Investigating Hybrids of Evolution and Learning for

Real-Parameter Optimization

by
SHE RI GU LENG

Submitted for the Degree of
Doctor of Philosophy
on completion of research in the
Department of Computer Science
School of Mathematical and Computer Sciences
Heriot-Watt University
March 2011

The copyright in this thesis is owned by the author. Any gtiotafrom the thesis or use of any
of the information contained in it must acknowledge thissthes the source of the quotation or

information.

Declaration

| hereby declare that the work presented in this thesis waigedaout by myself at Heriot-
Watt University, except where due acknowledgment is made, et been submitted for

any other degree.

SHE RI GU LENG(Candidate)

Professor David Wolfe Corne (Supervisor)

Date

Abstract

In recent years, more and more advanced techniques havalbeeloped in the field
of hybridizing of evolution and learning, this means thatrenapplications with these tech-
niques can benefit from this progress. One example of thesmeadd techniques is the
Learnable Evolution Model (LEM), which adopts learning aguéde for the general evo-
lutionary search. Despite this trend and the progress in Liabte are still many ideas and
attempts which deserve further investigations and tests.ttits purpose, this thesis has
developed a number of new algorithms attempting to combioeertearning algorithms
with evolution in different ways. With these developmentg, expect to understand the
effects and relations between evolution and learning, éulachieve better performances
in solving complex problems.

The machine learning algorithms combined into the stan@amadetic Algorithm (GA)
are the supervised learning methlodiearest-neighbors (KNN), the Entropy-Based Dis-
cretization (ED) method, and the decision tree learningrétlgm ID3. We test these algo-
rithms on various real-parameter function optimizatioolgpems, especially the functions
in the special session on CEC 2005 real-parameter funcpamuazation. Additionally, a
medical cancer chemotherapy treatment problem is solvékisnthesis by some of our
hybrid algorithms.

The performances of these algorithms are compared witllatdrgenetic algorithms
and other well-known contemporary evolution and learniggrid algorithms. Some of
them are the Covariance Matrix Adaptation Evolution Sgete (CMAES), and variants of
the Estimation of Distribution Algorithms (EDA).

Some important results have been derived from our expetsmenthese developed al-
gorithms. Among them, we found that even some very simpkaieg methods hybridized
properly with evolution procedure can provide significaatfprmance improvement; and
when more complex learning algorithms are incorporateti e¥olution, the resulting al-
gorithms are very promising and compete very well agairessthte of the art hybrid algo-
rithms both in well-defined real-parameter function optzation problems and a practical

evaluation-expensive problem.

to my parents
Bu Ren Te Gu Si
An Shu Fang

Acknowledgements

First, | sincerely thank my supervisor, Professor David f&/@orne, for his guidance
in the field of naturally inspired computing, and his corenstinspiration, advice, encour-
agement and support during the whole procedure of my PhBy.sWidhout his help, this
PhD thesis could not have been finished.

Thanks are also due to the members of the Intelligent Systam$ISL) at the School
of Mathematics and Computer Science, in particular manieagues for any beneficial
discussions during the past years.

| also want to thank the reviewers who read my publicatiort @ovided much con-
structive criticism for the past years, and the examiners adreed to examine this thesis.

Thanks to the department's Administration and IT suppatf $or the convenience
they provided, especially for allow me to occupy numeroustmrees in labs to finish the
experiments in this thesis.

Finally, I would like to thank my parents and brother for tHewe!

Contents

Abstract [
Acknowledgements ii
Tables Vil
Figures X
Acronyms Xii
1 Introduction 1
1.1 OVEeIVIEW o e e 1
1.1.1 Searchisageneral problemsolver. 5
1.1.2 Evaluationisexpensive. 15
1.1.3 Learningisuseful. 16
1.1.4 Hybridisthetrend. oL 21
1.1.5 Contributions. 22
1.2 Outlineofthethesis. 23
2 Methods for Search and Learning 26
2.1 OVEIVIEW o e e e e 26
2.2 Search Algorithms for Optimization 27
221 LocalSearch. 27
2.2.2 Genetic Algorithm and Global Optimization 32
2.2.3 Evolution Strategies. oo 39
2.2.4 Other General Purpose Search Algorithms. 43
2.3 Learning Algorithms. 45
2.3.1 DecisionTreelearning.« ... 47
232 AQLearning. 51

2.3.3 K Nearest Neighbors (KNN) Learning. 55

2.3.4 Principal Components Analysis 58
2.3.5 Bayesian Network and Bayesian Learning. 62
3 Hybrids of Learning and Evolution 67
3.1 OVEIVIEW o e e e e 67
3.2 Covariance Matrix Adaptation Evolution Strategies 68
3.2.1 (/u,)-CMAES algorithm 69
3.3 Estimation of Distribution Algorithms 71
3.3.1 Examplelllustration. oL 72
3.3.2 Structure LearningMethods oL 74
3.3.3 Concrete EDA Algorithms 75
3.4 Learnable Evolution Model (LEM) 77
3.4.1 LEM(AQ). e 77
3.42 LEMFramework. 78
3.4.3 RelationswithEDAs 81
3.4.4 Applicationsof LEM. 81
4 KNN Based LEM Hybrid Algorithms 83
4.1 OVEIVIEW o o i e e e e e e 83
4.2 LEM(KNN)—=KNNGA e 85
4.2.1 KNNGAAlgorithm 85
4.2.2 KNNGA ‘with verification” 92
4.2.3 ExperimentsandResults. 94
4.3 LEM(dwWKNN) —dwkKNNGA 101
4.3.1 Distance-Weighted K Nearest Neighbors Algorithm. 103
4.3.2 dwkKNNGA Algorithm. 104
4.3.3 ExperimentsandResults. 106
4.4 Concluding DiSCUSSION o 119
5 LEM Instantiated with Entropy-Based Discretization 122
51 OVEIVIEW o o e e e e 122
5.2 Entropy-Based Discretizatian. 124
5.2.1 Discretization Techniques 124
5.2.2 Entropy-Based Discretization 125

5.3 LEM with Entropy-Based Discretization— LEM(ED) 127
5.3.1 The LEM(ED) Algorithm 127
5.3.2 LEM(ED) Variant Algorithms. 132

5.4 ExperimentsandResults. 133
5.4.1 ParametersSettingso 133
54.2 SummaryofResults L. 134

5.5 ConcludingDiscussion e 140

LEM Instantiated with Decision Tree Learning 143

6.1 OVEIVIEW e e e 143

6.2 LEM with Decision Tree Learning—LEM(ID3) 145
6.2.1 LearningMode. 145
6.2.2 EvolutionMode 155
6.2.3 Switch Conditions. 156
6.2.4 Discretization 157
6.2.5 Instantiation, Evolution and Randomization 158

6.3 ExperimentsandResults. 159
6.3.1 ExperimentStudy 1. 159
6.3.2 ExperimentStudy 2. 165

6.4 ConcludingDiscussion 173

Cancer Chemotherapy Treatments Optimized by LEMs 175

7.1 OVEIVIEW o o e s e s e e 175

7.2 Introduction. 176

7.3 Mathematical Problem Formulation 177

7.4 Solving using LEM Hybrid Algorithms 178
7.4.1 Problem Representation and Evaluation. 179
7.4.2 ProblemSolvingandResults 180

7.5 Concluding DisCcussion 183

Conclusion 185

8.1 Summary. e e 185

8.2 Contributions. 188

8.3 FutureWork. 190

A Brief Introduction on Probability 191

Vi

B LEM(ID3)IER Performance on CEC2005 Test Functions 195
C Chemotherapy Problem in C++ Source Codes 205

Bibliography 212

Vil

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Initial populationPy 73
Selected population 73
New generated population 74
Parameters settings for GA(c,m)and GA(m) 97
Parameters settings for KNNGA and KNNGA(V). 97
Parameters settings for GAland GA2. 112
Parameters settings for LEM(KNN) and LEM(dwKNN) 112
Parameters settingsfor CMAES 113
Means and standard deviation after 10 generatians. 113
Means and standard deviation after 20 generatians 114
Means and standard deviation after 50 generations 114
Means and standard deviation after 100 generations 114
Parameters settings for LEM(ED1) and LEM(ED2) 134
Means and standard deviation after 10 generations. 134
Means and standard deviation after 20 generatians. 135
Means and standard deviation after 50 generatians 135
Means and standard deviation after 100 generations 135
The ruleset transformed from the DT for positive dataigufe 6.1. 148
Meaning of apreferredrule. 153
Parameters settingsfor LEM(ID3) 160
Means and standard deviations after 10 generations 160
Means and standard deviations after 20 generations 161
Means and standard deviations after 50 generations 161
Means and standard deviations after 100 generations. 161

Means for two CMAES, KPCX, LEM(ID3)IER, 10D, CECO05, 10&as.. 170

viii

6.9 Means for two CMAES, KPCX, LEM(ID3)IER, 30D, CECO05, 30@&as.. 171
6.10 Means for two CMAES, KPCX, LEM(ID3)IER, 50D, CECO05, 30&vas.. 172
6.11 Summary of solved problems by CECO5 session algoritm®0D 173
7.1 Evaluation numbers for the first feasible solution: nfsdn. 183
7.2 Best fitness values after 200k evaluation: mean(sd). 183
B.1 Error values at FEs = 1e3, 1e4, 1e5 for problems 1-9(10D). 195
B.2 Error values at FEs = 1e3, 1e4, 1e5 for problems 10-17(10D. 196
B.3 Error values at FEs = 1e3, 1e4, 1e5 for problems 18-25(10D. 196
B.4 Error values at FEs = 1e3, 1le4, 1le5, 3e5 for problemsQE)(3. 197
B.5 Error values at FEs = 1e3, 1e4, 1e5, 3e5 for problems {88Dj 198
B.6 Error values at FEs = 1e3, 1e4, 1e5, 3e5 for problems {8025 199
B.7 Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 for probled{SaD) 200
B.8 Error values at FEs = 1e3, 1le4, 1e5, 3e5, 5e5 for probl@is(50D). . . 201

B.9

Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 for probl&25(50D). . . 202

B.10 Number of FES to achieve the accuracy level for probléma5(D = 10) . 203
B.11 Number of FES to achieve the accuracy level for probléma5(D = 30) . 203
B.12 Number of FES to achieve the accuracy level for problem25(D = 50) . 204

List of Figures

11

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421

An illustrative example of landscape. 8
Flowchart of the simple genetic algorithm. 33
An illustrative example of adecisiontree 48
The general LEM framework 79
Flowchart of the KNNGA algorithm 89
An illustrative flowchart for the KNNGA algorithm evoloh procedure. . 91
Results of running 5 algorithms to maximize problem 1. 97
Results of running 5 algorithms to maximize problem2. 98

Results of running GA(m),GA(c,m),KNNGA(c,m) to minipei problem 3. 99
Results of running KNNGA(mM),KNNGA(c,m)(V) to minimizaoblem 3 . 99

Results of running 5 algorithms to maximize problem4. 99
Results of running 5 algorithms to maximize problem5. 100
Landscape of the De Jong function 3in 2 dimensions. 108
Landscape of the De Jong function 4 in 2 dimensions. 109
Landscape of the rastrigin function in 2 dimensions 109
Landscape of the griewank function in 2 dimensions 110
Landscape of the rosenbrock function in 2 dimensions 110
Landscape of the ackley functionin 2 dimensions. 111
Landscape of the schwefel functionin 2 dimensions. 111
Results of running 5 algorithms on the DeJong3 problem. 115
Results of running 5 algorithms on the DeJong4 problem. 115
Results of running 5 algorithms on the Rastriginpnoble. 116
Results of running 5 algorithms on the Griewank problem 116
Results of running 5 algorithms on the Rosenbrock prabl. 117
Results of running 5 algorithms on the Ackley problem 117

4.22 Results of running 5 algorithms on the Schwefel problem. 118

5.1 The correct and incorrect labellings for two intervald EM(ED). 128

5.2 Instantiation procedure by LEM(ED). L. 130
5.3 Results of running 7 algorithms on the DeJong3 problem. 136
5.4 Results of running 7 algorithms on the DeJong4 problem. 136
5.5 Results of running 7 algorithms on the Rastrigin problem. 137
5.6 Results of running 7 algorithms on the Griewank problem. 137
5.7 Results of running 7 algorithms on the Rosenbrock proble 138

5.8 Results of running 7 algorithms on the Ackley problem 138
5.9 Results of running 7 algorithms on the Schwefel problem. 139
6.1 A decision tree learned by LEM(ID3) for Rastrigin furactiat generation 1147

6.2 Anillustrative example for the forestmodel. 151
6.3 Before and after adjusting discretization represemtat 158
6.4 Results of running 4 algorithms on the DeJong3 problem. 162
6.5 Results of running 4 algorithms on the DeJong4 problem. 162
6.6 Results of running 4 algorithms on the Rastrigin problem. 163
6.7 Results of running 4 algorithms on the Griewank problem. 163
6.8 Results of running 4 algorithms on the Rosenbrock proble 164
6.9 Results of running 4 algorithms on the Ackley problem 164
6.10 Results of running 4 algorithms on the Schwefel problem. 165

Xi

Acronyms

BN Bayesian Networkl7
CMAES Covariance Matrix Adaptation Evolution Strategig2-25

EC Evolutionary Computatiors, 7, 11-13
ED Entropy-Based Discretizatio23, 24
EDA Estimation of Distribution Algorithms22-25

ES Evolution Strategie24

GA Genetic Algorithm .1, 6, 8, 11-13, 24

GP Genetic Programmindl3
IPOP-CMAES A Restart CMAES With Increasing Population Si2&,

K-PCX A Population-Based, Steady-State Procedure for RealiRdes Optimization25

KNN k-Nearest-Neighbordl7, 22-24

LEM Learnable Evolution ModeR2

LEM(dwKNN) LEM Instantiated with distance-weight KNN algorithi22, 24, 25
LEM(ED) LEM Instantiated with ED algorithni24

LEM(ID3) LEM Instantiated with ID3 algorithml, 23, 25

LEM(KNN) LEM Instantiated with KNN algorithml, 22-24

LR-CMAES A Local Restart CMAES25

MA Memetic Algorithm.21

Xil

MDP Markov Decision Procesd.7
ML Machine Learningl6

MOEA Multi-Objective Evolutionary Algorithm12

NN Neural Network.17

PCA Principle Component Analysi®2, 24

SVM Support Vector Machinel7

Xiii

List of Publications

2010: Guleng Sheri and David Corne. Learning-assistedigeolary search for scalable
function optimization: LEM(ID3). IEEE Congress on Evoliary Computation,
pp. 1-8, IEEE, 2010.

2009: Guleng Sheri and David W. Corne. Evolutionary Optatian Guided by Entropy-
Based Discretization. EvoWorkshops, Lecture Notes in QaempScience, \Vol.
5484, pp. 695-704, Springer, 2009.

2008: Guleng Sheri and David W. Corne. The Simplest Evahdtiearning Hybrid: LEM
with KNN. 2008 IEEE World Congress on Computational Inggince, IEEE Press,
1-6 June 2008.

Xiv

Chapter 1

Introduction

1.1 Overview

There are always various problems and tasks in people’y daiivities. These problems
can be very simple, making the procedure of solving thedel@nas easily ignored; they can
also be very complex and even challenging, making the mestbbsiolving these problems
become the topic of scientific research. However, regasdieéthe types and complexities
of the problems, solving these problems can be consideradiaesision-making procedure
of choosing one or several solutions from many alternathet®ns. Namelyto searchor

suitable solutions from many solutions is a problem solyracedure, and it exists in many
fields such as computer science, engineering, operati@anas medicine development,

economy and finance. Let us consider the following tasks:
1. Find the quickest route from the current position to thy &irport;
2. Find the maximum value for a mathematical function witloemplex landscape;

3. Design a new aircraft engine for a new series of commeptaales with the require-

ments of both safety and speed;
4. Make a smartest play in a Chinese-checker game againsbthguter;
5. Create an effective treatment plan for a new drug to beegpl treatment periods;

6. Find the best ‘model’ or method that can predict the penorce of a stock index for

the future according to historical data.

These problems are universal and challenging. Forla8kstly, in most cases, we can

not arrive at the airport in the quickest way, quickest trapends on many factors such

1

as, traffic conditions, vehicles, and road accidents, sebdoes not mean quickest. Sec-
ondly, if there are many alternative routes with differeistainces, finding the shortest route
may take a long time. Too much time spent on planning a routereguce the travel time,
therefore resulting in a late arrival. Finally, imagine therst situation, if we are not fa-
miliar with the city and no previous knowledge is availalaied we cannot get any form of
help, we may fail this task completely. For tagkassume the mathematical function’s def-
inition (formula) is given, and the value of the function scibled by a vector of variables.
Firstly, the function’s shape (landscape) is invisiblej aould be very irregular, containing
many peaks and troughs, so to decide the vector of variabdadgithe maximum of the
function is very difficult. Exploring through the whole vakle space or ‘search’ is very
possibly attracted to and lost in one of the local best vadunesnever comes out; secondly,
what if the size of the vector of variables is huge? That isrdglare many variables involved
in deciding the function value. Indicating the relationmhbetween these variables could
be important in order to find the maximum efficiently, in otkerds, these variables need
to act congruously. For task there are two aims for this task. If it is the case that higher
speed means less safety, then we find that the aims for tlkisamsot be achieved at the
same time. Namely, safety and speed are themselves cattrgdp each other in the sense
that an increase in the former will inevitably cause a deswea the latter. Therefore, this
problem has to be transformed to find an acceptable compedmeisveen these two aims,
safety and speed. When some solutions satisfying all ofithe are derived, the selection
from these compromised solutions will depend on many praktonsiderations from the
users. The main difficulty of this task is due to the contradicfeature involved in the
task itself. For tasK, the difficulties come from many aspects, for instance, tivalver of
the possible board status and legal next moves availabld beuhuge; more importantly,
the success of the current move will not only depend on théopeance of the current
move but also depend on the following moves. A good move for awod bad moves for all
the following moves will also result in losing the game. Sar, this task, how to measure
a ‘smart’ move becomes a crucial factor in solving this peablsuccessfully. For tadk

it is probably much easier or ‘cheaper’ to create a plan tlgudge or evaluate a plan.
Namely, the evaluation of a cancer chemotherapy treatmantqould be very expensive
with regard to safety issues, time and money. It could cantaal treatments (injections
and observations) on patients or at least a computer-basethasion, both of which may
take months for the treatments to take effect. These risyeapensive evaluations cannot

be restored and therefore do not allow the method of choasiegsolution from many al-

ternative solutions to be fulfilled. For tagkthere are many issues concerned, first, how to
build a model which is able to predict, from the given data? ow to select the suitable
methods to construct the model? Second, how to explore ghrthese models, or how
to modify these models from one to another? Third, how touatal the quality of these
built models? These are all key issues which need to be sokiedlly, the quantity and
the quality of the data also matter, the former may affectetraduation of the built models,
while the later may effect the construction procedure ferrtiodels.

These tasks are examples of complex problems, they explany wlifferent aspects
of complexity. These complexities may come from the parggresentation space, huge
search space, relationship among the dimensions, mullahyroperty for the problem
landscape, many conflicting objectives, and challengingsueements of the solutions in
real world, etc. In this thesis, we will investigate and domst effective solving methods
which can solve problems containing some of these aspects.

All of these complexities place obstacles for the proceadifending the best solution
for these problems, and require considerable efforts bottomputation time and space
resources. Namely, whenever a method is developed ancedpplisolve problems, it is
always restricted by the time and space resources availtigefore, we have to consider
the balance between the quality of the solutions found aedetficiency of the search
method employed. For tagkagain, we may not really care about finding the quickest route
to the airport at all, what really concerns us is to arrivehat airport on time. With this
aim, it is meaningless and we risk missing the flight if we takesry long time to find the
best travel route. For most cases, the best solution for mi#gm cannot be found simply,
people do accept secondary solutions when the best sautam only be obtained with
huge expenses which are not affordable. The only restnasithat these solutions need to
be feasiblesolutions, &easiblesolution should be a solution which is valid and correct to
the problem at hand.

Within these limitations, the search methods to be consduo solve these problems
will have to consider the balance between quality of thetswhg and efficiency of the
methods. Generally, if the time and space resources limitsitare not very restrictive,
the search can explore more alternative solutions whiclyaite different, obtaining more
global knowledge; while the resources limitations are strict,gbarch should exploit the
current solutions to gain more similar solutions, obtagnmore local knowledge. Ex-
ploration means the generation of new solutions happen in as yet adtesgions of the

solution space. Meanwhilexploitationmeans the search is concentrated in the vicinity of

known good solutions. Therefore, achieving the expectéhiba between quality of found
solutions and the efficiency of the search algorithms regugood design to achieve the
balance between exploration and exploitation in the canstd search methods.

So far, our discussion has focused on ‘search’ as an imggntahblem solving method,
search is suitable for many types of complex problems antheaeen as a general problem
solving method. However, search is not a universal probtawes Many types of problems
are solved by other problem solving methods. For examphe gb#aske6 is to construct a
‘model’ or method that can predict the performance of a stodkx for the future according
to historical data. This construction task is differentifrthe search procedure. Seemingly,
it is a specific method that follows some principles to buifdaimodel, which can deal
with some input data and be able to output useful informattiomake a prediction. This
method, in fact, is one of the concrete methods for the géteaiening based problem
solving method.Learningis a common concept, it means to improve one’s ability to act
in the future through accumulation of one’s own experien@eswith searching, learning
happens throughout people’s daily activities as long asesevents and decision-making
processes take place. For example, tigka common economical activity. The doctor’s
daily diagnosis treatment is a learning procedure, afteng period of diagnosis on a huge
number of patients, the doctor becomes more experienceeatirtg new patients.

A natural question which arises, as two general problemisglnethods, is: what is
the relationship between search and learning? And how @settwo methods interact to
influence each other? We consider this issue in two oppoiséetobns.

How does searching influence learning? Learning is a praegdumprove the ability
to act in the future based on past experience. ‘The abilitgdioin the future’ needs to
be captured and described by an explicit or implicit ‘mogde&l’ improve the ability means
to improve the performance of the model, or equally to casta better model. This
has a very important implication, namely, there exist marmdets which constitute the
so-called ‘model space’. Therefore, a search can be caesides a generalized model
construction method, while the learning methods can beidered as a specific model
construction method. Learning constructs a model by someifspmethod, while a search
constructs a model by modifying one existing model into hapobne. To this end, a search
influences learning by finding a better model than the onetoaeted by learning. There
is one excellent illustration for this influence, the humaaif. The brain can be seen
as a learning model which is constructed in a way which is natgetely known to us,

however, what we do know is that, in fact, our brains todayoaiiee different from and are

much more advanced than those of our ancestors. And thiguaprent is derived by one
of the paradigms methods of searelwplution The brain, as a model of learning, is the
result of an evolutionary search.

How does learning influence search? Learning can causel @sgferience to be ob-
tained, we call such experienkaowledge If the learned knowledge is used in the search
procedure to guide future search behaviors, then we coyldatat least two new results.
First, learning incorporates the past learned domain kedge into the search problem-
solving procedure, and makes the choosing of good soluéoreng many alternative so-
lutions more efficient and accurate. Experienced persamsneke better choices than less
experienced ones. In this way, learning helps to save tirdespace resources, while ob-
taining relatively high quality solutions. Second, leaigncan help to judge or predict the
found solutions. When some new solutions are found by sebgaiming can estimate the
quality of these solutions according to previous knowledfeut this particular domain
without the expense of real implementation of the qualityasugements for these solu-
tions. These measurements could be very expensive andtdammnestored. Experienced
persons can predict the results of some events yet to happeherefore save the resources

expended in these events.

1.1.1 Search is a general problem solver

There is no such a method as a universal problem solver fatasbses of problems. For
some classes of problems which are complex enough, a seaadeneral problem solver
for these problems. Many search methods have been devdimpgalving various prob-

lems, a successful search method depends not only on itetades (efficiency) but also
on its appropriateness for the class of problems it trieotees So, the requirements of
developing a good search algorithm should be that the dhgoris both general and effi-
cient enough to solve a class of problems. In an ideal sdnatve can simply apply a very
general search method to attempt to solve all problems. Y&nple,exhaustive enumer-
ation can be used to solve all problems only if the computation @me space resources
are unlimited, if this is not the case, then exhaustive ematios will fail easily. This is

because exhaustive enumeration is not efficient for manytmaproblems, which cannot
be solved in linear or polynomial time. On the other hand, sdmsal search based algo-
rithms are very efficient only on a small range of problemsicivimakes these algorithms

not general enough.

In general, there are many standards to classify searchoagtsuch as heuristic or
non-heuristic search, local search and population-baaedi@l search. The former stan-
dard emphasizes the utility of problem-specific domain Kedge. The later standard
emphasizes the difference in search methods. It is the Etdadard that will be consid-
ered within this thesis. In single point local search basethods, a search is carried out
locally and tries to find some good solutions close to theanursolution. Therefore, local
search methods tend to find good solutions quickly. Somd kezrch techniques itera-
tively improve upon a solution by searching in its vicinityr foetter solutions. If better
solutions cannot be found, the process terminates; therusolution is taken as a locally
optimal solution. For example, for tadkassume we have found out a feasible travel route,
a change or substitution of part of this route with anothdrsute could result in a better
travel route by avoiding an accident. A local search invele risk that a search is cheated
into a local optimization.

Unlike the local search strategy, the population-basedtBeansiders many solutions
at the same time and works on the whole set of solutions (albedpopulatior). All of
the solutions have an opportunity to be involved in the de@rocedure, and all of them
are possibly modified and substituted. A local search isaipdrin a one-by-one fashion,
while population-based search is carried out in parallelo@al search is not repeatable
and it never goes back, the previous visited solutions arstoeoed for revisiting, instead,
they are discarded immediately when they are not used to aawpth other solutions. In
a population-based search, all solutions are maintaingeiourrent population, as are the
modified ones which will form the new population. In this wéye local search is more
like a way of ‘constructing’ a solution, while the populatibased search is more like a
way of ‘evolving’ a population of solutions. The results b&tevolution of a population is
that some of the solutions become better and some are worse.

In this thesis, we focus on the population-based searchadetbspecially, a class
of such search methods call&dolutionary Computation (ECEvolutionary search tech-
niques, such as§enetic Algorithms (GAshave recently gained considerable attention.
Evolutionary computation is inspired by Darwin’s theoryeeblution. For a given environ-
ment that can host only a limited number of individuals, thenpetition of reproduction
and survival are inevitable. Each individual is a unique boration of phenotypic traits,
representing a solution, the object representing theraigiroblem context are referred
to asphenotypeswhile their encoding, that is, the individuals witHiC, are calledgeno-

types Therefore, on the side of the original problem contextusohs or individuals are

used to denote points of the space of possible solutions.sga@ce is commonly called the
phenotype spaceOn the side oEC, chromosome or individual can be used for points in
the space where the evolutionary search actually takes.pldis space is often termed the
genotype spacd hese solutions and individuals are evaluated by the emvient. Natural
selection favors those individuals that fit the environniegiter, the principle a$urvival of
the fittest The fitter individuals (parents) are more likely to be stedddo reproduce new
individuals (offspring) which are expected to be betteivithhals because of the combina-
tion of good genes inherited from their parents. There acerhain variation operations to
generate new individuals, the mutation operates on oneithdil by randomly changing
a part of its genes; while the crossover combines two or nma@iduals to produce new
ones. The new individuals are then evaluated and selectesifaival. In this way, evo-
lution continues. Selection and variation operations laeemhain sources in the evolution
procedure for diversity and quality improvement of the pagan.

To understand how evolutionary computation is used to soptenization problems.
We firstly describe these optimization problems and theinrfeatures which make these
problems challenging for many optimization algorithms.e$& understanding about the
optimization problems are necessary and beneficial to tlkerstanding of evolutionary
algorithms. There is an important tool which can help fos timderstanding, it is the idea
of landscape The individuals or solutions space introduced above cso la¢ described
with fitness landscape. Fitness landscape is defined as@dgp FithessLandscape
(S,V, f), where

1. Sis the set of all potiential solutions;
2. Vis a neigbourhood functiory : S — 25, ¥xe S, V(X) = {ye S| d(x,y) < 1};

3. f is afitness functionf : S — K.

Within a landscape, as shown in Figukel, the height dimension belongs to fithess:
high altitude stands for high fitness, the other two or moreedisions correspond to in-
dividuals’ genes. That is the horiental plane holds all gsesgenes combinations, the
vertical values show their fithnesses. Hence, each peaksamiea range of successful
genes combinations, while troughs belong to less fit contimng. A given population can
be plotted as a set of points on this landscape, where eadk doé individual realizing
a possible genes combination. Evolution is then the procegsadual advances of the

population to high-altitude areas, powered by variatiot aatural selection.

2000

=500 -500

Figure 1.1: An illustrative example of landscape

After the definition and illustration of landscape, we canvrexplore the main prob-
lem features which make the real optimization problemsadiffito solve. Those problem
features and the problem landscape types correspond tam#sataccordingly. That is the
implict problem features will be reflected in the problemdacapes explicitly. We list and
classify the main problem features or landscape types wiklebwn and well-studied in

optimization community as follows:

1. Discrete (combinatorial) and Continuous (real) vaeabl

The discrete optimization problems are the problems whosgisns can be ex-
pressed exactly using a finite length string of integer patans. While, the con-
tinuous optimization problems contain one or more contirsuparameters and are
usually tackled by choosing a finite precision with which xpreess the parameters.
The parameter values may then be represented using chromasso which the al-
lele value of each gene reprsents the value of a paramegetlgligiven a precision.
Genetic Algorithms are considered as most suitable forrpirepresentation of vari-
ables. However, more and more work of apply(&§ for continuous representation
problem have been investigated. There are two important &&dggm algorithms
Evolution Strategies (ESnd Evolutionary Programming (ERypically operate di-
rectly on the continuous decision variables, and thus th@rators are particularly

suited to these problems.

2. Dimentionality

Dimensionality refers to the number of dimensions of theapeter space. High-

dimensionality problems are more representative of redldyroblems, in compared

8

with low-dimensionality problems. Also, high-dimensidibaproblems are more
difficult to solve than low-dimensionality problems, besadt is evident that high-
dimensions means more variables and therefore biggertsspace. Also, high-
dimension problems may contain more interactions betwéigereht dimensions,

these interactions cause more complexity for optimizagigorithms.

. Multimodality

Multimodal problemsre those problems in which there are a number of points that
are better than all their neighbouring solutions. Each es¢hpoints is a local op-
timum and denote the highest of these as the global optimuwbléins in which
there is only one point that is fitter than all of its neighlxare known asnimodal

problems

Most real-world optimization problems of interest are nmtidal, that is they contain
more than one optimum. Sometimes, the optima in a multimiadalscape may be
of different levels or of the same level. If they are all of g@me level then they are
all global optima. Finding one of them is usually sufficiemsblve the optimization
problem exactly, thus multimodality can potentially makprablem easy, as many

points are easier to search for than one.

If the optima are of different levels, then some are not dlapdima. These local
optima can cause difficulties particularly for local-séaeigorithms such as hill-
climbers, because they can become stuck in them, unableapeso any point of
better evaluation. Genetic algorithms and other populabiased algorithms are of-

ten considered as being particularly suited to searchingmmdal landscapes.

. Discontinuity and Continuity (Non-differentiable andff@rentiable)

There are some real optimization problems whose objeatinetion values are dis-
continuous, such as the combinatorial problems which avaya non-differentiable.
When the objective function landscape is continuous, ib&sjble that gradient meth-
ods are more suitable than evolutionary algorithms. DiSnaity is not usually re-

garded as a main factor of problem difficulty.

. Epistasis (Non-separability) and Linear separability

Epistasis is a measure of the degree of interaction betwa@meters in an objective
function. If a problem has no epistasis then all of the patarse&an be independently

optimized, so that the number of points that must be visgedery small compared

9

to the whole search space. If the parameters in a problemeapll into groups
in such a way that, taking each group separately, the paeamalues within that
group which give the best evaluation, with the values of #lleo parameters held
constant, are the same as those in the global optimum, tieeprtiblem is linearly
separable. On the other hand, if in a problem, the contobstiof all parameters
depend upon all others then the problem has unboundedspiatal is not linearly-
separable. Such a problem is generally difficult to searamgusn EA or any other
general-purpose technique. For this reason, epistasism@siasis variance have been
used as predictors of problem difficulty. It has also beemgeated by some that real-
world problems exhibit bounded epistasis and this makesssiple to search them

efficiently using EAs and other metaheuristics.

. Unconstrained, Linear constrained and Non-linear camstd

Constraints are virtually ubiquitous in real world optimion problems, both dis-
crete and continuous, so we should expect that good geperpbse search algo-
rithms can deal with constraints. Constraints can be lirsgat non-linear. For
some problems, the optimum located in different placesiquéarly on the constraint
boundary, and the feasible and infeasible regions haverdiit sizes. It can be ar-
gued that population based evolutionary techniques aterlmiited to constrained
optimization problems, because EAs can traverse an itfieassgion and less pos-
sible to be trapped in suboptimal feasible regions. theeesame other different
approaches to deal with constraints, including penaltgtions, decoders, and repair

mechanisms.

. Neutral fitness landscapes

The neutral fitness landscape explores another difficultparfy optimization prob-
lems. Neutrality results in the search algorithms lossiingation because there will
be no enough various fitness information available to retieetperformance dif-
ference among solutions. Based on the definition of fithesdsieape above, the
neutrality of the fitness landscape can be further chanzetbwith the idea ofest of

neutrality. A test of neutrality is a predicate:

isNeutral: S x S — {true, falsg.
For exampleisNeutrals,,) is trueif:

10

f(s) = (),
| f(s1) — () I< 1/M, with M is the population size,

f(s) — f(s) is under the evaluation error.

The neutral neighborhooaf sis the set of neighbors which have the same fitness

f(9)

VieulS) = {s € V(9) | isNeutrals, s)}.

Theneutral degreef a solution is the number of its neutral neighbors.

nDegregs) = #(Vneu(s) - {s}).

A fitness landscape iseutralif there are many solutions with high neutral degree. If
we consider applying a evolutionary algorithm to solve apgm with neutral fithess
landscape, then we found that the main feature of neutraisittandscape is that, a

considerable number of mutations have no effects on thesfitmalues.

To this point, we return to those tasks we introduced at tigenioéng of the chapter, and
try to solve them using one of the paradigm algorithm&Gf the GA, without formally
introducing it. For tasi, one could simply use a ‘search agent’ to help with this t&ske
of the possible implementations for this agent is maintegra population or set of possible
routes given the starting and arriving positions by the ,used repeatedly searching for
new and better routes. The routes are evaluated by the neeasots of length, traffic
conditions, etc. This information could be collected by #yent according to previous
statistical data or real-time releasing updates from thgsciraffic management center.
The search is used to create new alternative routes acga@some current good routes.
If there are some better routes, then they are kept and soméad routes are deleted.
The newly-generated routes will simply substitute soméspaf the current good routes
with some other possible subroutes (or roads). Those sutiesticould be more beneficial
by avoiding a road which is quite often congested, or couldsew the current routes by
increasing their lengths. A search can take a certain numwibeycles before stopping,
and the route returned should have the following featutteis, mot necessarily the best
(which we could not really know) and also is not the shoriéstyoids some serious traffic

congestions by traveling on some lanes instead of main roectssionally, and under the

11

estimated travel time by the agent, it takes the least trayéime. For task, we assume
the variables are all real numbers. If the number of vargbtmstitute one input value for
the mathematical function i and for each variable, there atequal possible values, then
we will haved" different input solutions. And the set of these solutiorrsrfahe solution
space. The search is then used again to create new altersalitions based on the current
good solution from an initial set of solutions which could temdomly sampled. All of
these solutions (set of variables assigned with real nushlaee evaluated by feeding them
into the formula and a function value is calculated. Thodetems which have higher
function values (maximization) are emphasized and arengav@igher probability to be
involved in producing a new solution. The new solutions aptknto the next set, where
some bad solutions are deleted subject to a pre-fixed set Azstated before, this task
has the difficulty that the invisible landscape of the fuoictcould be very irregular. The
advantages of the population based search method for shigita that the situations where
some solutions are attracted into some local optimum dopyaydo other solutions which
could represent the global optimizations successfully.

For task3, how to apply a population based search to solve this taskilandela-
tive aspects which need to be considered are beyond the stdips thesis, but we still
emphasize two main aspects which have arisen from this teskt, to keep an evolv-
ing population of solutions is crucial to deriving qualifisdlutions, solutions that are
well distributed on the so-calleRareto front Second, there is a research field called
Multi-Objective Evolutionary Algorithm (MOEA)Deb0] in the EC community, which
completely contributes to how to apply evolutionary altuns to solve multi-objective
optimization problems and has shown novelty over the fi@uil weights-based methods.
For task4, to solve this task witlGA, the selection of a suitable representation for this
problem and how to encode them into an acceptable formatdoation operations are
important. Each board status is represented as one sqlthienefore the whole set of all
possible or legal moves (board status) constitute the lsspace. The search is carried out
in a similar way to that stated above, except the evaluatiantfon is much more difficult,
which may include some recursive definitions and rewardieghmanisms.

For taskb in this thesis, chaptétis dedicated to the solution of problénthe details of
the solution procedure and experiment results will be prteskuntil then. For tasg, again
the representation of each solution for this task is not easywill influence the whol&SA
search procedure being applied. Also, this task extendsimderstanding of the problem

application range foEC. Evolutionary algorithms are used to solve a wide range olbpr

12

lem styles, in fact, there is another paradigm algorithnredaBenetic Programming (GP)
[Koz92 Koz94 which is devoted to solving problems like ta6k where a very popular
representation for the solutions is a tree. And all the apoading search operations are
defined according to this special tree structure. Again,diseussion abouGP will not

be included in this thesis, b@P as another main EC dialogue does share many similar
features withGA.

Evolutionary algorithms have the advantage that all pdssliernative solutions are
kept, therefore potential good solutions (solutions thanéually cause global optimum
performance) can be retained. Furthermore, if there are/mglabal optimums, all of them
are possibly captured within the population, while for lo®@arch methods, at best, there
is only one global optimum which can be found. Compared wottal search methods,
population based search methods have a wider view on the @ntiblem search space, it
is therefore less likely to be cheated in the local optimumydhd the consideration &C
as a search-based problem solver, it has some other adeantgspects, first, the idea of
‘EC’ itself is a fascinating idea, how to realize and simalttis idea in computers and ob-
serve its behavior will create considerable interests th bomputer science and biological
research. Computers can simulate the millions-of- yeamg-evolutionary process within
hours. SecondiC offers an automatic problem solving method for the rapidigngng
and demanding problems fiel&C is capable, because it deals with demanding problems
in a parallel styleECis automatic, because it selects good solutions from maegnaltives
and can generate new and better solutions in a progressiles gynally,ECis not a simple
search method, or optimizer, it is a powerful natural probsolver. Two noteworthy and
beautiful arts produced by evolution probably are the warddive in and the human brain,
which we cannot fully understand yet.

Althourgh having such many advantagEs; still has another very outstanding feature
which makes it even more attractive and successful probtdvers This feature is called
adaptation In fact, all theEC paradigm algorithms have this feature and show adaptation i
different aspects and extents. Especially B&algorithms have adaptation implicitly and
are well-known as introducing self-adaptation into E@ field. We introduce adaptation
and self-adaptation here only in context of evolutionarggeboptimization problem solving
methods.

Adaptation is the evolutionary process whereby a populdtiecomes better suited to
its habitat. This process takes place over many generatamusis one of the basic phe-

nomena of biology. The term ‘adaptation’ may also refer teatudre which is especially

13

important for an organism’s survival and reproduction. ISadaptations are produced in
a variable population by the better suited forms reprodyanore successfully, that is by
natural selection. Adaptation is, first of all, a procest#)eathan a physical part of a body.
Adaptation is not always a simple matter, where the ideahptype evolves for a given

external environment. All adaptations help organismsisam their ecological niches. In

this thesis, we discuss adaptation only in the context ofugéamary computation.

In an evolutionary algorithm, usually, adaptive paranmet@ntrol takes place when
there are some forms of feedback from the search that sesvegpats to a mechanism
used to determine the direction or magnitude of the changjeetstrategy parameter. The
assignment of the values of the strategy parameters majvenecedit assignment, based
on the quality of solutions discovered by different operst@arameters, so that the up-
dating mechanism can distinguish between the merits of etingpstrategies. Although
the subsequent actions of the EA may determine whether aheatew value persists or
propagates throughout the population, the important goinote is that the updating mech-
anism used to control parameter values is externally segplather than being part of the
‘standard’ evolutionary cycle.

A more advanced idea introduced by evolutionary computatithe self-adaptation of
parameters. Here, the parameters to be adapted are enatwldtkichromosomes and un-
dergo mutation and recombination. The better values oktkesoded parameters lead to
better individuals, which in turn are more likely to survesed produce offspring and hence
propagate these better parameter values. This is an inmpdittinction between adaptive
and self-adaptive schemes: in the latter the mechanisnibdaredit assignment and up-
dating of different strategy parameters are entirely igiplihat is they are the selection and
variation operators of the evolutionary cycle itself.

Adaptation is an very important concept in evolutionary paoation, later in this thesis
we will see concrete instance optimization algorithms Whiave adaptation as their main
advantage compared with other optimization algorithmsy abme more advanced hybrid
optimization algorithms where adaptation is introducedbyer techniques like machine
learning and statistics. As adaptation does not only betorgyolutionary computation,
when machine learning techniques are introduced, we wab aliscuss the relationship
between adaptation and learning.

Despite its advantageEC also has some features which are not satisfying when used
to solve certain type of problems. Such problems may tylyicelve a huge search space

and also the measurement for each solution may be very expencomputational time.

14

This leads us back to the time and space limitation issuenatieit is, for these problems,
the expensive measurement requirement is not affordabteédcevolutionary search algo-
rithms, due to the fact that evolutionary search methodsta@hastic trial-and-error style
problem solving methods. The search is completed by sjighddifying the current solu-
tions blindly and at random. The modification and improvethpncedure could be very
slow, and they heavily depend on the extent of the changehwteeds to be parameterized
correctly. However, selecting the good parameters isfitssehallenging task and can be
seen as an optimization problem on its own. If the paramerersiot set suitably, then the

expected improvement in performance cannot be achievdg.eas

1.1.2 Evaluation is expensive

Throughout our discussion so far, we have not yet emphasiméchportant concept, the
evaluation of solutions. Evaluation is an important congranin search based problem-
solving methods. It is used to measure the quality of thetwwis found during the search
procedure. Such a measurement will be utilized in many s during the search proce-
dure. Those situations include, first, selection of sohgias the objects of being improved.
For example, in &A search, a subset of the population needs to be selectednatlier
parents which will then reproduce to create new individu&kscond, measurement of the
quality of solutions are needed when new solutions are géger For example, in a hill-
climber local search method, when a new solution is gengffaben the current solution,
we need to know whether this solution is better than the atioee or not, this comparison
needs suitable measurements.

However, evaluation could be very expensive, as in somatsins, computer-based
simulation and real implementation actions are neededuseéconsider the tasks at the
beginning of this chapter. To evaluate tdskn fact, we can only estimate these travel route
plans using some previously available information, suchhaslength of the roads, the
usual traffic conditions on these roads, etc. Evaluatingdhtevel plans requires actually
traveling on these roads which constitute the routes by céus, whose expense is not
restored. We never evaluate a route by actual travelingeadswe always estimate in
advance. The situation for ta8ks much better, because the evaluation for a mathematical
function is simply the computation of the function valueshithe given function formulae.
We discuss task first, the measurement of a good move in a current chess btaedis

not direct, it may depend on many factors, the strategy thggpluses, the previous moves

15

and the next moves can all determine how ‘good’ this curremtems. A not very attacking
move does not mean a bad move, and the most aggressive mowd gaarantee the final
win of the game.

For the remaining tasR, task5, and tasks, we group them as the very expensive eval-
uation tasks. The evaluation of the good design of an atrerafine contains many stages,
such as computer simulated designs and experiments, imegaind distance practical fly-
ing tests etc. This is obvious technically and financiallgpensive. In task, the evaluation
of a medical treatment plan for chemotherapy against canegrneed to run a computer
virtual simulation program to simulate the real effectsmgécting medicines into the bod-
ies of patients. This simulation also needs to consider rsaigreffects which may cause
damages to the patient’s organs. And the entire procedw@sr® be finished in a long
period of time (usually months) before we can see the effgfdi®atment. This makes the
evaluation for this task not only expensive but also riskinaly, for task6, to evaluate
the built model, a procedure calletbss-validatiorfKoh95 is usually used in an unbiased
way, this procedure contains many rounds, each round iaggbartitioning the available
data set into two subsets, the first data set is the trainingeséorming the analysis, the
other data set is the validation set or test set validatiegtialysis. To reduce variability,
multiple rounds of cross-validation are performed usirffedent partitions, and the valida-
tion results are averaged over the rounds. As we can seewisation procedure is also
very expensive in terms of computation time.

As we have discussed, for this class of problems includisg 8 task5, and task
6, the expensive evaluations in the search procedure can tinatme evolutionary search
methods struggle to find relevant good solutions efficiefthe huge size of the population

will amplify these expensive measurements and make theségons even more expensive.

1.1.3 Learning is useful

As mentioned before, learning is a frequent task in humaris/iies, as itis in scientific re-
search. There is a well-known and advanced research fid&tiddbchine Learning (ML)
[Mit97], which has been one of the cornerstone topic in Artificiaeligence ever since
its invention. It contains many advanced techniques, armdeiating consistently increas-
ing research interests and making rapidly progress. Giydearning is a procedure that
works on past experience, and produce patterns or modethwhn automatically make

intelligent decisions for the future.

16

There are many standards by which to classify machine leguaigorithms. Broadly,
we can classify learning algorithms sspervisedunsupervisedandreinforcementor as
inductive and analytical, or as lazy and eager etc. Manysidearning algorithms are
supervised. For example, the Decision Tree learning mdtb8dBayesian Network (BN)
Bayesian learningder], Neural Network (NN)earning Hay99, Support Vector Machine (SVM)
[CV9IY5] learning andk-Nearest-Neighbors (KNNgarning. Supervised learning is the ma-
chine learning task of inferring a function from labeled aughervised training data. The
training data consist of a set of training examples. In suiped learning, each example is
a pair consisting of an input object and a desired outputevadusupervised learning algo-
rithm analyzes the training data and produces an inferrectiton, which is often called a
classifier or a regression function for discrete and cowtiisloutput. The inferred function
should predict the correct output value for any valid inphojeact.

Unsupervised learning refers to the problem of trying to faimdbden structures in un-
labeled data. Since the examples given to the learner aabeled, there is no error or
reward signal to evaluate a potential solution. Many chirsgealgorithms are examples of
unsupervised learning.

Reinforcement learning concerns with how an agent sholde #&ztions in an envi-
ronment so as to maximize some notion of cumulative rewandnachine learning, the
environment is typically formulated as\arkov Decision Process (MDPand many rein-
forcement learning algorithms for this context are higldiated to dynamic programming
techniques. Reinforcement learning differs from standangervised learning. For rein-
forcement learning, correct training data are never ptesem@and the sub-optimal actions
are never explicitly corrected. The focus of reinforcenieatning is on-line performance,
which involves finding a balance between exploration andoggtion. The basic rein-

forcement learning model consists of:
1. a set of environment states S;
2. asetof actions A;
3. rules of transitioning between states;
4. rules that determine the reward of a transition;
5. rules that describe what the agent observes.

The rules are often stochastic. The observation typicallglves the scalar immediate

reward associated to the last transition. In many worksagjemt is also assumed to observe

17

the current environmental state, in which case we talk ahdiubbservability, whereas in
the opposing case we talk about partial observability. Sones the set of actions available
to the agent is restricted according to different situaion

A reinforcement learning agent interacts with its envireminin discrete time steps. At
each time, the agent receives an observat@ywhich typically includes the rewand. It
then chooses an actia from the set of actions available, which is subsequently gen
the environment. The environment moves to a new satand the reward,,, associated
with the transition §, a;, &1) is determined. The goal of a reinforcement learning agent i
to collect as much reward as possible. The agent can chogseaon as a function of the
history and it can even randomize its action selection.

When the agent’s performance is compared to that of an aglichvacts optimally
from the beginning, the difference in performance gives tsthe notion ofegret Note
that in order to act near optimally, the agent must reasontghe long term consequences
of its actions. Thus, reinforcement learning is partidylavell suited to problems which
include a long-term versus short-term reward trade-otfiak been applied successfully to
various problems, including robot control, elevator sehied), telecommunications, game-
playing.

Among these three learning algorithms categories, as weseanthe reinforcement
learning algorithms solve the most general or complex gmisl In compared, supervised
learning methods solve the most specific or well-definedlprob.

Meanwhile, many learning algorithms are inductive leagniinductive learning is to
use the training data to induce a set of hypotheses thatibegbe given training data on
the whole data space under the same distribution for bottrdiveng and unseen test data.
Once the hypotheses are produced, they can be used to gredterget classification of
the unseen data. In the same context, in analytical learpngr knowledge is used to
analyze or explain how each observed training examplefigatithe target concepts. This
explanation is then used to distinguish the relevant featof the training data from the
irrelevant features, so that data can be generalized bastxhal rather than statistical
reasoning. Therefore analysis learning can improve legreificiency. In most analysis
learning methods, in addition to the training data, an extlais derived from the training
data and is consistent with both the training data and thesponding domain theory. This
rule, when used for classifying the unseen data, will onlyable to predict one class, the
unsatisfying data will be classified into another class.

In this thesis, we will use the former standard of supervisadupervised and reinforce-

18

ment learning as the classification standard for machimrailegalgorithms. And all of the
learning algorithms applied and discussed in this thesisapervised learning algorithms.
This is due to the fact that, all of our expecting hybrid opgation algorithms should have
the capacity of indicating the promising solutions for tlkerent evolving population, this
task can be finished by supervised learning methods with élse gerformance solutions
and the worst performance solutions as the training datfardugh, the unsupervised and
the reinforcement learning can all be used to guide optitimzan other ways, it is beyond
the range of the research conducted in this thesis.

Having talked about the learning algorithms and the clasdibn standards generally,
we will discuss the task that can be solved by these learrdgagithms, that is the classi-
fication or concept learning task. For a typical classifaratearning task, the experience
data consists of positive and negative training data, egittealata item contains a number
of data values which characterize a set of attributes. Tétealdribute is called the target
attribute. The task for a learner or classifier is to find orstarct a model that correctly
classifies the training data according to the target atibfter constructing such a model,
when a new data item is gained in future, its target attribatae should be correctly pre-
dicted with this learned model.

Machine learning is not the only method which concerns thssification task, there
are similar methods developed in parallel in statistics.example, for the decision tree in-
duction algorithm, statisticians have done much work ossifecation and regression trees,
which are the similar methods for generating trees from ¢tasi And the use of nearest-
neighbor methods for classification is the standard sizdigechnique that has been exten-
sively adapted by machine learning researchers to impiagsification performance.

From the above introduction of a classification learningcpoure, we found that learn-
ing contains two main functions, the model building funotand prediction function on the
model. It is due to these functionalities that learning carubed to guide the evolutionary
search procedure, and is able to overcome the shortcormdgsated in the evolutionary
based search procedure. That is, learning can be used ttyumires model which is the
description of the current search space. This model thebearsed to predict the quality
of the unexplored solutions, and to indicate where the ungeemising solutions could
lie. If we consider this effect in the balance of explorataond exploitation, the learning
is expected to emphasize exploitation by indicating themsong region and generating
more new individuals from this region. This adjustment & ttalance would benefit the

evaluation-expensive problems by exploiting into the peang area of the search space to

19

gain promising solutions quickly. This is crucial to the sess of solving these problems.

We have introduced the concept of adaptatioh.th1when we talk about search based
problem solving methods. One of the most important featfievolutionary search algo-
rithm is that these algorithms have the capacity of adagbrtge environment where it is
involved in. Also, the more advanced feature of self-adapteof the evolutionary algo-
rithms have the capacity of learning the correct strateggrpaters and therefore are able to
adapt the environment more efficiently. In this section, \ge aave explored the advanced
topics about machine learning algorithms, their capaeityplicit construction forms, and
classification standards.

An natural question arise, that is what is the relationskipvieen adaptation and learn-
ing. Is there any link between these two advanced featumes fwvo seemly different
problem solving fields. The role of adaptation and learnirggkeecoming increasingly es-
sential and intertwined. The capability of a system to adaghier through modification
of its physiological structure or via some revalidationgess of internal mechanisms that
directly dictate the response or behavior is crucial in maay world applications. Adap-
tation is the core capacity for most machine learning apgres.and whether the learning
algorithms are successful very much depends on their atapta the problem environ-
ment. This kind of adaptation can also be understoaopésnization For example, when
the ID3 decision tree learning method is applied on the givaiming data, the resulting
decision tree may suffer over-fitting in some extent, manstypouning based techniques
can overcome this difficulty, showing the adaptation of ghe®thods to construct or learn
more accurate tree models. Also, the BP algorithm for nengaborks learning is to adapt
(or optimize) a set of weight set to find the most suitable oetwstructure for a given
training data. Finally, in the reinforcement learning, whthe whole environment may not
be available, the algorithm can select more appropriaterescaccording to feedback infor-
mations to make progressive performance improvement,asielprocedure is an adaptive
procedure. Meanwhile, learning is a primary means to efideiptation in various forms.
They usually involve computational processes incorparatghin the system that trigger
parametric updating and knowledge or model enhancemetiiggiise to progressive im-
provement. We will see more concrete procedures of this kinthe following section
and also we develop such optimization algorithms wheralagiwill effect the adaptation

procedures.

20

1.1.4 Hybrid is the trend

We have introduced two general problem solving methodsceeand learning. Many
search algorithms can be used to solve complex problemsvaitbus features by explor-
ing the solution space in different ways. Learning can bel dusaunderstand the current
search status or progress, and make constructive suggestigredictions for the future
search procedure. Furthermore, we emphasized the shang®faced by the search based
methods, especially the fact that the expensive evalumtbbsome complex problems are
more problematic. To this point, we raise the question whithes the development of this
thesis. Namely, what is the effect of hybridizing search Eaining? More specifically,
will a learning method influence the evolutionary searchhods when it is embedded in
the search procedure? If so, how will learning influence ggarWill learning help to
overcome the shortcomings of evolutionary search? Beferbegin this investigation, we
claim that we believe that any learned problem-specific kadge and previous gained ex-
perience can benefit the general search problem solvingoahettapplied properly. How-
ever, these benefits come at a price. First, hybridizatioanmenore complex algorithm
designs and more computational resources and time. Sett@nicinge of the solved prob-
lems by the hybrid algorithms will inevitably be reducedigmared with the more general
search algorithms. Namely, we are in favor of M@ Free Lunch TheoreifiNFL)[WM97],
which states that if we average over the space of all posgibleiems, then all black box
algorithms will exhibit the same performance.

Hybrid is not a new idea in evolutionary computation, manyeotmethods and data
structure have been embedded into them. These new hybadthlgs are very successful
in practice, for example, some of these algorithms aread#tieMemetic Algorithm (MA)
[Mos89. MA are the evolutionary search algorithms that are combin#dadocal search.
The evolutionary search keeps the basic evolutionary festsuch as selection, variation
and survival selection, however, when the new solutionganerated, they are further im-
proved by the local search methods before they are involvétei survival selection stages.
The idea behind memetic algorithms is clearly based on thenbe between exploration
and exploitation, the evolutionary search is responsdnexploring the search space, while
the local search is used to exploit quickly through the neplaed local space. So, the
key design of a good memetic algorithm will be how to struetilve evolutionary and local
search more properly. And also, the success of the memgbcitdm also depends on the

problems it solves.

21

Modern hybrid algorithms have more advanced ideas embgdwbridization. They
adopt more advanced algorithms from machine learning atsts. Excellent paradigm
algorithms include th&ovariance Matrix Adaptation Evolution Strategies (CMAE®e
Estimation of Distribution Algorithms (EDAand theLearnable Evolution Model (LEM)
In this thesis, the development of our new hybrid algoritigrexpected to follow the same
pattern within these algorithms. And the inspiration of development is also derived
from the algorithms.

CMAESas a general optimization algorithm adopt Bverciple Component Analysis (PCA)
technique to find the covariance relations of the attribotethe selection mutation steps,
and therefore is able to learn from past evolution historisisTearning capacity makes
CMAES have better optimization performance.

EDAs are variants of the standard evolutionary algorithm. Asrthme of these algo-
rithms suggests, the new individuals are generated acwptdia probability distribution
rather than the variation operators. These probabilityridigtions are inferred from the
previous solutions in the search space by statisticalenfsx methods.

LEM is a more explicit hybrid algorithm. It employs a supervisaté based leaning
method called AQ learning algorithm, which can learn frora turrent solutions based
on their performance. The learned model, a set of rules, tsmguish the solutions as
two groups with different performances. This learned krealgk is then used to guide the
following evolutionary search procedure. This basic gpleebehindLEM inspired many

other ideas and also the development of our hybrid algostimthis thesis.

1.1.5 Contributions

The contributions of this thesis are:

Contribution 1 A simple genetic algorithm combined withnearest-neighbors learning
algorithm, theLEM Instantiated with KNN algorithm (LEM(KNN)) is developed.
KNN in this LEM instance algorithm is used as a ‘filter’ deciditg survival of the
new generated individuals. Also, a further refined varrabbthe LEM(KNN) algo-
rithm, the LEM Instantiated with distance-weight KNN algorithm (LEM{KNN))
is developed. LEM(dwKNN) extendsLEM(KNN) with the consideration of dis-
tance contributions. The performances of these algorithrescompared with the
standard genetic algorithms, showing that significant ouements can be achieved

by hybridizing even these very simple learning algorithnithwhe normal evolution

22

algorithms.

Contribution 2 Simple genetic algorithm combined wiimtropy-Based Discretization (ED)
ID3 decision tree learning algorithm are developed, rebpddyg. Some of the re-
sulting algorithms including, theEM Instantiated with ED algorithm (LEM(ED))
and theLEM Instantiated with ID3 algorithm (LEM(ID3)are all designed under the
general LEM framework and are based on the Learning-and@gng Hypothe-
ses method, showing the flexibility of this framework. Witie tdevelopment of these
LEM instance algorithms, we have also investigated differechniques and methods
which are important components of the hybrid algorithms afifelct the functionali-

ties and performances of the hybrid algorithms.

Contribution 3 The resulting algorithmsEM(KNN), LEM(ID3) and their variant algo-
rithms are compared with other hybrid algorithms, suciC&SAES andEDA, on a
number of test problems, including the CEC 2005 real-patanfienctions optimiza-
tion suite and the cancer chemotherapy optimization probRerformance on these
problems have shown these LEM instance algorithms are giogisignificantly
outperform the standard evolutionary search procedurg,campete well against

state of the art hybrid algorithms.

1.2 Outline of the thesis

This thesis contains eight chapters, beginning with tii®ductory chapter. There are two
literature review chapters, introducing search, evotytlearning and hybrid of evolution
and learning techniques. Chapteintroduces theKNN based LEM hybrid algorithms,
Chaptel5 is for the Entropy-Based Discretization method for LEM arste algorithm and
the resultind_.EM(ED) algorithm. Chapte® deals with applying decision tree construction
algorithm ID3 as the learning component and the resultiBlyl(ID3) algorithm. Chapter
7 introduces and solves the optimization problem of cancenatherapy treatments. Con-
clusions of our work are included in Chap&rWe introduce the details of these chapters
as follows:

The review of search and learning methods used in this tiesihapte2. Search as
a general problem solving method to solve optimization [eals introduced. We classify
search algorithms according to two broad classes, the &whlpopulation-based search

methods. With the emphasis on the population-based seattiods, theé5A andES are

23

introduced, respectively. Some main learning algorithpydiad in the hybrid algorithms
in this thesis are introduced. These algorithms are indeit#iarning algorithms, statistical
methods and probability-based methods. The decisiondégraihg algorithm ID3 and the
covering algorithm AQ are introduced first along with the twain learning strategies be-
hind them. Two important statistical learning methods Kh&N and thePCA are explained

next. Finally, the Bayesian network inference and Bayelgaming are introduced.

Chapter3 mainly introduces hybrid algorithms. We only focus on thmeedern hybrid
algorithms. They ar€MAES, EDA andLEM. The main principles behind these hybrid
algorithms are explained. All of these algorithms are usedampare with our hybrid
algorithms on a number of test optimization problems in th&sis. And also, the LEM
framework is the main source of inspiration for our hybrigaithms.

Chapter4 introduces our first and simplest learning and evolutionriglyalgorithm -
LEM(KNN). First, LEM(KNN) is the simple genetic algorithm combined with the super-
vised and lazy learning method KNN. SecohdEM(KNN) does not follow the original
LEM framework principle, where learning is used as a hypsithgeneration method for
generating new individuals for the next generatiBiNN is used as a ‘filter’, deciding the
survival of the new individuals being generated. This is & mdea in the hybridizing of
learning and evolution. It extends the original LEM framekvand shows the flexibility of
this framework. The flexibility comes from the fact that theanlearning method cannot
only be embedded into the framework, but also the fact tleatidnys in which learning and
evolution interact can vary. A further refined algorithmioé t EM(KNN) algorithm based
on distance weights is developed as well. The resulting#hgo, calledLEM(dwKNN), is
presented, and its advantages dveM(KNN) are explained. These algorithms are tested
on a number of real-parameter function optimization tesbf@ms compared with a stan-
dard genetic algorithm, their performances are reported.

Chapters introduces theeEM(ED) algorithm, a genetic algorithm combined wHD.
LEM(ED) is developed based on our ‘cheap’ implementation stratégged on this strat-
egy and the ‘Learning and Instantiation’ method in the LEMnfiework, the simpl&D
method is employed as the learning component in this LEMaims algorithm. We also
compare it with a simple genetic algorithm and the standardion of CMAES on a num-
ber of real-parameter function optimization test probleitge performances of these algo-
rithms are also reported.

In Chapter6, based on the development experiences of the previous geatfims, we

introduce the.EM(ID3) algorithm, which employs the decision tree learning akponi D3

24

as the learning component and a standard genetic algorshimeaevolution component.
ID3 uses training data derived from current population tostaict a decision tree, which
is then transformed into a set of rules representing thadéebinypothesis, based on this hy-
pothesis, the new individuals are instantiated. We desigmel developed new techniques
and methods important in the success of the developmenihitorid algorithm. The
performance oL EM(ID3) was tested on the CEC 2005 special session on real-parameter
function optimization. And the performance is comparechwato variantCMAES algo-
rithms and advanced evolutionary algorithms, ltbeal Restart CMAES (LR-CMAESAI-
gorithm, theRestart CMAES With Increasing Population Size (IPOP-CMARgorithm
and thePopulation-Based, Steady-State Procedure for Real-Réea@ptimization (K-PCX)
algorithm, respectively. Through these results, we foundtvatLEM(ID3) performs very
well and is competitive with these general hybrid optimizaalgorithms.

Chapter7 introduces an evaluation-expensive problem, optiminatibthe treatment
plan for cancer chemotherapy, where the saving of the evaluamount could be very
crucial to the success of solving this problem. The evabumator this problem could be
very expensive, including a necessary real simulationgmore either in a virtual computer
system or on a patient’s body. These procedures usuallyatkdtey period of time (months)
and risk causing side-effects on patients’ organs. EIVI(dwKNN) and LEM(ID3) al-
gorithms are both applied on this cancer chemotherapy @nmoband the results are re-
ported, showing outperformance over the traditional geragorithms and competitive-
ness against theMAES and variant algorithms dEDA.

Chapter8 concludes this thesis. First, we summarize the work we hawve dbout
hybridizing evolution and learning based on the LEM framewoSecond, we list the
contributions we have achieved during the developmentasfdinybrid algorithms. Finally,

we indicate the work remaining to be further investigatedunfuture research work.

25

Chapter 2

Methods for Search and Learning

2.1 Overview

There are three core topics in this thesis: search, learamd hybrid. In this chapter, we
explain the first two topics in detail, and the next chapteilie last topic. Search is used
to solve a problem optimization task. We give the definitibroptimization for problem

solving.

Definition An optimization problem requires us to maximize or minims&ene measur-

able function of one or more variables:

y="f(x (2.1)
subject tax € X wherex = {Xxq, X, .. . Xy} is adecision vectoand its components are called
decision variables Decision vectors are also often referred tosaitionsor candidate
solutions Thesearch spacwhich is the set of solutions one is going to search over, it ma
be some subset or supersedofThe functionf is known as thebjective function|f the
goal of the search is maximization théns sometimes called itness functionsr utility
function and the valug assigned to a solution is then fitnessor utility. Conversely, if
the goal is to minimizg thenf may be called theost functioror in the case of constraint
satisfaction, thgpenalty function However, in this thesis, we will not distinguish between
these names and will simply use the tdmess functionsAlso, we consider maximization
and minimization as equal optimization tasks, because ¢thaybe easily transformed to

each other.

To tackle the optimization problems, many search basedadsthave been developed.

We will explore some of these algorithms in the followingts&es. Our concerns in this

26

thesis are the evolutionary population-based search msttfior better understanding, we
compare them with another important class of search algost the local search. The
introduction to the local search will also provide a goodlarption of the global search
capacity, which is claimed by the evolutionary search mashorherefore, evolutionary
computation is used to solve global optimization proble@enerally, search methods not
only concern how to generate candidate solutions, but alsttver the solutions satisfy
some optimality criteria, that is th@nstraint satisfactiomssue. We do not deal with this
issue in general, but will discuss it when it is met in the gete problem.

Learning is used to solve another type of task, classifinatioconception learning in
this thesis. We will give the definitions later when the leagnalgorithms are examined.
These learning algorithms have either been applied in theidhyalgorithms which are
involved in our experiment comparison or will be incorpeihinto our hybrid algorithms.
We introduce these learning algorithms with a special ersigltan solving the classification

problems which is concerned within our hybrid algorithms.

2.2 Search Algorithms for Optimization

We explore the search algorithms in detail in this sectioefoBe starting this introduc-
tion, a word on general purpose problem solver is given fi&eneral purpose problem
solver is applicable to any optimization problem. It doesnmeguire any problem-specific
knowledge and structure, the only requirement is the obgdtinction for the problem.
Very often, one does not have any insight into how a probleghiribe solved, or which
strategy should be used. In these cases, it is best to usecagereral strategy, often called
ametaheuristicMetaheuristic is sometimes also callgddck-boxoptimization algorithms

or simply,general purpose optimization algorithms

2.2.1 Local Search

There is a class of metaheuristic optimization algorithniciv are based on a neighbor
structure, these metaheuristics are calledal Search (LS]JAK89]. Local search algo-
rithms work by finding a solution maximizing a criterion angoa number of candidate
solutions. They move from one solution to another based em#ighbor structure in the
space of candidate solutions, until a solution deemed @bptErcording to the criterion is
found or a time limit is elapsed. For example, a well-knoweelosearch algorithm called

Hill Climbing (HC) works by taking a starting solutiog and then searching the candidate

27

solutions in its neighborsl(x) for one x’ that performs better than or equalxo If such

a solution exists, then this is accepted as the new incundmdution, and the search pro-
ceeds by examining the candidate solutiondl{x('). Hill climbing is an iterative process
of examining the set of points in the neighborhood of theentrsolution, and replacing it
with a better neighbor if one exists. Eventually, this psxwill lead to the identification

of a local optimum: a solution that is superior to all thosé&smeighborhood. Let us look

at the definition for the gener&dC algorithm:

Definition Let (X,f) be an instance of a combinatorial optimization problem.efghbor-
hood function is a mappingy : X — 2%, which defines for each solutidne X a set
N (i) € X of solutions that are in some sense closke fthe setN(i) is the neighborhood of
solutioni, and eachj € N(i) is a neighbor of. We shall assume that N(i) for alli € X.
Roughly speaking, &C algorithm starts off with an initial solution and then comntally

tries to find better solutions by searching neighborhoods.

According to the above definition, a very good example ofdtithbing algorithm is the
Random Mutation Hill Climbing (RMHC)as described inJJHF93]. In RMHC, an initial
solution is first generated and evaluated, and this becongesurrent solution. Then at
each iteration, a copy of the current solution is made, arahdam mutation is applied to
the copy, producing a new candidate solution. The candsizdtdion is then evaluated, if
it is not worse than the current solution then it becomes thieeat solution; otherwise, it
is discarded. The algorithm may be stopped when a specifiedbauof evaluations have
been carried out, or when there has been no improvement ievtiiaation of the current
solution over a specified number of iterations. The gend€hlgorithm can be illustrated
as Algorithm1:

Here, the ‘local conditions’ are some local termination ditions, such conditions
could becount = |n(i)|, which indicates that the current local search will stopliiftlae
neighbors for the current solution are considered. It cao &dle changed asdunt =
In(i)]) || (best# i), which means as long as a better solution is found, thetiberavill
start again using the better solution as the new initialtsmu The iteration conditions are
the termination condition for the whole local search altijon, it is used to decide the depth
of the whole search, and could be simply the maximum allowedbyer of iterations.

However, the drawback of hill climbing based local searg@doathms is that, in gen-
eral, it cannot get out from the local optima, and cannot firedglobal optimization. And

also, the performance of hill climbing algorithms very muwtdgpends on the initial solu-

28

Algorithm 1 pseudo code for the genetall climbing algorithm
1: Setbest=1i;

2: Setiterations=0;
3: repeat

4: Setcount=0;

5. repeat

6: Generate the next neighbpe n(i);

7 Setcount= count+ 1,

8: if (f()) is better than or equal tb(bes)) then
9: Setbest=|;
10: end if

11: until (Local conditions are satisfied)
12: Seti = best
13: Setiterations= iterations+ 1;

14: until (Iteration conditions are satisfied)

tions. However, problems frequently exhibit numerous laegdima, some of which may
be significantly worse than the global optimum, thereforguarantees can be offered as to
the quality of the obtained solutions by local search atpars. A number of methods have
been proposed to get around this problem, in principle, #ikefry to change the search

landscapes in different ways.

Multi-Start Hill Climber

The problem of converging to a local optimum is overcome Isfaiting the search with
new search points within thiglulti-Start Hill Climber (MSHC)[Y196] algorithm. It is a
modification of the hill climbing search strategy. The musliart search defines a restart of
the algorithm from a new, random initial solution. After gateration, when there is no
improvement in the evaluation of the current solution, skeatarts from a point very far
away from the optimum and no information obtained from poasiiterations is reused. If
the algorithm is allowed to restart indefinitely accordioghis criterion, then it will find

a global optimum with probability 1.0 on all optimizationgimlems. This is clear since it
will eventually search all neighborhoods in the search sp&towever, the length of time
needed to do this will, in general, exceed that needed foteaméistic enumeration of the

whole search space.

29

Variable Neighborhood Search

Another method to overcome the drawback of hill climbingashange the neighborhood
function, theVariable Neighborhood Search (VN§)MMPOQSg]. It is a relatively recent
metaheuristic which relies on iteratively exploring ndaghhoods of growing size to iden-
tify better local optima. More precisely,NS escapes from the current local optimum by
initiating other local searches starting from points sadgitom a neighborhood of current
solutions. In this way, the current point’s neighbor sizéngeased iteratively until a lo-
cal optimum better than the current one is found. These stepsepeated until a given

termination condition is met.

Simulated Annealing

There exists an well-known local search algorithm caBedulated Annealing (SAAK89]
[KGV83], which is a generic method based on the Markov Chains. lgigimilar to the
RMHC algorithm, however it improves upon hill climbing algoritis by occasionally al-
lowing movements to worse solutions and is thus capablerping out of local optima.
The method draws an analogy from the annealing proceduretalsy where the tempera-
ture controls the arrangement of atoms in their lowest gnesgfiguration during the crys-
tallization process. In simulated annealing, moves arefed or rejected with a certain
probability depending on a function of the temperaturehghat at higher temperatures,
there is greater probability of accepting inferior movesmperature is gradually brought
down so that the solution converges. This crucial diffeeewith RMHC means that sim-
ulated annealing is able to search for a global optimum, ardkucertain conditions it
converges to a globally optimal solution with probabilitg1In simulated annealing, the
probability function for accepting the candidate solutjdnom the current solutionfor a

minimization problem is:

(2.2)

P {accept} :{ 10 if £(j) < £(); }

exg L) it £(j) > £(i).

wherec, € R* is a control parameter, which is some function of the iterak of the
simulated annealing algorithm. IBA , the value ofcy is set initially high, and is grad-
ually lowered to zero, so that initial transitions to higlmyerior solutions are frequently
accepted, but later these transitions become extremekelyIThe regime for controlling

ck is called thecooling scheduleand it specifies an initial value of the control parameter

Co, & decrement function for lowering the value of the conteolgmeter, a final value of the

30

control parameter specified by a stop criterion, a finite nemab transitions at each value
of the control parameter.

Proofs have been given ilK89], that theSA algorithm converges to the global op-
timum with probability 1.0, provided that the sequence d@l$r (or Markov chains) ap-
proximate a stationary distribution. However, this regsithat an exponential number of
trials are performed, and for some problems, it requiresensomputation than a complete
enumeration of the search space. Despite this extreme egitypsimulated annealing has

been practically applied in a large range of applicatiorsolee optimization problems.

Tabu Search

Tabu Search (TS)Glo9§ is a metaheuristic algorithm that uses a local or neighbodh
search procedure to iteratively move from a solutxdo a solutionx’ in the neighborhood
of x, until some stopping criterion has been satisfied. To egptegions of the search
space that would be left unexplored by the local search preg tabu search modifies the
neighborhood structure of each solution as the searchgssgs. The solutions admitted to
N*(x), the new neighborhood, are determined through the use ofanestructures. The
search then progresses by iteratively moving from a salwtito a solutionx’ in N*(x).

Perhaps the most important type of memory structure usedtermdine the solutions
admitted toN*(x) is the tabu list. In its simplest form, a tabu list is a shermn memory
which contains the solutions that have been visited in tbentpast. Tabu search excludes
solutions in the tabu list fror*(X). A variation of a tabu list prohibits solutions that have
certain attributes or prevent certain moves. Selecteibat#s in solutions recently visited
are labeled ‘tabu-active’. Solutions that contain tabtivacclements are ‘tabu’. This type
of short-term memory is also called ‘recency-based’ memory

Tabu lists containing attributes can be more effective ézns domains, although they
raise a new problem. When a single attribute is marked as thlautypically results in
more than one solution being ‘tabu’. Some of these solutibas must now be avoided
could be of excellent quality and might not have been visitéd mitigate this problem,
‘aspiration criteria’ are introduced: these override aioh’s tabu state, thereby including
the otherwise-excluded solution in the allowed set. A comiynased aspiration criterion
is to allow solutions which are better than the currentlykn best solution.

Although these and many other algorithms have been dewtogeackle the drawbacks
of the hill climbing strategy, as we can see, it can only beeblto some extent but not

completely. This is due to the key fact that the real focusufhout the search procedure

31

in the local search and all its variants algorithms is theenirsolution, which is also why
they are referred to as local searches. So, however thedeaath strategy is modified or
improved, it can essentially never overcome this drawb@bis is the reason why we need

a completely different strategy in the search for optimaat

2.2.2 Genetic Algorithm and Global Optimization

Evolutionary Computationgac9q [TFM99 [TFM994 [Mic96] and population based
search techniques have recently gained considerabldiatterUnlikely the above local
search methods, these new search-based problem solvihgasetork on a whole popu-
lation of solutions, it is this feature which makes them impiple able to solve the local
optimum problem faced by local search. Therefore, theylamecalledglobal searchmeth-
ods, and the procedure of applying these methods to soliiaption problems is called
global optimization Global optimization can also be defined under the neigh&tousture
used in local search, namely, the global optimxinms fitter than all of its neighbors under

any neighborhood structures.

Genetic Algorithm

One of the most well-known instance algorithms of E@family is the Genetic Algorithm
[Hol75, Gol89, DJ79, which has been used for solving a wide range of problenisdeg
function optimization problems and complex optimizatioalgems, where it is impossible
to obtain exact solutions within a reasonable amount of .tiG& draws an analogy from
the evolution of species in biology. Species evolve by medigenetic operators such as
crossover and mutation, and they survive through the mésimaof survival of the fittest
In genetic algorithms, this process is simulated by enapgiential solutions (individu-
als) using a chromosome-like data structure. New indiv&l(&hildren) are created in the
population through reproduction using crossover and rnwutatperators. These operators
ensure that children inherit qualities of parents and tlieypassed on from one generation
to the other. Only a certain number of good quality individugurvive each generation and
this ensures that the quality of the population improvef wéch generation.

The originalGA algorithm introduced by John HollanHpl75] is sometimes known as
the ‘simple genetic algorithm (SGA)or the ‘canonical GA.SGA works by generating an
initial population of chromosomes or individuals, evaksthe population using a fitness

function. Parent selection operation selects an interategiopulation based on the fitness

32

values and put these individuals in mating pool. These iddals are parents waiting

to take part in reproduction to generate the next populatidren reproduction operators
crossover and mutation are applied on parent individuatsdate the next population — the
offspring. These offspring are first evaluated, then saiveelection is applied on these
offspring to decide who will survive to the next generatidrhe above procedure repeats

until some termination conditions are met. The flowcha$GiA is given as Figur@.1

initialize

Current population

test

\

W satisfied

[Termination ConditionJ terminate

survival select parent select

Parent population

variation

Offspring population

Figure 2.1: Flowchart of the simple genetic algorithm

From the above descriptions and the flowcharS@A, we notice that population is
the basic unit for &A to operate on. The population is characterized by many ptiepe
such as population size and diversity, which all influeneegérformance of th&A. The
following GA operations we will discuss are all based on population.

The first step in designing a genetic algorithm is to definei@Ble representation for
the solutions. Namely, to define the representation in thkwerld, thephenotypesand
the representation iIBA space, thgenotypesA good design for representation is actually
to find a good map (encoding) from phenotypes to genotypeshémotype space, we use
the terms solutions or individuals, in genotypes, we tls®mosomeEach individual or
chromosome consists of a setvafriables or genes

Another important component (BA is theevaluationor fithess functionwhich is used
to assign a quality measurement. This measurement is usistitaguish the individuals
within one population according to their quality, and alsothe parent and survival selec-

tion procedure to act. In optimization problem, where wede#o optimize a certain kind

33

of objective, it is also calledbjective function

The selection of individuals to be placed in the mating pegerformed according to a
probability function that depends on some standards. Altegito this scheme, individuals
having higher fitness might be replicated multiple times @gpbaced in the mating pool.
The most well-known selection methods are fitness propmatiselectioniol75], ranking
based selectiorBak87], binary tournament selectio®fc95 BT96, GD91], all of which
can finish the task of selecting some promising individualparents.

After the generation of parent population (in the matinglpdbe variation operations
are applied to generate new offspring. There are two maiati@n operations, crossover
and mutation. According to different representations, dperators act differently. For
example, for binary representation, mutating one genemslgiflipping one bit from 1 to
0, or from 0 to 1. For real representation, mutating one genddde changing the current
gene valuex; by adding a new value generated according to a distributMeanwhile,
for binary representation, crossover is the operationgkelhanges parts of the two parent
individuals into each other according to one or several gfiedd exchange points. For
real representation, crossover can be implemented asgaveatues of the two parents for
all genes. Crossover is applied to randomly selected péinsdoviduals according to a
probability p., calledcrossover probabilityMeanwhile, mutation operator is applied with
a low probabilitypy,, themutation probabilityon each gene of each individual.

When the new individuals are generated by crossover or mntaturvival selection
must be applied in order to decide which individuals fromdkeof parents and offspring
should survive into the next generation given that the nessuof the environment are
limited, that is, the population size is fixed. There are atsmy standards for survival
section, such as, they can be age-based, the generatiodal, mbere the old individuals
are all replaced by the new individuals; or they can be fithasgd, the steady-state model,
which we will mention soon in the following sections.

GA works due to two main operations: variation and selectioaria#ion is to gener-
ate new individuals, it is the main search operator. The @gpaf variation operations
are crucial to the success of GA, they should be able to geneeav individuals different
enough from the existing individuals to represent the utmep search space. Selection
operation is also important in that, good individuals siddag selected and undergo change
to reproduce better individuals. Namely, the combinatimingood genes from the promis-
ing individuals should be inherited and changed to betternations of genes, therefore

producing better individuals with better fithess values.

34

We have introduced the idea of balance between exploratidregploitation, and also
the balance between them affects the quality and efficieradetoff issue mentioned in
chapterl. Good design of control strategy for this balance is cruiciathe success of the
GA search algorithm. Because, ifGA search focuses on too much exploration, it will
lead to an inefficient search, wandering around in the sesgrabe. If the search focuses on
too much exploitation, it will lead to a propensity to foctre tsearch too quickly, causing
Premature Convergencehich is the well-known effect of losing population diveysioo
quickly and getting trapped in a local optimum.

There are basically two ways to realize this balance, thdiagihpand explicit controls
of the search procedures. For the implicit way, for examiple selection pressure control
can be considered an implicit control of the balance betvexg@toration and exploitation.
Too much selection pressure results in converging too ¢itdo little selection pressure
results in random search behaviors. For the explicit wapesparameterized methods can
be used to control the process of the search, for examplgatametelCy in simulated
annealing. Good parameters can make the search exploreimibie early stages, while
it exploits more in the latter stages. And also, any form céraging heuristics or domain
knowledge can be used to emphasize exploitation, whileciaduhe utilization of this
information will result in more exploration.

The SGA algorithm is based on a generational model. There is alsthanoodel
calledsteady-statgenetic algorithm, where the whole population is not chdrateonce,
but rather a part of it. In this case, if the given populati@essu, andA new individuals
are generated, thehold individuals are replaced bynew offspring, the percentage of the
population that is replaced is called thenerational gapvhich is equal tol/u. An instance
of this algorithm is the GENITOR algorithmWK88], where two parents are selected for
reproduction and the offspring is immediately placed irite population, replacing the
worst member of the population, therefore the generatignigd/u. The steady-state
population model can be seen as an example of fithess basadatselection. Namely,
the worst individuals will be replaced by new offspring. Baveral classes of problems,
it has been reported that the steady-state genetic algodthperforms the simple genetic
algorithm [Sys91.

Over the years, several improvements over the originaltgeakgorithm introduced by
John Holland Hol75] have been suggested. For example, the CHC algorithm deselo
by Larry Eshelmanfsh9] is a variation on the genetic algorithm. CHC stands for 8ros

generational elitist selection, Heterogeneous reconibm#®y incest prevention and Cat-

35

aclysmic mutation. Important features of the algorithm after recombinationN best
individuals are selected from the parents and offspringeate the next generation, dupli-
cates are removed from the population, individuals areaamyl selected for reproduction.
However, certain restrictions are imposed on which striaigsallowed to mate, strings
within a certain hamming distance are not allowed to mateorffof uniform crossover
called HUX is used, where exactly half of the differing bite awapped. When population
converges and starts producing more or less identicafstrcataclysmic mutation is acti-
vated, all strings except the best are heavily mutated. Resluations indicate that CHC
is generally more efficient tha®GA and the steady-state genetic algorithm.

We finish the discussion on this section by giving the debngiand formulations of
some well-known crossover and mutation operators, pdatig some of which will be

used in the implementation of the algorithms developedigttiesis.

Crossover Operators

Throughout theGA research community, many crossover operators have beetoged.
In this thesis, we introduce some very typical crossoveratpes, and also those applied in
our GA implementation for experimental comparisons.

For binary representation, given an individual with lenigt®ne-point crossover works
by choosing a random number in the whole rangé {Q) of the binary characters, and then
splitting both parents at this point and creating the twddckn by exchanging the remain-
ing parts. One-point crossover can be naturally extendeeptmint crossover and uniform
crossover. Im-point crossover, the individual is divided into severahge segments, and
then the offspring are created by taking alternative segsrfeom the two parents. A fur-
ther generalization af-point crossover is the uniform crossover, which considach gene
independently and divides the whole range of individuad ingenes with (- 1) points.
When new offspring are generated, a sdtrahdom numbers are generated from a uniform
distribution over (0,1). In each position of the first offeyy, if the value is below a param-
eterp (say 0.5), the gene is inherited from the first parent; otisirom the second. The
second offspring is generated inversely.

For real parameter representation, there have also beenlzenof crossover operators
available. The simplest one is théscretecrossover or also callethivecrossover, this is
analogous to the binary crossover operator. The drawbabkssgimple mechanism for real
number individuals is that it cannot generate new genessdut only new combinations

of existing genes, and it will limit the search capacity witthe real numbers search space.

36

In contrast to the discrete crossover, gmgéhmeticor intermediatecrossover calculates
a new value for each gene position according to some forimuakivith the values from
parents. Ifx, andy; are the gene values of the two parents at posititine new value for
the child at position will be z = ax; + (1 - a)y;, wherea € (0,1). That is, the new gene
value of the child is generated depending on the values fram@rps.

We have seen some basic crossover operators, the introdutiout these operators
gives good explanations about the working principle of soegr or recombination oper-
ators. However, in practical problems, these operatorsarevery efficient due to their
simplicity. In the following sections, we will see some m@@vanced and carefully de-
signed crossover operators developed inGiAecommunity. First, a generalized arithmetic
crossover operator called Blend Crossover oper&86[(the BLX-a crossover) for real-
parameter representation is presented, this operatoreceedn as an extension of the arith-
metic crossover with some adaptive search capacity. Fogivem parents solutions and

x2, the following is an offspring solution generated by BloX-

X = (L=)X + %% (2.3)
wherey; = (1 + 2a)u; — a andy; is a random number between 0.0 and 1.0« I§ zero,
this crossover creates a random solution in the rared). In a number of test problems,
the investigators have reported that BLX-0.5 (with= 0.5) performs better than BLX
operators with any other value. However, it is important to note that the facjoris
uniformly distributed for a fixed value af. However, BLX« has an interesting property:
the location of the offspring depends on the difference efglarent solutions. This will be

clear if Equatior.3is rewritten as follows:

(% = %) = %0¢ = %) (2.4)

If the difference between the parent solutions is small difference between the off-
spring and parent solutions is also small. This property séarch operator allows it to
constitute an adaptive search. If the diversity in the pigpepulation is large, an offspring
population with a large diversity is expected, and vice aerBhus, such an operator will
allow the search to explore the entire space in the earlyrgéoas and also allow to main-
tain a focused search when the population tends to converg@me region in the search
space in the later generations.

Some other crossover operators work with the same princigple arithmetic crossover

37

uses Equatio2.3 with a fixed value ofy for all decision variables. Howevey,is chosen
by carefully calculating its maximum allowed value in allciB@on variables so that the
resulting values do not exceed the lower or upper limits. difttmetic crossover operator
can be seen as a specified operator of BLErossover.

There are still some other advanced crossover operatoech, @ Simulated Binary
Crossover and Parent Centered Crossover. We briefly highdigme important proper-
ties of these operators and refer the reader to the relegarences for the details of the
descriptions of these operators. For these advanced gsysgoerators, the new generated
individuals depend on the parents’ values according to suemtecular distributions rather
than random distribution, the difference between the oiffigpis in proportion to the dif-
ference between parent solutions. Namely, near-pareuti@$ are monotonically more
likely to be chosen as offspring than solutions distant fparents. Finally, these operators

inevitably introduce new extra parameters in order to aghibe adaptive search capacity.

Mutation Operators

The mutation operator is rather straightforward comparild gvossover. Again, we need
to discuss mutation both in binary and real parameter smsit For binary representation,
mutation is simply flipping the gene values from Os to 1s wittedain probability. For
real representation, random (uniform) mutation and ndioumi mutation are widely used.
Random mutation is to generate a new gene value for the oftsprdividual randomly
from the whole range of the gene value. It is more like a reeg@img operator and the
parent gene value will have no effect on the new gene valueffepring. The nonuniform
mutation, on the contrary, works by adding to the parent gethge a new value drawn
randomly from a predefined distribution, for example, a Garsdistribution with mean
zero and user-specified standard deviation, as defined iatieq2.5. In this way, the
parent gene value is changed according to a distributitverdéban randomly re-generated
within the whole gene range. Normal distribution mutatierparticularly important in
evolutionary computation research, we will see its apghee in the next section as we

discuss another important EC family algorithm.

X =X +0o-N(0,1). (2.5)

Finally, as for crossover operators, researchers havedalsigned advanced mutation
operators, an example is the Polynomial mutatidelj0], which has a similar idea to the

Simulated-Binary Crossover, a probability distributienaipplied to generate a new gene

38

value for the offspring, and this value very much dependserpairent gene value and the

rule that the distribution defines.

2.2.3 Evolution Strategies

Evolution Strategy is another main member of the evolutipcamputation family. It was
invented by Rechenberg and Schwefel in the early 19R@£73,[Sch93,[BS0J. One
of the main contributions oES to the EC community and the key feature which distin-
guishes it from the rest d&C members is theself-adaptatiorof the strategy parameters.
Self-adaptation means the parameters that decide thetiewawy performance are varied
during the runs of the algorithm, we call these parameterstilategy parametersvhich
are different with the@bject parametergepresenting the chromosomes. DuringB&evo-
lution procedure, the strategy parameters are coevolgedter with the object parameters.
Before any further explanations, we first describe a basiertvembered evolution strategy
for the optimization problem of minimizing amdimensional function. The outline of this

evolution strategy is given as Algorithin

Algorithm 2 pseudo code for an evolution strategy algorithm
1: Sett=0;

2: Create an initial pointx.,...,x) € R;

3: repeat

4: Drawz from a normal distributionV(0, o), for all i € {1,..., n} independently;
5 yi=x+zforallie{l,...,n};

6: if (f(X) < f(¥)) then

7 X=X,
8: else

9: X = yt;
10: end if

11: Sett=t+1;

12: until (Termination condition is satisfied)

From this simple algorithm, we can find the basic principles@atures oES. First,ES
is typically used for real parameter optimizatidaS directly operates on the phenotypes
space that is the real valued vectors, the problem at handeagiven as an objective
functionR" — R. Second, the mutation operator is the main operation torgemaew

offspring. Given a current solutiok in the form of a vector of length, a new candidate

39

X1 is created by adding a random numbefor i € {1, ..., n} to each of then components.
A Gaussian or normal distribution is used with zero mean daddsrd deviatiorr for

drawing the random numbers,is also called thenutation step size

Self-adaptation

As mentioned before, the main featureEf is self-adaptation, which is reflected in two
aspects. For the representation, each individu&8$tontains two parts, the first part is
the object parametersy(,. . ., X,) representing the individual itself. The second part is the
strategy parameters which contain two sets of vatu@sida. Theo values represent the
mutation step sizes and their numipgris usually either 1 on. Thea values represent in-
teractions between the step sizes used for different v@agaBo, the general representation

of individuals inESis:

(X1 ooy Xy 01y ey O, @15 -+, Q)

The second aspect where the self-adaptation feature cafibeted is the mutation op-
erator. That is the adaptation of the strategy parameteithéomutation operation during
ESruns. There have been two main ways to implement this s@iptation in the literature,
one of these is the covariance matrix adaptation, whichroh@tes the probability distri-
bution for mutation, we will talk about this strategy in déia Chapter3. For now, we
discuss another method, that is the explicit use of selpdacontrol parameters methods
[Rec73, [Sch8§. The strategy parameters are explicitly coded along vagidecision vari-
ables and updated by using predefined update rules in eaehagjen, there are basically

three different implementations which are in use.

1. Uncorrelated mutation with one step size, (Isotropi¢-8daptation).

In this case of uncorrelated mutation with one step sizesdnee distribution is used
to mutate eacly;, therefore there is only one strategy parametar each individual.
Thiso is mutated each time step by multiplying it by a teglnwith I" a random vari-
able drawn each time from a normal distribution with mean @ standard deviation

7. The mutation mechanism is thus specified by the followingidas:

o = o - eNOD (2.6)

X =% + o - Ni(0, 1). (2.7)

40

In Equation2.6, N(0, 1) denotes a draw from the standard normal distributionlevhi
in Equation2.7 N;(0, 1) denotes a separate draw from the standard normal distrmbu
for each variable. The proportionality constantis an external parameter to be set by
the user. Itis usually inversely proportional to the squac of the problem size, «

1/ +/n. The parameter can be interpreted as a kindlefirning rate The reasons that
mutatingo- by multiplying with a variable with a lognormal distributi@are explained

in [Bac9q as, first, smaller modifications should occur more oftemtlage ones;
standard deviations have to be greater than 0.0; the mel@arndsbe 1.0; mutation
should be neutral on average, this requires equal liketifedarawing a certain value
and its reciprocal value for all values. Under this scheimeyépresentation for each

individual now has the fornix,, ..., X,, o).

. Uncorrelated mutation with step sizes,(Non-Isotropic Self-Adaptation).

The motivation behind using step sizes is the wish to treat dimensions differently.
In particular, different step sizes are expected to be usedlifferent dimensions

i € {1,...,n}. The reason for this is the difficulty and complexity that flieess
landscape can have different slopes for each direction cm @&&s. Therefore, each
basic chromosoméxy, .. ., X,) is extended witn different step sizes, one for each

dimension. The new mutation mechanism is now specified &sifsi

ol = o - @ NODITNOI), (2.8)

X = % + 0 - Ni(0, 1). (2.9)

wherer o 1/ V2n, andr’ o 1/ \/% The sum of two normally distributed variables
is also normally distributed, hence the resulting distitiuis still lognormal. The
conceptual motivation is that the common base mutafidi®? allows for an overall
change of the mutability, guaranteeing the preservatioallafiegrees of freedom,
while the coordinate-specif& ™Y provides the flexibility to use different mutation

strategies in different directions. Under this scheme tlokvidual is represented as

<X1,---,Xn,0'1,---,0'n>-
. Correlated mutations.

The rationale behind correlated mutations is to allow théatée vector to have any

orientation by rotating them with a rotation covariance naE. Each entry of this

41

matrix is decided by the mutation step sizes and the angleseba the dimensions.
Therefore, the entry of the covariance matrixcig. = 1/2(c7 - %) tan(2y;), if
there is correlationship between thand | dimensions. The new mechanism is now

formulated as:

o = o - g NOTNOD (2.10)
X" =x+N(0,C). (2.12)

wherer « 1/ V/2n, andr’ o« 1/ \/Tx/ﬁ The parameteg is fixed as 0.0873 (or%. The

o are mutated in the same way as before in Equa?i@n The «; are mutated with
an additive, normally distribution variation, similar toutation of object variables.
The object variableg are now mutated by adding the variance drawn frorman

dimensional normal distribution with covariance mattix

In correlated self-adaptation, in addition momutation strengths, at most- (n —
1)/2 covariances are included in each individual solution. So, there are al wit
n-(n+ 1)/2 strategy parameters to be updated for each solution. Thisstype
of self-adaptive ES can adapt to problems where decisidablasx are correlated.
In a correlated problem, the task is to find all pair-wise damate rotations and the
spread of solutions in each rotated coordinate system sdah®abjective function
is completely uncorrelated in the new coordinate systemdedhis scheme, the

individual has the representation of the form in its gentmanh.

Traditionally, evolution strategies do not use any crossoperators. HoweveEScan

be equipped with any form of real coded crossover operaiscsisised in th&A section.

The parent selection operationksis not biased by the fitness values. Whenever a parentis

needed, it is drawn randomly with uniform distribution frahe current whole population.

As discussed in the previo@A section, the parent selection is one of the main influences

causing the improvement of the average quality of the ctipepulation. Evidently, the

uniform parent selection operation cannot fulfil this fuantf this task is finished especially

by the survival selection i&ES.

42

Survival Selection

In ES, there are two survivor selection schemes, afteriageatoffspring and calculating
their fitness values, the bgsbf them are chosen deterministically, either from the affep
only, called fi, 1) selection, or from the union of parents and offspring,exhll + 1) selec-
tion. Both the [,) and {« + 1) selection schemes are strictly deterministic and aredbase
on rank rather than the absolute fitness values. The selextlteme that is generally used
in evolution strategies is the: (1) selection, which is preferred over the € 1) selection

for the following reasons:

e The (u,) discards all parents and is therefore in principle able&vé (small) local

optima, so it is advantageous in the case of multimodal leaoiss.

e If the fitness function is not fixed, but changes in time, flhe @) selection preserves

outdated solutions, so it is not able to follow the movingimpim well.

e (u + A) selection hinders the self-adaptation mechanism witpeetsto strategy pa-
rameters to work effectively, because misadapted strgdegymeters may survive
for a relatively large number of generations when an indigichas relatively good

object variables and bad strategy parameters.

The selective pressure ESis generally very high, because thevalue for offspring
is much higher than the value for parents. Usually,/Z ratio is recommended. We finish
the discuss abolES and self-adaptation here, and will come back to this topib@&next

chapter when we talk about hybrid optimization algorithms.

2.2.4 Other General Purpose Search Algorithms

The research and development in search based problemgohathods have been flour-
ishing, many other metaheuristic algorithms have beenldped to solve optimization
problems. The ideas of these algorithms are more or lessasibut with a different em-

phasis on different aspects.

Ant Colony Optimization

The Ant Colony Optimization (ACO)DBTOQ] algorithm is one of these well-known meta-
heuristic algorithms. ThACO algorithm aims to search for an optimal path in a graph,

inspired by the behavior of ants seeking a path betweendbkiny and a source of food.

43

During the construction procedure to find the shortest path & given graph, the ants
incrementally build solutions by moving around in the grapach ant starts from a ran-
domly selected vertex of the construction graph. Then &t eaastruction step, it moves
along the edges of the graph, keeping a memory of its pathjrasdbsequent steps it
chooses from the edges that do not lead to vertices that ilnesdy visited. An ant has
constructed a solution once it has visited all the vertidethe graph. This construction
process is stochastic and is biased bygheromonevalue. Pheromone is actually a pos-
itive feedback information left by the ant when it is touritihgough a route, it reflects the
attractive strength of this path, when a complete route usidp the pheromone value for
this route is calculated according to the quality of thisteour'hat is, the shorter route will
have more pheromone value added to it, the longer, the leesdladPheromone evaporates
over time, thus reducing its attractive strength, thaths, set of pheromone parameters
associated with graph nodes or edges are modified at runtgntleebants. At each con-
struction step, an ant probabilistically chooses the eddellow to yet unvisited vertices.
The probabilistic rule is biased by pheromone values, tgkdrithe pheromone value to an
edge, the higher the probability an ant will choose thatipaldar edge. Once all the ants
have completed their tour, the pheromone on the edges isegdaach of the pheromone
values is initially decreased by a certain percentage. Edghk then receives an amount of
additional pheromone proportional to the quality of theusohs to which it belongs. This

procedure is repeatedly applied until a termination doters satisfied.

Particle Swarm Optimization

Particle Swarm Optimization (PSQKESO0] is another novel metaheuristic optimization
algorithm, which was first invented to simulate social betaw SOoptimizes a problem
by having a population of candidate solutions, also calls@arm of particlesand these
particles are moved around in the search-space accordiade simple formulae. The
movements of the particles are guided by their own best knpgitions in the search-space
as well as the entire swarm’s best known positions which pdated as better positions
found by the particles. Namely, when improved positionskaieg discovered, they will
then come to guide the movements of the swarm. The procespested and by doing so

it is hoped, but not guaranteed, that a satisfactory salwtiti eventually be discovered.

44

Differential Evolution

Another similar method iBifferential Evolution (DE)SP93. DE optimizes a problem by
also maintaining a population of candidate solutions aedtang new candidate solutions
by combining existing ones according to its simple formukaed then keeping whichever
candidate solution has the best fitness.

We have discussed a number of search based optimizationthafgs, although they are
differentin the real optimization procedure, they all hagene similarities in common; they
are all population based optimization methods, they dilzetconcepts of global optimum
solution, local optimum, fithess evaluations etc. And atkey all more or less contain a
procedure of learning from other solutions in previous gatiens, that is the cooperational

procedure.

2.3 Learning Algorithms

In this section, we start the exciting tour in the field of maehlearning, exploring some
of the representative and excellent machine learning gifigns. These algorithms will
also play very important roles in our development and comparof hybrid optimization
algorithms in the next chapters.

The learning problem we deal with for our supervised leagmrethods is called the
concept learningoroblem, where positive and negative examples of a targeteqi are
given, described with a fixed number of attributes. The go&he learning task is to dis-
cover a description for the target concept in some explicitis which are able to correctly
recognize instances of the target concept and discrimihata from objects that do not
belong to the target concept. We now formally give the dedinibf the concept learning

task which is one of the most common problem tasks in mackiaing literature.

Definition The set of items over which the concept is defined is called¢hefinstances
data, or exampleswhich we denote by. Each of the items is represented by some at-
tributes. The concept or function to be learned is calledatget conceptwhich is denoted

by c. In generalc can be any boolean valued function defined over the instast&s that
is,c: X — {0, 1}. Within the training exampled, each instancg from X is presented with
the attribute values along with its target concept val{}@. Instances for whicle(x) = 1

are calledpositive examplednstances for whiclt(x) = 0 are calledhegative examples

The positive examples are also called members of the taogeept.

45

Given a set of training examples of the target concgpbncept learning task is to hy-
pothesize or estimate the target conaedh general, under a representation scheme, each
hypothesid in the set of all possible hypothesds represents a boolean-valued function
defined overX, that is,h : X — {0,1}. The concept learning task is the task to find a

hypothesi$ such thah(x) = c(x), Yx € X.

The concept learning task is sometimes also calladsification It belongs to the su-
pervised learning method, where the training examplessed to guide the generation of
model for prediction of future instances. In the machinerdaeg community, this prob-
lem has been studied very well. Generally speaking, the madearning community
has developed a number of learning paradigms which can lak $lois concept learning
task. Among them, rule-based inductive learning methodputuhe set of rules as the
explicit form of recognizing and discriminating future taaces. Instance-based learning
algorithms use the concept of similarity to decide the d@ssions of instances, in this
sense, no explicit model exists. Neural network based iieguadaptively adjusts a set of
weights for the network connection model which predictsribe instances.

More specifically, there are many learning algorithms wtgeh solve this attribute-
value based concept learning problem in each learning gemad-or example, for the in-
ductive rule-based learning paradigm, there are attriutie-sets based covering learning
algorithm for classification. Ordered rule-sets, alsoezhtiecision lists, are a generalized
variant of concept learning problems for multi-class peoh$. Problems with continuous
class variables can be solved by learning regression ruiteRictive logic programming
has a richer representation language by inducing logicrprog for classification or for
predicting output values in functional relations. Finatlye classic decision tree learning
algorithm also belongs to this inductive rule-based leaymaradigm.

How can one be sure that one’s learning algorithm has pratactheory that will
correctly predict the future? In formal terms, how do we kninat the hypothesih is
close to the target functiof, if we don’t know whatf is? Generally, according to the
computational learning theory, any hypothesis that is isb@st with a sufficiently large
set of training examples is unlikely to be seriously wrongani¢ly, it must be Probably
Approximately Correct (the PAC learning framework). Angileing algorithm that returns
hypotheses that are probably approximately correct iedad PAC-learning algorithm.
The key assumption is that the training and test sets arendiavdomly and independently
from the same population of examples with the same proladistribution, thestationary

assumption

46

Both decision tree learning and an instance of the coveeaging algorithm called
AQ learning algorithm are introduced in this section, theg all inductive, rule-based,
supervised concept learning methods. The decision tresimggwill be applied in the de-
velopment in ChapteB. Another learning algorithm which is inductive, superdsand
instance-based is introduced, this is N and its generalization. The difference be-
tweenKNN algorithm and inductive rule learning is that, there is nesuas output for
the learning algorithmKNN is a lazy learning method, that is classification is delayed
until a new instance needs to be classifié\N is for the hybrid algorithm developed
in Chapter4. As we discussed before, learning and statistics are twa $iearing many
similar ideas. We also illustrate one powerful and succélysépplied statistical learn-
ing method, théd?CA, concerning multi-variable classification in the subfiefcstatistics
calledMultivariate StatisticsAlso, another successful and one of the members of the clas-
sic machine learning methods based on Bayesian probatbiétyrem is introduced, which
can also solve the above concept learning problem. The AQifepalgorithm, principal
components analysis and Bayesian learning are the mairithlgs involved in the hybrid
algorithms introduced in Chapt8r We will explore all these algorithms in more detail in

the following sections.

2.3.1 Decision Tree Learning

Decision tree learning is one of the most widely used andjgalenethods for inductive in-
ference learning. It was invented by Quinlan as a methoddpraimating discrete valued
target functions, the learned output is represented asisialetree which can be translated
to sets of if-then rules to improve human readability. Theiglen tree constructing algo-
rithms, ID3 [Qui8g and C4.5 PRui93 search for or construct a decision tree solution in the

complete hypothesis space.

ID3 Decision Tree Construction Algorithm

For a given set of training data consisting of positive anglatige training examples, ID3
constructs a decision tree in a top-down style, sortingaimsts down the tree from the root
to some leaf nodes, which provides the classification ofrie@ances. Each node in the tree
specifies a test of an attribute of the instances, with thetoure“which attribute should
be tested at the current node of the tree”. In order to angwgiguestion, each instance

attribute is evaluated using a statistical test to deteznhiow well it alone classifies the

a7

current training examples. The best attribute is seleateldused as the test at the current
node of the tree. A descendant of the root node is then créatedch possible value of this
attribute, each branch descending from that node corresgorone of the possible values
for this attribute. And then the training examples are sbttethe appropriate descendant
node. The whole process is then repeated using the trairamgm@es associated with each
descendant node to select the best attribute to test ataHatin the tree.

The above procedure forms a greedy search for an acceptatikah tree, in which
the algorithm never backtracks to reconsider earlier @gi®©nce a decision tree is con-
structed, it can be used to classify the unseen instancesiséance is classified by starting
at the root node of the tree, testing the attribute specifiethis node, then moving down
the tree branch corresponding to the value of the attributee given instance. This pro-
cess is then repeated for the subtree rooted at the new nodengiructed decision tree

example for illustration is given in Figuiz2

Attri7

domdinl ;
domain3 ain2

Attril2 Attri9

Attri4

domainl omain3

@ Attri26

dgmain2 omainl

@

Figure 2.2: An illustrative example of a decision tree

Still, the key question in the above algorithm remains, thdtow to find the best at-
tribute for classification at each node. That is, the attatibhat is most efficient for classi-
fying examples should be selected. This quantitative nreasuD3 is a statistical property
calledinformation gaifSha0l, which measures how well a given attribute separates the
training examples according to their target classificatiid3 uses this information gain

measure to select from the candidate attributes at eachvbiepmaking the tree grow. In-

48

formation gain is defined on the concept caldropy which characterizes the (im)purity
of an arbitrary collection of examples. Given a collect®®rof positive and negative ex-
amples of a target concept, the entropySofelative to this classification (here, we only

consider the case that the target concept has two values) is:

EntropyS) = —pe 109, ps — P10g2ps (2.13)

Here, p, and p; are the percentages of the positive and negative examp&slifor-
mation gain is simply the expected reduction in entropy edury partitioning the examples
according to this attribute. More precisely, the inforroatgain,Gain(S, A) of an attribute

A, relative to a collection of examplé&; is defined as:

Gain(S, A) = EntropyS) - Z @Entro pYS.) (2.14)

veValuegA) |S|

whereValuegA) is the set of all possible values for attribikeandS, is the subset o0&

for which attributeA has valuev. The first term in Equatio.14is just the entropy of the
original collectionS, and the second term is the expected value of the entropy &fie
partitioned using attributd. The expected entropy described by this second term is gimpl
the sum of the entropies of each subSgtweighted by the fraction of examplé%'(' that
belong toS,. Gain(S, A) is therefore the expected reduction in entropy caused bwkiy

the value of attributéd. Namely,Gain(S, A) is the information provided about the target
function value, given the value of some other attribdténformation gain is precisely the

measure used by ID3 to select the best attribute at eachrstegking the tree grow.

Issues in Decision Trees

There are also some practical issues in the decision tre@nganethod, these issues are
important considerations which will influence the perfonoa of the constructed decision
tree significantly. Among of them, the problemaferfittinghas attracted most attentions.
Overfitting means that a hypothesis overfits the trainingrg{as if some other hy-
pothesis that fits the training examples less well actuadisfiggms better over the entire
distribution of instances including the instances beydmttaining set. Overfitting can
happen in the following situations, when ID3 grows each bnaof the tree just deeply
enough to perfectly classify the training examples; whemehs noise or errors in the data,
when the number of training examples is too small to produmpeesentative sample of

the true target function; and also the situatiorcoincidental regularitieswhere some at-

49

tributes happen to classify the examples very well evenay thre not related well with
the target function. In either of these cases, the decisemdonstruction algorithm can
produce trees that overfit the training examples.

There are many methods to avoid overfitting, they can be guaupto two classes.
First, approaches that stop making the tree grow earliévyé&é& reaches the node where it
classifies the training data perfectly. For this method; iat very practical, since deciding
when to stop the growing is a very difficult task. The other moeltis the post-pruning
method. Post-pruning is the approach that allows the tresedit the data first, and then
post-prunes the tree.

There are also many ways to implement post-pruning. Oneeashtis the rule post-
pruning method Qui93 applied in C4.5 algorithm. According to the name, rule post
pruning first infers the decision tree from the training sefking the tree grow until the
training data fits as well as possible and allowing overfittio occur. Secondly, it trans-
forms the learned tree into an equivalent set of rules bytioga@ne rule for each path
from the root node to a leaf node. Thirdly, it prunes each byleemoving any precondi-
tions that result in improving its estimated accuracy. Fyna sorts the pruned rules by
their estimated accuracy, and considers them in this seguehen classifying subsequent
instances.

There are also many other issues in decision tree learnird), &s dealing with con-
tinuous valued attributes, alternative measure for infdrom gain, etc. For the first issue,
it can deal with continuous valued attributes by selectisgitable discretization method.
For the second issue, when there are some attributes whiehtb@a many domains, these
attributes will have very high gain values over other attiés according to the definition of
information gain. Very possibly, the resulting decisiagetis constructed by these attributes
and is able to classify training data very well, but will bewéad at predicting the future
data instances. One way to overcome this difficulty is to @efinother measure which
also considers the broadness and uniformity of the at&ibusplitting the data. Such an
alternative for information gain is thgain ratiofQui8g, which depends on a term called
split information

. . S ISl |Sil
S plitinformatiorfS, A) = — S log, <

i=1
therefore, the gain ratio is defined by the information gaid e split information as:

(2.15)

50

Gain(S, A)
S plitinformatiorgS, A)’

The decision tree learning algorithm has an advantage whithat the constructed

GainRatidS, A) = (2.16)

decision tree can be transformed into a set of rules whichbearead and understood
more easily. This transformation procedure is also appheaur development of hybrid

algorithms, we will discuss this topic in more detail in tr@responding chapter.

2.3.2 AQ Learning

The decision tree learning algorithm is a classic induatide-based learning algorithm, in
this section, we introduce another inductive rule learrafgprithm. The main difference
between these two algorithms is not only because of the iligas’ constructing princi-

ples, but also the learning strategies employed by theseitims. We will see these two

strategies first, and then introduce the AQ learning algorit

Two General Strategies

Generally, for the rule-based inductive learning algonghthere are two well-known strate-
gies for solving the classification problems, the dividelaonquer strateg@jui8q and the
separate-and-conquer strategyPQd.

We have seen an example algorithm for the divide-and-cansjustegy, the decision
tree learning algorithm in Sectidh3.1 As the name of this strategy suggests, the divide-
and-conquer strategy is based on the idea that, at eachagti@gening the algorithm seeks
an attribute that splits the training examples best amoagldsses, and then the algorithm
processes the following divided sub-training examplesingeely according to the same
criterion. This recursive method naturally results in aisiea tree.

Quite different from the divide-and-conquer strategy,dbparate-and-conquer strategy
is based on the idea of considering each class in turn andhigddr a way of covering all
instances in this class, at the same time excluding allmes® not in the class. Namely,
to identify a rule that covers some of the instances at eadestDue to this nature, it
directly leads to a set of rules. The learning algorithmsetasn this strategy are also
calledcovering algorithmgMic69].

Specifically, this strategy learns or searches for a rulegklains (covers) a part of its
training instances, removes the covered examples fronrairertg set (the separate part),

separates these examples, and recursively conquers tlaénnegnexamples by learning

51

more rules that cover some remaining examples until no elempmain. This ensures
that each instance of the original training set is coveredtldgast one rule. For all of the
covering algorithms, this strategy plays a top level loopjal is invariant for all algo-
rithms. However, the specific methods to learn one rule agelyuifferent from algorithm
to algorithm. Let us first explore a simple covering algaritto solve the concept learning

task:

Algorithm 3 pseudo code for a simple covering algorithm
1: Setrule_set=0;

2: Setcoveredset= 0;

3: Declarerule;

4: Initialize training_examplesset

5. while (positive examples exist itnaining_examplessei do
6: rule={true};

7 while (negative examples exist coveredse) do

8: for all (Conditione Conditions)do

9: Find thebestconditionwith highest correct rate;
10: end for
11: rule =rule | bestcondition
12: coveredset= examples satisfyingule;

13: end while

14: rule_set=rule_set(J rule;

15: training_examplesset= training_examplesset\ coveredset
16: end while

17: Returnrule_set

Algorithm 3 is a simple covering algorithm, the algorithm begins witheampty rule-
set and successively adds rules to it until all positive glasare covered. The learning
of a single rule starts with a rule whose body is always true. Igxig as it still covers
negative examples the current rule is specialized by addhngitions to its body. Possible
conditions are tests on the presence of certain values imugaattributes. In order to move
towards the goal of finding a rule that covers no negative g@tesnthe algorithm selects
a test that optimizes the purity of the rule, that is, a teat thaximizes the percentage
of positive examples among all covered examples. When ahagebeen found that only

covers positive examples, all of these covered examplédbwitemoved and another rule

52

will be learned from the remaining examples. This is repat®il no positive examples
remain. Thus, it is ensured that the learned rules togetherall of the given positive
examples, theompletenes®ut none of the negative examples, toasistencyAlmost all
of the separate-and-conquer algorithms share the sanwtusewf this algorithm, but are
different in how to construct the single rule. We will see #rew example algorithm for this
strategy shortly, but for now, we simply summarize and camaplae covering algorithms
with decision tree learning.

As we have seen that both of these algorithms are supenasedimhg algorithms and
can be used to solve concept learning tasks. Also, the irgrubdth algorithms is the
same, that is the training data set, which is a set of datannes, consisting of a vector of
attribute-value pairs. And the output for both algorithnas the same form, a set of rules.
For the case of the decision tree, the constructed tree ctnamsated into a set of rules.
The only important difference between these two learniggrdhms is the middle learning

procedures.

AQ Learning Algorithm

Although there are many separate-and-conquer based aunterig algorithms, this strategy
has its roots in the covering algorithm called AQ learningpaithm by MichalskiMic69].
The representation language used in AQ is calledAtigbutional Calculus which is a
simple-to-implement but highly expressive descriptiarglaage. It has well-defined syntax
and semantics, and its representational power is betwegosgitional logic and first-order
predicate logic. Its most important construction is anlaitional rule, which has its form

as followsMicO0Q]:

Condition= Decision

whereConditionis a conjunction of attributional conditions, abecisionis an elementary

attributional condition. An attributional condition is the form:

Left relation Right

whereLeftis an set of attributes joined byor v, called internal conjunction and disjunc-
tion, respectivelyRightis a list of values from the domain of attributesliaft, joined by
the symbolv, or a pair of values joined by. ..’ (called rangg. relation is a relational
symbol from the sef=, #, >, >, <, <}.

53

An attributional conditionLeft relation Rightis true (or satisfied) iLeftis in relation
to Right A condition is callecelementaryf Leftis a single attributeelationis not#, and
Rightis a single value; otherwise it is calledmposite Here are examples of attributional
conditions and their interpretation§Hape= rectanglg, (Density> 39) are elementary con-
dition, while Optimization Method= GAV ESV PS O, (S alarya Bonus= 3000...5000)
are composite conditions.

Attributional calculus can be seen as the description lagguor the AQ learning al-
gorithms, the training data and the output rules can all senilged with this language.
With this powerful tool, the AQ learning algorithm can be stmcted now. Given a set
of positive and negative training examples of a decisiosg;lan AQ learner generates a
set of attributional rules (a ruleset) characterizing thess. Training examples are in the
form of attributional events, which are vectors of attrdbwalues. Events in the decision
class for which a ruleset is generated are considered yposiXamples, and events in all
other classes are considered negative examples. Themtastaof a simple form of the AQ

learning algorithm is given below as stated Mi¢00]:
1. Seed selection: Select randomly a positive example dhid aseed

2. Star generation: Generate a star of the seed, defined asfagemeral attributional
rules that cover the seed and any other positive exampléslobnot cover negative
examples. In the general case, a rule can cover negativepéasihit optimizes a

description quality criterion.

3. Rule selection: Select the highest quality rule from ttaa according to a given
description quality criterion. Such a criterion can bedsgt to the requirements of
the problem domain. For example, a quality criterion maynegselecting the rule
that covers the largest number of positive examples, coger® negative examples,

and has the lowest computational cost among other equivaikes in the star.

4. Coverage update: Remove examples covered by the ruletfrerset of positive
examples and select a new seed from the remaining positasra@es. If there are

no positive examples left, return the generated set of rddserwise, go to Step 1.

This algorithm has the same top-level structure as the sicglering algorithn®, but
the generation of rule is different. The most important stefhe algorithm is star gener-
ation (Step 2), which involves a repetitive applicationtod extend-against generalization

operator, and logically multiplying out the resulting @ations of partial rules. If properly

54

implemented, such a process can be executed highly effici€or example, recent imple-
mentations of AQ-type learning have been effectively aggptio problems with hundreds
of attributes and tens of thousands of examples.

AQ learning algorithms, such as AQLEES93 and AQ18 KM99], have several spe-
cial features. AQ15 includes the ability to learn a rangeifiéent types of attributional
rulesets, such as intersecting, disjoint, ordered, cheniatic, and discriminate; to adapt
inductive reasoning to different types of attributes, uathg nominal, rank, cyclic, numeri-
cal, and structured; to learn from noisy and/or inconsidata; to learn incrementally; and
to match rules with examples using a strict or flexible matghinethod. AQ18 includes
several additional features, such as the ability to discetreng patterns in data, thus it
can optimize a multi-criterion measure of description dguahnd automatic constructive
induction. The latter feature enables the program to auiioally search for a better repre-
sentation space when the original one is found to be inadequa

AQ learning algorithm is the learning algorithm applied ilearning and evolution
hybrid algorithm, which is very important in our study of thEM hybrid algorithms in

this thesis, we will come back to AQ learning in the next cleapor hybrid algorithms.

2.3.3 K Nearest Neighbors (KNN) Learning

In this section, we introduce a new learning paradigm, whidalledinstance-basetkarn-
ing and a well-known instance learning algorithm from thésgaigm, theKNN [CH67]
learning method.

In contrast to learning methods that construct a generaljagxdescription or model
of the target function when training examples are providestance-based learning meth-
ods simply store the presented training examples. Gengrglbeyond these examples
is postponed until a new instance must be classified. Eaahdimew query instance is
encountered, its relationship to the previously storedtsimilar related instances is ex-
amined in order to assign a target function value for the mstance, that is to classify the
new query instance.

Instance-based methods are sometimes referred to as [é&mping methods, because
they delay processing until a new instance must be classifiedhis sense, the previ-
ous inductive learning algorithms, decision tree learn®@ learning are called ‘eager’
learning methods. One key difference between lazy and déegering methods is that the

former can construct a different approximation to the tefigiection for each distinct query

55

instance that must be classified. In fact, many techniquestacct only a local approxima-
tion to the target function that applies in the neighborhobthe new query instance, and
never construct an approximation designed to perform wat the entire instance space.
This has significant advantages when the target functioemg @omplex, but can still be
described by a collection of less complex local approxiorei

The most well-known instance-based learning methodk&id, local weighted regres-
sion, and case-based reasoning, the difference betwesmnrtiethods are the representation

forms for instances.

KNN Algorithm

The KNN assumes all instances correspond to pointsdmensional space. The nearest
neighbors of an instance are defined in terms of the standactidéan Distance. More

precisely, let an arbitrary instanceée described by the feature vector:

(@a1(x), a(X), . . . an(X)) (2.17)

wherea;(X) denotes the value of theh attribute of instance&. Then the distance between

two instances; andx; is defined to bel(x;, x;), where

d(x, ;) = JZ(a(xi) - a:(x)))? (2.18)

In nearest-neighbors learning the target function may tieeediscrete-valued or real-
valued. Let us first consider learning discrete-valuedetafignctions of the fornf : R" —
V, whereV is the finite sefv, v,, . . . vs}. TheKNN algorithm for approximating a discrete-

valued target function is given as Algorithdn

Algorithm 4 pseudo code for KNN
1: All training examples are stored in th@ining_datavector.

2: For each query instanog that will be classified.

3: Find thek nearest instances, x,, . .. X in training_data

4: Return)
f(xg) = max) 6(v, (x)
i=1
5: where
1 if(a=b);
5(a,b) = |
0 otherwise

56

As shown above, the vaILfeéxq) returned by this algorithm as its estimate fgk,) is
just the most common value dfamong thek training examples nearest xq.

TheKNN algorithm is easily adapted to approximating continuoalkkd target func-
tions. This can be accomplished by calculating the mearevafithek nearest training
examples rather than calculating their most common valwsreMrecisely, to approximate
a real-valued target functioh : R" — R, step 4 of Algorithm4 is replaced with Equation
2.19

]:(Xq) _ Zik:lkf (%) (2.19)

Distance-Weighted Nearest Neighbors Algorithm

One obvious refinement to tieNN algorithm is to weight the contribution of each of the
neighbors according to their distance to the query prjngiving greater weight to closer
neighbors. Namely, in Algorithm, which approximates discrete-valued target functions,
we might weight the vote of each neighbor according to thersw square of its distance

from x,. This can be accomplished by replacing step 4 of Algorihwith Equation2.20

k
floxg) = max > wis(v. f(x) (2.20)

wherew; = We can distance-weight the instances for real-valuedtduc-

1
d(xg,xi)? "
tions in a similar fashion, replacing step 4 of Algoritnn this case with EquatioR.21

2o T wif(x)
) = T W

Due to distance weighting, there is really no harm in allaypat training examples to

(2.21)

have an influence on the classification of the because very distant examples will have
very little effect onf(xq). Of course, this will result in running more slowly. If atitining
examples are considered when classifying a new query icestare call the algorithm a
global method. If only the nearest training examples aresiclemed, we call it a local
method. One main advantage abBMN is that it is robust to noisy training data and quite
effective when it is provided a sufficiently large set of hiag data.

However, some disadvantages which cause practical impletien issues do exist.
One of them is that the cost of classifying new instances eahiggh. This is due to the
fact that nearly all computation takes place at classificetime rather than when the train-

ing examples are first encountered. Therefore, technidquresfficiently indexing training

57

examples are needed to reduce computation required at tjoneryVarious methods have
been developed for indexing the stored training examplésatdhe nearest neighbors can
be identified more efficiently at some additional cost in mgm@ne such indexing method
is the kd-treeBen79, in which instances are stored at the leaves of a tree, veidnby in-
stances stored at the same or nearby nodes. The internal ofdtie tree sort the new query
Xq, to the relevant leaf by testing selected attributex,of

A second disadvantage of many instance-based approaspesjaly nearest neighbor
approaches, is that they typically consider all attribwtethe instances when attempting to
retrieve similar training examples from memory. If the &trgoncept depends on only a few
of the many available attributes, then the instances tleatraty most ‘similar’ may well
be a large distance apart. Namely, the distance betweehbwigwill be dominated by
the large number of irrelevant attributes. This difficuit$yich arises when many irrelevant
attributes are present, is sometimes referred to asuhge of dimensionality Nearest-
neighbors approaches are especially sensitive to thidgoblrhere are some methods to
overcome this problem, we consider one of them by formuigatie problem as solving
the following task. For a given set of attributes with sizan training examples, the task
is to find a subset out of this set of attributes, satisfying slubset can classify the unseen
examples with the highest accuracy. This task can be viewerhatively as finding a
weight set with size, and each of value of the weight could be with the range 6f.(01.0)
indicating the relevance of the corresponding attributéneWthe weight value is 0.0, it is
completely eliminated from future classification. Theseéghiesubsets can be optimized by
classification on a cross-validation set. Another excélesrk on this topic about feature
selection can be found ifRlG*00], where a genetic algorithm is used as the optimizer.

Although disadvantages are inevitable K0MN as for any other learning paradigms, we
start our investigation in learning and evolution hybrigaithm with theKNN algorithms
due to their efficiency in classification, robustness fosgaraining data, and simplicity in
implementation (the only application-specific demand isiigable distance measure, this
is In contrast to other learning algorithms). We will comekb#o the KNN algorithm in

Chapterd, where our first hybrid algorithm is developed.

2.3.4 Principal Components Analysis

Principal Components Analysis (PCA) was invented in 190Khyl PearsonPea0] as

a mathematical procedure that transforms a number of ggssibrelated variables into

58

a smaller number of uncorrelated variables cafpjeidcipal componentsThe first princi-
pal component accounts for as much of the variability in th&adas possible, and each
succeeding component accounts for as much of the remaianmgiity as possible.

PCA s the simplest of the true eigenvector-based multivaaatdyses. Often, its op-
eration can be thought of as revealing the internal streatfithe data in a way which best
explains the variance in the data. If a multivariate datésetsualized as a set of coor-
dinates in a high-dimensional data space (one axis perbla)j@CA supplies the user
with a lower-dimensional picture, a ‘shadow’ of this objedten viewed from its (in some
sense) most informative viewpoirRCA is mathematically defined as an orthogonal linear
transformation that transforms the data to a new coordisygéem such that the greatest
variance by any projection of the data comes to lie on thedostdinate, the first principal
component, the second greatest variance on the secondratercind so on.

Given a set of points in Euclidean space, the first principatjgonent (the eigenvector
with the largest eigenvalue) corresponds to a line thatgzagsough the mean and mini-
mizes sum squared error with those points. The second pahmdbmponent corresponds to
the same concept after all correlation with the first priatgmmponent has been subtracted
out from the points. Each eigenvalue indicates the portidhevariance that is correlated
with each eigenvector. Thus, the sum of all the eigenvakiegual to the sum squared dis-
tance of the points with their mean divided by the number ofatisionsPCA essentially
rotates the set of points around their mean in order to aligimtive first few principal com-
ponents. This moves as much of the variance as possiblgy(adinear transformation)
into the first few dimensions. The values in the remainingatisions, therefore, tend to be
highly correlated and may be dropped with minimal loss abinfation.

PCA s often used in this manner for dimensionality reductianis Imostly used as a
tool in exploratory data analysis, finding patterns in ddtaigh dimension, and for making
predictive models. And itis a useful statistical technitjus has found application in fields

such as face recognition and image compression.

Covariance Matrix

We introducePCA in more detail by following the main steps needed to computéth

the covariance metho®.CA involves the calculation of the eigenvalue decompositioa o
data covariance matrix or singular value decompositiondzta matrix, usually after mean
centering the data for each attribute. For a given set afitrgiexamples, we first calculate

the variance sfor one attribute, given the meanand standard deviatiog variance is

59

simply the standard deviation squared, it represents ttemeaf data spread:

_ it (% = x)?
NG

Standard deviation and variance only operate on one dimenso that only the stan-

(2.22)

dard deviation for each dimension of the data set indepdlydehthe other dimensions
can be calculated. However, it is useful to have a similarsueament to find out the rela-
tionship between these dimensions and how much the dimengary from the mean with
respect to each otheCovarianceis such a measure, it is always measured between two
dimensions. If we calculate the covariance between onerdimoe and itself, we get the
variance. So, if we had a 3-dimensional data gg}, @), then we could measure the covari-
ance between theandy dimensions, the andy dimensions, and thgandz dimensions.

The formula for covariance is very similar to the formula ¥@riance:

2t (X = Xmean (Vi — Ymean
(n-1)

Covariance is between two dimensions, and variance is abbmtdimension. If the

coUXx,y) = (2.23)

value of covariance is positive, two dimensions changettmge If the value is negative,
two dimensions change differently. If the value is zero, trmensions are independent to
each other.

A Covariance matrixs a matrix that stores all the possible covariance valuesdsn
all the different dimensions for the given many dimensiatath set. A covariance matrix

is a matrix for am-dimensions data set:

C™" = (cij, Gi,; = coDim;, Dim)) (2.24)

whereC™" is a matrix withn rows andn columns, andim, is thexth dimension. For

example, for 3-dimensional data set, the covariance migtaalculated as the:83 matrix

coMX, X) CcoUX,Yy) couX,2)
C=| cody,x) cody,y) couy,2) (2.25)
coMz X) coMzy) covz2)
When the covariance matrix is formed, we can calculateeigenvectorsand eigen-
valuesof the covariance matrix. First, the eigenvectors and egiees give important
information about the matrix, they appear in pair for squasggrix. It is beyond the scope

of this thesis to discuss the method of calculating eigaiove@nd eigenvalues, all we will

60

say is that those are complicated iterative methods edljyeftiemany large size matrices.
Before introducing the meanings and usability of eigermescand eigenvalues IRCA, we

give an example of eigenvectors and eigenvalues:

2 3 6 6
X =4x (2.26)
21 4 4
In this example, the square matrix can be thought of as aftnanation matrix. If we
multiply this matrix on the left of a vector, the result is #émer vector that is transformed
from its original position. It is the nature of the transf@tion that the eigenvectors arise
from. A transformation matrix that, when multiplied on tledt] reflected vectors in the line

y = X. Then we can see that if there was a vector that lay on the/line, its reflection is

itself. This vector would be an eigenvector of that transfation matrix. The vectdr
4

can be seen as an eigenvector of the square matrix. And thevaige is 4.

Feature Vector

Once the eigenvectors and eigenvalues are derived, we gamtbechose components and
form afeature vectar This feature vector is an important conceptH@A, it is used to
produce dimensionality reduction. As we have found out, digenvectors are used to
indicate the patterns of the variables and eigenvaluessae@ 0 indicate the significance
of these patterns. Namely, the eigenvectors with the higkigenvalues are the principal
components of the data set. In general, once eigenvecwi®and from the covariance
matrix, the next step is to order them by eigenvalues, higleelbowest. This gives the
components in order of significance and indicates whetleep#tterns are strong or weak
compared with other patterns. If one patternis less sigmifigt can be deleted by removing
the corresponding eigenvector and eigenvalue fronmtiigenvectors and eigenvalues list.
The new reduced eigenvectors set is callésbéure vectorwhich is now used together with
the original data set to calculate a new data set, where tiegbl@s number or dimensions
are now reduced. In such a transformation procedure, westmee information which are
less important. So, the feature vector simply consists@fémaining eigenvectors, that is

the ones with highest eigenvalues, as columns.

FeatureVector= (eigenvector, eigenvectoy, eigenvectoy, . . ., eigenvectqy) (2.27)
Once we have chosen the components (eigenvectors) thatshetavkeep in our data

61

and formed a feature vector, we simply take the transposheof/¢ctor and multiply it
on the left of the original data set. When the original damrastored, we can see more
clearly about the strong patterns, and the weak patterndede¢ed. Thereford?CAis a
way of identifying patterns in data, and expressing the datich a way as to highlight
their similarities and differences. Since patterns in databe hard to find in data of high
dimension, where the luxury of graphical representatiotsavailablePCAis a powerful
tool for analyzing data. We will come back RCA in the next ChapteB again, when we

discuss an important hybrid optimization algorithm whigipkes thePCA method.

2.3.5 Bayesian Network and Bayesian Learning

In this section, we introduce another important and popuiachine learning paradigm

in the machine learning communitpayesian inferences a statistical inference method
among many hypotheses (thgpothesis spagewhere some kind of evidence or obser-
vations are used to calculate the probabilities of thesetingsis, or else to update their
previously-calculated probabilitieBrobability comes naturally from the world or environ-

ment which is full of uncertain knowledge. In practice, we aever completely sure about
the statements of the environment we are interested in. »angle, assume we want to

construct a rule to describe the following knowledge:

Y(s)FailedIn(s, Exam3 = -WorkHard(s)

Unfortunately, this is not a correct rule. Firstpt WorkHardis not the only reason
that students will fail in the exams, there are many othesaesa for failure in exams.
For example, not feeling well, coming late, etc. There cdagdan infinite list of reasons.
Secondnot WorkHarddoes not necessarily mean students will fail in exams, madests
can pass the exams without working hard. So, rule-basedlkdge representation system
simply fail to represent uncertain knowledge. It is due thesito the fact that we cannot list
all rules to capture the uncertainty, or to the fact that wendibhave complete knowledge
about a particular domain, or we will never have completermiation about an instance.

In fact, much knowledge about the world is suitable to be ey with adegree of
belief Namely, they are better to be interpreted in pihebability theory which assigns to
each statement about knowledge a numerical degree of betiwween the range of (0. 1).
For example, we can assign to the above rule 0.8, meaningtifdeist has failed his ex-

amination, he/she has an 80% probability that he was notingrkard in preparation.

62

Probability provides a way of summarizing the uncertaitgttcomes from our laziness
and ignorance. We may not know for sure about one statemanivéocan believe that in
what percentage of probability that statement will hapgéms belief can be derived from
statistical data, or some general rules, or from a comlmnaif sources of evidence. We
distinguish the degree of belief discussed here with theesegf truth which is used in
another uncertain handling method calfedzy logic

In the following discussions, we assume the knowledge atlmscepts and theorems
in probability theory, otherwise, a brief introduction toopability theory is given in Ap-
pendixA. We will introduce the well-known general bayesian netwioference model for
uncertainty knowledge base and the bayesian learning mhetitgo called naive bayesian
classifier, which is a simple probabilistic classifier basacgpplying Bayes’ theorem with

strong independence assumptions.

Bayesian Network

A Bayesian Network (BN) is a data structure that represém@slependencies among vari-
ables and gives a concise specification of any full joint ptolity distribution. A Bayesian
network is a directed graph in which each node is annotatéd quantitative probability

information. The full specification is as follows:

1. A set of random variables makes up the nodes of the netwarkables may be

discrete or continuous.

2. A set of directed links or arrows connects pairs of nodethere is an arrow from

nodeX to nodeY, X is said to be a parent of.

3. Each nodeX; has a conditional probability distributid?(Xj|Parent$X;)) that quan-

tifies the effect of the parents on the node.

4. The graph has no directed cycles, that is, it is a direeteytlic graph, or DAG.

The topology of the network, the set of nodes and links, $@scihe conditional in-
dependence relationships that hold in the domain. Thetivéumeaning of an arrow in
a properly constructed network is usually thathas a direct influence oM. Once the
topology of the bayesian network is laid out, we need onlgsgpa conditional probability
distribution for each variable, given its parents. The saimaf bayesian network is that

the bayesian network can be used to represent the full jatrittlition:

63

P(Xq, ..., X)) = P(x|parentgX)) (2.28)

Once aBN is built up, it can be used to make inferences efficiently, gotethods
have been developed, suchesct inferenceandapproximate inferencesThey require
a well-constructed network to exist. Therefore, we needisou$s how to construct the
bayesian network, this will include two important aspeotsg is parameter learning, and
the other is structure learning. In this section, we onlk &bout a parameter learning
method callednaximum-likelihoogharameter learning. We talk about structure learning in

the next chapter.

Bayesian Learning

To induce bayesian networks correctly, as we known from tlegipus section, there are
two important components need to be learned correctly. ®tieeiparameters for random
variables and the other is the structures representingrijageependence relations between
the random variables. We start to introduce the parametaraihg method witlBayes’s

rule (or Bayes'’s theorein

P(a A b) = P(bla)P(a) (2.29)

P(a A b) = P(alb)P(b) (2.30)

Equating the two right-hand sides and dividing®g), we get

P(bja) = w (2.31)
P(YIX) = % (2.32)
P(Y|X) = aP(X|Y)P(Y) (2.33)

Bayes's theorem underlies all modern Al systems for prdisticiinference. Explicitly,
it requires a conditional probability and two unconditibpeobabilities to calculate one
conditional probability. In practice, there are many ditas which match this formula

very well. This makes Bayes’s rule very popular and usefukalistic problems.

64

So, what is a bayesian learning problem? Bayesian learrangcalculate the prob-
ability of each hypothesis in the hypothesis space, giverettperienced data, and makes
predictions on that basis. In the context of bayesian legtriéarning is in fact a probabilis-
tic inference problem. Formally, given a random variadléor hypothesis space, with the
possible valueg;. Let D represent all the dat&®); is also a random variable with possible
valuesv; andv,, with observed valud, then the probability of each hypothesis is obtained

by Bayes’s rule:

P(hi|d) = aP(d]hy)P(h) (2.34)

P(dih) = [| Paih) (2.35)

J
The key quantities in the bayesian approach are the priootheggis,P(h;) for each

hypothesis, which is some pre-fixed value according to expees, and the likelihood of
the data under each hypothes®d;|h;), which is described in each, all of them are
known in advance. In bayesian learning, we are now intedestéooking for the most
probable hypothesisin H, given the observed dath we can find this hypothesi(h;|d),
according to Equation2.35and2.34 Any such maximally probable hypothesis is called a
maximum a posteriofMAP) hypothesishyap.

A simplification for bayesian and MAP learning is that, asswgva uniform prior prob-
ability of all hypotheses, that iB(h;) are all equivalent. And any hypothesis which maxi-
mizesP(d|h;) is called anaximume-likelihoodhypothesishy,. . According to Equatio2.34
if all P(h;) are equivalent, then the maximizB¢h;|d) is equal toP(dh;), so this simplifica-
tion only requires us to find hypothedig wheref is the maximume-likelihood parameter,
which is the proportion of appearance times in previous expnts for the random vari-
able’s one domain value, therefore for the other domaineyahe appearance times is &

We assume thall events have happened, of whichis the times forv; andny(n, =
N — n,) is for v,. According to Equatior2.35 the likelihood of this particular data set is:

N
P(dh,) =]_[P(d;lhy) = 6™ x (1 - 6)™ (2.36)

=1
The maximume-likelihood hypothesis is given by the valuegahat maximizes this

expression. The same value is obtained by maximizing thékeljhood:

N
L(dlhy) = logP(d|hy) = Z logP(d;|hs) = nilogé + nylog(1 — 6) (2.37)

=1

65

By taking this algorithm, we reduce the product to a sum dveidata, which is usually
easier to maximize. To find the maximum-likelihood valuedpive differentiatel with

respect t@ and set the resulting expression to zero:

di(dihy) n1 n2

——-—=0 2.38

do 0 1-06 ()
ny ng

= = — 2.39

np+n, N ()

In this way, we have constructed a method for bayesian n&tparameter learning,
where there is only one random variableand its probability distribution information s
Although the resulting bayesian network contains only coderfor this variable, it is also

applicable to networks with many variables and dependeziaéanships.

Bayesian Classifier

Finally, we state the most common bayesian network moded usenachine learning,
the naive bayesian modelr naive bayesian classifielt is often used in cases where the
attributes variables are conditionally independent githenclass variable. The full joint

distribution for this simplified bayesian network model ¢cawritten as:

P(CauseEffect,...,Effect) = P(Causel_[P(Ef fect/Causé (2.40)
i

This model shows a simple but very common pattern in whichnglsicause directly
influences a number of effects, all of which are conditionadtiependent, given the cause.
As a simplified bayesian network model, naive bayesian iegrecales well to very large
problems: withn boolean attributes, there are just 2 1 parameters, and no search is
required to findhy, , the maximum-likelihood naive bayesian hypothesis. Thgeb@n
classifier can be seen as a specified instance of the bayestiaark inference, and also
inference can be seen as a more general concept for learning.

Bayesian inference methods play important roles in a clagsaoning and evolution
hybrid algorithms raised in thEC community recently, th&DA methods, which we will

discuss in the next chapter.

66

Chapter 3

Hybrids of Learning and Evolution

3.1 Overview

Many existing search and learning methods have been parlicexplored in chapteg.
We have seen that search methods, as a general problem salvére used to solve com-
plex optimization problems without the need for any domspecific knowledge. The only
requirements for search based methods are suitable rapaBeas for the problems and the
measurement or evaluation functions for these problemsanMile, the learning meth-
ods can be used to learn useful hypotheses, classify irestaand predict based on these
learned output, to gain beneficial insights into the probdgace.

After the introduction of search and learning techniques begin to explore the core
topic for this chapter, which is the hybrid of learning analetion algorithms. Modern
hybrid algorithms utilize the advantages from both leagramd evolution. Hybrid algo-
rithms take the feature of evolutionary search algorithexgeneral optimizers, which are
robust to local optima, and also take the advantage of legraligorithms for creating hy-
potheses that indicate promising solutions efficiently.e@o these advantages of these
two techniques, the aim of combining these two methods isntb felatively promising
solutions while keeping enough efficiency. This is againdine we stated in chaptés the
trade-off between the quality of the solutions and the tim&gpace resources expended on
finding these solutions, because such a trade-off is crtecthle success of many practical
application problems, especially evaluation-expensiedlems.

Hybrid optimization paradigm algorithms are being develbpapidly in the evolu-
tionary computation community. In this thesis, we consitieee representative methods,
which have attracted considerable attention in this retefield. Based on one of these

methods, we developed our new hybrid algorithms, and coenih&r performance of these

67

algorithms on a number of test problems of which the resuttsamalyzed. These three

methods are discussed in the following three sections.

3.2 Covariance Matrix Adaptation Evolution Strategies

CMAES [HO96 HO97] is an Evolution Strategy adapting the covariance matrixhef
normal mutation search distribution. Basically, it recotige population history for a certain
number of iterations to calculate covariance and variant@mation among the object
variables, the following search effort is influenced by theariance values. Compared to
other evolutionary algorithms, an important property @@MAES s its invariance against
linear transformations of the search space. Namely, itetehihe same performances for
a given objective functiorf : x € R” — f(X) € R, wheren € N, or for the same function
where a linear transformation is appliefd, : x € R" —» f(RX € R, whereR denotes a
linear transformation. This is true only if a correspondirensformation of the strategy
parameters is made. In fact, this transformation is leabyetie CMA with the application
of the principle of the principal components analysis idtroed in Chapte?.

As we discussed before, as a member of the evolutionary catigu family, the evolu-
tion strategy is a stochastic search algorithm that can &g imsthe search for optimization
problems. The mechanism behi&& search is the stochastic variation operator, mutation,
on the current individuals. The mutation is usually careed by adding a realization of a
normally distributed random vector, and the parametere®@hbrmal distribution play an
essential role for the performance of the search algoritftmerefore, the correct adaptation
of the parameters for the normal mutation distribution Inees crucial. There are two types
of parameters, one is the object parameters that define dihaduals or search points in
search space, the other is the strategy parameters thattrare the mutation distribution.
The essential feature &Sis the self-adaptation of the mutation distribution, tlsagidapts
strategy parameters during the search process.

In Chapter2, we have already seen some attempts at this automatic #damtnormal
mutation distribution irES. The search based on the uncorrelated mutation with one mu-
tation step forms a hyper-sphere with equal probabilitysdgron the surface. This global
step size is further generalized, each coordinate axisigr@ed as different variance, that is
the uncorrelated mutation withmutation steps. An even further generalization adapts the
orthogonal coordinate system, where each coordinate @issigned a different variance,

any normal distribution with zero mean can be produced. Hewehis most generalized

68

method depends on the orientation and permutation of thedtcwie axes and therefore
will perform very badly on the quadratic functions which d&dly scaled and not axis
parallel oriented.

For these reasons, the covariance matrix adaptation meshdelveloped. CMAES
contains a generalized individual step size control, wisdhdependent of the given coor-
dinate system. First, we give the details of thé, 1)-CMAES algorithm as it is defined

in [HO97] for completeness.

3.2.1 (u/u,)-CMAES algorithm

Every new object parameter vectxff*l), k =1...4, of generatiorg + 1 is generated by
adding a realization of & (0,5¢"C) distributed random vector. The vector is generated
by linear transformation af ~ N(0O, 1), wherel is the identity matrix. Fok = 1...24, it

yields

X(kg+1) — <X>;(19) + 5(9)B(Q)D(Q)Zk (3_1)

Wherex(k9+1) € R". Object variable vector & individual at generatiog + 1.
)9 = ;%ZE?I se|X§g)' Center of mass of the selected (best) individuals of generatign

I(S‘-’e)I is the set of indices of the selected individuals at genanafi|l se| = u.
59 Step size.
B@ Orthogonaln x n-matrix, which linearly transform®@z. Columns ofB@ are
eigenvectors of the covariance mat@¥. For any two columnb; andbj, i # j, of B holds
| b; [|I= 1 and(b;, b;) = 0 and therefor®* = B'.
D Diagonalnxn-matrix. The diagonal elemedf is the square root of an eigenvalue
of the covariance matri€@. The corresponding eigenvector is ifecolumn ofB9. That
is, for any columrb® of B© holdsC@b@ = d¥"p®
zx € R". k=1...2realizations of aVv(0, I) distributed random vector, i.e. components
of z are independent identically (0,1)-normally distributed.
D scales the axes of the distribution; isodensity lineBphre coordinate axes parallel
(hyper-)ellipsoids B determines the new orientation of this ellipsoid. The ciarare ma-
trix C determine® andD, and is adapted by means of a so called evolution path, d¬e

by s.

S(g+l) _ (1 _ C) . S(g) +C, - 67\/9’[? (<X>;(19+1) — <X>;(19)) (32)

69

C(g+l) = (1 - Ccov) : C(g) + Ceov S(g+1) (S(g+1))T (33)

where

s e R". Sum of weighted center of mass differencesepresents the evolution path of
the strategy.

c € [0; 1]. 1/ccorresponds to the accumulation timegoForc = 1,59V only depends
on object parameter vectors of generatysndg + 1.

¢, = Vc - (2 - c) normalizes the variance sfbecause 3= (1 - ¢)? + c2.

C@ Symmetricn x n-matrix, which is the covariance matrix of the normally disated
random vectoB@D9z, wherez ~ N(0,1). C©® determinesB® and D9 andC9 =
B@ D(g)(B(g) D(g))T _

Ceov € [0; 1]. 1/ccov CcOrresponds to the averaging time for the covariance matrix

The step size& is adapted separately, because changes of overall varsiocdd be
made on a much shorter time scale than the adaptation of tlagiance matrix. For step
size adaptatio(u),(?”) — (x),(?)is transformed to reverse the scalingydone in Equation

3.1 This allows to calculate the expected lengttsof

-1 1\
S559+1) =(1-¢)- Sgg) +c,- B© (D(g)) (B(Q)) 5\/79; (<X>/(lg+l) _ <X>Lg)) (3.4)
(9+1)) _ ¥
6(g+l) — 6(9) . exp[Dw] (35)
Xn

wheres; € R" represents an evolution path, which is not scale®by

D! can easily be calculated by inverting the diagonal elemefnisindividually.

B*=8B"

D € [0, 1]. Parameter for damping the step size variation.

Xo = VN(1- ﬁ + 2_1lnz) estimates the expected lengthsptinder random selection, which
is thenN(0, 1) distributed.

In the above steps, some important points need to be empladizrst, the mutation
steps history is recorded in the covariance ma@jxvhich is then used to calculate the cor-
responding eigenvect® and eigenvalu® based on the multi-variates statistical method
PCA. Second, after the analysis of the mutation history, thetieiship between different
variables and the significance of these relationships aieated byB andD, respectively.

In PCA, these are the components (eigenvectors) and their sigmiigo(eigenvalues). There

70

is no feature vector formed here, all the components ardaenesl. Third, thé&" new nor-
mal distribution vectogy is now influenced by the eigenvect®rand eigenvalu®, multi-
plied byD gives the vector a new scale, changing its length; multiideB gives the vector
a new direction, changing its direction. In this way, the mewmal distribution vector is
not arbitrary, it is guided by the evolution history dataying any length and direction in
the search space. Finally, the mutation step siechanged or evolved separately.

Essentially, the covariance matrix adaptation impleméimsidea of improving the
probability of emphasizing the mutation steps that canterpeomising solutions. Namely,
the covariance matrix of the mutation distribution is cheshgn order to increase the prob-
ability of producing the selected mutation steps again. Alsh, the rate of change is
adjusted according to the number of strategy parametere dbhpted. The adaptation
mechanism is inherently independent of the given coordisgstem. Finally, the CMA
implements a principal component analysis of the previ@lscsed mutation steps to de-
termine the new mutation distribution.

As we have noticed that thHeMAES algorithm needs to set a number of relevant pa-
rameters, those are recommended according to the autlipesiences, we refer to further
details and discussions f@MAES to [HO97, HOO1]. In the following chapters, espe-
cially in Chapte6, we will also introduce tw&MAES variant algorithms for experimental

comparison with our hybrid algorithms.

3.3 Estimation of Distribution Algorithms

A new evolutionary computation paradigm algorithm has négereceived a lot of atten-
tion, it is the hybrid optimization algorithm called Estitiean of Distribution Algorithms
(EDA) [MP96, LELP99 PGL99. EDA can be seen as an outgrowth of genetic algorithms,
where a population of candidate solutions are maintaingquhetsof the search for an op-
timum solution. This population is typically representeglecitly as an array of objects.
Depending on the problems, the objects might be bit stringgeotors of real numbers
representation. In aBDA, this explicit representation of the population is reptheath a
probability distribution over the choices available atlegosition in the vector that repre-
sents a population member.

The most important difference betwe@&s andEDAs are, in the latter, there they are
neither crossover nor mutation operators, inst&do\s generalizeGAs by replacing the

crossover and mutation operators with learning and sag i@ probability distribution of

71

the best individuals of the population at each iterationhef algorithm. That is, the new
population of individuals is sampled from a probability tdisution, which is estimated
from a data set containing selected individuals from theviptes generation. Working
in such a way, the relationships between the variables \iedbln the problem domain
are explicitly and effectively captured and exploited tigh the joint probability distribu-
tion associated with the individuals selected at eachtiteraln evolutionary computation
heuristics, on the other hand, the interrelations betwkerdifferent variables represent-
ing the individuals are kept implicitly in population. Beéexploring each concrete EDA

algorithm, we introduce a geneaDA algorithm first as Algorithn®:

Algorithm 5 pseudo code for a general EDA algorithm
1: Generate the initial population at random withindividuals;

2: while (the stopping criterion is not medp

3: Select N < M) individuals from current population according to a satatmethod,;

4: Estimate the probability distribution of an individual i the selected individuals;

5. SampleM new individuals from this probability distribution;

6: end while

As stated before, thEDA algorithms do not have crossover and mutation operators.
When the initial population is generated, a subset of ctiirglividuals are selected as the
best individuals according to a fitness or ranking basedasetemethod. Then the proba-
bility distribution for each variable of each individualestimated. The new population is
then generated according to this probability distributida we mentioned, this is the gen-
eral EDA algorithm, it can be seen as a framework for various con&e algorithms,
and the most important feature that distinguishes diffeEE»A algorithms is the method
that estimates the probability distribution, before we seese specific estimations meth-
ods, we will give an illustrative example of a simpl€dDA algorithm by simulating the

creation of the initial few populations.

3.3.1 Example lllustration

For the problem of optimizing (minimizing) the functidrfx) = sin(x) with binary variable
X, fori = (1...5). The initial population is obtained at random by samptimgfollowing
probability distribution:po((x, = 1) = 0.5) fori = (1...5). According to this probability,

72

Table 3.1: Initial populationPy

index| Xu | X2 | Xs | X4 | Xs f(X)

1 [1(11]0|1| 0290285
2 |1]1]1]0]|0]0.382683
3 |0/0|1]0|1]|0471397
4 0/0(1|0|10471397
5 [0|1|0]0|0]O0.707107
6 |1/0]1[0]|1]0881921
7 |1]0]0|1]1] 095694

8 [1/0[0]1|0]0.980785

Table 3.2: Selected population

index| Xu | X2 | Xs | Xa | Xs f(X)
1 [1(11]0|1)| 0290285
1 [1(11]0|1)| 0290285
4 |0|0|1|0]|1]|0471397
5 {0]1|0|0]|0]O0.707107

for each variablex;, the probabilities of generating O or 1 are equivaldpy.is the initial
population (Table3.1), with the average fithess value a6@2814.

In the selected population (TabB2) with half of the initial population size, it is pos-
sible to emphasize the same individual twice. We estimatbbability distributions for
this selected population, the probabilities areXp€ 1) = 0.5, pK; = 1) = 0.75, pKs = 1) =
0.75, p¥s = 1) = 0.0, p¥s = 1) = 0.75. According to this probability distribution, thew
population is generated as in (Tal3s).

We can see that the new generated population also have &dundis with the average
fitness value, 29666, compared with the initial average valué4@2814, the average fit-
ness value is optimized now. This finishes an iteration ofsihgplest EDA algorithm. In
this simplified version oEDA, we ignore the method of creating the probabilities distrib
tion. Also, the above problem is univariate, the variablesiadependent to each other, so
the probability distributions are univariate marginaltdizitions. However, in many other
problems, the variables are not independent, the intendkgpesies relation could be com-

plex, in these cases, IBDA algorithms, the bayesian network model is used to represent

73

Table 3.3: New generated population

index| Xu | X2 | Xs | X4 | Xs f(X)
1 [1(11]0|1| 0290285
2 |1]12]12]0]1]0.290285
3 [1/1{1]0)0]0.382683
4 0/0(1|0|10471397
5 [0/0|1]0|1]|0471397
6 |1/1]0|0|1]0.634393
7 |0|1]0]0|1]0.77301
8 [0|1]1]0|0]0.92388

these dependence relations, which have to be construcsedrinl the relevant probability

distributions need to be calculated.

3.3.2 Structure Learning Methods

As discussed in Chapt@r Section2.3.5 the induction of a bayesian network includes two
important components, one is the parameters learning coempothe other is the structure
learning component. We have discussed how to learn the péeesrcomponent, here we
simply discuss the structure learning method. There arergéyn two wide methods, one
is detecting conditional dependencidise other issearch and score method

The PC algorithm$G9] is one of the examples of detecting conditional dependsnci
algorithms. It starts by forming the complete undirectedpdy, then ‘thins’ that graph
by removing edges with any conditional independence malatiafter all such conditional
independences are all removed, a conditional dependeremaati acycled graph is derived,
the bayesian network.

The search and score method is to search for a good bayegiaorkdérom a huge
feasible networks space. To be able to do this, recall frag#netic algorithm section, we
need to define suitable measurements of the candidate rkstw©nce such an evaluation
method is available, any heuristic search algorithms canskee to implement searching,
we have seen such a search method in Ch&yter example, local search algorithms and
genetic algorithms are all applicable. And the modificabbone network structure could
be adding or deleting one arc of the current structure. Kindde measurement method

can depend on the maximum likelihood measurement which we tiacussed in Chapter

74

2 in the parameters learning part. That is, for some obseraga s£tD and a bayesian
network, the maximum likelihood estimate,can be used as a measurement of the success
of the candidate structure to describe the observedlaktowever, it seems that the more
complex structure has a bigger likelihood, while complexst not preferred. So, some

suitable penalty functions also need to be defined.

3.3.3 Concrete EDA Algorithms

Under the generd&DA algorithm principle, many concretDA algorithms have been de-
veloped. The main differences of these algorithms are tblegtnility distribution methods
applied for sampling new solutions. However, these difiees on probability distribu-
tions are also due to the features of the problems which tB&#%s try to solve. Also,
these problem features define the criterion for classifyiregeEDA algorithms. Before
introducing the most commonly used EDA algorithms, we gheedlassification standards
for these algorithms. First, they can be grouped accordirthe problem types, discrete
value (combinatorial) and continuous-value. And thEDA algorithms can be classified
by the complexity of the probabilistic models used to ledwm interdependencies between
the variables from the data set of selected individuals.réfoee, EDAs can be classified
as non-dependencies, bivariate dependencies, multea@ependencies. We introduce the
EDA algorithms in the order of these classification standardse flrst of them is the
Univariate Marginal Distribution Algorithm (UMDA)ntroduced by Muhlenbeitiih97,
detailed as Algorithn®.

Algorithm 6 pseudo code for Univariate Marginal Distribution Algornmi{UMDA)
1: generate the initial population at random withindividuals;

2: while (the stopping criterion is not medp
3: selectN < M individuals from current population according to a selattnethod;
4. Estimate the joint probability distribution witpp(x) = p(XD) = [IiL, p(%) =
n o Z)i6j(X=xID)
H. 1 Z=r 7
I= N

5. sampleM new individuals from this probability distribution;

6: end while

The model used by MDA to estimate the joint probability distribution of the skt
individuals at each generatiop(x), is very simple. Each univariate marginal distribution

is estimated from marginal frequencies:

75

YL, 65(% = xID)
N

p(x) =

where

5,(% = xID) = { 1 ifinthe j" case of DX = X;;
0 otherwise

AnotherEDA algorithm which considers multiple dependencies is therglgm called
the Estimation of Bayesian Networks Algorithm (EBNA)troduced in LELPOQ. This
and its variant algorithms are typical algorithms that gtpe bayesian networks as the
probability distribution estimating method. In these altfons, the parameters learning
for the networks is implemented by learning the factor@matf the joint probability dis-
tribution encoded by a bayesian network from the selectéa skt. The structures of the
bayesian networks are learned from the following steps fif$tggeneration of the networks
is generated throughout the networks space. And then ethiee following options can be
chosen, test on conditional independences between vesiadgbplying the PC algorithm;
or some simple search algorithms can be employed to searehgimod network structure
and some evaluating methods for guiding the search algoifith good network structures
are applied, among these methods, the K2 algorithm comhiiiidpenalty function or

BIC are applied, each of the options gives different instsnaf theEBNA algorithms, as
shown as AlgorithnY.

Algorithm 7 pseudo code foEBNA-c, EBNAK2 + pen EBNAgc algorithms
1: generate the initial population at random withindividuals;

2: while (the stopping criterion is not medp

3: selectN < M individuals from current population according to a sel@ttmethod,;
4: conditional (in)dependence tests EBN Ay

5: penalized Bayesian score+searehEBN Az, pen

6: penalized maximum likelihood + searel EBN Ag\c

7. sampleM new individuals from this probability distribution;

8: end while

The EMN Ayo0a @lgorithm [LnLBO1] is an approach based on the estimation of a mul-
tivariate normal density function at each generation. Ascdbed in Algorithm8, at
each generation, we estimate the vector of means, (us, uo, . . ., i), and the variance-

covariance matrixg, whose elements are denoteddf)S/ with i, j = 1,...,n. This means

76

Algorithm 8 pseudo code foE MN Aygha algorithms
1: generate the initial population at random withindividuals;

2: while (the stopping criterion is not medp

3: selectN < M individuals from current population according to a selattnethod;

4. f(x) = f(XD) = N(x; i, 2.) Estimate the multivariate normal density function from
the selected individuals.

5. sampleM new individuals from this probability distribution;

6: end while

that we need to estimate meansn variances and - (n — 1)/2 covariances. These param-

eters estimations use their maximum likelihood estimatéle following way:
-—X-—lZN-i—l n
Hi = I_Nr:l Xrl=4 ...,

1 .
O'iZ:NZ;N(XLr—,ui)ZI =1...,n
r=

We finish our introduction olEDA concrete algorithms for now. However, in Chapter
7, anotherEDA algorithm calledPopulation Based Incremental Learning (PBiki)Jl be
used to solve and make comparisons with our hybrid algostbmoptimizing the cancer
chemotherapy treatments problem which is a practical eval-expensive optimization

problem. We will delay the introduction of PBIL until then.

3.4 Learnable Evolution Model (LEM)

The LEM was introduced by Michalski in 2000ic00]. LEM is a highly generalized
hybrid approach for optimization, which involves intested bouts of evolution and learn-
ing. The overall idea oLEM is to run repeated stretches of evolution and learning in
series, where the next ‘evolution’ stretch is informed imgoway by the previous ‘learn-
ing’ stretch, which in turn learned about the mapping betwgenotype and fithess from

previous populations. Namely, to infer relationships ewgene values and fitness.

3.4.1 LEM(AQ)

Before we introduce the generlaEM framework, we explain &EM instance algorithm,
Learnable Evolution Model with AQ learning algorithm (LEMQD)), as described irlic00].
Firstly, in LEM(AQ), the initial population is generated and evaluated. It entdivided

77

into high-performance (H-group) and low-performance (btgp) groups according to the
initial individuals’ fitness values. These two groups arentlised as the positive and nega-
tive training examples for the AQ learning algorithm, whiws been discussed in Chapter
2. The outcome of the AQ learning algorithm is a set of rulegesging inductive hypothe-
ses (in terms of intervals of gene values) for the positiceraggative examples, and can be
used to predict the class information (i.e. H-group or Legrpfor future unseen examples.
LEM(AQ) then proceeds with an otherwise normal evolutionary allgorj except that the
operators are designed so that new individuals are gedevatg with gene values within
the ranges of values sanctioned by the recently learnedtivduhypothesesLEM(AQ)
then continues for a specified number of generations, andghases for more learning
based on the current population. This in turn feeds into th stage of evolution, and so
on. There are additional complications and sophisticatioh EM(AQ) that mediate the

transitions between learning and evolution.

3.4.2 LEM Framework

With the introduction of th& EM(AQ) algorithm, we are ready now to introduce the general
LEM framework. The generdlEM framework is very important in our investigations in
the hybrid optimization algorithms in this thesis. All ofetinybrid algorithms developed
in this thesis, and also theEM(AQ), are based on this framework, or more precisely,
are instantiations of this general framework. Our hybrigoathms are inspired by this
basic and generalEM framework, to which we have shown more flexibility and cragti

by incorporating new learning components and new inteyaatethods. We give this
framework first in Figure3.1:

As we can see from tHeEM framework, first, many standard evolutionary computation
components and operations are applied inltEB& framework. Second, the way in which
learning and evolution interact are flexible and dependsifberent situations and on the
progress of the optimization procedure. FinallM(AQ) is only one of the possible
instantiations for the widdtEM framework.

The standard evolutionary computation components suclemergting initial popula-
tion, evaluating individuals, and parent selection etgaints of the evolutionary component
for the LEM framework. They can all be implemented in the normal way a&sleed in
the evolutionary computation section. The way learning evalution interact need to be

decided by the select actions stage, where each actiorsporrds to one mode of opera-

78

=

{

Generate Initial Population

[
V

Evaluate Individuals

Select Parent Population

Select One or More Actions

Adjust
Representation

[Stop LEM }

Figure 3.1: The general LEM framework

Learn.ar?d Probe
Instantiatiate

Randomize

tion. LEM can also select one or more actions in parallelciis controlled by the Action
Profile Function (APF). There are basically four mode& &M, they are learning mode,
probe mode, change representation, and randomization.

Learning mode is the main operationllEM, it contains three operations, which are
the training examples selection, hypothesis generatioth hgpothesis instantiation. The
training examples selection stage can be implemented iy mays, such as ranking based
and fitness based. For both methods, a threshold is needéa ranking based method,
all of the individuals that are in the high group defined by theeshold are selected as
the positive data, the same principle for the negative datathe fithess based method,
precisely those fitness values which are in the top and lowpggdefined by the threshold
are selected as positive and negative data.

When the training data are selected, the AQ learning algoris used to generate the
hypothesis, a rule-set describing the training data. Afiey, the instantiation procedures
are used to generate new individuals for the next generafldre successful implemen-
tation of instantiation is crucial to the succesd. &M implementation, even the learning
algorithm has successfully indicated the promising dittrof the search space, inefficient
implementation of instantiation also cannot lead to goodopmance. This needs to de-

velop efficient instantiation procedures to utilize theteanformation effectively.

79

The probing mode executes evolutionary computation opp@sin order to generate
new individuals. The two operators implemented in LEM a@sspver and mutation. One
important issue in applying these genetic algorithm opesais that, they are not used to
generate promising solutions but rather to maintain therdity of the population. This is
due to the fact that as the learning and evolution procedomérwes, the population will
soon converge to some narrow districts involving local abgl optima, meanwhile, the
diversity of the population will disappear very quickly. i§hs a quite normal situation
which occurs in an evolutionary search, however, it causeartaicular difficulty for the
LEM method due to the application of learning in this framewdtkmely, lack of diversity
for the population and therefore the problem of not havingugih training data will cause
the learning algorithms to be unable to generate useful emesentative hypotheses and
rule-sets.

The discretization mode ihEM framework raises the requirement for any adaptive
discretization methods. These discretization methods)acessary for theEM frame-
work based optimization procedures and can increase tlesjme of the discretized real
variables in the most promising areas, or neighborhoodseofittest individuals.

In addition to the probing mode which can generate randoimishghls, randomization
mode further adds randomly generated individuals to a @l in order to introduce
more diversity, or replaces the entire population in a siaer process. This mode is ben-
eficial when the learning mode leads the search procedweaintrong direction or local
optima, and has no hope of restoring from the wrong diresteasily.

The switch between these modes and actions described amaiolled by the Action
Profiling Function (APF). In theEM framework, APF controls two important aspects first,
it can adaptively decide the number of individuals that iélgenerated by each mode, this
is done by defining parameters likeerage-learning-fithesaverage-probing-fitnessif
the former is bigger than the latter, then the number of idials generated in the learning
mode should be increased. Another aspect is the no-progaesseters, indicating within
a number of iterations that the program is making no progressrms of values of the
fithess function. This situation can be identified throughtbke of two program parameters,
learn-probe and learn-threshold. Learn-probe defines #iz@mum number of iterations
that are performed even if there is no satisfactory progeess the learn-threshold defines
the minimal acceptable increase of fitness of the best iddali In such a situation, the
no-progress condition is met, and the available actionkheiltriggered in a pre-defined

order.

80

3.4.3 Relations with EDAs

Meanwhile, whileLEM was initially published only in the machine learning comntyn

at around the same time Estimation of Distribution Algarnthstarted to shoot to promi-
nence in the evolutionary computation community02]. EDAs can also be viewed as
learning/evolution hybrids, with the emphasis on buildargd maintaining models of fit
chromosomes. BothEM andEDA techniques now have several published variants (par-
ticularly EDA variants), and it is interesting to consider what the dedaidifferences are.

It seems correct to suggest that whid®As focus on modeling as the key force behind
search activity (i.e. search is guided closely by sta@ticodels, with new sample points
generated directly from the model), ifEM the evolutionary component is more responsi-
ble for the search (i.e. new points are sampled mainly indh@lfar way by using genetic
operators on a population of chromosomes), with guidarosa fearning processes.

Most interestingly, recent results from thEM team compar&DAsand LEM3 directly
[WMO06]. They report using variouEDA implementations fromBMLLO2], with best
results of these on Rosenbrook and Griewank functions diemyrEMNA _global [LLBO02].
Comparison of LEM3(AQ) and EMNAylobalon these functions showed LEM3 is between
15 and 230 times faster in achieving its best value, whichrin was always better than that
achieved by EMNAglobal Finally, it must be pointed out thatybridsof EDA andGAs,
or of EDAs and other search methods, have started to appear sincsta20€3 FSTF03
ZSTF06 PRL04]. When contrasting the LEM framework with tieDA framework, it is
perhaps clearest to say that LEM is similar in style to a iyBDA/GA, and this seems to

be reflected in the relative success that has so far been $bo&DA/GA hybrids.

3.4.4 Applications of LEM

The performances dfEM(AQ) have been reported as very promising, with improvements
both in solution quality and dramatic speedup when comptrdte ‘without learning’
equivalent EA. The developers of the LEM framework are curdlly updating the ‘AQ15’
version PKES93 for the AQ learning algorithm and continuing to report irapsive results,
albeit on a limited suite of test functions. In applicationented work, a multiobjective
LEM-based approach, using C4.Q4i93 as the learning method, was found to signifi-
cantly speed up and improve solution quality for large-sgabblems in water distribution
networks PCSWO0%. Meanwhile the team that developed LEM has updated thedwaork
[WMO5] and continued to obtain impressive resultgNI06].

81

The design and application &fEM clearly merits considerably more research. The
speedup derived by applyind=M is reported in several papers, that is, the reduction in the
number of fithess evaluations needed to reach high quabtyltee this improvement is of
particular interest for many important applications in @ffitness evaluations are costly.
In such applications, time savings can make the differeretevden the problem being
solvable or not at all. With an interest in a clearer undediteg of theLEM framework
and its performance, we investigated in this thesis a nummbeEM instance algorithms
and the performance improvements obtained by using thgseithims are reported in the

following chapters.

82

Chapter 4

KNN Based LEM Hybrid Algorithms

4.1 Overview

In Chapter3, we have seen some modern hybrid optimization algorithmsorg them, we
are particularly interested in the geneltdlM framework and th& EM instance algorithm
LEM(AQ). In this chapter, we start the expedition of investigatimgenewlLEM instance
algorithms. This further research into LEM methods is du¢htfollowing three main
reasons.

The first one is the scientific research interest. As we cantBese exist many learn-
ing methods in the machine learning community. What will pexp if we replace the AQ
learning algorithm with the other well-known learning matis? Will the resultind. EM
algorithms perform equally well? That is, can they still @sle the same performance im-
provements over the same set of problems as the origiBsl(AQ) does? The feasibility
of this investigation is based on the fact that, althoughl¢laening methods are varied in
many aspects, many of them do share many similarities. Fample, for the supervised
learning methods, all of them need some training data ag,igma output some forms
of model or hypothesis which take the form of either treessudegs, or the training data
themselves. So, the general forms are the same, apart feimndbction details. More
precisely, we want to make thd=M framework more flexible and extendable to any learn-
ing methods, and the application or choice of a particulamiemg method will depend on
the problems at hand or user’s preference. Ultimately,ahmscan also be understood as
offering a user-friendly interface, where before the runhafLEM framework (which is a
huge collection of various learning and evolution algont), a set of optional parameters
can be chosen, or during the run of ttEeM framework, the suitable learning methods can

be selected adaptively according to the progress of opitioiz.

83

The second reason is that we want to clarify how learning saliigon interact LEM(AQ)
has shown a good way to interleave the learning and evolptiocedures, they can be car-
ried out in series or in parallel or the output of one procedtan be used as the input of
another procedure. Learning methods generally contaierakfunctions, for example, the
classification and prediction functions. Therefore, thegjion arises, are there any other
ways in which learning and evolution can interact? To anghisrquestion, that is to find
out another new way for learning and evolution to interadt e a very interesting and
challenging task, and also will further show the flexibildlythe LEM framework. There-
fore, this is an important investigation direction {dEM research.

Finally, another important reason for investigatingM is application-oriented. The
promise shown in the work on origineEM for considerable speedup for the optimization
of many evaluation-expensive problems also clearly meditsiderably more research into
the design and application @EM. This led to an investigation of dnEM variant algo-
rithm on the large scale water distribution network prob[@@SWO09%. In these and many
other problems where fitness function evaluations takeiderable time, time savings are
precious, and can easily make the difference between th#egonobeing solvable or not.
This forms another important reason for investigatifigM, we want to see how successful
LEM is in achieving speedup for evaluation-expensive problems

Based on these reasons, in this chapter, we start this el investigatind-EM in
its (we think) simplest form, usingNN (Section2.3.3 as the ‘learning’ mechanism. The
resulting algorithm is calletHlEM(KNN) [SC08. In LEM(KNN), the way learning is used
is quite different from the way it is used EM(AQ). KNN learning is used to predict the
new individuals generated by the evolution mode and can ée ae a survival selection
method for selecting the newly generated individuals. Mmeisely, learning is used as
a ‘filter’ which can predict the ‘fithess’ of these newly geaied individuals in some way
prior to the evaluation of these individuals. If one indiva is predicted as fit enough, it
will then survive and be evaluated, otherwise, it will becdisied. Evidently, a new learning
and evolution interaction mechanism is createdEM(KNN). Finally, if such predictions
by KNN are correct to a certain extent, then a suitable substitutdhé survival selection
operation is found, which allows a huge amount of evaluatiorbe avoided and saved.

We will presentLEM(KNN) in complete detail in the following sections and evaluate
the performance of thisEM instance algorithm. We tesEM(KNN) on the same set of
problems that were used in the origindM paper. A further refinedl EM(KNN) algo-
rithm calledLEM(dwKNN) is also developed for reasons we will indicate latdtM(dwKNN)

84

incorporates the distances contribution to KNéN algorithm and is able to obtain better
optimization performance. Both algorithms are tested cgt afstest functions widely used
in the optimization community.

In the remainder, we continue as follows. Sectb provides complete detail of our
LEM(KNN) algorithm, (also denoted aSA hybridized with KNN algorithm (KNNGA),
and presents the experiments and results. Sedt®provides complete details of the re-
fined and generalizedEM(KNN) algorithm,LEM(dwKNN), (sometimes we also denote
as theGA hybridized with distance-weight KNN algorithm (dwKNNG)and presents the

experiments and results. We conclude and discuss in Setdon

4.2 LEM(KNN)— KNNGA

The LEM(KNN) algorithm has its evolution component as the standard gealgiorithm
and its learning component as tKBIN method. This algorithm is inspired by the original
LEM method and can be viewed in a number of different ways. Itrg€do the general
LEM framework, because it replaces the AQ learning method wikiNKit shows the
flexibility of LEM framework by adding a new interaction relationship betwieanning
and evolution; it uses a new survival selection mechanistharcontext of a standarf@A.

In the following discussion, we use both the terkKiSNGA and LEM(KNN), first, they
are completely equal termkEM(KNN) is used when we emphasize it as part of the LEM
framework; KNNGA is used when we emphasize its similarity w@A. The same term
conventions apply fodwKNNGA andLEM(dwKNN).

4.2.1 KNNGA Algorithm

There is a big difference betwe®&fEM(AQ) and ourKNNGA in how learning influences
evolution, which is quite simplified iKNNGA. In LEM(AQ), the generation of new in-
dividuals are instantiating of the description (set of sjilef the H-group or L-group.
However, inKNNGA, new individuals are still generated by the comnm®A mutation
and crossover operatodSNN is applied as a particular form of survival selection opera-
tor which judges an individual according to its neighbors.détailed description of our
KNNGA algorithm is given below, in which we assume a maximizatioobfem is being
considered.

As with LEM(AQ), KNNGA divides the population into high-performance (H-group)

and low-performance (L-group) groups according to theiefis values and a givémesh-

85

old (say, 30% — that is, the fittest 30% form the H-group and thestv®©% form the
L-group). This is then saved as thearning population Individuals of the H-group and
L-group in thelearning populatiorform the training examples used by tKBIN algorithm.
Effectively, ‘learning’ here corresponds entirely to th@gess of classification into these
groups based on fitness, and hence is one of the simplesinigathemes conceivable.
However, this goes hand in hand with the use ofl#sning populationn predicting the
guality of newly generated individuals, which goes as folo

The common mutation and crossover operators are used toagemew individuals
in the normal way. Once a new individual is generatétIN is used to predict if this
individual is ‘good’ or ‘bad’ according to thé&earning populationwhich is the training
examples. First, we find thenearest neighbors for this new individual; if the majority o
these neighbors are in the H-group, then this individuarédigted as ‘good’, otherwise
this individual is predicted as ‘bad’. The ‘good’ individsare retained to form the new
population for the next generation, and are evaluated imtmmal way inGA. The ‘bad’
individuals are discarded without evaluation. This camgiguntil sufficient new individuals
are generated in (or, predicted to be in) the H-group to formewa population. When
a fixed number of generations (we indicate thidesgning gap(LG)) are generated, the
learning populations updated by the current population. Again, tearning population
is classified into the H-group and L-group. This is repeatetl a termination condition
is reached. Now we try to ensure a replicable explicatiom wgeudo-code. ‘Overview’

pseudo-code for KNNGA is as follows:

1. Set parameters: Set values fapulation size parameters for mutation (mutation
step size, mutation probability), parameters for cross(messover probability) and
set elite-preserve operator option. &¢indicating the number of neighbors KNN
algorithm), learning gap(indicating the interval before one learning population is

updated by another) and thieeshold

2. Generate initial population: Choose a method to creaartiial population with

population sizeand evaluate this population.

3. Derive extrema: Copy theurrent populatioras thelearning populatiorfrom which
create the high fitness group (H-group) and low fitness grbtgr¢up), according to
fitness values anthreshold These two groups could have a joint set, or their union
could be a subset of the whole population set or even equéie twhole population

set. These two groups are stored KMN algorithm.

86

4. Generate new generations: After selecting parents basdégecurrent population
apply the mutation, crossover operators to generate newidols. Once a new
offspring is generated (it is not evaluated and is not placelde mating pool imme-
diately), KNN is applied to find itk nearest neighbors with regard to H-group and
L-group (not the wholdearning populatio. For thesek nearest neighbors of this
offspring,KNNGA judges the majority according to their fitness values, tiagitde

two cases:

i) if the majority is high (that is, most of this offspringisneighbors are members of
H-group), then this offspring is retained into the newlyatssl population and

evaluated.

ii) if the majority is low (that is, most of this offspring® neighbors are members

of L-group), then this offspring is aborted.

The generating procedure continues until this new poprais filled with such

newly generated individuals. This finishes the generatiame generation.

5. Update H-group and L-group: When tlearning gapis reached, théearning popu-
lation is replaced by theurrent population The H-group and L-group are therefore
recalculated according to the currdaarning populationand the saméhreshold

The new H-group and L-group are again storeddiN.

6. Termination condition: The above steps 4 and 5 repedtsortie termination condi-

tions are satisfied:

i) the optimal (if known) is reached; or
i) the maximum number of generations allowed is reached; or

iii) the best fitness value has not been improving for a certamber of generations.

The pseudo-code for our specific instantiatiolKbiNGA is set out as algorith@. The
idea behindKNNGA is that, instead of using the traditional survival selattoperation,
we can utilize the prediction capacity which is almost afalié to all machine learning
methods. The only requirement for these learning methodseét of suitable training data
which should satisfy some certain criterion of quality anduatity. Predicting the fitness of
each new generated individual does the same job as the alseiection does in principle.

The former is ‘guessing’ according to the performance oWiogs individuals, and the

87

Algorithm 9 pseudo-code for KNNGA
1: populationsize= 100 i =

2: generationnumber= 0, maxgenerationnumber= 500;

3: k=5;learninggap= 1, threshold= 0.3;
4: Initialize a new population witlpo pulationsize and evaluate it;
5. repeat

6: Select parents based ourrent population

7. if (generationnumbefolearning.gap==0) then

8: Copy current populationinto learning population
9: Calculate théH-group and_-group according téhreshold
10: end if

11: while (i < populationsize do

12: Mutate a parent individual to generate a new child;

13: Calculate theé nearest neighbors for this child;

14: if (the majority of this child’sk neighbors are nearer td-Group)then

15: Evaluate and place it into the next generation;

16: i++;

17: else

18: Child is aborted;

19: end if

20: Apply crossover on two parent individuals in therrent populationto generate

two new children;
21: For each of these two children, repeat steps 13-19;
22: end while
23: generationnumbet+;
24: i =0;

25: until (generationnumber== maxgenerationnumbej

88

later is exactly ‘evaluating’ or ‘working out’ the accurdtmess value for each individual,
which is very expensive for evaluation-expensive problemM& highlight the advantage
of KNNGA by comparing it with the standat@A, and we find that the main and only
difference between these two algorithms is the substitigamvival selection operator with
KNN learning method, as seen in Figutel and Figure2.1, showing the similarity and

difference between theENNGA and a normaGA.

initialize

Current population

test

survived |

satisfied

not survived Termination Condition ——— =
discard KNN predic_t on
each offspring
parent select

Parent population

terminate

variation

Offspring population

Figure 4.1: Flowchart of the KNNGA algorithm

KNNGA Execution Time Analysis

One of our main motivations for investigating LEM-based Inoels is their promise of
speedup on large-scale optimization problems. That iseeicly good results with rela-
tively few evaluations, which is particularly important & a single evaluation is time-
comsuming. We therefore provide this simple analysis otetien time for completeness,
in order to better understand how the number of evaluatiepsids on other aspects of the
algorithms studied.

We assume for botKNNGA and GA that the population size is, the maximum al-
lowed number of generations M, the time for evaluating one single individualtig,,
and the new population is generated either by crossoveatperor mutation operation.
Meanwhile tsearcnrepresents the time spent on searching for a satisfyingiawl. For the

generalGAs, the time spent on the whole evolutionary procésgis calculated by:

Tea= (p +M- p) “leval (4-1)

89

There arep evaluations for the initial population, ana evaluations for each of the
following M generations. The time spent on the evolution/learningge®binnca iS cal-

culated by:

TKNNGA: (p + M- p) “Teval + (e p- tsearch (4-2)

Again, p evaluations are needed for the initial population, grevaluations in each of
the following M’ generations, the generations spent by KNNGA when the sadigd
solution is found as GA does. In addition to the evaluatiometi KNNGA needs search
time p - tsearch i €aCchM’ generations. Finally, the time differendg betweenTga and

TknNGAIS:

TD = (M - M’) “ teval — M’ - Lsearch (4-3)

The most important point is that, generally, the search spent in the problem repre-
sentation spadgearchiS proportional to the properties that define the problemasgntation
space, such as discrete or continuous, attributes or dioreneamber, and domain number
for each attribute. However, the time spent on evaluating salutionte,, depends on the
problem definition and the problem complexity. So, in theleaBon-expensive problems,
the evaluation time could be much longer than the search fioma qualifying solution.
That is, we havée,q >> tsearcnin Equation4.3 for evaluation-expensive problems. And
also, the development of tHeEM(KNN) algorithm and the claim made by the original
LEM authors, there should be speedup in evaluation numlbéHEM(KNN) over the nor-
mal GA algorithm, that isM > M’. Therefore, the saved computation tifig should be

expected and calculated approximately as:

Ts = (M - M,) “Teval (4-4)

As we can see from the Equatidi, thetseqrcntime is omitted, as it is actually a rela-
tively fixed time expense for the given problems, it only degeon the problem represen-
tation and dimensions. On the other hand,tthgcould be very different from problem to
problem and much more expensive than the search time ebpémi@xpensive-evaluation
problems. The ternM — M’ represents the expected time savings that we want to achieve
by developing new LEM hybrid algorithm, it should be a pagtinteger and as big as

possible. In the following experiment sections, we will toyverify this anticipation.

90

Picturing the KNNGA evolution procedure

We use a simple linear function maximization problem as amgxe problem to illustrate
how KNNGA operates. The problem has a two-dimensional populatiocesgherefore

each individual consists of two genes (attributes). KMNGA is running, the sequential
populations will be occupied by the individuals nearer ® lthgroup in the current popu-

lation.

y population size 100 30% high

\

30% low))
A population size 100

30% high

o

* ¥

°
30% low B A population size 100

y 30% high
o

000,

o oo 3
" 00
o 9o o

xy

30% low ¢

Figure 4.2: An illustrative flowchart for the KNNGA algoritinevolution procedure

Figure 4.2A shows the first generation, the initial individuals are rdyedistributed
within the whole population space, and for a gitareshold(eg. 30%) the H-group and
L-group are formed.

Figure4.2B shows the second generation derived BfVI(KNN), this population space
is crowded by individuals that are within the high fithesd béthe first population. Since
the degree to which the individuals are now spreading ouénotype space is around half
what it was previously, the density in genotype space ishbyudoubled. This population
now undergoes classification into H-group and L-group, Itesgpin Figure4.2C.

Figure4.2C shows the third generation of the population, and we seented reduc-
tion in the ‘spread’ of the population. Clearly, the curresttole population has focused on
aregion increasingly defined by the H-group individualdeffirst and second generations.

An obvious and perhaps important aspedtBM(KNN) (and LEM methods in general,

is this strongly defined movement of the population betwesmegations, which is clearly

91

guided (by the results of learning) and less randomized &pkbeatory than a normabA.
Naturally this has potential drawbacks; we could expectéhening process to misguide
the population on certain landscapes, and become stuclomrggions. Whether or not this
generally happens on problems of interest and importancg(jfesso) whether the deceptive
nature of the landscape is equally deceptive for noK&#ss in such cases, are moot points.
Empirical evidence to date is suggestive that this geneérallegyy is certainly more often
effective than not.

We implement the.EM(KNN) algorithm in later sections, before we do that, we will
investigatdEM(KNN) with more ideas. These ideas are some trivial modificatiaised
on theLEM(KNN) algorithm, and one of the main purposes of these modificati®no
better evaluate the capacity of thEM(KNN) algorithm. We see one such idea which
is to verify the quality of the individuals who survived thké&NN method inLEM(KNN)

algorithm in the next section.

4.2.2 KNNGA ‘with verification’

We have designed theEM(KNN) algorithm. Before we test its performance, there are
many questions and ideas ab&®MNGA which deserve more discussion. Among them,
some questions interest us. KINNGA, when a new individual is generated, the fithess of
the neighbors of this individual from tHearning populatiorare checked, and this guides
whether or not it enters the population in the next genemafidhe key difference between
KNNGA (a ‘learning-guided’ search) ar@A (a pure black box search) is that, in this way,
a newly generated individual is discarded before evalnatiove predict that it will not be
good enough. The flip-side of this, of course, is that we mal agmit new individuals
into the population that pass this test, but ultimately theye to be unfit. That is, it could
be that the prediction provided B§NN is wrong, and as a supervised learning method, this
case happens normally. The prediction accuracy dependsonp factors as we discussed
in Chapter2, and cannot always be high as long as the learning algorittisfies the
PAC-learning theory. Therefore, our concern and questiomind are: how often will
this situation happen? And will these wrong predictionsurfice the performance of our
LEM(KNN) algorithm? If so, how serious could this influence be?

To understand the degree to which this happens, we also testidied version of the
KNNGA algorithm which includes a step of ‘verifying’ the correesis of the prediction.

When an individual is generated by a mutation or crossoveraipr, as befora&{NNGA

92

calculates itk nearest neighbors, again there are two possible caseshd-setond case,
where the majority of itk nearest neighbors are in L-group (for maximization probhlem
this individual is aborted without evaluation; for the ficsise where the majority of its
k nearest neighbors are in H-group, this individual is furttested instead of being im-
mediately placed into the next generation. That is, afténdpevaluated, it is compared
with a pre-selected value (eg the worst fitness value in theectipopulation), if this in-
dividual’s fitness value is higher than this value, then ivaies into the next generation;
otherwise, it is still aborted. We call this modified versmrKNNGA asKNNGA [SCO04§.
Compared wittKNNGA, KNNGA with verification (KNNGA(V)) adds one more condi-
tion restricting the new individuals’ ability to survive.axhely, in order to survive into the
next generation, the new individual should not only surthee KNN filter, but also should
be better than the worst individual in the current genenatidhe predictions made by KNN
are verified as ‘correct’ or not in this sense. The correspmgidNNGA algorithm should
also be modifiedKNNGA(V) algorithm is the same a&NNGA except that Algorithn®’s
14-19 lines are replaced by Algorithh@.

Algorithm 10 part pseudo-code for KNNGA(V)
1: if (the majority of this child’sk neighbors are nearer to H-Groupgn

2. Evaluate this child with the fitness function;
3: Find theworstfitnessvalue of thecurrent population

4: if (fitnesgchild) > worstfitness) then

5: Places this child into the next generation;
6: i++;
7. else

8: Child is aborted;
9: endif

10: else

11: Child is aborted;

12: end if

This ‘with-verification’ variant does not at first sight seemll-suited to the goal, in
problems with time-consuming fithess functions, of redgdime number of evaluations as
much as possible. However, we were interested in any tréidbeve may be between the
increase in computation time and the quality of solutionswied. We will come back to

this topic in later sections in this chapter when we intradtie refined.EM(KNN) algo-

93

rithm. For now, we continue our investigation of tkBINGA algorithm by experimenting
on both theKNNGA andKNNGA(V) algorithms.

4.2.3 Experiments and Results

This section describes the experiments and results of thanson betweei KNNGA
algorithms and the correspondi®f, which is the evolutionary algorithm identical to our

KNNGA implementation in all respects other than the uskNN.

Test Functions

The test problems used here are those used originalliicOD] to evaluate the perfor-
mance olLEM(AQ). In that work, the author reported on two problems from thelDeg’s
suite [DJ75, and variants are tested with different numbers of dimamsi They also re-
ported that similar findings were achieved with the other @&gJroblems inj1Z00]. An
additional problem tested iMic0Q] is also tested here, this is from the domain of parame-
ters estimation in nonlinear digital filter design, whiclsisiwulated using equations gleaned
from [YS94]. The problems test suite we used in the section is namedesisstite 1’ for

convenience, which consists of five functions.

1. Problem 1 : Find the maximum of functidpwith five variables.

5
f1(Xq, X2, X3, X4, X5) = Z integer(x) —-512<x <512 (4.5)

i=1

Maximum: 25.

2. Problem 2 : Find the maximum of the functidsn of 30 continuous variables with

Gaussian noise:

30
fo(X1, X, X, -, Xe0) =) ix{ +Gausg0,1) —1.28< X < 1.28 (4.6)

i=1

Maximum: approximatelyl248225

3. Problem 3 : Determine optimal parameters of nonlinearfildefined by the equa-

tion:

94

_[3-03y(k-1uk-2) |
|5+ 0.4y(k — 2)u2(k — 1)

+ (1.250%(k — 1) — 2.5U%(K))

y(k)

x In(|1.250%(k — 2) — 2.50%(K)|) + n(k)

4.7)

wherek is the sample index or tim&() is a noise component ranging from -0.25 to
0.25, andu() is an inserted function (sin, step, random). The coefiitsie0.3, 0.4,
1.25, and -2.5 are assumed as variables which will be opgarénd can be seen as
the genes of individuals. The problem is to find their corredties using samples
{{vector, y(vector))}, wherevector is a specific assignment of values to variables and
y(vector) is the value of the equation for this assignment. When gubsd in the
equation, individuals generate a valueydhat is compared with the value computed
when correct coefficients are used in the equation. The §itoésn individual is
defined as inYS94 as the reciprocal of the mean-square error over 200 sample

window:

. 1
Fit Vectol =
tnesgv ecto) MeanS quareError
~ 200
~ Yo(Vector— KnownValug?
(4.8)
4. Problem 4 : Find the maximum of functidpwith 100 variables.
100
fa(x) = Z integer(x) -5.12<x <5.12 (4.9)

i=1

Maximum: 500

5. Problem 5 : Find the maximum of the functiénof 100 continuous variables with a

Gaussian noise:

100
fo(X1, X0, Xas - - - » X100) = Z ix* + Gaus$0,1) —1.28< x < 1.28 (4.10)

i=1

95

Maximum: 13556

We were interested in the basic performanc&RNGA vs GA, so that we could sam-
ple the degree to which (if any) the LEM framework could becassful when using the
simplest possible learning scheme. However, we also taokpiportunity to contrast with-
and without-crossover versions for both tB& andKNNGA. Thus we use notation such as
‘GA(m)’ (the GA with mutation only) and ‘KNNGA(c,m)’ (KNNGAwith both crossover

and mutation).

Parameter Settings

In all cases, the encoding was a vector of real-valued gaaedsencoding numbers within a
specified interval. We used binary tournament selec#t95 BT96, GD91], elitism (the
next generation’s population is always initialized witle thest of the previous generation),
and uniform crossove§ys89. Mutation is implemented by randomly adding or subtract-
ing a small value to one gene. For different problems, theesfork, thelearning gap
may be different. For each probleldNNGA andGA use the same initialization method
to generate the initial population. For all cases, the patput size is 100. We summarize

all the parameter settings f&A, KNNGA andKNNGA(V) in Tables4.1, 4.2

Summary of Results

All experiments are repeated 100 times independently twigecsufficient evidence for
claims of statistical significance. For statistical analysve use randomization testing
[Edg84, which is relatively free of assumptions about the trudribations of the samples
involved. As it turns out, the differences in performancesaggested by the plots shown
were all confirmed significant at a confidence level 0f998, except in those cases where
the best two are clearly close (usually KNNGA(c,m) and KNNGA)(V)), in which case
the difference in performance was inconclusive at this demice level. Finally, it is worth
pointing out again that all algorithms began with the sanit@irpopulation. It sometimes
appears from the graphs (e.g. see Figu® that theLEM(KNN) variants began with an
advantage, however they did not. ThEM(KNN) variants tended to achieve very rapid
improvement in fitness in the first few generations, whichasizontally compressed to

almost nothing in the plots.

96

Table 4.1: Parameters settings for GA(c,m) and GA(m)

Problem 1 Problem 2| Problem 3| Problem 4| Problem 5
Initialization Randomly generate
Representation Real numbers
Crossover Uniform Crossover
Crossover Probability 0.1
Mutation Random mutation
Mutation step size 0.1 0.005 0.1 0.1 0.005
Mutation Probability 0.2 0.03 0.25 0.01 0.01
Parent selection Binary Tournament Selection
Survival selection Generation selection
Population size 100
Number of offspring 100
Termination conditior] 500 Evaluations 2000 E 15000 E | 500000 E| 600000 E

Table 4.2: Parameters settings for KNNGA and KNNGA(V)

Threshold 0.3
k value 5
Learning gap 1

Distance function

Euclidean distance

GA applied

GA(share all GA settings if applieg

N—r

24

N
N

N
=]

-
®

- KNNGA(c,m)(V)
— — — KNNGA(c,m)
KNNGA(m)
GA(c,m)
GA(m)

best fithess values

=
o
T p————— T
—3 L

[N
N

-
N

10
0

I I I I
50 100 150 200

I I I I I
250 300 350 400 450
generations

500

Figure 4.3: Results of running 5 algorithms to maximize peobl

97

Figure4.3shows the results of running KNNGA(c,m), KNNGA(m), KNNGAIa)(V),
GA(c,m) and GA(m) on problem 1. For both KNNGA and GA, mutatgiep size is 0.1,
mutation rate is 0.2, and crossover is implemented with J@mis and 10 children. For
KNNGA, k is 5, thresholdis 30%, andearning gapis 1. For Problem 1, all KNNGA
variants outperform the GA variants. Within 500 generatjdBA(m) only reaches the best
fitness value of 13.21, and GA (c,m) reaches 16.31. In cdntnathin the same number
of generations, KNNGA(mM) and KNNGA(c,m) achieve the bestefis values 16.18 and
23.47, respectively. KNNGA(c,m)(V) achieves best fitneakug 23.0. It is interesting
that the extra evaluation step of KNNGA(c,m)(V) does notd/eny advantage in solution
quality.

1100

1000
900 -
800 -

7.
700

best fitness values

- KNNGA(c,m)(V)
— — — KNNGA(c,m)
— — KNNGA(m)

600

GA(c,m)

500
GA(m)

400 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

generations

Figure 4.4: Results of running 5 algorithms to maximize peob2

For this problem 2, the number of optimum increases as thépuof variables scales
up. Figure4.4shows the results of running the five KNNGAs and GAs algorglan prob-
lem 2. For both KNNGA and GA algorithms, the mutation valu@.®05 due to the smaller
variables range (-1.28, 1.28) and the mutation rate is XZ30ssover is implemented with
100 parents and 10 children. For KNNGR\Js 5, thresholdis 30%, andearning gapis
1. Within 2000 generations, KNNGA(m) and KNNGA(c,m) reable best fithess values
758.3 and 1048.7, GA(m) and GA(c,m) can reach 840.7 and 99&spectively. KN-
NGA(c,m)(V) achieves best fitness value 1039.2.

In this study for problem 3, we test KNNGA algorithm on the Iplem of parameter
estimation for digital filter design. The fitness functionsikefined by equations specifying
linear and nonlinear filters presented ¥§94]. For this minimization problem, the fitness
landscape is not clear even for the low variables casesrésgiband4.6 show the results

of running the five KNNGAs and GAs on problem 3. For both KNNGAdaGA, the

98

x10°*

mean square errors
~
[
=

— — — KNNGA(c,m)
GA(c,m)
GA(m)

Figure 4.5: Results of running GA(m),GA(c,m),KNNGA(c,no)rminimize problem 3

x10*

generations

mean square errors

- KNNGA(m)
KNNGA(c,m)(V)

Figure 4.6: Results of running KNNGA(m),KNNGA(c,m)(V) toinimize problem 3

mutation value is 0.1 and the mutation rate is 1/4. Crossmvéanplemented with 100
parents and 10 children. For KNNGA;,is 5, thresholdis 30%, andearning gapis 1.
The reduction in mean square errors achieved by KNNGA oveig®&ident. Within 150
generations, KNNGA(m) and KNNGA(c,m) reduce the mean sgearors to 3426.3 and
2896.7, GA(m) and GA(c,m) can reduce the mean square erues/ 7886.5 and 7588.2,

I
50

I
100 150

generations

respectively. KNNGA(c,m)(V) reaches mean square erroB{ail4b.

450

400

350 -

best fitness values
= N N w
a1 o a o
o o o o
T T T

=
o
=]

o
=]
T

o

 KNNGA(c,m)(V)
— — — KNNGA(c,m)

~ — KNNGA(m)
GA(c,m)
GA(m)

0

Figure 4.7: Results of running 5 algorithms to maximize peob4

Problem 4 is the same problem as problem 1, but with moreblagg100 variables).
Figure4.7 shows the results of running the five KNNGAs and GAs algorglan problem

4. The mutation value is 0.1, the mutation rate is (1/100 £).Grossover is implemented

I I I I I I I I I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

generations

99

with 100 parents and 10 children. For KNNGHKis 5, thresholdis 30%, andearning gap
is 5. The improvement achieved by KNNGA over GA is evidentthivi 5000 generations.
KNNGA(m) and KNNGA(c,m) reach the best fithess values 415 260.1, GA(m) and
GA(c,m) reach the best fitness values 140.8 and 170.6, rasgdgc KNNGA(c,m)(V)
achieves 351.87.

14000

12000
10000} %7
Y/

8000 [

best fithess values

6000 “+ KNNGA(c,m)(V)

— — —KNNGA(c,m)

KNNGA(m)

== GA(c,m)
GA(m)

4000 -

2000 I I I I I
0 1 2 3 4 5 6
generations

Figure 4.8: Results of running 5 algorithms to maximize peob5

Problem 5 is the same problem with problem 2, but with 100akdes. The optima are
approached with more difficulty than in problem 2. Figdr8shows the results of running
the five KNNGAs and GAs on problem 5. The mutation value is 0tB& mutation rate
is 0.01. Crossover is implemented with 100 parents and l@rehi. For KNNGAk is 5,
thresholdis 30%, andearning gapis 5. The improvement achieved by KNNGA over GA
is evident within 60000 generations. KNNGA(mM) and KNNGA(g reach the best fithess
values 13042.7 and 12787.3, GA(m) and GA(c, m) can only réd@95.4 and 12269.7,
respectively. KNNGA(c,m)(V) reaches 12971.5.

The results on this suite of problems show clear and veryifgignt superiority for
the KNN based_EM hybrid algorithms over the standard genetic algorithmshefiKN-
NGA(c,m) or KNNGA(m) were in top place on each problem, andagis better than the
non-KNN versions. The typical result is that thEM(KNN) variants show a significant
acceleration in fitness in the very early generations, Yedid by steady further improve-
ment, leaving the ordinary versions far back in their wakkege findings reflect those of
[MZ00, Mic00] and other recent LEM works that used more sophisticatauhiileg mech-
anisms and interaction between the learner and the undgrgjgenetic algorithms. Since
the only application-specific demand of KNN is a suitableatise measure (in that way

it is more generally applicable than many other learninghmatsms), it seems fair to say

100

that LEM methods using KNN are clearly recommended for tridhe case of large-scale
optimization tasks in which savings in evaluation time a@eassary. Far more work needs
to be done to establish this properly, however even if LEMhods have not been tried on
large-scale real-world problems so far, their promise hdsed been realized idCSWO03.
Meanwhile, the performance of the ‘with-verification’ viens of KNNGA was gener-
ally not significantly different from that of KNNGA(c,m), ith suggests that the ‘without’
verification version is preferable, simply because it isdfasMore interestingly, the lack
of a major difference in performance between these two siggkeat KNN’s predictions,
at least in the cases of the problems tested here, are ggnavaimisleading. However,
this could be problem-dependent, for other types of problenmmore complex problems,
we are not sure about the predication capacity ofkNe&N algorithms. We will leave the
current conclusion about neglecting the ‘with verificatioase for the moment, and will
do more investigation on this mechanism in our further nedeaFinally, it is clear that
the differences between GA(m) and GA(c,m) were generaflgated in the differences

between KNNGA(m) and KNNGA(c,m).

4.3 LEM(dwKNN) — dwKNNGA

We have investigatedEM(KNN), perhaps the simplest possible LEM variant algorithm.
In LEM(KNN), the algorithm operates almost identically to the operatibits (ordinary)
underlying evolutionary algorithm (EA), howevd{NN is applied as a particular form
of survival selection operator, which judges an individaetording to the fitness of its
neighbors. Also, we introduced the idea of ‘verificationtaherefore the resulting algo-
rithm KNNGA(V). In this section, we reconsider the idea orrwication’ for LEM(KNN).
To clarify this idea, we repeat our initial and main goal f@avdlopingLEM(KNN) al-
gorithm, we want to apply KNN algorithm’s prediction capgcio achieve the goal of
reducing useless evaluations, (those evaluations spetfieandividuals which disappear
in the next generation in the normal evolution procedur&sed®l on this goal, we find that
the LEM(KNN) algorithm cannot avoid some situations where tmany unfit individuals
survived the KNN learning method and occupy the next geroerdive will show how we
find this and the relative experiments later in this sectidhjs is due to the fact that KNN
as a learning method, like all other learning methods, camde predictions or classifica-
tions completely correct (100% accuracy) for the reasossudised in Chapt@ Namely,

it is possible that certain individuals which survived @kredicted as ‘good’ by KNN)

101

are actually very unfit individuals. The percentage for éhastual unfit’ individuals in the
following generation concerns, because if the percentg®oi big, it will affect the opti-
mization performance. Itis due to this drawback that weoithice the idea of ‘verification’
into LEM(KNN).

However, ‘verification’ does not seem a good solution, astiédeom our experiments
in the last section. And we think this could be for the follagireasons, first, it is diffi-
cult to choose a suitabkurvival fithesgwe simply choose the worst fitness value in the
current population) for verification to make a comparisothwiWWorse and more impor-
tantly, ‘verification’ requires more evaluations, it reggs the individuals that survived the
KNN algorithm to be evaluated first before they are furthetad with thesurvival fithess
to decide whether they can be retained into the next geparati not. Such a procedure
clearly needs more evaluations and makes ‘verificationtremiictory to the main goal of
our LEM(KNN) algorithm which is to reduce the number of evaluations.

To overcome the drawbacks of the KNN algorithm and to find adgsubstitution for
verification, we find a nice solution which is ttdistance-weight KNN (dwKNN) and
it allows us to explore a more intelligent version of LEM(KNMhich uses distance-
weighted KNN, the resulting algorithm is callekdEM(dwKNN). In LEM(dwKNN), we
replace straightforward KKN with distance-weighted KNNyieh considers the classifica-
tion of a given inquiry instance according not only to itsgi&ors but also their distances
to the enquire instance. This generalization and refineofehe KNN algorithm have two
main advantages, firstly, there is no essential differeetedenk and all training data due
to the consideration of the distance contribution for eaxdtaince during the classifying.
Secondly and most importantly, the classification for thguare instance is not decided
by the majority class information of its neighbors, but @&t an estimated function value.
It is this estimated function value siwKNN which makes an essential different from the
LEM(KNN) algorithm to theLEM(dwKNN) algorithm - not only can it be used to predict
the newly generated individuals, but it can also make a tlo@mparison with the survival
fitness value without evaluating these individuals. Nanthly estimated function does the
same job as the verification, but without any extra expenae#ess evaluations which
are needed for the verification version.

In this section, we will explain hokEM(dwKNN) achieves the goal of LEM(KNN),
reducing evaluation with KNN as survival selection, andidsohe drawback of LEM(KNN),
unfit individuals are possibly able to survive into the neghgration. And, more impor-

tantly, LEM(dwKNN) does these without the expenses on extra evaluations. ialsiog

102

following experiment part, we also try to unravel the quasf although attempts to use
simpler learning strategies within the LEM framework, sasii EM(KNN), have shown
outperformance over the underlying evolutionary algonitivhether theseEM(KNN) al-
gorithms can seriously challenge the state-of-the-artropation hybrid algorithms? Since
LEM(KNN) produced significant benefits, we hypothesized tiaM(dwKNN) may show
further benefits, and perhaps begin to rival state-of-thejatimization methods such as

CMAES, especially in terms of solution quality over reduced-gasibn number.

4.3.1 Distance-Weighted K Nearest Neighbors Algorithm

As we have introduced in ChapteSection2.3.3 Distance-Weighted Nearest K Neighbors
Algorithm (dwKNN) is a refinement and generalization of thiggmal KNN algorithm. The
main refinement of dwKNN is that it weights the contributidreach of thek nearest neigh-
bors according to their distances to the new query canddlaiag classification. Namely,
distance-weight is to give greater influence to the closeghm®rs, while reducing the in-
fluence of further neighbours. This refinement and genetédiz is worth and believed to
bring more precise classification results. For example,nwke consider a 3-NN (k = 3)
algorithm for classifying the new query candidageif 2 of 3 nearest-neighbors af, are in
the H-group, for the original KNN algorithnx, will be predicted as ‘good’ (individuals in
H-group are labeled as ‘good’ for our optimization probl¢rhewever it could well be the
case that the nearest neighboxgmut of this 3 neighbors is in the L-group, while the other
two are a considerably greater distance away. In this caskould be reasonable to con-
sider more influence of this nearest neighbor by giving iterforedit’ (the weight), than
the other two. Finally, the consideration of giving weigtdseighbors according to their
distances to query candidatedwKNN may or may not change the classification results.
A way to take distance into account in the KNN algorithm is te@ctly assign a pre-
dicted or estimated function value to the new candidateedapon the distance-weighted
average of its neighbors. Namely, for the new candidgteve may approximate its fitness
as weighting the contribution of each of tk@eighbors according to the inverse square of
its distance fromx,, as in Equatior2.21in Chapter2, here, we list this equation again for

completeness.

S ()
T LW

f(x) = (4.12)

103

1

" = SR (4.12)

4.3.2 dwKNNGA Algorithm

In the resulting.EM(dwKNN) algorithm, the GA algorithm hybridized with thlswvKNN
classification algorithm dcEM(KNN) extended with distance-weight, the idea is therefore
simply to operate in the same way as LEM(KNN), but using iadtthe distance-weighted
approach to predict the group membership of a new candila®ely, we replace straight-
forward KNN with dwKNN. DWKNN essentially predicts or estimates the fithess of a new
candidate as a weighted sum of the fitness of its neighborsi@ralbeady-evaluated so-
lutions. A candidate is rejected before evaluating if itsddcted or estimated fitness falls
below asurvival fithess Note, if an individual survives this test, it means firstyat this
individual is classified as ‘good’ class, second, its fitnessie is ‘estimated’ to be better
than the survival fitness without any real evaluations. Megification’ idea uses the real
fithess value to compare with the survival fitness, which iregureal evaluating on that
individual.

There are several possibilities for how we determine whetltandidate survives or not
based on thaurvival fithess We have not explored variations on this yet, but our default
approach used is to allow survival if the estimated fithedseiser than the worst in the
current H-group.

Finally, given distance weighting, it is reasonable toalkdl (or many) of the training
examples to influence classification, since all influenceswderated by distance. There-
fore, for thedwKNNGA algorithm, there is no need to indicate the paramieter it can
be simply indicated as the size of the training data. Thisallst is another advantage of
dwKNNGA algorithm, that is, it reduces the necessity of optimizimg algorithm param-
eterk, which could be important in the optimization performance & not done in the
LEM(KNN) algorithm. To ensure a replicable explication, detailedug®-code for our

specific instantiation df EM(dwKNN) is set out.

1. Set Parameters: Set values pmpulation size parameters for mutation (mutation
probability, mutation step size), parameters for cross@ressover probability) and
set elite-preserve operator option. efindicating the number of neighbors in
dwKNN algorithm),learning gap(indicating the interval before one learning pop-

ulation is updated by another) and tieeshold

104

2. Generate initial population: Choose a method to creadrtitial population with

population sizeand evaluate this population.

3. Derive extrema: Copy theurrent populatioras thelearning populatiorfrom which
create the high fitness group (H-group) and low fitness grbtgr¢up), according to
fitness values anthreshold These two groups could have a joint set, or their union
could be a subset of the whole population set or even equtie twhole population

set. These two groups are stored for dwKNN algorithm.

4. Generate new generations: After reproducingciineent populationapply the mu-
tation, crossover operators to generate new individuatse@ new offspring is gen-
erated (it is not evaluated and is not placed in the matingipgoediately), dwKNN
is applied to calculate its estimated fitness value accgrtbnEquatior4.11, with
regard to H-group and L-group (not the whdéarning populatio). There will be

two cases:

) if the estimated fitness is better than the survival fitn@iss worst fitness in H-

group), then it is evaluated and retained into the newlytecepopulation.

ii) if the estimated fitness is worse than the survival fitnéssn it is aborted.

The generating procedure continues until this new poprais filled with such
newly generated individuals nearer to H-group. This fingstiee generation of one

generation.

5. Update H-group and L-group: Whégarning gapis reached, théearning popula-
tion is replaced by theurrent population The H-group and L-group are therefore
recalculated according to the currdaairning populationand the samehreshold

The new H-group and L-group are stored for dwKNN.

6. Termination condition: The above steps 4 and 5 repedtaotie termination condi-

tions are satisfied:

i) the optimal (if known) is reached; or
i) the maximum allowed generations number is reached; or

iii) the best fitness value has not been improving for a certamber of generations.

105

The LEM(dwKNN) algorithm is modified based on the origindtM(KNN) algorithm,
the pseudo-code for our specific instantiatiord@afKNNGA is set out here as Algorithm
11

In this section, we have developed thEM(dwKNN) algorithm. The reason for de-
veloping LEM(dwKNN) is to overcome the potential drawbackslUtBM(KNN). As we
mentioned before, the goal bEM(KNN) is to achieve good optimization performance by
reducing the unnecessary evaluations. To achieveltBi8l(KNN) uses KNN learning to
predict the fitness of the new generated individual instdaaluating them. Only those
predicted as ‘fit’ will be evaluated later. However, the doaek of LEM(KNN) is that
some unfit individuals are still able to survive due to thet‘perfect’ KNN algorithm’s
prediction accuracy. To reduce the effect of this drawbagkfirst try to use the idea of
‘verification’ to verify each new individual which has suwed the KNN classifier. How-
ever, this verification needs more evaluations to act, whacgainst our initial and main
goal of developind.EM(KNN), which is to reduce the number of evaluations. As a bet-
ter solution to this problem, we refine the initlZEM(KNN) algorithm ad. EM(dwKNN),
which maintains the KNN prediction capacity and also try void the survivals of unfit
individuals by calculating a predicted or estimated fitneseach individual, and the es-
timated fitnes$ is used to compare with the survival fitness. In this wayM(dwKNN)
avoids the extra evaluations KNNGA(V), and therefore in favor of the initial and main
goal of LEM(KNN). Essentially, the estimated fitness valueLEBM(dwKNN) has done
two tasks together, that is, classifying the individual aedfying its quality. These two
tasks are implemented LEM(dwKNN) together, while in LEM(KNN)V, they are realized
separately. We will prove the advantageLdiM(dwKNN) in the experiment part in the

next section.

4.3.3 Experiments and Results
Test Functions

This section describes the experimental results deriad the comparison betwe@&@nAs,
LEM(KNN), LEM(dwKNN), andCMAES. First, we are always interested in the basic per-
formance ofLEM(KNN) vs GA, so that we could sample the degree to whichltEM
framework could be successful when using the simplest pleslgiarning scheme. Second,
we are also interested in the performancelBM(KNN) and LEM(dwKNN), therefore

the distance-weights refinement techniques to overcomértivebacks oL EM(KNN), if

106

Algorithm 11 pseudo-code for dWKNNGA
1: populationsize= 100 i =

2: generationnumber= 0, maxgenerationnumber= 100;

3: k=11 learninggap= 1, threshold= 0.3;
4: Initialize a new population witlpopulationsize evaluate it;
5. repeat

6: reproducecurrent population

7. if (generationnumbefolearning.gap== 0) then

8: copy current populatiorinto learning population

9: calculate théH-group and_-group according tehreshold
10: calculate thesurvivalfitness
11: endif

12: while (i < populationsize do

13: mutate a parent individual to generate a new child;

14: calculate theestimated fithesaccording to Equatiod.11for this child;

15: if (theestimated fitness better tharsurvival fithessin the H-group)then

16: evaluate and place it into the next generation;

17: j++;

18: else

19: child is aborted;

20: end if

21: apply crossover on two parent individuals in ttierent populationto generate

two new children;
22: for each of these two children, repeat steps 14-20;
23: end while
24: generationnumber+;

25: until (generationnumber== maxgenerationnumbej

107

this refinement works, how well does it work? Finally, we algant to find out the per-
formance of ouLEM hybrid algorithms against state-of-art hybrid optimiratalgorithm

like CMAES. We tested all of these algorithms using a collection of sdenchmark test
functions widely used in thEC literature. Here, we name this set of functions as Test Suite
2 and the details of the test functions are described for tetepess. Unless otherwise

stated, in all cases, (number of dimensions, genes) is 30.
1. The DeJong’s function 3 is defined as:
n
f(Xe,..., %) = Z integel(x) (4.13)
i=1

wheren = 30 and-5.12 < x; < 5.12. The global minimum of -150 is at the point
(X, ..., %) =(-5.12,...,-5.12).

Figure 4.9: Landscape of the De Jong function 3 in 2 dimerssion

2. The DeJong’s function 4 is defined as:
n

(X, ... %) = Z ix* + Gaus$0, 1) (4.14)
i=1

wheren = 30 and-1.28 < x < 1.28. The global minimum of zero is at the point
(Xz,...,%) =(0,...,0).

108

Figure 4.10: Landscape of the De Jong function 4 in 2 dimessio

3. The Rastrigin’s function is defined as:
n
f04,..., %) = 1000+ > (¢ — 100 cos(2x,)) (4.15)

wheren = 30 and-5.12 < x < 5.12. The global minimum of zero is at the point
(X1,...,%) =(0,...,0).

\\M
T \“ "“

| ‘ v

‘01‘»0‘\?«\\‘0\‘\’?‘"“'\‘ “‘"‘\"" “ ‘\" M’\ "
m « ou‘“ i \\”0 ‘.0 i

ww{m A
il

x},,m\v ‘ Hhal
»\t’// ‘

_¢-<.
—

l
WWVW

-4 -4

Figure 4.11: Landscape of the rastrigin function in 2 dimamns

4. The Griewank’s function is defined as:

n 2 n '
F(Xe. %) = 1+Z4§00—ﬂcos(%) (4.16)
i=1 i=1

wheren = 30 and-600 < x; < 600. The global minimum of zero is at the point
(Xz,...,%) =(0,...,0).

109

200

150

‘,1:":n ':‘o":‘:‘:")
100 R R
Wt o

y
A Uit

K il

N Oyt

50

1000
1000

-1000 -1000

Figure 4.12: Landscape of the griewank function in 2 dimemsi

5. The Rosenbrock’s function is defined as:
n-1
FO 0 %) = > (100041 = X)) + (% = 1)) (4.17)
i=1

wheren = 30 and-2.048 < x; < 2.048. The global minimum of zero is at the point

(Xg,...,%) =(1,...,12).

4000
3000

2000 T
Uil
i
ity

1000 ittt
iyl

Figure 4.13: Landscape of the rosenbrock function in 2 dsioaTs

6. The Ackley’s function is defined as:

f(Xg,..., %) =20+ e—20exp[-0.2

14 1%
- Z X2 | - exp - Z cos(zx)| (4.18)
i=1 i=1

wheren = 30 and-30 < X < 30. The global minimum of zero is at the point
(X1,...,%) =(0,...,0).

110

77
it/
i/

\ i
W
i

WK
AN
A

Figure 4.14: Landscape of the ackley function in 2 dimersion

7. The Schwefel’s function is defined as:

f4 ... %) = 4189823+ > x;sin(/i) (4.19)

i=1
wheren = 30 and-500 < x; < 500. The global minimum of zero is at the point
(Xq, ..., %) = (4209687,...,4209687).

2000

W)
A
Nyl
SN

A Y
07

J
‘”’l’/

Figure 4.15: Landscape of the schwefel function in 2 dimamsi

Parameters Settings

We have also improved our genetic algorithm implementatiarthis case over that used
in Section4.2, and made them more advanced for solving real-parameteiraingtion
problems. For the new genetic algorithms developed herealléhem GA1 and GA2, we

apply the steady-state model instead of the generationdemthe steady-state model is

111

Table 4.3: Parameters settings for GA1 and GA2
Representation Real numbers

Crossover Blind crossover(BLX-0.5)

Crossover Probability 0.6

Mutation Normal distribution mutation

Mutation step size 1/ 4 of the whole search range

Mutation Probability | GAL: 1.0

GAZ2: 1.0length of chromosome

Parent selection Binary Tournament Selection
Survival selection Replace the worst of the population
Population size 100

Number of offspring | 100

Initialization Randomly generate for each run

Termination condition After 10000 evaluations

Table 4.4: Parameters settings for LEM(KNN) and LEM(dwKNN)
Threshold 0.3

k value 11

Learning gap 1

Distance function Euclidean distance

GA applied GA2(share all GA2 settings if applied)

said to have better performance over the generational mweedlso incorporate new real-
parameters crossover operators developed in the GA lireratto GA1 and GA2 here,
the BLX crossover operatoEFS93 introduced in Sectior2.2.2is applied witha = 0.5,
crossover probability of 0.6; we also apply the Gaussiatupeation mutation with a step-
size of one quarter of a genes range, and apply to a new caadwta various probabili-
ties, since in earlier experiments some advantage was soaseshown for more frequent
mutation, the mutation probability of 1.0 is used for GAldanutation probability of
(1.0chromosoméength for GA2. Parameters for GAs are summarized in Tab8

Both LEM(KNN) and LEM(dwKNN) used a threshold value of O3+ 11, a learning
gap of 1, with the underlying EA being GA2, as in Talld.

The main parameters for CMAE&(1) areu, number of parent individualg,the num-

112

Table 4.5: Parameters settings for CMAES

Number of parents

50

Number of offspring

100

Mutation step size

1/ 4 of the whole search range

Initialization

Randomly generate for each riin

Termination condition

After 10000 evaluations

Table 4.6: Means and standard deviation after 10 genegation

Functions GA(1.0) GA(1.0/30.0) | LEM(KNN) | LEM(dwKNN) CMAES
DeJong3 | -78.3(4.06) -90.26(4.74) | -98.07(4.88) | -113.94.80) | -94.55(3.88)
DeJong4 | 8.84(3.20) 3.47(2.02) 2.39(1.57) 1.31.23) 9.66(3.71)
Rastrigin | 287.89(17.18) | 232.08(20.3) | 212.84(23.59) | 161.4720.05) | 288.66(17.41)
Griewank | 134.04(23.36) | 76.26(13.62) | 67.21(13.43) |36.6710.88) | 158.41(28.86)
RosenbrocK 1027.19(232.76) 583.57(148.74) | 487.11(89.91) | 311.6484.76) | 728.83(166.97)
Ackley 16.45(0.56) 14.50(0.71) 13.95(0.82) 12.1q34.72) | 16.77(0.67)
Schwefel | 9028.48(379.91) 7487.64(517.69) 6611.33(552.26) 5312.6%558.17)| 9611.63(321.64

ber of offspring, and the initial standard deviatiendHere, we implement CMAES(50,100)
ando is set to one quarter of the range of each variable, as iraticatTable4.5.

In all cases, the encoding was a vector of real-valued geags encoding numbers
within a specified interval, population size is 100, binayrnament selection and elitism
(the next generation’s population is always initializedhathe best of the previous gener-
ation) are applied all the time. All experiments are repadi@0 times independently to

provide sufficient evidence for claims of statistical sfgrance.

Summary of Results

Table4.6to Table4.9 summarises the results of 100 runs of each algorithm on eawh f
tion, with means and standard deviations recorded at 1&®&nd 100 generations (multi-
ply by 100 for number of fithess evaluations). Meanwhile uFeg.16to Figure4.22show

the mean convergence curves for each algorithm on theseitesions, respectively.

113

Table 4.7: Means and standard deviation after 20 genegation

Functions GA(1.0) GA(1.0/30.0) | LEM(KNN) | LEM(dwKNN) CMAES
DeJong3 |-97.71(3.42) |-117.21(3.64) |-127.6(3.21) |-141.32.80) |-112.16(2.82)
DeJong4 | 1.35(0.99) 0.09(0.11) 0.0370.051) | 0.16(0.24) 0.070(0.12)
Rastrigin | 248.74(17.74) | 155.40(19.59) | 134.73(16.62) | 87.7415.04) | 228.39(14.78)
Griewank | 55.2333(10.57) | 21.65(4.74) 17.27(3.97) 5.7012.27) 26.07(7.78)
Rosenbrock 436.4(89.7) 220.01(51.03) | 185.23(41.61) | 133.9946.33) | 152.95(37.93)
Ackley 13.17(0.76) 9.96(0.83) 9.05(0.82) 6.330.84) 10.36(1.06)
Schwefel | 8706.26(381.46) 5686.49(533.59) 4641.64(536.89) 3470.82461.21)| 9564.46(291.09
Table 4.8: Means and standard deviation after 50 genegation
Functions GA(1.0) GA(1.0/30.0) | LEM(KNN) LEM(dwKNN) CMAES
DeJong3 | -128.23(2.65) |-146.67(1.42) |-149.6(0.61) |-149.930.25) |-141.7(2.23)
DeJong4 | 8.63e-3(7.53e-3)| 3.60e-3(4.86e-3) 2.52e-3(3.17e-3) 7.76e-3(1.93e-2) 5.28e-40.12)
Rastrigin | 174.94(30.17) | 84.36(14.51) | 64.38(10.78) | 30.3%7.05) 191.26(12.1)
Griewank | 6.75(1.99) 2.04(0.4) 1.52(0.27) 1.080.081) 1.16(0.079)
Rosenbrock 116.74(27.65) | 75.38(29.28) | 69.29(30.96) | 68.34(39.16) | 29.940.73)
Ackley 6.601(0.71) 3.91(0.50) 3.02(0.50) 2.220.58) 2.32(0.409)
Schwefel | 7380.06(1012.55) 3277.86(493.95) 2009.99(375.16) 1685.07330.60)| 9460.74(282.0
Table 4.9: Means and standard deviation after 100 genagatio

Functions GA(1.0) GA(1.0/30.0) | LEM(KNN) LEM(dwKNN) CMAES
DeJong3 | -145.60(2.12) -150(0.0) -150(0.0) -150(0.0) -150(0.0)
DeJong4 | 1.77e-3(1.73e-3) 8.8e-4(9.9e-4)| 8.7e-4(0.9e-3) | 1.53e-3(1.68e-3) 1.52e-41.6e-4)
Rastrigin | 77.29(33.48) | 44.75(8.997) 27.66(7.9) 11.042.79) | 116.69(63.62)
Griewank 1.52(0.68) 0.95(0.11) 0.51(0.25) 0.68(0.23) 0.0290.017)
Rosenbrogk 55.17(20.87) | 44.72(24.15) | 45.68(27.14) | 53.00(34.72) | 27.420.53)
Ackley 2.59(0.83) 0.95(0.52) 0.65(0.57) 1.38(0.61) | 0.0190.0094)
Schwefel | 5120.94(1078.51) 1540.0(289.45) 1357.99336.98)| 1446.53(301.62) 8948.33(805.8

114

25

—— GA(L.0)
GA(1.0/30.0)

201

——— LEMKNN
LEMdwKNN
CMAES

15

best fithess values

10

L L L .
0 20 40 60 80 100
generations

Figure 4.16: Results of running 5 algorithms on the DeJongBlpm

120
100 \ GA(1.0)
‘ GA(1.0/30.0)
LEMKNN
w 80f
g LEMdwKNN
€
- CMAES
g 60r
£
I
&
40
20t
0 s
0 5 10 15

generations

Figure 4.17: Results of running 5 algorithms on the DeJonghlpm

115

10

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
CMAES

107

best fitness values

10

0 20 40 60 80 100
generations

Figure 4.18: Results of running 5 algorithms on the Rastnmgoblem

10
GA(L.0)
GA(1.0/30.0)
LEMKNN
, LEMdwKNN
107}
2 CMAES
3
E
>
(%]
%]
()
£
7
"
10"
10° : : : ——
0 10 20 30 40 50

generations

Figure 4.19: Results of running 5 algorithms on the Griewairdblem

116

10

GA(L.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
, 10°} CMAES
(0]
=}
3
>
[92]
%]
[
s
B
s -
10°}
101 L L L L
0 10 20 30 40 50

generations

Figure 4.20: Results of running 5 algorithms on the Rosestbpooblem

25

GA(1.0)

20" ——— GA(1.0/30.0)
——— LEMKNN
LEMdwKNN
CMAES

15

10

best fitness values

L L L .]
0 20 40 60 80 100
generations

Figure 4.21: Results of running 5 algorithms on the Ackleyigbem

117

10

best fitness values

GA(1.0)
GA(1.0/30.0)
LEMKNN
LEMdwKNN
CMAES

10

0 20 40 60 80 100
generations

Figure 4.22: Results of running 5 algorithms on the Schwafeblem

First, for the GA1 and GA2 algorithms, the only differencevieen these two algo-
rithms is the mutation probability. GA1 has a mutation piubty of 1.0, while GA2 has a
mutation probability of 1.0léngth of chromoson)eAs is clear from the tables, GA2 beats
GA1 in all the functions for all generations. This has theaclenplication that, when GA
is used to solve real-parameter optimization problemsyaionutation probability should
be recommended. However, this recommendation is only elgfiom our test problems
here, which may not represent all problem complexities aatlires.

Second, according to the algorithms performances, IbBM(KNN) andLEM(dwKNN)
outperform the corresponding GA algorithms (GA2) in all l[peams for all generations.
The performance improvements are more clear in the eadieemgtions, and are less clear
in the later generations. This advantage in the early stafegtimization has shown the
advantage and promise that LEM based hybrid algorithms chiee important speedup
over the standard evolutionary procedures in both the tyuafi solutions and speed of
optimization by using the application of learning as a gumethe evolutionary search.
This advantage oEEM(KNN) algorithms over the standard GA algorithm is crucial for
expensive-evaluation problems.

Third, as shown in the results, the refineBM(KNN) algorithm LEM(dwKNN) has
more competitive performance than its original version.wesexpectedl.EM(dwKNN)
is developed to overcome the potential drawbacksltE:M(KNN) may suffer, that is, the

learning classifier KNN may misclassify some unfit indivithuas survived individuals and

118

therefore lower the optimization performance. This sp&toh has been reflected in our
experiment on test suite 2, as we can see Lt®I(dwKNN) algorithm significantly im-
proves the performance @EM(KNN) on six of these functions for all generations, this
improvement ovet EM(KNN) indicates that EM(dwKNN) not only inherits the predic-
tion capacity ofLEM(KNN) by applying the distance-weight version of KNN algorithm
but also improves the efficiency tEM(KNN) by applying the estimated fitness values in
order to verify the quality of the survived individuals watht any extra evaluation expenses.
The only exceptional result is De Jong’s function 4 whichteoms a noisy component in
the function definitionLEM(KNN) outperformancé EM(dwKNN) at the generation 20.
This situation merits more investigation for dALEM(dwKNN) algorithm on problems with
noisy input components.

Finally, LEM(dwKNN) performed significantly better tha®@MAES, and most of the
other algorithms, on six of the seven test functions whensoneal at 1,000 evaluations
(10th generation). The picture remains similar at 2,000uateons, and_.EM(dwKNN)
tends to maintain a strong advantage at 50 generationg)By@luations) too, however itis
overtaken between then and the 10,000 evaluations pointjiah CMAES tends to be the
dominant algorithm. The optimization performance derigg@ MAES s quite reasonable.
CMAES, at the beginning of optimization, tends to learn about t& mutation step sizes
and will generally adapt to the best mutation step sizes, gjhocedure will take certain
number of generations, that is why the performandegMRES in the initial generations are
not very promising. However, once the optimized mutati@psizes are found;MAES
rapidly converges to the optimum solutions either local lobgl, this is what makes the
performances c€EMAES so excellent, particularly in the quality of the solutioresigled in
the later generations.

Here we have found thatEM(dwKNN), which simply augments an EA with a pre-
evaluation filter survival based on distance-weightedestareighbors, can drastically im-
prove the performance of the underlying EA addM(KNN), and result in performance
comparable or (usually) better th@MAES over limited number-of-evaluation regimes (up

to around 5,000).

4.4 Concluding Discussion

We investigated a simple version of Michalski’s LEMic00] which usedk-nearest-neighbors

as the learning component, and had a straightforward ictterabetween the learning and

119

theGA, in which new individuals only entered the population if thejority of theirk near-
est neighbors in the currel@arning populatiorwere in the top good performance group.
One contribution of this work is theEM(KNN) algorithm, a simple instantiation &EM
with KNN, which very clearly trounces the correspond{®4 in both speed and solution
quality. The speed advantage is particularly impressigeimeral. Another contribution of
this work is the fact that theEM framework has been shown to work well in the context
of using perhaps the simplest possible learning methodtheravords, even the simplest
learning approach hybridized with a norn@A in a very simple way can lead to con-
siderable performance improvement over G& alone. This is in contrast to published
approaches which have either used AQ learners or C4.5. KNidtis simpler and more
generic, suggesting thaEM(KNN) may be applied to large-scale optimization problems
independently of the chromosome encoding required, ngexily a suitable distance met-
ric to be defined.

The advantage dfEM(KNN) is also our main purpose to develbEM(KNN), that is,
it saves evaluations by using the KNN learning method as théwal section method to
predict the ‘good’ or ‘bad’ for the new generated individughther than evaluating them
exactly. However, the disadvantagd &M(KNN) is that the prediction based on neighbors
could be flawed and therefore bring unfit individuals into tlet generations. This is not
what we expected. To overcome this drawback, we have triecapproaches. One is the
development of a ‘verification’ version &fEM(KNN), which results in th&KNNGA(V)
algorithm, and the other is the application of the distawegght KNN algorithm, which
results in the.EM(dwKNN) algorithm. TheKNNGA(V) algorithm is not very successful
in overcoming the disadvantageldEM(KNN), because it causes more actual evaluations
to verify the new generated individuals in order to excluake unfit individuals, which in-
evitably violate the advantage and main goal of develohBiyI(KNN) based methods.
On the contrary, th& EM(dwKNN) seems very suited to overcoming the drawbacks of
LEM(KNN) and therefore is able to perform better than HEM(KNN) algorithm. It
judges the quality of the new generated individuals by datowg an estimated fitness ac-
cording to thek nearest neighbors and their distances weights to a newididily and
verify this individual using this estimated fithess agamgiredefined survival fitness. In
this way,LEM(dwKNN) maintains the prediction capacity bEM(KNN) while excluding
the unfit individuals without any extra evaluations.

We note that it has been difficult to compare BINNGA with the specific. EM method

used in Mic00], since not all parameters are provided in the LEM paper. éler, while

120

the improvements in performance over tB& are similarly vast, it does seem that the
LEM(AQ) implementation reported there provides superior resalldNNGA. Two clear
explanations for this are available: the simplicitykiIN compared with the relative so-
phistication of AQ, and the differences in the way that l@agnnfluences the evolution
in the two cases. We have deliberately opted for the simplessible approaches in both
cases here, and therefore can show that the bulk of the iraprent afforded by the LEM
framework is still present in these circumstances, suggeshat the specific choice of
learning method and the design of the learning/evolutiteraction provide opportunities
for further improvement and refinement, rather than beingiaf to being able to show
superior performance at all.

Continued research on instantiations and variations oLEM framework are clearly
warranted. Lines of work that we expect to explore are: thaiosship between the prob-
lem landscape and the choice of learning method; the irtterabetween the learning
method and the learning gap, and the use of more than onérlganethod (with perhaps
adaptive techniques to choose between them at differemtg)oi Further hybridization
and comparisons witBDA style approaches, and EDA/search hybrids are also wad.ante
Importantly, however, LEM-based approaches would seenmate much to offer for the
speedup of large scale optimization, and we recommend piécagion to real-world prob-
lems of that nature. A specific issue with some possible LENawés, including the KNN
case in many dimensions, is that the learning method itseif take up a considerable
amount of time. This is why we recommend LEM-based researgarticular for prob-
lems where this ‘learning time’ remains trivial in compaiisto the other aspects of the
search, either because a single fithess evaluation takeicagt time, or because very
many fitness evaluations are needed, or both. In conclugierg remains a wealth of so-
lutions to be found in the combination of optimization andrleng, and we believe that
helpful insight is easiest to grasp by exploring simple corations, especially when such

simple combinations perform so well.

121

Chapter 5

LEM Instantiated with Entropy-Based

Discretization

5.1 Overview

In the previous chapter, we developed thEM(KNN) and its variant algorithms. In
LEM(KNN), the learning metho&NN is used as the survival selection or filter to pre-
dict the newly generated individuals. The developmentBM(KNN) and its variant
algorithms have investigated two important aspects of tB& Llframework. One is the
interaction between learning and evolution, the other esfléxibility of the LEM frame-
work. In this chapter, we continue our investigation of tmigioal LEM framework, this
time, we are interested in the flexibility of the LEM framewoNamely, to explore how to
replace AQ learning with another learning mechanism andbegphe performance of the
resulting LEM. As the main LEM instance algorithitEM(AQ) utilizes the AQ learning
method to generate explicit hypotheses describing thelssmace, then the new individu-
als are instantiated according to these hypotheses or ithésgenerating-and-instantiating
method plays an important role in the LEM framework. Our Btigation of the LEM
framework begins from the flexibility and try to find new medisdo fulfill this generating-
and-instantiating method within the LEM framework, and vg& aurselves the following
guestions as our research motivations.

When we replace the AQ learning algorithm with the other skalbwn learning meth-
ods, will the resulting new LEM instance algorithms perfarqually well with theLEM(AQ)
algorithm? Alternatively, whether the equally significg&rformance improvements can

still be obtained with a simpler learning method rather tth@ncomplex AQ learning algo-

122

rithm? If yes, the flexibility of the LEM framework is verifiedf not, what will the perfor-
mance of the new version of the LEM instance algorithm bez8as these questions, our
investigations of replacing the AQ algorithm begin with pier algorithms, this is not only
because of the fact that the implementation of learning ouslzould be expensive, (there-
fore the cheaper implementations are always preferred te owmmplex implementations),
but also because beginning with simple ideas is a good &@sestrategy. If the simpler
methods result in bad algorithm performances due to theipltities, then we can con-
sider adding more complex elements to them or using new coagbyorithms completely.
Starting from simpler ideas is also useful in order to anabyd clarify the problems of the
current ‘simpler’ version of our algorithms, and therefoaa gain more understanding and
inspiration to develop more advanced algorithms with imeptbperformance. We have just
experienced this procedure in our studyL&MV(KNN) and its variant algorithms.

Before introducing the new instance LEM algorithm, we makeoaservation about
the LEM(AQ) algorithm. Basically, there are two learning tasks in l@agralgorithms,
they are classification and prediction tasks. However, @lBM(AQ) method, in fact,
only the classification task is used, the prediction taskeienused. This is because the
LEM algorithm, and also the evolutionary computation altpons, are used to optimize
the solutions and to find better solutions. This is quiteetdléht from the machine learning
algorithms, where the task is to predict the classificatibfuture unseen instances based
on the currently available training instances. The prealictapacity or accuracy of the
classification for future unseen instances are expectedreidre, the observation is that
the LEM framework based hybrid optimization algorithmsyonked a ‘partial’ learning
method which only needs to learn from the current trainirggances, but does not need to
make any prediction about any future unseen instances. Mantet we need in this LEM
framework is in fact only a ‘classifier’ rather than a ‘predic. LEM distinguishes the
current training data, indicating the high-performancgrdits from the low-performance
districts, and the rules or hypothesis will be used to gdeemaw promising individuals,
rather than being used to make more accurate predictiorigtioe unseen data.

Based on these motivations and observations, in this chaptewvestigate a new LEM
hybrid optimization algorithm which also uses a very simiglarning strategy, but of a
very different kind. This learning method is called Entrepgsed DiscretizatiorED) and
we call the resulting algorithm, LEM Instantiated with EQafithm LEM(ED)) [SC09,
whereED is used to guide the generating of new individuals, not terfidfenerated indi-

viduals. Entropy is an important concept and widely usetirigpie in data mining and

123

machine learning, here, we use it as the discretization uneasent method ED simply
finds a partition or ‘cut point’ for each given variable’s g these ‘cut points’ are ex-
pected to be the best points on each variable (attributehathwto classify the training
data. Through the developmentldEM(ED), we want to find out whether the above de-
velopment strategy is feasible, and also more importah#yperformance of this resulting
LEM(ED) algorithm. We test EM(ED) on a suite of function optimization problems and
compare its performance with other optimization algorishm

In the remainder, we continue as follows. Sect®a introduces the Entropy-Based
Discretization method. Sectidn3 provides complete detail of oWwEM(ED) algorithm.
Section5.4 presents the experiments and results. Finally, we con@adaliscuss in Sec-

tion5.5.

5.2 Entropy-Based Discretization

5.2.1 Discretization Techniques

Discretization is a process of quantizing continuouslaitas. It is an important technique
widely applied in data mining, machine learning and knogkediscovery. Discretized
intervals of continuous numbers are able to representjfgpanrd comprehend the knowl-
edge domain more precisely than the continuous values., fisaliscretized features are
easier to understand, use, and explain to users of any Bigaretization can also be used
to reduce the complexity of the original continuous datalsefiact, many machine learning
tasks and induction algorithms require discretization ps@ condition. For example, the
rule-based learning algorithms require discretized irgaig, rules with discretized value
are more compact and understandable with higher prediativeracy.

There exist many discretization techniques in literattirey can be classified according
to many standards. One important standard is the classmatan of the data need to be
classified, if the data contain class information then thserditization method is called
supervised discretizatiorotherwise, it isunsupervised discretizationThe unsupervised
methods simply divide the whole continuous number rangeiiriervals with equal ranges,
this may not achieve good results simply because the datatighdted in a very complex
manner. The supervised methods utilize the class infoomdt find the better or fitter
intervals divided in the continuous range. Discretizatechniques can also be grouped as

top-down and bottom-up methods, also termesidistingandmergingmethods. Top-down

124

(splitting) methods start with an empty list of cut-poinisikeep on adding new ones to the
list by splitting intervals as the discretization progessMeanwhile, bottom-up (merging)

methods start with the complete list of all the continuousies of the feature as cut-points
and remove some of them by merging intervals as the disat&tizprogresses.

In spite of these standards which characterize the digatein methods, a general dis-
cretization procedure is common to many concrete disatbia methods. First, for each
attribute of the data set, the continuous values are sarnteiher descending or ascending
order, this can make all the numerical values become catedifiar ‘cut-points’ or ‘merge-
points’ in a systematic way. After sorting, the next stemiéiid the best cut-point to split
a range of continuous values or the best pair of adjacentvadteto merge. One typical
evaluation function is then used to determine the coraladf a split or a merge with the
class information of the data set. Examples of such evalnatiethods include entropy
based measurements and statistical measurements. Wharathation method is applied,
for the splitting method, the best cut-point is chosen, amglits the range of continuous
values into two partitions; for the merging method, all tgaaent intervals are evaluated
to find the best pair of intervals to merge in each iteratioar Ifoth cases, discretization

continues until a stopping criterion is satisfied.

5.2.2 Entropy-Based Discretization

Based on the above discussion, we are ready now to talk almigdy-Based Discretiza-
tion. Entropy is one of the most widely used discretizatiorasurement in the literature,
in Chapter2, we give the definition of entropy in binary situation, here define entropy

in its more general form in information theory. Entropy fovaxiableX is defined as:

Definition
E(X) = -), pxlog px (5.1)

wherex represents all the possible valuesxoénd py is its estimated probability of occur-
ring. Itis the average amount of information for each vatuénformation is high for less
probable events and low otherwise, hence enti®y highest when each value is equally
probable, i.e.px = py foralli, j; itis the lowest when there is one value with the appearing

probability p, = 0, and all the other values with probability 1.

So, from the definition of entropy, we can see that it is a mgttioaneasure the purity

of a set of data. Alternatively, a low entropy value resuitaimore efficient classification

125

of two classes of instances. Finally, It belongs to the stiped discretization methods.
There are two well-known discretization methods which g@pitropy as the measurement
method. First, in the ID3Qui8q and C4.5 Rui93 decision tree construction algorithms,
if the training data is represented as real numbers, thedtization method will apply
entropy as a measure to discretize the real attributes éaréiming data, and the cut-point
with minimum entropy for each attribute will be selectedl@sdiscretization point. That is,
the point by which the real attribute is split into two intals which distinguish the current
training data most efficiently, is selected by the discegion method of ID3 or C4.5. In
this way, the real-number data set containing continuduuates is discretized to be able
to avoid creating too many branches for one node. Indeed¢tiD8iders each value (point)
of each attribute as a potential cut-point, and calculdtes entropy values, the point with
the minimal entropy value is chosen as the cut-point to @itinils feature into two intervals.
Namely, it binaries a range at every splitting.

The second discretization method which applies entropysoreanent is the D2 algo-
rithm [Cat9]. Like ID3, it applies entropy to find a potential cut-point$plit a range of
continuous values into two intervals. Unlike ID3, which &iies a range of values while
building up the decision tree, D2 is a static method thatrdismes the whole continuous
value range for all variables. Instead of finding only onemuoint for each variable, D2
recursively binaries ranges or subranges until a stoppibgrion is met. The discretized
data is then used for any learning algorithms, not only f@,lterefore, D2 is a successor
of ID3 discretization. However, the stop criterion for D2uta be difficult to indicate, for
example, if the stop criterion contains that, the numbemntdrivals is beyond a pre-fixed
number, then the best or suitable pre-fixed number is difftoudefine.

TheED discretization method ihEM(ED) hybrid algorithm is also known as Entropy-
Based Supervised Binary Discretization. It is based on tiithdeas of ID3 discretization
and D2 algorithms, it discretizes all attributes with epyroneasurement into two intervals
all the time in a supervised way, which is similar to ID3 detczation; the discretization
is conducted before any learning happens, in this senseaisiatic method and is similar
to D2. BothED and D2 are static, they discretize all the attributes belesening. ED
is different to D2,ED binaries the interval, while D2 iteratively binaries théeirvals and
following subintervalsED is also different from ID3 discretization, which acts dyneatly
during the construction of the decision tree. To put it maexisely, ED is a static version

of ID3 discretization, and is a simplified or binary versidrD2.

126

We have discussed three concrete discretization methioelg arre all supervised and
splitting discretization methods. There are still manyeoitiscretization methods available
in the literature, such as merging based methods, the rmagénivhich are still supervised,
but based on merging two adjacent intervals rather thartisgli Also the AQ anchor
adaptive discretization methot{C01], which is also a supervised and splitting method,

but the measurement for splitting is based on accuracyrrdiha entropy.

5.3 LEM with Entropy-Based Discretization — LEM(ED)

After the discussion about the discretization methods, Wenaw describe thee.EM(ED)
algorithm [SC09, which follows the general LEM framework. Therefore theimde-
velopment idea behindEM(ED) is to use ED as the generating hypothesis method, and
design a corresponding instantiating method for the EDnlegroutput. That is, find a
good concrete solution for the generating-and-instangahethod in the LEM framework.

As LEM(ED) is a new LEM instance algorithm, many aspects and strucanegspired

by the theLEM(AQ) algorithm, the description dAfEM(ED) is straightforward.

5.3.1 The LEM(ED) Algorithm

As with LEM(AQ), LEM(ED) divides thecurrent populationinto high-performance (H-
group) and low-performance (L-group) groups accordindp@rtfitness values and a given
threshold This is then saved as thearning population Individuals of the H-group and
L-group in thelearning populationform the training examples used by the ‘learning’ al-
gorithm ED. Again, there are many ways to generate the trgidata set as long as they
can guarantee enough training examples are derived. Akageneration of training data,
ED is applied on each variable (dimension) of the data set twrelize each real number
individual. ED simply finds the cut-points for every dimension using theamnt measure-
ment according to the class information, the point with thvedst entropy is selected as the
cut point for each variable, therefore the learned outpatsst of interval pairs for all vari-
ables. For example, intervalsmin, cut_point > and< cut_point, max > are the output
for theith variable, whereut_point is the splitting point with minimum entropy, amdin
andmayx are the smallest and biggest valuesthrvariable, respectively. The principle that
entropy based discretization is employed as the learningpooent in the LEM framework
is that, first, the class information is available for theiduals in the training data set, and

then we want to find out in each variable, which discretizéeriral is contributing the most

127

bad interval good interval good interval bad interval

min J cut_point N max min / cut_point \4 ma
T+ I U ‘ IR ‘
®) ®)

+ : positive training component
— I negative training component
@ : optimum component

Figure 5.1: The correct and incorrect labellings for tweematls by LEM(ED).

to the current promising individuals in the training dafahkese intervals can be indicated,
they will be used to guide the generation of new individualsféllowing generations. To
be able to realize this principle, when the intervals arerdtized, we need to further label
them to select the interval used to guide the generationwfimeividuals.

When all variables are discretized, each interval on eadlhbla is explicitly labeled
as agoodor bad interval according to the class information. There are nraeyhods to
implement this labeling step, for example, we can simplyntoifithe majority of H-group
individuals withith variable values are lying in one interval, then label thierval as a
goodinterval and another interval adadinterval. As Figures.1(A) shows, after labeling,
the pair of intervals<c min, cut.point > and< cut_point, max > now indicates that
individuals whoseth values are from different intervals very probably beloaglifferent
classes. The output intervals on each dimension in evergrggan are key concepts in
LEM(ED), the output interval can be used in order to generate the ndwiduals for
next generation or be used as guides for following the esmiutearch procedure. One
important issue arises due to the quality of training ddte,léarning algorithm&D and
the labeling procedure could produce intervals incoryedthat is, the outpujoodinterval
on ith dimension may also include many gene values from the ygiadividuals, or
simply miss out the optimum component for iltfe dimension. This case can be caused by
the poorly distributed training data, and also the strongracttion between dimensions in
deciding the problem landscape can affect the accuracyeobtitput intervals. A simple
bad distribution of the training data aoth dimension makes thigh output intervals pair
wrong, as shown in Figurg.1(B).

Labeling each interval according to category informatisraisimple but reasonable

method to apply. First, according to the training data gateer with the threshold, the

128

class information for each individual is available. Secamdropy can be used as the mea-
surement of purity of the training data on each variable ating to the class information,
and the point which best distinguishes the classes can Ioel itwiough this measurement.
Finally, simply counting the current good individuals lgim each interval and selecting
the dominating interval can reflect the current distriboitodd good individuals, although the
distribution of bad individuals is ignored.

However, as we may notice tleD method has some similarities and differences with
the well-known decision tree construction algorithm, wehtre relationships between in-
tervals (domains) and class information are not expligittyicated, they are implicitly in-
volved in each path of the tree, or can be more clear from trestated rules. Here, we
discuss the main differences between ED and the decisiewiith a focus on the output
forms. There are several important differences betweewnukguts of a decision tree and

ED:

1. The output oED is all variables; where for the decision tree, the outputssilaset

of all variables, some variables with high entropy are netus

2. If translated into rules, the output BD is a single rule which has the same number
of conditions as it has variables; the output of a decisiea tran be considered as a

rule set.

3. Because th&D output is a single rule, there is exactly one interval (dothain
each variable for each category; for decision tree, thexgpassibly more than one

intervals (domains) on each variable for each category.

When the intervals for all variables are labeleBM(ED) begins the instantiation pro-
cedure. The new genes of new individuals for the next geioerare now generated ac-
cording to thegoodintervals for variables. This can be achieved in a number afsy
for example, new gene values are generated only frongdoelinterval in a random, or
ordered way; or new gene values are generated from botpabeandbad intervals, but
with a high probability for thegoodinterval and a low probability for thibadinterval. The
former can be considered as a greedy method, and the latergreedy method. A typical
instantiation procedure is illustrated in Figlr&

When the new population is creatdel) is applied again on the current population to
generate new intervals updating the old intervals for evariable (dimension). Such a pro-

cedure is repeated until the learning mode termination itionds met. Such termination

129

min cut_point max
[

* -+ +

It

+ +

l first instantiating

min cut_point max

second instantiating

min cut_pointmax

P
Tt T

L @ positive training component
— : negative training component

@ : optimum component
Figure 5.2: Instantiation procedure by LEM(ED).

conditions could include there is no fithess improvementsafoertain number of gener-
ations; or a fixed number of generations is reached. Wheretraihg mode is finished,
there are a number of possible options to choose as the fatjoalgorithm components.
For example, we can simply apply a normal genetic algoritbrfinish the optimization
procedure; or, we can restrict the evolutionary procedutkinvthe learning intervals; or
we begin the learning procedure again after a certain nuibevolutionary procedures.
We will develop these ideas into a seriesLdM(ED) algorithms and will discuss these
cases in the following sections. For now, we give the desonpf the generalEM(ED)
algorithm and try to ensure a replicable explication witbym$o-code. ‘Overview’ pseudo-

code forLEM(ED) algorithms is as follows:

1. Set parameters: Set values fpapulation sizemutation probability, crossover prob-

ability, learning thresholdand set elite-preserve operator option.

2. Generate initial population: Choose a method to creadritial population with

population sizeand evaluate this population.
3. Begin learning mode :

(a) Derive extrema: Copy theurrent populatioras thelearning populationfrom
which the high fitness group (H-group) and low fitness groumihup) are
created according to fitness values émeéshold These two groups could have

a joint set, or their union could be a subset of the whole patpn set or even

130

equal to the whole population set. These two groups aredstw@ositive and

negative training data for the learning algorithm.

(b) Apply ED on training data: For each variable (dimensjaonsider each value
(point) as the potential cut-point and calculate the entrgues for all of these
points and choose the point with the best entropy as theaiut for this dimen-
sion. This point is the best point on this dimension in clggsy the training
data. The output of this step on each dimension is two intewdh the form

< min, cut_point >, and< cut_point, max>.

(c) Label the learned intervals: For the output two intesvah each dimension,
label them aggood and bad intervals. This can be done by simply counting
the gene values in each interval. If one interval has moreegbelonging to
H-group individuals than the other interval does, then thisrval is labeled
asgoodinterval, and the other is labeled abad interval. This procedure is

repeated until all variables are labeled.

(d) Instantiate new individuals: After the discretizatiand labeling procedures,
the new gene values of new individuals for next generatierganerated from
the good intervals in each dimension. There are many mettoods this, the

simplest method is random generation.

(e) Update H-group and L-group: When the new population reegeted, the H-
group and L-group are regained By applied on the new population, and the

learning thresholdwill be used again.

() Termination condition for learning: The above proceskiwill repeat to gener-
ate new individuals until there is no improvement which carabhieved for the
best fitness value for a certain number of generations. Whisrcondition is

met, LEM(ED) switches to evolution mode.

4. Begin evolution mode: The evolutionary procedure carehl@wnumber of forms.
It could be a normal genetic algorithm, or a genetic algamithith specific search

according to the output intervals information.

5. Termination condition foLEM(ED): LEM(ED) will stop, if any of the following

termination conditions is satisfied:

(@) the optimal (if known) is reached; or

131

(b) the maximum allowed number of generations is reached; or

(c) the best fitness value has not been improving for a ceniamber of genera-

tions.

The pseudo-code for our specific instantiatioh BM(ED) is set out here as Algorithm
12.

Algorithm 12 pseudo code for LEM(ED)
1: Setpopulationsize maxgenerationnumberthreshold generationnumber

2: Initialize a new population witlpopulationsize
3: Evaluatecurrent population

4: repeat

a

while (Termination condition for learning is not metp
6: Copycurrent populatiorinto learning populatiorn

7 Calculate the H-group and L-group according to fitness \satuneithreshold

8: Apply ED on the training data to generate the learned intefeaeach dimension;
9: Instantiate the newurrent populatiorfor next generation;
10: generatiommumber-+;

11: end while

12: Select parents ocurrent population

13: Crossovecurrent population

14: Mutatecurrent population{LEM(ED)1}

15: Mutatecurrent populatioraccording to the output interval§t. EM(ED)2}
16: generatiomnumber+;

17: until (generationnumber=maxgenerationnumbej

5.3.2 LEM(ED) Variant Algorithms

As noticed in Algorithml2, there are two variant algorithms for a general LEM(ED) algo
rithm, we explain the motivations and differences behiredihn this section.

LEM(ED)1 is our initial development dfEM(ED). It begins by applying ED as learn-
ing method on the training data, and the following generatiare generated according to
the output intervals, it stops learning when there are ninéurimprovements for the best

fithess for a certain number of generations. LEM(ED)1 theitch®s to a normal evolu-

132

tionary procedure to finish the optimization proceduretdfage, it does not include a loop
of learning and evolution procedures. Due to the fact tha¥i(lEED)1 uses a normal evolu-
tion procedure to find the optimum, its performance in thaemm@art is very much like a
normal evolutionary algorithm. We will show LEM(ED)1’s germance in our experiment
section.

LEM(ED)2 tries to achieve better performance in the endiag than LEM(ED)1.
Thanks to the existence of the intervals as the output ohiegya natural idea is to utilize
these intervals to guide or restrict the range of the follmevolution search procedure.
There is an important aspect about this algorithm, thaf ihe learned intervals are not
correct (thegoodinterval is corresponding to the L-group individuals),rttae following
evolutionary procedure will be misled on those variables.aXpect LEM(ED)2 to be able
to converge more quickly to the optimum than a normal evotuprocedure does in the

ending part for some optimization problems.

5.4 Experiments and Results

This section describes the experiment and results ofL#&(ED) algorithms in com-
parison with the corresponding conventional GA and our fulSM hybrid algorithms,
the LEM(KNN) and LEM(dwKNN) algorithms developed in Chaptdr In addition to
this comparison, we are also interested in compakiByl(ED) with the state-of-art op-
timization algorithm, we choose the Covariance Matrix Addipn Evolution Strategy
(CMAES)[AHO5b], [AHO54] again. The test function used here is the ‘Test Suite 2’ used

in Chapterd as well, we refer to Sectioh.3for complete definitions.

5.4.1 Parameters Settings

We give the details of parameters settings for LEM(ED)1 aetMED)2 algorithms as
listed in Tables.1 For algorithms, GAL1, GA2,EM(KNN), LEM(dwKNN) andCMAES,
we refer to the settings in ChaptiSection4.3. For all of ourGAs andLEM hybrid al-
gorithms, the encoding was a vector of real-valued gends eacoding numbers within
a specified interval. We used binary tournament selectilitisre (the next generation’s
population is always initialized with the best of the praxdageneration). We apply BLX
crossover withe = 0.5, crossover probability 0.6, normal distribution mutatigith muta-

tion probability 1.0 or 1Kize of chromosome

133

Table 5.1: Parameters settings for LEM(ED1) and LEM(ED2)

Threshold

0.3

Learning gap

1

Discretization methoc

| Entropy based binary discretization

Instantiation method

Instantiate intervals with probabilities (8026%)

GA applied LEM(ED1) : GA2
LEM(ED2) : GA2 with very small mutation step size
Table 5.2: Means and standard deviation after 10 genegation

Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) LEM(ED)1 LEM(ED)2 CMAES
DeJong3 | -78.3(4.06) -90.26(4.74) -98.07(4.88) -113.8(4.80) -135.544.48) | -132.83(5.11) | -94.55(3.88)
DeJong4 | 8.84(3.20) 3.47(2.02) 2.39(1.57) 1.3(1.23) 1.22(1.64) 1.141.54) 9.66(3.71)
Rastrigin | 287.89(17.18) | 232.08(20.3) | 212.84(23.59) | 161.4720.05) | 228.32(22.96) | 230.01(21.80) | 288.66(17.41)
Griewank | 134.04(23.36) | 76.26(13.62) | 67.21(13.43) | 36.6710.88) 45.30(16.23) | 45.93(17.52) | 158.41(28.86)
Rosenbrock 1027.19(232.76) 583.57(148.74) | 487.11(89.91) | 311.6484.76) | 373.04(101.15) | 372.30(99.90) | 728.83(166.97)
Ackley 16.45(0.56) 14.50(0.71) 13.95(0.82) 12.10(34.72) 13.27(1.44) 12.93(1.49) 16.77(0.67)
Schwefel 9028.48(379.91) 7487.64(517.69) 6611.33(552.26) 5312.6%558.17)| 6955.62(931.45) 6863.86(843.99) 9611.63(321.64

Some important parameters foEM(ED) are set as follows: thkearning thresholds

0.3, the instantiation method is implemented according tbabilities; 80% of new indi-

viduals are generated from tgeodinterval, 20% are from thkadinterval. In LEM(ED)2’s

evolution mode, the mutation is implemented with a normatridiution with the mean

equals to the gene value of the best individual so far an@wree is a small value (1.0, here

for all functions).

5.4.2 Summary of Results

Table5.2to Table5.5 summarises the results of 100 runs of each algorithm on esxa f

tion, with means and standard deviations recorded at 1G®8and 100 generations (mul-

tiply by 100 for number of fitness evaluations). Meanwhilgufe 5.3to Figure5.9 show

the mean convergence curves for each algorithm on theseitesions, respectively.

134

Table 5.3: Means and standard deviation after 20 genegation

Functions GA(1.0) GA(1.0/30.0) | LEM(KNN) LEM(dwKNN) LEM(ED)1 LEM(ED)2 CMAES
DeJong3 | -97.71(3.42) -117.21(3.64) | -127.6(3.21) | -141.36(2.80) | -144.372.74) |-140.99(3.68) | -112.16(2.82)
DeJong4 | 1.35(0.99) 0.09(0.11) 0.0370.051) 0.16(0.24) 0.081(0.16) 0.096(0.24) 0.070(0.12)
Rastrigin | 248.74(17.74) | 155.40(19.59) | 134.73(16.62) | 87.7415.04) | 141.37(19.43) | 130.41(21.71) | 228.39(14.78)
Griewank | 55.2333(10.57) | 21.65(4.74) 17.27(3.97) 5.702.27) 14.40(4.74) 12.58(6.37) 26.07(7.78)
Rosenbrock 436.4(89.7) 220.01(51.03) | 185.23(41.61) | 133.9946.33) | 191.67(44.56) | 178.08(46.77) | 152.95(37.93)
Ackley 13.17(0.76) 9.96(0.83) 9.05(0.82) 6.330.84) 9.26(1.13) 8.83(1.49) 10.36(1.06)
Schwefel 8706.26(381.46) 5686.49(533.59) 4641.64(536.89) 3470.82461.21)| 5701.74(778.84) 5899.15(727.38) 9564.46(291.09
Table 5.4: Means and standard deviation after 50 genegation
Functions GA(1.0) GA(1.0/30.0) LEM(KNN) LEM(dwKNN) LEM(ED)1 LEM(ED)2 CMAES
DeJong3 | -128.23(2.65) | -146.67(1.42) | -149.6(0.61) -149.93(0.25) | -149.990.1) -149.12(1.28) | -141.7(2.23)
DeJong4 | 8.63e-3(7.53e-3)| 3.60e-3(4.86e-3) 2.52e-3(3.17e-3) 7.76e-3(1.93e-2) 2.09e-3(2.22e-3) 3.09e-3(0.01 | 5.28e-40.12)
Rastrigin | 174.94(30.17) | 84.36(14.51) | 64.38(10.78) | 30.347.05) 72.27(14.42) | 57.60(11.20) | 191.26(12.1)
Griewank | 6.75(1.99) 2.04(0.4) 1.52(0.27) 1.080.081) 1.77(0.33) 1.28(0.13) 1.16(0.079)
Rosenbrock 116.74(27.65) | 75.38(29.28) | 69.29(30.96) | 68.34(39.16) | 89.48(33.27) | 69.02(33.27) | 29.940.73)
Ackley 6.601(0.71) 3.91(0.50) 3.02(0.50) 2.220.58) 3.76(0.49) 2.83(0.50) 2.32(0.409)
Schwefel | 7380.06(1012.55) 3277.86(493.95) 2009.99(375.16) 1685.07330.60) | 3506.38(641.16) 5050.98(673.27) 9460.74(282.0
Table 5.5: Means and standard deviation after 100 genagatio

Functions GA(1.0) GA(1.0/30.0) | LEM(KNN) LEM(dwKNN) LEM(ED)1 LEM(ED)2 CMAES
DeJong3 | -145.60(2.12) -15000.0) -150(0.0) -15000.0) -150(0.0) -149.26(1.24) -15000.0)
DeJong4 | 1.77e-3(1.73e-3) 8.8e-4(9.9e-4)| 8.7e-4(0.9e-3) | 1.53e-3(1.68e-3) 5.83e-4(7.23e-4) 6.68e-4(7.72e-4) 1.52e-41.6e-4)
Rastrigin | 77.29(33.48) | 44.75(8.997) 27.66(7.9) 11.0%2.79) 38.67(10.09) 42.37(9.61) | 116.69(63.62)
Griewank| 1.52(0.68) 0.95(0.11) 0.51(0.25) 0.68(0.23) 0.92(0.14) 0.50(0.16) 0.0290.017)
Rosenbrock 55.17(20.87) | 44.72(24.15) | 45.68(27.14) | 53.00(34.72) | 61.05(28.96) | 44.71(27.80) | 27.420.53)
Ackley 2.59(0.83) 0.95(0.52) 0.65(0.57) 1.38(0.61) 0.95(0.45) 0.17(0.10) | 0.0190.0094)
Schwefel | 5120.94(1078.51) 1540.0(289.45) 1357.99336.98)| 1446.53(301.62) 1534.62(414.66) 4664.54(605.53) 8948.33(805.8

135

——GA(L0)
-40r ——— GA(1.0/30.0)
———— LEMKNN
LEMAwKNN
LEMED1
LEMED2

CMAES

-100 -

best fitness values

-120-

-140-

-160 I I I I L
0 5 10 15 20 25 30 35 40 45 50

generations

Figure 5.3: Results of running 7 algorithms on the DeJongBlem

120
GA(1.0)
1001 GA(1.0/30.0)
LEMKNN
LEMdwKNN
@ 80r LEMED1
3 LEMED2
> CMAES
2 60l
s
%
3
a0t
20t
O T\\\\\\\\\\\\s§\—fﬁffsri_____4747
0 15

generations

Figure 5.4: Results of running 7 algorithms on the DeJongélem

136

10

——— GA(1.0)
——— GA(1.0/30.0)
———— LEMKNN
LEMAwKNN
LEMED1
LEMED2
CMAES

10°F

best fitness values

10 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

generations

Figure 5.5: Results of running 7 algorithms on the Rastimoblem

10
—— GA(LO)
GA(1.0/30.0)
———— LEMKNN
LEMdwKNN
LEMEDL
10°+ LEMED2 i
CMAES
0
(4]
3
©
>
2
2
[
5
7
[
3
10"+
100 Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50

generations

Figure 5.6: Results of running 7 algorithms on the Griewardbfem

137

10

GA(L.0)
——— GA(1.0/30.0)
LEMKNN
LEMdwKNN
LEMED1
LEMED2
10° CMAES

best fitness values

107

10

.
0 5 10 15 20 25 30 35 40 45 50
generations

Figure 5.7: Results of running 7 algorithms on the Roseribpocblem

25
——— GA(L.0)
20 GA(1.0/30.0)
——— LEMKNN
LEMdwKNN
0 LEMED1
2 15f LEMED2
@ CMAES
]
=
7 10
[}
o
5L
0 ‘ ‘ ‘ ‘
0 20 40 60 80 100

generations

Figure 5.8: Results of running 7 algorithms on the Ackleylyem

138

10

best fitness values

GA(1.0)
——— GA(1.0/30.0)
LEMKNN

LEMdwKNN

LEMED1
LEMED2
CMAES

10°

.
0 10 20 30 40 50 60 70 80 90 100
generations

Figure 5.9: Results of running 7 algorithms on the Schwefebjem

In what comes below, statements of significance are baseanolomization tests, and
made only when confidence was above 99%. Inspection of sthdésiations also clearly
supports the statements made.

With only one exception (LEM(ED)2 on Schwefel at 50 and 10@egations) the
LEM(ED) variants are always superior to the underlying GA1 and GA2sdme extent,
the underlying EA can be seen as a ‘straw man’, and it is usexididy as a baseline, with
improvement to be expected. In the early generations (1Qaigenerations), allEM(ED)
versions have clearly beaten all GAs on all problems, exttepSchwefel function. This
shows the learning and instantiation operatiohEM(ED) clearly has its advantage over
the normal evolutionary procedure. However, these outpaidnces are not as significant
as we expected. In the later generations (50 and 100 gemesatihe range of problems
in which LEM(ED) cannot beaGAs increased by one case of the Rosenbrock function (at
generation 50).

LEM(ED) only beatLEM(KNN) variants on De Jong’s functions and cannot outper-
form on any other functions at the earlier generation 10nfFgeneration 20 to 5Q.EM(ED)
loses further superiority to tHeEEM(KNN) variant algorithms on almost all the problems.
However, LEM(ED)2 seems to fight back and outperfdcEM(dwKNN) at generation
100, the end stage of the optimization, on all problems exoe@eJong 4, Rastrigin and
Schwefel functions. We think this is due to the fact that LEB|2 applies a very small
mutation step size derived from the learnt intervals in gening procedure. If the learnt

output is correct, this mutation will help in the later stajeptimization.

139

With the exception of De Jong function 4 and Rosenbrock, dribeoLEM(ED) vari-
ants is always superior to CMAES at the 1,000 and 2,000 etrafupoints. At the 5,000
evaluations point,.EM(ED)’s advantage list over CMAES has been reduced by two more
functions, Griewank and Ackley. And at 10,000 evaluatidms list further reduces to Ras-
trigin and Schwefel, with ties for the De Jong 3 function. Hwowr, since LEM(ED)2 biases
itself strongly to learned intervals, it is quite possilflattsome functions can lead to it be-
ing deceived and misled. It is interesting and promising thia usually does not seem to
happen, however, LEM(ED)2’s early fast progress on the &&&viunction clearly leads
it in the wrong direction. This situation is the same @WAES, which is always beaten
by both the EA and LEM(ED)1 on Schwefel. In geneit@MAES, which is itself a so-
phisticated hybrid of learning and evolution, overtak&M(ED) (and the vast majority
of other algorithms) as we consume more function evaluatidgtegarding the EM(ED)
design tested here, this is not surprising sinceldtivi(ED) variants use a single learning
phase followed by an EA, whilEMAES s continually learning and adaptingEM(ED)’s
performance in the 1,000-5,000 evaluations regime is tie®kss encouraging, and there

may be considerable value in more sophisticated adaptigsoves.

5.5 Concluding Discussion

We investigated a new LEM hybrid optimization algoritiBM(ED), which incorporates
a simple entropy-based discretization method as the legrcomponent with a normal
evolutionary procedure. The learning metliid applied here i EM(ED) is a very simple
mechanism compared with other well-known learning algpong. ED simply takes the
training data as input and uses an entropy measurement tah#ndest cut-points and
therefore to identify the best interval to guide the genenadf new individuals.
TheLEM(ED) algorithm clearly outperforms its EA component alone batthe initial
and later stages for all problems, however, in the later gioms, the extent of advantages
over EA begins to reduce. One of th&M(ED) algorithms, LEM(ED)2 outperformans
our first KNN based hybrid algorithhEM(KNN) in general. However, neither of the
LEM(ED) algorithms can beat the refinedEM(KNN) algorithm LEM(dwKNN) during
the whole optimization procedure for almost all functioAsso, LEM(ED) generally out-
performs CMAES during the initial several-thousand fithegsluations. This adds to ev-
idence that even straightforward learning mechanismsigeosonsiderable benefit to an

EA, especially for accelerating the search.

140

However, the outperformant&M(ED) achieved over the norm@A is not as promis-
ing as the originaLEM(AQ) algorithm, although their test functions are differentniro
here. We think there are possibly the following reasonsstfif all, the learning method
applied iInLEM(ED) is a very simple methodgED only considers binary discretization with
entropy measurement. It does not distinguish the diffe¥emsong variables, and therefore
is not able to find out the relationship between dimensiomsghivcould be very important
to the success of the optimization procedure. Secondly, B lmnaries each variable
range, which may not be the best way to fit the complex probdrmddcapes in a adaptive
way. Ideally, discretization should be dividing the vateabange into several subranges
and change adaptively according to the optimization proedOne such discretization
method is the AQ learning method KEM(AQ) algorithm. Finally, LEM(ED) does not
contain repeated learning and evolution interactionsast énly one learning period, after
that, the normaGA is applied to finish the rest of the optimization procedure. tiihk the
absence of learning in the later stage also affects the @atiion performance.

Lines of further work that seem warranted include testingaanore accepted set of
optimization challenge functions, our choice of functiants follows those used in the
original LEM publications. However, such suites are now supersedecisg thescribed in
the CEC 2005 Challeng&HL*05], which emphasizes non-separability and other measures
that are likely to make functions difficult. Since most of fimactions tested herein are,
however, separable, the criticism can be made that the gsdiray well not generalize to
nonseparable functions. However, following preliminang @angoing work we can confirm
that theLEM(ED) variants here show entirely similar relative (to basik and toCMAEYS)
performance properties as found here, we deal with this ilai€hapter6.

Also there is a need to investigate repeated phases of E&baarning (rather than a
single phase at the beginning). Our investigations so fae fiacused on tightly coupled
ED and instantiation, which (as we find in preliminary expenmsg is best limited, rather
than continued throughout the run, otherwise the learneivials can be deceived and re-
sults suffer. However we are yet to investigate (which wdddhighly suited to th€ EM
framework) the interleaving of further ED/instantiationgses with phases of several gen-
erations of evolution. Meanwhile, the information inhdremthe learned intervals could
be used more creatively in later phases, in various wayso,&lgnore sophisticated ter-
mination criterion for th€eED phase would be beneficial, since we note that the better sets
of intervals are often those learned a handful of generati@fore the cessation of fithess

improvement.

141

More generally, more study seems warranted in the areamwififggdevolution combina-
tions (both in terms of LEM-framework instantiations, ansoan terms of organizing the

knowledge in this important area that is currently wideagdri the literature).

142

Chapter 6

LEM Instantiated with Decision Tree

Learning

6.1 Overview

In this chapter, we investigate th&M(ID3) algorithm [SC1qQ which is a hybrid of evolu-
tionary search with ID3 decision tree learning algorithrheTeasons for which we choose
the ID3 decision tree learning algorithm as the learning ponent in our investigation of
LEM framework are based on the following considerations.

First of all, the development afEM(ID3) offers us an important chance to explore, for
the first time, the effect of replacing AQ learning in LEM framork with a different but
equally sophisticated learning algorithm, therefore tameie the flexibility of the LEM
framework. ID3 and AQ learning algorithms have huge sintiles in common, among
which the most important are that both of them are supenlisaohing methods and the
output of hypothesis descriptions are all rule based. Tlesoha tree constructed by the
ID3 learning algorithm can be transformed into set of rul&@serefore, many important
properties of the. EM(AQ) algorithm can be studied and understood through the develop
ment of rule-based EM(ID3) algorithm. For instance, the instantiation operation &f th
generation of new individuals for next generations acewydp learned rules. Through
the development dfEM(ID3), we can understand how to design and apply this important
operation in more detail, and how it influences the effeci®ss of the resulting hybrid
algorithms.

Second, another main reason for develofifgv(ID3) and applying the ID3 learning

algorithm is due to the fact that, in the field of solving compbptimization problems,

143

many problem features make these problems very difficultciiadlenging to solve, there-
fore these difficulties and complexities require betterresy algorithms to capture the
relationships among the problem variables and charattsrigvolved in the problems.
The decision tree learning algorithm ID3 is one of the good practical learning meth-
ods widely applied in the machine learning community andl¢éaened rules are able to
navigate interactions between any number of parametermémy practical application
problems. ID3 is expected to be able to gain better resulisinvihe LEM(ID3) hybrid
algorithm and also to be able to tackle complex applicatioqsactice.

Finally, another reason to develbfM(ID3) is from the point of view or practical con-
siderations. At the time that this PhD study is being coneldictheLEM(AQ) learning
algorithm and the details of its implementation are not dpawailable. Implementation of
our own LEM instance algorithm is necessary for experimant$ solving our own prob-
lems at hand. For all the above reasdtiEM(ID3) is an important development step for our
LEM investigation, and deserves to be a baseline algoritrfufther development and im-
provement, and also should be applied to solve more praetichchallenging application
problems.

As with the previous developments of LEM instance algorgihuBM(KNN) andLEM(ED),
LEM(ID3) involves interleaved periods of learning and evolutionp@thg the decision
tree construction algorithm ID3 as the learning componand, a steady-state EA as the
evolution component. In the learning periods, based onnchsome data and evaluated
fitnesses, ID3 is used to repeatedly find and infer rules tit@tngt to identify and predict
whether a chromosome is ‘good’ or ‘not good’ based on theeshf one or more other
genes. The rules are then used to guide the generating oha@vidiuals. When the learn-
ing component is finished,lEM(ID3) is switched to the evolution component, after that the
learning starts again.

Without any preliminary parameters tuning, we evalud#1(ID3) on the ‘test suite 2’
used in previous chapters and also on the test suite of 25idmscdesigned for the CEC
2005 special session on real-parameter function optimizatVe describe the results, and
in particular compare with the three most successful algms from the CEC 2005 com-
petition, theK-PCX algorithm [STD0Y, and two versions of Auger and Hanse@MAES
algorithms AHO5b, AHO54. We find thatLEM(ID3)’s performance is competitive with
these algorithms, increasingly so as the problem dimen8tgnncreases. In the case of
50-Dimensionsl.EM(ID3) clearly records better overall performance on this fumcsioite

than the three comparative algorithms.

144

In the following sections, we provide complete details oaltEM(ID3) algorithm in
Section6.2, and describe the details of our experiments and analyzesghudts in Section

6.3, we conclude in Sectiof.4.

6.2 LEM with Decision Tree Learning — LEM(ID3)

We have already discussed the ID3 decision tree learnirgitiigh [Qui8q and experi-
enced the. EM(AQ), LEM(KNN) andLEM(ED) algorithms. Apart from the ID3 learning
algorithm,LEM(ID3) shares many other aspects with teM(AQ) algorithm. In this way,
we will have our owrLEM(AQ) algorithm straightforwardiL.EM(ID3) contains two main
components: learning and evolution. As with other LEM aidons, in the learning com-
ponent,LEM(ID3) divides the current population into high-performance (idegp) and
low-performance (L-group) groups according to their fisnealues and a given threshold.
ID3 then uses the H-group and L-group as the training datanstcuct the decision tree,
which is then transformed into a set of rules. These setsle$ rare the hypotheses that
differentiate between the two groups. New individuals aeagated by instantiating these
hypotheses. The learning mode continues until there is tteriadividual generated for a
certain number of generations, or the diversity of the pafoi is too small. The evolution
mode begins when the learning mode is finished, in the ewmiutiode, a standard evolu-
tionary algorithm is applied. The main purpose of evolui®that it offers the opportunity
to escape from local optima and also preserves diversitthieocurrent population, which
is crucial to the success in the subsequent learning phas&utien continues for a certain
number of generations, before the learning phase begims.adge overall pseudo-code of
LEM(ID3) is set out here as Algorithih3, with some components elaborated further with

more details later in the paper.

6.2.1 Learning Mode

In the learning mode, basically, there are three main sfEipsy are Creating the Training
Data; Learning and Generating Hypotheses; Instantiatyygptheses and Generating New

Individuals. We discuss all of these three steps in moreldeta

145

Algorithm 13 pseudo code for LEM(ID3)
1: Generate initial population and evaluate each chromosome;

2: repeat

3: while (Termination condition for learning is not satisfiedt

4: Form the H-group and L-group from the current population;

5: Learn a decision tree using the H-group and L-group, andftoam it into a set
of rules;

6: Generate some new individuals for the next generation bgmtisiting new chro-
mosomes guided by the learned rules; or

7 Generate some new individuals for the next generation blpgga (mutation and

crossover) or at random;
8: end while
9: while (Termination condition for evolution is not satisfiedt)
10: Operate a standard evolutionary algorithm;
11: end while
12: Adjust discretization;

13: until (Termination condition for LEM(ID3) is satisfied)

Creating Training Data

In the learning mode, the first important step is to creaté logggality training data. High
quality training data is crucial to the success of the leagralgorithm. INLEM(ID3), the
training data is generated from the current evolving pdputa therefore the quality of
training data depends on the current population and itsiloliston. We use ‘population-
based selection’ {flic00]) to generate the training data, in which we specify that\eegi
percentage of the population will be in the H-group and ampercentage will be in the
L-group. We use 30% in both cases —i.e., after sorting thigichaals by fithess values, the
top 30% are placed into the H-group and the lowest 30% arengbeiL-group. Due to the
individuals we consider are all real-parameter, thesetslandividuals in both groups are
then discretized into discrete training instances. Thezesame practical implementation
issues in the generating and discretization procedure Mihen the optimization procedure
continues to progress the whole population will intend tovesge to a few promising solu-
tions, which will cause the population to lose its diversikys is common for evolutionary
algorithms. However, this situation of similarity in theda stage of evolution affects the

creation of enough training data for the learning algoritbx3, therefore affecting the qual-

146

Attri18| (30,30)

(1.7 ...5.12)

Attri4

Figure 6.1: A decision tree learned by LEM(ID3) for Rastnifinction at generation 1

ity of training data. During our implementation, we foundli later evolution stage, if no
good mechanism is employed to release this problem, thgnlitide training data will be

generated, and when ID3 is applied to this small-sizeditrgidata, the resulting decision
tree and corresponding rules are less meaningful. We witlecback to this issue and talk

about our solution later on.

Learning Hypotheses

When a good set of training data has been generated from tientpopulation of individ-
uals,LEM(ID3) uses ID3 learning algorithms to construct a decision trée. donstruction
procedure is straightforward, as discussed in Se@i8riL The resulting tree is then trans-
formed into a set of rules, which can then be seen as hypahesgiminating H-group and
L-group individuals of the current population. We call tetage the Learning Hypotheses,
which contain a number of important issues which we will dsgnext in more detail. For
now, we give an example decision tree constructed by a re®l(LE3) run on the Rastri-
gin’s function as defined in ‘Test Suite 2’ in Figu1, and the ruleset produced from this
decision tree in Tableé.1:

Where for both decision tree and rugtri; are decision treattributeterms correspond-

147

Table 6.1: The ruleset transformed from the DT for positigeadn Figures.1

attri;g = (-5.12--- - 1.7) A attrig = (-1.7... L7) A attrig= (-1.7...L.7) = G

attrijg = (-5.12--- = 1.7) A attrig = (1.7...5.12) A attris = (-5.12--- - 1.7) = G

attri;g = (-5.12--- — 1.7) A attriy = (1.7...5.12) A attris = (-1.7...1L.7) A attri, = (-1.7...1.7) = G
attrizg = (-1.7...1.7) A attrigg = (-5.12--- — 1.7) A attri, = (-5.12--- - 1.7) = G

attri;g = (-1.7...1.7) A attrigg = (-5.12--- — L.7) A attri, = (-1.7...1.7) A attrig = (1.7...5.12) = G
attri;g = (-1.7...1.7) A attriyg = (-5.12--- — L.7) A attri, = (1.7...512) = G

attri;g = (-1.7...1.7) A attriyg= (-1.7...L.7) = G

attri;g = (-1.7...1.7) A attrigg = (1.7...5.12) A attrig = (-5.12--- - 1.7) = G

attri;g = (-1.7...1.7) A attrigg = (1.7...5.12) A attrip = (-1.7...1.7) = G

10| attrizg = (1.7...5.12) A attrip; = (-5.12--- = 1L.7) A attriz = (-1.7...1.7) = G

11| attrijg = (1.7...5.12) A attrip; = (-5.12--- — L.7) A attriz = (1.7...512) = G

12 | attri;g = (1.7...5.12) A attrip; = (1.7...5.12) A attrizs = (-1.7...1.7) = G

© 0[N |0 | W N[

ing to each dimension or gene in individuals, the real nunnéeges (...) are generated
through discretizing the current learning populationiireg data) individuals and can be
seen aslomainfor eachattribute G indicates the classification information in the training
data set and represents High-group of individuals in thaitrg data. For the decision tree
being constructed here, each path rooted from attriatite g to leaf nodessoodor Bad
can be transformed into a rule. For example, the atilg g = (-5.12--- — 1.7) A attrig =
(-1.7...1.7) A attrig = (-1.7...1.7) = G is a path in the decision tree constructed by
ID3, and any training instances satisfying this path arssifeed into clas§, representing
some individuals in H-group. Also, in this decision treesrihis some useful extra informa-
tion which can be derived, such as the coverage value forregefthe number of instances
satisfying the rule). And the average fitness values for ealeh(the average fitness value
for the instances satisfying this rule), which are not showwour illustration.

After the decision tree is constructed and its ruleset foanmsed, we still face some
important issues, two of these are highlighted here dueein importance in the success
of our LEM(ID3) implementation. First, as seen in Figd, there are many attributes
(totaling 30 attributes for Rastrigin’s function) which dot appear in the constructed tree.
Therefore, when the instantiation hypothesis operatiam@emented, we will face the
problem of choosing new values for these attributes, forctlit is difficult to find good
methods. Second, the ruleset transformed from the comstiaecision tree consists of a
huge number of rules with different coverage values, asisetable6.1 Therules 5, 9, 11

have only coverage value 1 andes 1, 2, 3, &ave only coverage value 2, whilele 7 has

148

a coverage value 5. Rules with different coverage valuesldioe treated differently, small

coverage values mean the corresponding rules could be ngg@ss or representing noisy
data. Therefore, we have to make a decision on the choosihg®é rules. We discuss the
first issue here which is more relavent to the Learning Hygsithstage, and will discuss

the second issue in the Instantiating Hypotheses stage.

Forest Model

We face an important issue after the construction of thesttatitree. That is, many
attributes do not appear in the tree and ruleset. This is altieet feature of ID3 learning
algorithm, ID3 always tries to classify the training dataeffeciently as possible, it starts
from the root attribute with best information gain, and exigs those training data and the
current selected attribute, and repeats to find anothaéowtrwith the remaining training
data and attributes. This procedure repeats until allitrgidata are excluded. However,
such a procedure is very efficient in the sense that not toy misnibutes will be involved in
this procedure. Namely, very few attributes are used tsiflathe training data and to con-
struct the decision tree. This naturally raises the prolflanmstantiation algorithms, that
is, what should be done to those attributes which do not appele rules? ILEM(AQ),
the authors have mentioned possible solutions for thistopedor example, if one attribute
does not appear in any rule, then the corresponding paraetgdues are inherited into the
new individuals. In the developmentbEM(ID3), we reconsider this problem and attempt
to solve it by indicating one disadvantage of the ID3 aldomnit Namely, a single run of the
ID3 algorithm is not able to learn or mine all useful patteemssting in the given training
data.

To analyze this, we reconsider a constructed decision éB®based on the training
data from the current population. One path, frattri; (the root) down to the leaf node
G, within the decision tree says that if an instance satisfiesttributes and their domain
values, then this individual will result in the class ‘G’.destially, each path and its rule is a
pattern representing some instances with common features wistinguish them from the
others in the training data. And if the pattern can repre@ninstances well, how many

such patterns exist? With this question in mind, we sumredhiee important statements:

1. One decision tree (or its ruleset) represents a pattealvied in the training data;

2. One tree is ‘searched’ by the ID3 algorithm in a greedy itaslaccording to the

information gain criterion, and ID3 is a local search algon;

149

3. According to the information gain criterion, one constad tree is the best pattern

for the training data at hand.

Evidently, these three statements can be extended or be prexisely stated, if we

consider the decision tree construction procedure in a glot&l view:

1. One decision tree represents one of the patterns (nobaelyinvolved in the training

data;
2. Other patterns can be ‘searched’ by global algorithmeralatg to other criteria;

3. According to the information gain criterion, one constad tree by ID3 may or may
not be the best pattern for the whole data space (includagimg data and future

unseen data).

Considering ID3 decision tree construction procedure itoha view and distinguish-
ing the concepts of ‘local * and ‘global’ are our goals and ba&sons to build up thierest
model Namely, we want to capture all the other patterns or tregklén’ in the training
data. Constructing by ID3 can only offer one pattern whicthesmost efficient according
to the information gain criterion. Of course, this tree lgeihe most efficient is very use-
ful. However, the other trees or patterns may also be vemyfhlednd could reflect more
relationships between attributes for the training data.

In order to build the forest model, a number of steps need tolmved. Firstly, the
ID3 algorithm is used to construct the first tree in the norwey. After the first tree is con-
structed, a number of other trees will be constructed in secg, the construction method
is still ID3, but this time with a fixed or pre-selected rodiriéute indicated. Namely, we
pre-selected for each following tree a fixed root attribukéclr must be different to the first
and previous tree’s root attributes. For the following $d®3 is applied as the construc-
tion algorithm only with the exception of the root’s attrtba. Once an attribute is selected
as the root attribute, it is not available for the followirejection. Namely, all attributes in-
cluding the first root attribute selected by ID3 can only bedusnce during the construction
of the forest model. When there is no attribute left or angatkd number of attributes are
selected, the construction procedure is finished, and thatirey forest model is derived.

In this way, apart from the normally built first decision treee will also have a num-
ber of extra trees which are built with pre-selected roatilattes. These attributes do
not have the best information gains compared with the radabate selected by ID3 in

the normal way, however, more patterns with also usefulrmédion for the training data

150

could be represented by trees rooted at these attributesllyi-we do not design any new
measurement criterion, like information gain, the onlynthive do is to change the ID3
algorithm slightly and apply it several times, (with eaaméi a different attribute for one
tree), to construct a ‘forest’ model. A brief illustratiom thhe construction procedure for
a forest model is given in Figuré.2 Given a population of individuals, each of which
consists of 10 genes (the length of chromosome). When tipslaton is used as the
learning populationand discretized. We construct a forest model from the tngiata
by applying the ID3 algorithm repeatedly, the forest modetiefined as a set of trees,
{(T, Ti,...,Tj),ri,j € (1...10),r #i #]}, wherer, i, j indicate root attributes for these
trees.

root selected by ID3

roots randomly selected

Figure 6.2: An illustrative example for the forest model

The forest model can find more patterns existing in the tngimiata. Not only is the
most efficient tree useful, the slightly less efficient trags believed to be still very useful
and helpful in indicating good patterns. This is more coawig if we consider the ID3
construction algorithm in a more global view, and considerhetree as one of the many
possible classification problem solutions. And also, monpartantly, for our problem
posed before, more decision trees being constructed wkemaore attributes appearing
in the learnt patterns. During the instantiating procedaraew individuals, there will be

fewer situations where for a given attribute, we do not know o assign a new value.

Instantiating Hypotheses

The last step in the learning mode is to instantiate the ézhhypotheses and generate
new individuals for next generations. LEM(AQ) andLEM(ID3) algorithms, during the
learning mode, the new individuals are generated by instamy the learned hypotheses

rather than by genetic operators. Therefore, the instatiprocedure is very important

151

in the success of LEM algorithms. In the origin&M(AQ) algorithm, there are basically
three different instantiation algorithms, they are depebbaccording to different consider-
ations. In ourLEM(ID3) algorithm, the instantiation procedure is different framage in
LEM(AQ), this is because despite many common features, ID3 and AQifegeent learn-
ing methods; the former employs the divide-and-conquatesgy to construct decision tree
and rules, while the latter employs the separate-and-ansjuategy, as we discussed in
chapter2. These strategies are quite different, therefore the naetsd rules will have dif-
ferent representation forms as well for the same given dtaltsis these differences that
result in independent development of new instantiatioeg@dores for outEM(ID3) algo-
rithm. However, before we introduce our instantiation ailgpon, we discuss another im-
portant issue related to instantiating hypotheses firat,ifhthe rule selection issue, which

we did not solve in the previous section.
Rule Selection

As we have discussed before, there are many practical pnsblgthin the Learning
and Instantiating procedures for ID3 generated rulest,Rhiere are not enough attributes
appearing in a single tree or ruleset, we solve this probleth the suggested ‘forest’
model, where extra trees are constructed with more ateégheing involved in representing
the learnt patterns. Namely, we have solved the ‘quangiue, and it is time to solve the
‘quality’ issue for the rules in each ruleset. We expect thles in a ruleset should catch
enough useful ‘patterns’ residing in the training data, #rese patterns should correctly
reflect the relationships between the genes and their gamesng classification. That is,
the rules should be useful and correct. By useful, we mearuteg should be representative
enough to describe a pattern; and by correct, we mean thésensashould be important
enough or be able to reflect the global properties of the nupepulation space. Rules
that satisfy these requirements should contain enougibwts, rather than only one or
two attributes, and also should cover enough training ntsts. Therefore, we define two
criteria used to decide the quality of rules generated by &R@rithm. First, if a rule
contains enough attributes in its condition part, then wktks rule aninformative rule
in contrast, if a rule contains little attributes in its camwh part, then we call this rule an
uninformative rule Second, if a rule covers enough training instances, thecaiehis
rule asignificant rule in contrast, if a rule contains little training instancédsen we call
this rule aninsignificant rule Note, we define these criteria in a relative way, which means

we use these criteria to qualify the rules always in comparisith other rules. Tablé.2

152

Table 6.2: Meaning of a preferred rule

Informative | Uninformative

Significant | preferred | not preferred

insignificant| not preferred not preferred

shows what we mean bymeferred rule

Based on this definition gfreferred rule one extra step we need to take during instan-
tiation hypothesis is to select qualified rules from the $allaules. The selection criterion
is thepreferred rulewhich is defined as beingformativeandSignificant There are many
measurement methods which exist in the machine learningreonity for these concepts
or similar concepts. Here, we are only concerned with thdempntation issue for our
LEM(ID3) algorithm. INLEM(ID3) construction|nformativeis quantified by the length of
the rule, andSignificantis quantified by the coverage value for the rule. We think sarch
extra step of ‘rule-selecting’ or contrarily ‘rule-excind’ is necessary for improving our
LEM(ID3) algorithm for the following reasons: an uninformative rateould be excluded
from the current ruleset, because it contains too few ate#gand therefore cannot catch
any useful pattern from the training data even if it is siguaifit (covering enough training
instances); an insignificant rule should also be excludewh fithe current ruleset, because
it covers too few training instances which are possibleyndeta in the training data. Ei-
ther of these rules and rules which have both propertiesigh@uexcluded from the final
ruleset, avoiding the possibility of misleading our ingtation procedure.

To this point, we are now ready to talk about the instantggilgorithm. In ouLEM(ID3)
algorithm, we designed the instantiation operator withabwesideration of three important
aspects. First, for the attributes which do not appear ingted rule set, some particular
methods need to be implemented to assign values for thegmitgs for each individual
under generation. Second, for each of rule, the number ofithdhls which needs to be
generated from this rule also needs to be calculated in apregy, or according to a rea-
sonable standard. Finally, the way in which the new indigld@are generated also needs to
be considered carefully, for example, whether to get a viandomly or modify an existing
value can affect the optimization performance &M algorithms. Based on all of these
considerations, we designed the instantiation algoriterAlgorithm 14. The core idea is
based on the coverage value of each rule. Namely, rules wgthdoverage are used more

frequently in generating new individuals.

153

Algorithm 14 pseudo code for instantiation
1: Declare rule coverage variablesfor each rule;

2. Declare number of training examplegs

3: for all (rules in the rulesetjo

4: Calculate the coverage of the rude

5: Initialize ‘generation distribution’ variables; to 0.0;

6. for (eachAttributg that appears in the rulelp

7 for (eachinterval; of the Attributg) do
8: pij = G/1;

9 end for

10: end for

11: end for

12: while (the new individuals are still neededd

13: for (eachAttribute in the individual)do

14: Selectinterval; for Attributg with probability p;; /T, whereT sums thep;; values
for Attributg, and randomly creates a new value witmterval;.

15: end for

16: end while

154

In the instantiation Algorithi4, first, for each attribute and domain pair of the dis-
cretized problem space, a probability value is calculatamb@aling to the learned ruleset.
For each rule in the current ruleset, if this attribute-donpair appears in one rule, then
the corresponding rule coverage value is recorded and adated agy;. The more times
this attribute-domain pair appears, the bigger the prdibabalue is. When all the rules
in the ruleset are examined, the resulting probability @alare then used to assign values
for the new individuals being generated. Second, when theimdividuals are generated,
for each gene (attribute) of one individual, the value isagated from a particular interval
(domain) of that gene, the frequency of a value created frdomaain depends on the prob-
ability p;; calculated previously. When all the new individuals areegated, we finish one
instantiation procedure.

In fact, the instantiation procedure could have many vésiamplemented based on
many other criteria, such criteria may include accuracyhefrule on training data eval-
uated by cross-validation method, but this method may neee tnaining data. We can

investigate this idea in our further research.

6.2.2 Evolution Mode

In LEM(ID3), when the Learning Mode can not find any better individuald.egrning
Hypothesis and Instantiation HypotheslsEM(ID3) will switch to the Evolution Mode,
where the traditional evolutionary computation operatiane applied. Here, we empha-
size one important issue in many population based optimizaigorithms. That is, the
diversity of the population. This problem turns out to be ensevere for LEM methods,
due to the application of learning techniques. Loss of therdity for the current popula-
tion does not only affect the evolutionary search procedoué more importantly affects
the learning procedure. This is because it can result inkadaenough training data for
the supervised learning algorithms. Generally, when thmufaion is in the early stages
of optimization, the individuals in the population tend te ery different to each other,
therefore, the population has a good diversity. Howevah@sptimization progresses into
the later generations, the diversity is lost in genera$ ibecause the selection operations
are making more copies of the promising individuals, themethe search is focusing on
some particular regions, containing either the local obgl@ptimum. This is a common
situation in most EAs, but in the case of LEM, we note that us&s particular problems

for the learning process, and does not make the generatioaimihg data an easy task.

155

Furthermore, some other factors will make the situatiomeverse. These factors in-
clude: first, the individuals in the population are very $an(this is the case commonly for
the end phrase); second, the threshold is not adaptiven(gahanged from 30% to 10%);
third, for real-parameter optimization problems, diszadton needs to be applied on the
training data and will cause the worse phenomena that,adistory is possible occurring,
that is after discretization, two or more individuals hayime same chromosome values
are put into different classification groups. Contradigterll cause more difficulty for the
ID3 algorithm to generate a useful and correct decision tilear all of these factors in
the design of the EM(ID3) algorithm, we need to consider diversity-preserve mecmasi
in the evolution mode regularly before the learning modetstagain. To conquer this
problem, for the moment,EM(ID3) employs the simplest possible diversity preservation
method: when diversity is too low, we perturb the populatiath a very high mutation
rate. Through our observation in our experiments, we fingl tiethod works very well in
preserving our population diversity for our problem, aligb it has the disadvantage that

the evolution mode will contribute to less good optimizatperformance.

6.2.3 Switch Conditions

There is also another very important issue in the design pfl&M based hybrid opti-
mization algorithms, that is the Switch Conditions. Theseditions define the boundary
between the learning and evolution procedure, and willdkaihen the learning procedure
should stop and the evolution procedure begins, or viceavérkerefore, the good design
on these switch conditions is crucial for the success of it optimization algorithm.
In fact, these conditions are very difficult to define prelgise practice. InLEM(ID3),
we have attempted to develop switch conditions in a numberags. Here, we give two
methods applied in our implementations.

The first switch condition is coined as tpeogress ratewhich is based on the algo-
rithm’s optimization performance during the past generaiuntil now. Progress rate is
the percentage of generations which achieves optimizagoiormance improvement to its
immediate previous generation over a fixed period of germgrst If within a generation
with the expense of certain evaluations (say, 100 evalng)jdhe best fitness of this pop-
ulation of this generation is improved with regard to itsyioels generation, then we call
such a generation damproved generationotherwiseunimproved generationFor a given

period of generations, the progress rate for this periodmply the number of improved

156

generations divided by the number of the generations fergkriod. Say we monitor 10

generations as a learning period, and find there are a td@aj@ferations where the best fit-
nesses are improved from their previous generations, tieeprogress rate for this learning
period is 0.6. Based on this progress rate, we also need teedsgfrogress rate threshold

which will decide the logic value of the switch conditionsamely, if the current progress
rate is above the progress rate threshold, then the currea should continue otherwise
a switch action should happen and another mode begins.

The second switch condition is related to the diversity efplpulation, and is defined
as the minimum-allowed training data set size. As we mertidsefore that, the quality of
the training data set is crucial to our LEM(ID3) algorithnedause it is related to and used
directly by the ID3 decision tree construction algorithngnerate the learnt hypotheses
and the transformed ruleset. If the training data is noisga@s not have enough training
instances, then the resulting decision tree is either mg#sss or useless in representing the
pattern of the training data. The later situation can be raas#ly dealt with or avoided if we
assume the training data is noisy-free, then we requirazke$the generated training data
set after discretization cannot be lower than a minimumstiwél. This forms the second
switch condition, namely, if the size of the training dateissmaller than a given threshold
(the minimum allowed training data set size), then LEM(IB3witched to evolution mode
immediately without the learning mode to be conducted. Wéaeime back to the two

switch conditions later in the parameters settings patiéneixperiment section.

6.2.4 Discretization

Before any application of ID3 algorithm, the population deéo be (for learning use only)
discretized. Instead of regarding genes as real-valuedblas, each gene must range over
a small set of intervals that partition each range. Therarary discretization methods
available as we discussed in Chagiehowever, in our current developmentldEM(ID3)
algorithm, we use a very simple fixed interval discretizatibut we adapt the number of
intervals when the fitness seems to have stagnated. Thise simply by multiplying
the number of intervals by an integer factor. Figuée3 illustrates this by showing the
difference in the search space before and after such antiagjosin the discretization with
factor 2.

The simplification of the discretization method in our catréevelopment of our LEM(ID3)

algorithm is because we are paying more attention to thgaeditheLEM(ID3) algorithm

157

-100 0.0 100

L | | | | | | | |

-100 -80 -60 -40 0.0 40 60 80 10(

Figure 6.3: Before and after adjusting discretization@spntation

structure, rather than on the specific component technldggediscretization, however, in
future development, we will incorporate more complex ddsization techniques into our
LEM(ID3) algorithm.

6.2.5 Instantiation, Evolution and Randomization

Until now, we have finished the introduction of our origih&M(ID3) algorithm and ana-
lyze many important aspects about this hybrid algorithmweleer, these are not all features
involved in the development of theEM(AQ) algorithm, there are some other advanced
considerations which are used to tackle the complexity obl@ms met in practice. These
ideas are applied to our LEM algorithm and a new version ofLtBM(ID3) algorithm,
LEM(ID3) algorithm extended with Instantiation, Evoluti@and Randomization (LEM(ID3)IER)
is developed.

Although Learning and Instantiation play key roles in tharkeng phase, they are not
the only possible operations applied in the generation wfindividuals. Part of the pop-
ulation can still be generated by the standard evolutioogerators, or even by random
generation. This requirement for more various individuigdserating methods is due to
the fact that practical problems features could be very dexp@and also there is a need
to maintain diversity during the learning phase (not onlyhia evolution mode), which is
essential in order to generate an informative tree. Nanmelihe learning phase, a new
individual could be generated either by the instantiatiathrad described above, or by a
standard evolution procedure, or at random. The randoiizabuld be implemented by
generating a random value from the whole search space.

In order to realize these ideas, we need to apply a paramettémgsto decide the
probabilities (percentages) for each operations. Idetlgse percentages would adapt
as optimization progresses, however, for simplicity we filsed (unoptimized) values in
the current work. Therefore, the resulting algorithEM(ID3)IER modifies the original

LEM(ID3) algorithm by allowing some percentage of the new individualbe generated

158

by either evolution (crossover and mutation) or randomiguigh the whole search space.
We will test the performance of bottEM(ID3) andLEM(ID3)IER in our following exper-

iment part.

6.3 Experiments and Results

In this section, we begin to explore the performance ofLdtivi(ID3) algorithms on a num-
ber of real-parameter functions optimization problemsthédigh still being well-defined
functions, the test functions now are more complex and geaipvith more complex fea-
tures. We compare theEM(ID3) algorithms with other contemporary advanced hybrid
optimization algorithms, not only the standa@@MAES algorithm this time. To illustrate,
we group our experiments into two parts. We will see all ofdbtils about these two parts

of experiments in the following sections.

6.3.1 Experiment Study 1

In this experiment study, we test th&M(ID3) algorithm following the series of exper-
iments we did before for our LEM algorithms. That is, we comgdeEM(ID3) with the
standard>As, our developed LEM variant algorithms, and the stand@&@vthES algorithm.

Test Functions

The first test functions set used here is the old ‘Test Suites@d in previous Chapteds5,

we refer to these chapters for the definitions of these fansti

Parameters Settings

Due to the various performance derived from our previouggrents, in this experiment
we only test some of our previous testing algorithms, they@A2, LEM(dwKNN) and
CMAES. We also refer to the previous chapters for the parametérsgefor these algo-
rithms and only give the parameters settings for tE®M(ID3) algorithm. LEM(ID3) is
implemented with the following settings. For the learniritape, we set th#resholdas
0.3, initial discretization divides each gene’s range eatonterval numberof 3 intervals.
When we adjust discretization, ti@erval numberis multiplied by the integer discretiza-
tion factor 2. In the evolution phase, we use a steady-stateegy with binary tournament

selection, a normal distribution (8) mutation operator with mutation probabilityO/size

159

Table 6.3: Parameters settings for LEM(ID3)

Threshold

0.3

Switch conditions

Progress Rate: 0.7

Minimal allowed training data set size: 10

Learning gap

1

Discretization method

| Fixed discretization with initial intervahumber 3,

and integer discretization factor 2.

Instantiation method

Instantiate intervals with probabilities (8Q020%)

GA applied

GA2

Table 6.4: Means and standard deviations after 10 genesatio

Functions | GA(1.0/30.0) | LEM(dwKNN) LEM(ID3) CMAES
DeJong3 |-90.26(4.74) | -113.8(4.80) | -126.7§6.88371)| -94.55(3.88)
DeJongd | 3.47(2.02) 1.3(1.23) 2.98115(1.55961) 9.66(3.71)
Rastrigin | 232.08(20.3) | 161.42(20.05) | 75.104%16.4482)| 288.66(17.41)
Griewank |76.26(13.62) | 36.67(10.88) | 14.860§8.00999) 158.41(28.86)
Rosenbrock 583.57(148.74) | 311.64(84.76) | 221.74%62.123) | 728.83(166.97)
Ackley 14.50(0.71) 12.10(34.72) | 8.817571.66572)| 16.77(0.67)
Schwefel | 7487.64(517.69) 5312.65(558.17) 3365.08533.216)| 9611.63(321.64

of chromosomeapplied, where the mutation step sizas a value always bigger than the

current interval size in the discretized search space. Werarize the complete param-

eters setting for theEM(ID3) algorithm in Table6.3. The population sizes 100 for all

problems.

Summary of Results

The experimental results are are summarized in the samesitagfare and are listed from

Table6.4to Table6.7. Meanwhile, Figuré.4to Figure6.10show the mean convergence

curves for each algorithm on these test functions, respayti

160

Table 6.5: Means and standard deviations after 20 genesatio

Functions | GA(1.0/30.0) | LEM(dwKNN) LEM(ID3) CMAES
DeJong3 |-117.21(3.64) |-141.362.80) |-139.06(4.32708) | -112.16(2.82)
DeJong4 | 0.09(0.11) 0.16(0.24) 0.918659(0.828816)0.07(0.12)
Rastrigin | 155.40(19.59) | 87.74(15.04) | 48.233410.342) | 228.39(14.78)
Griewank | 21.65(4.74) 5.70(2.27) 5.93735(2.54205) | 26.07(7.78)
Rosenbrock 220.01(51.03) | 133.9946.33) | 180.653(42.7118) | 152.95(37.93)
Ackley 9.96(0.83) 6.330.84) 6.62236(1.2462) | 10.36(1.06)
Schwefel 5686.49(533.59) 3470.82(461.21) 2835.22504.211) | 9564.46(291.09

Table 6.6: Means and standard deviations after 50 genesatio

Functions | GA(1.0/30.0) | LEM(dwKNN) LEM(ID3) CMAES
DeJong3 | -146.67(1.42) |-149.92(0.25) |-149.930.320826) | -141.7(2.23)
DeJong4 | 3.60e-3(4.86e-3) 7.76e-3(1.93e-2) 3.24e-2(5.64e-2) | 5.28e-40.12)
Rastrigin | 84.36(14.51) | 30.3%7.05) 34.786(8.62315) | 191.26(12.1)
Griewank | 2.04(0.4) 1.08(0.081) 1.029040.0534997) 1.16(0.079)
Rosenbrock 75.38(29.28) 68.34(39.16) 115.768(37.5217) | 29.940.73)
Ackley 3.91(0.50) 2.220.58) 2.56555(0.464773)| 2.32(0.409)
Schwefel | 3277.86(493.95) 1685.07330.60)| 1765.76(443.485) | 9460.74(282.0

Table 6.7: Means and standard deviations after 100 geaesati

Functions| GA(1.0/30.0) | LEM(dwKNN) LEM(ID3) CMAES
DeJdong3 -150(0.0) -150(0.0) -150(0.0) -150(0.0)
DeJong4 | 8.8e-4(9.9e-4)| 1.53e-3(1.68e-3) 2.69-3(3.45-3) | 1.52e-41.6e-4)
Rastrigin | 44.75(8.997) | 11.042.79) 22.1808(6.17295) | 116.69(63.62)
Griewank| 0.95(0.11) 0.68(0.23) 0.0200.013) 0.029(0.017)
Rosenbrotk44.72(24.15) | 53.00(34.72) | 83.5877(35.9244) | 27.420.53)
Ackley 0.95(0.52) 1.38(0.61) | 0.119332(0.0599154) 0.0190.0094)
Schwefel | 1540.0(289.45) 1446.53(301.62) 1188.6%331.967) | 8948.33(805.8

161

-40 GA(1.0/30.0)
LEMdwKNN
60 LEMID3
CMAES

%]
Q
=
S -80
]
[%]
Q
S
= -100t
0
Q
feo)

-120t

-140}

~160 ! ! ! !

0 20 40 60 80 100
generations

Figure 6.4: Results of running 4 algorithms on the DeJongBlpm

120
100} GA(1.0/30.0)
LEMdwKNN
LEMID3
. sof CMAES
(]
>
3
>
@
2 60}
s
B
3
a0t
20}
0 ‘
0 5 10 15

generations

Figure 6.5: Results of running 4 algorithms on the DeJongélem

162

450

400 GA(1.0/30.0)
350 b LEMdwKNN
LEMID3
., 3001
8 CMAES
S 250}
?
[
o
£ 200}
%
3
150}
100}
50t
0 L L L L
0 20 40 60 80 100

generations

Figure 6.6: Results of running 4 algorithms on the Rastngoblem

10
GA(1.0/30.0)
LEMdwKNN
! LEMID3
Q
3 CMAES
[
>
[}
[%]
(0]
=
B
&
10'}
10°

10 20 30 40 50
generations

Figure 6.7: Results of running 4 algorithms on the Griewardbfem

163

10

GA(1.0/30.0)
LEMdwKNN
3
» 10°F LEMID3
[}
>
E CMAES
>
@
Q
s
7
&2
10°}
101 L L L L
0 10 20 30 40 50

generations

Figure 6.8: Results of running 4 algorithms on the Roseribpocblem

25

20 GA(1.0/30.0)
LEMdwKNN
LEMID3
CMAES

best fitness values

0 20 40 60 80 100
generations

Figure 6.9: Results of running 4 algorithms on the Ackleylyem

164

10°°}

GA(1.0/30.0)
LEMdwKNN
LEMID3
CMAES

37|

10

10%5}

best fitness values

10°}

10}

0 20 40 60 80 100
generations

Figure 6.10: Results of running 4 algorithms on the Schwafeblem

From these experiment results in this study, we can se@ EM{ID3) outperforms the
normal genetic algorithm GA2 (which is tuned based on theeggpce of GA1) in almost
all generations for all problems, except for some casesuioction DeJong4 and Rosen-
brock at the final (100th) generation&EM(ID3)’s advantage over GA2 is particularly
evident and significant in the earlier generations of oation, as seen in generations
10 and 20.LEM(ID3) also outperforms the other two hybrid algorithrh&M(dwKNN)
and CMAES, especially in the earlier 50 generations, except for Aclded Rosenbrock
functions. To highlight one of the most important advansagietheLEM(ID3) algorithm,
we summarize thdtEM(ID3) speeds up the optimization procedure strongly in the early
generations by applying the ID3 learning and the instaptiaalgorithm, this advantage
is crucial for many practical optimization problems whevalaations are expensive, and

relative good quality feasible solutions are expected tddyesed quickly.

6.3.2 Experiment Study 2

In this experiment study, we test the extended versidkdA(ID3) algorithm, theLEM(ID3)IER
algorithm, on a more complex set of real-parameters funcaifaimization problems, that

is the test suite of 25 test problems for the CEC 2005 SpeeisdiSn on Real-Parameter
Optimization EHL05]. First, those real-parameter optimization problems heeniselves
more challenging in the character of their problems. Sectvebe optimization problems

are tested by a number of advanced algorithms widely usdtkis\tolutionary search op-

165

timization field, so it is handy for ourtEM(ID3)IER algorithm to be compared with those
contemporary algorithms. Therefore, we compaEd(ID3)IER with these learning and
evolution hybrid algorithms, particularly two advancediaat CMAES algorithms and a
carefully-designed genetic algorithm with advanced gerggierators, instead of the stan-

dard genetic algorithm.

Test Functions

For the 2005 special sessions on real-parameter optimizatie have the following notes
about the problem definitions which will reflect the comptgaf these problems. Most
of these problems are multimodal functions, only a few ofrirere unimodal; they are
discontinuous problems and embedded with noise; they #tedhnd rotated versions of
the well-known optimization function, that is, the optimusrshifted and rotated randomly
to different values, causing difficulties for many specifgagithms; they are expanded and
hybrid composited functions which makes the function laage even more complex to
solve and extremely irregular; all of these functions ar@ade to huge dimensions of
search space. Finally, most of the algorithms comparec tfadled in finding the global
optimum. For more details of these functions we refelSHI[*05]. The number of solved

problems for all algorithms in the competition are sumnetias below:

1. Note that problems 1 to 6 are unimodal functions, and probl7 to 25 are multi-

modal.

2. Also, the set of thirteen 10D probler{8, 13, 14, 16—25were never ‘solved’ by any
algorithm in the CEC 2005 competition, where ‘solved’ iraties reaching a certain
level of accuracy specified itsHL*05], which in turn was a function of the problem
and its dimensionality. On 30D problems, problem 15 is agotimsolved problem.

On 50D problems, more problems are turned into the unsokted s
3. Even for the 30D problems, the performances of the alyostpresented in the CEC
2005 session are not good enough.

Parameters Settings

The parameters settings for thEM(ID3)IER algorithm is the same as the origih&M(ID3)
algorithm’s setting in Tablé.3, apart from two differences. First, there is an extra pdarcen

ages set to indicate the number of new individuals being rg¢ee via learning, evolution,

166

and random selection, respectively. This set is given a%(7D%, and 10%). Second,
there is no crossover operator in the curreBM(ID3)IER implementation, due to the
consideration of verifying the capacity of diversity-peegang by mutation.

The algorithms used for comparison are the three algorithmitis the best perfor-
mance in the CEC 2005 competition. According to various itjuariteria, these were
IPOP-CMAES[AHO05b], a restart version of CMAES with population resizing, atbe
dominant algorithm on this problem set so faBR-CMAES [AH054, an alternative local
version of CMAES; and&-PCX [STDO0Y, a carefully designed evolutionary algorithm with
a specialized crossover operator (PCX). We have alreadyduated the gener&MAES
algorithm in ChapteB, here we simply introduce the two varig@@MAES algorithms and
theK-PCX algorithm.

ThelPOP-CMAESwas developed based on the investigation of the impact gidlpe
ulation size of CMAES on multi-modal functions. Those invgsations show that in-
creasing the population size improves the performance dti-madal functions, there-
fore inIPOP-CMAES the restarting strategy with successively increasingifajon size
is applied to solve the CEC optimization problems with vepod performance. The
IPOP-CMAESalgorithm is also called4y, 1)-CMAES, the parameters for the normal dis-
tribution are adapted based on the covariance m@tifior the next generation in the same
way as in the CMAES algorithm. For the restart strategy, the {)-CMAES is stopped,
whenever one stopping criterion described below is metaaras$tart is launched with the
population size increased by a factor of 2. Thereforeyin Q)-CMAES, the default values
are used except for the population size, starting from tli@uitevalue but then repeatedly

increased. For completeness, we list the restart criteria:

e Stop if the overall change in the objective function valuéesow T ol funfor 10 +

[30n/1] generations.

e Stop if the standard deviation of the normal distributiosnsaller thanT olX in all

coordinates, and if the evolution path is smaller tiiatX in all components.

¢ Stop if the condition number of the covariance matrix exseEd*.

LR-CMAES is developed to explore the performance of a restart lo@altkestrategy.
To do this, the CMAES algorithm discussed before is coopdratith small initial step
sizes, an initial step-size which is a hundred times smtikan is recommended as default.

The default population size is applied. As a result, theralgm can be then regarded as an

167

advanced local search, because the complete covariance ofahe search distribution
is efficiently adapted to the local topography of the objectunction, and the step-size
adaptation can result in comparatively large steps evemwheinitial step-size is chosen
to be small.

K-PCX is a steady-state, population-based search algorithmefdrparameter opti-
mization. The main character of this algorithm is that itigeed the main search com-
ponents independently by defining four plans, the Seled®lam (SP), Generation Plan
(GP), Replacement Plan (RP), Update Plan (UP). As the naftlesse plans suggest, they
appear in different stages of the evolution search proeedur each plan, the important
aspects about solving multi-modal functions are consttlesech as diversity preservation
multi-modal parameterK-PCX starts with an initial population generated randomly with
the sizeN. Then, it uses the Selection Plan to chopg®rents from the initial population.
In this selection scheme, first, sort the entire populatitoascending order based on the
function values. It then divides the population ik@qual segments, whekeis a user-
defined parameter within the range INpindicating the extent of modality of the problem.
For uni-modal problems, a small value and for multi-modalglems a large value dfis
suggested. The best solution of each segment is picked aratish$. Then it randomly
picks one solution from the set of best solutions whtlas the first parent, this solution is
also called thendexsolution. Thereafter, the othes ¢ 1) parents are picked randomly
from the population. In the Generation Plan, it createdfspring solutions from the cho-
senu parent solutions by using the parent centric recombingf&X) [DJAO0Z operator
with modification for the purpose of recombination and prdg A offspring solutions.
After describing the generation plan, next the ReplacerRéant is to choose solutions
from the population. In the present scheme, the solutioeashosen randomly from the
entire population, then a pool of size € 1) is formed, consisting of solutions chosen
from the population by the replacement plan antewly created offspring solutions by the
generation plan. The current population is then updatathusie Update Plan, in whiah
solutions chosen in the replacement plan are replaced blyesie solutions of the pool.
This operation ensures an elite-preservation strategy.

For thisk-PCX algorithm, the iteration continues until a prescribed nandg function
evaluations is achieved or a pre-defined termination aites met. If the diversity in the
population is lost, cataclysmic mutation is used, and thst inelividual obtained so far is
chosen as the index parent. Normally, the polynomial motatiith a mutation probability

Pm = 1/nis applied, wheren is the number of real variableK-PCX is an algorithm

168

designed specifically for complex function optimizatione tparameter liké& need to be
indicated carefully and is problem-dependent. The badcehiar this parameter can make

the algorithm perform poorly.

Summary of Results

We tested.EM(ID3)IER on all of the 25 problems in the CEC 2005 competition, for each
of the 10-dimensional, 30-D, and 50-D cases (hence 75 prab@dtogether). Following
the CEC2005 rulesJHL*05], 25 trials were run for each problem, and a variety of result
indicators were recorded. Tablés3, 6.9 and6.10respectively show results for the 10D,
30D and 50D problems. In each case, we see the mean of 25 taptsted for each of
IPOP-CMAES LR-CMAES, K-PCX, andLEM(ID3)IER. For the comparative algorithms,
we take the mean results directly from the cited publicaioMote that in the case of
K-PCX, results for 50D problems were not reported.

If we observe the results summarized in Tabl8 and compare the means, we see
that IPOP-CMAES LR-CMAES, K-PCX and LEM(ID3)IER respectively ‘win’ 13, 5, 4
and 6 of the contests on 10-dimensional functions. Thisuohes some, but quite few,
cases in which more than one of the algorithms shares thenfoesst for that problem.
Table 6.9 shows the corresponding results for the 30D functions, aachow see that
the numbers of ‘wins’ are 6, 4, 6 and 9 respectively BOP-CMAES LR-CMAES,
K-PCX and LEM(ID3)IER. As we scale from 10D to 30D, the relative performance of
LEM(ID3)IER clearly seems to improve. Finally, although results Ko6PCX on the
50D problems are not available, we note that the numbers 0§ ¥ar IPOP-CMAES
LR-CMAES and LEM(ID3)IER on 50D problems are respectively 7, 7 and 11. A basic
statistical analysis of these findings can be carried outgusiultinomial distributions. For
example, if we assume that each algorithm has an equal cludraghieving a ‘win’ in
the 30D case, then we find that the chance of a single algoatiieving 9 or more wins
has a probability of 0.15. In the case of 10D, simplifying Hiteiation by ignoring prob-
lems 8 and 24, we find, analogously, that achieving 11 or mons Wy chance from 23
four-way contests is 0.015. Finally, referring to the 50Beaahe probability of achiev-
ing 11 or more wins in such a three way contest, assuming edgeatithm performance,
is 0.18. The superiority ofPOP-CMAESIn the 10D cases therefore seems significant,
althoughLEM(ID3)IER achieves multiple wins on the 30D and 50D cases, the degrees
of significance are less marked. However, the improvemethenrelative performance

of LEM(ID3)IER as we scale up is significant, and it seems clearltEM (ID3)IER has

169

Table 6.8: Means for two CMAES, KPCX, LEM(ID3)IER, 10D, CE&A00K Evas.

Problems| IPOP-CMAES | LR-CMAES | K-PCX | LEM(ID3)IER
1 5.20e-9 5.14e-9 8.71e-9 9.5497e-14
2 4.70e-9 5.31e-9 9.40e-9 | 1.18234e-13
3 5.60e-9 4.94e-9 3.02e+4 | 4.75951e+4
4 5.02e-9 1.79e+6 7.94e-7 1.53131e-8
5 6.58e-9 6.57e-9 4.85e+1| 1.08404e+2
6 4.87e-9 5.41e-9 2.07e+1| 5.3210le+1
7 3.31e-9 4.91e-9 6.40e-2 7.82496e-2
8 2.0e+1 2.00e+1 2.00e+1 2.015e+1
9 2.3%-1 4.49e+1 1.19e-1 3.52629e-7
10 7.96e-2 4.08e+1 2.3%e-1| 4.73601e+0
11 9.34e-1 3.65e+0 9.11e+0 2.97556e-3
12 2.93e+1 2.09e+2 2.44e+4| 3.30583e+l
13 6.96e-1 4.94e-1 6.53e-1 3.00063e-1
14 3.01le+0 4.01e+0 2.35e+0| 2.52033e+0
15 2.28e+2 2.11e+2 5.10e+2| 4.10562e+2
16 9.13e+1 1.05e+2 9.59e+1| 9.91853e+1
17 1.23e+2 5.49e+2 9.73e+1| 9.93189%+1
18 3.32e+2 4.97e+2 7.52e+2| 5.40254e+2
19 3.26e+2 5.16e+2 7.51e+2| 5.20259%e+2
20 3.00e+2 4.42e+2 8.13e+2 6.40241e+2
21 5.00e+2 4.04e+2 1.05e+3 | 4.84205e+2
22 7.29e+2 7.40e+2 6.59e+2 7.43115e+2
23 5.59e+2 7.91e+2 1.06e+3 | 7.3058le+2
24 2.00e+2 8.65e+2 4.06e+2| 2.00064e+2
25 3.74e+2 4.42e+2 4.06e+2| 3.91368e+2

170

Table 6.9: Means for two CMAES, KPCX, LEM(ID3)IER, 30D, CEEBO00K Evas.

Problems| IPOP-CMAES | LR-CMAES | K-PCX | LEM(ID3)IER
1 5.42e-9 5.28e-9 8.95e-9 | 3.47882e-13
2 6.22e-9 6.93e-9 1.44e-2 1.65321e-10
3 5.55e-9 5.18e-9 5.07e+5 2.72353e+5
4 1l.1le+4 9.26e+7 1.11e+3| 3.85297e+3
5 8.62e-9 8.30e-9 2.04e+3| 3.13183e+3
6 5.90e-9 6.31e-9 9.89e+2| 1.50812e+2
7 5.31e-9 6.48e-9 3.63e-2 2.95802e-2
8 2.0le+1 2.00e+1 2.00e+1| 2.01516e+1
9 9.38e-1 2.91e+2 2.79%-1 7.8419e-7
10 1.65e+0 5.63e+2 5.17e-1 | 3.69056e+1
11 5.48e+0 1.52e+1 2.95e+1| 8.40942e-3
12 4.43e+4 1.32e+4 1.04e+6 | 4.91148e+3
13 2.49e+0 2.32e+0 1.19e+1 1.0437e+0
14 1.29e+1 1.40e+1 1.38e+1| 1.20617e+1
15 2.08e+2 2.16e+2 8.76e+2 3.6229e+2
16 3.50e+1 5.84e+1 7.15e+1| 3.36537e+2
17 2.91e+2 1.07e+3 1.56e+2 3.10781e+2
18 9.04e+2 8.90e+2 8.30e+2| 9.11234e+2
19 9.04e+2 9.03e+2 8.3le+2| 9.10634e+2
20 9.04e+2 8.89e+2 8.3le+2| 9.1115le+2
21 5.00e+2 4.85e+2 8.59e+2 | 5.00162e+2
22 8.03e+2 8.71le+2 1.56e+3 9.14701e+2
23 5.34e+2 5.35e+2 8.66e+2 | 5.41424e+2
24 9.10e+2 1.41e+3 2.13e+2| 2.00283e+2
25 2.11e+2 6.91e+2 2.13e+2| 2.00294e+2

171

Table 6.10: Means for two CMAES, KPCX, LEM(ID3)IER, 50D, CE%; 500K Evas.

Problems| IPOP-CMAES | LR-CMAES | K-PCX | LEM(ID3)IER
1 5.87e-9 6.20e-9 - 5.34328e-13
2 7.86e-9 7.96e-9 - 1.31335e-9
3 6.14e-9 6.04e-9 - 2.11398e+5
4 4.68e+5 4.46e+8 - 1.91824e+4
5 2.85e+0 3.27e+0 - 9.82375e+3
6 7.13e-9 7.12e-9 - 1.12253e+2
7 7.22e-9 7.49e-9 - 1.48301e-2
8 2.0le+1 2.00e+1 - 2.01318e+1
9 1.39e+0 5.67e+2 - 1.2652e-6
10 1.72e+0 1.48e+3 - 1.17804e+2
11 1.17e+1 3.4le+l - 1.4332e-2
12 2.27e+5 8.93e+4 - 4.85485e+4
13 4.59e+0 4.70e+0 - 1.92194e+0
14 2.29e+1 2.3%e+1 - 2.1577e+1
15 2.04e+2 2.50e+2 - 4.04874e+2
16 3.09e+1 7.09e+1 - 9.8556e+1
17 2.34e+2 1.05e+3 - 1.23137e+2
18 9.13e+2 9.06e+2 - 9.38592e+2
19 9.12e+2 9.11e+2 - 9.40204e+2
20 9.12e+2 9.01e+2 - 9.40267e+2
21 1.00e+3 5.00e+2 - 6.07759e+2
22 8.05e+2 9.10e+2 - 1.00155e+3
23 1.01e+3 6.37e+2 - 5.955e+2
24 9.55e+2 8.43e+2 - 2.00544e+2
25 2.15e+2 4.77e+2 - 2.18497e+2

172

Table 6.11: Summary of solved problems by CECO5 sessiomigigts on 30D

Number of solved problems
single-modal, multi-modal
IPOP-CMAES 6 5
K-PCX 3 4
LR-CMAES 5 1
LEM(ID3)IER 2 4
Other algorithms <4 <2

promising properties with regard to scalability. Finalyith respect to the definition of
‘successful run’, which means that the algorithm achietwesfixed accuracy level (mean
error values< le — 6 for unimodal;< 1le — 2 for multimodal) within the maximum al-
lowed evaluation number for the particular dimension, wasiarize for the case of 30D
the number of problems solved by the three algorithms bewngpared and EM(ID3)IER

in Table6.11

Meanwhile, in AppendiB we show Tables with the full set of result indicators (as spec

ified in [SHL*09]) for LEM(ID3)IER on the 10D, 30D and 50D versions of the pleais,

to support comparative experiments of other researchers.

6.4 Concluding Discussion

Continuing to explore the LEM framework, we have described evaluated our new LEM
hybrid algorithms that combine evolutionary search witt8 I@ecision tree learning. In
earlier work BC0§ [SC09, we found that hybridizations of quite simple learningast-
gies with evolutionary search were able to improve optitniraperformance consider-
ably upon the unchanged EA, in particular, similar or bettdution quality was achieved
with significant savings in fitness evaluations. In this ¢bgpwe examined a less sim-
ple, but still quite straightforward LEM variant algorithim which decision tree learning,
with instantiation generation and adaptive discretizgtivas interleaved with evolution-
ary search, and tested this approach on a number of tesidnscespecially the CEC
2005 real parameter optimization function suite. When camag with our well-tuned GA,
KNN-based LEM hybrid algorithnh EM(dwKNN), and three of the best-performing func-
tion optimization algorithms previously published, we fouthatLEM(ID3) as the first

version of our development has clear and significant adgastaver the standard genetic

173

algorithm, this strongly proves the initial goal of our dmment of more LEM instance
algorithms and verifies the claim again made by the origi¥lauthors, that LEM and its
instance algorithms, likkEM(AQ), can speed up the traditional evolutionary optimization
procedure to gain relative high-quality solutions. Andstadvantage also maintains over
one of ourLEM(KNN) algorithms developed earlier in this thesis, especialliheearly
stages of optimization, this feature bEM(ID3) gives us more confidence in the devel-
opment and application of Learning-and-InstantiatingelasEM algorithms for practical
complex optimization problems where the evaluations cdadexpensive. In another of
our experiments on the CEC 2005 real parameter functionmigdtion suite, as an ex-
tended version of theEM(ID3) algorithm,LEM(ID3)IER is clearly competitive in per-
formance with three dominating hybrid optimization algiems in that competition, which
are in fact particularly well-designed and well-tuned frtmir standard versions. Finally,
one feature oLEM(ID3)IER which is worth mentioning is that its relative performance
improves as problem dimensionality increases, with tergatvidence to suggest that it
may be a recommended choice in general for high-D problemgh e performance
tested here, we recommeh&M(ID3) algorithm as a baseline algorithm that should be
further investigated and studied, more importantly, stidad applied to solve more chal-
lenging problems in practice. Research-strendfM(ID3)IER code is freely available at

http://www.macs.hw.ac.uk/"gls3/LEMID3/LEMID3.zip.

174

Chapter 7

Cancer Chemotherapy Treatments

Optimized by LEMs

7.1 Overview

In previous chapters, we have investigated new instanceitigns under the general LEM
framework with the development &EM(KNN), LEM(ED), LEM(ID3) and their variant
algorithms. However, the test problems applied on theseriéthgns are all typical real-
parameters function optimization problems. Althoughythee particularly designed for
the purpose of testing the performance of new optimizatigaraghms, they do not repre-
sent the practical optimization problems directly. Namelg still did not apply our LEM
instance algorithms to solve any practical hard optimaragiroblems, and such an applica-
tion is important and worthy. Practical problems may ineladore complex features which
may reflect more real requirements to the problem solvingralgns than the well-defined
testing functions. Practical problems may include morestramts which are the real con-
siderations from the reality view. To satisfy these constsaduring the optimization pro-
cedure, the search algorithms need to tackle more diffesjleand any violation of these
constraints will make the derived solutions not feasiblelvifg problems with constraint
satisfaction is a more demanding task than the functiomopétion problems. Finally, our
purpose of investigating LEM based hybrid optimizationoaithms is to speed up the tra-
ditional evolutionary optimization procedure through #pplication of learning, and such
a purpose is more strongly to be achieved due to the reakltyntfany practical problems
contain many practical aspects which make the evaluatitmes$olutions for the problems

very expensive in real implementations or operations. &foee, our developed LEM algo-

175

rithms are more suitable to solve these evaluation-expemsoblems. As we have stated
in Chapterl, this property of speedup is very useful in solving many ficat optimiza-
tion problems, where the time complexity for working out fiteess of a single solution
is quite poor. In this chapter, we investigate such a prakctind complex problem which
explores all of the aspects considered above, especialyprbperty of time-consuming
evaluations, with our LEM algorithm&EM(dwKNN) andLEM(ID3). The problem is the
Cancer Chemotherapy Treatments problem, solving thisnipdition problem provides a
good test for our LEM algorithms in solving practical opteation problems.

In the following sections, we introduce the medical aspettancer treatment in Sec-
tion 7.2, and give the mathematical formulation for this problem ett®n7.3 we solve
this problem with our LEM instance algorithms in Sectiod, and concludes in Section

7.5

7.2 Introduction

Amongst the modalities of cancer treatment, chemothesapfgen considered as inherently
the most complex\WWhe8§. As a consequence of this, it is extremely difficult to find
effective chemotherapy treatments without a systemapeageh. In order to realize such
an approach, we need to take into account the medical asyfexziacer treatment.

Drugs used in cancer chemotherapy all have narrow thenagedices. This means
that the dose levels at which these drugs significantly efieitimour are close to those
levels at which unacceptable toxic side-effects occur.rdfoee, more effective treatments
result from balancing the beneficial and adverse effectofiabination of different drugs,
administered at various dosages over a treatment pdbi]]. The beneficial effects of
cancer chemotherapy correspond to treatment objectivetiwhcologists want to achieve
by means of administering anti-cancer drugs. A cancer chiegnapy treatment may be
either curative or palliative. Curative treatments attetogeradicate the tumour; palliative
treatments, on the other hand, are applied only when a tureag&emed to be incurable,
with the objective of maintaining a reasonable quality & for as long as possible.

The adverse effects of cancer chemotherapy stem from thensigsnature of this treat-
ment: drugs are delivered via the bloodstream and therefteet all body tissues. Since
most anti-cancer drugs are highly toxic, they inevitablyseadamage to sensitive tissues
elsewhere in the body. In order to limit this damage, toyiciinstraints need to be placed

on the amount of drug applied at any time interval, on the dative drug dosage over

176

the treatment period, and on the damage caused to variosgigemnssues\\Vhe8g. In

addition to toxicity constraints, the tumour size (i.e. thember of cancerous cells) must
be maintained below a lethal level during the whole treatrpeniod for obvious reasons.
The goal of cancer chemotherapy therefore is to achievedhefizial effects of treatment

objectives without violating any of the above mentionedstoaints.

7.3 Mathematical Problem Formulation

In order to solve the optimization problem of cancer chera@jy, we need to find a set of
treatment schedules, which satisfies toxicity and tumaergdnstraints while also yielding
acceptable values of treatment objectives. This set widhathe oncologist to make a
decision on which treatment schedule to use, given histtede@nces or certain priorities.
In the remainder of this section we will define the decisioctees and the search space for
the cancer chemotherapy optimization problem, specifyctivestraints, and particularize
the optimization objectives.

Anti-cancer drugs are usually delivered according to ardtsddosage program in which
there are s doses given at tinigg,, . . . ts [MT94]. In the case of multi-drug chemotherapy,
each dose is a cocktail ofdrugs characterized by the concentration le@ls € 1,...,s,

j € 1,...,d of anti-cancer drugs in the bloodplasma. Optimization adrobtherapeutic
treatment is achieved by modification of these variablesr&fore, the solution space

of the chemotherapy optimization problem is the set of @dnvectorsc = (Cj;) represent-
ing the drug concentration profiles. However, not all of thpsofiles will be feasible, as
chemotherapy treatment must be constrained in a numbend. Wdthough the constraint
sets of chemotherapeutic treatment vary from drug to drugedsas with cancer types,

they have the following general forms:
1. Maximum instantaneous do€g . for each drug acting as a single agent:

01(c) = {Cmaxj—Cij>0:Viel...sVjel...d} (7.2)

2. Maximum cumulativeC,,,, dose for drug acting as a single agent:

92(C) = {Caumj— »_Cij 2 0:Vjel...d} (7.2)

i=1

3. Maximum permissible size of the tumour:
03(C) = {Nmax— Nt >0 :Viel...s (7.3)

177

4. Restriction on the toxic side-effects of multi-drug cletherapy:

d
94(€) = {Cserk—) miCij20:Viel. svkel...m) (7.4)
=1

The factors; in the last constraint represent the risk of damagingkthergan or
tissue (such as heart, bone marrow, lung etc.) by admiiigténe j™ drug. Estimates of
these factors for the drugs most commonly used in treatnfdmeast cancer, as well as the
values of maximum instantaneous and cumulative doses,ecéoubd in DJR9S.

Regarding the objectives of cancer chemotherapy, we foaustady on the primary
objective of cancer treatment - tumour eradication. We dediradication to mean a re-
duction of the tumour from an initial size of around®Xlls (minimum detectable tumour
size) to below 1®cells. In order to simulate the response of a tumour to chieenapy, a
number of mathematical models can be uddd94]. The most popular is the Gompertz

growth model with a linear cell-loss effediMhe8§:

d s
T~ NO - Ln(s) - DK CHE-D-HE- 1] @9
whereN(t) represents the number of tumour cells at titn@ ,® are the parameters of
tumour growth,H(t) is the Heaviside step functiok; are the quantities representing the
efficacy of anti-cancer drugs, ai@} denote the concentration levels of these drugs. One
advantage of the Gompertz model from the computationatopation point of view is that
the equation (5) yields an analytical solution after thessittion u(t) = In(%) [MT94].
Sinceu(t) increases whem(t) decreases, the primary optimization objective of tumour

eradication can be formulated as folloviFef99:

F(c) = Z N(t;) (7.6)

subject to the Equation.5and Constraint3.1-7.4.

7.4 Solving using LEM Hybrid Algorithms

After having formatted the problem, we present the methadsl uo solve this problem.
The methods used are evolutionary and hybrid search digusit For the evolutionary
search methods, we use the standard genetic algorithmitoippthe treatment plans. For

the hybrid algorithms, we apply tHeEM hybrid algorithms developed in this thesis. This

178

problem has also been solved iR§M0€, and we include that work witliEDA variant

algorithm in this thesis as a comparison.

7.4.1 Problem Representation and Evaluation

After the mathematical formulation of the problem, we nesdefine the problem’s rep-
resentation space, before any evolutionary search bastttbdsecan be applied to solve
this problem. Originally, the cancer chemotherapy optatian problem was solved using
the binary representation of solutions. However, for tHeWang two reasons, we apply
integer representation for this problem in this thesisstFit has been reported that integer
encoding of GA solutions can improve the algorithm’s perfance PBMO05 by the orig-
inal authors. Second, in order to make a fair comparison thighLEM hybrid algorithms,
which are all developed for solving real parameters opttndn problems.

For the convenience of illustration, we still begin by irtuzing the binary string repre-
sentation of the problem. The multi-drug chemotherapy deles problem is represented
by decision vectors = (Cj;),i € 1,...s, j € 1,...d, which are encoded as binary strings
known aschromosomesThe representation spatéa discretized version @2) can then

be expressed as a Cartesian product:

_ Al A2 dy Al w A2 d 1., A2 d
= AT XATX. XA XA XA X XA XX A X AG XL XA

of allele sets\l. Each allele set uses a 4-bit representation scheme:

Aij = {X1XoX3Xs : X € {0, 1}Vk e 1,...4}

so that each concentration lev&| takes an integer value in the range of 0 to 15 con-
centration unitsPMO01]. In general, withs treatment intervals and up t® 2oncentration
levels ford drugs, there are up to®? individual elements. Henceforth we assume that
s = 10 and that the number of available drugs is restricted t¢Ret99. These drugs are
delivered sequentially - one after another - to form a naitig dose, which is administered
periodically over the treatment period that consists ofaupdycles. The values= 10 and
d = 10 result in the individual (search) space of poWee 2*% individuals, referred to as

chromosomes.

X = {X1XoX3...Xasd : X € {0,1}Vk e 1,...4sd}

179

and the mapping functiom : | — C between the individudl and the decision vectd

spaces can be defined as:

4
Cij = ACJ' Z 24_kX4d(i_1)+4(j_1)+k, Yiel...sjel...d (7.7)

k=1
whereAC; represents the concentration unit for drugrhis function symbolizes the de-

coding algorithm to derive a decision vector from a chronmos®. Applying the evaluation

functionF to cyields the value of the fitness function for both algorithms.

n d

FO=> Dk

p Cijellirte) i Psds (7.8)
p=1 j=1 =1 s=1
whered; are the distance measures specifying how seriously Camistiral - 7.4 are vi-
olated, andPs are the corresponding penalty coefficients. If all consteaare satisfied
(i.e. a treatment regime is feasible), then the second terBguation7.8 will be zero,

significantly increasing the value of the fithess function.

7.4.2 Problem Solving and Results

We have given the definition of the representation space,asathe fithess evaluation
function. As we have seen, the representation space ofithiidgm can be transformed to
real variable space, and there are constraints conditionikie real space. Therefore, the
solutions are divided into two sets, one is the feasibletgwla and the other is the infeasible
solutions. When our evolutionary and hybrid optimizatidgoaithms are applid for this
constraint satisfaction problem, we have to consider arad wéh the newly-generated
solutions carefully, because these solutions could beimwtthio differenct sets, feasible
and infeasible. Our consideration is based on two ideasfirte the feasible solutions
are always prefered to the infeasible ones according torbi@em task requirement; the
second, the infeasible solutions can also contain good t@hbns of genes which can
result in feasible solutions immediately in a few followiggnerations, therefore they need
to be explored as well. Based on these two ideas, our evolryaand hybrid optimization

algorithms have all been modified on the survival selectjogrations as follows:

e The evolution mode operate on the whole search space rdtherig limited into
the feasible regions only. When a new solution is generdttéslthen tested by the

Constraints.1- 7.4for its feasibility.

180

¢ During the learning mode (the instantiation operator)yamfeasible solutions can
be replaced (by either feasible solutions or infeasibletsmis), feasible solutions
are never replaced by any solutions. During the evolutiodensurvival selection is

still based on fitness.

The C++ implementation codes for the evaluation functianttiss cancer chemother-
apy optimization problem is given in Append& based on the above descriptions and
formulae. Now, we can apply the LEM hybrid algorithms to sotkiis problem and make
a comparison of the performance for this problem with othgorthms which have been
applied to solve this problem. The algorithms involved astaendard genetic algorithm, a
variantEDA algorithm calledPBIL, the LEM(dwKNN) algorithm and the.EM(ID3) al-
gorithm developed in Chaptedsand6, and also th&€ MAES algorithm. First, we give the
complete description of the PBIL algorithm for the sake ahpteteness.

Population Based Incremental Learning

PBIL [Bal94, BD97] is a simpleEDA variant algorithm, it is a non-dependence EDA, that
is PBIL does not consider or model the dependence relationshiebatthe variables. For
the EDA algorithms and its classification, we refer to Chafte

PBIL starts by initializing a probability vectqy = {ps, p>, . . ., pn} Where eactp; = 0.5.
Eachp; represents the probability of 1 being presenteif'iposition of a chromosomep
is then sampledV times to create a populatidd of chromosomesN chromosomes are
then selected fror® according to the quality or fithess value of that chromosofsewith
GA, a number of selection mechanisms can be applied for thigoger In the original
investigation ofPBIL for the cancer chemotherapy problem, the authors use tioncse-
lection [LLO2] which is to select the be$t solutions fromP. After selection, the marginal
probabilityp; for eachi™" allele position is calculated from the selectédolutions. p; can
be simply calculated by dividing the frequency of lithposition of allele in selected set
by N). p;i is then used to update the probability vecporThis updated probability vector
replaces the initial probability vector. This process amms until termination criteria are

satisfied.

Parameters Settings for All Algorithms

The parameters settings for all the algorithms on the chieenapy problem are listed here.

All of the parameters are following the normal settings useour previous chapters with-

181

Algorithm 15 pseudo code for PBIL
1: Initialize a probability vectop = {ps, p2, . . ., P}, Where eaclp, = 0.5

2: Samplep to generate an initial populatiddof size M;

3: Select theN fittest solutions fronP whereN < M;

4: For each alleleg, calculate the marginal probabilipy from selectedN solutions;
5. Updatep using following updating rule:

6: fori=1ton do

7o p=px(-)+pixa

8: end for

9: where, 0< 2 < 1. A is known adearning rate parametechosen by the user.

10: Go to Step 2 until the termination criterion is satisfied.

out any particular tunings for this problem and previousstuhherefore, we will not give
all the details about the parameters and only give some gkesettings here. We refer
to the corresponding chapters for complete details of tharpaters, which are used here

consistently.

e GAs population size 100, crossover probability 0.6, mutatwobability 1.0 for
GA1 and 1length of chromosonier GA2.

e PBIL: population size 100, selection size 20, learning rate0.3

e LEM(dwKNN): population size 100, learning threshold 0.3, initial d&dization in-

terval 3, multiplication factor is 2.

e LEM(ID3): population size 100, learning threshold 0.3, initial detization interval

3, multiplication factor is 2.

e CMAES: (u, 1) is set as (50,100) respectively, the initial mutation szgo is set

as one quarter of the whole search range.

Summary of Results

The performance of these algorithms is measured accordibga main standards. The
first standard is efficiency, which means the number of thedgrevaluations taken by the
algorithms to find the first feasible solution. Accordingheststandard, Tablé.1shows the
mean evaluation numbers expended by all these algorithfimgitthe first feasible solution,

respectively. The second standard is the quality of thedaaiutions, which is quantified

182

by the best fitness values obtained by the algorithms. Aaegitd this standard, Tablé2

gives the best fitness values of the found feasible solufianall these algorithms at the

maximum allowed evaluation number 200,000 after 1000 runs.

Table 7.1: Evaluation numbers for the first feasible solutimean(sd)

Problems

GAl

GA2

PBIL

LEM(dwKNN)

LEM(ID3)

CMAES

Chemotherapy

12794(406.697

5821(39.3107

4871(620)

2930.4(52.3069

3789(8.96655

3815(11.5007

Table 7.2: Best fitness values after 200k evaluation: mean(s

Problems

GAl

GA2

PBIL

LEM(dwKNN)

LEM(ID3)

CMAES ‘

Chemotherapy

0.5605(0.0029

0.572769(0.00270306

)0.428(0.112)

0.602562(0.00200748)0.6055(0.0020

0.6060(0.0020i

We can see from the results thaEM(dwKNN) andLEM(ID3) have very good perfor-

mance both in the evaluation numbers and the quality of theiso found, compared with

the standard well-tuned genetic algorithm GABIL and CMAES. It is interesting that
the best algorithm with regard to the two standards for thiblem is theLEM(dwKNN)

algorithm, where only half of the evaluation number is nekttefind the first feasible

solution compared with the GA2 algorithm. Also, the speedapved byLEM(ID3) al-

gorithm over GA2 is also clear and significant. Finally, boftour LEM instance hybrid

algorithmsLEM(dwKNN) and LEM(ID3) algorithms are competitive to the hybrid opti-

mization algorithmsPBIL and CMAES. Such speedup derived by our LEM algorithms

in optimization performance or savings of evaluations againly plausible for solving

evaluation-expensive practical problems.

7.5 Concluding Discussion

We have investigated the application of dltEM instance algorithms to solve a practical

complex optimization problem, the cancer chemothera@trinents optimization problem.

The main features of this problem are that it is complex ows - when represented in

integer encoding, its chromosome length is 100 with eacle galue range from (Q. 16).

This problem contains constraint satisfactions cond#jamhich put more limitations on

183

the search space. More importantly, this is an evaluatqessive problem, due to the
practical aspects of the problem.

Two advanced.EM hybrid algorithms developed in this thesis are applied dviisg
this cancer chemotherapy, and very good performances axede First, our LEM hy-
brid algorithms, based odkNN and ID3 decision tree learning, are able to solve practical
complex optimization problems, this shows they are genamiblem solvers. The per-
formances have beaten the correspondifgsignificantly and are competitive with other
advanced hybrid optimization algorithnmBBIL andCMAES, both in the evaluation num-
ber and quality of solutions. Based on these excellent padaces of our LEM instance
algorithms, we reclaim the fact that the original LEM authbiad claimed before, that
is, LEM based instance algorithms have significant advastaxyer the traditional evo-
lutionary search algorithms, and this advantage can beepgrawt only on well-defined
real-parameters function optimization problems but adsoains for practical optimization

problems with expensive evaluations and complex probleufes.

184

Chapter 8

Conclusion

8.1 Summary

In this thesis, we have finished a series of important piete®ik on designing new hybrid
algorithms and testing their performances. We summarigentbrk in this chapter.

Our first choice for a learning algorithm to be applied in teM framework is the
k-nearest-neighbors learning. The reasons for this arefitsif KNN is a relatively simple
algorithm to implement compared with the bulk of other l@éagrparadigms in the machine
learning community. Second, despite being simple, KNN isxaellent learning algorithm
both in theoretical study and practical applications, ipalarly, it has a global view on
the problem solutions space, this capacity is not univémsainany other more complex
learning algorithms. Simple does not mean incapable. Kirzdsed on these two reasons,
KNN is our best choice to investigate LEM based hybrid optettion algorithms, and the
effect of the development can be visible more quickly, du€NiN’s excellency in learning
capacity and efficiency in implementation.

LEM(KNN) and its variant algorithms, as the immediate results of ldgveent, signif-
icantly outperform the correspondi@@As in both speed and solution quality on a number
of testing problems presented in this thesis, with the sek@ntage being particularly
impressive in general. Apart from the improved performanees indicated two important
aspects about the LEM framework, first, this framework isifikx any PAC-learning algo-
rithms can be applied in this framework to incorporate whth $tandard evolutionary search
for solving optimization problems. This flexibility has beeroved by the LEM(KNN)
algorithms, wher&KNN replaces the AQ learning algorithm in the origin&M(AQ) al-
gorithm. Furthermore, this flexibility is not limited by rigyging one learning algorithm

with another, it can also be reflected in the way by which leayand evolution interact.

185

LEM(KNN) once again shows this feature, the new individuals geretigtevolution can
only enter the population if the KNN learning judges themgasod’ individuals, otherwise
they will be discarded.

These two contributions, in particular the latter, haverguethe door for more possibil-
ities of how the LEM based hybrid algorithms and even thenlieay and evolution hybrid
algorithms should be developed. Learning can be used maiblflé¢o incorporate with
evolution in more ways to achieve more varied performances.

The advantage dfEM(KNN) is that it can speed up the optimization procedure and
save evaluations by using KNN learning method as the surs@laction method to predict
the ‘good’ or ‘bad’ for the new generated individuals rattigan exactly evaluating them.
However, the disadvantage bEM(KNN) is that the prediction based on neighbors could
make mistakes and therefore bring unfit individuals intorteet generations. To overcome
these drawbacks, we have tried two methods. One is the gewelat of a ‘verification’
version of LEM(KNN), which results in th&KNNGA(V) algorithm, and the other is the
application of a distance-weight KNN algorithm, which rigsin theLEM(dwKNN) algo-
rithm. TheKNNGA(V) algorithm is not very successful in overcoming the disatxge of
LEM(KNN), because it uses more actual evaluations to verify the neergeed individ-
uals in order to exclude the unfit individuals, which inelltaviolates the advantage and
main goal of developing EM(KNN) based methods. On the contrary, tHeM(dwKNN)
algorithm seems very suitable to overcoming the drawbatkEM(KNN) and is therefore
able to perform better than th&aM(KNN) algorithm. It judges the quality of the newly
generated individuals through calculating an estimate@g$s according to thie nearest
neighbors, and verifies this individual using this estirddimess against a predefined sur-
vival fitness. In this wayl.EM(dwKNN) maintains the prediction capacity bEM(KNN)
while excluding the unfit individuals without any extra avations.

After the development diEM(KNN) and its variant algorithms, we move our research
focus to the concrettkEM(AQ) algorithm rather than the LEM framework. This change
of the research focus is due, firstly to wanting to developraplex and rule-based learn-
ing and evolution hybrid algorithm, which is equal to thEM(AQ) algorithm both in
the optimization performance and the functionalities @& #hgorithm. LEM(AQ), as the
main instance algorithm of the LEM framework, has shown athges in the optimization
performance for a number of complex problems and also egglarany advanced tech-
nigues into its algorithm design. To further evaluate tHd\L_algorithm and also compare

it with our LEM(KNN) algorithm has become an urgent question to answer and igof th

186

utmost interest to us. Second, in the LEM framework, the com@ponent which is be-
lieved to be the driving force of the promising performantéhe LEM(AQ) algorithm, is
the Learning-and-Instantiating method which was not \esdifoy our development of the
LEM(KNN) algorithms. This rule-based method remains interestingtand merits more
research efforts. Finally, through the development of owr’ LEM(AQ) algorithm, the
problems we want to solve at hand can be attempted, espestatie practical problems
with both complex problem features and expensive-evalnattosts.

However, the development procedure is not simple, the tiegt towards these goals is
theLEM(ED) algorithm, which incorporates a simple Entropy-Based 2ization method
as the learning component with a normal evolutionary pracedT he learning method ED
applied here irLEM(ED) is a very simple mechanism compared with other well-known
learning algorithms. ED simply takes the training data @siirand use entropy measure-
ment to find the best cut-points and therefore to identifyltést interval to guide the gen-
eration of new individuals. Despite being able to outperféine standard GA algorithm in
general, however, this advantage is limited and fades ifatle stages of optimizations.

Although not very promising in the performance IEM(ED), it is still a good at-
tempt which may result in successful development of our LEM-based algorithm with
excellent performances. The worthwhile experience ddrfvem LEM(ED) is that, first
of all, the learning method applied in LEM should be complarwgh to distinguish the
differences between variables, and therefore is able todirtdhe relationships between
dimensions, which could be very important in the success®foptimization procedure.
Second, the discretization method should fit the complelslpro landscapes in an adaptive
way. ldeal discretization should divide the variable raimje several subranges and change
adaptively according to the optimization procedure. Hynahe expected LEM algorithm
should contain repeated learning and evolution interastioontaining many learning pe-
riods mediating the norm&A to finish the whole optimization procedure.

Based on the experience derived from the developmebhEM(ED) and also on its
development structure, continuing exploration on the LEMrfework has resulted in the
LEM(ID3) algorithm, which combines an evolutionary search with 18 tecision tree
learning. As with theeEM(KNN) algorithms,LEM(ID3) and its variant algorithms have
achieved significant optimization performance on a numbegal-parameters testing prob-
lems, including not only well-defined function problemst biso complex practical prob-
lems, over the standaf@A algorithms, hybrid algorithm&€MAES and variant oEDA al-

gorithms. The successful developmentBM(ID3) verifies the importance of the Learning-

187

and-Instantiating method within thé&eM framework, and also points out that this method
can be efficient in achieving promising performances onlyig applied with many other
techniques, such as the good design of the instantiatiamitidg, forest model, rule selec-
tion method, and discretization methods. Without the goesighs for these techniques,
the successful developmentldEM(ID3) cannot be expected. Finally, th&M(ID3) algo-
rithm should be used as a baseline algorithm that will beh&rrinvestigated and studied,
more importantly, should be applied to solve more challeggiroblems in practice.

The practical application oriented problem we solve withlodM instance algorithms
is the cancer chemotherapy treatments optimization pnebl€he main features of this
problem are that, it is complex in its own, when represemedteger encoding, its chro-
mosome length is 100 with each gene value ranges from {®). This problem contains
constraint satisfactions conditions, which put more latians on the search space. More
important, this is an evaluation-expensive problem, duled@ractical aspects related to the
cancer chemotherapy problem. All of these features can guaéenges for our LEM hy-
brid optimization algorithms, and question them as gergalem solvers. However, with
the successful application of our LEM algorithms on thidgpeo, especially, tweEM hy-
brid algorithms developed in this thesis, very good pertomoe results are derived. These
performances have beaten the correspon@rgsignificantly and are competitive with
other hybrid optimization algorithm#&BIL and CMAES, both in the evaluation number
and quality of solutions.

Based on these excellent performances of ld&M instance algorithms, we reclaim
what the original LEM authors had claimed before, that id tt8M based hybrid op-
timization algorithms developed in this thesis have sigaiit advantages over the tradi-
tional evolutionary search algorithms, and these advastagmain to variants @MAES
andEDA algorithms on both well-defined real-parameters functemms practical complex

optimization problems with expensive evaluations feature

8.2 Contributions

As stated in Chaptel Sectionl.1.5 the contributions of this thesis are restated as follows:

Contribution 1 A simple genetic algorithm combined wikhnearest-neighbor learning al-
gorithm, calledLEM(KNN), is developedKNN in this LEM instance algorithm is
used as a ‘filter’ deciding the survival of the newly genedatelividuals. Also, a vari-

ation of theLEM(KNN) algorithm, called.EM(dwKNN), is developedLEM(dwKNN)

188

extendsLEM(KNN) with the consideration of distance contributions. The qerf
mances of these algorithms are compared with the standaedigalgorithms, show-
ing that significant improvements can be achieved by hyhndi even these very

simple learning algorithms with the normal evolution aigons.

Contribution 2 Simple genetic algorithm combined with Entropy-Based B8zation
(ED), ID3 decision tree learning algorithm, and their varialgjoaithm are devel-
oped, respectively. These algorithms are all designedriuhdegeneral LEM frame-
work and are based on the Learning-and-Generating Hypsghegthod, showing
the flexibility of this framework. With the development ofetse LEM instance algo-
rithms, we have also investigated different techniquesmaeathods which are impor-

tant components of the hybrid algorithms and affect thetions and performances
of the hybrid algorithms.

Contribution 3 The resulting algorithm&EM(KNN), LEM(ID3) and their variant algo-
rithms are compared with other hybrid algorithms, suclCMAES and EDA, on
a number of test problems, including the CEC 2005 real-patanfunctions opti-
mization and the cancer chemotherapy optimization probRenrformance on these
problems have shown that these LEM instance algorithmsrareiping and compete

well against state of the art hybrid algorithms.

Contribution 1 was explored in Chaptet, where LEM(KNN) and LEM(dwKNN)
were described on pag85 and101, and the experiments were carried out that compared
them with the standard genetic algorithm and @dAES algorithm. These experiments
show that_.EM(KNN) andLEM(dwKNN) have significant advantages over the traditional
evolutionary procedures and are competitive with the adaptutation step sizes strategy
CMAES.

Contribution 2 was explored in Chapté&and Chapte6, whereLEM(ED) andLEM(ID3)
were described on pag&27and145 and the experiments were done that compared them
with GA, LEM(KNN), LEM(dwKNN) and CMAES. These experiments show that both
LEM(ED) andLEM(ID3) can beat standai@dAs in the earlier stages of optimization, and
LEM(ID3) is superior to all the other algorithms on real-parametanstion test set ‘Test
Suite 2'.

Contribution 3 was explored in Chaptet, Chapter6, and Chaptef7, respectively.
Where the experiments were described on pdd&s178 and the experiments were car-

ried out that comparedEM(ID3)IER with other advanceA and CMAES variant al-

189

gorithms. These experiments show th&M(ID3)IER is competitive to these variant al-
gorithms on real-parameters optimization functions in CHID5 competition, and also
shows that. EM(dwKNN) andLEM(ID3) can solve the cancer chemotherapy treatments
optimization problem with promising performances oveditianal GA, CMAES andPBIL

algorithms both in speed and quality of the solutions dekive

8.3 Future Work

Based on what we have investigated in this thesis, we wilehte following work on
which to carry out more research on the development of LEM:tdxybrid optimization

algorithms.

1. More investigations of different learning algorithmsheLEM framework are needed.
This will provide us with more data and experience that welhto guide a general
theory on how best to constructL&M instantiation for a given problem. We have
applied several learning methods in our LEM instance allgors, however, they are
neither sufficiently representative nor advanced in thehim&clearning community.

We need to explore more learning techniques in our futureare$.

2. More experiments and explorations on the interactiowéen learning and evolu-
tion phases need to be investigated. These interactiociples are central to the
development of any hybrid optimization algorithms. Howetee inspiration cannot
be immediate and needs long-term research into both thamegaind evolution sides

with their own novel features in order to be understood ineraepth.

3. More attempts on adaptive and multi-learner versionddfl, where different learn-
ing phases may have different learning algorithms, shoaliaestigated. For exam-
ple, in the early and later stages of evolutionary sear@lgérning algorithms could
change or switch from one to another according to the natudleldficulties of the

optimization task at the various stages.

190

Appendix A

Brief Introduction on Probability

To represent and reason with uncertain knowledge, a foangliage needs to be developed
to deal with two issues: the degree of belief for assertioa pfobability and dependence
of the degree of belief which includes evidence and expeéerProbability theory typi-
cally uses a language that is slightly more expressive tharptoposition logic, and less
expressive than first order logic. The basic element of #mgliage is called eandom
variable, which is a map from an event in the real world to a value. Eaddom variable
has a domain of values that it can take on, the value can bewy tgpes, such as binary,
discrete, and continuous. Once a value of the domain israsitp the random variable,
it means one event or some events have happened. For exatepléachdas a random
variable, its meaning is that someone has a headache, wea&ssign it two binary values
(true, false, (Headache = true) means a headache happens to that perstwee versa.
Weatheris another random variable with the dom&sunnyrainy, cloudy andsnowyand
Lengthis a random variable with real number domé&dD, ..., 1.0). An event is exact as-
signment of the random variable, for example, (Headachee),t(weather = cloudy) are
all events.

Prior or unconditional probabilityof an event is the frequency of the event which hap-
pened in a number of experiments. For example, for a yeassr@htion, the probability
of raining in a district can be represented as simply P(Weathraining) = 0.3. Probability
cannot be negative, and for all domains the sum of the prébebifor each value is 1.0.
That is, P(Weather = sunny) = 0.5, P(Weather = raining) =R(8/eather = cloudy) = 0.05,
and P(Weather = snow) = 0.15. AlsB(WeatheJ = {0.5,0.3,0.05,0.15} defines a prob-
ability distribution for the random variabM/eather Meanwhile, P(Weather, Headache)
denotes the probabilities of all combinations of the valoethe set of random variables,

Weather and Headache, which is & 2 table of probabilities. This is called tha&nt prob-

191

ability distribution of Weather and headache. Generally, the joint probabilggribution
of some random variable§;, X,, ..., X, are indicated af(Xy, Xo, . .., Xp).

For continuous random variables, itis not possible to vanitethe entire distribution as a
table, because there are infinitely many values. Also, fammdicuous random variable, the
probability for one value happens to be a particular vauis always 0.0. For continuous
random variables, we are always concerned that the pratydi®k in a certain interval,

although this interval can be very small. So, we have:

Pl@a<X<bh)= fb f(x)dx (A1)

whereX is the continuous random variabl&(x) is called theprobability density function
for X.

If we want to talk about the probability given some evidenbat is, the probability
when some evidence or events have happened, then the utaoaldprobability is not

applicable anymore. We use tbenditional probabilityindicated as:

P(aAb)
P(a)
whereP(alb) means the probability &, given that evidenclk. For exampleP(Headache=

P(alb) = (A.2)

trugWeather= raining) indicates the probability of a person having a headachenwihe
weather is rainy. Conditional probability is defined by undional probabilities, and can

also be written as:

P(a A b) = P(bla)P(a) (A.3)

or

P(a A b) = P(alb)P(b) (A.4)

These two formulas are also callede product The more general joint probability

distribution form for this rule product now becomes:

P(X,Y) = P(X|Y)P(Y) (A.5)

What will happen when one random variat{edoes not influence the other random
variableY? That is the two random variables are independent to eaeln, obien we have

random variablesndependence property

192

P(XIY) = P(X) (A.6)

P(Y|X) = P(Y) (A.7)

P(X,Y) = P(X)P(Y) (A.8)

So far, the syntax of probability propositions for the praord conditional probability
statements are defined. However, the semantics for pratyabiflerence statements re-
mains. We begin with the basic axioms that serve to define tbleapility scale and its

endpoints:
1. All probabilities are between 0.0 and 1.0, for any proposia,

0.0< P(a) < 1.0 (A.9)

2. Necessarily true propositions have probability 1.0, m&ckssarily false propositions

have probability 0.0.
P(true) = 1.0 (A.10)

P(false = 0.0 (A.112)
3. The probability of a disjunction is given by

P(aV b) = P(a) + P(b) - P(a A b) (A.12)

This rule states that the cases whaiteolds, together with the cases whérbolds,
certainly cover all the cases whese/ b holds; but summing the two sets of cases

counts their intersection twice, so we need to subtPéatr b).

These three axioms are often calkkolmogorov’s axiomswhich showed how to build
up the rest of probability theory from this simple foundatio

Before we reach the Bayesian Network inference, we firsbéhice a probabilistic in-
ference method based on the full joint distribution. Assumeehave the full joint distribu-
tion of a number of random variablég X, ... X,. Then, we can calculate any proposition

from this variables set by adding any atomic events in whitehgroposition is true, and

193

add up their probabilities. There are two very useful rulgted themarginalizationrule

and theconditioningrule:

P(X) = Z P(X,y) (marginal probability) (A.13)
y

P(X) = Z P(X]y)P(y) (conditioning probability) (A.14)
y
The marginal probability of random variab¥eis the procedure of summing out all the

other variables from any joint distribution containig The conditioning rule can be seen
as a variant of the marginalization rule, and it involvesditianal probabilities instead
of joint probabilities using product rule. In most cases, witt be interested in comput-
ing conditional probabilities of some variables, givenderice about others. Conditional
probabilities can be found by unconditional probabiliaes then evaluating the expression
from the full joint distribution. Then the general inferengrocedure can be formulated as:
Let X be the query variable, |€ be the set of evidence variables, ¢die the observed
values for them, and let be the remaining unobserved variables. The qéKje) can be

evaluated as the queries of probability:

P(X|e) = aP(X,€) = a Z P(X, e Y) (A.15)
y

This formula gives the general form of inference for ansmgprobabilistic queries for
discrete variables, given the full joint distribution. Innxiple, the full joint distribution is
capable of answering any query, however, it is not efficitmta domain described by
boolean variables, it requires an input table of €%2"). In a realistic problem, there might
be hundreds or thousands of random variables to considguidkly becomes completely
impractical to define the vast numbers of probabilities negli For this reason, the full
joint distribution is not a practical tool for building re&sng systems. Instead, it should be
viewed as the theoretical foundation on which more effecipproaches may be built. The

bayesian network is one of such more efficient techniquemference.

194

Appendix B

LEM(ID3)IER Performance on
CEC2005 Test Functions

Table B.1: Error values at FEs = 1e3, 1e4, 1e5 for problemd Q)

FE Prob 1 2 3 4 5 6 7 8 9
15{(Best) 1.76627e+3| 2.39601e+3| 1.38448e+7 3.23016e+3 5.85876e+3 2.2349e+7| 7.20519e+] 2.04625e+1 4.74269e+1|
7t 2.0475e+3 | 4.72171e+3| 3.57553e+7 5.11679e+3 7.8962e+3| 1.5933e+8| 1.60004e+2 2.05996e+1 6.04818e+]|
13%(Median) | 2.43771e+3| 5.81598e+3| 4.56641e+7 7.05193e+3 8.71907e+3 2.49027e+§ 2.24438e+2 2.07639%e+1 6.5823e+1
1le3 19% 3.0907e+3 | 6.62843e+3| 5.39912e+7 8.84371e+3 9.42126e+3 3.24026e+8 2.86345e+2 2.08247e+1 7.34762e+]|
25%(Worst) | 4.16712e+3| 1.0272e+4 | 6.82112e+7 1.20544e+4 1.0052e+4| 5.01842e+8§ 7.28072e+2 2.09604e+1 8.31533e+1]
Mean 2.60096e+3| 5.84884e+3| 4.41267e+7 7.18504e+3 8.52183e+3 2.44197e+8§ 2.44954e+2 2.07373e+1 6.65439e+]|
Std 6.86132e+2| 1.70132e+3| 1.53174e+7 2.5182e+3| 1.11491e+3 1.26305e+8 1.30463e+2 1.34418e-1| 8.70724e+(
15Y(Best) 5.13795e+0| 1.93259e+1| 1.54573e+5 4.07703e+1 5.26389%e+2 7.1199e+3| 4.41663e-1| 2.02456e+1 8.06948e+(
7 1.00512e+1| 5.59889e+1| 4.06354e+5 7.04e+1l | 7.9056e+2| 3.03004e+4 7.43838e-1 2.04018e+1 1.03437e+]|
13%(Median)| 1.25371e+1| 6.62806e+1| 5.95762e+5 8.63e+1 | 9.09958e+2 4.55171e+4 8.05048e-1| 2.05315e+1 1.1874e+1
led 19% 1.4646e+1 | 9.17244e+1| 8.51530e+5 1.09733e+2 9.89365e+2 7.59082e+4 8.8556e-1| 2.05635e+1 1.37784e+]|
25%(Worst) | 4.26447e+1| 1.26841e+2| 1.7486e+6| 1.47519e+2 1.12607e+3 1.51208e+5 1.24752e+0 2.06824e+1 1.69805e+1|
Mean 1.38463e+1| 7.11185e+1| 7.10946e+5 8.81647e+1] 8.85757e+2 5.5315e+4| 7.94232e-1| 2.04899%e+1 1.21247e+1|
Std 7.3711e+0 | 2.59667e+1| 4.15420e+5 2.99544e+1 1.58884e+2 3.61606e+4 1.71467e-1| 1.08675e-1| 2.44804e+(
15{(Best) | 5.68434e-14 5.68434e-14 1.34808e+4 2.28096e-9| 3.45007e+(8.17715e-3| 1.969e-6 | 2.00251e+1 1.03587e-7,
7t 5.68434e-14 5.68434e-14 2.77637e+4 8.3237e-9 | 2.73404e+1 1.37221e-2| 4.68252e-2| 2.00542e+1 1.79642e-7
13%(Median) | 1.13687e-13 1.13687e-13 3.68286e+4 1.3652e-8 | 1.11132e+2 7.15347e-1| 7.87038e-2| 2.01197e+1 3.01609e-7|
1le5 19% 1.13687e-13 1.7053e-13| 6.96483e+4 1.88572e-8| 1.55475e+2 8.48882e+1 1.08172e-1| 2.02052e+1 3.95465e-7
25%(Worst) | 1.7053e-13| 2.27374e-13 1.11079e+5 4.08672e-8| 2.61796e+2 2.44872e+2 1.74597e-1| 2.0408e+1| 1.20204e-6|
Mean 9.5497e-14| 1.18234e-13 4.75951e+4 1.53131e-8| 1.08404e+2 5.32101e+1 7.82496e-2| 2.015e+1 | 3.52629e-7
Std 3.84524e-14 5.31296e-14 2.76208e+4 9.87347e-9| 7.58561e+1l 7.6474e+1| 4.00416e-2| 1.13729e-1| 2.69572e-7

195

Table B.2: Error values at FEs = 1e3, 1e4, 1e5 for problemk7(00D)

FE Prob 10 11 12 13 14 15 16 17
15(Best) | 6.03503e+1| 9.24089e+0 1.73259e+4 6.72208e+0 3.9688e+0| 6.00501e+2 2.24909e+2 2.90355e+2
7 7.93597e+1 1.04947e+1 2.85826e+4 8.73893e+(4.21752e+(6.71116e+2 2.87828e+2 3.47873e+2
13%(Median) | 8.57247e+1| 1.08896e+1 3.4430e+4| 9.26566e+0 4.29112e+0 6.88087e+2 3.16287e+2 3.7172e+2
le3 19°% 9.0203e+1| 1.11844e+1| 4.16826e+4 1.05651e+1 4.44604e+(6.98248e+2 3.34822e+2 3.81825e+2
25%(Worst) | 1.01031e+2 1.23842e+1 6.47692e+4 1.36315e+1 4.49775e+(0 7.33734e+2 3.65627e+2 4.01018e+2
Mean 8.32572e+1 1.08257e+1 3.59067e+4 9.60275e+(0 4.30392e+(0 6.86153e+2 3.1068e+2| 3.63629e+2
Std 9.59376e+(0 8.22642-1 | 1.18429e+4 1.68765e+(0 1.41298e-1| 2.78322e+1| 3.17017e+1 2.79814e+1|
15(Best) | 1.71368e+1 1.99912e-1| 3.21224e+2 4.38839%e-1| 2.62867e+(0 4.54592e+2 1.30139%e+2 1.47817e+2
7 2.3299e+1| 2.78322e-1| 4.98497e+2 8.45902e-1| 3.11283e+(0 5.18905e+2 1.52923e+2 1.67544e+2
13%(Median) | 3.01671e+1 3.27077e-1| 6.70841e+2 9.2815e-1 | 3.27107e+0 5.28368e+2 1.65368e+2 1.84851e+2
led 19 3.21286e+1| 3.61697e-1| 1.04811e+3 1.2037e+0| 3.49629e+0 5.52708e+2 1.70085e+2 1.97498e+2
25%(Worst) | 3.76535e+1| 4.42254e-1| 1.88115e+3 1.74414e+(3.72812e+0 5.67095e+2 1.80192e+2 2.12473e+2
Mean 2.8402e+1| 3.25925e-1| 8.30122e+2 1.02803e+0 3.26201e+0 5.3038e+2| 1.61226e+2 1.82878e+2
Std 5.54662e+0 6.04629e-2| 4.31466e+2 3.24871e-1| 2.82177e-1| 2.59343e+1 1.28016e+1 1.7353e+1
15(Best) | 1.98992e+(2.18436e-3| 1.43965e-4| 1.66616e-1| 1.50405e+0 3.28553e+2 6.21503e+1 2.06999%e-1
7 2.98488e+(0 2.52192e-3| 2.77244e-4| 2.46125e-1| 2.20657e+(4.0068e+2| 9.72366e+1| 9.83996e+1|
13%(Median)| 4.9748e+0| 2.93663e-3| 9.43502e-2| 2.96311e-1| 2.53041e+(0 4.10353e+2 1.02549e+2 1.04368e+2
1le5 19 5.96975e+(3.32401e-3| 1.00034e+1 3.39652e-1 2.91899e+0 4.17695e+2 1.06642e+2 1.09433e+2
25%(Worst) | 7.95967e+(4.78371e-3| 7.12254e+2 4.91012e-1| 3.49936e+0 4.4737e+2| 1.14427e+2 1.17578e+2
Mean 4.73601e+Q 2.97556e-3| 3.30583e+1 3.00063e-1| 2.52033e+(0 4.10562e+2 9.91853e+1 9.93189%+1
Std 1.71825e+(5.99007e-4| 1.38825e+2 8.12673e-2| 4.68469e-1| 2.03516e+1 1.30559e+1| 2.33564e+1

Table B.3: Error values at FEs = 1e3, 1e4, 1e5 for problema5(80D)

FE Prob 18 19 20 21 22 23 24 25
15(Best) | 1.04381le+3 9.83915e+2 9.65748e+2 1.26662e+3 9.71363e+2 1.03734e+3 8.9836e+2| 1.5985e+3
7 1.0939e+3| 1.09785e+3 1.09047e+3 1.31223e+3 1.02432e+2 1.29795e+3 1.17436e+3 1.66137e+3
13%(Median) | 1.10849e+3 1.11893e+3 1.1134e+3| 1.3191e+3| 1.04612e+2 1.31966e+3 1.20427e+3 1.69936e+3
le3 19 1.13111e+3 1.13196e+3 1.12525e+3 1.33983e+3 1.06773e+2 1.33677e+3 1.25144e+3 1.73652e+3
25%(Worst) | 1.15192e+3 1.16046e+3 1.16109e+3 1.35745e+3 1.12643e+2 1.34714e+3 1.29982e+3 1.81718e+3
Mean 1.10981e+3 1.10992e+3 1.10248e+3 1.319e+3 | 1.04432e+3 1.29423e+3 1.18882e+3 1.70262e+3
Std 2.53905e+1| 3.89784e+1 4.09853e+1 2.41123e+1 3.54599e+1 7.27649e+1| 9.60612e+1 5.51437e+1]|
15(Best) | 4.04967e+2 3.82633e+2 3.99736e+2 3.55975e+2 4.80714e+2 5.59505e+2 2.07512e+2 2.00489e+2
7 4.64447e+2 4.40013e+2 4.7628e+2| 5.26191e+2 7.81811e+2 5.62769e+2 2.29216e+2 4.10639%e+2
13%(Median) | 4.99639e+2 4.76394e+2 8.07968e+2 5.33244e+2 7.87769e+2 7.37565e+2 2.40137e+2 4.11148e+2
led 19 8.0845e+2| 8.07145e+2 8.11529e+2 5.65451e+2 7.90547e+2 7.68824e+2 2.49739%e+2 4.11611e+2
25%(Worst) | 8.15605e+2 8.13793e+2 8.17476e+2 1.06731e+3 8.53264e+2 1.0888e+3| 2.70228e+2 4.1342e+2
Mean 6.24096e+2 6.02761e+2 6.95493e+2 6.00961e+2 7.79636e+2 7.53007e+Z 2.39711e+2 3.94488e+2
Std 1.79093e+2 1.85373e+Z7 1.6831le+2| 1.88466e+2 6.34221e+1 1.76176e+2 1.5304e+1| 5.72005e+1

15(Best) | 3.00244e+2 3.00127e+2 3.0018e+2| 3.0019e+2| 3.00411e+2 5.59468e+2 2.00035e+2 2.00e+2

7 3.00295e+2 3.00283e+2 3.0036e+2| 3.00427e+2 7.52446e+2 5.59469e+2 2.00055e+2 4.07417e+2
13%(Median) | 3.00387e+2 3.00408e+2 8.00185e+2 5.00053e+2 7.5516e+2| 7.21227e+2 2.00067e+2 4.07713e+2
1le5 19°% 8.00211e+2 8.00187e+2 8.0025e+2| 5.00064e+2 7.60027e+2 7.21234e+2 2.00072e+2 4.08418e+2
25%(Worst) | 8.00314e+2 8.00288e+2 8.00346e+2 8.00572e+2 8.14518e+2 1.0888e+3| 2.00084e+2 4.09425e+2
Mean 5.40254e+2 5.20259e+2 6.40241e+2 4.84205e+2 7.43115e+2 7.30581e+Z 2.00064e+2 3.91368e+2
Std 2.4976e+2| 2.48148e+2 2.33218e+2 1.6417e+2| 9.2104e+1| 1.65589e+2 1.28788e-2| 5.6435e+1

196

Table B.4: Error values at FEs = 1e3, 1e4, 1e5, 3e5 for prable®(30D)

FE Prob 1 2 3 4 5 6 7 8 9
15Y(Best) 1.84816e+4| 5.80713e+4| 4.28226e+8 5.0508e+4| 1.82683e+4 2.75641e+9 2.90741e+3 2.10927e+1 2.70007e+2
7 2.25798e+4| 7.29666e+4| 5.86475e+8 9.13281e+4 2.0474e+4| 5.1011e+9| 4.35936e+3 2.11867e+1 2.85565e+2
13%(Median)| 2.64077e+4| 8.42053e+4| 7.15101e+8 1.01778e+5 2.17553e+4 6.044e+9 | 4.86979e+3 2.12448e+1 2.925 e+2
1le3 19°% 2.70371e+4| 9.20998e+4| 7.89873e+8 1.12835e+5 2.25345e+4 6.89223e+9 5.62334e+3 2.12742e+1] 3.00243e+2
258 (Worst) | 3.03603e+4| 1.16946e+5| 9.85705e+8 1.23943e+5 2.50816e+4 9.12403e+9 7.92250e+3 2.13298e+1| 3.13635e+2
Mean 2.52901e+4| 8.36879e+4| 7.03711e+8 1.00589e+5 2.13896e+4 6.05625e+9 5.11976e+3 2.12319e+1| 2.9203e+2
Std 3.16511e+3| 1.40996e+4| 1.49345e+8 1.54325e+4 1.80975e+3 1.46572e+9 1.1333e+3| 6.07645e-2| 1.21531e+]]
15Y(Best) 1.20915e+2| 5.21172e+3| 1.30194e+7 5.83001e+3 4.72914e+3 1.49874e+7 1.86878e+1 2.09447e+1 5.77231e+]|
7 3.16374e+2| 7.21918e+3| 2.69825e+7 1.04962e+4 5.10548e+3 2.55644e+7 3.04849e+1 2.10612e+1] 8.0596e+1
13%(Median)| 4.36052e+2| 8.88937e+3| 3.39962e+7 1.34794e+4 5.43215e+3 3.24627e+7 4.19273e+1 2.10919e+1 8.96532e+1|
led 19 5.08726e+2| 1.00818e+3| 3.80224e+7 1.92009e+4 5.98524e+3 3.9388e+7| 4.96740e+1 2.11286e+1 9.72164e+]
25%(Worst) | 6.55245e+2| 1.78049e+3| 5.22573e+7 2.64618e+4 6.72032e+3 5.16719e+7 7.07495e+1 2.11979e+1 1.56192e+2
Mean 4.08674e+2| 8.90177e+3| 3.32012e+7 1.49361e+4 5.58086e+3 3.20665e+7 4.20861e+1 2.10885e+1 9.20516e+1
Std 1.27406e+2| 2.52734e+3| 9.00112e+6 5.62299e+3 5.56515e+2 9.61939e+6 1.35805e+1 5.68839%e-2| 2.02191e+]|
15(Best) | 2.27374e-13 2.09752e-1Q 1.72283e+5 6.38446e+2 2.32731e+3 1.28609e+1 8.14726e-6| 2.01207e+1 5.35201e-6|
7t 2.82217e-13 3.00207e-9| 4.18630e+5 3.0072e+3| 2.83805e+3 1.74484e+1 9.87778e-3| 2.01977e+1 8.25543e-6
13%(Median)| 3.41061e-13 1.24215e-8| 8.53689e+5 5.06429e+3 2.98984e+3 1.50646e+2 2.45918e-2| 2.02462e+1 1.02973e-5
le5 19% 3.94904e-13 3.78838e-8| 1.10303e+6 7.99879e+3 3.39687e+3 3.11994e+2 3.69159e-2| 2.02938e+1 1.26634e-5]
25%(Worst) | 5.11591e-13 6.53588e-6| 1.86449e+6 1.49205e+4 4.75612e+3 2.3377e+3| 9.77006e-2| 2.03878e+1 1.90699e-5
Mean 3.47882e-13 2.93777e-7| 8.26271e+5 5.8051e+3| 3.13192e+3 2.90743e+2 2.95932e-2| 2.02484e+1 1.10303e-5
Std 8.24836e-14 1.27535e-6| 4.53980e+5 3.7501e+3| 5.2927e+2| 4.89983e+2 2.54645e-2| 6.922e-2 | 3.82911e-6|
15(Best) | 2.27374e-13 1.11982e-1Q 4.55579e+4 4.67497e+2 2.32729e+3 9.0764e-3 | 6.36728e-7| 2.00574e+1 2.21295e-7|
7t 2.82217e-13 1.44553e-1Q 1.56862e+5 1.89276e+3 2.83794e+3 8.20841e-2| 9.85899e-3| 2.01232e+1 6.09847e-7,
13%(Median) | 3.41061e-13 1.65699e-1(0 2.55728e+5 2.77784e+3 2.98982e+3 4.28868e+0 2.45743e-2| 2.01563e+1 8.0644e-7
3e5 19% 3.94904e-13 1.82808e-10 3.72265e+5 5.28579e+3 3.39684e+3 1.73462e+2 3.69067e-2| 2.01797e+1 9.5403e-7
25%(Worst) | 5.11591e-13 2.58524e-1Q 5.81497e+5 1.1503e+4 | 4.75597e+3 9.07077e+2 9.76969e-2| 2.02474e+1 1.32837e-6)
Mean 3.47882e-13 1.65321e-1Q 2.72353e+5 3.85297e+3 3.13183e+3 1.50812e+2 2.95802e-2| 2.01516e+1 7.8419e-7
Std 8.24836e-14 3.07934e-11 1.49584e+5 2.72695e+3 5.29252e+2 2.27077e+2 2.54659e-2| 5.29173e-2| 2.65556e-7|

197

Table B.5: Error values at FEs = 1e3, 1e4,

1e5, 3eb5 for prabldvl 7(30D)

FE Prob 10 11 12 13 14 15 16 17
15(Best) | 3.41255e+2 3.82201e+1 9.96896e+5 6.95205e+1 1.36733e+1 9.40723e+2 5.71773e+2 5.96475e+2
7 3.90662e+2 4.20253e+1| 1.20119e+6§ 1.18234e+2 1.39339e+1 9.75799%e+2 7.539e+2 | 7.3549e+2
13*(Median) | 3.99057e+2 4.34894e+1 1.33726e+6 1.52431e+2 1.41018e+1 9.99283e+2 7.61828e+2 7.80179e+2
le3 19°% 4.13888e+2 4.43235e+1| 1.39075e+6 1.83935e+2 1.41912e+1 1.0145e+3| 7.85456e+2 8.61838e+2
25%(Worst) | 4.4102e+2| 4.63654e+1 1.57195e+§ 2.51668e+2 1.43086e+1 1.06072e+3 8.45321e+2 9.67846e+2
Mean 3.98611e+2 4.31598e+1| 1.29445e+6 1.52042e+2 1.40726e+1 9.99565e+2 7.5464e+2| 7.83124e+2
Std 2.40552e+1| 1.78288e+(1.50328e+5 4.58589e+1 1.59441e-1] 2.80225e+| 5.40453e+1 1.00916e+2
15(Best) | 1.88981e+2 1.7328e+0| 7.41974e+4 5.88643e+(Q 1.2691e+1| 4.88315e+2 2.11566e+2 2.65653e+2
7 2.06258e+2 1.99844e+(1.03273e+5 1.05982e+1 1.30513e+1 5.22805e+2 3.25737e+2 3.36452e+2
13%(Median)| 2.1438e+2| 2.18223e+(1.24851e+5 1.64844e+1 1.31767e+1 5.48447e+2 5.53186e+2 4.68171e+2
led 19°% 2.21266e+2 2.56902e+Q 1.34856e+5 1.90537e+1 1.33215e+1 5.55105e+2 5.58166e+2 4.76113e+2
25%(Worst) | 2.35254e+2 4.0414e+0| 1.61766e+5 2.19337e+1 1.35207e+1 5.97066e+2 5.64091e+2 6.0056e+2
Mean 2.12129e+2 2.44088e+(Q 1.19431e+5 1.51152e+1 1.31806e+1 5.40233e+2 4.44799%e+2 4.25361e+2
Std 1.1162e+1| 6.63626e-1| 2.4534e+4| 4.81024e+0 1.83088e-1| 2.86614e+1 1.30854e+2 1.04967e+2
15(Best) | 1.39294e+1 1.41317e-2| 1.14927e+1 7.92733e-1| 1.11401e+1 3.2788e+2| 5.4761le+1| 6.38138e+1
7t 3.28336e+1 1.71758e-2| 1.39058e+3 9.39681e-1| 1.18155e+1 3.43616e+2 1.40888e+2 1.58613e+2
13%(Median) | 3.71272e+1] 1.82181e-2| 2.87416e+3 1.16307e+0 1.22074e+1 3.51428e+2 5.01258e+2 4.34726e+2
le5 19% 4.37781le+1 2.01791e-2| 6.89031e+3 1.34709e+0 1.23845e+1 3.68657e+2 5.01848e+2 4.43602e+2
25%(Worst) | 5.57176e+1| 2.16151e-2| 2.30486e+4 1.61207e+0 1.2699e+1| 5.04367e+2 5.0349e+2| 5.51299e+2
Mean 3.69056e+1| 1.84897e-2| 5.093e+3 | 1.16044e+(1.2063e+1| 3.65085e+2 3.3684e+2| 3.1954e+2
Std 1.05106e+1| 2.04441e-3| 5.84165e+3 2.27263e-1| 4.33187e-1| 3.63679e+1 1.87927e+2 1.76305e+2
15(Best) | 1.39294e+1 6.86314e-3| 1.41528e-1| 6.42879%¢-1| 1.11378e+1 3.27641e+2 5.46082e+1| 6.30197e+1
7 3.28336e+1 7.77225e-3| 1.37885e+3 8.83175e-1| 1.18153e+1 3.39228e+2 1.40675e+2 1.57352e+2
13%(Median) | 3.71271e+1| 8.51561e-3| 2.3158e+3| 9.4174e-1| 1.22042e+1 3.47151e+2 5.00979e+2 4.08135e+2
3e5 19°% 4.37781e+1 8.85325e-3| 6.36668e+3 1.17963e+0 1.23828e+1 3.6498e+2| 5.01265e+2 4.31788e+2
25%(Worst) | 5.57176e+1 9.96577e-3| 2.30486e+4 1.48736e+0 1.26974e+1 5.03997e+2 5.02861e+2 5.39386e+2
Mean 3.69056e+1 8.40942e-3| 4.91148e+3 1.0437e+0| 1.20617e+1 3.6229e+2| 3.36537e+2 3.10781le+2
Std 1.05106e+1| 8.35477e-4| 5.80581e+3 2.13731e-0| 4.33793e-1| 3.76284e+1| 1.87872e+2 1.70242e+2

198

Table B.6: Error values at FEs = 1e3, 1e4, 1e5, 3e5 for prabliE8r25(30D)

FE Prob 18 19 20 21 22 23 24 25
15(Best) | 1.09079e+3 1.07891e+3 1.08112e+3 1.18057e+3 1.1585e+3| 1.21983e+3 1.29292e+3 1.2962e+3
7t 1.1147e+3| 1.11035e+3 1.11859e+3 1.27844e+3 1.32045e+3 1.27208e+3 1.31483e+3 1.32914e+3
13*(Median) | 1.13889e+3 1.12744e+3 1.13398e+3 1.28565e+3 1.3812e+3| 1.28845e+3 1.33795e+3 1.34256e+3
le3 19°% 1.15725e+3 1.14656e+3 1.15064e+3 1.29709e+3 1.40928e+3 1.29647e+3 1.35684e+3 1.34969e+3
25%(Worst) | 1.19718e+3 1.19202e+3 1.18751e+3 1.30451e+3 1.53828e+3 1.31618e+3 1.37563e+3 1.38775e+3
Mean 1.1387e+3| 1.12807e+3 1.1357e+3| 1.28202e+3 1.3728e+3| 1.281e+3 | 1.33572e+3 1.34032e+3
Std 2.88961e+1 2.9308e+1| 2.48189e+1 2.49337e+1 7.63534e+1 2.42088e+1 2.44945e+1| 2.04276e+1
15(Best) | 9.25083e+2 9.27342e+2 9.25014e+2 6.37034e+2 9.40359e+2 6.70569e+2 4.33243e+2 4.21729e+2
7 9.29202e+2 9.28322e+2 9.28197e+2 6.65115e+2 9.52231e+2 6.87358e+2 4.63463e+2 5.02874e+2
13%(Median) | 9.30119e+2 9.30361e+2 9.30676e+2 6.81871e+2 9.63811e+2 6.99054e+2 4.92972e+2 5.28702e+2
led 19°% 9.34063e+2 9.31857e+2 9.35422e+2 6.99827e+2 9.7007e+2| 7.18622e+2 5.20792e+2 5.75859e+2
25%(Worst) | 9.45033e+2 9.42689e+2 9.38501e+2 7.65766e+2 9.9015e+2| 7.42968e+2 5.89875e+2 6.82416e+2
Mean 9.32184e+2 9.30698e+2 9.3145e+2| 6.83808e+2 9.6255e+2| 7.03473e+2 5.01424e+2 5.37929e+2
Std 5.34395e+(3.11483e+Q 4.00502e+0 3.1823e+1| 1.31899e+1 2.12136e+1 4.36122e+1 6.00467e+1
1%(Best) | 9.07615e+2 9.0739e+2| 9.08242e+2 5.00159e+2 8.92648e+2 5.34165e+2 2.00236e+2 2.00255e+2
7t 9.10146e+2 9.09473e+2 9.09738e+2 5.00182e+2 9.0693e+2| 5.34607e+2 2.00319e+2 2.00331e+2
13%(Median) | 9.11624e+2 9.11141e+2 9.11128e+2 5.00201e+2 9.17885e+2 5.41573e+2 2.00345e+2 2.00348e+2
le5 19 9.1281e+2| 9.12696e+2 9.13106e+2 5.00211e+2 9.27433e+2 5.45034e+2 2.00381e+2 2.00373e+2
25%(Worst) | 9.16808e+2 9.14885e+2 9.1493e+2| 5.00247e+2 9.40901e+2 5.67242e+2 2.0043e+2| 2.00396e+2
Mean 9.11523e+2 9.10891e+2 9.11336e+2 5.00198e+2 9.17556e+2 5.41424e+2 2.00346e+2 200.345e+2
Std 2.08454e+(1.95765e+(1.97788e+(2.15796e-2| 1.22352e+1 7.64926e+(5.00088e-2| 3.51386e-2
15(Best) | 9.07241e+2 9.06839e+2 9.07918e+2 5.00126e+2 8.89319e+2 5.34164e+2 2.00208e+2 2.00184e+2
7 9.09834e+2 9.09196e+2 9.09694e+2 5.00152e+2 9.06081e+2 5.34607e+2 2.00266e+2 2.00274e+2
13%(Median) | 9.11151e+2 9.10634e+2 9.10936e+2 5.00168e+2 9.12543e+2 5.41573e+2 2.00285e+2 2.00304e+2
3e5 19°% 9.12553e+2 9.12673e+2 9.12857e+2 5.00172e+2 9.23771e+2 5.45034e+2 2.00306e+2 2.00312e+2
25%(Worst) | 9.16264e+2 9.14885e+2 9.14851e+2 5.00195e+2 9.32868e+2 5.67242e+2 2.00329e+2 2.00362e+2
Mean 9.11234e+2 9.10634e+2 9.11151e+2 5.00162e+2 9.14701e+2 5.41424e+2 2.00283e+2 2.00294e+2
Std 2.08711e+(2.04968e+0Q 1.9567e+0| 1.76338e-2| 1.22709e+1| 7.6494e+0| 2.96582e-2| 3.496e-2

199

Table B.7: Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 fhtqures 1-9(50D)

FE Prob 1 2 3 4 5 6 7 8 9
15(Best) | 5.51142e+4| 1.51879e+5| 2.10005e+9 1.67442e+5 3.69882e+4 3.49642e+10 1.09999e+4| 2.12583e+1 5.85913e+2)
7 7.12981e+4| 1.83003e+5| 2.72427e+9 2.32920e+5 3.87181le+4 4.97113e+1Q 1.15068e+4| 2.13225e+1 6.24486e+2
13%t(Median) | 7.66952e+4| 2.04321e+5| 3.21028e+9 2.54673e+H 4.02342e+4 5.75621e+1Q 1.25735e+4| 2.13514e+1 6.5709e+2
le3 19% 8.08763e+4| 2.27296e+5| 3.31233e+9 2.74659%e+5 4.27958e+4 6.48353e+1(Q 1.28912e+4| 2.13788e+1 6.74407e+2
255 (Worst) | 9.14238e+4| 2.69784e+5| 3.97722e+9 3.38369e+5 4.51263e+4 7.42571e+1Q 1.35734e+4| 2.14255e+1| 7.23742e+2
Mean 7.58587e+4| 2.05962e+5| 3.02158e+9 2.56436e+5 4.05242e+4 5.69746e+1Q 1.22939e+4| 2.13513e+1 6.49598e+2
Std 8.70748e+3| 3.06062e+4| 4.44698e+8 4.08042e+4 2.50896e+3 1.11868e+1(Q 7.6882e+2 | 4.06245e-2| 3.8782e+1
15{(Best) | 9.98461e+2| 2.73658e+4| 1.12281e+§ 3.37432e+4 1.20098e+4 5.57072e+8| 5.05316e+2| 2.11475e+1 3.65384e+2
7 1.54895e+3| 4.51881e+4| 1.58228e+8 5.90627e+4 1.46458e+4 9.9109e+8 | 6.78866e+2| 2.12413e+1 3.96714e+2
13%(Median) | 1.72223e+3| 4.95447e+4| 1.7982e+8| 7.04506e+4 1.57016e+4 1.17615e+9| 8.24632e+2| 2.12665e+1 4.13965e+2
led 19% 1.88534e+3| 5.50288e+4| 2.18898e+8 7.91098e+4 1.64814e+4 1.40983e+9| 1.00922e+3| 2.12941e+1 4.34711e+2
25%(Worst) | 2.66011e+3| 7.18056e+4| 2.44658e+§ 1.13046e+5 1.78503e+4 1.76553e+9| 1.44983e+3| 2.13482e+1 4.57782e+2
Mean 1.7396e+3 | 4.99849e+4| 1.83442e+8 6.90953e+4 1.5422e+4| 1.18959e+9| 8.69208e+2| 2.12664e+1 4.13594e+2
Std 3.68971e+2| 9.19741e+3| 3.63204e+7 1.57892e+4 1.52509e+3 3.05817e+8| 2.5899e+2 | 4.24611e-2| 2.52316e+1
15{(Best) | 3.41061e-13 1.87307e+2| 1.00166e+6 2.07346e+4 7.23403e+3 2.47339%e+1| 5.55714e-8| 2.01349e+1 2.42035e-5|
7 4.54747e-13 9.05602e+2| 1.38678e+6 3.48667e+4 9.08045e+3 4.00485e+1| 2.08563e-7| 2.01938e+1 5.82229e-5
13%(Median) | 5.11591e-13 1.35331e+3| 1.92911e+6 3.91607e+4 9.69999e+3 4.76419e+1| 9.85736e-3| 2.02497e+1 7.45986e-5
le5 19% 6.25278e-13 1.78202e+3| 2.40636e+6 4.49693e+4 1.09219e+4 2.48135e+2| 2.94594e-2| 2.02981e+1 9.15903e-5
255 (Worst) | 7.38964e-13 3.24683e+3| 3.29172e+6 5.67418e+4 1.22664e+4 9.36661e+3| 5.63526e-2| 2.03497e+1 1.57744e-4
Mean 5.34328e-13 1.42029e+3| 1.89689e+6 3.89832e+4 9.82417e+3 1.15715e+3| 1.48301e-2| 2.02492e+1 7.64826e-5
Std 9.91099e-14 7.23942e+2| 5.98377e+5 8.6373e+3| 1.26849e+3 2.67887e+3| 1.68684e-2| 6.05549e-2| 2.76112e-5
15{(Best) | 3.41061e-13 7.23333e-1Q 2.09420e+5 1.34239e+4 7.23402e+3 4.80782e+0| 8.36877e-1Q 2.00779e+1 2.01438e-6|
7 4.54747e-13 1.15472e-9| 2.62135e+5 2.0845e+4| 9.07959e+3 1.7834e+1 | 3.21262e-9| 2.01243e+1 3.18409e-6
13%(Median) | 5.11591e-13 1.37845e-9| 3.88935e+5 2.40103e+4 9.69999e+3 2.06e+1 | 9.85729e-3| 2.017e+1 | 3.48123e-6
3e5 19% 6.25278e-13 1.74771e-9| 4.41208e+5 2.95921e+4 1.09219e+4 1.46261e+2| 2.94591e-2| 2.01979e+1 4.45399e-6
25%(Worst) | 7.38964e-13 2.53847e-8| 6.40857e+5 4.35825e+4 1.22664e+4 1.0344e+3 | 5.63524e-2| 2.02488e+1 8.04654e-6
Mean 5.34328e-13 2.38457e-9| 3.79589%e+5 2.56436e+4 9.82398e+3 1.30426e+2| 1.48301e-2| 2.01648e+1 3.79203e-6
Std 9.91099e-14 4.70832e-9| 1.19670e+5 6.75653e+3 1.26849e+3 2.62602e+2| 1.68684e-2| 4.32217e-2| 1.30416e-6)
15{(Best) | 3.41061e-13 7.23219e-1Q 1.03835e+5 7.76829e+3 7.23402e+3 2.15868e-1| 2.15636e-10 2.00631e+1 4.52469e-7
7 4.54747e-13 1.15028e-9| 1.52246e+5 1.50123e+4 9.07959e+3 3.937e+0 | 1.01704e-9| 2.01019e+1 1.07226e-6
13%(Median) | 5.11591e-13 1.28637e-9| 2.00057e+5 1.83313e+4 9.69999e+3 6.08975e+0| 9.85728e-3| 2.01386e+1 1.30084e-6
5e5 19% 6.25278e-13 1.41921e-9| 2.67678e+5 2.30653e+4 1.09219e+4 1.36537e+2| 2.94591e-2| 2.01598e+1 1.40499e-6
25%(Worst) | 7.38964e-13 2.03244e-9| 3.38318e+5 3.63462e+4 1.22664e+4 9.65119e+2| 5.63524e-2| 2.02026e+1 2.00881e-6
Mean 5.34328e-13 1.31335e-9| 2.11398e+5 1.91824e+4 9.82375e+3 1.12253e+2| 1.48301e-2| 2.01318e+1 1.2652e-6
Std 9.91099e-14 2.78563e-1(0 6.76307e+4 5.71984e+3 1.26857e+3 2.45579e+2| 1.68684e-2| 3.53769e-2| 3.48828e-7

200

Table B.8: Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 fhtqares 10-17(50D)

FE Prob 10 11 12 13 14 15 16 17
15(Best) | 9.55087e+2 7.42498e+1 4.41679e+6 4.40894e+2 2.31195e+1 9.77567e+2 6.57047e+2 8.19088e+2
7 1.04246e+3 7.57477e+1 5.64745e+6 8.16527e+2 2.38016e+1 1.04476e+3 7.46701e+2 9.07803e+2
13*(Median) | 1.09997e+3 7.75215e+1 6.55796e+6 1.05628e+3 2.40312e+1 1.10186e+3 7.86151e+2 9.24502e+2
le3 19°% 1.12314e+3 7.85936e+1 6.79599e+6 1.09935e+3 2.41171e+1 1.13654e+3 8.31648e+2 9.80848e+2
25%(Worst) | 1.18023e+3 8.35322e+1 7.36667e+§ 1.53577e+3 2.42551e+1 1.16253e+3 9.21854e+2 1.11515e+3
Mean 1.08081le+3 7.7621e+1| 6.26256e+6 9.83086e+2 2.39534e+1 1.09006e+3 7.93349e+2 9.33038e+2
Std 5.67469e+1| 2.35302e+(7.59139%e+5 2.53989e+2 2.5106e-1 | 5.25278e+1 6.38147e+1 7.23728e+1
1%(Best) | 4.52249e+2 1.06331e+1| 6.94560e+4 4.16305e+1 2.2704e+1| 5.00881le+2 3.0661le+2 3.6226e+2
7 4.77605e+2 1.23251e+1| 9.91115e+5 4.45412e+1 2.29962e+1 6.09731e+2 3.21565e+2 3.78356e+2
13%(Median) | 4.84931e+2 1.37686e+1 1.07617e+6 4.59726e+1 2.30894e+1 6.45887e+2 3.40662e+2 3.86797e+2
led 19 5.06135e+2 1.59975e+1 1.13921e+6 4.85981le+1 2.326e+1 | 6.6742e+2| 3.49884e+2 3.99851e+2
25%(Worst) | 5.4627e+2| 2.05923e+1 1.33412e+6§ 5.09829e+1 2.34369e+1 7.06334e+2 3.74912e+2 4.31716e+2
Mean 4.91592e+2 1.4347e+1| 1.05603e+6 4.61968e+1 2.30998e+1 6.24054e+2 3.38922e+2 3.89905e+2
Std 2.5674e+1| 2.48334e+(1.48582e+5 2.64645e+0 2.01406e-1| 6.05553e+1 1.86864e+1| 1.72941e+]]
15(Best) | 8.75562e+1 3.81584e-2| 1.44276e+4 1.6658e+0| 2.05739%e+1 3.46052e+2 7.74716e+1| 9.57355e+1
7 1.07455e+2 4.27134e-2| 3.12412e+4 1.98964e+(0 2.11749e+1 3.91017e+2 9.39309e+1| 1.16354e+2
13%(Median) | 1.15415e+2 4.50361e-2| 4.34969e+4 2.38846e+0 2.16154e+1 4.023e+2 | 9.78339%e+1 1.2483e+2
le5 19°% 1.30339%e+2 4.71833e-2| 6.12136e+4 2.70468e+(0 2.18551e+1 4.23389e+2 1.0489e+2| 1.32262e+2
25%(Worst) | 1.68148e+2 5.29221e-2| 1.29204e+5 3.16681e+(2.24938e+1 5.05451e+2 1.19914e+2 1.58008e+2
Mean 1.17804e+2 4.47662e-2| 5.40739%e+4 2.35217e+(2.15798e+1 4.10944e+2 9.92568e+1 1.2542e+2
Std 1.99834e+1| 3.51986e-3| 3.31723e+4 4.05752e-1| 4.65305e-1| 3.6672e+1| 1.11199e+1 1.51036e+1
15(Best) | 8.75562e+1 1.69114e-2| 1.34048e+4 1.27279e+Q 2.05719e+1 3.42822e+2 7.64194e+1| 9.43639%e+1
7 1.07455e+2 1.8854e-2 | 2.8812e+4| 1.75218e+(0 2.11712e+1 3.81269e+2 9.33667e+1| 1.15444e+2
13%(Median) | 1.15415e+2 1.99417e-2| 4.30683e+4 2.01806e+0 2.16104e+1 4.01718e+2 9.78339%e+1 1.23132e+2
3e5 19 1.30339%e+2 2.1826e-2 | 6.12136e+4 2.20224e+(2.18543e+1 4.21828e+2 1.0408e+2| 1.30267e+2
25%(Worst) | 1.68148e+2 2.35981e-2| 1.20129e+5 2.53098e+0 2.2493e+1| 5.03771e+2 1.19914e+2 1.5679e+2
Mean 1.17804e+2 2.01512e-2| 5.11606e+4 1.96793e+0 2.15774e+1 4.06304e+2 9.87115e+1| 1.23639e+2
Std 1.99834e+1| 1.91237e-3| 3.16112e+4 3.53218e-1| 4.65591e-1| 3.86759e+1 1.12072e+1| 1.47723e+1
15(Best) | 8.75562e+1 1.12915e-2| 1.2641e+4| 1.18787e+0 2.05718e+1 3.4065e+2| 7.62284e+1| 9.36489e+1
7 1.07455e+2 1.31512e-2| 2.6452e+4| 1.72212e+(0 2.11707e+1 3.81153e+2 9.32198e+1| 1.15403e+2
13%(Median) | 1.15415e+2 1.46848e-2| 4.13691e+4 1.93704e+0 2.16094e+1 4.01405e+2 9.78048e+1 1.23132e+2
5e5 19°% 1.30339e+2 1.50056e-2| 6.12136e+4 2.16827e+(2.18542e+1 4.20961e+2 1.0408e+2| 1.2919e+2
25%(Worst) | 1.68148e+2 1.8692e-2 | 1.14555e+5 2.51907e+0 2.24929e+1 5.03659e+2 1.19836e+2 1.55669e+2
Mean 1.17804e+2 1.4332e-2 | 4.85485e+4 1.92194e+(Q 2.1577e+1| 4.04874e+2 9.8556e+1| 1.23137e+2
Std 1.99834e+1| 1.55761e-3| 2.93073e+4 3.48701e-1| 4.65643e-1| 3.8859e+1| 1.12841e+1 1.47763e+1

201

Table B.9: Error values at FEs = 1e3, 1e4, 1e5, 3e5, 5e5 fhtqares 18-25(50D)

FE Prob 18 19 20 21 22 23 24 25
15(Best) | 1.32012e+3 1.28895e+3 1.27409e+3 1.35554e+3 1.41029e+3 1.39336e+3 1.48128e+3 1.81075e+3
7 1.34924e+3 1.32921e+3 1.32205e+3 1.41301e+3 1.47406e+3 1.4202e+3| 1.50679e+3 1.90004e+3
13*(Median) | 1.3719e+3| 1.34251e+3 1.35202e+3 1.43062e+3 1.53781e+3 1.45175e+3 1.545e+3 | 1.91905e+3
le3 19°% 1.37878e+3 1.35255e+3 1.38102e+3 1.44662e+3 1.53781e+3 1.45673e+3 1.56103e+3 1.9374e+3
25%(Worst) | 1.41859e+3 1.42743e+3 1.40995e+3 1.45713e+3 1.62434e+3 1.48599e+3 1.57763e+3 1.96508e+3
Mean 1.36427e+3 1.34641e+3 1.3522e+3| 1.42729e+3 1.52263e+3 1.44181e+3 1.53718e+3 1.91294e+3
Std 2.43472e+1 3.02611e+1 3.7055e+1| 2.35834e+1 5.63886e+1 2.31314e+1 2.87624e+1 3.52847e+1
1%(Best) | 9.97832e+2 9.89552e+2 9.7263e+2| 9.87067e+2 1.02721e+3 9.93378e+2 1.03987e+3 4.61938e+2
7 1.0087e+3| 1.00917e+3 1.01018e+3 1.03841e+3 1.0634e+3| 1.04926e+3 1.10792e+3 5.49586e+2
13%(Median)| 1.01283e+3 1.01412e+3 1.01506e+3 1.05378e+3 1.07579e+3 1.07128e+3 1.15488e+3 6.78404e+2
led 19 1.01973e+3 1.02425e+3 1.02636e+3 1.10462e+3 1.08577e+3 1.10827e+3 1.1638e+3| 8.15937e+2
25%(Worst) | 1.04242e+3 1.04429e+3 1.05164e+3 1.14175e+3 1.10565e+3 1.13687e+3 1.23733e+3 1.22294e+3
Mean 1.01567e+3 1.01688e+3 1.01607e+3 1.06888e+3 1.07398e+3 1.07397e+3 1.14328e+3 7.34723e+2
Std 9.9784e+0| 1.23553e+1 1.60617e+1 4.51729e+1 1.80038e+1 3.93552e+1| 4.91449e+1 2.12427e+2
15(Best) | 9.28534e+2 9.33703e+2 9.29386e+2 5.00296e+2 9.68637e+2 5.49105e+2 2.00486e+2 2.20288e+2
7 9.33376e+2 9.36249e+2 9.34088e+2 5.00353e+2 9.96375e+2 5.65554e+2 2.00661e+2 2.22291e+2
13%(Median) | 9.36262e+2 9.39147e+2 9.38245e+2 5.00367e+2 1.00482e+3 5.80241e+2 2.00705e+2 2.23946e+2
le5 19°% 9.40687e+2 9.42993e+2 9.44787e+2 5.00414e+2 1.0204e+3| 5.85571e+2 2.00749e+2 2.31217e+2
25%(Worst) | 9.64881e+2 9.65428e+2 9.68877e+2 1.04828e+3 1.04072e+3 1.06117e+3 2.00837e+2 2.63998e+2
Mean 9.39207e+2 9.40836e+2 9.40921e+2 6.08119e+2 1.00673e+3 5.9556e+2| 2.00707e+2 2.29575e+2
Std 9.51087e+0 6.63746e+(9.82973e+(2.15538e+2 1.73734e+1 9.60541e+] 7.71071e-2| 1.17577e+2
1%(Best) 9.2779e+2| 9.33436e+2 9.283e+2 | 5.00274e+2 9.66662e+2 5.49103e+2 2.00409e+2 2.16496e+2
7 9.32988e+2 9.358e+2 | 9.33721e+2 5.00296e+2 9.93031e+2 5.65553e+2 2.00547e+2 2.18164e+2
13%(Median) | 9.36227e+2 9.38894e+2 9.38036e+2 5.00309e+2 1.00007e+3 5.80239e+2 2.00602e+2 2.18902e+2
3e5 19 9.40216e+2 9.42198e+2 9.43444e+2 5.00325e+2 1.01668e+3 5.85571e+2 2.00618e+2 2.19667e+2
25%(Worst) | 9.63709e+2 9.64643e+2 9.68343e+2 1.04755e+3 1.04072e+3 1.06116e+3 2.00654e+2 2.25634e+2
Mean 9.38732e+2 9.40333e+2 9.40451e+2 6.07948e+2 1.00278e+3 5.95501e+2 2.00576e+2 2.19157e+2
Std 9.34306e+(6.55205e+(9.84473e+(2.15314e+2 1.7955e+1| 9.60678e+1 6.23622e-2| 1.9333e+0
15{(Best) | 9.27555e+2 9.33436e+2 9.283e+2 | 5.00231e+2 9.66662e+2 5.49103e+2 2.00409e+2 2.16285e+2
7 9.32923e+2 9.358e+2 | 9.33485e+2 5.00276e+2 9.89824e+2 5.65553e+2 2.00507e+2 2.17589e+2
13*(Median) | 9.36003e+2 9.38848e+2 9.37865e+2 5.00297e+2 9.98235e+2 5.80239%e+2 2.00558e+2 2.184e+2
5e5 19°% 9.39908e+2 9.42198e+2 9.43444e+2 5.0031e+2| 1.0162e+3| 5.85568e+2 2.00595e+2 2.18941e+2
25%(Worst) | 9.63641e+2 9.64643e+2 9.67628e+2 1.04649e+3 1.04072e+3 1.06115e+3 2.00628e+2 2.21402e+2
Mean 9.38592e+2 9.40204e+2 9.40267e+2 6.07759e+2 1.00155e+3 5.955e+2 | 2.00544e+2 2.18497e+2
Std 9.27171e+(6.57274e+Q 9.78984e+(2.14974e+2 1.88383e+1 9.6066e+1| 6.13193e-2| 1.30321e+0

202

Table B.10: Number of FES to achieve the accuracy level foblems 1 - 25(D = 10)

Prob 1t 7t 13" 19" 25N Mean Std | Succ.| succ.
(Best) (Median) (Worst) rate Perf.
1 22000| 23700| 24600 | 25200| 26900 | 24416 | 1236.67| 100%| 24416
2 32600| 34000 34200 | 35300| 35800 | 34528 | 860.474| 100%| 34528
3 - - - - - - - 0% -
4 38200| 40100 41100 |41600| 43400 | 40900 | 1439.17| 100%| 40900
5 - - - - - - - 0% -
6 |98600| - - - - 98600 0.0 4.0% | 2.465e+6
7 52100 - - - - 52100 0.0 4.0% | 1.3025e+5
8 - - - - - - - 0% -
9 | 20500| 22000| 22400 | 23200| 26400 | 22620 | 1376.66| 100%| 22620
10 - - - - - - - 0% -
11 | 28400| 32500 36000 | 38400| 42300 | 35556 | 4000.71| 100% | 35556
12 | 30800| 53200 - - - 54109.1| 15494.1| 44% | 122975
13-25 - - - - - - 0% -

Table B.11: Number of FES to achieve the accuracy level foblems 1 - 25(D = 30)

Prob 15t 7t 13h 19h 25N Mean Std | Succ.| succ.
(Best) (Median) (Worst) rate Perf.
1 30400 | 31700 | 32200 | 32800 | 33800 | 32180 | 813.88 | 100%| 32180
2 77800 | 88200 | 92500 | 97800 | 102000| 92420 | 6279.62| 100% | 92420
3-5 - - - - - - - - -
6 | 297100 - - - - 297100 0.0 4% | 7427500
7 29800 | 59300 - - - 51627.3| 12492.5| 44% | 117335
8 - - - - - - - 0% -
9 30900 | 32500 | 33100 | 35100 | 45500 | 34636 | 3610.53 100% | 34636
10 - - - - - - - 0% -
11 | 161600 210300 222200 | 242200| 293200| 228752 | 33891.1 100% | 228752
12-25 - - - - - - - 0% -

203

Table B.12: Number of FES to achieve the accuracy level foblems 1 - 25(D = 50)

18t 7th 13h 19h 25N Mean Std Succ.| succ.
(Best) (Median) (Worst) rate Perf.

Prob

1 37400 | 37900 | 38600 | 39300 | 40100 | 38540 | 782.304| 100% 38540

2 224200| 230600 243900 | 251800| 275600| 242192| 12952.8| 100% | 242192

3-6 - - - - - - - 0% -
7 | 48700 | 54200 | 61400 - - - - 60% | 95211.1
8 - - - - - - - 0% -

9 43400 | 48000 | 51800 | 54100 | 71900 | 51632 | 6007.51| 100%| 51632

10-25| - - - - - - - 0% -

204

Appendix C

Chemotherapy Problem in C++ Source

Codes

#include "StdAfx.h"
#include <stdlib.h>

#include <math.h>

#include "chemotherapy.h"

/

This is the main method of the class. It takes the chromosome a

and calculates both fitnesses. This method does not return a

just calculates and stores values for each fitness objectiv

and getFitnessObjTwo() to extract fitness values rep tumou

(patient survival time).

S a parameter

fitness value, it

e. Use getFitnessObjOne()

r size and PST

HiniIConstant declarations
int NUM_DRUGS = 10;

int NUM_DOSES = 10;

int NUM_ORGANS = 5;

int DRUG_UNIT = 5;

long double LAMBDA = 4;

long

long

long

long

long

long

long

long

double

double

double

double

double

double

double

double

M
/I number of drugs in treatment
/I number of doses in treatment
/I body organs affected by drugs
/I multiplier to get gene value of dose into

/I Gompertz constant (tumour growth)

/I Nmax (10°12) at end of 7 doses

P1 = 5; /I penalty multiplier for exceeding max
/I instantaneous dose of a drug
P2 = 5; /I ditto for exceeding max cumulative
/I dose for a drug
P3 = 500; /I ditto for exceeding max tumour size YM
P4 = 5; /I ditto for exceeding side effect on each
/I organ at each time step
YO = 4.605; /I Initial tumour size y = In(theta/N)
/I corresponding to $N = 10°10$
YMIN = 4.605; /'Y value corresp to max allowed tum
/I size (no of cells = $10710%)
BETA = 0.5; /I some ratio penalizing the current t
KAPPA_SCALE_FACTOR = 0.001; // Scaling Factor F or Dose Efficacy

205

1

o]

values

mg
.9 for

ur

umour size

int MAX_INST_DOSEJ] = {75, 75, 100, 2000, 3000, 120, 10000, 1 5, 100, 2}
int MAX_CUM_SIDE_EFF[] = {90, 90, 90, 90, 90};

long double POTENCY_FACTOR[] = {1, 1, 0.75, 0.0375, 0.025, 0 .625, 0.0075, 5, 0.75, 200};
long double MAX_CUM_DOSE[] = {550, 700, 1000, 10000, 30000, 600, 100000, 40, 1000, 30}
long double KAPPA[] = {5.605, 4.484, 7.29, 3.9235, 2.242, 4. 335, 1.6815, 2.242, 1.121, 2.242};

int RISK_FACTOR[5][10] = {

/ltable of 'stars’ for side effect on organs

{3, 3, 3,20, 1, 1, 2, 0, 0},// Bone marrow
{0, 0, 0, 0, 0, 3, 1, 0, O, 0}/ Kidney

{0, 0, 2, 0, 0, 3, 0, 0, 0, 2},// Peripheral nerves
{0, 0,0 0,0, 0,1, 1, 0, O}// Liver

{2, 1,1, 0,0, 0,0, 0, 0, 0O} / Heart

Mt ivariables/iin M

long double ** realDoseMatrix;

int *x baseDoseMatrix;

long double cellKillAtTimeP = 0.0; // cell kill term

long double totalPenaltyForinstantaneousDoses = 0.0;

long double totalPenaltyForCumulativeDoses = 0.0;

long double totalPenaltyForSideEffect = 0.0;

long double totalPenaltyForTumourSize = 0.0;

long double fitness = 0.0;

long double yti = 0.0; /I current tumour size(N) expressed as y = In(theta/N),
/I where theta = 10712 cells.

long double diff = 0.0;

int violate = 0; /I no of tumour size violations

int pCount = 0; /I no of penalties for side effect, instantane ous and
/I cummulative dose exceeded.

int patientSurvivalTime = -1; /I set to negative until it is s et by calculateTumourSize

void allocate_memory()

{

/lallocate memory for realDoseMatrix.

realDoseMatrix = (long double ++)malloc(NUM_DOSES = sizeof(long double));

for (int i = 0; i < NUM_DOSES; i++)

{
realDoseMatrix[i] = (long double *)malloc(NUM_DRUGS =* sizeof(long double));

/lallocate memory for baseDoseMatrix.
baseDoseMatrix = (int *+)malloc(NUM_DOSES = sizeof(int));
for (int i = 0; i < NUM_DOSES; i++)

{
baseDoseMatrix[i] = (int *)malloc(NUM_DRUGS = sizeof(int));

206

void free_memory()

{

/lfree realDoseMatrix.

for (int i = 0; i < NUM_DOSES; i++)
{

free(realDoseMatrix[i]);

free(realDoseMatrix);

/lfree baseDoseMatrix.
for (int i = 0; i < NUM_DOSES; i++)
{

free(baseDoseMatrix[i]);

free(baseDoseMatrix);

void calculateFitness(int * chromosome)
{
//[Populate 2D DoseMatrices
int chromosomelndex = 0;
int templ;
long double temp2;

for(int i = 0; i < NUM_DOSES; i++)
{
for(int j = 0;] < NUM_DRUGS; j++)
{
/[Populate DoseMatrices. realDoseMatrix contains absolu
/IbaseDoseMatrix is gene integer value.
templ = chromosome[chromosomelndex];

baseDoseMatrix[i][j] = temp1;

temp2 = (long double)((long double)chromosome[chromosom

realDoseMatrix[i][j] = temp2;

chromosomelndex++;

/I For time step (which corresponds to a dose), calculate tot
/I size and side effects. Add a penalty if the tumour goes abov

/I given threshold. Also add penalty for side effects. p -> ti

/ICalculate Instantaneous dose penalty.

calculatelnstantaneousDosePenalty();

/[Calculate cumulative dose penalty.

calculateCumulativeDosePenalty();

207

te value of drug dose.

elndex]

*DRUG_UNIT)/POTENCY_FACTORY];

al tumour
e a

me.

for (int p = 0; p < NUM_DOSES; p++) // for timesteps 1 to NUM_DOS ES
{

/[Calculate tumour size at p.

calculateTumourSize(p);

/ICalculate side effect penalty at p.

calculateSideEffectPenalty(p);

/IWork out fithess objective 1 Final tumour size including p enalties.

calculateFitnessObjOne();

/IWork out fitness objective 2 Palliative care, Patient Sur vival Time.

/IcalculateFitnessObjTwo();

void calculatelnstantaneousDosePenalty()

{
for (int j = 0; j < NUM_DRUGS; j++) // for each Drug

{

/lcheck each dose for each time i for that drug
for (int i = 0; i < NUM_DOSES; i++)
{

/I Find the difference between the maximum allowed amount an d the current amount
diff = realDoseMatrix[i][j] - MAX_INST_DOSE[j];
if (diff <= 0.0) // less than limit, OK
{
diff = 0.0;
else /I else get square of difference and apply penalty
diff = diff * diff;

pCount = pCount + 1; // increment counter for penalties appli ed

totalPenaltyForinstantaneousDoses += diff * P1;

void calculateCumulativeDosePenalty()

{
long double sumD; // local sum of doses in real values
for (int j = 0; j < NUM_DRUGS; j++) // for each Drug
{

sumD = 0.0; //initialize

/I sum the doses for each time i for that drug

208

for (int i = 0; i < NUM_DOSES; i++)

{
sumD += realDoseMatrix[i][j];
}
diff = sumD - MAX_CUM_DOSE[j]; // Find the difference betwee n the maximum
/I allowed amount and the current amount
if (diff <= 0.0) // less than limit, OK
{
diff = 0.0;
}
else /I else get square of difference and apply penalty
{
diff = diff = diff;
pCount = pCount + 1; // increment counter for penalties appli ed
}
totalPenaltyForCumulativeDoses += diff * P2;
}

/[This method takes a time step value as a parameter and calcu
/ltime p. It then applies a penalty if the tumour has grown abo
void calculateTumourSize(int p)
{
long double sumDoses = 0.0;
long double cellKillByJthDrugForPthTime = 0.0;
long double totalPenaltyForTumourSizeForPthTime = 0.0;

cellKillAtTimeP = 0.0;

/I[For each drug, loop from time O to current time (p) and sum up
/ladministered. Then use this amount to calculate cell kill

/lreduced the total tumour size by cumulative dose of each dr

for (int j = 0; j < NUM_DRUGS; j++)

{

/[Outer for loop goes through each drug. sumDoses represent
/leach single drug. therefore, it needs to be reset for each n

sumbDoses = 0.0;

/lLoop from time O up to current time (p)
for (int i = 0; i < p; i++)
{
/li represents time step, which corresponds to a dose given a
/lcorresponds to previous time step.
int timl = i;
/lsum the multiplication of all dose till time p for jth drug w

/lexp(LAMBDA =« (previous time and current time))

lates the tumour size at

ve a certain size.

the total amount of drug
. At the end of the loop, you've

ug up to time p.

the cumulative dose for

ew drug.

t that time step timl

ith

sumDoses += (realDoseMatrix][i][j] * exp(LAMBDA=* (tim1 - p)));

209

/Imultiply calculated sum of dose for jth drug with the effic acy coefficient
/IKAPPA for that drug.

cellKillByJthDrugForPthTime = KAPPA_SCALE_FACTOR * KAPPA[] +* sumbDoses;
cellKillAtTimeP += cellKillByJthDrugForPthTime;

/lcalculate the tumour size and penalize if infeasible.
yti = (YO *exp(-LAMBDA*p)) + (((exp(LAMBDA)-1) *cellKillAtTimeP)/LAMBDA);

/lcheck if current tumour size is less than allowed tumour si ze or not
diff = YMIN - vti;

if (diff <= 0.0) // i.e. yti > YMIN so tumour has not exceeded th reshold size.
{
diff = 0.0;
}

else

{
diff = diff + diff; /fi.e. yti < YMIN so tumour HAS exceeded threshold size

if (p>=1) /ldo not count if first timestep (initial tumour)
{
violate++; /lcount no. of times threshold violated
}

if (patientSurvivalTime < 0) // if PST hasn't been set yet

{
patientSurvivalTime = p; /I the first timestep at which tumo ur > max
}
}
int ti = p;
totalPenaltyForTumourSizeForPthTime = exp(-BETA * ti) o+ diff;
totalPenaltyForTumourSize += totalPenaltyForTumourSiz eForPthTime;
}
/lcalculate the penalty for effect on other organs @param p = timestep

void calculateSideEffectPenalty(int p)
{
long double penaltyForSideEffectForLthOrganPthDose = 0. 0;
long double totalPenaltyForSideEffectforPthDose = 0.0;
long double DrugSideEff;

/lcalculate the side effect penalty
totalPenaltyForSideEffectforPthDose = 0.0;

/[for each organ calculate the toxicity penalty
for (int | = 0; | < NUM_ORGANS; I++)

{
DrugSideEff = 0.0;

210

/lfor each Drug calculate toxicity level it makes to particu lar organ
for (int j = 0; j < NUM_DRUGS; j++)
{
DrugSideEff += RISK_FACTORII][j] * baseDoseMatrix[p][j]; // use integer originals

/Inow compare it with allowed toxicity for that organ
diff = DrugSideEff - MAX_CUM_SIDE_EFFII];

if (diff <= 0.0) //less than limit OK

{
diff = 0.0;
}
else /lif not then penalize
{
diff = diff = diff;
pCount = pCount + 1; // increment counter for penalties appli ed
}
penaltyForSideEffectForLthOrganPthDose = diff * P4;
totalPenaltyForSideEffectforPthDose += penaltyForSide EffectForLthOrganPthDose;
}
totalPenaltyForSideEffect += totalPenaltyForSideEffec tforPthDose;

void calculateFitnessObjOne()

{
long double exprl, expr2, expr3, expr4, exprs;
exprl = cellKillAtTimeP; Il cell kill
expr2 = totalPenaltyForCumulativeDoses; /I Cumulative Do ses
expr3 = P3 « totalPenaltyForTumourSize; // Tumour size
exprd = totalPenaltyForSideEffect; /I side effect
expr5 = totalPenaltyForinstantaneousDoses; // Instantan eous Dose
fitness = (exprl - expr3) / (violate + 1);
fithess = fitness - expr2 - expr4 - expr5;
}

long double getFitnessObjOne()
{

return fitness;

211

long double getFitnessObjTwo()
{

return patientSurvivalTime;

long double getFinalTumourSize()

{

return yii;

int getViolationCount()
{

return violate;

int getPenaltyCount()
{

return pCount;

int getPST()
{

return patientSurvivalTime;

void clearStoredValues()

{

/IClear DoseMatrices

for(int i = 0; i < NUM_DOSES; i++)
{

for(int j = 0; j < NUM_DRUGS; j++)

{
realDoseMatrix[i][j] = 0.0;
baseDoseMatrix[i][j] = 0;
}
}

cellKillAtTimeP = 0.0;
totalPenaltyForTumourSize = 0.0;
totalPenaltyForSideEffect = 0.0;
totalPenaltyForCumulativeDoses = 0.0;
totalPenaltyForinstantaneousDoses = 0.0;
fitness = 0.0;
yti = 0.0;
diff = 0.0;
violate = 0;
pCount = 0;

patientSurvivalTime = -1;

212

Bibliography

[AHO53]

[AHO5D]

[AK89]

[Bac95]

[B4c96]

[Bak87]

A. Auger and N. Hansen. Performance evaluation ciéranced local search
evolutionary algorithm. In David Corne, Zbigniew Michalie®, Bob McKay,
Gusz Eiben, David Fogel, Carlos Fonseca, Garrison GreemhwGanther
Raidl, Kay Chen Tan, and Ali Zalzala, editoRroceedings of the 2005 IEEE
Congress on Evolutionary Computatjorolume 2, pages 1777-1784, Edin-

burgh, Scotland, UK, 2-5 September 2005. IEEE Pr&88, 144, 167

A. Auger and N. Hansen. A restart CMA evolution sé@y with increas-
ing population size. In David Corne, Zbigniew Michalewi&pb McKay,
Gusz Eiben, David Fogel, Carlos Fonseca, Garrison GreemhwGanther
Raidl, Kay Chen Tan, and Ali Zalzala, editoRroceedings of the 2005 IEEE
Congress on Evolutionary Computatiorolume 2, pages 1769-1776, Edin-
burgh, Scotland, UK, 2-5 September 2005. IEEE Pr&88, 144, 167

Emile Aarts and Jan KorstSimulated Annealing and Boltzmann Machines:
A Stochastic Approach to Combinatorial Optimization andiféé Comput-
ing. Wiley Interscience Series in Discrete Mathematics andrpation.

John Wiley & Sons, Chichester, 19897, 30, 31

Thomas Back. Generalized convergence modelotonament- andu 1)-
selection. In Larry J. Eshelman, editd€GA, pages 2—-8. Morgan Kaufmann,

1995.34, 96

Thomas Back.Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorighrdxford Univer-

sity Press, New York, 199&2, 41

James E. Baker. Reducing bias and inefficiency ins#llection algorithm.

In John J. Grefenstette, editdgenetic Algorithms and their Applications

213

[Balo4]

[BD97]

[Ben75]

(ICGA'87), pages 14-21, Hillsdale, New Jersey, 1987. Lawrence Emilfss+

sociates34

Shummet Baluja. Population-based incrementahieg: A method for inte-
grating genetic search based function optimization andpatitive learning.
Technical Report CS-94-163, Carnegie Mellon Universitgh@l of Com-
puter Science, June 1992181

Shumeet Baluja and Scott Davies. Using optimal depeny-trees for com-
binatorial optimization: Learning the structure of thershaspace. IrProc.
14th International Conference on Machine Learnimgages 30—-38. Morgan

Kaufmann, 1997181

J. L. Bentley. Multidimensional binary search gegsed for associative
searching. Communications of the ACM.8(9):509-517, September 1975.
58

[BMLLO2] E. Bengoextea, T. Miquelez, P. Larranga, and J.Az&no. Experimental

[BS02]

[BT96]

[Cat91]

[CH67]

[CV95]

[DBTOO]

results in function optimization with edas in continuousréon. 2002.81

Hans-Georg Beyer and Hans-Paul Schwefel. Evoldimategies - A compre-

hensive introductionNatural Computing1(1):3-52, 200239

Tobias Blickle and Lothar Thiele. A comparison ofegtion schemes used in
evolutionary algorithmsEvolutionary Computatior(4):361-394, 199634,
96

J. Catlett. On changing continuous attributesanttered discrete attributes. In

Y. Kodratoff, editor,Proceedings of the European Working Session on Learn-
ing : Machine Learning (EWSL-91yolume 482 ofLNAI, pages 164-178,
Porto, Portugal, March 1991. Springer Verld®6

T. M. Cover and P. E. Hart. Nearest neighbor patteassification. IEEE
Transactions on Information Theqry-13(1):21-7, January 19685

Corinna Cortes and Vladimir Vapnik. Support-vectetworks. Machine
Learning 20:273, 199517

Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Algiorithms and stig-

mergy. Future Generation Comp. Sy416(8):851-871, 200043

214

[Deb01]

[Den]

[DJ75]

[DJAO2]

[DJRY5]

[Edg86]

[ES93]

[Esh91]

[GD91]

[Gl096]

Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algo-
rithms. John Wiley & Sons, Chichester, UK, 20012, 38

P. J. Denning. Bayesian learnidymerican Scientis77:216-21817

Kenneth Alan De Jong.An analysis of the behavior of a class of genetic

adaptive system#hD thesis, Ann Arbor, MI, USA, 19782, 94

Kalyanmoy Deb, Dhiraj Joshi, and Ashish Anand. Readed evolutionary al-
gorithms with parent-centric recombination. In David Bgeh Mohamed A.
El-Sharkawi, Xin Yao, Garry Greenwood, Hitoshi Iba, Paulrkdav, and Mark
Shackleton, editor&roceedings of the 2002 Congress on Evolutionary Com-

putation CEC2002pages 61-66. IEEE Press, 20033

D. Dearnaly, I. Judson, and T. Root, editorslandbook of adult cancer
chemotherapy scheduleBhe Medicine Group (Education) Ltd., Oxfordshire,
1995.178

Eugene S. EdgingtoRandomization testgsolume 77 ofStatistics: textbooks

and monographsMarcel Dekker, New York, second edition, 198%

Larry J. Eshelman and J. David Schaffer. Real-co@eetic algorithms and
interval-schemata. In L. Darrell Whitley, editéigundations of Genetic Algo-

rithms 2 pages 187-202, San Mateo, 1993. Morgan Kaufma&inl12

Larry J. Eshelman. The CHC adaptive search algaritHow to have safe
search when engaging in nontraditional genetic recomibimatin Gregory
J. E. Rawlins, editoifoundations of Genetic Algorithmgages 265-283, San
Mateo, 1991. Morgan KaufmanB5

David E. Goldberg and Kalyanmoy Deb. A comparativalgsis of selec-
tion schemes used in genetic algorithms. In Gregory J. E.liRaweditor,
Foundations of Genetic Algorithmpages 69-93, San Mateo, 1991. Morgan
Kaufmann.34, 96

Fred Glover. Tabu search and adaptive memory progyg advances, ap-
plications and challenges. Interfaces in Computer Science and Operations

Researchpages 1-75. Kluwer, 19961

215

[Gol89] David E. GoldbergGenetic Algorithms in Search, Optimization, and Machine
Learning Addison-Wesley, Reading, Mass., 1982

[Hay99] S. Haykin. Neural Networks: A Comprehensive IntroductidPrentice Hall,
1999.17

[HMMPO8] Pierre Hansen, Nenad Mladenovic, and José A. Mo+eérez. Variable neigh-
bourhood search: methods and applicatiat@GR 6(4):319-360, 200830

[HO96] Nikolaus Hansen and Andreas Ostermeier. Adaptibgrary normal muta-
tion distributions in evolution strategies: the covariameatrix adaptation. In
Proc. of the 1996 IEEE Int. Conf. on Evolutionary Computatipages 312—
317, Piscataway, NJ, 1996. IEEE Service Certiér.

[HO97] Nikolaus Hansen and Andreas Ostermeier. Convery@naperties of evo-
lution strategies with the derandomized covariance matdaptation: The
(u/m, 1)-CMA-ES, October 06 19978, 69, 71

[HOO1] Nikolaus Hansen and Andreas Ostermeier. Completelgandomized self-
adaptation in evolution strategieEvolutionary Computatior9(2):159-195,
2001.71

[Hol75] John H. Holland.Adaption in Natural and Artificial System$he University
of Michigan Press, Ann Arbor, 19732, 34, 35

[JCSWO05] Laetitia Jourdan, David Corne, Dragan Savic, aodf@y Walters. Pre-
liminary Investigation of the ‘Learnable Evolution Moddbr Faster/Better
Multiobjective Water Systems Design. In Carlos A. Coelloelm, Arturo
Hernandez Aguirre, and Eckart Zitzler, editdes,olutionary Multi-Criterion
Optimization. Third International Conference, EMO 20@f&ages 841-855,
Guanajuato, México, March 2005. Springer. Lecture NateSomputer Sci-
ence Vol. 341081, 84, 101

[JKES95] Wnek Janusz, Kaufman Kenneth, Bloedorn Eric, anch®ski Ryszard S.
Inductive learning system agl5c: The method and user'seguML| 95-4,
Mar-1995.55, 81

[KESO1] James Kennedy, Russell C. Eberhart, and Yuhi Sivarm IntelligenceEvo-
lutionary Computation Series. Morgan Kaufman, San Fraoe¢i2001.44

216

[KGV83]

[KM99]

[Koh95]

[Koz92]
[Koz94]

[LELP99]

[LELPOOQ]

[LLO2]

[LLBO2]

[LNLBO1]

[MCO1]

S. Kirkpatrick, C. D. Gelatjr., and M. P. Vecchi. Optimization by simulated
annealing.Science220(4598):671-679, May 19830

Kenneth A. Kaufman and Ryszard S. Michalski. Leaifitom inconsis-
tent and noisy data: The AQ18 approach. In Zbigniew W. Ras/fanttzej
Skowron, editorsiISMIS volume 1609 ot ecture Notes in Computer Science
pages 411-419. Springer, 19%h

Ron Kohavi. A study of cross-validation and boastfor accuracy estimation

and model selection. IICAI, pages 1137-1145, 19956
J. R. Koza.Genetic ProgrammingMIT Press, Cambridge, MA, 19943
J. R. Koza.Genetic Programming IIMIT Press, Cambridge, MA, 1994.3

P. Larraiaga, R. Etxeberria, J. A. Lozano, and JPha. Optimization by

learning and simulation of bayesian and gaussian netw€ag. 71

Pedro Larraflaga, Ramon Etxeberria, José A. hozand José M. Pefia. Com-
binatonal optimization by learning and simulation of bagasetworks. In
Craig Boutilier and Moisés Goldszmidt, editoBspceedings of the 16th Con-
ference on Uncertainty in Artificial Intelligence (UAI-Q@ages 343-352, SF,
CA, June 30-July 3 2000. Morgan Kaufmann Publish@6s.

P. Larranaga and J. A. Lozan&stimation of Distribution Algorithms:A New

Tool for Evolutionary ComputatiorKluwer Academic, 200281, 181

P. Larranaga, J.A. Lozano, and E. Bengoextea. Eaion of distribution algo-
rithms based on multivariate normal and gaussian netwdikshnical report,
Dept Computer Science and Artificial Intelligence, Univigref the Basque

Country, Spain, 200281

Pedro Larrafiaga, Jose A. Lozano, and Endika Betga. Estimation of dis-
tribution algorithms based on multivariate normal digitibns and Gaussian
networks. Technical Report KZZA-IK-1-01, Dept. of Compug&eience and
Artificial Intelligence, University of Basque Country, 20076

Ryzsard S. Michalski and Guido Cervone. Adaptiverarig discretization
for learnable evolution model. IBeorge Mason Universitpages 01-3, 2001.
127

217

[MHF93]

[Mic69]

[Mic96]

[Mic00]

[Mit97]

[Mos89]

[MP96]

[MT94]

[Miih97]

[MZ00]

Melanie Mitchell, John H. Holland, and Stephanierést. When will a ge-
netic algorithm outperform hill climbing. In Jack D. Cowdaerald Tesauro,
and Joshua Alspector, editof$IPS pages 51-58. Morgan Kaufmann, 1993.
28

R. S. Michalski. On the quasi-minimal solution oftlgeneral covering prob-
lem. InProc. Fifth Int. Symposium on Information Processing, FE68vol-
ume A3, Bled, Yugoslavia, 196%1, 53

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs Springer-Verlag, 1996. Contains introductory chaptet.6:%. 32

Ryszard S. Michalski. Learnable evolution modelvolttionary processes
guided by machine learningvlachine Learning38(1-2):9-40, 200053, 54,
77,94, 100, 119 120, 146

Tom Mitchell. Machine Learning McGraw-Hill, 1997.16

P. Moscato. On evolution, search, optimizatiomeje algorithms and mar-
tial arts: Towards memetic algorithms. Technical Reporitegca Concur-

rent Computation Program, Report. 826, California Ingtitof Technology,

Pasadena, California, USA, 19821

Heinz Muhlenbein and Gerhard Paass. From recortibmaf genes to the es-
timation of distributions I. binary parameters. In Hansehhel Voigt, Werner
Ebeling, Ingo Rechenberger, and Hans-Paul Schwefel,redRBSN volume
1141 ofLecture Notes in Computer Sciengages 178-187. Springer, 1996.
71

R. Martin and K. Teo. Optimal control of drug admimtion in cancer

chemotherapyWorld Scientific1994.177, 178

Heinz Muhlenbein. The equation for response tlec®n and its use for
prediction.Evolutionary Computatiorb(3):303—-346, 199775

Ryszard S. Michalski and Qi Zhang. Initial experiniewith the LEM1 learn-
able evolution model: An application to function optimiret and evolvable

hardware. Technical report, 20084, 100

218

[PBMO5]

[Peal1]

[Pet99]

[PGL99]

[PHO0]

[PMO1]

[PRL*04]

[PSMO6]

[Quig6]

[Qui93]

[Rec73]

Andrei Petrovski, Alexander E. |. Brownlee, and dgti W. McCall. Statisti-
cal optimisation and tuning of GA factors. IEEE Congress on Evolutionary

Computationpages 758-764. IEEE, 200579

K. Pearson. On lines and planes of closest fit to isygstd points in space.
The London, Edinburgh and Dublin Philosophical Magazine dournal of
Science2:559-572, 190158

A. Petrovski.An Application of Genetic Algorithms to Chemotherapy Feat
ment PhD thesis, Aberdeen, UK, 199978 179

Martin Pelikan, David E. Goldberg, and O Lobo. A seywof optimization by
building and using probabilistic models, October 08 198D.

G. Pagallo and D. Haussler. Boolean feature disgoveempirical learning.

Machine Learning5(1):71-99, 199051

Andrei Petrovski and John A. W. McCall. Multi-obj@at optimisation of can-
cer chemotherapy using evolutionary algorithms. In EcKarler, Kalyan-

moy Deb, Lothar Thiele, Carlos A. Coello Coello, and Davidi@g editors,
EMO, volume 1993 ofLecture Notes in Computer Sciengmages 531-545.
Springer, 2001176, 179

J.M. Pena, V. Robles, P. Larranaga, V. Herves, F. Rosales M.S. Perez.
Ga-eda: Hybrid evolutionary algorithm using genetic artthestion of distri-

bution algorithms. 200481

Andrei Petrovski, Siddhartha Shakya, and John AMA&Call. Optimising
cancer chemotherapy using an estimation of distributigaréghm and genetic
algorithms. In Mike Cattolico, editoGECCQ pages 413—-418. ACM, 2006.
179

J. R. Quinlan. Induction of decision treelachine Learning1(1):81-106,
1986.47,50, 51, 126 145

J. R. Quinlan.C4.5: Programs for Machine LearningMorgan Kaufmann,
San Mateo, CA, 199347, 50, 81, 126

I. Rechenberg Evolutionsstrategie: optimierung technischer systemehna

prinzipien der biologischen evolutioffrommann-Holzboog, 19739, 40

219

[RIGT00] Michael L. Raymer, William F. Punch Ill, Erik D. Goodmadreslie A. Kuhn,
and Anil K. Jain. Dimensionality reduction using genetigaithms. IEEE

Trans. Evolutionary Computatiod(2):164-171, 200068

[SCO08] Guleng Sheri and David W. Corne. The simplest evohikearning hybrid:
LEM with KNN. In Jun Wang, editor2008 IEEE World Congress on Com-
putational Intelligencepages 3244-3251, Hong Kong, 1-6 June 2008. IEEE
Computational Intelligence Society, IEEE Pre84,93, 173

[SCO09] Guleng Sheri and David W. Corne. Evolutionary optiation guided by
entropy-based discretization. In Mario Giacobini, Anth@rabazon, Stefano
Cagnoni, Gianni A. Di Caro, Anikd Ekart, Anna EsparciacAtar, Muddassar
Farooq, Andreas Fink, Penousal Machado, Jon McCormack)adic©’Neill,
Ferrante Neri, Mike Preuss, Franz Rothlauf, Ernesto Taranand Shengxi-
ang Yang, editordsvoWorkshops/olume 5484 of_ecture Notes in Computer
Sciencepages 695—-704. Springer, 20023 127,173

[SC10] Guleng Sheri and David Corne. Learning-assistedugwoary search for
scalable function optimization: LEM(ID3). IEEEE Congress on Evolution-

ary Computationpages 1-8. IEEE, 201043

[Sch88] Hans-Paul Schwefel. Collective intelligence inlging systems. In W. Wolff,
C. J. Soeder, and F. Drepper, edit@spdynamics, Contributions to Theoret-
ical Ecology pages 95-100. Springer, Berlin, 198&)

[Sch95] Hans Paul Schwefd&tvolution and Optimum Seekingixth-Generation Com-
puter Technology Series. John Wiley & Sons, Inc., New Yo893. 39

[SG9I1] P. Spirtes and C. Glymour. An algorithm for fast remgyvof sparse causal
graphs.Social Science Computer Revje&3(1):62—73, 199174

[Sha01] C. E. Shannon. A mathematical theory of commurmoa8IGMOBILE Mob.
Comput. Commun. Re%(1):3-55, 200148

[SHL*05] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. CAeAuger, and
S. Tiwari. Problem definitions and evaluation criteria floe tec 2005 special
session on real-parameter optimization. Technical re@6@5.141, 165 166,
169 173

220

[SP95]

[STDO5]

[Sys89]

[Sys91]

[TFM99a]

[TFM99b]

[Whe88]

[WK88]

[WM97]

[WMO5]

Rainer Storn and Kenneth Price. Differential evolut a simple and efficient

adaptive scheme for global optimization over continuouwsep, 199545

A. Sinha, S. Tiwari, and K. Deb. A population-basstgady-state proce-
dure for real-parameter optimization. In David Corne, Zisggv Michalewicz,
Bob McKay, Gusz Eiben, David Fogel, Carlos Fonseca, Gari@&@enwood,
Gunther Raidl, Kay Chen Tan, and Ali Zalzala, editdPspceedings of the
2005 IEEE Congress on Evolutionary Computatienlume 1, pages 514—
521, Edinburgh, Scotland, UK, 2-5 September 2005. IEEESP e, 167

G. Syswerda. Uniform crossover in genetic algarghin J. D. Schaffer, edi-
tor, Proceeding of the Third International Conference on Genatgorithms

pages 2-9. Morgan Kaufmann, 1985

Gilbert Syswerda. A study of reproduction in getieraal and steady state
genetic algorithms. In Gregory J. E. Rawlins, editeundations of Genetic

Algorithms pages 94-101, San Mateo, 1991. Morgan Kaufma&én.

Back Thomas, David B. Fogel, and Zbigniew Michalez, editors.Advanced
Algorithms and OperatordOP Publishing Ltd., Bristol, UK, UK, 1999832

Back Thomas, David B. Fogel, and Zbigniew Michailez, editors. Basic
Algorithms and OperatordOP Publishing Ltd., Bristol, UK, UK, 1999832

T. Wheldon Mathematical models in cancer researehdam Hilger, Bristol,
Philadelphia, 1988176, 177, 178

D. Whitley and J. Kauth. GENITOR: A different genetigorithm. InPro-
ceedings of the Rocky Mountain Conference on Artificiallligence pages
118-130. Denver, CO, 19885

David H. Wolpert and William G. Macready. No free lum¢heorems for
optimization. IEEE Transactions on Evolutionary Computatjdr{1):67-82,
April 1997. 21

Janusz Wojtusiak and Ryszard S. Michalski. The LEMStem for non-
darwinian evolutionary computation and its applicatiorctmmplex function

optimization. Technical report, George Mason Universd§05.81

221

[WMO06] Janusz Woijtusiak and Ryszard S. Michalski. The LEMtpiementation of
learnable evolution model and its testing on complex fumctptimization
problems. In Mike Cattolico, editoGECCQ pages 1281-1288. ACM, 2006.
81

[Y196] Mutsunori Yagiura and Toshihide Ibaraki. Metahestics as robust and simple
optimization tools. Inn Proc. IEEE International Conf. Evolutionary Com-
putation pages 541-546, 19989

[YS94] L. Yao and William A. Sethares. Nonlinear parametgireation via the ge-
netic algorithm. IEEE Transactions on Signal Processjmf(4):927-935,
1994.94, 95, 98

[ZSTFO03] Qingfu Zhang, Jianyong Sun, Edward Tsang, and Jand. Hybrid estima-
tion of distribution algorithm for global optimisatiofEngineering Computa-

tions, 21:2003, 200381

[ZSTFO06] Qingfu Zhang, Jianyong Sun, Edward Tsang, and Fand. Estimation of
distribution algorithm with 2-opt local search for the quatit assignment
problem. InTowards a New Evolutionary Computation. Advances in Estima

tion of Distribution Algorithm pages 281-292. Springer-Verlag, 208a.

222

	Abstract
	Acknowledgements
	Tables
	Figures
	Acronyms
	Introduction
	Overview
	Search is a general problem solver
	Evaluation is expensive
	Learning is useful
	Hybrid is the trend
	Contributions

	Outline of the thesis

	Methods for Search and Learning
	Overview
	Search Algorithms for Optimization
	Local Search
	Genetic Algorithm and Global Optimization
	Evolution Strategies
	Other General Purpose Search Algorithms

	Learning Algorithms
	Decision Tree Learning
	AQ Learning
	K Nearest Neighbors (KNN) Learning
	Principal Components Analysis
	Bayesian Network and Bayesian Learning

	Hybrids of Learning and Evolution
	Overview
	Covariance Matrix Adaptation Evolution Strategies
	(/ I,)-CMAES algorithm

	Estimation of Distribution Algorithms
	Example Illustration
	Structure Learning Methods
	Concrete EDA Algorithms

	Learnable Evolution Model (LEM)
	LEM(AQ)
	LEM Framework
	Relations with EDAs
	Applications of LEM

	KNN Based LEM Hybrid Algorithms
	Overview
	LEM(KNN) – KNNGA
	KNNGA Algorithm
	KNNGA `with verification'
	Experiments and Results

	LEM(dwKNN) – dwKNNGA
	Distance-Weighted K Nearest Neighbors Algorithm
	dwKNNGA Algorithm
	Experiments and Results

	Concluding Discussion

	LEM Instantiated with Entropy-Based Discretization
	Overview
	Entropy-Based Discretization
	Discretization Techniques
	Entropy-Based Discretization

	LEM with Entropy-Based Discretization – LEM(ED)
	The LEM(ED) Algorithm
	LEM(ED) Variant Algorithms

	Experiments and Results
	Parameters Settings
	Summary of Results

	Concluding Discussion

	LEM Instantiated with Decision Tree Learning
	Overview
	LEM with Decision Tree Learning – LEM(ID3)
	Learning Mode
	Evolution Mode
	Switch Conditions
	Discretization
	Instantiation, Evolution and Randomization

	Experiments and Results
	Experiment Study 1
	Experiment Study 2

	Concluding Discussion

	Cancer Chemotherapy Treatments Optimized by LEMs
	Overview
	Introduction
	Mathematical Problem Formulation
	Solving using LEM Hybrid Algorithms
	Problem Representation and Evaluation
	Problem Solving and Results

	Concluding Discussion

	Conclusion
	Summary
	Contributions
	Future Work

	Brief Introduction on Probability
	LEM(ID3)IER Performance on CEC2005 Test Functions
	Chemotherapy Problem in C++ Source Codes
	Bibliography

