , piqij + pjqji

)
L2 −

m∑

i=1

∑

j>i

(
2φiφj , piqij + pjqji

)
L2

=
m∑

i=1

m∑

j>i

(
(φi − φj)

2, piqij + pjqji

)
L2

≥ 0 .

The proof of Proposition 4.5.1 is completed.
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Chapter 5

Numerical Methods for PDMPs

Due to the high complexity of hybrid models, particularly in biochemical applica-

tions, the former are studied extensively and almost exclusively by numerical means.

To this end researchers either employ statistically exact algorithms or use statisti-

cally approximate algorithms, also called ’pseudo-exact’ algorithms. Here statistically

exact means that the simulation method produces paths that are samples of the dis-

tribution of the underlying stochastic process in contrast to pseudo-exact methods

which produce sample paths from a distribution approximating the distribution of

the underlying stochastic process. However, even statistically exact algorithms are

exact only in theory due to numerical errors which arise inevitably in solving most

systems of differential equations in actual implementations. As the main source of

error researchers are so far primarily interested in model accuracy and thus consid-

erations regarding the numerical error are in general neglected, cf., e.g., [3, 58, 70].

Yet ultimately, even if a theoretically exact PDMP formulation of the model is con-

sidered or the model is highly accurate, numerical studies are conducted by numerical

approximations to the PDMPs as in general an analytic representation of the paths

is not available. Despite the importance and widespread use of numerical studies an

analysis of the numerical error, in particular, a thorough analytical investigation of

the convergence and error behaviour of any algorithms used, is still missing. The

aim of this chapter is to provide a – to the best of our knowledge – first contribution

towards this goal.

We note that the class of numerical methods we consider in the following contains these

methods which have been presented in the literature when addressing exact numerical

simulation algorithms, cf. [3, 123]. However, in the present study a convergence

analysis is carried out which has not been attempted by the aforementioned authors.

In particular, we are interested in the convergence of numerical approximations to

PDMPs in a pathwise sense which corresponds to the fact that numerical simulations

are carried out path by path. Thus, let (Ω,F , (Ft)t∈[0,T ], P) be a probability space and
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(X(t, ω))t∈[0,T ] and (X̂(t, ω))t∈[0,T ] denote a PDMP1 and its numerical approximation

defined thereon. We then consider the errors

|X(T, ω)− X̂(T, ω)| and max
n=1,...,N(T,ω)

|X(τn(ω), ω)− X̂(τ̂n(ω), ω)|

for almost all ω ∈ Ω, where τn(ω), τ̂n(ω) are the random jump times of the exact and

approximate process and N(T, ω) the number of jumps of the PDMP in [0, T ]. As,

in general, τn(ω) and τ̂n(ω) do not coincide, we also consider the error in the jump

times, i.e.,

max
n=1,...,N(T,ω)

|τn(ω)− τ̂n(ω)| .

We postpone a discussion of the reason to consider these error measures to Section

5.2.

The methods we present for approximating a PDMP incorporate continuous ODE

methods, also called methods with dense output. Apart from numerically solving the

deterministic inter-jump dynamics the key problem in simulating a PDMP is simulat-

ing the random, path-dependent jump times. As shown in Section 5.2 this problem

can be reformulated and then, combined with the numerical solution of the inter-jump

dynamics, yields a hitting time problem with random threshold. This we solve using

continuous ODE methods. The main feature of such a method is that it does not

only provide a numerical approximation to the exact solution at discrete grid points

but provides an approximation of the whole path over the whole interval. That is,

continuous methods are essentially approximations on a discrete grid with an inter-

polation formula for the intervals between the grid points. Hence, these methods are

naturally suited for solving hitting time problems. The main result of this chapter

is that numerical approximations of PDMPs built on continuous ODE methods con-

serve the order of convergence of the underlying continuous method. That is, if an

approximation is constructed using, e.g., a continuous Runge-Kutta method of order

p, then also the almost sure convergence of the stochastic approximation to the path

of the PDMP is of order p.

The remainder of this chapter is organised as follows. In Section 5.1 we present a

theoretically exact simulation algorithm based on independent, identically distributed

(i.i.d.) standard uniform random variables which takes the role of an exact solution for

our convergence analysis. Section 5.2 presents the approximate algorithms we consider

in this chapter and also contains the main convergence theorem. The proof of the

1Throughout this thesis we have employed the notational convention that the time variable for
a stochastic process is given as a lower index whereas for deterministic functions as an argument
in brackets. However, throughout this chapter we denote the time argument in brackets also for
stochastic processes. As in the following we have distinguish frequently between time arguments
τn, τ̃n and τ̂n we are of the opinion that the present notation is an improvement in legibility and
intelligibility.
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convergence theorem can be found in Section 5.3. We extend the convergence theorem

to a larger class of PDMPs in Section 5.4. Finally, in Section 5.5 we present some

numerical experiments using examples from the neuroscience literature to illustrate

the theoretical findings and draw some conclusions for the usage and implementations

of such algorithms.

5.1 Definition of an exact ’solution’

In this section we present Algorithm A1 based on Davis construction procedure,

cf. Definition 2.1.2, which provides the ’exact solution’ numerical approximations

have to converge to. Let (Ω,F , (Ft)t∈[0,T ], P) be a filtered probability space and let

(X(t))t∈[0,T ] = (X(t, ω))t∈[0,T ] be a standard finite-dimensional PDMP with state space

E defined thereon, see Definition 3.0.2. That is, E ⊆ Rd ×K where K is an at most

countable and bounded subset of Rm and thus X(t) = (Y (t), θ(t)) ∈ Rd+m. Here Y (t)

possesses continuous paths in Rd and θ(t) has piecewise constant, right-continuous

paths in K. For the sake of simplicity we restrict ourselves to PDMPs with deter-

ministic initial condition X(0) ≡ x0 ∈ E. We consider this particular structure of

processes, whose jumps only occur in a fixed subset of variables which are otherwise

constant on inter-jump intervals, as these correspond to the stochastic processes en-

countered in applications in mathematical neuroscience, cf. Chapter 3. However, it

is straightforward to extend the results in Section 5.2 to a broader class of PDMPs

which contain processes encountered in multiscale models of chemical reaction sys-

tems, cf. Section 5.4.

Recall that the PDMP is uniquely defined by the characteristics (g, λ, µ), cf. the

remark following Definition 3.0.2. That is, the deterministic evolution of the continu-

ous component Y (t) in between jumps is governed by a family of ordinary differential

equations

ẏ = g(y, θ) (5.1.1)

with parameter θ ∈ K. Hence, as the component θ(t) of a PDMP is constant in

between jumps it follows that in between jumps a PDMP’s paths satisfy a system of

ODEs of the form (
ẏ

θ̇

)

=

(
g(y, θ)

0

)

. (5.1.2)

We denote by t +→ φ(t, x0) the unique, global solution of the system (5.1.2) with

respect to the initial value x0 = (y0, θ0) ∈ E. We assume that it satisfies φ(t, x0) ∈ E

for all t ∈ [0, T ] and all initial values x0 ∈ E. Further, the transition rate λ defines a
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survivor function S as in (3.0.2), i.e.,

S(r, X(t)) = exp

(
−
∫ r

0

λ
(
φ(s, X(t))

)
ds

)
. (5.1.3)

and µ is a Markov kernel from E into K such that µ((x, θ), {θ}) = 0 for all (x, θ) ∈ E.

In addition to the Definition 3.0.2 of a standard PDMP we assume that µ is continuous

in x, i.e., x +→ µ(x, A) is continuous for every Borel set A of K.

Example. We present a concrete example for a PDMP arising in mathematical

neuroscience as a model of a space-clamped membrane, see Section 3.1.2. This model

is also considered as a numerical example in Section 5.5. The component Y (t) is one-

dimensional taking values in [0, ENa] for initial conditions therein and the component

θ(t) is 8–dimensional where K = {θ ∈ {0, . . . , N}8 :
∑8

k=1 θk = N} with N ∈ N.

Thus the phase space is E = [0, ENa]×K and the characteristics are given as follows.

The family of ODEs (5.1.1) is given by

Cẏ = −gNa θ8 (y −ENa)− gLy , θ ∈ K

with constants ENa, gNa, gL > 0. The stochastic dynamics are given by the jump rate

λ((y, θ)) =





am(y)

bm(y)

ah(y)

bh(y)





T 



3 2 1 0 3 2 1 0

0 1 2 3 0 1 2 3

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1









θ1

...

θ8



 .

and the transition measure µ which is given by point probabilities of the form

µ((y, θ)), {θ + (−1, 1, 0, 0, 0, 0, 0, 0)T}) =
3 am(y) θ1

λ((y, θ))
.

Davis’ construction procedure, given as Algorithm A1 below, provides a theoretically

exact method for simulating paths of a PDMP to given characteristics on a probability

space that supports a sequence of i.i.d. standard uniform random variables, cf. Section

2.1.1. Here ’exact’ denotes the fact that the distribution of the process defined by

Algorithm A1 equals the distribution of a PDMP to the triple (g, λ, µ). However, the

adverb ’theoretically’ should emphasise the fact that in general neither IVP (5.1.2)

nor the implicit equation (5.1.4) arising in Algorithm A1 can be solved exactly, thus

this algorithm cannot be employed in practice to simulate trajectories exactly. Yet,

it can be used as a comparison to approximate algorithms for a convergence analysis

and thus, in typical terms of numerical analysis, plays the role of an exact solution.
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Algorithm A1. An exact simulation algorithm for a PDMP is given by:

Step 1. Set a jump counter n = 0 and fix the initial time τ0 = 0 and initial condition

X(0) = x0 = (y0, θ0) ∈ E.

Step 2. Simulate a uniformly distributed random variable U and solve

S(σ, X(τn)) = U (5.1.4)

with respect to σ to obtain the waiting time until the next jump time, i.e.,

σ = τn+1 − τn. Then for t ∈ (τn, τn+1] set

X(t) = φ(t− τn, X(τn)) .

If τn+1 ≥ T , stop at t = T .

Step 3. Else, simulate a post-jump value θn+1 for the piecewise constant component

according to the distribution µ(φ(τn+1 − τn, X(τn)), · ) and set

X(τn+1) =

(
φ(τn+1 − τn, X(τn))

θn+1

)

.

Step 4. Set n = n + 1 and start again with Step 2.

To conclude this section, we briefly comment on prominent classes of jump Markov

processes that are special cases of PDMPs and their simulation. A first special case

is given by ODEs with Markovian switching. For these processes the jump rate is

given by jumps of a Poisson process that is independent of the paths followed in

between jumps, i.e., λ ≡ const. Such equations can be written as stochastic differ-

ential equations driven by a Poisson process, i.e., stochastic differential equations of

jump type (JSDEs) without a diffusion term, cf. [86]. In general, JSDEs without a

diffusion part are special cases of PDMPs [64]. Secondly, PDMPs are generalisations

of continuous-time Markov chains. These are piecewise constant processes and thus

follow a trivial evolution between successive jump times, i.e., g ≡ 0. However, in con-

trast to switching ODEs the jump intensity may be state dependent. Such processes

are most importantly used in stochastic models of chemical reaction kinetics and are

treated numerically by the Stochastic Simulation Algorithm (SSA) [53]. We note

that the numerical advantage of these special cases is that inter-jump times can be

simulated exactly by sampling from an exponential distribution, that is, the implicit

equation (5.1.4) can be solved exactly. Accordingly there exists a large amount of

literature on simulation methods for these processes and a numerical analysis thereof,

see, for instance, references in the recent studies [26, 82].
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5.1.1 A note on simulation methods from uniform random variables

By virtue of Algorithm A1 and the properties of the characteristics (g, λ, µ) we can

construct a PDMP uniquely from a sequence (Un)n≥1 of i.i.d. standard uniform random

variables. For each inter-jump interval two random variables have to be calculated

from samples of uniform random variables: first, the waiting time until the next jump

σ and, secondly, the post jump values θn. Serially processing these tasks the random

variables U2n−1 are used to define the nth inter-jump waiting time via equation (5.1.4)

and the random variables U2n are used to simulate the nth post-jump value of the

PDMP. We briefly comment on the methods for simulating these two types of random

variables as they are an integral part of a simulation method for the path of a PDMP.

Firstly the simulation method (5.1.4) employed in Step 2 stems from the fact that

every continuous distribution function F on R with generalised inverse F−1(u) =

inf{t : F (t) ≥ u} satisfies for a uniformly distributed random variable U

P[F−1(U) ≤ t] = F (t) ,

cf. the inverse CDF method, e.g., [51]. Therefore, as

inf{t : F (t) ≥ u} = inf{t : S(t) ≤ 1− u}

for S(t) = 1 − F (t) being the survivor function to F , it follows that in the case

of a continuous survivor function the solution σ of (5.1.4) is distributed according

to the survivor function (5.1.3). Note that 1 − U is also uniformly distributed and

thus without loss of generality we may use U instead of 1 − U which yields (5.1.4).

Further, we note that equation (5.1.4) does not necessarily possess a unique solution

or a solution at all. However, both these cases are excluded by the conditions on λ

in the main convergence theorem and hence for the remainder of the paper we can

assume that a unique solution to (5.1.4) always exists.

Secondly, for simulating the post-jump values we exploit the fact that there exist

deterministic functions

Θn : E × (0, 1)→ R
m : (x, u) +→ Θn(x, u) (5.1.5)

defining the random nth jump height conditional on the pre-jump value x in terms of

realisations u of uniform random variables, cf., e.g., [37, Cor. 23.4]. That is,

θ(τn)− θ(τn−) = Θn(X(τn−), U2n),
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1

1.5

2

2.5

3

3.5

4

4.5

X(τn-)

U2n(ω)

P
[
θ(τn) = θ∗

]
P

[
θ(τn) 1= θ∗

]

0 1

y

Figure 5.1: Schematic view of the domain of Θn. The curve marks points of discon-
tinuity. The function Θn is constant θ∗ for arguments (x, u) left of the curve and
piecewise constant with different values right of it. θ∗ is the realised nth jump height
and we see Θn(y, U2n(ω)) = θ∗ for y close enough to X(τn−) as the probability that
U2n lies on a discontinuity is zero.

if τn denotes the PDMP’s nth jump time. In particular we have that for all n ≥ 1

P[θ + Θn((y, θ), U) ∈ A] = µ((y, θ), A)

for U standard uniformly distributed and all Borel sets A of K. As K is an at

most countable set we can choose Θn(x, · ) to be piecewise constant on (0, 1) for all

x ∈ E with possibly countably many discontinuities. More explicitly, each µ(x, · )
is a discrete probability distribution on K and to construct a function Θn(x, · ) we

partition the interval (0, 1) into bins with lengths the size of the point probabilities

µ(x, {θ−θ̂}), θ, θ̂ ∈ K. Then the realisation of a random jump height with distribution

µ(x, · )− x is given by the distance θ − θ̂ which corresponds to the bin a realisation

U(ω) falls into. This is the standard method of simulating discrete random variables

[51]. We note, that clearly such a function Θn is not uniquely defined, as, e.g., every

permutation of the partition intervals yields a method producing samples from the

same original distribution µ(x, · ). Thus different choices of functions Θn produce

different paths for the same sequence (Un)n∈N. Nevertheless, the stochastic processes

defined by these different choices have the same distribution in path space and hence

are versions of each other defined on the same probability space. That means, the

choice of the functions Θn does not matter for simulating paths of a PDMP.

Finally, we derive in (5.1.7) a consequence of the assumption that the transition

probabilities µ(x, ·) depend continuously on the pre-jump value x. This result is of

importance for the convergence of approximate simulation algorithms.

First note that the continuity of µ with respect to x implies that the point probabilities
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µ(x, θ − θ̂) and thus the boundaries of the partition intervals depend continuously on

x. Hence, for all n > 0 we have that Θn(x, · ) is a piecewise constant function

with discontinuities in u that depend continuously on x, cf. Fig. 5.1. Thus for fixed

(x, u) ∈ E × (0, 1), where u is not a point discontinuity of Θn(x, · ), it follows that

|Θn(x, u)−Θn(y, u)| = 0

for y close enough to x, say for |x− y| < κ, with constant κ = κ(x, u) depending only

on the fixed pair (x, u). We denote the set of all discontinuity points of Θn(x, · ) by

Dn(x) and, as Dn(x) is at most countable for all x in E, it follows that

P
[
Un ∈ Dn(X(τn−)) ∀ n ≥ 1

]
= 0 . (5.1.6)

Hence, for all n ≥ 1 it is valid that

|Θn(X(τn−), U2n)−Θn(y, U2n)| = 0 a.s. (5.1.7)

for y sufficiently close to X(τn−). That is, for y sufficiently close to the exact value

X(τn−) the simulation method for the post-jump value is a.s. exact.

5.2 The main convergence theorem

In this section we present the numerical methods employed to approximate a PDMP

defined via an i.i.d. sequence of standard random variables and state the central result

at the end of the section: the almost sure convergence of the numerical approximations

and their asymptotic order of convergence. We first precisely state and discuss the

convergence concept we are interested in before we continue with constructing the

numerical methods by discretising Algorithm A1.

Let (Ω,F , P) be a probability space which is not the same as in Section 5.1. Further,

Un, n ≥ 1 is a sequence of i.i.d. standard uniform random variables defined on this

probability space and we fix a finite time interval [0, T ]. Then for given character-

istics (g, λ, µ) as in Section 5.1 we use the sequence of uniform random variables to

construct a PDMP (X(t, ω))t∈[0,T ] on this probability space via Algorithm A1. A suit-

able filtration (Ft)t∈[0,T ] does exist [37]. That is, we recover the structure as initially

assumed in Section 5.1.

Moreover, we assume that a numerical approximation (X̂(t, h, ω))t∈[0,T ] is defined on

the same probability space. Here h denotes a defining parameter of the numeri-

cal approximation, such as a discretisation step size. In the following we refer to

the PDMP (X(t, ω))t∈[0,T ] as the exact PDMP and to its numerical approximation

(X̂(t, h, ω))t∈[0,T ] as the approximate PDMP. Let τn(ω) and τ̂n(h, ω), n ≥ 1, denote

204



Chapter 5: Numerical Methods for PDMPs

|Y (τn) - Ŷ (τ̂n) |

|Y (τn+1) - Ŷ (τ̂n+1) |

τn-1 τ̂n-1 τ̂n
τn+2 τ̂n+2τn+1τn τ̂n+1

|τn - τ̂n | |τn+1 - τ̂n+1 |

Figure 5.2: Schematic relation of the continuous component Y (t) of the PDMP (black
line) to its approximation Ŷ (t) (grey line) in phase space and the approximation errors
we need to control to obtain path-wise convergence of Algorithm A2.

the jump times of the exact PDMP and its approximation, respectively. Finally, the

number of jumps of the exact PDMP in the time interval [0, T ] is denoted by N(T, ω),

where N(T, ω) < ∞ almost surely.

As stated at the beginning of the Chapter, we are interested in the pathwise conver-

gence of global errors of the form

lim
h→0

max
n=1,...,N(T,ω)

|X(τn(ω), ω)− X̂(τ̂n(h, ω), h, ω)| = 0 (5.2.1)

and

lim
h→0

|X(T, ω)− X̂(T, h, ω)| = 0 (5.2.2)

for almost all ω ∈ Ω. That is, (5.2.1) and (5.2.2) state the almost sure convergence of

the approximate PDMP to the exact PDMP at their jump times and at the endpoint,

cf. Fig. 5.2. It is a standard approach in numerical analysis, whether deterministic

or stochastic, to define the error of a numerical approximation by a measure of the

difference of the exact and approximate process at discrete time points in the ap-

proximation interval [0, T ] [57, 72, 92]. Here the jump times of the PDMP and its

approximation are used as a discretisation of the time interval. However, in general,

the exact and approximate jump times do differ and hence yield different time discreti-

sations for the exact and approximate PDMP. This is in contrast to error definitions

typically used in numerics. Moreover, typically, the number and locations of grid

points in error definitions are the same for each trajectory and increase in number

for decreasing step size h. It is exactly the opposite in the error definition (5.2.1) as

N(T, ω) varies with ω ∈ Ω and but is fixed over variations in h.
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As the numerical approximation is continuous over time we are in principle able

to use a ’typical’ error definition. However, for ordinary or stochastic differential

equations the time points the error is evaluated at arise naturally as the grid points

of the discretisation used in the numerical method. For PDMP approximations as

considered in this study this is not the case. The methods we consider, in general, do

not possess the same grid points for any trajectory of one PDMP to approximate and

they possibly do not even possess the same number of grid points. Therefore, setting

particular but arbitrary points apart in using them in an error definition without

a mathematical reasoning does not seem preferable to us. However, for a PDMP

all numerical methods necessarily need to approximate the jump times. Therefore,

relating the values of the exact and approximate PDMP at their respective jump

times is reasonable insofar as an accurate approximation is expected to behave after

the nth just as the exact PDMP behaves after the nth jump. We note that this is

related to the idea of discontinuity tracking in connection with numerical solution of

delay differential equations [11].

We have already mentioned that, in general, the jump times of the exact and approx-

imate PDMP differ. Therefore it is not sufficient to consider the errors (5.2.1) and

(5.2.2) alone. They may become arbitrarily small with the exact and approximate

trajectories still substantially differing as possibly only the values at the jump times

converge but the jump times themselves remain separated. Thus, we additionally re-

quire from a convergent method that also the jump times of the approximate PDMP

converge to the jump times of the exact PDMP, that is, for almost all ω ∈ Ω

lim
h→0

max
n=1,...,N(T,ω)

|τn(ω)− τ̂n(h, ω)| = 0 . (5.2.3)

Definition 5.2.1. We say an approximation is pathwise convergent if (5.2.1)–(5.2.3)

hold. In addition, an approximation is of order p if p is the largest integer such that

the asymptotic behaviour of (5.2.1)–(5.2.3) is O(hp).

To construct an approximation algorithm for the numerical simulation of a PDMP’s

paths we start from the theoretically exact Algorithm A1. We obtain an approximate

algorithm by discretising the problems (5.1.2) and (5.1.4) and solving them numeri-

cally. A numerical solution of (5.1.2) can be obtained by a standard ODE method,

thus substituting Step 3 with an approximation is straightforward. However, the del-

icate part is numerically solving (5.1.4) for which obviously a numerical solution of

(5.1.2) is needed as an integrand which is integrated until an a priori unspecified time

σ, cf. the definition of the survivor function (5.1.3). Hence, the two problems have

to be solved in parallel including a mechanism for detecting the time σ conditional

on a realisation of U . For an efficient solution we transform the equation for the

next transition time (5.1.4) into an equivalent problem. This can then be combined
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with the IVP (5.1.2) yielding a merged formulation of the two problems which al-

lows for a numerical solution by continuous ODEs methods. The resulting numerical

approximation is finally given by Algorithm A2 below.

Taking the logarithm of equation (5.1.4) we obtain the equivalent equation

w(σ, x) =

∫ σ

0

λ(φ(s, x))ds = − log U . (5.2.4)

Thus w(σ, x) = − log S(σ, x) for the survivor function S. Differentiation of w with

respect to σ yields

ẇ(t, x) = λ(φ(t, x)) .

This in turn yields that calculating the next jump time from (5.1.4), i.e., Step 2 in

Algorithm A1, is equivalent to solving the IVP




ẏ

θ̇

ẇ



 =




g(y, θ)

0

λ(y, θ)



 ,




y(0)

θ(0)

w(0)



 =

(
x0

0

)

, t ∈ [0,∞) , (5.2.5)

which is integrated until the component w(t) hits the threshold − log U . The hitting

time

σ = inf {t > 0 : w(t) = − log U}

is equivalent to the waiting time until the next jump, where, in general, σ = ∞ may

be possible unless λ is bounded away from zero.

We need to remark on two aspects at this point. Firstly, the setup of the hitting

time problem (5.2.5) is as in [3]. The authors therein also state how it can be solved

using continuous methods and also present an ad-hoc implementation of an event

detection for this specific problem. However, as the authors are primarily focused on

the modelling and simulation results, they suppose that (5.2.5) can be computed “up

to any desired accuracy and neglect the discretisation error” [3, p. 6]. This may be

a reasonable assumption for the solution of any standard ODE without jumps in the

parameters as numerical methods are well studied in this case. However, additional

assumptions are needed and have to be considered such that an event detection is

possible with arbitrary accuracy, cf. [108]. This aspect is not discussed by the authors.

An algorithm for simulating a PDMP’s path repeatedly solves an ODE system starting

at the point the previous event detection had returned. Thus we can only assume that

the algorithm produces a path with any desired accuracy if also the event detection

locates the hitting times with any desired accuracy. To repeat the purpose of the

present analysis, it is precisely this point we address and present for a large class of

algorithms a thorough numerical analysis in terms of pathwise convergence and the
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conditions this presupposes.

Secondly, we note that there are different but equivalent setups for the event detection

problem (5.2.5), i.e., also different to [3]; one as stated in [123] and a second, which

is essentially analogous to the setup in [123], we briefly introduce now. Instead of

manipulating equation (5.1.4) to obtain (5.2.4) we differentiate the survivor function

S with respect to σ and obtain

Ṡ(σ, x) = −S(σ, x) λ(φ(σ, x)) .

This yields instead of (5.2.5) an IVP to solve given by




ẏ

θ̇

Ṡ



 =




g(y, θ)

0

−S λ(y, θ)



 ,




y(0)

θ(0)

S(0)



 =

(
x0

0

)

, t ∈ [0,∞) . (5.2.6)

This system is solved until the component S(t) hits the threshold given by the random

variable U . Once again the hitting time is exactly the time until the next transition.

Clearly the two systems (5.2.5) and (5.2.6) are equivalent in the sense that the y and

θ components of their respective solutions coincide as also do the hitting times of the

respective thresholds for a given realisation of U .

However, with respect to a theoretical analysis the setup (5.2.5) is the most feasible

due to the simpler right hand side in the last component. Also we conjecture that for

actual implementations it is more efficient as (5.2.5) is a simpler type of ODE system

than (5.2.6). For this reason, we consider in what follows IVP (5.2.5) and denote its

solution with respect to the initial value (x0, 0) by ψ(t, x0). Concerning the different

notations introduced so far we summarise

ψ(t, x0) =

(
φ(t, x0)

w(t, x0)

)

=




y(t, x0)

θ0

w(t, x0)



 ,

(
x0

0

)

=




y0

θ0

0





as we make use all of these notations whenever brevity or clarity demands.

By ψ̂(t, x, h), t ≥ 0, we denote a continuous approximate solution to the IVP (5.2.5)

with initial condition (x, 0) obtained by a continuous numerical ODE method with

step size h. An example of a continuous method is the continuous trapezoidal rule,

which applied to (5.1.1) takes the form

ŷ((n+1)h) = ŷ(nh) + h 1
2 g
(
ŷ(nh)
)

+ h 1
2 g
(
ŷ((n+1)h)

)
, (5.2.7)
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with n = 0, . . . , N−1, h = T/N and for ξ ∈ [0, 1]

ŷ(nh+ξh) = ŷ(nh) + h 1
2ξ(2− ξ) g

(
ŷ(nh)
)

+ h 1
2ξ

2 g
(
ŷ((n+1)h)

)
. (5.2.8)

That is, (5.2.7) is the usual trapezoidal rule for ODEs supplemented with an inter-

polation formula (5.2.8) to obtain an approximation over the intervals [nh, (n+1)h]

between the discrete grid points. We remark that although for the trapezoidal rule

or the numerical methods implemented for the examples in Section 5.5 the param-

eter h denotes an equidistant step size this need not necessarily be the case. On

the one hand, h may denote the maximal step size used in case of variable step size

methods, or, on the other hand, a given error tolerance, cf. a discussion of determin-

istic event detection in [108]. Essentially, h is a defining parameter of the method

which, if convergent, converges to the exact solution for h → 0 . In favour of linguistic

simplicity we keep referring to h as the step size in the remainder of the chapter. Fur-

ther, to keep the presentation and notation simple we restrict ourselves to continuous

one-step methods, the implementations in Section 5.5 all being based on continuous

Runge-Kutta methods discussed in [11]. However we expect the subsequent results,

i.e., Theorem 5.2.1 and Corollary 5.4.1, to remain valid in the case of continuous

multi-step methods.

We refer to [11, 57] for a general discussion of continuous methods and just briefly

collect properties of these methods which we always assume to hold when employed

to solve a standard ordinary differential equation of the general form

ẏ = f(t, y) (5.2.9)

on the interval [0, T ]. To discuss these properties we employ in this paragraph the

following notation. We denote by y(t, x) the exact solution of (5.2.9) with respect to

the initial condition y(0, x) = x and ŷ(t, x, h) denotes the numerical approximation

with respect to the same initial condition and step-size h.

Firstly, the approximate solution obtained by a continuous ODE method satisfies a

stability-type estimate of the form

max
t∈[0,T ]

|y(t, x)− ŷ(t, z, h)| ≤ eC1T |x− z| + err(T, h) , (5.2.10)

with an error function err(T, h) that satisfies err(T, h) → 0 for h → 0. Moreover, the

positive constant C1 and the function err depend only on the right hand side of (5.2.9).

When the right hand side of (5.2.9) is Lipschitz continuous (cf. conditions of Theorem

5.2.1) both depend only on the corresponding Lipschitz constant. In particular, C1

in (5.2.10) can be chosen to be the Lipschitz constant. Further, err does not depend

on the initial condition x ∈ E and without loss of generality we assume monotonicity
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for the error, i.e., err(T1, h) ≥ err(T2, h) if T1 > T2. For the trapezoidal rule (5.2.7),

(5.2.8) such a function err is given for small enough h by

err(T, h) = C2

(
1 + C−1

1 eC1T
)
h2

with some appropriate constant C2 > 0 .

Particularly, the stability condition (5.2.10) implies that the method is uniformly

convergent on [0, T ] in the sense that

lim
h→0

max
t∈[0,T ]

|y(t, x)− ŷ(t, x, h)| = 0 (5.2.11)

for all initial conditions x. We say that the method is convergent of order p if p is the

largest integer such that for h → 0

max
t∈[0,T ]

|y(t, y)− ŷ(t, y, h)| = O(hp), (5.2.12)

in which case err(T, h) = O(hp). Finally, we assume that the numerical approxima-

tion satisfies a Lipschitz condition with respect to t on [0,T], i.e.,

|ŷ(t, x, h)− ŷ(s, x, h)| ≤ C3 |t− s| ∀ t, s ∈ [0, T ], (5.2.13)

where the Lipschitz constant C3 is uniform with respect to the initial condition x. In

particular, these conditions are satisfied by the one-step methods developed in [11]

for the IVP (5.2.5) with properties as specified in Theorem 5.2.1.

Thus using a continuous ODE method we obtain an approximation (X̂(t))t∈[0,T ] for

the PDMP (X(t))t∈[0,T ] by the subsequent algorithm.

Algorithm A2. An algorithm simulating an approximation to a PDMP is given by:

Step 1. Set a jump counter n = 0 and fix the initial time τ̂0 = 0 and initial condition

X̂(0) = x0 = (y0, θ0) ∈ E.

Step 2. Simulate a uniformly distributed random variable U and solve the IVP (5.2.5)

with initial condition (X̂(τ̂n), 0) numerically until

σ̂ = inf {t > 0 : ŵ(t) = − log U} .

We take τ̂n+1 = τ̂n + σ̂ as the numerical approximation of the next jump time.

Hence, we set

X̂(t) = φ̂(t− τ̂n, X̂(τ̂n)) for t ∈ (τ̂n, τ̂n+1).

If τ̂n+1 ≥ T then stop.

210



Chapter 5: Numerical Methods for PDMPs

Step 3. Otherwise, simulate a post-jump value θ̂n+1 for the discrete component

according to the distribution µ(φ̂(τ̂n+1 − τ̂n, X̂(τ̂n)), · ) and set

X̂(τ̂n+1) =

(
φ̂(τ̂n+1 − τ̂n, X̂(τ̂n))

θ̂n+1

)

.

Step 4. Set n = n + 1 and start again at Step 2.

Just as hybrid models mix stochastic jump models with continuous deterministic

models, hybrid algorithms are essentially constructed by combining a simulation al-

gorithm for the discrete stochastic events, i.e., the SSA, and a numerical method for

solving differential equations. Thus, in the SSA terminology Algorithm A2 simulates

the stochastic events by Gillespie’s direct method, hence such an algorithm may also

be called direct hybrid method, cf. [3]. The above kind of algorithm, though arising

naturally from the model problem, is also related to numerical methods developed for

JSDEs. In the case of λ ≡ const. Algorithm A2 is exact and turns into jump-adapted

methods for JSDEs, see, e.g., [99] for a discussion of jump-adapted Taylor methods,

in particular for the pure jump case. We note that derivation or analysis of numer-

ical methods for PDMPs along the lines of Itô-Taylor expansions employed in the

JSDE case is not possible as general PDMPs lack a representation as a solution of a

stochastic differential equation. Finally, Algorithm A2 obviously reduces to the SSA

or a purely deterministic ODE method in the degenerate case if either the PDMP is

piecewise constant, i.e., g ≡ 0, or there are no jumps present at all, i.e., λ ≡ 0.

The following theorem states conditions on the functions g and λ, which are, together

with a valid numerical method for solving (5.2.5), sufficient to guarantee almost sure

convergence in the sense of Definition 5.2.1. The measure µ is assumed to be as

specified in Section 5.1.

Theorem 5.2.1. Let (X(t))t∈[0,T ] be a regular PDMP with phase space E ⊆ Rd×K.

Let g be bounded, Lipschitz continuous and continuously differentiable on E, i.e., there

exist constants M, L such that for all (y, θ), (z, ϑ) ∈ E it holds

|g(y, θ)| ≤ M , (5.2.14)

|g(y, θ)− g(z, ϑ)| ≤ L |(y, θ)− (z, ϑ)| . (5.2.15)

Further, assume that the jump rate λ is bounded, bounded away from zero, Lipschitz

continuous and continuously differentiable, i.e., there exist constants λmin, λmax, L
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θ̂(t)

θ(t)

| τn+1 - τ̂n+1 |

max{τn, τ̂n} max{τn+1 , τ̂n+1}

Figure 5.3: Even if the step size h is chosen small enough such that the post jump
values of the piecewise constant component of the exact PDMP and its approximation
coincide, we have that supt∈[max{τn,bτn},max{τn+1,bτn+1}] |θ(t)− θ̂(t)| = |θ(τn)−θ(τn+1)| > 0
as in general |τn+1 − τ̂n+1| > 0 for all h > 0.

such that for all (y, θ), (z, ϑ) ∈ E it holds

0 < λmin ≤ λ(y, θ) ≤ λmax < ∞ , (5.2.16)

|λ(y, θ)− λ(z, ϑ)| ≤ L |(y, θ)− (z, ϑ)| . (5.2.17)

Then the algorithms A1 and A2 are well defined and the numerical approximation

(X̂(t))t∈[0,T ] defined by Algorithm A2 converges almost surely to the exact PDMP

constructed by Algorithm A1 for all initial values x0 ∈ E in the sense of Definition

5.2.1. Moreover, the continuous components of the PDMP and its approximation

converge a.s. uniformly for h → 0, i.e.,

lim
h→0

sup
t∈[0,T ]

|Y (t, ω)− Ŷ (t, h, ω)| = 0 (5.2.18)

almost surely. If, in addition, the continuous ODE method is of order p then also the

asymptotic behaviour of (5.2.1)–(5.2.3) and (5.2.18) is of order p.

We briefly comment on the nature of the conditions on g and λ in the above theorem.

First of all, note that without loss of generality we can choose the same Lipschitz

constant in (5.2.15) and in (5.2.17). Particularly this implies that the right hand side

of (5.2.5) satisfies a Lipschitz condition with constant L, hence the global existence of

a unique solution is guaranteed. Moreover, the solution is Lipschitz continuous with

respect to the initial condition and, as g, λ are continuously differentiable, it is also

differentiable with respect to the initial condition [55]. Secondly, the assumptions

that λ is bounded away from zero is necessary in order for Step 2 in Algorithm A1

to be well-posed as an event detection problem which presupposes, on the one hand,
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that the derivative of the event function is not zero [108], i.e., in the present case

d

dσ

(∫ σ

0

λ(φ(s, x)) ds + log U
)

= λ(φ(σ, x)) 1= 0 .

On the other hand, it is further necessary for the right hand side of (5.2.5) to be

bounded in a ball around the event location in phase space [108], that is, in a ball

around the point z ∈ E×R+ where the solution ψ is in the moment its last component

w hits the threshold. However, for the stochastic problem we are considering this event

can occur at any point in phase space as the initial condition of the IVP (5.2.5) as

well as the threshold − log U are random. Therefore the global boundedness of the

right hand side of (5.2.5), i.e., the global boundedness of g and λ, as well as λ being

bounded away from zero is required.

We have already mentioned the connection to a convergence result for deterministic

event detection [108]. Therein the authors prove that continuous methods conserve

their order for problems where one jump event has to be approximated by event de-

tection algorithms over the approximation interval. This result, however, is extended

by Theorem 5.2.1 in two ways. First, random instead of deterministic thresholds need

to be considered for the simulation of PDMPs and secondly, jump times have to be

calculated serially thus a simulation algorithm consists of a sequence of random event

detection problems that take the result of the previous event detection as initial con-

dition for the next one. Hence, for an error analysis we have to provide an analysis of

the way the single errors of each event detection problem accumulate and are brought

forward to a global level.

5.3 Proof of Theorem 5.2.1

We begin by recalling some notation which is used throughout the proof. Let the

finite interval [0, T ] be fixed. We also fix an ω ∈ Ω such that N = N(T, ω) < ∞, i.e.,

the realised path (X(t, ω))t∈[0,T ] obtained by Algorithm A1 has only finitely many

jumps in the interval [0, T ]. By definition of a regular PDMP this includes all ω

except a potential set of measure zero. By τn(ω), n ≥ 1, we denote the jump times

of the exact PDMP. Further, for a fixed step size h of the continuous ODE method

used to solve the system (5.2.5) we denote by (X̂(t, h, ω))t∈[0,T ] the resulting path of

the continuous approximation obtained by Algorithm A2 with jump times denoted

by τ̂n(h, ω), n ≥ 1. Finally, we denote by Un(ω), Vn(ω), n ≥ 1, the realisations of

the i.i.d. standard uniform random variables defining the nth inter-jump time and

the nth post-jump value, respectively.2 In the remainder of the proof we generally

2Note that in the rest of the chapter we use U2n−1 and U2n to denote the elements of the
sequence of uniform random variables defining inter-jump times and post-jump values. However, for
the clarity of this long and detailed proof we think it is preferable to use different symbols Un and
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omit the dependency of any random variable on ω, as well as the dependency of the

approximation on h.

First of all, we briefly discuss why both algorithms A1 and A2 are well-defined, i.e.,

we discuss the existence and uniqueness of trajectories for a.e. ω ∈ Ω. This is derived

immediately from conditions (5.2.15)–(5.2.17). The Lipschitz conditions (5.2.15) and

(5.2.17) guarantee the existence of a unique global solution ψ(t, x) to the IVP (5.2.5)

for all initial conditions x ∈ E and the existence of a numerical approximation ψ̂(t, x)

follows from the fact that the continuous ODE method is well-defined. Moreover,

(5.2.16) implies that w(t, x) given by (5.2.4) is strictly increasing with w(0, x) = 0

and w(t, x) →∞ for t →∞ and hence (5.1.4) has a unique solution for all U ∈ (0, 1).

For the corresponding property of the numerical approximation we note that a method

may not produce continuous solutions that are increasing. However, the embedded

discrete methods do produce strictly increasing and diverging iterates, which, e.g.,

immediately follows from the first order condition for Runge-Kutta methods, cf. [11],

and condition (5.2.16). By the continuity of ŵ it follows that there exists a finite

hitting time to every finite threshold. Uniqueness of this hitting time follows by the

use of the generalised inverse in Step 2 of Algorithm A2.

We continue by explaining the basic idea of the proof before we present the arguments

for the single steps in detail. As usual for the convergence analysis of numerical

methods we compare the approximation and the exact PDMP at discrete time points

in [0, T ], cf. the definition of the global error (5.2.1). Analogously to a standard

approach in the convergence analysis we consider a ‘local’ error and show how the

error is transported from the local to the global level. Then convergence follows from

consistency and numerical stability of the method. However, the ‘local‘ error we

consider is not the error resulting over one discrete time step in the continuous ODE

method but the error that arises over one interval between two successive jumps, which

corresponds to the global error of the ODE method over one inter-jump interval.

Recall that we use a discretisation of the interval [0, T ] with grid points given by

the jump times τn and τ̂n, n = 0, . . . , N , for the exact and the approximate PDMP,

respectively. Therefore the time discretisation for the two processes we have to com-

pare differ in the location of their grid points as well as possibly in the number of

grid points, as in general τn 1= τ̂n a.s. and a priori T < τ̂N may be possible with

positive probability for some h > 0. The former is not a problem as we relate the nth

inter-jump interval of the exact PDMP to the nth inter-jump interval of the approx-

imation regardless of the interval endpoints, see Fig. 5.2. For this to be well defined

the latter is a problem as we need the same number of inter-jump intervals in each

approximation as there are in the exact solution. To overcome this obstacle we can

Vn to distinguish the uniform random variables used to the define to two types of stochasticity in a
PDMP.
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- without loss of generality - assume that Algorithm A2 is stopped only after it had

at least N jumps. In this way we obtain an approximation with the same number of

grid points and which is defined over an interval including [0, T ] (at least for small

enough h, cf. Section 5.3.4).

The proof is organised as follows. In a first step of the proof we derive an error bound

for the error in the approximation over one inter-jump interval, i.e., the ’local’ error

of our approximation method. To obtain such a bound we first need a bound on the

error in the time until the next jump, i.e., a bound for

|(τn+1 − τn)− (τ̂n+1 − τ̂n)| . (5.3.1)

Two distinct causes introduce errors in this approximation. On the one hand, the

error due to the fact that we numerically approximate the hitting times τn+1 − τn by

τ̂n+1 − τ̂n and, on the other hand, there are perturbations in the initial conditions as

in general X(τn) 1= X̂(τ̂n). Therefore, we first consider in Section 5.3.1 consistency

and numerical stability with respect to perturbations in the initial data for the hitting

time approximation. Then, in Section 5.3.2 we consider the ’local’ error of the method

in the phase space of the PDMP whereas in Section 5.3.3 we prove the first global

convergence result, i.e., the limits (5.2.1) and (5.2.3). The convergence at the interval

endpoint, i.e., (5.2.2), is proven in Section 5.3.4. Finally, in Section 5.3.5 we extend

the discrete convergence result to a continuous result for the continuous component

of the PDMP, i.e., we prove (5.2.18).

5.3.1 Consistency of the hitting time approximation

In this first part of the proof we consider (5.3.1), i.e., the error in the time until the

next jump of the exact PDMP started in x to the time until the next jump obtained

by the numerical solution of (5.2.5) started from a perturbed initial value x̂. Note

that we consider the PDMP and its approximation just on one inter-jump interval

and hence the components θ(t), θ̂(t) remain constant, although possibly distinct.

To keep the presentation simple we omit the index n in the following, only to be rein-

troduced in Section 5.3.3 when we consider the global error of the method. Further,

without loss of generality we set for the exact and approximate inter-jump interval

the left endpoint to 0 and denote by τ and τ̂ the jump time of the exact PDMP and

its approximation, respectively. Hence the error (5.3.1) can be written as |τ − τ̂ | and

the two time points τ , τ̂ satisfy the equations

− log U = w(τ, x) and − log U = ŵ(τ̂ , x̂) .

That is, τ and τ̂ are the respective hitting times of the random threshold − log U of
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the component w of the exact and approximate solution of the IVP (5.2.5).

In order to estimate |τ − τ̂ | we introduce the additional auxiliary time τ̃ as the time

until the next jump of the exact process started in the perturbed initial value x̂ which

is given by

− log U = w(τ̃ , x̂) .

Then the triangle inequality yields the initial estimate

|τ − τ̂ | ≤ |τ − τ̃ | + |τ̃ − τ̂ | . (5.3.2)

Here the first term in the right hand side measures the error in the exact hitting

time with respect to perturbations in the initial data whereas the second denotes the

numerical error of the method without perturbations in the initial condition. We

continue estimating the two terms separately and start with the latter.

We introduce r(τ, h, x) as the error in the last component of of the continuous method

defined by

w(τ, x) = ŵ(τ, x) + r(τ, h, x),

where obviously due to (5.2.10) it is valid that |r(s, h, x)| ≤ err(τ, h) for all s ≤ τ and

all x ∈ E. By definition it follows that

0 = ŵ(τ̂ , x̂) + log U

= w(τ̂ , x̂)− r(τ̂ , x̂, h) + log U

= w(τ̃ , x̂) + (τ̂ − τ̃)∇tw(ϑ, x̂)− r(τ̂ , x̂, h) + log U

for some ϑ ∈ [min{τ̃ , τ̂}, max{τ̃ , τ̂}]. Here we have employed the Mean Value Theorem

for the last equality. As w(τ̃ , x̂) + log U = 0, this is equivalent to

(τ̃ − τ̂)∇tw(ϑ, x̂) = −r(τ̂ , x̂, h),

and we obtain due to the definition of w (5.2.4) and condition (5.2.16) the estimate

|τ̃ − τ̂ | ≤ |r(τ̂ , x̂, h)|
λmin

≤ err(τ̂ , h)

λmin
. (5.3.3)

Next we have to consider the term |τ − τ̃ | in the right hand side of (5.3.2). To bound

this term we aim for an estimate on the distance in time by the distance of the initial

conditions in phase space of pairs (τ, x), (τ̃ , x̂) satisfying w(τ, x) = w(τ̃ , x̂), i.e., an

estimate of the form

|τ − τ̃ | ≤ C1 |x− x̂| (5.3.4)
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for some positive random constant C1 depending only on τ and U .

Due to the assumptions in Theorem 5.2.1 the solution of the IVP (5.2.5) depends

differentiably on the initial value. Thus, proceeding analogously as for error estimate

(5.3.3) we obtain by the Mean Value Theorem that

0 = w(τ̃ , x̂)− w(τ, x)

= w(τ, x) +∇tw(ϑ, ζ) (τ̃ − τ) +∇xw(ϑ, ζ) · (x̂− x)− w(τ, x)

for some mean values ϑ ∈ [min{τ̃ , τ̂}, max{τ̃ , τ̂}], ζ ∈ {y : y = tx+(1−t)x̃, t ∈ [0, 1]}.
By the Cauchy-Schwarz inequality it follows that

|τ − τ̃ | ≤
∣∣∣
∇xw(ϑ, ζ)

λ(φ(ϑ, ζ))

∣∣∣ · |x− x̂|. (5.3.5)

This yields an estimate of the form (5.3.4) if we bound the first factor in the right

hand side of (5.3.5) uniformly. As the right hand side of the IVP (5.2.5) is Lipschitz

continuous in y and θ with constant L it follows that φ(t, x), which denotes the

components y and θ of the solution of (5.2.5), depends Lipschitz continuously on the

initial condition with Lipschitz constant eLt. Moreover, as by the assumptions of the

theorem the solution is continuously differentiable with respect to the initial condition

it follows that the derivatives satisfy

|∇xw(s, x)| ≤ eLs ∀x ∈ E, s ≥ 0 .

Hence we obtain for the first factor in the right hand side of (5.3.5) the estimate

∣∣∣
∇xw(ϑ, ζ)

λ(φ(ϑ, ζ))

∣∣∣ ≤
eL max{eτ ,τ}

λmin
∀ ζ ∈ E .

Finally, we consider an a priori bound for the maximum max{τ, τ̃} in the exponent.

Obviously, it is valid that max{τ̃ , τ} ≤ τ + |τ̃ − τ | and as τ, τ̃ are hitting times of

the exact solution their difference is globally bounded due to (5.2.16): A straightfor-

ward calculation shows that |τ − τ̃ | ≤ λmax−λmin

λmaxλmin
(− log U) independently of the initial

conditions x and x̂. Thus, these estimates applied to (5.3.5) yield

|τ − τ̃ | ≤ eLτ

λmin
U−δ |x− x̂|, (5.3.6)

where δ = Lλmax−λmin

λmaxλmin
and hence we have arrived at an estimate of the form (5.3.4).

Overall an application of the estimates (5.3.3) and (5.3.6) to the right hand side of
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(5.3.2) yields the stability estimate

|τ − τ̂ | ≤ 1

λmin

(
eLτU−δ |x− x̂| + err(τ̂ , h)

)
. (5.3.7)

In this error bound the first term in the right hand side bounds the error due to

perturbations in the initial value, whereas the second term corresponds to the error

resulting from the numerical approximation of the next jump time.

5.3.2 The local error in phase space

Next we derive a bound of the error over one inter-jump interval in the phase space E.

We denote the post-jump values of the exact PDMP and its solution, started at initial

conditions x and x̂, after one inter-jump interval by X(τ) and X̂(τ̂), respectively.

Hence, given a realisation of a standard uniformly distributed random variable V the

’local‘ error in the phase space is given by

|X(τ)− X̂(τ̂)| = |φ(τ, x) + Θ(φ(τ, x), V )− φ̂(τ̂ , x̂)−Θ(φ̂(τ̂ , x̂), V )| . (5.3.8)

We recall that Θ is the measurable function used to define the post-jump values from

realisations of standard uniform random variables, cf. (5.1.5) in Section 5.1.1. How-

ever, note that here we use Θ( · , · ) as an abbreviation of the correct but cumbersome

notation (0,Θ( · , · )). In order to bound the error (5.3.8), we first estimate the differ-

ence in the continuous components in (5.3.8). Thus, as a first estimate the triangle

inequality yields

|φ(τ, x)− φ̂(τ̂ , x̂)| ≤ |φ(τ, x)− φ(τ̂ , x̂)| + |φ(τ̂ , x̂)− φ̂(τ̂ , x̂)|. (5.3.9)

The second term in the right hand side of (5.3.9) is bounded by err(τ̂ , h) due to the

stability of the ODE method (5.2.10). Hence it remains to consider the first term. A

second application of the triangle inequality, this time to the first term in the right

hand side of (5.3.9), yields

|φ(τ, x)− φ(τ̂ , x̂)| ≤ |φ(τ, x)− φ(τ, x̂)| + |φ(τ, x̂)− φ(τ̂ , x̂)|. (5.3.10)

As the solution of the IVP (5.2.5) depends Lipschitz continuously on the initial con-

dition the first term in the right hand side of (5.3.10) satisfies

|φ(τ, x)− φ(τ, x̂)| ≤ eLτ |x− x̂|.

To estimate the second term in the right hand side of (5.3.10) we set τmin = min{τ, τ̂}
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and obtain

|φ(τ, x)− φ(τ̂ , x)| = |φ(τmin, x)− φ(τmin + |τ − τ̂ |, x)|

=
∣∣∣
∫ |τ−bτ |

0

(
g(φ(s, φ(τmin, x)))

0

)

ds
∣∣∣

≤
∫ |τ−bτ |

0

|g(φ(τmin + s, x))|ds

≤ M |τ − τ̂ | . (5.3.11)

Hence, overall, we obtain for the left hand side of (5.3.10) the estimate

|φ(τ, x)− φ(τ̂ , x̂)| ≤ eLτ |x− x̂| + M |τ − τ̂ |.

Thus employing estimate (5.3.7) we get an error bound for the left hand side of (5.3.9)

as

|φ(τ, x)− φ̂(τ̂ , x̂)| ≤ eLτ
(
1 + λ−1

min M U−δ) |x− x̂| + (1 + λ−1
min M) err(τ̂ , h) . (5.3.12)

That is (5.3.12) bounds the error of the approximation of the continuous part over one

inter-jump interval. The error estimate in its right hand side is split into two parts.

The first term estimates the error due to perturbations in the initial data and the

second term estimates the error due to the numerical method employed for solving

(5.2.5).

Finally, we bound the error introduced by the jump heights Θ for jumps at different

points in phase space. In the following we do not only bound the error due to the

jump heights, but show that for sufficiently small step size this error actually vanishes.

Define

dist(K) := sup
θ,ϑ∈K

|θ − ϑ| .

With this definition we have that for all x, y ∈ E

|Θ(x, ·)−Θ(y, ·)| ≤ 2 dist(K) <∞,

as K is bounded by assumption. Then the considerations regarding the structure of

the function Θ in Section 5.1.1 yield for the error the estimate

|Θ(φ(τ, x), V )−Θ(φ̂(τ̂ , x̂), V )| ≤ 2 dist(K) χ(φ(τ, x), φ̂(τ̂ , x̂), V ) ,
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where χ is a binary function

χ(x, y, u) =






0 if |x− y| < κ(x, u),

1 otherwise,

cf. Section 5.1.1. The variable V is again a realisation of a standard uniform dis-

tributed random variable. Note, as we have already proven that then |φ(τ, x)−φ̂(τ̂ , x̂)|
converges to zero, cf. (5.3.12), we get χ(φ(τ, x), φ̂(τ̂ , x̂), V ) = 0 for small enough h

and |x̂− x|.

To conclude, overall we obtain for the ’local’ error (5.3.8) the estimate

|X(τ)− X̂(τ̂)| ≤ eLτ
(
1 + λ−1

min M U−δ) |x− x̂| + (1 + λ−1
min M) err(τ̂ , h)

+ 2 dist(K) χ(φ(τ, x), φ̂(τ̂ , x̂), V ) . (5.3.13)

5.3.3 The discrete global error

In order to prove convergence we have to be able to infer from the ’local’ error to

the global error. Thus we reintroduce the subindices n, hence τn, τ̂n, n = 1, . . . , N ,

denote the nth jump times of the PDMP and its approximation, respectively, and

X(τn), X̂(τ̂n) denote the post-jump values of these processes at their jump times.

We first show by induction over n that the global error at each jump time, i.e.,

|X(τn) − X̂(τ̂n)| for all n = 1, . . . , N , converges to zero for h → 0. Afterwards we

derive an upper bound for the global error uniform over all jump times to determine

the asymptotic order of decrease of the global error. The splitting of the proof at this

point into these two parts is necessary as in order to derive the asymptotic order of

convergence we first need to show that the errors in the post jump values of θ vanish for

small enough step sizes h. However, this is a necessary condition of convergence and

we can assume it holds for small enough step sizes once the convergence is established.

For the induction basis we set X(0) = X̂(0), then by (5.3.13)

|X(τ1)− X̂(τ̂1)| ≤ (1 + λ−1
minM) err(τ̂1, h) + 2 dist(K) χ(φ(τ, x0), φ̂(τ̂ , x0), V1) .

Obviously for h small enough the last term on the right hand side vanishes due

to the convergence of the deterministic method. Then h → 0 implies that (1 +

λ−1
minM) err(τ̂1, h) → 0 and therefore limh→0 |X(τ1)− X̂(τ̂1)| = 0 .

Next, for the induction step we assume that limh→0 |X(τn) − X̂(τ̂n)| = 0 holds for
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some n ≥ 0. Then, for small enough h we have that

|X(τn+1)− X̂(τ̂n+1)| ≤ eL(τn+1−τn)
(
1 + λ−1

min M U−δ
n+1

)
|X(τn)− X̂(τ̂n)|

+ (1 + λ−1
min M) err(τ̂n+1 − τ̂n, h) ,

and hence limh→0 |X(τn+1)− X̂(τ̂n+1)| = 0.

Therefore overall we find that the method is convergent in the sense that

lim
h→0

max
n=1,...,N

|X(tn)− X̂(t̂n)| = 0 . (5.3.14)

Analogously we show that also the approximate jump times converge to the exact

jump times. The error estimate (5.3.7) yields

|τn+1 − τ̂n+1|

≤ |(τn+1 − τn)− (τ̂n+1 − τ̂n) + τn − τ̂n|

≤ eL(τn+1−τn) λ−1
min U−δ

n+1 |X(τn)− X̂(τ̂n)| + λ−1
min err(τ̂n+1 − τ̂n, h) + |τn − τ̂n|.

(5.3.15)

Then (5.3.14) and another inductive argument yield that

lim
h→0

max
n=1,...,N

|τn − τ̂n| = 0 . (5.3.16)

As these considerations leading to (5.3.14) and (5.3.16) are valid for almost all ω ∈ Ω

this completes the proof of (5.2.1) and (5.2.3). However, to satisfy the condition of

pathwise convergence, Definition 5.2.1, it remains to show (5.2.2), i.e., the convergence

at the interval endpoint which is deferred to Section 5.3.4. At this point we continue

to derive estimates for the global errors (5.2.1) and (5.2.3) to obtain the rate of

convergence for the error in phase space at the jump times, as well as the error in the

jump times itself.

To this end we recursively apply (5.3.13) to its right hand side arriving at

|X(τn)− X̂(τ̂n)| ≤ Zn |x0 − x̂0| (5.3.17)

+ Zn

n∑

k=1

Z−1
k

[
(1 + λ−1

min M) err(τ̂k − τ̂k−1, h) + χ(X(τk−), X̂(τ̂k−), Vk)
]
,
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where for k = 1 . . . , N we set

Zk = eLτk

k∏

i=1

(1 + λ−1
min M U−δ

i ) .

As we are considering the asymptotic order of convergence for h → 0 we can assume

that h is small enough such that χ(X(τn−), X̂(τ̂n−), Vn) = 0 for all n = 1, . . . , N .

Thus for x0 = x̂0 we obtain that for all n = 1, . . . , N

|X(τn)− X̂(τ̂n)| ≤ (1 + λ−1
min M) Zn

n∑

k=1

Z−1
k err(τ̂k − τ̂k−1, h), (5.3.18)

and therefore

max
n=1,...,N

|X(τn)− X̂(τ̂n)| ≤ (1 + λ−1
min M) ZN

N∑

k=1

Z−1
k err(τ̂k − τ̂k−1, h) .

It follows that if err(τ, h) = O(hp) then

max
n=1,...,N

|X(τn)− X̂(τ̂n)| = O(hp) . (5.3.19)

Analogously we derive the order of convergence for the jump time approximations.

Starting with τ0 = τ̂0 and recursively applying (5.3.15) to its right hand side yields

|τn − τ̂n| ≤ λ−1
min

n∑

k=1

[
err(τ̂k − τ̂k−1, h) + eL(τk−τk−1) U−δ

k |X(τk−1)− X̂(τ̂k−1)|
]
.

Employing the estimate (5.3.18) for the error in phase space yields for small enough

h that for all n = 1, . . . , N

|τn − τ̂n| ≤
n∑

k=1

λ−1
min

[
1 + (1 + λ−1

min M) Z−1
k

n−1∑

j=k

Zj U−δ
j+1 eL(τj+1−τj)

]
err(τ̂k − τ̂k−1, h) .

Denoting the factor multiplying err in each summand by W n
k yields that for all n =

1, . . . , N

|τn − τ̂n| ≤
N∑

k=1

W N
k err(τ̂k − τ̂k−1, h)

and thus if err(τ, h) = O(hp), then

max
n=1,...,N

|τn − τ̂n| = O(hp) . (5.3.20)

Again, these considerations leading to (5.3.20) are valid for almost all ω ∈ Ω, and
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(5.2.1) and (5.2.3) follow with the proposed order.

5.3.4 Convergence at the interval endpoint

Finally, for the method to satisfy the condition of pathwise convergence we establish

convergence at the interval endpoint T . To this end we employ the estimate (5.3.15)

on the error for the approximation of the (N + 1)th jump time. This yields

|τN+1 − τ̂N+1|

≤ eL(τN+1−τN ) λ−1
min U−δ

N+1 |X(τN)− X̂(τ̂N )| + λ−1
min err(τ̂N+1 − τ̂N , h) + |τN − τ̂N | .

As all terms in the right hand side of this inequality converge to zero for h → 0 it

follows that there exists an h∗ > 0, depending on UN+1, such that τ̂N+1 > T for all

h < h∗. In this case we then obtain for the error at the interval endpoint the estimate

|X(T )− X̂(T )|

= |φ(T − τN , X(tN))− φ̂(T − τ̂N , X̂(τ̂N ))|

≤ |φ(T−τN , X(τN))− φ(T−τ̂N , X(τN))| + |φ(T−τ̂N , X(τN ))− φ̂(T−τ̂N , X̂(τ̂N ))|

≤M |τN − τ̂N | + eL(T−bτN ) |X(τN)− X̂(τ̂N )| + err(T − τ̂N , h).
(5.3.21)

Here we have used in the last inequality on the first term an estimate analogous to

(5.3.11) and on the second term the method’s stability estimate (5.2.10). Due to the

convergence results in the previous section leading to (5.3.19) and (5.3.20) and the

assumptions on the numerical method the final estimate (5.3.21) converges to zero for

h → 0 for almost all ω ∈ Ω and if the method is of order p then almost surely

|X(T )− X̂(T )| = O(hp) .

5.3.5 The continuous global error

We finish the proof by the extension of the statement (5.3.19) providing convergence

at the jump times to its uniform version (5.2.18). Uniform convergence can only hold

for the continuous component Y (t) and cannot hold for the discontinuous component

θ(t), cf. Fig. 5.3, which can be easily shown rigorously, cf. (5.3.23) below.

To prove the results in this section we first derive a simple auxiliary result on the

asymptotic behaviour of the approximate jump times. As stated in the last section

the convergence of the jump times (5.3.16) implies that τ̂N > T for all h < h∗ for
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some h∗. Moreover there exists an h∗∗ < h∗ such that for all h < h∗∗ it is valid that

(τn−1, τn) ∩ (τ̂n−1, τ̂n) 1= ∅ ∀ n = 1, . . . , N. (5.3.22)

That is, (5.3.22) says, that for small enough h the nth inter-jump interval of the exact

PDMP and its approximation overlap for all n.

We prove (5.3.22) by contradiction. Assume that there exists an n ≤ N such that

(τn−1, τn) ∩ (τ̂n−1, τ̂n) = ∅ for all small h, then either

τn−1 < τn ≤ τ̂n−1 or τ̂n ≤ τn−1 < τn ,

which implies that either

0 < |τn − τn−1| ≤ |τ̂n−1 − τn−1| or 0 < |τn−1 − τn| ≤ |τ̂n − τn|.

Both are contradictions to limh→0 maxn=0,...,N |τn− τ̂n| = 0 and thus (5.3.22) is proven.

For the remainder of this section we assume that h < h∗∗, hence t̂N+1 > T and

(5.3.22) holds. Thus a partition of the time interval [0, T ] is given by the following

discretisation points

0 =: s0 < s1 := max{τ1, τ̂1} < . . . < sN := max{τN , τ̂N} < sN+1 := T .

It now immediately follows that a uniform convergence result cannot hold for the

component θ(t) as on every interval [sn, sn+1] it is valid that

sup
t∈[sn,sn+1]

|θ(t)− θ̂(t)| = |θ(tn)− θ(tn+1)| > 0 ∀ h ≤ h∗∗ . (5.3.23)

This holds as the piecewise constant components θ(t) and θ̂(t) are equal at sn and

both jump exactly one time within the interval [sn, sn+1] to the same post-jump value.

Recall that we assume h small enough such that the errors in the post-jump values

vanish. By definition, one jumps at sn+1 and the other strictly before. Therefore their

maximal difference over the interval [sn, sn+1] is exactly the jump height. Hence, the

argument in Fig. 5.3 is made mathematically precise.

After these preliminary considerations we proceed to obtain the continuous conver-

gence result (5.2.18) on the method’s continuous component Ŷ (t). To this end we

use the new time grid s0, . . . , sN+1 and estimate the uniform error of the continuous

component Ŷ (t) on each interval [sn, sn+1]. Note that on each of these intervals either

i.) τ̂n+1 < τn+1 or ii.) τn+1 < τ̂n+1.
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We first consider case i.). Recall that we use y(t, x), ŷ(t, x) to denote the first com-

ponent of the exact and numerical solution of the IVP (5.2.5) and we use the symbol

∨ to denote the maximum of two expressions. Then

max
t∈[sn,sn+1]

|Y (t)− Ŷ (t)| = max
t∈[sn,bτn+1]

|Y (t)− Ŷ (t)| ∨ max
t∈[bτn+1,τn+1]

|Y (t)− Ŷ (t)|

= max
s∈[0,bτn+1−sn]

|y(s, X(sn))− ŷ(s, X̂(sn))|

∨ max
s∈[0,τn+1−bτn+1]

|y(s, X(τ̂n+1))− ŷ(s, X̂(τ̂n+1))|.

Both error terms in the right hand side can be estimated using the stability of the

continuous ODE method (5.2.10), which yields

max
t∈[sn,sn+1]

|Y (t)− Ŷ (t)| ≤
[
eL(sn+1−sn) |X(sn)− X̂(sn)|

∨ eL(τn+1−bτn+1) |X(τ̂n+1)− X̂(τ̂n+1)|
]

+ err(sn+1 − sn, h).

As we assume that h is small enough such that θ(τn) = θ̂(τ̂n) and hence θ(sn) = θ̂(sn),

we obtain

max
t∈[sn,sn+1]

|Y (t)− Ŷ (t)|

≤
[
eL(sn+1−sn)|Y (sn)− Ŷ (sn)| ∨

eL(τn+1−bτn+1)
(
|X(τ̂n+1)−X(τn+1)| + |X(τn+1)− X̂(τ̂n+1)|

)]
+ err(sn+1 − sn, h)

≤
[
eL(sn+1−sn)|Y (sn)− Ŷ (sn)| ∨

eL(τn+1−bτn+1)
(
M |τ̂n+1 − τn+1| + |X(τn+1)− X̂(τ̂n+1)|

)]
+ err(sn+1 − sn, h).

Due to the results (5.3.19) and (5.3.20) it follows that

eL(τn+1−bτn+1)
(
M |τ̂n+1 − τn+1| + |X(τn+1)− X̂(τ̂n+1)|

)
+ err(sn+1 − sn, h) = O(hp) .

Hence we obtain the recursive relation

max
t∈[sn,sn+1]

|Y (t)− Ŷ (t)| ≤ eL(sn+1−sn) |Y (sn)− Ŷ (sn)| + O(hp) . (5.3.24)
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Secondly, for the case ii.), i.e., τn+1 < τ̂n+1, we analogously obtain the estimate

max
t∈[sn,sn+1]

|Y (t)− Ŷ (t)|

≤
[
eL(sn+1−sn) |Y (sn)− Ŷ (sn)| ∨

eL(bτn+1−τn+1)
(
|X(τn+1)− X̂(τ̂n+1)| + |X̂(τ̂n+1)− X̂(τn+1)|

)]
+ err(sn+1 − sn, h).

To estimate the term |X̂(τ̂n+1)−X̂(τn+1)| we employ the Lipschitz condition (5.2.13).

Hence we obtain again a recursive relation of the form (5.3.24) . Thus such a relation

holds for the interval [sn, sn+1] in either cases.

Finally, recursively applying (5.3.24) to its right hand side yields the estimate

max
n=0,...,N

max
t∈[sn,sn+1]

|Y (t)− Ŷ (t)| ≤ eLT |Y (0)− Ŷ (0)| + O(hp) .

These considerations hold true for almost all ω ∈ Ω, hence the uniform convergence

(5.2.18) follows for Y (0) = Ŷ (0) and the proof of Theorem 5.2.1 is completed.

5.4 Extensions of the convergence theorem

It is straightforward to extend Theorem 5.2.1 to general PDMPs with right continuous

paths. That is, we consider PDMPs that do not have any qualitative differences in

their components: All components allow for discontinuities, i.e., µ is a Markov kernel

onto Rd+m, and in between jumps the trajectories follow a deterministic motion given

by an ODE (
ẏ

θ̇

)

=

(
g1(y, θ)

g2(y, θ)

)

,

i.e., the component θ is not piecewise constant anymore. This is the class of PDMPs

as considered in [64]. Clearly, a continuous convergence result such as (5.2.18) cannot

hold anymore. However, the statement about the asymptotic behaviour of the errors

at the jump times, at the interval end point and the errors in the jump times is still

valid.

Considerations as in Section 5.1.1 yield the existence of functions Θ̃n : E × (0, 1) →
Rd+m, n ≥ 1, providing realisations of the random jump heights from realisations

of standard uniformly distributed random variables. Instead of condition (5.1.7) we

impose on these functions the following Lipschitz condition: for all x, y ∈ Rd and all

n ≥ 1 it is valid that almost surely

|Θ̃n(x, U2n)− Θ̃n(y, U2n)| ≤ C2 |x− y| , (5.4.1)
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where U2n, n ≥ 1 are the standard uniformly distributed random variables defining

the post-jump values in the exact and approximate simulation algorithm A1 and A2.

Corollary 5.4.1. Let (X(t))t∈[0,T ] and (X̂(t))t∈[0,T ] be a regular PDMP and its

approximation, respectively, which have right-continuous paths. For the distribution of

the post jump values condition (5.4.1) is satisfied. Then under the conditions of The-

orem 5.2.1 the global error satisfies (5.2.1)–(5.2.3), i.e., the method converges pathwise

in the sense of Definition 5.2.1. Moreover, if the continuous ODE method is of order

p then the order of convergence is p.

Proof. The proof of (5.2.1)–(5.2.3) in the case of this general class of PDMPs works

analogously to the proof of Theorem 5.2.1 in Section 5.3. The arguments employed

become even less technical. In particular, the last paragraph in Section 5.3.2 dealing

with the error in the jump heights becomes redundant as does the induction argument

in Section 5.3.3. We restrict the presentation to point out the main difference.

The proof proceeds as the proof in Section 5.3 with the main difference in estimating

the local error in phase space, cf. Section 5.3.2. Using the Lipschitz condition (5.4.1)

we first obtain from (5.3.8) the estimate

|X(τ)− X̂(τ̂ )| = (1 + C2) |φ(τ, x)− φ̂(τ̂ , x̂)| .

Then, estimating the difference |φ(τ, x) − φ̂(τ̂ , x̂)| as in Section 5.3.2 yields for the

local error in phase space an estimate by

|X(τ)−X̂(τ̂ )| ≤ eLτ (1+C2)
(
1+λ−1

min M U−δ) |x̂−x|+(1+C2)(1+λ−1
min M) err(t̂, h) ,

cf. the local error estimate (5.3.13). Starting with X(0) = X̂(0) and a recursive

application of this last inequality, cf. Section 5.3.3, yields a global error estimate

max
n=1,...,N

|X(τn)− X̂(τ̂n)| ≤ (1 + C2)(1 + λ−1
min M) ZN

N∑

k=1

Z−1
k err(τ̂k − τ̂k−1, h) .

As these calculations are valid for almost all ω ∈ Ω the convergence (5.2.1) follows

and is of order p when err(t, h) = O(hp). The proofs for the limits (5.2.3) and (5.2.2)

work completely analogous to those for Theorem 5.2.1, cf. Sections 5.3.3 and 5.3.4,

respectively.

5.5 Numerical examples

To illustrate the theoretical findings regarding the order of convergence we have imple-

mented simulation methods for PDMPs based on continuous Runge-Kutta methods
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Figure 5.4: Coefficients and interpolation formulae of the continuous Runge-Kutta
methods implemented for the numerical examples: (a) general Butcher tableau, (b)
forward Euler method, (c) trapezoidal rule, (d) RadauIIa method, (e) LobattoIIIa
method.
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of different order. For an IVP

ẏ = g(t, y), y(0) = y0

with y(t), y0 ∈ Rd and t ∈ [0, T ] an s-stage continuous Runge-Kutta method is a

discretisation scheme of the form

ŷ((n+1)h) = ŷ(nh)+h
s∑

i=1

βi g(nh+ cih, ki), n = 0, . . . , N − 1, h = T/N, (5.5.1)

with stage values ki, i = 1 . . . , s,

ki = ŷ(nh) + h
s∑

j=1

aij g(nh + cjh, kj) (5.5.2)

combined with an interpolation formula

ŷ(nh + ξh) = ŷ(nh) + h
s∑

i=1

bi(ξ) g(nh + cih, ki), 0 ≤ ξ ≤ 1 (5.5.3)

for the approximation on the intervals between the discretisation points nh. The

coefficients β = (β1, . . . , βs)T , A = (aij)i,j=1,...,s and c = (c1, . . . , cs)T are given by

Butcher tableaus as in Fig. 5.4 (a). In particular, we implemented the explicit Euler

method (order 1), the trapezoidal rule (order 2), the 2-stage RadauIIa method (order

3) and the 3-stage LobattoIIIA method (order 4). The coefficients and interpolation

polynomials bi(ξ) for these methods are given in Fig. 5.4 (b)–(e) taken from [11].

Each experiment consists of the same trajectory simulated using Algorithm A2 based

on the different continuous Runge-Kutta methods with decreasing step sizes h. We

compared the approximations to a reference solution as an exact solution is not avail-

able. The reference solution is an approximation of the same trajectory simulated

with very high accuracy. We stopped decreasing the step size h for an implementa-

tion of Algorithm A2 when the approximations entered the error range of the reference

solution.

We have applied the methods to a stochastic hybrid version of the Hodgkin-Huxley

model for a patch of neuronal membrane, cf. Section 3.1.2. We consider the model

for two different sets of parameters, cf. Appendix A. The first set is the original

Hodgkin-Huxley model for the squid giant axon. The second set is taken from [93]

wherein the authors experimentally compare the performance of various pseudo-exact

algorithms with respect to certain test statistics.

The hybrid version of a space-clamped Hodgkin-Huxley neuron model is a 14–dim-

ensional PDMP, cf. Section 3.1.2, where a one-dimensional continuous variable
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Y (t) ∈ R models the difference in the electrical potential. The remaining, piece-

wise constant variables θ(t) ∈ R13 record the states of the ion channels immersed

in the membrane. In the Hodgkin-Huxley model there are two different families of

ion channels: sodium (Na) and potassium (K) channels with 8 and 5 distinct states,

respectively. Their kinetic schemes are given in Fig. 1.1. Each component of θ(t) thus

counts the number of channels in the specific state, i.e., θ1, . . . , θ8 correspond to the

states of the Na–channels and θ9, . . . , θ13 to the states of the K–channels. The char-

acteristics of the PDMP are as follows. Firstly, the family of ODEs (5.1.1) defining

the inter jump evolution of the PDMP is given by the equation

Cẏ = −gNaθ8(y −ENa)− gKθ13(y − EK)− gL(y − EL) + I(t) . (5.5.4)

Secondly, the instantaneous jump rate λ is given by

λ((y, θ)) =





am(y)

bm(y)

ah(y)

bh(y)





T 



3 2 1 0 3 2 1 0

0 1 2 3 0 1 2 3

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1









θ1

...

θ8





+

(
an(y)

bn(y)

)T (
4 3 2 1 0

0 1 2 3 4

)




θ9

...

θ13



 .

Thirdly, we specify the transition measure µ. The point probability of the event that

one channel changes from state i to state j is given by the transition rate of state i

to state j times the number of channels in state i divided by the total instantaneous

rate λ. For example, the probability of the event of one channel changing from state

1 to 2 – conditional on the jump time being t – is given by

3 am(Y (t)) θ1(t−)

λ((Y (t), θ(t−)))
=: µ((Y (t), θ(t−)), {θ(t−) + (−1, 1, 0, . . . , 0)T}) .

All other events have zero probability, that is two channels do not change states

simultaneously almost surely.

We remark that (5.5.4) differs from the general form (5.1.1) due to the added time

dependent function I(t) which denotes the external current input to the system. How-

ever, for the numerical experiments we present the input is piecewise constant of the

form I(t) = const. · I(t1,t2](t) (monophasic input) and hence one may think of the

model as PDMPs ’glued’ together at the times t1, t2 with the final state being the

initial condition of the next. The reason for this type of input is that in numerical

simulations of the neuron model one wants to sample first an initial condition from
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Figure 5.5: A first exemplary numerical experiment for a trajectory to the first pa-
rameter set. We have plotted the errors in phase space (top left), jump times (top
right) and in the discrete component (bottom left). The path of the reference so-
lution’s continuous component calculated using MATLABR©’s ode45 is shown in the
bottom right panel.

the membrane at rest, i.e., with I(t) ≡ 0, for the start of the response to an input at

time t1.

We present two sample trajectories for the first parameter set. The reference solution

for the trajectory in Fig. 5.5 was calculated using MATLABR©’s ode45 implementation

with AbsTol / RelTol = 2.22045e−14. We used the built-in event detection for the

calculation of the hitting times. For the trajectory in Fig. 5.6 the reference solution

was calculated using the LobattoIIIa method with step size h = 5e−6. On the one

hand, the use of LobattoIIIA illustrates that high order methods yield good results in

the absolute error range for reasonable equidistant step sizes. On the other hand, the

use of ode45 which employs automated step-size selection illustrates that methods

employing automated step size selection yield good accuracy results and thus can in

principle be used. However, we found that for the same level of accuracy simulation

times for the equidistant LobattoIIIA method were considerably shorter than for

ode45. Thus this equidistant implementation performs better than the simulation
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Figure 5.6: A second exemplary numerical experiment for a trajectory to the first
parameter set. We have plotted the errors in phase space (top left), jump times
(top right) and in the discrete component (bottom left). The path of the reference
solution’s continuous component calculated using the presented PDMP method based
on the continuous LobattoIIIA is shown in the bottom right panel.
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using MATLABR©’s time stepping algorithm contrary to the latter being specifically

developed to speed up simulations. We note that these findings are not artefacts of

the two specific paths presented but are persistent throughout all the simulations we

conducted.

The error plots in the upper panels of Fig. 5.5, i.e., the error in phase space (5.2.1)

(upper left panel) and the error in the jump times (5.2.3) (upper right panel) illus-

trate very clearly the theoretical result in Theorem 5.2.1: For step size h small enough

such that the global error in the discrete component vanishes (lower left panel) the

theoretical asymptotic order of convergence for the different methods is observed. For

a guide of the eye we added lines of slope 1, 2, 3 and 4 beneath the errors of the meth-

ods with the respective orders. The plots of the second trajectory shown in Fig. 5.6

are a slightly less clear illustration of the asymptotic order of convergence. Here, the

discrete error of the higher order methods has already vanished but reappears for a

certain step size h. However, if we remove this outlier we observe the asymptotic

order underlying the approximation as seen by comparison with the straight lines,

that is, the convergence is non-monotonic.

As mentioned discussing the reference solution a naive use of automated step-size

control with the intention of speeding up simulations and controlling the error can be

misleading. However, it would be a task for an efficient and practicable pathwise step

size detection and error control to detect such ’bad’ step sizes as occur in the second

trajectory and either avoid them or minimise their effect. These are crucial points

for the implementation and performance of the algorithms. They demand a further

thorough investigation in this direction, e.g., an analysis of the shortcomings of the

step-size detection as employed in ode45, which we have not attempted to do in this

study.

Finally, in a second example we consider a variant of the Hodgkin-Huxley model only

dealing with currents due to Na–channels. This model reduces to 9 dimensions as

θ9(t), . . . , θ13(t) ≡ 0. The channel density is higher and the current per channel smaller

as for the first parameter set which overall renders the trajectories ’less noisy’, cf. the

sample trajectory of the reference solution in Figs. 5.5 and 5.6 with the one in Fig. 5.7.

The reference solution was again calculated using the LobattoIIIA method with step

size h = 5e−6. Overall we find the same behaviour as in the first example. For small

enough step sizes such that the errors in the discontinuous components vanish, the

predicted order of the asymptotic error behaviour is observed. However, note that

even for the smallest step size considered the Euler method lacks the accuracy to

approximate the trajectory correctly. Its error is orders of magnitude larger than

the error of higher order Runge-Kutta method with large step size, which strongly

supports the use of higher order methods.
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Figure 5.7: An exemplary numerical experiment for a trajectory to the second pa-
rameter set, cf. Appendix A. We have plotted the errors in phase space (top left),
jump times (top right) and in the discrete component (bottom left). The path of
the reference solution’s continuous component calculated using the presented PDMP
method based on the continuous LobattoIIIA is shown in the bottom right panel.
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Conclusion and further research

To conclude the thesis we briefly recapitulate the main results we have presented and

comment on further research. As we have stated in the introduction the aims of the

thesis are twofold. On the one hand, we are interested in a general advance of Piece-

wise Deterministic Markov Process theory and, on the other hand, the application

of these new results to models of biological excitable membranes under the influ-

ence of channel noise. Broadly speaking we may identify a range of three topics

within this twofold aims: firstly, deriving a mathematical framework for the stochastic

hybrid modelling of spatio-temporal dynamics of excitable membranes and providing

analytical tools for their analysis; secondly, as a reduction of the complexity of the

models, deriving approximations to PDMPs by stochastic processes more accessible

to an analysis; thirdly, the derivation and analysis of numerical simulation methods

for PDMPs. The latter two aspects are tools that allow the study of more complex

PMDP models which are hardly accessible to a theoretical analysis.

In the thesis we have achieved these aims step by step in the progression of the chap-

ters. In Chapter 2 we presented the general class of Piecewise Deterministic Markov

Processes. This class of processes allows a precise mathematical description of the

internal noise structure of excitable membranes, with and without spatial dynamics,

by hybrid stochastic models. As theoretical results we obtained the strong Markov

property, the extended generator of these processes and an Itô-formula. Moreover, also

an important contribution to general PDMP theory, we have shown how it is possible

to cast spatio-temporal evolution into this framework. We believe that this approach

is widely applicable to model systems where stochastic discrete events of individual,

spatially distributed objects are coupled via the solution of partial differential equa-

tions and these two components mutually influence each other. Further, PDMPs

are also closely related to multi-scale modelling on which we comment in Section 6.1

below. We have illustrated this general modelling framework for the example of the

classical Hodgkin-Huxley model of a squid giant axon in Chapter 3. Generalisations of

this modelling approach have already been discussed in Section 3.1.1. Further, it also
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immediately extends to a large class of biophysical models of excitable membranes,

e.g., cardiac cells or models for calcium dynamics, which possess the same underlying

physiological structure as neuronal membranes. The formulation of excitable mem-

brane models by PDMPs allows a rigorous analytical and numerical investigation of

these models based on the theory of PDMPs. As first general steps in these directions

it enabled us

– to develop analytical approximations of reduced complexity by continuous stoch-

astic processes such as solutions of SPDEs motivated by the approaches in [50, 96]

in the finite-dimensional setting;

– to develop and analyse hybrid algorithms for finite-dimensional PDMP models.

We pursued these two aspects within the general PDMP theory in the subsequent two

chapters of the thesis. First, as a general theoretical tool for PDMPs we derived a

law of large numbers and martingale central limit theorems in Chapter 4. The former

establishes a connection of stochastic hybrid models to deterministic models given,

e.g., by systems of partial differential equations. Whereas the latter connects the

stochastic fluctuations in the hybrid models to diffusion processes. As a prerequisite

to these limit theorems we carried out a thorough discussion of Hilbert space valued

martingales associated to the PDMPs. Furthermore, these limit theorems provide the

basis for a general Langevin approximation to PDMPs, i.e., certain stochastic partial

differential equations that are expected to be similar in their dynamics to PDMPs.

We have applied these results to compartmental-type models of spatially extended

neuronal membranes. Ultimately this yields a system of SPDEs which models the

internal noise of a biological excitable membrane based on a theoretical derivation

from exact stochastic hybrid models. Finally, in Chapter 5 we addressed the question

of numerical simulation of PDMPs. We presented and analysed the convergence in

the pathwise sense of a class of simulation methods for PDMPs in Euclidean space.

We have illustrated our theoretical findings with numerical examples being stochastic

hybrid models of space-clamped membranes. We are able to observe the proved order

of convergence. Further, the methods produced sample trajectories that possess the

qualitative behaviour expected of excitable membranes. The numerical examples also

allowed us to draw conclusions on the comparative performance of different methods.

Finally, we now comment on further directions of research concerning the three aspects

identified above building on the results derived in the present thesis.

6.1 Stochastic hybrid models of excitable media

We have repeatedly emphasised that PDMP models are the correct mathematical

description of internal (channel) noise. However, a second important noise source
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in biological systems, and excitable membranes in particular, is external noise. A

discussion and modelling of external noise is not within the scope of this thesis and

it is one starting point for further research and extension of the PDMP models which

we briefly explain.

External influences to neuronal membranes directly affect the transmembrane poten-

tial and arise from various sources. In the case of deterministic external influences,

which also includes, e.g., an externally applied macroscopic current at the membrane,

the resulting model formulation readily fits in the presented PDMP framework, cf. Sec-

tion 3.1.1. However, this is not what is usually understood as external noise. Nor-

mally, external noise is a fast fluctuating (and usually small) time-dependent input.

It may arise as natural fluctuations in the transmembrane potential due to thermal

noise or as small inputs into the membrane resulting from action potentials emitted

by other neurons. This latter type of external noise is also called shot noise. Most

importantly, external noise is generally modelled stochastically using white noise.

Formally adding a white noise term to the membrane balance equation (1.2.2) or

space-time white noise to the cable equation (1.2.1) we obtain equations which are,

in a mathematical precise way, accurately treated within the framework of stochastic

ordinary / partial differential equations (SDEs/SPDEs) driven by Wiener or Poisson

noise. Coupling continuous stochastic dynamics given by SDEs to discontinuous jump

dynamics analogously to the coupling in the case of PDMPs results in stochastic pro-

cesses known as General Stochastic Hybrid Systems (GSHS) [28]. To the best of our

knowledge coupling SPDE solutions to discontinuous dynamics, and thus extending

the GSHS framework to include spatial dynamics, has not been considered in the

literature so far. Further, extensive fundamental analytic studies of GSHS compara-

ble to the monographs [37, 64] for PDMPs are not available. Therefore, in order to

obtain a rigorous theory for stochastic hybrid membrane models incorporating spatial

dynamics and external noise, first a rigorous analysis of the resulting processes has to

be conducted and their well-definedness established.

We finish this section with a brief comment on the general idea of multi-scale mod-

elling and its close connection to PDMPs and GSHS. This connection is particularly

important for models of chemical reaction networks and the subsequent comments

apply for spatially homogeneous chemical reaction systems. The multi-scale nature

of such systems is already reflected in the different approaches to model dynamics in

chemical reaction system using

(i) continuous time Markov chains, viz. the Stochastic Simulation Algorithm,

(ii) stochastic differential equations, i.e., the Langevin approximation to the Markov

chain models,

(iii) or systems of ordinary differential equations, termed reaction rate equations in
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this application.

That is, the same system may be appropriately modelled by either of these approaches

with respect to the aim of the later analysis. The appropriate choice depends mainly

on the system size, i.e., number of reacting molecules, and / or the time horizon, i.e.,

whether we are interested in short-term or long-term behaviour. However, different

scales may also be present in one model. That is given the system size and time horizon

certain reactions may be most appropriately modelled deterministically and others by

Markov chains. Whenever these two types of reactions affect the same molecules then

an approximation of the fast reactions in the system by reaction rate equations results

in a stochastic process which has the characteristic structure of a finite-dimensional

PDMP.1 By this approximation procedure a substantial model reduction in terms of

complexity of the model (structural complexity as well as numerical complexity in

attempts to simulate the stochastic model) can be achieved. In a recent study these

approximations have been mathematically rigorously justified for spatially homoge-

neous chemical reaction systems in terms of weak limit theorems [34]. This result is

complementary to the limit theorems derived in [79, 96]: Kurtz [79] presents limit

theorems for jump processes to solution of ODEs, the authors in [34] present limit

theorems of jump processes to PDMPs and limit theorems for PDMPs to solutions of

ODEs are presented in [96].

A second possible method of model reduction is using the Langevin description to

approximate the fast reactions instead of the reaction rate equation. The resulting

stochastic process now follows the dynamics of an SDE system in between jumps of

the slow reactions. Furthermore the rates of the slow reactions may depend on the

paths of the SDEs. Such a method has been proposed in [107]. The mathematically

correct treatment of these processes is within the framework of GSHS. This connection

seems to have been unnoticed in the chemical reaction research community. To the

best of our knowledge a theoretical analysis of these models and the approximation

procedure is completely missing as is a numerical analysis of the simulation algorithm

proposed in [107].

We believe one central question in the context of multi-scale approximations is a qual-

itative analysis of the long-time behaviour of the different modelling approaches and

their comparison. For the individual model classes (i)–(iii) above, tools for the analysis

of the long-time behaviour are widely available, e.g., classical stability analysis or

1There is a close conceptional connection between these multi-scale approximation to chemical
reaction systems and hybrid models of excitable membranes. First of all the channel dynamics in
models of excitable media are given in a kinetical description resembling chemical reactions. Here
each ’reaction’ corresponds to a possible change of channel states. Secondly, the flow of individual
ions across the membranes occurs on a much faster time scale than the channel switchings and the
membrane balance equation can be considered as a reaction rate approximation. Here ions can
be considered as ’reacting’ where the different states are ’being inside’ and ’being outside’ of the
membrane.
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dynamical systems theory for ODE systems, cf., e.g., [73, 101], or analysis of the

invariant distributions of Markov chains and their ergodicity, or stability analysis for

SDEs, e.g., mean-square linear stability when the system allows for a deterministic

fixed point, cf. [59], or otherwise methods based on the theory Random Dynamical Sys-

tems, cf. a discussion by E. Buckwar, P. Kloeden and the present author in the context

of SDEs with additive noise in [25]. This type of SDEs, for example, arises as a linear

noise approximation to Markov chain models via the van Kampen system size expan-

sion [118]. In the case of hybrid system, i.e., combining Markovian jump dynamics

and deterministic evolution, either very few results on the long time behaviour are

available, see [33, 40, 49] in the case of PMDPs, or are in the case of GSHSs completely

missing. We believe the development of such tools is of major importance and should

be a central aspects of future research effort.

6.2 Limit theorems

P. Bressloff characterises in [23] spatial models arising in neural systems in the fol-

lowing way: “One of the distinct features of neural systems compared to chemical

systems is that when spatial degrees of freedom are taken into account, the former

involves non-local interactions rather than diffusive interactions.” If we consider this

characterisation of neural system as the defining feature of certain spatial systems we

conjecture that the limit theorems presented in Chapter 4 find broad application for

this type of models. Examples are PDMPs used for models of cell adhesion2 and, in

particular, stochastic neural field theory. Recently P. Bressloff provided an appro-

priate kinetic framework for the study of stochastic neural field equations and showed

using the van Kampen system size expansion [118] and the continuum limit that

the Wilson-Cowan equation is the corresponding deterministic limit [22]. Even more

recently the same author presented in [23] a diffusion approximation via a functional

Fokker-Planck equation also derived via the van Kampen system size expansion. In

forthcoming work we apply the limit theorems derived in Chapter 4 to stochastic neu-

ral field equations, i.e., the deterministic limits are the Wilson-Cowan or the Amari

equation, respectively. These theorems provide a more rigorous connection than the

methods employed in [22, 23] and characterise the appropriate type of limit, i.e.,

limit in probability and limit in the mean in the law of large numbers and a limit in

distribution for the diffusion approximation. With some additional work it is in this

context possible to obtain estimates on the speed of convergence which is in general

not possible via the van Kampen system size expansion.

Another topic for further research is motivated by corresponding results in finite-

dimensions [80, 96] and for spatially inhomogeneous chemical reaction systems con-

2Personal communication with O. Bagdasar, University of Nottingham.
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verging to reaction diffusion equations, cf. [75]. In these studies limit theorems are

derived for the fluctuations around the deterministic limit identified by the law of

large numbers. This corresponds to the linear noise approximation derived via the

van Kampen system size expansion. Using the notation of Chapter 4 we conjecture

that the sequence of processes,
(√

αn (Un
t −u(t), zn(θn

t )−p(t)
)

t≥0
, n ∈ N, converges in

distribution to a suitable diffusion process. Moreover, we further conjecture that this

limit is closely related to the asymptotic linearisation of the Langevin approximation

around the solution of the deterministic limit, cf. [96] wherein this result is proven for

finite-dimensional PDMPs.

Further, we believe that the Langevin approximation to spatio-temporal PDMP mod-

els of excitable membranes also poses an important object for further investigation. Its

derivation was the initial motivation of the study of the limit theorems in Chapter 4

and it is the main application of these in the present thesis which enables to write

down the system of SPDEs that constitute a Langevin approximation. This system

now demands for further analysis, particularly, first of all the question of existence

and uniqueness of the Langevin approximation has to be addressed. Subsequently, as

SPDEs are analytically better accessible than jump processes a theoretical analysis

of qualitative and quantitative properties of the models may be possible. A large

deviation result may be particularly of interest to study analytically the propaga-

tion reliability and failure along an axon in addition to numerical investigations for

compartmental-type hybrid models conducted in [45]. For finite-dimensional PDMPs

a connection between Large Deviations of the PDMPs to the Langevin approxima-

tion has been considered in terms of a functional central limit theorem in [96] and a

comparison of Large Deviations for birth-death processes and their diffusion approx-

imation was carried out in [95]. It may be possible in future work to extend these

results to PDMPs in infinite dimensions and their Langevin approximation by SPDEs.

Finally, we have not yet investigated how far the presented limit theorems in Chapter

4 also generalise the previously known results for stochastic spatio-temporal models of

chemical reactions converging to reaction-diffusion equations, cf. the series of results

on variations of the model in [75, 76, 77, 78] and [15, 16, 17, 18, 19]. This question

necessitates a close inspection of the techniques employed in these studies and identify

the analogons in our approach. An answer to this question would contribute to a more

complete picture of limit-theorems for spatio-temporal stochastic models.

6.3 Numerical simulations

Regarding the numerical approximation of PDMPs future work may be pursued in

various directions. We have already discussed one point in Section 5.5 regarding the

implementations of the methods: From a practical point of view an important aspect
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is analysing step-size adaptation methods in connection with the random hitting time

problem which needs to be solved at each step. This might yield an improvement in the

efficiency of the methods and may avoid certain step-sizes producing a disproportional

large error. Apart from this question we think of two further directions that may yield

fruitful results.

Firstly, in contrast to deterministic numerical analysis there are different concepts to

measure the error of a numerical approximation in stochastic numerical analysis. One

of these concepts is pathwise convergence which we have analysed in Chapter 5. Dif-

ferent concepts are convergence in the mean-square and weak convergence, cf. [72, 92].

These concepts emphasise different aspects of the stochastic theory and the appropri-

ateness of each depends on the aims the numerical simulations are used to achieve.

Weak convergence, for example, is the appropriate convergence concept when distri-

butional parameters of models are estimated via Monte-Carlo methods. In particular,

in connection with multi-scale approximations to chemical reaction networks one is

often interested in the evolution of the distribution of molecule numbers over time

which is investigated using Monte-Carlo simulations. Therefore a task for further

numerical analysis is to extend the presented pathwise convergence result to these

other convergence concepts. We note that within the three aforementioned concepts

the pathwise error is in some sense the strongest concept. We conjecture that our

result can be used to establish mean-square and weak-convergence for the numerical

methods we presented.

Secondly, we have considered convergence only for PDMPs taking values in Euclidean

space. Thus a natural task is to develop numerical methods for the simulation of

the spatio-temporal membrane models we discussed in the thesis. This amounts to

consider numerical methods that in between jump times of the PDMP solve a partial

differential equation instead of an ordinary differential equation. The development

and analysis of such methods was not within the scope of this thesis, however, there

is a connection to the methods we considered. We briefly comment on simulating

spatio-temporal PDMPs.

For the numerical solution of PDEs, considered as abstract evolution equations, the

infinite-dimensional state space of these necessarily has to be discretised to obtain

an approximation on a finite-dimensional subspace which can be implemented in a

computer. There exist various approaches for this task, e.g., finite-element methods or,

simpler, finite-differences. For axon models where the PDE is the cable equation the

latter is usually an appropriate choice. Then spatially discretising the cable equation

using finite-differences we obtain a system of ODEs which, connected to the jump

dynamics of the channels, defines a finite-dimensional PDMP. Now, this PDMP can

be simulated using the methods we presented in Chapter 5.

An important question for axon models which can be investigated via numerical stud-
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Figure 6.1: The spatial discretisation has step-size ∆x = 10/639 and for solving the
resulting finite-dimensional PDMP we used MATLABR©’s ode45 solver. A channel is
placed at each discretisation point with one K-channel for every 15 Na-channels. The
parameters are chosen as in the classical Hodgkin-Huxley models, cf. Appendix A.

ies of spatio-temporal hybrid models of excitable membranes is, for example, the

propagation speed of the action potential and propagation reliability. The latter has

been studied in [45] using implementations that correspond to discretisations of the

compartmental-type models presented in Section 3.2. However, such numerical stud-

ies are also possible using the exact hybrid models discussed in Section 3.1. In Fig. 6.1

we present one sample trajectory of the hybrid Hodgkin-Huxley model obtained by the

aforementioned numerical method. That is, the cable equation equipped with periodic

boundary conditions is spatially discretised using finite differences on an equidistant

grid such that the gridpoints coincide with the channel locations. The trajectory in

Fig. 6.1 illustrates the feasibility of this approach. Note that here the channel density

does not reflect physiological reality nor does the current input strength due to one

channel. However, in current research efforts3 these methods are employed to exper-

imentally investigate the wave speed of travelling waves in hybrid models where the

model complexity is reduced via an averaging technique. For these simplified mod-

els simulation speeds for biophysical realistic parameters are acceptable for Monte

Carlo Simulations. Furthermore, the example trajectory in Fig. 6.1 suggests that the

hybrid stochastic models correctly reproduce the expected qualitative behaviour of

action potentials: Action potentials move away from the point of excitation, which in

Fig. 6.1 is at approximately x = 2 and t = 4, in the form of a standing wave, i.e., two

complementary wave fronts following each other with the same speed. Moreover, we

3Personal communication with M. Thieullen and A. Genadot, Université Pierre at Marie Curie.
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also observe the feature that two action potentials annihilate on collision.

To conclude, we conjecture that a convergence result can also be derived for numerical

approximation of spatio-temporal PDMP models of excitable membranes. We think

that a first natural step is an analysis of the method that arises discretising the

cable equations using finite differences and numerically solving the resulting finite-

dimensional PDMPs with methods derived in Chapter 5.
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Rate functions and parameter

values

The following are the rate functions and coefficients of the cable equation for the

original Hodgkin-Huxley model of the squid giant axon taken from [74]. The rate

functions are

an(u) =
10− u

100(e(10−u)/10 − 1)
, am(u) =

25− u

10(e(25−u)/10 − 1)
, ah(u) = 0.07e−u/20,

bn(u) = 0.125e−u/80, bm(u) = 4e−u/18, bh(u) =
1

e(30−u)/10 + 1
,

and the constants used are

ENa = 115 mV, gNa = 4 pS, ηNa = 300 µm−2,

EK = −12 mV, gK = 18 pS, ηK = 20 µm−2,

EL = 10.613 mV, gL = 0.3 mS/cm2,

C = 1 µF/cm2, R = 35.4 Ω · cm, 2r = 0.476 mm,

where ηNa and ηK denote the Na and K channel density, respectively. Note that

the equilibrium potential for the leakage current EL is chosen such that in the de-

terministic set of equations the membrane potential has a stable equilibrium at the

origin. Usually the conductances are given independent of the channel density i.e.,

gNaηNa = 120 mS/cm2 and wKηK = 36 mS/cm2 which are the values used in the de-

terministic Hodgkin-Huxley model. Further, C is the membrane conductance, R the

intracellular resistivity and 2r the axon diameter. Finally, input current I in the right

hand side of membrane equations is in units of µA/cm2. The input that is considered

for the numerical example in Section 5.5 is a monophasic current starting at t = 1 ms

and lasting for 1 ms of strength 30 pA, i.e., I(t) = 30 · I(1,2](t).
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The rate functions and parameters for the neuron model taken from [93] are given by

am(u) =
1.872(25.41− u)

e(25.41−u)/6.06 − 1
, ah(u) =

−0.549(27.74 + u)

1− e(u+27.74)/9.06
,

bm(u) =
3.973(21.001− u)

1− e(u−21.001)/9.41
, bh(u) =

22.57

1 + e(56−u)/12.5
.

and the constants used are

ENa = 144 mV, gNa = 2.569 · 10−5 pS, ηNa = 1000 µm−2,

EK = 0 mV, gK = 0 pS, ηK = 0 µm−2,

EL = 0 mV, gL = 1/(1953.49 · 103) mS/cm2,

C = 0.0714 · 10−6 µF/cm2 .

Note that the numerical example in Section 5.5 considers Na–channels only. As The

current input is a monophasic current starting at t = 0.1 ms and lasting for 0.1 ms of

strength 35.1 · 10−6 pA, i.e., I(t) = 35.1 · 10−6 · I(0.1,0.2](t). These are the parameters

for the neuron considered in [93]. We note that the input current strength for the

experiments in [93] is incorrectly reported and corrected in [24].
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Random Counting Measures

In this part of the appendix we introduce some background on topics in probability

theory which is necessary for the definition and analysis of PDMPs. The main purpose

is to briefly recall the definitions and the most important properties used in the thesis

and, especially, to harmonise the definitions in references on PDMPs [37, 64]. In

Section B.1 we first briefly introduce the general class of Borel spaces which serve as

state spaces for all stochastic processes considered in this thesis. The discussion of

Borel spaces is to a large extent based on material presented in [13]. Then in Section

B.2 we present the definition of random counting measures and collect results mainly

from the monograph [64]. Random counting measures and their properties are the

basis for the definition of PDMPs and a derivation of the most central results in

PDMP theory in Chapter 2. Finally, in Section B.3 we introduce survivor functions

which are essential to defining the distributions of inter-jump times of PDMPs.

B.1 Preliminaries

We recall that the Borel-σ-field of a topological space is the σ-field generated by the

topology. In particular, if a separable metric space is equipped with the induced

topology, i.e., the topology the base of which are the open balls with respect to the

metric, the Borel-σ-field coincides with the σ-field generated by the open balls. We

note, that trivially a metric space equipped with its induced topology is a metrisable

space1. In this thesis, metric spaces are always normed spaces where the metric is

induced by the norm.

Definition B.1.1. ([13, Sect. 7.3]) A topological space is called a Borel space if it is

homeomorphic to a Borel subset of a complete, separable, metric space.

Every Borel space is separable and metrisable and every complete, separable, metris-

able space is a Borel space. Further, every Borel subset of a Borel space is a Borel

1A metrisable space is a topological space X such that there exists a metric on X and the open
balls of this metric are a base for the topology, cf. [13, Chap. 7].
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space. Thus, in particular, every separable Banach space and a Borel subset thereof

is a Borel space. A Borel measurable space is a Borel space equipped with its Borel-

σ-field.

Definition B.1.1 for a Borel space is used in [37], however in [64] a Borel space is

defined as a measurable space (E, E) such that a bimeasurable bijection onto a Borel

subset of R exists. Obviously, these definitions are closely related and it is easily

shown that Definition B.1.1 implies the definition employed in [64]: Note that due

to Urysohn’s Theorem every Borel space is homeomorphic to a subset of the Hilbert

cube and thus the cardinality of a Borel space is less than or equal to uncountable.

Further, due to [13, Prop. 7.15] two Borel spaces are Borel-isomorphic if and only

if they have the same cardinality. For uncountable Borel spaces this implies that

there exists a bimeasurable bijection onto the unit interval [0, 1], cf. [13, Prop. 7.16.1].

Obviously, if the Borel space is countable or finite it is Borel-isomorphic to a finite or

countable subset of [0, 1]. As [0, 1] as well as any finite or countable subsets thereof

are Borel subsets of R it follows that for every Borel space in the sense of Definition

B.1.1 there exists a bimeasurable bijection onto a Borel subset of R.

Borel spaces have the following properties where (a)–(c) are reported in [64, p. 19]

and (d) and (e) can be found in [13, Sect. 7.3].

Proposition B.1.1. Let (E, E) be a Borel measurable space.

(a) All singletons are measureable, i.e., {y} ∈ E for all y ∈ E. This implies that

E separates points, i.e., for any y 1= x there exists A ∈ E such that y ∈ A and

x ∈ Ac.

(b) The σ-field E is separable, i.e., E is countably generated.

(c) If X is an (E, E)-valued random variable defined on a probability space (Ω,F , P)

and F ′ ⊂ F is a sub-σ-field, then there always exists a regular conditional distri-

bution of X given F ′.

(d) A finite or countable product of Borel spaces is a Borel space when equipped

with the product topology. The Borel-σ-field generated from the product topology

coincides with product-σ-field2.

(e) Finally, finite and countable vectors of Borel-measurable functions are Borel-

measurable and each component of a Borel-measurable vector function is Borel-

measurable.

Examples for Borel measurable spaces are Rd, d ≥ 1, with the usual Borel σ-field, the

sequence space RN with the σ-field generated by the projections on the components

2The product topology is the coarsest topology such that all projections are continuous and the
product σ-field is the smallest σ-field such that all projections are measurable.
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and the space of Rd-valued càdlàg processes with the σ-field generated by the coor-

dinate projections [64]. Finally, also R ∪ {−∞,∞} with the σ-field generated by the

weakest topology containing the sets [−∞, a), (a,∞], (a, b) for all a, b ∈ R is a Borel

space [13]. In general, if (E, E) is a Borel measurable space and ∇ is an isolated state

then E ∪ {∇} is a Borel measurable space with its Borel σ-field given by E ∨ {∇}.3

B.2 Random counting measures and marked point processes

Taking aside the singular approach by Jacod and Skorokhod [68], the standard theory

of piecewise deterministic processes (PDP) is based on the theory of random counting

measures and a one-to-one identification between their events and the paths of a

PDP. Therefore, we present subsequently a brief introduction to the topic and state

the most important results which are regularly used in the main part of the thesis. The

presentation follows [64] but to a large extent the results are analogous to the theory

presented in [37, Appendix], nonetheless, the presentation in [64] is more general and,

particularly, more detailed. All results which are proved in [64] are stated without

proofs. We note that we use simplifications in notation in comparison to [64] in order

to improve the readability of the section.

In the following sections the theory is first presented on canonical spaces, however,

in Section B.2.7 we provide the necessary extensions to random counting measures /

marked point processes on arbitrary probability spaces. In particular, the discussion

is concluded with rigorously establishing a connection between the complementary

approaches to PDMPs by [37, 64] and [68].

For the sake of completeness we also mention [21, 65, 66] wherein random counting

measures are considered, called multivariate point processes in the terminology of

the latter two references. The results presented below generally have counterparts in

these presentations. We note that in [21] results are proved directly for marked point

processes on arbitrary probability spaces (and filtrations of a special form (B.2.34))

without first considering canonical spaces. However, the presentation therein is re-

stricted to compensators which allow for an intensity process, cf. Section B.2.6, which

is a smaller class of marked point processes than considered in [37, 64] as well as in

this thesis.

B.2.1 Definition and construction of random counting measures

Let (E, E) be a Borel measurable space and ∇ is the irrelevant mark corresponding

to a ’dead’ state. We employ the notation E = E ∪ {∇} and E = E ∨ {∇} and note

that (E, E) is again a Borel measurable space. Further, B is used to denote the usual

3We note that in connection with σ-field the notation ’∨’ always indicates the σ-field generated
by the collection of sets on both sides of the symbol.
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Borel sets on [0,∞) and B := B ∨ {∞}. Finally, N0 is used to denote the set of

natural numbers including zero and N0 := N ∪ {∞} where, as usual, these spaces are

equipped with the Borel sets with respect to the discrete topology.

Definition B.2.1. Let (Ω,F , P) be an arbitrary probability space. A simple point

process on (Ω,F , P) is a sequence (τn)n≥1 of [0,∞]-valued random variables such that4

(i) P[0 < τ1 ≤ τ2 ≤ . . .] = 1,

(ii) P[τn < τn+1, τn <∞] = P[τn < ∞], n ≥ 1,

(iii) P[limn→∞ τn = ∞] = 1.

A marked point process on (Ω,F , P) is a sequence (τn, Yn)n≥1 of paired random vari-

ables, where in addition to (i)-(iii) the E-valued random variables Yn satisfy5

(iv) P[Yn ∈ E, τn < ∞] = P[τn <∞], n ≥ 1,

(v) P[Yn = ∇, τn =∞] = P[τn = ∞], n ≥ 1.

The set of paired sequences satisfying (i)-(v) is denoted by K, i.e.,

K :=
{

(tn, yn)n≥1 ∈ ([0,∞]×E)N
∣∣ 0 < t1 ≤ t2 ≤ . . . ; tn < tn+1, yn ∈ E iff tn <∞

}
.

We define for all n ≥ 1 the coordinate projections

Tn : K → ([0,∞],B) : k +→ Tn(k) := tn, Yn : K → (E, E) : k +→ Yn(k) := yn.

(B.2.1)

Then a σ-field K is generated on K by these projections, i.e., K = σ(Tn, Yn, n ≥ 1),

which is the product σ-field on the product space K, and (K,K) is a Borel measurable

space. A probability on (K,K) is called a canonical marked point process. Finally,

we define the mappings

Zn : K → ([0,∞]× E)n : k +→ ((T1(k), Y1(k)), . . . , (Tn(k), Yn(k))), (B.2.2)

4In words: It is a sequence of (i) almost surely positive, non-decreasing random variables, which
are (ii) almost surely strictly increasing if finite and (iii) almost surely ’non-explosive’, i.e., almost
surely there are only finitely many points in every finite interval.

5In words: The mark is (iv) almost surely in E if the event happens in finite time, otherwise (v)
it is almost surely the irrelevant mark if the next event happens at infinity.

We briefly comment on the terminology of a process ’dying’ and ’exploding’. To this end identify a
marked point process with a piecewise constant stochastic process on [0,∞] taking values in E which
for τn ≤ t < τn+1 is at position Yn and just assume an arbitrary initial condition for the process
prior to the first jump. Then the difference between the process ‘dying‘ and ’exploding’ in finite time
is the following: If a process dies it enters the dead state after finitely many jumps in finite time,
i.e., a pair (τn,∇) with τn < ∞ is an event with non-zero probability, whereas if it explodes then it
jumps infinitely often in finite time and after it had jumped infinitely often it is in the dead state.
Both behaviours do not occur almost surely for a marked point process according to Definition B.2.1
as, on the one hand, P[tn = ∞|Yn = ∇] = 1 and hence a marked point process enters – and stays
in – the irrelevant state {∇} at infinity, meaning that a trajectory may stop jumping after finitely
many jumps but is still ’alive’. On the other hand condition (iii) excludes explosion.
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which are measurable with respect to K and the product σ-field on ([0,∞]× E)n.

Remark B.2.1. Given a marked point process on an arbitrary probability space

(Ω,F , P) this process can be seen as a K-valued random variable and we obtain a

probability P̂ on (K,K) by the pushforward measure, i.e., for all B ∈ K

P̂(B) := P
(
{ω ∈ Ω : (τn(ω), Yn(ω))n≥1 ∈ B}

)
.

However, the aim is to construct a probability on (K,K) directly.

Definition B.2.2. (a) We denote by H the space of discrete counting measures m

on the measurable space ([0,∞)× E,B ⊗ E)6 which are of the form

m :=
∞∑

n=1

δtn,yn , (B.2.3)

where (tn, yn)n≥1 is a sequence in K, i.e., the measure m is a sum of Dirac-

measures putting unit mass at the points given by the elements of the sequence.

In particular, such measures m are positive, σ-finite and satisfy m( · ) ∈ N0,

m({0}×E) = 0 and for t > 0 we have that m({t}×E) ≤ 1, m([0, t]×E) < ∞.

To turn H into a measurable space we consider for all C ∈ B ⊗ E the mappings

µC : H → N0 : m +→ m(C) (B.2.4)

and define a σ-field on H on H by

H := σ(µC , C ∈ B ⊗ E) . (B.2.5)

A probability on the measurable space (H,H) is called a canonical random count-

ing measure.

(b) Instead of mappings µC we can define for all A ∈ E a counting process (NA
t )t≥0

on H by

NA
t : H → N0 : m +→ µ[0,t]×A(m) = m([0, t]× A) . (B.2.6)

We frequently employ the shorter notation Nt := NE
t , i.e., Nt counting all the

jumps that occur up to time t. It turns out that

σ(NA
t ; t ≥ 0, A ∈ E) = H . (B.2.7)

That is, the σ-field on H generated by all counting processes (B.2.6) and the

σ-field generated by all counting measures (B.2.4) coincide, hence the two families

6A further notational remark: In connection with σ-fields the symbol ’⊗’ is always used to denote
product σ-fields on cartesian product spaces indicated by the symbol ’×’.
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of processes carry the same information.

(c) Finally, on the space (H,H) the canonical filtration (Ht)t≥0 is given by the σ-fields

Ht := σ(NA
s ; 0 ≤ s ≤ t, A ∈ E) (B.2.8)

where for t = 0 we get the trivial σ-field, i.e., H0 = {∅, H}.

Remark B.2.2. Given a marked point process (τn, Yn)n≥1 on an arbitrary probability

space (Ω,F , P) we can, on the one hand, use it to define a random counting measure

µ, i.e., an H-valued random variable on (Ω,F , P), by

µ(ω) :=
∞∑

n=1

I[τn<∞] δτn(ω),Yn(ω), (B.2.9)

where µ(ω) ∈ H almost surely. Hence we obtain a probability on (H,H) by the

pushforward measure.

On the other hand, we can also define families of counting processes from a marked

point process, i.e., for each A ∈ E let (NA
t )t≥0 be the process defined by

NA
t (ω) :=

∞∑

n=1

I[τn(ω)≤t,Yn(ω)∈A] = µ(ω)([0, t]×A) (B.2.10)

which counts the number of events in [0, t] with marks in A.

Proposition B.2.1. ([64, Sec. 3.2]) The sequence elements Tn and Yn can be recovered

in a measurable fashion from the family of random measures {µC, C ∈ B⊗ E} or the

family of counting processes {(NA
t )t≥0, A ∈ E}, respectively. Particularly, this implies

that there exists a bimeasurable bijection Ψ : (K,K) → (H,H).

Note that Proposition B.2.1 implies that the coordinate projections (B.2.1) are mea-

surable mappings on the space of counting measures (H,H) in the sense that

Tn(m) = Tn ◦Ψ−1(m) and Yn(m) = Yn ◦Ψ−1(m). Moreover, this turns (H,H) into a

Borel measurable space as defined in [64], i.e., there exists a bimeasurable bijection

from (H,H) to a Borel subset of the unit interval.

For the construction of a canonical marked point process we introduce for n ≥ 1 the

additional sets

Kn :=
{

(tk, yk)1≤k≤n ∈ ([0,∞]× E)n
∣∣∣ 0 < t1 ≤ . . . ≤ tn ≤ ∞;

with tk < tk+1, yk ∈ E iff tk <∞
}
,

Jn :=
{

(zn, t) ∈ Kn × [0,∞]
∣∣∣ tn ≤ t, with tn < t iff tn < ∞

}
,
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and the set J0 := [0,∞]. That is Kn = Zn(K) is the projection of the sequence space

K to its first n entries and Jn is this projection plus an additional time element which

is compatible for being the (n + 1)th time element of a sequence in K. Generated

by the corresponding coordinate projections (B.2.1) we obtain σ-fields Kn, J n on Kn

and Jn, respectively, and thus obtain measurable spaces. As before these spaces are

Borel measurable spaces and Kn and J n are the respective product σ-fields.

Then, a canonical marked point process is successively constructed defining the mar-

ginal distributions of the time τn+1 given (τ1, . . . , τn; Y1, . . . , Yn) ∈ Kn and of the mark

Yn+1 given (τ1, . . . , τn+1; Y1, . . . , Yn) ∈ Jn. We assume

(i) there is a probability P 0 on [0,∞], which defines the first jump time,

(ii) for every n ≥ 1 there is a Markov kernel P n from (Kn,Kn) to ([0,∞],B) and

(iii) for every n ≥ 0 there is a Markov kernel πn from (Jn,J n) to (E, E).

The following theorem provides the existence of a canonical random counting measure.

Theorem B.2.1. ([64, Thm. 3.2.1]) Given a probability P 0 and Markov kernels

(P n)n≥1, (πn)n≥0 satisfying for all zn ∈ Kn and all (zn, t) ∈ Jn

P n(zn, (tn,∞]) = 1 if tn < ∞, P n(zn, {∞}) = 1 if tn =∞,

πn((zn, t), E) = 1 if t < ∞, πn((zn, t), {∇}) = 1 if t =∞,

(B.2.11)

then there exists a unique probability P̂ on the paired sequence space containing K but

also all explosive sequences, such that

(i) P 0(B) = P̂[ T−1
1 (B) ] for all B ∈ B, i.e., P 0 is the pushforward measure of the

first time entry in the sequences,

(ii) P n(zn, · ) is a regular conditional distribution of Tn+1 given [Zn = zn] for all

zn ∈ Kn, n ≥ 1,

(iii) πn((zn, t), · ) is a regular conditional distribution of Yn+1 given [Zn = zn, Tn+1 = t]

for all (zn, t) ∈ Jn, n ≥ 0.

Moreover, if and only if

P̂

[
lim

n→∞
Tn = ∞

]
= 1 (B.2.12)

then P̂ defines a canonical marked point process P, i.e., P̂(K) = 1, and the probability

P is the restriction of the probability P̂ to K.

Due to the bimeasurable Ψ map between (K,K) and (H,H) we immediately obtain

under Theorem B.2.1 a probability measure on the latter space, i.e., a canonical

random counting measure, by the pushforward measure. Further, it is clear that
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different choices of Markov kernels can lead to the same probability on (H,H). In

particular, Markov kernels generating the same probability may differ on a set which

is attained by Zn or (Zn, Tn+1), respectively, only with probability zero.

It is cumbersome and difficult, cf. [37] and [64, p. 18], to give general conditions on

the Markov kernel defining a probability on the paired sequence space such that it is

a canonical marked point process. Davis discusses simple conditions [37, Prop. 24.6]

for special cases and Jacobsen gives conditions in connection with compensators and

intensity processes, cf. [64, p. 62,68]. These simple conditions are usually easy to

verify for special cases of interest as, e.g., the hybrid models in Chapter 3.

We continue defining conditional distributions for canonical random counting mea-

sures with respect to their past. In order to define conditional probabilities with

respect to the ’past’ of processes we define the following operators.

Definition B.2.3. We define shift operators θs, s ≥ 0, for counting processes and

random counting measures by

θsN
A
t :=





0 if t < s,

NA
t −NA

s if s ≤ t,

θsµ := µ( · ∩ ((s,∞)× E)) =
∑

n∈N:s<τn<∞

δτn,Yn .

That is, the shifted counting process (θsNA
t )t≥0 only counts points that occur strictly

after s and the shifted random measure θsµ is supported on (s,∞). Writing (τn,s)n≥1,

(Yn,s)n≥1 for the sequence of time points and marks determining θsµ we have, e.g., on

the set [Ns = k] that

τn,s = θsτn = τn(θsµ) = τk+n, Yn,s = θsYn = Yn(θsµ) = Yk+n,

which is, in more general terms,

θsτn = τNs+n, θsYn = YNs+n.

This means that τn,s and Yn,s are the nth jump time and mark strictly after time

s and the shifted random counting measure weights A ∈ E by the marks therein

corresponding only to time points strictly after s.

Further, we also define the translated shift θ∗s , s ≥ 0 by

θ∗sµ =
∑

n∈N:s<τn<∞

δτn−s,Yn (B.2.13)
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and hence for C ∈ B ⊗ E
θ∗sµ(C) = θsµ(C + s)

where C + s = {(t + s, y)| (t, y) ∈ C}. We note that the translated shift operators

form a semigroup on H , i.e.,

θ∗0µ = µ and θ∗t+sµ = θ∗s ◦ θ∗t µ .

Further, the connection between shifted random measures is given for B ∈ E by

θ∗sµ((t1, t2]×B) = θsµ((t1 + s, t2 + s]×B) = µ((t1 + s, t2 + s] ∩ (s,∞)×B).

The translated shift operator is of particular importance when considering a homo-

geneous Markov property for random counting measures and is used in Chapter 2,

however, it is not discussed further in this appendix.

It is a straightforward extension to define shift operators with respect to random

times. Of particular interest are shift operators θTk
, θ∗Tk

, k ∈ N, which restrict the

counting processes and random measures to events after the kth jump time.

The following theorem provides the connection between the transition kernels for

probabilities conditioned on the ‘past’ of a point process. To this end we define the

concatenation operation between acceptable elements of two sets Kk and Kn, k, n ∈ N,

i.e.,

9 : Kk ×Kn +→ Kk+n : zk 9 z̃n = (t1, . . . , tk, t̃1, . . . , t̃n; y1, . . . , yk, ỹ1, . . . , ỹn) .

Here ’acceptable’ means that the two events zk = (t1, . . . , tk; y1, . . . , yn) ∈ Kk and

z̃n = (t̃1, . . . , t̃n; ỹ1, . . . , ỹn) ∈ Kn are such that tk < t̃1 iff tk < ∞ and t̃1 = ∞ iff

tk =∞, i.e., the resulting concatenation is an element of Kk+n.

Theorem B.2.2. ([64, Thm. 4.3.3]) For any s ∈ [0,∞), k ∈ N0 and all zk ∈ Kn

the conditional distribution of θsµ given [Ns = k, Zk = zk] is the probability P|k,zk
on

(H,H) generated by the Markov kernels (P n
|k,zk

)n≥0 from Kn to [0,∞] and (πn
|k,zk

)n≥0

from Jn to E given by

P 0
|k,zk

:= P k(zk, · |(s,∞]),

P n
|k,zk

(z̃n, · ) := P k+n(zk 9 z̃n, · ), z̃n ∈ Kn, n ≥ 1,

πn
|k,zk

((z̃n, t), · ) := πk+n((zk 9 z̃n, t), · ), z̃n ∈ Kn, n ≥ 0, t > t̃n.

For later, very practical use we obtain the following version of a total conditional
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expectation.

Lemma B.2.1. ([64, Corol. 4.2.2]) Let P be a probability on (H,H) and U be a

real-valued, integrable random variable, then

E[U |Ht] =
∞∑

n=1

I[Nt=n] E
[
U
∣∣Zn, I[τn+1>t]

]
.

We note that on [τn+1 > t]

E
[
U
∣∣Zn, I[τn+1>t]

]
=

1

Sn
Zn

(t)
E
[
U I[τn+1>t]

∣∣Zn

]
.

Thus, Lemma B.2.1 implies that in order to calculate conditional expectations with

respect to the elements Ht of the canonical filtration it is sufficient to consider the

conditional expectations on the sets [Zn = zn, Nt = n]. That means the conditional

probabilities in Theorem B.2.2 simply determine the conditional distribution of θsµ

given Hs on the set [Ns = k, Zk = zk] and hence the conditional probability

P[θsµ ∈ · |Hs] =: P
Ns,ZNs

is the probability on (H,H) generated by the families of Markov kernels (P n
|Ns,ZNs

)n≥0

and (πn
|Ns,ZNs

)n≥0.

B.2.2 Stochastic processes on canonical spaces

Definition B.2.4. A stochastic process (Xt)t≥0 with state space (G,G) defined on

(H,H) is a family of G-valued random variables Xt. We say such a process is

(i) measurable if the map (t, m) +→ Xt(m) is B ⊗H-measurable,

(ii) adapted to the filtration (Ht)t≥0 if it is measurable and each Xt is Ht-measurable

or

(iii) Ht-predictable if X0 is H0-measurable and if the map (t, m) +→ Xt(m) restricted

to ((0,∞)×H,B⊗H) is measurable with respect to the predictable σ-field, which

is the σ-field generated by the sets

(t,∞)×B, t ≥ 0, B ∈ Ht.

In particular, left continuous, Ht-adapted processes are Ht-predictable.

The following theorem characterises the elements of the σ-fields of the canonical

filtration and the class of processes which are adapted or predictable with respect

to the canonical filtration (Ht)t≥0. Particularly, note that the filtration (Ht)t≥0 is

NOT completed.
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Theorem B.2.3. ([64, Prop. 4.2.1(b)])

(a) A set B ⊆ H belongs to Ht if and only if for every n ≥ 0 there exists a set

Bn ∈ (B ⊗ E)n ∩ ((0, t]× E)n such that

B ∩ [Nt = n] =
{
m ∈ H : Zn(m) ∈ Bn, Tn+1(m) > t

}
. (B.2.14)

(b) The canonical filtration is right-continuous, i.e., Ht =
⋂

ε>0 Ht+ε for all t ≥ 0.

(c) A real valued process (Xt)t≥0 is adapted or predictable, respectively , if and only

if for all n ≥ 0 there exist measurable functions

fn : ((0,∞)× E)n × [0,∞)→ R : (zn, t) +→ fn
zn

(t)

such that for all t ∈ [0,∞) identically on H

Xt = fNt
ZNt

(t) =
∑

n∈N:Tn<∞

fn
Zn

(t) I[Tn,Tn+1)(t) (B.2.15)

or

Xt = fNt−

ZNt−
(t) =

∑

n∈N:Tn<∞

fn
Zn

(t) I(Tn,Tn+1](t), (B.2.16)

respectively. Note that we set T0 := 0 and always X0 = f 0(0), where the condition

that X0 is H0-measurable implies that X0 is constant.

Recall that Nt ∈ N0 is the random variable that counts the number of points up to

and including time t, cf. (B.2.6). Hence, the left limit Nt− counts the number of events

strictly before time t. Thus the theorem states that the value of an adapted process

at time t can be computed from the number of events in [0, t], their time points and

their marks. On the other hand, for a process to be predictable it suffices to know

the points on [0, t), their location and marks. Further, if a process (Xt)t≥0 is adapted

this implies clearly that HX
t ⊂ Ht. Moreover, the law of an adapted or predictable

process is defined by the probability P as each Xt is a measurable map with respect

to m and thus its distribution on (G,G) is defined by the pushforward measure.

A [0,∞]-valued random variable τ is a stopping time with respect to the σ-field

(Ht)t≥0 if [τ ≤ t] ∈ Ht for all t ≥ 0. Due to the right continuity of the filtration this

is equivalent to [τ < t] ∈ Ht, i.e., every stopping time is an optional time and vice

versa. We define the stopped σ-field as

Hτ = {B ∈ H : B ∩ [τ ≤ t] ∈ Ht ∀ t ≥ 0}.

In particular, all Tn are stopping times and HTn is the σ-field generated by Zn [64,

p. 69].

256



Chapter B: Random Counting Measures

Part (a) of Theorem B.2.3 also provides the connection to a complementary approach

to piecewise deterministic Markov processes. The approach is based on the notion of

a jumping filtration defined below. The authors in [68] then define jumping Markov

processes as strong Markov processes that are adapted to a jumping filtration.

Definition B.2.5. [68, 67] A right-continuous filtration (Ft)t≥1 on an arbitrary prob-

ability space (Ω,F , P) is called an a.s. jumping filtration if there exists a sequence

of increasing stopping times (τn)n≥0 with τ0 = 0 and limn→∞ τn = ∞ a.s., called a

jumping sequence, such that for all n ≥ 0 and t ≥ 0

Ft ∩ [τn ≤ t < τn+1] = Fτn ∩ [τn ≤ t < τn+1] (B.2.17)

up to P-null sets. A filtration is called jumping filtration if (B.2.17) holds for all sets.

Note that for a jumping filtration the jumping sequence is by no means unique and

the completion of an a.s. jumping sequence is a jumping sequence.

The property (B.2.17) heuristically means that the filtration is ’constant’ between

jump times. That is in probabilistic terms the paths of the process contain no addi-

tional information in between jumps compared to the information contained in the

process just after the jump. The connection to marked point processes is now the

following. On the one hand, every jumping sequence is generated by a marked point

process, cf. [67], and on the other hand a canonical marked point process generates

a jumping filtration, which is proved in the following proposition. That is, every Ht-

adapted process which in addition is strong Markov is a jumping Markov process in

the sense of [68].

Proposition B.2.2. The canonical filtration (Ht)t≥0 is a jumping filtration on (H,H)

with jumping sequence (Tn)n≥0.

Proof. First, we note that by Theorem B.2.3(b) we have that the canonical filtration

is right-continuous. On the one hand, assume B ∈ Ht, then by Theorem B.2.3(a)

B ∩ [Tn ≤ t < Tn+1] = {zn ∈ Cn, Tn+1 > t}

= {zn ∈ Cn} ∩ [Tn ≤ t < Tn+1] ∈ HTn ∩ [Tn ≤ t < Tn+1]

as HTn = σ(Zn). On the other hand, assume B ∈ HTn then

B ∩ [Tn ≤ t < Tn+1] = B ∩ [Tn ≤ t] ∩ [Tn ≤ t < Tn+1] ∈ Ht ∩ [Tn ≤ t < Tn+1]

by the definition of the stopped σ-field. As the jump times of a canonical marked

point process are increasing and satisfy limn→∞ Tn =∞ by definition they constitute

a valid jumping sequence.
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B.2.3 Doob-Meyer Decomposition

Let P be the probability on (H,H) defined by the initial probability P 0 and the Markov

kernels (P n)n≥1 and (πn)n≥0. If tn < ∞ let νn
zn

denote the hazard measure, cf. Section

B.3, for the probability Pn
zn

on [0,∞] defined by the Markov kernel P n(zn, · ). Since

the probability Pn
zn

is concentrated on (tn,∞] so is νn
zn

.

Definition B.2.6. (a) The total compensator for P is the process (Ñt)t≥0 on (H,H)

given by

Ñt :=
Nt∑

n=0

νn
Zn

(
(τn, τn+1 ∧ t]

)
. (B.2.18)

(b) The P-compensator for the counting process (NC
t )t≥0 for every C ∈ E is the

process (ÑC
t )t≥0 on (H,H) given by

ÑC
t :=

∫

[0,t]

πNs−
(
(ZNs−, s), C

)
dÑs . (B.2.19)

Obviously, we have that ÑE
t = Ñt.

(c) The compensating measure for P is the random, non-negative, almost surely

σ-finite measure Ñ on [0,∞)×E given for all A ∈ B ⊗ E by

Ñ(A) :=

∫

[0,∞)

∫

E

IA(s, y) πNs−
(
(ZNs−, s), dy

)
dÑs (B.2.20)

Obviously we have that Ñ([0, t]× C) = ÑC
t .

The compensators (Ñt)t≥0 and (ÑC
t )t≥0, C ∈ E , are non-negative, increasing, right-

continuous processes starting at 0 for t = 0. They are finite almost surely and thus

can be associated with a positive σ-finite random measure on ([0,∞),B). We note

that the compensators are defined from the Markov kernels generating the probability

P on (H,H) via the hazard measures νn. The labelling ’P-compensator’ is, however,

justified as the compensators obtained from two sets of Markov kernels generating the

same probability are indistinguishable [64, p. 52].

Proposition B.2.3. ([64, Prop. 4.3.1(b)]) The compensators (ÑC
t )t≥0 for the counting

processes (NC
t )t≥0 are predictable for all C ∈ E .

Finally, the compensators characterise probabilities on (H,H) uniquely, that is, two

different probabilities cannot have the same compensators.

Theorem B.2.4. ([64, Thm. 4.3.2]) Suppose Ñ is the compensating measure for some

probability P on (H,H), then P is uniquely defined.
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The main result in this section is the Doob-Meyer-Decomposition of the counting pro-

cesses which, obviously, are adapted, locally integrable increasing processes. Hence,

due to the Doob-Meyer Decomposition (cf. [66, Sect. I.3b]) there exists a unique in-

creasing process, predictable and zero at time zero, such that the counting processes

can be represented by a sum of a local martingale and this increasing process. In par-

ticular, it is shown that this unique increasing process is precisely the compensator

defined in Definition B.2.6.

Recall that an adapted, real-valued process (Mt)t≥0 is called a local martingale if

there exists an increasing sequence of stopping times ρn, called localising sequence,

with limn→∞ ρn =∞ a.s. such that for each n ≥ 1 the stopped process (Mt∧ρn)t≥0 is a

martingale. Note that (local) martingales are defined with respect to a given filtration.

In this section this filtration is always the canonical filtration (Ht) and usually the

localising sequence is given by the random times Tn. In subsequent sections and the

main body of the thesis, when processes are defined on arbitrary probability spaces,

we include the filtration in the specification of a (local) martingale if ambiguities are

possible.

Theorem B.2.5. (Doob-Meyer-Decomposition [64, Thm. 4.5.2]) Let P be a proba-

bility on (H,H) with compensating measure Ñ and compensators (ÑC
t )t≥0. Then for

every C ∈ E the process (MC
t )t≥0 given by

MC
t := NC

t − ÑC
t

is a local martingale with respect to the sequence of stopping times (Tn)n≥1. Moreover,

the compensator (ÑC
t )t≥0 is up to indistinguishability with respect to the probability P

the unique right-continuous Ht-predictable process (Vt)t≥0 satisfying V0 = 0 a.s., such

that Mt := NC
t − Vt is a local martingale.

We note that a sufficient condition for the local martingale (MC
t )t≥0 to be a martingale

is that ENC
t < ∞ for all t ≥ 0. The following proposition collects some further

properties of the processes (MC
t )t≥0. The statements are restricted to random counting

measures that have continuous compensators which is sufficient for applications to

PDMPs that arise in this thesis. A generalisation to discontinuous compensators is

possible, see [64, p.74 ].

Proposition B.2.4. ([64, Prop. 4.5.3]) Let P be a probability on (H,H) with com-

pensators (ÑC
t )t≥0 and continuous total compensator (Ñt)t≥0, then it holds that

(a) for every C ∈ E the process

t +→ (MC
t )2 − ÑC

t (B.2.21)
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is a local martingale and it is a martingale in case that ENC
t < ∞. Moreover,

for all n ≥ 1, t ≥ 0 it holds that

E(MC
t∧Tn

)2 <∞ ,

while for a given t ≥ 0 we a have that E(MC
t )2 < ∞ if ENC

t <∞;

(b) for every C, D ∈ E with C ∩D = ∅ the process

t +→MC
t MD

t (B.2.22)

is a local martingale and it is a martingale if ENC
t , END

t < ∞ for all t ≥ 0.

Moreover, for all n ≥ 1, t ≥ 0 it holds that

E|MC
t∧Tn

MD
t∧Tn

| < ∞ ,

while for a given t ≥ 0 we have that E|MC
t MD

t | < ∞ if ENC
t , END

t < ∞.

B.2.4 Stochastic integrals and the Martingale Representation Theorem

In this section we define stochastic integrals with respect to random counting measures

and their compensators. As integrands we choose real-valued, B⊗ E ⊗H-measurable

functions

g : [0,∞)×E ×H → R : (t, y, m) +→ g(t, y, m), (B.2.23)

where most of the time we omit the dependence of g on the events m ∈ H and just

write g(t, y). We say an integrand is adapted or predictable if for every y ∈ E the

process (g(t, y))t≥0 is adapted or predictable, respectively.

Definition B.2.7. (a) For all integrands g the stochastic integral with respect to

the canonical random counting measure m is a well defined real valued process

(Ng
t )t≥0 with

Ng
t :=

∫

[0,t]×E

g(s, y) m(ds, dy) (B.2.24)

=
∑

n∈N:τn≤t

g(Tn(m), Yn(m), m) =

Nt(m)∑

n=1

g(Tn(m), Yn(m), m),

which is almost surly a finite sum. If g is adapted then the stochastic integral is

an adapted process for t. In (B.2.24) Nt is the counting process that counts all

events up to and includeing time t, cf. (B.2.6).

(b) The stochastic integral with respect to the compensating measure is the process
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(Ñg
t )t≥0 given by

Ñg
t :=

∫

[0,t]×E

g(s, y) Ñ(ds×dy) =

∫

(0,t]

∫

E

g(s, y) πNs−(ZNs−, dy) dÑs . (B.2.25)

This stochastic integral is adapted or predictable if the integrand g is adapted or

predictable, respectively.

(c) The compensated stochastic integral is the process (Mg
t )t≥0 defined by

Mg
t := Ng

t − Ñg
t =

∫

[0,t]

g(s, y)M(ds, dy), (B.2.26)

where the measure M := m − Ñ is called the compensated random measure or

associated martingale measure.

We note that in definitions (B.2.24) – (B.2.26) it makes no difference in choosing the

integration interval in the time domain as (0, t] or [0, t] as neither random counting

measure m nor the compensator Ñ have positive mass at the ’point’ {0}×E. Further,

as Ñt is for each m ∈ H an increasing function the process (B.2.25) is well defined as a

[0,∞]-valued Riemann-Stieltjes integral for integrands g ≥ 0, as well as for integrands

g ≤ 0 when it is [−∞, 0]-valued.

Next, we present simple conditions such that the stochastic integrals with respect to

the compensating measures are almost surely finite with respect to the measure P.

On the one hand, if g ≥ 0 then it is sufficient for P[Ñg
t < ∞ ∀ t ≥ 0] = 1 that

P

[
sups≤t,y∈E g(s, y) <∞ ∀ t ≥ 0

]
= 1

and, on the other hand, if g ≤ 0 it is sufficient for P[Ñg
t > ∞ ∀ t ≥ 0] = 1 that

P

[
sups≤t,y∈E −g(s, y) < ∞ ∀ t ≥ 0

]
= 1.

Finally, we can define stochastic integrals for arbitrary g by Ñg
t := Ñg+

t − Ñg−

t , if the

stochastic integrals of the positive and negative part of g, i.e., Ñg+

t and Ñg−

t , are

almost surely finite. Obviously, a sufficient condition that the stochastic integral for

arbitrary g is almost surely finite is

P

[
sups≤t,y∈E |g(s, y)| <∞ ∀ t ≥ 0

]
= 1 . (B.2.27)

For the compensated stochastic integral we note that the martingale measure M is a

random signed measure on [0,∞)×E but it need not be defined on all sets of B⊗ E
as m([0,∞) × E) = Ñ([0,∞) × E) = ∞ almost surely is possible. However, the

restriction of M to [0, t]× E for any t ≥ 0 is well-defined and almost surely finite.
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In accordance with the notation in [37, Appendix] we denote by L1(P) the set of all

predictable, integrable processes g, i.e., all predictable g such that

‖g‖L1(P) := E

∫

[0,∞)×E

|g(s, y, m)|m(ds, dy) = E
∑

n:Tn<∞

|g(Tn, Yn, m)| < ∞ .

(B.2.28)

Further, we say g is locally integrable, i.e., g ∈ L1
loc(P), if there exists a localising

sequence of stopping times (τn)n≥1 such that g I[t<τn] ∈ L1(P). Obviously, for a pre-

dictable integrand g condition (B.2.27) implies that g ∈ L1
loc(P). Analogously, we

define L1(Ñ) and L1
loc(Ñ) where

‖g‖L1( eN) := E

∫

[0,∞)×E

|g(s, y)| Ñ(ds× dy) .

In [37, Prop. A.3] it is proven that it holds L1(P) = L1(Ñ), L1
loc(P) = L1

loc(Ñ) and

‖ · ‖L1(P) = ‖ · ‖L1( eN). In particular, the stochastic integrals (B.2.24) – (B.2.26) are

well-defined for g ∈ L1
loc(P) and almost surely finite.

Theorem B.2.6. (Martingale Representation Theorem, [64, Thm. 4.6.1]) Let P be a

probability on (H,H).

(a) Let (Mt)t≥0 be a right-continuous, local martingale. Then there exists a pre-

dictable integrand g such that7

Mt = M0 + Mg
t .

(b) Let g ≥ 0 be a predictable integrand, then for all t ≥ 0, n ≥ 1

ENg
t∧Tn

= EÑg
t∧Tn

.

If these expectations are finite for all t ≥ 0, n ≥ 1, then (Mg
t )t≥0 is a local

martingale with respect to the localising sequence (Tn)n≥1.

(c) Let g ≥ 0 be a predictable integrand, then for all t ≥ 0

ENg
t = EÑg

t .

If these expectations are finite for all t ≥ 0 then (Mg
t )t≥0 is a martingale.

(d) Let g be a predictable integrand then (Mg
t )t≥0 is a local martingale with respect

to the localising sequence (Tn)n≥1 if EN |g|
t∧Tn

< ∞ for all t ≥ 0, n ≥ 1, i.e., if

g ∈ L1
loc(P).

7This implies piecewise continuity of a local martingale (Mt)t≥0 (continuity on each [τn, τn+1)) if
the total compensator is continuous, cf. [64, Remark 4.6.2].
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(e) Let g be a predictable integrand then (Mg
t )t≥0 is a martingale if EN |g|

t < ∞ for

all t ≥ 0, n ≥ 1, i.e., if g ∈ L1(P).

The section is concluded with results on the quadratic variation for local martingales.

As for a corresponding preliminary result in Proposition B.2.4 we assume in the fol-

lowing that the total compensator Ñt is continuous. Let g, h be predictable integrands

such that the stochastic integrals Ñg2

t and Ñh2

t are almost surely finite. We define

〈
Mg
〉

t
:= Ñg2

t ,

〈
Mg, Mh

〉
t

:= Ñgh
t .

(B.2.29)

Proposition B.2.5. ([64, Prop. 4.6.2]) Under the above conditions it holds that the

processes defined by
(Mg

t )2 −
〈
Mg
〉

t
,

Mg
t Mh

t −
〈
Mg, Mh

〉
t

are local martingales if ENg2

t∧Tn
, ENh2

t∧Tn
< ∞ for all t ≥ 0. If in addition ENg2

t ,

ENh2

t < ∞ for all t ≥ 0 then these processes are martingales.

B.2.5 Itô formula

We next present a general Itô formula for piecewise-continuous, real-valued processes,

which states that such a process can be written as a sum of a predictable process and

a stochastic integral with a predictable integrand. Again we assume that the total

compensator is continuous. The function f below results from the representation

of real-valued adapted processes in Theorem B.2.3(c). As the process is piecewise

continuous, f is continuous.

Theorem B.2.7. (Itô formula, [64, Thm. 4.7.1]) Assume that the compensator Ñt is

continuous and (Xt)t≥0 is an adapted, real-valued process which is piecewise continu-

ous. Then, provided that

∫

[0,t]×E

∣∣fNs−+1
Zs−3(s,y)(t)− fNs−

Zs−
(s)
∣∣ Ñ(ds, dy) < ∞ a.s.

for all t ≥ 0 (note that the integrand is predictable), it holds that for all t ≥ 0

Xt = X0 + Ut +

∫

[0,t]×E

fNs−+1
Zs−3(s,y)(t)− fNs−

Zs−
(s) M(ds, dy) . (B.2.30)

The process (Ut)t≥0 defined via (B.2.30) is continuous and predictable. Furthermore,
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it holds that U0 ≡ 0 and

∫

[0,0]×E

fNs−+1
Zs−3(s,y)(t)− fNs−

Zs−
(s) M(ds, dy) = 0 .

Provided that the integral in (B.2.30) is a local martingale, the decomposition (B.2.30)

of (Xt)t≥0 into the sum of its initial value, a predictable process starting at zero and a

local martingale is unique up to indistinguishability with respect to the probability P.

Note that the integrand in the stochastic integral in (B.2.30) can also be written as

X̂t(y)−Xt− where X̂t(y) is the value of Xt obtained by retaining the behaviour of µ

on [0, t) and pretending that a jump with mark y occurs at time t. In special cases

for Markov processes the form of Ut can be explicitly given, cf. Section 2.2.2. In

particular, then we can also drop the assumption that the compensator is continuous.

B.2.6 Intensity measures

In certain special cases it is possible to state the compensators using ordinary Lebesgue

integrals. Particularly, this is possible in the case that the Markov kernels (P n)n≥0

are absolutely continuous with respect to the Lebesgue measure.

Definition B.2.8. Let P be a probability on (H,H) with compensating measure Ñ

and let C ∈ E . A predictable process (ΛC
t )t≥0 with ΛC

t ≥ 0 for all t ≥ 0 is an intensity

process for the counting measure (NC
t )t≥0 under P if it holds for all t ≥ 0 that

ÑC
t =

∫

[0,t]

ΛC
s ds a.s.

The collection {(ΛC
t )t≥0, C ∈ E} is an intensity measure for P if each (ΛC

t )t≥0 is an

intensity process and the mapping C +→ ΛC
t is almost surely a non-negative measure

on (E, E) for all t.

Definition B.2.9. Let κ be a non-negative, σ-finite measure on (E, E) and the map

(m, t, y) +→ Λt(y, m) be measurable and such that {(Λt(y))t≥0, y ∈ E} is a collection

of nonnegative, predictable processes. Here, as always, we omit the dependency of a

random function on the argument m. Then, Λ is called a κ-intensity process for P, if

it holds for all t ≥ 0 and all C ∈ E that

ÑC
t =

∫

[0,t]

∫

C

Λs(y) κ(dy) ds a.s.

or, equivalently, for all A ∈ B ⊗ E that

Ñ(A) =

∫

[0,∞)

∫

E

IA(s, y) Λs(y) κ(dy) ds a.s.
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Note that a κ-intensity process is predictable. Further, the existence of a κ-intensity

process stipulates that the measure Ñ has a density with respect to the product

measure, i.e., Ñ(dt, dy) = Λt(y) κ(dy) dt and clearly

ΛC
t =

∫

C

Λt(y) κ(dy)

is an intensity process if Λ is a κ-intensity process. Note that a κ-intensity process

defines the compensator Ñ uniquely which in turn defines the measure P uniquely.

Further, regarding the stochastic integrals, if Λ is a κ-intensity process then

Ñg
t =

∫

(0,t]

∫

E

g(s, y)Λt(y) κ(dy) dt .

Proposition B.2.6. ([64, Prop. 4.4.1(b)]) Let P be a measure on (H,H) which is

generated by the Markov kernels (P n)n≥0 and (πn)n≥1. Further, let the measure

Pn
zn

:= P n(zn, ·) be absolutely continuous with respect to the Lebesgue measure with

hazard rate un
zn

(t) almost surely for every n ≥ 0, cf. Example B.3.1 in Section B.3.

Then {(ΛC
t )t≥0, C ∈ E} is an intensity measure for P where

Λt := uNt−

Zt−
(t) πNt−

Zt−,t(C) .

If in addition it holds that there exists a non-negative, σ-finite measure κ on (E, E)

such that almost surely for every n and for Lebesgue almost every t the measures

πn
Zn,t are absolutely continuous with respect to κ with a density pn

Zn
such that the map

(zn, t, y) +→ pn
zn

(t) is measurable, then Λ is a κ-intensity for P where

Λt(y) := uNt−

Zt−
(t) pNt−

Zt−
(t, y) . (B.2.31)

In the literature another concept of intensities for counting processes is widespread,

the instantaneous jump rate, which is in general not necessarily equivalent to the

intensity process Λ. Let P be a measure on (H,H), let A ∈ E and each NC
t has the

intensity process ΛC
t . Moreover we assume for the intensity process that almost surely

all limits from the right exist and we define the right intensity process (instantaneous

jump rate) by

ΛC
t+ := lim

h↓0
ΛC

t+h .

Note that by definition intensity processes ΛC are predictable, however, defined as

right limits, instantaneous jump rates are right-continuous and in this sense not nec-

essarily predictable. In case of the intensity process being continuous it coincides

with its right intensity. Instantaneous jump rates are commonly used in chemical

reaction kinetics, in which case intensities are piecewise constant, and, e.g., in [121]

265



Chapter B: Random Counting Measures

in the context of numerical methods for General Stochastic Hybrid Systems where

intensities are continuously changing. The terminology instantenous jump rate for

right intensities is motivated by the following observation.

Proposition B.2.7. ([64, Prop. 4.4.2(b)]) Under the above assumption it holds for

all t ≥ 0 almost surely that

ΛC
t+ = lim

h↓0

1

h
P
[
NC

t+h −NC
t ≥ 1 , Y1,t ∈ C

∣∣Ht

]

where Y1,t denotes the mark of the first event after time t.

B.2.7 Random counting measures on arbitrary probability spaces

So far definitions and results have been presented for random counting measures

or, equivalently, marked point processes on the canonical space (H,H) or (K,K).

However, as with random variables in general, one usually prefers to define random

counting measures on arbitrary filtered probability spaces taking values in the canon-

ical space. Therefore an essential step is to provide the connection of results derived

on canonical spaces to random measures defined on arbitrary probability spaces with

respect to an arbitrary right-continuous filtration.

Thus, in the following let (Ω,F , (Ft)t≥0, P) be an arbitrary filtered probability space

with a (for now) unspecified right-continuous filtration and µ be a random counting

measure defined thereon with marks in a Borel space (E, E). That is, µ is an (H,H)-

valued random variable defined on the probability space (Ω,F , P). Note that in

contrast to the notation in the preceding sections of this chapter P now denotes

a probability on the measurable space (Ω,F) and NOT on the measurable space

(H,H) of counting measures. (However, P also defines a probability on (H,H) by

the pushfoward measure with respect to the random variable µ, see below.) Then we

define for every C ∈ E on (Ω,F , P) the counting process NC
t := µ([0, t]×C), i.e., each

NC
t is a integer-valued random variable in the sense that NC

t = µ[0,T ]×C ◦ µ with µA

as in (B.2.4). We always assume that the filtration (Ft)t≥0 on the probability space

(Ω,F , P) is such that these processes are adapted, i.e., for all C ∈ E and all t ≥ 0 the

random variable NC
t is Ft-measurable. Further, a marked point process ((τn, Yn))n≥1

is defined on (Ω,F , P) by the usual identification of random counting measures and

marked point processes. It holds that each τn is an Ft-stopping time and each Yn is

Fτn-measurable.

A certain special role is assigned to the filtration on (Ω,F , P) generated by the random

counting measure which we denote by (Fµ
t )t≥0. That is, in analogy to the definition

of the canonical filtration on (H,H), cf. (B.2.8), (Fµ
t )t≥0 is generated by all counting
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processes (NC
t )t≥0, C ∈ E , i.e.,

Fµ
t := σ(NC

s ; s ≤ t, C ∈ E). (B.2.32)

By assumption we have Fµ
t ⊂ Ft for all t ≥ 0 and, most importantly, it holds that

for all t ≥ 0, cf. [64, p. 95],

Fµ
t = µ−1(Ht), (B.2.33)

i.e., (Fµ
t )t≥0 is the preimage of the canonical filtration (Ht)t≥0 with respect to the

measurable function µ. Furthermore, it holds that Fµ
∞ :=

∨
t≥0 F

µ
t = µ−1(H). On

the space (H,H) a probability P is defined by the pushforward measure, that is,

P(A) := P[µ ∈ A] for all A ∈ H, and we write Ñ∗ for the compensating measure of

P in the sense of Definition B.2.20. Then, all the results in the preceding sections for

canonical random counting measures carry over to results about the random counting

measure µ, the filtration (Fµ
t )t≥0 and the positive random compensating measure

Ñ := Ñ∗◦µ as we are in the exact same situation as for the canonical space. According

to Jacobsen [64] the proofs in this case differ from their corresponding results on the

canonical space only by an application of the transformation theorem for integrals.

Nevertheless, the aim of this section is to define the compensator directly on an

arbitrary, filtered probability space (Ω,F , (Ft)t≥0, P) supporting an adapted random

measure µ, where the filtration is NOT necessarily given by the filtration generated

by µ. The reason, why it is insatisfactory for PDMP theory to deal with stochastic

processes adapted to the filtration (Fµ
t ) is the following: The initial σ-field Fµ

0 of the

filtration (Fµ
t )t≥0 is the trival σ-field {∅,Ω}. Therefore, any process (Xt)t≥0 adapted

to (Fµ
t )t≥0 satisfies necessarily X0 ≡ constant. Hence, if we want to account for

processes with non-constant initial condition the filtration has to be enlarged.

Definition B.2.10. The Ft-compensating measure for µ is the positive random mea-

sure Ñ with Ñ({0}×E) = 0 almost surely such that ÑC
t := Ñ([0, t]×C) defines for

all C ∈ E an Ft-predictable, right continuous process, which is necessarily increasing,

such that the process

MC
t := NC

t − ÑC
t

is an Ft-local martingale.

Clearly, a special case of Definition B.2.10 is the Fµ
t -compensator which corresponds

to the compensator on the canonical space, i.e., Ñ = Ñ∗ ◦ µ. Further, we note

that the existence of the compensators ÑC
t in Definition B.2.10 is guaranteed for all

C ∈ E by the Doob-Meyer decomposition, see, e.g., [66, Sect. I.3b]. Each compensator

(ÑC
t )t≥0 is unique up to indistinguishability and as (E, E) is a Borel space also the

Ft-compensating measure Ñ always exists, cf. [64, p. 96].
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In general compensators as defined in Definition B.2.10 depend on the filtration and,

in particular, may differ for different filtrations [64]. From the considerations on

the canonical space we know that the Fµ
t -generator determines the distribution of

µ, cf. Theorem B.2.4. However, it is not generally true that the Ft-compensator

determines the distribution of µ, much less does it determine P as the distribution

of µ is only a marginal distribution of the probability P on (Ω,F), cf [64, p. 96].

However, in a special case, presented in the following theorem, the Ft-compensator

defines the distribution of µ uniquely.

Theorem B.2.8. ([64, Thm. 4.8.1]) Let µ be a random counting measure on the

filtered probability space (Ω,F , (Ft)t≥0, P) with Ft-compensating measure Ñ . If Ñ is

Fµ
t -predictable, then Ñ = Ñ∗◦µ up to indistinguishability where Ñ∗ is the compensator

of the pushforward measure in the sense of (B.2.20).

To conclude the section, we elaborate a bit further on processes and random counting

measures where we consider a special structure of the σ-field F and the filtration

(Ft)t≥0. In particular, it corresponds to the structure for filtrations assumed in con-

nection with the definition of PDMPs in Section 2.1. Assume that F0 is a σ-field on

Ω. Then we impose for the filtration (Ft)t≥0 the structure

Ft := F0 ∨ Fµ
t . (B.2.34)

This special structure of a filtration is regularly discussed in connection with stochastic

processes, e.g., PDMPs, defined via random counting measures, see, Jacobsen [64,

p. 100], Brémaud [21, Chapt. VIII] and Jacod [65]. As discussed before in order

to consider sufficiently rich processes the filtration (Ft)t≥0 needs to be finer than the

filtration generated by µ. The above definition (B.2.34) on the one hand accomplishes

this feat but also, on the other hand, keeps the filtration as coarse as possible. Thus,

the main idea in considering filtrations of the form F0 ∨ Fµ
t is that the σ-field F0

which equals the initial σ-field in the filtration accommodates the randomness of the

initial condition, i.e., X0 is F0-measurable, see Section 2.1. Without loss of generality

we may further assume that F = F0 ∨
∨

t≥0 F
µ
t .

Then the Ft-compensating measure is given by the compensating measure with re-

spect to the conditional probability P[ · |F0] [64, p. 100]. Thus, if we assume that8

F0 = σ(X0) – which is altogether sufficient for the purpose of this thesis – the condi-

tional probability given the event [X0 = x0] defines a push-forward measure P0,X0 on

(H,H). Thus, assume that for each ’initial condition’ x0 ∈ E a family Markov kernels

(P n
x0

)n≥0 and (πn
x0

)n≥0 is given such that the measures P0,x0 on (H,H) defined due to

8The same holds for F0 = σ(X0) ∨ F∗ where F∗ is a σ-field which is independent of the ini-
tial condition X0 and the random counting measure µ. In this way we can accommodate further
independent random variables on the probability space (Ω,F , P).
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Theorem B.2.1 equal the conditional push-forward measures of the random counting

measures µ given the event [X0 = x0]. Then we obtain that the Ft-compensator

conditional on [X0 = x0] is given by the Fµx0

t -compensator where µx0
is the random

counting measure corresponding to the Markov kernels (P n
x0

)n≥0 and (πn
x0

)n≥0. Hence,

the results of the preceding sections on the canonical space do not only extend to arbi-

trary spaces and the filtration (Fµ
t )t≥0 but also to filtrations with the special structure

(B.2.34).

Finally, the following proposition further elucidates the structure of the special filtra-

tion (Ft)t≥0 and moreover the connection to the approach to PDMPs in [68] which

we discussed in Section B.2.2 remains valid for random counting measures defined on

arbitrary probability spaces.

Proposition B.2.8. The filtration (Ft)t≥0 is a jumping filtration with jumping se-

quence (τn)n≥0 and it is the minimal filtration such that for all n ≥ 1 the jump time

τn is a stopping time and the stopped σ-field contains F0 ∨ σ(Zn).

We note that it can be shown analogously to [65, Prop. 3.40] that it actually holds

Fτn = F0 ∨ σ(Zn). Further, Proposition B.2.8 also holds for the filtration (Fµ
t )t≥0

which is seen by choosing F0 = {∅,Ω}.

Proof. Throughout the proof we employ the notation Zn := F0 ∨ σ(Zn)

= F0 ∨ σ(τn, Ym; m ≤ n), Z∞ :=
∨

n≥1 Zn and τ∞ := limn→∞ τn. The proof is

structured as follows. We, first propose (a) a family of σ-fields Kt on Ω and show

that it constitutes a filtration. Moreover, (b) this filtration is the smallest filtration

such that for all n ≥ 1 the jump time τn is a stopping time and the stopped σ-field

contains Zn. Furthermore, we show that (Kt)t≥0 satisfies the condition for it to be

a jumping filtration (B.2.17). The proof is completed showing (c) that the filtration

(Kt)t≥0 coincides with the filtration (Ft)t≥0 which we show (d) to be right-continuous.

We note that parts (a) and (b) of the proof are based on the proof of an analogous

result in [65, Prop. 3.38, 3.40] extended and adapted to the presentation in this thesis.

(a) Let Kt denote the collection of subsets of Ω such that A ∈ Kt if it has the form

A =
(⋃

n≥1

(
An ∩ [τn ≤ t < τn+1]

))
∪
(
A∞ ∩ [τ∞ ≤ t]

)
(B.2.35)

for sets An ∈ Zn for all n ≥ 1 and n = ∞. Note that the right hand side of (B.2.35)

is a countable disjoint union. We provide a second equivalent characterisation of the

elements of Kt. Kt consists of those sets A ∈ Z∞ such that there exists for each n ≥ 1

a set An ∈ Zn and

An ∩ [t < τn+1] = A ∩ [t < τn+1] . (B.2.36)
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On the one hand, it is clear that Kt ⊂ Z∞ as the right hand side (B.2.35) is a countable

union of elements of Z∞ and it is obvious that each A ∈ Kt satisfies (B.2.36). On

the other hand, let A ∈ Z∞ satisfy (B.2.36), then by an intersection of both sides of

equality (B.2.36) with the set [τn ≤ t] we obtain

An ∩ [τn ≤ t < τn+1] = A ∩ [τt ≤ t < τn+1] .

Thus taking the union over all n ≥ 1 yields

⋃

n≥1

(
An ∩ [τt ≤ t < τn+1]

)
=
⋃

n≥1

(
A ∩ [τn ≤ t < τn+1]

)

= A ∩
⋃

n≥1

[τn ≤ t < τn+1] = A ∩ [τ∞ ≤ t]c .

Finally, we take the union of both sides with A ∩ [τ∞ ≤ t] and obtain

⋃

n≥1

(
An ∩ [τt ≤ t < τn+1]

)
∪
(
A ∩ [τ∞ ≤ t]

)
= A .

Thus A is of the form (B.2.35) as A ∈ Z∞.

Using the characterisation (B.2.36) it is easy to see that each Kt is a σ-field. Firstly,

it is non-empty as A = Ω satisfies (B.2.36) with An = Ω for all n ≥ 1 and similarly

we find that F0 ⊂ Kt for all t ≥ 0. Secondly, for Ac with A satisfying (B.2.36) we

obtain

Ac ∩ [t < τn+1] = [t < τn+1]\A

= [t < τn+1]\(A ∩ [t < τn+1]) = [t < τn+1]\(An ∩ [t < τn+1])

=
(
[t < τn+1]\An

)
∪
(
[t < τn+1]\[t < τn+1]

)
= Ac

n ∩ [t < τn+1] .

Thus the complement Ac also satisfies (B.2.36). Thirdly, let Ai, i ≥ 1 satisfy (B.2.36)

then we obtain

(⋃

i≥1

Ai
)
∩ [t < τn+1] =

(⋃

i≥1

Ai ∩ [t < τn+1]
)

=
(⋃

i≥1

Ai
n ∩ [t < τn+1]

)
=
(⋃

i≥1

Ai
n

)
∩ [t < τn+1]

where each
⋃

i≥1 Ai
n is in Zn. Therefore we have shown that Kt is a σ-field for each

t ≥ 0.
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It remains to show that the family of σ-fields (Kt)t≥0 is a filtration. For a set A ∈ Kt

taking the intersection on both sides of equality (B.2.36) with [s ≤ τn+1] yields

A ∩ [s < τn+1] = An ∩ [s < τn+1] for s ≥ t .

Thus A ∈ Ks and hence Kt ⊂ Ks for all t ≤ s.

(b) Next we show that each τn is a stopping time with respect to the filtration

(Kt)t≥0 and that the stopped σ-fields Kτn contain Zn. For the former we note that

for all n ≥ 0

[τn ≤ t] ∩ [t < τm] =





∅ for m ≤ n

[τn ≤ t] ∩ [t < τm] for n < m .

As each Zm contains the empty set and [τn ≤ t] ∈ Zn ⊂ Zm, m > n, it follows that

[τn ≤ t] ∈ Kt for all t ≥ 0 and thus all jumping times τn are Kt-stopping times. Next

we consider the set [Yn ∈ B] ∩ [τn ≤ t] for some B ∈ E which yields

[Yn ∈ B] ∩ [τn ≤ t] ∩ [t < τm] =





∅ for m ≤ n

[Yn ∈ B] ∩ [τn ≤ t] ∩ [t < τm] for n < m .

As before this implies that [Yn ∈ B] ∩ [τn ≤ t] ∈ Kt for all t ≥ 0. Hence by definition

of the stopped σ-field we obtain that [Yn ∈ B] ∈ Kτn . Finally, it is clear that Kτn

contains F0 as a sub-σ-field for all n ≥ 1. Thus, as Zn is the minimal σ-field containing

F0, such that τm and Ym, m ≤ n, are measurable, it follows that Zn ⊂ Kτn .

It is now easy to see that (Kt)t≥0 satisfies condition (B.2.17) for it to be a jumping

filtration. Assume, on the one hand, that A ∈ Kt then by (B.2.35)

A ∩ [τn ≤ t < τn+1] = An ∩ [τn ≤ t < τn+1]

for some An ∈ Zn ⊂ Kτn . On the other hand, assume A ∈ Kτn , then

A ∩ [τn ≤ t < τn+1] = A ∩ [τn ≤ t] ∩ [τn ≤ t < τn+1]

where A ∩ [τn ≤ t] ∈ Kt by definition of the stopped σ-field.

Next, we assume that (Kmin
t )t≥0 is the smallest filtration such that each τn is a stopping

time and the stopped σ-field contains Zn, n ≥ 1. We show that this filtration coincides

with (Kt)t≥0. To this end we consider the characterisation of the elements of Kt given

by (B.2.35), i.e., for now An ∈ Zn. As τn is a stopping time with respect to the
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minimal filtration and the stopped σ-field contains Zn it holds that

An ∩ [τ ≤ t] ∈ Kmin
t and [t < τn+1] = [τn+1 ≤ t]c ∈ Kmin

t .

Hence, An ∩ [τn ≤ t < τn+1] = An ∩ [τn ≤ t] ∩ [t < τn+1] ∈ Kmin
t . Further, also

A∞ ∩ [τ∞ ≤ t] ∈ Kmin
t as τ∞ is a Kmin

t -stopping time by definition as the pointwise

limit of stopping times and Z∞ is contained in its stopped σ-field9. Thus by the

characterisation (B.2.35) it follows that A ∈ Kt implies A ∈ Kmin
t . As the filtration

(Kt)t≥0 has the same properties for which (Kmin
t )t≥0 is assumed to be minimal it follows

that

Kmin
t = Kt ∀ t ≥ 0 .

(c) Finally we need to connect the filtration (Kt)t≥0 to the filtration (Ft)t≥0 as defined

by (B.2.34). Due to [64, p. 94] we have that the jump times τn are Ft-stopping times

and the stopped σ-fields Fτn contain Zn. Hence, the filtration (Ft)t≥0 satisfies the

conditions (Kt)t≥0 is minimal for. Therefore to conclude that the two filtrations coin-

cide it remains to show that the counting processes generating the filtration (Fµ
t )t≥0

are adapted to the filtration (Kt)t≥0, i.e., (Kt)t≥0 satisfies the conditions (Ft)t≥0 is

assumed to be minimal for.

Recall that each random variable NC
t , t ≥ 0 and C ∈ E is given by

NC
t =

∞∑

n=1

I[Yn∈C] I[τn≤t] . (B.2.37)

First note that each summand is a random variable

ω +→ IC(Yn(ω) I(0,t](τn(ω)),

which is measurable with respect to some σ-field on Ω if it contains the set

{ω ∈ Ω|Yn(ω) ∈ C, τ(ω) ≤ t} = [Yn ∈ C] ∩ [τn ≤ t] .

We have already shown that this set is contained in Kt for all t ≥ 0.

For the N0 ∪ {∞}-valued random variable (B.2.37) we obtain for each n ≥ 0 the

preimage

(NC
t )−1({n}) = [τn ≤ t] ∩

(⋃

m≥n

[
[Nt = m] ∩

([
n out of m marks Yi are in C

])])
.

(B.2.38)

This set is an intersection of [τn ≤ t] ∈ Kt with a countable union. Hence, the

9It holds that τ∞ ≥ τn for all n ≥ 1 and thus Kmin
τn

⊂ Kmin
τ∞

. This in turn implies that Kmin
τ∞

contains all Zn, n ≥ 1. As Z∞ is the smallest σ-field containing all Zn it follows that Z∞ ⊂ Kmin
τ∞

.
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preimage is an element of Kt if each set in the union is in Kt. Obviously [Nt = m] =

[τm ≤ t]∩[t ≤ τm+1] ∈ Kt as τm are Kt-stopping times. Thus it remains to show thatKt

also contains its intersection with the set ’
[
n out of m marks Yi are in C

]
’. This set

in turn is a finite union of finite intersections of sets of the form [Yi ∈ C] and [Yi ∈ C]c

with i ≤ m which are, if intersected with sets [τm ≤ t] elements of Kt. Finally, note

that also the preimage of {∞} is contained in Kt as (NC
t )−1({∞}) = (NC

t )−1(Nc
0) =

((NC
t )−1(N0))c which is the complement of a countable union of elements of Kt, hence

an element of Kt itself.

Hence, we obtain that each NC
s is Kt measurable for s ≤ t, C ∈ E . As Ft is defined

as the minimal σ-field containing F0 such that this holds it follows that

Ft = Kt ∀ t ≥ 0 .

(d) We conclude the proof showing that the filtration (Fµ
t )t≥0 is right-continuous

which immediately implies that (Ft)t≥0 is right-continuous. Assume A ∈
⋂

ε>0 F
µ
t+ε

then there exists for all ε > 0 a Bε ∈ Ht+ε such that A = µ−1(Bε). In particular, we

can choose B = Bε for all ε > 0. Thus, B ∈ Ht as the canonical filtration on (H,H) is

right-continuous, see Theorem B.2.3(b). This implies that A = µ−1(B) ∈ Fµ
t due to

(B.2.33). Hence, Fµ
t ⊆
⋂

ε>0 F
µ
t+ε ⊆ Fµ

t and therefore the filtration is right-continuous.

In particular, it now follows that (Ft)t≥0 is a jumping filtration in the sense of Defi-

nition B.2.5.

B.3 Survivor functions and hazard measures

In this Section P always denotes a probability distribution on the closed positive

reals R+ ∪ {∞} with cumulative distribution function F , i.e., F (t) = P([0, t]) for all

0 ≤ t ≤ ∞. Hence, F is a non-decreasing, right-continuous function.

Definition B.3.1. The survivor function S : R+ ∪ {∞} → [0, 1] for the probability

P is the function defined by

S(t) := 1− F (t) = P((t,∞]) (B.3.1)

and thus necessarily non-increasing and right-continuous. In this thesis we always

assume that S(0) = 1.

The terminology ’survivor function’ stems from reliability theory. That is, if the

probability P is the distribution of the time of some event happening, e.g., some

machine or part thereof breaking down (’dies’), then S(t) denotes the probability

that this happens after time t, i.e., the machine ’survives’ until time t. Clearly there
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is a one-to-one correspondence between a probability P, its cumulative distribution

function F and its survivor function S. Further, the assumption S(0) = 1 is equivalent

to F (0) = P({0}) = 0, that is, the event does not happen instantaneously almost

surely but only after some positive time.

We denote the left limit of the survivor function at time t by S(t−), i.e.,

lim
ε↓0

S(t− ε) =: S(t−) = P([t,∞]) = S(t) + P({t}) .

Further, we define the termination time t† for P by

t† := inf{t > 0 : S(t) = 0} = inf{t > 0 : F (t) = 1}. (B.3.2)

Thus the probability P has no mass after the termination time, i.e., if P defines the

distribution of the time some event is happening, then this event occurs almost surely

before or at time t†. As we always assume that S(0) = 1 it follows that t† > 0 due

to the right-continuity of the survivor function. Moreover, one of the following two

cases holds:

(I) t† =∞ ⇔ S(t) > 0 ∀ t > 0

(II) t† <∞ ⇒ S(t†) = 0

with either

(IIa) P({t†}) > 0 and S(t†−) > 0,

(IIb) P({t†}) = 0 and S(t† − ε) > 0 ∀ 0 < ε < t†.

Case (I) corresponds to a distribution which has probability mass on all of (0,∞] with

point probabilities possible (also at {∞}). Case (II) corresponds to distributions that

are concentrated on (0, t†] and have no mass afterwards, i.e., S(t†) = P((t†,∞]) = 0.

The sublasses (IIa) and (IIb) differ in the behaviour of the probability P at the terminal

point. In case (IIa) there is a discrete, positive mass at the terminal point, whereas

in case (IIb) there is not and there is mass between t† and every point before, i.e.,

S(t† − ε) = P((t† − ε,∞]) = P((t† − ε, t†)) > 0 for all ε ∈ (0, t†).

Definition B.3.2. The hazard measure for P is the [0,∞]-valued (not necessarily

σ-finite) measure ν on (0,∞) which is absolutely continuous with respect to P and
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for t ≥ 0 defined by the Radon-Nikodym derivative

dν

dP
(t) =






1

S(t−)
if S(t−) > 0,

0 otherwise.

Due to the absolute continuity with respect to P it holds that ν((t†,∞)) = 0 and

thus the Radon-Nikodym derivative is well defined as P({t ≥ 0 : S(t−) = 0}) = 0

because in case (I) this probability corresponds to P(∅), in case (IIa) this probabil-

ity corresponds to P((t†,∞)) = 0 and in case (IIb) this probability corresponds to

P([t,∞]) = P({t†}) + P((t†,∞)) = 0. Therefore the hazard measure is well defined

for all Borel sets B on (0,∞) and by definition

ν(B) =

∫

B

1

S(t−)
P(dt) =

∫

B

1

S(t−)
dF (t) = −

∫

B

1

S(t−)
dS(t).

In the following theorem we collect general properties of hazard measures.

Theorem B.3.1. ([64, Thm. 4.1.1])

(a) If t < t†, then ν((0, t]) < ∞.

(b) For all t ∈ (0,∞) it holds that ν({t}) ≤ 1 and ν({t}) < 1 for all t < t†.

(c) If t† < ∞, then ν({t†}) = 1 if and only if P({t†}) > 0.

(d) If P({t†}) > 0, then ν((0, t†]) < ∞ if t† <∞ and ν((0,∞)) <∞ if t† =∞.

(e) If P({t†}) = 0, then ν((0, t†)) = ∞ (wether or not t† is finite).

We conclude the section with the discussion of the special cases of classes of survivor

functions and hazard measures of importance for this thesis.

Example B.3.1. Suppose that P has a density f with respect to the Lebesgue mea-

sure, which in particular implies that there is no atom except, possibly, {∞} with

positive probability. Then ν has the density u(t) = f(t)/S(t−) if t < t† and this

function u is called the hazard rate of P. Assume, in addition, that f and thus also u

is continuous on (0, t†), then for t < t†

u(t) = − d

dt
log S(t)

and conversely since S(0) = 1

S(t) = exp
(
−
∫ t

0

u(s) ds
)
.

Example B.3.2. A second example is a hazard measure for a probability which is

absolutely continuous with respect to the Lebesgue measure on [0, t†) with a finite
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termination point, i.e., t† < ∞ with positive probability. Thus the cumulative distri-

bution function is continuous and non-decreasing on the interval [0, t†) with a jump

of positive height P({t†}) = 1− F (t†−) at t† and F (t) = 1 on [t†,∞). Therefore the

hazard measure is given by

ν(B) =

∫

B

1

S(t−)
dF (t) =

∫

B∩(0,t†)

1

S(t−)
dF (t) +

1

S(t†−)
P({t†}) IB(t†).

As S(t†−) = S(t†) + P({t†}) = P({t†}) we obtain

ν(B) =

∫

B∩(0,t†)

1

S(t−)
dF (t) + IB(t†) =

∫

B∩(0,t†)

f(t)

S(t−)
dt + IB(t†)

where f(t) is the density of P with respect to the Lebesgue measure on (0, t†), cf.

Theorem B.3.1(c). Hence, finally this yields for the hazard rate u(t)

ν(B) =

∫

B∩(0,t†)

u(t) dt + IB(t†).

with

S(t) = I[0,t†)(t) exp
(
−
∫ t

0

u(s) ds
)

where

∫ t†

0

u(t)dt < ∞ .
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Appendix C

Linear Parabolic Partial

Differential Equations

The examples of partial differential equations considered in this thesis arise as models

of excitable media which are always parabolic equations. On the one hand they

generate the dynamical system that gives the evolution in between jumps of the PDMP

model and, on the other hand, act as the macroscopic limits for the stochastic models.

Therefore, we briefly present the relevant existence theory for those. Moreover, the

specific equations we encounter in this thesis are all linear and thus linear existence

theory is sufficient. When we consider the nonlinear system of an excitable media

equation in Section 3.3 we prove existence using a fixed point argument building on

linear theory.

Let D be a bounded domain in Rd, d ≥ 1. The problem we have in mind to solve is

of the following type: We look for a function u : (0, T )×D → R which satisfies the

initial-boundary value problem

ut = A(t)u + f(t) on D × [0, T ]

u(0) = u0 on D (C.0.1)

u(t) = 0 on ∂D .

Here, the inhomogeneous term is f ∈ L2((0, t), H−1(D)) and the linear operators A(t)

are second order elliptic operators, which, in divergence form, are given by

A(t)u :=
d∑

i,j=1

(aij(t, x)uxi)xj +
d∑

i=1

bi(t, x)uxi + c(t, x)u . (C.0.2)

The measurable coefficient functions aij , bi, c are assumed to be essentially bounded

in the space-time domain, i.e., elements of L∞((0, T ) × D). We say a function
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u ∈ L2((0, T ), H1
0(D))∩H1((0, T ), H−1

0 (D)) is a weak solution to the Dirichlet problem

(C.0.1) if for almost all t ∈ (0, T ) it holds that

〈u̇, v〉H1 = 〈A(t)u, v〉H1 + 〈f(t), v〉H1 ∀ v ∈ H1
0 (D)

and the initial value satisfies u(0) = u0 in L2(D). As the solution space implies that

u ∈ C0([0, T ], L2(D)), the initial condition is well-defined.

Existence theory for equations of the type (C.0.1) is based on the general theory of

linear first-order evolution equations. For a detailed exposition we refer to Zeidler

[122, Chap. 23] but elements of the theory are also contained in [43, 103, 104, 116].

To align with the abstract theory we choose the evolution triple H1
0(D) ⊂ L2(D) ⊂

H−1(D). We note that the particular choice of H1
0 (D) reflects the boundary condition

in (C.0.1) which requires solutions that vanish at the boundary, i.e., Dirichlet boundary

conditions. A bilinear form a(u, v, t) associated with the operators given in (C.0.2) is

defined by

a(u, v, t) :=

∫

D

d∑

i,j=1

aij(t, x)uxivxj dx−
∫

D

d∑

i=1

bi(t, x)uxiv − c(t, x)uv dx , (C.0.3)

which is obviously well-defined for all u, v ∈ H1
0 (D). Note that the domain of the

operator A(t) in L2(D) is given by D(A) := H1
0 (D) ∩ H2(D) for any t ∈ [0, T ]. As

we assume that the coefficients are essentially bounded the bilinear form (C.0.3) is

bounded in H1
0 (D) in u, v for all t ≥ 0 due to the Cauchy-Schwarz inequality. A

central condition for the existence of a solution is the coercivity of the bilinear form

a, i.e., for all u ∈ H1
0 (D) and all t ≥ 0

a(u, u, t) ≥ γ1‖u‖2
H1(D) − γ2‖u‖2

L2(D) (C.0.4)

for appropriate constants γ1, γ2 > 0. In order for (C.0.4) to hold it is, in addition to

the boundedness of the coefficients of the operator A(t), sufficient to assume uniform

ellipticity1 for the linear operators A(t). That is, the coefficient functions aij are such

that there exists a constant ξ > 0 such that for all (t, x) ∈ (0, T )×D it holds that

d∑

i,j=1

aij(x, t) yiyj ≥ ξ |y|2 ∀ y ∈ R
d. (C.0.5)

The following theorem provides an initial result on the well-posedness of the problem

and is an immediate consequence of the corresponding result on abstract equations,

1To be more precise, according to the terminology in [52], property (C.0.5) with ξ > 0 states the
operator is strictly elliptic. However, as we assume a(t, x) to be bounded there exists an estimate
from above analogous to (C.0.5). This implies the operator is uniformly elliptic.
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cf. [116, 122]. For a direct proof of the following theorem we refer to [43, Chap. 7,

Thms. 3, 4].

Theorem C.0.2. Assume that the coefficients of the operator (C.0.2) are almost

everywhere bounded and (C.0.5) holds. Then there exists for every initial condition

u0 ∈ L2(D) and data f ∈ L2((0, T ), H−1
0 (D)) a unique weak solution

u ∈ L2((0, T ), H1
0(D)) ∩H1((0, T ), H−1

0 (D)) .

This implies that u ∈ C0([0, T ], H1
0(D)). Furthermore, the solution satisfies the esti-

mates

‖u‖L2((0,T ),H1) + ‖u̇‖L2((0,T ),H−1) ≤ C1

(
‖f‖L2((0,T ),H−1) + ‖u0‖L2

)
,

‖u‖C0([0,T ],L2) ≤ C2

(
‖u‖L2((0,T ),H1) + ‖u̇‖L2((0,T ),H−1)

)

where the constant C1 depends only on the time horizon T , the domain D and the

L∞((0, T )×D)-norm of the coefficients of A and C2 depends only on T and D. Hence,

the solution depends continuously on the initial condition.

Further, analogously to the case of abstract evolution equations it is possible to ob-

tain improved regularity results under additional assumptions on the operators A(t),

the inhomogeneous term b and the initial condition u0, cf. [43, Chap. 7]. Thus we

assume for the following that the coefficients of A(t) are independent of time and

twice continuously differentiable on D. Further, the domain D satisfies ∂D ∈ C2.

The inclusion of solutions into continuous spaces in the following theorem and the

appropriate estimates are due to [43, Chap. 5.9, Thm. 3, 4].

Theorem C.0.3. (a) For initial conditions u0 ∈ H1
0 (D) and an inhomogeneous term

f ∈ L2((0, T ), L2(D)) the solution satisfies in addition

u ∈ L2((0, T ), H2(D)) ∩ L∞((0, T ), H1
0(D)),

u̇ ∈ L2((0, T ), L2(D)),

which implies u ∈ C0([0, T ], H1
0(D)). Furthermore, the solution satisfies the

estimate

‖u‖L2((0,T ),H2) + ‖u‖L∞((0,T ),H1
0 ) + ‖u̇‖L2((0,T ),L2) ≤ C3

(
‖f‖L2((0,T ),L2) + ‖u0‖H1

0

)
,

‖u‖C0([0,T ],H1) ≤ C4

(
‖u‖L2((0,T ),H2) + ‖u̇‖L2((0,T ),L2)

)
,

(C.0.6)

where the constant C3 depends only on T , D, the coefficients aij and the

L∞((0, T )×D)-norm of the coefficients bi, c, and C4 depends only on T and D.
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(b) For initial conditions u0 ∈ H1
0 (D) ∩ H2(D) and an inhomogeneous term

f ∈ H1((0, T ), L2(D)) the solution satisfies

u ∈ L∞((0, T ), H2(D)),

u̇ ∈ L2((0, T ), H1
0(D)), ü ∈ L2((0, T ), H−1(D)),

which implies u̇ ∈ C0([0, T ], L2(D)) and thus u ∈ C1([0, T ], L2). Furthermore,

the solution satisfies the estimate

‖u‖L2((0,T ),H2) + ‖u‖L∞((0,T ),H2) + ‖u̇‖L2((0,T ),H1) + ‖ü‖L2((0,T ),H−1)

≤ C5

(
‖f‖H1((0,T ),L2) + ‖u0‖H2

)
,

‖u̇‖C0([0,T ],L2) ≤ C6

(
‖u̇‖L2((0,T ),H1) + ‖ü‖L2((0,T ),H−1)

)
,

(C.0.7)

where the constant C5 depends only on T , D, the coefficients aij and the

L∞((0, T )×D)-norm of the coefficients bi, c, and C6 depends only on T and D.

Remark C.0.1. For the application in the proof of the existence of a solution to

general excitable media equations, cf. Section 3.3.1, it is necessary to extend the

results in Theorem C.0.3 to time-dependent zeroth order coefficients c = c(t). We

note that the result in (a) remains valid for time-dependent coefficients bi, c. For

the results in part (b) we restrict the spatial dimension to d ≤ 3 and assume that

the zeroth order term in (C.0.3) is time dependent, i.e., c = c(t). In addition to the

assumptions above c ∈ H1((0, T ), L2) and ċ ∈ L4((0, T ), L4). Then the first extension

is that the assertion of Theorem C.0.3 (b) remains valid where the right hand side in

estimate (C.0.7) is given by

C∗
5

(
‖f‖H1((0,T ),L2) + ‖u0‖H2 + C2

3

(
‖f‖L2((0,T ),L2) + ‖u0‖H1

0

)2)
.

Here the constant C∗
5 depends in addition to the dependencies of the constant C5 also

on ‖ċ‖L4((0,T ),L4). If in addition ċ ∈ L∞((0, T )×D) then the estimate (C.0.7) is also

satisfied for the right hand side

C∗∗
5

(
‖f‖H1((0,T ),L2) + ‖u0‖H2

)

where the constant C∗∗
5 depends in addition to the dependencies of the constant C5

also on ‖ċ‖L∞((0,T )×D). These extensions follow immediately using the same method of

proof as employed in [43, Chap. 7,Thm 5]. By a close inspection of the proof we find

that under the above assumptions the crucial estimates therein can still be derived

with only slight modifications of the estimation procedures incorporating the changed

assumptions.
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Secondly, if in addition ∂D is C3, c ∈ L2((0, T ), H2) ∩ L∞((0, T ), H1), whereas

the remaining coefficients aij , bi, which are independent of time, are in C2(D) and

f ∈ L2((0, T ), H1), then it follows that

u ∈ L2((0, T ), H3) . (C.0.8)

Thus in combination with the result in Theorem C.0.3 (b) it holds due to [43,

Chap. 5.9, Thm. 4] that u ∈ C0([0, T ], H2). Particularly, it holds that

‖u‖L2((0,T ),H3) ≤ C7

(
‖f‖L2((0,T ),H1) + ‖f‖H1((0,T ),L2) + ‖u0‖H2

)
, (C.0.9)

and

‖u‖C0([0,T ],H2) ≤ C8

(
‖u‖L2((0,T ),H3) + ‖u̇‖L2((0,T ),H1)

)
(C.0.10)

where the constant C7 depends on T , D and the L∞((0, T )×D)-norm of the coefficients

A, the L∞((0, T ) × D)-norm of the first order spatial derivatives of aij , bj and on

‖c‖L∞((0,T ),H1) and ‖ċ‖L∞((0,T ),×D). The constant C8 depends on T and D only.

In order to establish (C.0.8) note that a close inspection of the arguments used to

derive the elliptic regularity results [43, Chap. 6,Thms. 1,2,4,5] shows that u(t), which

solves for almost all t ∈ [0, T ] the elliptic equation −A(t)u(t) = f(t)− u̇(t), satisfies

for almost all t ∈ [0, T ]

‖u(t)‖H3 ≤ C ′(‖f(t)− u̇(t)‖H1 + ‖u(t)‖L2 + C5‖Dxic(t)‖L2‖u‖L∞((0,T ),H2)

)
,

where the constant C ′ depends on the L∞((0, T ) × D)-norm of the coefficients of

aij , bj and their first order spatial derivatives as well as the L∞((0, T )× D)-norm of

c. Finally, integration over (0, T ) and the estimates (C.0.7) yield (C.0.8).

To conclude we emphasise that for the constants C1–C8 in the above two theorems

and this remark the dependency on the time horizon T is monotonically increasing

for increasing T , but, most importantly, the constants are finite for any finite T .
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20(4):329–348, 1984.

[92] G. N. Milstein and M. Tretyakov. Stochastic Numerics for Mathematical

Physics. Springer, Berlin, 2004.

[93] H. Mino, J. T. Rubinstein, and J. White. Comparison of algorithms for the sim-

ulation of action potential with stochastic sodium channels. Ann. Biomed. Eng.,

30:578–587, 2002.

[94] H. Mino, Rubinstein J. T., C. A. Miller, and P. J. Abbas. Effects of electrode-

to-fiber distance on temporal neural response with electrical stimulation. IEEE

Trans. Biomed. Eng., 52(1):13–20, 2004.

288



BIBLIOGRAPHY

[95] K. Pakdaman, M. Thieullen, and G. Wainrib. Diffusion approximation of

birth-death processes: comparison in terms of large deviations and exit points.

Statist. Probab. Lett., 80(13-14):1121–1127, 2010.

[96] K. Pakdaman, M. Thieullen, and G. Wainrib. Fluid limit theorems for stochas-

tic hybrid systems with application to neuron models. Adv. in Appl. Probab.,

42(3):761–794, 2010.

[97] K. R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press,

New York, 1967.

[98] L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex
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