
Investigating Hybrids of Evolution and Learning for

Real-Parameter Optimization

by

SHE RI GU LENG

Submitted for the Degree of

Doctor of Philosophy

on completion of research in the

Department of Computer Science

School of Mathematical and Computer Sciences

Heriot-Watt University

March 2011

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any

of the information contained in it must acknowledge this thesis as the source of the quotation or

information.

Declaration

I hereby declare that the work presented in this thesis was carried out by myself at Heriot-

Watt University, except where due acknowledgment is made, and not been submitted for

any other degree.

SHE RI GU LENG(Candidate)

Professor David Wolfe Corne (Supervisor)

Date

Abstract

In recent years, more and more advanced techniques have beendeveloped in the field

of hybridizing of evolution and learning, this means that more applications with these tech-

niques can benefit from this progress. One example of these advanced techniques is the

Learnable Evolution Model (LEM), which adopts learning as aguide for the general evo-

lutionary search. Despite this trend and the progress in LEM, there are still many ideas and

attempts which deserve further investigations and tests. For this purpose, this thesis has

developed a number of new algorithms attempting to combine more learning algorithms

with evolution in different ways. With these developments,we expect to understand the

effects and relations between evolution and learning, and also achieve better performances

in solving complex problems.

The machine learning algorithms combined into the standardGenetic Algorithm (GA)

are the supervised learning methodk-nearest-neighbors (KNN), the Entropy-Based Dis-

cretization (ED) method, and the decision tree learning algorithm ID3. We test these algo-

rithms on various real-parameter function optimization problems, especially the functions

in the special session on CEC 2005 real-parameter function optimization. Additionally, a

medical cancer chemotherapy treatment problem is solved inthis thesis by some of our

hybrid algorithms.

The performances of these algorithms are compared with standard genetic algorithms

and other well-known contemporary evolution and learning hybrid algorithms. Some of

them are the Covariance Matrix Adaptation Evolution Strategies (CMAES), and variants of

the Estimation of Distribution Algorithms (EDA).

Some important results have been derived from our experiments on these developed al-

gorithms. Among them, we found that even some very simple learning methods hybridized

properly with evolution procedure can provide significant performance improvement; and

when more complex learning algorithms are incorporated with evolution, the resulting al-

gorithms are very promising and compete very well against the state of the art hybrid algo-

rithms both in well-defined real-parameter function optimization problems and a practical

evaluation-expensive problem.

i

to my parents

Bu Ren Te Gu Si

An Shu Fang

ii

Acknowledgements

First, I sincerely thank my supervisor, Professor David Wolfe Corne, for his guidance

in the field of naturally inspired computing, and his consistent inspiration, advice, encour-

agement and support during the whole procedure of my PhD study. Without his help, this

PhD thesis could not have been finished.

Thanks are also due to the members of the Intelligent SystemsLab (ISL) at the School

of Mathematics and Computer Science, in particular many colleagues for any beneficial

discussions during the past years.

I also want to thank the reviewers who read my publications and provided much con-

structive criticism for the past years, and the examiners who agreed to examine this thesis.

Thanks to the department’s Administration and IT support staff for the convenience

they provided, especially for allow me to occupy numerous machines in labs to finish the

experiments in this thesis.

Finally, I would like to thank my parents and brother for their love!

iii

Contents

Abstract i

Acknowledgements iii

Tables viii

Figures x

Acronyms xii

1 Introduction 1

1.1 Overview . 1

1.1.1 Search is a general problem solver. 5

1.1.2 Evaluation is expensive. 15

1.1.3 Learning is useful. 16

1.1.4 Hybrid is the trend. 21

1.1.5 Contributions. 22

1.2 Outline of the thesis. 23

2 Methods for Search and Learning 26

2.1 Overview . 26

2.2 Search Algorithms for Optimization. 27

2.2.1 Local Search. 27

2.2.2 Genetic Algorithm and Global Optimization. 32

2.2.3 Evolution Strategies. 39

2.2.4 Other General Purpose Search Algorithms. 43

2.3 Learning Algorithms . 45

2.3.1 Decision Tree Learning. 47

2.3.2 AQ Learning . 51

iv

2.3.3 K Nearest Neighbors (KNN) Learning. 55

2.3.4 Principal Components Analysis. 58

2.3.5 Bayesian Network and Bayesian Learning. 62

3 Hybrids of Learning and Evolution 67

3.1 Overview . 67

3.2 Covariance Matrix Adaptation Evolution Strategies. 68

3.2.1 (µ/µI , λ)-CMAES algorithm . 69

3.3 Estimation of Distribution Algorithms. 71

3.3.1 Example Illustration. 72

3.3.2 Structure Learning Methods. 74

3.3.3 Concrete EDA Algorithms. 75

3.4 Learnable Evolution Model (LEM). 77

3.4.1 LEM(AQ) . 77

3.4.2 LEM Framework. 78

3.4.3 Relations with EDAs. 81

3.4.4 Applications of LEM. 81

4 KNN Based LEM Hybrid Algorithms 83

4.1 Overview . 83

4.2 LEM(KNN) – KNNGA . 85

4.2.1 KNNGA Algorithm . 85

4.2.2 KNNGA ‘with verification’ . 92

4.2.3 Experiments and Results. 94

4.3 LEM(dwKNN) – dwKNNGA . 101

4.3.1 Distance-Weighted K Nearest Neighbors Algorithm. 103

4.3.2 dwKNNGA Algorithm . 104

4.3.3 Experiments and Results. 106

4.4 Concluding Discussion. 119

5 LEM Instantiated with Entropy-Based Discretization 122

5.1 Overview . 122

5.2 Entropy-Based Discretization. 124

5.2.1 Discretization Techniques. 124

5.2.2 Entropy-Based Discretization. 125

v

5.3 LEM with Entropy-Based Discretization – LEM(ED). 127

5.3.1 The LEM(ED) Algorithm . 127

5.3.2 LEM(ED) Variant Algorithms. 132

5.4 Experiments and Results. 133

5.4.1 Parameters Settings. 133

5.4.2 Summary of Results. 134

5.5 Concluding Discussion. 140

6 LEM Instantiated with Decision Tree Learning 143

6.1 Overview . 143

6.2 LEM with Decision Tree Learning – LEM(ID3). 145

6.2.1 Learning Mode. 145

6.2.2 Evolution Mode . 155

6.2.3 Switch Conditions. 156

6.2.4 Discretization. 157

6.2.5 Instantiation, Evolution and Randomization. 158

6.3 Experiments and Results. 159

6.3.1 Experiment Study 1. 159

6.3.2 Experiment Study 2. 165

6.4 Concluding Discussion. 173

7 Cancer Chemotherapy Treatments Optimized by LEMs 175

7.1 Overview . 175

7.2 Introduction. 176

7.3 Mathematical Problem Formulation. 177

7.4 Solving using LEM Hybrid Algorithms 178

7.4.1 Problem Representation and Evaluation. 179

7.4.2 Problem Solving and Results. 180

7.5 Concluding Discussion. 183

8 Conclusion 185

8.1 Summary . 185

8.2 Contributions . 188

8.3 Future Work. 190

A Brief Introduction on Probability 191

vi

B LEM(ID3)IER Performance on CEC2005 Test Functions 195

C Chemotherapy Problem in C++ Source Codes 205

Bibliography 212

vii

List of Tables

3.1 Initial population,P0 . 73

3.2 Selected population. 73

3.3 New generated population. 74

4.1 Parameters settings for GA(c,m) and GA(m). 97

4.2 Parameters settings for KNNGA and KNNGA(V). 97

4.3 Parameters settings for GA1 and GA2. 112

4.4 Parameters settings for LEM(KNN) and LEM(dwKNN). 112

4.5 Parameters settings for CMAES. 113

4.6 Means and standard deviation after 10 generations. 113

4.7 Means and standard deviation after 20 generations. 114

4.8 Means and standard deviation after 50 generations. 114

4.9 Means and standard deviation after 100 generations. 114

5.1 Parameters settings for LEM(ED1) and LEM(ED2). 134

5.2 Means and standard deviation after 10 generations. 134

5.3 Means and standard deviation after 20 generations. 135

5.4 Means and standard deviation after 50 generations. 135

5.5 Means and standard deviation after 100 generations. 135

6.1 The ruleset transformed from the DT for positive data in Figure 6.1. 148

6.2 Meaning of a preferred rule. 153

6.3 Parameters settings for LEM(ID3). 160

6.4 Means and standard deviations after 10 generations. 160

6.5 Means and standard deviations after 20 generations. 161

6.6 Means and standard deviations after 50 generations. 161

6.7 Means and standard deviations after 100 generations. 161

6.8 Means for two CMAES, KPCX, LEM(ID3)IER, 10D, CEC05, 100KEvas.. 170

viii

6.9 Means for two CMAES, KPCX, LEM(ID3)IER, 30D, CEC05, 300KEvas.. 171

6.10 Means for two CMAES, KPCX, LEM(ID3)IER, 50D, CEC05, 500K Evas.. 172

6.11 Summary of solved problems by CEC05 session algorithmson 30D 173

7.1 Evaluation numbers for the first feasible solution: mean(sd) 183

7.2 Best fitness values after 200k evaluation: mean(sd). 183

B.1 Error values at FEs = 1e3, 1e4, 1e5 for problems 1-9(10D). 195

B.2 Error values at FEs = 1e3, 1e4, 1e5 for problems 10-17(10D) 196

B.3 Error values at FEs = 1e3, 1e4, 1e5 for problems 18-25(10D) 196

B.4 Error values at FEs = 1e3, 1e4, 1e5, 3e5 for problems 1-9(30D) 197

B.5 Error values at FEs = 1e3, 1e4, 1e5, 3e5 for problems 10-17(30D) 198

B.6 Error values at FEs = 1e3, 1e4, 1e5, 3e5 for problems 18-25(30D) 199

B.7 Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 for problems 1-9(50D) 200

B.8 Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 for problems 10-17(50D). . . 201

B.9 Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 for problems 18-25(50D). . . 202

B.10 Number of FES to achieve the accuracy level for problems1 - 25(D = 10) . 203

B.11 Number of FES to achieve the accuracy level for problems1 - 25(D = 30) . 203

B.12 Number of FES to achieve the accuracy level for problems1 - 25(D = 50) . 204

ix

List of Figures

1.1 An illustrative example of landscape. 8

2.1 Flowchart of the simple genetic algorithm. 33

2.2 An illustrative example of a decision tree. 48

3.1 The general LEM framework. 79

4.1 Flowchart of the KNNGA algorithm. 89

4.2 An illustrative flowchart for the KNNGA algorithm evolution procedure. . 91

4.3 Results of running 5 algorithms to maximize problem 1. 97

4.4 Results of running 5 algorithms to maximize problem 2. 98

4.5 Results of running GA(m),GA(c,m),KNNGA(c,m) to minimize problem 3. 99

4.6 Results of running KNNGA(m),KNNGA(c,m)(V) to minimizeproblem 3 . 99

4.7 Results of running 5 algorithms to maximize problem 4. 99

4.8 Results of running 5 algorithms to maximize problem 5. 100

4.9 Landscape of the De Jong function 3 in 2 dimensions. 108

4.10 Landscape of the De Jong function 4 in 2 dimensions. 109

4.11 Landscape of the rastrigin function in 2 dimensions. 109

4.12 Landscape of the griewank function in 2 dimensions. 110

4.13 Landscape of the rosenbrock function in 2 dimensions. 110

4.14 Landscape of the ackley function in 2 dimensions. 111

4.15 Landscape of the schwefel function in 2 dimensions. 111

4.16 Results of running 5 algorithms on the DeJong3 problem. 115

4.17 Results of running 5 algorithms on the DeJong4 problem. 115

4.18 Results of running 5 algorithms on the Rastrigin problem 116

4.19 Results of running 5 algorithms on the Griewank problem. 116

4.20 Results of running 5 algorithms on the Rosenbrock problem 117

4.21 Results of running 5 algorithms on the Ackley problem. 117

x

4.22 Results of running 5 algorithms on the Schwefel problem. 118

5.1 The correct and incorrect labellings for two intervals by LEM(ED). 128

5.2 Instantiation procedure by LEM(ED).. 130

5.3 Results of running 7 algorithms on the DeJong3 problem. 136

5.4 Results of running 7 algorithms on the DeJong4 problem. 136

5.5 Results of running 7 algorithms on the Rastrigin problem. 137

5.6 Results of running 7 algorithms on the Griewank problem. 137

5.7 Results of running 7 algorithms on the Rosenbrock problem 138

5.8 Results of running 7 algorithms on the Ackley problem. 138

5.9 Results of running 7 algorithms on the Schwefel problem. 139

6.1 A decision tree learned by LEM(ID3) for Rastrigin function at generation 1147

6.2 An illustrative example for the forest model. 151

6.3 Before and after adjusting discretization representation 158

6.4 Results of running 4 algorithms on the DeJong3 problem. 162

6.5 Results of running 4 algorithms on the DeJong4 problem. 162

6.6 Results of running 4 algorithms on the Rastrigin problem. 163

6.7 Results of running 4 algorithms on the Griewank problem. 163

6.8 Results of running 4 algorithms on the Rosenbrock problem 164

6.9 Results of running 4 algorithms on the Ackley problem. 164

6.10 Results of running 4 algorithms on the Schwefel problem. 165

xi

Acronyms

BN Bayesian Network.17

CMAES Covariance Matrix Adaptation Evolution Strategies.22–25

EC Evolutionary Computation.6, 7, 11–13

ED Entropy-Based Discretization.23, 24

EDA Estimation of Distribution Algorithms.22–25

ES Evolution Strategies.24

GA Genetic Algorithm.1, 6, 8, 11–13, 24

GP Genetic Programming.13

IPOP-CMAES A Restart CMAES With Increasing Population Size.25

K-PCX A Population-Based, Steady-State Procedure for Real-Parameter Optimization.25

KNN k-Nearest-Neighbors.17, 22–24

LEM Learnable Evolution Model.22

LEM(dwKNN) LEM Instantiated with distance-weight KNN algorithm.22, 24, 25

LEM(ED) LEM Instantiated with ED algorithm.24

LEM(ID3) LEM Instantiated with ID3 algorithm.1, 23, 25

LEM(KNN) LEM Instantiated with KNN algorithm.1, 22–24

LR-CMAES A Local Restart CMAES.25

MA Memetic Algorithm.21

xii

MDP Markov Decision Process.17

ML Machine Learning.16

MOEA Multi-Objective Evolutionary Algorithm.12

NN Neural Network.17

PCA Principle Component Analysis.22, 24

SVM Support Vector Machine.17

xiii

List of Publications

2010: Guleng Sheri and David Corne. Learning-assisted evolutionary search for scalable

function optimization: LEM(ID3). IEEE Congress on Evolutionary Computation,

pp. 1-8, IEEE, 2010.

2009: Guleng Sheri and David W. Corne. Evolutionary Optimization Guided by Entropy-

Based Discretization. EvoWorkshops, Lecture Notes in Computer Science, Vol.

5484, pp. 695-704, Springer, 2009.

2008: Guleng Sheri and David W. Corne. The Simplest Evolution/Learning Hybrid: LEM

with KNN. 2008 IEEE World Congress on Computational Intelligence, IEEE Press,

1-6 June 2008.

xiv

Chapter 1

Introduction

1.1 Overview

There are always various problems and tasks in people’s daily activities. These problems

can be very simple, making the procedure of solving these problems easily ignored; they can

also be very complex and even challenging, making the methods of solving these problems

become the topic of scientific research. However, regardless of the types and complexities

of the problems, solving these problems can be considered asa decision-making procedure

of choosing one or several solutions from many alternative solutions. Namely,to searchfor

suitable solutions from many solutions is a problem solvingprocedure, and it exists in many

fields such as computer science, engineering, operation research, medicine development,

economy and finance. Let us consider the following tasks:

1. Find the quickest route from the current position to the city airport;

2. Find the maximum value for a mathematical function with a complex landscape;

3. Design a new aircraft engine for a new series of commercialplanes with the require-

ments of both safety and speed;

4. Make a smartest play in a Chinese-checker game against thecomputer;

5. Create an effective treatment plan for a new drug to be applied in treatment periods;

6. Find the best ‘model’ or method that can predict the performance of a stock index for

the future according to historical data.

These problems are universal and challenging. For task1, firstly, in most cases, we can

not arrive at the airport in the quickest way, quickest travel depends on many factors such

1

as, traffic conditions, vehicles, and road accidents, shortest does not mean quickest. Sec-

ondly, if there are many alternative routes with different distances, finding the shortest route

may take a long time. Too much time spent on planning a route may reduce the travel time,

therefore resulting in a late arrival. Finally, imagine theworst situation, if we are not fa-

miliar with the city and no previous knowledge is available,and we cannot get any form of

help, we may fail this task completely. For task2, assume the mathematical function’s def-

inition (formula) is given, and the value of the function is decided by a vector of variables.

Firstly, the function’s shape (landscape) is invisible, and could be very irregular, containing

many peaks and troughs, so to decide the vector of variables having the maximum of the

function is very difficult. Exploring through the whole variable space or ‘search’ is very

possibly attracted to and lost in one of the local best valuesand never comes out; secondly,

what if the size of the vector of variables is huge? That is, there are many variables involved

in deciding the function value. Indicating the relationships between these variables could

be important in order to find the maximum efficiently, in otherwords, these variables need

to act congruously. For task3, there are two aims for this task. If it is the case that higher

speed means less safety, then we find that the aims for this task cannot be achieved at the

same time. Namely, safety and speed are themselves contradictory to each other in the sense

that an increase in the former will inevitably cause a decrease in the latter. Therefore, this

problem has to be transformed to find an acceptable compromise between these two aims,

safety and speed. When some solutions satisfying all of the aims are derived, the selection

from these compromised solutions will depend on many practical considerations from the

users. The main difficulty of this task is due to the contradiction feature involved in the

task itself. For task4, the difficulties come from many aspects, for instance, the number of

the possible board status and legal next moves available could be huge; more importantly,

the success of the current move will not only depend on the performance of the current

move but also depend on the following moves. A good move for now and bad moves for all

the following moves will also result in losing the game. So, for this task, how to measure

a ‘smart’ move becomes a crucial factor in solving this problem successfully. For task5,

it is probably much easier or ‘cheaper’ to create a plan than to judge or evaluate a plan.

Namely, the evaluation of a cancer chemotherapy treatment plan could be very expensive

with regard to safety issues, time and money. It could contain real treatments (injections

and observations) on patients or at least a computer-based simulation, both of which may

take months for the treatments to take effect. These risky and expensive evaluations cannot

be restored and therefore do not allow the method of choosingone solution from many al-

2

ternative solutions to be fulfilled. For task6, there are many issues concerned, first, how to

build a model which is able to predict, from the given data? Or, how to select the suitable

methods to construct the model? Second, how to explore through these models, or how

to modify these models from one to another? Third, how to evaluate the quality of these

built models? These are all key issues which need to be solved. Finally, the quantity and

the quality of the data also matter, the former may affect theevaluation of the built models,

while the later may effect the construction procedure for the models.

These tasks are examples of complex problems, they explore many different aspects

of complexity. These complexities may come from the partialrepresentation space, huge

search space, relationship among the dimensions, multi-modal property for the problem

landscape, many conflicting objectives, and challenging measurements of the solutions in

real world, etc. In this thesis, we will investigate and construct effective solving methods

which can solve problems containing some of these aspects.

All of these complexities place obstacles for the procedureof finding the best solution

for these problems, and require considerable efforts both in computation time and space

resources. Namely, whenever a method is developed and applied to solve problems, it is

always restricted by the time and space resources available. Therefore, we have to consider

the balance between the quality of the solutions found and the efficiency of the search

method employed. For task1 again, we may not really care about finding the quickest route

to the airport at all, what really concerns us is to arrive at the airport on time. With this

aim, it is meaningless and we risk missing the flight if we takea very long time to find the

best travel route. For most cases, the best solution for one problem cannot be found simply,

people do accept secondary solutions when the best solutions can only be obtained with

huge expenses which are not affordable. The only restriction is that these solutions need to

be feasiblesolutions, afeasiblesolution should be a solution which is valid and correct to

the problem at hand.

Within these limitations, the search methods to be constructed to solve these problems

will have to consider the balance between quality of the solutions and efficiency of the

methods. Generally, if the time and space resources limitations are not very restrictive,

the search can explore more alternative solutions which arequite different, obtaining more

global knowledge; while the resources limitations are strict, thesearch should exploit the

current solutions to gain more similar solutions, obtaining more local knowledge. Ex-

ploration means the generation of new solutions happen in as yet untested regions of the

solution space. Meanwhile,exploitationmeans the search is concentrated in the vicinity of

3

known good solutions. Therefore, achieving the expected balance between quality of found

solutions and the efficiency of the search algorithms requires good design to achieve the

balance between exploration and exploitation in the constructed search methods.

So far, our discussion has focused on ‘search’ as an important problem solving method,

search is suitable for many types of complex problems and canbe seen as a general problem

solving method. However, search is not a universal problem solver. Many types of problems

are solved by other problem solving methods. For example, part of task6 is to construct a

‘model’ or method that can predict the performance of a stockindex for the future according

to historical data. This construction task is different from the search procedure. Seemingly,

it is a specific method that follows some principles to build up a model, which can deal

with some input data and be able to output useful informationto make a prediction. This

method, in fact, is one of the concrete methods for the general learning based problem

solving method.Learning is a common concept, it means to improve one’s ability to act

in the future through accumulation of one’s own experiences. As with searching, learning

happens throughout people’s daily activities as long as some events and decision-making

processes take place. For example, task6 is a common economical activity. The doctor’s

daily diagnosis treatment is a learning procedure, after a long period of diagnosis on a huge

number of patients, the doctor becomes more experienced in treating new patients.

A natural question which arises, as two general problem solving methods, is: what is

the relationship between search and learning? And how can these two methods interact to

influence each other? We consider this issue in two opposite directions.

How does searching influence learning? Learning is a procedure to improve the ability

to act in the future based on past experience. ‘The ability toact in the future’ needs to

be captured and described by an explicit or implicit ‘model’, to improve the ability means

to improve the performance of the model, or equally to construct a better model. This

has a very important implication, namely, there exist many models which constitute the

so-called ‘model space’. Therefore, a search can be considered as a generalized model

construction method, while the learning methods can be considered as a specific model

construction method. Learning constructs a model by some specific method, while a search

constructs a model by modifying one existing model into another one. To this end, a search

influences learning by finding a better model than the one constructed by learning. There

is one excellent illustration for this influence, the human brain. The brain can be seen

as a learning model which is constructed in a way which is not completely known to us,

however, what we do know is that, in fact, our brains today arequite different from and are

4

much more advanced than those of our ancestors. And this improvement is derived by one

of the paradigms methods of search,evolution. The brain, as a model of learning, is the

result of an evolutionary search.

How does learning influence search? Learning can cause useful experience to be ob-

tained, we call such experienceknowledge. If the learned knowledge is used in the search

procedure to guide future search behaviors, then we could expect at least two new results.

First, learning incorporates the past learned domain knowledge into the search problem-

solving procedure, and makes the choosing of good solutionsamong many alternative so-

lutions more efficient and accurate. Experienced persons can make better choices than less

experienced ones. In this way, learning helps to save time and space resources, while ob-

taining relatively high quality solutions. Second, learning can help to judge or predict the

found solutions. When some new solutions are found by search, learning can estimate the

quality of these solutions according to previous knowledgeabout this particular domain

without the expense of real implementation of the quality measurements for these solu-

tions. These measurements could be very expensive and cannot be restored. Experienced

persons can predict the results of some events yet to happen and therefore save the resources

expended in these events.

1.1.1 Search is a general problem solver

There is no such a method as a universal problem solver for allclasses of problems. For

some classes of problems which are complex enough, a search is a general problem solver

for these problems. Many search methods have been developedfor solving various prob-

lems, a successful search method depends not only on its advantages (efficiency) but also

on its appropriateness for the class of problems it tries to solve. So, the requirements of

developing a good search algorithm should be that the algorithm is both general and effi-

cient enough to solve a class of problems. In an ideal situation, we can simply apply a very

general search method to attempt to solve all problems. For example,exhaustive enumer-

ation can be used to solve all problems only if the computation timeand space resources

are unlimited, if this is not the case, then exhaustive enumeration will fail easily. This is

because exhaustive enumeration is not efficient for many complex problems, which cannot

be solved in linear or polynomial time. On the other hand, some local search based algo-

rithms are very efficient only on a small range of problems, which makes these algorithms

not general enough.

5

In general, there are many standards to classify search methods, such as heuristic or

non-heuristic search, local search and population-based parallel search. The former stan-

dard emphasizes the utility of problem-specific domain knowledge. The later standard

emphasizes the difference in search methods. It is the latter standard that will be consid-

ered within this thesis. In single point local search based methods, a search is carried out

locally and tries to find some good solutions close to the current solution. Therefore, local

search methods tend to find good solutions quickly. Some local search techniques itera-

tively improve upon a solution by searching in its vicinity for better solutions. If better

solutions cannot be found, the process terminates; the current solution is taken as a locally

optimal solution. For example, for task1, assume we have found out a feasible travel route,

a change or substitution of part of this route with another subroute could result in a better

travel route by avoiding an accident. A local search involves the risk that a search is cheated

into a local optimization.

Unlike the local search strategy, the population-based search considers many solutions

at the same time and works on the whole set of solutions (also calledpopulation). All of

the solutions have an opportunity to be involved in the search procedure, and all of them

are possibly modified and substituted. A local search is operated in a one-by-one fashion,

while population-based search is carried out in parallel. Alocal search is not repeatable

and it never goes back, the previous visited solutions are not stored for revisiting, instead,

they are discarded immediately when they are not used to compare with other solutions. In

a population-based search, all solutions are maintained inthe current population, as are the

modified ones which will form the new population. In this way,the local search is more

like a way of ‘constructing’ a solution, while the population based search is more like a

way of ‘evolving’ a population of solutions. The results of the evolution of a population is

that some of the solutions become better and some are worse.

In this thesis, we focus on the population-based search method, especially, a class

of such search methods calledEvolutionary Computation (EC). Evolutionary search tech-

niques, such asGenetic Algorithms (GAs)have recently gained considerable attention.

Evolutionary computation is inspired by Darwin’s theory ofevolution. For a given environ-

ment that can host only a limited number of individuals, the competition of reproduction

and survival are inevitable. Each individual is a unique combination of phenotypic traits,

representing a solution, the object representing the original problem context are referred

to asphenotypes, while their encoding, that is, the individuals withinEC, are calledgeno-

types. Therefore, on the side of the original problem context, solutions or individuals are

6

used to denote points of the space of possible solutions. This space is commonly called the

phenotype space. On the side ofEC, chromosome or individual can be used for points in

the space where the evolutionary search actually takes place. This space is often termed the

genotype space. These solutions and individuals are evaluated by the environment. Natural

selection favors those individuals that fit the environmentbetter, the principle ofsurvival of

the fittest. The fitter individuals (parents) are more likely to be selected to reproduce new

individuals (offspring) which are expected to be better individuals because of the combina-

tion of good genes inherited from their parents. There are two main variation operations to

generate new individuals, the mutation operates on one individual by randomly changing

a part of its genes; while the crossover combines two or more individuals to produce new

ones. The new individuals are then evaluated and selected for survival. In this way, evo-

lution continues. Selection and variation operations are the main sources in the evolution

procedure for diversity and quality improvement of the population.

To understand how evolutionary computation is used to solveoptimization problems.

We firstly describe these optimization problems and their main features which make these

problems challenging for many optimization algorithms. These understanding about the

optimization problems are necessary and beneficial to the understanding of evolutionary

algorithms. There is an important tool which can help for this understanding, it is the idea

of landscape. The individuals or solutions space introduced above can also be described

with fitness landscape. Fitness landscape is defined as a triple set: FitnessLandscape=

(S,V, f), where

1. S is the set of all potiential solutions;

2. V is a neigbourhood function,V : S −→ 2S, ∀x ∈ S,V(x) = {y ∈ S | d(x, y) ≤ 1};

3. f is a fitness function.f : S −→ ℜ.

Within a landscape, as shown in Figure1.1, the height dimension belongs to fitness:

high altitude stands for high fitness, the other two or more dimensions correspond to in-

dividuals’ genes. That is the horiental plane holds all possible genes combinations, the

vertical values show their fitnesses. Hence, each peak represents a range of successful

genes combinations, while troughs belong to less fit combinations. A given population can

be plotted as a set of points on this landscape, where each dotis one individual realizing

a possible genes combination. Evolution is then the processof gradual advances of the

population to high-altitude areas, powered by variation and natural selection.

7

−500

0

500

−500

0

500
0

500

1000

1500

2000

Figure 1.1: An illustrative example of landscape

After the definition and illustration of landscape, we can now explore the main prob-

lem features which make the real optimization problems difficult to solve. Those problem

features and the problem landscape types correspond to eachother accordingly. That is the

implict problem features will be reflected in the problem landscapes explicitly. We list and

classify the main problem features or landscape types widely known and well-studied in

optimization community as follows:

1. Discrete (combinatorial) and Continuous (real) variables

The discrete optimization problems are the problems whose solutions can be ex-

pressed exactly using a finite length string of integer parameters. While, the con-

tinuous optimization problems contain one or more continuous parameters and are

usually tackled by choosing a finite precision with which to express the parameters.

The parameter values may then be represented using chromosomes in which the al-

lele value of each gene reprsents the value of a parameter directly given a precision.

Genetic Algorithms are considered as most suitable for binary representation of vari-

ables. However, more and more work of applyingGA for continuous representation

problem have been investigated. There are two important EC paradigm algorithms

Evolution Strategies (ES)andEvolutionary Programming (EP)typically operate di-

rectly on the continuous decision variables, and thus theiroperators are particularly

suited to these problems.

2. Dimentionality

Dimensionality refers to the number of dimensions of the parameter space. High-

dimensionality problems are more representative of real world problems, in compared

8

with low-dimensionality problems. Also, high-dimensionality problems are more

difficult to solve than low-dimensionality problems, because it is evident that high-

dimensions means more variables and therefore bigger search space. Also, high-

dimension problems may contain more interactions between different dimensions,

these interactions cause more complexity for optimizationalgorithms.

3. Multimodality

Multimodal problemsare those problems in which there are a number of points that

are better than all their neighbouring solutions. Each of these points is a local op-

timum and denote the highest of these as the global optimum. Problems in which

there is only one point that is fitter than all of its neighbours are known asunimodal

problems.

Most real-world optimization problems of interest are multimodal, that is they contain

more than one optimum. Sometimes, the optima in a multimodallandscape may be

of different levels or of the same level. If they are all of thesame level then they are

all global optima. Finding one of them is usually sufficient to solve the optimization

problem exactly, thus multimodality can potentially make aproblem easy, as many

points are easier to search for than one.

If the optima are of different levels, then some are not global optima. These local

optima can cause difficulties particularly for local-search algorithms such as hill-

climbers, because they can become stuck in them, unable to escape to any point of

better evaluation. Genetic algorithms and other population-based algorithms are of-

ten considered as being particularly suited to searching multimodal landscapes.

4. Discontinuity and Continuity (Non-differentiable and Differentiable)

There are some real optimization problems whose objective function values are dis-

continuous, such as the combinatorial problems which are always non-differentiable.

When the objective function landscape is continuous, it is possible that gradient meth-

ods are more suitable than evolutionary algorithms. Discontinuity is not usually re-

garded as a main factor of problem difficulty.

5. Epistasis (Non-separability) and Linear separability

Epistasis is a measure of the degree of interaction between parameters in an objective

function. If a problem has no epistasis then all of the parameters can be independently

optimized, so that the number of points that must be visited is very small compared

9

to the whole search space. If the parameters in a problem can be split into groups

in such a way that, taking each group separately, the parameter values within that

group which give the best evaluation, with the values of all other parameters held

constant, are the same as those in the global optimum, then the problem is linearly

separable. On the other hand, if in a problem, the contributions of all parameters

depend upon all others then the problem has unbounded epistasis and is not linearly-

separable. Such a problem is generally difficult to search using an EA or any other

general-purpose technique. For this reason, epistasis andepistasis variance have been

used as predictors of problem difficulty. It has also been suggested by some that real-

world problems exhibit bounded epistasis and this makes it possible to search them

efficiently using EAs and other metaheuristics.

6. Unconstrained, Linear constrained and Non-linear constrained

Constraints are virtually ubiquitous in real world optimization problems, both dis-

crete and continuous, so we should expect that good general-purpose search algo-

rithms can deal with constraints. Constraints can be linearand non-linear. For

some problems, the optimum located in different places, particularly on the constraint

boundary, and the feasible and infeasible regions have different sizes. It can be ar-

gued that population based evolutionary techniques are better suited to constrained

optimization problems, because EAs can traverse an infeasible region and less pos-

sible to be trapped in suboptimal feasible regions. there are some other different

approaches to deal with constraints, including penalty functions, decoders, and repair

mechanisms.

7. Neutral fitness landscapes

The neutral fitness landscape explores another difficulty ofmany optimization prob-

lems. Neutrality results in the search algorithms lossing direction because there will

be no enough various fitness information available to reflectthe performance dif-

ference among solutions. Based on the definition of fitness landscape above, the

neutrality of the fitness landscape can be further charactorized with the idea oftest of

neutrality. A test of neutrality is a predicate:

isNeutral: S × S −→ {true, f alse}.

For example,isNeutral(s1, s2) is true if:

10

f (s1) = f (s2),

| f (s1) − f (s2) |≤ 1/M, with M is the population size,

f (s1) − f (s2) is under the evaluation error.

The neutral neighborhoodof s is the set of neighbors which have the same fitness

f (s)

Vneut(s) = {s
′ ∈ V(s) | isNeutral(s, s

′
)}.

Theneutral degreeof a solution is the number of its neutral neighbors.

nDegree(s) = #(Vneut(s) − {s}).

A fitness landscape isneutralif there are many solutions with high neutral degree. If

we consider applying a evolutionary algorithm to solve a problem with neutral fitness

landscape, then we found that the main feature of neutral fitness landscape is that, a

considerable number of mutations have no effects on the fitness values.

To this point, we return to those tasks we introduced at the beginning of the chapter, and

try to solve them using one of the paradigm algorithms ofEC, theGA, without formally

introducing it. For task1, one could simply use a ‘search agent’ to help with this task.One

of the possible implementations for this agent is maintaining a population or set of possible

routes given the starting and arriving positions by the user, and repeatedly searching for

new and better routes. The routes are evaluated by the measurements of length, traffic

conditions, etc. This information could be collected by theagent according to previous

statistical data or real-time releasing updates from the city’s traffic management center.

The search is used to create new alternative routes according to some current good routes.

If there are some better routes, then they are kept and some very bad routes are deleted.

The newly-generated routes will simply substitute some parts of the current good routes

with some other possible subroutes (or roads). Those substitutes could be more beneficial

by avoiding a road which is quite often congested, or could worsen the current routes by

increasing their lengths. A search can take a certain numberof cycles before stopping,

and the route returned should have the following features, it is not necessarily the best

(which we could not really know) and also is not the shortest,it avoids some serious traffic

congestions by traveling on some lanes instead of main roadsoccasionally, and under the

11

estimated travel time by the agent, it takes the least traveling time. For task2, we assume

the variables are all real numbers. If the number of variables constitute one input value for

the mathematical function isn, and for each variable, there ared equal possible values, then

we will havedn different input solutions. And the set of these solutions form the solution

space. The search is then used again to create new alternative solutions based on the current

good solution from an initial set of solutions which could berandomly sampled. All of

these solutions (set of variables assigned with real numbers) are evaluated by feeding them

into the formula and a function value is calculated. Those solutions which have higher

function values (maximization) are emphasized and are given a higher probability to be

involved in producing a new solution. The new solutions are kept into the next set, where

some bad solutions are deleted subject to a pre-fixed set size. As stated before, this task

has the difficulty that the invisible landscape of the function could be very irregular. The

advantages of the population based search method for this task are that the situations where

some solutions are attracted into some local optimum do not apply to other solutions which

could represent the global optimizations successfully.

For task3, how to apply a population based search to solve this task andthe rela-

tive aspects which need to be considered are beyond the scopeof this thesis, but we still

emphasize two main aspects which have arisen from this task.First, to keep an evolv-

ing population of solutions is crucial to deriving qualifiedsolutions, solutions that are

well distributed on the so-calledPareto front. Second, there is a research field called

Multi-Objective Evolutionary Algorithm (MOEA)[Deb01] in the EC community, which

completely contributes to how to apply evolutionary algorithms to solve multi-objective

optimization problems and has shown novelty over the traditional weights-based methods.

For task4, to solve this task withGA, the selection of a suitable representation for this

problem and how to encode them into an acceptable format for variation operations are

important. Each board status is represented as one solution, therefore the whole set of all

possible or legal moves (board status) constitute the search space. The search is carried out

in a similar way to that stated above, except the evaluation function is much more difficult,

which may include some recursive definitions and rewarding mechanisms.

For task5 in this thesis, chapter7 is dedicated to the solution of problem5, the details of

the solution procedure and experiment results will be presented until then. For task6, again

the representation of each solution for this task is not easyand will influence the wholeGA

search procedure being applied. Also, this task extends ourunderstanding of the problem

application range forEC. Evolutionary algorithms are used to solve a wide range of prob-

12

lem styles, in fact, there is another paradigm algorithm called Genetic Programming (GP)

[Koz92, Koz94] which is devoted to solving problems like task6, where a very popular

representation for the solutions is a tree. And all the corresponding search operations are

defined according to this special tree structure. Again, thediscussion aboutGP will not

be included in this thesis, butGP as another main EC dialogue does share many similar

features withGA.

Evolutionary algorithms have the advantage that all possible alternative solutions are

kept, therefore potential good solutions (solutions that eventually cause global optimum

performance) can be retained. Furthermore, if there are many global optimums, all of them

are possibly captured within the population, while for local search methods, at best, there

is only one global optimum which can be found. Compared with local search methods,

population based search methods have a wider view on the entire problem search space, it

is therefore less likely to be cheated in the local optimum. Beyond the consideration ofEC

as a search-based problem solver, it has some other advantageous aspects, first, the idea of

‘EC’ itself is a fascinating idea, how to realize and simulate this idea in computers and ob-

serve its behavior will create considerable interests in both computer science and biological

research. Computers can simulate the millions-of- years-long evolutionary process within

hours. Second,EC offers an automatic problem solving method for the rapidly growing

and demanding problems field.EC is capable, because it deals with demanding problems

in a parallel style;ECis automatic, because it selects good solutions from many alternatives

and can generate new and better solutions in a progressive cycle. Finally,ECis not a simple

search method, or optimizer, it is a powerful natural problem solver. Two noteworthy and

beautiful arts produced by evolution probably are the worldwe live in and the human brain,

which we cannot fully understand yet.

Althourgh having such many advantages,EC still has another very outstanding feature

which makes it even more attractive and successful problem solver. This feature is called

adaptation. In fact, all theECparadigm algorithms have this feature and show adaptation in

different aspects and extents. Especially theESalgorithms have adaptation implicitly and

are well-known as introducing self-adaptation into theEC field. We introduce adaptation

and self-adaptation here only in context of evolutionary based optimization problem solving

methods.

Adaptation is the evolutionary process whereby a population becomes better suited to

its habitat. This process takes place over many generations, and is one of the basic phe-

nomena of biology. The term ‘adaptation’ may also refer to a feature which is especially

13

important for an organism’s survival and reproduction. Such adaptations are produced in

a variable population by the better suited forms reproducing more successfully, that is by

natural selection. Adaptation is, first of all, a process, rather than a physical part of a body.

Adaptation is not always a simple matter, where the ideal phenotype evolves for a given

external environment. All adaptations help organisms survive in their ecological niches. In

this thesis, we discuss adaptation only in the context of evolutionary computation.

In an evolutionary algorithm, usually, adaptive parameters control takes place when

there are some forms of feedback from the search that serves as inputs to a mechanism

used to determine the direction or magnitude of the change tothe strategy parameter. The

assignment of the values of the strategy parameters may involve credit assignment, based

on the quality of solutions discovered by different operators/ parameters, so that the up-

dating mechanism can distinguish between the merits of competing strategies. Although

the subsequent actions of the EA may determine whether or notthe new value persists or

propagates throughout the population, the important pointto note is that the updating mech-

anism used to control parameter values is externally supplied, rather than being part of the

‘standard’ evolutionary cycle.

A more advanced idea introduced by evolutionary computation is the self-adaptation of

parameters. Here, the parameters to be adapted are encoded into the chromosomes and un-

dergo mutation and recombination. The better values of these encoded parameters lead to

better individuals, which in turn are more likely to surviveand produce offspring and hence

propagate these better parameter values. This is an important distinction between adaptive

and self-adaptive schemes: in the latter the mechanisms forthe credit assignment and up-

dating of different strategy parameters are entirely implicit, that is they are the selection and

variation operators of the evolutionary cycle itself.

Adaptation is an very important concept in evolutionary computation, later in this thesis

we will see concrete instance optimization algorithms which have adaptation as their main

advantage compared with other optimization algorithms, also some more advanced hybrid

optimization algorithms where adaptation is introduced byother techniques like machine

learning and statistics. As adaptation does not only belongto evolutionary computation,

when machine learning techniques are introduced, we will also discuss the relationship

between adaptation and learning.

Despite its advantages,EC also has some features which are not satisfying when used

to solve certain type of problems. Such problems may typically have a huge search space

and also the measurement for each solution may be very expensive in computational time.

14

This leads us back to the time and space limitation issue again, that is, for these problems,

the expensive measurement requirement is not affordable for the evolutionary search algo-

rithms, due to the fact that evolutionary search methods arestochastic trial-and-error style

problem solving methods. The search is completed by slightly modifying the current solu-

tions blindly and at random. The modification and improvement procedure could be very

slow, and they heavily depend on the extent of the change, which needs to be parameterized

correctly. However, selecting the good parameters is itself a challenging task and can be

seen as an optimization problem on its own. If the parametersare not set suitably, then the

expected improvement in performance cannot be achieved easily.

1.1.2 Evaluation is expensive

Throughout our discussion so far, we have not yet emphasizedan important concept, the

evaluation of solutions. Evaluation is an important component in search based problem-

solving methods. It is used to measure the quality of the solutions found during the search

procedure. Such a measurement will be utilized in many situations during the search proce-

dure. Those situations include, first, selection of solutions as the objects of being improved.

For example, in aGA search, a subset of the population needs to be selected to form the

parents which will then reproduce to create new individuals. Second, measurement of the

quality of solutions are needed when new solutions are generated. For example, in a hill-

climber local search method, when a new solution is generated from the current solution,

we need to know whether this solution is better than the current one or not, this comparison

needs suitable measurements.

However, evaluation could be very expensive, as in some situations, computer-based

simulation and real implementation actions are needed. Letus reconsider the tasks at the

beginning of this chapter. To evaluate task1, in fact, we can only estimate these travel route

plans using some previously available information, such asthe length of the roads, the

usual traffic conditions on these roads, etc. Evaluating these travel plans requires actually

traveling on these roads which constitute the routes by car or bus, whose expense is not

restored. We never evaluate a route by actual traveling, instead we always estimate in

advance. The situation for task2 is much better, because the evaluation for a mathematical

function is simply the computation of the function values with the given function formulae.

We discuss task4 first, the measurement of a good move in a current chess board state is

not direct, it may depend on many factors, the strategy the player uses, the previous moves

15

and the next moves can all determine how ‘good’ this current move is. A not very attacking

move does not mean a bad move, and the most aggressive move cannot guarantee the final

win of the game.

For the remaining task3, task5, and task6, we group them as the very expensive eval-

uation tasks. The evaluation of the good design of an aircraft engine contains many stages,

such as computer simulated designs and experiments, long time and distance practical fly-

ing tests etc. This is obvious technically and financially expensive. In task5, the evaluation

of a medical treatment plan for chemotherapy against cancermay need to run a computer

virtual simulation program to simulate the real effects of injecting medicines into the bod-

ies of patients. This simulation also needs to consider manyside-effects which may cause

damages to the patient’s organs. And the entire procedure needs to be finished in a long

period of time (usually months) before we can see the effectsof treatment. This makes the

evaluation for this task not only expensive but also risky. Finally, for task6, to evaluate

the built model, a procedure calledcross-validation[Koh95] is usually used in an unbiased

way, this procedure contains many rounds, each round involves partitioning the available

data set into two subsets, the first data set is the training set performing the analysis, the

other data set is the validation set or test set validating the analysis. To reduce variability,

multiple rounds of cross-validation are performed using different partitions, and the valida-

tion results are averaged over the rounds. As we can see, thisevaluation procedure is also

very expensive in terms of computation time.

As we have discussed, for this class of problems including task 3, task5, and task

6, the expensive evaluations in the search procedure can meanthat the evolutionary search

methods struggle to find relevant good solutions efficiently. The huge size of the population

will amplify these expensive measurements and make these problems even more expensive.

1.1.3 Learning is useful

As mentioned before, learning is a frequent task in humans’ activities, as it is in scientific re-

search. There is a well-known and advanced research field called Machine Learning (ML)

[Mit97], which has been one of the cornerstone topic in Artificial Intelligence ever since

its invention. It contains many advanced techniques, and iscreating consistently increas-

ing research interests and making rapidly progress. Generally, learning is a procedure that

works on past experience, and produce patterns or models which can automatically make

intelligent decisions for the future.

16

There are many standards by which to classify machine learning algorithms. Broadly,

we can classify learning algorithms assupervised, unsupervised, andreinforcement, or as

inductive and analytical, or as lazy and eager etc. Many classic learning algorithms are

supervised. For example, the Decision Tree learning methodID3, Bayesian Network (BN)

Bayesian learning [Den], Neural Network (NN)learning [Hay99], Support Vector Machine (SVM)

[CV95] learning andk-Nearest-Neighbors (KNN)learning. Supervised learning is the ma-

chine learning task of inferring a function from labeled andsupervised training data. The

training data consist of a set of training examples. In supervised learning, each example is

a pair consisting of an input object and a desired output value. A supervised learning algo-

rithm analyzes the training data and produces an inferred function, which is often called a

classifier or a regression function for discrete and continuous output. The inferred function

should predict the correct output value for any valid input object.

Unsupervised learning refers to the problem of trying to findhidden structures in un-

labeled data. Since the examples given to the learner are unlabeled, there is no error or

reward signal to evaluate a potential solution. Many clustering algorithms are examples of

unsupervised learning.

Reinforcement learning concerns with how an agent should take actions in an envi-

ronment so as to maximize some notion of cumulative reward. In machine learning, the

environment is typically formulated as aMarkov Decision Process (MDP), and many rein-

forcement learning algorithms for this context are highly related to dynamic programming

techniques. Reinforcement learning differs from standardsupervised learning. For rein-

forcement learning, correct training data are never presented, and the sub-optimal actions

are never explicitly corrected. The focus of reinforcementlearning is on-line performance,

which involves finding a balance between exploration and exploitation. The basic rein-

forcement learning model consists of:

1. a set of environment states S;

2. a set of actions A;

3. rules of transitioning between states;

4. rules that determine the reward of a transition;

5. rules that describe what the agent observes.

The rules are often stochastic. The observation typically involves the scalar immediate

reward associated to the last transition. In many works, theagent is also assumed to observe

17

the current environmental state, in which case we talk aboutfull observability, whereas in

the opposing case we talk about partial observability. Sometimes the set of actions available

to the agent is restricted according to different situations.

A reinforcement learning agent interacts with its environment in discrete time steps. At

each timet, the agent receives an observationot, which typically includes the rewardr t. It

then chooses an actionat from the set of actions available, which is subsequently sent to

the environment. The environment moves to a new statest+1 and the rewardr t+1 associated

with the transition (st, at, st+1) is determined. The goal of a reinforcement learning agent is

to collect as much reward as possible. The agent can choose any action as a function of the

history and it can even randomize its action selection.

When the agent’s performance is compared to that of an agent which acts optimally

from the beginning, the difference in performance gives rise to the notion ofregret. Note

that in order to act near optimally, the agent must reason about the long term consequences

of its actions. Thus, reinforcement learning is particularly well suited to problems which

include a long-term versus short-term reward trade-off. Ithas been applied successfully to

various problems, including robot control, elevator scheduling, telecommunications, game-

playing.

Among these three learning algorithms categories, as we cansee, the reinforcement

learning algorithms solve the most general or complex problems. In compared, supervised

learning methods solve the most specific or well-defined problems.

Meanwhile, many learning algorithms are inductive learning. Inductive learning is to

use the training data to induce a set of hypotheses that describe the given training data on

the whole data space under the same distribution for both thetraining and unseen test data.

Once the hypotheses are produced, they can be used to predictthe target classification of

the unseen data. In the same context, in analytical learning, prior knowledge is used to

analyze or explain how each observed training example satisfies the target concepts. This

explanation is then used to distinguish the relevant features of the training data from the

irrelevant features, so that data can be generalized based on logical rather than statistical

reasoning. Therefore analysis learning can improve learning efficiency. In most analysis

learning methods, in addition to the training data, an extrarule is derived from the training

data and is consistent with both the training data and the corresponding domain theory. This

rule, when used for classifying the unseen data, will only beable to predict one class, the

unsatisfying data will be classified into another class.

In this thesis, we will use the former standard of supervised, unsupervised and reinforce-

18

ment learning as the classification standard for machine learning algorithms. And all of the

learning algorithms applied and discussed in this thesis are supervised learning algorithms.

This is due to the fact that, all of our expecting hybrid optimization algorithms should have

the capacity of indicating the promising solutions for the current evolving population, this

task can be finished by supervised learning methods with the best performance solutions

and the worst performance solutions as the training data. Althrough, the unsupervised and

the reinforcement learning can all be used to guide optimization in other ways, it is beyond

the range of the research conducted in this thesis.

Having talked about the learning algorithms and the classification standards generally,

we will discuss the task that can be solved by these learning algorithms, that is the classi-

fication or concept learning task. For a typical classification learning task, the experience

data consists of positive and negative training data, each of the data item contains a number

of data values which characterize a set of attributes. The last attribute is called the target

attribute. The task for a learner or classifier is to find or construct a model that correctly

classifies the training data according to the target attribute. After constructing such a model,

when a new data item is gained in future, its target attributevalue should be correctly pre-

dicted with this learned model.

Machine learning is not the only method which concerns the classification task, there

are similar methods developed in parallel in statistics. For example, for the decision tree in-

duction algorithm, statisticians have done much work on classification and regression trees,

which are the similar methods for generating trees from examples. And the use of nearest-

neighbor methods for classification is the standard statistical technique that has been exten-

sively adapted by machine learning researchers to improve classification performance.

From the above introduction of a classification learning procedure, we found that learn-

ing contains two main functions, the model building function and prediction function on the

model. It is due to these functionalities that learning can be used to guide the evolutionary

search procedure, and is able to overcome the shortcomings indicated in the evolutionary

based search procedure. That is, learning can be used to construct a model which is the

description of the current search space. This model then canbe used to predict the quality

of the unexplored solutions, and to indicate where the unseen promising solutions could

lie. If we consider this effect in the balance of explorationand exploitation, the learning

is expected to emphasize exploitation by indicating the promising region and generating

more new individuals from this region. This adjustment of the balance would benefit the

evaluation-expensive problems by exploiting into the promising area of the search space to

19

gain promising solutions quickly. This is crucial to the success of solving these problems.

We have introduced the concept of adaptation in1.1.1when we talk about search based

problem solving methods. One of the most important feature of evolutionary search algo-

rithm is that these algorithms have the capacity of adaptingto the environment where it is

involved in. Also, the more advanced feature of self-adaptation of the evolutionary algo-

rithms have the capacity of learning the correct strategy parameters and therefore are able to

adapt the environment more efficiently. In this section, we also have explored the advanced

topics about machine learning algorithms, their capacity,explicit construction forms, and

classification standards.

An natural question arise, that is what is the relationship between adaptation and learn-

ing. Is there any link between these two advanced features from two seemly different

problem solving fields. The role of adaptation and learning are becoming increasingly es-

sential and intertwined. The capability of a system to adapteither through modification

of its physiological structure or via some revalidation process of internal mechanisms that

directly dictate the response or behavior is crucial in manyreal world applications. Adap-

tation is the core capacity for most machine learning approaches and whether the learning

algorithms are successful very much depends on their adaptation to the problem environ-

ment. This kind of adaptation can also be understood asoptimization. For example, when

the ID3 decision tree learning method is applied on the giventraining data, the resulting

decision tree may suffer over-fitting in some extent, many post-pruning based techniques

can overcome this difficulty, showing the adaptation of these methods to construct or learn

more accurate tree models. Also, the BP algorithm for neuralnetworks learning is to adapt

(or optimize) a set of weight set to find the most suitable network structure for a given

training data. Finally, in the reinforcement learning, where the whole environment may not

be available, the algorithm can select more appropriate actions according to feedback infor-

mations to make progressive performance improvement, suchas a procedure is an adaptive

procedure. Meanwhile, learning is a primary means to effectadaptation in various forms.

They usually involve computational processes incorporated within the system that trigger

parametric updating and knowledge or model enhancement, giving rise to progressive im-

provement. We will see more concrete procedures of this kindin the following section

and also we develop such optimization algorithms where learning will effect the adaptation

procedures.

20

1.1.4 Hybrid is the trend

We have introduced two general problem solving methods, search and learning. Many

search algorithms can be used to solve complex problems withvarious features by explor-

ing the solution space in different ways. Learning can be used to understand the current

search status or progress, and make constructive suggestions or predictions for the future

search procedure. Furthermore, we emphasized the shortcomings faced by the search based

methods, especially the fact that the expensive evaluations of some complex problems are

more problematic. To this point, we raise the question whichdrives the development of this

thesis. Namely, what is the effect of hybridizing search andlearning? More specifically,

will a learning method influence the evolutionary search methods when it is embedded in

the search procedure? If so, how will learning influence search? Will learning help to

overcome the shortcomings of evolutionary search? Before we begin this investigation, we

claim that we believe that any learned problem-specific knowledge and previous gained ex-

perience can benefit the general search problem solving method, if applied properly. How-

ever, these benefits come at a price. First, hybridization means more complex algorithm

designs and more computational resources and time. Second,the range of the solved prob-

lems by the hybrid algorithms will inevitably be reduced, compared with the more general

search algorithms. Namely, we are in favor of theNo Free Lunch Theorem(NFL)[WM97],

which states that if we average over the space of all possibleproblems, then all black box

algorithms will exhibit the same performance.

Hybrid is not a new idea in evolutionary computation, many other methods and data

structure have been embedded into them. These new hybrid algorithms are very successful

in practice, for example, some of these algorithms are called theMemetic Algorithm (MA)

[Mos89]. MA are the evolutionary search algorithms that are combined with a local search.

The evolutionary search keeps the basic evolutionary features, such as selection, variation

and survival selection, however, when the new solutions aregenerated, they are further im-

proved by the local search methods before they are involved in the survival selection stages.

The idea behind memetic algorithms is clearly based on the balance between exploration

and exploitation, the evolutionary search is responsible for exploring the search space, while

the local search is used to exploit quickly through the new explored local space. So, the

key design of a good memetic algorithm will be how to structure the evolutionary and local

search more properly. And also, the success of the memetic algorithm also depends on the

problems it solves.

21

Modern hybrid algorithms have more advanced ideas embodying hybridization. They

adopt more advanced algorithms from machine learning and statistics. Excellent paradigm

algorithms include theCovariance Matrix Adaptation Evolution Strategies (CMAES), the

Estimation of Distribution Algorithms (EDA)and theLearnable Evolution Model (LEM).

In this thesis, the development of our new hybrid algorithmsis expected to follow the same

pattern within these algorithms. And the inspiration of ourdevelopment is also derived

from the algorithms.

CMAESas a general optimization algorithm adopt thePrinciple Component Analysis (PCA)

technique to find the covariance relations of the attributeson the selection mutation steps,

and therefore is able to learn from past evolution history. This learning capacity makes

CMAEShave better optimization performance.

EDAs are variants of the standard evolutionary algorithm. As thename of these algo-

rithms suggests, the new individuals are generated according to a probability distribution

rather than the variation operators. These probability distributions are inferred from the

previous solutions in the search space by statistical inference methods.

LEM is a more explicit hybrid algorithm. It employs a supervisedrule based leaning

method called AQ learning algorithm, which can learn from the current solutions based

on their performance. The learned model, a set of rules, can distinguish the solutions as

two groups with different performances. This learned knowledge is then used to guide the

following evolutionary search procedure. This basic principle behindLEM inspired many

other ideas and also the development of our hybrid algorithms in this thesis.

1.1.5 Contributions

The contributions of this thesis are:

Contribution 1 A simple genetic algorithm combined withk-nearest-neighbors learning

algorithm, theLEM Instantiated with KNN algorithm (LEM(KNN)), is developed.

KNN in this LEM instance algorithm is used as a ‘filter’ deciding the survival of the

new generated individuals. Also, a further refined variation of theLEM(KNN) algo-

rithm, the LEM Instantiated with distance-weight KNN algorithm (LEM(dwKNN))

is developed. LEM(dwKNN) extendsLEM(KNN) with the consideration of dis-

tance contributions. The performances of these algorithmsare compared with the

standard genetic algorithms, showing that significant improvements can be achieved

by hybridizing even these very simple learning algorithms with the normal evolution

22

algorithms.

Contribution 2 Simple genetic algorithm combined withEntropy-Based Discretization (ED),

ID3 decision tree learning algorithm are developed, respectively. Some of the re-

sulting algorithms including, theLEM Instantiated with ED algorithm (LEM(ED)),

and theLEM Instantiated with ID3 algorithm (LEM(ID3))are all designed under the

general LEM framework and are based on the Learning-and-Generating Hypothe-

ses method, showing the flexibility of this framework. With the development of these

LEM instance algorithms, we have also investigated different techniques and methods

which are important components of the hybrid algorithms andaffect the functionali-

ties and performances of the hybrid algorithms.

Contribution 3 The resulting algorithmsLEM(KNN), LEM(ID3) and their variant algo-

rithms are compared with other hybrid algorithms, such asCMAES andEDA, on a

number of test problems, including the CEC 2005 real-parameter functions optimiza-

tion suite and the cancer chemotherapy optimization problem. Performance on these

problems have shown these LEM instance algorithms are promising, significantly

outperform the standard evolutionary search procedure, and compete well against

state of the art hybrid algorithms.

1.2 Outline of the thesis

This thesis contains eight chapters, beginning with this introductory chapter. There are two

literature review chapters, introducing search, evolution, learning and hybrid of evolution

and learning techniques. Chapter4 introduces theKNN based LEM hybrid algorithms,

Chapter5 is for the Entropy-Based Discretization method for LEM instance algorithm and

the resultingLEM(ED) algorithm. Chapter6 deals with applying decision tree construction

algorithm ID3 as the learning component and the resultingLEM(ID3) algorithm. Chapter

7 introduces and solves the optimization problem of cancer chemotherapy treatments. Con-

clusions of our work are included in Chapter8. We introduce the details of these chapters

as follows:

The review of search and learning methods used in this thesisis in Chapter2. Search as

a general problem solving method to solve optimization problem is introduced. We classify

search algorithms according to two broad classes, the localand population-based search

methods. With the emphasis on the population-based search methods, theGA andESare

23

introduced, respectively. Some main learning algorithms applied in the hybrid algorithms

in this thesis are introduced. These algorithms are inductive learning algorithms, statistical

methods and probability-based methods. The decision tree learning algorithm ID3 and the

covering algorithm AQ are introduced first along with the twomain learning strategies be-

hind them. Two important statistical learning methods, theKNN and thePCAare explained

next. Finally, the Bayesian network inference and Bayesianlearning are introduced.

Chapter3 mainly introduces hybrid algorithms. We only focus on threemodern hybrid

algorithms. They areCMAES, EDA andLEM. The main principles behind these hybrid

algorithms are explained. All of these algorithms are used to compare with our hybrid

algorithms on a number of test optimization problems in thisthesis. And also, the LEM

framework is the main source of inspiration for our hybrid algorithms.

Chapter4 introduces our first and simplest learning and evolution hybrid algorithm -

LEM(KNN). First, LEM(KNN) is the simple genetic algorithm combined with the super-

vised and lazy learning method KNN. Second,LEM(KNN) does not follow the original

LEM framework principle, where learning is used as a hypothesis generation method for

generating new individuals for the next generation.KNN is used as a ‘filter’, deciding the

survival of the new individuals being generated. This is a new idea in the hybridizing of

learning and evolution. It extends the original LEM framework and shows the flexibility of

this framework. The flexibility comes from the fact that the new learning method cannot

only be embedded into the framework, but also the fact that the ways in which learning and

evolution interact can vary. A further refined algorithm of theLEM(KNN) algorithm based

on distance weights is developed as well. The resulting algorithm, calledLEM(dwKNN), is

presented, and its advantages overLEM(KNN) are explained. These algorithms are tested

on a number of real-parameter function optimization test problems compared with a stan-

dard genetic algorithm, their performances are reported.

Chapter5 introduces theLEM(ED) algorithm, a genetic algorithm combined withED.

LEM(ED) is developed based on our ‘cheap’ implementation strategy.Based on this strat-

egy and the ‘Learning and Instantiation’ method in the LEM framework, the simpleED

method is employed as the learning component in this LEM instance algorithm. We also

compare it with a simple genetic algorithm and the standard version ofCMAES on a num-

ber of real-parameter function optimization test problems. The performances of these algo-

rithms are also reported.

In Chapter6, based on the development experiences of the previous two algorithms, we

introduce theLEM(ID3) algorithm, which employs the decision tree learning algorithm ID3

24

as the learning component and a standard genetic algorithm as the evolution component.

ID3 uses training data derived from current population to construct a decision tree, which

is then transformed into a set of rules representing the learned hypothesis, based on this hy-

pothesis, the new individuals are instantiated. We designed and developed new techniques

and methods important in the success of the development of this hybrid algorithm. The

performance ofLEM(ID3) was tested on the CEC 2005 special session on real-parameters

function optimization. And the performance is compared with two variantCMAES algo-

rithms and advanced evolutionary algorithms, theLocal Restart CMAES (LR-CMAES)al-

gorithm, theRestart CMAES With Increasing Population Size (IPOP-CMAES) algorithm

and thePopulation-Based, Steady-State Procedure for Real-Parameter Optimization (K-PCX)

algorithm, respectively. Through these results, we found out thatLEM(ID3) performs very

well and is competitive with these general hybrid optimization algorithms.

Chapter7 introduces an evaluation-expensive problem, optimization of the treatment

plan for cancer chemotherapy, where the saving of the evaluation amount could be very

crucial to the success of solving this problem. The evaluation for this problem could be

very expensive, including a necessary real simulation procedure either in a virtual computer

system or on a patient’s body. These procedures usually takea long period of time (months)

and risk causing side-effects on patients’ organs. OurLEM(dwKNN) andLEM(ID3) al-

gorithms are both applied on this cancer chemotherapy problem, and the results are re-

ported, showing outperformance over the traditional genetic algorithms and competitive-

ness against theCMAESand variant algorithms ofEDA.

Chapter8 concludes this thesis. First, we summarize the work we have done about

hybridizing evolution and learning based on the LEM framework. Second, we list the

contributions we have achieved during the development of these hybrid algorithms. Finally,

we indicate the work remaining to be further investigated inour future research work.

25

Chapter 2

Methods for Search and Learning

2.1 Overview

There are three core topics in this thesis: search, learning, and hybrid. In this chapter, we

explain the first two topics in detail, and the next chapter for the last topic. Search is used

to solve a problem optimization task. We give the definition of optimization for problem

solving.

Definition An optimization problem requires us to maximize or minimizesome measur-

able function of one or more variables:

y = f (x) (2.1)

subject tox ∈ X wherex = {x1, x2, . . . xn} is adecision vectorand its components are called

decision variables. Decision vectors are also often referred to assolutionsor candidate

solutions. Thesearch spacewhich is the set of solutions one is going to search over, it may

be some subset or superset ofX. The functionf is known as theobjective function. If the

goal of the search is maximization thenf is sometimes called afitness functionsor utility

function, and the valuey assigned to a solution is then itsfitnessor utility. Conversely, if

the goal is to minimizey then f may be called thecost functionor in the case of constraint

satisfaction, thepenalty function. However, in this thesis, we will not distinguish between

these names and will simply use the termfitness functions. Also, we consider maximization

and minimization as equal optimization tasks, because theycan be easily transformed to

each other.

To tackle the optimization problems, many search based methods have been developed.

We will explore some of these algorithms in the following sections. Our concerns in this

26

thesis are the evolutionary population-based search methods, for better understanding, we

compare them with another important class of search algorithms, the local search. The

introduction to the local search will also provide a good explanation of the global search

capacity, which is claimed by the evolutionary search methods. Therefore, evolutionary

computation is used to solve global optimization problems.Generally, search methods not

only concern how to generate candidate solutions, but also whether the solutions satisfy

some optimality criteria, that is theconstraint satisfactionissue. We do not deal with this

issue in general, but will discuss it when it is met in the concrete problem.

Learning is used to solve another type of task, classification or conception learning in

this thesis. We will give the definitions later when the learning algorithms are examined.

These learning algorithms have either been applied in the hybrid algorithms which are

involved in our experiment comparison or will be incorporated into our hybrid algorithms.

We introduce these learning algorithms with a special emphasis on solving the classification

problems which is concerned within our hybrid algorithms.

2.2 Search Algorithms for Optimization

We explore the search algorithms in detail in this section. Before starting this introduc-

tion, a word on general purpose problem solver is given first.General purpose problem

solver is applicable to any optimization problem. It does not require any problem-specific

knowledge and structure, the only requirement is the objective function for the problem.

Very often, one does not have any insight into how a problem might be solved, or which

strategy should be used. In these cases, it is best to use a more general strategy, often called

a metaheuristic. Metaheuristic is sometimes also calledblack-boxoptimization algorithms

or simply,general purpose optimization algorithms.

2.2.1 Local Search

There is a class of metaheuristic optimization algorithms which are based on a neighbor

structure, these metaheuristics are calledLocal Search (LS)[AK89]. Local search algo-

rithms work by finding a solution maximizing a criterion among a number of candidate

solutions. They move from one solution to another based on the neighbor structure in the

space of candidate solutions, until a solution deemed optimal according to the criterion is

found or a time limit is elapsed. For example, a well-known local search algorithm called

Hill Climbing (HC) works by taking a starting solutionx, and then searching the candidate

27

solutions in its neighborsN(x) for one x′ that performs better than or equal tox. If such

a solution exists, then this is accepted as the new incumbentsolution, and the search pro-

ceeds by examining the candidate solutions inN(x′). Hill climbing is an iterative process

of examining the set of points in the neighborhood of the current solution, and replacing it

with a better neighbor if one exists. Eventually, this process will lead to the identification

of a local optimum: a solution that is superior to all those inits neighborhood. Let us look

at the definition for the generalHC algorithm:

Definition Let (X, f) be an instance of a combinatorial optimization problem. A neighbor-

hood function is a mappingN : X −→ 2X, which defines for each solutioni ∈ X a set

N(i) ⊆ X of solutions that are in some sense close toi. The setN(i) is the neighborhood of

solutioni, and eachj ∈ N(i) is a neighbor ofi. We shall assume thati ∈ N(i) for all i ∈ X.

Roughly speaking, aHC algorithm starts off with an initial solution and then continually

tries to find better solutions by searching neighborhoods.

According to the above definition, a very good example of hillclimbing algorithm is the

Random Mutation Hill Climbing (RMHC), as described in [MHF93]. In RMHC, an initial

solution is first generated and evaluated, and this becomes the current solution. Then at

each iteration, a copy of the current solution is made, and a random mutation is applied to

the copy, producing a new candidate solution. The candidatesolution is then evaluated, if

it is not worse than the current solution then it becomes the current solution; otherwise, it

is discarded. The algorithm may be stopped when a specified number of evaluations have

been carried out, or when there has been no improvement in theevaluation of the current

solution over a specified number of iterations. The generalHC algorithm can be illustrated

as Algorithm1:

Here, the ‘local conditions’ are some local termination conditions, such conditions

could becount = |n(i)|, which indicates that the current local search will stop if all the

neighbors for the current solution are considered. It can also be changed as (count =

|n(i)|) || (best , i), which means as long as a better solution is found, the iteration will

start again using the better solution as the new initial solution. The iteration conditions are

the termination condition for the whole local search algorithm, it is used to decide the depth

of the whole search, and could be simply the maximum allowed number of iterations.

However, the drawback of hill climbing based local search algorithms is that, in gen-

eral, it cannot get out from the local optima, and cannot find the global optimization. And

also, the performance of hill climbing algorithms very muchdepends on the initial solu-

28

Algorithm 1 pseudo code for the generalhill climbing algorithm
1: Setbest= i;

2: Setiterations= 0;

3: repeat

4: Setcount= 0;

5: repeat

6: Generate the next neighborj ∈ n(i);

7: Setcount= count+ 1;

8: if (f (j) is better than or equal tof (best)) then

9: Setbest= j;

10: end if

11: until (Local conditions are satisfied)

12: Seti = best;

13: Setiterations= iterations+ 1;

14: until (Iteration conditions are satisfied)

tions. However, problems frequently exhibit numerous local optima, some of which may

be significantly worse than the global optimum, therefore noguarantees can be offered as to

the quality of the obtained solutions by local search algorithms. A number of methods have

been proposed to get around this problem, in principle, theyall try to change the search

landscapes in different ways.

Multi-Start Hill Climber

The problem of converging to a local optimum is overcome by restarting the search with

new search points within theMulti-Start Hill Climber (MSHC) [YI96] algorithm. It is a

modification of the hill climbing search strategy. The multi-start search defines a restart of

the algorithm from a new, random initial solution. After each iteration, when there is no

improvement in the evaluation of the current solution, search starts from a point very far

away from the optimum and no information obtained from previous iterations is reused. If

the algorithm is allowed to restart indefinitely according to this criterion, then it will find

a global optimum with probability 1.0 on all optimization problems. This is clear since it

will eventually search all neighborhoods in the search space. However, the length of time

needed to do this will, in general, exceed that needed for a deterministic enumeration of the

whole search space.

29

Variable Neighborhood Search

Another method to overcome the drawback of hill climbing is to change the neighborhood

function, theVariable Neighborhood Search (VNS)[HMMP08]. It is a relatively recent

metaheuristic which relies on iteratively exploring neighborhoods of growing size to iden-

tify better local optima. More precisely,VNS escapes from the current local optimum by

initiating other local searches starting from points sampled from a neighborhood of current

solutions. In this way, the current point’s neighbor size isincreased iteratively until a lo-

cal optimum better than the current one is found. These stepsare repeated until a given

termination condition is met.

Simulated Annealing

There exists an well-known local search algorithm calledSimulated Annealing (SA)[AK89]

[KGV83], which is a generic method based on the Markov Chains. It is quite similar to the

RMHC algorithm, however it improves upon hill climbing algorithms by occasionally al-

lowing movements to worse solutions and is thus capable of jumping out of local optima.

The method draws an analogy from the annealing procedure of metals, where the tempera-

ture controls the arrangement of atoms in their lowest energy configuration during the crys-

tallization process. In simulated annealing, moves are accepted or rejected with a certain

probability depending on a function of the temperature, such that at higher temperatures,

there is greater probability of accepting inferior moves. Temperature is gradually brought

down so that the solution converges. This crucial difference with RMHC means that sim-

ulated annealing is able to search for a global optimum, and under certain conditions it

converges to a globally optimal solution with probability 1.0. In simulated annealing, the

probability function for accepting the candidate solutionj from the current solutioni for a

minimization problem is:

Pck{accept j} =



















1.0 if f (j) ≤ f (i);

exp(f (i)− f (j)
ck

) if f (j) > f (i).



















(2.2)

whereck ∈ R+ is a control parameter, which is some function of the iteration k of the

simulated annealing algorithm. InSA , the value ofck is set initially high, and is grad-

ually lowered to zero, so that initial transitions to highlyinferior solutions are frequently

accepted, but later these transitions become extremely unlikely. The regime for controlling

ck is called thecooling schedule, and it specifies an initial value of the control parameter

c0, a decrement function for lowering the value of the control parameter, a final value of the

30

control parameter specified by a stop criterion, a finite number of transitions at each value

of the control parameter.

Proofs have been given in [AK89], that theSA algorithm converges to the global op-

timum with probability 1.0, provided that the sequence of trials (or Markov chains) ap-

proximate a stationary distribution. However, this requires that an exponential number of

trials are performed, and for some problems, it requires more computation than a complete

enumeration of the search space. Despite this extreme complexity, simulated annealing has

been practically applied in a large range of applications tosolve optimization problems.

Tabu Search

Tabu Search (TS)[Glo96] is a metaheuristic algorithm that uses a local or neighborhood

search procedure to iteratively move from a solutionx to a solutionx′ in the neighborhood

of x, until some stopping criterion has been satisfied. To explore regions of the search

space that would be left unexplored by the local search procedure, tabu search modifies the

neighborhood structure of each solution as the search progresses. The solutions admitted to

N∗(x), the new neighborhood, are determined through the use of memory structures. The

search then progresses by iteratively moving from a solution x to a solutionx′ in N∗(x).

Perhaps the most important type of memory structure used to determine the solutions

admitted toN∗(x) is the tabu list. In its simplest form, a tabu list is a short-term memory

which contains the solutions that have been visited in the recent past. Tabu search excludes

solutions in the tabu list fromN∗(x). A variation of a tabu list prohibits solutions that have

certain attributes or prevent certain moves. Selected attributes in solutions recently visited

are labeled ‘tabu-active’. Solutions that contain tabu-active elements are ‘tabu’. This type

of short-term memory is also called ‘recency-based’ memory.

Tabu lists containing attributes can be more effective for some domains, although they

raise a new problem. When a single attribute is marked as tabu, this typically results in

more than one solution being ‘tabu’. Some of these solutionsthat must now be avoided

could be of excellent quality and might not have been visited. To mitigate this problem,

‘aspiration criteria’ are introduced: these override a solution’s tabu state, thereby including

the otherwise-excluded solution in the allowed set. A commonly used aspiration criterion

is to allow solutions which are better than the currently-known best solution.

Although these and many other algorithms have been developed to tackle the drawbacks

of the hill climbing strategy, as we can see, it can only be solved to some extent but not

completely. This is due to the key fact that the real focus throughout the search procedure

31

in the local search and all its variants algorithms is the current solution, which is also why

they are referred to as local searches. So, however the localsearch strategy is modified or

improved, it can essentially never overcome this drawback.This is the reason why we need

a completely different strategy in the search for optimization.

2.2.2 Genetic Algorithm and Global Optimization

Evolutionary Computation [Bäc96] [TFM99b] [TFM99a] [Mic96] and population based

search techniques have recently gained considerable attention. Unlikely the above local

search methods, these new search-based problem solving methods work on a whole popu-

lation of solutions, it is this feature which makes them in principle able to solve the local

optimum problem faced by local search. Therefore, they are also calledglobal searchmeth-

ods, and the procedure of applying these methods to solve optimization problems is called

global optimization. Global optimization can also be defined under the neighborsstructure

used in local search, namely, the global optimumx∗ is fitter than all of its neighbors under

any neighborhood structures.

Genetic Algorithm

One of the most well-known instance algorithms of theECfamily is the Genetic Algorithm

[Hol75, Gol89, DJ75], which has been used for solving a wide range of problems including

function optimization problems and complex optimization problems, where it is impossible

to obtain exact solutions within a reasonable amount of time. GA draws an analogy from

the evolution of species in biology. Species evolve by meansof genetic operators such as

crossover and mutation, and they survive through the mechanism of survival of the fittest.

In genetic algorithms, this process is simulated by encoding potential solutions (individu-

als) using a chromosome-like data structure. New individuals (children) are created in the

population through reproduction using crossover and mutation operators. These operators

ensure that children inherit qualities of parents and they are passed on from one generation

to the other. Only a certain number of good quality individuals survive each generation and

this ensures that the quality of the population improves with each generation.

The originalGA algorithm introduced by John Holland [Hol75] is sometimes known as

the ‘simple genetic algorithm (SGA)’, or the ‘canonical GA’.SGA works by generating an

initial population of chromosomes or individuals, evaluates the population using a fitness

function. Parent selection operation selects an intermediate population based on the fitness

32

values and put these individuals in mating pool. These individuals are parents waiting

to take part in reproduction to generate the next population. Then reproduction operators

crossover and mutation are applied on parent individuals tocreate the next population – the

offspring. These offspring are first evaluated, then survival selection is applied on these

offspring to decide who will survive to the next generation.The above procedure repeats

until some termination conditions are met. The flowchart ofSGA is given as Figure2.1.

Current population

initialize

Offspring population

Parent population

Termination Condition

variation

parent select

test

satisfied
terminate

survival select

Figure 2.1: Flowchart of the simple genetic algorithm

From the above descriptions and the flowchart ofSGA, we notice that population is

the basic unit for aGA to operate on. The population is characterized by many properties,

such as population size and diversity, which all influence the performance of theGA. The

following GA operations we will discuss are all based on population.

The first step in designing a genetic algorithm is to define a suitable representation for

the solutions. Namely, to define the representation in the real world, thephenotypes, and

the representation inGA space, thegenotypes. A good design for representation is actually

to find a good map (encoding) from phenotypes to genotypes. Inphenotype space, we use

the terms solutions or individuals, in genotypes, we usechromosome. Each individual or

chromosome consists of a set ofvariables, or genes.

Another important component inGA is theevaluationor fitness function, which is used

to assign a quality measurement. This measurement is used todistinguish the individuals

within one population according to their quality, and also for the parent and survival selec-

tion procedure to act. In optimization problem, where we search to optimize a certain kind

33

of objective, it is also calledobjective function.

The selection of individuals to be placed in the mating pool is performed according to a

probability function that depends on some standards. According to this scheme, individuals

having higher fitness might be replicated multiple times to be placed in the mating pool.

The most well-known selection methods are fitness proportional selection [Hol75], ranking

based selection [Bak87], binary tournament selection [Bäc95, BT96, GD91], all of which

can finish the task of selecting some promising individuals as parents.

After the generation of parent population (in the mating pool), the variation operations

are applied to generate new offspring. There are two main variation operations, crossover

and mutation. According to different representations, theoperators act differently. For

example, for binary representation, mutating one gene is simply flipping one bit from 1 to

0, or from 0 to 1. For real representation, mutating one gene could be changing the current

gene valuexi by adding a new value generated according to a distribution.Meanwhile,

for binary representation, crossover is the operation thatexchanges parts of the two parent

individuals into each other according to one or several predefined exchange points. For

real representation, crossover can be implemented as average values of the two parents for

all genes. Crossover is applied to randomly selected pairs of individuals according to a

probability pc, calledcrossover probability. Meanwhile, mutation operator is applied with

a low probabilitypm, themutation probability, on each gene of each individual.

When the new individuals are generated by crossover or mutation, survival selection

must be applied in order to decide which individuals from theset of parents and offspring

should survive into the next generation given that the resources of the environment are

limited, that is, the population size is fixed. There are alsomany standards for survival

section, such as, they can be age-based, the generational model, where the old individuals

are all replaced by the new individuals; or they can be fitnessbased, the steady-state model,

which we will mention soon in the following sections.

GA works due to two main operations: variation and selection. Variation is to gener-

ate new individuals, it is the main search operator. The capacity of variation operations

are crucial to the success of GA, they should be able to generate new individuals different

enough from the existing individuals to represent the unexplored search space. Selection

operation is also important in that, good individuals should be selected and undergo change

to reproduce better individuals. Namely, the combinationsof good genes from the promis-

ing individuals should be inherited and changed to better combinations of genes, therefore

producing better individuals with better fitness values.

34

We have introduced the idea of balance between exploration and exploitation, and also

the balance between them affects the quality and efficiency trade-off issue mentioned in

chapter1. Good design of control strategy for this balance is crucialfor the success of the

GA search algorithm. Because, if aGA search focuses on too much exploration, it will

lead to an inefficient search, wandering around in the searchspace. If the search focuses on

too much exploitation, it will lead to a propensity to focus the search too quickly, causing

Premature Convergencewhich is the well-known effect of losing population diversity too

quickly and getting trapped in a local optimum.

There are basically two ways to realize this balance, the implicit and explicit controls

of the search procedures. For the implicit way, for example,the selection pressure control

can be considered an implicit control of the balance betweenexploration and exploitation.

Too much selection pressure results in converging too quickly, too little selection pressure

results in random search behaviors. For the explicit way, some parameterized methods can

be used to control the process of the search, for example, theparameterCk in simulated

annealing. Good parameters can make the search explore morein the early stages, while

it exploits more in the latter stages. And also, any form of operating heuristics or domain

knowledge can be used to emphasize exploitation, while reducing the utilization of this

information will result in more exploration.

The SGA algorithm is based on a generational model. There is also another model

calledsteady-stategenetic algorithm, where the whole population is not changed at once,

but rather a part of it. In this case, if the given population size isµ, andλ new individuals

are generated, thenλ old individuals are replaced byλ new offspring, the percentage of the

population that is replaced is called thegenerational gapwhich is equal toλ/µ. An instance

of this algorithm is the GENITOR algorithm [WK88], where two parents are selected for

reproduction and the offspring is immediately placed into the population, replacing the

worst member of the population, therefore the generation gap is 1/µ. The steady-state

population model can be seen as an example of fitness based survival selection. Namely,

the worst individuals will be replaced by new offspring. Forseveral classes of problems,

it has been reported that the steady-state genetic algorithm outperforms the simple genetic

algorithm [Sys91].

Over the years, several improvements over the original genetic algorithm introduced by

John Holland [Hol75] have been suggested. For example, the CHC algorithm developed

by Larry Eshelman [Esh91] is a variation on the genetic algorithm. CHC stands for Cross

generational elitist selection, Heterogeneous recombination by incest prevention and Cat-

35

aclysmic mutation. Important features of the algorithm are: after recombination,N best

individuals are selected from the parents and offspring to create the next generation, dupli-

cates are removed from the population, individuals are randomly selected for reproduction.

However, certain restrictions are imposed on which stringsare allowed to mate, strings

within a certain hamming distance are not allowed to mate. A form of uniform crossover

called HUX is used, where exactly half of the differing bits are swapped. When population

converges and starts producing more or less identical strings, cataclysmic mutation is acti-

vated, all strings except the best are heavily mutated. Recent evaluations indicate that CHC

is generally more efficient thanSGA and the steady-state genetic algorithm.

We finish the discussion on this section by giving the definitions and formulations of

some well-known crossover and mutation operators, particularly, some of which will be

used in the implementation of the algorithms developed in this thesis.

Crossover Operators

Throughout theGA research community, many crossover operators have been developed.

In this thesis, we introduce some very typical crossover operators, and also those applied in

ourGA implementation for experimental comparisons.

For binary representation, given an individual with lengthl. One-point crossover works

by choosing a random number in the whole range (0,l - 1) of the binary characters, and then

splitting both parents at this point and creating the two children by exchanging the remain-

ing parts. One-point crossover can be naturally extended ton-point crossover and uniform

crossover. Inn-point crossover, the individual is divided into several genes segments, and

then the offspring are created by taking alternative segments from the two parents. A fur-

ther generalization ofn-point crossover is the uniform crossover, which considerseach gene

independently and divides the whole range of individual into l genes with (l - 1) points.

When new offspring are generated, a set ofl random numbers are generated from a uniform

distribution over (0,1). In each position of the first offspring, if the value is below a param-

eterp (say 0.5), the gene is inherited from the first parent; otherwise from the second. The

second offspring is generated inversely.

For real parameter representation, there have also been a number of crossover operators

available. The simplest one is thediscretecrossover or also callednaivecrossover, this is

analogous to the binary crossover operator. The drawback ofthis simple mechanism for real

number individuals is that it cannot generate new genes values but only new combinations

of existing genes, and it will limit the search capacity within the real numbers search space.

36

In contrast to the discrete crossover, thearithmeticor intermediatecrossover calculates

a new value for each gene position according to some formulations with the values from

parents. Ifxi andyi are the gene values of the two parents at positioni, the new value for

the child at positioni will be zi = αxi + (1 − α)yi, whereα ∈ (0, 1). That is, the new gene

value of the child is generated depending on the values from parents.

We have seen some basic crossover operators, the introduction about these operators

gives good explanations about the working principle of crossover or recombination oper-

ators. However, in practical problems, these operators arenot very efficient due to their

simplicity. In the following sections, we will see some moreadvanced and carefully de-

signed crossover operators developed in theGA community. First, a generalized arithmetic

crossover operator called Blend Crossover operator [ES93] (the BLX-α crossover) for real-

parameter representation is presented, this operator can be seen as an extension of the arith-

metic crossover with some adaptive search capacity. For twogiven parents solutionsx1
i and

x2
i , the following is an offspring solution generated by BLX-α:

x
′
i = (1− γi)x

1
i + γi x

2
i (2.3)

whereγi = (1 + 2α)µi − α andµi is a random number between 0.0 and 1.0. Ifα is zero,

this crossover creates a random solution in the range (x1
i , x

2
i). In a number of test problems,

the investigators have reported that BLX-0.5 (withα = 0.5) performs better than BLX

operators with any otherα value. However, it is important to note that the factorγi is

uniformly distributed for a fixed value ofα. However, BLX-α has an interesting property:

the location of the offspring depends on the difference of the parent solutions. This will be

clear if Equation2.3is rewritten as follows:

(x
′
i − x1

i) = γi(x
2
i − x1

i) (2.4)

If the difference between the parent solutions is small, thedifference between the off-

spring and parent solutions is also small. This property of asearch operator allows it to

constitute an adaptive search. If the diversity in the parent population is large, an offspring

population with a large diversity is expected, and vice versa. Thus, such an operator will

allow the search to explore the entire space in the early generations and also allow to main-

tain a focused search when the population tends to converge in some region in the search

space in the later generations.

Some other crossover operators work with the same principle. The arithmetic crossover

37

uses Equation2.3 with a fixed value ofγ for all decision variables. However,γ is chosen

by carefully calculating its maximum allowed value in all decision variables so that the

resulting values do not exceed the lower or upper limits. Thearithmetic crossover operator

can be seen as a specified operator of BLX-α crossover.

There are still some other advanced crossover operators, such as Simulated Binary

Crossover and Parent Centered Crossover. We briefly highlight some important proper-

ties of these operators and refer the reader to the relevant references for the details of the

descriptions of these operators. For these advanced crossover operators, the new generated

individuals depend on the parents’ values according to someparticular distributions rather

than random distribution, the difference between the offspring is in proportion to the dif-

ference between parent solutions. Namely, near-parent solutions are monotonically more

likely to be chosen as offspring than solutions distant fromparents. Finally, these operators

inevitably introduce new extra parameters in order to achieve the adaptive search capacity.

Mutation Operators

The mutation operator is rather straightforward compared with crossover. Again, we need

to discuss mutation both in binary and real parameter situations. For binary representation,

mutation is simply flipping the gene values from 0s to 1s with acertain probability. For

real representation, random (uniform) mutation and nonuniform mutation are widely used.

Random mutation is to generate a new gene value for the offspring individual randomly

from the whole range of the gene value. It is more like a re-generating operator and the

parent gene value will have no effect on the new gene value foroffspring. The nonuniform

mutation, on the contrary, works by adding to the parent genevalue a new value drawn

randomly from a predefined distribution, for example, a Gaussian distribution with mean

zero and user-specified standard deviation, as defined in Equation 2.5. In this way, the

parent gene value is changed according to a distribution rather than randomly re-generated

within the whole gene range. Normal distribution mutation is particularly important in

evolutionary computation research, we will see its applications in the next section as we

discuss another important EC family algorithm.

x′i = xi + σ · N(0, 1). (2.5)

Finally, as for crossover operators, researchers have alsodesigned advanced mutation

operators, an example is the Polynomial mutation [Deb01], which has a similar idea to the

Simulated-Binary Crossover, a probability distribution is applied to generate a new gene

38

value for the offspring, and this value very much depends on the parent gene value and the

rule that the distribution defines.

2.2.3 Evolution Strategies

Evolution Strategy is another main member of the evolutionary computation family. It was

invented by Rechenberg and Schwefel in the early 1960s [Rec73],[Sch95],[BS02]. One

of the main contributions ofES to theEC community and the key feature which distin-

guishes it from the rest ofEC members is theself-adaptationof the strategy parameters.

Self-adaptation means the parameters that decide the evolutionary performance are varied

during the runs of the algorithm, we call these parameters the strategy parameters, which

are different with theobject parametersrepresenting the chromosomes. During theESevo-

lution procedure, the strategy parameters are coevolved together with the object parameters.

Before any further explanations, we first describe a basic two-membered evolution strategy

for the optimization problem of minimizing ann-dimensional function. The outline of this

evolution strategy is given as Algorithm2:

Algorithm 2 pseudo code for an evolution strategy algorithm
1: Sett = 0;

2: Create an initial point〈xt
1, . . . , x

t
n〉 ∈ Rn;

3: repeat

4: Draw zi from a normal distributionN(0, σ), for all i ∈ {1, . . . , n} independently;

5: yi = xi + zi for all i ∈ {1, . . . , n};
6: if (f (xt) ≤ f (yt)) then

7: xt+1
= xt;

8: else

9: xt+1
= yt;

10: end if

11: Sett = t + 1;

12: until (Termination condition is satisfied)

From this simple algorithm, we can find the basic principles and features ofES. First,ES

is typically used for real parameter optimization.ES directly operates on the phenotypes

space that is the real valued vectors, the problem at hand canbe given as an objective

function Rn → R. Second, the mutation operator is the main operation to generate new

offspring. Given a current solutionxt in the form of a vector of lengthn, a new candidate

39

xt+1 is created by adding a random numberzi for i ∈ {1, . . . , n} to each of then components.

A Gaussian or normal distribution is used with zero mean and standard deviationσ for

drawing the random numbers,σ is also called themutation step size.

Self-adaptation

As mentioned before, the main feature ofES is self-adaptation, which is reflected in two

aspects. For the representation, each individual inES contains two parts, the first part is

the object parameters (x1, . . . , xn) representing the individual itself. The second part is the

strategy parameters which contain two sets of valuesσ andα. Theσ values represent the

mutation step sizes and their numbernσ is usually either 1 orn. Theα values represent in-

teractions between the step sizes used for different variables. So, the general representation

of individuals inESis:

〈

x1, . . . , xn, σ1, . . . , σnσα1, . . . , αnα

〉

The second aspect where the self-adaptation feature can be reflected is the mutation op-

erator. That is the adaptation of the strategy parameters for the mutation operation during

ESruns. There have been two main ways to implement this self-adaptation in the literature,

one of these is the covariance matrix adaptation, which determines the probability distri-

bution for mutation, we will talk about this strategy in detail in Chapter3. For now, we

discuss another method, that is the explicit use of self-adaptive control parameters methods

[Rec73], [Sch88]. The strategy parameters are explicitly coded along with the decision vari-

ables and updated by using predefined update rules in each generation, there are basically

three different implementations which are in use.

1. Uncorrelated mutation with one step size, (Isotropic Self-Adaptation).

In this case of uncorrelated mutation with one step size, thesame distribution is used

to mutate eachxi, therefore there is only one strategy parameterσ in each individual.

Thisσ is mutated each time step by multiplying it by a termeΓ, with Γ a random vari-

able drawn each time from a normal distribution with mean 0 and standard deviation

τ. The mutation mechanism is thus specified by the following formulas:

σ′ = σ · eτ·N(0,1), (2.6)

x′i = xi + σ
′ · Ni(0, 1). (2.7)

40

In Equation2.6, N(0, 1) denotes a draw from the standard normal distribution, while

in Equation2.7Ni(0, 1) denotes a separate draw from the standard normal distribution

for each variablei. The proportionality constantτ is an external parameter to be set by

the user. It is usually inversely proportional to the squareroot of the problem size,τ ∝
1/
√

n. The parameterτ can be interpreted as a kind oflearning rate. The reasons that

mutatingσ by multiplying with a variable with a lognormal distribution are explained

in [Bäc96] as, first, smaller modifications should occur more often than large ones;

standard deviations have to be greater than 0.0; the median should be 1.0; mutation

should be neutral on average, this requires equal likelihood of drawing a certain value

and its reciprocal value for all values. Under this scheme, the representation for each

individual now has the form〈x1, . . . , xn, σ〉.

2. Uncorrelated mutation withn step sizes,(Non-Isotropic Self-Adaptation).

The motivation behind usingn step sizes is the wish to treat dimensions differently.

In particular, different step sizes are expected to be used for different dimensions

i ∈ {1, . . . , n}. The reason for this is the difficulty and complexity that thefitness

landscape can have different slopes for each direction on each axis. Therefore, each

basic chromosome〈x1, . . . , xn〉 is extended withn different step sizes, one for each

dimension. The new mutation mechanism is now specified as follows:

σ′i = σi · eτ
′·N(0,1)+τ·Ni (0,1), (2.8)

x′i = xi + σ
′
i · Ni(0, 1). (2.9)

whereτ ∝ 1/
√

2n, andτ′ ∝ 1/
√

2
√

n. The sum of two normally distributed variables

is also normally distributed, hence the resulting distribution is still lognormal. The

conceptual motivation is that the common base mutationeτ
′·N(0,1) allows for an overall

change of the mutability, guaranteeing the preservation ofall degrees of freedom,

while the coordinate-specificeτ·Ni (0,1) provides the flexibility to use different mutation

strategies in different directions. Under this scheme the individual is represented as

〈x1, . . . , xn, σ1, . . . , σn〉.

3. Correlated mutations.

The rationale behind correlated mutations is to allow the variable vector to have any

orientation by rotating them with a rotation covariance matrix C. Each entry of this

41

matrix is decided by the mutation step sizes and the angles between the dimensions.

Therefore, the entry of the covariance matrix isci j (i, j) = 1/2(σ2
i − σ2

j) tan(2αi j), if

there is correlationship between thei and j dimensions. The new mechanism is now

formulated as:

σ′i = σi · eτ
′·N(0,1)+τ·Ni (0,1), (2.10)

α′j = α j + β · N(0, 1), (2.11)

x′ = x + N(0,C′). (2.12)

whereτ ∝ 1/
√

2n, andτ′ ∝ 1/
√

2
√

n. The parameterβ is fixed as 0.0873 (or 5o). The

σi are mutated in the same way as before in Equation2.8. Theα j are mutated with

an additive, normally distribution variation, similar to mutation of object variables.

The object variablesx are now mutated by adding the variance drawn from ann-

dimensional normal distribution with covariance matrixC′.

In correlated self-adaptation, in addition ton mutation strengths, at mostn · (n −
1)/2 covariancesα are included in each individual solution. So, there are a total of

n · (n + 1)/2 strategy parameters to be updated for each solution. Thus,this type

of self-adaptive ES can adapt to problems where decision variablesx are correlated.

In a correlated problem, the task is to find all pair-wise coordinate rotations and the

spread of solutions in each rotated coordinate system so that the objective function

is completely uncorrelated in the new coordinate system. Under this scheme, the

individual has the representation of the form in its generalform.

Traditionally, evolution strategies do not use any crossover operators. However,EScan

be equipped with any form of real coded crossover operators discussed in theGA section.

The parent selection operation inESis not biased by the fitness values. Whenever a parent is

needed, it is drawn randomly with uniform distribution fromthe current whole population.

As discussed in the previousGA section, the parent selection is one of the main influences

causing the improvement of the average quality of the current population. Evidently, the

uniform parent selection operation cannot fulfil this function, this task is finished especially

by the survival selection inES.

42

Survival Selection

In ES, there are two survivor selection schemes, after creating λ offspring and calculating

their fitness values, the bestµ of them are chosen deterministically, either from the offspring

only, called (µ, λ) selection, or from the union of parents and offspring, called (µ+λ) selec-

tion. Both the (µ, λ) and (µ + λ) selection schemes are strictly deterministic and are based

on rank rather than the absolute fitness values. The selection scheme that is generally used

in evolution strategies is the (µ, λ) selection, which is preferred over the (µ + λ) selection

for the following reasons:

• The (µ, λ) discards all parents and is therefore in principle able to leave (small) local

optima, so it is advantageous in the case of multimodal landscapes.

• If the fitness function is not fixed, but changes in time, the (µ+ λ) selection preserves

outdated solutions, so it is not able to follow the moving optimum well.

• (µ + λ) selection hinders the self-adaptation mechanism with respect to strategy pa-

rameters to work effectively, because misadapted strategyparameters may survive

for a relatively large number of generations when an individual has relatively good

object variables and bad strategy parameters.

The selective pressure inES is generally very high, because theλ value for offspring

is much higher than theµ value for parents. Usually, 1/7 ratio is recommended. We finish

the discuss aboutESand self-adaptation here, and will come back to this topic inthe next

chapter when we talk about hybrid optimization algorithms.

2.2.4 Other General Purpose Search Algorithms

The research and development in search based problem solving methods have been flour-

ishing, many other metaheuristic algorithms have been developed to solve optimization

problems. The ideas of these algorithms are more or less similar but with a different em-

phasis on different aspects.

Ant Colony Optimization

The Ant Colony Optimization (ACO)[DBT00] algorithm is one of these well-known meta-

heuristic algorithms. TheACO algorithm aims to search for an optimal path in a graph,

inspired by the behavior of ants seeking a path between theircolony and a source of food.

43

During the construction procedure to find the shortest path with a given graph, the ants

incrementally build solutions by moving around in the graph, each ant starts from a ran-

domly selected vertex of the construction graph. Then at each construction step, it moves

along the edges of the graph, keeping a memory of its path, andin subsequent steps it

chooses from the edges that do not lead to vertices that it hasalready visited. An ant has

constructed a solution once it has visited all the vertices of the graph. This construction

process is stochastic and is biased by thepheromonevalue. Pheromone is actually a pos-

itive feedback information left by the ant when it is touringthrough a route, it reflects the

attractive strength of this path, when a complete route is found, the pheromone value for

this route is calculated according to the quality of this route. That is, the shorter route will

have more pheromone value added to it, the longer, the less added. Pheromone evaporates

over time, thus reducing its attractive strength, that is, the set of pheromone parameters

associated with graph nodes or edges are modified at runtime by the ants. At each con-

struction step, an ant probabilistically chooses the edge to follow to yet unvisited vertices.

The probabilistic rule is biased by pheromone values, the higher the pheromone value to an

edge, the higher the probability an ant will choose that particular edge. Once all the ants

have completed their tour, the pheromone on the edges is updated. Each of the pheromone

values is initially decreased by a certain percentage. Eachedge then receives an amount of

additional pheromone proportional to the quality of the solutions to which it belongs. This

procedure is repeatedly applied until a termination criterion is satisfied.

Particle Swarm Optimization

Particle Swarm Optimization (PSO)[KES01] is another novel metaheuristic optimization

algorithm, which was first invented to simulate social behavior. PSOoptimizes a problem

by having a population of candidate solutions, also called aswarm of particles, and these

particles are moved around in the search-space according toa few simple formulae. The

movements of the particles are guided by their own best knownpositions in the search-space

as well as the entire swarm’s best known positions which are updated as better positions

found by the particles. Namely, when improved positions arebeing discovered, they will

then come to guide the movements of the swarm. The process is repeated and by doing so

it is hoped, but not guaranteed, that a satisfactory solution will eventually be discovered.

44

Differential Evolution

Another similar method isDifferential Evolution (DE)[SP95]. DE optimizes a problem by

also maintaining a population of candidate solutions and creating new candidate solutions

by combining existing ones according to its simple formulae, and then keeping whichever

candidate solution has the best fitness.

We have discussed a number of search based optimization algorithms, although they are

different in the real optimization procedure, they all havesome similarities in common; they

are all population based optimization methods, they all utilize concepts of global optimum

solution, local optimum, fitness evaluations etc. And also,they all more or less contain a

procedure of learning from other solutions in previous generations, that is the cooperational

procedure.

2.3 Learning Algorithms

In this section, we start the exciting tour in the field of machine learning, exploring some

of the representative and excellent machine learning algorithms. These algorithms will

also play very important roles in our development and comparison of hybrid optimization

algorithms in the next chapters.

The learning problem we deal with for our supervised learning methods is called the

concept learningproblem, where positive and negative examples of a target concept are

given, described with a fixed number of attributes. The goal of the learning task is to dis-

cover a description for the target concept in some explicit forms which are able to correctly

recognize instances of the target concept and discriminatethem from objects that do not

belong to the target concept. We now formally give the definition of the concept learning

task which is one of the most common problem tasks in machine learning literature.

Definition The set of items over which the concept is defined is called theset ofinstances,

data, or examples, which we denote byX. Each of the items is represented by some at-

tributes. The concept or function to be learned is called thetarget concept, which is denoted

by c. In general,c can be any boolean valued function defined over the instancessetX; that

is,c : X→ {0, 1}. Within the training examplesD, each instancex from X is presented with

the attribute values along with its target concept valuec(x). Instances for whichc(x) = 1

are calledpositive examples, Instances for whichc(x) = 0 are callednegative examples.

The positive examples are also called members of the target concept.

45

Given a set of training examples of the target conceptc, concept learning task is to hy-

pothesize or estimate the target conceptc. In general, under a representation scheme, each

hypothesish in the set of all possible hypothesesH, represents a boolean-valued function

defined overX, that is,h : X → {0, 1}. The concept learning task is the task to find a

hypothesish such thath(x) = c(x),∀x ∈ X.

The concept learning task is sometimes also calledclassification. It belongs to the su-

pervised learning method, where the training examples are used to guide the generation of

model for prediction of future instances. In the machine learning community, this prob-

lem has been studied very well. Generally speaking, the machine learning community

has developed a number of learning paradigms which can all solve this concept learning

task. Among them, rule-based inductive learning methods output the set of rules as the

explicit form of recognizing and discriminating future instances. Instance-based learning

algorithms use the concept of similarity to decide the classifications of instances, in this

sense, no explicit model exists. Neural network based learning adaptively adjusts a set of

weights for the network connection model which predicts thenew instances.

More specifically, there are many learning algorithms whichcan solve this attribute-

value based concept learning problem in each learning paradigm. For example, for the in-

ductive rule-based learning paradigm, there are attributes rule-sets based covering learning

algorithm for classification. Ordered rule-sets, also called decision lists, are a generalized

variant of concept learning problems for multi-class problems. Problems with continuous

class variables can be solved by learning regression rules.Inductive logic programming

has a richer representation language by inducing logic programs for classification or for

predicting output values in functional relations. Finally, the classic decision tree learning

algorithm also belongs to this inductive rule-based learning paradigm.

How can one be sure that one’s learning algorithm has produced a theory that will

correctly predict the future? In formal terms, how do we knowthat the hypothesish is

close to the target functionf , if we don’t know what f is? Generally, according to the

computational learning theory, any hypothesis that is consistent with a sufficiently large

set of training examples is unlikely to be seriously wrong. Namely, it must be Probably

Approximately Correct (the PAC learning framework). Any learning algorithm that returns

hypotheses that are probably approximately correct is called a PAC-learning algorithm.

The key assumption is that the training and test sets are drawn randomly and independently

from the same population of examples with the same probability distribution, thestationary

assumption.

46

Both decision tree learning and an instance of the covering learning algorithm called

AQ learning algorithm are introduced in this section, they are all inductive, rule-based,

supervised concept learning methods. The decision tree learning will be applied in the de-

velopment in Chapter6. Another learning algorithm which is inductive, supervised and

instance-based is introduced, this is theKNN and its generalization. The difference be-

tweenKNN algorithm and inductive rule learning is that, there is no rules as output for

the learning algorithm,KNN is a lazy learning method, that is classification is delayed

until a new instance needs to be classified.KNN is for the hybrid algorithm developed

in Chapter4. As we discussed before, learning and statistics are two field sharing many

similar ideas. We also illustrate one powerful and successfully applied statistical learn-

ing method, thePCA, concerning multi-variable classification in the subfield of statistics

calledMultivariate Statistics. Also, another successful and one of the members of the clas-

sic machine learning methods based on Bayesian probabilitytheorem is introduced, which

can also solve the above concept learning problem. The AQ learning algorithm, principal

components analysis and Bayesian learning are the main algorithms involved in the hybrid

algorithms introduced in Chapter3. We will explore all these algorithms in more detail in

the following sections.

2.3.1 Decision Tree Learning

Decision tree learning is one of the most widely used and practical methods for inductive in-

ference learning. It was invented by Quinlan as a method for approximating discrete valued

target functions, the learned output is represented as a decision tree which can be translated

to sets of if-then rules to improve human readability. The decision tree constructing algo-

rithms, ID3 [Qui86] and C4.5 [Qui93] search for or construct a decision tree solution in the

complete hypothesis space.

ID3 Decision Tree Construction Algorithm

For a given set of training data consisting of positive and negative training examples, ID3

constructs a decision tree in a top-down style, sorting instances down the tree from the root

to some leaf nodes, which provides the classification of the instances. Each node in the tree

specifies a test of an attribute of the instances, with the question “which attribute should

be tested at the current node of the tree”. In order to answer this question, each instance

attribute is evaluated using a statistical test to determine how well it alone classifies the

47

current training examples. The best attribute is selected and used as the test at the current

node of the tree. A descendant of the root node is then createdfor each possible value of this

attribute, each branch descending from that node corresponds to one of the possible values

for this attribute. And then the training examples are sorted to the appropriate descendant

node. The whole process is then repeated using the training examples associated with each

descendant node to select the best attribute to test at that node in the tree.

The above procedure forms a greedy search for an acceptable decision tree, in which

the algorithm never backtracks to reconsider earlier choices. Once a decision tree is con-

structed, it can be used to classify the unseen instances. Aninstance is classified by starting

at the root node of the tree, testing the attribute specified by this node, then moving down

the tree branch corresponding to the value of the attribute in the given instance. This pro-

cess is then repeated for the subtree rooted at the new node. Aconstructed decision tree

example for illustration is given in Figure2.2:

Attri7

Attri12 Attri9

Attri4

Attri3 Attri26

Class1 Class2

Class2Class2

Class2Class1
Class2Class1

domain3 domain2

domain2 domain3

domain1 domain3

domain3domain2

domain1 domain3

domain2 domain1

domain1

Figure 2.2: An illustrative example of a decision tree

Still, the key question in the above algorithm remains, thatis how to find the best at-

tribute for classification at each node. That is, the attribute that is most efficient for classi-

fying examples should be selected. This quantitative measure in ID3 is a statistical property

called information gain[Sha01], which measures how well a given attribute separates the

training examples according to their target classification. ID3 uses this information gain

measure to select from the candidate attributes at each stepwhile making the tree grow. In-

48

formation gain is defined on the concept calledentropy, which characterizes the (im)purity

of an arbitrary collection of examples. Given a collectionS of positive and negative ex-

amples of a target concept, the entropy ofS relative to this classification (here, we only

consider the case that the target concept has two values) is:

Entropy(S) = −p⊕ log2 p⊕ − p⊖log2p⊖ (2.13)

Here,p⊕ andp⊖ are the percentages of the positive and negative examples inS. Infor-

mation gain is simply the expected reduction in entropy caused by partitioning the examples

according to this attribute. More precisely, the information gain,Gain(S,A) of an attribute

A, relative to a collection of examplesS, is defined as:

Gain(S,A) = Entropy(S) −
∑

v∈Values(A)

|Sv|
|S| Entropy(Sv) (2.14)

whereValues(A) is the set of all possible values for attributeA, andSv is the subset ofS

for which attributeA has valuev. The first term in Equation2.14is just the entropy of the

original collectionS, and the second term is the expected value of the entropy after S is

partitioned using attributeA. The expected entropy described by this second term is simply

the sum of the entropies of each subsetSv, weighted by the fraction of examples|Sv|
|S| that

belong toSv. Gain(S,A) is therefore the expected reduction in entropy caused by knowing

the value of attributeA. Namely,Gain(S,A) is the information provided about the target

function value, given the value of some other attributeA. Information gain is precisely the

measure used by ID3 to select the best attribute at each step in making the tree grow.

Issues in Decision Trees

There are also some practical issues in the decision tree learning method, these issues are

important considerations which will influence the performance of the constructed decision

tree significantly. Among of them, the problem ofoverfittinghas attracted most attentions.

Overfitting means that a hypothesis overfits the training examples if some other hy-

pothesis that fits the training examples less well actually performs better over the entire

distribution of instances including the instances beyond the training set. Overfitting can

happen in the following situations, when ID3 grows each branch of the tree just deeply

enough to perfectly classify the training examples; when there is noise or errors in the data,

when the number of training examples is too small to produce arepresentative sample of

the true target function; and also the situation ofcoincidental regularities, where some at-

49

tributes happen to classify the examples very well even if they are not related well with

the target function. In either of these cases, the decision tree construction algorithm can

produce trees that overfit the training examples.

There are many methods to avoid overfitting, they can be grouped into two classes.

First, approaches that stop making the tree grow earlier, before it reaches the node where it

classifies the training data perfectly. For this method, it is not very practical, since deciding

when to stop the growing is a very difficult task. The other method is the post-pruning

method. Post-pruning is the approach that allows the tree tooverfit the data first, and then

post-prunes the tree.

There are also many ways to implement post-pruning. One of them is the rule post-

pruning method [Qui93] applied in C4.5 algorithm. According to the name, rule post-

pruning first infers the decision tree from the training set,making the tree grow until the

training data fits as well as possible and allowing overfitting to occur. Secondly, it trans-

forms the learned tree into an equivalent set of rules by creating one rule for each path

from the root node to a leaf node. Thirdly, it prunes each ruleby removing any precondi-

tions that result in improving its estimated accuracy. Finally, it sorts the pruned rules by

their estimated accuracy, and considers them in this sequence when classifying subsequent

instances.

There are also many other issues in decision tree learning, such as dealing with con-

tinuous valued attributes, alternative measure for information gain, etc. For the first issue,

it can deal with continuous valued attributes by selecting asuitable discretization method.

For the second issue, when there are some attributes which have too many domains, these

attributes will have very high gain values over other attributes according to the definition of

information gain. Very possibly, the resulting decision tree is constructed by these attributes

and is able to classify training data very well, but will be very bad at predicting the future

data instances. One way to overcome this difficulty is to define another measure which

also considers the broadness and uniformity of the attribute in splitting the data. Such an

alternative for information gain is thegain ratio[Qui86], which depends on a term called

split information:

S plitIn f ormation(S,A) = −
c

∑

i=1

|Si |
S

log2

|Si |
S
. (2.15)

therefore, the gain ratio is defined by the information gain and the split information as:

50

GainRatio(S,A) =
Gain(S,A)

S plitIn f ormation(S,A)
. (2.16)

The decision tree learning algorithm has an advantage whichis that the constructed

decision tree can be transformed into a set of rules which canbe read and understood

more easily. This transformation procedure is also appliedin our development of hybrid

algorithms, we will discuss this topic in more detail in the corresponding chapter.

2.3.2 AQ Learning

The decision tree learning algorithm is a classic inductiverule-based learning algorithm, in

this section, we introduce another inductive rule learningalgorithm. The main difference

between these two algorithms is not only because of the algorithms’ constructing princi-

ples, but also the learning strategies employed by these algorithms. We will see these two

strategies first, and then introduce the AQ learning algorithm.

Two General Strategies

Generally, for the rule-based inductive learning algorithms, there are two well-known strate-

gies for solving the classification problems, the divide-and-conquer strategy[Qui86] and the

separate-and-conquer strategy [PH90].

We have seen an example algorithm for the divide-and-conquer strategy, the decision

tree learning algorithm in Section2.3.1. As the name of this strategy suggests, the divide-

and-conquer strategy is based on the idea that, at each stageof learning the algorithm seeks

an attribute that splits the training examples best among the classes, and then the algorithm

processes the following divided sub-training examples recursively according to the same

criterion. This recursive method naturally results in a decision tree.

Quite different from the divide-and-conquer strategy, theseparate-and-conquer strategy

is based on the idea of considering each class in turn and looking for a way of covering all

instances in this class, at the same time excluding all instances not in the class. Namely,

to identify a rule that covers some of the instances at each stage. Due to this nature, it

directly leads to a set of rules. The learning algorithms based on this strategy are also

calledcovering algorithms[Mic69].

Specifically, this strategy learns or searches for a rule that explains (covers) a part of its

training instances, removes the covered examples from the training set (the separate part),

separates these examples, and recursively conquers the remaining examples by learning

51

more rules that cover some remaining examples until no examples remain. This ensures

that each instance of the original training set is covered byat least one rule. For all of the

covering algorithms, this strategy plays a top level loop, which is invariant for all algo-

rithms. However, the specific methods to learn one rule are hugely different from algorithm

to algorithm. Let us first explore a simple covering algorithm to solve the concept learning

task:

Algorithm 3 pseudo code for a simple covering algorithm
1: Setrule set= ∅;
2: Setcoveredset= ∅;
3: Declarerule;

4: Initialize training examplesset;

5: while (positive examples exist intraining examplesset) do

6: rule = {true};
7: while (negative examples exist incoveredset) do

8: for all (Condition∈ Conditions)do

9: Find thebestconditionwith highest correct rate;

10: end for

11: rule = rule
⋃

bestcondition;

12: coveredset= examples satisfyingrule;

13: end while

14: rule set= rule set
⋃

rule;

15: training examplesset= training examplesset\ coveredset;

16: end while

17: Returnrule set;

Algorithm 3 is a simple covering algorithm, the algorithm begins with anempty rule-

set and successively adds rules to it until all positive examples are covered. The learning

of a single rule starts with a rule whose body is always true. As long as it still covers

negative examples the current rule is specialized by addingconditions to its body. Possible

conditions are tests on the presence of certain values of various attributes. In order to move

towards the goal of finding a rule that covers no negative examples, the algorithm selects

a test that optimizes the purity of the rule, that is, a test that maximizes the percentage

of positive examples among all covered examples. When a rulehas been found that only

covers positive examples, all of these covered examples will be removed and another rule

52

will be learned from the remaining examples. This is repeated until no positive examples

remain. Thus, it is ensured that the learned rules together cover all of the given positive

examples, thecompleteness, but none of the negative examples, theconsistency. Almost all

of the separate-and-conquer algorithms share the same structure of this algorithm, but are

different in how to construct the single rule. We will see another example algorithm for this

strategy shortly, but for now, we simply summarize and compare the covering algorithms

with decision tree learning.

As we have seen that both of these algorithms are supervised learning algorithms and

can be used to solve concept learning tasks. Also, the input for both algorithms is the

same, that is the training data set, which is a set of data instances, consisting of a vector of

attribute-value pairs. And the output for both algorithms has the same form, a set of rules.

For the case of the decision tree, the constructed tree can betranslated into a set of rules.

The only important difference between these two learning algorithms is the middle learning

procedures.

AQ Learning Algorithm

Although there are many separate-and-conquer based rule learning algorithms, this strategy

has its roots in the covering algorithm called AQ learning algorithm by Michalski[Mic69].

The representation language used in AQ is called theAttributional Calculus, which is a

simple-to-implement but highly expressive description language. It has well-defined syntax

and semantics, and its representational power is between propositional logic and first-order

predicate logic. Its most important construction is an attributional rule, which has its form

as follows[Mic00]:

Condition=⇒ Decision

whereConditionis a conjunction of attributional conditions, andDecisionis an elementary

attributional condition. An attributional condition is inthe form:

Le f t relation Right

whereLeft is an set of attributes joined by∧ or ∨, called internal conjunction and disjunc-

tion, respectively.Right is a list of values from the domain of attributes inLeft, joined by

the symbol∨, or a pair of values joined by ‘. . .’ (called range). relation is a relational

symbol from the set{=,,,≥, >, <,≤}.

53

An attributional condition ‘Left relation Right’ is true (or satisfied) ifLeft is in relation

to Right. A condition is calledelementaryif Left is a single attribute,relation is not,, and

Right is a single value; otherwise it is calledcomposite. Here are examples of attributional

conditions and their interpretations, (Shape= rectangle), (Density> 39) are elementary con-

dition, while (Optimization Method= GA∨ES∨PS O), (S alary∧Bonus= 3000. . .5000)

are composite conditions.

Attributional calculus can be seen as the description language for the AQ learning al-

gorithms, the training data and the output rules can all be described with this language.

With this powerful tool, the AQ learning algorithm can be constructed now. Given a set

of positive and negative training examples of a decision class, an AQ learner generates a

set of attributional rules (a ruleset) characterizing thisclass. Training examples are in the

form of attributional events, which are vectors of attribute values. Events in the decision

class for which a ruleset is generated are considered positive examples, and events in all

other classes are considered negative examples. The description of a simple form of the AQ

learning algorithm is given below as stated in [Mic00]:

1. Seed selection: Select randomly a positive example and call it a seed.

2. Star generation: Generate a star of the seed, defined as a set of general attributional

rules that cover the seed and any other positive examples, but do not cover negative

examples. In the general case, a rule can cover negative examples if it optimizes a

description quality criterion.

3. Rule selection: Select the highest quality rule from the star according to a given

description quality criterion. Such a criterion can be tailored to the requirements of

the problem domain. For example, a quality criterion may require selecting the rule

that covers the largest number of positive examples, covering no negative examples,

and has the lowest computational cost among other equivalent rules in the star.

4. Coverage update: Remove examples covered by the rule fromthe set of positive

examples and select a new seed from the remaining positive examples. If there are

no positive examples left, return the generated set of rules. Otherwise, go to Step 1.

This algorithm has the same top-level structure as the simple covering algorithm3, but

the generation of rule is different. The most important stepof the algorithm is star gener-

ation (Step 2), which involves a repetitive application of the extend-against generalization

operator, and logically multiplying out the resulting collections of partial rules. If properly

54

implemented, such a process can be executed highly efficiently. For example, recent imple-

mentations of AQ-type learning have been effectively applied to problems with hundreds

of attributes and tens of thousands of examples.

AQ learning algorithms, such as AQ15 [JKES95] and AQ18 [KM99], have several spe-

cial features. AQ15 includes the ability to learn a range of different types of attributional

rulesets, such as intersecting, disjoint, ordered, characteristic, and discriminate; to adapt

inductive reasoning to different types of attributes, including nominal, rank, cyclic, numeri-

cal, and structured; to learn from noisy and/or inconsistent data; to learn incrementally; and

to match rules with examples using a strict or flexible matching method. AQ18 includes

several additional features, such as the ability to discover strong patterns in data, thus it

can optimize a multi-criterion measure of description quality, and automatic constructive

induction. The latter feature enables the program to automatically search for a better repre-

sentation space when the original one is found to be inadequate.

AQ learning algorithm is the learning algorithm applied in alearning and evolution

hybrid algorithm, which is very important in our study of theLEM hybrid algorithms in

this thesis, we will come back to AQ learning in the next chapter for hybrid algorithms.

2.3.3 K Nearest Neighbors (KNN) Learning

In this section, we introduce a new learning paradigm, whichis calledinstance-basedlearn-

ing and a well-known instance learning algorithm from this paradigm, theKNN [CH67]

learning method.

In contrast to learning methods that construct a general, explicit description or model

of the target function when training examples are provided,instance-based learning meth-

ods simply store the presented training examples. Generalizing beyond these examples

is postponed until a new instance must be classified. Each time a new query instance is

encountered, its relationship to the previously stored setof similar related instances is ex-

amined in order to assign a target function value for the new instance, that is to classify the

new query instance.

Instance-based methods are sometimes referred to as ‘lazy’learning methods, because

they delay processing until a new instance must be classified. In this sense, the previ-

ous inductive learning algorithms, decision tree learning, AQ learning are called ‘eager’

learning methods. One key difference between lazy and eagerlearning methods is that the

former can construct a different approximation to the target function for each distinct query

55

instance that must be classified. In fact, many techniques construct only a local approxima-

tion to the target function that applies in the neighborhoodof the new query instance, and

never construct an approximation designed to perform well over the entire instance space.

This has significant advantages when the target function is very complex, but can still be

described by a collection of less complex local approximations.

The most well-known instance-based learning method areKNN, local weighted regres-

sion, and case-based reasoning, the difference between these methods are the representation

forms for instances.

KNN Algorithm

TheKNN assumes all instances correspond to points inn-dimensional space. The nearest

neighbors of an instance are defined in terms of the standard Euclidean Distance. More

precisely, let an arbitrary instancex be described by the feature vector:

〈a1(x), a2(x), . . .an(x)〉 (2.17)

wherear(x) denotes the value of therth attribute of instancex. Then the distance between

two instancesxi andxj is defined to bed(xi, xj), where

d(xi, xj) =

√

√

n
∑

r=1

(ar(xi) − ar(xj))2 (2.18)

In nearest-neighbors learning the target function may be either discrete-valued or real-

valued. Let us first consider learning discrete-valued target functions of the formf : Rn →
V, whereV is the finite set{vl , v2, . . . vs}. TheKNN algorithm for approximating a discrete-

valued target function is given as Algorithm4:

Algorithm 4 pseudo code for KNN
1: All training examples are stored in thetraining datavector.

2: For each query instancexq that will be classified.

3: Find thek nearest instancesx1, x2, . . . xk in training data.

4: Return

f̂(xq) = max
v∈V

k
∑

i=1

δ(v, f (xi))

5: where

δ(a, b) =



















1 if(a = b) ;

0 otherwise.

56

As shown above, the valuêf (xq) returned by this algorithm as its estimate off (xq) is

just the most common value off among thek training examples nearest toxq.

TheKNN algorithm is easily adapted to approximating continuous-valued target func-

tions. This can be accomplished by calculating the mean value of thek nearest training

examples rather than calculating their most common value. More precisely, to approximate

a real-valued target functionf : Rn → R, step 4 of Algorithm4 is replaced with Equation

2.19:

f̂(xq) =
∑k

i=1 f (xi)

k
(2.19)

Distance-Weighted Nearest Neighbors Algorithm

One obvious refinement to theKNN algorithm is to weight the contribution of each of thek

neighbors according to their distance to the query pointxq, giving greater weight to closer

neighbors. Namely, in Algorithm4, which approximates discrete-valued target functions,

we might weight the vote of each neighbor according to the inverse square of its distance

from xq. This can be accomplished by replacing step 4 of Algorithm4 with Equation2.20:

f̂(xq) = max
v∈V

k
∑

i=1

wiδ(v, f (xi)) (2.20)

wherewi =
1

d(xq,xi)2 . We can distance-weight the instances for real-valued target func-

tions in a similar fashion, replacing step 4 of Algorithm4 in this case with Equation2.21:

f̂(xq) =

∑k
i=1 wi f (xi)
∑k

i=1 wi

(2.21)

Due to distance weighting, there is really no harm in allowing all training examples to

have an influence on the classification of thexq, because very distant examples will have

very little effect onf̂ (xq). Of course, this will result in running more slowly. If all training

examples are considered when classifying a new query instance, we call the algorithm a

global method. If only the nearest training examples are considered, we call it a local

method. One main advantage aboutKNN is that it is robust to noisy training data and quite

effective when it is provided a sufficiently large set of training data.

However, some disadvantages which cause practical implementation issues do exist.

One of them is that the cost of classifying new instances can be high. This is due to the

fact that nearly all computation takes place at classification time rather than when the train-

ing examples are first encountered. Therefore, techniques for efficiently indexing training

57

examples are needed to reduce computation required at querytime. Various methods have

been developed for indexing the stored training examples sothat the nearest neighbors can

be identified more efficiently at some additional cost in memory. One such indexing method

is the kd-tree [Ben75], in which instances are stored at the leaves of a tree, with nearby in-

stances stored at the same or nearby nodes. The internal nodes of the tree sort the new query

xq, to the relevant leaf by testing selected attributes ofxq.

A second disadvantage of many instance-based approaches, especially nearest neighbor

approaches, is that they typically consider all attributesof the instances when attempting to

retrieve similar training examples from memory. If the target concept depends on only a few

of the many available attributes, then the instances that are truly most ‘similar’ may well

be a large distance apart. Namely, the distance between neighbors will be dominated by

the large number of irrelevant attributes. This difficulty,which arises when many irrelevant

attributes are present, is sometimes referred to as thecurse of dimensionality. Nearest-

neighbors approaches are especially sensitive to this problem. There are some methods to

overcome this problem, we consider one of them by formulating the problem as solving

the following task. For a given set of attributes with sizen in training examples, the task

is to find a subset out of this set of attributes, satisfying this subset can classify the unseen

examples with the highest accuracy. This task can be viewed alternatively as finding a

weight set with sizen, and each of value of the weight could be with the range of (0.0 . . .1.0)

indicating the relevance of the corresponding attribute. When the weight value is 0.0, it is

completely eliminated from future classification. These weight subsets can be optimized by

classification on a cross-validation set. Another excellent work on this topic about feature

selection can be found in [RIG+00], where a genetic algorithm is used as the optimizer.

Although disadvantages are inevitable forKNN as for any other learning paradigms, we

start our investigation in learning and evolution hybrid algorithm with theKNN algorithms

due to their efficiency in classification, robustness for noisy training data, and simplicity in

implementation (the only application-specific demand is a suitable distance measure, this

is in contrast to other learning algorithms). We will come back to the KNN algorithm in

Chapter4, where our first hybrid algorithm is developed.

2.3.4 Principal Components Analysis

Principal Components Analysis (PCA) was invented in 1901 byKarl Pearson [Pea01] as

a mathematical procedure that transforms a number of possibly correlated variables into

58

a smaller number of uncorrelated variables calledprincipal components. The first princi-

pal component accounts for as much of the variability in the data as possible, and each

succeeding component accounts for as much of the remaining variability as possible.

PCA is the simplest of the true eigenvector-based multivariateanalyses. Often, its op-

eration can be thought of as revealing the internal structure of the data in a way which best

explains the variance in the data. If a multivariate datasetis visualized as a set of coor-

dinates in a high-dimensional data space (one axis per variable), PCA supplies the user

with a lower-dimensional picture, a ‘shadow’ of this objectwhen viewed from its (in some

sense) most informative viewpoint.PCA is mathematically defined as an orthogonal linear

transformation that transforms the data to a new coordinatesystem such that the greatest

variance by any projection of the data comes to lie on the firstcoordinate, the first principal

component, the second greatest variance on the second coordinate, and so on.

Given a set of points in Euclidean space, the first principal component (the eigenvector

with the largest eigenvalue) corresponds to a line that passes through the mean and mini-

mizes sum squared error with those points. The second principal component corresponds to

the same concept after all correlation with the first principal component has been subtracted

out from the points. Each eigenvalue indicates the portion of the variance that is correlated

with each eigenvector. Thus, the sum of all the eigenvalues is equal to the sum squared dis-

tance of the points with their mean divided by the number of dimensions.PCA essentially

rotates the set of points around their mean in order to align with the first few principal com-

ponents. This moves as much of the variance as possible (using a linear transformation)

into the first few dimensions. The values in the remaining dimensions, therefore, tend to be

highly correlated and may be dropped with minimal loss of information.

PCA is often used in this manner for dimensionality reduction. It is mostly used as a

tool in exploratory data analysis, finding patterns in data of high dimension, and for making

predictive models. And it is a useful statistical techniquethat has found application in fields

such as face recognition and image compression.

Covariance Matrix

We introducePCA in more detail by following the main steps needed to compute it with

the covariance method.PCA involves the calculation of the eigenvalue decomposition of a

data covariance matrix or singular value decomposition of adata matrix, usually after mean

centering the data for each attribute. For a given set of training examples, we first calculate

the variance sfor one attribute, given the meanx and standard deviations, variance is

59

simply the standard deviation squared, it represents the extent of data spread:

s2
=

∑n
i=1(xi − x)2

(n− 1)
(2.22)

Standard deviation and variance only operate on one dimension, so that only the stan-

dard deviation for each dimension of the data set independently of the other dimensions

can be calculated. However, it is useful to have a similar measurement to find out the rela-

tionship between these dimensions and how much the dimensions vary from the mean with

respect to each other.Covarianceis such a measure, it is always measured between two

dimensions. If we calculate the covariance between one dimension and itself, we get the

variance. So, if we had a 3-dimensional data set (x, y, z), then we could measure the covari-

ance between thex andy dimensions, thex andy dimensions, and they andz dimensions.

The formula for covariance is very similar to the formula forvariance:

cov(x, y) =

∑n
i=1(xi − xmean)(yi − ymean)

(n− 1)
(2.23)

Covariance is between two dimensions, and variance is aboutone dimension. If the

value of covariance is positive, two dimensions change together. If the value is negative,

two dimensions change differently. If the value is zero, twodimensions are independent to

each other.

A Covariance matrixis a matrix that stores all the possible covariance values between

all the different dimensions for the given many dimensionaldata set. A covariance matrix

is a matrix for ann-dimensions data set:

Cn×n
= (ci, j , ci, j = cov(Dimi ,Dim j)) (2.24)

whereCn×n is a matrix withn rows andn columns, andDimx is thexth dimension. For

example, for 3-dimensional data set, the covariance matrixis calculated as the 3× 3 matrix

C =



































cov(x, x) cov(x, y) cov(x, z)

cov(y, x) cov(y, y) cov(y, z)

cov(z, x) cov(z, y) cov(z, z)



































(2.25)

When the covariance matrix is formed, we can calculate theeigenvectorsandeigen-

valuesof the covariance matrix. First, the eigenvectors and eigenvalues give important

information about the matrix, they appear in pair for squarematrix. It is beyond the scope

of this thesis to discuss the method of calculating eigenvectors and eigenvalues, all we will

60

say is that those are complicated iterative methods especially for many large size matrices.

Before introducing the meanings and usability of eigenvectors and eigenvalues inPCA, we

give an example of eigenvectors and eigenvalues:





















2 3

2 1





















×





















6

4





















= 4×





















6

4





















(2.26)

In this example, the square matrix can be thought of as a transformation matrix. If we

multiply this matrix on the left of a vector, the result is another vector that is transformed

from its original position. It is the nature of the transformation that the eigenvectors arise

from. A transformation matrix that, when multiplied on the left, reflected vectors in the line

y = x. Then we can see that if there was a vector that lay on the liney = x, its reflection is

itself. This vector would be an eigenvector of that transformation matrix. The vector





















6

4





















can be seen as an eigenvector of the square matrix. And the eigenvalue is 4.

Feature Vector

Once the eigenvectors and eigenvalues are derived, we can begin to chose components and

form a feature vector. This feature vector is an important concept inPCA, it is used to

produce dimensionality reduction. As we have found out, theeigenvectors are used to

indicate the patterns of the variables and eigenvalues are used to indicate the significance

of these patterns. Namely, the eigenvectors with the highest eigenvalues are the principal

components of the data set. In general, once eigenvectors are found from the covariance

matrix, the next step is to order them by eigenvalues, highest to lowest. This gives the

components in order of significance and indicates whether the patterns are strong or weak

compared with other patterns. If one pattern is less significant, it can be deleted by removing

the corresponding eigenvector and eigenvalue from then eigenvectors and eigenvalues list.

The new reduced eigenvectors set is called afeature vector, which is now used together with

the original data set to calculate a new data set, where the variables number or dimensions

are now reduced. In such a transformation procedure, we losesome information which are

less important. So, the feature vector simply consists of the remaining eigenvectors, that is

the ones with highest eigenvalues, as columns.

FeatureVector= (eigenvector1, eigenvector2, eigenvector3, . . . , eigenvectorn) (2.27)

Once we have chosen the components (eigenvectors) that we wish to keep in our data

61

and formed a feature vector, we simply take the transpose of the vector and multiply it

on the left of the original data set. When the original data are restored, we can see more

clearly about the strong patterns, and the weak patterns aredeleted. Therefore,PCA is a

way of identifying patterns in data, and expressing the datain such a way as to highlight

their similarities and differences. Since patterns in datacan be hard to find in data of high

dimension, where the luxury of graphical representation isnot available,PCAis a powerful

tool for analyzing data. We will come back toPCA in the next Chapter3 again, when we

discuss an important hybrid optimization algorithm which applies thePCA method.

2.3.5 Bayesian Network and Bayesian Learning

In this section, we introduce another important and popularmachine learning paradigm

in the machine learning community.Bayesian inferenceis a statistical inference method

among many hypotheses (thehypothesis space), where some kind of evidence or obser-

vations are used to calculate the probabilities of these hypothesis, or else to update their

previously-calculated probabilities.Probabilitycomes naturally from the world or environ-

ment which is full of uncertain knowledge. In practice, we are never completely sure about

the statements of the environment we are interested in. For example, assume we want to

construct a rule to describe the following knowledge:

∀(s)FailedIn(s,Exams)⇒ ¬WorkHard(s)

Unfortunately, this is not a correct rule. First,not WorkHardis not the only reason

that students will fail in the exams, there are many other reasons for failure in exams.

For example, not feeling well, coming late, etc. There couldbe an infinite list of reasons.

Second,not WorkHarddoes not necessarily mean students will fail in exams, many students

can pass the exams without working hard. So, rule-based knowledge representation system

simply fail to represent uncertain knowledge. It is due to either to the fact that we cannot list

all rules to capture the uncertainty, or to the fact that we donot have complete knowledge

about a particular domain, or we will never have complete information about an instance.

In fact, much knowledge about the world is suitable to be provided with adegree of

belief. Namely, they are better to be interpreted in theprobability theory, which assigns to

each statement about knowledge a numerical degree of beliefbetween the range of (0. . .1).

For example, we can assign to the above rule 0.8, meaning if a student has failed his ex-

amination, he/she has an 80% probability that he was not working hard in preparation.

62

Probability provides a way of summarizing the uncertainty that comes from our laziness

and ignorance. We may not know for sure about one statement, but we can believe that in

what percentage of probability that statement will happen.This belief can be derived from

statistical data, or some general rules, or from a combination of sources of evidence. We

distinguish the degree of belief discussed here with the degree of truth which is used in

another uncertain handling method calledfuzzy logic.

In the following discussions, we assume the knowledge of basic concepts and theorems

in probability theory, otherwise, a brief introduction to probability theory is given in Ap-

pendixA. We will introduce the well-known general bayesian networkinference model for

uncertainty knowledge base and the bayesian learning method, also called naive bayesian

classifier, which is a simple probabilistic classifier basedon applying Bayes’ theorem with

strong independence assumptions.

Bayesian Network

A Bayesian Network (BN) is a data structure that represents the dependencies among vari-

ables and gives a concise specification of any full joint probability distribution. A Bayesian

network is a directed graph in which each node is annotated with quantitative probability

information. The full specification is as follows:

1. A set of random variables makes up the nodes of the network,variables may be

discrete or continuous.

2. A set of directed links or arrows connects pairs of nodes, if there is an arrow from

nodeX to nodeY, X is said to be a parent ofY.

3. Each nodeXi has a conditional probability distributionP(Xi |Parents(Xi)) that quan-

tifies the effect of the parents on the node.

4. The graph has no directed cycles, that is, it is a directed,acyclic graph, or DAG.

The topology of the network, the set of nodes and links, specifies the conditional in-

dependence relationships that hold in the domain. The intuitive meaning of an arrow in

a properly constructed network is usually thatX has a direct influence onY. Once the

topology of the bayesian network is laid out, we need only specify a conditional probability

distribution for each variable, given its parents. The semantic of bayesian network is that

the bayesian network can be used to represent the full joint distribution:

63

P(x1, . . . , xn) = P(xi |parents(Xi)) (2.28)

Once aBN is built up, it can be used to make inferences efficiently, good methods

have been developed, such asexact inferencesandapproximate inferences. They require

a well-constructed network to exist. Therefore, we need to discuss how to construct the

bayesian network, this will include two important aspects,one is parameter learning, and

the other is structure learning. In this section, we only talk about a parameter learning

method calledmaximum-likelihoodparameter learning. We talk about structure learning in

the next chapter.

Bayesian Learning

To induce bayesian networks correctly, as we known from the previous section, there are

two important components need to be learned correctly. One is the parameters for random

variables and the other is the structures representing the (in)dependence relations between

the random variables. We start to introduce the parameters learning method withBayes’s

rule (or Bayes’s theorem):

P(a∧ b) = P(b|a)P(a) (2.29)

P(a∧ b) = P(a|b)P(b) (2.30)

Equating the two right-hand sides and dividing byP(a), we get

P(b|a) =
P(a|b)P(b)

P(a)
(2.31)

P(Y|X) =
P(X|Y)P(Y)

P(X)
(2.32)

P(Y|X) = αP(X|Y)P(Y) (2.33)

Bayes’s theorem underlies all modern AI systems for probabilistic inference. Explicitly,

it requires a conditional probability and two unconditional probabilities to calculate one

conditional probability. In practice, there are many situations which match this formula

very well. This makes Bayes’s rule very popular and useful inrealistic problems.

64

So, what is a bayesian learning problem? Bayesian learning can calculate the prob-

ability of each hypothesis in the hypothesis space, given the experienced data, and makes

predictions on that basis. In the context of bayesian learning, learning is in fact a probabilis-

tic inference problem. Formally, given a random variableH for hypothesis space, with the

possible valueshi. Let D represent all the data,Di is also a random variable with possible

valuesv1 andv2, with observed valued, then the probability of each hypothesis is obtained

by Bayes’s rule:

P(hi |d) = αP(d|hi)P(hi) (2.34)

P(d|hi) =
∏

j

P(d j |hi) (2.35)

The key quantities in the bayesian approach are the prior hypothesis,P(hi) for each

hypothesis, which is some pre-fixed value according to experiences, and the likelihood of

the data under each hypothesis,P(d j |hi), which is described in eachhi, all of them are

known in advance. In bayesian learning, we are now interested in looking for the most

probable hypothesish in H, given the observed datad, we can find this hypothesisP(hi |d),

according to Equations2.35and2.34. Any such maximally probable hypothesis is called a

maximum a posterior(MAP) hypothesis,hMAP.

A simplification for bayesian and MAP learning is that, assuming a uniform prior prob-

ability of all hypotheses, that isP(hi) are all equivalent. And any hypothesis which maxi-

mizesP(d|hi) is called amaximum-likelihoodhypothesis,hML. According to Equation2.34,

if all P(hi) are equivalent, then the maximizedP(hi |d) is equal toP(d|hi), so this simplifica-

tion only requires us to find hypothesishθ, whereθ is the maximum-likelihood parameter,

which is the proportion of appearance times in previous experiments for the random vari-

able’s one domain value, therefore for the other domain value, the appearance times is 1−θ.
We assume thatN events have happened, of whichn1 is the times forv1 andn2(n2 =

N − n1) is for v2. According to Equation2.35, the likelihood of this particular data set is:

P(d|hθ) =
N

∏

j=1

P(d j |hθ) = θn1 × (1− θ)n2 (2.36)

The maximum-likelihood hypothesis is given by the value ofθ that maximizes this

expression. The same value is obtained by maximizing the loglikelihood:

L(d|hθ) = logP(d|hθ) =
N

∑

j=1

logP(d j |hθ) = n1logθ + n2log(1− θ) (2.37)

65

By taking this algorithm, we reduce the product to a sum over the data, which is usually

easier to maximize. To find the maximum-likelihood value ofθ, we differentiateL with

respect toθ and set the resulting expression to zero:

dL(d|hθ)
dθ

=
n1
θ
− n2

1− θ = 0 (2.38)

θ =
n1

n1 + n2
=

n1

N
(2.39)

In this way, we have constructed a method for bayesian network parameter learning,

where there is only one random variableDi and its probability distribution information isθ.

Although the resulting bayesian network contains only one node for this variable, it is also

applicable to networks with many variables and dependence relationships.

Bayesian Classifier

Finally, we state the most common bayesian network model used in machine learning,

thenaive bayesian modelor naive bayesian classifier. It is often used in cases where the

attributes variables are conditionally independent giventhe class variable. The full joint

distribution for this simplified bayesian network model canbe written as:

P(Cause,E f f ect1, . . . ,E f f ectn) = P(Cause)
∏

i

P(E f f ecti |Cause) (2.40)

This model shows a simple but very common pattern in which a single cause directly

influences a number of effects, all of which are conditionally independent, given the cause.

As a simplified bayesian network model, naive bayesian learning scales well to very large

problems: withn boolean attributes, there are just 2n + 1 parameters, and no search is

required to findhML, the maximum-likelihood naive bayesian hypothesis. The bayesian

classifier can be seen as a specified instance of the bayesian network inference, and also

inference can be seen as a more general concept for learning.

Bayesian inference methods play important roles in a class of learning and evolution

hybrid algorithms raised in theEC community recently, theEDA methods, which we will

discuss in the next chapter.

66

Chapter 3

Hybrids of Learning and Evolution

3.1 Overview

Many existing search and learning methods have been particularly explored in chapter2.

We have seen that search methods, as a general problem solver, can be used to solve com-

plex optimization problems without the need for any domain-specific knowledge. The only

requirements for search based methods are suitable representations for the problems and the

measurement or evaluation functions for these problems. Meanwhile, the learning meth-

ods can be used to learn useful hypotheses, classify instances, and predict based on these

learned output, to gain beneficial insights into the problemspace.

After the introduction of search and learning techniques, we begin to explore the core

topic for this chapter, which is the hybrid of learning and evolution algorithms. Modern

hybrid algorithms utilize the advantages from both learning and evolution. Hybrid algo-

rithms take the feature of evolutionary search algorithms as general optimizers, which are

robust to local optima, and also take the advantage of learning algorithms for creating hy-

potheses that indicate promising solutions efficiently. Due to these advantages of these

two techniques, the aim of combining these two methods is to find relatively promising

solutions while keeping enough efficiency. This is again theaim we stated in chapter1, the

trade-off between the quality of the solutions and the time and space resources expended on

finding these solutions, because such a trade-off is crucialto the success of many practical

application problems, especially evaluation-expensive problems.

Hybrid optimization paradigm algorithms are being developed rapidly in the evolu-

tionary computation community. In this thesis, we considerthree representative methods,

which have attracted considerable attention in this research field. Based on one of these

methods, we developed our new hybrid algorithms, and compare the performance of these

67

algorithms on a number of test problems of which the results are analyzed. These three

methods are discussed in the following three sections.

3.2 Covariance Matrix Adaptation Evolution Strategies

CMAES [HO96, HO97] is an Evolution Strategy adapting the covariance matrix ofthe

normal mutation search distribution. Basically, it records the population history for a certain

number of iterations to calculate covariance and variance information among the object

variables, the following search effort is influenced by these variance values. Compared to

other evolutionary algorithms, an important property of theCMAESis its invariance against

linear transformations of the search space. Namely, it exhibits the same performances for

a given objective functionf : x ∈ Rn → f (x) ∈ R, wheren ∈ N, or for the same function

where a linear transformation is applied,fR : x ∈ Rn → f (Rx) ∈ R, whereR denotes a

linear transformation. This is true only if a correspondingtransformation of the strategy

parameters is made. In fact, this transformation is learnedby the CMA with the application

of the principle of the principal components analysis introduced in Chapter2.

As we discussed before, as a member of the evolutionary computation family, the evolu-

tion strategy is a stochastic search algorithm that can be used in the search for optimization

problems. The mechanism behindESsearch is the stochastic variation operator, mutation,

on the current individuals. The mutation is usually carriedout by adding a realization of a

normally distributed random vector, and the parameters of the normal distribution play an

essential role for the performance of the search algorithm.Therefore, the correct adaptation

of the parameters for the normal mutation distribution becomes crucial. There are two types

of parameters, one is the object parameters that define the individuals or search points in

search space, the other is the strategy parameters that characterize the mutation distribution.

The essential feature ofESis the self-adaptation of the mutation distribution, that is, adapts

strategy parameters during the search process.

In Chapter2, we have already seen some attempts at this automatic adaptation of normal

mutation distribution inES. The search based on the uncorrelated mutation with one mu-

tation step forms a hyper-sphere with equal probability density on the surface. This global

step size is further generalized, each coordinate axis is assigned as different variance, that is

the uncorrelated mutation withn mutation steps. An even further generalization adapts the

orthogonal coordinate system, where each coordinate axis is assigned a different variance,

any normal distribution with zero mean can be produced. However, this most generalized

68

method depends on the orientation and permutation of the coordinate axes and therefore

will perform very badly on the quadratic functions which arebadly scaled and not axis

parallel oriented.

For these reasons, the covariance matrix adaptation methodis developed. CMAES

contains a generalized individual step size control, whichis independent of the given coor-

dinate system. First, we give the details of the (µ/µI , λ)-CMAES algorithm as it is defined

in [HO97] for completeness.

3.2.1 (µ/µI , λ)-CMAES algorithm

Every new object parameter vectorx(g+1)
k , k = 1 . . . λ, of generationg + 1 is generated by

adding a realization of aN
(

0, δ(g)2
C(g)

)

distributed random vector. The vector is generated

by linear transformation ofz ∼ N(0, I), whereI is the identity matrix. Fork = 1 . . . λ, it

yields

x(g+1)
k = 〈x〉(g)

µ + δ
(g)B(g)D(g)zk (3.1)

wherex(g+1)
k ∈ Rn. Object variable vector ofkth individual at generationg+ 1.

〈x〉(g)
µ = 1

µ
Σ

(g)
j∈I sel

x(g)
j . Center of mass of theµ selected (best) individuals of generationg.

I (g)
sel is the set of indices of the selected individuals at generation g, |I sel| = µ.
δ(g) Step size.

B(g) Orthogonaln × n-matrix, which linearly transformsD(g)z. Columns ofB(g) are

eigenvectors of the covariance matrixC(g). For any two columnsbi andb j, i , j, of B holds

‖ bi ‖= 1 and〈bi , b j〉 = 0 and thereforeB−1
= BT .

D(g) Diagonaln×n-matrix. The diagonal elementd(g)
ii is the square root of an eigenvalue

of the covariance matrixC(g). The corresponding eigenvector is thei th column ofB(g). That

is, for any columnb(g)
i of B(g) holdsC(g)b(g)

i = d(g)2

ii b(g)
i .

zk ∈ Rn. k = 1 . . . λ realizations of aN(0, I) distributed random vector, i.e. components

of z are independent identically (0,1)-normally distributed.

D scales the axes of the distribution; isodensity lines ofDz are coordinate axes parallel

(hyper-)ellipsoids.B determines the new orientation of this ellipsoid. The covariance ma-

trix C determinesB andD, and is adapted by means of a so called evolution path, denoted

by s.

s(g+1)
= (1− c) · s(g)

+ cµ ·
√
µ

δ(g)

(

〈x〉(g+1)
µ − 〈x〉(g)

µ

)

(3.2)

69

C(g+1)
= (1− ccov) · C(g)

+ ccov · s(g+1)
(

s(g+1)
)T

(3.3)

where

s ∈ Rn. Sum of weighted center of mass differences.s represents the evolution path of

the strategy.

c ∈ [0; 1]. 1/c corresponds to the accumulation time fors. Forc = 1,s(g+1) only depends

on object parameter vectors of generationg andg+ 1.

cu =
√

c · (2− c) normalizes the variance ofs because 12 = (1− c)2
+ c2

u.

C(g) Symmetricn×n-matrix, which is the covariance matrix of the normally distributed

random vectorB(g)D(g)z, wherez ∼ N(0, I). C(g) determinesB(g) and D(g) and C(g) =

B(g)D(g)(B(g)D(g))T .

ccov ∈ [0; 1]. 1/ccov corresponds to the averaging time for the covariance matrix.

The step sizeδ is adapted separately, because changes of overall varianceshould be

made on a much shorter time scale than the adaptation of the covariance matrix. For step

size adaptation〈x〉(g+1)
µ − 〈x〉(g)

µ is transformed to reverse the scaling byD, done in Equation

3.1. This allows to calculate the expected length ofsδ.

s(g+1)
δ
= (1− c) · s(g)

δ
+ cµ · B(g)

(

D(g)
)−1 (

B(g)
)−1
√
µ

δ(g)

(

〈x〉(g+1)
µ − 〈x〉(g)

µ

)

(3.4)

δ(g+1)
= δ(g) · exp















D
||s(g+1)
δ
|| − X̂n

X̂n















(3.5)

wheresδ ∈ Rn represents an evolution path, which is not scaled byD.

D−1 can easily be calculated by inverting the diagonal elementsof D individually.

B−1
= BT.

D ∈ [0, 1]. Parameter for damping the step size variation.

X̂n =
√

n(1− 1
4n+

1
21n2) estimates the expected length ofsλ under random selection, which

is thenN(0, I) distributed.

In the above steps, some important points need to be emphasized. First, the mutation

steps history is recorded in the covariance matrixC, which is then used to calculate the cor-

responding eigenvectorB and eigenvalueD based on the multi-variates statistical method

PCA. Second, after the analysis of the mutation history, the relationship between different

variables and the significance of these relationships are indicated byB andD, respectively.

In PCA, these are the components (eigenvectors) and their significance (eigenvalues). There

70

is no feature vector formed here, all the components are considered. Third, thekth new nor-

mal distribution vectorzk is now influenced by the eigenvectorB and eigenvalueD, multi-

plied byD gives the vector a new scale, changing its length; multiplied byB gives the vector

a new direction, changing its direction. In this way, the newnormal distribution vector is

not arbitrary, it is guided by the evolution history data, having any length and direction in

the search space. Finally, the mutation step sizeσ is changed or evolved separately.

Essentially, the covariance matrix adaptation implementsthe idea of improving the

probability of emphasizing the mutation steps that can create promising solutions. Namely,

the covariance matrix of the mutation distribution is changed in order to increase the prob-

ability of producing the selected mutation steps again. Andalso, the rate of change is

adjusted according to the number of strategy parameters to be adapted. The adaptation

mechanism is inherently independent of the given coordinate system. Finally, the CMA

implements a principal component analysis of the previous selected mutation steps to de-

termine the new mutation distribution.

As we have noticed that theCMAES algorithm needs to set a number of relevant pa-

rameters, those are recommended according to the authors’ experiences, we refer to further

details and discussions forCMAES to [HO97, HO01]. In the following chapters, espe-

cially in Chapter6, we will also introduce twoCMAESvariant algorithms for experimental

comparison with our hybrid algorithms.

3.3 Estimation of Distribution Algorithms

A new evolutionary computation paradigm algorithm has recently received a lot of atten-

tion, it is the hybrid optimization algorithm called Estimation of Distribution Algorithms

(EDA) [MP96, LELP99, PGL99]. EDA can be seen as an outgrowth of genetic algorithms,

where a population of candidate solutions are maintained aspart of the search for an op-

timum solution. This population is typically represented explicitly as an array of objects.

Depending on the problems, the objects might be bit strings or vectors of real numbers

representation. In anEDA, this explicit representation of the population is replaced with a

probability distribution over the choices available at each position in the vector that repre-

sents a population member.

The most important difference betweenGAs andEDAs are, in the latter, there they are

neither crossover nor mutation operators, instead,EDAs generalizeGAs by replacing the

crossover and mutation operators with learning and sampling the probability distribution of

71

the best individuals of the population at each iteration of the algorithm. That is, the new

population of individuals is sampled from a probability distribution, which is estimated

from a data set containing selected individuals from the previous generation. Working

in such a way, the relationships between the variables involved in the problem domain

are explicitly and effectively captured and exploited through the joint probability distribu-

tion associated with the individuals selected at each iteration. In evolutionary computation

heuristics, on the other hand, the interrelations between the different variables represent-

ing the individuals are kept implicitly in population. Before exploring each concrete EDA

algorithm, we introduce a generalEDA algorithm first as Algorithm5:

Algorithm 5 pseudo code for a general EDA algorithm
1: Generate the initial population at random withM individuals;

2: while (the stopping criterion is not met)do

3: Select (N ≤ M) individuals from current population according to a selection method;

4: Estimate the probability distribution of an individual within the selected individuals;

5: SampleM new individuals from this probability distribution;

6: end while

As stated before, theEDA algorithms do not have crossover and mutation operators.

When the initial population is generated, a subset of current individuals are selected as the

best individuals according to a fitness or ranking based selection method. Then the proba-

bility distribution for each variable of each individual isestimated. The new population is

then generated according to this probability distribution. As we mentioned, this is the gen-

eral EDA algorithm, it can be seen as a framework for various concreteEDA algorithms,

and the most important feature that distinguishes different EDA algorithms is the method

that estimates the probability distribution, before we seethose specific estimations meth-

ods, we will give an illustrative example of a simplestEDA algorithm by simulating the

creation of the initial few populations.

3.3.1 Example Illustration

For the problem of optimizing (minimizing) the functionf (x) = sin(x) with binary variable

xi, for i = (1 . . .5). The initial population is obtained at random by samplingthe following

probability distribution:p0((xi = 1) = 0.5) for i = (1 . . .5). According to this probability,

72

Table 3.1: Initial population,P0

index X1 X2 X3 X4 X5 f (X)

1 1 1 1 0 1 0.290285

2 1 1 1 0 0 0.382683

3 0 0 1 0 1 0.471397

4 0 0 1 0 1 0.471397

5 0 1 0 0 0 0.707107

6 1 0 1 0 1 0.881921

7 1 0 0 1 1 0.95694

8 1 0 0 1 0 0.980785

Table 3.2: Selected population

index X1 X2 X3 X4 X5 f (X)

1 1 1 1 0 1 0.290285

1 1 1 1 0 1 0.290285

4 0 0 1 0 1 0.471397

5 0 1 0 0 0 0.707107

for each variablexi, the probabilities of generating 0 or 1 are equivalent.P0 is the initial

population (Table3.1), with the average fitness value of 0.642814.

In the selected population (Table3.2) with half of the initial population size, it is pos-

sible to emphasize the same individual twice. We estimate the probability distributions for

this selected population, the probabilities are: p(X1 = 1) = 0.5, p(X2 = 1) = 0.75, p(X3 = 1) =

0.75, p(X4 = 1) = 0.0, p(X5 = 1) = 0.75. According to this probability distribution, thenew

population is generated as in (Table3.3).

We can see that the new generated population also have 8 individuals with the average

fitness value, 0.529666, compared with the initial average value, 0.642814, the average fit-

ness value is optimized now. This finishes an iteration of thesimplest EDA algorithm. In

this simplified version ofEDA, we ignore the method of creating the probabilities distribu-

tion. Also, the above problem is univariate, the variables are independent to each other, so

the probability distributions are univariate marginal distributions. However, in many other

problems, the variables are not independent, the interdependencies relation could be com-

plex, in these cases, inEDA algorithms, the bayesian network model is used to represent

73

Table 3.3: New generated population

index X1 X2 X3 X4 X5 f (X)

1 1 1 1 0 1 0.290285

2 1 1 1 0 1 0.290285

3 1 1 1 0 0 0.382683

4 0 0 1 0 1 0.471397

5 0 0 1 0 1 0.471397

6 1 1 0 0 1 0.634393

7 0 1 0 0 1 0.77301

8 0 1 1 0 0 0.92388

these dependence relations, which have to be constructed first and the relevant probability

distributions need to be calculated.

3.3.2 Structure Learning Methods

As discussed in Chapter2, Section2.3.5, the induction of a bayesian network includes two

important components, one is the parameters learning component, the other is the structure

learning component. We have discussed how to learn the parameters component, here we

simply discuss the structure learning method. There are generally two wide methods, one

is detecting conditional dependencies, the other issearch and score method.

The PC algorithm [SG91] is one of the examples of detecting conditional dependencies

algorithms. It starts by forming the complete undirected graph, then ‘thins’ that graph

by removing edges with any conditional independence relations, after all such conditional

independences are all removed, a conditional dependence directed acycled graph is derived,

the bayesian network.

The search and score method is to search for a good bayesian network from a huge

feasible networks space. To be able to do this, recall from the genetic algorithm section, we

need to define suitable measurements of the candidate networks. Once such an evaluation

method is available, any heuristic search algorithms can beused to implement searching,

we have seen such a search method in Chapter2, for example, local search algorithms and

genetic algorithms are all applicable. And the modificationof one network structure could

be adding or deleting one arc of the current structure. Finally, the measurement method

can depend on the maximum likelihood measurement which we have discussed in Chapter

74

2 in the parameters learning part. That is, for some observed data setD and a bayesian

network, the maximum likelihood estimate,θ, can be used as a measurement of the success

of the candidate structure to describe the observed dataD. However, it seems that the more

complex structure has a bigger likelihood, while complexity is not preferred. So, some

suitable penalty functions also need to be defined.

3.3.3 Concrete EDA Algorithms

Under the generalEDA algorithm principle, many concreteEDA algorithms have been de-

veloped. The main differences of these algorithms are the probability distribution methods

applied for sampling new solutions. However, these differences on probability distribu-

tions are also due to the features of the problems which theseEDAs try to solve. Also,

these problem features define the criterion for classifyingtheseEDA algorithms. Before

introducing the most commonly used EDA algorithms, we give the classification standards

for these algorithms. First, they can be grouped according to the problem types, discrete

value (combinatorial) and continuous-value. And then,EDA algorithms can be classified

by the complexity of the probabilistic models used to learn the interdependencies between

the variables from the data set of selected individuals. Therefore, EDAs can be classified

as non-dependencies, bivariate dependencies, multivariate dependencies. We introduce the

EDA algorithms in the order of these classification standards. The first of them is the

Univariate Marginal Distribution Algorithm (UMDA)introduced by Mühlenbein[Müh97],

detailed as Algorithm6.

Algorithm 6 pseudo code for Univariate Marginal Distribution Algorithm (UMDA)
1: generate the initial population at random withM individuals;

2: while (the stopping criterion is not met)do

3: selectN ≤ M individuals from current population according to a selection method;

4: Estimate the joint probability distribution withp(x) = p(x|D) =
∏n

i=1 p(xi) =
∏n

i=1

∑N
j=1 δ j (Xi=xi |D)

N

5: sampleM new individuals from this probability distribution;

6: end while

The model used byUMDA to estimate the joint probability distribution of the selected

individuals at each generation,p(x), is very simple. Each univariate marginal distribution

is estimated from marginal frequencies:

75

p(xi) =

∑N
j=1 δ j(Xi = xi |D)

N

where

δ j(Xi = xi |D) =



















1 if in the j th case of D,Xi = xi;

0 otherwise.

AnotherEDA algorithm which considers multiple dependencies is the algorithm called

the Estimation of Bayesian Networks Algorithm (EBNA)introduced in [LELP00]. This

and its variant algorithms are typical algorithms that apply the bayesian networks as the

probability distribution estimating method. In these algorithms, the parameters learning

for the networks is implemented by learning the factorization of the joint probability dis-

tribution encoded by a bayesian network from the selected data set. The structures of the

bayesian networks are learned from the following steps. Thefirst generation of the networks

is generated throughout the networks space. And then eitherof the following options can be

chosen, test on conditional independences between variables, applying the PC algorithm;

or some simple search algorithms can be employed to search for a good network structure

and some evaluating methods for guiding the search algorithm for good network structures

are applied, among these methods, the K2 algorithm combinedwith penalty function or

BIC are applied, each of the options gives different instances of theEBNA algorithms, as

shown as Algorithm7.

Algorithm 7 pseudo code forEBNAPC, EBNAK2+ pen, EBNABIC algorithms
1: generate the initial population at random withM individuals;

2: while (the stopping criterion is not met)do

3: selectN ≤ M individuals from current population according to a selection method;

4: conditional (in)dependence tests→ EBNAPC

5: penalized Bayesian score+search→ EBNAK2+pen

6: penalized maximum likelihood + search→ EBNABIC

7: sampleM new individuals from this probability distribution;

8: end while

TheEMNAglobal algorithm [LnLB01] is an approach based on the estimation of a mul-

tivariate normal density function at each generation. As described in Algorithm8, at

each generation, we estimate the vector of means,µ = (µ1, µ2, . . . , µn), and the variance-

covariance matrix,Σ, whose elements are denoted byσ2
i j with i, j = 1, . . . , n. This means

76

Algorithm 8 pseudo code forEMNAglobal algorithms
1: generate the initial population at random withM individuals;

2: while (the stopping criterion is not met)do

3: selectN ≤ M individuals from current population according to a selection method;

4: f (x) = f (x|D) = N(x; µ,
∑

) Estimate the multivariate normal density function from

the selected individuals.

5: sampleM new individuals from this probability distribution;

6: end while

that we need to estimatem means,n variances andn · (n− 1)/2 covariances. These param-

eters estimations use their maximum likelihood estimates in the following way:

µi = Xi =
1
N

∑

r=1

Nxi,r i = 1, . . . , n

σ2
i =

1
N

∑

r=1

N(xi,r − µi)
2i = 1, . . . , n

We finish our introduction onEDA concrete algorithms for now. However, in Chapter

7, anotherEDA algorithm calledPopulation Based Incremental Learning (PBIL)will be

used to solve and make comparisons with our hybrid algorithms on optimizing the cancer

chemotherapy treatments problem which is a practical evaluation-expensive optimization

problem. We will delay the introduction of PBIL until then.

3.4 Learnable Evolution Model (LEM)

The LEM was introduced by Michalski in 2000[Mic00]. LEM is a highly generalized

hybrid approach for optimization, which involves interleaved bouts of evolution and learn-

ing. The overall idea ofLEM is to run repeated stretches of evolution and learning in

series, where the next ‘evolution’ stretch is informed in some way by the previous ‘learn-

ing’ stretch, which in turn learned about the mapping between genotype and fitness from

previous populations. Namely, to infer relationships between gene values and fitness.

3.4.1 LEM(AQ)

Before we introduce the generalLEM framework, we explain aLEM instance algorithm,

Learnable Evolution Model with AQ learning algorithm (LEM(AQ)), as described in [Mic00].

Firstly, in LEM(AQ), the initial population is generated and evaluated. It is then divided

77

into high-performance (H-group) and low-performance (L-group) groups according to the

initial individuals’ fitness values. These two groups are then used as the positive and nega-

tive training examples for the AQ learning algorithm, whichhas been discussed in Chapter

2. The outcome of the AQ learning algorithm is a set of rules expressing inductive hypothe-

ses (in terms of intervals of gene values) for the positive and negative examples, and can be

used to predict the class information (i.e. H-group or L-group) for future unseen examples.

LEM(AQ) then proceeds with an otherwise normal evolutionary algorithm, except that the

operators are designed so that new individuals are generated only with gene values within

the ranges of values sanctioned by the recently learned inductive hypotheses.LEM(AQ)

then continues for a specified number of generations, and then pauses for more learning

based on the current population. This in turn feeds into the next stage of evolution, and so

on. There are additional complications and sophistications in LEM(AQ) that mediate the

transitions between learning and evolution.

3.4.2 LEM Framework

With the introduction of theLEM(AQ) algorithm, we are ready now to introduce the general

LEM framework. The generalLEM framework is very important in our investigations in

the hybrid optimization algorithms in this thesis. All of the hybrid algorithms developed

in this thesis, and also theLEM(AQ), are based on this framework, or more precisely,

are instantiations of this general framework. Our hybrid algorithms are inspired by this

basic and generalLEM framework, to which we have shown more flexibility and creativity

by incorporating new learning components and new interaction methods. We give this

framework first in Figure3.1:

As we can see from theLEM framework, first, many standard evolutionary computation

components and operations are applied in theLEM framework. Second, the way in which

learning and evolution interact are flexible and depends on different situations and on the

progress of the optimization procedure. Finally,LEM(AQ) is only one of the possible

instantiations for the widerLEM framework.

The standard evolutionary computation components such as generating initial popula-

tion, evaluating individuals, and parent selection etc areparts of the evolutionary component

for theLEM framework. They can all be implemented in the normal way as described in

the evolutionary computation section. The way learning andevolution interact need to be

decided by the select actions stage, where each action corresponds to one mode of opera-

78

Start

Generate Initial Population

Evaluate Individuals

Select Parent Population

Select One or More Actions

RandomizeRepresentation
Adjust

Probe
Instantiatiate
Learn and

Stop LEM

Figure 3.1: The general LEM framework

tion. LEM can also select one or more actions in parallel, which is controlled by the Action

Profile Function (APF). There are basically four modes inLEM, they are learning mode,

probe mode, change representation, and randomization.

Learning mode is the main operation inLEM, it contains three operations, which are

the training examples selection, hypothesis generation, and hypothesis instantiation. The

training examples selection stage can be implemented in many ways, such as ranking based

and fitness based. For both methods, a threshold is needed, inthe ranking based method,

all of the individuals that are in the high group defined by thethreshold are selected as

the positive data, the same principle for the negative data.In the fitness based method,

precisely those fitness values which are in the top and low groups defined by the threshold

are selected as positive and negative data.

When the training data are selected, the AQ learning algorithm is used to generate the

hypothesis, a rule-set describing the training data. Afterthis, the instantiation procedures

are used to generate new individuals for the next generation. The successful implemen-

tation of instantiation is crucial to the success ofLEM implementation, even the learning

algorithm has successfully indicated the promising districts of the search space, inefficient

implementation of instantiation also cannot lead to good performance. This needs to de-

velop efficient instantiation procedures to utilize the learnt information effectively.

79

The probing mode executes evolutionary computation operations in order to generate

new individuals. The two operators implemented in LEM are crossover and mutation. One

important issue in applying these genetic algorithm operators is that, they are not used to

generate promising solutions but rather to maintain the diversity of the population. This is

due to the fact that as the learning and evolution procedure continues, the population will

soon converge to some narrow districts involving local or global optima, meanwhile, the

diversity of the population will disappear very quickly. This is a quite normal situation

which occurs in an evolutionary search, however, it causes aparticular difficulty for the

LEM method due to the application of learning in this framework.Namely, lack of diversity

for the population and therefore the problem of not having enough training data will cause

the learning algorithms to be unable to generate useful and representative hypotheses and

rule-sets.

The discretization mode inLEM framework raises the requirement for any adaptive

discretization methods. These discretization methods arenecessary for theLEM frame-

work based optimization procedures and can increase the precision of the discretized real

variables in the most promising areas, or neighborhoods of the fittest individuals.

In addition to the probing mode which can generate random individuals, randomization

mode further adds randomly generated individuals to a population in order to introduce

more diversity, or replaces the entire population in a start-over process. This mode is ben-

eficial when the learning mode leads the search procedure into a wrong direction or local

optima, and has no hope of restoring from the wrong directions easily.

The switch between these modes and actions described above is controlled by the Action

Profiling Function (APF). In theLEM framework, APF controls two important aspects first,

it can adaptively decide the number of individuals that willbe generated by each mode, this

is done by defining parameters likeaverage-learning-fitness, average-probing-fitness. If

the former is bigger than the latter, then the number of individuals generated in the learning

mode should be increased. Another aspect is the no-progressparameters, indicating within

a number of iterations that the program is making no progressin terms of values of the

fitness function. This situation can be identified through the use of two program parameters,

learn-probe and learn-threshold. Learn-probe defines the maximum number of iterations

that are performed even if there is no satisfactory progress, and the learn-threshold defines

the minimal acceptable increase of fitness of the best individual. In such a situation, the

no-progress condition is met, and the available actions will be triggered in a pre-defined

order.

80

3.4.3 Relations with EDAs

Meanwhile, whileLEM was initially published only in the machine learning community,

at around the same time Estimation of Distribution Algorithms started to shoot to promi-

nence in the evolutionary computation community [LL02]. EDAs can also be viewed as

learning/evolution hybrids, with the emphasis on buildingand maintaining models of fit

chromosomes. BothLEM andEDA techniques now have several published variants (par-

ticularly EDA variants), and it is interesting to consider what the definitive differences are.

It seems correct to suggest that whileEDAs focus on modeling as the key force behind

search activity (i.e. search is guided closely by statistical models, with new sample points

generated directly from the model), inLEM the evolutionary component is more responsi-

ble for the search (i.e. new points are sampled mainly in the familiar way by using genetic

operators on a population of chromosomes), with guidance from learning processes.

Most interestingly, recent results from theLEM team compareEDAsand LEM3 directly

[WM06]. They report using variousEDA implementations from [BMLL02], with best

results of these on Rosenbrook and Griewank functions, found by EMNA global [LLB02].

Comparison of LEM3(AQ) and EMNAglobalon these functions showed LEM3 is between

15 and 230 times faster in achieving its best value, which in turn was always better than that

achieved by EMNAglobal. Finally, it must be pointed out thathybridsof EDA andGAs,

or of EDAs and other search methods, have started to appear since at least 2003 [ZSTF03,

ZSTF06, PRL+04]. When contrasting the LEM framework with theEDA framework, it is

perhaps clearest to say that LEM is similar in style to a hybrid EDA/GA, and this seems to

be reflected in the relative success that has so far been shownfor EDA/GA hybrids.

3.4.4 Applications of LEM

The performances ofLEM(AQ) have been reported as very promising, with improvements

both in solution quality and dramatic speedup when comparedto the ‘without learning’

equivalent EA. The developers of the LEM framework are continually updating the ‘AQ15’

version [JKES95] for the AQ learning algorithm and continuing to report impressive results,

albeit on a limited suite of test functions. In application-oriented work, a multiobjective

LEM-based approach, using C4.5 [Qui93] as the learning method, was found to signifi-

cantly speed up and improve solution quality for large-scale problems in water distribution

networks [JCSW05]. Meanwhile the team that developed LEM has updated the framework

[WM05] and continued to obtain impressive results [WM06].

81

The design and application ofLEM clearly merits considerably more research. The

speedup derived by applyingLEM is reported in several papers, that is, the reduction in the

number of fitness evaluations needed to reach high quality results, this improvement is of

particular interest for many important applications in which fitness evaluations are costly.

In such applications, time savings can make the difference between the problem being

solvable or not at all. With an interest in a clearer understanding of theLEM framework

and its performance, we investigated in this thesis a numberof LEM instance algorithms

and the performance improvements obtained by using these algorithms are reported in the

following chapters.

82

Chapter 4

KNN Based LEM Hybrid Algorithms

4.1 Overview

In Chapter3, we have seen some modern hybrid optimization algorithms. Among them, we

are particularly interested in the generalLEM framework and theLEM instance algorithm

LEM(AQ). In this chapter, we start the expedition of investigating more newLEM instance

algorithms. This further research into LEM methods is due tothe following three main

reasons.

The first one is the scientific research interest. As we can see, there exist many learn-

ing methods in the machine learning community. What will happen if we replace the AQ

learning algorithm with the other well-known learning methods? Will the resultingLEM

algorithms perform equally well? That is, can they still achieve the same performance im-

provements over the same set of problems as the originalLEM(AQ) does? The feasibility

of this investigation is based on the fact that, although thelearning methods are varied in

many aspects, many of them do share many similarities. For example, for the supervised

learning methods, all of them need some training data as input, and output some forms

of model or hypothesis which take the form of either trees, orrules, or the training data

themselves. So, the general forms are the same, apart from the induction details. More

precisely, we want to make theLEM framework more flexible and extendable to any learn-

ing methods, and the application or choice of a particular learning method will depend on

the problems at hand or user’s preference. Ultimately, thisaim can also be understood as

offering a user-friendly interface, where before the run oftheLEM framework (which is a

huge collection of various learning and evolution algorithms), a set of optional parameters

can be chosen, or during the run of theLEM framework, the suitable learning methods can

be selected adaptively according to the progress of optimization.

83

The second reason is that we want to clarify how learning and evolution interact.LEM(AQ)

has shown a good way to interleave the learning and evolutionprocedures, they can be car-

ried out in series or in parallel or the output of one procedure can be used as the input of

another procedure. Learning methods generally contain several functions, for example, the

classification and prediction functions. Therefore, the question arises, are there any other

ways in which learning and evolution can interact? To answerthis question, that is to find

out another new way for learning and evolution to interact will be a very interesting and

challenging task, and also will further show the flexibilityof the LEM framework. There-

fore, this is an important investigation direction forLEM research.

Finally, another important reason for investigatingLEM is application-oriented. The

promise shown in the work on originalLEM for considerable speedup for the optimization

of many evaluation-expensive problems also clearly meritsconsiderably more research into

the design and application ofLEM. This led to an investigation of anLEM variant algo-

rithm on the large scale water distribution network problem[JCSW05]. In these and many

other problems where fitness function evaluations take considerable time, time savings are

precious, and can easily make the difference between the problem being solvable or not.

This forms another important reason for investigatingLEM, we want to see how successful

LEM is in achieving speedup for evaluation-expensive problems.

Based on these reasons, in this chapter, we start this expedition by investigatingLEM in

its (we think) simplest form, usingKNN (Section2.3.3) as the ‘learning’ mechanism. The

resulting algorithm is calledLEM(KNN) [SC08]. In LEM(KNN), the way learning is used

is quite different from the way it is used inLEM(AQ). KNN learning is used to predict the

new individuals generated by the evolution mode and can be seen as a survival selection

method for selecting the newly generated individuals. Moreprecisely, learning is used as

a ‘filter’ which can predict the ‘fitness’ of these newly generated individuals in some way

prior to the evaluation of these individuals. If one individual is predicted as fit enough, it

will then survive and be evaluated, otherwise, it will be discarded. Evidently, a new learning

and evolution interaction mechanism is created inLEM(KNN). Finally, if such predictions

by KNN are correct to a certain extent, then a suitable substitute for the survival selection

operation is found, which allows a huge amount of evaluations to be avoided and saved.

We will presentLEM(KNN) in complete detail in the following sections and evaluate

the performance of thisLEM instance algorithm. We testLEM(KNN) on the same set of

problems that were used in the originalLEM paper. A further refinedLEM(KNN) algo-

rithm calledLEM(dwKNN) is also developed for reasons we will indicate later.LEM(dwKNN)

84

incorporates the distances contribution to theKNN algorithm and is able to obtain better

optimization performance. Both algorithms are tested on a set of test functions widely used

in the optimization community.

In the remainder, we continue as follows. Section4.2 provides complete detail of our

LEM(KNN) algorithm, (also denoted as,GA hybridized with KNN algorithm (KNNGA)),

and presents the experiments and results. Section4.3 provides complete details of the re-

fined and generalizedLEM(KNN) algorithm,LEM(dwKNN), (sometimes we also denote

as theGA hybridized with distance-weight KNN algorithm (dwKNNGA)), and presents the

experiments and results. We conclude and discuss in Section4.4.

4.2 LEM(KNN) – KNNGA

TheLEM(KNN) algorithm has its evolution component as the standard genetic algorithm

and its learning component as theKNN method. This algorithm is inspired by the original

LEM method and can be viewed in a number of different ways. It belongs to the general

LEM framework, because it replaces the AQ learning method with KNN; it shows the

flexibility of LEM framework by adding a new interaction relationship betweenlearning

and evolution; it uses a new survival selection mechanism inthe context of a standardGA.

In the following discussion, we use both the termsKNNGA andLEM(KNN), first, they

are completely equal terms.LEM(KNN) is used when we emphasize it as part of the LEM

framework;KNNGA is used when we emphasize its similarity withGA. The same term

conventions apply fordwKNNGA andLEM(dwKNN).

4.2.1 KNNGA Algorithm

There is a big difference betweenLEM(AQ) and ourKNNGA in how learning influences

evolution, which is quite simplified inKNNGA. In LEM(AQ), the generation of new in-

dividuals are instantiating of the description (set of rules) of the H-group or L-group.

However, inKNNGA, new individuals are still generated by the commonGA mutation

and crossover operators,KNN is applied as a particular form of survival selection opera-

tor which judges an individual according to its neighbors. Adetailed description of our

KNNGA algorithm is given below, in which we assume a maximization problem is being

considered.

As with LEM(AQ), KNNGA divides the population into high-performance (H-group)

and low-performance (L-group) groups according to their fitness values and a giventhresh-

85

old (say, 30% – that is, the fittest 30% form the H-group and the worst 30% form the

L-group). This is then saved as thelearning population. Individuals of the H-group and

L-group in thelearning populationform the training examples used by theKNN algorithm.

Effectively, ‘learning’ here corresponds entirely to the process of classification into these

groups based on fitness, and hence is one of the simplest learning schemes conceivable.

However, this goes hand in hand with the use of thelearning populationin predicting the

quality of newly generated individuals, which goes as follows.

The common mutation and crossover operators are used to generate new individuals

in the normal way. Once a new individual is generated,KNN is used to predict if this

individual is ‘good’ or ‘bad’ according to thelearning populationwhich is the training

examples. First, we find thek nearest neighbors for this new individual; if the majority of

these neighbors are in the H-group, then this individual is predicted as ‘good’, otherwise

this individual is predicted as ‘bad’. The ‘good’ individuals are retained to form the new

population for the next generation, and are evaluated in thenormal way inGA. The ‘bad’

individuals are discarded without evaluation. This continues until sufficient new individuals

are generated in (or, predicted to be in) the H-group to form anew population. When

a fixed number of generations (we indicate this aslearning gap(LG)) are generated, the

learning populationis updated by the current population. Again, thelearning population

is classified into the H-group and L-group. This is repeated until a termination condition

is reached. Now we try to ensure a replicable explication with pseudo-code. ‘Overview’

pseudo-code for KNNGA is as follows:

1. Set parameters: Set values forpopulation size, parameters for mutation (mutation

step size, mutation probability), parameters for crossover (crossover probability) and

set elite-preserve operator option. Setk (indicating the number of neighbors inKNN

algorithm), learning gap(indicating the interval before one learning population is

updated by another) and thethreshold.

2. Generate initial population: Choose a method to create the initial population with

population sizeand evaluate this population.

3. Derive extrema: Copy thecurrent populationas thelearning populationfrom which

create the high fitness group (H-group) and low fitness group (L-group), according to

fitness values andthreshold. These two groups could have a joint set, or their union

could be a subset of the whole population set or even equals tothe whole population

set. These two groups are stored forKNN algorithm.

86

4. Generate new generations: After selecting parents basedon thecurrent population,

apply the mutation, crossover operators to generate new individuals. Once a new

offspring is generated (it is not evaluated and is not placedin the mating pool imme-

diately),KNN is applied to find itsk nearest neighbors with regard to H-group and

L-group (not the wholelearning population). For thesek nearest neighbors of this

offspring,KNNGA judges the majority according to their fitness values, therewill be

two cases:

i) if the majority is high (that is, most of this offspring’sk neighbors are members of

H-group), then this offspring is retained into the newly created population and

evaluated.

ii) if the majority is low (that is, most of this offspring’sk neighbors are members

of L-group), then this offspring is aborted.

The generating procedure continues until this new population is filled with such

newly generated individuals. This finishes the generation of one generation.

5. Update H-group and L-group: When thelearning gapis reached, thelearning popu-

lation is replaced by thecurrent population. The H-group and L-group are therefore

recalculated according to the currentlearning populationand the samethreshold.

The new H-group and L-group are again stored forKNN.

6. Termination condition: The above steps 4 and 5 repeat until some termination condi-

tions are satisfied:

i) the optimal (if known) is reached; or

ii) the maximum number of generations allowed is reached; or

iii) the best fitness value has not been improving for a certain number of generations.

The pseudo-code for our specific instantiation ofKNNGA is set out as algorithm9. The

idea behindKNNGA is that, instead of using the traditional survival selection operation,

we can utilize the prediction capacity which is almost available to all machine learning

methods. The only requirement for these learning methods isa set of suitable training data

which should satisfy some certain criterion of quality and quantity. Predicting the fitness of

each new generated individual does the same job as the survival selection does in principle.

The former is ‘guessing’ according to the performance of previous individuals, and the

87

Algorithm 9 pseudo-code for KNNGA
1: populationsize= 100, i = 0;

2: generationnumber= 0,maxgenerationnumber= 500;

3: k = 5; learning gap= 1, threshold= 0.3;

4: Initialize a new population withpopulationsize, and evaluate it;

5: repeat

6: Select parents based oncurrent population;

7: if (generationnumber%learning gap== 0) then

8: Copycurrent populationinto learning population;

9: Calculate theH-group andL-group according tothreshold;

10: end if

11: while (i < populationsize) do

12: Mutate a parent individual to generate a new child;

13: Calculate thek nearest neighbors for this child;

14: if (the majority of this child’sk neighbors are nearer toH-Group)then

15: Evaluate and place it into the next generation;

16: i++;

17: else

18: Child is aborted;

19: end if

20: Apply crossover on two parent individuals in thecurrent populationto generate

two new children;

21: For each of these two children, repeat steps 13-19;

22: end while

23: generationnumber++;

24: i = 0;

25: until (generationnumber== maxgenerationnumber)

88

later is exactly ‘evaluating’ or ‘working out’ the accuratefitness value for each individual,

which is very expensive for evaluation-expensive problems. We highlight the advantage

of KNNGA by comparing it with the standardGA, and we find that the main and only

difference between these two algorithms is the substitute of survival selection operator with

KNN learning method, as seen in Figure4.1 and Figure2.1, showing the similarity and

difference between theKNNGA and a normalGA.

Current population

initialize

Offspring population

Parent population

Termination Condition

variation

parent select

test

satisfied
terminate

KNN predict on
each offspring

survived

not survived

discard

Figure 4.1: Flowchart of the KNNGA algorithm

KNNGA Execution Time Analysis

One of our main motivations for investigating LEM-based methods is their promise of

speedup on large-scale optimization problems. That is, achieving good results with rela-

tively few evaluations, which is particularly important when a single evaluation is time-

comsuming. We therefore provide this simple analysis of execution time for completeness,

in order to better understand how the number of evaluations depends on other aspects of the

algorithms studied.

We assume for bothKNNGA andGA that the population size isp, the maximum al-

lowed number of generations isM, the time for evaluating one single individual isteval,

and the new population is generated either by crossover operation or mutation operation.

Meanwhile,tsearchrepresents the time spent on searching for a satisfying individual. For the

generalGAs, the time spent on the whole evolutionary processTGA is calculated by:

TGA = (p+ M · p) · teval (4.1)

89

There arep evaluations for the initial population, andp evaluations for each of the

following M generations. The time spent on the evolution/learning processTKNNGA is cal-

culated by:

TKNNGA= (p+ M′ · p) · teval+ M′ · p · tsearch (4.2)

Again, p evaluations are needed for the initial population, andp evaluations in each of

the following M′ generations, the generations spent by KNNGA when the same qualified

solution is found as GA does. In addition to the evaluation time, KNNGA needs search

time p · tsearch in eachM′ generations. Finally, the time differenceTD betweenTGA and

TKNNGA is:

TD = (M − M′) · teval− M′ · tsearch (4.3)

The most important point is that, generally, the search timespent in the problem repre-

sentation spacetsearchis proportional to the properties that define the problem representation

space, such as discrete or continuous, attributes or dimension number, and domain number

for each attribute. However, the time spent on evaluating each solutionteval depends on the

problem definition and the problem complexity. So, in the evaluation-expensive problems,

the evaluation time could be much longer than the search timefor a qualifying solution.

That is, we haveteval >> tsearch in Equation4.3 for evaluation-expensive problems. And

also, the development of theLEM(KNN) algorithm and the claim made by the original

LEM authors, there should be speedup in evaluation number for LEM(KNN) over the nor-

mal GA algorithm, that is,M > M′. Therefore, the saved computation timeTS should be

expected and calculated approximately as:

TS ≈ (M − M′) · teval (4.4)

As we can see from the Equation4.4, thetsearch time is omitted, as it is actually a rela-

tively fixed time expense for the given problems, it only depends on the problem represen-

tation and dimensions. On the other hand, theteval could be very different from problem to

problem and much more expensive than the search time especially for expensive-evaluation

problems. The termM − M′ represents the expected time savings that we want to achieve

by developing new LEM hybrid algorithm, it should be a positive integer and as big as

possible. In the following experiment sections, we will tryto verify this anticipation.

90

Picturing the KNNGA evolution procedure

We use a simple linear function maximization problem as an example problem to illustrate

how KNNGA operates. The problem has a two-dimensional population space, therefore

each individual consists of two genes (attributes). AsKNNGA is running, the sequential

populations will be occupied by the individuals nearer to the H-group in the current popu-

lation.

x

30% high

30% low

30% low x

y

y

A

population size 100

c30% low

30% highy

30% high
population size 100

B

x

population size 100

Figure 4.2: An illustrative flowchart for the KNNGA algorithm evolution procedure

Figure 4.2A shows the first generation, the initial individuals are evenly distributed

within the whole population space, and for a giventhreshold(eg. 30%) the H-group and

L-group are formed.

Figure4.2B shows the second generation derived byLEM(KNN), this population space

is crowded by individuals that are within the high fitness half of the first population. Since

the degree to which the individuals are now spreading out in genotype space is around half

what it was previously, the density in genotype space is roughly doubled. This population

now undergoes classification into H-group and L-group, resulting in Figure4.2C.

Figure4.2C shows the third generation of the population, and we see continued reduc-

tion in the ‘spread’ of the population. Clearly, the currentwhole population has focused on

a region increasingly defined by the H-group individuals of the first and second generations.

An obvious and perhaps important aspect ofLEM(KNN) (and LEM methods in general,

is this strongly defined movement of the population between generations, which is clearly

91

guided (by the results of learning) and less randomized and exploratory than a normalGA.

Naturally this has potential drawbacks; we could expect thelearning process to misguide

the population on certain landscapes, and become stuck in poor regions. Whether or not this

generally happens on problems of interest and importance, and (if so) whether the deceptive

nature of the landscape is equally deceptive for normalGAs in such cases, are moot points.

Empirical evidence to date is suggestive that this general strategy is certainly more often

effective than not.

We implement theLEM(KNN) algorithm in later sections, before we do that, we will

investigateLEM(KNN) with more ideas. These ideas are some trivial modifications based

on theLEM(KNN) algorithm, and one of the main purposes of these modifications is to

better evaluate the capacity of theLEM(KNN) algorithm. We see one such idea which

is to verify the quality of the individuals who survived theKNN method inLEM(KNN)

algorithm in the next section.

4.2.2 KNNGA ‘with verification’

We have designed theLEM(KNN) algorithm. Before we test its performance, there are

many questions and ideas aboutKNNGA which deserve more discussion. Among them,

some questions interest us. InKNNGA, when a new individual is generated, the fitness of

the neighbors of this individual from thelearning populationare checked, and this guides

whether or not it enters the population in the next generation. The key difference between

KNNGA (a ‘learning-guided’ search) andGA (a pure black box search) is that, in this way,

a newly generated individual is discarded before evaluation if we predict that it will not be

good enough. The flip-side of this, of course, is that we may well admit new individuals

into the population that pass this test, but ultimately theyprove to be unfit. That is, it could

be that the prediction provided byKNN is wrong, and as a supervised learning method, this

case happens normally. The prediction accuracy depends on many factors as we discussed

in Chapter2, and cannot always be high as long as the learning algorithm satisfies the

PAC-learning theory. Therefore, our concern and question in mind are: how often will

this situation happen? And will these wrong predictions influence the performance of our

LEM(KNN) algorithm? If so, how serious could this influence be?

To understand the degree to which this happens, we also test amodified version of the

KNNGA algorithm which includes a step of ‘verifying’ the correctness of the prediction.

When an individual is generated by a mutation or crossover operator, as before,KNNGA

92

calculates itsk nearest neighbors, again there are two possible cases. For the second case,

where the majority of itsk nearest neighbors are in L-group (for maximization problem),

this individual is aborted without evaluation; for the firstcase where the majority of its

k nearest neighbors are in H-group, this individual is further tested instead of being im-

mediately placed into the next generation. That is, after being evaluated, it is compared

with a pre-selected value (eg the worst fitness value in the current population), if this in-

dividual’s fitness value is higher than this value, then it survives into the next generation;

otherwise, it is still aborted. We call this modified versionof KNNGA asKNNGA [SC08].

Compared withKNNGA, KNNGA with verification (KNNGA(V)) adds one more condi-

tion restricting the new individuals’ ability to survive. Namely, in order to survive into the

next generation, the new individual should not only survivethe KNN filter, but also should

be better than the worst individual in the current generation. The predictions made by KNN

are verified as ‘correct’ or not in this sense. The corresponding KNNGA algorithm should

also be modified.KNNGA(V) algorithm is the same asKNNGA except that Algorithm9’s

14-19 lines are replaced by Algorithm10.

Algorithm 10 part pseudo-code for KNNGA(V)
1: if (the majority of this child’sk neighbors are nearer to H-Group)then

2: Evaluate this child with the fitness function;

3: Find theworst fitnessvalue of thecurrent population;

4: if (fitness(child)> worst fitness) then

5: Places this child into the next generation;

6: i++;

7: else

8: Child is aborted;

9: end if

10: else

11: Child is aborted;

12: end if

This ‘with-verification’ variant does not at first sight seemwell-suited to the goal, in

problems with time-consuming fitness functions, of reducing the number of evaluations as

much as possible. However, we were interested in any trade-off there may be between the

increase in computation time and the quality of solutions obtained. We will come back to

this topic in later sections in this chapter when we introduce the refinedLEM(KNN) algo-

93

rithm. For now, we continue our investigation of theKNNGA algorithm by experimenting

on both theKNNGA andKNNGA(V) algorithms.

4.2.3 Experiments and Results

This section describes the experiments and results of the comparison betweenKNNGA

algorithms and the correspondingGA, which is the evolutionary algorithm identical to our

KNNGA implementation in all respects other than the use ofKNN.

Test Functions

The test problems used here are those used originally in [Mic00] to evaluate the perfor-

mance ofLEM(AQ). In that work, the author reported on two problems from the DeJong’s

suite [DJ75], and variants are tested with different numbers of dimensions. They also re-

ported that similar findings were achieved with the other De Jong problems in [MZ00]. An

additional problem tested in [Mic00] is also tested here, this is from the domain of parame-

ters estimation in nonlinear digital filter design, which issimulated using equations gleaned

from [YS94]. The problems test suite we used in the section is named as ‘test suite 1’ for

convenience, which consists of five functions.

1. Problem 1 : Find the maximum of functionf1 with five variables.

f1(x1, x2, x3, x4, x5) =
5

∑

i=1

integer(xi) − 5.12≤ xi ≤ 5.12 (4.5)

Maximum: 25.

2. Problem 2 : Find the maximum of the functionf2 of 30 continuous variables with

Gaussian noise:

f2(x1, x2, x3, . . . , x30) =
30
∑

i=1

ix4
i +Gauss(0, 1) − 1.28≤ xi ≤ 1.28 (4.6)

Maximum: approximately1248.225.

3. Problem 3 : Determine optimal parameters of nonlinear filters defined by the equa-

tion:

94

y(k) =

[

3− 0.3y(k− 1)u(k− 2)
5+ 0.4y(k− 2)u2(k− 1)

]2

+ (1.25u2(k − 1)− 2.5u2(k))

× ln(|1.25u2(k− 2)− 2.5u2(k)|) + n(k)

(4.7)

wherek is the sample index or time,n() is a noise component ranging from -0.25 to

0.25, andu() is an inserted function (sin, step, random). The coefficients -0.3, 0.4,

1.25, and -2.5 are assumed as variables which will be optimized and can be seen as

the genes of individuals. The problem is to find their correctvalues using samples

{〈vectori, y(vectori)〉}, wherevectori is a specific assignment of values to variables and

y(vectori) is the value of the equation for this assignment. When substituted in the

equation, individuals generate a value ofy that is compared with the value computed

when correct coefficients are used in the equation. The fitness of an individual is

defined as in [YS94] as the reciprocal of the mean-square error over 200 sample

window:

Fitness(Vector) =
1

MeanS quareError

=
200

∑

200(Vector− KnownValue)2

(4.8)

4. Problem 4 : Find the maximum of functionf4 with 100 variables.

f4(xi) =
100
∑

i=1

integer(xi) − 5.12≤ xi ≤ 5.12 (4.9)

Maximum: 500.

5. Problem 5 : Find the maximum of the functionf5 of 100 continuous variables with a

Gaussian noise:

f5(x1, x2, x3, . . . , x100) =
100
∑

i=1

ix4
i +Gauss(0, 1) − 1.28≤ xi ≤ 1.28 (4.10)

95

Maximum: 13556.

We were interested in the basic performance ofKNNGA vs GA, so that we could sam-

ple the degree to which (if any) the LEM framework could be successful when using the

simplest possible learning scheme. However, we also took the opportunity to contrast with-

and without-crossover versions for both theGA andKNNGA. Thus we use notation such as

‘GA(m)’ (the GA with mutation only) and ‘KNNGA(c,m)’ (KNNGAwith both crossover

and mutation).

Parameter Settings

In all cases, the encoding was a vector of real-valued genes each encoding numbers within a

specified interval. We used binary tournament selection [Bäc95, BT96, GD91], elitism (the

next generation’s population is always initialized with the best of the previous generation),

and uniform crossover [Sys89]. Mutation is implemented by randomly adding or subtract-

ing a small value to one gene. For different problems, the values fork, the learning gap

may be different. For each problem,KNNGA andGA use the same initialization method

to generate the initial population. For all cases, the population size is 100. We summarize

all the parameter settings forGA, KNNGA andKNNGA(V) in Tables4.1, 4.2.

Summary of Results

All experiments are repeated 100 times independently to provide sufficient evidence for

claims of statistical significance. For statistical analysis, we use randomization testing

[Edg86], which is relatively free of assumptions about the true distributions of the samples

involved. As it turns out, the differences in performance assuggested by the plots shown

were all confirmed significant at a confidence level of 99.9%, except in those cases where

the best two are clearly close (usually KNNGA(c,m) and KNNGA(c,m)(V)), in which case

the difference in performance was inconclusive at this confidence level. Finally, it is worth

pointing out again that all algorithms began with the same initial population. It sometimes

appears from the graphs (e.g. see Figure4.4) that theLEM(KNN) variants began with an

advantage, however they did not. TheLEM(KNN) variants tended to achieve very rapid

improvement in fitness in the first few generations, which is horizontally compressed to

almost nothing in the plots.

96

Table 4.1: Parameters settings for GA(c,m) and GA(m)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Initialization Randomly generate

Representation Real numbers

Crossover Uniform Crossover

Crossover Probability 0.1

Mutation Random mutation

Mutation step size 0.1 0.005 0.1 0.1 0.005

Mutation Probability 0.2 0.03 0.25 0.01 0.01

Parent selection Binary Tournament Selection

Survival selection Generation selection

Population size 100

Number of offspring 100

Termination condition 500 Evaluations 2000 E 15000 E 500000 E 600000 E

Table 4.2: Parameters settings for KNNGA and KNNGA(V)

Threshold 0.3

k value 5

Learning gap 1

Distance function Euclidean distance

GA applied GA(share all GA settings if applied)

0 50 100 150 200 250 300 350 400 450 500
10

12

14

16

18

20

22

24

generations

be
st

 fi
tn

es
s

va
lu

es

KNNGA(c,m)(V)
KNNGA(c,m)
KNNGA(m)
GA(c,m)
GA(m)

Figure 4.3: Results of running 5 algorithms to maximize problem 1

97

Figure4.3shows the results of running KNNGA(c,m), KNNGA(m), KNNGA(c,m)(V),

GA(c,m) and GA(m) on problem 1. For both KNNGA and GA, mutation step size is 0.1,

mutation rate is 0.2, and crossover is implemented with 100 parents and 10 children. For

KNNGA, k is 5, thresholdis 30%, andlearning gapis 1. For Problem 1, all KNNGA

variants outperform the GA variants. Within 500 generations, GA(m) only reaches the best

fitness value of 13.21, and GA (c,m) reaches 16.31. In contrast, within the same number

of generations, KNNGA(m) and KNNGA(c,m) achieve the best fitness values 16.18 and

23.47, respectively. KNNGA(c,m)(V) achieves best fitness value 23.0. It is interesting

that the extra evaluation step of KNNGA(c,m)(V) does not yield any advantage in solution

quality.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
400

500

600

700

800

900

1000

1100

generations

be
st

 fi
tn

es
s

va
lu

es

KNNGA(c,m)(V)
KNNGA(c,m)
KNNGA(m)
GA(c,m)
GA(m)

Figure 4.4: Results of running 5 algorithms to maximize problem 2

For this problem 2, the number of optimum increases as the number of variables scales

up. Figure4.4shows the results of running the five KNNGAs and GAs algorithms on prob-

lem 2. For both KNNGA and GA algorithms, the mutation value is0.005 due to the smaller

variables range (-1.28, 1.28) and the mutation rate is 1/30.Crossover is implemented with

100 parents and 10 children. For KNNGA,k is 5, thresholdis 30%, andlearning gapis

1. Within 2000 generations, KNNGA(m) and KNNGA(c,m) reach the best fitness values

758.3 and 1048.7, GA(m) and GA(c,m) can reach 840.7 and 993.1, respectively. KN-

NGA(c,m)(V) achieves best fitness value 1039.2.

In this study for problem 3, we test KNNGA algorithm on the problem of parameter

estimation for digital filter design. The fitness function was defined by equations specifying

linear and nonlinear filters presented in [YS94]. For this minimization problem, the fitness

landscape is not clear even for the low variables cases. Figures4.5and4.6show the results

of running the five KNNGAs and GAs on problem 3. For both KNNGA and GA, the

98

0 50 100 150
0

0.5

1

1.5

2

2.5

3
x 10

4

generations

m
ea

n
sq

ua
re

 e
rr

or
s

KNNGA(c,m)
GA(c,m)
GA(m)

Figure 4.5: Results of running GA(m),GA(c,m),KNNGA(c,m) to minimize problem 3

0 50 100 150
0

1

2

3
x 10

4

generations

m
ea

n
sq

ua
re

 e
rr

or
s

KNNGA(m)
KNNGA(c,m)(V)

Figure 4.6: Results of running KNNGA(m),KNNGA(c,m)(V) to minimize problem 3

mutation value is 0.1 and the mutation rate is 1/4. Crossoveris implemented with 100

parents and 10 children. For KNNGA,k is 5, thresholdis 30%, andlearning gapis 1.

The reduction in mean square errors achieved by KNNGA over GAis evident. Within 150

generations, KNNGA(m) and KNNGA(c,m) reduce the mean square errors to 3426.3 and

2896.7, GA(m) and GA(c,m) can reduce the mean square error values to 7886.5 and 7588.2,

respectively. KNNGA(c,m)(V) reaches mean square error to 4301.5.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

300

350

400

450

generations

be
st

 fi
tn

es
s

va
lu

es

KNNGA(c,m)(V)
KNNGA(c,m)
KNNGA(m)
GA(c,m)
GA(m)

Figure 4.7: Results of running 5 algorithms to maximize problem 4

Problem 4 is the same problem as problem 1, but with more variables (100 variables).

Figure4.7shows the results of running the five KNNGAs and GAs algorithms on problem

4. The mutation value is 0.1, the mutation rate is (1/100 = 0.01). Crossover is implemented

99

with 100 parents and 10 children. For KNNGA,k is 5, thresholdis 30%, andlearning gap

is 5. The improvement achieved by KNNGA over GA is evident. Within 5000 generations.

KNNGA(m) and KNNGA(c,m) reach the best fitness values 415.7 and 360.1, GA(m) and

GA(c,m) reach the best fitness values 140.8 and 170.6, respectively. KNNGA(c,m)(V)

achieves 351.87.

0 1 2 3 4 5 6

x 10
4

2000

4000

6000

8000

10000

12000

14000

generations

be
st

 fi
tn

es
s

va
lu

es

KNNGA(c,m)(V)
KNNGA(c,m)
KNNGA(m)
GA(c,m)
GA(m)

Figure 4.8: Results of running 5 algorithms to maximize problem 5

Problem 5 is the same problem with problem 2, but with 100 variables. The optima are

approached with more difficulty than in problem 2. Figure4.8shows the results of running

the five KNNGAs and GAs on problem 5. The mutation value is 0.05, the mutation rate

is 0.01. Crossover is implemented with 100 parents and 10 children. For KNNGA,k is 5,

thresholdis 30%, andlearning gapis 5. The improvement achieved by KNNGA over GA

is evident within 60000 generations. KNNGA(m) and KNNGA(c,m) reach the best fitness

values 13042.7 and 12787.3, GA(m) and GA(c, m) can only reach11805.4 and 12269.7,

respectively. KNNGA(c,m)(V) reaches 12971.5.

The results on this suite of problems show clear and very significant superiority for

theKNN basedLEM hybrid algorithms over the standard genetic algorithms. Either KN-

NGA(c,m) or KNNGA(m) were in top place on each problem, and always better than the

non-KNN versions. The typical result is that theLEM(KNN) variants show a significant

acceleration in fitness in the very early generations, followed by steady further improve-

ment, leaving the ordinary versions far back in their wake. These findings reflect those of

[MZ00, Mic00] and other recent LEM works that used more sophisticated learning mech-

anisms and interaction between the learner and the underlying genetic algorithms. Since

the only application-specific demand of KNN is a suitable distance measure (in that way

it is more generally applicable than many other learning mechanisms), it seems fair to say

100

that LEM methods using KNN are clearly recommended for trialin the case of large-scale

optimization tasks in which savings in evaluation time are necessary. Far more work needs

to be done to establish this properly, however even if LEM methods have not been tried on

large-scale real-world problems so far, their promise has indeed been realized in [JCSW05].

Meanwhile, the performance of the ‘with-verification’ version of KNNGA was gener-

ally not significantly different from that of KNNGA(c,m), which suggests that the ‘without’

verification version is preferable, simply because it is faster. More interestingly, the lack

of a major difference in performance between these two suggests that KNN’s predictions,

at least in the cases of the problems tested here, are generally not misleading. However,

this could be problem-dependent, for other types of problems or more complex problems,

we are not sure about the predication capacity of theKNN algorithms. We will leave the

current conclusion about neglecting the ‘with verification’ case for the moment, and will

do more investigation on this mechanism in our further research. Finally, it is clear that

the differences between GA(m) and GA(c,m) were generally reflected in the differences

between KNNGA(m) and KNNGA(c,m).

4.3 LEM(dwKNN) – dwKNNGA

We have investigatedLEM(KNN), perhaps the simplest possible LEM variant algorithm.

In LEM(KNN), the algorithm operates almost identically to the operation of its (ordinary)

underlying evolutionary algorithm (EA), however,KNN is applied as a particular form

of survival selection operator, which judges an individualaccording to the fitness of its

neighbors. Also, we introduced the idea of ‘verification’ and therefore the resulting algo-

rithm KNNGA(V). In this section, we reconsider the idea on ‘verification’ forLEM(KNN).

To clarify this idea, we repeat our initial and main goal for developingLEM(KNN) al-

gorithm, we want to apply KNN algorithm’s prediction capacity to achieve the goal of

reducing useless evaluations, (those evaluations spent onthe individuals which disappear

in the next generation in the normal evolution procedure). Based on this goal, we find that

the LEM(KNN) algorithm cannot avoid some situations where too many unfit individuals

survived the KNN learning method and occupy the next generation (we will show how we

find this and the relative experiments later in this section). This is due to the fact that KNN

as a learning method, like all other learning methods, cannot make predictions or classifica-

tions completely correct (100% accuracy) for the reasons discussed in Chapter2. Namely,

it is possible that certain individuals which survived (those predicted as ‘good’ by KNN)

101

are actually very unfit individuals. The percentage for these ‘actual unfit’ individuals in the

following generation concerns, because if the percentage is too big, it will affect the opti-

mization performance. It is due to this drawback that we introduce the idea of ‘verification’

into LEM(KNN).

However, ‘verification’ does not seem a good solution, at least from our experiments

in the last section. And we think this could be for the following reasons, first, it is diffi-

cult to choose a suitablesurvival fitness(we simply choose the worst fitness value in the

current population) for verification to make a comparison with. Worse and more impor-

tantly, ‘verification’ requires more evaluations, it requires the individuals that survived the

KNN algorithm to be evaluated first before they are further tested with thesurvival fitness

to decide whether they can be retained into the next generation or not. Such a procedure

clearly needs more evaluations and makes ‘verification’ contradictory to the main goal of

ourLEM(KNN) algorithm which is to reduce the number of evaluations.

To overcome the drawbacks of the KNN algorithm and to find a good substitution for

verification, we find a nice solution which is thedistance-weight KNN (dwKNN), and

it allows us to explore a more intelligent version of LEM(KNN) which uses distance-

weighted KNN, the resulting algorithm is calledLEM(dwKNN). In LEM(dwKNN), we

replace straightforward KKN with distance-weighted KNN, which considers the classifica-

tion of a given inquiry instance according not only to its neighbors but also their distances

to the enquire instance. This generalization and refinementof the KNN algorithm have two

main advantages, firstly, there is no essential difference betweenk and all training data due

to the consideration of the distance contribution for each instance during the classifying.

Secondly and most importantly, the classification for the enquire instance is not decided

by the majority class information of its neighbors, but instead an estimated function value.

It is this estimated function value indwKNN which makes an essential different from the

LEM(KNN) algorithm to theLEM(dwKNN) algorithm - not only can it be used to predict

the newly generated individuals, but it can also make a direct comparison with the survival

fitness value without evaluating these individuals. Namely, the estimated function does the

same job as the verification, but without any extra expenses on fitness evaluations which

are needed for the verification version.

In this section, we will explain howLEM(dwKNN) achieves the goal of LEM(KNN),

reducing evaluation with KNN as survival selection, and avoids the drawback of LEM(KNN),

unfit individuals are possibly able to survive into the next generation. And, more impor-

tantly, LEM(dwKNN) does these without the expenses on extra evaluations. Also,in the

102

following experiment part, we also try to unravel the question of although attempts to use

simpler learning strategies within the LEM framework, suchasLEM(KNN), have shown

outperformance over the underlying evolutionary algorithm, whether theseLEM(KNN) al-

gorithms can seriously challenge the state-of-the-art optimization hybrid algorithms? Since

LEM(KNN) produced significant benefits, we hypothesized that LEM(dwKNN) may show

further benefits, and perhaps begin to rival state-of-the-art optimization methods such as

CMAES, especially in terms of solution quality over reduced-evaluation number.

4.3.1 Distance-Weighted K Nearest Neighbors Algorithm

As we have introduced in Chapter2 Section2.3.3, Distance-Weighted Nearest K Neighbors

Algorithm (dwKNN) is a refinement and generalization of the original KNN algorithm. The

main refinement of dwKNN is that it weights the contribution of each of thek nearest neigh-

bors according to their distances to the new query candidateduring classification. Namely,

distance-weight is to give greater influence to the closer neighbors, while reducing the in-

fluence of further neighbours. This refinement and generalization is worth and believed to

bring more precise classification results. For example, when we consider a 3-NN (k = 3)

algorithm for classifying the new query candidatexq, if 2 of 3 nearest-neighbors ofxq are in

the H-group, for the original KNN algorithm,xq will be predicted as ‘good’ (individuals in

H-group are labeled as ‘good’ for our optimization problems); however it could well be the

case that the nearest neighbor toxq out of this 3 neighbors is in the L-group, while the other

two are a considerably greater distance away. In this case, it should be reasonable to con-

sider more influence of this nearest neighbor by giving it more ‘credit’ (the weight), than

the other two. Finally, the consideration of giving weightsto neighbors according to their

distances to query candidate indwKNN may or may not change the classification results.

A way to take distance into account in the KNN algorithm is to directly assign a pre-

dicted or estimated function value to the new candidate, based upon the distance-weighted

average of its neighbors. Namely, for the new candidatexq, we may approximate its fitness

as weighting the contribution of each of thek neighbors according to the inverse square of

its distance fromxq, as in Equation2.21in Chapter2, here, we list this equation again for

completeness.

f̂(xq) =
∑k

i=1 wi f (xi)
∑k

i=1 wi

(4.11)

103

wi =
1

d(xq, xi)2
(4.12)

4.3.2 dwKNNGA Algorithm

In the resultingLEM(dwKNN) algorithm, the GA algorithm hybridized with thedwKNN

classification algorithm orLEM(KNN) extended with distance-weight, the idea is therefore

simply to operate in the same way as LEM(KNN), but using instead the distance-weighted

approach to predict the group membership of a new candidate.Namely, we replace straight-

forward KNN withdwKNN. DwKNN essentially predicts or estimates the fitness of a new

candidate as a weighted sum of the fitness of its neighbors among already-evaluated so-

lutions. A candidate is rejected before evaluating if its predicted or estimated fitness falls

below asurvival fitness. Note, if an individual survives this test, it means firstly that this

individual is classified as ‘good’ class, second, its fitnessvalue is ‘estimated’ to be better

than the survival fitness without any real evaluations. The ‘verification’ idea uses the real

fitness value to compare with the survival fitness, which requires real evaluating on that

individual.

There are several possibilities for how we determine whether a candidate survives or not

based on thesurvival fitness. We have not explored variations on this yet, but our default

approach used is to allow survival if the estimated fitness isbetter than the worst in the

current H-group.

Finally, given distance weighting, it is reasonable to allow all (or many) of the training

examples to influence classification, since all influences are moderated by distance. There-

fore, for thedwKNNGA algorithm, there is no need to indicate the parameterk, or it can

be simply indicated as the size of the training data. This actually is another advantage of

dwKNNGA algorithm, that is, it reduces the necessity of optimizing the algorithm param-

eterk, which could be important in the optimization performance and is not done in the

LEM(KNN) algorithm. To ensure a replicable explication, detailed pseudo-code for our

specific instantiation ofLEM(dwKNN) is set out.

1. Set Parameters: Set values forpopulation size, parameters for mutation (mutation

probability, mutation step size), parameters for crossover (crossover probability) and

set elite-preserve operator option. Setk (indicating the number of neighbors in

dwKNN algorithm), learning gap(indicating the interval before one learning pop-

ulation is updated by another) and thethreshold.

104

2. Generate initial population: Choose a method to create the initial population with

population sizeand evaluate this population.

3. Derive extrema: Copy thecurrent populationas thelearning populationfrom which

create the high fitness group (H-group) and low fitness group (L-group), according to

fitness values andthreshold. These two groups could have a joint set, or their union

could be a subset of the whole population set or even equals tothe whole population

set. These two groups are stored for dwKNN algorithm.

4. Generate new generations: After reproducing thecurrent population, apply the mu-

tation, crossover operators to generate new individuals. Once a new offspring is gen-

erated (it is not evaluated and is not placed in the mating pool immediately),dwKNN

is applied to calculate its estimated fitness value according to Equation4.11, with

regard to H-group and L-group (not the wholelearning population). There will be

two cases:

i) if the estimated fitness is better than the survival fitness(the worst fitness in H-

group), then it is evaluated and retained into the newly created population.

ii) if the estimated fitness is worse than the survival fitness, then it is aborted.

The generating procedure continues until this new population is filled with such

newly generated individuals nearer to H-group. This finishes the generation of one

generation.

5. Update H-group and L-group: Whenlearning gapis reached, thelearning popula-

tion is replaced by thecurrent population. The H-group and L-group are therefore

recalculated according to the currentlearning populationand the samethreshold.

The new H-group and L-group are stored for dwKNN.

6. Termination condition: The above steps 4 and 5 repeat until some termination condi-

tions are satisfied:

i) the optimal (if known) is reached; or

ii) the maximum allowed generations number is reached; or

iii) the best fitness value has not been improving for a certain number of generations.

105

TheLEM(dwKNN) algorithm is modified based on the originalLEM(KNN) algorithm,

the pseudo-code for our specific instantiation ofdwKNNGA is set out here as Algorithm

11.

In this section, we have developed theLEM(dwKNN) algorithm. The reason for de-

velopingLEM(dwKNN) is to overcome the potential drawbacks toLEM(KNN). As we

mentioned before, the goal ofLEM(KNN) is to achieve good optimization performance by

reducing the unnecessary evaluations. To achieve this,LEM(KNN) uses KNN learning to

predict the fitness of the new generated individual instead of evaluating them. Only those

predicted as ‘fit’ will be evaluated later. However, the drawback ofLEM(KNN) is that

some unfit individuals are still able to survive due to the ‘not perfect’ KNN algorithm’s

prediction accuracy. To reduce the effect of this drawback,we first try to use the idea of

‘verification’ to verify each new individual which has survived the KNN classifier. How-

ever, this verification needs more evaluations to act, whichis against our initial and main

goal of developingLEM(KNN), which is to reduce the number of evaluations. As a bet-

ter solution to this problem, we refine the initialLEM(KNN) algorithm asLEM(dwKNN),

which maintains the KNN prediction capacity and also try to avoid the survivals of unfit

individuals by calculating a predicted or estimated fitnessfor each individual, and the es-

timated fitnesŝf is used to compare with the survival fitness. In this way,LEM(dwKNN)

avoids the extra evaluations inKNNGA(V), and therefore in favor of the initial and main

goal of LEM(KNN). Essentially, the estimated fitness value inLEM(dwKNN) has done

two tasks together, that is, classifying the individual andverifying its quality. These two

tasks are implemented inLEM(dwKNN) together, while in LEM(KNN)V, they are realized

separately. We will prove the advantage ofLEM(dwKNN) in the experiment part in the

next section.

4.3.3 Experiments and Results

Test Functions

This section describes the experimental results derived from the comparison betweenGAs,

LEM(KNN), LEM(dwKNN), andCMAES. First, we are always interested in the basic per-

formance ofLEM(KNN) vs GA, so that we could sample the degree to which theLEM

framework could be successful when using the simplest possible learning scheme. Second,

we are also interested in the performance ofLEM(KNN) andLEM(dwKNN), therefore

the distance-weights refinement techniques to overcome thedrawbacks ofLEM(KNN), if

106

Algorithm 11 pseudo-code for dwKNNGA
1: populationsize= 100, i = 0;

2: generationnumber= 0,maxgenerationnumber= 100;

3: k = 11, learning gap= 1, threshold= 0.3;

4: Initialize a new population withpopulationsize, evaluate it;

5: repeat

6: reproducecurrent population;

7: if (generationnumber%learning gap== 0) then

8: copycurrent populationinto learning population;

9: calculate theH-group andL-group according tothreshold;

10: calculate thesurvival fitness;

11: end if

12: while (i < populationsize) do

13: mutate a parent individual to generate a new child;

14: calculate theestimated fitnessaccording to Equation4.11for this child;

15: if (theestimated fitnessis better thansurvival fitnessin theH-group)then

16: evaluate and place it into the next generation;

17: j++;

18: else

19: child is aborted;

20: end if

21: apply crossover on two parent individuals in thecurrent populationto generate

two new children;

22: for each of these two children, repeat steps 14-20;

23: end while

24: generationnumber++;

25: until (generationnumber== maxgenerationnumber)

107

this refinement works, how well does it work? Finally, we alsowant to find out the per-

formance of ourLEM hybrid algorithms against state-of-art hybrid optimization algorithm

like CMAES. We tested all of these algorithms using a collection of seven benchmark test

functions widely used in theECliterature. Here, we name this set of functions as Test Suite

2 and the details of the test functions are described for completeness. Unless otherwise

stated, in all cases,n (number of dimensions, genes) is 30.

1. The DeJong’s function 3 is defined as:

f (x1, . . . , xn) =
n

∑

i=1

integer(xi) (4.13)

wheren = 30 and−5.12 ≤ xi ≤ 5.12. The global minimum of -150 is at the point

(x1, . . . , xn) = (−5.12, . . . ,−5.12).

−6 −4 −2 0 2 4 6

−10

−5

0

5

10

−10

−5

0

5

10

Figure 4.9: Landscape of the De Jong function 3 in 2 dimensions

2. The DeJong’s function 4 is defined as:

f (x1, . . . , xn) =
n

∑

i=1

ix4
i +Gauss(0, 1) (4.14)

wheren = 30 and−1.28 ≤ xi ≤ 1.28. The global minimum of zero is at the point

(x1, . . . , xn) = (0, . . . , 0).

108

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−5

0

5

10

Figure 4.10: Landscape of the De Jong function 4 in 2 dimensions

3. The Rastrigin’s function is defined as:

f (x1, . . . , xn) = 10.0n+
n

∑

i=1

(x2
i − 10.0 cos(2πxi)) (4.15)

wheren = 30 and−5.12 ≤ xi ≤ 5.12. The global minimum of zero is at the point

(x1, . . . , xn) = (0, . . . , 0).

−4
−2

0
2

4

−4

−2

0

2

4
0

10

20

30

40

50

60

Figure 4.11: Landscape of the rastrigin function in 2 dimensions

4. The Griewank’s function is defined as:

f (x1, . . . , xn) = 1+
n

∑

i=1

x2
i

4000
−

n
∏

i=1

cos

(

xi√
i

)

(4.16)

wheren = 30 and−600 ≤ xi ≤ 600. The global minimum of zero is at the point

(x1, . . . , xn) = (0, . . . , 0).

109

−1000
−500

0
500

1000

−1000

−500

0

500

1000
0

50

100

150

200

Figure 4.12: Landscape of the griewank function in 2 dimensions

5. The Rosenbrock’s function is defined as:

f (x1, . . . , xn) =
n−1
∑

i=1

(100(xi+1 − x2
i)

2
+ (xi − 1)2) (4.17)

wheren = 30 and−2.048≤ xi ≤ 2.048. The global minimum of zero is at the point

(x1, . . . , xn) = (1, . . . , 1).

−4
−2

0
2

4

−4

−2

0

2

4
0

1000

2000

3000

4000

Figure 4.13: Landscape of the rosenbrock function in 2 dimensions

6. The Ackley’s function is defined as:

f (x1, . . . , xn) = 20+ e− 20exp



















−0.2

√

√

1
n

n
∑

i=1

x2
i



















− exp















1
n

n
∑

i=1

cos(2πxi)















(4.18)

wheren = 30 and−30 ≤ xi ≤ 30. The global minimum of zero is at the point

(x1, . . . , xn) = (0, . . . , 0).

110

−40
−20

0
20

40

−40

−20

0

20

40
0

5

10

15

20

Figure 4.14: Landscape of the ackley function in 2 dimensions

7. The Schwefel’s function is defined as:

f (x1, . . . , xn) = 418.9829n+
n

∑

i=1

xi sin
(√

|xi |
)

(4.19)

wheren = 30 and−500 ≤ xi ≤ 500. The global minimum of zero is at the point

(x1, . . . , xn) = (420.9687, . . . , 420.9687).

−500

0

500

−500

0

500
0

500

1000

1500

2000

Figure 4.15: Landscape of the schwefel function in 2 dimensions

Parameters Settings

We have also improved our genetic algorithm implementations in this case over that used

in Section4.2, and made them more advanced for solving real-parameters optimization

problems. For the new genetic algorithms developed here, wecall them GA1 and GA2, we

apply the steady-state model instead of the generational model, the steady-state model is

111

Table 4.3: Parameters settings for GA1 and GA2

Representation Real numbers

Crossover Blind crossover(BLX-0.5)

Crossover Probability 0.6

Mutation Normal distribution mutation

Mutation step size 1 / 4 of the whole search range

Mutation Probability GA1: 1.0

GA2: 1.0/length of chromosome

Parent selection Binary Tournament Selection

Survival selection Replace the worst of the population

Population size 100

Number of offspring 100

Initialization Randomly generate for each run

Termination condition After 10000 evaluations

Table 4.4: Parameters settings for LEM(KNN) and LEM(dwKNN)

Threshold 0.3

k value 11

Learning gap 1

Distance function Euclidean distance

GA applied GA2(share all GA2 settings if applied)

said to have better performance over the generational model; we also incorporate new real-

parameters crossover operators developed in the GA literature into GA1 and GA2 here,

the BLX crossover operator [ES93] introduced in Section2.2.2is applied withα = 0.5,

crossover probability of 0.6; we also apply the Gaussian perturbation mutation with a step-

size of one quarter of a genes range, and apply to a new candidate with various probabili-

ties, since in earlier experiments some advantage was sometimes shown for more frequent

mutation, the mutation probability of 1.0 is used for GA1, and mutation probability of

(1.0/chromosomelength) for GA2. Parameters for GAs are summarized in Table4.3.

Both LEM(KNN) and LEM(dwKNN) used a threshold value of 0.3,k = 11, a learning

gap of 1, with the underlying EA being GA2, as in Table4.4.

The main parameters for CMAES(µ, λ) areµ, number of parent individuals,λ the num-

112

Table 4.5: Parameters settings for CMAES

Number of parents 50

Number of offspring 100

Mutation step size 1 / 4 of the whole search range

Initialization Randomly generate for each run

Termination condition After 10000 evaluations

Table 4.6: Means and standard deviation after 10 generations

Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) CMAES

DeJong3 -78.3(4.06) -90.26(4.74) -98.07(4.88) -113.8(4.80) -94.55(3.88)

DeJong4 8.84(3.20) 3.47(2.02) 2.39(1.57) 1.3(1.23) 9.66(3.71)

Rastrigin 287.89(17.18) 232.08(20.3) 212.84(23.59) 161.42(20.05) 288.66(17.41)

Griewank 134.04(23.36) 76.26(13.62) 67.21(13.43) 36.67(10.88) 158.41(28.86)

Rosenbrock 1027.19(232.76) 583.57(148.74) 487.11(89.91) 311.64(84.76) 728.83(166.97)

Ackley 16.45(0.56) 14.50(0.71) 13.95(0.82) 12.10(34.72) 16.77(0.67)

Schwefel 9028.48(379.91) 7487.64(517.69) 6611.33(552.26) 5312.65(558.17) 9611.63(321.64)

ber of offspring, and the initial standard deviationsσ. Here, we implement CMAES(50,100)

andσ is set to one quarter of the range of each variable, as indicated in Table4.5.

In all cases, the encoding was a vector of real-valued genes each encoding numbers

within a specified interval, population size is 100, binary tournament selection and elitism

(the next generation’s population is always initialized with the best of the previous gener-

ation) are applied all the time. All experiments are repeated 100 times independently to

provide sufficient evidence for claims of statistical significance.

Summary of Results

Table4.6 to Table4.9summarises the results of 100 runs of each algorithm on each func-

tion, with means and standard deviations recorded at 10, 20,50 and 100 generations (multi-

ply by 100 for number of fitness evaluations). Meanwhile, Figure4.16to Figure4.22show

the mean convergence curves for each algorithm on these testfunctions, respectively.

113

Table 4.7: Means and standard deviation after 20 generations

Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) CMAES

DeJong3 -97.71(3.42) -117.21(3.64) -127.6(3.21) -141.36(2.80) -112.16(2.82)

DeJong4 1.35(0.99) 0.09(0.11) 0.037(0.051) 0.16(0.24) 0.070(0.12)

Rastrigin 248.74(17.74) 155.40(19.59) 134.73(16.62) 87.74(15.04) 228.39(14.78)

Griewank 55.2333(10.57) 21.65(4.74) 17.27(3.97) 5.70(2.27) 26.07(7.78)

Rosenbrock 436.4(89.7) 220.01(51.03) 185.23(41.61) 133.99(46.33) 152.95(37.93)

Ackley 13.17(0.76) 9.96(0.83) 9.05(0.82) 6.33(0.84) 10.36(1.06)

Schwefel 8706.26(381.46) 5686.49(533.59) 4641.64(536.89) 3470.82(461.21) 9564.46(291.09)

Table 4.8: Means and standard deviation after 50 generations

Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) CMAES

DeJong3 -128.23(2.65) -146.67(1.42) -149.6(0.61) -149.93(0.25) -141.7(2.23)

DeJong4 8.63e-3(7.53e-3) 3.60e-3(4.86e-3) 2.52e-3(3.17e-3) 7.76e-3(1.93e-2) 5.28e-4(0.12)

Rastrigin 174.94(30.17) 84.36(14.51) 64.38(10.78) 30.32(7.05) 191.26(12.1)

Griewank 6.75(1.99) 2.04(0.4) 1.52(0.27) 1.08(0.081) 1.16(0.079)

Rosenbrock 116.74(27.65) 75.38(29.28) 69.29(30.96) 68.34(39.16) 29.94(0.73)

Ackley 6.601(0.71) 3.91(0.50) 3.02(0.50) 2.22(0.58) 2.32(0.409)

Schwefel 7380.06(1012.55) 3277.86(493.95) 2009.99(375.16) 1685.07(330.60) 9460.74(282.0)

Table 4.9: Means and standard deviation after 100 generations
Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) CMAES

DeJong3 -145.60(2.12) -150(0.0) -150(0.0) -150(0.0) -150(0.0)

DeJong4 1.77e-3(1.73e-3) 8.8e-4(9.9e-4) 8.7e-4(0.9e-3) 1.53e-3(1.68e-3) 1.52e-4(1.6e-4)

Rastrigin 77.29(33.48) 44.75(8.997) 27.66(7.9) 11.01(2.79) 116.69(63.62)

Griewank 1.52(0.68) 0.95(0.11) 0.51(0.25) 0.68(0.23) 0.029(0.017)

Rosenbrock 55.17(20.87) 44.72(24.15) 45.68(27.14) 53.00(34.72) 27.42(0.53)

Ackley 2.59(0.83) 0.95(0.52) 0.65(0.57) 1.38(0.61) 0.019(0.0094)

Schwefel 5120.94(1078.51) 1540.0(289.45) 1357.99(336.98) 1446.53(301.62) 8948.33(805.8)

114

0 20 40 60 80 100
0

5

10

15

20

25

generations
be

st
 fi

tn
es

s
va

lu
es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
CMAES

Figure 4.16: Results of running 5 algorithms on the DeJong3 problem

0 5 10 15
0

20

40

60

80

100

120

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)

GA(1.0/30.0)

LEMKNN

LEMdwKNN

CMAES

Figure 4.17: Results of running 5 algorithms on the DeJong4 problem

115

0 20 40 60 80 100
10

1

10
2

10
3

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
CMAES

Figure 4.18: Results of running 5 algorithms on the Rastrigin problem

0 10 20 30 40 50
10

0

10
1

10
2

10
3

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
CMAES

Figure 4.19: Results of running 5 algorithms on the Griewankproblem

116

0 10 20 30 40 50
10

1

10
2

10
3

10
4

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
CMAES

Figure 4.20: Results of running 5 algorithms on the Rosenbrock problem

0 20 40 60 80 100
0

5

10

15

20

25

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
CMAES

Figure 4.21: Results of running 5 algorithms on the Ackley problem

117

0 20 40 60 80 100
10

3

10
4

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)

GA(1.0/30.0)

LEMKNN

LEMdwKNN

CMAES

Figure 4.22: Results of running 5 algorithms on the Schwefelproblem

First, for the GA1 and GA2 algorithms, the only difference between these two algo-

rithms is the mutation probability. GA1 has a mutation probability of 1.0, while GA2 has a

mutation probability of 1.0/(length of chromosome). As is clear from the tables, GA2 beats

GA1 in all the functions for all generations. This has the clear implication that, when GA

is used to solve real-parameter optimization problems, a lower mutation probability should

be recommended. However, this recommendation is only derived from our test problems

here, which may not represent all problem complexities and features.

Second, according to the algorithms performances, bothLEM(KNN) andLEM(dwKNN)

outperform the corresponding GA algorithms (GA2) in all problems for all generations.

The performance improvements are more clear in the earlier generations, and are less clear

in the later generations. This advantage in the early stagesof optimization has shown the

advantage and promise that LEM based hybrid algorithms can achieve important speedup

over the standard evolutionary procedures in both the quality of solutions and speed of

optimization by using the application of learning as a guidefor the evolutionary search.

This advantage ofLEM(KNN) algorithms over the standard GA algorithm is crucial for

expensive-evaluation problems.

Third, as shown in the results, the refinedLEM(KNN) algorithmLEM(dwKNN) has

more competitive performance than its original version. Aswe expected,LEM(dwKNN)

is developed to overcome the potential drawbacks thatLEM(KNN) may suffer, that is, the

learning classifier KNN may misclassify some unfit individuals as survived individuals and

118

therefore lower the optimization performance. This speculation has been reflected in our

experiment on test suite 2, as we can see, theLEM(dwKNN) algorithm significantly im-

proves the performance ofLEM(KNN) on six of these functions for all generations, this

improvement overLEM(KNN) indicates thatLEM(dwKNN) not only inherits the predic-

tion capacity ofLEM(KNN) by applying the distance-weight version of KNN algorithm

but also improves the efficiency ofLEM(KNN) by applying the estimated fitness values in

order to verify the quality of the survived individuals without any extra evaluation expenses.

The only exceptional result is De Jong’s function 4 which contains a noisy component in

the function definition,LEM(KNN) outperformanceLEM(dwKNN) at the generation 20.

This situation merits more investigation for ourLEM(dwKNN) algorithm on problems with

noisy input components.

Finally, LEM(dwKNN) performed significantly better thanCMAES, and most of the

other algorithms, on six of the seven test functions when measured at 1,000 evaluations

(10th generation). The picture remains similar at 2,000 evaluations, andLEM(dwKNN)

tends to maintain a strong advantage at 50 generations (5,000 evaluations) too, however it is

overtaken between then and the 10,000 evaluations point, atwhichCMAEStends to be the

dominant algorithm. The optimization performance derivedbyCMAESis quite reasonable.

CMAES, at the beginning of optimization, tends to learn about the best mutation step sizes

and will generally adapt to the best mutation step sizes, this procedure will take certain

number of generations, that is why the performance ofCMAESin the initial generations are

not very promising. However, once the optimized mutation step sizes are found,CMAES

rapidly converges to the optimum solutions either local or global, this is what makes the

performances ofCMAESso excellent, particularly in the quality of the solutions derived in

the later generations.

Here we have found thatLEM(dwKNN), which simply augments an EA with a pre-

evaluation filter survival based on distance-weighted nearest neighbors, can drastically im-

prove the performance of the underlying EA andLEM(KNN), and result in performance

comparable or (usually) better thanCMAESover limited number-of-evaluation regimes (up

to around 5,000).

4.4 Concluding Discussion

We investigated a simple version of Michalski’s LEM [Mic00] which usedk-nearest-neighbors

as the learning component, and had a straightforward interaction between the learning and

119

theGA, in which new individuals only entered the population if themajority of theirk near-

est neighbors in the currentlearning populationwere in the top good performance group.

One contribution of this work is theLEM(KNN) algorithm, a simple instantiation ofLEM

with KNN, which very clearly trounces the correspondingGA in both speed and solution

quality. The speed advantage is particularly impressive ingeneral. Another contribution of

this work is the fact that theLEM framework has been shown to work well in the context

of using perhaps the simplest possible learning method. In other words, even the simplest

learning approach hybridized with a normalGA in a very simple way can lead to con-

siderable performance improvement over theGA alone. This is in contrast to published

approaches which have either used AQ learners or C4.5. KNN isboth simpler and more

generic, suggesting thatLEM(KNN) may be applied to large-scale optimization problems

independently of the chromosome encoding required, needing only a suitable distance met-

ric to be defined.

The advantage ofLEM(KNN) is also our main purpose to developLEM(KNN), that is,

it saves evaluations by using the KNN learning method as the survival section method to

predict the ‘good’ or ‘bad’ for the new generated individuals rather than evaluating them

exactly. However, the disadvantage ofLEM(KNN) is that the prediction based on neighbors

could be flawed and therefore bring unfit individuals into thenext generations. This is not

what we expected. To overcome this drawback, we have tried two approaches. One is the

development of a ‘verification’ version ofLEM(KNN), which results in theKNNGA(V)

algorithm, and the other is the application of the distance-weight KNN algorithm, which

results in theLEM(dwKNN) algorithm. TheKNNGA(V) algorithm is not very successful

in overcoming the disadvantage ofLEM(KNN), because it causes more actual evaluations

to verify the new generated individuals in order to exclude the unfit individuals, which in-

evitably violate the advantage and main goal of developingLEM(KNN) based methods.

On the contrary, theLEM(dwKNN) seems very suited to overcoming the drawbacks of

LEM(KNN) and therefore is able to perform better than theLEM(KNN) algorithm. It

judges the quality of the new generated individuals by calculating an estimated fitness ac-

cording to thek nearest neighbors and their distances weights to a new individual, and

verify this individual using this estimated fitness againsta predefined survival fitness. In

this way,LEM(dwKNN) maintains the prediction capacity ofLEM(KNN) while excluding

the unfit individuals without any extra evaluations.

We note that it has been difficult to compare ourKNNGA with the specificLEM method

used in [Mic00], since not all parameters are provided in the LEM paper. However, while

120

the improvements in performance over theGA are similarly vast, it does seem that the

LEM(AQ) implementation reported there provides superior results to KNNGA. Two clear

explanations for this are available: the simplicity ofKNN compared with the relative so-

phistication of AQ, and the differences in the way that learning influences the evolution

in the two cases. We have deliberately opted for the simplestpossible approaches in both

cases here, and therefore can show that the bulk of the improvement afforded by the LEM

framework is still present in these circumstances, suggesting that the specific choice of

learning method and the design of the learning/evolution interaction provide opportunities

for further improvement and refinement, rather than being crucial to being able to show

superior performance at all.

Continued research on instantiations and variations of theLEM framework are clearly

warranted. Lines of work that we expect to explore are: the relationship between the prob-

lem landscape and the choice of learning method; the interaction between the learning

method and the learning gap, and the use of more than one learning method (with perhaps

adaptive techniques to choose between them at different points). Further hybridization

and comparisons withEDA style approaches, and EDA/search hybrids are also warranted.

Importantly, however, LEM-based approaches would seem to have much to offer for the

speedup of large scale optimization, and we recommend its application to real-world prob-

lems of that nature. A specific issue with some possible LEM variants, including the KNN

case in many dimensions, is that the learning method itself may take up a considerable

amount of time. This is why we recommend LEM-based research in particular for prob-

lems where this ‘learning time’ remains trivial in comparison to the other aspects of the

search, either because a single fitness evaluation takes significant time, or because very

many fitness evaluations are needed, or both. In conclusion,there remains a wealth of so-

lutions to be found in the combination of optimization and learning, and we believe that

helpful insight is easiest to grasp by exploring simple combinations, especially when such

simple combinations perform so well.

121

Chapter 5

LEM Instantiated with Entropy-Based

Discretization

5.1 Overview

In the previous chapter, we developed theLEM(KNN) and its variant algorithms. In

LEM(KNN), the learning methodKNN is used as the survival selection or filter to pre-

dict the newly generated individuals. The development ofLEM(KNN) and its variant

algorithms have investigated two important aspects of the LEM framework. One is the

interaction between learning and evolution, the other is the flexibility of the LEM frame-

work. In this chapter, we continue our investigation of the original LEM framework, this

time, we are interested in the flexibility of the LEM framework. Namely, to explore how to

replace AQ learning with another learning mechanism and explore the performance of the

resulting LEM. As the main LEM instance algorithm,LEM(AQ) utilizes the AQ learning

method to generate explicit hypotheses describing the search space, then the new individu-

als are instantiated according to these hypotheses or rules. This generating-and-instantiating

method plays an important role in the LEM framework. Our investigation of the LEM

framework begins from the flexibility and try to find new methods to fulfill this generating-

and-instantiating method within the LEM framework, and we ask ourselves the following

questions as our research motivations.

When we replace the AQ learning algorithm with the other well-known learning meth-

ods, will the resulting new LEM instance algorithms performequally well with theLEM(AQ)

algorithm? Alternatively, whether the equally significantperformance improvements can

still be obtained with a simpler learning method rather thanthe complex AQ learning algo-

122

rithm? If yes, the flexibility of the LEM framework is verified. If not, what will the perfor-

mance of the new version of the LEM instance algorithm be? Based on these questions, our

investigations of replacing the AQ algorithm begin with simpler algorithms, this is not only

because of the fact that the implementation of learning methods could be expensive, (there-

fore the cheaper implementations are always preferred to more complex implementations),

but also because beginning with simple ideas is a good research strategy. If the simpler

methods result in bad algorithm performances due to their simplicities, then we can con-

sider adding more complex elements to them or using new complex algorithms completely.

Starting from simpler ideas is also useful in order to analyze and clarify the problems of the

current ‘simpler’ version of our algorithms, and thereforecan gain more understanding and

inspiration to develop more advanced algorithms with improved performance. We have just

experienced this procedure in our study ofLEM(KNN) and its variant algorithms.

Before introducing the new instance LEM algorithm, we make an observation about

the LEM(AQ) algorithm. Basically, there are two learning tasks in learning algorithms,

they are classification and prediction tasks. However, in the LEM(AQ) method, in fact,

only the classification task is used, the prediction task is never used. This is because the

LEM algorithm, and also the evolutionary computation algorithms, are used to optimize

the solutions and to find better solutions. This is quite different from the machine learning

algorithms, where the task is to predict the classification of future unseen instances based

on the currently available training instances. The prediction capacity or accuracy of the

classification for future unseen instances are expected. Therefore, the observation is that

the LEM framework based hybrid optimization algorithms only need a ‘partial’ learning

method which only needs to learn from the current training instances, but does not need to

make any prediction about any future unseen instances. Namely, what we need in this LEM

framework is in fact only a ‘classifier’ rather than a ‘predictor’. LEM distinguishes the

current training data, indicating the high-performance districts from the low-performance

districts, and the rules or hypothesis will be used to generate new promising individuals,

rather than being used to make more accurate predictions forfuture unseen data.

Based on these motivations and observations, in this chapter we investigate a new LEM

hybrid optimization algorithm which also uses a very simplelearning strategy, but of a

very different kind. This learning method is called Entropy-Based Discretization (ED) and

we call the resulting algorithm, LEM Instantiated with ED algorithm (LEM(ED)) [SC09],

whereED is used to guide the generating of new individuals, not to filter generated indi-

viduals. Entropy is an important concept and widely used technique in data mining and

123

machine learning, here, we use it as the discretization measurement method.ED simply

finds a partition or ‘cut point’ for each given variable’s range, these ‘cut points’ are ex-

pected to be the best points on each variable (attribute) at which to classify the training

data. Through the development ofLEM(ED), we want to find out whether the above de-

velopment strategy is feasible, and also more importantly the performance of this resulting

LEM(ED) algorithm. We testLEM(ED) on a suite of function optimization problems and

compare its performance with other optimization algorithms.

In the remainder, we continue as follows. Section5.2 introduces the Entropy-Based

Discretization method. Section5.3 provides complete detail of ourLEM(ED) algorithm.

Section5.4presents the experiments and results. Finally, we concludeand discuss in Sec-

tion 5.5.

5.2 Entropy-Based Discretization

5.2.1 Discretization Techniques

Discretization is a process of quantizing continuous attributes. It is an important technique

widely applied in data mining, machine learning and knowledge discovery. Discretized

intervals of continuous numbers are able to represent, specify, and comprehend the knowl-

edge domain more precisely than the continuous values. Also, the discretized features are

easier to understand, use, and explain to users of any level.Discretization can also be used

to reduce the complexity of the original continuous data set. In fact, many machine learning

tasks and induction algorithms require discretization as aprior condition. For example, the

rule-based learning algorithms require discretized inputdata, rules with discretized value

are more compact and understandable with higher predictiveaccuracy.

There exist many discretization techniques in literature,they can be classified according

to many standards. One important standard is the class information of the data need to be

classified, if the data contain class information then the discretization method is called

supervised discretization, otherwise, it isunsupervised discretization. The unsupervised

methods simply divide the whole continuous number range into intervals with equal ranges,

this may not achieve good results simply because the data is distributed in a very complex

manner. The supervised methods utilize the class information to find the better or fitter

intervals divided in the continuous range. Discretizationtechniques can also be grouped as

top-down and bottom-up methods, also termed assplittingandmergingmethods. Top-down

124

(splitting) methods start with an empty list of cut-points and keep on adding new ones to the

list by splitting intervals as the discretization progresses. Meanwhile, bottom-up (merging)

methods start with the complete list of all the continuous values of the feature as cut-points

and remove some of them by merging intervals as the discretization progresses.

In spite of these standards which characterize the discretization methods, a general dis-

cretization procedure is common to many concrete discretization methods. First, for each

attribute of the data set, the continuous values are sorted in either descending or ascending

order, this can make all the numerical values become candidates for ‘cut-points’ or ‘merge-

points’ in a systematic way. After sorting, the next step is to find the best cut-point to split

a range of continuous values or the best pair of adjacent intervals to merge. One typical

evaluation function is then used to determine the correlation of a split or a merge with the

class information of the data set. Examples of such evaluation methods include entropy

based measurements and statistical measurements. When theevaluation method is applied,

for the splitting method, the best cut-point is chosen, and it splits the range of continuous

values into two partitions; for the merging method, all the adjacent intervals are evaluated

to find the best pair of intervals to merge in each iteration. For both cases, discretization

continues until a stopping criterion is satisfied.

5.2.2 Entropy-Based Discretization

Based on the above discussion, we are ready now to talk about Entropy-Based Discretiza-

tion. Entropy is one of the most widely used discretization measurement in the literature,

in Chapter2, we give the definition of entropy in binary situation, here we define entropy

in its more general form in information theory. Entropy for avariableX is defined as:

Definition

E(X) = −
∑

x

px log px (5.1)

wherex represents all the possible values ofX andpx is its estimated probability of occur-

ring. It is the average amount of information for each valuex. Information is high for less

probable events and low otherwise, hence entropyE is highest when each value is equally

probable, i.e.,pxi = pxj for all i, j; it is the lowest when there is one value with the appearing

probabilitypx = 0, and all the other values with probability 1.

So, from the definition of entropy, we can see that it is a method to measure the purity

of a set of data. Alternatively, a low entropy value results in a more efficient classification

125

of two classes of instances. Finally, It belongs to the supervised discretization methods.

There are two well-known discretization methods which apply entropy as the measurement

method. First, in the ID3 [Qui86] and C4.5 [Qui93] decision tree construction algorithms,

if the training data is represented as real numbers, the discretization method will apply

entropy as a measure to discretize the real attributes for the training data, and the cut-point

with minimum entropy for each attribute will be selected as the discretization point. That is,

the point by which the real attribute is split into two intervals which distinguish the current

training data most efficiently, is selected by the discretization method of ID3 or C4.5. In

this way, the real-number data set containing continuous attributes is discretized to be able

to avoid creating too many branches for one node. Indeed, ID3considers each value (point)

of each attribute as a potential cut-point, and calculates their entropy values, the point with

the minimal entropy value is chosen as the cut-point to divide this feature into two intervals.

Namely, it binaries a range at every splitting.

The second discretization method which applies entropy measurement is the D2 algo-

rithm [Cat91]. Like ID3, it applies entropy to find a potential cut-point to split a range of

continuous values into two intervals. Unlike ID3, which binaries a range of values while

building up the decision tree, D2 is a static method that discretizes the whole continuous

value range for all variables. Instead of finding only one cut-point for each variable, D2

recursively binaries ranges or subranges until a stopping criterion is met. The discretized

data is then used for any learning algorithms, not only for ID3, therefore, D2 is a successor

of ID3 discretization. However, the stop criterion for D2 could be difficult to indicate, for

example, if the stop criterion contains that, the number of intervals is beyond a pre-fixed

number, then the best or suitable pre-fixed number is difficult to define.

TheED discretization method inLEM(ED) hybrid algorithm is also known as Entropy-

Based Supervised Binary Discretization. It is based on boththe ideas of ID3 discretization

and D2 algorithms, it discretizes all attributes with entropy measurement into two intervals

all the time in a supervised way, which is similar to ID3 discretization; the discretization

is conducted before any learning happens, in this sense, it is a static method and is similar

to D2. BothED and D2 are static, they discretize all the attributes beforelearning. ED

is different to D2,ED binaries the interval, while D2 iteratively binaries the intervals and

following subintervals.ED is also different from ID3 discretization, which acts dynamically

during the construction of the decision tree. To put it more precisely, ED is a static version

of ID3 discretization, and is a simplified or binary version of D2.

126

We have discussed three concrete discretization methods, they are all supervised and

splitting discretization methods. There are still many other discretization methods available

in the literature, such as merging based methods, the majority of which are still supervised,

but based on merging two adjacent intervals rather than splitting. Also the AQ anchor

adaptive discretization method [MC01], which is also a supervised and splitting method,

but the measurement for splitting is based on accuracy rather than entropy.

5.3 LEM with Entropy-Based Discretization – LEM(ED)

After the discussion about the discretization methods, we will now describe theLEM(ED)

algorithm [SC09], which follows the general LEM framework. Therefore the main de-

velopment idea behindLEM(ED) is to use ED as the generating hypothesis method, and

design a corresponding instantiating method for the ED learning output. That is, find a

good concrete solution for the generating-and-instantiating method in the LEM framework.

As LEM(ED) is a new LEM instance algorithm, many aspects and structuresare inspired

by the theLEM(AQ) algorithm, the description ofLEM(ED) is straightforward.

5.3.1 The LEM(ED) Algorithm

As with LEM(AQ), LEM(ED) divides thecurrent populationinto high-performance (H-

group) and low-performance (L-group) groups according to their fitness values and a given

threshold. This is then saved as thelearning population. Individuals of the H-group and

L-group in thelearning populationform the training examples used by the ‘learning’ al-

gorithm ED. Again, there are many ways to generate the training data set as long as they

can guarantee enough training examples are derived. After the generation of training data,

ED is applied on each variable (dimension) of the data set to discretize each real number

individual. ED simply finds the cut-points for every dimension using the entropy measure-

ment according to the class information, the point with the lowest entropy is selected as the

cut point for each variable, therefore the learned output isa set of interval pairs for all vari-

ables. For example, intervals< mini, cut pointi > and< cut pointi, maxi > are the output

for the ith variable, wherecut pointi is the splitting point with minimum entropy, andmini

andmaxi are the smallest and biggest values onith variable, respectively. The principle that

entropy based discretization is employed as the learning component in the LEM framework

is that, first, the class information is available for the individuals in the training data set, and

then we want to find out in each variable, which discretized interval is contributing the most

127

(A) (B)

: positive training component

: optimum component
: negative training component

bad interval

cut_pointmin max min cut_point max

bad interval good interval good interval

Figure 5.1: The correct and incorrect labellings for two intervals by LEM(ED).

to the current promising individuals in the training data. If these intervals can be indicated,

they will be used to guide the generation of new individuals for following generations. To

be able to realize this principle, when the intervals are discretized, we need to further label

them to select the interval used to guide the generation of new individuals.

When all variables are discretized, each interval on each variable is explicitly labeled

as agoodor bad interval according to the class information. There are manymethods to

implement this labeling step, for example, we can simply count, if the majority of H-group

individuals with ith variable values are lying in one interval, then label thisinterval as a

goodinterval and another interval as abad interval. As Figure5.1(A) shows, after labeling,

the pair of intervals< mini, cut pointi > and< cut pointi, maxi > now indicates that

individuals whoseith values are from different intervals very probably belongto different

classes. The output intervals on each dimension in every generation are key concepts in

LEM(ED), the output interval can be used in order to generate the new individuals for

next generation or be used as guides for following the evolution search procedure. One

important issue arises due to the quality of training data, the learning algorithmsED and

the labeling procedure could produce intervals incorrectly. That is, the outputgoodinterval

on ith dimension may also include many gene values from the L-group individuals, or

simply miss out the optimum component for theith dimension. This case can be caused by

the poorly distributed training data, and also the strong interaction between dimensions in

deciding the problem landscape can affect the accuracy of the output intervals. A simple

bad distribution of the training data onith dimension makes theith output intervals pair

wrong, as shown in Figure5.1(B).

Labeling each interval according to category information is a simple but reasonable

method to apply. First, according to the training data generated with the threshold, the

128

class information for each individual is available. Second, entropy can be used as the mea-

surement of purity of the training data on each variable according to the class information,

and the point which best distinguishes the classes can be found through this measurement.

Finally, simply counting the current good individuals lying in each interval and selecting

the dominating interval can reflect the current distribution of good individuals, although the

distribution of bad individuals is ignored.

However, as we may notice theED method has some similarities and differences with

the well-known decision tree construction algorithm, where the relationships between in-

tervals (domains) and class information are not explicitlyindicated, they are implicitly in-

volved in each path of the tree, or can be more clear from the translated rules. Here, we

discuss the main differences between ED and the decision tree with a focus on the output

forms. There are several important differences between theoutputs of a decision tree and

ED:

1. The output ofED is all variables; where for the decision tree, the output is asubset

of all variables, some variables with high entropy are not used.

2. If translated into rules, the output ofED is a single rule which has the same number

of conditions as it has variables; the output of a decision tree can be considered as a

rule set.

3. Because theED output is a single rule, there is exactly one interval (domain) on

each variable for each category; for decision tree, there are possibly more than one

intervals (domains) on each variable for each category.

When the intervals for all variables are labeled,LEM(ED) begins the instantiation pro-

cedure. The new genes of new individuals for the next generation are now generated ac-

cording to thegood intervals for variables. This can be achieved in a number of ways,

for example, new gene values are generated only from thegood interval in a random, or

ordered way; or new gene values are generated from both thegoodandbad intervals, but

with a high probability for thegoodinterval and a low probability for thebad interval. The

former can be considered as a greedy method, and the latter a non-greedy method. A typical

instantiation procedure is illustrated in Figure5.2.

When the new population is created,ED is applied again on the current population to

generate new intervals updating the old intervals for everyvariable (dimension). Such a pro-

cedure is repeated until the learning mode termination condition is met. Such termination

129

��������������������
��������������������
��������������������
��������������������

�������
�������
�������
�������

������������������������

: positive training component

: optimum component

: negative training component

min

min

cut_point

cut_point

first instantiating

second instantiating

min cut_point max

max

max

Figure 5.2: Instantiation procedure by LEM(ED).

conditions could include there is no fitness improvements for a certain number of gener-

ations; or a fixed number of generations is reached. When the learning mode is finished,

there are a number of possible options to choose as the following algorithm components.

For example, we can simply apply a normal genetic algorithm to finish the optimization

procedure; or, we can restrict the evolutionary procedure within the learning intervals; or

we begin the learning procedure again after a certain numberof evolutionary procedures.

We will develop these ideas into a series ofLEM(ED) algorithms and will discuss these

cases in the following sections. For now, we give the description of the generalLEM(ED)

algorithm and try to ensure a replicable explication with pseudo-code. ‘Overview’ pseudo-

code forLEM(ED) algorithms is as follows:

1. Set parameters: Set values forpopulation size, mutation probability, crossover prob-

ability, learning thresholdand set elite-preserve operator option.

2. Generate initial population: Choose a method to create the initial population with

population sizeand evaluate this population.

3. Begin learning mode :

(a) Derive extrema: Copy thecurrent populationas thelearning population, from

which the high fitness group (H-group) and low fitness group (L-group) are

created according to fitness values andthreshold. These two groups could have

a joint set, or their union could be a subset of the whole population set or even

130

equal to the whole population set. These two groups are stored as positive and

negative training data for the learning algorithm.

(b) Apply ED on training data: For each variable (dimension), consider each value

(point) as the potential cut-point and calculate the entropy values for all of these

points and choose the point with the best entropy as the cutpoint for this dimen-

sion. This point is the best point on this dimension in classifying the training

data. The output of this step on each dimension is two intervals with the form

< min, cut point>, and< cut point,max>.

(c) Label the learned intervals: For the output two intervals on each dimension,

label them asgood andbad intervals. This can be done by simply counting

the gene values in each interval. If one interval has more values belonging to

H-group individuals than the other interval does, then thisinterval is labeled

asgood interval, and the other is labeled as abad interval. This procedure is

repeated until all variables are labeled.

(d) Instantiate new individuals: After the discretizationand labeling procedures,

the new gene values of new individuals for next generation are generated from

the good intervals in each dimension. There are many methodsto do this, the

simplest method is random generation.

(e) Update H-group and L-group: When the new population is generated, the H-

group and L-group are regained byED applied on the new population, and the

learning thresholdwill be used again.

(f) Termination condition for learning: The above procedures will repeat to gener-

ate new individuals until there is no improvement which can be achieved for the

best fitness value for a certain number of generations. When this condition is

met,LEM(ED) switches to evolution mode.

4. Begin evolution mode: The evolutionary procedure can have a number of forms.

It could be a normal genetic algorithm, or a genetic algorithm with specific search

according to the output intervals information.

5. Termination condition forLEM(ED): LEM(ED) will stop, if any of the following

termination conditions is satisfied:

(a) the optimal (if known) is reached; or

131

(b) the maximum allowed number of generations is reached; or

(c) the best fitness value has not been improving for a certainnumber of genera-

tions.

The pseudo-code for our specific instantiation ofLEM(ED) is set out here as Algorithm

12.

Algorithm 12 pseudo code for LEM(ED)
1: Setpopulationsize,maxgenerationnumber, threshold, generationnumber;

2: Initialize a new population withpopulationsize;

3: Evaluatecurrent population;

4: repeat

5: while (Termination condition for learning is not met)do

6: Copycurrent populationinto learning population;

7: Calculate the H-group and L-group according to fitness values andthreshold;

8: Apply ED on the training data to generate the learned intervals for each dimension;

9: Instantiate the newcurrent populationfor next generation;

10: generationnumber++;

11: end while

12: Select parents oncurrent population;

13: Crossovercurrent population;

14: Mutatecurrent population; {LEM(ED)1}

15: Mutatecurrent populationaccording to the output intervals;{LEM(ED)2}

16: generationnumber++;

17: until (generationnumber==max generationnumber)

5.3.2 LEM(ED) Variant Algorithms

As noticed in Algorithm12, there are two variant algorithms for a general LEM(ED) algo-

rithm, we explain the motivations and differences behind them in this section.

LEM(ED)1 is our initial development ofLEM(ED). It begins by applying ED as learn-

ing method on the training data, and the following generations are generated according to

the output intervals, it stops learning when there are no further improvements for the best

fitness for a certain number of generations. LEM(ED)1 then switches to a normal evolu-

132

tionary procedure to finish the optimization procedure, therefore, it does not include a loop

of learning and evolution procedures. Due to the fact that LEM(ED)1 uses a normal evolu-

tion procedure to find the optimum, its performance in the ending part is very much like a

normal evolutionary algorithm. We will show LEM(ED)1’s performance in our experiment

section.

LEM(ED)2 tries to achieve better performance in the ending part than LEM(ED)1.

Thanks to the existence of the intervals as the output of learning, a natural idea is to utilize

these intervals to guide or restrict the range of the following evolution search procedure.

There is an important aspect about this algorithm, that is, if the learned intervals are not

correct (thegood interval is corresponding to the L-group individuals), then the following

evolutionary procedure will be misled on those variables. We expect LEM(ED)2 to be able

to converge more quickly to the optimum than a normal evolution procedure does in the

ending part for some optimization problems.

5.4 Experiments and Results

This section describes the experiment and results of theLEM(ED) algorithms in com-

parison with the corresponding conventional GA and our firstLEM hybrid algorithms,

the LEM(KNN) and LEM(dwKNN) algorithms developed in Chapter4. In addition to

this comparison, we are also interested in comparingLEM(ED) with the state-of-art op-

timization algorithm, we choose the Covariance Matrix Adaptation Evolution Strategy

(CMAES)[AH05b], [AH05a] again. The test function used here is the ‘Test Suite 2’ used

in Chapter4 as well, we refer to Section4.3for complete definitions.

5.4.1 Parameters Settings

We give the details of parameters settings for LEM(ED)1 and LEM(ED)2 algorithms as

listed in Table5.1. For algorithms, GA1, GA2,LEM(KNN), LEM(dwKNN) andCMAES,

we refer to the settings in Chapter4 Section4.3. For all of ourGAs andLEM hybrid al-

gorithms, the encoding was a vector of real-valued genes each encoding numbers within

a specified interval. We used binary tournament selection, elitism (the next generation’s

population is always initialized with the best of the previous generation). We apply BLX

crossover withα = 0.5, crossover probability 0.6, normal distribution mutation with muta-

tion probability 1.0 or 1/(size of chromosome).

133

Table 5.1: Parameters settings for LEM(ED1) and LEM(ED2)

Threshold 0.3

Learning gap 1

Discretization method Entropy based binary discretization

Instantiation method Instantiate intervals with probabilities (80%, 20%)

GA applied LEM(ED1) : GA2

LEM(ED2) : GA2 with very small mutation step size

Table 5.2: Means and standard deviation after 10 generations

Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) LEM(ED)1 LEM(ED)2 CMAES

DeJong3 -78.3(4.06) -90.26(4.74) -98.07(4.88) -113.8(4.80) -135.52(4.48) -132.83(5.11) -94.55(3.88)

DeJong4 8.84(3.20) 3.47(2.02) 2.39(1.57) 1.3(1.23) 1.22(1.64) 1.14(1.54) 9.66(3.71)

Rastrigin 287.89(17.18) 232.08(20.3) 212.84(23.59) 161.42(20.05) 228.32(22.96) 230.01(21.80) 288.66(17.41)

Griewank 134.04(23.36) 76.26(13.62) 67.21(13.43) 36.67(10.88) 45.30(16.23) 45.93(17.52) 158.41(28.86)

Rosenbrock 1027.19(232.76) 583.57(148.74) 487.11(89.91) 311.64(84.76) 373.04(101.15) 372.30(99.90) 728.83(166.97)

Ackley 16.45(0.56) 14.50(0.71) 13.95(0.82) 12.10(34.72) 13.27(1.44) 12.93(1.49) 16.77(0.67)

Schwefel 9028.48(379.91) 7487.64(517.69) 6611.33(552.26) 5312.65(558.17) 6955.62(931.45) 6863.86(843.99) 9611.63(321.64)

Some important parameters forLEM(ED) are set as follows: thelearning thresholdis

0.3, the instantiation method is implemented according to probabilities; 80% of new indi-

viduals are generated from thegoodinterval, 20% are from thebadinterval. In LEM(ED)2’s

evolution mode, the mutation is implemented with a normal distribution with the mean

equals to the gene value of the best individual so far and variance is a small value (1.0, here

for all functions).

5.4.2 Summary of Results

Table5.2 to Table5.5summarises the results of 100 runs of each algorithm on each func-

tion, with means and standard deviations recorded at 10, 20,50 and 100 generations (mul-

tiply by 100 for number of fitness evaluations). Meanwhile, Figure5.3 to Figure5.9show

the mean convergence curves for each algorithm on these testfunctions, respectively.

134

Table 5.3: Means and standard deviation after 20 generations

Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) LEM(ED)1 LEM(ED)2 CMAES

DeJong3 -97.71(3.42) -117.21(3.64) -127.6(3.21) -141.36(2.80) -144.32(2.74) -140.99(3.68) -112.16(2.82)

DeJong4 1.35(0.99) 0.09(0.11) 0.037(0.051) 0.16(0.24) 0.081(0.16) 0.096(0.24) 0.070(0.12)

Rastrigin 248.74(17.74) 155.40(19.59) 134.73(16.62) 87.74(15.04) 141.37(19.43) 130.41(21.71) 228.39(14.78)

Griewank 55.2333(10.57) 21.65(4.74) 17.27(3.97) 5.70(2.27) 14.40(4.74) 12.58(6.37) 26.07(7.78)

Rosenbrock 436.4(89.7) 220.01(51.03) 185.23(41.61) 133.99(46.33) 191.67(44.56) 178.08(46.77) 152.95(37.93)

Ackley 13.17(0.76) 9.96(0.83) 9.05(0.82) 6.33(0.84) 9.26(1.13) 8.83(1.49) 10.36(1.06)

Schwefel 8706.26(381.46) 5686.49(533.59) 4641.64(536.89) 3470.82(461.21) 5701.74(778.84) 5899.15(727.38) 9564.46(291.09)

Table 5.4: Means and standard deviation after 50 generations

Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) LEM(ED)1 LEM(ED)2 CMAES

DeJong3 -128.23(2.65) -146.67(1.42) -149.6(0.61) -149.93(0.25) -149.99(0.1) -149.12(1.28) -141.7(2.23)

DeJong4 8.63e-3(7.53e-3) 3.60e-3(4.86e-3) 2.52e-3(3.17e-3) 7.76e-3(1.93e-2) 2.09e-3(2.22e-3) 3.09e-3(0.01 5.28e-4(0.12)

Rastrigin 174.94(30.17) 84.36(14.51) 64.38(10.78) 30.32(7.05) 72.27(14.42) 57.60(11.20) 191.26(12.1)

Griewank 6.75(1.99) 2.04(0.4) 1.52(0.27) 1.08(0.081) 1.77(0.33) 1.28(0.13) 1.16(0.079)

Rosenbrock 116.74(27.65) 75.38(29.28) 69.29(30.96) 68.34(39.16) 89.48(33.27) 69.02(33.27) 29.94(0.73)

Ackley 6.601(0.71) 3.91(0.50) 3.02(0.50) 2.22(0.58) 3.76(0.49) 2.83(0.50) 2.32(0.409)

Schwefel 7380.06(1012.55) 3277.86(493.95) 2009.99(375.16) 1685.07(330.60) 3506.38(641.16) 5050.98(673.27) 9460.74(282.0)

Table 5.5: Means and standard deviation after 100 generations
Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) LEM(ED)1 LEM(ED)2 CMAES

DeJong3 -145.60(2.12) -150(0.0) -150(0.0) -150(0.0) -150(0.0) -149.26(1.24) -150(0.0)

DeJong4 1.77e-3(1.73e-3) 8.8e-4(9.9e-4) 8.7e-4(0.9e-3) 1.53e-3(1.68e-3) 5.83e-4(7.23e-4) 6.68e-4(7.72e-4) 1.52e-4(1.6e-4)

Rastrigin 77.29(33.48) 44.75(8.997) 27.66(7.9) 11.01(2.79) 38.67(10.09) 42.37(9.61) 116.69(63.62)

Griewank 1.52(0.68) 0.95(0.11) 0.51(0.25) 0.68(0.23) 0.92(0.14) 0.50(0.16) 0.029(0.017)

Rosenbrock 55.17(20.87) 44.72(24.15) 45.68(27.14) 53.00(34.72) 61.05(28.96) 44.71(27.80) 27.42(0.53)

Ackley 2.59(0.83) 0.95(0.52) 0.65(0.57) 1.38(0.61) 0.95(0.45) 0.17(0.10) 0.019(0.0094)

Schwefel 5120.94(1078.51) 1540.0(289.45) 1357.99(336.98) 1446.53(301.62) 1534.62(414.66) 4664.54(605.53) 8948.33(805.8)

135

0 5 10 15 20 25 30 35 40 45 50
−160

−140

−120

−100

−80

−60

−40

−20

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
LEMED1
LEMED2
CMAES

Figure 5.3: Results of running 7 algorithms on the DeJong3 problem

0 5 10 15
0

20

40

60

80

100

120

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
LEMED1
LEMED2
CMAES

Figure 5.4: Results of running 7 algorithms on the DeJong4 problem

136

0 10 20 30 40 50 60 70 80 90 100
10

1

10
2

10
3

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
LEMED1
LEMED2
CMAES

Figure 5.5: Results of running 7 algorithms on the Rastriginproblem

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
LEMED1
LEMED2
CMAES

Figure 5.6: Results of running 7 algorithms on the Griewank problem

137

0 5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
LEMED1
LEMED2
CMAES

Figure 5.7: Results of running 7 algorithms on the Rosenbrock problem

0 20 40 60 80 100
0

5

10

15

20

25

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
LEMED1
LEMED2
CMAES

Figure 5.8: Results of running 7 algorithms on the Ackley problem

138

0 10 20 30 40 50 60 70 80 90 100
10

3

10
4

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
LEMED1
LEMED2
CMAES

Figure 5.9: Results of running 7 algorithms on the Schwefel problem

In what comes below, statements of significance are based on randomization tests, and

made only when confidence was above 99%. Inspection of standard deviations also clearly

supports the statements made.

With only one exception (LEM(ED)2 on Schwefel at 50 and 100 generations) the

LEM(ED) variants are always superior to the underlying GA1 and GA2. To some extent,

the underlying EA can be seen as a ‘straw man’, and it is used here only as a baseline, with

improvement to be expected. In the early generations (10 and20 generations), allLEM(ED)

versions have clearly beaten all GAs on all problems, exceptthe Schwefel function. This

shows the learning and instantiation operation inLEM(ED) clearly has its advantage over

the normal evolutionary procedure. However, these outperformances are not as significant

as we expected. In the later generations (50 and 100 generations), the range of problems

in which LEM(ED) cannot beatGAs increased by one case of the Rosenbrock function (at

generation 50).

LEM(ED) only beatLEM(KNN) variants on De Jong’s functions and cannot outper-

form on any other functions at the earlier generation 10. From generation 20 to 50,LEM(ED)

loses further superiority to theLEM(KNN) variant algorithms on almost all the problems.

However, LEM(ED)2 seems to fight back and outperformLEM(dwKNN) at generation

100, the end stage of the optimization, on all problems except for DeJong 4, Rastrigin and

Schwefel functions. We think this is due to the fact that LEM(ED)2 applies a very small

mutation step size derived from the learnt intervals in the learning procedure. If the learnt

output is correct, this mutation will help in the later stageof optimization.

139

With the exception of De Jong function 4 and Rosenbrock, one of the LEM(ED) vari-

ants is always superior to CMAES at the 1,000 and 2,000 evaluation points. At the 5,000

evaluations point,LEM(ED)’s advantage list over CMAES has been reduced by two more

functions, Griewank and Ackley. And at 10,000 evaluations this list further reduces to Ras-

trigin and Schwefel, with ties for the De Jong 3 function. However, since LEM(ED)2 biases

itself strongly to learned intervals, it is quite possible that some functions can lead to it be-

ing deceived and misled. It is interesting and promising that this usually does not seem to

happen, however, LEM(ED)2’s early fast progress on the Schwefel function clearly leads

it in the wrong direction. This situation is the same forCMAES, which is always beaten

by both the EA and LEM(ED)1 on Schwefel. In general,CMAES, which is itself a so-

phisticated hybrid of learning and evolution, overtakesLEM(ED) (and the vast majority

of other algorithms) as we consume more function evaluations. Regarding theLEM(ED)

design tested here, this is not surprising since ourLEM(ED) variants use a single learning

phase followed by an EA, whileCMAESis continually learning and adapting.LEM(ED)’s

performance in the 1,000-5,000 evaluations regime is nevertheless encouraging, and there

may be considerable value in more sophisticated adaptive versions.

5.5 Concluding Discussion

We investigated a new LEM hybrid optimization algorithmLEM(ED), which incorporates

a simple entropy-based discretization method as the learning component with a normal

evolutionary procedure. The learning methodED applied here inLEM(ED) is a very simple

mechanism compared with other well-known learning algorithms. ED simply takes the

training data as input and uses an entropy measurement to findthe best cut-points and

therefore to identify the best interval to guide the generation of new individuals.

TheLEM(ED) algorithm clearly outperforms its EA component alone both in the initial

and later stages for all problems, however, in the later generations, the extent of advantages

over EA begins to reduce. One of theLEM(ED) algorithms, LEM(ED)2 outperformans

our first KNN based hybrid algorithmLEM(KNN) in general. However, neither of the

LEM(ED) algorithms can beat the refinedLEM(KNN) algorithmLEM(dwKNN) during

the whole optimization procedure for almost all functions.Also, LEM(ED) generally out-

performs CMAES during the initial several-thousand fitnessevaluations. This adds to ev-

idence that even straightforward learning mechanisms provide considerable benefit to an

EA, especially for accelerating the search.

140

However, the outperformanceLEM(ED) achieved over the normalGA is not as promis-

ing as the originalLEM(AQ) algorithm, although their test functions are different from

here. We think there are possibly the following reasons. First of all, the learning method

applied inLEM(ED) is a very simple method,ED only considers binary discretization with

entropy measurement. It does not distinguish the difference among variables, and therefore

is not able to find out the relationship between dimensions, which could be very important

to the success of the optimization procedure. Secondly, ED only binaries each variable

range, which may not be the best way to fit the complex problem landscapes in a adaptive

way. Ideally, discretization should be dividing the variable range into several subranges

and change adaptively according to the optimization procedure. One such discretization

method is the AQ learning method inLEM(AQ) algorithm. Finally,LEM(ED) does not

contain repeated learning and evolution interactions, it has only one learning period, after

that, the normalGA is applied to finish the rest of the optimization procedure. We think the

absence of learning in the later stage also affects the optimization performance.

Lines of further work that seem warranted include testing ona more accepted set of

optimization challenge functions, our choice of function suite follows those used in the

originalLEM publications. However, such suites are now superseded by those described in

the CEC 2005 Challenge [SHL+05], which emphasizes non-separability and other measures

that are likely to make functions difficult. Since most of thefunctions tested herein are,

however, separable, the criticism can be made that the findings may well not generalize to

nonseparable functions. However, following preliminary and ongoing work we can confirm

that theLEM(ED) variants here show entirely similar relative (to basicGA and toCMAES)

performance properties as found here, we deal with this later in Chapter6.

Also there is a need to investigate repeated phases of ED-based learning (rather than a

single phase at the beginning). Our investigations so far have focused on tightly coupled

ED and instantiation, which (as we find in preliminary experiments) is best limited, rather

than continued throughout the run, otherwise the learned intervals can be deceived and re-

sults suffer. However we are yet to investigate (which wouldbe highly suited to theLEM

framework) the interleaving of further ED/instantiation phases with phases of several gen-

erations of evolution. Meanwhile, the information inherent to the learned intervals could

be used more creatively in later phases, in various ways. Also, a more sophisticated ter-

mination criterion for theED phase would be beneficial, since we note that the better sets

of intervals are often those learned a handful of generations before the cessation of fitness

improvement.

141

More generally, more study seems warranted in the area of learning/evolution combina-

tions (both in terms of LEM-framework instantiations, and also in terms of organizing the

knowledge in this important area that is currently widespread in the literature).

142

Chapter 6

LEM Instantiated with Decision Tree

Learning

6.1 Overview

In this chapter, we investigate theLEM(ID3) algorithm [SC10] which is a hybrid of evolu-

tionary search with ID3 decision tree learning algorithm. The reasons for which we choose

the ID3 decision tree learning algorithm as the learning component in our investigation of

LEM framework are based on the following considerations.

First of all, the development ofLEM(ID3) offers us an important chance to explore, for

the first time, the effect of replacing AQ learning in LEM framework with a different but

equally sophisticated learning algorithm, therefore to examine the flexibility of the LEM

framework. ID3 and AQ learning algorithms have huge similarities in common, among

which the most important are that both of them are supervisedlearning methods and the

output of hypothesis descriptions are all rule based. The decision tree constructed by the

ID3 learning algorithm can be transformed into set of rules.Therefore, many important

properties of theLEM(AQ) algorithm can be studied and understood through the develop-

ment of rule-basedLEM(ID3) algorithm. For instance, the instantiation operation of the

generation of new individuals for next generations according to learned rules. Through

the development ofLEM(ID3), we can understand how to design and apply this important

operation in more detail, and how it influences the effectiveness of the resulting hybrid

algorithms.

Second, another main reason for developingLEM(ID3) and applying the ID3 learning

algorithm is due to the fact that, in the field of solving complex optimization problems,

143

many problem features make these problems very difficult andchallenging to solve, there-

fore these difficulties and complexities require better learning algorithms to capture the

relationships among the problem variables and characteristics involved in the problems.

The decision tree learning algorithm ID3 is one of the good and practical learning meth-

ods widely applied in the machine learning community and thelearned rules are able to

navigate interactions between any number of parameters formany practical application

problems. ID3 is expected to be able to gain better results within theLEM(ID3) hybrid

algorithm and also to be able to tackle complex applicationsin practice.

Finally, another reason to developLEM(ID3) is from the point of view or practical con-

siderations. At the time that this PhD study is being conducted, theLEM(AQ) learning

algorithm and the details of its implementation are not openly available. Implementation of

our own LEM instance algorithm is necessary for experimentsand solving our own prob-

lems at hand. For all the above reasons,LEM(ID3) is an important development step for our

LEM investigation, and deserves to be a baseline algorithm for further development and im-

provement, and also should be applied to solve more practical and challenging application

problems.

As with the previous developments of LEM instance algorithmsLEM(KNN) andLEM(ED),

LEM(ID3) involves interleaved periods of learning and evolution, adopting the decision

tree construction algorithm ID3 as the learning component,and a steady-state EA as the

evolution component. In the learning periods, based on chromosome data and evaluated

fitnesses, ID3 is used to repeatedly find and infer rules that attempt to identify and predict

whether a chromosome is ‘good’ or ‘not good’ based on the values of one or more other

genes. The rules are then used to guide the generating of new individuals. When the learn-

ing component is finished,LEM(ID3) is switched to the evolution component, after that the

learning starts again.

Without any preliminary parameters tuning, we evaluateLEM(ID3) on the ‘test suite 2’

used in previous chapters and also on the test suite of 25 functions designed for the CEC

2005 special session on real-parameter function optimization. We describe the results, and

in particular compare with the three most successful algorithms from the CEC 2005 com-

petition, theK-PCX algorithm [STD05], and two versions of Auger and Hansen’sCMAES

algorithms [AH05b, AH05a]. We find thatLEM(ID3)’s performance is competitive with

these algorithms, increasingly so as the problem dimensionality increases. In the case of

50-Dimensions,LEM(ID3) clearly records better overall performance on this function suite

than the three comparative algorithms.

144

In the following sections, we provide complete details on the LEM(ID3) algorithm in

Section6.2, and describe the details of our experiments and analyze theresults in Section

6.3, we conclude in Section6.4.

6.2 LEM with Decision Tree Learning – LEM(ID3)

We have already discussed the ID3 decision tree learning algorithm [Qui86] and experi-

enced theLEM(AQ), LEM(KNN) andLEM(ED) algorithms. Apart from the ID3 learning

algorithm,LEM(ID3) shares many other aspects with theLEM(AQ) algorithm. In this way,

we will have our ownLEM(AQ) algorithm straightforwardly.LEM(ID3) contains two main

components: learning and evolution. As with other LEM algorithms, in the learning com-

ponent,LEM(ID3) divides the current population into high-performance (H-group) and

low-performance (L-group) groups according to their fitness values and a given threshold.

ID3 then uses the H-group and L-group as the training data to construct the decision tree,

which is then transformed into a set of rules. These sets of rules are the hypotheses that

differentiate between the two groups. New individuals are generated by instantiating these

hypotheses. The learning mode continues until there is no better individual generated for a

certain number of generations, or the diversity of the population is too small. The evolution

mode begins when the learning mode is finished, in the evolution mode, a standard evolu-

tionary algorithm is applied. The main purpose of evolutionis that it offers the opportunity

to escape from local optima and also preserves diversity forthe current population, which

is crucial to the success in the subsequent learning phase. Evolution continues for a certain

number of generations, before the learning phase begins again. The overall pseudo-code of

LEM(ID3) is set out here as Algorithm13, with some components elaborated further with

more details later in the paper.

6.2.1 Learning Mode

In the learning mode, basically, there are three main steps.They are Creating the Training

Data; Learning and Generating Hypotheses; Instantiating Hypotheses and Generating New

Individuals. We discuss all of these three steps in more detail.

145

Algorithm 13 pseudo code for LEM(ID3)
1: Generate initial population and evaluate each chromosome;

2: repeat

3: while (Termination condition for learning is not satisfied)do

4: Form the H-group and L-group from the current population;

5: Learn a decision tree using the H-group and L-group, and transform it into a set

of rules;

6: Generate some new individuals for the next generation by instantiating new chro-

mosomes guided by the learned rules; or

7: Generate some new individuals for the next generation by evolution (mutation and

crossover) or at random;

8: end while

9: while (Termination condition for evolution is not satisfied)do

10: Operate a standard evolutionary algorithm;

11: end while

12: Adjust discretization;

13: until (Termination condition for LEM(ID3) is satisfied)

Creating Training Data

In the learning mode, the first important step is to create high quality training data. High

quality training data is crucial to the success of the learning algorithm. InLEM(ID3), the

training data is generated from the current evolving population, therefore the quality of

training data depends on the current population and its distribution. We use ‘population-

based selection’ ([Mic00]) to generate the training data, in which we specify that a given

percentage of the population will be in the H-group and a given percentage will be in the

L-group. We use 30% in both cases – i.e., after sorting the individuals by fitness values, the

top 30% are placed into the H-group and the lowest 30% are put in the L-group. Due to the

individuals we consider are all real-parameter, these selected individuals in both groups are

then discretized into discrete training instances. There are some practical implementation

issues in the generating and discretization procedure, first, when the optimization procedure

continues to progress the whole population will intend to converge to a few promising solu-

tions, which will cause the population to lose its diversity, this is common for evolutionary

algorithms. However, this situation of similarity in the later stage of evolution affects the

creation of enough training data for the learning algorithmID3, therefore affecting the qual-

146

(−5.12 ... −1.7)

Bad

(−1.7 ... 1.7)

Attri3Attri2 Attri0

Bad Good Bad Good

Bad

Bad

Good

Good

Attri0

Good

Good

Good

Bad Bad

Good

Good

Bad

Bad

Attri21

(1.7 ... 5.12)

Bad

Attri4

Good

Bad

Good

Bad

Good

Attri15

Attri19

Empty

Attri18 (30,30)

(6)

(3)

(2)

(3) (2) (2)

(2,1)

(1)

(2)

(16,7)

(5)

(8,3)

(1,3)

(1)

(3,4)

(3)

(5,1)(4,3)(2,6)

(6,15) (8,8)

(2) (1)

(1)

(2)(3)(4) (4) (1) (1) (3) (1)

(3)(4)

(3,4)

Attri8 Attri5

Attri2

Figure 6.1: A decision tree learned by LEM(ID3) for Rastrigin function at generation 1

ity of training data. During our implementation, we found inthe later evolution stage, if no

good mechanism is employed to release this problem, then very little training data will be

generated, and when ID3 is applied to this small-sized training data, the resulting decision

tree and corresponding rules are less meaningful. We will come back to this issue and talk

about our solution later on.

Learning Hypotheses

When a good set of training data has been generated from the current population of individ-

uals,LEM(ID3) uses ID3 learning algorithms to construct a decision tree. The construction

procedure is straightforward, as discussed in Section2.3.1. The resulting tree is then trans-

formed into a set of rules, which can then be seen as hypotheses discriminating H-group and

L-group individuals of the current population. We call thisstage the Learning Hypotheses,

which contain a number of important issues which we will discuss next in more detail. For

now, we give an example decision tree constructed by a real LEM(ID3) run on the Rastri-

gin’s function as defined in ‘Test Suite 2’ in Figure6.1, and the ruleset produced from this

decision tree in Table6.1:

Where for both decision tree and rule,attri i are decision treeattributeterms correspond-

147

Table 6.1: The ruleset transformed from the DT for positive data in Figure6.1

1 attri18 = (−5.12· · · − 1.7)∧ attri4 = (−1.7 . . .1.7)∧ attri8 = (−1.7 . . .1.7) =⇒ G

2 attri18 = (−5.12· · · − 1.7)∧ attri4 = (1.7 . . .5.12)∧ attri5 = (−5.12· · · − 1.7) =⇒ G

3 attri18 = (−5.12· · · − 1.7)∧ attri4 = (1.7 . . .5.12)∧ attri5 = (−1.7 . . .1.7)∧ attri2 = (−1.7 . . .1.7) =⇒ G

4 attri18 = (−1.7 . . .1.7)∧ attri19 = (−5.12· · · − 1.7)∧ attri2 = (−5.12· · · − 1.7) =⇒ G

5 attri18 = (−1.7 . . .1.7)∧ attri19 = (−5.12· · · − 1.7)∧ attri2 = (−1.7 . . .1.7)∧ attri0 = (1.7 . . .5.12)=⇒ G

6 attri18 = (−1.7 . . .1.7)∧ attri19 = (−5.12· · · − 1.7)∧ attri2 = (1.7 . . .5.12)=⇒ G

7 attri18 = (−1.7 . . .1.7)∧ attri19 = (−1.7 . . .1.7) =⇒ G

8 attri18 = (−1.7 . . .1.7)∧ attri19 = (1.7 . . .5.12)∧ attri0 = (−5.12· · · − 1.7) =⇒ G

9 attri18 = (−1.7 . . .1.7)∧ attri19 = (1.7 . . .5.12)∧ attri0 = (−1.7 . . .1.7) =⇒ G

10 attri18 = (1.7 . . .5.12)∧ attri21 = (−5.12· · · − 1.7)∧ attri3 = (−1.7 . . .1.7) =⇒ G

11 attri18 = (1.7 . . .5.12)∧ attri21 = (−5.12· · · − 1.7)∧ attri3 = (1.7 . . .5.12)=⇒ G

12 attri18 = (1.7 . . .5.12)∧ attri21 = (1.7 . . .5.12)∧ attri15 = (−1.7 . . .1.7) =⇒ G

ing to each dimension or gene in individuals, the real numberranges (. . .) are generated

through discretizing the current learning population (training data) individuals and can be

seen asdomainfor eachattribute. G indicates the classification information in the training

data set and represents High-group of individuals in the training data. For the decision tree

being constructed here, each path rooted from attributeattri18 to leaf nodesGoodor Bad

can be transformed into a rule. For example, the ruleattri18 = (−5.12· · · − 1.7)∧ attri4 =

(−1.7 . . .1.7) ∧ attri8 = (−1.7 . . .1.7) =⇒ G is a path in the decision tree constructed by

ID3, and any training instances satisfying this path are classified into classG, representing

some individuals in H-group. Also, in this decision tree, there is some useful extra informa-

tion which can be derived, such as the coverage value for eachrule (the number of instances

satisfying the rule). And the average fitness values for eachrule (the average fitness value

for the instances satisfying this rule), which are not shownin our illustration.

After the decision tree is constructed and its ruleset transformed, we still face some

important issues, two of these are highlighted here due to their importance in the success

of our LEM(ID3) implementation. First, as seen in Figure6.1, there are many attributes

(totaling 30 attributes for Rastrigin’s function) which donot appear in the constructed tree.

Therefore, when the instantiation hypothesis operation isimplemented, we will face the

problem of choosing new values for these attributes, for which it is difficult to find good

methods. Second, the ruleset transformed from the constructed decision tree consists of a

huge number of rules with different coverage values, as seenin Table6.1. Therules 5, 9, 11

have only coverage value 1 andrules 1, 2, 3, 8have only coverage value 2, whilerule 7 has

148

a coverage value 5. Rules with different coverage values should be treated differently, small

coverage values mean the corresponding rules could be meaningless or representing noisy

data. Therefore, we have to make a decision on the choosing ofthese rules. We discuss the

first issue here which is more relavent to the Learning Hypothesis stage, and will discuss

the second issue in the Instantiating Hypotheses stage.

Forest Model

We face an important issue after the construction of the decision tree. That is, many

attributes do not appear in the tree and ruleset. This is due to the feature of ID3 learning

algorithm, ID3 always tries to classify the training data asefficiently as possible, it starts

from the root attribute with best information gain, and excludes those training data and the

current selected attribute, and repeats to find another attribute with the remaining training

data and attributes. This procedure repeats until all training data are excluded. However,

such a procedure is very efficient in the sense that not too many attributes will be involved in

this procedure. Namely, very few attributes are used to classify the training data and to con-

struct the decision tree. This naturally raises the problemfor instantiation algorithms, that

is, what should be done to those attributes which do not appear in the rules? InLEM(AQ),

the authors have mentioned possible solutions for this question, for example, if one attribute

does not appear in any rule, then the corresponding parent gene values are inherited into the

new individuals. In the development ofLEM(ID3), we reconsider this problem and attempt

to solve it by indicating one disadvantage of the ID3 algorithm. Namely, a single run of the

ID3 algorithm is not able to learn or mine all useful patternsexisting in the given training

data.

To analyze this, we reconsider a constructed decision tree by ID3 based on the training

data from the current population. One path, fromattri i (the root) down to the leaf node

G, within the decision tree says that if an instance satisfies the attributes and their domain

values, then this individual will result in the class ‘G’. Essentially, each path and its rule is a

pattern representing some instances with common features which distinguish them from the

others in the training data. And if the pattern can representthe instances well, how many

such patterns exist? With this question in mind, we summarize three important statements:

1. One decision tree (or its ruleset) represents a pattern involved in the training data;

2. One tree is ‘searched’ by the ID3 algorithm in a greedy fashion according to the

information gain criterion, and ID3 is a local search algorithm;

149

3. According to the information gain criterion, one constructed tree is the best pattern

for the training data at hand.

Evidently, these three statements can be extended or be moreprecisely stated, if we

consider the decision tree construction procedure in a moreglobal view:

1. One decision tree represents one of the patterns (not onlyone) involved in the training

data;

2. Other patterns can be ‘searched’ by global algorithms according to other criteria;

3. According to the information gain criterion, one constructed tree by ID3 may or may

not be the best pattern for the whole data space (including training data and future

unseen data).

Considering ID3 decision tree construction procedure in a global view and distinguish-

ing the concepts of ‘local ’ and ‘global’ are our goals and thereasons to build up theforest

model. Namely, we want to capture all the other patterns or trees ‘hidden’ in the training

data. Constructing by ID3 can only offer one pattern which isthe most efficient according

to the information gain criterion. Of course, this tree being the most efficient is very use-

ful. However, the other trees or patterns may also be very helpful and could reflect more

relationships between attributes for the training data.

In order to build the forest model, a number of steps need to befollowed. Firstly, the

ID3 algorithm is used to construct the first tree in the normalway. After the first tree is con-

structed, a number of other trees will be constructed in sequence, the construction method

is still ID3, but this time with a fixed or pre-selected root attribute indicated. Namely, we

pre-selected for each following tree a fixed root attribute which must be different to the first

and previous tree’s root attributes. For the following trees, ID3 is applied as the construc-

tion algorithm only with the exception of the root’s attributes. Once an attribute is selected

as the root attribute, it is not available for the following selection. Namely, all attributes in-

cluding the first root attribute selected by ID3 can only be used once during the construction

of the forest model. When there is no attribute left or an indicated number of attributes are

selected, the construction procedure is finished, and the resulting forest model is derived.

In this way, apart from the normally built first decision tree, we will also have a num-

ber of extra trees which are built with pre-selected root attributes. These attributes do

not have the best information gains compared with the root attribute selected by ID3 in

the normal way, however, more patterns with also useful information for the training data

150

could be represented by trees rooted at these attributes. Finally, we do not design any new

measurement criterion, like information gain, the only thing we do is to change the ID3

algorithm slightly and apply it several times, (with each time a different attribute for one

tree), to construct a ‘forest’ model. A brief illustration of the construction procedure for

a forest model is given in Figure6.2. Given a population of individuals, each of which

consists of 10 genes (the length of chromosome). When this population is used as the

learning populationand discretized. We construct a forest model from the training data

by applying the ID3 algorithm repeatedly, the forest model is defined as a set of trees,

{(Tr ,Ti, . . . ,T j), r, i, j ∈ (1 . . .10), r , i , j}, wherer, i, j indicate root attributes for these

trees.

......

root selected by ID3

roots randomly selected

r i j

Figure 6.2: An illustrative example for the forest model

The forest model can find more patterns existing in the training data. Not only is the

most efficient tree useful, the slightly less efficient treesare believed to be still very useful

and helpful in indicating good patterns. This is more convincing if we consider the ID3

construction algorithm in a more global view, and consider each tree as one of the many

possible classification problem solutions. And also, more importantly, for our problem

posed before, more decision trees being constructed will make more attributes appearing

in the learnt patterns. During the instantiating procedurefor new individuals, there will be

fewer situations where for a given attribute, we do not know how to assign a new value.

Instantiating Hypotheses

The last step in the learning mode is to instantiate the learned hypotheses and generate

new individuals for next generations. InLEM(AQ) andLEM(ID3) algorithms, during the

learning mode, the new individuals are generated by instantiating the learned hypotheses

rather than by genetic operators. Therefore, the instantiation procedure is very important

151

in the success of LEM algorithms. In the originalLEM(AQ) algorithm, there are basically

three different instantiation algorithms, they are developed according to different consider-

ations. In ourLEM(ID3) algorithm, the instantiation procedure is different from those in

LEM(AQ), this is because despite many common features, ID3 and AQ aredifferent learn-

ing methods; the former employs the divide-and-conquer strategy to construct decision tree

and rules, while the latter employs the separate-and-conquer strategy, as we discussed in

chapter2. These strategies are quite different, therefore the constructed rules will have dif-

ferent representation forms as well for the same given data set. It is these differences that

result in independent development of new instantiation procedures for ourLEM(ID3) algo-

rithm. However, before we introduce our instantiation algorithm, we discuss another im-

portant issue related to instantiating hypotheses first, that is the rule selection issue, which

we did not solve in the previous section.

Rule Selection

As we have discussed before, there are many practical problems within the Learning

and Instantiating procedures for ID3 generated rules. First, there are not enough attributes

appearing in a single tree or ruleset, we solve this problem with the suggested ‘forest’

model, where extra trees are constructed with more attributes being involved in representing

the learnt patterns. Namely, we have solved the ‘quantity’ issue, and it is time to solve the

‘quality’ issue for the rules in each ruleset. We expect the rules in a ruleset should catch

enough useful ‘patterns’ residing in the training data, andthese patterns should correctly

reflect the relationships between the genes and their corresponding classification. That is,

the rules should be useful and correct. By useful, we mean therules should be representative

enough to describe a pattern; and by correct, we mean these patterns should be important

enough or be able to reflect the global properties of the current population space. Rules

that satisfy these requirements should contain enough attributes, rather than only one or

two attributes, and also should cover enough training instances. Therefore, we define two

criteria used to decide the quality of rules generated by ID3algorithm. First, if a rule

contains enough attributes in its condition part, then we call this rule aninformative rule,

in contrast, if a rule contains little attributes in its condition part, then we call this rule an

uninformative rule. Second, if a rule covers enough training instances, then wecall this

rule asignificant rule, in contrast, if a rule contains little training instances,then we call

this rule aninsignificant rule. Note, we define these criteria in a relative way, which means

we use these criteria to qualify the rules always in comparison with other rules. Table6.2

152

Table 6.2: Meaning of a preferred rule

Informative Uninformative

Significant preferred not preferred

insignificant not preferred not preferred

shows what we mean by apreferred rule.

Based on this definition ofpreferred rule, one extra step we need to take during instan-

tiation hypothesis is to select qualified rules from the set of all rules. The selection criterion

is thepreferred rulewhich is defined as beingInformativeandSignificant. There are many

measurement methods which exist in the machine learning community for these concepts

or similar concepts. Here, we are only concerned with the implementation issue for our

LEM(ID3) algorithm. InLEM(ID3) construction,Informativeis quantified by the length of

the rule, andSignificantis quantified by the coverage value for the rule. We think suchan

extra step of ‘rule-selecting’ or contrarily ‘rule-excluding’ is necessary for improving our

LEM(ID3) algorithm for the following reasons: an uninformative ruleshould be excluded

from the current ruleset, because it contains too few attributes and therefore cannot catch

any useful pattern from the training data even if it is significant (covering enough training

instances); an insignificant rule should also be excluded from the current ruleset, because

it covers too few training instances which are possible noisy data in the training data. Ei-

ther of these rules and rules which have both properties should be excluded from the final

ruleset, avoiding the possibility of misleading our instantiation procedure.

To this point, we are now ready to talk about the instantiating algorithm. In ourLEM(ID3)

algorithm, we designed the instantiation operator with theconsideration of three important

aspects. First, for the attributes which do not appear in thelearned rule set, some particular

methods need to be implemented to assign values for these attributes for each individual

under generation. Second, for each of rule, the number of individuals which needs to be

generated from this rule also needs to be calculated in a proper way, or according to a rea-

sonable standard. Finally, the way in which the new individuals are generated also needs to

be considered carefully, for example, whether to get a valuerandomly or modify an existing

value can affect the optimization performance forLEM algorithms. Based on all of these

considerations, we designed the instantiation algorithm as Algorithm14. The core idea is

based on the coverage value of each rule. Namely, rules with high coverage are used more

frequently in generating new individuals.

153

Algorithm 14 pseudo code for instantiation
1: Declare rule coverage variablescr for each ruler;

2: Declare number of training examplest;

3: for all (rules in the ruleset)do

4: Calculate the coverage of the rulecr ;

5: Initialize ‘generation distribution’ variablespi j to 0.0;

6: for (eachAttributei that appears in the rule)do

7: for (eachIntervalj of theAttributei) do

8: pi j += cr/t;

9: end for

10: end for

11: end for

12: while (the new individuals are still needed)do

13: for (eachAttributei in the individual)do

14: Selectintervalj for Attributei with probabilitypi j/T, whereT sums thepi j values

for Attributei, and randomly creates a new value withinintervalj.

15: end for

16: end while

154

In the instantiation Algorithm14, first, for each attribute and domain pair of the dis-

cretized problem space, a probability value is calculated according to the learned ruleset.

For each rule in the current ruleset, if this attribute-domain pair appears in one rule, then

the corresponding rule coverage value is recorded and accumulated aspi j . The more times

this attribute-domain pair appears, the bigger the probability value is. When all the rules

in the ruleset are examined, the resulting probability values are then used to assign values

for the new individuals being generated. Second, when the new individuals are generated,

for each gene (attribute) of one individual, the value is generated from a particular interval

(domain) of that gene, the frequency of a value created from adomain depends on the prob-

ability pi j calculated previously. When all the new individuals are generated, we finish one

instantiation procedure.

In fact, the instantiation procedure could have many variants implemented based on

many other criteria, such criteria may include accuracy of the rule on training data eval-

uated by cross-validation method, but this method may need more training data. We can

investigate this idea in our further research.

6.2.2 Evolution Mode

In LEM(ID3), when the Learning Mode can not find any better individuals byLearning

Hypothesis and Instantiation Hypothesis.LEM(ID3) will switch to the Evolution Mode,

where the traditional evolutionary computation operations are applied. Here, we empha-

size one important issue in many population based optimization algorithms. That is, the

diversity of the population. This problem turns out to be more severe for LEM methods,

due to the application of learning techniques. Loss of the diversity for the current popula-

tion does not only affect the evolutionary search procedure, but more importantly affects

the learning procedure. This is because it can result in a lack of enough training data for

the supervised learning algorithms. Generally, when the population is in the early stages

of optimization, the individuals in the population tend to be very different to each other,

therefore, the population has a good diversity. However, asthe optimization progresses into

the later generations, the diversity is lost in general, this is because the selection operations

are making more copies of the promising individuals, therefore the search is focusing on

some particular regions, containing either the local or global optimum. This is a common

situation in most EAs, but in the case of LEM, we note that it causes particular problems

for the learning process, and does not make the generation oftraining data an easy task.

155

Furthermore, some other factors will make the situation even worse. These factors in-

clude: first, the individuals in the population are very similar (this is the case commonly for

the end phrase); second, the threshold is not adaptive, (saynot changed from 30% to 10%);

third, for real-parameter optimization problems, discretization needs to be applied on the

training data and will cause the worse phenomena that, contradictory is possible occurring,

that is after discretization, two or more individuals having the same chromosome values

are put into different classification groups. Contradictory will cause more difficulty for the

ID3 algorithm to generate a useful and correct decision tree. For all of these factors in

the design of theLEM(ID3) algorithm, we need to consider diversity-preserve mechanisms

in the evolution mode regularly before the learning mode starts again. To conquer this

problem, for the moment,LEM(ID3) employs the simplest possible diversity preservation

method: when diversity is too low, we perturb the populationwith a very high mutation

rate. Through our observation in our experiments, we find this method works very well in

preserving our population diversity for our problem, although it has the disadvantage that

the evolution mode will contribute to less good optimization performance.

6.2.3 Switch Conditions

There is also another very important issue in the design of any LEM based hybrid opti-

mization algorithms, that is the Switch Conditions. These conditions define the boundary

between the learning and evolution procedure, and will decide when the learning procedure

should stop and the evolution procedure begins, or vice versa. Therefore, the good design

on these switch conditions is crucial for the success of the hybrid optimization algorithm.

In fact, these conditions are very difficult to define precisely in practice. InLEM(ID3),

we have attempted to develop switch conditions in a number ofways. Here, we give two

methods applied in our implementations.

The first switch condition is coined as theprogress rate, which is based on the algo-

rithm’s optimization performance during the past generations until now. Progress rate is

the percentage of generations which achieves optimizationperformance improvement to its

immediate previous generation over a fixed period of generations. If within a generation

with the expense of certain evaluations (say, 100 evaluations), the best fitness of this pop-

ulation of this generation is improved with regard to its previous generation, then we call

such a generation animproved generation, otherwiseunimproved generation. For a given

period of generations, the progress rate for this period is simply the number of improved

156

generations divided by the number of the generations for this period. Say we monitor 10

generations as a learning period, and find there are a total of6 generations where the best fit-

nesses are improved from their previous generations, then the progress rate for this learning

period is 0.6. Based on this progress rate, we also need to define aprogress rate threshold

which will decide the logic value of the switch conditions. Namely, if the current progress

rate is above the progress rate threshold, then the current mode should continue otherwise

a switch action should happen and another mode begins.

The second switch condition is related to the diversity of the population, and is defined

as the minimum-allowed training data set size. As we mentioned before that, the quality of

the training data set is crucial to our LEM(ID3) algorithm, because it is related to and used

directly by the ID3 decision tree construction algorithm togenerate the learnt hypotheses

and the transformed ruleset. If the training data is noisy ordoes not have enough training

instances, then the resulting decision tree is either meaningless or useless in representing the

pattern of the training data. The later situation can be moreeasily dealt with or avoided if we

assume the training data is noisy-free, then we require the size of the generated training data

set after discretization cannot be lower than a minimum threshold. This forms the second

switch condition, namely, if the size of the training data set is smaller than a given threshold

(the minimum allowed training data set size), then LEM(ID3)is switched to evolution mode

immediately without the learning mode to be conducted. We will come back to the two

switch conditions later in the parameters settings part in the experiment section.

6.2.4 Discretization

Before any application of ID3 algorithm, the population needs to be (for learning use only)

discretized. Instead of regarding genes as real-valued variables, each gene must range over

a small set of intervals that partition each range. There aremany discretization methods

available as we discussed in Chapter5, however, in our current development ofLEM(ID3)

algorithm, we use a very simple fixed interval discretization, but we adapt the number of

intervals when the fitness seems to have stagnated. This is done simply by multiplying

the number of intervals by an integer factor. Figure6.3 illustrates this by showing the

difference in the search space before and after such an adjustment in the discretization with

factor 2.

The simplification of the discretization method in our current development of our LEM(ID3)

algorithm is because we are paying more attention to the design of theLEM(ID3) algorithm

157

−100 1000.0

−100 0.0−80 40−60 −40 1008060

Figure 6.3: Before and after adjusting discretization representation

structure, rather than on the specific component technique,like discretization, however, in

future development, we will incorporate more complex discretization techniques into our

LEM(ID3) algorithm.

6.2.5 Instantiation, Evolution and Randomization

Until now, we have finished the introduction of our originalLEM(ID3) algorithm and ana-

lyze many important aspects about this hybrid algorithm. However, these are not all features

involved in the development of theLEM(AQ) algorithm, there are some other advanced

considerations which are used to tackle the complexity of problems met in practice. These

ideas are applied to our LEM algorithm and a new version of theLEM(ID3) algorithm,

LEM(ID3) algorithm extended with Instantiation, Evolution and Randomization (LEM(ID3)IER)

is developed.

Although Learning and Instantiation play key roles in the learning phase, they are not

the only possible operations applied in the generation of new individuals. Part of the pop-

ulation can still be generated by the standard evolutionaryoperators, or even by random

generation. This requirement for more various individualsgenerating methods is due to

the fact that practical problems features could be very complex, and also there is a need

to maintain diversity during the learning phase (not only inthe evolution mode), which is

essential in order to generate an informative tree. Namely,in the learning phase, a new

individual could be generated either by the instantiation method described above, or by a

standard evolution procedure, or at random. The randomization could be implemented by

generating a random value from the whole search space.

In order to realize these ideas, we need to apply a parameter setting to decide the

probabilities (percentages) for each operations. Ideally, these percentages would adapt

as optimization progresses, however, for simplicity we usefixed (unoptimized) values in

the current work. Therefore, the resulting algorithmLEM(ID3)IER modifies the original

LEM(ID3) algorithm by allowing some percentage of the new individuals to be generated

158

by either evolution (crossover and mutation) or randomly through the whole search space.

We will test the performance of bothLEM(ID3) andLEM(ID3)IER in our following exper-

iment part.

6.3 Experiments and Results

In this section, we begin to explore the performance of ourLEM(ID3) algorithms on a num-

ber of real-parameter functions optimization problems. Although still being well-defined

functions, the test functions now are more complex and equipped with more complex fea-

tures. We compare theLEM(ID3) algorithms with other contemporary advanced hybrid

optimization algorithms, not only the standardCMAES algorithm this time. To illustrate,

we group our experiments into two parts. We will see all of thedetails about these two parts

of experiments in the following sections.

6.3.1 Experiment Study 1

In this experiment study, we test theLEM(ID3) algorithm following the series of exper-

iments we did before for our LEM algorithms. That is, we compare LEM(ID3) with the

standardGAs, our developed LEM variant algorithms, and the standardCMAESalgorithm.

Test Functions

The first test functions set used here is the old ‘Test Suite 2’used in previous Chapters4, 5,

we refer to these chapters for the definitions of these functions.

Parameters Settings

Due to the various performance derived from our previous experiments, in this experiment

we only test some of our previous testing algorithms, they are GA2, LEM(dwKNN) and

CMAES. We also refer to the previous chapters for the parameters settings for these algo-

rithms and only give the parameters settings for theLEM(ID3) algorithm. LEM(ID3) is

implemented with the following settings. For the learning phase, we set thethresholdas

0.3, initial discretization divides each gene’s range intoan interval numberof 3 intervals.

When we adjust discretization, theinterval numberis multiplied by the integer discretiza-

tion factor 2. In the evolution phase, we use a steady-state strategy with binary tournament

selection, a normal distribution (0,σ) mutation operator with mutation probability1.0/size

159

Table 6.3: Parameters settings for LEM(ID3)

Threshold 0.3

Switch conditions Progress Rate: 0.7

Minimal allowed training data set size: 10

Learning gap 1

Discretization method Fixed discretization with initial intervalnumber 3,

and integer discretization factor 2.

Instantiation method Instantiate intervals with probabilities (80%, 20%)

GA applied GA2

Table 6.4: Means and standard deviations after 10 generations

Functions GA(1.0/30.0) LEM(dwKNN) LEM(ID3) CMAES

DeJong3 -90.26(4.74) -113.8(4.80) -126.78(6.88371) -94.55(3.88)

DeJong4 3.47(2.02) 1.3(1.23) 2.98115(1.55961) 9.66(3.71)

Rastrigin 232.08(20.3) 161.42(20.05) 75.1045(16.4482) 288.66(17.41)

Griewank 76.26(13.62) 36.67(10.88) 14.8608(8.00999) 158.41(28.86)

Rosenbrock 583.57(148.74) 311.64(84.76) 221.745(62.123) 728.83(166.97)

Ackley 14.50(0.71) 12.10(34.72) 8.81757(1.66572) 16.77(0.67)

Schwefel 7487.64(517.69) 5312.65(558.17) 3365.08(533.216) 9611.63(321.64)

of chromosomesapplied, where the mutation step sizeσ is a value always bigger than the

current interval size in the discretized search space. We summarize the complete param-

eters setting for theLEM(ID3) algorithm in Table6.3. Thepopulation sizeis 100 for all

problems.

Summary of Results

The experimental results are are summarized in the same way as before and are listed from

Table6.4 to Table6.7. Meanwhile, Figure6.4 to Figure6.10show the mean convergence

curves for each algorithm on these test functions, respectively.

160

Table 6.5: Means and standard deviations after 20 generations

Functions GA(1.0/30.0) LEM(dwKNN) LEM(ID3) CMAES

DeJong3 -117.21(3.64) -141.36(2.80) -139.06(4.32708) -112.16(2.82)

DeJong4 0.09(0.11) 0.16(0.24) 0.918659(0.828816)0.070(0.12)

Rastrigin 155.40(19.59) 87.74(15.04) 48.2334(10.342) 228.39(14.78)

Griewank 21.65(4.74) 5.70(2.27) 5.93735(2.54205) 26.07(7.78)

Rosenbrock 220.01(51.03) 133.99(46.33) 180.653(42.7118) 152.95(37.93)

Ackley 9.96(0.83) 6.33(0.84) 6.62236(1.2462) 10.36(1.06)

Schwefel 5686.49(533.59) 3470.82(461.21) 2835.22(504.211) 9564.46(291.09)

Table 6.6: Means and standard deviations after 50 generations

Functions GA(1.0/30.0) LEM(dwKNN) LEM(ID3) CMAES

DeJong3 -146.67(1.42) -149.92(0.25) -149.93(0.320826) -141.7(2.23)

DeJong4 3.60e-3(4.86e-3) 7.76e-3(1.93e-2) 3.24e-2(5.64e-2) 5.28e-4(0.12)

Rastrigin 84.36(14.51) 30.32(7.05) 34.786(8.62315) 191.26(12.1)

Griewank 2.04(0.4) 1.08(0.081) 1.02904(0.0534997) 1.16(0.079)

Rosenbrock 75.38(29.28) 68.34(39.16) 115.768(37.5217) 29.94(0.73)

Ackley 3.91(0.50) 2.22(0.58) 2.56555(0.464773) 2.32(0.409)

Schwefel 3277.86(493.95) 1685.07(330.60) 1765.76(443.485) 9460.74(282.0)

Table 6.7: Means and standard deviations after 100 generations

Functions GA(1.0/30.0) LEM(dwKNN) LEM(ID3) CMAES

DeJong3 -150(0.0) -150(0.0) -150(0.0) -150(0.0)

DeJong4 8.8e-4(9.9e-4) 1.53e-3(1.68e-3) 2.69-3(3.45-3) 1.52e-4(1.6e-4)

Rastrigin 44.75(8.997) 11.01(2.79) 22.1808(6.17295) 116.69(63.62)

Griewank 0.95(0.11) 0.68(0.23) 0.020(0.013) 0.029(0.017)

Rosenbrock44.72(24.15) 53.00(34.72) 83.5877(35.9244) 27.42(0.53)

Ackley 0.95(0.52) 1.38(0.61) 0.119332(0.0599154) 0.019(0.0094)

Schwefel 1540.0(289.45) 1446.53(301.62) 1188.65(331.967) 8948.33(805.8)

161

0 20 40 60 80 100
−160

−140

−120

−100

−80

−60

−40

−20

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0/30.0)
LEMdwKNN
LEMID3
CMAES

Figure 6.4: Results of running 4 algorithms on the DeJong3 problem

0 5 10 15
0

20

40

60

80

100

120

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0/30.0)
LEMdwKNN
LEMID3
CMAES

Figure 6.5: Results of running 4 algorithms on the DeJong4 problem

162

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0/30.0)

LEMdwKNN

LEMID3

CMAES

Figure 6.6: Results of running 4 algorithms on the Rastriginproblem

0 10 20 30 40 50
10

0

10
1

10
2

10
3

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0/30.0)

LEMdwKNN

LEMID3

CMAES

Figure 6.7: Results of running 4 algorithms on the Griewank problem

163

0 10 20 30 40 50
10

1

10
2

10
3

10
4

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0/30.0)

LEMdwKNN

LEMID3

CMAES

Figure 6.8: Results of running 4 algorithms on the Rosenbrock problem

0 20 40 60 80 100
0

5

10

15

20

25

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0/30.0)
LEMdwKNN
LEMID3
CMAES

Figure 6.9: Results of running 4 algorithms on the Ackley problem

164

0 20 40 60 80 100

10
3.1

10
3.3

10
3.5

10
3.7

10
3.9

generations

be
st

 fi
tn

es
s

va
lu

es

GA(1.0/30.0)
LEMdwKNN
LEMID3
CMAES

Figure 6.10: Results of running 4 algorithms on the Schwefelproblem

From these experiment results in this study, we can see thatLEM(ID3) outperforms the

normal genetic algorithm GA2 (which is tuned based on the experience of GA1) in almost

all generations for all problems, except for some cases for function DeJong4 and Rosen-

brock at the final (100th) generations.LEM(ID3)’s advantage over GA2 is particularly

evident and significant in the earlier generations of optimization, as seen in generations

10 and 20.LEM(ID3) also outperforms the other two hybrid algorithms,LEM(dwKNN)

andCMAES, especially in the earlier 50 generations, except for Ackley and Rosenbrock

functions. To highlight one of the most important advantages of theLEM(ID3) algorithm,

we summarize thatLEM(ID3) speeds up the optimization procedure strongly in the early

generations by applying the ID3 learning and the instantiation algorithm, this advantage

is crucial for many practical optimization problems where evaluations are expensive, and

relative good quality feasible solutions are expected to bederived quickly.

6.3.2 Experiment Study 2

In this experiment study, we test the extended version ofLEM(ID3) algorithm, theLEM(ID3)IER

algorithm, on a more complex set of real-parameters function optimization problems, that

is the test suite of 25 test problems for the CEC 2005 Special Session on Real-Parameter

Optimization [SHL+05]. First, those real-parameter optimization problems are themselves

more challenging in the character of their problems. Second, these optimization problems

are tested by a number of advanced algorithms widely used in the evolutionary search op-

165

timization field, so it is handy for ourLEM(ID3)IER algorithm to be compared with those

contemporary algorithms. Therefore, we compareLEM(ID3)IER with these learning and

evolution hybrid algorithms, particularly two advanced variant CMAES algorithms and a

carefully-designed genetic algorithm with advanced genetic operators, instead of the stan-

dard genetic algorithm.

Test Functions

For the 2005 special sessions on real-parameter optimization, we have the following notes

about the problem definitions which will reflect the complexity of these problems. Most

of these problems are multimodal functions, only a few of them are unimodal; they are

discontinuous problems and embedded with noise; they are shifted and rotated versions of

the well-known optimization function, that is, the optimumis shifted and rotated randomly

to different values, causing difficulties for many specific algorithms; they are expanded and

hybrid composited functions which makes the function landscape even more complex to

solve and extremely irregular; all of these functions are scalable to huge dimensions of

search space. Finally, most of the algorithms compared there failed in finding the global

optimum. For more details of these functions we refer to [SHL+05]. The number of solved

problems for all algorithms in the competition are summarized as below:

1. Note that problems 1 to 6 are unimodal functions, and problems 7 to 25 are multi-

modal.

2. Also, the set of thirteen 10D problems{8, 13, 14, 16–25} were never ‘solved’ by any

algorithm in the CEC 2005 competition, where ‘solved’ indicates reaching a certain

level of accuracy specified in [SHL+05], which in turn was a function of the problem

and its dimensionality. On 30D problems, problem 15 is another unsolved problem.

On 50D problems, more problems are turned into the unsolved set.

3. Even for the 30D problems, the performances of the algorithms presented in the CEC

2005 session are not good enough.

Parameters Settings

The parameters settings for theLEM(ID3)IER algorithm is the same as the originalLEM(ID3)

algorithm’s setting in Table6.3, apart from two differences. First, there is an extra percent-

ages set to indicate the number of new individuals being generated via learning, evolution,

166

and random selection, respectively. This set is given as (70%, 20%, and 10%). Second,

there is no crossover operator in the currentLEM(ID3)IER implementation, due to the

consideration of verifying the capacity of diversity-preserving by mutation.

The algorithms used for comparison are the three algorithmswith the best perfor-

mance in the CEC 2005 competition. According to various quality criteria, these were

IPOP-CMAES[AH05b], a restart version of CMAES with population resizing, alsothe

dominant algorithm on this problem set so far;LR-CMAES [AH05a], an alternative local

version of CMAES; andK-PCX [STD05], a carefully designed evolutionary algorithm with

a specialized crossover operator (PCX). We have already introduced the generalCMAES

algorithm in Chapter3, here we simply introduce the two variantCMAES algorithms and

theK-PCX algorithm.

TheIPOP-CMAESwas developed based on the investigation of the impact of thepop-

ulation size of CMAES on multi-modal functions. Those investigations show that in-

creasing the population size improves the performance on multi-modal functions, there-

fore in IPOP-CMAES, the restarting strategy with successively increasing population size

is applied to solve the CEC optimization problems with very good performance. The

IPOP-CMAESalgorithm is also called (µW, λ)-CMAES, the parameters for the normal dis-

tribution are adapted based on the covariance matrixC for the next generation in the same

way as in the CMAES algorithm. For the restart strategy, the (µW, λ)-CMAES is stopped,

whenever one stopping criterion described below is met, anda restart is launched with the

population size increased by a factor of 2. Therefore, in (µW, λ)-CMAES, the default values

are used except for the population size, starting from the default value but then repeatedly

increased. For completeness, we list the restart criteria:

• Stop if the overall change in the objective function value isbelowTol f un for 10+

⌊30n/λ⌋ generations.

• Stop if the standard deviation of the normal distribution issmaller thanTolX in all

coordinates, and if the evolution path is smaller thanTolX in all components.

• Stop if the condition number of the covariance matrix exceeds 1014.

LR-CMAES is developed to explore the performance of a restart local search strategy.

To do this, the CMAES algorithm discussed before is cooperated with small initial step

sizes, an initial step-size which is a hundred times smallerthan is recommended as default.

The default population size is applied. As a result, the algorithm can be then regarded as an

167

advanced local search, because the complete covariance matrix of the search distribution

is efficiently adapted to the local topography of the objective function, and the step-size

adaptation can result in comparatively large steps even when the initial step-size is chosen

to be small.

K-PCX is a steady-state, population-based search algorithm for real parameter opti-

mization. The main character of this algorithm is that it designed the main search com-

ponents independently by defining four plans, the SelectionPlan (SP), Generation Plan

(GP), Replacement Plan (RP), Update Plan (UP). As the names of these plans suggest, they

appear in different stages of the evolution search procedure. In each plan, the important

aspects about solving multi-modal functions are considered, such as diversity preservation

multi-modal parameters.K-PCX starts with an initial population generated randomly with

the sizeN. Then, it uses the Selection Plan to chooseµ parents from the initial population.

In this selection scheme, first, sort the entire population in ascending order based on the

function values. It then divides the population intok equal segments, wherek is a user-

defined parameter within the range 1 toN, indicating the extent of modality of the problem.

For uni-modal problems, a small value and for multi-modal problems a large value ofk is

suggested. The best solution of each segment is picked and stored inB. Then it randomly

picks one solution from the set of best solutions withB as the first parent, this solution is

also called theindexsolution. Thereafter, the other (µ - 1) parents are picked randomly

from the population. In the Generation Plan, it createsλ offspring solutions from the cho-

senµ parent solutions by using the parent centric recombination(PCX) [DJA02] operator

with modification for the purpose of recombination and producing λ offspring solutions.

After describing the generation plan, next the ReplacementPlan is to chooser solutions

from the population. In the present scheme, the solutions are chosen randomly from the

entire population, then a pool of size (r + λ) is formed, consisting ofr solutions chosen

from the population by the replacement plan andλ newly created offspring solutions by the

generation plan. The current population is then updated using the Update Plan, in whichr

solutions chosen in the replacement plan are replaced by thebestr solutions of the pool.

This operation ensures an elite-preservation strategy.

For thisK-PCX algorithm, the iteration continues until a prescribed number of function

evaluations is achieved or a pre-defined termination criterion is met. If the diversity in the

population is lost, cataclysmic mutation is used, and the best individual obtained so far is

chosen as the index parent. Normally, the polynomial mutation with a mutation probability

pm = 1/n is applied, wheren is the number of real variables.K-PCX is an algorithm

168

designed specifically for complex function optimization, the parameter likek need to be

indicated carefully and is problem-dependent. The bad choice for this parameter can make

the algorithm perform poorly.

Summary of Results

We testedLEM(ID3)IER on all of the 25 problems in the CEC 2005 competition, for each

of the 10-dimensional, 30-D, and 50-D cases (hence 75 problems altogether). Following

the CEC2005 rules [SHL+05], 25 trials were run for each problem, and a variety of result

indicators were recorded. Tables6.8, 6.9 and6.10respectively show results for the 10D,

30D and 50D problems. In each case, we see the mean of 25 trials, reported for each of

IPOP-CMAES, LR-CMAES, K-PCX, andLEM(ID3)IER. For the comparative algorithms,

we take the mean results directly from the cited publications. Note that in the case of

K-PCX, results for 50D problems were not reported.

If we observe the results summarized in Table6.8 and compare the means, we see

that IPOP-CMAES, LR-CMAES, K-PCX andLEM(ID3)IER respectively ‘win’ 13, 5, 4

and 6 of the contests on 10-dimensional functions. This includes some, but quite few,

cases in which more than one of the algorithms shares the bestmean for that problem.

Table 6.9 shows the corresponding results for the 30D functions, and we now see that

the numbers of ‘wins’ are 6, 4, 6 and 9 respectively forIPOP-CMAES, LR-CMAES,

K-PCX and LEM(ID3)IER. As we scale from 10D to 30D, the relative performance of

LEM(ID3)IER clearly seems to improve. Finally, although results forK-PCX on the

50D problems are not available, we note that the numbers of wins for IPOP-CMAES,

LR-CMAES andLEM(ID3)IER on 50D problems are respectively 7, 7 and 11. A basic

statistical analysis of these findings can be carried out using multinomial distributions. For

example, if we assume that each algorithm has an equal chanceof achieving a ‘win’ in

the 30D case, then we find that the chance of a single algorithmachieving 9 or more wins

has a probability of 0.15. In the case of 10D, simplifying thesituation by ignoring prob-

lems 8 and 24, we find, analogously, that achieving 11 or more wins by chance from 23

four-way contests is 0.015. Finally, referring to the 50D case, the probability of achiev-

ing 11 or more wins in such a three way contest, assuming equalalgorithm performance,

is 0.18. The superiority ofIPOP-CMAESin the 10D cases therefore seems significant,

althoughLEM(ID3)IER achieves multiple wins on the 30D and 50D cases, the degrees

of significance are less marked. However, the improvement inthe relative performance

of LEM(ID3)IER as we scale up is significant, and it seems clear thatLEM(ID3)IER has

169

Table 6.8: Means for two CMAES, KPCX, LEM(ID3)IER, 10D, CEC05, 100K Evas.

Problems IPOP-CMAES LR-CMAES K-PCX LEM(ID3)IER

1 5.20e-9 5.14e-9 8.71e-9 9.5497e-14

2 4.70e-9 5.31e-9 9.40e-9 1.18234e-13

3 5.60e-9 4.94e-9 3.02e+4 4.75951e+4

4 5.02e-9 1.79e+6 7.94e-7 1.53131e-8

5 6.58e-9 6.57e-9 4.85e+1 1.08404e+2

6 4.87e-9 5.41e-9 2.07e+1 5.32101e+1

7 3.31e-9 4.91e-9 6.40e-2 7.82496e-2

8 2.0e+1 2.00e+1 2.00e+1 2.015e+1

9 2.39e-1 4.49e+1 1.19e-1 3.52629e-7

10 7.96e-2 4.08e+1 2.39e-1 4.73601e+0

11 9.34e-1 3.65e+0 9.11e+0 2.97556e-3

12 2.93e+1 2.09e+2 2.44e+4 3.30583e+1

13 6.96e-1 4.94e-1 6.53e-1 3.00063e-1

14 3.01e+0 4.01e+0 2.35e+0 2.52033e+0

15 2.28e+2 2.11e+2 5.10e+2 4.10562e+2

16 9.13e+1 1.05e+2 9.59e+1 9.91853e+1

17 1.23e+2 5.49e+2 9.73e+1 9.93189e+1

18 3.32e+2 4.97e+2 7.52e+2 5.40254e+2

19 3.26e+2 5.16e+2 7.51e+2 5.20259e+2

20 3.00e+2 4.42e+2 8.13e+2 6.40241e+2

21 5.00e+2 4.04e+2 1.05e+3 4.84205e+2

22 7.29e+2 7.40e+2 6.59e+2 7.43115e+2

23 5.59e+2 7.91e+2 1.06e+3 7.30581e+2

24 2.00e+2 8.65e+2 4.06e+2 2.00064e+2

25 3.74e+2 4.42e+2 4.06e+2 3.91368e+2

170

Table 6.9: Means for two CMAES, KPCX, LEM(ID3)IER, 30D, CEC05, 300K Evas.

Problems IPOP-CMAES LR-CMAES K-PCX LEM(ID3)IER

1 5.42e-9 5.28e-9 8.95e-9 3.47882e-13

2 6.22e-9 6.93e-9 1.44e-2 1.65321e-10

3 5.55e-9 5.18e-9 5.07e+5 2.72353e+5

4 1.11e+4 9.26e+7 1.11e+3 3.85297e+3

5 8.62e-9 8.30e-9 2.04e+3 3.13183e+3

6 5.90e-9 6.31e-9 9.89e+2 1.50812e+2

7 5.31e-9 6.48e-9 3.63e-2 2.95802e-2

8 2.01e+1 2.00e+1 2.00e+1 2.01516e+1

9 9.38e-1 2.91e+2 2.79e-1 7.8419e-7

10 1.65e+0 5.63e+2 5.17e-1 3.69056e+1

11 5.48e+0 1.52e+1 2.95e+1 8.40942e-3

12 4.43e+4 1.32e+4 1.04e+6 4.91148e+3

13 2.49e+0 2.32e+0 1.19e+1 1.0437e+0

14 1.29e+1 1.40e+1 1.38e+1 1.20617e+1

15 2.08e+2 2.16e+2 8.76e+2 3.6229e+2

16 3.50e+1 5.84e+1 7.15e+1 3.36537e+2

17 2.91e+2 1.07e+3 1.56e+2 3.10781e+2

18 9.04e+2 8.90e+2 8.30e+2 9.11234e+2

19 9.04e+2 9.03e+2 8.31e+2 9.10634e+2

20 9.04e+2 8.89e+2 8.31e+2 9.11151e+2

21 5.00e+2 4.85e+2 8.59e+2 5.00162e+2

22 8.03e+2 8.71e+2 1.56e+3 9.14701e+2

23 5.34e+2 5.35e+2 8.66e+2 5.41424e+2

24 9.10e+2 1.41e+3 2.13e+2 2.00283e+2

25 2.11e+2 6.91e+2 2.13e+2 2.00294e+2

171

Table 6.10: Means for two CMAES, KPCX, LEM(ID3)IER, 50D, CEC05, 500K Evas.

Problems IPOP-CMAES LR-CMAES K-PCX LEM(ID3)IER

1 5.87e-9 6.20e-9 - 5.34328e-13

2 7.86e-9 7.96e-9 - 1.31335e-9

3 6.14e-9 6.04e-9 - 2.11398e+5

4 4.68e+5 4.46e+8 - 1.91824e+4

5 2.85e+0 3.27e+0 - 9.82375e+3

6 7.13e-9 7.12e-9 - 1.12253e+2

7 7.22e-9 7.49e-9 - 1.48301e-2

8 2.01e+1 2.00e+1 - 2.01318e+1

9 1.39e+0 5.67e+2 - 1.2652e-6

10 1.72e+0 1.48e+3 - 1.17804e+2

11 1.17e+1 3.41e+1 - 1.4332e-2

12 2.27e+5 8.93e+4 - 4.85485e+4

13 4.59e+0 4.70e+0 - 1.92194e+0

14 2.29e+1 2.39e+1 - 2.1577e+1

15 2.04e+2 2.50e+2 - 4.04874e+2

16 3.09e+1 7.09e+1 - 9.8556e+1

17 2.34e+2 1.05e+3 - 1.23137e+2

18 9.13e+2 9.06e+2 - 9.38592e+2

19 9.12e+2 9.11e+2 - 9.40204e+2

20 9.12e+2 9.01e+2 - 9.40267e+2

21 1.00e+3 5.00e+2 - 6.07759e+2

22 8.05e+2 9.10e+2 - 1.00155e+3

23 1.01e+3 6.37e+2 - 5.955e+2

24 9.55e+2 8.43e+2 - 2.00544e+2

25 2.15e+2 4.77e+2 - 2.18497e+2

172

Table 6.11: Summary of solved problems by CEC05 session algorithms on 30D

Number of solved problems

single-modal multi-modal

IPOP-CMAES 6 5

K-PCX 3 4

LR-CMAES 5 1

LEM(ID3)IER 2 4

Other algorithms ≤ 4 ≤ 2

promising properties with regard to scalability. Finally,with respect to the definition of

‘successful run’, which means that the algorithm achieves the fixed accuracy level (mean

error values,≤ 1e− 6 for unimodal;≤ 1e− 2 for multimodal) within the maximum al-

lowed evaluation number for the particular dimension, we summarize for the case of 30D

the number of problems solved by the three algorithms being compared andLEM(ID3)IER

in Table6.11.

Meanwhile, in AppendixB we show Tables with the full set of result indicators (as spec-

ified in [SHL+05]) for LEM(ID3)IER on the 10D, 30D and 50D versions of the problems,

to support comparative experiments of other researchers.

6.4 Concluding Discussion

Continuing to explore the LEM framework, we have described and evaluated our new LEM

hybrid algorithms that combine evolutionary search with ID3 decision tree learning. In

earlier work [SC08] [SC09], we found that hybridizations of quite simple learning strate-

gies with evolutionary search were able to improve optimization performance consider-

ably upon the unchanged EA, in particular, similar or bettersolution quality was achieved

with significant savings in fitness evaluations. In this chapter, we examined a less sim-

ple, but still quite straightforward LEM variant algorithmin which decision tree learning,

with instantiation generation and adaptive discretization, was interleaved with evolution-

ary search, and tested this approach on a number of test functions, especially the CEC

2005 real parameter optimization function suite. When compared with our well-tuned GA,

KNN-based LEM hybrid algorithmLEM(dwKNN), and three of the best-performing func-

tion optimization algorithms previously published, we found thatLEM(ID3) as the first

version of our development has clear and significant advantages over the standard genetic

173

algorithm, this strongly proves the initial goal of our development of more LEM instance

algorithms and verifies the claim again made by the original LEM authors, that LEM and its

instance algorithms, likeLEM(AQ), can speed up the traditional evolutionary optimization

procedure to gain relative high-quality solutions. And this advantage also maintains over

one of ourLEM(KNN) algorithms developed earlier in this thesis, especially inthe early

stages of optimization, this feature ofLEM(ID3) gives us more confidence in the devel-

opment and application of Learning-and-Instantiating based LEM algorithms for practical

complex optimization problems where the evaluations couldbe expensive. In another of

our experiments on the CEC 2005 real parameter function optimization suite, as an ex-

tended version of theLEM(ID3) algorithm,LEM(ID3)IER is clearly competitive in per-

formance with three dominating hybrid optimization algorithms in that competition, which

are in fact particularly well-designed and well-tuned fromtheir standard versions. Finally,

one feature ofLEM(ID3)IER which is worth mentioning is that its relative performance

improves as problem dimensionality increases, with tentative evidence to suggest that it

may be a recommended choice in general for high-D problems. With the performance

tested here, we recommendLEM(ID3) algorithm as a baseline algorithm that should be

further investigated and studied, more importantly, should be applied to solve more chal-

lenging problems in practice. Research-strengthLEM(ID3)IER code is freely available at

http://www.macs.hw.ac.uk/˜gls3/LEMID3/LEMID3.zip.

174

Chapter 7

Cancer Chemotherapy Treatments

Optimized by LEMs

7.1 Overview

In previous chapters, we have investigated new instance algorithms under the general LEM

framework with the development ofLEM(KNN), LEM(ED), LEM(ID3) and their variant

algorithms. However, the test problems applied on these algorithms are all typical real-

parameters function optimization problems. Although, they are particularly designed for

the purpose of testing the performance of new optimization algorithms, they do not repre-

sent the practical optimization problems directly. Namely, we still did not apply our LEM

instance algorithms to solve any practical hard optimization problems, and such an applica-

tion is important and worthy. Practical problems may include more complex features which

may reflect more real requirements to the problem solving algorithms than the well-defined

testing functions. Practical problems may include more constraints which are the real con-

siderations from the reality view. To satisfy these constraints during the optimization pro-

cedure, the search algorithms need to tackle more difficulties, and any violation of these

constraints will make the derived solutions not feasible. Solving problems with constraint

satisfaction is a more demanding task than the function optimization problems. Finally, our

purpose of investigating LEM based hybrid optimization algorithms is to speed up the tra-

ditional evolutionary optimization procedure through theapplication of learning, and such

a purpose is more strongly to be achieved due to the reality that many practical problems

contain many practical aspects which make the evaluation ofthe solutions for the problems

very expensive in real implementations or operations. Therefore, our developed LEM algo-

175

rithms are more suitable to solve these evaluation-expensive problems. As we have stated

in Chapter1, this property of speedup is very useful in solving many practical optimiza-

tion problems, where the time complexity for working out thefitness of a single solution

is quite poor. In this chapter, we investigate such a practical and complex problem which

explores all of the aspects considered above, especially the property of time-consuming

evaluations, with our LEM algorithms,LEM(dwKNN) andLEM(ID3). The problem is the

Cancer Chemotherapy Treatments problem, solving this optimization problem provides a

good test for our LEM algorithms in solving practical optimization problems.

In the following sections, we introduce the medical aspectsof cancer treatment in Sec-

tion 7.2, and give the mathematical formulation for this problem in Section7.3, we solve

this problem with our LEM instance algorithms in Section7.4, and concludes in Section

7.5

7.2 Introduction

Amongst the modalities of cancer treatment, chemotherapy is often considered as inherently

the most complex [Whe88]. As a consequence of this, it is extremely difficult to find

effective chemotherapy treatments without a systematic approach. In order to realize such

an approach, we need to take into account the medical aspectsof cancer treatment.

Drugs used in cancer chemotherapy all have narrow therapeutic indices. This means

that the dose levels at which these drugs significantly affect a tumour are close to those

levels at which unacceptable toxic side-effects occur. Therefore, more effective treatments

result from balancing the beneficial and adverse effects of acombination of different drugs,

administered at various dosages over a treatment period [PM01].The beneficial effects of

cancer chemotherapy correspond to treatment objectives which oncologists want to achieve

by means of administering anti-cancer drugs. A cancer chemotherapy treatment may be

either curative or palliative. Curative treatments attempt to eradicate the tumour; palliative

treatments, on the other hand, are applied only when a tumouris deemed to be incurable,

with the objective of maintaining a reasonable quality of life for as long as possible.

The adverse effects of cancer chemotherapy stem from the systemic nature of this treat-

ment: drugs are delivered via the bloodstream and thereforeaffect all body tissues. Since

most anti-cancer drugs are highly toxic, they inevitably cause damage to sensitive tissues

elsewhere in the body. In order to limit this damage, toxicity constraints need to be placed

on the amount of drug applied at any time interval, on the cumulative drug dosage over

176

the treatment period, and on the damage caused to various sensitive tissues [Whe88]. In

addition to toxicity constraints, the tumour size (i.e. thenumber of cancerous cells) must

be maintained below a lethal level during the whole treatment period for obvious reasons.

The goal of cancer chemotherapy therefore is to achieve the beneficial effects of treatment

objectives without violating any of the above mentioned constraints.

7.3 Mathematical Problem Formulation

In order to solve the optimization problem of cancer chemotherapy, we need to find a set of

treatment schedules, which satisfies toxicity and tumour size constraints while also yielding

acceptable values of treatment objectives. This set will allow the oncologist to make a

decision on which treatment schedule to use, given his/her preferences or certain priorities.

In the remainder of this section we will define the decision vectors and the search space for

the cancer chemotherapy optimization problem, specify theconstraints, and particularize

the optimization objectives.

Anti-cancer drugs are usually delivered according to a discrete dosage program in which

there are s doses given at timest1, t2, . . . ts [MT94]. In the case of multi-drug chemotherapy,

each dose is a cocktail ofd drugs characterized by the concentration levelsCi j ,i ∈ 1, . . . , s,

j ∈ 1, . . . , d of anti-cancer drugs in the bloodplasma. Optimization of chemotherapeutic

treatment is achieved by modification of these variables. Therefore, the solution spaceΩ

of the chemotherapy optimization problem is the set of control vectorsc = (Ci j) represent-

ing the drug concentration profiles. However, not all of these profiles will be feasible, as

chemotherapy treatment must be constrained in a number of ways. Although the constraint

sets of chemotherapeutic treatment vary from drug to drug aswell as with cancer types,

they have the following general forms:

1. Maximum instantaneous doseCmax for each drug acting as a single agent:

g1(c) = {Cmax j−Ci j ≥ 0 : ∀i ∈ 1 . . . s,∀ j ∈ 1 . . .d} (7.1)

2. Maximum cumulativeCcum dose for drug acting as a single agent:

g2(c) = {Ccum j−
s

∑

i=1

Ci j ≥ 0 : ∀ j ∈ 1 . . .d} (7.2)

3. Maximum permissible size of the tumour:

g3(c) = {Nmax− Nti ≥ 0 : ∀i ∈ 1 . . . s} (7.3)

177

4. Restriction on the toxic side-effects of multi-drug chemotherapy:

g4(c) = {Cs−e f f k−
d

∑

j=1

ηk jCi j ≥ 0 : ∀i ∈ 1 . . . s,∀k ∈ 1 . . .m} (7.4)

The factorsηk j in the last constraint represent the risk of damaging thekth organ or

tissue (such as heart, bone marrow, lung etc.) by administering the j th drug. Estimates of

these factors for the drugs most commonly used in treatment of breast cancer, as well as the

values of maximum instantaneous and cumulative doses, can be found in [DJR95].

Regarding the objectives of cancer chemotherapy, we focus our study on the primary

objective of cancer treatment - tumour eradication. We define eradication to mean a re-

duction of the tumour from an initial size of around 109 cells (minimum detectable tumour

size) to below 103 cells. In order to simulate the response of a tumour to chemotherapy, a

number of mathematical models can be used [MT94]. The most popular is the Gompertz

growth model with a linear cell-loss effect [Whe88]:

dN
dt
= N(t) · [λ ln(

Θ

N(t)
) −

d
∑

j=1

K j

s
∑

i=1

Ci j {H(t − ti) − H(t − ti+1)}] (7.5)

whereN(t) represents the number of tumour cells at timet; λ ,Θ are the parameters of

tumour growth,H(t) is the Heaviside step function;kj are the quantities representing the

efficacy of anti-cancer drugs, andCi j denote the concentration levels of these drugs. One

advantage of the Gompertz model from the computational optimization point of view is that

the equation (5) yields an analytical solution after the substitutionu(t) = ln(ΘN(t)) [MT94].

Sinceu(t) increases whenN(t) decreases, the primary optimization objective of tumour

eradication can be formulated as follows [Pet99]:

F(c) =
s

∑

i=1

N(ti) (7.6)

subject to the Equation7.5and Constraints7.1-7.4.

7.4 Solving using LEM Hybrid Algorithms

After having formatted the problem, we present the methods used to solve this problem.

The methods used are evolutionary and hybrid search algorithms. For the evolutionary

search methods, we use the standard genetic algorithm to optimize the treatment plans. For

the hybrid algorithms, we apply theLEM hybrid algorithms developed in this thesis. This

178

problem has also been solved in [PSM06], and we include that work withEDA variant

algorithm in this thesis as a comparison.

7.4.1 Problem Representation and Evaluation

After the mathematical formulation of the problem, we need to define the problem’s rep-

resentation space, before any evolutionary search based methods can be applied to solve

this problem. Originally, the cancer chemotherapy optimization problem was solved using

the binary representation of solutions. However, for the following two reasons, we apply

integer representation for this problem in this thesis. First, it has been reported that integer

encoding of GA solutions can improve the algorithm’s performance [PBM05] by the orig-

inal authors. Second, in order to make a fair comparison withthe LEM hybrid algorithms,

which are all developed for solving real parameters optimization problems.

For the convenience of illustration, we still begin by introducing the binary string repre-

sentation of the problem. The multi-drug chemotherapy schedules problem is represented

by decision vectorsc = (Ci j), i ∈ 1, . . . s, j ∈ 1, . . .d, which are encoded as binary strings

known aschromosomes. The representation spaceI (a discretized version ofΩ) can then

be expressed as a Cartesian product:

I = A1
1 × A2

1 × . . . × Ad
1 × A1

2 × A2
2 × . . . × Ad

2 × . . . × A1
s × A2

s × . . . × Ad
s

of allele setsA j
i . Each allele set uses a 4-bit representation scheme:

A j
i = {x1x2x3x4 : xk ∈ {0, 1}∀k ∈ 1, . . .4}

so that each concentration levelCi j takes an integer value in the range of 0 to 15 con-

centration units [PM01]. In general, withs treatment intervals and up to 2p concentration

levels ford drugs, there are up to 2spd individual elements. Henceforth we assume that

s = 10 and that the number of available drugs is restricted to ten[Pet99]. These drugs are

delivered sequentially - one after another - to form a multi-drug dose, which is administered

periodically over the treatment period that consists of up to scycles. The valuess= 10 and

d = 10 result in the individual (search) space of power|I | = 2400 individuals, referred to as

chromosomes.

x = {x1x2x3 . . . x4sd : xk ∈ {0, 1}∀k ∈ 1, . . .4sd}

179

and the mapping functionm : I → C between the individualI and the decision vectorC

spaces can be defined as:

Ci j = ∆C j

4
∑

k=1

24−kx4d(i−1)+4(j−1)+k,∀i ∈ 1 . . . s, j ∈ 1 . . .d (7.7)

where∆C j represents the concentration unit for drugj. This function symbolizes the de-

coding algorithm to derive a decision vector from a chromosomex. Applying the evaluation

functionF to c yields the value of the fitness function for both algorithms.

F(c) =
n

∑

p=1

d
∑

j=1

kj

p
∑

i=1

Ci j e
λ(ti−1−tp) −

4
∑

s=1

Psds (7.8)

whereds are the distance measures specifying how seriously Constraints 7.1 - 7.4 are vi-

olated, andPs are the corresponding penalty coefficients. If all constraints are satisfied

(i.e. a treatment regime is feasible), then the second term in Equation7.8 will be zero,

significantly increasing the value of the fitness function.

7.4.2 Problem Solving and Results

We have given the definition of the representation space, andalso the fitness evaluation

function. As we have seen, the representation space of this problem can be transformed to

real variable space, and there are constraints conditions on this real space. Therefore, the

solutions are divided into two sets, one is the feasible solutions and the other is the infeasible

solutions. When our evolutionary and hybrid optimization algorithms are applid for this

constraint satisfaction problem, we have to consider and deal with the newly-generated

solutions carefully, because these solutions could be within two differenct sets, feasible

and infeasible. Our consideration is based on two ideas, thefirst, the feasible solutions

are always prefered to the infeasible ones according to the problem task requirement; the

second, the infeasible solutions can also contain good combinations of genes which can

result in feasible solutions immediately in a few followinggenerations, therefore they need

to be explored as well. Based on these two ideas, our evolutionary and hybrid optimization

algorithms have all been modified on the survival selection operations as follows:

• The evolution mode operate on the whole search space rather than is limited into

the feasible regions only. When a new solution is generated,it is then tested by the

Constraints7.1- 7.4 for its feasibility.

180

• During the learning mode (the instantiation operator), only unfeasible solutions can

be replaced (by either feasible solutions or infeasible solutions), feasible solutions

are never replaced by any solutions. During the evolution mode, survival selection is

still based on fitness.

The C++ implementation codes for the evaluation function for this cancer chemother-

apy optimization problem is given in AppendixC based on the above descriptions and

formulae. Now, we can apply the LEM hybrid algorithms to solve this problem and make

a comparison of the performance for this problem with other algorithms which have been

applied to solve this problem. The algorithms involved are astandard genetic algorithm, a

variantEDA algorithm calledPBIL, theLEM(dwKNN) algorithm and theLEM(ID3) al-

gorithm developed in Chapters4 and6, and also theCMAES algorithm. First, we give the

complete description of the PBIL algorithm for the sake of completeness.

Population Based Incremental Learning

PBIL [Bal94, BD97] is a simpleEDA variant algorithm, it is a non-dependence EDA, that

is PBIL does not consider or model the dependence relationship between the variables. For

the EDA algorithms and its classification, we refer to Chapter 3.

PBIL starts by initializing a probability vectorp = {p1, p2, . . . , pn} where eachpi = 0.5.

Eachpi represents the probability of 1 being presented ini th position of a chromosome.p

is then sampledM times to create a populationP of chromosomes.N chromosomes are

then selected fromP according to the quality or fitness value of that chromosome.As with

GA, a number of selection mechanisms can be applied for this purpose. In the original

investigation ofPBIL for the cancer chemotherapy problem, the authors use truncation se-

lection [LL02] which is to select the bestN solutions fromP. After selection, the marginal

probabilityρi for eachi th allele position is calculated from the selectedN solutions. (ρi can

be simply calculated by dividing the frequency of 1 ini th position of allele in selected set

by N). ρi is then used to update the probability vectorp. This updated probability vector

replaces the initial probability vector. This process continues until termination criteria are

satisfied.

Parameters Settings for All Algorithms

The parameters settings for all the algorithms on the chemotherapy problem are listed here.

All of the parameters are following the normal settings usedin our previous chapters with-

181

Algorithm 15 pseudo code for PBIL
1: Initialize a probability vectorp = {p1, p2, . . . , pn}, where eachpi = 0.5;

2: Samplep to generate an initial populationP of sizeM;

3: Select theN fittest solutions fromP whereN ≤ M;

4: For each allelexi, calculate the marginal probabilityρi from selectedN solutions;

5: Updatep using following updating rule:

6: for i = 1 to n do

7: pi = pi × (1− λ) + ρi × λ
8: end for

9: where, 0≤ λ ≤ 1. λ is known aslearning rate parameterchosen by the user.

10: Go to Step 2 until the termination criterion is satisfied.

out any particular tunings for this problem and previous runs. Therefore, we will not give

all the details about the parameters and only give some general settings here. We refer

to the corresponding chapters for complete details of the parameters, which are used here

consistently.

• GAs: population size 100, crossover probability 0.6, mutationprobability 1.0 for

GA1 and 1/length of chromosomefor GA2.

• PBIL: population size 100, selection size 20, learning rateλ = 0.3

• LEM(dwKNN): population size 100, learning threshold 0.3, initial discretization in-

terval 3, multiplication factor is 2.

• LEM(ID3): population size 100, learning threshold 0.3, initial discretization interval

3, multiplication factor is 2.

• CMAES: (µ, λ) is set as (50,100) respectively, the initial mutation stepsizeσ is set

as one quarter of the whole search range.

Summary of Results

The performance of these algorithms is measured according to two main standards. The

first standard is efficiency, which means the number of the fitness evaluations taken by the

algorithms to find the first feasible solution. According to this standard, Table7.1shows the

mean evaluation numbers expended by all these algorithms tofind the first feasible solution,

respectively. The second standard is the quality of the found solutions, which is quantified

182

by the best fitness values obtained by the algorithms. According to this standard, Table7.2

gives the best fitness values of the found feasible solutionsfor all these algorithms at the

maximum allowed evaluation number 200,000 after 1000 runs.

Table 7.1: Evaluation numbers for the first feasible solution: mean(sd)

Problems GA1 GA2 PBIL LEM(dwKNN) LEM(ID3) CMAES

Chemotherapy 12794(406.697) 5821(39.3107) 4871(620) 2930.4(52.3069) 3789(8.96655) 3815(11.5007)

Table 7.2: Best fitness values after 200k evaluation: mean(sd)

Problems GA1 GA2 PBIL LEM(dwKNN) LEM(ID3) CMAES

Chemotherapy 0.5605(0.0029) 0.572769(0.00270306)0.428(0.112) 0.602562(0.00200748)0.6055(0.0020) 0.6060(0.0020)

We can see from the results thatLEM(dwKNN) andLEM(ID3) have very good perfor-

mance both in the evaluation numbers and the quality of the solution found, compared with

the standard well-tuned genetic algorithm GA2,PBIL andCMAES. It is interesting that

the best algorithm with regard to the two standards for this problem is theLEM(dwKNN)

algorithm, where only half of the evaluation number is needed to find the first feasible

solution compared with the GA2 algorithm. Also, the speedupderived byLEM(ID3) al-

gorithm over GA2 is also clear and significant. Finally, bothof our LEM instance hybrid

algorithmsLEM(dwKNN) andLEM(ID3) algorithms are competitive to the hybrid opti-

mization algorithmsPBIL and CMAES. Such speedup derived by our LEM algorithms

in optimization performance or savings of evaluations are certainly plausible for solving

evaluation-expensive practical problems.

7.5 Concluding Discussion

We have investigated the application of ourLEM instance algorithms to solve a practical

complex optimization problem, the cancer chemotherapy treatments optimization problem.

The main features of this problem are that it is complex on itsown - when represented in

integer encoding, its chromosome length is 100 with each gene value range from (0. . .16).

This problem contains constraint satisfactions conditions, which put more limitations on

183

the search space. More importantly, this is an evaluation-expensive problem, due to the

practical aspects of the problem.

Two advancedLEM hybrid algorithms developed in this thesis are applied on solving

this cancer chemotherapy, and very good performances are derived. First, our LEM hy-

brid algorithms, based onKNN and ID3 decision tree learning, are able to solve practical

complex optimization problems, this shows they are generalproblem solvers. The per-

formances have beaten the correspondingGA significantly and are competitive with other

advanced hybrid optimization algorithms,PBIL andCMAES, both in the evaluation num-

ber and quality of solutions. Based on these excellent performances of our LEM instance

algorithms, we reclaim the fact that the original LEM authors had claimed before, that

is, LEM based instance algorithms have significant advantages over the traditional evo-

lutionary search algorithms, and this advantage can be proved not only on well-defined

real-parameters function optimization problems but also remains for practical optimization

problems with expensive evaluations and complex problem features.

184

Chapter 8

Conclusion

8.1 Summary

In this thesis, we have finished a series of important pieces of work on designing new hybrid

algorithms and testing their performances. We summarize this work in this chapter.

Our first choice for a learning algorithm to be applied in theLEM framework is the

k-nearest-neighbors learning. The reasons for this are that, first,KNN is a relatively simple

algorithm to implement compared with the bulk of other learning paradigms in the machine

learning community. Second, despite being simple, KNN is anexcellent learning algorithm

both in theoretical study and practical applications, particularly, it has a global view on

the problem solutions space, this capacity is not universalfor many other more complex

learning algorithms. Simple does not mean incapable. Finally, based on these two reasons,

KNN is our best choice to investigate LEM based hybrid optimization algorithms, and the

effect of the development can be visible more quickly, due toKNN’s excellency in learning

capacity and efficiency in implementation.

LEM(KNN) and its variant algorithms, as the immediate results of development, signif-

icantly outperform the correspondingGAs in both speed and solution quality on a number

of testing problems presented in this thesis, with the speedadvantage being particularly

impressive in general. Apart from the improved performances, we indicated two important

aspects about the LEM framework, first, this framework is flexible, any PAC-learning algo-

rithms can be applied in this framework to incorporate with the standard evolutionary search

for solving optimization problems. This flexibility has been proved by the LEM(KNN)

algorithms, whereKNN replaces the AQ learning algorithm in the originalLEM(AQ) al-

gorithm. Furthermore, this flexibility is not limited by replacing one learning algorithm

with another, it can also be reflected in the way by which learning and evolution interact.

185

LEM(KNN) once again shows this feature, the new individuals generated by evolution can

only enter the population if the KNN learning judges them as ‘good’ individuals, otherwise

they will be discarded.

These two contributions, in particular the latter, have opened the door for more possibil-

ities of how the LEM based hybrid algorithms and even the learning and evolution hybrid

algorithms should be developed. Learning can be used more flexibly to incorporate with

evolution in more ways to achieve more varied performances.

The advantage ofLEM(KNN) is that it can speed up the optimization procedure and

save evaluations by using KNN learning method as the survival selection method to predict

the ‘good’ or ‘bad’ for the new generated individuals ratherthan exactly evaluating them.

However, the disadvantage ofLEM(KNN) is that the prediction based on neighbors could

make mistakes and therefore bring unfit individuals into thenext generations. To overcome

these drawbacks, we have tried two methods. One is the development of a ‘verification’

version ofLEM(KNN), which results in theKNNGA(V) algorithm, and the other is the

application of a distance-weight KNN algorithm, which results in theLEM(dwKNN) algo-

rithm. TheKNNGA(V) algorithm is not very successful in overcoming the disadvantage of

LEM(KNN), because it uses more actual evaluations to verify the new generated individ-

uals in order to exclude the unfit individuals, which inevitably violates the advantage and

main goal of developingLEM(KNN) based methods. On the contrary, theLEM(dwKNN)

algorithm seems very suitable to overcoming the drawbacks of LEM(KNN) and is therefore

able to perform better than theLEM(KNN) algorithm. It judges the quality of the newly

generated individuals through calculating an estimated fitness according to thek nearest

neighbors, and verifies this individual using this estimated fitness against a predefined sur-

vival fitness. In this way,LEM(dwKNN) maintains the prediction capacity ofLEM(KNN)

while excluding the unfit individuals without any extra evaluations.

After the development ofLEM(KNN) and its variant algorithms, we move our research

focus to the concreteLEM(AQ) algorithm rather than the LEM framework. This change

of the research focus is due, firstly to wanting to develop a complex and rule-based learn-

ing and evolution hybrid algorithm, which is equal to theLEM(AQ) algorithm both in

the optimization performance and the functionalities of the algorithm. LEM(AQ), as the

main instance algorithm of the LEM framework, has shown advantages in the optimization

performance for a number of complex problems and also explored many advanced tech-

niques into its algorithm design. To further evaluate this LEM algorithm and also compare

it with our LEM(KNN) algorithm has become an urgent question to answer and is of the

186

utmost interest to us. Second, in the LEM framework, the corecomponent which is be-

lieved to be the driving force of the promising performance of the LEM(AQ) algorithm, is

the Learning-and-Instantiating method which was not verified by our development of the

LEM(KNN) algorithms. This rule-based method remains interesting tous and merits more

research efforts. Finally, through the development of our ‘own’ LEM(AQ) algorithm, the

problems we want to solve at hand can be attempted, especially some practical problems

with both complex problem features and expensive-evaluations costs.

However, the development procedure is not simple, the first step towards these goals is

theLEM(ED) algorithm, which incorporates a simple Entropy-Based Discretization method

as the learning component with a normal evolutionary procedure. The learning method ED

applied here inLEM(ED) is a very simple mechanism compared with other well-known

learning algorithms. ED simply takes the training data as input and use entropy measure-

ment to find the best cut-points and therefore to identify thebest interval to guide the gen-

eration of new individuals. Despite being able to outperform the standard GA algorithm in

general, however, this advantage is limited and fades in thelater stages of optimizations.

Although not very promising in the performance ofLEM(ED), it is still a good at-

tempt which may result in successful development of our LEM rule-based algorithm with

excellent performances. The worthwhile experience derived from LEM(ED) is that, first

of all, the learning method applied in LEM should be complex enough to distinguish the

differences between variables, and therefore is able to findout the relationships between

dimensions, which could be very important in the success of the optimization procedure.

Second, the discretization method should fit the complex problem landscapes in an adaptive

way. Ideal discretization should divide the variable rangeinto several subranges and change

adaptively according to the optimization procedure. Finally, the expected LEM algorithm

should contain repeated learning and evolution interactions, containing many learning pe-

riods mediating the normalGA to finish the whole optimization procedure.

Based on the experience derived from the development ofLEM(ED) and also on its

development structure, continuing exploration on the LEM framework has resulted in the

LEM(ID3) algorithm, which combines an evolutionary search with the ID3 decision tree

learning. As with theLEM(KNN) algorithms,LEM(ID3) and its variant algorithms have

achieved significant optimization performance on a number of real-parameters testing prob-

lems, including not only well-defined function problems, but also complex practical prob-

lems, over the standardGA algorithms, hybrid algorithmsCMAES and variant ofEDA al-

gorithms. The successful development ofLEM(ID3) verifies the importance of the Learning-

187

and-Instantiating method within theLEM framework, and also points out that this method

can be efficient in achieving promising performances only ifit is applied with many other

techniques, such as the good design of the instantiation algorithm, forest model, rule selec-

tion method, and discretization methods. Without the good designs for these techniques,

the successful development ofLEM(ID3) cannot be expected. Finally, theLEM(ID3) algo-

rithm should be used as a baseline algorithm that will be further investigated and studied,

more importantly, should be applied to solve more challenging problems in practice.

The practical application oriented problem we solve with our LEM instance algorithms

is the cancer chemotherapy treatments optimization problem. The main features of this

problem are that, it is complex in its own, when represented in integer encoding, its chro-

mosome length is 100 with each gene value ranges from (0. . .16). This problem contains

constraint satisfactions conditions, which put more limitations on the search space. More

important, this is an evaluation-expensive problem, due tothe practical aspects related to the

cancer chemotherapy problem. All of these features can posechallenges for our LEM hy-

brid optimization algorithms, and question them as generalproblem solvers. However, with

the successful application of our LEM algorithms on this problem, especially, twoLEM hy-

brid algorithms developed in this thesis, very good performance results are derived. These

performances have beaten the correspondingGA significantly and are competitive with

other hybrid optimization algorithms,PBIL andCMAES, both in the evaluation number

and quality of solutions.

Based on these excellent performances of ourLEM instance algorithms, we reclaim

what the original LEM authors had claimed before, that is that LEM based hybrid op-

timization algorithms developed in this thesis have significant advantages over the tradi-

tional evolutionary search algorithms, and these advantages remain to variants ofCMAES

andEDA algorithms on both well-defined real-parameters functionsand practical complex

optimization problems with expensive evaluations features.

8.2 Contributions

As stated in Chapter1 Section1.1.5, the contributions of this thesis are restated as follows:

Contribution 1 A simple genetic algorithm combined withk-nearest-neighbor learning al-

gorithm, calledLEM(KNN), is developed.KNN in this LEM instance algorithm is

used as a ‘filter’ deciding the survival of the newly generated individuals. Also, a vari-

ation of theLEM(KNN) algorithm, calledLEM(dwKNN), is developed.LEM(dwKNN)

188

extendsLEM(KNN) with the consideration of distance contributions. The perfor-

mances of these algorithms are compared with the standard genetic algorithms, show-

ing that significant improvements can be achieved by hybridizing even these very

simple learning algorithms with the normal evolution algorithms.

Contribution 2 Simple genetic algorithm combined with Entropy-Based Discretization

(ED), ID3 decision tree learning algorithm, and their variant algorithm are devel-

oped, respectively. These algorithms are all designed under the general LEM frame-

work and are based on the Learning-and-Generating Hypotheses method, showing

the flexibility of this framework. With the development of these LEM instance algo-

rithms, we have also investigated different techniques andmethods which are impor-

tant components of the hybrid algorithms and affect the functions and performances

of the hybrid algorithms.

Contribution 3 The resulting algorithmsLEM(KNN), LEM(ID3) and their variant algo-

rithms are compared with other hybrid algorithms, such asCMAES andEDA, on

a number of test problems, including the CEC 2005 real-parameter functions opti-

mization and the cancer chemotherapy optimization problem. Performance on these

problems have shown that these LEM instance algorithms are promising and compete

well against state of the art hybrid algorithms.

Contribution 1 was explored in Chapter4, whereLEM(KNN) and LEM(dwKNN)

were described on pages85 and101, and the experiments were carried out that compared

them with the standard genetic algorithm and theCMAES algorithm. These experiments

show thatLEM(KNN) andLEM(dwKNN) have significant advantages over the traditional

evolutionary procedures and are competitive with the adaptive mutation step sizes strategy

CMAES.

Contribution 2 was explored in Chapter5and Chapter6, whereLEM(ED) andLEM(ID3)

were described on pages127and145, and the experiments were done that compared them

with GA, LEM(KNN), LEM(dwKNN) andCMAES. These experiments show that both

LEM(ED) andLEM(ID3) can beat standardGAs in the earlier stages of optimization, and

LEM(ID3) is superior to all the other algorithms on real-parameters function test set ‘Test

Suite 2’.

Contribution 3 was explored in Chapter4, Chapter6, and Chapter7, respectively.

Where the experiments were described on pages159, 178, and the experiments were car-

ried out that comparedLEM(ID3)IER with other advancedGA andCMAES variant al-

189

gorithms. These experiments show thatLEM(ID3)IER is competitive to these variant al-

gorithms on real-parameters optimization functions in CEC2005 competition, and also

shows thatLEM(dwKNN) andLEM(ID3) can solve the cancer chemotherapy treatments

optimization problem with promising performances over traditionalGA, CMAESandPBIL

algorithms both in speed and quality of the solutions derived.

8.3 Future Work

Based on what we have investigated in this thesis, we will have the following work on

which to carry out more research on the development of LEM based hybrid optimization

algorithms.

1. More investigations of different learning algorithms intheLEM framework are needed.

This will provide us with more data and experience that will help to guide a general

theory on how best to construct aLEM instantiation for a given problem. We have

applied several learning methods in our LEM instance algorithms, however, they are

neither sufficiently representative nor advanced in the machine learning community.

We need to explore more learning techniques in our future research.

2. More experiments and explorations on the interaction between learning and evolu-

tion phases need to be investigated. These interaction principles are central to the

development of any hybrid optimization algorithms. However, the inspiration cannot

be immediate and needs long-term research into both the learning and evolution sides

with their own novel features in order to be understood in more depth.

3. More attempts on adaptive and multi-learner versions ofLEM, where different learn-

ing phases may have different learning algorithms, should be investigated. For exam-

ple, in the early and later stages of evolutionary search, the learning algorithms could

change or switch from one to another according to the nature and difficulties of the

optimization task at the various stages.

190

Appendix A

Brief Introduction on Probability

To represent and reason with uncertain knowledge, a formal language needs to be developed

to deal with two issues: the degree of belief for assertion ofa probability and dependence

of the degree of belief which includes evidence and experience. Probability theory typi-

cally uses a language that is slightly more expressive than the proposition logic, and less

expressive than first order logic. The basic element of this language is called arandom

variable, which is a map from an event in the real world to a value. Each random variable

has a domain of values that it can take on, the value can be of many types, such as binary,

discrete, and continuous. Once a value of the domain is assigned to the random variable,

it means one event or some events have happened. For example,Headacheis a random

variable, its meaning is that someone has a headache, we could assign it two binary values

〈true, f alse〉, (Headache = true) means a headache happens to that person, or vice versa.

Weatheris another random variable with the domain〈sunny, rainy, cloudy, andsnowy〉 and

Lengthis a random variable with real number domain〈0.0, . . . , 1.0〉. An event is exact as-

signment of the random variable, for example, (Headache = true), (weather = cloudy) are

all events.

Prior or unconditional probabilityof an event is the frequency of the event which hap-

pened in a number of experiments. For example, for a year’s observation, the probability

of raining in a district can be represented as simply P(Weather = raining) = 0.3. Probability

cannot be negative, and for all domains the sum of the probabilities for each value is 1.0.

That is, P(Weather = sunny) = 0.5, P(Weather = raining) = 0.3,P(Weather = cloudy) = 0.05,

and P(Weather = snow) = 0.15. Also,P(Weather) = {0.5, 0.3, 0.05, 0.15} defines a prob-

ability distribution for the random variableWeather. Meanwhile, P(Weather, Headache)

denotes the probabilities of all combinations of the valuesof the set of random variables,

Weather and Headache, which is a 4× 2 table of probabilities. This is called thejoint prob-

191

ability distributionof Weather and headache. Generally, the joint probability distribution

of some random variablesX1,X2, . . . ,Xn are indicated as,P(X1,X2, . . . ,Xn).

For continuous random variables, it is not possible to writeout the entire distribution as a

table, because there are infinitely many values. Also, for a continuous random variable, the

probability for one value happens to be a particular valuex0 is always 0.0. For continuous

random variables, we are always concerned that the probability lies in a certain interval,

although this interval can be very small. So, we have:

P(a < X ≤ b) =
∫ b

a
f (x)dx (A.1)

whereX is the continuous random variable,f (x) is called theprobability density function

for X.

If we want to talk about the probability given some evidence,that is, the probability

when some evidence or events have happened, then the unconditional probability is not

applicable anymore. We use theconditional probabilityindicated as:

P(a|b) =
P(a∧ b)

P(a)
(A.2)

whereP(a|b) means the probability ofa, given that evidenceb. For example,P(Headache=

true|Weather= raining) indicates the probability of a person having a headache, when the

weather is rainy. Conditional probability is defined by unconditional probabilities, and can

also be written as:

P(a∧ b) = P(b|a)P(a) (A.3)

or

P(a∧ b) = P(a|b)P(b) (A.4)

These two formulas are also calledrule product. The more general joint probability

distribution form for this rule product now becomes:

P(X,Y) = P(X|Y)P(Y) (A.5)

What will happen when one random variableX does not influence the other random

variableY? That is the two random variables are independent to each other, then we have

random variables’independence property:

192

P(X|Y) = P(X) (A.6)

P(Y|X) = P(Y) (A.7)

P(X,Y) = P(X)P(Y) (A.8)

So far, the syntax of probability propositions for the priorand conditional probability

statements are defined. However, the semantics for probability inference statements re-

mains. We begin with the basic axioms that serve to define the probability scale and its

endpoints:

1. All probabilities are between 0.0 and 1.0, for any proposition a,

0.0 ≤ P(a) ≤ 1.0 (A.9)

2. Necessarily true propositions have probability 1.0, andnecessarily false propositions

have probability 0.0.

P(true) = 1.0 (A.10)

P(f alse) = 0.0 (A.11)

3. The probability of a disjunction is given by

P(a∨ b) = P(a) + P(b) − P(a∧ b) (A.12)

This rule states that the cases wherea holds, together with the cases whereb holds,

certainly cover all the cases wherea ∨ b holds; but summing the two sets of cases

counts their intersection twice, so we need to subtractP(a∧ b).

These three axioms are often calledKolmogorov’s axioms, which showed how to build

up the rest of probability theory from this simple foundation.

Before we reach the Bayesian Network inference, we first introduce a probabilistic in-

ference method based on the full joint distribution. Assumewe have the full joint distribu-

tion of a number of random variablesX1X2 . . .Xn. Then, we can calculate any proposition

from this variables set by adding any atomic events in which the proposition is true, and

193

add up their probabilities. There are two very useful rules called themarginalizationrule

and theconditioningrule:

P(X) =
∑

y

P(X, y) (marginal probability) (A.13)

P(X) =
∑

y

P(X|y)P(y) (conditioning probability) (A.14)

The marginal probability of random variableX is the procedure of summing out all the

other variables from any joint distribution containingY. The conditioning rule can be seen

as a variant of the marginalization rule, and it involves conditional probabilities instead

of joint probabilities using product rule. In most cases, wewill be interested in comput-

ing conditional probabilities of some variables, given evidence about others. Conditional

probabilities can be found by unconditional probabilitiesand then evaluating the expression

from the full joint distribution. Then the general inference procedure can be formulated as:

Let X be the query variable, letE be the set of evidence variables, letebe the observed

values for them, and letY be the remaining unobserved variables. The queryP(X|e) can be

evaluated as the queries of probability:

P(X|e) = αP(X, e) = α
∑

y

P(X, e, y) (A.15)

This formula gives the general form of inference for answering probabilistic queries for

discrete variables, given the full joint distribution. In principle, the full joint distribution is

capable of answering any query, however, it is not efficient,for a domain described byn

boolean variables, it requires an input table of sizeO(2n). In a realistic problem, there might

be hundreds or thousands of random variables to consider. Itquickly becomes completely

impractical to define the vast numbers of probabilities required. For this reason, the full

joint distribution is not a practical tool for building reasoning systems. Instead, it should be

viewed as the theoretical foundation on which more effective approaches may be built. The

bayesian network is one of such more efficient techniques forinference.

194

Appendix B

LEM(ID3)IER Performance on

CEC2005 Test Functions

Table B.1: Error values at FEs = 1e3, 1e4, 1e5 for problems 1-9(10D)
FE Prob 1 2 3 4 5 6 7 8 9

1e3

1st(Best) 1.76627e+3 2.39601e+3 1.38448e+7 3.23016e+3 5.85876e+3 2.2349e+7 7.20519e+1 2.04625e+1 4.74269e+1

7st 2.0475e+3 4.72171e+3 3.57553e+7 5.11679e+3 7.8962e+3 1.5933e+8 1.60004e+2 2.05996e+1 6.04818e+1

13st(Median) 2.43771e+3 5.81598e+3 4.56641e+7 7.05193e+3 8.71907e+3 2.49027e+8 2.24438e+2 2.07639e+1 6.5823e+1

19st 3.0907e+3 6.62843e+3 5.39912e+7 8.84371e+3 9.42126e+3 3.24026e+8 2.86345e+2 2.08247e+1 7.34762e+1

25st(Worst) 4.16712e+3 1.0272e+4 6.82112e+7 1.20544e+4 1.0052e+4 5.01842e+8 7.28072e+2 2.09604e+1 8.31533e+1

Mean 2.60096e+3 5.84884e+3 4.41267e+7 7.18504e+3 8.52183e+3 2.44197e+8 2.44954e+2 2.07373e+1 6.65439e+1

Std 6.86132e+2 1.70132e+3 1.53174e+7 2.5182e+3 1.11491e+3 1.26305e+8 1.30463e+2 1.34418e-1 8.70724e+0

1e4

1st(Best) 5.13795e+0 1.93259e+1 1.54573e+5 4.07703e+1 5.26389e+2 7.1199e+3 4.41663e-1 2.02456e+1 8.06948e+0

7st 1.00512e+1 5.59889e+1 4.06354e+5 7.04e+1 7.9056e+2 3.03004e+4 7.43838e-1 2.04018e+1 1.03437e+1

13st(Median) 1.25371e+1 6.62806e+1 5.95762e+5 8.63e+1 9.09958e+2 4.55171e+4 8.05048e-1 2.05315e+1 1.1874e+1

19st 1.4646e+1 9.17244e+1 8.51530e+5 1.09733e+2 9.89365e+2 7.59082e+4 8.8556e-1 2.05635e+1 1.37784e+1

25st(Worst) 4.26447e+1 1.26841e+2 1.7486e+6 1.47519e+2 1.12607e+3 1.51208e+5 1.24752e+0 2.06824e+1 1.69805e+1

Mean 1.38463e+1 7.11185e+1 7.10946e+5 8.81647e+1 8.85757e+2 5.5315e+4 7.94232e-1 2.04899e+1 1.21247e+1

Std 7.3711e+0 2.59667e+1 4.15420e+5 2.99544e+1 1.58884e+2 3.61606e+4 1.71467e-1 1.08675e-1 2.44804e+0

1e5

1st(Best) 5.68434e-14 5.68434e-14 1.34808e+4 2.28096e-9 3.45007e+0 8.17715e-3 1.969e-6 2.00251e+1 1.03587e-7

7st 5.68434e-14 5.68434e-14 2.77637e+4 8.3237e-9 2.73404e+1 1.37221e-2 4.68252e-2 2.00542e+1 1.79642e-7

13st(Median) 1.13687e-13 1.13687e-13 3.68286e+4 1.3652e-8 1.11132e+2 7.15347e-1 7.87038e-2 2.01197e+1 3.01609e-7

19st 1.13687e-13 1.7053e-13 6.96483e+4 1.88572e-8 1.55475e+2 8.48882e+1 1.08172e-1 2.02052e+1 3.95465e-7

25st(Worst) 1.7053e-13 2.27374e-13 1.11079e+5 4.08672e-8 2.61796e+2 2.44872e+2 1.74597e-1 2.0408e+1 1.20204e-6

Mean 9.5497e-14 1.18234e-13 4.75951e+4 1.53131e-8 1.08404e+2 5.32101e+1 7.82496e-2 2.015e+1 3.52629e-7

Std 3.84524e-14 5.31296e-14 2.76208e+4 9.87347e-9 7.58561e+1 7.6474e+1 4.00416e-2 1.13729e-1 2.69572e-7

195

Table B.2: Error values at FEs = 1e3, 1e4, 1e5 for problems 10-17(10D)
FE Prob 10 11 12 13 14 15 16 17

1e3

1st(Best) 6.03503e+1 9.24089e+0 1.73259e+4 6.72208e+0 3.9688e+0 6.00501e+2 2.24909e+2 2.90355e+2

7st 7.93597e+1 1.04947e+1 2.85826e+4 8.73893e+0 4.21752e+0 6.71116e+2 2.87828e+2 3.47873e+2

13st(Median) 8.57247e+1 1.08896e+1 3.4430e+4 9.26566e+0 4.29112e+0 6.88087e+2 3.16287e+2 3.7172e+2

19st 9.0203e+1 1.11844e+1 4.16826e+4 1.05651e+1 4.44604e+0 6.98248e+2 3.34822e+2 3.81825e+2

25st(Worst) 1.01031e+2 1.23842e+1 6.47692e+4 1.36315e+1 4.49775e+0 7.33734e+2 3.65627e+2 4.01018e+2

Mean 8.32572e+1 1.08257e+1 3.59067e+4 9.60275e+0 4.30392e+0 6.86153e+2 3.1068e+2 3.63629e+2

Std 9.59376e+0 8.22642-1 1.18429e+4 1.68765e+0 1.41298e-1 2.78322e+1 3.17017e+1 2.79814e+1

1e4

1st(Best) 1.71368e+1 1.99912e-1 3.21224e+2 4.38839e-1 2.62867e+0 4.54592e+2 1.30139e+2 1.47817e+2

7st 2.3299e+1 2.78322e-1 4.98497e+2 8.45902e-1 3.11283e+0 5.18905e+2 1.52923e+2 1.67544e+2

13st(Median) 3.01671e+1 3.27077e-1 6.70841e+2 9.2815e-1 3.27107e+0 5.28368e+2 1.65368e+2 1.84851e+2

19st 3.21286e+1 3.61697e-1 1.04811e+3 1.2037e+0 3.49629e+0 5.52708e+2 1.70085e+2 1.97498e+2

25st(Worst) 3.76535e+1 4.42254e-1 1.88115e+3 1.74414e+0 3.72812e+0 5.67095e+2 1.80192e+2 2.12473e+2

Mean 2.8402e+1 3.25925e-1 8.30122e+2 1.02803e+0 3.26201e+0 5.3038e+2 1.61226e+2 1.82878e+2

Std 5.54662e+0 6.04629e-2 4.31466e+2 3.24871e-1 2.82177e-1 2.59343e+1 1.28016e+1 1.7353e+1

1e5

1st(Best) 1.98992e+0 2.18436e-3 1.43965e-4 1.66616e-1 1.50405e+0 3.28553e+2 6.21503e+1 2.06999e-1

7st 2.98488e+0 2.52192e-3 2.77244e-4 2.46125e-1 2.20657e+0 4.0068e+2 9.72366e+1 9.83996e+1

13st(Median) 4.9748e+0 2.93663e-3 9.43502e-2 2.96311e-1 2.53041e+0 4.10353e+2 1.02549e+2 1.04368e+2

19st 5.96975e+0 3.32401e-3 1.00034e+1 3.39652e-1 2.91899e+0 4.17695e+2 1.06642e+2 1.09433e+2

25st(Worst) 7.95967e+0 4.78371e-3 7.12254e+2 4.91012e-1 3.49936e+0 4.4737e+2 1.14427e+2 1.17578e+2

Mean 4.73601e+0 2.97556e-3 3.30583e+1 3.00063e-1 2.52033e+0 4.10562e+2 9.91853e+1 9.93189e+1

Std 1.71825e+0 5.99007e-4 1.38825e+2 8.12673e-2 4.68469e-1 2.03516e+1 1.30559e+1 2.33564e+1

Table B.3: Error values at FEs = 1e3, 1e4, 1e5 for problems 18-25(10D)
FE Prob 18 19 20 21 22 23 24 25

1e3

1st(Best) 1.04381e+3 9.83915e+2 9.65748e+2 1.26662e+3 9.71363e+2 1.03734e+3 8.9836e+2 1.5985e+3

7st 1.0939e+3 1.09785e+3 1.09047e+3 1.31223e+3 1.02432e+2 1.29795e+3 1.17436e+3 1.66137e+3

13st(Median) 1.10849e+3 1.11893e+3 1.1134e+3 1.3191e+3 1.04612e+2 1.31966e+3 1.20427e+3 1.69936e+3

19st 1.13111e+3 1.13196e+3 1.12525e+3 1.33983e+3 1.06773e+2 1.33677e+3 1.25144e+3 1.73652e+3

25st(Worst) 1.15192e+3 1.16046e+3 1.16109e+3 1.35745e+3 1.12643e+2 1.34714e+3 1.29982e+3 1.81718e+3

Mean 1.10981e+3 1.10992e+3 1.10248e+3 1.319e+3 1.04432e+3 1.29423e+3 1.18882e+3 1.70262e+3

Std 2.53905e+1 3.89784e+1 4.09853e+1 2.41123e+1 3.54599e+1 7.27649e+1 9.60612e+1 5.51437e+1

1e4

1st(Best) 4.04967e+2 3.82633e+2 3.99736e+2 3.55975e+2 4.80714e+2 5.59505e+2 2.07512e+2 2.00489e+2

7st 4.64447e+2 4.40013e+2 4.7628e+2 5.26191e+2 7.81811e+2 5.62769e+2 2.29216e+2 4.10639e+2

13st(Median) 4.99639e+2 4.76394e+2 8.07968e+2 5.33244e+2 7.87769e+2 7.37565e+2 2.40137e+2 4.11148e+2

19st 8.0845e+2 8.07145e+2 8.11529e+2 5.65451e+2 7.90547e+2 7.68824e+2 2.49739e+2 4.11611e+2

25st(Worst) 8.15605e+2 8.13793e+2 8.17476e+2 1.06731e+3 8.53264e+2 1.0888e+3 2.70228e+2 4.1342e+2

Mean 6.24096e+2 6.02761e+2 6.95493e+2 6.00961e+2 7.79636e+2 7.53007e+2 2.39711e+2 3.94488e+2

Std 1.79093e+2 1.85373e+2 1.6831e+2 1.88466e+2 6.34221e+1 1.76176e+2 1.5304e+1 5.72005e+1

1e5

1st(Best) 3.00244e+2 3.00127e+2 3.0018e+2 3.0019e+2 3.00411e+2 5.59468e+2 2.00035e+2 2.00e+2

7st 3.00295e+2 3.00283e+2 3.0036e+2 3.00427e+2 7.52446e+2 5.59469e+2 2.00055e+2 4.07417e+2

13st(Median) 3.00387e+2 3.00408e+2 8.00185e+2 5.00053e+2 7.5516e+2 7.21227e+2 2.00067e+2 4.07713e+2

19st 8.00211e+2 8.00187e+2 8.0025e+2 5.00064e+2 7.60027e+2 7.21234e+2 2.00072e+2 4.08418e+2

25st(Worst) 8.00314e+2 8.00288e+2 8.00346e+2 8.00572e+2 8.14518e+2 1.0888e+3 2.00084e+2 4.09425e+2

Mean 5.40254e+2 5.20259e+2 6.40241e+2 4.84205e+2 7.43115e+2 7.30581e+2 2.00064e+2 3.91368e+2

Std 2.4976e+2 2.48148e+2 2.33218e+2 1.6417e+2 9.2104e+1 1.65589e+2 1.28788e-2 5.6435e+1

196

Table B.4: Error values at FEs = 1e3, 1e4, 1e5, 3e5 for problems 1-9(30D)
FE Prob 1 2 3 4 5 6 7 8 9

1e3

1st(Best) 1.84816e+4 5.80713e+4 4.28226e+8 5.0508e+4 1.82683e+4 2.75641e+9 2.90741e+3 2.10927e+1 2.70007e+2

7st 2.25798e+4 7.29666e+4 5.86475e+8 9.13281e+4 2.0474e+4 5.1011e+9 4.35936e+3 2.11867e+1 2.85565e+2

13st(Median) 2.64077e+4 8.42053e+4 7.15101e+8 1.01778e+5 2.17553e+4 6.044e+9 4.86979e+3 2.12448e+1 2.925 e+2

19st 2.70371e+4 9.20998e+4 7.89873e+8 1.12835e+5 2.25345e+4 6.89223e+9 5.62334e+3 2.12742e+1 3.00243e+2

25st(Worst) 3.03603e+4 1.16946e+5 9.85705e+8 1.23943e+5 2.50816e+4 9.12403e+9 7.92250e+3 2.13298e+1 3.13635e+2

Mean 2.52901e+4 8.36879e+4 7.03711e+8 1.00589e+5 2.13896e+4 6.05625e+9 5.11976e+3 2.12319e+1 2.9203e+2

Std 3.16511e+3 1.40996e+4 1.49345e+8 1.54325e+4 1.80975e+3 1.46572e+9 1.1333e+3 6.07645e-2 1.21531e+1

1e4

1st(Best) 1.20915e+2 5.21172e+3 1.30194e+7 5.83001e+3 4.72914e+3 1.49874e+7 1.86878e+1 2.09447e+1 5.77231e+1

7st 3.16374e+2 7.21918e+3 2.69825e+7 1.04962e+4 5.10548e+3 2.55644e+7 3.04849e+1 2.10612e+1 8.0596e+1

13st(Median) 4.36052e+2 8.88937e+3 3.39962e+7 1.34794e+4 5.43215e+3 3.24627e+7 4.19273e+1 2.10919e+1 8.96532e+1

19st 5.08726e+2 1.00818e+3 3.80224e+7 1.92009e+4 5.98524e+3 3.9388e+7 4.96740e+1 2.11286e+1 9.72164e+1

25st(Worst) 6.55245e+2 1.78049e+3 5.22573e+7 2.64618e+4 6.72032e+3 5.16719e+7 7.07495e+1 2.11979e+1 1.56192e+2

Mean 4.08674e+2 8.90177e+3 3.32012e+7 1.49361e+4 5.58086e+3 3.20665e+7 4.20861e+1 2.10885e+1 9.20516e+1

Std 1.27406e+2 2.52734e+3 9.00112e+6 5.62299e+3 5.56515e+2 9.61939e+6 1.35805e+1 5.68839e-2 2.02191e+1

1e5

1st(Best) 2.27374e-13 2.09752e-10 1.72283e+5 6.38446e+2 2.32731e+3 1.28609e+1 8.14726e-6 2.01207e+1 5.35201e-6

7st 2.82217e-13 3.00207e-9 4.18630e+5 3.0072e+3 2.83805e+3 1.74484e+1 9.87778e-3 2.01977e+1 8.25543e-6

13st(Median) 3.41061e-13 1.24215e-8 8.53689e+5 5.06429e+3 2.98984e+3 1.50646e+2 2.45918e-2 2.02462e+1 1.02973e-5

19st 3.94904e-13 3.78838e-8 1.10303e+6 7.99879e+3 3.39687e+3 3.11994e+2 3.69159e-2 2.02938e+1 1.26634e-5

25st(Worst) 5.11591e-13 6.53588e-6 1.86449e+6 1.49205e+4 4.75612e+3 2.3377e+3 9.77006e-2 2.03878e+1 1.90699e-5

Mean 3.47882e-13 2.93777e-7 8.26271e+5 5.8051e+3 3.13192e+3 2.90743e+2 2.95932e-2 2.02484e+1 1.10303e-5

Std 8.24836e-14 1.27535e-6 4.53980e+5 3.7501e+3 5.2927e+2 4.89983e+2 2.54645e-2 6.922e-2 3.82911e-6

3e5

1st(Best) 2.27374e-13 1.11982e-10 4.55579e+4 4.67497e+2 2.32729e+3 9.0764e-3 6.36728e-7 2.00574e+1 2.21295e-7

7st 2.82217e-13 1.44553e-10 1.56862e+5 1.89276e+3 2.83794e+3 8.20841e-2 9.85899e-3 2.01232e+1 6.09847e-7

13st(Median) 3.41061e-13 1.65699e-10 2.55728e+5 2.77784e+3 2.98982e+3 4.28868e+0 2.45743e-2 2.01563e+1 8.0644e-7

19st 3.94904e-13 1.82808e-10 3.72265e+5 5.28579e+3 3.39684e+3 1.73462e+2 3.69067e-2 2.01797e+1 9.5403e-7

25st(Worst) 5.11591e-13 2.58524e-10 5.81497e+5 1.1503e+4 4.75597e+3 9.07077e+2 9.76969e-2 2.02474e+1 1.32837e-6

Mean 3.47882e-13 1.65321e-10 2.72353e+5 3.85297e+3 3.13183e+3 1.50812e+2 2.95802e-2 2.01516e+1 7.8419e-7

Std 8.24836e-14 3.07934e-11 1.49584e+5 2.72695e+3 5.29252e+2 2.27077e+2 2.54659e-2 5.29173e-2 2.65556e-7

197

Table B.5: Error values at FEs = 1e3, 1e4, 1e5, 3e5 for problems 10-17(30D)
FE Prob 10 11 12 13 14 15 16 17

1e3

1st(Best) 3.41255e+2 3.82201e+1 9.96896e+5 6.95205e+1 1.36733e+1 9.40723e+2 5.71773e+2 5.96475e+2

7st 3.90662e+2 4.20253e+1 1.20119e+6 1.18234e+2 1.39339e+1 9.75799e+2 7.539e+2 7.3549e+2

13st(Median) 3.99057e+2 4.34894e+1 1.33726e+6 1.52431e+2 1.41018e+1 9.99283e+2 7.61828e+2 7.80179e+2

19st 4.13888e+2 4.43235e+1 1.39075e+6 1.83935e+2 1.41912e+1 1.0145e+3 7.85456e+2 8.61838e+2

25st(Worst) 4.4102e+2 4.63654e+1 1.57195e+6 2.51668e+2 1.43086e+1 1.06072e+3 8.45321e+2 9.67846e+2

Mean 3.98611e+2 4.31598e+1 1.29445e+6 1.52042e+2 1.40726e+1 9.99565e+2 7.5464e+2 7.83124e+2

Std 2.40552e+1 1.78288e+0 1.50328e+5 4.58589e+1 1.59441e-1 2.80225e+ 5.40453e+1 1.00916e+2

1e4

1st(Best) 1.88981e+2 1.7328e+0 7.41974e+4 5.88643e+0 1.2691e+1 4.88315e+2 2.11566e+2 2.65653e+2

7st 2.06258e+2 1.99844e+0 1.03273e+5 1.05982e+1 1.30513e+1 5.22805e+2 3.25737e+2 3.36452e+2

13st(Median) 2.1438e+2 2.18223e+0 1.24851e+5 1.64844e+1 1.31767e+1 5.48447e+2 5.53186e+2 4.68171e+2

19st 2.21266e+2 2.56902e+0 1.34856e+5 1.90537e+1 1.33215e+1 5.55105e+2 5.58166e+2 4.76113e+2

25st(Worst) 2.35254e+2 4.0414e+0 1.61766e+5 2.19337e+1 1.35207e+1 5.97066e+2 5.64091e+2 6.0056e+2

Mean 2.12129e+2 2.44088e+0 1.19431e+5 1.51152e+1 1.31806e+1 5.40233e+2 4.44799e+2 4.25361e+2

Std 1.1162e+1 6.63626e-1 2.4534e+4 4.81024e+0 1.83088e-1 2.86614e+1 1.30854e+2 1.04967e+2

1e5

1st(Best) 1.39294e+1 1.41317e-2 1.14927e+1 7.92733e-1 1.11401e+1 3.2788e+2 5.4761e+1 6.38138e+1

7st 3.28336e+1 1.71758e-2 1.39058e+3 9.39681e-1 1.18155e+1 3.43616e+2 1.40888e+2 1.58613e+2

13st(Median) 3.71272e+1 1.82181e-2 2.87416e+3 1.16307e+0 1.22074e+1 3.51428e+2 5.01258e+2 4.34726e+2

19st 4.37781e+1 2.01791e-2 6.89031e+3 1.34709e+0 1.23845e+1 3.68657e+2 5.01848e+2 4.43602e+2

25st(Worst) 5.57176e+1 2.16151e-2 2.30486e+4 1.61207e+0 1.2699e+1 5.04367e+2 5.0349e+2 5.51299e+2

Mean 3.69056e+1 1.84897e-2 5.093e+3 1.16044e+0 1.2063e+1 3.65085e+2 3.3684e+2 3.1954e+2

Std 1.05106e+1 2.04441e-3 5.84165e+3 2.27263e-1 4.33187e-1 3.63679e+1 1.87927e+2 1.76305e+2

3e5

1st(Best) 1.39294e+1 6.86314e-3 1.41528e-1 6.42879e-1 1.11378e+1 3.27641e+2 5.46082e+1 6.30197e+1

7st 3.28336e+1 7.77225e-3 1.37885e+3 8.83175e-1 1.18153e+1 3.39228e+2 1.40675e+2 1.57352e+2

13st(Median) 3.71271e+1 8.51561e-3 2.3158e+3 9.4174e-1 1.22042e+1 3.47151e+2 5.00979e+2 4.08135e+2

19st 4.37781e+1 8.85325e-3 6.36668e+3 1.17963e+0 1.23828e+1 3.6498e+2 5.01265e+2 4.31788e+2

25st(Worst) 5.57176e+1 9.96577e-3 2.30486e+4 1.48736e+0 1.26974e+1 5.03997e+2 5.02861e+2 5.39386e+2

Mean 3.69056e+1 8.40942e-3 4.91148e+3 1.0437e+0 1.20617e+1 3.6229e+2 3.36537e+2 3.10781e+2

Std 1.05106e+1 8.35477e-4 5.80581e+3 2.13731e-0 4.33793e-1 3.76284e+1 1.87872e+2 1.70242e+2

198

Table B.6: Error values at FEs = 1e3, 1e4, 1e5, 3e5 for problems 18-25(30D)
FE Prob 18 19 20 21 22 23 24 25

1e3

1st(Best) 1.09079e+3 1.07891e+3 1.08112e+3 1.18057e+3 1.1585e+3 1.21983e+3 1.29292e+3 1.2962e+3

7st 1.1147e+3 1.11035e+3 1.11859e+3 1.27844e+3 1.32045e+3 1.27208e+3 1.31483e+3 1.32914e+3

13st(Median) 1.13889e+3 1.12744e+3 1.13398e+3 1.28565e+3 1.3812e+3 1.28845e+3 1.33795e+3 1.34256e+3

19st 1.15725e+3 1.14656e+3 1.15064e+3 1.29709e+3 1.40928e+3 1.29647e+3 1.35684e+3 1.34969e+3

25st(Worst) 1.19718e+3 1.19202e+3 1.18751e+3 1.30451e+3 1.53828e+3 1.31618e+3 1.37563e+3 1.38775e+3

Mean 1.1387e+3 1.12807e+3 1.1357e+3 1.28202e+3 1.3728e+3 1.281e+3 1.33572e+3 1.34032e+3

Std 2.88961e+1 2.9308e+1 2.48189e+1 2.49337e+1 7.63534e+1 2.42088e+1 2.44945e+1 2.04276e+1

1e4

1st(Best) 9.25083e+2 9.27342e+2 9.25014e+2 6.37034e+2 9.40359e+2 6.70569e+2 4.33243e+2 4.21729e+2

7st 9.29202e+2 9.28322e+2 9.28197e+2 6.65115e+2 9.52231e+2 6.87358e+2 4.63463e+2 5.02874e+2

13st(Median) 9.30119e+2 9.30361e+2 9.30676e+2 6.81871e+2 9.63811e+2 6.99054e+2 4.92972e+2 5.28702e+2

19st 9.34063e+2 9.31857e+2 9.35422e+2 6.99827e+2 9.7007e+2 7.18622e+2 5.20792e+2 5.75859e+2

25st(Worst) 9.45033e+2 9.42689e+2 9.38501e+2 7.65766e+2 9.9015e+2 7.42968e+2 5.89875e+2 6.82416e+2

Mean 9.32184e+2 9.30698e+2 9.3145e+2 6.83808e+2 9.6255e+2 7.03473e+2 5.01424e+2 5.37929e+2

Std 5.34395e+0 3.11483e+0 4.00502e+0 3.1823e+1 1.31899e+1 2.12136e+1 4.36122e+1 6.00467e+1

1e5

1st(Best) 9.07615e+2 9.0739e+2 9.08242e+2 5.00159e+2 8.92648e+2 5.34165e+2 2.00236e+2 2.00255e+2

7st 9.10146e+2 9.09473e+2 9.09738e+2 5.00182e+2 9.0693e+2 5.34607e+2 2.00319e+2 2.00331e+2

13st(Median) 9.11624e+2 9.11141e+2 9.11128e+2 5.00201e+2 9.17885e+2 5.41573e+2 2.00345e+2 2.00348e+2

19st 9.1281e+2 9.12696e+2 9.13106e+2 5.00211e+2 9.27433e+2 5.45034e+2 2.00381e+2 2.00373e+2

25st(Worst) 9.16808e+2 9.14885e+2 9.1493e+2 5.00247e+2 9.40901e+2 5.67242e+2 2.0043e+2 2.00396e+2

Mean 9.11523e+2 9.10891e+2 9.11336e+2 5.00198e+2 9.17556e+2 5.41424e+2 2.00346e+2 200.345e+2

Std 2.08454e+0 1.95765e+0 1.97788e+0 2.15796e-2 1.22352e+1 7.64926e+0 5.00088e-2 3.51386e-2

3e5

1st(Best) 9.07241e+2 9.06839e+2 9.07918e+2 5.00126e+2 8.89319e+2 5.34164e+2 2.00208e+2 2.00184e+2

7st 9.09834e+2 9.09196e+2 9.09694e+2 5.00152e+2 9.06081e+2 5.34607e+2 2.00266e+2 2.00274e+2

13st(Median) 9.11151e+2 9.10634e+2 9.10936e+2 5.00168e+2 9.12543e+2 5.41573e+2 2.00285e+2 2.00304e+2

19st 9.12553e+2 9.12673e+2 9.12857e+2 5.00172e+2 9.23771e+2 5.45034e+2 2.00306e+2 2.00312e+2

25st(Worst) 9.16264e+2 9.14885e+2 9.14851e+2 5.00195e+2 9.32868e+2 5.67242e+2 2.00329e+2 2.00362e+2

Mean 9.11234e+2 9.10634e+2 9.11151e+2 5.00162e+2 9.14701e+2 5.41424e+2 2.00283e+2 2.00294e+2

Std 2.08711e+0 2.04968e+0 1.9567e+0 1.76338e-2 1.22709e+1 7.6494e+0 2.96582e-2 3.496e-2

199

Table B.7: Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 for problems 1-9(50D)
FE Prob 1 2 3 4 5 6 7 8 9

1e3

1st(Best) 5.51142e+4 1.51879e+5 2.10005e+9 1.67442e+5 3.69882e+4 3.49642e+10 1.09999e+4 2.12583e+1 5.85913e+2

7st 7.12981e+4 1.83003e+5 2.72427e+9 2.32920e+5 3.87181e+4 4.97113e+10 1.15068e+4 2.13225e+1 6.24486e+2

13st(Median) 7.66952e+4 2.04321e+5 3.21028e+9 2.54673e+5 4.02342e+4 5.75621e+10 1.25735e+4 2.13514e+1 6.5709e+2

19st 8.08763e+4 2.27296e+5 3.31233e+9 2.74659e+5 4.27958e+4 6.48353e+10 1.28912e+4 2.13788e+1 6.74407e+2

25st(Worst) 9.14238e+4 2.69784e+5 3.97722e+9 3.38369e+5 4.51263e+4 7.42571e+10 1.35734e+4 2.14255e+1 7.23742e+2

Mean 7.58587e+4 2.05962e+5 3.02158e+9 2.56436e+5 4.05242e+4 5.69746e+10 1.22939e+4 2.13513e+1 6.49598e+2

Std 8.70748e+3 3.06062e+4 4.44698e+8 4.08042e+4 2.50896e+3 1.11868e+10 7.6882e+2 4.06245e-2 3.8782e+1

1e4

1st(Best) 9.98461e+2 2.73658e+4 1.12281e+8 3.37432e+4 1.20098e+4 5.57072e+8 5.05316e+2 2.11475e+1 3.65384e+2

7st 1.54895e+3 4.51881e+4 1.58228e+8 5.90627e+4 1.46458e+4 9.9109e+8 6.78866e+2 2.12413e+1 3.96714e+2

13st(Median) 1.72223e+3 4.95447e+4 1.7982e+8 7.04506e+4 1.57016e+4 1.17615e+9 8.24632e+2 2.12665e+1 4.13965e+2

19st 1.88534e+3 5.50288e+4 2.18898e+8 7.91098e+4 1.64814e+4 1.40983e+9 1.00922e+3 2.12941e+1 4.34711e+2

25st(Worst) 2.66011e+3 7.18056e+4 2.44658e+8 1.13046e+5 1.78503e+4 1.76553e+9 1.44983e+3 2.13482e+1 4.57782e+2

Mean 1.7396e+3 4.99849e+4 1.83442e+8 6.90953e+4 1.5422e+4 1.18959e+9 8.69208e+2 2.12664e+1 4.13594e+2

Std 3.68971e+2 9.19741e+3 3.63204e+7 1.57892e+4 1.52509e+3 3.05817e+8 2.5899e+2 4.24611e-2 2.52316e+1

1e5

1st(Best) 3.41061e-13 1.87307e+2 1.00166e+6 2.07346e+4 7.23403e+3 2.47339e+1 5.55714e-8 2.01349e+1 2.42035e-5

7st 4.54747e-13 9.05602e+2 1.38678e+6 3.48667e+4 9.08045e+3 4.00485e+1 2.08563e-7 2.01938e+1 5.82229e-5

13st(Median) 5.11591e-13 1.35331e+3 1.92911e+6 3.91607e+4 9.69999e+3 4.76419e+1 9.85736e-3 2.02497e+1 7.45986e-5

19st 6.25278e-13 1.78202e+3 2.40636e+6 4.49693e+4 1.09219e+4 2.48135e+2 2.94594e-2 2.02981e+1 9.15903e-5

25st(Worst) 7.38964e-13 3.24683e+3 3.29172e+6 5.67418e+4 1.22664e+4 9.36661e+3 5.63526e-2 2.03497e+1 1.57744e-4

Mean 5.34328e-13 1.42029e+3 1.89689e+6 3.89832e+4 9.82417e+3 1.15715e+3 1.48301e-2 2.02492e+1 7.64826e-5

Std 9.91099e-14 7.23942e+2 5.98377e+5 8.6373e+3 1.26849e+3 2.67887e+3 1.68684e-2 6.05549e-2 2.76112e-5

3e5

1st(Best) 3.41061e-13 7.23333e-10 2.09420e+5 1.34239e+4 7.23402e+3 4.80782e+0 8.36877e-10 2.00779e+1 2.01438e-6

7st 4.54747e-13 1.15472e-9 2.62135e+5 2.0845e+4 9.07959e+3 1.7834e+1 3.21262e-9 2.01243e+1 3.18409e-6

13st(Median) 5.11591e-13 1.37845e-9 3.88935e+5 2.40103e+4 9.69999e+3 2.06e+1 9.85729e-3 2.017e+1 3.48123e-6

19st 6.25278e-13 1.74771e-9 4.41208e+5 2.95921e+4 1.09219e+4 1.46261e+2 2.94591e-2 2.01979e+1 4.45399e-6

25st(Worst) 7.38964e-13 2.53847e-8 6.40857e+5 4.35825e+4 1.22664e+4 1.0344e+3 5.63524e-2 2.02488e+1 8.04654e-6

Mean 5.34328e-13 2.38457e-9 3.79589e+5 2.56436e+4 9.82398e+3 1.30426e+2 1.48301e-2 2.01648e+1 3.79203e-6

Std 9.91099e-14 4.70832e-9 1.19670e+5 6.75653e+3 1.26849e+3 2.62602e+2 1.68684e-2 4.32217e-2 1.30416e-6

5e5

1st(Best) 3.41061e-13 7.23219e-10 1.03835e+5 7.76829e+3 7.23402e+3 2.15868e-1 2.15636e-10 2.00631e+1 4.52469e-7

7st 4.54747e-13 1.15028e-9 1.52246e+5 1.50123e+4 9.07959e+3 3.937e+0 1.01704e-9 2.01019e+1 1.07226e-6

13st(Median) 5.11591e-13 1.28637e-9 2.00057e+5 1.83313e+4 9.69999e+3 6.08975e+0 9.85728e-3 2.01386e+1 1.30084e-6

19st 6.25278e-13 1.41921e-9 2.67678e+5 2.30653e+4 1.09219e+4 1.36537e+2 2.94591e-2 2.01598e+1 1.40499e-6

25st(Worst) 7.38964e-13 2.03244e-9 3.38318e+5 3.63462e+4 1.22664e+4 9.65119e+2 5.63524e-2 2.02026e+1 2.00881e-6

Mean 5.34328e-13 1.31335e-9 2.11398e+5 1.91824e+4 9.82375e+3 1.12253e+2 1.48301e-2 2.01318e+1 1.2652e-6

Std 9.91099e-14 2.78563e-10 6.76307e+4 5.71984e+3 1.26857e+3 2.45579e+2 1.68684e-2 3.53769e-2 3.48828e-7

200

Table B.8: Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 for problems 10-17(50D)
FE Prob 10 11 12 13 14 15 16 17

1e3

1st(Best) 9.55087e+2 7.42498e+1 4.41679e+6 4.40894e+2 2.31195e+1 9.77567e+2 6.57047e+2 8.19088e+2

7st 1.04246e+3 7.57477e+1 5.64745e+6 8.16527e+2 2.38016e+1 1.04476e+3 7.46701e+2 9.07803e+2

13st(Median) 1.09997e+3 7.75215e+1 6.55796e+6 1.05628e+3 2.40312e+1 1.10186e+3 7.86151e+2 9.24502e+2

19st 1.12314e+3 7.85936e+1 6.79599e+6 1.09935e+3 2.41171e+1 1.13654e+3 8.31648e+2 9.80848e+2

25st(Worst) 1.18023e+3 8.35322e+1 7.36667e+6 1.53577e+3 2.42551e+1 1.16253e+3 9.21854e+2 1.11515e+3

Mean 1.08081e+3 7.7621e+1 6.26256e+6 9.83086e+2 2.39534e+1 1.09006e+3 7.93349e+2 9.33038e+2

Std 5.67469e+1 2.35302e+0 7.59139e+5 2.53989e+2 2.5106e-1 5.25278e+1 6.38147e+1 7.23728e+1

1e4

1st(Best) 4.52249e+2 1.06331e+1 6.94560e+4 4.16305e+1 2.2704e+1 5.00881e+2 3.06611e+2 3.6226e+2

7st 4.77605e+2 1.23251e+1 9.91115e+5 4.45412e+1 2.29962e+1 6.09731e+2 3.21565e+2 3.78356e+2

13st(Median) 4.84931e+2 1.37686e+1 1.07617e+6 4.59726e+1 2.30894e+1 6.45887e+2 3.40662e+2 3.86797e+2

19st 5.06135e+2 1.59975e+1 1.13921e+6 4.85981e+1 2.326e+1 6.6742e+2 3.49884e+2 3.99851e+2

25st(Worst) 5.4627e+2 2.05923e+1 1.33412e+6 5.09829e+1 2.34369e+1 7.06334e+2 3.74912e+2 4.31716e+2

Mean 4.91592e+2 1.4347e+1 1.05603e+6 4.61968e+1 2.30998e+1 6.24054e+2 3.38922e+2 3.89905e+2

Std 2.5674e+1 2.48334e+0 1.48582e+5 2.64645e+0 2.01406e-1 6.05553e+1 1.86864e+1 1.72941e+1

1e5

1st(Best) 8.75562e+1 3.81584e-2 1.44276e+4 1.6658e+0 2.05739e+1 3.46052e+2 7.74716e+1 9.57355e+1

7st 1.07455e+2 4.27134e-2 3.12412e+4 1.98964e+0 2.11749e+1 3.91017e+2 9.39309e+1 1.16354e+2

13st(Median) 1.15415e+2 4.50361e-2 4.34969e+4 2.38846e+0 2.16154e+1 4.023e+2 9.78339e+1 1.2483e+2

19st 1.30339e+2 4.71833e-2 6.12136e+4 2.70468e+0 2.18551e+1 4.23389e+2 1.0489e+2 1.32262e+2

25st(Worst) 1.68148e+2 5.29221e-2 1.29204e+5 3.16681e+0 2.24938e+1 5.05451e+2 1.19914e+2 1.58008e+2

Mean 1.17804e+2 4.47662e-2 5.40739e+4 2.35217e+0 2.15798e+1 4.10944e+2 9.92568e+1 1.2542e+2

Std 1.99834e+1 3.51986e-3 3.31723e+4 4.05752e-1 4.65305e-1 3.6672e+1 1.11199e+1 1.51036e+1

3e5

1st(Best) 8.75562e+1 1.69114e-2 1.34048e+4 1.27279e+0 2.05719e+1 3.42822e+2 7.64194e+1 9.43639e+1

7st 1.07455e+2 1.8854e-2 2.8812e+4 1.75218e+0 2.11712e+1 3.81269e+2 9.33667e+1 1.15444e+2

13st(Median) 1.15415e+2 1.99417e-2 4.30683e+4 2.01806e+0 2.16104e+1 4.01718e+2 9.78339e+1 1.23132e+2

19st 1.30339e+2 2.1826e-2 6.12136e+4 2.20224e+0 2.18543e+1 4.21828e+2 1.0408e+2 1.30267e+2

25st(Worst) 1.68148e+2 2.35981e-2 1.20129e+5 2.53098e+0 2.2493e+1 5.03771e+2 1.19914e+2 1.5679e+2

Mean 1.17804e+2 2.01512e-2 5.11606e+4 1.96793e+0 2.15774e+1 4.06304e+2 9.87115e+1 1.23639e+2

Std 1.99834e+1 1.91237e-3 3.16112e+4 3.53218e-1 4.65591e-1 3.86759e+1 1.12072e+1 1.47723e+1

5e5

1st(Best) 8.75562e+1 1.12915e-2 1.2641e+4 1.18787e+0 2.05718e+1 3.4065e+2 7.62284e+1 9.36489e+1

7st 1.07455e+2 1.31512e-2 2.6452e+4 1.72212e+0 2.11707e+1 3.81153e+2 9.32198e+1 1.15403e+2

13st(Median) 1.15415e+2 1.46848e-2 4.13691e+4 1.93704e+0 2.16094e+1 4.01405e+2 9.78048e+1 1.23132e+2

19st 1.30339e+2 1.50056e-2 6.12136e+4 2.16827e+0 2.18542e+1 4.20961e+2 1.0408e+2 1.2919e+2

25st(Worst) 1.68148e+2 1.8692e-2 1.14555e+5 2.51907e+0 2.24929e+1 5.03659e+2 1.19836e+2 1.55669e+2

Mean 1.17804e+2 1.4332e-2 4.85485e+4 1.92194e+0 2.1577e+1 4.04874e+2 9.8556e+1 1.23137e+2

Std 1.99834e+1 1.55761e-3 2.93073e+4 3.48701e-1 4.65643e-1 3.8859e+1 1.12841e+1 1.47763e+1

201

Table B.9: Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 for problems 18-25(50D)
FE Prob 18 19 20 21 22 23 24 25

1e3

1st(Best) 1.32012e+3 1.28895e+3 1.27409e+3 1.35554e+3 1.41029e+3 1.39336e+3 1.48128e+3 1.81075e+3

7st 1.34924e+3 1.32921e+3 1.32205e+3 1.41301e+3 1.47406e+3 1.4202e+3 1.50679e+3 1.90004e+3

13st(Median) 1.3719e+3 1.34251e+3 1.35202e+3 1.43062e+3 1.53781e+3 1.45175e+3 1.545e+3 1.91905e+3

19st 1.37878e+3 1.35255e+3 1.38102e+3 1.44662e+3 1.53781e+3 1.45673e+3 1.56103e+3 1.9374e+3

25st(Worst) 1.41859e+3 1.42743e+3 1.40995e+3 1.45713e+3 1.62434e+3 1.48599e+3 1.57763e+3 1.96508e+3

Mean 1.36427e+3 1.34641e+3 1.3522e+3 1.42729e+3 1.52263e+3 1.44181e+3 1.53718e+3 1.91294e+3

Std 2.43472e+1 3.02611e+1 3.7055e+1 2.35834e+1 5.63886e+1 2.31314e+1 2.87624e+1 3.52847e+1

1e4

1st(Best) 9.97832e+2 9.89552e+2 9.7263e+2 9.87067e+2 1.02721e+3 9.93378e+2 1.03987e+3 4.61938e+2

7st 1.0087e+3 1.00917e+3 1.01018e+3 1.03841e+3 1.0634e+3 1.04926e+3 1.10792e+3 5.49586e+2

13st(Median) 1.01283e+3 1.01412e+3 1.01506e+3 1.05378e+3 1.07579e+3 1.07128e+3 1.15488e+3 6.78404e+2

19st 1.01973e+3 1.02425e+3 1.02636e+3 1.10462e+3 1.08577e+3 1.10827e+3 1.1638e+3 8.15937e+2

25st(Worst) 1.04242e+3 1.04429e+3 1.05164e+3 1.14175e+3 1.10565e+3 1.13687e+3 1.23733e+3 1.22294e+3

Mean 1.01567e+3 1.01688e+3 1.01607e+3 1.06888e+3 1.07398e+3 1.07397e+3 1.14328e+3 7.34723e+2

Std 9.9784e+0 1.23553e+1 1.60617e+1 4.51729e+1 1.80038e+1 3.93552e+1 4.91449e+1 2.12427e+2

1e5

1st(Best) 9.28534e+2 9.33703e+2 9.29386e+2 5.00296e+2 9.68637e+2 5.49105e+2 2.00486e+2 2.20288e+2

7st 9.33376e+2 9.36249e+2 9.34088e+2 5.00353e+2 9.96375e+2 5.65554e+2 2.00661e+2 2.22291e+2

13st(Median) 9.36262e+2 9.39147e+2 9.38245e+2 5.00367e+2 1.00482e+3 5.80241e+2 2.00705e+2 2.23946e+2

19st 9.40687e+2 9.42993e+2 9.44787e+2 5.00414e+2 1.0204e+3 5.85571e+2 2.00749e+2 2.31217e+2

25st(Worst) 9.64881e+2 9.65428e+2 9.68877e+2 1.04828e+3 1.04072e+3 1.06117e+3 2.00837e+2 2.63998e+2

Mean 9.39207e+2 9.40836e+2 9.40921e+2 6.08119e+2 1.00673e+3 5.9556e+2 2.00707e+2 2.29575e+2

Std 9.51087e+0 6.63746e+0 9.82973e+0 2.15538e+2 1.73734e+1 9.60541e+1 7.71071e-2 1.17577e+2

3e5

1st(Best) 9.2779e+2 9.33436e+2 9.283e+2 5.00274e+2 9.66662e+2 5.49103e+2 2.00409e+2 2.16496e+2

7st 9.32988e+2 9.358e+2 9.33721e+2 5.00296e+2 9.93031e+2 5.65553e+2 2.00547e+2 2.18164e+2

13st(Median) 9.36227e+2 9.38894e+2 9.38036e+2 5.00309e+2 1.00007e+3 5.80239e+2 2.00602e+2 2.18902e+2

19st 9.40216e+2 9.42198e+2 9.43444e+2 5.00325e+2 1.01668e+3 5.85571e+2 2.00618e+2 2.19667e+2

25st(Worst) 9.63709e+2 9.64643e+2 9.68343e+2 1.04755e+3 1.04072e+3 1.06116e+3 2.00654e+2 2.25634e+2

Mean 9.38732e+2 9.40333e+2 9.40451e+2 6.07948e+2 1.00278e+3 5.95501e+2 2.00576e+2 2.19157e+2

Std 9.34306e+0 6.55205e+0 9.84473e+0 2.15314e+2 1.7955e+1 9.60678e+1 6.23622e-2 1.9333e+0

5e5

1st(Best) 9.27555e+2 9.33436e+2 9.283e+2 5.00231e+2 9.66662e+2 5.49103e+2 2.00409e+2 2.16285e+2

7st 9.32923e+2 9.358e+2 9.33485e+2 5.00276e+2 9.89824e+2 5.65553e+2 2.00507e+2 2.17589e+2

13st(Median) 9.36003e+2 9.38848e+2 9.37865e+2 5.00297e+2 9.98235e+2 5.80239e+2 2.00558e+2 2.184e+2

19st 9.39908e+2 9.42198e+2 9.43444e+2 5.0031e+2 1.0162e+3 5.85568e+2 2.00595e+2 2.18941e+2

25st(Worst) 9.63641e+2 9.64643e+2 9.67628e+2 1.04649e+3 1.04072e+3 1.06115e+3 2.00628e+2 2.21402e+2

Mean 9.38592e+2 9.40204e+2 9.40267e+2 6.07759e+2 1.00155e+3 5.955e+2 2.00544e+2 2.18497e+2

Std 9.27171e+0 6.57274e+0 9.78984e+0 2.14974e+2 1.88383e+1 9.6066e+1 6.13193e-2 1.30321e+0

202

Table B.10: Number of FES to achieve the accuracy level for problems 1 - 25(D = 10)

Prob
1st 7th 13th 19th 25th Mean Std Succ. succ.

(Best) (Median) (Worst) rate Perf.

1 22000 23700 24600 25200 26900 24416 1236.67 100% 24416

2 32600 34000 34200 35300 35800 34528 860.474 100% 34528

3 - - - - - - - 0% -

4 38200 40100 41100 41600 43400 40900 1439.17 100% 40900

5 - - - - - - - 0% -

6 98600 - - - - 98600 0.0 4.0% 2.465e+6

7 52100 - - - - 52100 0.0 4.0% 1.3025e+5

8 - - - - - - - 0% -

9 20500 22000 22400 23200 26400 22620 1376.66 100% 22620

10 - - - - - - - 0% -

11 28400 32500 36000 38400 42300 35556 4000.71 100% 35556

12 30800 53200 - - - 54109.1 15494.1 44% 122975

13-25 - - - - - - 0% -

Table B.11: Number of FES to achieve the accuracy level for problems 1 - 25(D = 30)

Prob
1st 7th 13th 19th 25th Mean Std Succ. succ.

(Best) (Median) (Worst) rate Perf.

1 30400 31700 32200 32800 33800 32180 813.88 100% 32180

2 77800 88200 92500 97800 102000 92420 6279.62 100% 92420

3-5 - - - - - - - - -

6 297100 - - - - 297100 0.0 4% 7427500

7 29800 59300 - - - 51627.3 12492.5 44% 117335

8 - - - - - - - 0% -

9 30900 32500 33100 35100 45500 34636 3610.53 100% 34636

10 - - - - - - - 0% -

11 161600 210300 222200 242200 293200 228752 33891.1 100% 228752

12-25 - - - - - - - 0% -

203

Table B.12: Number of FES to achieve the accuracy level for problems 1 - 25(D = 50)

Prob
1st 7th 13th 19th 25th Mean Std Succ. succ.

(Best) (Median) (Worst) rate Perf.

1 37400 37900 38600 39300 40100 38540 782.304 100% 38540

2 224200 230600 243900 251800 275600 242192 12952.8 100% 242192

3-6 - - - - - - - 0% -

7 48700 54200 61400 - - - - 60% 95211.1

8 - - - - - - - 0% -

9 43400 48000 51800 54100 71900 51632 6007.51 100% 51632

10-25 - - - - - - - 0% -

204

Appendix C

Chemotherapy Problem in C++ Source

Codes

#include "StdAfx.h"

#include <stdlib.h>

#include <math.h>

#include "chemotherapy.h"

/ *** *********************************

This is the main method of the class. It takes the chromosome a s a parameter

and calculates both fitnesses. This method does not return a fitness value, it

just calculates and stores values for each fitness objectiv e. Use getFitnessObjOne()

and getFitnessObjTwo() to extract fitness values rep tumou r size and PST

(patient survival time).

*** ********************************* /

///////////////////////////////Constant declarations /////////////////////////////////

int NUM_DRUGS = 10; // number of drugs in treatment

int NUM_DOSES = 10; // number of doses in treatment

int NUM_ORGANS = 5; // body organs affected by drugs

int DRUG_UNIT = 5; // multiplier to get gene value of dose into mg

long double LAMBDA = 4; // Gompertz constant (tumour growth) 1.9 for

// Nmax (10ˆ12) at end of 7 doses

long double P1 = 5; // penalty multiplier for exceeding max

// instantaneous dose of a drug

long double P2 = 5; // ditto for exceeding max cumulative

// dose for a drug

long double P3 = 500; // ditto for exceeding max tumour size YM IN

long double P4 = 5; // ditto for exceeding side effect on each

// organ at each time step

long double Y0 = 4.605; // Initial tumour size y = ln(theta/N)

// corresponding to $N = 10ˆ10$

long double YMIN = 4.605; // Y value corresp to max allowed tum our

// size (no of cells = $10ˆ10$)

long double BETA = 0.5; // some ratio penalizing the current t umour size

long double KAPPA_SCALE_FACTOR = 0.001; // Scaling Factor F or Dose Efficacy values

205

int MAX_INST_DOSE[] = {75, 75, 100, 2000, 3000, 120, 10000, 1 5, 100, 2};

int MAX_CUM_SIDE_EFF[] = {90, 90, 90, 90, 90};

long double POTENCY_FACTOR[] = {1, 1, 0.75, 0.0375, 0.025, 0 .625, 0.0075, 5, 0.75, 200};

long double MAX_CUM_DOSE[] = {550, 700, 1000, 10000, 30000, 600, 100000, 40, 1000, 30};

long double KAPPA[] = {5.605, 4.484, 7.29, 3.9235, 2.242, 4. 335, 1.6815, 2.242, 1.121, 2.242};

int RISK_FACTOR[5][10] = {

//table of ’stars’ for side effect on organs

{3, 3, 3, 2, 0, 1, 1, 2, 0, 0},// Bone marrow

{0, 0, 0, 0, 0, 3, 1, 0, 0, 0},// Kidney

{0, 0, 2, 0, 0, 3, 0, 0, 0, 2},// Peripheral nerves

{0, 0, 0, 0, 0, 0, 1, 1, 0, 0},// Liver

{2, 1, 1, 0, 0, 0, 0, 0, 0, 0} // Heart

};

///////////////////////////////////variables/////// /////////////////////////////////////

long double ** realDoseMatrix;

int ** baseDoseMatrix;

long double cellKillAtTimeP = 0.0; // cell kill term

long double totalPenaltyForInstantaneousDoses = 0.0;

long double totalPenaltyForCumulativeDoses = 0.0;

long double totalPenaltyForSideEffect = 0.0;

long double totalPenaltyForTumourSize = 0.0;

long double fitness = 0.0;

long double yti = 0.0; // current tumour size(N) expressed as y = ln(theta/N),

// where theta = 10ˆ12 cells.

long double diff = 0.0;

int violate = 0; // no of tumour size violations

int pCount = 0; // no of penalties for side effect, instantane ous and

// cummulative dose exceeded.

int patientSurvivalTime = -1; // set to negative until it is s et by calculateTumourSize

void allocate_memory()

{

//allocate memory for realDoseMatrix.

realDoseMatrix = (long double **)malloc(NUM_DOSES * sizeof(long double));

for (int i = 0; i < NUM_DOSES; i++)

{

realDoseMatrix[i] = (long double *)malloc(NUM_DRUGS * sizeof(long double));

}

//allocate memory for baseDoseMatrix.

baseDoseMatrix = (int **)malloc(NUM_DOSES * sizeof(int));

for (int i = 0; i < NUM_DOSES; i++)

{

baseDoseMatrix[i] = (int *)malloc(NUM_DRUGS * sizeof(int));

}

}

206

void free_memory()

{

//free realDoseMatrix.

for (int i = 0; i < NUM_DOSES; i++)

{

free(realDoseMatrix[i]);

}

free(realDoseMatrix);

//free baseDoseMatrix.

for (int i = 0; i < NUM_DOSES; i++)

{

free(baseDoseMatrix[i]);

}

free(baseDoseMatrix);

}

void calculateFitness(int * chromosome)

{

//Populate 2D DoseMatrices

int chromosomeIndex = 0;

int temp1;

long double temp2;

for(int i = 0; i < NUM_DOSES; i++)

{

for(int j = 0; j < NUM_DRUGS; j++)

{

//Populate DoseMatrices. realDoseMatrix contains absolu te value of drug dose.

//baseDoseMatrix is gene integer value.

temp1 = chromosome[chromosomeIndex];

baseDoseMatrix[i][j] = temp1;

temp2 = (long double)((long double)chromosome[chromosom eIndex] * DRUG_UNIT)/POTENCY_FACTOR[j];

realDoseMatrix[i][j] = temp2;

chromosomeIndex++;

}

}

// For time step (which corresponds to a dose), calculate tot al tumour

// size and side effects. Add a penalty if the tumour goes abov e a

// given threshold. Also add penalty for side effects. p -> ti me.

//Calculate Instantaneous dose penalty.

calculateInstantaneousDosePenalty();

//Calculate cumulative dose penalty.

calculateCumulativeDosePenalty();

207

for (int p = 0; p < NUM_DOSES; p++) // for timesteps 1 to NUM_DOS ES

{

//Calculate tumour size at p.

calculateTumourSize(p);

//Calculate side effect penalty at p.

calculateSideEffectPenalty(p);

}

//Work out fitness objective 1 Final tumour size including p enalties.

calculateFitnessObjOne();

//Work out fitness objective 2 Palliative care, Patient Sur vival Time.

//calculateFitnessObjTwo();

}

void calculateInstantaneousDosePenalty()

{

for (int j = 0; j < NUM_DRUGS; j++) // for each Drug

{

//check each dose for each time i for that drug

for (int i = 0; i < NUM_DOSES; i++)

{

// Find the difference between the maximum allowed amount an d the current amount

diff = realDoseMatrix[i][j] - MAX_INST_DOSE[j];

if (diff <= 0.0) // less than limit, OK

{

diff = 0.0;

}

else // else get square of difference and apply penalty

{

diff = diff * diff;

pCount = pCount + 1; // increment counter for penalties appli ed

}

totalPenaltyForInstantaneousDoses += diff * P1;

}

}

}

void calculateCumulativeDosePenalty()

{

long double sumD; // local sum of doses in real values

for (int j = 0; j < NUM_DRUGS; j++) // for each Drug

{

sumD = 0.0; //initialize

// sum the doses for each time i for that drug

208

for (int i = 0; i < NUM_DOSES; i++)

{

sumD += realDoseMatrix[i][j];

}

diff = sumD - MAX_CUM_DOSE[j]; // Find the difference betwee n the maximum

// allowed amount and the current amount

if (diff <= 0.0) // less than limit, OK

{

diff = 0.0;

}

else // else get square of difference and apply penalty

{

diff = diff * diff;

pCount = pCount + 1; // increment counter for penalties appli ed

}

totalPenaltyForCumulativeDoses += diff * P2;

}

}

//This method takes a time step value as a parameter and calcu lates the tumour size at

//time p. It then applies a penalty if the tumour has grown abo ve a certain size.

void calculateTumourSize(int p)

{

long double sumDoses = 0.0;

long double cellKillByJthDrugForPthTime = 0.0;

long double totalPenaltyForTumourSizeForPthTime = 0.0;

cellKillAtTimeP = 0.0;

//For each drug, loop from time 0 to current time (p) and sum up the total amount of drug

//administered. Then use this amount to calculate cell kill . At the end of the loop, you’ve

//reduced the total tumour size by cumulative dose of each dr ug up to time p.

for (int j = 0; j < NUM_DRUGS; j++)

{

//Outer for loop goes through each drug. sumDoses represent the cumulative dose for

//each single drug. therefore, it needs to be reset for each n ew drug.

sumDoses = 0.0;

//Loop from time 0 up to current time (p)

for (int i = 0; i < p; i++)

{

//i represents time step, which corresponds to a dose given a t that time step tim1

//corresponds to previous time step.

int tim1 = i;

//sum the multiplication of all dose till time p for jth drug w ith

//exp(LAMBDA * (previous time and current time))

sumDoses += (realDoseMatrix[i][j] * exp(LAMBDA* (tim1 - p)));

}

209

//multiply calculated sum of dose for jth drug with the effic acy coefficient

//KAPPA for that drug.

cellKillByJthDrugForPthTime = KAPPA_SCALE_FACTOR * KAPPA[j] * sumDoses;

cellKillAtTimeP += cellKillByJthDrugForPthTime;

}

//calculate the tumour size and penalize if infeasible.

yti = (Y0 * exp(-LAMBDA * p)) + (((exp(LAMBDA)-1) * cellKillAtTimeP)/LAMBDA);

//check if current tumour size is less than allowed tumour si ze or not

diff = YMIN - yti;

if (diff <= 0.0) // i.e. yti > YMIN so tumour has not exceeded th reshold size.

{

diff = 0.0;

}

else

{

diff = diff * diff; //i.e. yti < YMIN so tumour HAS exceeded threshold size .

if (p >= 1) //do not count if first timestep (initial tumour)

{

violate++; //count no. of times threshold violated

}

if (patientSurvivalTime < 0) // if PST hasn’t been set yet

{

patientSurvivalTime = p; // the first timestep at which tumo ur > max

}

}

int ti = p;

totalPenaltyForTumourSizeForPthTime = exp(-BETA * ti) * diff;

totalPenaltyForTumourSize += totalPenaltyForTumourSiz eForPthTime;

}

//calculate the penalty for effect on other organs @param p = timestep

void calculateSideEffectPenalty(int p)

{

long double penaltyForSideEffectForLthOrganPthDose = 0. 0;

long double totalPenaltyForSideEffectforPthDose = 0.0;

long double DrugSideEff;

//calculate the side effect penalty

totalPenaltyForSideEffectforPthDose = 0.0;

//for each organ calculate the toxicity penalty

for (int l = 0; l < NUM_ORGANS; l++)

{

DrugSideEff = 0.0;

210

//for each Drug calculate toxicity level it makes to particu lar organ

for (int j = 0; j < NUM_DRUGS; j++)

{

DrugSideEff += RISK_FACTOR[l][j] * baseDoseMatrix[p][j]; // use integer originals

}

//now compare it with allowed toxicity for that organ

diff = DrugSideEff - MAX_CUM_SIDE_EFF[l];

if (diff <= 0.0) //less than limit OK

{

diff = 0.0;

}

else //if not then penalize

{

diff = diff * diff;

pCount = pCount + 1; // increment counter for penalties appli ed

}

penaltyForSideEffectForLthOrganPthDose = diff * P4;

totalPenaltyForSideEffectforPthDose += penaltyForSide EffectForLthOrganPthDose;

}

totalPenaltyForSideEffect += totalPenaltyForSideEffec tforPthDose;

}

void calculateFitnessObjOne()

{

long double expr1, expr2, expr3, expr4, expr5;

expr1 = cellKillAtTimeP; // cell kill

expr2 = totalPenaltyForCumulativeDoses; // Cumulative Do ses

expr3 = P3 * totalPenaltyForTumourSize; // Tumour size

expr4 = totalPenaltyForSideEffect; // side effect

expr5 = totalPenaltyForInstantaneousDoses; // Instantan eous Dose

fitness = (expr1 - expr3) / (violate + 1);

fitness = fitness - expr2 - expr4 - expr5;

}

long double getFitnessObjOne()

{

return fitness;

}

211

long double getFitnessObjTwo()

{

return patientSurvivalTime;

}

long double getFinalTumourSize()

{

return yti;

}

int getViolationCount()

{

return violate;

}

int getPenaltyCount()

{

return pCount;

}

int getPST()

{

return patientSurvivalTime;

}

void clearStoredValues()

{

//Clear DoseMatrices

for(int i = 0; i < NUM_DOSES; i++)

{

for(int j = 0; j < NUM_DRUGS; j++)

{

realDoseMatrix[i][j] = 0.0;

baseDoseMatrix[i][j] = 0;

}

}

cellKillAtTimeP = 0.0;

totalPenaltyForTumourSize = 0.0;

totalPenaltyForSideEffect = 0.0;

totalPenaltyForCumulativeDoses = 0.0;

totalPenaltyForInstantaneousDoses = 0.0;

fitness = 0.0;

yti = 0.0;

diff = 0.0;

violate = 0;

pCount = 0;

patientSurvivalTime = -1;

}

212

Bibliography

[AH05a] A. Auger and N. Hansen. Performance evaluation of anadvanced local search

evolutionary algorithm. In David Corne, Zbigniew Michalewicz, Bob McKay,

Gusz Eiben, David Fogel, Carlos Fonseca, Garrison Greenwood, Gunther

Raidl, Kay Chen Tan, and Ali Zalzala, editors,Proceedings of the 2005 IEEE

Congress on Evolutionary Computation, volume 2, pages 1777–1784, Edin-

burgh, Scotland, UK, 2-5 September 2005. IEEE Press.133, 144, 167

[AH05b] A. Auger and N. Hansen. A restart CMA evolution strategy with increas-

ing population size. In David Corne, Zbigniew Michalewicz,Bob McKay,

Gusz Eiben, David Fogel, Carlos Fonseca, Garrison Greenwood, Gunther

Raidl, Kay Chen Tan, and Ali Zalzala, editors,Proceedings of the 2005 IEEE

Congress on Evolutionary Computation, volume 2, pages 1769–1776, Edin-

burgh, Scotland, UK, 2-5 September 2005. IEEE Press.133, 144, 167

[AK89] Emile Aarts and Jan Korst.Simulated Annealing and Boltzmann Machines:

A Stochastic Approach to Combinatorial Optimization and Neural Comput-

ing. Wiley Interscience Series in Discrete Mathematics and Optimization.

John Wiley & Sons, Chichester, 1989.27, 30, 31

[Bäc95] Thomas Bäck. Generalized convergence models fortournament- and (µ, λ)-

selection. In Larry J. Eshelman, editor,ICGA, pages 2–8. Morgan Kaufmann,

1995.34, 96

[Bäc96] Thomas Bäck.Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Univer-

sity Press, New York, 1996.32, 41

[Bak87] James E. Baker. Reducing bias and inefficiency in theselection algorithm.

In John J. Grefenstette, editor,Genetic Algorithms and their Applications

213

(ICGA’87), pages 14–21, Hillsdale, New Jersey, 1987. Lawrence Erlbaum As-

sociates.34

[Bal94] Shummet Baluja. Population-based incremental learning: A method for inte-

grating genetic search based function optimization and competitive learning.

Technical Report CS-94-163, Carnegie Mellon University, School of Com-

puter Science, June 1994.181

[BD97] Shumeet Baluja and Scott Davies. Using optimal dependency-trees for com-

binatorial optimization: Learning the structure of the search space. InProc.

14th International Conference on Machine Learning, pages 30–38. Morgan

Kaufmann, 1997.181

[Ben75] J. L. Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509–517, September 1975.

58

[BMLL02] E. Bengoextea, T. Miquelez, P. Larranga, and J.A. Lozano. Experimental

results in function optimization with edas in continuous domain. 2002.81

[BS02] Hans-Georg Beyer and Hans-Paul Schwefel. Evolutionstrategies - A compre-

hensive introduction.Natural Computing, 1(1):3–52, 2002.39

[BT96] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in

evolutionary algorithms.Evolutionary Computation, 4(4):361–394, 1996.34,

96

[Cat91] J. Catlett. On changing continuous attributes intoordered discrete attributes. In

Y. Kodratoff, editor,Proceedings of the European Working Session on Learn-

ing : Machine Learning (EWSL-91), volume 482 ofLNAI, pages 164–178,

Porto, Portugal, March 1991. Springer Verlag.126

[CH67] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, IT-13(1):21–7, January 1967.55

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vectornetworks. Machine

Learning, 20:273, 1995.17

[DBT00] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Antalgorithms and stig-

mergy.Future Generation Comp. Syst, 16(8):851–871, 2000.43

214

[Deb01] Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algo-

rithms. John Wiley & Sons, Chichester, UK, 2001.12, 38

[Den] P. J. Denning. Bayesian learning.American Scientist, 77:216–218.17

[DJ75] Kenneth Alan De Jong.An analysis of the behavior of a class of genetic

adaptive systems.PhD thesis, Ann Arbor, MI, USA, 1975.32, 94

[DJA02] Kalyanmoy Deb, Dhiraj Joshi, and Ashish Anand. Real-coded evolutionary al-

gorithms with parent-centric recombination. In David B. Fogel, Mohamed A.

El-Sharkawi, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow, and Mark

Shackleton, editors,Proceedings of the 2002 Congress on Evolutionary Com-

putation CEC2002, pages 61–66. IEEE Press, 2002.168

[DJR95] D. Dearnaly, I. Judson, and T. Root, editors.Handbook of adult cancer

chemotherapy schedules. The Medicine Group (Education) Ltd., Oxfordshire,

1995.178

[Edg86] Eugene S. Edgington.Randomization tests, volume 77 ofStatistics: textbooks

and monographs. Marcel Dekker, New York, second edition, 1986.96

[ES93] Larry J. Eshelman and J. David Schaffer. Real–coded genetic algorithms and

interval-schemata. In L. Darrell Whitley, editor,Foundations of Genetic Algo-

rithms 2, pages 187–202, San Mateo, 1993. Morgan Kaufmann.37, 112

[Esh91] Larry J. Eshelman. The CHC adaptive search algorithm: How to have safe

search when engaging in nontraditional genetic recombination. In Gregory

J. E. Rawlins, editor,Foundations of Genetic Algorithms, pages 265–283, San

Mateo, 1991. Morgan Kaufmann.35

[GD91] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selec-

tion schemes used in genetic algorithms. In Gregory J. E. Rawlins, editor,

Foundations of Genetic Algorithms, pages 69–93, San Mateo, 1991. Morgan

Kaufmann.34, 96

[Glo96] Fred Glover. Tabu search and adaptive memory programing advances, ap-

plications and challenges. InInterfaces in Computer Science and Operations

Research, pages 1–75. Kluwer, 1996.31

215

[Gol89] David E. Goldberg.Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, Reading, Mass., 1989.32

[Hay99] S. Haykin.Neural Networks: A Comprehensive Introduction. Prentice Hall,

1999.17

[HMMP08] Pierre Hansen, Nenad Mladenovic, and José A. Moreno-Pérez. Variable neigh-

bourhood search: methods and applications.4OR, 6(4):319–360, 2008.30

[HO96] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal muta-

tion distributions in evolution strategies: the covariance matrix adaptation. In

Proc. of the 1996 IEEE Int. Conf. on Evolutionary Computation, pages 312–

317, Piscataway, NJ, 1996. IEEE Service Center.68

[HO97] Nikolaus Hansen and Andreas Ostermeier. Convergence properties of evo-

lution strategies with the derandomized covariance matrixadaptation: The

(µ/µI , λ)-CMA-ES, October 06 1997.68, 69, 71

[HO01] Nikolaus Hansen and Andreas Ostermeier. Completelyderandomized self-

adaptation in evolution strategies.Evolutionary Computation, 9(2):159–195,

2001.71

[Hol75] John H. Holland.Adaption in Natural and Artificial Systems. The University

of Michigan Press, Ann Arbor, 1975.32, 34, 35

[JCSW05] Laetitia Jourdan, David Corne, Dragan Savic, and Godfrey Walters. Pre-

liminary Investigation of the ‘Learnable Evolution Model’for Faster/Better

Multiobjective Water Systems Design. In Carlos A. Coello Coello, Arturo

Hernández Aguirre, and Eckart Zitzler, editors,Evolutionary Multi-Criterion

Optimization. Third International Conference, EMO 2005, pages 841–855,

Guanajuato, México, March 2005. Springer. Lecture Notes in Computer Sci-

ence Vol. 3410.81, 84, 101

[JKES95] Wnek Janusz, Kaufman Kenneth, Bloedorn Eric, and Michalski Ryszard S.

Inductive learning system aq15c: The method and user’s guide. MLI 95-4,

Mar-1995.55, 81

[KES01] James Kennedy, Russell C. Eberhart, and Yuhi Shi.Swarm Intelligence. Evo-

lutionary Computation Series. Morgan Kaufman, San Francisco, 2001.44

216

[KGV83] S. Kirkpatrick, C. D. Gelattjr., and M. P. Vecchi. Optimization by simulated

annealing.Science, 220(4598):671–679, May 1983.30

[KM99] Kenneth A. Kaufman and Ryszard S. Michalski. Learning from inconsis-

tent and noisy data: The AQ18 approach. In Zbigniew W. Ras andAndrzej

Skowron, editors,ISMIS, volume 1609 ofLecture Notes in Computer Science,

pages 411–419. Springer, 1999.55

[Koh95] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation

and model selection. InIJCAI, pages 1137–1145, 1995.16

[Koz92] J. R. Koza.Genetic Programming. MIT Press, Cambridge, MA, 1992.13

[Koz94] J. R. Koza.Genetic Programming II. MIT Press, Cambridge, MA, 1994.13

[LELP99] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization by

learning and simulation of bayesian and gaussian networks,1999.71

[LELP00] Pedro Larrañaga, Ramon Etxeberria, José A. Lozano, and José M. Peña. Com-

binatonal optimization by learning and simulation of bayesian networks. In

Craig Boutilier and Moisés Goldszmidt, editors,Proceedings of the 16th Con-

ference on Uncertainty in Artificial Intelligence (UAI-00), pages 343–352, SF,

CA, June 30– July 3 2000. Morgan Kaufmann Publishers.76

[LL02] P. Larranaga and J. A. Lozano.Estimation of Distribution Algorithms:A New

Tool for Evolutionary Computation. Kluwer Academic, 2002.81, 181

[LLB02] P. Larranaga, J.A. Lozano, and E. Bengoextea. Estimation of distribution algo-

rithms based on multivariate normal and gaussian networks.Technical report,

Dept Computer Science and Artificial Intelligence, University of the Basque

Country, Spain, 2002.81

[LnLB01] Pedro Larrañaga, Jose A. Lozano, and Endika Bengoetxea. Estimation of dis-

tribution algorithms based on multivariate normal distributions and Gaussian

networks. Technical Report KZZA-IK-1-01, Dept. of Computer Science and

Artificial Intelligence, University of Basque Country, 2001. 76

[MC01] Ryzsard S. Michalski and Guido Cervone. Adaptive anchoring discretization

for learnable evolution model. InGeorge Mason University, pages 01–3, 2001.

127

217

[MHF93] Melanie Mitchell, John H. Holland, and Stephanie Forrest. When will a ge-

netic algorithm outperform hill climbing. In Jack D. Cowan,Gerald Tesauro,

and Joshua Alspector, editors,NIPS, pages 51–58. Morgan Kaufmann, 1993.

28

[Mic69] R. S. Michalski. On the quasi-minimal solution of the general covering prob-

lem. InProc. Fifth Int. Symposium on Information Processing, FCIP69, vol-

ume A3, Bled, Yugoslavia, 1969.51, 53

[Mic96] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. Springer-Verlag, 1996. Contains introductory chapter onLCS. 32

[Mic00] Ryszard S. Michalski. Learnable evolution model: Evolutionary processes

guided by machine learning.Machine Learning, 38(1-2):9–40, 2000.53, 54,

77, 94, 100, 119, 120, 146

[Mit97] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.16

[Mos89] P. Moscato. On evolution, search, optimization, genetic algorithms and mar-

tial arts: Towards memetic algorithms. Technical Report Caltech Concur-

rent Computation Program, Report. 826, California Institute of Technology,

Pasadena, California, USA, 1989.21

[MP96] Heinz Mühlenbein and Gerhard Paass. From recombination of genes to the es-

timation of distributions I. binary parameters. In Hans-Michael Voigt, Werner

Ebeling, Ingo Rechenberger, and Hans-Paul Schwefel, editors,PPSN, volume

1141 ofLecture Notes in Computer Science, pages 178–187. Springer, 1996.

71

[MT94] R. Martin and K. Teo. Optimal control of drug administration in cancer

chemotherapy.World Scientific, 1994.177, 178

[Müh97] Heinz Mühlenbein. The equation for response to selection and its use for

prediction.Evolutionary Computation, 5(3):303–346, 1997.75

[MZ00] Ryszard S. Michalski and Qi Zhang. Initial experiments with the LEM1 learn-

able evolution model: An application to function optimization and evolvable

hardware. Technical report, 2000.94, 100

218

[PBM05] Andrei Petrovski, Alexander E. I. Brownlee, and John A. W. McCall. Statisti-

cal optimisation and tuning of GA factors. InIEEE Congress on Evolutionary

Computation, pages 758–764. IEEE, 2005.179

[Pea01] K. Pearson. On lines and planes of closest fit to systems of points in space.

The London, Edinburgh and Dublin Philosophical Magazine and Journal of

Science, 2:559–572, 1901.58

[Pet99] A. Petrovski.An Application of Genetic Algorithms to Chemotherapy Treat-

ment. PhD thesis, Aberdeen, UK, 1999.178, 179

[PGL99] Martin Pelikan, David E. Goldberg, and O Lobo. A survey of optimization by

building and using probabilistic models, October 08 1999.71

[PH90] G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning.

Machine Learning, 5(1):71–99, 1990.51

[PM01] Andrei Petrovski and John A. W. McCall. Multi-objective optimisation of can-

cer chemotherapy using evolutionary algorithms. In EckartZitzler, Kalyan-

moy Deb, Lothar Thiele, Carlos A. Coello Coello, and David Corne, editors,

EMO, volume 1993 ofLecture Notes in Computer Science, pages 531–545.

Springer, 2001.176, 179

[PRL+04] J.M. Pena, V. Robles, P. Larranaga, V. Herves, F. Rosales, and M.S. Perez.

Ga-eda: Hybrid evolutionary algorithm using genetic and estimation of distri-

bution algorithms. 2004.81

[PSM06] Andrei Petrovski, Siddhartha Shakya, and John A. W.McCall. Optimising

cancer chemotherapy using an estimation of distribution algorithm and genetic

algorithms. In Mike Cattolico, editor,GECCO, pages 413–418. ACM, 2006.

179

[Qui86] J. R. Quinlan. Induction of decision trees.Machine Learning, 1(1):81–106,

1986.47, 50, 51, 126, 145

[Qui93] J. R. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann,

San Mateo, CA, 1993.47, 50, 81, 126

[Rec73] I. Rechenberg.Evolutionsstrategie: optimierung technischer systeme nach

prinzipien der biologischen evolution. Frommann-Holzboog, 1973.39, 40

219

[RIG+00] Michael L. Raymer, William F. Punch III, Erik D. Goodman,Leslie A. Kuhn,

and Anil K. Jain. Dimensionality reduction using genetic algorithms. IEEE

Trans. Evolutionary Computation, 4(2):164–171, 2000.58

[SC08] Guleng Sheri and David W. Corne. The simplest evolution/learning hybrid:

LEM with KNN. In Jun Wang, editor,2008 IEEE World Congress on Com-

putational Intelligence, pages 3244–3251, Hong Kong, 1-6 June 2008. IEEE

Computational Intelligence Society, IEEE Press.84, 93, 173

[SC09] Guleng Sheri and David W. Corne. Evolutionary optimization guided by

entropy-based discretization. In Mario Giacobini, Anthony Brabazon, Stefano

Cagnoni, Gianni A. Di Caro, Anikó Ekárt, Anna Esparcia-Alcázar, Muddassar

Farooq, Andreas Fink, Penousal Machado, Jon McCormack, Michael O’Neill,

Ferrante Neri, Mike Preuss, Franz Rothlauf, Ernesto Tarantino, and Shengxi-

ang Yang, editors,EvoWorkshops, volume 5484 ofLecture Notes in Computer

Science, pages 695–704. Springer, 2009.123, 127, 173

[SC10] Guleng Sheri and David Corne. Learning-assisted evolutionary search for

scalable function optimization: LEM(ID3). InIEEE Congress on Evolution-

ary Computation, pages 1–8. IEEE, 2010.143

[Sch88] Hans-Paul Schwefel. Collective intelligence in evolving systems. In W. Wolff,

C. J. Soeder, and F. Drepper, editors,Ecodynamics, Contributions to Theoret-

ical Ecology, pages 95–100. Springer, Berlin, 1988.40

[Sch95] Hans Paul Schwefel.Evolution and Optimum Seeking. Sixth-Generation Com-

puter Technology Series. John Wiley & Sons, Inc., New York, 1995. 39

[SG91] P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal

graphs.Social Science Computer Review, 9(1):62–73, 1991.74

[Sha01] C. E. Shannon. A mathematical theory of communication. SIGMOBILE Mob.

Comput. Commun. Rev., 5(1):3–55, 2001.48

[SHL+05] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen,A. Auger, and

S. Tiwari. Problem definitions and evaluation criteria for the cec 2005 special

session on real-parameter optimization. Technical report, 2005.141, 165, 166,

169, 173

220

[SP95] Rainer Storn and Kenneth Price. Differential evolution - a simple and efficient

adaptive scheme for global optimization over continuous spaces, 1995.45

[STD05] A. Sinha, S. Tiwari, and K. Deb. A population-based,steady-state proce-

dure for real-parameter optimization. In David Corne, Zbigniew Michalewicz,

Bob McKay, Gusz Eiben, David Fogel, Carlos Fonseca, Garrison Greenwood,

Gunther Raidl, Kay Chen Tan, and Ali Zalzala, editors,Proceedings of the

2005 IEEE Congress on Evolutionary Computation, volume 1, pages 514–

521, Edinburgh, Scotland, UK, 2-5 September 2005. IEEE Press. 144, 167

[Sys89] G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Schaffer, edi-

tor, Proceeding of the Third International Conference on Genetic Algorithms,

pages 2–9. Morgan Kaufmann, 1989.96

[Sys91] Gilbert Syswerda. A study of reproduction in generational and steady state

genetic algorithms. In Gregory J. E. Rawlins, editor,Foundations of Genetic

Algorithms, pages 94–101, San Mateo, 1991. Morgan Kaufmann.35

[TFM99a] Bäck Thomas, David B. Fogel, and Zbigniew Michalewicz, editors.Advanced

Algorithms and Operators. IOP Publishing Ltd., Bristol, UK, UK, 1999.32

[TFM99b] Bäck Thomas, David B. Fogel, and Zbigniew Michalewicz, editors. Basic

Algorithms and Operators. IOP Publishing Ltd., Bristol, UK, UK, 1999.32

[Whe88] T. Wheldon.Mathematical models in cancer research. Adam Hilger, Bristol,

Philadelphia, 1988.176, 177, 178

[WK88] D. Whitley and J. Kauth. GENITOR: A different geneticalgorithm. InPro-

ceedings of the Rocky Mountain Conference on Artificial Intelligence, pages

118–130. Denver, CO, 1988.35

[WM97] David H. Wolpert and William G. Macready. No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82,

April 1997. 21

[WM05] Janusz Wojtusiak and Ryszard S. Michalski. The LEM3 system for non-

darwinian evolutionary computation and its application tocomplex function

optimization. Technical report, George Mason University,2005.81

221

[WM06] Janusz Wojtusiak and Ryszard S. Michalski. The LEM3 implementation of

learnable evolution model and its testing on complex function optimization

problems. In Mike Cattolico, editor,GECCO, pages 1281–1288. ACM, 2006.

81

[YI96] Mutsunori Yagiura and Toshihide Ibaraki. Metaheuristics as robust and simple

optimization tools. InIn Proc. IEEE International Conf. Evolutionary Com-

putation, pages 541–546, 1996.29

[YS94] L. Yao and William A. Sethares. Nonlinear parameter estimation via the ge-

netic algorithm. IEEE Transactions on Signal Processing, 42(4):927–935,

1994.94, 95, 98

[ZSTF03] Qingfu Zhang, Jianyong Sun, Edward Tsang, and JohnFord. Hybrid estima-

tion of distribution algorithm for global optimisation.Engineering Computa-

tions, 21:2003, 2003.81

[ZSTF06] Qingfu Zhang, Jianyong Sun, Edward Tsang, and JohnFord. Estimation of

distribution algorithm with 2-opt local search for the quadratic assignment

problem. InTowards a New Evolutionary Computation. Advances in Estima-

tion of Distribution Algorithm, pages 281–292. Springer-Verlag, 2006.81

222

	Abstract
	Acknowledgements
	Tables
	Figures
	Acronyms
	Introduction
	Overview
	Search is a general problem solver
	Evaluation is expensive
	Learning is useful
	Hybrid is the trend
	Contributions

	Outline of the thesis

	Methods for Search and Learning
	Overview
	Search Algorithms for Optimization
	Local Search
	Genetic Algorithm and Global Optimization
	Evolution Strategies
	Other General Purpose Search Algorithms

	Learning Algorithms
	Decision Tree Learning
	AQ Learning
	K Nearest Neighbors (KNN) Learning
	Principal Components Analysis
	Bayesian Network and Bayesian Learning

	Hybrids of Learning and Evolution
	Overview
	Covariance Matrix Adaptation Evolution Strategies
	(/ I,)-CMAES algorithm

	Estimation of Distribution Algorithms
	Example Illustration
	Structure Learning Methods
	Concrete EDA Algorithms

	Learnable Evolution Model (LEM)
	LEM(AQ)
	LEM Framework
	Relations with EDAs
	Applications of LEM

	KNN Based LEM Hybrid Algorithms
	Overview
	LEM(KNN) – KNNGA
	KNNGA Algorithm
	KNNGA `with verification'
	Experiments and Results

	LEM(dwKNN) – dwKNNGA
	Distance-Weighted K Nearest Neighbors Algorithm
	dwKNNGA Algorithm
	Experiments and Results

	Concluding Discussion

	LEM Instantiated with Entropy-Based Discretization
	Overview
	Entropy-Based Discretization
	Discretization Techniques
	Entropy-Based Discretization

	LEM with Entropy-Based Discretization – LEM(ED)
	The LEM(ED) Algorithm
	LEM(ED) Variant Algorithms

	Experiments and Results
	Parameters Settings
	Summary of Results

	Concluding Discussion

	LEM Instantiated with Decision Tree Learning
	Overview
	LEM with Decision Tree Learning – LEM(ID3)
	Learning Mode
	Evolution Mode
	Switch Conditions
	Discretization
	Instantiation, Evolution and Randomization

	Experiments and Results
	Experiment Study 1
	Experiment Study 2

	Concluding Discussion

	Cancer Chemotherapy Treatments Optimized by LEMs
	Overview
	Introduction
	Mathematical Problem Formulation
	Solving using LEM Hybrid Algorithms
	Problem Representation and Evaluation
	Problem Solving and Results

	Concluding Discussion

	Conclusion
	Summary
	Contributions
	Future Work

	Brief Introduction on Probability
	LEM(ID3)IER Performance on CEC2005 Test Functions
	Chemotherapy Problem in C++ Source Codes
	Bibliography

