

A New Routing Protocol for Ad Hoc Wireless

Networks

Design, Implementation and Performance

Evaluation

Idris Skloul Ibrahim

Submitted for the degree of Doctor of Philosophy

Heriot Watt University

 School of Mathematical and Computer Sciences

26- July - 2011

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the

information contained in it must acknowledge this thesis as the source of the quotation or information.

http://www.hw.ac.uk/

To My Parents, my wife Salwa, my sisters
and brothers
 Atya, Ibrahim, Saleh and Azdeen.
 To my Son Nour and my daughters
 Amira, Aya, Aiman, Ibtihal, Adean and
Ayat.

In memory of my beloved oldest brother
"Rajab" who gave me tremendous support and
encouragement in achieving my Ph.D. research.
 I will always miss him.

I

 Table of Contents

TABLE OF CONTENTS .. I

LIST OF FIGURES ... VI

LIST OF TABLES ... XI

ACKNOWLEDGEMENT .. XII

ABSTRACT ... 1

CHAPTER 1 .. 2

INTRODUCTION:

1.1 CLASSIFICATION OF WIRELESS NETWORKS .. 3

1.2 SUMMARY .. 6

1.3 ABOUT THIS THESIS .. 7

1.3.1 STATEMENT OF THE PROBLEM AND SCOPE OF THE STUDY 7

1.3.2 CONTRIBUTIONS OF THIS THESIS .. 7

1.3.3 THESIS ROADMAP .. 8

CHAPTER 2 .. 10

MANET:

2.1 INTRODUCTION .. 10

2.2 MANETS .. 12

2.2.1 HISTORY OF MANETS .. 12

2.2.2 MANETS CHARACTERISTICS ... 13

2.2.3 MANETS ISSUES .. 13

2.2.4 SOME APPLICATIONS OF MANETS ... 14

2.2.5 DIFFICULTIES FOR ROUTING IN MANETS .. 14

2.2.6 ROUTING ALGORITHM IN MANETS ... 14

2.2.7 MANETS ROUTING PROTOCOLS ... 15

2.2.7.1 PROACTIVE ROUTING PROTOCOLS ... 16

2.2.7.2 REACTIVE ROUTING PROTOCOLS .. 19

2.2.7.3 HYBRID ROUTING PROTOCOLS .. 25

2.2.8 MANET‟S MODELS ... 28

2.2.8.1 ROUTE SELECTION MODELS ... 28

2.2.8.2 DATA FORWARDING MODELS .. 29

2.2.8.3 BROADCASTING MODELS .. 30

2.2.8.4 MOBILITY MODELS .. 31

II

2.2.8.5 RADIO PROPAGATION MODELS ... 33

2.3 SIMULATION OVERVIEW.. 35

2.3.1 COMPUTER NETWORK SIMULATORS ... 36

2.3.2 NETWORK SIMULATION 2 (NS2) ... 37

2.3.2.1 PACKETS ... 37

2.3.2.2 MOBILE NETWORKING IN NS2 .. 39

2.3.2.3 WIRELESS LINKS .. 41

2.3.2.4 SYMMTRIC AND ASYMMTRIC NETWORKS ... 42

2.3.2.5 PACKET TRANSMISSION ... 43

2.3.2.6 PACKET RECEPTION .. 43

2.3.2.7 TRACE LOGS .. 44

2.4 SUMMARY .. 45

CHAPTER 3 .. 46

PROBLEM & MOTIVATION:

3.1 INTRODUCTION .. 46

3.2 RELATED WORK ... 47

3.3 MDVZRP ALGORITHMS ... 49

3.3.1 MDVZRP: MOTIVATION .. 49

3.3.2 MDVZRP: OPTIMUM MULTIPLE ROUTES SELECTION 50

3.3.3 MDVZRP: ROUTING INITIALISATION .. 51

3.3.4 MDVZRP: ROUTE ON DEMAND ... 55

3.3.5 MDVZRP: NODE MOVEMENT ... 56

3.3.6 MDVZRP: ZONE RADIUS AND NODE DENSITY.. 58

3.4 SUMMARY .. 59

CHAPTER 4 .. 60

MDVZRP IMPLEMENTATION:

4.1 INTRODUCTION .. 60

4.2 PRE-MDVZRP DESIGN .. 60

4.3 MDVZRP V1.0 ... 60

4.4 PROTOCOL DESCRIPTION OF MDVZRP V2.0 .. 64

4.5 ROUTING TABLE STRUCTURE .. 65

4.6 GENERAL MDVZRP PACKET FORMAT .. 67

4.7 SPECIFIC PACKET FORMATS ... 68

4.7.1 BEACON PACKET (HELLO) ... 68

III

4.7.2 RSUP PACKET .. 69

4.7.3 FRIP PACKET .. 71

4.7.3.1 FRIP MECHANISM ... 71

4.7.4 RREQ PACKET ... 72

4.7.4.1 RREQ MECHANISM ... 74

4.7.5 RREP PACKET .. 76

4.7.6 MDVZRP IMPLEMENTATION ... 79

4.7.7 PACKET IMPLEMENTATION .. 81

4.7.8 ROUTING AGENT IMPLEMENTATION ... 84

4.7.9 START UP FUNCTION ... 86

4.7.10 HELPER CALL BACK FUNCTION ... 87

4.7.11 MAKE A BEACON MESSAGE .. 89

4.7.12 MAKE A FRIP FUNCTION .. 90

4.7.13 MAKE A RSUP FUNCTION ... 93

4.7.14 SEND OUT BROADCAST PACKET ... 94

4.7.15 MAC CALL BACK FUNCTION ... 95

4.7.16 LOST LINK FUNCTION ... 96

4.7.17 RECEIVE FUNCTION ... 97

4.7.18 PROCESS FUNCTION .. 98

4.7.19 RECEIVE BEACON FUNCTION ... 98

4.7.20 CHECK NEIGHBOUR FUNCTION ... 99

4.7.21 RECEIVE A FRIP FUNCTION ... 101

4.7.22 RECEIVE A RSUP FUNCTION .. 104

4.7.23 FORWARDPACKET FUNCTION .. 107

4.7.24 MAKE A ROUTE REQUEST FUNCTION .. 111

4.7.25 MAKE A ROUTE REPLY FUNCTION .. 112

4.7.26 RECEIVE A RREQ FUNCTION ... 113

4.7.27 RECEIVE A RREP FUNCTION .. 116

4.7.28 ERROR MESSAGE FUNCTION .. 119

4.8 SUMMARY .. 120

CHAPTER 5 .. 121

FUNCTIONALITY TESTING:

5.1 INTRODUCTION .. 121

5.2 GENERAL SETUP ... 121

5.3 SIMPLE SCENARIOS FOR FUNCTIONALITY TESTING 123

5.3.1 EXAMPLE1.TCL SCENARIO OVERVIEW .. 123

IV

5.3.1.1 SCENARIO SETUP ... 123

5.3.1.2 SCENARIO DESCRIPTION AND RESULTS .. 124

5.3.2 EXAMPLE2.TCL SCENARIO OVERVIEW .. 130

5.3.2.1 SCENARIO SETUP ... 130

5.3.2.2 SCENARIO DESCRIPTION AND RESULTS .. 131

5.3.3 EXAMPLE 3.TCL SCENARIO OVERVIEW ... 140

5.3.3.1 SCENARIO SETUP ... 140

5.3.3.2 SCENARIO DESCRIPTION AND RESULTS .. 141

5.3.4 RANDOM.TCL SCENARIO OVERVIEW ... 143

5.3.4.1 RANDOM SCENARIO SETUP ... 143

5.3.4.2 RANDOM SCENARIO DESCRIPTION AND RESULTS 143

5.4 TRACE FILE ANALYSIS FOR NS-2 ... 145

5.4.1 SAMPLE OF WIRELESS TRACE FILE ... 145

5.5 SUMMARY .. 148

CHAPTER 6 .. 149

PERFORMANCE EVALUATION:

6.1 INTRODUCTION .. 149

6.2 PERFORMANCE EVALUATION METRICS .. 149

6.3 SIMULATION MODELS .. 151

6.4 SIMULATION SYSTEM ENVIRONMENT ... 152

6.5 EVALUATION METHODOLOGY ... 152

6.5.1 PHASE 0 ... 153

6.5.2 PHASE 1 ... 153

6.5.3 OPTIMUM VALUES OF MDVZRP ... 156

6.5.4 PHASE 2 ... 157

6.6 PHASE 0 RESULTS DISCUSSION .. 158

6.7 PHASE 1 RESULTS DISCUSSION .. 161

6.8 PHASE 2 RESULTS DISCUSSION .. 165

6.8.1 THE GRAPHS AND HOW TO READ THEM ... 165

6.8.2 THE 1ST SET OF EXPERIMENTS .. 166

6.8.3 THE 2ND SET OF EXPERIMENTS ... 174

6.8.4 THE 3RD SET OF EXPERIMENTS .. 180

6.9 SUMMARY .. 187

V

CHAPTER 7 .. 189

CONCLUSION:

7.1 INTRODUCTION .. 189

7.2 ROUTING ... 189

7.3 MAIN CONTRIBUTION ... 190

7.4 RESULTS AND DISCUSSION ... 191

7.5 FUTURE WORK .. 192

7.6 SUMMARY .. 193

APPENDIX A: ...

MDVZRP PACKET RECEPTION ALGORITHM ... 195

APPENDIX B: ...

PERFORMANCE ANALYSIS FLOW DIAGRAM .. 198

APPENDIX C: ...

SOME SCRIPT FILES USED FOR PERFORMANCE EVALUATION 200

APPENDIX D: ...

SAMPLES OF PERFORMANCE EVALUATION TECHNICAL DATA SHEET 208

APPENDIX E: ...

 PUBLICATIONS AUTHORED .. 215

APPENDIX F: ...

BIBLIOGRAPHY ... 217

VI

List of Figures

CHAPTER 1 .. 2

Figure 1.1: Infrastructure based WLAN ... 4

Figure 1.2: Non-Infrastructure based WLAN ... 4

CHAPTER 2 .. 10

Figure 2.1: Infrastructure based Network ... 10

Figure 2.2: Mobile ad-hoc networks (MANETs). ... 11

Figure 2.3: Computer local area networks .. 11

Figure 2.4: Classification of Ad hoc routing protocols ... 15

Figure 2.5: A simple ad hoc network for 7 nodes ... 17

Figure 2.6: Route discovery process in AODV ... 20

Figure 2.7: AODV route discovery and protocol messaging .. 21

Figure 2.8: Route discovery process in DSR- (A) RREQ ... 22

Figure 2.9: Route discovery process in DSR- (B) RREP ... 23

Figure 2.10: Routing zone where zone radius = 2 .. 25

Figure 2.11: Simulation and modelling cycle ... 35

Figure 2.12: MANET‟s routing protocols flow diagram .. 38

Figure 2.13: Composite construction of wired unicast node .. 39

Figure 2.14: Mobile node schematics ... 40

Figure 2.15: Simplex Link .. 41

Figure 2.16: Symmetric Network .. 42

Figure 2.17: Asymmetric Network ... 42

CHAPTER 3 .. 46

Figure 3.1: An example of a 9 node network ... 50

Figure 3.2: Hello message along a symmetrical network ... 52

Figure 3.3: Route on demand along a symmetrical links .. 55

Figure 3.4: Route error along a symmetrical network .. 56

Figure 3.5: Routing zone radius, where R=1, 2 or 3 ... 58

CHAPTER 4 .. 60

Figure 4.1: Hello and RSUP in an early version of MDVZRP 61

Figure 4.2: Error message in an early version of MDVZRP... 62

Figure 4.3: Asymmetrical links in an early version of MDVZRP 63

VII

Figure 4.4: Routes with a common node (node joint) .. 66

Figure 4.5: 802-11 Packet Format .. 67

Figure 4.6: IP header fields of MDVZRP .. 67

Figure 4.7: CMN header fields of MDVZRP ... 68

Figure 4.8: A BEACON Packet .. 69

Figure 4.9: A RSUP packet ... 70

Figure 4.10: A simple example of Routes Update propagation 70

Figure 4.11: A FRIP Packet .. 71

Figure 4.12: A simple example of FRIP propagation .. 72

Figure 4.13: Format of RREQ Packet ... 73

Figure 4.14: A simple example of RREQ propagation ... 74

Figure 4.15: Creating a new route to RREQ packet sender algorithm............................ 75

Figure 4.16: Format of RREP Packet .. 76

Figure 4.17: A simple example of RREP propagation .. 77

Figure 4.18: Creating a new route to RREQ packet sender algorithm............................ 78

Figure 4.19: MDVZRP Packet CMN Header ... 81

Figure 4.20(A): MDVZRP Packet IP Header ... 82

Figure 4.20(B): MDVZRP Packets Numbers at packet.h ... 83

Figure 4.21: Start up Function pseudocode ... 86

Figure 4.22: Helper call back Function pseudocode ... 89

Figure 4.23: Make a Beacon Function pseudocode .. 90

Figure 4.24: Make a FRIP Packet Function pseudocode .. 92

Figure 4.25: Make a RSUP Packet Function pseudocode .. 94

Figure 4.26: Send Out Broadcast Packet Function pseudocode 95

Figure 4.27: Mac Call Back Function pseudocode .. 95

Figure 4.28: Lost Link Function pseudocode ... 96

Figure 4.29: The Receive Function ... 97

Figure 4.30: Process Function pseudocode ... 98

Figure 4.31: Receive Beacon Function pseudocode ... 99

Figure 4.32: Check Neighbour Function pseudocode ... 101

Figure 4.33: Receive a FRIP Function pseudocode .. 104

Figure 4.34: Receive a RSUP Function pseudocode .. 107

Figure 4.35: Forward Function pseudocode .. 110

Figure 4.36: Make Route Request Function pseudocode.. 111

Figure 4.37: Make Route Reply Function pseudocode ... 112

Figure 4.38: Receive Route Request Function pseudocode .. 116

VIII

Figure 4.39: Receive Route Reply Function pseudocode ... 118

Figure 4.40: Error message Function pseudocode .. 119

CHAPTER 5 .. 121

Figure 5.1: Default wireless scenarios settings. ... 122

Figure 5.2: Example1.tcl scenario setup ... 124

Figure 5.3: A simple network of three nodes .. 124

Figure 5.4: Traffic via an intermediate node ... 126

Figure 5.5: A direct Traffic connection... 127

Figure 5.6: A destination in the source transmission range .. 127

Figure 5.7: A direct link failure .. 129

Figure 5.8: Some lines of Example1.tcl Scenario ... 130

Figure 5.9: A simple network of seven nodes ... 131

Figure 5.10: TCP traffic starts to flow .. 133

Figure 5.11: TCP flow in spite of intermediate node movement 136

Figure 5.12: A broken link and packet lost at the source ... 137

Figure 5.13: A few control packets lost at an intermediate .. 137

Figure 5.14: The TCP traffic back via an alternative route ... 138

Figure 5.15: Two separate groups ... 140

Figure 5.16: Two TCP traffic each in a separate group .. 141

Figure 5.17: Nodes (12) and (10) movement .. 142

Figure 5.18: TCP traffic between node (6) and node (9) ... 142

Figure 5.19: The layout of a random scenario of 100 nodes ... 144

Figure 5.20: random-waypoint movement with some traffic.. 144

Figure 5.21: The new trace format .. 145

CHAPTER 6 .. 149

Figure 6.1: Phase 1 Directory Structure .. 156

Figure 6.2: Phase 2 Directory Structure .. 157

Figure 6.3: NRL Over MDVZRP v1.00 and v2.0, Speed 20m/s 159

Figure 6.4: PDF over MDVZRP v1.00 and v2.0, Speed 20m/s 159

Figure 6.5: EED over MDVZRP v1.00 and v2.0, Speed 20m/s 160

Figure 6.6: Overhead over MDVZRP v1.00 and v2.0, Speed 20m/s............................ 160

Figure 6.7: EED for RREQ_Threshold = 4 ... 162

Figure 6.8: EED for RREQ_Threshold = 2 ... 162

Figure 6.9: Average Overhead for RREQ_Threshold = 4 .. 163

Figure 6.10: Average Overhead for RREQ_Threshold = 2 .. 163

IX

Figure 6.11: Average Dropped Packets for RREQ_Threshold = 4 164

Figure 6.12: Average Dropped Packets for RREQ_Threshold = 2 164

Figure 6.13: PDF 95% confidence interval and error bars .. 166

Figure 6.14: PDF for the 20 nodes model with 10 sources .. 166

Figure 6.15: PDF for the 20 nodes model with 15 sources ... 167

Figure 6.16: PDF for the 20 nodes model with 20 sources .. 167

Figure 6.17: Throughput for the 20 nodes and 10 sources .. 168

Figure 6.18: Throughput for the 20 nodes and 15 sources ... 168

Figure 6.19: Throughput for the 20 nodes and 20 sources ... 168

Figure 6.20: NRL for the 20 nodes model with 10 sources .. 169

Figure 6.21: NRL for the 20 nodes model with 15 sources .. 169

Figure 6.22: NRL for the 20 nodes model with 20 sources .. 170

Figure 6.23: Average Overhead for 20 nodes and 10 sources 170

Figure 6.24: Average Overhead for 20 nodes and15 sources 170

Figure 6.25: Average Overhead for 20 nodes and 20 sources 171

Figure 6.26: EED for the 20 nodes model with 10 sources .. 172

Figure 6.27: EED for the 20 nodes model with 15 sources .. 172

Figure 6.28: EED for the 20 nodes model with 20 sources .. 172

Figure 6.29: Average Dropped Packets for 20 nodes,10 sources 173

Figure 6.30: Average Dropped Packets for 20 nodes, 15 sources 173

Figure 6.31: Average Dropped Packets for 20 nodes, 20 sources 173

Figure 6.32: PDF for the 60 nodes with 20 sources ... 174

Figure 6.33: PDF for the 60 nodes with 30 sources .. 174

Figure 6.34: PDF for the 60 nodes with 40 sources .. 175

Figure 6.35: NRL for the 60 nodes with 20 sources ... 175

Figure 6.36: NRL for the 60 nodes with 30 sources ... 176

Figure 6.37: NRL for the 60 nodes with 40 sources ... 176

Figure 6.38: EED for the 60 nodes model with 20 sources .. 177

Figure 6.39: EED for the 60 nodes model with 30 sources ... 177

Figure 6.40: EED for the 60 nodes model with 40 sources ... 177

Figure 6.41: Average Overhead for 60 nodes and 20 sources 178

Figure 6.42: Average Overhead for 60 nodes and 30 sources 178

Figure 6.43: Average Overhead for 60 nodes and 40 sources 178

Figure 6.44: Average Dropped Packets for 60 nodes, 20 sources 179

Figure 6.45: Average Dropped Packets for 60 nodes, 30 sources 179

Figure 6.46: Average Dropped Packets for 60 nodes, 40 sources 179

X

Figure 6.47: PDF for the 100 nodes with 20 sources .. 180

Figure 6.48: PDF for the 100 nodes with 40 sources .. 180

Figure 6.49: PDF for the 100 nodes with 50 sources .. 181

Figure 6.50: NRL for the 100 nodes with 20 sources ... 181

Figure 6.51: NRL for the 100 nodes with 40 sources ... 182

Figure 6.52: NRL for the 100 nodes with 50 sources ... 182

Figure 6.53: EED for the 100 nodes with 20 sources ... 183

Figure 6.54: EED for the 100 nodes with 40 sources ... 183

Figure 6.55: EED for the 100 nodes with 50 sources ... 183

Figure 6.56: Throughput for the 100 nodes with 20 sources .. 184

Figure 6.57: Throughput for the 100 nodes with 40 sources .. 184

Figure 6.58: Throughput for the 100 nodes with 50 sources .. 184

Figure 6.59: Average Overhead for 100 nodes and 20 sources 185

Figure 6.60: Average Overhead for 100 nodes and 40 sources 185

Figure 6.61: Average Overhead for 100 nodes and 50 sources 185

Figure 6.62: Average Dropped Packets for 100 nodes, 20 source 186

Figure 6.63: Average Dropped Packets for 100 nodes, 40 source 186

Figure 6.64: Average Dropped Packets for 100 nodes, 50 source 186

XI

List of Tables

CHAPTER 2 .. 10

Table 2.1: Routing Table of Node A ... 17

Table 2.2: MANET Routing Protocols Classifications ... 27

CHAPTER 3 .. 46

Table 3.1: Optimum (OR) and Non Optimum (NOR) Routes .. 51

Table 3.2: Routes are obtained after receiving a Hello Message 52

Table 3.3: Routes are obtained from the Update message sent by node 4 53

Table 3.4: Routes are obtained from the Update message sent by node 5 53

Table 3.5: Routing table of node 1 .. 53

Table 3.6: Routing table of node 2 after receiving the Update messages 54

Table 3.7: Routing table of node 3 after receiving the Update messages 54

Table 3.8: Routing table of node 4 after receiving the Update messages 54

Table 3.9: Routing table of node 5 after receiving the Update messages 54

Table 3.10: Routing table of the new node (6) after receiving the full dump 55

Table 3.11: Routing table of node 1 after RREP message .. 56

Table 3.12: Routing table of node 5 after discovering the broken link 57

Table 3.13: Routing table of node 4 after receiving the RERR message 57

Table 3.14: Routing table of node 6 after receiving the RERR message 57

CHAPTER 4 .. 60

Table 4.1: MDVZRP v1.0 v MDVZRP v2.0 .. 64

Table 4.2: MDVZRP Routing table fields .. 65

Table 4.3: New routes to RREQ sender that created by RREQ receivers 75

Table 4.4: A new route to RREQ sender created by an intermediate node 3 77

Table 4.5: A new route to requested destination at an intermediate node 5 78

Table 4.6: A new route to requested destination at the requester node 6 78

Table 4.7: MDVZRP Agent„s Member Functions .. 85

Table 4.8: Format of the included routes in a FRIP packet .. 91

CHAPTER 5 .. 121

Table 5.1: Initial state .. 125

Table 5.2: Initiating a RREQ .. 125

Table 5.3: Getting Multipath ... 128

Table 5.4: A Direct link Failure .. 128

Table 5.5: Initial state of some nodes ... 132

Table 5.6: A route to the destination node (6) in 3 hops ... 134

Table 5.7: A route to the destination in 2 hops at an intermediate node 134

Table 5.8: A route to the destination in 1 hop at an intermediate node 135

Table 5.9: Routing table of an isolated node... 135

Table 5.10: A new route to the destination node in 4 hops, and old broken routes 139

Table 5.11: A new route and old broken routes at an intermediate node...................... 139

CHAPTER 6 .. 149

Table 6.1: Packet Process Actions .. 151

Table 6.2: Simulation Environment Specification .. 152

Table 6.3: Parameters Specifying Node Movement and Network Size Patterns 153

Table 6.4: Parameters Specifying Traffic Patterns ... 154

Table 6.5: MDVZRP‟s Optimum Values ... 156

Table 6.6: A sample of PDF confidence interval and error bars 165

XII

Acknowledgements

In the name of Allah, the Compassionate, the Merciful.

All praise is due to Allah, the Lord of worlds, and peace and blessings of Allah be upon

his noblest messenger and servant, the prophet Mohamed, and upon his family and his

companions.

First, and foremost, I must thank almighty Allah who has always been helping me. I

would like to express my sincere thanks and gratitude to Dr. Peter King, the first

supervisor, who showed me the real objectives and indescribable technique of ad hoc

networks architecture and protocols. Thus, without the means of his useful scholarly

notes, this work would not have been possible. He has guided my work from the very

beginning, and maintained his valuable comments and guidance throughout the long

and painful stages of the thesis writing. Pre-eminent in this regard is also, Professor

Robert J. Pooley, my second supervisor, for his useful feedback. Without his expert

advice, this work would not be in this final form.

I would be indeed remiss if I failed to express my sincere thanks and appreciation to the

all administrative staff and staff members of the school. I also would like to express my

gratefulness to my colleagues, the students of the department for their feedback on my

presentations. Last, but not least I would like to thank all the members of my family for

encouraging and supporting me to present this work in the best form possible. A special

word of thank is also due to the Libyan students‟ community based in Edinburgh for its

constant and invaluable support. Finally, I shall be forever indebted to the Libyan

People out of whose budget my scholarship was financed.

http://www.google.co.uk/imgres?imgurl=http://www.w6w.net/album/35/w6w_w6w_20050424142830072bc6ce.gif&imgrefurl=http://www.w6w.net/pic.php?id=5793&usg=__ilEFtBqV-VMOR0Gd8r1X8NbG00w=&h=100&w=200&sz=9&hl=en&start=958&zoom=0&tbnid=bvHdDLT-KSovOM:&tbnh=52&tbnw=104&prev=/images?q=%D8%A8%D8%B3%D9%85+%D8%A7%D9%84%D9%84%D8%A9+%D8%A7%D9%84%D8%B1%D8%AD%D9%85%D9%86+%D8%A7%D9%84%D8%B1%D8%AD%D9%8A%D9%85&um=1&hl=en&sa=X&rlz=1W1ADRA_en&biw=1276&bih=763&tbs=isch:1&um=1&itbs=1&iact=hc&vpx=1052&vpy=477&dur=219&hovh=52&hovw=104&tx=89&ty=44&ei=FVIGTYPjKOWJ4Abg8KjxBg&oei=t1EGTcBfwYQ6p-TgswE&esq=46&page=39&ndsp=25&ved=1t:429,r:17,s:958

1

Abstract

A collection of mobile nodes can form a multi-hop radio network with a dynamic

topology and without the need for any infrastructure such as base stations or wired

network. Such a Mobile Ad Hoc Networks (MANETs) maintain their structure and

connectivity in a decentralised and distributed fashion. Each mobile node acts as both a

router for other nodes traffic, as well as a source of traffic of its own

In this thesis we develop and present a new hybrid routing protocol called Multipath

Distance Vector Zone Routing Protocol, which is referred to as MDVZRP. In

MDVZRP we assume that all the routes in the routing table are active and usable at any

time, unless the node received or discovered a broken link. There is no need to

periodically update the routing tables, therefore reducing the periodic update messages

and hence reducing the control traffic in the entire network.

The protocol guarantees loop freedom and alternative disjoint paths. Routes are

immediately available within each routing zone. For destinations outside the zone,

MDVZRP employs a route discovery technique known as routing information on

demand. Once the node is informed by either the MAC layer or itself that it should

discover the non- reachable nodes, MDVZRP adopts a new technique.

First, we discuss the Ad Hoc networks and routing in general, then the motivation of

MDVZRP regarding the nodes‟ flat view, and the selection and acquisition of multipath

getting and selection. Furthermore, we describe the stages of MDVZRP and the

protocol routing process with examples. The performance of MDVZRP is then

evaluated to determine its operating parameters, and also to investigate its performance

in a range of different scenarios.

Finally, MDVZRP is compared with DSDV and AODV ordinary routing protocols

(standard) delivering CBR traffic. Simulation results show that MDVZRP gives a better

performance than DSDV in all circumstances, it is also better than AODV in most of

the scenarios, especially at low mobility.

CHAPTER 1: INTRODUCTION

2

The mobile computer users have had a dream that is to access the internet where they

are and while walking into their offices. Consequently, various solutions have been

provided to achieve this goal. The most practical approach presented is to install short-

range radio receivers and transmitters in offices and the portable mobile computers too

to allow them to communicate easily. Such techniques have rapidly led to Wireless

Local Area Networks (Jianfeng, 2009; Martin, 2011). Increasing demand for cheap,

portable and mobile devices for general business and applications have made mobile

computing enjoy a tremendous rise in popularity.

Projections have been made that there are billions of wireless devices in use; also

independent market sources show that every 1½ year the number of users of wireless

devices have been doubling. In addition, a report from DUBLIN - Research and

Markets finds that, the wireless adapter‟s (NIC) volume show double-digit sequential

growth in the fourth quarter of 2009. Also, It was projected that notebook and netbook

PC volume will still experience double-digit increase in the future. The content of this

report is based on primary data obtained through interviews with WLAN makers

(DUBLIN, 2010).

Wired devices and networks also provide effective options for information, data and

resources exchange via networks, but sending via a wired medium is not free of the

communication problems and issues. Non flexibility is the main issue of the wired

system, the wire was extended and, if installed, it is relatively difficult to re-install in

another location without the effort and inconvenience to users, as wired devices do not

provide a reliable communication for phone users with high mobility.

In recent past, the wireless networks and communications are considered to be an

effective choice; the demand for these networks has increased because of:

 Successive developments in wireless technologies and products.

 Continued decline in prices.

 The great freedom available to users of movement without affecting their

business.

INTRODUCTION CHAPTER [1]

3

This can be likened to the wireless networks of mobile phone networks, where the user

can move anywhere he wants to and stay connected with the other terminal as long as it

is within that network reception. Wireless networks may be a misleading term, as the

majority of networks are not completely wireless, in most cases, these networks are a

mixture of devices connected to wires and other devices connected to wireless

networks, this type of hybrid systems are called Hybrid Networks. Of course, the

infrastructure based networks provide a reliable, easy and secure connectivity for

mobile devices; however, it takes time to establish such type of network, additional to

the time taken, the costs associated with the installation of infrastructure can be quite

high.

1.1 Classification of Wireless Networks

Once the dream of the mobile computers users became true by the existence of many

wireless networks models and techniques that brings the trouble of compatibility to

wireless communications, where networks equipments were incompatible. In reality,

that means a computer equipped with a brand X radio would not work in a room

equipped with a brand Y base station (Jianfeng, 2009; Martin, 2011).

Finally, to overcome the wireless LAN issues that related to compatibility, the IEEE

standardisation committee has been tasked by industry to draw up a standard for

wireless LAN as tasked and as had previously been established for wired LAN. IEEE

named the wireless standard in name of 802.11, at the beginning it was known as

WiFi, however, we will call it by its proper name, 802.11.

The IEEE proposed to classify the WLAN into two models:

 Infrastructure based or access point based.

 Non-infrastructure based or in the absence of an access point.

In the former model, the communication takes place through fixed base stations or

Access Points (AP), which coordinate the communication between the mobile devices

as shown in Figure 1.1.

INTRODUCTION CHAPTER [1]

4

Figure 1.1: Infrastructure based WLAN

While in the second model, the mobile devices (Sensors / Computers) help each other to

establish such communication, where each device works as a workstation and a router at

the same time, as shown in Figure 1.2. Such networks work in absence of any static

support of infrastructure (Ad Hoc Networks).

Figure 1.2: Non-Infrastructure based WLAN

Furthermore, in some situations the infrastructure is not available, or cannot be installed

for economical, natural or geographical reasons such as cost, the available time, or

natural disasters, etc. the non-infrastructure network can provide the necessary

INTRODUCTION CHAPTER [1]

5

communications and network services in such situations (Roy, 2011). The nodes in such

networks have to announce their presence periodically and listen for their neighbours

announcements broadcast to discover and learn how to reach each other. In mobile non-

infrastructure model, mobility and scalability are the main challenges, with mobility

implying a non predictable topology and stale routes, while scalability means more

traffic and overhead control packets. Non-infrastructure networks can be realized by

different types such as wireless sensor networks (WSN) (Rodig, 2009), body area

network (BAN) (Yang, 2006), and vehicular Ad Hoc networks (VANET) (Yousefi,

2006; Nasui, 2010).

Hence, efficient routing algorithms (protocols) are needed to make the communication

between the mobile nodes possible, easy and reliable over multi-hop paths, consisting of

several links, dynamic and non-predictable topology in a way that saves the network

resources as much as necessary.

Many routing protocols have been proposed to provide routes in such dynamic

environments. In mobile non-infrastructure networks, the main purpose of a

conventional or standard protocol is to control the way in which the mobile nodes

decide how to exchange the routing information between each other.

Multipath routing is a technique that provides multiple alternative paths between each

source node and destination; the benefit of this technique is fault tolerance, increasing

bandwidth, and security improvements. However, overlapping, looping (infinity loop)

and optimum disjointed paths or node-disjointed are the main problems in such

algorithms. Therefore, finding node disjoint multiple paths in mobile networks is not an

easy task.

Designing and testing of such routing protocols in reality consume a lot of time and cost

a lot of money. Even though there is no efficient simulator in 100 %, using tested

known network simulators is a good way to test and evaluate a new protocol design

where that technique saves the researchers time and money. To design or study a

routing protocol it is recommended to simulate it and evaluate its performance. Mobility

models and communication traffic patterns are the key parameters of the protocol

simulation technique in the mobile non-infrastructure networks (Ad Hoc networks).

http://en.wikipedia.org/wiki/Fault_tolerance
http://en.wikipedia.org/wiki/Bandwidth_(computing)

INTRODUCTION CHAPTER [1]

6

The most widely used simulator for wired and wireless networks is the Network

Simulator (Kevin, 2010). We have used Ns version 2 (Ns2) in designing, testing,

evaluating and improving our new hybrid routing protocol, Multipath Distance Vector

Zone Radius Protocol MDVZRP.

We also used the Random Waypoint (RWP) (Ganapathi, 2008) model which is the most

widely used mobile model in such research. While, Constant Bit Rate (CBR) is the

communication traffic pattern used in the evaluation of our new routing protocol. This

is explained in detail in chapter 2, which includes history, challenges, classifications,

applications and protocols of mobile Ad Hoc networks.

1.2 Summary

This introductory chapter has briefly overviewed both infrastructure and non-

infrastructure wireless networks in general. A simple idea on routing protocols for

multi-hop mobile Ad Hoc networks is also given. However, they are discussed in more

detail in chapter 2. In addition, we briefly mentioned the simulator used in this research

(Ns2), the mobility model (Random Waypoint), and traffic pattern (Constant Bit Rate).

INTRODUCTION CHAPTER [1]

7

1.3 About This Thesis

In this section we will present the overall scope of the thesis, our contribution and

finally, an overview of its structure.

1.3.1 Statement of the Problem and Scope of the Study

Multi-hop mobile Ad Hoc networks presents an open area for research and

opportunities for making significant contributions to it, and many complex issues are

related to their features of random dynamic topology including the lack of centralisation

(monitoring, management, and security), the fact its an open medium, and the

cooperative algorithms involved.

This thesis takes the routing protocol algorithms for multi-hop mobile Ad Hoc networks

as an area of research. This topic has received a lot of concern and attention during the

last few years, where this has been extensively reviewed, and discussed in many

conferences and academic researches. Furthermore, because of the increasing concern

for the multi-hop mobile Ad Hoc network applications and use, this area of research still

receives a lot of industry, and government interesting and funding.

1.3.2 Contributions of this thesis

Most of the multi-hop mobile systems are dependent on batteries to perform their

functionality. Hence, power consumption becomes one of the mobile Ad Hoc networks

issues, especially in an environment where the power charge from time to another is a

difficult job, such as under water and vehicles in hazardous area applications. We have

designed a new routing protocol presents a solution for power consumption for the

mobile Adhoc networks by reducing the number of routing packets sent per data packet

delivered at the destination. Hence, the average control overhead is reduced. This

research focuses on the performance evaluation of the new routing protocol compared

with standard routing protocols for mobile Ad Hoc network. The contribution includes

the protocol design, implementation and performance evaluation based on dynamic

network scenarios and topologies.

INTRODUCTION CHAPTER [1]

8

1.3.3 Thesis Roadmap

Chapter One, the Introduction, has briefly outlined the development of wireless

networking and the growing desire for such networks. Initially, it presents the wireless

networks aims and classifications; it also has briefly discussed and contrasted multi-hop

mobile Ad Hoc networks, their various types of routing algorithms protocols, simulator

that used in this thesis, the mobility model, and the traffic pattern used. Finally, the

remainder of the thesis is summarised.

Chapter Two presents this thesis‟s multi-hop mobile Ad Hoc networks (MANETs)

background. It is a continuation of the introductory chapter, with more discussion and

details. Initially, it presents the multi-hop mobile Ad Hoc networks in detail, which is the

objective of this thesis, where it gives an introduction to its history, characteristics, and

applications. Problems specified to mobile Ad Hoc networks (tradeoffs) are pointed out

and some examples of the routing protocols that are used for mobile Ad Hoc networks

are mentioned. This chapter goes on to discuss the models that are used in such

networks as route determination models, data packets forwarding techniques,

broadcasting or communication models, mobility models, and propagation models.

Finally, it presents the simulation overview and computer networks simulators in more

detail, specially the simulator that has been used in this thesis (Ns2).

Chapter Three concerns the problem and motivation. It presents the aims of the

research and related work regarding the new routing protocol stages and algorithms.

This chapter includes detailed explanation of the new routing protocol motivation,

selection of optimum available path, zone radius and nodes density, routing

initialization, node movement and route on demand.

Chapter Four introduces our new routing protocol (MDVZRP) implementation using

the network simulator (Ns2), after a brief look at the early stages of the design process

that has ultimately led to the current version of MDVZRP. It discusses and describes in

detail the structure and components of the second version of MDVZRP v2.00, such as,

routing table structure, packet format, packet types and their mechanisms. Finally, it

presents in more detail the packet implementation, routing agent implementation, and

all its functions using pseudocode for clearance.

INTRODUCTION CHAPTER [1]

9

Chapter Five provides a number of trace-based simulation scenarios for testing the

functionality of MDVZRP v2.00 in Ns2. Several test-runs are conducted using trace-

based simulation support, and their results are compared to expected real world results

and discussed.

Chapter Six presents the figures and discussion of the new routing protocol

(MDVZRP) performance evaluation with DSDV (Perkins, 1994) and AODV (Perkins,

2001) standard protocols. Several test-runs are conducted using trace-based simulation

support, where the results based on known metrics are evaluated, discussed and

graphically presented. We have also shown and explained the performance

improvements of MDVZRP v2.0 compared to MDVZRP v 1.0. The primary metrics we

considered to evaluate the performance of MDVZRP were Packet Delivery Fraction

(PDF), End to End Delay (EED), Throughput, Normalised Routing Load (NRL) and

Overhead (OH).

Chapter Seven concludes this thesis, summarises the outcome of the entire research,

contributions and achievements, and then provides some notes on future work.

Appendices list and outline the relevant papers (Publication authored) and other related

papers during the period that the work for this thesis was carried out.

CHAPTER 2: MANETS

10

2.1 Introduction

Currently, wireless networks have started to be the choice for effective networking

because of successive developments in wireless product technology, a continued decline

in prices, and the great freedom available for users to move location without affecting

their business. This can be likened to the wireless communication of mobile phone

networks, where the users can move anywhere they like and stay connected as long as

they stay within the coverage area and have a good reception. Much wireless technology

is based upon the principle of direct point-to-point communication as shown in Figure

2.1. In most popular communication models such as Wireless Local Area Network and

Group Standard for Mobile communications (GSM) (GSM Association, 2010), mobile

nodes use an approach, where communication takes place by nodes connecting to each

other via some centralised access points. Therefore, centralisation and infrastructure are

a part of the characteristics of such networks, where they are necessary for their

configuration and operation (Martin, 2011).

Figure 2.1: Infrastructure based Network

There is also another approach, where mobile nodes utilise each other as access point or

relays for traffic when they cannot establish direct communication with endpoints (Out

of direct communication range). That model of communication is called multi-hop or

Mobile Ad Hoc networks or MANETs (Roy, 2011) as shown in Figure 2.2. This type

of network uses the multi-hop model. It can be set up randomly and when needed (on-

http://www.google.co.uk/search?hl=en&sa=G&tbo=1&tbm=bks&q=inauthor:%22Martin+Sauter%22&ei=55-tTb37LoyZhQeOl_y4DA&ved=0CEMQ9Ag

MANETS CHAPTER [2]

11

demand), and should be self configuring. All nodes can be mobile resulting in a

possibly dynamic network topology (Xiang, 2008).

Figure 2.2: Mobile ad-hoc networks (MANETs)

Since we are interested in Computer networks, and based on the previous sections and

media of propagation, we can say the Computer local area networks can be classified as

shown in Figure 2.3, where the red marks show our area of interest.

Figure 2.3: Computer local area networks

MANETS CHAPTER [2]

12

2.2 MANETs

First, the term “Ad Hoc” has been borrowed from the Latin term which means “for this

purpose” or: "to manufacture or to use a special form”. For this reason, this type of

wireless computer networks is called Mobile Ad Hoc Networks or (MANET) (Michel,

2007; Roy, 2011).

MANET is a collection of mobile nodes, where data packets are transferred from one

node to another without passing through any access point by forming a temporary

multihop radio network to maintain connectivity in a decentralised manner. Since the

communication between the nodes in MANET is based on the wireless approach, it also

suffers from the effects of radio communication, such as interference, noise, and fading.

Furthermore, MANET has less bandwidth in the links between nodes than in a wired

network. In general, topology in MANET is dynamic due to the departure of nodes and

arrival of new nodes, so it varies with time. Therefore, links between nodes are not

stable and not fixed, changeable. Some of MANET‟s features are based on the packet

radio networks that were studied extensively in the 1970s and 1980s (Martin, 2011).

2.2.1 History of MANETs

 The first generation dates back to the early 70s, as research sponsored by

Defence Advanced Research Projects Agency DARPA into using packet

switched radio communication to provide reliable computer networks. At the

time they were called Packet Radio Networks (PRNET) (Redi, 2002).

 The second generation of MANET emerged in the 1980s from a project by

DARPA too, this was called Survivable Adaptive Radio Networks (SURAN)

and its aim was to enhance and implement a set of MANET systems. That

project provided packet switched networks in a non-Infrastructure environment

to the mobile battlefield (Redi, 2002).

 In the 1990s, adoption of "Ad Hoc networks" term by the IEEE 802.11

subcommittee, and notebook revolution brought a commercial approach to

public Ad Hoc networks as a part of mobile wireless computers and some other

communication equipment. In addition, mobile networks became a focus of

discussion at several research conferences (Friisø, 2003; Redi, 2002).

MANETS CHAPTER [2]

13

 In the late 90s and early 2000s, the availability of simple intelligent equipment

such plug-in and play systems allowed the establishment and management of

personal wireless local area networks, hence becoming affordable; even in areas

with no available infrastructure for such communication (Chaudet , 2005).

 In early / mid 2000s MANET‟s commercial applications were launched.

Bluetooth, a commercial application of MANETs, provides a quick

communication between the personal area networks users to eliminate use of

wired networks (Bluetooth, 2007; Martin, 2011). Research into the concept of

m-commerce trading systems using MANETs is being developed (Osman, 2008;

2011).

 The next-generation of ad hoc networks need to be able to handle high mobility

in order to support a wide range of emerging applications such as vehicular

networks and mobile sensor networks (Ai Hua Ho, 2009).

2.2.2 MANETs Characteristics

From the introduction, we can summarise that MANET (Taruna, 2011) is an

autonomous system of mobile nodes moving at any time in random dynamic topology,

these mobile nodes are self organised and deployed with routing capabilities, and

communicate over wireless links in the form of peer-to-peer and multi-hop forwarding

connectivity independent of centralised authority. The system may operate in isolation,

because of a lack of any fixed infrastructure, or may have gateways to and interface

with a fixed network (Roy, 2011)

2.2.3 MANETs Issues

In addition to the effects of radio communication issues that MANETs are vulnerable to

and which were inherited from the wireless communication system (interference, noise,

and fading), there are also other constraints in the network security and energy, for

example, when the MANETs nodes depend on batteries or other exhaustible energy

systems for their operations. Regarding security, MANETs are generally more prone to

physical security threats than centralised authority (wired / wireless) networks

(Ramanarayana, 2007; Hoang, 2008; Nishu, 2009).

MANETS CHAPTER [2]

14

2.2.4 Some Applications of MANETs

Unlike a fixed wireless network, MANETs are suited for use where infrastructure is

unavailable. One of many possible applications of MANETs is in some environments,

where the need for collaborative mobile devices might be more important, for instance

in an outside environment rather than inside offices. There are many applications where

MANETs can be more beneficial than other networks such as in emergency response

networks, search and rescue, policing and disaster recovery, where rapid

communication is crucial (Luis, 2008; Osman, 2008).

2.2.5 Difficulties for Routing in MANETs

 Transmission range limitation.

 Low bandwidth.

 Higher error rates.

 Vulnerable to interference.

 Power consumption.

 No specific devices to do routing.

 Dynamic nature - frequent topological changes.

2.2.6 Routing Algorithm in MANETs

Moving a data packet from a specific source to a destination in an internetworking is

called routing (Goldsmith, 2005). This process is the Internet key feature, where it

enables the user‟s messages to be transferred from one computer to another until they

reach the target user or machine. There is a dedicated device that usually performs such

a process in some types of wired and wireless networks, called a router.

While in MANET, the node moves at different speeds in independent random form,

connected by any number of wireless links, where each intermediate node is ready to

pass or forward both data and control traffic unrelated to its own use ahead.

Determining and selecting of the best route to the target machine or node is also part of

routing protocol process in MANET (Sharvani, 2009).

http://en.wikipedia.org/wiki/Wireless

MANETS CHAPTER [2]

15

2.2.7 MANETs Routing Protocols

Because of some MANET characteristics and tradeoffs such as a lack of fixed

infrastructure, no centralised authority, the mobile nature of the nodes, limitation in

bandwidth and security, the traditional routing protocols are not suitable for

communication over such networks. Hence, communication between nodes in such

networks is needed for efficient routing protocols to allow the nodes to communicate in

such an environment. Since these networks pose many complex issues, extensive

studies and research have been carried out to provide solutions to such issues, for

example, efficient routing protocols (Boukerche, 2009; Taruna, 2011).

Routing has become a major area of MANETs research. In recent years, many routing

algorithms for mobile MANETs have been proposed, but it is not clear how different

algorithms behave in different environments. An algorithm may be better in a particular

network but worse in another. Therefore, many routing protocols are provided in such

unpredictable dynamic environments.

These protocols can be broadly classified into three categories, namely, proactive,

reactive, and hybrid. Figure 2.4 shows the classification of Ad Hoc routing protocols

with some examples of standard (known) routing protocols (Abolhasan, 2004;

Boukerche, 2009).

Figure 2.4: Classification of Ad Hoc routing protocols

The next few sections include a brief overview of some previous Ad Hoc routing

protocols, and we are going to focus in detail on a number of routing protocols that have

a close relationship to our new protocol in some phases.

MANETS CHAPTER [2]

16

2.2.7.1 Proactive Routing Protocols

Proactive protocols are also called table-driven, and traditionally are classified as either

distance-vector or link-state protocols. They perform their tasks by periodically

maintaining fresh lists of routes for each destination in the entire network. Therefore,

routes are calculated in advance to all included nodes (needed or not needed) even those

in which no data packets are sent (Xiang, 2008).

The advantage of such protocols is that they initiate low latencies, because routing

information is already available at the transmission of the first data packet. However,

they continuously react to topology changes, and use resources to provide up-to-date

routing information, even when those changes have not affected any traffic, when that

increases the amount of routing overhead which counts as the weakness of such routing

protocols. Furthermore, any change notified by any node, propagates through the entire

network to provide routing information for mobile nodes. Otherwise, some nodes

routing table information would remain stale, where that may lead to the risk of link

failure in some cases.

In general, due to the amount of overhead routing, this family of routing protocols tends

to have difficulty in managing large scale mobile networks. Furthermore, if the size of

the network is large, the routing tables will occupy a large space of physical storage or

Memory, and updates may lead to inefficient resources of the network if they occur too

frequently. The following protocols are some known types from the proactive family

(Xiang, 2008; Boukerche, 2009; Taruna, 2011).

Destination Sequenced Distance Vector Routing protocol (DSDV): is one of the

earliest protocols for MANETs. It was developed by Perkins and Bhagwat in 1994, but

this description is based on the Bellman-Ford algorithm (Thomas, 2001). The concept

of Perkins‟s algorithm is based on each node constructing its own routing table

containing routes to each destination, where each entry in that table is marked with an

updated, even sequence of numbers generated by the destination for each active

workable route and an odd or an infinite number for broken routes (Taruna, 2011).

http://en.wikipedia.org/wiki/Mobile_ad-hoc_network

MANETS CHAPTER [2]

17

Nodes update their routing tables in two ways, an infrequent full dump (whole routing

table of transmitting node) when there are significant changes, and smaller more

frequent incremental updates, since the last full dump. Figure 2.5 shows a simple Ad

Hoc network for 7 nodes, while Table 2.1 illustrates node (A) routing table and all

possible reachable paths by node A. Each path in fact is an entry in the node (A) routing

table, containing a destination number, next hop, number of hops, and sequence number

Figure 2.5: A simple Ad Hoc network for 7 nodes

Table 2.1: Routing Table of Node A

Destination Next Hop Number of Hops Sequence Number Install Time

A A 0 A-22 T1

B B 1 B-12 T2

C B 2 C- 48 T3

D B 2 D- 26 T4

E B 3 E- 48 T5

F A 1 F-50 T6

G B 4 G-∞ (G-250) T7

Route selection depends on two fields, the sequence number and number of hops, where

the sequence number has the highest precedence (Priority). If new route information is

received, the route with latest sequence number is used, if the new route has same

sequence number as the one already saved in the routing table, the one that has a better

metric (less number of hops) is chosen (Perkins, 1994; Xiang, 2008).

G

D

e

s

t

i

n

a

t

i

o

n

 F

D

e

s

t

i

n

a

t

i

o

n

A
B

D

C

E

MANETS CHAPTER [2]

18

Wireless Routing Protocol (WRP) is a distance vector proactive unicast routing

protocol for MANETs. WRP was introduced by SHREE MURTHY in 1995 (Murthy,

1995). It is also based on Bellman-Ford‟s algorithm and it is in fact an enhanced version

of DSDV, where each node maintains an up to date routing table and informs its

neighbours by a single update message. Hence, it expects to receive an acknowledgment

message (AKC) from each neighbour. Therefore, WAR‟s mechanisms guarantee a

reliable message exchange and a readily available route to every destination in the entire

network. It differs from DSDV in that, the DSDV maintains only one routing table to

provide routing information, while WRP uses four tables as follows: Routing Table

(RT), Distance Table (DT), Link-Cost Table (LCT), and Message Retransmission List

(MRL) to provide more accurate routing information (Taruna, 2011).

There are several proactive routing protocols presented as uniform routing protocols for

MANETs such as Fisheye State Routing (FSR). It is based on link state routing, the

routing information is immediately provided when needed (Pei, 2000). Distance

Routing Effect Algorithm for Mobility (DREAM) is another proactive routing protocol.

It is a location based routing, and uses two techniques. The first, called the distance

effect, the location information in routing tables can be updated as a function of the

distance separating nodes without compromising the routing accuracy. The greater the

distance separating two nodes, the slower they appear to be moving with respect to each

other. Accordingly, the second technique is that of triggering the sending of location

updates by the moving nodes autonomously, based only on a node‟s mobility rate

(Stefano, 1998).

In addition, some other proactive routing protocols classified as non-uniform are

presented as well, they actually Core-node based routing, such as Landmark Ad Hoc

Routing (LANMAR). In large-scale ad-hoc networks an enhanced version of LANMAR

protocol by the same authors (Hong, 2000) is presented to dramatically reduce routing

table size and routing update overhead. It combines the features of FSR and LANMAR

routing algorithm (Hong, 2000). Also, Core-Extraction Distributed Ad Hoc Routing

(CEDAR), and Optimised Link State Routing protocol (OLSR) (Jacquet, 1998), are

presented as non-uniform proactive routing protocols as well. CEDAR (Sinha, 1999) is

a hierarchical routing approach. A set of nodes called the core tries to maintain stable

http://en.wikipedia.org/wiki/Bellman-Ford_algorithm
http://wiki.uni.lu/secan-lab/Sinha1999.html

MANETS CHAPTER [2]

19

high-bandwidth links. The selection of routes is done with the consideration of the

quality of service a link could provide.

2.2.7.2 Reactive Routing Protocols

In this type of protocols, the data transmission is on demand based. Therefore, they are

called on demand or source initiated (Xiang, 2008; Taruna, 2011). These protocols are

not continuously affected by the topology changes as the proactive are, so the network

is silent until data transmission is needed. Therefore, they dramatically reduce routing

overhead, leaving more network resources available for other network traffic.

The node creates routes when it is explicitly desired to forward packets, by initiating and

flooding the network with route request packets using the route discovery mechanism,

where any node that receives that request replies it if it has routing information

regarding it. Otherwise, it rebroadcasts the same route request again. This process

continues until the route is found or all possible routes have been examined. For this

reason reactive protocols suffer from high latencies in route discovery, and route look-

ups could take some time. The next sub-sections are a few examples under this

category:

Ad Hoc On Demand Distance Vector (AODV) routing protocol, is the most well

known reactive protocol for MANETs by Perkins and Das (Perkins, 2001). It is a

multicast and unicast routing protocol based on DSDV, introduced in 1997. AODV is

not continuously affected by the topology changes, for this reason it has less overhead

than the proactive protocols. The network is mainly silent in case of AODV, unless a

source node needs to establish a connection with another destination node in the

network, at which time it creates and broadcasts a route request or RREQ marked with

the requested destination address. This process is called Route discovery, as shown in

Figure 2.6. (Xiang, 2008; Taruna, 2011).

The RREQ message is forwarded by other intermediate AODV nodes in the network.

As this message is spread through the network, each node that receives it sets up a

reverse route or a route towards the requester node. As soon as the RREQ reaches an

intermediate node that already has a fresh enough route to the specified destination, or

the destination itself. The node sends a route reply RREP unicast message backwards to

the requester node once such a message has been received. Intermediate nodes use the

MANETS CHAPTER [2]

20

 Destination

 (3)

 (1)

 (1)

 Source

 Destination

 (3)

 Source

reverse routes created earlier for forwarding RREP message. AODV such as all the

reactive protocols has high latencies in route discovery. AODV utilises three types of

routing messages: Route Requests (RREQs), Route Replies (RREPs) and Route Errors

(RERRs).

 (2) (3)

A. Flooding in AODV B. RREP Establishment

Figure 2.6: Route discovery process in AODV, based on Perkins and Royer 2001

Since AODV is based on DSDV, it ensures loop freedom by using sequence numbers.

The sequence number is generated by a destination node and included in the route

request or route reply sent to desired nodes. It is also used by other nodes to determine

stale routing information. In AODV, each node has its own routing table to save routing

information for only those nodes it has already communicated with; while in DSDV the

routing table saves routing information for all destinations in the entire network.

During packet transmission, the AODV source nodes always select the route with

greatest sequence number and the least number of hops as the DSDV nodes do. In case

of link failure, a list of unreachable destinations is put into a routing error message

RERR and passed to the neighbouring nodes (precursors) that are likely to use the

current node as their next hop towards those destinations. For this reason, nodes

maintain a precursor list for each routing table entry. Figure 2.7 illustrates the route

discovery process and route error. Routes are only kept as long as they are needed. If a

route is not used for a certain period of time, its corresponding entry in the routing table

is invalidated and subsequently deleted (Xiang, 2008).

AODV is currently one of the most popular Ad Hoc routing protocols and has enjoyed

numerous reviews including Broch (1998), Johansson (1999) and Larsson (1998).

F

D

e

s

t

i

n

a

t

i

o

n

A
B

D

C

E E

C

B

D

A

F

D

e

s

t

i

n

a

t

i

o

n

MANETS CHAPTER [2]

21

Furthermore, several independent AODV implementations exist, such as AODV-UU

(Wiberg, 2002).

Figure 2.7: AODV route discovery and protocol messaging

Dynamic Source Routing (DSR) which is also a reactive routing protocol, was

introduced in 1996 by Johnson and Maltz (Maltz, 1996). To reduce overhead, DSR only

acquires routes when needed. It is also a beacon-less protocol that means it does not use

periodic table-update messages to manage or keep an up-to-date view over the entire

network like proactive protocols do. It also differs from AODV and reacts very quickly

to any change in the network topology.

DSR is Link State based Algorithm, where each DSR source node is capable of keeping

the best route to a destination node. The protocol composed of two mechanisms, route

discovery and route maintenance, when data packet transmission needs to take place

from a source node to a destination, the source node checks its route cache. If no route

is available to that destination, the source node broadcasts RREQ that initiates a route

discovery process similar to AODV. The only difference is that DSR intermediate node

appends its own addresses before forwarding to RREQ if does not have a valid route to

that destination in its route cache as shown in Figure 2.7 (Xiang, 2008).

 S A B C D

 Hello

 RREQ

 RREP

 Data

 RERR

MANETS CHAPTER [2]

22

Figure 2.8: Route discovery process in DSR- (A) RREQ

When the RREQ reaches a node has an available route (node 3 for example) or the

requested destination itself (node 5) as shown in the route discovery process in Figure

2.8. The node sends an RREP back to the source node using the available routing

information (the reverse route included in RREQ) as shown in Figure 2.9. The RREP

contains the requested route to the destination node.

In case of link failure occurring during the data packet transmission, the RERR is sent

back to the source node such as AODV, where each node is responsible for confirming

that the next hop has received the transmitted packet. This stage is called route

maintenance. In general, due to route discovery and maintenance, DSR exhibits high

overhead especially in high traffic networks (Xiang, 2008).

RREQ (Source

id, Destination id,

previous hops)

MANETS CHAPTER [2]

23

Figure 2.9: Route discovery process in DSR- (B) RREP

In (Zafar, 2007) a Shortest Multipath Source Routing (SMS) protocol is presented as a

multipath extension to DSR for real time data and multimedia applications. SMS is

based on multiple partial-disjoint paths from a source to a specific destination node. We

presented this protocol in more details in related work section.

Many other reactive routing protocols are presented for MANET‟s such as LAR, ABR,

and SSR/SSA. Location-Aided Routing Protocol (LAR) is a location based on-demand

routing protocol. It is designed to reduce the overhead routing, using the location

information it derives from GPS (Global Positioning System). Instead of using flooding

technique to obtain a route to a destination as the case in AODV and DSR, LAR sends

the route request only into the destination‟s area (Ko, 1998).

Associatively Based Routing (ABR) is a source initiated routing protocol that eliminates

the need to update the routes periodically. It uses flooding of route request messages as

the case in AODV and DSR to obtain a route to a destination. Two advantages of this

RREP (Source id,

Destination id, hops)

MANETS CHAPTER [2]

24

protocol are: stable routes have a higher preference compared to shorter routes; Also, it

repairs the broken link locally, so the source node doesn‟t need to generate route request

(finding-process) when discovers a broken link. Unfortunately, it‟s preference for stable

paths sometimes leads longer than the shortest path, may result in high delays during the

packets delivery (Toh, 2001; Murthy, 2004).

In addition, Signal Stability-based adaptive Routing Protocol (SSR/SSA) is a proactive

on-demand routing protocol as well, it is based on link-stability, which means that the

routes between the nodes selection is based on the signal strength. This technique has

effect of choosing routes that have stronger connectivity (Dube, 1997).

MANETS CHAPTER [2]

25

2.2.7.3 Hybrid Routing Protocols

These types of protocols combine both proactive and reactive approach (Boukerche,

2009). They use the proactive approach to determine the best routes to the destination

node, and only report the routing information if there is a change in the network

topology as the case of the link state approach. Since these types of protocols combine

the reactive and proactive approaches, they also carry the problems associated with

them. There is a number of hybrid routing protocols such as: Zone Routing Protocol

(ZRP), Hybrid Routing Protocol for Large Scale mobile Ad Hoc networks with mobile

backbones (HRPLS) and The Temporally-Ordered Routing Algorithm (TORA) (Yang,

2002; Taruna, 2011).

Zone Routing Protocol (ZRP) was the first hybrid routing protocol introduced in 1997

by Haas and Pearlman (Haas, 1997), combining the advantage of proactive and reactive

protocols. It is based on zones concept (Clustering) as its name implies. It divides the

network into a couple of routing zones to reduce the control overhead of a proactive

approach, and decreases latency caused by the flooding technique that is used in route

discovery in a reactive approach. Zone is a group of neighbours around a node. Figure

2.10 illustrates the routing zone of node S surrounded by its neighbours, where distance

(zone radius) is 2. The nodes that lie inside the routing zone, where the distance from S

is less than zone radius (1 hop) called interior nods (A, B, C, E, and F). The nodes that

lie at distance exactly equal to zone radius (2 hops) such as G, H, I, and J are called

peripherals. Each node may be within more than one routing zone (multiple overlapping

zones). Node K is out of the node S routing zone, because the shortest distance from S

to K is greater than zone radius (3 hops).

Figure 2.10: Routing zone where zone radius = 2

MANETS CHAPTER [2]

26

The number of routing zones in each network depends on the assumed zone radius or

distances expressed in number of hops. The routing zone size is not a physical or

geographical measurement. It is a radius length in number of hops. The routing zone

size is also affected by transmission range also. Increasing the transmission power

increases the number of nodes in the routing zone, and decreasing the transmission

power decreases the number of nodes in the routing zone.

As we mentioned, the ZRP combines two sub-protocols, a proactive protocol for local

routing between nodes within routing zone called IntrA-zone routing protocol (IARP)

(Haas, 2001), and reactive protocol for global routing between zones called IntEr-zone

(Haas, 2001) routing protocol (IERP).

Local neighbours are detected using Neighbour Detecting Protocol (NDP). That means,

if both the source node and destination are in the same routing zone then the route is

already established and must already be in the source node routing table. Hence the

packet is delivered immediately. For destinations beyond the local routing, the nodes

outside the source node‟s routing zone, the reactive approach takes place and establishes

route discovery technique by sending RREQ only to its border neighbours (Peripherals)

using Bordercasting by BRP (Broadcasting routing protocol) instead of broadcasting

which sends it to all neighbours.

The RREQ packet is forwarded in same context of bordercasting, till it reaches a node

the requested destination is a member of its routing zone, and then sends an RREP back

to the source node. The source node uses the routing information (path) saved in the

RREP to send the data packets to the destination node.

The main advantage of ZRP is less control overhead than both proactive and reactive

protocols. Furthermore, some routing protocols have no hierarchy in the treatment of

the network nodes, where all the nodes deal with routing information in same manner,

these routing protocols called uniform protocols (Kuosmanen, 2002; Jayakumar, 2007).

Other routing protocols called non-uniform routing protocols treat the network nodes in

a different manner and in hierarchical form by clustering or partitioning the network

nodes in dealing with control messages. Table 2.2 shows some MANET‟s protocols

classified according to node uniformity.

MANETS CHAPTER [2]

27

Table 2.2: MANET Routing Protocols Classifications (Source MiNEMA)

Uniform

routing

Proactive

routing

Wireless Routing Protocol (WRP)

Destination Sequence Distance

Vector (DSDV) routing protocol

Fisheye State Routing (FSR)

Distance Routing Effect Algo. for

Mobility (DREAM)
Location-based routing

Reactive routing

Dynamic Source Routing (DSR)

protocol
Temporally-Ordered Routing

Algorithm (TORA)
Ad Hoc On-demand Distance

Vector Routing (AODV)
Location Aided Routing (LAR) Location-based routing
Associativity Based Routing (ABR)

protocol
Link-stability based

routing protocol
Signal Stability-base adaptive

Routing (SSR)
Link-stability based

routing protocol

Non-

Uniform

Zone-based

routing

Zone Routing Protocol (ZRP) Hybrid routing protocol
Hybrid Ad hoc Routing Protocol

(HARP)
Hybrid routing protocol

Zone-based Hierarchical Link State

routing (ZHLS)
Hybrid routing protocol

Grid Location Service (GLS) Location service

Cluster-based

routing

Clusterhead Gateway Switch

Routing (CGSR)

Hierarchical State Routing (HSR)
Cluster Based Routing Protocol

(CBRP)

Core-node based

routing

Landmark Ad Hoc Routing

(LANMAR)
Proactive routing

Core-Extraction Distributed Ad

Hoc Routing (CEDAR)
Proactive routing

Optimised Link State Routing

protocol (OLSR)
Proactive routing

MANETS CHAPTER [2]

28

2.2.8 MANET’s Models

In this section, and its sub-sections, we will discuss the primary routing and

communication modules used in MANETS. These modules include path selection

methods, types of data packet forwarding, communication channels, and techniques of

control packets broadcasting.

2.2.8.1 Route Selection Models

Providing the right algorithms to find and select the most effective routes, after the

information caching stage for the data packet journey from the destination node to the

source, is another stage of MANET‟s routing protocols. Sometimes, they are called

route determination models. Those models need to read and understand the structure

and standard of routes databases and to perform successful calculations for getting

effective routes. Most single path routing protocols select and store the best route into

the source node routing table to the requested destination node, where most multi-path

routing protocols select and store more routes for backup purposes. The routing

protocols can be classified based on the route determination into the following types:

 Signal Strength: It refers to the radio signal propagation magnitude, or signal‟s

electric field at a reference point. The performance of wireless network and

network‟s bandwidth total amount depends on signal strength between nodes of the

network (Route life-time), as the signal is weak as the route life-time is short. The

accurate packets deliver over the best signal strength route (Agarwal, 2000). As we

mentioned previously, this model has been used in Signal Stability-base Adaptive

Routing protocol (SSR/SSA) (Dube, 1997).

 Link Stability: Associatively Based Routing ABR (Toh, 1997) protocol is

based on link stability as shown in Table 2.2. The strength of the weakest link in a

route, informs how stable that route is. Quality and accuracy of data packets along a

route depend on the stability of that route (Nandi, 2007).

 Shortest Path / Link State: Most of the proactive routing protocols are based

on this metric, where the shortest path algorithm is used to provide the optimum

paths, such as Wireless Routing Protocol (WRP) and Optimised Link State Routing

protocol OLSR (Clausen, 2003) as classified in Table 2.2.

MANETS CHAPTER [2]

29

 Distance Vector: Such protocols select the optimum routes based on the

number of hops metric (distance) form the source node to the destination. For

example, Destination Sequence Distance Vector DSDV routing protocol (Perkins,

1994), Distance Routing Effect Algorithm for Mobility DREAM (Basagni, 1998),

and On-demand Distance Vector Routing AODV (Perkins, and Royer 2001) are all

classified under this criteria.

 Directional Routing: Routing this type of protocol is based on the number of

hops metric (distance) and location. Where routing information is less updated for

nodes with a slow movement than nodes with high mobility. Location Aided

Routing LAR (Young-Bae, 2000), and Distance Routing Effect Algorithm for

Mobility DREAM (Basagni, 1998), are examples of directional routing.

2.2.8.2 Data forwarding Models

Routing of data packets in MANET depends on the routing information available at the

source and intermediate nodes. Therefore, we can also classify the routing algorithms

based on the data packets forwarding techniques as follow:

 Single Path: Most of the MANET protocols are single path, where each source

node uses a single path to each destination to forward the data packets. DSDV,

AODV and DSR are examples of single path routing protocols (Mueller, 2004).

 Multi-Path: Multi-path routing is a way of improving the reliability of the

transmitted information. Where the routing algorithms provide more than one

route (Multipath) between a single source and a single destination node. The

advantage of multi-path routing mainly depends on the disjoint paths from a

source to destination availability. There are two types of disjoint paths; node

disjoint and link disjoint. A node disjoint path is at path (route) which does not

have any nodes in common with another path, except for the source and the

destination. While the link disjoint paths do not have any common links, but

may have common nodes (Tachtatzis, 2008; Natarajan, 2010).

MANETS CHAPTER [2]

30

2.2.8.3 Broadcasting Models

Packets exchange between the nodes is the main purpose of any network. The same

message may be sent by a single source to a single destination, multiple recipients or to

a specific group, such the case in the Internet applications (Email). Therefore, we can

classify the broadcasting models in MANET into the following types (Roy, 2011):

 Broadcast: Communication is established between a single source and all the

nodes in its transmission range (neighbours).

 Unicast: Communication is established between a single source and single

destination.

 Border-cast: Communication is established between a single source and its

peripheral nodes (nodes lie in the edge of the routing zone). This is used by ZRP

routing protocol.

 Multi-cast: Communication is established between a single source and a list of

selected recipients.

MANETS CHAPTER [2]

31

2.2.8.4 Mobility models

Mobility models represent the way in which the mobile users may move from place to

another. In MANET the mobile user movement can take more than one form in

different speeds over time, where they can move freely within the field in random

directions. Such models are frequently used for simulation purposes. To test and

evaluate a protocol performance for MANET, it is important to test it under realistic

conditions in different scenarios including nodes mobility model and traffic load. A

Survey of Mobility Models for Ad Hoc Network Research by Tracy Camp and others

(Camp, 2002; Roy, 2011) includes all the mobility models used in MANET. There are

several mobility models; in the next sub-sections we are going to focus and discuss only

the most commonly used models.

 Random Waypoint Mobility Model (RWP): This is the mobility model used

in this research. It is a normally used as a simulation tool for mobility in wireless

networks. It was proposed by Johnson and Maltz (Maltz, 1996). It has become a

benchmark model to evaluate the MANET routing protocols. According to some

surveys it is used in 60% of simulation experiments.

It is based on random movement and several speeds over the time, where a

mobile node remains fixed for an interval of time called thinking time or Pause

Time [Minimum pause time, Maximum time], then chooses a random

destination from its location and starts its journey towards it with a randomly

selected speed, uniformly distributed between [0- Maximum Speed] m/sec.

Each time the node reaches the destination location, the pause process will be

repeated (Ganapathi, 2008; Hyytia, 2005).

 Random Walk Mobility Model (RWM): A mobile node in this model walks in

random directions between 0 and 2π [0-180], and random speeds [0, Vmax]

from its current location to a new location. Specifying a short time or distance

that means the mobile nodes are only permitted to walk in a very restricted

simulation area within the simulation time.

MANETS CHAPTER [2]

32

Each node movement occurs in either a constant interval of time or a constant

distance. Once the mobile node reaches its desirable location (destination) a new

direction and speed are recalculated after a given time or distance walked. A

mobile node‟s new directions and speeds in a random waypoint model are

independent of the previous direction and speed information.

Unusual movements such as sharp turns or sudden stops can be generated

because its mobility pattern is a memory-less, where the information about the

previous movement is not used for the next (future) movement as we mentioned

previously. We can say a mobile node moves with a zero pause time in RWP

model is same as in a Random Walk model (Camp, 2002).

 Random Direction Mobility Model (RDM): This model was presented to

reduce the high probability of density waves by the RWP. Density waves are the

nodes‟ gathering (caching) and deployment in part of the simulation area or its

centre. A mobile node movement in this model is similar to the RWM, which

chooses a random direction, and then travels to the border of the simulation area

in that direction. Once it reaches that boundary, it pauses for a specified time,

and then chooses a new direction between 0 and 2π [0-180] and the process

continues (Gloss, 2005). Random Direction Mobility Model (RDM) has a much

higher hop count than most other models because of pause time at the borders of

simulation area.

Furthermore, there are other mobility models in use, but not mentioned or discussed

previously in this thesis, such as Random drunken (RD), and Trace based (Vetriselvi,

2007). In the Random drunken model a mobile node, randomly chooses a changeable

direction after every unit of distance, and moves independently towards it, with the

same average speed for a certain time, continuously within the topology without

pausing (Wu, 2006). The RD model is not used to design or configure realistic

scenarios, but used as a template for the development of new mobility models. While, a

mobile node in a Trace based model moves according to the mobility specification

provided by the user.

MANETS CHAPTER [2]

33

2.2.8.5 Radio Propagation Models

Characteristics of propagation are different from one model to another, and depend on

many factors. For an example, signal power, this differs from packet to another. Each

mobile node‟s physical layer contains a receiving threshold. If a received packet‟s

signal power is below the receiving threshold, that packet is marked as an Error and

neglected (dropped) by the MAC layer (Kevin, 2010; Roy, 2011). Therefore,

propagation models are important in the planning process, they are used to predict the

path loos along a distance and an antenna effective coverage area (Itoua, 2008). There

are three radio propagation models implemented in ns-2; the free space model, the two-

ray ground reflection model and the shadowing model. Originally, all these models

come from the domains of radio engineering and physics (Wiberg, 2002).

 Free Space: This propagation model is ideal for clear line-of-sight path between

 transmitter and receiver (Itoua, 2008; Kevin, 2010).

 Two-Ray Ground Model: This is the model that has been used in this research.

It is more accurate than the free space model, especially over long distances,

where it considers the path between transmitter and receiver for both cases in

ground reflected, and direct propagation, while it does not provide guaranteed

results in short distances (Itoua, 2008; Kevin, 2010).

 The Shadowing Model: In reality, the received power as a deterministic

function of distance is not ideal circle as the above two models are predicted, but

due to multipath propagation effects, it is at certain distance a random variable

(Kevin, 2010). The shadowing model, attempts to more realistically model

multi-path propagation effects, in other words fading. This model has two parts;

a path loss model, which predicts the mean received signal power at the distance

from the transmitter, and a log-normal random variable, which models

probabilistic communication between nodes at the edge of the radio range

(Wiberg, 2002; Itoua, 2008).

Many other models are presented but not implemented in Ns2 simulator, these models

such as Terrain, City and Band-specific models. The Terrain models are mainly used for

getting a fast overview over a landscape. John Egli has introduced one of the terrain

MANETS CHAPTER [2]

34

models in (Egli, 1957), Egli‟s model is typically suitable when one of the receivers is

fixed (antenna) and another is mobile (cellular communication) (Elsallabi, 2007).

Longley–Rice (LR) and ITU are two other examples of terrain models. The LR was

created for the needs of frequency planning in television broadcasting, it is an example

of free-space transmission for frequencies between 20 MHz and 40 GHz, it covers area

where its path lengths between 1 - 2000 km(Rice, 1967). ITU is another example of

terrain models (an example of line-of-sight propagation models); it predicts the path

loss as a function of the height of path blockage and the First Fresnel zone

(electrodynamics, acoustics, and gravitational radiation) for the transmission link.

The Hata and Okumura are two examples of the city models for Urban Areas. The

Okumura is typically ideal for using in cities with many urban structures but not many

tall blocking structures, this model is not typically ideal for modern US cities because of

the high towers buildings this model has been presented based on measurements made

in the city of Tokyo, Japan to determine the median field strength and numerous

correction factors. This model supports frequencies between 150MHz to 1920 MHz, it

covers area between 1 - 100 km. The Hata model is an extension (developed) version of

the Okumura Model, it coverage frequencies between 1500 to 2000 MHz (Seybold,

2005).

http://en.wikipedia.org/wiki/Longley%E2%80%93Rice_model
http://en.wikipedia.org/wiki/ITU_Terrain_Model
http://en.wikipedia.org/wiki/ITU_Terrain_Model
http://en.wikipedia.org/wiki/ITU_Terrain_Model
http://en.wikipedia.org/wiki/ITU_Terrain_Model
http://en.wikipedia.org/wiki/ITU_Terrain_Model
http://en.wikipedia.org/wiki/Fresnel_zone
http://en.wikipedia.org/wiki/Tokyo
http://en.wikipedia.org/wiki/Japan
http://en.wikipedia.org/wiki/Okumura_Model

MANETS CHAPTER [2]

35

2.3 Simulation Overview

A Networks simulation concept is based on the modelling of real world networks on a

computer screen, using computer software designed and implemented for this purpose,

such as Network Simulator 2, which has been used in this research. It is intended by the

real networks, the networks that are implemented on present, or the networks that wish

to implement in future. Computer simulations have many benefits, for example: as long

as these networks can be modelled using the computer simulators, it is possible to

change and easily control all their characteristics, and all related components.

Furthermore, a simulation and modelling process, using computer software, is a low-

cost alternative when compared to the real implementation without a prior study.

Particularly taking into account all the tests that may have to be carried out and then

repeated again, parts and equipment which may be changed each time to reach the

objective.

Figure 2.11: Simulation and modelling cycle

In general, to simulate any model, it has to pass through four phases, called the

modelling cycle, as shown in Figure 2.11. Creating the network, choosing its

components and standards such as, network size, topology, protocol type, and its

standard IEEE 802.11, IEEE 802.11a, or IEEE 802.11b for an example, also the type of

modulation method, whether we will use the option of RTC / CTS or not, or the option

of Fragmentation, and medium access mechanism CASMA/CD (Roy, 2011),

CASMA/CA, PCF, or DCF, are carried in the first phase.

3.
Choose

Statistics

1.
Create

Network
Models

2.
Run

Simulator

4.
View and

Analyze

Results

MANETS CHAPTER [2]

36

In the second phase, we choose the metrics, based on how we wish to evaluate the

network performance, such as Throughput, Delay … etc. Where in the third phase, we

set up the simulation time duration, which we simulated the network, for example, for a

period of an hour a day, for a week or a month ... etc., all that depends on the network

type, characteristics, and purpose.

For example, if the simulation program was run on the basis of one day, all the results

we get are the modelling of the network for one day in real life, the operation of the

network in reality for a one-day, may be offset by the simulation program for five

minutes in the fourth and final stage, we receive the simulation results in a file for

viewing, and we use our program part to analyse those results (Black, 2009).

There is now the question of what the accuracy and validity of the results that obtained

from simulation are. In fact, there is no simulator that gives 100% guaranteed and

perfect results, although there are differences between the simulators, they do try to

provide as accurate as possible results. The accuracy of these results depends on several

factors, the most important two are:

First, the human factor, i.e., the extent of the skills of the person who is using the

simulator, this includes simulator knowledge and the model subject concept in general,

computer networks for example. Second the efficiency of the simulator itself.

2.3.1 Computer Network Simulators

A Simulation Modelling is a popular method for network research, and performance

analysis. There are several simulators for Computer networks in use, some of them are

free, and known as Open Source, while some others are commercial. Here are some

examples of network simulator in general:

Network Simulator 2 (Kevin, 2010), OPNET IT (OPNET, 2007), Scalable Simulation

Framework (SSFNet, 1998-1999), OMNeT++ (OMNeT++, 2009; Varga, 2001), J-Sim

(Barnett Iii, 1993), and last but not the least OPNET Modeler (Chang, 1999).

http://www.google.co.uk/url?sa=t&source=web&cd=5&ved=0CDQQFjAE&url=http%3A%2F%2F4blackfire.blogspot.com%2F2009_10_01_archive.html&ei=eL2tTcrnFcah8QOxz5XzAQ&usg=AFQjCNG_vc4IuMckp3sA1U9DUd5ju_dYdQ

MANETS CHAPTER [2]

37

2.3.2 Network Simulation 2 (Ns2)

Ns2 (Kevin, 2010), is an open source simulator, more general and widely-used in

researches and performance evaluations of wired and wireless (local and satellite)

networks (e.g. MANET). It is a discrete event simulator, written in C++ and OTcl

(OTcl, 1996) based on object oriented concept and design, which was developed as a

part of VINT (VINT, 1996). It is a DARPA-funded research project, whose aim is to

provide a reliable network simulator for scale and protocol interaction study based on

the present and future network and protocols. It is supports IP, TCP, UDP, routing,

multicast protocols simulation, QoS mechanisms, and more.

MANETs area of interest is received an extensive study and development over Ns2,

where additional set of software models are provided for wireless networks in Ns2. The

Monarch project at Carnegie Mellon University (CMU) is an extension of Ns2

(Johnson, 1999). CMU has provided new components and elements to the wireless

networks (Wireless extensions) at the physical layer (Radio propagation models,

Antennas and Network Interfaces), link layer (Media Access Control Protocols),

network (routing) layers of the simulation environment, and Scenario Creation. Figure

2.12 shows the flow diagram of developing and testing MANETs routing protocols in

Ns2. CMU model allows simulation of pure wireless LANs or MANET networks.

Mobile scenarios and traffic pattern generation for MANETs are very simple in Ns2

using Mobility scenario, and Traffic pattern generators by CMU wireless extension.

2.3.2.1 Packets

A simulation fundamental unit that is used for information exchange between its objects

is called a Packet. It is built up of packet headers and packet data. The packet headers

contain many fields. Their size and number are different from a protocol to another see

section 4.5 for further details on packet structure.

Accessing packet data and headers is made available through access methods (Nikos,

2010; Kevin, 2010). Figure 4.6 shows our new routing protocol‟s packet structure,

where its own packet header types are added to the available ones. For further

information regarding to the new routing protocol packet types and their structure see

section 4.6.

MANETS CHAPTER [2]

38

Figure 2.12: MANET‟s routing protocols flow diagram in Ns2 Simulator

MANETS CHAPTER [2]

39

2.3.2.2 Mobile Networking in Ns2

It is essential to include a mobile node in any wireless model, additional to a number of

simulation features that support MANETs, and wireless local area networks. Mobile

nodes connected to wireless channels concept is introduced in CMU wireless

extensions, which allow for MANET and wireless networks simulation (Kevin, 2010).

The node object is the most important entity among all the Ns2‟s network components,

where it is responsible for most of the packet processes such as creating, sending, and

forwarding, also, receiving and reading the packet‟s headers. Therefore, it is

fundamental in all network simulators. There are two types of nodes in Ns2, a mobile

node, which is an extension of wired unicast node.

A wired node (Wiberg, 2002; Kevin, 2010) is a compound object, consisting of a node

entry object, where packets first arrive, and two classifiers as shown in Figure 2.13. The

first one, called the address classifier, is responsible for packet‟s address identification,

where it examines its address and then decides whether the packet belongs to the current

node or not. The second classifier is the port classifier, it determines which one of that

node‟s protocols should receive and deal with that packet.

Figure 2.13: Composite construction of wired unicast node, based on Kevin, 2010

A mobile node (Kevin, 2010) is a wired node with extra functions to perform mobile

network tasks (mobility). The main differences between the two nodes object are:

regarding the communication media, the mobile node is connected to wireless channels,

MANETS CHAPTER [2]

40

whereas the wired node is connected by links. Also, regarding the mobility concept, the

mobile nodes may move within a specific topological area, while the wired nodes are

mainly fixed (remain stationary). Figure 2.14 shows the schematics of a mobile node in

Ns2.

Figure 2.14: Mobile node schematics, based on (Wiberg, 2002; Kevin, 2010)

The following models, agents and functions are the main parts of the mobile node

compound object.

 An address classifier, the received packet handler, which decides whether to

forward the packet to the port classifier, or to the default target (routing agent).

 A port classifier, the packet handler for the mobile node‟s attached agents.

 A routing agent, for packet forwarding, which sets the next hop field of a packet

indicates its next hop towards the requested destination using routing table.

 A link layer, used for converting node‟s network address to a hardware address,

with help of address resolution protocol (ARP), which responsible for resolving

MANETS CHAPTER [2]

41

network address to physical address (MAC).

 An interface queue, used for sorting the outgoing packets.

 A MAC layer used for providing control mechanisms for addressing and media

(wireless channel) access.

 A network interface connects a node to the wireless channel over which it can

send and receive packets.

 A radio propagation model used for determining whether the network interface

can receive that packet or not using the packet‟s signal strength.

 A wireless channel over which the node can transmit and receive packets.

2.3.2.3 Wireless Links

MANETs also realised by wireless links techniques such as IEEE 802.11, Bluetooth,

and Ultra-Wide Band (UWB) (Green, 2004; Bluetooth, 2007). However, each one of

these communication technologies poses various challenges in its algorithm design. Ns2

provides a compound object to perform a connection between two nodes, called link. It

supports the two types of links, a simplex Unidirectional and duplex Bidirectional. A

duplex link is simply two simplex links in two directions as shown in Figure 2.15. The

queue object is to save the sent packet in queued event and before pass to the delay

object in de-queued event. Simulating a packet drop is presented by sending it to a null

agent from the queue object, while simulating a link delay is performed by a delay

object.

Figure 2.15: Simplex Link

A node that wishes to establish a connection simply puts a packet in the queue object of

the link. Hence, if not dropped by passing it to null agent, it will pass to the delay of the

link object. Each received packet time to live be calculated and its TTL field is updated

at TTL object of the link.

MANETS CHAPTER [2]

42

2.3.2.4 SYMMTRIC AND ASYMMTRIC NETWORKS

 In a symmetric computer network, all nodes can transmit and receive data at equal

rates. Asymmetric networks, on the other hand, support disproportionately more

bandwidth in one direction than the other. This can be a problem in wireless networks

which adopt a TCP technique where TCP relies on ACKs for reliable delivery and for

congestion control. If ACKs are not reliably returned the smooth of packets will be

disrupted by retransmissions. Most of MANET protocols have been designed assuming

that the underlying technology was bidirectional (Symmetrical Network). As an

example, a set of nodes which are connected through a single physical network assume

they can exchange routing information with each other as shown in Figure 2.16.

Exchanging routing information enables the discovery of the underlying network

topology, and the routing traffic via discovered networks (Skloul, 2008).

 Routing Information

 Upstream Nodes Downstream Nodes

 Figure 2.16: Symmetric Network

However, if the link connecting these nodes is unidirectional (Asymmetrical Network),

we can say that all downstream nodes have received only capabilities and therefore

cannot send routing information to upstream nodes as shown in Figure 2.17. As a result,

upstream nodes cannot discover downstream network topologies dynamically and will

therefore never forward information towards them.

 Routing Information

 Upstream Nodes Downstream Nodes

 Figure 2.17: Asymmetric Network

1 7 4 7 2 7

3 7

5 7
6 7

1 7 4 7 2 7

3 7

5 7
6 7

MANETS CHAPTER [2]

43

Generally, in the presence of a unidirectional link, many routing protocols, will fail to

operate and lose to send data therefore, to provide full network connectivity we need to

make the node to discover if the link is a bidirectional or unidirectional link before

sending over any data.

2.3.2.5 Packet Transmission

The packet by mobile node is first generated by an agent or a traffic source. The first

entity that receives the generated packet is the address classifier of the mobile node

entry as shown in Figure 2.14. Based on the packet‟s address, the address classifier

determines whether to destine the received packet for the current node, or forward it to

another mobile node by handing it to the routing agent (a default target) for processing

through a default target of the address classifier, where and before passing it down to

the link layer, the routing agent, fills in the next_hop field of the packet.

At the link layer, the packet‟s destination address translates into hardware (MAC)

address, by initiating the address resolution protocol (ARP) to map IP network

addresses to the hardware addresses, and fill in the MAC header of the packet

(Fairhurst, 2005; Wiberg, 2002). Hence, the packet should be queued in the interface

queue for its transmission turn. The interface queue length can be specified, depending

on the queue type used. In this research we specified the interface queue for 50 packets

length. Packets are retrieved from the interface queue by the MAC layer when

appropriate, i.e., when the wireless channel is free to use. Finally, the packets are

propagated onto the wireless channel once handed to the network interface.

2.3.2.6 Packet Reception

At the packet reception time, not all the packets are necessarily received correctly. It is

the radio propagation model‟s role to decide (i.e., based on the transmission speed and

the distance between nodes), whether the packet has been correctly received and should

be handed to the MAC layer by the network interface or not. At each wireless node‟s

physical layer, the radio propagation model is used to predict each packet‟s received

signal power (Wiberg, 2002; Nikos, 2010).

MANETS CHAPTER [2]

44

In turn, the packet is handed to the link layer by the MAC layer, and hence, to the

address classifier, which determines whether the received packet matches the current

node address to be handed it to the port classifier, or handed it to a default target for

further processing and possible forwarding.

2.3.2.7 Trace Logs

In order to get results from the simulator, we need to figure out what happens exactly

during a simulation run time. There are a number of ways to collect data output during

the simulation time. The network simulator Ns2 generates event logs called trace or log

files (Kevin, 2010), which can be analysed after a simulation of each scenario (offline).

The log files would gather information that could be used in a performance study, which

record and provide information for events of packets being sent, received or dropped.

This is called the trace of packet. In this thesis we have used these log files to read and

gather the information of packets events, and hence, we could provide files contain all

the necessary information needed for the analysis and evaluation of our new routing

protocol‟s performance. Ns2 provides three different formats of log file. These formats

are:

 Old Trace Format: It is the most commonly used format because of its

simplicity, its fields are grouped to provide different information from the

packet‟s fields, and easy to read (Kevin, 2010).

 New Trace Format: This is the trace format that we have used in this thesis. It

offers more information than the previous one on each event during the

simulation time. Therefore, the length of its lines means it is not as easy to read

as the old trace format, which contain a lot of fields and tag – value pairs (Kevin,

2010). Because this format is the one we have used in this thesis, we give an

overview of the new wireless trace format in more detail in chapter 5.

 Tagged Trace Format: This trace format is the last version (recently) added to

Ns2. It is also contains tags and values as the new trace format do. Tagged trace

format analysis is more difficult than in the previous two formats, because the

tag names must be determined by each object to be traced. Therefore, tag clashes

are expected and likely to occur.

MANETS CHAPTER [2]

45

To visualise the simulation results and real world packet traces, the NAM trace file is

used by the visualisation tool (Nam). NAM is a Tcl/TK based animator used for

replying events during simulation time. If the events happen intensively or the

simulation time is long the NAM trace file can be huge. Full details are found in (Kevin,

2010).

2.4 Summary

Ad Hoc networks‟ simplicity, low cost compared to conventional networks, their special

properties, and their applications all make them attractive, but that come at a certain

price, especially regarding network security, due to the features (e.g. lack of centralised

monitoring and management) of MANETs, they are often vulnerable to security attacks.

On the other hand, because of their use in public applications, Ad Hoc networks have

the potential to become very useful and popular.

In this chapter various types of routing protocols for MANET are presented, where they

gave us evidence that the selection of the optimum routing protocol for a suitable

application in MANETs needs more study. Choosing the most suitable protocol for the

right application in MANET is like other networks and needs tests and evaluation.

Practically, in reality such work is expensive. Therefore, we should carry out such work

in simulation time first, using one of the network simulators, such as Ns2 which was

briefly described in this chapter.

The network simulator (Ns2) is a product of a hard work of large number of researchers,

programmers and users over many years. Its open environment and flexibility has made

it one of the best simulators that have been used for researches in networks and their

applications. It is also widely used for wireless Ad Hoc networking simulation, because

of its support for mobile networking. It is continuously updated, and a new version is

released each year with minor or major changes.

CHAPTER 3: PROBLEM & MOTIVATION

46

3.1 Introduction

Providing a convenient routing protocol for MANETs is a challenge because of its open

(no centralization) and dynamic environment. Therefore, the suitability of each routing

protocol depends on many parameters such as, network size, node mobility speed, and

traffic load. All that, together with the dynamic nature of MANETs, made an optimum

routing protocol selection a complicated task. Extensive nodal mobility of MANETs

makes multi-hop routing a genuine challenge. The frequent topology changes and

variable propagation conditions make a routing table obsolete very quickly, which

results in enormous control overhead for route discovery and maintenance. However,

MANETs suffer from severe constraints on communication resources (bandwidth, radio

propagation, energy supply, interference… etc.) (Blum, 2004; Michel, 2007;

Boukerche, 2009).

 In some scenarios, route maintenance itself may consume so much in the way of

resources that no bandwidth might remain for the transmission of data packets. Even

worse, the short lifetime of routing information means that a portion of the information

may no longer be useful and thus the bandwidth used to distribute the routing update

information could be wasted. Also, that increases delay and overall control packets

(overhead). Single path, on-demand routing protocols rely on a uni-path route for each

data session. In the case of a failure of an active link between source and destination, the

routing protocol must invoke a route discovery process and in so doing, increases delay

and overhead. This increase in overhead to deliver a data packet leads to many issues.

For an example, power consumption where in some environments the battery charges is

a difficult task (battle field, underwater and hazardous areas …etc.). (Michel, 2007;

Haseeb, 2007).

This research introduces a new multipath routing protocol based on hybrid mechanisms

to reduce the overhead and hence increase battery life. In the investigation of this issue,

we pay specific attention to the scalability of algorithms in respect to the network size

and nodal mobility (Michel, 2007; Boukerche, 2009).

PROBLEM & MOTIVATIONS CHAPTER [3]

47

3.2 Related Work

The first multipath routing was introduced for conventional wired networks for the

purpose of load balance and error tolerance (Li, 2005). Multipath routing applications

can be classified as either transmitting data packets in multiple paths simultaneously or

as using the multiple paths for backup only. Some protocols in MANETs, such as the

Dynamic Source Routing (DSR) and the Temporally Ordered Routing Algorithm

(TORA), use multiple paths. However, the multiple paths are utilized as a backup or

auxiliary method in these protocols (Wu, 2001).Concurrent transmission on multiple

paths performs better than the single path transmission in end-to-end delay, and network

throughput. Due to these features, multipath routing protocols have been extensively

studied in MANETs (Haseeb, 2007).

When multiple paths are used simultaneously, the criteria under which the data packets

are assigned to a particular route vary. Commonly, round-robin is used. More

complicated route selection technique and rules may be implemented, to achieve a

better system performance. Research on multipath routing is mainly focused on the case

of disjoint paths. The multipath routing protocols for MANETs have been introduced in

90s. For an example, An On-Demand Multipath Routing protocol (Nasipuri, 1999) is

presented as an extension of DSR (Maltz, 1996). It utilises one of the alternative paths

that is stored in the source node‟s routing table (as a backup) for data packets

transmission if primary route fails.

The Alternate Path Routing (APR) by Pearlman and others, is mainly used in the

conventional wired networks. The performance degradation caused in MANETs when

transmission by different paths or routes sharing a node (Coupling) has been studied

using ARP (Pearlman, 2000; Li, 2005). During data packets communication, when two

node disjoint routes are located physically close enough to interfere with each other the

routes are said to be coupled. Those nodes which are participating in simultaneous

active multipath communications, as a result are competing with each other to access

the medium. This finally leads to worse performance than in a single path protocol.

Also, Split Multipath Routing (SMR) presented in (Lee, 2001) focuses on transmitting

data packets simultaneously using different disjoint paths techniques.

PROBLEM & MOTIVATIONS CHAPTER [3]

48

A new application of multipath is found by Tsirigos and Hazz. In this application and

technique of multipath they divide each data packet into sub-packets and then, transmit

those pieces simultaneously in different routes to the destination. They include some

redundant pieces to help the receiver node (destination) to re-build the original packet

successfully even when some pieces are lost (Tsirigos, 2001).

Zafar and Harle have presented in (Zafar, 2009) a summary of multipath routing

schemes, and they proposed an on-demand multipath routing mechanism referred to as

SMS (Shortest Multipath scheme). SMS is an extension and modification to DSR

(Maltz, 1996; Xiang, 2008). The performance of on-demand multipath routing schemes

often degrades in terms of end-to-end delay and routing overheads when mobility rates

and traffic loads increase, a consequence of both long and stale routes (Zafar, 2007).

PROBLEM & MOTIVATIONS CHAPTER [3]

49

3.3 MDVZRP Algorithms

MDVZRP is a multipath hybrid routing protocol for MANET, in simple functions for

getting the most optimal routes to each required destination in the entire network, as it

combines the common characteristics of proactive (Table driven), and reactive (on-

demand) protocols. This technique combines the characteristics of two protocols with

different mechanisms. Its main purpose is to capitalise on the strengths that almost

exclusively belong to one protocol and at the same time minimise their weaknesses

(Khengar, 2003).

Generally, each node in the proactive protocols needs to build its own routing table by

actively seeking out routes to all nodes in the network, whether these routes are needed

at the time or not. This can lead to very short initial latencies when the node transmits to

an arbitrary destination in the network and can create a large table by saving unused

routes. When a node needs to transmit information or data to a specific destination, one

is simply taken from the node‟s routing table. In addition, nodes need to maintain (Keep

up to date) their routing tables by periodically sending control messages, this can lead to

the consumption of the bandwidth in order to propagate these messages.

In contrast to proactive protocols, reactive protocols only attempt to find routes when

they are needed. This type of protocol provides a significant reduction in the amount of

bandwidth used for control messages. However, they also experience significant initial

delays due to the high probability that a route is not immediately available when

needed. The next sections present and clarify the algorithms of the current and pre-

MDVZRP versions.

3.3.1 MDVZRP: Motivation

In a MANET, the largest part of the traffic is assumed to be directed to nearby nodes. In

MDVZRP, we assume that all the paths (routes) in any routing table are active

(workable), usable and only need updating when a new node joins the network and new

routing information regarding it is received (update message), or an error is received

regarding a non reachable node or a broken active link, then partial updates are needed

for some entries such as the ones which have the non reachable node as a destination or

an intermediate node.

PROBLEM & MOTIVATIONS CHAPTER [3]

50

Therefore, the current version of MDVZRP restricts the scope of proactive to a zone

centred on each node. When a new node joins a network and broadcasts its first beacon

message (packet), the early version of MDVZRP algorithm gives that node a flat view

over the entire network by receiving a full dump (full routing information) from all its

nearest (one hop) neighbours to build its own routing table, and obtains multipath to

each known destination in the network. On demand requests can be more efficiently

performed without querying nodes of the entire network, where all nodes proactively

store some local routing information.

When an error message regarding a non reachable node or a broken link is received,

MDVZRP utilises an alternative path getting process to find a suitable alternative route

among the multipath were stored into the routing table instead of wasting time in route

repair, or activating a route request process every time.

3.3.2 MDVZRP: Optimum Multiple Routes Selection

Finding node disjoint multiple paths in mobile networks is not an easy task. Optimum

routes are selected by MDVZRP by filtering potential updates to the routing table based

on destination, first hop and cost metric. In the following example Figure 3.1, the

Source node (1) normally has 15 routes to the Destination (9) as shown in Table 3.1,

where the 1
st
 hop is one of the nearest neighbours (node 2, 3 or 4).

Figure 3.1: An example of a 9 node network

PROBLEM & MOTIVATIONS CHAPTER [3]

51

The maximum number of optimum routes (OR) to a destination node depends on the

number of neighbours of the source node. The source node (Node 1) has 3 neighbours.

Therefore, we need to select only one optimum route from each one hop neighbour, this

means there are 3 routes 1, 9 and 13 among the 15 as shown in Table 3.1. We have

selected only 2 optimum routes (9, 13), where route 1 is excluded (NOR) because it has

node 4 as a 2
nd

 hop, which is a common node (joint) with less number of hops route

(shorter route 13). Route 9 and 13 are kept in spite of the common node (8), because

they are the only last 2 optimum routes remaining, and we assume that the source node

should have at least two routes to each known destination if available.

Table 3.1: Optimum (OR) and Non Optimum (NOR) Routes

3.3.3 MDVZRP: Routing Initialisation

During the initialisation stage (process) as each node joins the MANET, it adds an entry

(route) to itself in its routing table, and then starts to broadcast a periodic beacon (Heart

beat message). In Figure 3.2 we assume that, a new node (6) joined the network. This

assumption is based on a symmetrical links network (nodes have the same transmission

range).

PROBLEM & MOTIVATIONS CHAPTER [3]

52

Figure 3.2: Hello message along a symmetrical network

A node that receives the beacon message (i.e. 4, 5) checks if it has a direct route to the

beacon message sender (a known neighbour), then it updates that entry regarding to the

next heart beat beacon expecting time, and discards that beacon message. Otherwise, it

adds a new entry (route) where its destination address and 1
st
 hop are the address of the

node that sent the beacon, while the link ID (link_num field) is the (Beacon receiver -

Beacon message sender) addresses (e.g. 4-6, 5-6) and sets the number of hops to 1.

Then, unicasts its routing table (Full dump) to the new node, and broadcasts a route

update packet to its one hop neighbours. Table 3.2 shows the new routes to node (6) that

are added by both nodes 4 and 5 in their routing table respectively.

Table 3.2: Routes are obtained after receiving a Hello Message

 Node 4:

Destination 1
st
 hop 2

nd
 hop Metric Link_num

6 6 - 1 4-6

Node 5:

Destination 1
st
 hop 2

nd
 hop Metric Link_num

6 6 - 1 5-6

When node 4 replies, it sends its update packet to the 1
st
 hop neighbours (2, 3 and 5), as

shown in Figure 3.2, where these nodes are the 2nd hop neighbours of the new node.

Each one of the new node 2nd hop neighbours adds an entry in its routing table and

discards the beacon message, where the address of the route destination is the node that

sent the beacon address (node 6), the 1
st
 hop address is the node that sent the update

message address (node 4), while the link_num is the same one as in the update message

PROBLEM & MOTIVATIONS CHAPTER [3]

53

4-6, and the distance metric is incremented by 1 as shown in Table 3.3. The beacon

message is discarded once the metric field = radius (R).

Table 3.3: Routes are obtained from the update message sent by node 4

Node 2:

Destination 1
st
 hop 2

nd
 hop Metric Link_num

6 4 6 2 4-6

Node 3:

Destination 1
st
 hop 2

nd
 hop Metric Link_num

6 4 6 2 4-6

Node 5:

Destination 1
st
 hop 2

nd
 hop Metric Link_num

6 6 - 1 5-6

6 4 6 2 4-6

Similarly, node 5 sends an update message to its 1
st
 hop neighbour (node 4, in this case).

Table 3.4 shows the new entry that node 4 has obtained from node‟s 5 update message.

Table 3.4: Routes are obtained from the Update message sent by node 5

Node 4:

Destination 1
st
 hop 2

nd
 hop Metric Link_num

6 6 - 1 4-6

6 5 6 2 5-6

Once the new node receives complete routing information (full dump) from all nearest

nodes (node 4, 5), it starts to build its own routing table entry by entry excluding any

comparable (similar), long and disjoint routes. The following tables are the entire

network nodes routing tables. The notes column in the routing table is not part of the

protocol’s routing table; it is just to show how the routes are obtained

Table 3.5: Routing table of node 1

Destination 1st hop 2nd hop Metric Link_num Notes
1 1 - 0 1-1 Initialization
2 2 - 1 1-2 Hello
3 3 - 1 1-3 Hello
4 2 4 2 2-4 Update
4 3 4 2 3-4 Update
5 2 4 2 .. ….

PROBLEM & MOTIVATIONS CHAPTER [3]

54

Table 3.6: Routing table of node 2 after receiving the Update messages

Destination 1st hop 2nd hop Metric Link_num Notes

1 1 - 1 1-2 Full dump

2 2 - 0 2-2 Initialization

3 1 3 2 1-3 Update

3 4 3 2 3-4 Update

4 4 - 1 2-4 Hello

5 4 5 2 4-5 Update

6 4 6 2 4-6 Update

Table 3.7: Routing table of node 3 after receiving the Update messages

Destination 1st hop 2nd hop Metric Link_num Notes

1 1 - 1 1-3 Full dump

2 1 2 2 1-2 Full dump

2 4 2 2 2-4 Update

3 3 - 0 3-3 Initialization

4 4 - 1 3-4 Hello

5 4 5 2 4-5 Update

6 4 6 2 4-6 Update

Table 3.8: Routing table of node 4 after receiving the Update messages

Destination 1st hop 2nd hop Metric Link_num Notes

1 2 1 2 1-2 Full dump

1 3 1 2 1-3 Full dump

2 2 - 1 2-4 Full dump

3 3 - 1 3-4 Full dump

4 4 - 0 4-4 Initialization

5 5 - 1 4-5 Hello

5 6 5 2 5-6 Update

6 5 6 2 5-6 Update

6 6 6 1 4-6 Hello

Table 3.9: Routing table of node 5 after receiving the Update messages

Destination 1st hop 2nd hop Metric Link_num Notes

1 4 2 3 1-2 Full dump

2 4 2 2 2-4 Full dump

3 4 3 2 3-4 Full dump

4 4 - 1 4-5 Full dump

4 6 4 2 4-6 Update

5 5 - 0 5-5 Initialization

6 6 - 1 5-6 Hello

6 4 6 2 4-6 Update

PROBLEM & MOTIVATIONS CHAPTER [3]

55

Table 3.10: Routing table of the new node (6) after receiving the full dump

Destination 1st hop 2nd hop Metric Link_num Notes

1 4 2 3 1-2 Full dump

2 4 2 2 2-4 Full dump

3 4 3 2 3-4 Full dump

4 4 - 1 4-6 Full dump

4 5 4 2 4-5 Full dump

5 5 - 1 5-6 Full dump

5 4 5 2 4-5 Full dump

6 6 - 0 6-6 Initialization

3.3.4 MDVZRP: Route on Demand

If a node needs to communicate with another one in the same network and it has no an

available route in its routing table to that destination node because it is outside its

routing zone or for any reason, in this case the source node initiates a route request

(route on demand). In the following example we assume that, the Source node (1) needs

to communicate with the Destination node (6), the S node broadcasts a route request

(RREQ) message with the D address asking for a route to the required destination (node

D), as shown in Figure 3.3.

Figure 3.3: Route on demand along a symmetrical links network

A route can be determined, once the RREQ reaches a node that can offer accessibility,

to the requested destination (e.g. destination's peripherals node). As shown in Figure 3.3

both nodes (3,2) have a route in 2 hops distance to that destination. The route requested

is made available by unicasting a RREP back and reached to the Source node and stored

in its routing table. The source node (1) has got 2 routes to the required destination (6)

each in 3 hops distance. The source node has selected only one route, because both

routes have the same metric (3 hops), as shown in Table 3.11.

PROBLEM & MOTIVATIONS CHAPTER [3]

56

Table 3.11: Routing table of node S (1) after RREP message

Destination 1st hop 2nd hop Metric Link_num Notes

1 1 - 0 1-1 Initialization

2 2 - 1 1-2 Hello

3 3 - 1 1-3 Hello

4 2 4 2 2-4 Update

4 3 4 2 3-4 Update

5 2 4 3 4-5 Update/RREQ

6 2 4 3 4-6 RREQ

3.3.5 MDVZRP: Node Movement

In MANETs, the node movement is routing‟s main challenge, where mobile nodes

cause broken links as they move from place to place. Any node that discovers a broken

link should initiate and broadcast a route error RERR (a forwarded message), where

each node receiving that message updates its routing table if it has information

regarding the broken link and rebroadcasts it. Otherwise, drops it. In Figure 3.4, we

assume that node (6) has moved away, and node (5) discovered node (6) is non-

reachable node.

Figure 3.4: Route error message along a symmetrical network

Therefore, node (5) has to search in its routing table for the direct route to node (6) to

get its link_num to delete it, and deletes any route (information) it has, where the 1
st
 hop

is node (6) as shown in Table 3.12. Then, Node (5) broadcasts a RERR message

PROBLEM & MOTIVATIONS CHAPTER [3]

57

carrying the non reachable node address (6) and the link_num (5-6) to be deleted by any

neighbour that has a route carrying the same link_num in its routing table. Each node

receiving an RERR message, deletes any entry that has the same link_num,

rebroadcasting the same RERR (error message) and so on, unless the node has no route

carrying the same link_num, in this case it discards that message (RERR).

Table 3.12: Routing table of node 5 after discovering the broken link

Destination 1st hop 2nd hop Metric Link_num Notes

1 4 2 3 1-2

2 4 2 2 2-4 ….

3 4 3 2 3-4 ….

4 4 - 1 4-5 ….

4 6 4 ∞ 4-6 Deleted

5 5 - 0 5-5 ….

6 6 - ∞ 5-6 Deleted

6 4 6 2 4-6 ….

Table 3.13: Routing table of node 4 after receiving the RERR message

Destination 1
st
 hop 2

nd
 hop Metric Link_num Notes

1 2 1 2 1-2 ….

1 3 1 2 2-2 ….

2 2 - 1 2-4 ….

3 3 - 1 3-4 ….

4 4 - 0 4-4 ….

5 5 - 1 4-5 ….

5 6 5 ∞ 5-6 Deleted

6 5 6 ∞ 5-6 Deleted

6 6 6 1 4-6 ….

Table 3.14: Routing table of node 6 after receiving the RERR message

Destination 1
st
 hop 2

nd
 hop Metric Link_num Notes

1 4 2 3 1-2 ….

2 4 2 2 2-4 ….

3 4 3 2 3-4 ….

4 4 - 1 4-6 ….

4 5 4 2 4-5 Deleted

5 5 - 1 5-6 Deleted

5 4 5 2 4-5 ….

6 6 - 0 6-6 ….

PROBLEM & MOTIVATIONS CHAPTER [3]

58

3.3.6 MDVZRP: Zone Radius and Node Density

The zone radius metric is the distance in the number of hops from a specific source node

to the last node in its routing zone as shown in Figure 3.5. Each node has its own

routing zone. An important consequence is that, in most of the cases there are overlaps

between the zones of neighbouring nodes.

The routing zone has a radius (R) expressed in the number of hops. Thus, the routing

zone includes all nodes whose distance from the source node in the equation is at most

R number of hops. Figure 3.5 shows a new node (6) for an example, and its routing

zone when it joined the network for the first time. We call each node that has only one

hop distance from the new node a 1
st
 hop neighbour if zone radius R =1 (i.e. node 4, 5).

While, we call the node that has 2 hops distance from the new node, a 2
nd

 hop neighbour

and so on.

Figure 3.5: Routing zone radius, where R=1, 2 or 3

Nodes with their shortest route to the source equal to the zone radius are called

“Peripheral”. Nodes with their shortest route to the source larger than the zone radius

are called “out of routing zone nodes”.

PROBLEM & MOTIVATIONS CHAPTER [3]

59

3.4 Summary

Because of characteristics and dynamic environment of the MANET, routing was and

still is one of the most significant issues that receive a lot of study and investigation. A

new Multi-path Distance Vector Zone Routing Protocol (MDVZRP) for MANET was

presented in detail in this chapter.

MDVZRP is a multipath routing protocol based on 2nd hop, link-num and a new

assumption (no need to update the routes, unless a node receives routing information

regarding to a specific route). MDVZRP presents a solution to the power consumption

by reducing the overhead, and hence increases the battery life. The protocol adapts both

reactive and proactive mechanisms to perform a reliable communication between

mobile nodes via multi backup paths. The new routing protocol algorithms and routing

tables are provided and pointed out. In addition, the packet reception algorithm

flowchart is provided in Appendix A. The next two chapters present the MDVZRP

implementation and its functionality testing respectively.

CHAPTER 4: MDVZRP IMPLEMENTATION

60

4.1 Introduction

MDVZRP is a multipath routing protocol that maintains routes for as long as the route

is active. It is a combination of the two extremes of proactive and reactive protocols that

aims to provide the best of both techniques. There are number of other hybrid protocols

already existing and each of them has its own technique. However, as the following

sections will clarify, the hybrid approach used in MDVZRP is significantly different to

the route request and zone approaches employed in other hybrid protocols. We assume

in our routing protocol, that all the entries are workable (fresh not stale), and there is no

need to update them unless a node receives an error message regarding a specific route,

in this case the node assigns that route as a broken link.

This chapter presents implementation details of the MDVZRP protocol, after a brief

look at the early stages of the design process that ultimately led to the current version of

MDVZRP.

4.2 Pre-MDVZRP Design

MDVZRP resulted from many stages of design and improvement over a period of time

into what it is today. Some of the improvements were in the code itself and others were

in the protocol‟s algorithm technique. This section will briefly describe these stages.

4.3 MDVZRP V1.0

First of all, the MDVZRP protocol was originally a purely proactive protocol, where

nodes actively seek to get as many entries as they can to each node in the entire network

by sending periodic beacons to inform adjacent nodes of their presence and by receiving

routing information packets. Nodes that receive that beacon in turn propagate

immediately routing information messages, such as Full Routing Information Packet

(FRIP) and Routes Update Packet (RSUP). As shown in Figure 4.1 where these routing

messages would consist of routing information regarding the node that sent the beacon

(Node 6 for an example), and the node that was now broadcasting the routing update

message.

MDVZRP IMPLEMENTATION CHAPTER [4]

61

1

6

2

3 4

5

 RSUP-6

 Hello-6

 RSUP-6 RSUP-6 FRIP

 Hello

 FRIP

 RSUP-6

 RSUP-6

 RSUP Hello FRI P

Figure 4.1: Hello and RSUP messages in an early version of MDVZRP

This effectively informed the nodes in the network of the presence of a new node, as

well the next hop towards it. As mentioned, this protocol technique is based on the

assumption that all the routes in a node‟s routing table are workable and fresh unless an

error message is received. Therefore, not all the nodes are concerned with link changes

that may occur, one of the design goals was to avoid the propagation of route update

messages across the entire network, which was carried out in the later version of

MDVZRP v2.0 and hence decreased the overhead in general.

Once a node discovers a non reachable adjacent node, it deletes any entry using that

node as a next hop, and immediate broadcasts an error message that carries the link

number of that broken route. Nodes that receive such error message and have entries in

their routing tables with the same link number broken link number, in turn rebroadcast

the same error message after deleting those entries. This routing information only

propagates so far as it stops at the point where a node hasn‟t any route in its routing

table with the same link number. Take for example the case when node 6 moves away

from node 5, but is still an adjacent to node 4 within its transmission range as shown in

Figure 4.2.

MDVZRP IMPLEMENTATION CHAPTER [4]

62

3

1

4 6

2

5

 Error6-5 Error6-5

 Error6-5

 Error6-5 Link Number 6-5

 Error6-5

 Error6-5

Figure 4.2: Error message in an early version of MDVZRP

This type of route error and the previous routes update messages may cause the flooding

of an entire network once broadcast and could lead to the network clogging, especially

in case of the protocol operates a purely proactive, and the network is highly dynamic.

A number of problems existed in this early version of MDVZRP v1.0. Firstly, although

the propagation of route update messages allowed nodes in a network to become aware

of a new arrival, the new node would not learn of the existence of all the nodes in the

entire network, and routes to all previously present nodes. Secondly, there was a serious

problem of routing table size because of the gradual increase that could occur due to the

form of the update messages, and by actively seeking each node out routes to all nodes

in the network, whether these routes are needed at the time or not.

This issue would eventually result in MDVZRP evolving to become zones hybrid

protocol. As well as this nodes do not delete the broken route from their routing tables;

instead they assign the metric number field of that broken entry to infinity. This led to

the decision to include the error messages in the RSUP packet. Also a node has the right

to broadcast a RSUP message at the periodic beacon time instead of broadcasting a

beacon whenever it needs to advertise any changes in its routing table. Nodes that

receive these update messages treat them for the two purposes at the same time (As a

Beacon and an Update message).

MDVZRP IMPLEMENTATION CHAPTER [4]

63

1

2

4

6

3

5

7

Finally, most if not all of the wireless networks are asymmetrical (Skloul, 2008), while

this early version of MDVZRP v1.0 treats all the links as a symmetrical (Skloul, 2008).

For example, as shown in Figure 4.3, the nodes delete any route carrying the link

number 6-5 or 5-6 when they receive an error message from node 6 or 5 regarding that

link in between.

 Link Number 4-3

 & 3-4

 3-1/ 1-3 4-6 / 6-4

 7-6 / 6-7

 Link Number 6-5

 Link Number 5 -6

 1-2 / 2-1

 5-2 / 2-5

Figure 4.3: Asymmetrical links in an early version of MDVZRP (Skloul, 2008)

In matter of fact, the link number 5-6 is different from 6-5, where the link number 5-6 is

generated by node 5 when receiving a beacon from 6 (depends on node 5 transmission

range) and used by the nodes that need to get to node 6 or any other node behind it via

node 5 (i.e. node 1,2), while the link number 6-5 is generated by node 6 when receiving

a beacon from node 5 (depends on node 6 transmission range) and using by the nodes

that need to get to node 5 or any other node behind it via node 6 (i.e. node 4,7).

Node 1 for an example, uses link number 5-6 to reach node 6 in 3 hops, while node 7

and 4 both use link number 6-5 to reach node 5 in 2 hops as shown in Figure 4.3 by the

dashed line. Logically, link 5-6 and 6-5 are the same, but physically different because

each node has a different transmission range in most cases. They might also be different

because of different radio interference, or radio propagation conditions. For these

reasons, in the early version of MDVZRP we have treated the error message that comes

from node 6 regarding this link (link between node 6 and 5) as different from that error

message that comes from node 5 for the same link. The next section describes the

present state of MDVZRP, which addresses these issues.

MDVZRP IMPLEMENTATION CHAPTER [4]

64

4.4 Protocol Description of MDVZRP v2.0

Using MDVZRP, nodes in an Ad Hoc network can discover other nodes, as well as

routes to those nodes, using a combination of proactive and reactive techniques. The

proactive part of the protocol is based upon the use of periodic beacon packets known as

BEACON, and the messages that inform nodes of changes in the topology, known as

RSUP (Routes Update Packets). In the event that a route to a known node is

unavailable, and a transmission needs to take place immediately, the protocol exhibits

its reactive nature. This is through broadcasting a RREQ (Route Request) and

unicasting a RREP (Route Reply) messages respectively.

Before the description of MDVZRP v2.0 and its implementation, we list the most

important changes that have been made from v1.0 and the main differences between

MDVZRP v1.0 and MDVVZRP v2.0. Table 4.1 lists these differences, while the

performance comparison of the two versions is explained briefly and described

graphically in the next chapter.

Table 4.1: MDVZRP v1.0 v MDVZRP v2.0

Differences Between MDVZRP v1.0 and v2.0

Term v1.0 v2.0

Beacon Periodic Periodic

RSUP Yes At the Beacon time

FRIP Yes No

Error Message Yes, and Immediately Included with Update packet

RREQ technique No Yes

Zones No Yes

Links symmetrical Asymmetrical

In the next few sections we are going to briefly explain the structure and design of

MDVZRP v2.0, and also the pseudocode of the most important functions and classes. In

the next chapters we will show some graphs of the MDVZRP‟s v2.0 performance

compared to v1.0 and other reactive and proactive protocols.

MDVZRP IMPLEMENTATION CHAPTER [4]

65

4.5 Routing Table Structure

The routing table (RT) lists a number of multi-paths (backup) to each destination of the

network. The routing table is used to transmit packets through the Ad Hoc network. The

nodes have to update their routing tables when there is a significant change in the

network. Table 4.2 shows MDVZRP‟s routing table fields. Each node participating in a

MDVZRP will maintain a routing table with the following fields:

Table 4.2: MDVZRP Routing table fields

Field Description Type Size Notes
dst Destination Nsaddr_t 32 address

f_nxt_hop First next hop Nsaddr_t 32 First next hop towards

destination.

s_nxt_hop Second hop Nsaddr_t 32 For discovering joint paths and

selecting disjoint only to

minimise routing table.

metric Number of hops Uint 32 Distance to a destination in

number of hops

link_num Link id or number Uint 32 A unique number

Packet_id Packet number Nsaddr_t 32 Helps the node to determine

whether received (RREQ and

RREP) before or not.

advertise Advertise Boolean 1 When it is true, that means

advertise this route.

Changed_at Changed at Double 32 Route last change time.

timeout_event Event Pointer 32 Event used to schedule timeout

action.

q Queue pointer Pointer 32 Packet queued for destination

The dst (destination) field is the address of the destination node, while the f_nxt_hop

indicates which node should be used as the next hop towards that destination. The 2
nd

next hop s_nxt_hop field is used to minimise the routing table size by getting and saving

only the best disjoint routes (shortest routes that have no any common nodes to the same

destination). This indicates the second node towards that destination with Link_num

field (link number) these fields are used to construct the best routes to each destination,

as shown in Figure 4.4 where node 1 has only one route to node 5 despite having two

adjacent nodes (nod 2 and 3). That is because node 4 is a node joint (common) in both

routes. The metric field represents the distance to that destination in number of hops,

which are used for obtaining the best or shortest route to that destination from each

adjacent. For knowing when each route was created or updated last the changed_at field

is used.

MDVZRP IMPLEMENTATION CHAPTER [4]

66

Figure 4.4: Routes with a common node (node joint)

Finally, the timeout-event is a field that is only present for adjacent nodes; the event is

used to schedule timeout action, in other words nodes that are within wireless

transmission range, while for all other nodes it is simply set to Null. For example, if an

adjacent node beacon time arrives at T=t1 (i.e. T=15 sec) while the timeout interval is x

(i.e. 3 sec), then the scheduler timeout event occurs at T=t1+x sec (T=15+3=18 sec),

this means that the node will be considered as non reachable if nothing is received after

18 sec.

When a node was unable to send a packet to a specific destination because no route was

available, it uses the q field to queue that packet (where the Packet_id field is set to the

destination id) till it gets a route to that destination or drops later when the queue gets

full.

If the route reply is not received yet when no route is available to a specific destination

and a route request is broadcast, the node that made the route request cannot make

another request till it receives the route reply or waits for certain amount of time. In

another sense, it helps the node receiving the same RREQ or RREP to determine

whether or not it has received it before for period of time. Otherwise, the node can make

the same RREQ again if the RREP for that required destination is not received within

that period of time. RREQs that have already been received and processed are promptly

discarded.

MDVZRP IMPLEMENTATION CHAPTER [4]

67

4.6 General MDVZRP Packet Format

Figure 4.5 illustrates the general structure of an 802-11 PACKET which is the standard

packet structure in most of the Ad Hoc wireless networks, while Figure 4.6 and 4.7

show the general format of MDVZRP packet which is base on the 802-11 packet

format.

 Figure 4.5: 802-11 Packet Format

The fields of the CMN header are set to indicate that the received packet should be

MDVZRP‟s packet, as shown in Figure 4.7. The first byte of the MDVZRP cmn header

indicates the packet‟s type. This can be one of these packets, a Beacon, RSUP, FRIP,

RREQ or RREP, while the next eight bytes indicate the packet size and the packet id.

The IP header (in dark colour) and CMN header fields are listed in the figures below,

(not all the fields are listed). We have listed only the MDVZRP fields that are used

frequently.

 1st Byte 1st Byte

0 7

2nd Byte

8 15

3rd Byte

16 24

4th Byte

24 31

Source IP address

Destination IP address

Time to live

flow id

priority

...

Figure 4.6: IP header fields of MDVZRP

MDVZRP IMPLEMENTATION CHAPTER [4]

68

 1st Byte

0 7

 2nd Byte

 8 15

 3rd Byte

16 24

 4th Byte

25 31

packet type packet size … packet id

… … … …

…

IP address of forwarding hop

IP next hop address for this packet

IP address of first hop forwarded this packet

IP address of pre-forwarding hop

IP address of last hop

how many times this packet was forwarded

time for this packet in sec

time for this packet in sec

………

Figure 4.7: CMN header fields of MDVZRP

4.7 Specific Packet Formats

There are five types of MDVZRP packets. These packets‟ format vary according to the

packet type, where some fields in the packet headers have been omitted, leaving only

ones that are relevant to this description.

4.7.1 BEACON Packet (HELLO)

The BEACON packet that is common in most of the Ad Hoc protocols is called the

Hello packet. The main purpose of the beacon is to inform the adjacent nodes of the

existence of the node that sent that packet, where it contains all the information required

such as the node‟s own unique IP address. Nodes in any Ad Hoc network broadcast

these packets periodically in turn when a node has nothing to broadcast, where any

other broadcasting such as RSUP can serve as a beacon. The beacon messages are

essentially empty packets, broadcast only to one hop adjacent by setting the destination

field to -1 Broadcasting, and not rebroadcasting messages, where in the IP header the

TTL field Time to Live is set to 1 as shown in Figure 4.8.

MDVZRP IMPLEMENTATION CHAPTER [4]

69

 1st Byte

0 7

 2nd Byte

 8 15

 3rd Byte

16 24

 4th Byte

25 31

Source IP address = my address

Destination IP = -1 (BROADCAST)

TTL=1

………

Type=20(BEACON)

…..

Figure 4.8: A BEACON Packet

4.7.2 RSUP Packet

The RSUP (Routes Update Packet) Figure 4.9 is a non periodical rebroadcasting

message. These types of messages are essentially, to keep the routing tables of all the

nodes are up to date. The RSUP packet can serve as beacon when broadcast as we

mentioned previously, and also used instead of the ERROR message as a part of the

protocol early version development. Therefore, a node that broadcasts such packets

wouldn‟t broadcast beacons at that period of time (this period is known as the beacon

Interval) to reduce number of broadcast packets and hence reducing the overhead in

general. Transmission and broadcasting an update packet represents the proactive part

mechanism in MDVZRP protocol.

This packet is used when a node has a partially or completely change in its routing

table, such as getting new entries, or has an old broken ones, in these cases the node

needs to advertise them by presenting itself as a viable next hop to any of these new

addresses included within the broadcast packet, and as a broken link explorer to any of

these addresses included where metric is infinity. These addresses are ordered so that

they form the new entire source route from the first entry to the last.

MDVZRP IMPLEMENTATION CHAPTER [4]

70

3

6
2

7

4
1

5

 1st Byte

0 7

 2nd Byte

 8 15

 3rd Byte

16 24

 4th Byte

25 31

Source IP address = my address

Destination IP = -1 (BROADCAST)

TTL=1

………

Type=23(RSUP)

next_hop_ // BROADCAST

………

1
st
 entry need to advertise and included in this packet

2
nd

 entry need to advertise and included in this packet

………

last entry need to advertise and included in this packet

Figure 4.9: A RSUP packet

Figure 4.10 is an example to show the RSUP packet use, where node 4 broadcasts a

routes update message which is received by its adjacent nodes (One hop neighbours).

The first entry informs all recipients that node 5 is not reachable through node 4; while

the second and third entries inform that node 6 and 7 are accessible through node 4 in 2

and 3 hops respectively.

Figure 4.10: A simple example of Routes Update propagation

MDVZRP IMPLEMENTATION CHAPTER [4]

71

4.7.3 FRIP Packet

The third packet type that is another part of MDVZRP‟s proactive mechanism is the

FRIP (Full Routing Information Packet).A FRIP is addressed to a single recipient, not a

broadcast. It is not repeated automatically. The FRIP is sent as a reply to the beacon that

a newly arrival node broadcasts. The new node receives FRIPs from all its neighbours

and so is able to acquire an initial view of the whole network. In Figure 4.11 the format

of FRIP is shown, while Figure 4.12 shows the FRIP mechanism.

 1st Byte

0 7

 2nd Byte

 8 15

 3rd Byte

16 24

 4th Byte

25 31

Source IP address = my address

Destination IP = New node‟s IP Address (Unicast)

TTL=1

………

Type=22(FRIP)

next_hop_ // New node‟s IP Address(dst)

………

Number of entries that are included in this packet

1st entry

2
nd

 entry

……………………….

last entry

Figure 4.11: A FRIP Packet

4.7.3.1 FRIP Mechanism

Figure 4.12 shows the FRIP mechanism where a new node (N) broadcasts a beacon to

inform of its presence to any node that receives that beacon, and receives back two

FRIP packets from nodes 3 and 5. The entries included in node 3 FRIP inform the new

node that node 1, 2 and 4 are accessible through node 3 in 3 and 2 hops respectively,

while node 3 itself is accessible directly in one hop (adjacent).

MDVZRP IMPLEMENTATION CHAPTER [4]

72

Entries received from node 5 inform the new node that node 5 is a one hop adjacent and

node 6 is accessible through node 5 in 2 hops distance. Because of the transmission

range, node 4 did not receive the new node‟s beacon. Therefore, node N did not receive

a FRIP from node 4.

Figure 4.12: A simple example of FRIP propagation

4.7.4 RREQ Packet

Route Request and Route reply Packets are the fourth type that is part of MDVZRP‟s

reactive mechanism. Figure 4.13 shows the format of the RREQ packet, divided into

three groups of fields. The 1
st
 group is the IP header fields; the 2

nd
 group is the CMN

header fields; while the 3
rd

 one is the payload fields belonging to the requested

destination. RREQ is a broadcast packet, which is rebroadcast by very receiver node if it

has no route available to replay.

 TTL was 32 (Ns2 default) in early version.TTL in current version is set according to

the values in Table (6.5). RREQ use on demand once a node needs to send a data to a

specific destination and has no route available in its routing table to that destination.

The first entry in the RREQ payload is for the node that is being requested (Requested

destination Address1), while the second entry is the source of the request (Requester

Address2).

MDVZRP IMPLEMENTATION CHAPTER [4]

73

The requester node (Address 2) sets prev_hop_ field to its IP address, next_hop_ field

to -1 (Broadcast), and resets the next two fields fst_fwd_hop_ which indicates the IP

address of the first adjacent node that forwards that packet if it does not know the

requested destination, and p_prev_hop_ field which is the IP address of pre-forwarding

node both to the initial value (Null).

 1st Byte

0 7

 2nd Byte

 8 15

 3rd Byte

16 24

 4th Byte

25 31

Source IP address = my address

Destination IP = -1 (BROADCAST)

TTL=32

………

Type=25(RREQ)

next_hop_ =-1 (broadcast) // next hop for this packet

prev_hop_ = myaddress // IP addr of forwarding hop

fst_fwd_hop_ = Initial value (Reset=Null)

p_prev_hop_= Initial value (Reset=Null)

num_forwards_// number of forwarded hops(distance)

………………………………

Destination being requested(Address 1)

Requester(Address 2)

Figure 4.13: Format of RREQ Packet

Each neighbour (first hop node) either satisfies the RREQ by unicasting (sending) a

RREP back to the source if it has a route to the requested destination (Address 1) and

discards RREQ packet (drops it), or checks the two previous fields, if they are set to

initial value (Null) as in this case where TTL= 32 (first forward), sets the fst_fwd_hop_

field to its IP address and the p_prev_hop_ field to the IP address of the forwarding hop

which came before the previous hop. This is the RREQ packet sender in this case, as

shown in the following three algorithm lines, then it re-broadcasts the RREQ to its own

neighbours after increasing the hop count:

MDVZRP IMPLEMENTATION CHAPTER [4]

74

If (fst_fwd_hop_ =intial value) // Initial value =Null

 fst_fwd_hop_ =my address // set the first forwarding hop field to my address

p_prev_hop_ =prev_hop_ // set the pre- previous hop field to the previous hop address

The purpose of these two fields is that any intermediate node can get all the necessary

information to maintain a route to the previous node and the source (Requester) node as

well, that gives any intermediate node the ability to unicast RREP to the source node

once the RREQ reaches a node that has a route to the required destination. The

following example clarifies the RREQ / RREP mechanisms.

4.7.4.1 RREQ Mechanism

In Figure 4.14 we assume that node 6 is looking for a route to node 1, and it broadcasts

a RREQ packet which has a unique id (i.e. xyz). Node 5 and 7 are the only neighbours

and both receive the RREQ, we assume that both nodes have no available routes yet to

node 1. Node 5 and 7 can easily create new routes to node 6 Source from the

information included within the RREQ packet in case of any one (Node5 or 7) has no

route to node 6 as shown in table 4.3.

Figure 4.14: A simple example of RREQ propagation

MDVZRP IMPLEMENTATION CHAPTER [4]

75

The following simple lines in Figure 4.15 are a part of RREQ packet receive algorithm,

for a new route creation to RREQ packet sender:

dst (Destination) = Requester; // Address 2

First next hop (f_nxt_hop) = prev_node; // previous node

Second next hop (s_nxt_hop) = p_prev_node; // pre previous node

Metric (metric) = num_forwards_; // Number forwarded

If (fst_fwd_hop_==initial)
 link_num = myaddress * 10000+ Requester; // creating link id

Else
 link_num = fst_fwd_hop_ * 10000+Requester;

changed_at = now; // Time at which this route is created or updated

Figure 4.15: Creating a new route to RREQ packet sender algorithm

Table 4.3: New routes to RREQ sender that created by RREQ receivers

Dst f_nxt_hop s_nxt_hop Metric Link_id Change_at Packet_id

Address2

prev_hop

p_prev_hop

num_of_hop

myaddress

– address2

Now RREQ

packet id

Node 5:

6 6 null 1 50006 Now xyz

Node 7:

6 6 null 1 60005 Now xyz

After getting the routes, node 7 discards (drops) the RREQ packet because it has no

other neighbours. While node 5 sets fst_fwd_hop_ and prev_hop_ fields to its IP

address, p_prev_hop_ filed to prev_hop_ (the source node IP address), increases

num_forwards_ by 1 (Number of hops) and then broadcasts the RREQ packet again.

Each node maintains a field called packet_id in its routing table to save the RREQ /

RREP packet id as a simple way of avoiding routing loops. An intermediate node may

receive multiple copies of the same RREQ from various neighbours. Therefore, if it has

already received a RREQ with the same packet_id, it drops the redundant RREQ (same

Packet_id) and does not rebroadcast it.

MDVZRP IMPLEMENTATION CHAPTER [4]

76

4.7.5 RREP Packet

Figure 4.16 shows the format of RREP packet, which is divided into three groups of

fields as well. The 1
st
 group is the IP header fields, the 2

nd
 group is the CMN header

fields, while the 3
rd

 one are some fields that represent the payload entry belonging to the

requested destination. RREP is a unicast packet, where TTL is 32 at the first forward it

uses on demand once a node receives a RREQ and has an available route to the

destination being requested in its routing table. The first field in the RREP payload is

for the node that is being requested (Requested destination) as shown in the last five

lines in Figure 4.16, while the next four fields are the routing information needed by

each intermediate node which RREP will pass through to create a route to the requested

destination till RREP reaches the source of the request Requester.

 1st Byte

0 7

 2nd Byte

 8 15

 3rd Byte

16 24

 4th Byte

25 31

Source IP address = my address

Destination IP = Requester(Address 2)

TTL=32

………

Type=26(RREP)

next_hop_ = prev_hop_ or hop in the best route to the Requester

prev_hop_ = myaddress // IP addr of forwarding hop

fst_fwd_hop_ = Initial value (Reset=Null)

p_prev_hop_= Initial value (Reset=Null)

num_forwards_// number of forwarded hops(distance)

……………………….…………………………

Destination being requested(Address 1)

f_nxt_hop // 1
st
 hop towards the requested node(Address 1)

s_nxt_hop // 2
nd

 hop towards the destination node(Address 1)

metric // Num. of hops from me to the requested node(Address 1)

link_num // link number between destination (address1) and f_nxt_hop

Figure 4.16: Format of RREP Packet

MDVZRP IMPLEMENTATION CHAPTER [4]

77

2

7

5

1

3

4

6

In the previous example, we assume that node 3 is the only adjacent that received the

rebroadcast RREQ from node 5, and it is not the source of RREQ as shown in Figure

4.14. Therefore, it has to carry out the same procedure as node 5 did to create a route to

the RREQ packet sender Requester by using the algorithm in Figure 4.15. Table 4.4

shows the new route that node 3 has created as an intermediate node to node 6 RREQ

sender.

Table 4.4: A new route to RREQ sender created by an intermediate node 3

Dst f_nxt_hop s_nxt_hop Metric Link_id Change_at Packet_id

Address2

prev_hop

p_prev_hop

num_of_hop

s

fstfwdhop

– address2

Now RREQ

packet id

Node 3:

6 5 6 2 50006 Now xyz

We also assumed that node 3 has an available route in its routing table to node 1

(Requested destination) in 2 hops, where node 2 is the first next hop as shown in Figure

4.17. Therefore, it has prepared a RREP packet as described previously in Figure 4.16.

 The available route to Node 1 at Node 3

 RREP abc

 RREP abc

Figure 4.17: A simple example of RREP propagation

The RREP packet is sent to node 6 Requester via node 5, which has forwarded that

RREP packet to node 6. Node 5 and 6 are both getting a route to node 1 Requested

destination and a route to the previous node if it is unknown using the following simple

lines in Figure 4.18 which are a part of the RREP packet receive algorithm for creating

MDVZRP IMPLEMENTATION CHAPTER [4]

78

a new route to the requested destination. Tables 5 and 6 show the new routes that node 5

and 6 have got.

dst (Destination) = destination being requested; // Address 1

f_nxt_hop (First next hop) = prev_node; // previous node

s_nxt_hop (Second next hop) = p_prev_node; // pre previous node

metric (Metric) = num_forwards_; // Number forwarded

If (fst_fwd_hop_==initial)
 link_num = myaddress * 10000+ Requester; // creating link number

Else
 link_num = fst_fwd_hop_ * 10000+Requester;

changed_at = now; // Time at which this route is created

Figure 4.18: Creating a new route to RREQ packet sender algorithm

Table 4.5: A new route to requested destination at an intermediate node 5

Dst f_nxt_hop s_nxt_hop Metric Link_id Change_at Packet_id

Address1

prev_hop

p_prev_hop

num_of_hop

s

fstfwdhop

– address2

Now RREP

packet id

Node 5:

1 3 2 3 50003 Now abc

Table 4.6: A new route to requested destination at the requester node 6

Dst f_nxt_hop s_nxt_hop Metric Link_id Change_at Packet_id

Address1

prev_hop

p_prev_hop

num_of_hop

s

fstfwdhop

– address2

Now RREP

packet id

 Node 6:

1 5 3 4 60005 Now abc

MDVZRP IMPLEMENTATION CHAPTER [4]

79

4.7.6 MDVZRP Implementation

In the following few sections we will present and explain in details the implementation

of MDVZRP routing protocol. This routing protocol is implemented using C++ under

Ns2 Network simulator 2, where the scenarios are described using Tcl scripts in the

simulation time. We firstly created a new directory called mdvzrp to allocate our code

inside the NS2 base directory. Then, we created the protocol “physical” structure, by

creating the following files there:

mdvzrp/mdvzrp.h This is the header file where we define all necessary timers and

routing agents which perform protocol‟s functionality.

mdvzrp/mdvzrp.cc In this file, all timers, routing agent and Tcl hooks are actually

implemented

.

common/packet.h here all packets of MDVZRP protocol that need to exchange among

the nodes in the MANETs are declared.

mdvzrp/mdvzrp_rtable.h Header file where the routing table of our own protocol is

declared.

mdvzrp/mdvzrp_rtable.h Routing table implementation.

Secondly, we created the protocol “logical” structure (classes), by creating an agent

which is inherited from Agent class. These classes are representing the endpoints where

the networks-layer packets are created and consumed, and also are used in the protocols

implementation at various layers. In addition, by offering a linkage with Tcl interface.

This class gave us the ability to control the protocol in Tcl scripts simulation time.

The routing table is a collection of entries or routes gathered by a node to most of the

destinations in the network. The routing agent maintains a routing table (which is not

continuously needed) and an internal state, which can be represented as attributes

collection or a new class inside the routing agent itself. We will utilise routing table as a

new class, mdvzrp_rtable.

MDVZRP IMPLEMENTATION CHAPTER [4]

80

MDVZRP protocol defined some new control packets. These packet types are defined

and located in the common/packet.h header file. It is counted on a Time class any

control packet needs to periodically send or after the occurrence of an event. There are

many purposes for using such Timers. For example, when the MDVZRP protocol has

some information and needs to store it for a specific period of time, (must be erased

after while at a certain time). In such case the best way is to create a custom timer which

has the capability to do such a job.

The MDVZRP protocol also uses a timer called changed_at to specify timelife for each

entry in the agent‟s (Node) routing table. In general, the protocol uses a timer whenever

it needs to schedule a task at a given time.

It is useful for the protocol performance evaluation to save dumping the information in a

trace file, about what happened during the simulation in each script scenario. This file is

called a Trace or a Log file as we mentioned in chapter 2 section 2.4.2.6, and the trace

class is the class that responsible for creating and writing this file.

MDVZRP IMPLEMENTATION CHAPTER [4]

81

4.7.7 Packet Implementation

The main purpose of using the packets is to exchange the information between the

objects (nodes) during the simulation time. The MDVZRP protocol has two types of

packets, the control packets (Beacon, FRIP, RSUP, RREQ and RREP), and the data

packets (Tcp, Cbr and Ack). We made sure by adding these packets that the nodes in the

MDVZRP protocol have the ability to send and receive them.

For dealing with any received packet we have to access and read the packet header first,

which has been stored by packet class, by using an array of unsigned characters where

packets fields are stored. We have put all data structures, constants and macros related

to the protocol packet(s) type in common/packet.h header file as mentioned in the

previous section, and shown in Figure 4.19. (This structure is common in most of Ad

Hoc protocols, except the new fields that we have added for MDVZRP).

common/packet.h

53: #define HDR_CMN(p) hdr_cmn::access(p)) //macro to access hdr_cmn
.

63: #define HDR_IP(p) (hdr_ip::access(p)) //macro to access hdr_ip
.

.

468: struct hdr_cmn
{

 enum dir_t { DOWN= -1, NONE= 0, UP= 1 };

 packet_t ptype_; // packet type

 int size_; // simulated packet size

 int uid_; // unique id

 int error_; // error flag

 int iface_; // receiving interface (label)

 dir_t direction_; // direction: 0=none, 1=up, -1=down

 //MDVZRP extn begins

 nsaddr_t prev_hop_; // IP addr of forwarding hop

 nsaddr_t next_hop_; // next hop for this packet

 nsaddr_t fst_fwd_hop_; // first hop of Route Request (MDVZRP)

 nsaddr_t p_prev_hop_; // pre-previous hop of Route Request(MDVZRP)

 int num_forwards_; // how many times this pkt was forwarded
.

.

515: static int offset_; // offset for this header

516: inline static int& offset() { return offset_; }

517: inline static hdr_cmn* access(const Packet* p) {

518: return (hdr_cmn*) p->access(offset_);}
}

Figure 4.19: MDVZRP Packet CMN Header, based on DSDV CMN header

MDVZRP IMPLEMENTATION CHAPTER [4]

82

The common header structure for this protocol packet has been declared in lines 468-

518. For accessing a packet header we need to set a static offset, a member function to

give us the ability to access that offset, and another function to return that given packet

header as shown in lines 515 – 518. While in line 53 the macro which uses the function

has been declared. In line 63 another macro has been declared which is use the function

that returns the ip header of a given packet.

The ip header structure for this protocol‟s packet has been declared in Figure 4.20(A).

In the two first lines we defined ip header length by 20 bytes, and time to live (TTL) in

32 hops, these hops are decreased by one each time the packet is forwarded, this is to

prevent the packet from going far away, when any node receives that packet and finds

its TTL is equal to zero it will drop it immediately.

common/ip.h

47: #define IP_HDR_LEN 20 Bytes

48: #define IP_DEF_TTL 32 Bytes

.
60: struct hdr_ip {

 /* common to IPv{4,6} */

61: ns_addr_t src_;

62: ns_addr_t dst_;

63: int ttl_;

 /* IPv6 */

71: int fid_; /* flow id */

72: int prio_;

74: static int offset_;

75: inline static int& offset() { return offset_; }

76: inline static hdr_ip* access(const Packet* p) {

77: return (hdr_ip*) p->access(offset_);

 }

 /* per-field member acces functions */

81: ns_addr_t& src() { return (src_); }

82: nsaddr_t& saddr() { return (src_.addr_); }

83: int32_t& sport() { return src_.port_;}

84: ns_addr_t& dst() { return (dst_); }

85: nsaddr_t& daddr() { return (dst_.addr_); }

86: nt32_t& dport() { return dst_.port_;}

87: int& ttl() { return (ttl_); }

 /* ipv6 fields */

89: int& flowid() { return (fid_); }

90: int& prio() { return (prio_); }

};

Figure 4.20(A): MDVZRP Packet IP Header, based on DSDV ip.h

MDVZRP IMPLEMENTATION CHAPTER [4]

83

Lines 61-72 show the ip header fields, the 1
st
 one is a packet Source (src_ the ip address

of the node that generated the packet), the 2
nd

 field is a destination (dst_ the ip address

of the node that the packet is send to), both fields are ns_addr_t type (an integer 32 bits

Ns2 simulator address type), the 3
rd

 field is for TTL.

The last two fields are for Internet Protocol version 6 (IPv6), which is an Internet Layer

protocol for packet-switched internetworks, and was designed by IETF as the successor

to the previous version IPv4, which was designed for internet general use. Lines 74-77

show a static offset setting for accessing the packet ip header and two member functions

for accessing that offset and returning the given packet ip header. While lines 81-90

show functions that return the value of each ip header field.

common/packet.h
enum packet_t

 {

 PT_TCP, // Packet 0 DATA
 PT_UDP,

 PT_CBR, // Packet 2 A traffic type where the amount of traffic is constant per unit of time
 .

 .

 PT_ACK, // Packet 5 DATA Acknowledgment
 .

 .

 .

 PT_BEACON, // Packet 20 Hello MDVZRP

 PT_FRIP, // Packet 22 Full routing information MDVZRP

 PT_ROUTE_UPDATE_PACKET, // Packet 23 Partial routing information MDVZRP
 .
 .

 PT_ROUTE_REQUEST, // Packet 26 Route Request Packet MDVZRP

 PT_ROUTE_REPLY, // Packet 27 Route Reply Packet for MDVZRP
 .

 .

 .

 PT_TELNET, // not needed: telnet use TCP
 PT_FTP,

 PT_HTTP,

 .

 .

 PT_BLTRACE, // Bell Labs Traffic Trace Type (PackMime OL)
 .

 // insert new packet types here

 PT_NTYPE // This MUST be the LAST one
};

Figure 4.20(B): MDVZRP Packets Numbers at packet.h

MDVZRP IMPLEMENTATION CHAPTER [4]

84

4.7.8 Routing Agent Implementation

We assume that MDVZRP is a hybrid routing protocol that periodically requires some

control packets such as BEACON and RSUP (Routes Update Packets) to be sent out.

This protocol needs timers to do that job in scheduling, and RREQ when a node needs to

send data to a specific destination where it does not have a route to that destination in its

routing table.

This section discusses the MDVZRP agent class, which contains all the member

functions and attributes that carry out the protocol functionality together.

The agent base class is defined and placed in an mdvzrp/mdvzrp.h file, while the

packet‟s IP header and class are defined and placed in the following file common/ip.h.

For sending a periodical control packet such as BEACON and RSUP, the scheduler.h

has been implemented where a Handler base class which is used for creating the

protocol timers is defined. The trace.h defines the Trace class, used for writing

simulation results out to a trace file. The protocol‟s routing table and its required

attributes are defined in MDVZRP_rtable.h file.

At the beginning of the Agent we have defined the maximum queue length for the

dropped packets, the router port address, where each node is provided by an address

classifier and a port classifier, the port address is used by the port classifier object. This

is responsible for giving the received packets to the corresponding agent, while the

address classifier diverts and guides the received packets either to a suitable link or to

pass them (packets) to the port classifier, which will carry them to the right upper layer

agent.

Two jitters also are defined in the implementation of the agent; the first one is used for

events that should be effectively instantaneous to prevent synchronisation in between,

while the second one is a jitter for all broadcast packets. In the following subsections we

will clarify the agent‟s member functions in more details. The agent‟s member functions

are listed in Table 4.7 according to the MDVZRP mechanism and its packet‟s action

sequence:

MDVZRP IMPLEMENTATION CHAPTER [4]

85

Table 4.7: MDVZRP Agent‟s Member Functions

Function Name Function type Pass parameters

Start Up function void void

Helper Call Back Function void Event * e

Make a Beacon Packet * void

Make FRIP Packet * An integer and nsaddr_t

Make RSUP Packet * An integer

Send Out Broadcast Packet void Packet *

Mac Call Back Function Static void Packet * p, void *arg

Lost Link Function void Packet *

Receive Function void Packet * p, Handler *

Receive beacon function void Packet * p

Receive a FRIP function void Packet * p

Receive a RSUP function void Packet * p

Process Function void Packet * p

Forward Function void Packet * p

Make a RREQ Function Packet * nsaddr_t, nsaddr_t

Make RREP Function Packet * four nsaddr_t, and two integers

Error message function void five integer a route information

MDVZRP IMPLEMENTATION CHAPTER [4]

86

4.7.9 Start Up function

A start-up is a function automatically called once at each node in a network at the

beginning of each scenario. The pseudocode in Figure 4.21 clarifies this function, where

at the beginning each node creates a new entry for itself by setting destination (dst) and

first next hop (f_nxt_hop) fields to its IP address (my address). While the 2
nd

 next hop

(s_nxt_hop) is set to null (no next hop for this entry), and number of hops (metric) is

reset to zero. The link_num field carries a unique number indicates the link between two

nodes, in this case the node needs to generate a link between it and itself (i.e. link_num

of node 3 is 30003, while link_num between 3 and 4 could be 30004 or 40003).

Setting the advertise field to false means that entry belongs to that node only. Hence no

need to advertise it. In addition, there is no need to buffer any packet in that entry‟s

queue by resetting the q field (q=Null). The timeout_event field (a neighbour‟s interval

time of next expected beacon) is set only when an entry for a new neighbour is being

created, while for a node itself and all other nodes it is simply set to NULL (Do not

time out our local host). The node needs to add the simulation time at which that entry

has been created before saves that entry into its routing table (RT) by setting

changed_at filed to now. Finally, it prepares to broadcast a first beacon in other words

kick off periodic advertisements by setting and scheduling a new event or beacon.

Void MDVZRP_Agent::startUp()

{ // Start of startUp function

Define and set now to Scheduler time; // define now variable to double

 // each node creates a new entry for itself

 define rte to a routing table entry; // rte is a new entry (array)

rte dst = myaddress; // a new route destination

rte f_nxt_hop = myaddress; // next hop (1st hop)

rte s_nxt_hop = Null; // 2st hop for this entry is NULL=-99

rte metric = Null; // distance is zero (number of hops)

rte link_num = myaddress*10000+myaddress; //link number

rte advertise = false; // do not advertise this route

rte q = Null; // don’t buffer pkts for self

// Don’t time out our local host, only for adjacent nodes,

 // while for all other nodes it is simply set to NULL

Set rte entry timeout_event to Null;

Set rte entry changed_at to now; // time of getting this route

Add rte entry into my Routing Table; // save this new entry in my RT

Schedule a first beacon time; // kick off periodic advertisements

} // End of startUp function

Figure 4.21: Start up Function pseudocode

MDVZRP IMPLEMENTATION CHAPTER [4]

87

4.7.10 Helper Call Back Function

The helper_callback is the function that receives an event either a beacon or a time out,

and it is only effected by the scheduler whenever it is a node time for broadcasting a

Beacon or reporting a Broken link, or by the lost_link function whenever it has received

back non delivered data packets from its mac layer, because of a non reachable first next

hop and is reporting a lost link.

The pseudocode in Figure 4.22 shows that a helper_callback function receives only an

event (Event e), which could be a beacon time, or time out event (a non reachable

adjacent). At the beginning of the function, the node that received the event, reads a

scheduler time and saves it in a now variable for later use. It also, defines two arrays

(prte) and (pr2) of routing table entry type (MDVZRP_rtable_ent) and a new packet

Packet p. The num_of_advertise_entry and immediately_update are two flags; we

will explain them later in this section.

We have divided the pseudocode in two stages, the 1
st
 stage when the received event is

a beacon time, the node that received the event goes through its routing table to check if

there is any entry / entries need to advertise (where advertise field is true). If it is the

case, the node includes and broadcasts that entry / entries in one RSUP packet.

Otherwise, the node broadcasts an empty beacon packet. Each time the node that

broadcast a beacon packet needs to set and reschedule its next beacon time.

The 2
nd

 stage when the received a Time out event, the node that received the event goes

through its routing table to check which entry (route) has time out event equal to the

received one (entry timeout_event = received e) to assign it as a broken route

(metric=Infinity), sets immediately _update flag to true for broadcasting an immediately

update packet RSUP, and saves that entry broken in an array prte. Hence, breaks the

loop as shown in the 1
st
 loop (for loop) in the pseudocode in Figure 4.22.

Once the broken route is found and saved in an array, the node goes through its routing

table again from the beginning. This is in order to assign each entry route where the first

next hop f_nxt_hop is equal to the destination dst of the broken route prte to infinity too,

as shown in the 2
nd

 loop (for loop) in the function‟s pseudocode in Figure 4.22. When

the node reaches the broken route again in the 2
nd

 loop, it sets it‟s advertise field to true

MDVZRP IMPLEMENTATION CHAPTER [4]

88

(advertise this route), for broadcasting later in the next RSUP as a broken route instead

of sending a separate Error packet.

MDVZRP_Agent::helper_callback (Event * e)

{ // Start of helper call back function

Define and set now to Scheduler time; // define now variable to double

// Define two new routing table entries; // 2 arrays

 Set prte to routing table entry; // prte is a new entry (array)

 Set pr2 to routing table entry; // pr2 is a new entry (array)

 Locate and set p as a new packet; // Packet *p
 num_of_advertise_entry = Null; // set a flag to zero

 immediatly_update = Null; // set a flag to zero

Stage1:

**

// Check for a periodic call back (Beacon)

If (the received Event is a periodic Beacon) // is it a Beacon

{

 // set a loop to read RT entry by entre

 For (not end of routing table, set prte to the current route)

 If (prte advertise field is true) // entry advertise field

 // Count only entries that need to advertise

 Increment num_of_advertise_entry;

 If (num_of_advertise_entry = Null) // no advertise

 p = make_BeaconMessage; // prepare a Beacon packet
 Else // Otherwise, prepare a RSUP

 p = makeRSUP(num_of_advertise_entry);

 If (there is certain information)

 Dump the packet’s available information into the trace file

If (p) // if the packet (Beacon / RSUP) is ready

 // broadcast the packet (p) and place a periodic beacon time back

 // onto the scheduler queue for next time...

 Call sendOutBCastPkt1 (p); // broadcast the packet (p)

 Return;

}

Stage2:

**

 // Check for timeout event (BROKEN LINK)

For(not end of routing table, set prte to the current route)

 If (current route (prte) timeout = received Event)

 {

 immediatly_update = true; // set a flag true

 Break; // ok break the loop, that is the route we are looking for

 }

// Set a loop for my routing table, and assign as infinity any

 // entry that has first next hop = the prte destination

 // of the broken route no need to advertise it

For (not end of routing table, set pr2 to the current route)

{

 If (current route (pr2) first next hop = prte destination)

 {

 current route (pr2) metric = BIG; // Big =infinity

 current route (pr2) changed_at = now; // route update time

MDVZRP IMPLEMENTATION CHAPTER [4]

89

 If (it is a direct route)

 advertise field = true; // advertise it as a broken link
 Else

 advertise field = false; // no need to advertise it
 }

 Reset timeout_event; // an expired timeout, free it

} // End of For

If (immediatly_update) // broadcast an immediately routing information

 {

 For (not end of routing table, set prte to the current route)

 // Include any route where advertise field is true.

 If (advertise)

 // Count entries that need to advertise, where advertise

 // field is true

 Increment num_of_advertise_entry;

 p = makeRSUP(num_of_advertise_entry); // make Routes update packet

If (p) // If the packet (RSUP) is ready

 // broadcast it (RSUP takes the role of beacon this time)

 Call sendOutBCastPkt1 (p); // broadcast the packet (p)

 }

} // End of helper call back function

Figure 4.22: Helper call back Function pseudocode

4.7.11 Make a Beacon Message

The make_Beacon Message is a function periodically called through the

helper_callback function whenever a node needs to broadcast a Beacon.

The function‟s main goal is to prepare and return a beacon packet for broadcasting. This

is carried out by setting the following header fields: the packet type header command

field to BEACON, the packet‟s source address to the IP address of the node that needs

to broadcast a packet, a first node and pre previous node that forwarded that packet to

null, without an address by setting these two fields fst_fwd_hop_ and p_prev_hop_ to

null. We have used -99 as a null instead of 0, because sometimes 0 is used as a node

address as shown in Figure 4.23. The function returns a beacon packet for broadcasting

using the broadcastpkt1 function which we explain in Send Out Broadcast Packet in

section 4.7.14.

MDVZRP IMPLEMENTATION CHAPTER [4]

90

DVZRP_Agent::make_BeaconMessage()

{// Start of make Beacon message function

Define and allocate a Packet (p);

Access the packet’s ip header;
Access the packet’s hdrc header common;

Define and set now to Scheduler time; // define now variable to double

Set hdrc packet type to PT_BEACON; // Packet 20 Hello MDVZRP

Set ip saddr to my address; // source ip address to my address

hdrc fst_fwd_hop_ field = Null; // first forward hop = -99

hdrc p_prev_hop_ field = Null; // pre-previous hop field = -99

// Add the header to the packet

Set hdrc packet size field to IP header length;

Return the packet (p); // return p for broadcasting

}// End of make Beacon message function

Figure 4.23: Make a Beacon Function pseudocode

4.7.12 Make a FRIP Function

The makeFRIP (make Full Routing Information Packet) function is called whenever a

node receives a broadcast packet (BEACON / RSUP) or a forward packet (RREP

/RREQ) from a new neighbour.

The FRIP packet informs the new neighbour that it can access all the destinations

included in that FRIP packet using the sender of the FRIP packet as the first hop

towards each destination listed in the FRIP packet.

The makeFRIP function takes two parameters and returns a FRIP packet. The two

parameters are an integer new_or_broken and the address of the node that sent a packet

dst. The 1
st
 one new_or_broken has two values (0, 1). A 0 means that destination dst in

the 2
nd

 parameter is an old non reachable node because of a broken link. While 1 means

that the destination dst is a new node, therefore the receiver node needs to add a new

entry into its routing table to that destination dst by calling new_entry_intialisation

function as shown in the pseudocode in Figure 4.24.

MDVZRP IMPLEMENTATION CHAPTER [4]

91

In the 1st stage of makeFRIP function, the receiver node counts the number of routes

that needs to include in a FRIP packet, excluding any broken links, only one route to

each destination needs to be included in securing the best route (shortest).

The FRIP packet is not a broadcast packet but is a unicast or „send to a specific

destination‟, as shown in Figure 4.11. Therefore, we have set the next hop next_hop_

and destination‟s address iph daddr both to the new node‟s address dst. The source‟s IP

address (iph saddr) is set to the address of the node that goes to the unicast the FRIP

packet (myaddress).

Because this packet is still under construction and this will be its first transmission, the

prev_hop_ field is set to myaddress, fst_fwd_hop_ field and p_prev_hop_ field are both

set to null.

A FRIP packet is designed to carry 17 bytes for each included route as shown in the

following format in table 4.8. The first 4 bytes are for destination, the 2
nd

 and 3
rd

 8 bytes

are for first next hop and second next hop towards that destination in respectively, while

the last five bytes are 1 byte for metric and 4 bytes for link_num.

Table 4.8: Format of the included routes (entries) in a FRIP packet

4 Bytes 4 Bytes 4 Bytes 1 Byte 4 Bytes

dst f_nxt_hop s_nxt_hop metric link_num

The total FRIP packet size in bytes is 17 × number of included entries +1Byte (num of

included route) + IP‟s header length.

In the 2
nd

 stage of the makeFRIP function, the receiver node starts to include 17 bytes

for each selected entry in the FRIP packet. When all the selected routes are included it

returns the packet for unicasting.

MDVZRP_Agent::makeFRIP(int new_or_broken, nsaddr_t dst)

{ // Start of make full routing information packet function

Defined and allocate a Packet(p);
Access the packet’s ip header;
Access the packet’s hdrc header common;

MDVZRP IMPLEMENTATION CHAPTER [4]

92

Define and set now to Scheduler time; // define now variable to double

Set prte to routing table entry; // prte is a new entry (array)

 If (a new neighbour) // new_or_broken is set to Null
 Call new_entry_intialization(dst); // add a new entry in my RT

 num_of_advertise_entry = 0; // set some variables (change_count)

Stage1:
**

 // set a loop to read RT entry by entre and get only 1 entry

 // (shortest) to each destination, don’t count any broken entry

 For (not end of routing table, set prte to the current route)

 {

If (prte not a broken rout && the shortest)

Increment num_of_advertise_entry; // change_count++
 // Prepare a packet to be unicast to dst (the new neighbour)

hdrc prev_hop_ = myaddress; // I’m the previous

hdrc next_hop_ = dst; // my new neighbour is the next hop
hdrc fst_fwd_hop_ = Null; // not forwarded before
hdrc p_prev_hop_ = Null; // no pre previous hop before

 hdrc packet ptype = PT_FRIP; // Packet 22 Full routing information MDVZRP

iph daddr = dst; // destination IP address=my new neighbour
iph destination port = ROUTER_PORT;

iph saddr = myaddress; // Source IP address = my address
iph sport = ROUTER_PORT;

number of bytes to be included in this packet;

// num of entries multiply by 17 + 1,where 17 = 4B for dst, 4B
 // f_nxt_hop, 4B s_nxt_hop, 1B for metric and 4B for link_num +

 // 1Byte for num of entries that included, the packet’s size
 // MDVZRP + IP

packet size = num_of_advertise_entry * 17 + IP_HDR_LEN;

Stage2:
**

 // set a loop to read RT entry by entry and include only 1

 // entry (shortest) to each destination, into FRIP packet

For (not end of routing table, set prte to the current route)

 {

 If (prte not a broken rout && the shortest)

 {

Include destination into the packet; // 4 bytes
Include first next hop (f_nxt_hop) into the packet; // 4 bytes
Include second next hop (s_nxt_hop) into the packet; // 4 bytes
Include metric into the packet; // 1 bytes
Include link_num into the packet; // 4 bytes

 }

 Decrement num_of_advertise_entry; // Change_count--
 advertise = false; // no need to advertise this entry again
 }

 }

Assert num_of_advertise_entry = 0; // abort if not zero (Error)
Return the packet; // return FRIP packet for unicasting

} // End of make full routing information packet function

Figure 4.24: Make a FRIP Packet Function pseudocode

MDVZRP IMPLEMENTATION CHAPTER [4]

93

4.7.13 Make a RSUP Function

The makeRSUP (make Routes Update Packet) function is called whenever a node needs

to broadcast a periodic beacon packet, and there is a change in the network such as a

new or broken route/routes needing to advertise (advertise field is true). In this case that

node has to call the makeRSUP function to broadcast an update packet (RSUP) instead

of calling the make_Beacon function to broadcast an empty one (BEACON).

The makeRSUP function receives a one parameter, which is the number of entries

needed to advertise and return a RSUP packet as shown in Figure 4.9. The RSUP packet

is designed to be a dual function by taking the beacon packet role, plus its main goal,

which is an update routes packet as we mentioned in the previous section of the

helper_callback function.

The mechanism of the makeRSUP function is same as the makeFRIP function, but the

only difference between them is the method of selecting and propagating the update

routes, where the makeRSUP is a function that creates and includes only the latest

update routes that a node has got in its routing table (advertise field is true), excluding

the broken routes in a broadcast update packet RSUP as shown in stage 1 in Figure 4.25.

While the makeFRIP function creates and includes a single route for each destination

that the node has got in its routing table within a unicast update packet FRIP as shown

previously in Figure 4.24.

MDVZRP_Agent::makeRSUP(int change_count)

{ // Start of make routes update packet function

Defined and allocate a Packet(p);

Access the packet’s ip header;

Access the packet’s hdrc header common;

Set prte to routing table entry; // prte is a new entry (array)

// Prepare a packet to be broadcast to all 1 hop neighbours

 hdrc ptype = PT_ROUTE_UPDATE_PACKET; //Packet 23 MDVZRP

iph saddr = myaddress; // source’s address is my address

hdrc fst_fwd_hop_ = Null; // not forwarded before
hdrc p_prev_hop_ = Null; // no pre previous hop before

//the rest fields will fill in sendOutBCastPkt1 function

Set number of bytes to be included in this packet;

//number of entries multiply by 17 + 1, where 17 = 4B for dst,

 // 4B f_nxt_hop, 4B s_nxt_hop, 1B for metric and 4B for link_num +

 // 1Byte for number of entries

packet size = change_count * 17 + IP_HDR_LEN;

//change_count is the number of entries need to advertise, it is

 // a pass parameter to makeRSUP function

MDVZRP IMPLEMENTATION CHAPTER [4]

94

Stage1:
**

//Filling the Routes Update Packet

 For (not end of routing table, set prte to the current route)

 {

 //Include any route where advertise field is true.

 If (current route prte advertise is true) {

Include destination into the packet; // 4 bytes
Include first next hop (f_nxt_hop) into the packet; // 4 bytes
Include second next hop (s_nxt_hop) into the packet; // 4 bytes

Include metric into the packet; // 1 bytes

Include link_num into the packet; // 4 bytes

Decrement Change_count;

advertise = false; // Reset, no need to advertise this entry again}

 }

 Assert change_count = 0; // abort if not zero (Error)

 Return the packet;

} // End of make routes update packet function

Figure 4.25: Make a RSUP Packet Function pseudocode

4.7.14 Send Out Broadcast Packet

Any broadcast packet must be passed to the sendOutBCastPkt1 function, which puts the

received packet in the scheduler queue after completing the rest of the packet header

fields for broadcasting as shown in the pseudocode in Figure 4.26, where the function

reads that packet‟s ip and common headers and sets the header‟s fields as follows:

The previous hop field prev_hop_ to the node address that broadcasts that packet (my

address), the next hop next_hop_ and destination address dadd fields both to

IP_BROADCAST (send to all nodes that are within one hop distance, within node‟s

transmission range), and the packet‟s direction field to DOWN.

We have used a jitter to avoid synchronisation in case more than one node needs to

broadcast a packet at the same time. Finally, if the broadcast packet is not a beacon it

needs to cancel the next periodic beacon time from the scheduler, hence it puts a new

periodic beacon time onto the scheduler as such as a periodic beacon do.

MDVZRP_Agent::sendOutBCastPkt1(Packet *p)

{ // Start of send out a broadcast packet function
Access and read the packet’s(p) ip header;
Access and read the packet’s(p) hdrc header common;
Define and set now to Scheduler time; // define now variable to double

hdrc prev_hop_ = my address; // previous hop = myaddr
hdrc next_hop_ = Broadcast; // next destination

MDVZRP IMPLEMENTATION CHAPTER [4]

95

ip daddr = Broadcast; // destination IP address
ip dport = ROUTER_PORT; // IP destination port
ip sport = ROUTER_PORT; // IP source
hdrc direction to DOWN;

//jitter to avoid synchronisation

Put the packet onto the scheduler queue;

// s.schedule (target_, p, jitter(MDVZRP_BROADCAST_JITTER, be_random_));
If (not PT_BEACON) // not a Beacon
Cancel the next periodic Beacon from the scheduler;

// s.cancel(periodic_Beacon_); //ns2 standard command

Put a new periodic Beacon time onto the scheduler;

// s.schedule (helper_,periodic_Beacon_,perup_*(0.75 +

// jitter(0.25,be_random_))); // ns2 standard command

Return;

} // End of send out a broadcast packet function

Figure 4.26: Send Out Broadcast Packet Function pseudocode

4.7.15 Mac Call Back Function

The data link layer is one of OSI model layers (layer number 2). It consists of two sub-

layers, the Logic Link Control (LLC) and the Media Access Control (MAC) (Roy,

2011). The MAC sub-layer is responsible for transferring data packets to and from one

device network interface card (NIC) to another in same network using the available

media (wired / wireless). Therefore it is also known as a data communication protocol

sub-layer. The mac_callback is a member function that is called whenever the MAC

layer returns back none delivered packets (the packets that the MAC layer has failed to

deliver).

 Mobility is the biggest issue we face in Ad Hoc networks, where nodes can move freely

at any time to any place. Therefore, during the data packets transmission (forwarding) if

the next hop does not exist anymore (non reachable) the mac_callback is activated and

receives the packets that have returned back from the MAC layer to report a lost link to

any destination via that next hop by calling lost_link function, as shown in the

mac_callback function pseudocode in Figure 4.27.

mac_callback (Packet * p)

{ // Start of mac_caback function

Access and read the packet’s(p) ip header;
Access and read the packet’s(p) hdrc header common;

 // Send back non delivered packet to lost link function
 Call lost_link (p);

} // End of mac_callback function

Figure 4.27: Mac Call Back Function pseudocode

http://en.wikipedia.org/wiki/Data_communication_protocol

MDVZRP IMPLEMENTATION CHAPTER [4]

96

4.7.16 Lost Link Function

The lost link and mac_callback are two related functions that complete each other‟s

jobs. The lost_link function is called each time through the mac_callback whenever it

needs to report a non reachable next hop f_nxt_hop, by passing the non delivered packet

to the lost_link function to delete that non reachable node (next hop field in CMN

header). It also deletes any accessible destination via that node by passing the non

reachable node’s timeout_event to helper_callback function, which has been described

in the previous sections and shown in Figure 4.22.

The node that receives the non delivered packet has to check its routing table to find an

alternative route to that destination via another next hop. Otherwise, if there is no route

to that destination, it has to drop that packet as shown in the lost_link function

pseudocode in Figure 4.28.

MDVZRP_Agent::lost_link (Packet *p)

{ // Start of lost link function

Define and set now to Scheduler time; // define now variable to double

Access and read the packet’s ip header;
Access and read the packet’s hdrc header common;
int src = the packet source IP address;

int dst = the packet destination IP address;

Define prte to routing table entry type; // prte is a new entry (array)

// fined a direct route to the non reachable node (next hop)
Prte = Call GetEntry1 (next_hop,next_hop,myaddress);

If (the packet is returned by mac)

{

If (prte && prte timeout_event) // is timeout_event
{

// there is a direct route and it has the same timeout_event

Cancel that timeout_event from the Scheduler;

Call helper_callback (timeout_event); // report a lost link
}

 // Try to find an alternative route to send this packet by

 // Calling GetEntry2 function

 prte = GetEntry2(dst,-99,&myaddress); // get the best route to dst
If (no route available or the available one is broken)

 // drop the packet because no an alternative route available

 Call Drop (p, DROP_RTR_MAC_CALLBACK); // drop the packet, reason
Else

 // the Node found an alternative route to send that packet

If (there is certain information)

 Dump the packet’s available information into the trace file

Assert (no packet failure by mac_callback); // abort if an Error
 Goto send (p); // jump to send procedure in the forward function
}

Return;

} // End of lost link function

Figure 4.28: Lost Link Function pseudocode

MDVZRP IMPLEMENTATION CHAPTER [4]

97

4.7.17 Receive Function

The recv function is called whenever a packet is received from the same agent (Upper

layer), or from a different agent (Another node). When a packet is received the node

that received that packet checks if it is that packet‟s original sender (the number of

forwards =0). This means that, it has received a packet that originated from it.

Therefore, it needs to add its IP header to that packet and hence forward it. Otherwise, it

received a packet from itself (Probably a routing loop). Therefore, it should drop that

packet as shown in stage 1 in Figure 4.29.

If the received packet sent by another source, the receiver node checks if it is the

destination, and calls the process function to process that packet, we clarify the process

function in the next section. Otherwise, the received packet belongs to another node.

Therefore, the receiver node needs to see if it has an available route to forward that

packet to the right next hop by calling the forwardpacket function as shown in stage 2 in

Figure 4.29. We also explain the forwardpacket member function in the next sections.

recv (Packet * Packet p, Handler)

 { // Start of receive function

Access and read the packet’s (p) ip header;
Access and read the packet’s (p) hdrc header common;

Stage1:
**

// see if I’m that packet (p) original sender

If (packet sender = myaddress && num of forwards is Null)

 Add the IP Header; // I’m the original sender
Else if (packet sender = myaddress)

// A node received a packet that it is sent probably a

 // routing loop

Call drop packet (p); // drop received packet
Return;

Stage2:
**

// see if that packet (p) is sent to me, otherwise let us forward it

If ((packet ip sender not myaddress)&&(not ROUTER_PORT))

 Call process (p); // process this packet
Else

 // That packet(P) is belongs to another node,

 // let us see if we can forward it to its target.

 Call forwardpacket (P);

 } // End of receive function

Figure 4.29: The Receive Function

MDVZRP IMPLEMENTATION CHAPTER [4]

98

4.7.18 Process Function

Process is a function called whenever a node receives a packet, that packet could be a

BEACON, RSUP, FRIP, RREQ or RREP. The aim of the process function is to select

the right function depending on the received packet type as shown in the function‟s

pseudocode in Figure 4.30. We are going to clarify each function called recv function in

detail in the following sections.

Process (Packet * Packet p)

{ // Start of process function

Access and read the packet’s (P) ip header;

Access and read the packet’s (p) hdrc header common;

 If (the packet type is a BEACON) // if a beacon (Hello) packet

 Call receive_Beacon function;

 If (the packet type is a FRIP) // if full routing information packet

 Call receive_FRIP function;

 If (the packet type is a RSUP) // if a Route Update packet

 Call receive_RSUP function;

 If (the packet type is a RREQ_PACKET) // if a ROUTE REQUIST packet

 Call receive_RREQ function;

 If (the packet type is a RREP_PACKET) // if a ROUTE REPLY packet

 Call receive_RREP function;

} // End of process function

Figure 4.30: Process Function pseudocode

4.7.19 Receive Beacon Function

The receive_Beacon function is called whenever a node receives a beacon. Each node

expects to periodically receive a beacon packet from each adjacent within each node‟s

beacon interval by setting the timout-event field. It is an event used to schedule timeout

action, in other words nodes that are within transmission range, while for all other nodes

it is simply set to NULL. Otherwise, it considers the neighbour that did not broadcast a

beacon during its expected beacon interval to be a non reachable neighbour. This is

indicated by setting the metric field to infinity in the entry with non reachable node as

destination.

MDVZRP IMPLEMENTATION CHAPTER [4]

99

The pseudo code for receive beacon is listed in Figure 4.31 shows the receive_Beacon

function mechanism. The node that receives a beacon packet reads the packet headers

and checks its routing table to ascertain whether that packet sender is a known

neighbour or not using checkNeighbour (check a neighbour) function. If it is a known

neighbour, the beacon packet receiver node updates the next periodic beacon interval

time of that neighbour (beacon packet sender). Otherwise, it considers that node as a

new neighbour and sets its next periodic beacon interval time.

receive_Beacon (Packet * p)

{ // Start of receive Beacon function

Access and read the packet’s (p) ip header;
Access and read the packet’s (p) hdrc header common;

 Get the packet’s (p) previous hop ip address; // Packet’s previous_hop
 // check if previous hop is a neighbour

 Call checkNeighbour(previous_hop ip address);

 Return;

} // End of receive Beacon function

Figure 4.31: Receive Beacon Function pseudocode

A BEACON is a periodic broadcast packet the same as an RSUP, where the packet

sender IP address, a previous hop IP address are the same and the packet‟s TTL is 1 (it

has only one hop). So, we created a function called checkNeighbour to check if the

previous node that forwarded that packet is a known neighbour or not, instead of

checking a packet sender itself, because packet sender is not always an adjacent, such as

the case in RREQ and RREP packets. Therefore, we have passed the previous node IP

address to the checkNeighbour function instead of the packet sender IP address.

4.7.20 Check Neighbour Function

The checkNeighbour (check the received packet‟s previous hop) is a member function

called whenever a node receives a control packet BEACON, RSUP, FRIP, RREQ or

RREP to check if that packet previous hop (the last node that forwarded that packet) is a

known neighbour, and still exists, to reschedule its next expected periodic beacon time

timout-event field as shown in stage 1 in Figure 4.32, a known non reachable neighbour

broken link as shown in stage 2 in Figure 4.32 or a new neighbour to set and schedule

its next expected periodic beacon time, hence it unicasts a new FRIP packet to that node

(previous hop) by calling a make_FRIP function immediately as shown in stage 3 in

MDVZRP IMPLEMENTATION CHAPTER [4]

100

Figure 4.32. Finally, as shown in stage 4 the function checks if there are any packets

that are queued that it can send off to that new neighbour.

CheckNeighbour (nsaddr_t src)

 { // Start of check Neighbour function
Define prte to routing table entry type; // prte is a new entry (array)

Locate and define p as a packet; // Packet *p
Set prte to NULL; // initialise prte array (entry)
// get the direct route if available for that destination (src)

prte callGetEntry1 (src, src,&myaddress); // Get the direct route
int is_it_a_neighbor = Null; // set a flag to false

Stage1:
**

// see if the source (src) is a known neighbour

 If (prte route && prte metric is 1) // it is a Known neighbour
 {

 // This is a known neighbour, cancel its next expected

 // periodic beacon time from the scheduler

 Cancel Scheduler prte timeout_event;

 // Reschedule its next expected periodic beacon time, where

 // jitter, min_update_periods_ and perup_ are 45, 15 and 3

 // respectively such as in DSDV

 Call schedule (prte timeout_event, min_update_periods_* perup_);

 Set is_it_a_neighbor field to true; // set a flag to true

 }

 Else

Stage2:
**

// see if the source (src) is a known and non reachable neighbour

 If (a prte route && broken) // a known non reachable neighbour (old)
 {

 // received a beacon from an old non reachable neighbour

 prte metric =1; // repair broken route
 prte timeout_event = new Event; // a new neighbour
 prte advertise = true; // advertise this route
 prte changed_at = now; // set route’s time field to now

 // Inform that neighbour it can access all the destinations in

 // FRIP packet through me (FRIP sender) as a next hop

 p = makeFRIP(1, source (src)); // make an immediately update packet

 If (p)

 {

Assert (no failure in cmn header); // abort in case of failure
 Unicast that packet (p) to my neighbour; // destination = source
 }

 Reschedule a next expected periodic beacon time;

 is_it_a_neighbor = true;

 }

Stage3:
**

// source (src) is a new neighbour

 Else

 {

 // received a beacon from a new neighbour

 p = makeFRIP(0, src); // make an immediately update packet
 If (p)

 {

 Assert (no failure in cmn header); // abort in case of failure

MDVZRP IMPLEMENTATION CHAPTER [4]

101

 Unicast that packet (p) to my neighbour; // destination = source
 }

 is_it_a_neighbor = true;

 }

 If (there is certain information)

 Dump the packet’s available information into the trace file

Stage4:
**

// see if we can send off any packets we’ve queued for this neighbour
 If (prte route)

 If (prte q) // is there any packet in the queue
 {

 Set prte to routing table entry; // prte is a new entry (array)

 Set prte to Null; // Initialisation of new array (entry)
 While (prte queue)

 Give the packets to ourselves to forward;

 // reset the queue, of that destination’s route (entry)
Delete rte entry queue;

SET rte entry queue to NULL;

// Copy rte’s fields to where prte pointing in my RT
Copy back rte entry onto prte entry; // write new rte in my RT

 }

Return (is_it_a_neighbor); // return the flag value

} // The end of check Neighbour function

Figure 4.32: Check Neighbour Function pseudocode

4.7.21 Receive a FRIP Function

The receive_FRIP is a member function called whenever a node receives a full routing

information packet FRIP form an adjacent. As we mentioned previously a FRIP packet

gives the receiver node ability to access all the destinations included within that packet

via the FRIP packet sender, a neighbour, by unicasting all the routes that it has in one

FRIP packet excluding any broken route.

The receive_FRIP function reads the received packet‟s headers and calls the

checkNeighbor function to check if the previous node that forwarded that packet (FRIP

sender) is a known neighbour. Otherwise it considers that node to be a new neighbour

by adding a new entry in its routing table to that node and sending a new FRIP to it as

we mentioned in the previous section.

The mechanism of the receive_FRIP function is divided into three stages as shown in

the function‟s pseudocode in Figure 4.33. In the 1
st
 stage it extracts the data packet and

starts to deal with the included entries one by one in a loop form to see if it can acquire

MDVZRP IMPLEMENTATION CHAPTER [4]

102

any new routes by calling the updateRoute function in the 2
nd

 stage each time it prepares

an entry where it excludes longer, known unless better than the existing one, and in loop

form routes. While in the 3
rd

 stage it checks if can send off any packets it has got

queued for that destination in the direct route. Packets are queued in the direct routes

only.

void MDVZRP_Agent::receive_FRIP(Packet * p)

{ // Start of receive FRIP function

Access and read the packet’s (p) ip header;
Access and read the packet’s (p) hdrc header common;

 // it’s a MDVZRP packet
Set rte to routing table entry; // rte is a new entry (array)

Set prte to routing table entry; // prte is a new entry (array)

Set pr2 to routing table entry; // pr2 is a new entry (array)

Set FRIP_sender to iph previous hop address;

dst = nsaddr_t; // ns2 address format
change_count = Null; // change_count=0
modify_rt = Null; // flag for updating RT

// Check if this packet sender (previous hop) is a neighbour

 yes_it_is_a_neighbr = Call checkNeighbor(hdrc prev_hop_);

Stage1:
**//
// the Node is going to deal with FRIP packet entry by entry
 For (not end of num of entries included)

 {

 Initialise rte entry as an array;

// extracting data (included entries) from the FRIP update Packet..
rte dst = destination included in the packet; // 4 bytes
rte f_nxt_hop = f_nxt_hop included in the packet; // 4 bytes
rte s_nxt_hop = s_nxt_hop included in the packet; // 4 bytes
rte metric = metric included in the packet; // 1 bytes
rte link_num = link_num included in the packet; // 4 bytes
If (myaddress = rte entry dst)
 { // this entry belongs to me

 rte dst = FRIP_sender;

 If (rte entry metric > 1)

 // don't consider this entry because it is same as a loop,

 // access dst(FRIP_sender) through myself…!!

 Continue;

 }

 Else

 {

 If (rte entry metric != Null) // Null =0
 {

 // this entry belongs to the FRIP_sender destination (dst)

 Set rte entry s_nxt_hop to Null; // a direct route 2nd hop should be -99
 // Create a new link number instead of the one that received. It

 // should be between the receiver node (myself) and the FRIP

 // packet sender
 rte entry link_num = myaddress * 10000 + rte entry dst;

 }

MDVZRP IMPLEMENTATION CHAPTER [4]

103

 Else

 rte s_nxt_hop (2
nd
 hop)= rte entry f_nxt_hop (1

st
 hop);

 If (rte not a broken route) // not a broken link
 metric++; Increment rte entry metric

 }

rte f_nxt_hop = FRIP_sender;

rte advertise = true; // I’d like to advertise this route
rte changed_at = now;

Stage2:
**

 // Decide whether to update our routing table

 // Check if you have a route to this destination (dst) through the

 // first next hop (f_nxt_hop)

prte = Call GetEntry1 (rte entry dst, FRIP_sender,&myaddress);

If (not prte) // no route to that dst
 {

 // we’ve heard about a brand new destination
 If (rte metric = 1 && rte dst = rte f_nxt_hop)

 {

 // This entry belongs to a new neighbour

 // Consider this destination (dst) as a new neighbour;

 Set rte entry timeout_event to new Event;

 Put this neighbour expected periodic time in the scheduler;

 }

 // Try to add this entry in its routing table (receiver node)

 int xx =1; // a flag
 int write = call updateRoute(NULL, &rte,xx);

 If (write) // a flag to see if the new entry is added or not
 {

 modify_rt++; // my Routing Table (RT) is modified
 Call updateRoute(NULL, &rte);

 }

 Else if (rte entry metric better than prte entry metric)
 {

 // The route is found ... choose the best

 If (rte entry dst = rte entry f_nxt_hop) //direct route (adjacent)

 // Received an entry belongs to the sender in one hop so,

 // consider it as a neighbour and set its timeout

 Set rte entry timeout_event to new Event;

 int xx = 2;

 int write = updateRoute(prte, &rte,xx);

 If (write)

 modify_rt++; // my Routing Table (RT) is modified
 }

Else

 {

 // Ignore this entry, because the receiver node has same or

 // better route to that destination (dst)

 Continue; // ignore the longer route
 }

Stage3:
**
 // See if we can send off any packets we've got queued for this

 // destination

 Reset prte entry; // prte = NULL
If (rte entry dst != rte entry f_nxt_hop)
{

 // the route we are dealing with is indirect route

 // let us see if we have a direct route

MDVZRP IMPLEMENTATION CHAPTER [4]

104

 prte entry = GetEntry1 (rte entry dst, rte entry dst,&myaddress);

 If (prte)

 Copy prte entry onto rte entry;

 }

 // because we got a new route to that destination (dst) MULTIPATH,
 // where we can use it to send off any queued packets!

 If (prte)

 {

 // check if we have a queued packets in this direct route

 // even this direct route is broken

 If (rte entry queue)

 Give the packets to ourselves to forward;

// reset the queue of that destination’s route (entry)

Delete rte entry queue;

SET rte entry queue to NULL;

// copy all rte fields to where prte pointing in my RT

Copy back rte entry onto prte entry; // write new rte in my RT
 }

 } // end of the FOR loop that reads FRIP (back to the next entry)

 If (modify_rt != Null)

 // the Routing table has been updated. // for debug
 Else

// the Routing table has’nt updated. // for debug
} // End of receive FRIP function

Figure 4.33: Receive a FRIP Function pseudocode

4.7.22 Receive a RSUP Function

The receive_RSUP function is called whenever a node receives an update packet

(Routes Update Packet) from an adjacent. The RSUP packet allows the receiving

neighbour to update its routing table regarding the latest update from that node (the

node that broadcast RSUP) and accessibility to any new destination included within the

RSUP packet via the RSUP packet sender, which became a one hop neighbour. The

RSUP packet is same as the FRIP function, where the only difference is that the RSUP

is a broadcast packet. Therefore, it receives by all the adjacent nodes within the sender

transmission range as shown in RSUP packet format in Figure 4.9.

The receive_RSUP function reads the received packet‟s headers and calls the

checkNeighbor function to check if the previous node that forwarded that packet (RSUP

packet sender) is a known neighbour. Otherwise, it should add a new entry to that node

and send to it a new FRIP as we mentioned in the receive_FRIP function section. The

mechanism of the receive_RSUP function is same as the receive_FRIP function which

is divided into three stages. In the 1
st
 stage as shown in Figure 4.34, it extracts the data

packet and starts to deal with the included entries one by one in turn.

MDVZRP IMPLEMENTATION CHAPTER [4]

105

In the 2
nd

 stage it checks if the received route (entry) belongs to a new destination by

calling the updateRoute function each time it prepares an entry, where it excludes

longer, known, unless it is better than the existing one and in loop form route. If the

received route entry is broken and its destination is the RSUP packet receiver myaddre_

where that is the same as a node telling an adjacent that the link between them is

broken, while it is still in that node transmission range where it received its

broadcasting. In this case that node (RSUP receiver) unicasts a new FRIP packet to the

RSUP packet sender to update its routing table. Otherwise, it calls Error_Msg function

in case the destination is another node; we are going to explain this function in the next

sections.

While the 3
rd

 stage it checks if it can send off any packets it has got queued for that new

destination in its direct route, packets are queued in the direct routes only, as shown in

the following pseudocode in Figure 4.34.

void MDVZRP_Agent::receive_RSUP (Packet * p)

{ // Start of receive RSUP function
Access and read the packet’s (p) ip header;
Access and read the packet’s (p) hdrc header common;
// set a pointer (d) to the beginning of the data packet the 1st

 // byte of the data packet (which is the change count)

Set unsigned char *d to the 1st data byte; // a pointer

// set a pointer (w) to the 2nd byte of data packet (destination)

Set unsigned char *w to d + 1; // *w=d+1
Set rte to routing table entry; // rte is a new entry (array)

Set prte to routing table entry; // prte is a new entry (array)

int xx; // a flag
Initialise rte entry as an array;

int modify_rt = Null;

int change_count = *d; // number of entries included in this packet
int kk = change_count; // a counter for number of routes
packet_sender = iph previous hop address;

If (myaddress = previous hop) // previous hop is the packet sender
 { // drop the RSUP packet that I have sent (loop)

 Drop (p, DROP_RTR_ROUTE_LOOP);

 Return; }

// Check if this packet sender (previous hop) is a neighbour

yes_it_is_a_neighbr = checkNeighbor(hdrc prev_hop_);

Stage1:
**

 // the Node is going to deal with RSUP packet entry by entry
 While (change_count != Null) // num of entries included != 0
 {

// Extracting data packet contents, byte by byte starting from

 // 1st byte where the w pointer points, by moving the w to a

 // next byte each time.

MDVZRP IMPLEMENTATION CHAPTER [4]

106

Set int destination to the 4 bytes contents where w points;

// The pointer (w) is incremented 4 times, by 1 each byte.

 int first_hop = the next 4 bytes contents; // w increments by 4
 int second_hop = the next 4 bytes contents; // w increments by 4
 int number_of_hops = the next bytes; // w increments by 1
 int link_num = the next 4 bytes contents; // w increments by 4
 If (metric = Infinity) // a broken route

If (the broken link is between me and a neighbour) // destination
{

// this neighbour is telling me, the link between us is

 // broke! I've to send it a FRIP, because I’m stil in its

 // transmission range by receiving this broadcast packet RSUP

 Set p = call makeFRIP(1, packet_sender) // Set new packet p to FRIP
If (p)

 {

 Assert (no failure); // abort in case of failure
 Unicast that packet (p) to my neighbour; // destination

 }

 }

 Else

 // this means that the node received a broken route included within

 // the received RSUP instead of sending a separate Error packet

 If (second_hop = Null) // Null= -99, a direct route

 Call Error_Msg(destination,packet_sender,destination, link_num);

 Else

 Call Error_Msg(destination, -1 , -1 , link_num);

change_count--;

modify_rt++; // my Routing Table (RT) is modified
Continue;

}

If (myaddress = first_hop OR myaddress = second_hop) // loop
 {

 // discard this entry because of loop

 change_count--; Decrement

 Continue;

 }

Stage2:
**

// Decide whether to update our routing table

// save the RT entry fields into rte array (a new entry)

rte dst = destination;

rte f_nxt_hop = packet_sender;

rte s_nxt_hop = first_hop;

rte metric = number_of_hops+1;

rte link_num = link_num;

rte advertise = true; // advertise this route later
rte changed_at = now;

If (myaddress != rte entry’s destination (dst))

 { xx = 1;

 int write = call updateRoute(NULL, &rte,xx);

 If (write)

 modify_rt++; // my Routing Table (RT) is modified }

Stage3:
**

 // See if we can send off any packets we've got queued for that

 // destination (dst), in the direct route (packets are queued in

 // direct routes only)

Reset prte entry to NULL; // prte = NULL
 If (rte entry dst != rte entry hop) // indirect route
 {

MDVZRP IMPLEMENTATION CHAPTER [4]

107

 //the route we are dealing with is indirect route let us see if

 // we have a direct route

 prte = Call GetEntry1 (rte entry dst,rte entry dst,&myaddress);

 If (prte)
 Copy prte entry onto rte entry;

 }

 //because we got a new route to this destination (dst) MULTIPATH,
 // where we can use it to send off any queued packets!

 If (prte)

 {

 //check if we have a queued packets in this direct route even

 // this direct route is broken

 If (rte entry queue) // is there any packet queued
 Give the packets to ourselves to forward;
 //reset the queue, of that destination’s route (entry)

 Delete rte entry queue;

 rte entry = NULL;

 //copy all rte fields over where prte pointing in my RT

 Copy back rte entry onto prte entry; // write the new entry (rte) in my RT
 }
 change_count--; // number of included entries
 } // end of the FOR loop that reads RSUP (back to the next entry)
} // End of receive RSUP function

Figure 4.34: Receive a RSUP Function pseudocode

4.7.23 ForwardPacket Function

The forwardPacket function is calling to forward a packet to its correct destination.

Whenever a node needs to send or receive a packet belonging to another node, it has to

find the best route to that destination in its routing table for that packet. If the route is

available and usable, it calls the send procedure to forward that packet to the right next

hop as shown in the stage 1 in the function‟s pseudocode in Figure 4.35.

When the intermediate node forwarding the packet is not the packet original sender and

the available route is broken, this means that packet‟s original sender and the previous

node that forwarded the packet as well, if both are not same, have no idea that the route

to that destination is broken, that destination is not accessible through me (the

intermediate node). Therefore, the intermediate node (forwarder) broadcasts an

immediately ERROR regarding the broken link and drops that packet.

For reducing the overhead we have included the broken route within the update packet

(RSUP) instead of sending a separate Error packet as we mentioned previously in the

RSUP section, and as shown in stage 2 of the function‟s pseudocode in Figure 4.35.

When the packet‟s original sender has no route to that destination or the available route

MDVZRP IMPLEMENTATION CHAPTER [4]

108

is broken, in this case it needs to check if it has a direct broken route to that destination.

Otherwise, it creates a direct broken route (unusable), where metric = infinity to save

that packet in that route‟s queue.

The node should always check the queue in case it is full and drops a packet, depending

on the queue type and its technique, before it queues another non forwarded packet.

Hence, it broadcasts a RREQ packet for that destination as shown in stage 3 in the

pseudocode in Figure 4.35.

Void forwardPacket(Packet * Packet p, Handler)

{ // Start of forward packet function

Access and read the packet’s ip header;

Access and read the packet’s hdrc header common;
Define and set now to Scheduler time; // define now variable to double

Define and Set prte to routing table entry; // prte is a new entry

Define and Set int source (src) to iph source address;

Define and Set int dst to iph destination address;

Define and Set int change_count to null;

 // to forward a packet, we have to set packet’s cmn header/ field

 // To down

 Set packet’s hdrc header common direction field to DOWN;

Stage1:

**

// in case of the route is available, whatever the Packet original

 // sender get the best route (shortest) to the destination (dst)

 // through any next hop (-99)

 prte = call GetEntry2 (dst,-99,&myaddress); // -99 means any next hop
 If (a route and not broken)
 Call send procedure; // Jump to send procedure (stage 4)

// over here, no route available or the available one is broken

Stage2:

**

 // In case of I'm not this Packet original sender, the original

 // sender is a different node

 If (route and broken && source != my address)

 {

 // found a broken route. I'm not this packet original sender

 // the previous hop that forwarded this packet, has no idea

 // that this route is broken, therefore, need to broadcast a

 // route Update Packet immediately (Error Pkt).

 For (not end of routing table)

 {

 // include any route where advertise field is true

 If (route && advertise)

 change_count++;

 }

If (change_count > 0)

 Packet *p1 =call makeRSUP(change_count);

 If (p1)

 Call sendOutBCastPkt1(p1); // broadcast an Update packet

MDVZRP IMPLEMENTATION CHAPTER [4]

109

 // drop the packet, with the reason

 Drop (p, DROP_RTR_NO_ROUTE);

Return;

 }

 Else // I'm this packet original sender.

 {

Stage3:

**

 // in case of Packet original sender has no route or the available

 // route is broken

 If (not a direct route)

 {

 Set prte to NULL; // initialise prte array
 // get the direct route if available

 prte = GetEntry1 (dst, dst,&myaddress);

 }

 If (prte entry is a direct broken route)

 {

 // found a direct broken route, Queue the packet

 If (no queue available in this entry)

 prte q = new PacketQueue() ; // Create a new queue

 Save the Packet in that route’s queue;

 If (there is certain information)

 Dump the packet’s available information into the trace file

 If (the queue is full) // MAX_QUEUE_LENGTH
 Drop (a packet from the queue); // the queue is full

 // make a Route request for that destination

 If (first RREQ or last RREQ time + the delay < now)

 {

 // make a RREQ for that destination (dst), because this is the
 // first RREQ for that dentition, or the last RREQ was since

 // this period (changed_at + 0.5) 0.5 is a delay.

 Packet *p = call makeRRQ(myaddress,dst);

 If (p)

 {

 Access and read the packet’s (p) ip header;
 Access and read the packet’s (p) hdrc header common;

// a node may receive multiple copies of the same route

// request packet from various neighbours. Therefore, we need

// to control number of RREQ to the same destination

 prte entry packet_id = packet unique id;

 prte entry changed_at = now; //entry last update time

 Assert no failure in the cmn header; // abort in case of failure
 Call sendOutBCastPkt1(p); // broadcast a RREQ for that destination
 }

 }

 Return;

 } // end of is this entry prte is a direct broken route
 Else

 {

 // brand new destination, create a new broken entry (no usable)

 Define rte as a new routing table entry type; // rte is a new entry

 Define and set now to Scheduler time; // define now to double

Set rte array (entry) to zeros; //Initialise the new route

rte entry dst = dst;

rte entry f_nxt_hop = dst;

rte entry s_nxt_hop = Null;

rte entry metric = infinity;

MDVZRP IMPLEMENTATION CHAPTER [4]

110

rte entry packet_id = Null; // initial value
rte entry link_num = myaddress*10000+dst;

rte entry advertise = false; // don’t advertise this route
rte entry changed_at = now;

rte entry expected beacon time = null;

Create a new queue;

// save the Packet in that route’s queue

Set rte entry q to the packet;

 If (there is certain information)

 Dump the packet’s available information into the trace file

 // make a RREQ for that destination (dst) for 1st time

 Packet *p = call makeRRQ(myaddress,dst);

 If (p){
 prte entry packet_id = packet unique id;
 Assert no failure in the cmn header;

 Call sendOutBCastPkt1(p); // broadcast a RREQ}
 // add this new entry (rte) in my routing table RT

 Call AddEntry (rte, &myaddress);

 Return;

 } // end of Brand new destination
 }

Stage4:

**

// this is the send procedure part

Send:

Set packet’s hdrc prev_hop_ field to myaddress; // header common
 If (prte entry metric > 1)

 hdrc next_hop_ = hop;

 Else

 hdrc next_hop_ = dst;

If (there is certain information)

 Dump that information into the trace file;

 Assert (no failure in the cmn header); // abort in case of failure

// give this packet to the next hop

Call recv(p, (Handler *)0);

 Return;

} // End of forward packet function

Figure 4.35: Forward Function pseudocode

MDVZRP IMPLEMENTATION CHAPTER [4]

111

4.7.24 Make a Route Request Function

The makeRRQ is called by the forwardPacket function whenever a node needs to

forward a packet to a specific destination, and has no route available in its routing table

(RT) to that destination.

The makeRREQ function takes two parameters, the requester node IP address and the

requested destination IP address and returns a RREQ packet, the RREQ packet is shown

in Figure (4.13).

The mechanism of makeRREQ is simply to create a broadcast packet, that includes the

requested destination and the requester node as shown in the make route request

pseudocode in Figure 4.36.

Packet *

MDVZRP_Agent::makeRRQ(nsaddr_t requester, nsaddr_t destination)

 { // Start of make Route Request

Defined and allocate a Packet (p);
Access the packet’s (p) ip header;
Access and read the packet’s (p) hdrc header common;
Define and set now to Scheduler time; // define now variable to double

// The node (my address) going to create and broadcasts a RRQ

// looking for a route to a specific node (destination), because

// it wants to forward a packet to it and has no route available

// Prepare the packet to be broadcast to all one hop neighbours.

 hdrc packet type = PT_ROUTE_REQUEST;// Packet 26 Route Request Packet MDVZRP

iph source address = myaddress; // source’s address is my address
hdrc fst_fwd_hop_ = Null; // not forwarded before
hdrc p_prev_hop_ = Null; // no pre previous hop before

 // The packet’s rest fields will fill in sendOutBCastPkt function

 Set number of bytes to be included in this packet;

 // the number of included bytes are 8. Where 4Bytes for requester

 // (source) and 4B for the requested node (destination)

 packet size = 8 + IP_HDR_LEN; // MDVZRP + IP

// Filling the Routes Update Packet

 Include requester node address into the packet; // 4 bytes
 Include requested destination address into the packet; // 4 bytes

 // return RREQ packet for broadcasting by sendOutBCastPkt1 function
 Return the packet

} // End of make Route Request

Figure 4.36: Make Route Request Function pseudocode

MDVZRP IMPLEMENTATION CHAPTER [4]

112

4.7.25 Make a Route Reply Function

The makeRRP is calling through the receive_RREQ function whenever a node receives

a RREQ and it is the requested destination, or has a route to the requested destination in

its routing table.

The makeRRP function receives six parameters, which are the requester node IP

address, the requested destination IP address, f_nxt_hop, s_nxt_hop, metric, link_num

and returns a route reply RREP packet, the RREP packet is shown in Figure (4.16).

The mechanism of makeRRP simply creates a packet including a route to the requested

destination, where it unicasts that packet to the requester node as shown in the make

route reply pseudocode in Figure 4.37.

Packet * MDVZRP_Agent::makeRRP(nsaddr_t sende_to,nsaddr_t

dst,nsaddr_t f_nxt_hop,nsaddr_t s_nxn_hop,int metric,int

link_num)

 { // Start of make Route Reply function
Defined and allocate a Packet (p);
Access the packet’s (p) ip header;
Access and read the packet’s (p) hdrc header common;
Define and set now to Scheduler time; // define now variable to double

// The node (myaddress) going to create and unicast a RRP

// prepare the packet to be unicast to the requester node

 iph destination address = sende_to; // destination’s address
 iph destination port = ROUTER_PORT; // destination port
 cmn prev_hop_ field = myaddress;

 packet type = PT_ROUTE_REPLY; //Packet 27 Route Reply Packet for MDVZRP

 int change_count = 1; // num of entries to be included in the packet

 int Number_of_bytes = 17;

 // number of bytes to be included in this packet = num of entries

 // multiply by 17 Bytes + 1 Byte , where

 // 17 = 4 Bytes for dst, 4B f_nxt_hop, 4B s_nxt_hop, 1B for metric

 // and 4 B for link_num + 1Byte for num of entries that included

 // The packet’s size MDVZRP + IP

 packet size = change_count * 17 + IP_HDR_LEN;

// Filling the Route Reply Packet (RREP)

Include destination into the packet; // 4 bytes
Include first next hop (f_nxt_hop) into the packet; // 4 bytes
Include second next hop (s_nxt_hop) into the packet; // 4 bytes
Include metric into the packet; // 1 bytes
Include link_num into the packet; // 4 bytes

 // return RREP packet for unicasting to that destination requester

 Return the packet;

} // End of make Route Reply function

Figure 4.37: Make Route Reply Function pseudocode

MDVZRP IMPLEMENTATION CHAPTER [4]

113

4.7.26 Receive a RREQ Function

The receive_RREQ function is called whenever a node receives a route request packet.

The function reads the received packet‟s headers, and makes the receiver node drops

that packet if it‟s time to live has expired, or it has been received because of loop

forwarding. Otherwise, it calls the checkNeighbor function to check if the previous node

that forwarded that packet RREQ is a known neighbour. Otherwise, it considers that

node as a new neighbour by adding a new entry in its routing table to that node and

sending a new FRIP to it as we mentioned in the previous sections.

The mechanism of the receive_RREQ function is divided into three stages as shown in

Figure 4.38. In the 1
st
 stage; extracts the data packet and deals with the included

information which is a route to the requested destination. While in the 2
nd

 stage; the

receiver node ignores that RREQ packet if it is received the same RREQ before.

Otherwise, prepares for getting a new route to that packet sender Requester if it is an

unknown node. In the 3
rd

 stage, the receiver node unicasts a RREP to the destination

requester (RREQ original sender), if it has an available workable route to that

destination. Otherwise, it rebroadcasts the same RREQ packet again as shown in the

RREQ function‟s pseudocode in Figure 4.38.

void MDVZRP_Agent::receive_RREQ (Packet * p)

{ // Start of receive RREQ function

Access and read the packet’s (p) ip header;
Access and read the packet’s (p) hdrc header common;
Define and set now to Scheduler time; // define now variable to double

// set a pointer (d) to the beginning of the data packet the 1st

 // byte of the data packet (change count)

 Set unsigned char *d to the 1st data byte; // a pointer

// set a pointer (w) to the 2nd byte of data packet (destination)

 Set unsigned char *w to d + 1; // *w=d+1
Set rte to routing table entry; // rte is a new entry (array)

Set prte to routing table entry; // prte is a new entry (array)

Set pr2 to routing table entry; // pr2 is a new entry (array)

Initialise rte entry as a new array;
Initialise prte entry as a new array;

prte = Null;

int sender = packet saddr; // source address
int previous_node = packet prev_hop_;

int p_previous_node = packet p_prev_hop_ ;

int first_hop_node = packet fst_fwd_hop_ ;

int flag = Null;

int Found_before = Null;

MDVZRP IMPLEMENTATION CHAPTER [4]

114

Stage1:

**

 // extracting data from the RREQ packet....

// get(Read) destination requester from the data packet

 int packet_requester = packet’s 1st 4 bytes;

// Get (Read) requested destination from the data packet

 int destination = packet’s 2nd 4 bytes;

// Get (Read) number of forwards from the packet’s header

 int expected_hops = cmn header num_forwards_;

If (there is certain information)

 Dump that information into the trace file;

If (packet’s Time to live = 0) // ttl_=0
{

 now = Scheduler time;

 Drop (p, DROP_RTR_TTL); // drop that packet with reason
 Return;

}

If (myaddress is the packet sender or I’ve rebroadcast this RREQ)

{

 // I am the sender or I've rebroadcast this RREQ packet. So, I

 // have to drop it because of loop

 Drop (p, DROP_RTR_ROUTE_LOOP); // do nothing and free the packet
 Return;

}

 Yes_it_is_a_neighbor = call checkNeighbor(prev_hop_);

Stage2:

**

// the receiver node Checks if this RREQ is received before

For (not end of routing table, set pr2 to the current route)
{

 // Go through my RT and set prt2 to the current route

 If (current route (pr2) dst = packet_requester
 {

 // Found a Route to that Packet Requester (the packet sender)

 If (current route packet_id = hdrc packet unique id)
 {

// I've received this RREQ Before

Found_before = 1; // ignore this RREQ
Break;

 }

 }

 } //end of FOR (loop)

 // Prepare for getting a new route for this packet sender

 // (routing information)

rte dst = packet_requester;

rte f_nxt_hop = previous_node;

rte s_nxt_hop = p_previous_node;

rte metric = expected_hops;

If (first_hop_node = Null) // Null =99
 rte link_num = myaddress*10000+packet_requester;

Else

 rte link_num = first_hop_node*10000+packet_requester;

MDVZRP IMPLEMENTATION CHAPTER [4]

115

rte packet_id = hdrc packet unique id; // Packet id
rte advertise = true; // I'd like to advertise this route
rte changed_at = now;

nsaddr_t = &myaddress; // my address

// Variables initialisation

int f_nxt_hop; // first next hop
int s_nxt_hop; // second next hop
int metric;

int link_num;

// Add rte entry into my RT

Call AddEntry (rte,&myaddress); // don’t add if available before
Set prte to NULL; // initialise prte array (entry)

prte = call GetEntry2 (packet_requester,-99, &myaddress);

If (prte && prte packet_id != hdrc packet unique id)

prte packet_id = hdrc packet unique id;

Stage3:

**

 // the receiver node (myaddress) unicasts a RREP if it knows the

 // requested destination. Otherwise, rebroadcasts the same RREQ again

 int Need_to_rebroadcast_the_same_RREQ = 1 // flag

 If (destination = myaddress) // am I the requested destination
 {

// I've received a route request from *** packet_requester

// looking for me ... (Destination is my address)

Need_to_rebroadcast_the_same_RREQ = Null; // Need a RREP
f_nxt_hop = Null; // Null=-99
s_nxt_hop = Null; // Null=-99
metric = Null; // Null=0
link_num = myaddress*10000+previous_node;

 }

 Else

 Set prte to NULL; // Initialise prte array
 prte = Call GetEntry2 (destination,-99,&myaddr)// get the best route
 If (a route prte && not broken)

 {

Set Need_to_rebroadcast_the_same_RREQ = 1;

// I found a route = that destination in my routing table

f_nxt_hop = route prte f_nxt_hop;

s_nxt_hop = route prte s_nxt_hop;

metric = route prte metric;

link_num = route prte link_num;

 }

 If (!Need_to_rebroadcast_the_same_RREQ && !Found_before)

 {

 // I need to rebroadcast this packet again, because I didn't

 // find a route to the requested destination

If (hdrc fst_fwd_hop_ = Null) // first rebroadcast
 hdrc fst_fwd_hop_ = myaddress;

hdrc p_prev_hop_ = header common prev_hop_ ;

Call sendOutBCastPkt1(p); // broadcast the RREQ packet again

 If (there is certain information)

 Dump that information into the trace file;

 }

 If (Need_to_rebroadcast_the_same_RREQ && !Found_before)

 {

// I need to unicast a Route reply, because I found a route

MDVZRP IMPLEMENTATION CHAPTER [4]

116

 // to the requested destination

Locate and set a new Packet p1;

 p1 = makeRRP(packet_requester,destination,f_nxt_hop,s_nxt_hop

,metric,link_num);

If (p1)

 Call forwardPacket(p1);

Else

 // There is an Error

 Abort ();

// Free the RREQ Packet because, it sent a ROUTE REPLY

Free the RREQ Packet (p);

 }

 Return;

} // End of receive RREQ function

Figure 4.38: Receive Route Request Function pseudocode

4.7.27 Receive a RREP Function

The receive_RREP function is called whenever a node receives a route reply packet.

The function reads the received packet‟s headers, and makes the receiver node drop that

packet if it is time to live (TTL) has expired. Otherwise, it calls the checkNeighbor

function to check if the previous node that forwarded that packet (RREP) is a known

neighbour. Otherwise, it considers that node as a new neighbour by adding a new entry

in its routing table to that node and sends to it a new FRIP as we mentioned in the

previous sections.

The mechanism of receive_RREP function is divided into three stages as well. In the 1
st

stage; as shown in Figure 4.39 extracts the data packet and deals with the included

information (a route to the requested destination). While in the 2
nd

 stage; the RREP

packet receiver caches (gathers) routing information from the received packet (RREP)

for getting a new route to that packet sender. In the 3
rd

 stage; the receiver node checks

if it can send off any packets it has got queued for that destination as shown in the

RREQ function pseudocode in Figure 4.39.

Void MDVZRP_Agent::receive_RREP (Packet * p)

{ // Start of receive RREP function

Access and read the packet’s(p) ip header;
Access and read the packet’s(p) hdrc header common;

Define and set now to Scheduler time; // define now variable to double

// set a pointer (d) to the beginning of the data packet the 1st

 // byte of the data packet (which is the change count)

MDVZRP IMPLEMENTATION CHAPTER [4]

117

Define and Set unsigned char *d to the 1st data byte; // a pointer
// set a pointer (w) to the 2nd byte of data packet (destination)

Define and Set unsigned char *w to d + 1; // *w=d+1

Set rte to routing table entry; // rte is a new entry (array)

Set prte to routing table entry; // prte is a new entry (array)

Set pr2 to routing table entry; // pr2 is a new entry (array)

Initialise rte entry as a new array;

 Set prte to Null;

 int sender = packet iph saddr; // source address
 int sent_to = packet iph daddr; // destination
 int previous_node = packet prev_hop_ ;

Stage1:

**

// extracting data from the RREP packet....

 // get (Read) requested destination from the data packet

 Set int destination to data packet’s 1
st
 4 bytes;

 // get next hop towards that destination from the data packet

 Set int f_nxt_hop to data packet’s 2
nd
 4 bytes;

 // get second hop towards that destination from data packet

 Set int s_nxt_hop to 3
rd
 4 bytes of data packet;

 // get metric towards that destination from the data packet

 Set int metric to data packet’s byte number 13; //one byte

 // get link_num towards that destination from the data packet

 Set int metric to data packet’s byte number 14; //one byte

If (there is certain information)

Dump that information into the trace file;

If (packet’s Time to live is Null) // ttl_= 0
 {

 now = Scheduler time;

 Drop (p, DROP_RTR_TTL); // drop that packet with reason
 Return;

 }

 Yes_it_is_a_neighbor = call checkNeighbor(prev_hop_);

Stage2:

**

// caching (gathering) routing information from the received packet

// (RREP). Prepare for getting a new route for this packet sender

 // (routing information)

 rte dst = destination;

rte f_nxt_hop = destination;

rte s_nxt_hop = f_nxt_hop;

rte metric = metric +1;

rte link_num = link_num;

rte q = Null;

rte advertise = true; // I'd like to advertise this route
rte changed_at = now; // time of getting the destination (dst) route
If (rte route belongs to a neighbour)

{

 // considere the destination (dst) as a new neighbour

 Set rte timeout_event to new Event();

MDVZRP IMPLEMENTATION CHAPTER [4]

118

 // schedule its next expected periodic beacon (timeout)

 Set schedule (timeout_event, min_update_periods_ * perup_);

 }

// any node should get routing information from any packet pass

 // through it

 If (sent_to != myaddress) // I’m not the packet destination
 {

 // because this Packet is sent to another Node, I need to make

 // and forward a new RREP to the same destination node

 // caching routing information before free the received RREP

 Locate and set a new Packet p1;

 p1= Call makeRRP(sent_to,rte.dst,rte.f_nxt_hop,rte.s_nxt_hop,

 rte.metric,rte.link_num);

 If (p1)

 Call forwardPacket(p1);

 Else

 // There is an Error

 Abort;

 }

Stage3:
**

// see if we can send off any packets we've got queued for this dest.

 Set prte array (entry) to Null;

 prte = call GetEntry1 (rte.dst, rte.dst,&myaddress);

// see if we have a direct route

If (prte)

 // copy all the fields where rte pointes into prte pointer

 bcopy(prte, &rte);

 If (prte)

 {

 // check if we have a queued packets in this direct route

 // even this direct route is broken

 If (prte entry queue) // is there any packet queued
 Give the packets to ourselves to forward;

// reset the queue, of that destination’s route (entry)

Delete prte entry queue;

SET prte entry queue to NULL;

// copy all prte fields over where rte pointes in my RT

Copy back prte entry onto rte entry; // write prte in my RT
}

Call free (p); // free the received packet any way

} // End of receive RREP function

Figure 4.39: Receive Route Reply Function pseudocode

MDVZRP IMPLEMENTATION CHAPTER [4]

119

4.7.28 Error Message Function

The Error_Msg is a function called through the receive_RSUP function whenever a

node receives a broken route in a route update packet (RSUP). In the current version of

MDVZRP as we mentioned previously, that we have included the Error Packet within

the update packet (RSUP) for reducing the overall number of control packets.

The Error_Mgs function receives five parameters regarding a broken route (non

reachable destination), which are a destination IP address dest, next first hop towards

that destination f_nxt_hop, second next hop towards that destination s_nxt_hop and the

broken route link_num .

The node that received the RSUP and found a broken route within the data packet (one

of the included entries) calls Error_Mgs function to look through its routing table for

any entry that has the same number of the broken link to assign it as an infinity (broken

link), as shown in the make route reply pseudocode in Figure 4.40.

Void MDVZRP_Agent::Error_Msg(int dest, int f_nxt_hop , int

s_nxt_hop ,int link_num)

{ // Start of Error message function
 now = Scheduler time;

 Set pr2 to routing table entry; // pr2 is a new entry (array)

 For (!end of my routing table, set pr2 to current entry)

 {

If (current entry (pr2) link_num = the received link_num)

 // I reach that destination through the broken link,(link_num)

 If (there is certain information)

 Dump that information into the trace file;

 If (current entry (pr2) belongs to a neighbour) // metric =1
// no need to tell my, that link between me and my neighbour

// is broken, I’ve to discover it myself

 Continue; // ignore the error message
 Else

 // assign the current route (pr2) as a bad route (infinity)

 Set Current entry (pr2) metric to Infinity // BIG=250 (infinity)
 Set Current entry (pr2) changed_at to now;

If (pr2 link_num = link_num in the error message)

 // advertise the broken route with the same link_num only

 Set pr2 advertise to true // advertise this route
 }

} // End of Error message function

Figure 4.40: Error message Function pseudocode

MDVZRP IMPLEMENTATION CHAPTER [4]

120

4.8 Summary

MDVZRP came cross many stages of design and improvements over a period of time

into what it is today. Some of the improvements were in the code itself and others were

in the protocol‟s algorithm technique. In this chapter we presented and described

MDVZRP in more detail, where firstly, the pre-MDVZRP design version 1.00 was

described. Subsequently the updated version of MDVZRP version 2.00 was outlined in

detail. Before the chapter discussed the MDVZRP v2.0 description and implementation,

it listed and highlighted the most important changes that were made to v1.0 and the

main differences between MDVZRP v1.0 and MDVVZRP v2.0.

To perform its functionality in the best possible manner, this routing protocol includes

one routing table which lists a number of multi-paths (backup) to each destination of the

network. The routing table is used to transmit packets through the Ad Hoc network. The

MDVZRP includes two types of packets, the control packets (Beacon, FRIP, RSUP,

RREQ and RREP), and the data packets (TCP, CBR and ACK). The main purpose of

using the packets is to exchange the information between the objects (nodes) during the

simulation time.

MDVZRP‟s packets, agent and functions all are implemented using C++ under Ns2

(Network Simulator 2), which were presented and described in detail by pseudocode in

this chapter. We have firstly created a new directory called MDVZRP to allocate our

code inside the NS2 base directory. Then, we have created the protocol “physical”

structure by creating the header files and routing agent and Tcl hooks main file,

secondly; we created the protocol “logical” structure (classes).

MDVZRP‟s functionality testing and performance comparison are briefly explained and

described graphically in the next two chapters respectively.

CHAPTER 5: FUNCTIONALITY TESTING

121

5.1 Introduction

In the absence of formal mathematical proof of the correctness of the protocol we need

an extensive set of tests (verification) to confirm that the protocol meets the intended

specifications and it is fully functional, and works in a wide range of environments. It is

easy sometimes to convince yourself that it works, only to find that in the random radio

environment it fails. One of the most common methods is functionality testing, where

the new protocol‟s results are checked to see if they meet expected results based on

previously known results, from other protocols already tested and verified. Providing a

product for example a routing protocol with bug-free or a minimum amount of issues is

also important and every developer‟s goal. Therefore, functionality testing helps to

achieve such targets.

Once the implementation of MDVZRP has been completely tested, and porting to run in

the Ns2, its functionality has been verified. Several tested are carried out regarding

using different scenarios; some of them are already supplied with Ns2 version 2.30, as

well as standalone scenarios. The output data results are compared with expected results

specified by each scenario‟s documentation. For more accurate checks and verification

all the used scenarios were run using different standard protocols (AODV, DSDV, DSR

and TORA) and their results were compared with MDVZRP‟s results.

5.2 General Setup

 Figure 5.1 shows a general setup of the all script files that were used in MDVZRP

functionality testing. We kept the same scenario configuration and setup, the only thing

we have changed is the routing agent setting to MDVZRP as shown in line in 11. The

scenarios use the default setting of the wireless network. All the components that are

listed in figure 5.1 are mainly common in most of the used scenarios, which come with

certain default settings.

The following parameters are the wireless default settings that have been used in all the

tcl scenarios, i.e., a Channel/WirelessChannel is the wireless channel, a

Propagation/TwoRayGround is the propagation model used, which indicates that it is

FUNCTIONALITY TESTING CHAPTER [5]

122

the two-ray ground reflection radio propagation model, a Phy/WirelessPhy is the

wireless network interface type with 2 Mbps bandwidth, the Mac/802_11 is the MAC

layer setting, which uses 2Mbps packet data rate for both broadcast/unicast, the

interface queue type is also defined as a priority queue Queue/DropTail/PriQueue,

where the maximum packet in the interface queue is defined by 50 packets, LL is the

link layer type, and finally, an antenna model, which is defined as an Omni-directional

antenna Antenna/OmniAntenna. We ran more than 1500 scenarios during MDVZRP

implementation, improvement, and performance comparison stages using these

parameters. The trace file format that that has been used in all the scenarios is the new

format as shown in line 20 of Figure 5.1, which has been described in chapter 2, section

2.4.3.6 in more detail.

1: # Define options

2: set val(chan) Channel/WirelessChannel ;# channel type

3: set val(prop) Propagation/TwoRayGround ;# radio-propagation model

4: set val(netif) Phy/WirelessPhy ;# network interface type

5: set val(mac) Mac/802_11 ;# MAC type

6: set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

7: set val(ll) LL ;# link layer type

8: set val(ant) Antenna/OmniAntenna ;# antenna model

9: set val(ifqlen) 50 ;# max packet in ifq

10:set val(nn) n ;# number of mobilenodes

.

.

.

.

19:$ns trace-all $tracefd ;#in all formats always keep this line

20:$ns use-newtrace ;# trace file new format

.

.

configure the nodes

.

Provide initial location of mobilenodes

.

Generation of movements

.

#Set a TCP connection between node_(x) and node_(y)

.

Telling nodes when the simulation ends

.

ending nam and the simulation

.

.

16:set val(rp) MDVZRP ;# routing protocol

ether your product meets the intended specifications and functional requirements laid
Figure 5.1: Default wireless scenarios settings.

FUNCTIONALITY TESTING CHAPTER [5]

123

5.3 Simple Scenarios for Functionality Testing

This section shows simple scenarios that have been used in the functionality testing of

MDVZRP. They create a simple network configuration under the Ns2 network

simulator and animator. All the scenarios are OTcl scripts, therefore, we will explain

what each scenario does, and show the animator results rather than listing the script

itself.

5.3.1 Example1.tcl Scenario Overview

In this scenario, a simple wireless network for three nodes out of transmission range of

each other at the beginning as shown in figure 5.3 is presented for testing a

communication between two mobile nodes.

5.3.1.1 Scenario Setup

The scenario places 3 nodes connected to each other via the wireless channel, but at the

beginning, they are out of each other‟s radio range as shown in figure 5.3 in a 500x400

m flat grid area. In this scenario we assume that node (1) Destination receives any

incoming TCP traffic. Therefore, it has a TCP sink agent attached to it. The other node

(0) has an FTP agent connected to its TCP agent, simulating FTP traffic Source, as

shown in Figure 5.2.

Example1.tcl

A 3-nodes example for Ad Hoc simulation with MDVZRP for 150 sec.

Some options define

.

set val(nn) 3 ;# mobile nodes Number

set val(rp) MDVZRP ;# routing protocol

set val(x) 500 ;# topography X dimension

set val(y) 400 ;# topography y dimension

.

set val(stop) 150 ;# end simulation time

.

set ns [new Simulator]

set tracefd [open Example1.tr w]

set windowVsTime2 [open Example1.tr w]

set namtrace [open Example1.nam w]

.

Generation of movements

$ns at 10.0 "$node_(0) setdest 250.0 250.0 3.0"

$ns at 15.0 "$node_(1) setdest 45.0 285.0 5.0"

FUNCTIONALITY TESTING CHAPTER [5]

124

$ns at 110.0 "$node_(0)setdest 480.0 300.0 5.0"

.

.

##Set a TCP connection between node_(0) and node_(1)

set tcp [new Agent/TCP/Newreno]

$tcp set class_ 2

set sink [new Agent/TCPSink]

$ns attach-agent $node_(0) $tcp ;# set node 0 as a source node

$ns attach-agent $node_(1) $sink ;# set node 1 as a destination node

$ns connect $tcp $sink ;# set a connection between them

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns at 12.0 "$ftp start" ;# start traffic flow

.

.

Figure 5.2: Example1.tcl scenario setup

5.3.1.2 Scenario description and results

As we mentioned previously, at the beginning of this scenario, the three nodes are out of

each other‟s radio range as shown in Figure 5.3, The FTP traffic (data sending) is

started at time 12 sec $ns at 12.0 "$ftp start". However, at this time no route is

available at the source to the destination node as shown in Table 5.1, where both node

(0) and node (1) are too far for any data transfer. Therefore, node (0) broadcast an on

demand route request, as shown in Table 5.2.

Figure 5.3: A simple network of three nodes

125

Table 5.1 : Initial state

***** In Start-up ... Routing table of Node (0)

 Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

 0 0 -99 0 0 0.00000000 (nil) (nil) (nil) 0

Table 5.2 : Initiating a RREQ

***** Time: 50.9321 Routing table of Node (0)

 Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

0 0 -99 0 0 0.00000000 (nil) (nil) (nil) 0

1 1 -99 250 1 12.00000000 (nil) 0x92d6ea0 (nil) 14

2 2 -99 1 2 43.21629950 0x92c6210 (nil) 0x1 0

FUNCTIONALITY TESTING CHAPTER [5]

126

At times of 10 and 15 seconds respectively, the source node (node with the FTP) node

(0), and the destination node (node with TCP sink) node (1) start moving towards each

other. At 53 seconds, both nodes are close enough to begin exchanging routing control

messages via node2, when both nodes (source and destination) are in its transmission

range, and have available routes to both of them in its routing table. Therefore, it has

replied with a RREP message to the source node. Therefore, the TCP traffic starts to

flow via node (2) from the source node (0) to the destination (1) as shown in Figure 5.4.

Figure 5.4: Traffic via an intermediate node

Since both nodes are moving toward each other, at 64.77 seconds as shown in table 5.3

and Figure 5.5, the two nodes became close enough to establish a direct flow of traffic.

In spite of the continuous movement of the two nodes, the TCP traffic still flows

directly from the source node to the destination as shown if Figure 5.6, because both of

them (the source and destination) are still in each other‟s transmission range.

FUNCTIONALITY TESTING CHAPTER [5]

127

Figure 5.5: A direct Traffic connection

Figure 5.6: The destination still in the source transmission range

128

Table 5.3 : Getting Multipath

***** Time: 84.4411 Routing table of Node (0)

Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

 0 0 -99 0 0 0.00000000 (nil) (nil) (nil) 0

 1 1 -99 1 1 64.77785751 0x9344b70 (nil) (nil) 0

 1 2 1 2 20001 55.01021039 (nil) (nil) (nil) 0

 2 2 -99 1 2 55.01021039 0x933ab00 (nil) (nil) 0

Table 5.4 : A Direct link Failure

***** Time:140.164 Routing table of Node (0)

Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

0 0 -99 0 0 0.00000000 (nil) (nil) (nil) 0

1 1 -99 250 1 125.54052745 (nil) (nil) (nil) 0

1 2 1 2 20001 55.01021039 (nil) (nil) (nil) 0

2 2 -99 1 2 55.01021039 0x933ab00 (nil) (nil) 0

FUNCTIONALITY TESTING CHAPTER [5]

129

At 123 seconds the FTP source moved away from the TCP sink that caused the link

between them to break, as shown in Table 5.4 and dropped a few packets. Node (0)

assigned the direct link to node (1) to infinity (250) as a broken link, and immediately

used an alternative (back up) route, to establish the same connection to node (1) again

via node (2) as shown in Figure 5.7.

Finally, the simulation time successfully ended at 150 seconds, and we have verified

that the routing tables of the three nodes are sorted and set up correctly, by viewing and

analysing their routing table logging file as shown in Tables 5.1-5.4 of node (0). Please

note we have omitted the routing tables of node (1) and (2), and displayed the routing

table of node (0) in 4 different times only for clarity.

The simulator trace log analysis as well as the MDVZRP log files shows that the

scenario works as expected using MDVZRP protocol.

Figure 5.7: A direct link failure

FUNCTIONALITY TESTING CHAPTER [5]

130

5.3.2 Example2.tcl Scenario Overview

We present a test for the protocol capability for obtaining an alternative route here, if

one or more of the intermediate nodes gradually moved away during the traffic

transmission causing an active broken link. In Example2.tcl, seven mobile nodes [0 – 6]

are placed in such a way that the two nodes need to establish a communication via

couple of intermediate nodes to reach each other.

5.3.2.1 Scenario Setup

The scenario places 7 nodes which are connected to each other via a wireless channel in

a 700x800 m rectangular grid area as described in tcl format in Figure 5.8. Node (6)

Destination receives any incoming TCP traffic. Therefore, it has a TCP sink agent

attached to it while node (1) has an FTP agent connected to its TCP agent, simulating

FTP traffic Source.

Example2.tcl

A 7-nodes example for Ad Hoc simulation with MDVZRP for 150 sec.

Some options define

.

set val(nn) 7 ;# mobile nodes number

set val(rp) MDVZRP ;# current routing protocol

set val(x) 700 ;# topography X dimension

set val(y) 800 ;# topography Y dimension

.

set val(stop) 150 ;# End simulation time

.

set ns [new Simulator]

set tracefd [open Example2.tr w]

set windowVsTime2 [open Example2.tr w]

set namtrace [open Example2.nam w]

.

.

Generation of movements

$ns at 70.0 "$node_(2) setdest 250.0 700.0" ;# at 70 sec node 2 moves

 ;# to position 250,700

#Set a TCP connection between node_(1) and node_(6)

set tcp [new Agent/TCP/Newreno]

set sink [new Agent/TCPSink]

$ns attach-agent $node_(1) $tcp ;# set node 1 as a source node

$ns attach-agent $node_(6) $sink ;# set node 6 as a destination node

$ns connect $tcp $sink ;# set a connection between them

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns at 5.0 "$ftp start" ;# start traffic flow

.

Figure 5.8: Some lines of Example1.tcl Scenario

FUNCTIONALITY TESTING CHAPTER [5]

131

5.3.2.2 Scenario description and results

Figure 5.9 shows a simple network of seven nodes connected through a wireless

channel, they still discover each other, and each node has only one route to itself created

at the start up stage as shown in Table 5.5.

Figure 5.9: A simple network of seven nodes

132

Table 5.5: Initial state of some nodes

***** In Start-up ... Routing table of Node (1)

 Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

1 1 -99 0 10001 0.00000000 (nil) (nil) (nil) 0

***** In Start-up ... Routing table of Node (2)

 Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

2 2 -99 0 20002 0.00000000 (nil) (nil) (nil) 0

***** In Start-up ... Routing table of Node (5)

 Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

5 5 -99 0 50005 0.00000000 (nil) (nil) (nil) 0

FUNCTIONALITY TESTING CHAPTER [5]

133

At 5.0 seconds FTP traffic flow is started. The source node (1) and the destination node

(6) are too far from each other to establish a direct communication as shown in the

source‟s node routing Table 5.6. However, as shown in Figure 5.10, FTP traffic flow is

established between node (1) and (6) via intermediate nodes (2 and 5), which have

routes to the destination in 2 and 1 hops as shown in their routing Tables 5.7 and 5.8

respectively.

Figure 5.10: The TCP traffic starts to flow

134

Table 5.6: A route to the destination node (6) in 3 hops

 ***** At 17.7658... Routing table of Node (1)

Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

0 3 4 3 40000 16.49139686 (nil) (nil) 0x1 0

1 1 -99 0 10001 0.00000000 (nil) (nil) (nil) 0

2 2 -99 1 10002 0.17885948 0x95b61a0 (nil) 0x1 0

2 3 2 2 30002 0.89172185 (nil) (nil) 0x1 0

3 3 -99 1 10003 0.89172185 0x95cd020 (nil) 0x1 0

4 3 4 2 30004 16.49139686 (nil) (nil) 0x1 0

5 3 4 3 40005 16.49139686 (nil) (nil) 0x1 0

 6 2 5 3 50006 5.02007043 (nil) (nil) 0x1 0

6 6 -99 250 10006 5.00000000 (nil) (nil) (nil) 0

Table 5.7: A route to the destination in 2 hops at an intermediate node

 ***** At 19.5945... Routing table of Node (2)

Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

0 3 4 3 40000 16.49139673 (nil) (nil) 0x1 0

0 5 0 2 50000 13.47310439 (nil) (nil) 0x1 0

 1 1 -99 1 20001 0.03169202 0x95b5c48 (nil) (nil) 26

1 3 1 2 30001 0.89172172 (nil) (nil) 0x1 0

2 2 -99 0 20002 0.00000000 (nil) (nil) (nil) 0

3 1 3 2 10003 17.79612613 (nil) (nil) 0x1 0

3 3 -99 1 20003 0.89172172 0x95ccf30 (nil) 0x1 0

3 5 4 3 40003 13.47310439 (nil) (nil) 0x1 0

4 3 4 2 30004 16.49139673 (nil) (nil) 0x1 0

4 5 4 2 50004 13.47310439 (nil) (nil) 0x1 0

5 3 4 3 40005 16.49139673 (nil) (nil) 0x1 0

5 5 -99 1 20005 0.63594949 0x95b5c78 (nil) 0x1 0

 6 5 6 2 50006 5.01605867 (nil) (nil) 0x1 0

135

 Table 5.8: A route to the destination in 1 hop at an intermediate node

 ***** At 27.502... Routing table of Node (5)

 Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

0 0 -99 1 50000 1.11821258 0x95d28a0 (nil) (nil) 0

0 4 0 2 40000 1.60883373 (nil) (nil) (nil) 0

 1 2 1 2 20001 0.17885947 (nil) (nil) (nil) 26

1 4 3 3 30001 1.60883373 (nil) (nil) (nil) 0

 2 2 -99 1 50002 0.17885947 0x95b6180 (nil) (nil) 0

2 4 3 3 30002 1.60883373 (nil) (nil) (nil) 0

3 2 3 2 20003 19.61012102 (nil) (nil) 0x1 0

3 4 3 2 40003 1.60883373 (nil) (nil) (nil) 0

4 0 4 2 4 14.12599291 (nil) (nil) 0x1 0

4 2 3 3 30004 19.61012102 (nil) (nil) 0x1 0

4 4 -99 1 50004 1.60883373 0x95b5258 (nil) (nil) 0

5 5 -99 0 50005 0.00000000 (nil) (nil) (nil) 0

 6 6 -99 1 50006 1.64095043 0x95d29c0 (nil) (nil) 2343

Table 5.9: Routing table of an isolated node

 ***** At 129.842… Routing table of Node (2)

Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

 0 3 4 250 40000 116.28358926 (nil) (nil) (nil) 0

 0 5 0 250 50000 114.64453168 (nil) (nil) (nil) 0

 1 1 -99 250 20001 110.07397720 (nil) (nil) (nil) 5652

 1 3 1 250 30001 116.28358926 (nil) (nil) (nil) 0

 2 2 -99 0 20002 0.00000000 (nil) (nil) (nil) 0

 3 1 3 250 10003 110.07397720 (nil) (nil) (nil) 0

 3 3 -99 250 20003 116.28358926 (nil) (nil) (nil) 0

 3 5 4 250 40003 114.64453168 (nil) (nil) (nil) 0

 4 3 4 250 30004 116.28358926 (nil) (nil) (nil) 0

 4 5 4 250 50004 114.64453168 (nil) (nil) (nil) 0

 5 3 4 250 40005 116.28358926 (nil) (nil) (nil) 0

 5 5 -99 250 20005 114.64453168 (nil) (nil) (nil) 0

 6 5 6 250 50006 114.64453168 (nil) (nil) (nil) 0

FUNCTIONALITY TESTING CHAPTER [5]

136

At 70.0 seconds node 2, the first hop used by the source node (1) to reach to the

destination node (6) in 3 hops, starts to move gradually away from the source node

transmission range. However, the transmission (traffic flow) still takes place in spite of

the first hop (intermediate node) movement away from the source node (1) and the

second hop node (5) as shown in Figure 5.11.

Figure 5.11: The TCP flow in spite of intermediate node movement

Figure 5.12 and 5.13 show that at 75.0 seconds node 2 became completely isolated and

was outside of the radio transmission range not only of the source node (1) and the

second hop (5) but entire the network as shown in its routing Table 5.9, causing broken

links and the loss of few TCP packets.

FUNCTIONALITY TESTING CHAPTER [5]

137

Figure 5.12: A broken link causing TCP packet lost at the source node

Figure 5.13: A few control packets lost at an intermediate node

FUNCTIONALITY TESTING CHAPTER [5]

138

At 80.0 seconds the source node (1) used an alternative route in 4 hops instead of the

broken route of 3 hops to establish the same connection to the destination node (6) via

node (3) as a first hop, node (4) and node (5) as a second and third hop respectively as

shown in Figure 5.14 and their routing tables are shown in Table 5.10 and Table 5.11.

Figure 5.14: The TCP traffic back to flow again via an alternative route

At 150 seconds the simulation time ended successfully, and we have verified that the

routing tables of the seven nodes are sorted and set up correctly, by viewing and

analysing their routing table logging files. Tables 5.5-5.12 show some samples of the

routing tables of nodes (1), (2), and node (5) at different times. The simulator trace log

analysis as well as the MDVZRP log files shows that the scenario works as expected.

139

Table 5.10: A new route to the destination node in 4 hops, and old broken routes

 ***** At 89.7138… Routing table of Node (1)

Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

0 2 5 250 50000 50.96021651 (nil) (nil) (nil) 0

0 3 4 3 40000 16.49139686 (nil) (nil) (nil) 0

1 1 -99 0 10001 0.00000000 (nil) (nil) (nil) 0

 2 2 -99 250 10002 75.31791565 (nil) (nil) (nil) 0

2 3 2 2 30002 0.89172185 (nil) (nil) (nil) 0

3 2 3 250 20003 50.96021651 (nil) (nil) (nil) 0

3 3 -99 1 10003 0.89172185 0x95cd020 (nil) (nil) 0

4 2 5 250 50004 50.96021651 (nil) (nil) (nil) 0

4 3 4 2 30004 16.49139686 (nil) (nil) (nil) 0

 5 2 5 250 20005 50.96021651 (nil) (nil) (nil) 0

5 3 4 3 40005 16.49139686 (nil) (nil) (nil) 0

 6 3 4 4 50006 77.40399911 (nil) (nil) 0x1 0

6 6 -99 250 10006 77.40087065 (nil) (nil) (nil) 0

Table 5.11: A new route and old broken routes at an intermediate node

 ***** At 136.956... Routing table of Node (5)

Dst 1-hop 2-hop metric link_num change at timeout_event Queed-Data Need Advertise Sent_RREQ

 0 0 -99 1 50000 1.11821258 0x95d28a0 (nil) (nil) 0

 0 4 0 250 40000 77.55085802 (nil) (nil) (nil) 0

 1 2 1 250 20001 77.47317802 (nil) (nil) (nil) 26

 1 4 3 3 30001 81.66525136 (nil) (nil) (nil) 0

 2 2 -99 250 50002 77.47317802 (nil) (nil) (nil) 0

 2 4 3 250 30002 77.55085802 (nil) (nil) (nil) 0

 3 2 3 250 20003 77.47317802 (nil) (nil) (nil) 0

 4 0 4 2 40000 14.12599291 (nil) (nil) (nil) 0

 4 2 3 250 30004 77.47317802 (nil) (nil) (nil) 0

 4 4 -99 1 50004 78.2566526 0x9631e78 (nil) (nil) 0

 5 5 -99 0 50005 0.00000000 (nil) (nil) (nil) 0

 6 6 -99 1 50006 1.64095043 0x95d29c0 (nil) (nil) 14790

FUNCTIONALITY TESTING CHAPTER [5]

140

5.3.3 Example 3.tcl Scenario Overview

In this example we present a simple test for the protocol capability for sending data

from one network to another. In Example 3.tcl, thirteen mobile nodes [0 – 12] are

placed in such a way that they are divided into two separate groups, each group

represents a separate network, where initially each group establishes communication

between its members. Later communication between two mobile nodes in separate

groups is established and tested.

5.3.3.1 Scenario Setup

The scenario places 7 nodes connected to each other via a wireless channel in a

1200x800 m rectangular grid area as shown in Figure 5.15. Nodes (1) and (8) are two

destinations each in a separate group ready to receive any incoming TCP traffic. While

nodes (6) and (11) both have an FTP agent, simulating FTP traffic Sources.

Figure 5.15: Two separate groups

FUNCTIONALITY TESTING CHAPTER [5]

141

5.3.3.2 Scenario description and results

Figure 5.16 shows a simple network of thirteen mobile nodes that are connected through

a wireless channel. They are divided into two separate groups, where each group

established its own communication between its members.

At 2.0 seconds the TCP traffic starts, in the first group on the right hand side we

consider that node (6) is a source node and node (1) is a destination, TCP traffic flows

in three hops distance (6-0-2-1) in between, the control packets flow in an alternative

path in 3 hops also (1-3-5-6). While in the second group on the left hand side, node (11)

sends TCP directly to the destination node (8).

Figure 5.16: Two TCP traffic each in a separate group

At 5.0 seconds TCP connection between node (6) in this first group and node (9) in the

second group is established. However, no TCP traffic took a place till 20.0 sec when

nodes (12) and (10) start moving towards node (2) transmission range as shown in

Figure 5.17 and Figure 5.18.

FUNCTIONALITY TESTING CHAPTER [5]

142

Figure 5.17: Nodes (12) and (10) movement

Figure 5.18: TCP traffic between node (6) and node (9)

FUNCTIONALITY TESTING CHAPTER [5]

143

5.3.4 Random.tcl Scenario Overview

In this example we have tested MDVZRP‟s ability to read the movement and traffic

patterns from separate files.

5.3.4.1 Random Scenario Setup

The scenario places 100 nodes moving with a maximum speed of 15 m/s, connected to

each other via a wireless channel, with a pause time of 2s, for a maximum simulation

time of 150s within a topology (area) boundary of 800 x 700. The Nodes movement

model (RWP) is loaded from a separate file (Mov-scn-N100-x800-y700). This scenario

file has been generated by typing the following command in the

/ns-allinone-2.30/ns-2.30/indep-utils/cmu-scen-gen/setdest directory:

/setdest –v 1 -n 100 -p 2 -M 15 -t 150 -x 800 -y 700> Mov-scn-N100-x800-y700

The connections are established between 3 pairs of nodes with data rate of 4 packets per

sec. We specified this connection pattern in a separate file (cbr-scn-N100-1-C3-4cbr-2)

by typing the following command in /ns-allinone-2.30/ns-2.30/indep-

utils/cmu-scen-gen/ directory:

ns cbrgen.tcl –type cbr –nn 3 –seed 1.0 –mc 1 –rate 4> cbr-scn-N100-1-C3-4cbr-2

5.3.4.2 Random Scenario description and results

Figure 5.19 shows a layout of a complicated random network of 100 mobile nodes that

are connected through a wireless channel, within a topology boundary of 800 x 700, for

a simulation time of 150 seconds. Figure 5.20 shows nodes random movement and CBR

traffics flow. The scenario‟s results show that the protocol has successfully read the

movement and traffic pattern from separate files. The visualisation of the NAM trace

files by the network animator in Figures 5.19 and 5.20 also shows that the random-

waypoint during the duration of the simulation (150 seconds) was clearly correct.

FUNCTIONALITY TESTING CHAPTER [5]

144

Figure 5.19: The layout of a random scenario of 100 nodes

Figure 5.20: The random-waypoint movement with some traffic

FUNCTIONALITY TESTING CHAPTER [5]

145

5.4 Trace File Analysis for NS-2

The log or trace files would gather (cache) the required information that could be

visualised such as in the NAM trace file (Kurkowski, 2005), or could be used in a

network and protocols performance study, for example the amount of packets

transferred, delay, and packet loss. These events log files contain packets being sent

received or only dropped, so called Packet Traces. In fact, the trace files are just a text

format in other words they are human readable, where we can access them using some

form of offline software. In order to ease the process of extracting data for performance

studies, many Ns2 Trace Analysers have been proposed (Salleh, 2006). In this thesis we

have used our own programmes using AWK (Robbins, 2001), TCL and C++ to analyse

the Ns2 trace files that have been generated from the scenarios which were used in the

testing of our protocol. Ns2 offers three different formats of the trace file Old, New and

Tagged trace format as mentioned in chapter 2. Since we have used the New trace

format in our protocol study, we will give an overview of only that format which has

been generated by Ns2 simulations.

5.4.1 Sample of Wireless Trace file

s -t 0.008749440 -Hs 0 -Hd -1 -Ni 0 -Nx 120.19 -Ny 17.57 -Nz 0.00 -Ne

-1.000000 -Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.255 -Id -1.255

-It BEACON -Il 20 -If 0 -Ii 0 -Iv 32

r -t 0.009645566 -Hs 10 -Hd -1 -Ni 10 -Nx 137.33 -Ny 51.10 -Nz 0.00 -

Ne -1.000000 -Nl RTR -Nw --- -Ma 0 -Md ffffffff -Ms 0 -Mt 800 -Is

0.255 -Id -1.255 -It BEACON -Il 20 -If 0 -Ii 0 -Iv 32

s -t 0.033595809 -Hs 2 -Hd -1 -Ni 2 -Nx 86.44 -Ny 135.34 -Nz 0.00 -Ne

-1.000000 -Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 2.255 -Id -1.255

-It RSUP -Il 37 -If 0 -Ii 9 -Iv 32

r -t 0.034587863 -Hs 17 -Hd -1 -Ni 17 -Nx 96.62 -Ny 122.64 -Nz 0.00 -

Ne -1.000000 -Nl RTR -Nw --- -Ma 0 -Md ffffffff -Ms 2 -Mt 800 -Is

2.255 -Id -1.255 -It RSUP -Il 37 -If 0 -Ii 9 -Iv 32

s -t 53.425636044 -Hs 1 -Hd -2 -Ni 1 -Nx 162.44 -Ny 262.52 -Nz 0.00 -

Ne -1.000000 -Nl AGT -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 1.0 -Id 2.0 -

It cbr -Il 512 -If 0 -Ii 641 -Iv 32 -Pn cbr -Pi 203 -Pf 0 -Po 2

r -t 53.425636044 -Hs 1 -Hd -2 -Ni 1 -Nx 162.44 -Ny 262.52 -Nz 0.00 -

Ne -1.000000 -Nl RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 1.0 -Id 2.0 -

It cbr -Il 512 -If 0 -Ii 641 -Iv 32 -Pn cbr -Pi 203 -Pf 0 -Po 2

f -t 53.431526201 -Hs 18 -Hd 2 -Ni 18 -Nx 260.19 -Ny 70.21 -Nz 0.00 -

Ne -1.000000 -Nl RTR -Nw --- -Ma 13a -Md 12 -Ms 1 -Mt 800 -Is 1.0 -Id

2.0 -It cbr -Il 532 -If 0 -Ii 641 -Iv 31 -Pn cbr -Pi 203 -Pf 1 -Po 2

Figure 5.21: The new trace format

FUNCTIONALITY TESTING CHAPTER [5]

146

Figure 5.21 shows a sample from a wireless trace file of 7 events in a new trace format,

which includes the following fields (Nikos, 2010):

Event type: It is the first field encoded as one small letter, and describes the node‟s

event type which can be one of the four characters:

s: send

r: receive

d: drop

f: forward

General tag: The second field is the event‟s time, based on the simulation time, starting

with "-t" which stands for time or global setting

-t time

-t * (global setting)

Hop information: The third and fourth fields, they respectively show the id of the

current node and the next hop towards the destination and the tag starts with a leading "-

H" as follow:

-Hs: ID for this node

-Hd: ID for next hop towards the destination.

Node property tags: These tags are encoded as two letters, the first letter is always a

capital letter “-N”, which indicates the first letter in the word of “Node”, while the

second small letter describes the current node‟s properties such as:

-Ni: Node‟s id

-Nx: Node's x-coordinate

-Ny: Node's y-coordinate

-Nz: Node's z-coordinate

-Ne: Node energy level

-Nl: The level at which tracing is being done like agent AGT, router RTR or MAC.

-Nw: Reason of the event, e.g. the following are some of the reasons for dropping a

packet:

"END" DROP_END_OF_SIMULATION

"LOOP" DROP_RTR_ROUTE_LOOP i.e. there is a routing loop

FUNCTIONALITY TESTING CHAPTER [5]

147

"ERR" DROP_MAC_PACKET_ERROR

"TTL" DROP_RTR_TTL i.e. TTL has reached zero

"IFQ" DROP_IFQ_QFULL i.e. no buffer space in IFQ

"CBK" DROP_RTR_MAC_CALLBACK

Packet information (at IP level): This field tags start with a leading "-I", the following

is a list for these tags along with their explanations.

-Is: Source address.port number

-Id: Destination address.port number

-It: Packet type (message, Beacon, RSUP)

-Il: Packet size

-If: Flow id

-Ii: Unique id

-Iv: TTL value e.g. 32

Packet info at MAC level: MAC layer information field always starts with a leading "-

M" and are listed along with their explanations as following:

-Ma: Duration.

-Md: Destination MAC address

-Ms: Source MAC address

-Mt: Ethernet type (800=IP, 806=ARP)

Packet info (information) at Application level: This field tags start with a leading "-P".

It consists of the application type (ARP, TCP) and routing protocol (e.g. MDVZRP,

DSDV, or AODV) being traced. Here is a list of tags for various applications:

-P arp: Address Resolution Protocol.

-Pm: Source MAC address

-Ps: Source address

-Po: ARP Request/Reply

-Pa: Destination MAC address

-Pd: Destination address

-P cbr: Information about the CBR application is represented by the following tags:

-Pi: Sequence number

-Pf: How many times this packet was forwarded

FUNCTIONALITY TESTING CHAPTER [5]

148

-Po: Optimal number of forwards

-P tcp: Information about TCP flow is given by the following sub tags:

-Ps: Sequence number

-Pa: Acknowledge number

5.5 Summary

We have run more than 1500 scenarios during MDVZRP design, implementation and

testing. In this chapter we presented 4 different scenarios, each scenario tests a specific

situation. The results of all tested scenarios show that the MDVZRP in Ns-2 works as

expected and its functions perform their jobs as designed and implemented. In addition,

the analysis of the log files for both the animator (NAM) and trace that were produced

by the network simulator as well as the MDVZRP log files for the mobile nodes routing

tables all show a good indication that our protocol is performing its functionality as we

expected. Finally, we have presented the new trace format which is used to calculate

measures including packet delivery ratio, end-to-end delay, and throughput and packet

drop ratio.

CHAPTER 6: PERFORMANCE EVALUATION

149

6.1 Introduction

In this chapter, the performance of MDVZRP v2.0 is evaluated and compared to the

performance of both standard proactive and reactive protocols. We have also showed

and explained the performance improvements of MDVZRP v2.0 compared to

MDVZRP v 1.0. From now by MDVZRP we mean MDVZRP v2.0.

MDVZRP was evaluated using the discrete event Ns2 (Kevin, 2010) version 2.30. The

Ns2 simulator includes both proactive and reactive protocols. Some of them such as

DSDV, AODV, DSR and TORA are already included within the download version as

standard protocols, while other protocols are available as separate downloads. This

simulator is designed especially for both wired and wireless network research. It is an

open source supported by a large global user base, for this reason researchers and

developers of Ad Hoc protocols have designed and implemented their protocols under

Ns2.

6.2 Performance Evaluation Metrics

The primary metrics we considered evaluating the performance of MDVZRP with were

Packet Delivery Fraction (PDF), End to End Delay (EED), Throughput, Normalised

Routing Load (NRL) and Overhead (OH). These are defined as follow:

Packet Delivery Fraction: is the ratio of received packets by CBR sink at destination

over sent packets by constant bit rate source (CBR,”application layer”). This metric

actually tells us how reliable the protocol is.

PDF = 100
Re

x
sourcesCBRbyPacketsSentCBR

ndestinatioCBRbyPacketsceivedCBR

 (6.1)

PERFORMANCE EVALUATION CHAPTER [6]

150

End-to-End Delay: is the delay in seconds that could be caused by buffering during

route discovery, queuing delays at interface queues, retransmission delays at the MAC,

and propagation and transfer times.

EED =

N

n

nn sr
N 1

(
1

) sec. (6.2)

ns = Time that data packet n was sent

nr = Time that data packet n was received

N = Total number of data packets received

Normalised Routing Load: is the number of routing packets sent per one data packet

delivered at the destination. Each routing packet hop–wise is counted as one

transmission.

NRL =
DeliveredPacketsData

PacketsControlRouting

(6.3)

Throughput: is the amount of data (bits) transferred from the destination node to the

source node during a specified amount of time (s).

Throughput =
1000

8Re
x

TimeStartTimeStoponTransmissi

DataceivedofSize

(6.4)

Routing Overhead: is the sum of all the routing control packets sent during the

simulation time. The control packets include all MDVZRP‟s routing packets such as

Beacon, RSUP, RREQ, and RREP, which we reviewed in the previous chapter. For all

the forwarded packets over multiple hops, each packet transmitted over multi hops

counts as one transmission.

OH = PacketsRoutingOfonsTransmissi

(6.5)

http://www.webopedia.com/TERM/t/data.html

PERFORMANCE EVALUATION CHAPTER [6]

151

This metric is important to compare the performance of routing protocols over

scalability and power consumption (less routing packets sending is less power

consumption). The probability of packet collision is also increased with the rise in

sending routing packets where that may increase the delay data packets to be sent or

waiting in queues. Table 6.1 shows the characters that specify the packet process action.

Table 6.1: Packet Process Actions

Packet Process Action

1 s send

2 f forward

3 r receive

4 d drop

6.3 Simulation Models

In our study and evaluation for the three protocols DSDV, AODV and MDVZRP, we

have used the radio propagation simulation model based on Ns2 (v2.30). The IEE802.11

protocol (DCF) Distributed Coordination function (IEEE Standards Department., 1997)

is used as the MAC layer protocol. The mobility mode is a Random Way Point RWP in

a rectangular field. Two fields are used in this simulation study 550x500 and 750x600

m with 20, 60 and 100 nodes, where each node at the start of the simulation time

remains fixed for an instance of time from 0-100 seconds (Pause time), then choose an

arbitrary destination (Random) from its location and starts its journey towards it with a

randomly selected speed, uniformly distributed between 0-20 m/sec, compared to the

traffic speed inside the cities this is a fair speed for an Ad Hoc network.

Once the node reaches that desired destination, it stops for a pause time interval, and

then another random destination is targeted with the same or different speed. The

relative speeds of the mobiles are affected by varying the pause time, (which can be

seen clearly in this thesis‟s graphs). The simulation time of each scenario is run for 100

seconds. The traffic sources used are Constant Bit Rate (CBR) with 512 byte data

packets in 4 packets per second per source, where each pair of source and destination is

randomly distributed over the network.

PERFORMANCE EVALUATION CHAPTER [6]

152

For accuracy, across the three protocols, identical scenarios in mobility and traffic are

used, and repeated 10 times. Therefore, each data point in this thesis‟s graphs represents

an average of 10 iterations. In this simulation model we also assume that each node has

sufficient power to function properly throughout the simulation time.

6.4 Simulation System Environment

For accuracy, we ran more than 1500 scenarios in both Phases using the Network

Simulator 2 version 2.30, and the same machine for the three protocols at the same time

based on the same parameters listed in Table 6.3 and Table 6.4. Table 6.2 shows the

machine specification used in MDVZRP design, simulation and analysis.

Table 6.2: Simulation Environment Specification

Machine Specification

 Model CPU

CPU‟s

Speed

(Ghz)

Memory

Size

(GB)

Memory

speed

(Hz)

Operating

 System

HP Compaq Intel Pentium 4 3.40 0.99 2.78 Linux

6.5 Evaluation Methodology

This thesis‟s experimental work was divided into the following three phases:

Phase 0: is concerned with the performance comparison of MDVZRP v1.0 with

MDVZRP v2.0, where we show this graphically with a brief explanation of how the

performance developed to the 2
nd

 version.

Phase 1: is concerned with determining optimum values of MDVZRP‟s two

parameters: Route request threshold RREQ_Threshold and route request time out delay

RREQ_TimeOut, which we mentioned in the previous chapters.

Phase 2: is concerned with results that we have obtained from phase1 to study

and investigate the performance of MDVZRP in different network scenarios. As we

mentioned previously, the performance results were compared to other two standard

PERFORMANCE EVALUATION CHAPTER [6]

153

protocols DSDV and AODV, and were also simulated using the same scenarios and

under identical conditions. In the following sections, we are going to describe each

phase in detail.

6.5.1 Phase 0

In this Phase, we have focused on the development and improvement to MDVZRP v1.0.

These were not the only improvements for MDVZRP, but there are other improvements

carried in the other Phases, and we are going to explain them in detail in each Phase.

MDVZRP v2.0 shows better results during the simulation time in Phase 0, after the

improvements and development that were made to v1.0 which explained and clarified in

details in the preceding chapter, we have shown that improvements based on the

MDVZRP v2.0 performance which will be explained briefly and graphically in the

Phase 0 discussion section later on in this chapter.

6.5.2 Phase 1

The MDVZRP protocol was reconfigured for Phase 2 by using simulating Ad Hoc

network of 20, 40, 60, 80, 100, 120, 140, and 160 nodes in Phase 1 to determine the

optimum operating parameters values depending on the network size where each node

has a 250m transmission range, a Carrier sensing range of 550m, queue size of 50

packets and a data rate of 2Mb/s IEEE 802.11. Node movement scenarios and the traffic

patterns were generated using the parameters in Table 6.3 and Table 6.4.

Table 6.3: Parameters Specifying Node Movement and Network Size Patterns

Node movement scenarios and Network size parameters

Mobility

model

Network

Size

(Node)

Topology

 Size

(m)

Transm.

Range

(m)

Node‟s

Speed

(ms 1)

Pause

 Time

(Seconds)

Simulation

Time

 (Seconds)

RWP 20 - 160 500x550 250 20 0-100 100

PERFORMANCE EVALUATION CHAPTER [6]

154

The simulation parameters listed in Table 6.3 and Table 6.4 were chosen based on some

papers that studied performance comparison of TCP and CBR in both reactive and

proactive Ad Hoc protocols (Marina, 2001). The main differences in the selection of

these parameters are the number of nodes that were simulated, the number of

connections, and network size.

Table 6.4: Parameters Specifying Traffic Patterns

Traffic patterns parameters

Mobility

model

Traffic

Type

Packet

Size

(Byte)

Max.

Connections

Sending

 Rate

(Packet/s)

RWP CBR 512 5-50 4

Random Waypoint (RWP) model (Bettstetter, 2003; Hyytia, 2005) is used very widely

for mobility in Ad Hoc network scenarios. In this basic model, each node moves

randomly without restrictions and independent in speed and direction of other nodes. Its

movement and direction must be within a topology or domain given in X and Y

coordination in uniform velocity distribution U (0 ms, Vmax). Once it reaches that

destination, optionally the node waits for a period called pause or thinking time before

continuing the same process to the next waypoint destination.

Our choice for RWP, despite the existence of other models such as Random Walk

Mobility Model, Markovian Waypoint Model MWP, and Random Direction Mobility

Model, was based on its simplicity in the use, implementation and observation of the

process simulation, also; some performance measures could be computed directly.

These basic properties made it one of the most used models in Ad Hoc network

simulations at present.

The significance of the selection of MDVZRP's parameters optimum values of RREQ

Threshold (RREQ_Threshold) and RREQ Time Out Delay (RREQ_TimeOut) came

from the observation in simulation time of various scenarios using RWP technique,

where we found that the optimum value of RREQ_Threshold is 2 for 500x500m

topology, that is because each node in the network is equipped with an IEEE interface

with a transmission range of 250m, that gives it the ability to cover the topology area

PERFORMANCE EVALUATION CHAPTER [6]

155

within 500x500m in a maximum of 2 hops distance, while the optimum value of

RREQ_TimeOut is 1.6 sec more or less increasing the control packets (Overhead), or

end to end delay (EED). This means that the requester node waits for a period equal to

the last RREQ time (change_at) + RREQ_TimeOut before rebroadcasting the same

RREQ again in case of no RREP received.

10, 20 and 50 iterations of the simulation scenarios were carried out separately, and the

results were averaged. Each scenario utilised varying randomly generated mobility and

traffic patterns, with the parameters listed in Table 6.3, and Table 6.4. The total number

of simulations carried out in Phase 1 is the product of the number of iterations, the

number of different network sizes simulated, the number of values of RREQ_Threshold

and RREQ_TimeOut.

Figure 6.1 shows the directory structure of Phase1 that was created based on the

simulation results, for couple values of RREQ_Threshold =1, 2 …32. As the figure

illustrates, for RREQ_Threshold‟s values, a number of RREQ_TimeOut were

investigated. The results we have got from 5x3x10 simulation scenarios show that the

value of the Overhead increases gradually as RREQ_Threshold increases and

RREQ_TimeOut decreases, while the EED increases gradually as both

RREQ_Threshold and RREQ_TimeOut increase as shown in Figure 6.1.

 Number of simulations = 5(Networks) x 3(Number of protocols) x 10(Iterations)

PERFORMANCE EVALUATION CHAPTER [6]

156

Figure 6.1: Phase 1 Directory Structure

6.5.3 Optimum Values of MDVZRP

Increasing and decreasing the RREQ_Threshold or RREQ_TimeOut values rather than

their optimum ones affects the MDVZRP‟s performance as we can see in Figures (6.7-

12) in Phase1 results discussion section. Table 6.5 shows the optimum values of

RREQ_Threshold and RREQ_TimeOut based on the network‟s topology size.

Table 6.5: MDVZRP‟s Optimum Values

MDVZRP‟s Optimum Values

Network Size

X,Y (meter)

Minimum and Maximum

distance

RREQ_Threshold RREQ_TimeOut

sec

250 x 250 (X,Y) ≤ 250 1 1.6

500 x 500 250 < (X,Y) ≤ 500 2 1.6

750 x 750 500 < (X,Y) ≤ 750 3 1.6

1000 x 1000 750 < (X,Y) ≤ 1000 4 1.6

PERFORMANCE EVALUATION CHAPTER [6]

157

6.5.4 Phase 2

MDVZRP shows better results during the simulation time in Phase 2, where the

optimum values of RREQ_Threshold and RREQ_TimeOut from Phase 1 were used to

reconfigure the simulator, as we going to focus on that in a brief discussion in the

following sections. Network size and traffic parameters were maintained from Phase 1.

However, this time, instead of testing against varying values of MDVZRP's two

operating parameters, each simulation was executed with respect to the degree of

mobility in the network, measured in terms of nodes pause time and movement speed.

Figure 6.2 illustrates the structure of the work that carried out in Phase 2, showing the

varying degrees of mobility that MDVZRP was evaluated against in terms of pause time

and node movement speed, which is considered to be a good indication of how dynamic

a network is. A total of 10 iterations of each simulation were carried out, and the results

averaged. Each time for 10 iterations, we have used different traffic patterns and a set of

random mobility scenarios.

Figure 6.2: Phase 2 Directory Structure

To find out the strengths and weakness of MDVZRP, the same sets of simulations that

were carried out in Phase 2 were also conducted for the other two protocols AODV and

DSDV to evaluate their performance under identical conditions as MDVZRP.

PERFORMANCE EVALUATION CHAPTER [6]

158

The total number of simulations carried out in this part of Phase 2 is the product of the

number of iterations (10), the number of different networks (5), number of different

pause times (6), and number of protocols(3).

 Number of simulations = 10x5x6x3 = 900

The total number of trace files that have been generated are the product of the number

of iterations (10), the number of different networks (5), number of different pause times

(6), number of protocols(3), number of connections (4), and number of speeds (4).

Number of trace files = 10x5x6x3x4x4 = 14400 files

The total number of files that have been produced by the analyser program is the

product of the number of different networks (5), number of connections (4), and number

of speeds (4).

Number of analysis files = 5x4x4 = 100 files

91.1 GB space needed in the hard disk to store all that files without the performance

evaluation graphs.

6.6 Phase 0 Results Discussion

This Phase is concerned with the performance comparison of MDVZRP v2.0 with

MDVZRP v1.0. The following figures (6.3-6) show the effect of the changes that were

made on MDVZRP v1.00 compared to the developed version v2.00. Where, Figure 6.3

shows that the Normalised Routing Load NRL as a function of pause time in v2.00 is

better than in v1.00.

PERFORMANCE EVALUATION CHAPTER [6]

159

 Figure 6.3: NRL Over MDVZRP v1.00 and v2.0, Speed 20m/s

 Figure 6.4 shows the increasing of Packet Delivery Fraction as a function in both pause

time and speed over MDVZRP v2.00 compared to v1.00 especially at pause time 15

sec.

Increasing speed with a short pause time increases the possibility of link breakage. Due

to using a combination of proactive and reactive techniques, increasing the PDF in v2.0,

while in v1.00, the PDF increases as the network attend to be stationary with a slow

speed and long period of pause time.

Figure 6.4: PDF over MDVZRP v1.00 and v2.0, Speed 20m/s

PERFORMANCE EVALUATION CHAPTER [6]

160

Figure 6.5 shows a better reading of End to End Delay EED as a function in both pause

time and speed over MDVZRP v2.00 compared to v1.00. EED decreased in v2.0 by

about 60.75 % compared to v1.0 as an average, as the network‟s nodes speed increased.

Figure 6.5: EED over MDVZRP v1.00 and v2.0, Speed 20m/s

Finally, we can confirm from the preceding figures that the changes made in

MDVZRP‟s version 1.0 for obtaining version 2.0, show that the performance as an

overall average of MDVZRP v2.0 became better than that in v1.0 by about 90.5%, we

can also touch that in the MDVZRP‟s v2.0 overhead in the Figure 6.6 where v2.0 shows

less overhead than v1.0 by about 94.5%.

Figure 6.6: Overhead over MDVZRP v1.00 and v2.0, Speed 20m/s

PERFORMANCE EVALUATION CHAPTER [6]

161

6.7 Phase 1 Results Discussion

Scenarios testing during Phase 1 show that choosing the right RREQ_Threshold

parameter for each network size had a direct effect on the results of the simulations

especially in the amount of sent control packets Overhead and end to end delay EED

metrics, and hence effected the amount of data transferred in other words Throughput.

This is due to fact that the maximum extent to which control packets may travel is

affected by the size of the zone radius and RREQ_Threshold value. Therefore,

increasing or decreasing of RREQ_Threshold to be a bigger or smaller topology area

affects the protocol‟s performance.

For example, if the network topology area despite the nodes density is 500 x 500 more

or less, then the node that lay on boundary is the farthest node from the centre of the

network in maximum of 250m, and maximum distance between any two nodes lay on

corners is 500m. While each node‟s transmission range is 250m, which covers that area

for a maximum of 2 hops, the optimum RREQ_Threshold in this case is 2. Therefore,

each node has to cancel (drop) any RREQ packet after its TTL becomes zero, which is

equal to RREQ_Threshold value (2 hops) at the RREQ initiating, to reduce the number

of forwarded RREQ and RREP packets and hence reduces overheads in general.

Increasing the RREQ_Threshold more than the optimum values as shown in Table 6.5,

may make some control packets such as RREQ travel to the maximum extent where that

increases the amount of Overhead. On the other hand, decreasing the RREQ_Threshold

than the optimum value increases EED due to the lack of RREQ, and thence no RREP

packets back received.

The following Figures show the effect of RREQ_Threshold on the MDVZRP‟s

performance in case of choosing a non optimum value of RREQ_Threshold. Figure 6.7

shows that the MDVZRP‟s EED increased gradually with scalability till it became

higher than AODV when RREQ_Threshold was 4 for a network size of 500x550, while

Figure 6.8 shows that the MDVZRP‟s EED increased gradually with scalability but was

still better than AODV. EED decreased when RREQ_Threshold was 2 (Optimum value)

compared to when it was 4.

http://www.webopedia.com/TERM/t/data.html

PERFORMANCE EVALUATION CHAPTER [6]

162

Figure 6.7: EED for RREQ_Threshold = 4

Figure 6.8: EED for RREQ_Threshold = 2

Figures 6.9 and 6.10 show the effect of RREQ_Threshold on the average Overhead,

where it is decreased with the optimum value of RREQ_Threshold = 2. While Figures

6.11 and 6.12 show that the MDVZRP‟s average number of dropped packets is

decreased with optimum value of RREQ_Threshold.

0

50

100

150

200

250

0 20 40 60 80 100 120

E

E

D

Number of Nodes

AODV

MDVZRP

0

50

100

150

200

250

0 20 40 60 80 100 120

E

E

D

Number Of Nodes

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

163

Figure 6.9: Average Overhead for RREQ_Threshold = 4

 Figure 6.10: Average Overhead for RREQ_Threshold = 2

PERFORMANCE EVALUATION CHAPTER [6]

164

 Figure 6.11: Average Dropped Packets for RREQ_Threshold = 4

Figure 6.12: Average Dropped Packets for RREQ_Threshold = 2

PERFORMANCE EVALUATION CHAPTER [6]

165

6.8 Phase 2 Results Discussion

In this section, we present and discuss the results that we have got in Phase 2, which are

the performance comparison of MDVZRP with DSDV and AODV. These performance

analysis, study and discussion are based on the effect of scalability, mobility and

congestion. The results of Phase 2 that are presented show the performance of the three

investigated protocols over several of networks with only CRB traffic.

We have divided phase 2 results and discussion into three sets of experiments; the 1
st

set studies the performance of the three protocols over a small number of nodes (20

nodes) with 10, 15 and 20 traffic sources, while the 2
nd

 set is 60 nodes with 20, 30 and

40 traffic sources and a packet rate of 4 packets/s. The 3
rd

 set is 100 nodes with 20, 40

and 50 sources. Please note, for 40 and 50 sources we kept the same packet rate (4

packets /sec) because we would like to see the affect of the congestion on the three

protocols‟ performance as well

6.8.1 The Graphs and How to Read Them

Figures (6.14-64) show the performance of MDVZRP compared to the most known

MANET standard protocols DSDV and AODV. Each network size has 6 graphs (PDF,

NRL, Throughput, EED, OH and Average Dropped Packets) by 3 different connections.

Each point on the graph is an average of the results obtained from the 10 iterations

performed. This study shows the spread in the data collected. 95% a sample of

confidence intervals for PDF are given in Table 6.6, and shown in Figure 6.13.

Confidence intervals for the other metrics are of similar magnitude, but are omitted

from the graphs for clarity.

Table 6.6: A sample of PDF confidence interval and error bars

Parameters DSDV AODV MDVZRP

Num. of

Nods

PDF

%

Confidence

Interval

PDF

%

Confidence

Interval

PDF

%

Confidence

Interval

20 85.31 2.48 99.6 2.48 98.9 2.49

60 86.23 4.36 98.85 4.40 98.87 4.43

100 83.97 6.14 92.87 6.81 97.09 6.85

PERFORMANCE EVALUATION CHAPTER [6]

166

Figure 6.13: PDF 95% confidence interval and error bars

6.8.2 The 1
st
 Set of Experiments

Figure 6.14: PDF for the 20 nodes model with 10 sources

The Packet Delivery Fraction Figures (6.14-16), for both AODV and MDVZRP are

very similar with 10, 15 and 20 sources in the first set of 20 nodes network, while

DSDV has a lower performance at lower pause times (high mobility scenarios).

(A) 20 Nodes,10 Sources and 0-20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
 (

%
) DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

167

Figure 6.15: PDF for the 20 nodes model with 15 sources

Figure 6.16: PDF for the 20 nodes model with 20 sources

Both AODV and MDVZRP are also show high similarity in the Throughput metric with

10, 15 and 20 sources in the first set of 20 nodes network as well, while DSDV shows a

lower throughput performance at high mobility scenarios as shown in Figures (6.17-19).

(B) 20 Nodes, 15 Sources and 0-20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
 (

%
) DSDV

AODV

MDVZRP

(C) 20 Nodes, 20 Sources and 0-20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
 (

%
) DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

168

Figure 6.17: Throughput for the 20 nodes model with 10 sources

Figure 6.18: Throughput for the 20 nodes model with 15 sources

Figure 6.19: Throughput for the 20 nodes model with 20 sources

(A) 20 Nodes,10 Sources and 0-20 m/sec Speed

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Pause Time (Sec)

T
h

ro
u

g
h

p
u

t
[K

b
p

s]

DSDV

AODV

MDVZRP

(B) 20 Nodes, 15 Sources and 0-20 m/sec Speed

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Pause Time (Sec)

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

DSDV

AODV

MDVZRP

(C) 20 Nodes, 20 Sources and 0-20 m/sec Speed

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

Pause Time (Sec)

T
h

ro
u

h
p

u
t

(K
b

p
s
)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

169

MDVZRP shows a best NRL in all cases, while AODV show the highest NRL at the

high mobility times, decreasing gradually as the network tends to be a stationary as

shown in Figures (6.20-22), because both AODV and DSDV compared to MDVZRP

generate more packets per data packet, which made both AODV and DSDV produce a

higher overhead than MDVZRP in all scenarios as shown in Figures (6.23-25).

Figure 6.20: NRL for the 20 nodes model with 10 sources

Figure 6.21: NRL for the 20 nodes model with 15 sources

(A) 20 Nodes,10 Sources and 0-20 m/sec Speed

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

(B) 20 Nodes, 15 Sources and 0-20 m/sec Speed

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

170

Figure 6.22: NRL for the 20 nodes model with 20 sources

Figure 6.23: Average Overhead for the 20 nodes model with 10 sources

Figure 6.24: Average Overhead for the 20 nodes model with 15 sources

(C) 20 Nodes, 20 Sources and 0-20 m/sec Speed

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

(A) 20 Nodes,10 Sources and 0-20 m/sec Speed

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
O

ve
rh

ea
d

 (
P

ac
ke

ts
)

DSDV

AODV

MDVZRP

(B) 20 Nodes, 15 Sources and 0-20 m/sec Speed

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
O

ve
rh

ea
d

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

171

Figure 6.25: Average Overhead for the 20 nodes model with 20 sources

The relative performance of the three protocols with respect to EED is similar as the

network size increases and tends to have low mobility where it can be seen clearly in

Figure (6.28). MDVZRP shows a better EED than AODV at low and medium mobility

as shown in Figures (6.26-28).

MDVZRP shows a higher EED than AODV and DSDV, that refers to data queued for

longer in MDVZRP because of RREQ and RREP mechanism, which takes longer in

MDVZRP than AODV, because each intermediate node checks the whole of its routing

table to see if there is an available route to the required destination during the RREQ

receive mechanism, and some of the intermediate nodes do the same thing again to

obtain routing information during the RREP receive mechanism.

Increasing the speed with a short pause time increases the possibility of link breakage

and hence that increases the possibility of using routes on demand where requests from

MDVZRP to call RREQ/RREP many times, which negatively effects in EED as shown

in Figures (6.26-28), where we can see clearly at pause time 20 sec.

Regarding average dropped packets performance, the MDVZRP shows a better

performance compared to DSDV, and an outstanding performance compared to AODV

in all scenarios of the 1
st
 set of experiments (20 nodes) as shown in Figures (6.29-31).

(C) 20 Nodes, 20 Sources and 0-20 m/sec Speed

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
 O

ve
rh

e
ad

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

172

Figure 6.26: EED for the 20 nodes model with 10 sources

Figure 6.27: EED for the 20 nodes model with 15 sources

Figure 6.28: EED for the 20 nodes model with 20 sources

(A) 20 Nodes,10 Sources and 0-20 m/sec Speed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

 (
S

ec
)

DSDV

AODV

MDVZRP

(B) 20 Nodes, 15 Sources and 0-20 m/sec Speed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

 (
S

ec
)

DSDV

AODV

MDVZRP

(C) 20 Nodes, 20 Sources and 0-20 m/sec Speed

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

 (
S

ec
)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

173

Figure 6.29: Average Dropped Packets for the 20 nodes model with 10 sources

Figure 6.30: Average Dropped Packets for the 20 nodes model with 15 sources

Figure 6.31: Average Dropped Packets for the 20 nodes model with 20 sources

(A) 20 Nodes,10 Sources and 0-20 m/sec Speed

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
D

ro
p

p
ed

 P
ac

ke
ts

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

(B) 20 Nodes, 15 Sources and 0-20 m/sec Speed

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
d

ro
p

p
ed

 P
ac

ke
ts

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

(C) 20 Nodes, 20 Sources and 0-20 m/sec Speed

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
 D

ro
p

p
e
d

 P
ac

ke
ts

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

174

6.8.3 The 2
nd

 Set of Experiments

Networks of 60 nodes with 20, 30 and 40 sources and fixed data rate 4 packets / sec are

used for the three protocols‟ performance evaluation in this set of experiments. Figure

(6.32) shows that MDVZRP has similar PDF to AODV for 20 sources, while AODV

shows a slightly better performance as the mobility increased with 30 and 40 sources as

shown in Figures (6.33, 34).

Figure 6.32: PDF for the 60 nodes with 20 sources

Figure 6.33: PDF for the 60 nodes with 30 sources

(A) 60 Nodes, 20 Sources and 20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
 (

%
)

DSDV

AODV

MDVZRP

(B) 60 Nodes, 30 Sources and 20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
 (

%
) DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

175

Figure 6.34: PDF for the 60 nodes with 40 sources

Because fewer control packets broadcast for each data packet, MDVZRP still achieves

better NRL and overhead in all scenarios, especially in high mobility network scenarios.

The difference in both NRL Figures (6.35-37) and overhead control packets (6.41-43)

are 5 times more in AODV for 60 nodes than in the 20 nodes network.

Figure 6.35: NRL for the 60 nodes with 20 sources

(C) 60 Nodes, 40 Sources and 20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
 (

%
) DSDV

AODV

MDVZRP

(A) 60 Nodes, 20 Sources and 20 m/sec Speed

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

176

Figure 6.36: NRL for the 60 nodes with 30 sources

Figure 6.37: NRL for the 60 nodes with 40 sources

However, MDVZRP‟s delay is still higher than both AODV and DSDV at high

mobility, but shows a better delay performance at low mobility than the other two

protocols and reasonable EED at medium mobility as shown in the EED Figures (6.38-

40).

Compared to DSDV, the average dropped packets performance of MDVZRP in the 2
nd

set of experiments shows a better performance as shown in Figures (6.44-46), but the

same figures show that MDVZRP has a lower performance compared to AODV at high

mobility scenarios and the best performance at low mobility.

(B) 60 Nodes, 30 Sources and 20 m/sec Speed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

(C) 60 Nodes, 40 Sources and 20 m/sec Speed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

177

Figure 6.38: EED for the 60 nodes model with 20 sources

Figure 6.39: EED for the 60 nodes model with 30 sources

Figure 6.40: EED for the 60 nodes model with 40 sources

(A) 60 Nodes, 20 Sources and 20 m/sec Speed

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

 (
S

ec
)

DSDV

AODV

MDVZRP

(B) 60 Nodes, 30 Sources and 20 m/sec Speed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

 (
S

ec
)

DSDV

AODV

MDVZRP

(C) 60 Nodes, 40 Sources and 20 m/sec Speed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

 (
S

ec
)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

178

Figure 6.41: Average Overhead for the 60 nodes model with 20 sources

Figure 6.42: Average Overhead for the 60 nodes model with 30 sources

Figure 6.43: Average Overhead for the 60 nodes model with 40 sources

(A) 60 Nodes, 20 Sources and 20 m/sec Speed

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
O

ve
rh

ea
d

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

(B) 60 Nodes, 30 Sources and 20 m/sec Speed

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
O

ve
rh

ea
d

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

(C) 60 Nodes, 40 Sources and 20 m/sec Speed

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
O

ve
rh

ea
d

(P

ac
ke

ts
)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

179

Figure 6.44: Average Dropped Packets for the 60 nodes model with 20 sources

Figure 6.45: Average Dropped Packets for the 60 nodes model with 30 sources

Figure 6.46: Average Dropped Packets for the 60 nodes model with 40 sources

(A) 60 Nodes, 20 Sources and 20 m/sec Speed

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

Pause Time (Sec)

A
v
e
ra

g
e
 D

ro
p

p
e
d

 P
a
c
k
e
ts

 (
P

a
c
k
e
t)

DSDV

AODV

MDVZRP

(B) 60 Nodes, 30 Sources and 20 m/sec Speed

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
D

ro
p

p
ed

 P
ac

ke
ts

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

(C) 60 Nodes, 40 Sources and 20 m/sec Speed

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
D

ro
p

p
ed

 P
ac

ke
ts

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

180

6.8.4 The 3
rd

 Set of Experiments

For the 3
rd

 set of experiments, we have used 100 nodes with 20, 40 and 50 sources and 4

packets / sec data transfer rate as well. Figures (6.47-64) show that, the three protocols

have same performance results as the 2
nd

 set of experiments with some slightly

differences. Generally, MDVZRP shows best PDF and Throughput as the scenarios tend

to low mobility comparing to both DSDV and AODV as shown in Figures (6.47-49)

and Figures (6.56-58) respectively.

Figure 6.47: PDF for the 100 nodes with 20 sources

Figure 6.48: PDF for the 100 nodes with 40 sources

(A) 100 Nodes, 20 Sources and 20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
 (

%
) DSDV

AODV

MDVZRP

(B) 100 Nodes, 40 Sources and 20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
(%

) DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

181

Figure 6.49: PDF for the 100 nodes with 50 sources

DSDV shows a slightly better performance than MDVZRP in high mobility for 40 and

50 sources only for first time, while AODV has its best performance at high mobility

scenarios. However, the difference in average NRL and Overhead loading in AODV

comparing to MDVZRP is tremendous as both the network size and mobility are

increased as shown in Figures (6.50-52) and Figures (6.59-61) respectively.

Figure 6.50: NRL for the 100 nodes with 20 sources

(C) 100 Nodes, 50 Sources and 20 m/sec Speed

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Pause Time (Sec)

P
D

F
 (

%
)

DSDV

AODV

MDVZRP

(A) 100 Nodes, 20 Sources and 20 m/sec Speed

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

182

Figure 6.51: NRL for the 100 nodes with 40 sources

Figure 6.52: NRL for the 100 nodes with 50 sources

Figures (6.53-55) show that, the three protocols have the same performance results as

the 2
nd

 set of experiments respect to EED, where MDVZRP‟s delay is still higher than

both AODV and DSDV at high mobility, but shows a better delay performance at low

mobility than the other two protocols and reasonable EED at medium mobility as the

case in the 2
nd

 set of experiments.

Comparing to DSDV, average dropped packets performance of MDVZRP in the 3
rd

 set

of experiments shows a better performance as shown in Figures (6.62-64), but the same

figures show that MDVZRP has less performance compared to AODV at high mobility

scenarios and the best performance at low mobility as the case in 2
nd

 set of experiments.

(B) 100 Nodes, 40 Sources and 20 m/sec Speed

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

(C) 100 Nodes, 50 Sources and 20 m/sec Speed

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Pause Time (Sec)

N
R

L

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

183

Figure 6.53: EED for the 100 nodes with 20 sources

Figure 6.54: EED for the 100 nodes with 40 sources

Figure 6.55: EED for the 100 nodes with 50 sources

(A) 100 Nodes, 20 Sources and 20 m/sec Speed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

 (
S

ec
)

DSDV

AODV

MDVZRP

((B) 100 Nodes, 40 Sources and 20 m/sec Speed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

 (
S

ec
)

DSDV

AODV

MDVZRP

(C) 100 Nodes, 50 Sources and 20 m/sec Speed

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120

Pause Time (Sec)

A
E

E
D

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

184

Figure 6.56: Throughput for the 100 nodes with 20 sources

Figure 6.57: Throughput for the 100 nodes with 40 sources

Figure 6.58: Throughput for the 100 nodes with 50 sources

(A) 100 Nodes, 20 Sources and 20 m/sec Speed

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

Pause Time (Sec)

T
h

ro
u

g
h

p
u

t
(K

b
p

s)
DSDV

AODV

MDVZRP

(B) 100 Nodes, 40 Sources and 20 m/sec Speed

0

50

100

150

200

250

0 20 40 60 80 100 120

Pause Time (Sec)

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

DSDV

AODV

MDVZRP

(C) 100 Nodes, 50 Sources and 20 m/sec Speed

0

50

100

150

200

250

0 20 40 60 80 100 120

Pause Time (Sec)

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

185

Figure 6.59: Average Overhead for the 100 nodes with 20 sources

Figure 6.60: Average Overhead for the 100 nodes with 40 sources

Figure 6.61: Average Overhead for the 100 nodes with 50 sources

(A) 100 Nodes, 20 Sources and 20 m/sec Speed

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
O

ve
rh

ea
d

 (
P

ac
ke

ts
)

DSDV

AODV

MDVZRP

(B) 100 Nodes, 40 Sources and 20 m/sec Speed

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
O

ve
rh

ea
d

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

(C) 100 Nodes, 50 Sources and 20 m/sec Speed

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
O

ve
rh

ea
d

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

186

Figure 6.62: Average Dropped Packets for the 100 nodes with 20 sources

Figure 6.63: Average Dropped Packets for the 100 nodes with 40 sources

Figure 6.64: Average Dropped Packets for the 100 nodes with 50 sources

(A) 100 Nodes, 20 Sources and 20 m/sec Speed

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
D

ro
p

p
ed

 P
ac

ke
ts

 (
p

ac
ke

t)

DSDV

AODV

MDVZRP

(B) 100 Nodes, 40 Sources and 20 m/sec Speed

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
D

ro
p

p
ed

 P
ac

ke
ts

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

(C) 100 Nodes, 50 Sources and 20 m/sec Speed

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120

Pause Time (Sec)

A
ve

ra
g

e
D

ro
p

p
ed

 P
ac

ke
ts

 (
P

ac
ke

t)

DSDV

AODV

MDVZRP

PERFORMANCE EVALUATION CHAPTER [6]

187

6.9 Summary

We have compared the performance of CBR in our hybrid dynamic routing protocol

MDVZRP with two standard dynamic routing protocols DSDV and AODV. Both are

single path routing protocols, where DSDV is a proactive protocol while AODV is a

reactive on demand routing protocol. Both are using routing tables to save one route per

destination and a destination sequence number to refresh the routing tables.

The three protocols deliver a large percentage of the offered data packets when there is

little node mobility (i.e. at large pause time), converging to 100% delivery when there is

no node motion. AODV and MDVZRP perform particularly well, delivering over 98%

of the data packets regardless of mobility rate especially at small or medium network

load (number of sources). Also, both protocols show the same throughput, while DSDV

shows fewer throughputs as the pause time decreased.

The three protocols impose vastly different amount of overhead. Nearly an order of

magnitude separates MDVZRP, which has the least overhead and normalized routing

load from AODV which shows the most overhead irrespective of the node mobility or

density. The basic character of each protocol is demonstrated in the shape of its

overhead curve in all the graphs. AODV is a reactive routing protocol, while MDVZRP

is a hybrid routing protocol. So, both protocols are share in on-demand route requests,

therefore their overhead and normalized routing load drop as the mobility rate drops.

DSDV is a largely periodic routing protocol; its overhead is nearly constant with respect

to mobility rate. At low pause time (higher rates of mobility), DSDV does poorly,

dropping to a packet delivery ratio of 70% or less as the network load increases. Nearly

all of the dropped packets are lost because stale routes within the routing table entry

direct them to be forwarded over broken links. Additionally, MDVZRP has highest end

to end delay especially at high mobility rates.

The general observation in most scenarios is that MDVZRP has outperformed DSDV.

When MDVZRP is compared to AODV it has outperformed it in low mobility

situations despite the node density and network load. MDVZRP and AODV have

almost the same performance for medium mobility networks.

PERFORMANCE EVALUATION CHAPTER [6]

188

Because Broch‟s results (Broch, 1998) demonstrate the performance of DSDV, TORA,

DSR and AODV, and our results compare DSDV and AODV with MDVZRP, we can

confirm that MDVZRP is effective in any size of network with low or medium mobility.

Also, this makes MDVZRP a good choice for ad hoc networks because of the

relationship between overhead and power consumption.

CHAPTER 7: CONCLUSION

189

7.1 Introduction

In this chapter, we summarise and present the outcome of the PhD thesis, using the aims

of research (proposed goals) of section 3.2 as a reference point. The goals have been

accomplished and achieved, except for that relating to end to end delay. Finally, those

areas that require further investigation are proposed as future work.

7.2 Routing

The routing algorithm's main aim is to establish a route between a pair of mobile nodes

correctly and efficiently, taking into account minimum overhead and bandwidth

consumption.

In the conventional networks (wired), there are different distance vector and link state

routing protocols, which were not designed to cope with a highly dynamic environment.

Link-state protocols update their global routing information (global state) by

broadcasting their local routing information to every other node, while distance-vector

protocols exchange their local information with one hop neighbours only.

MANET has a changeable nature that leads to a dynamic topology in its links (paths)

structure. As a consequence, routing is a complex and challenging issue, which is

probably the most fundamental problem in MANETs. This is reflected in the large

number of routing protocols (algorithms) for MANETs. In general, routing algorithms

for MANETs may be divided into two broad classes: proactive and reactive, as we

discussed in chapter 2.

Ideally, routing algorithm features for MANET have the same general features as the

other routing algorithms plus taking into account the characteristics of a mobile

environment in particular, limited bandwidth and energy and mobility.

CONCLUSION CHAPTER [7]

190

7.3 Main Contribution

We presented a new routing protocol for MANET called MDVZRP multi-path distance

vector zone routing protocol as an attempt to address the issues facing the two broad

classes of MANET protocols (proactive and reactive). MDVZRP underwent many

stages of design and improvement over a period of time into what it is today. Some of

the improvements were in the code itself and others were in the protocol‟s algorithm

technique.

MDVZRP is a hybrid routing protocol, where its control messages are either proactive

or reactive. The proactive messages consist of beacon (Hello messages) and RSUP

(Routes update packets), while the reactive ones are RREQ (Route request) and RREP

(route reply). Packets in MDVZRP are forwarded using a routing table maintained by

each node, with several routes to each destination.

A node in MDVZRP has a flat view over nearby network nodes, but not the entire

network. When it joins the network it propagates a beacon packet / Hello message

(Heart beat) for the first time. Unlike many other protocols, MDVZRP does not

periodically broadcast control packets, only when there are significant changes in the

network topology.

Beacons are the only messages that are sent periodically, when no other messages are

being transmitted, so that a node informs others of its existence and maintains

connectivity with its neighbours. When a change, such as a broken active route or a new

node is detected, RSUPs are broadcast through the network by the new node‟s

neighbours or the node that detected the broken route (Error) to inform other nodes.

The RSUP (Routes Update Packet) is a non periodical rebroadcasting message. This

type of message is essentially to keep the routing tables of all the nodes up to date. This

RSUP packet can serve as a beacon when broadcast as we mentioned previously, and is

also used instead of the ERROR message as a part of the protocol early version

development. Therefore, a node that broadcasts such packets would not broadcast

beacons at that period of time (this period is known as the beacon Interval) to reduce the

number of broadcast packets and hence reduce the overhead in general. Transmission of

an update packet represents the proactive part mechanism in MDVZRP protocol.

CONCLUSION CHAPTER [7]

191

As we mentioned, MDVZRP is a combination from the two extremes of proactive and

reactive protocols that aims to provide the best of both techniques. There are a number

of other hybrid protocols already existing and each of them has its own techniques.

However, the hybrid approach used in MDVZRP is significantly different to the route

request and zones approaches employed in other hybrid protocols. We assume in our

routing protocol, that all the entries are operational (fresh not stale) in the routing table

and there is no need to update them unless a node receives an error message regarding a

specific route. In that case the node assigns that route as a broken link.

On demand requests can be more efficiently performed without querying nodes of the

entire network, where all nodes proactively store local routing information. The reactive

component of MDVZRP in the event that a route to a known node is unavailable, and a

transmission needs to take place immediately, is responsible for initiating the route

discovery process. This is through broadcasting a RREQ (Route Request) and

unicasting a RREP (Route Reply) message respectively.

When an error message regarding a failed link or non reachable node is received,

MDVZRP utilises an alternative path finding mechanism to obtain a suitable alternative

one or Best metric among the multipath (backup) that is stored into the node's routing

table, instead of issuing a route request every time or wasting time on route repairs.

7.4 Results and Discussion

MDVZRP is implemented and simulated in Ns2, and its performance is compared with

AODV and DSDV in different network scenarios. The results of all tested scenarios

indicate that MDVZRP in ns-2 works as expected.

Basically, MDVZRP always outperforms the packet delivery performance of the DSDV

and often matches or exceeds AODV in low and medium mobility scenarios, making it

a good choice for any network size with low or medium mobility. Although, the

protocol shows a good performance in low and medium mobility with CBR traffic, it

did not achieve the same performance especially, for end to end delay (EED) metric as

well as expected for large or even medium networks at high mobility, this may due to

these factors:

CONCLUSION CHAPTER [7]

192

Firstly, the routing table size of MDVZRP is larger than that for AODV because of

keeping all the active routes to each destination due to the multipath mechanism.

Increasing speed with a short pause time increases the possibility of link breakage.

Secondly, it appears that the caching of routing information from route request (RREQ)

and route reply (RREP) mechanisms delays the RREP response, or RREQ rebroadcast

in case of no route available to the required destination. , and the last reason is the lack

of any mechanism that determines routes freshness when multipath choices are

available.

Overall, we can confirm that our new routing protocol at this stage, guarantees the best

performance in small and medium networks at low mobility. We also guarantee a

reasonable performance in large networks and high mobility scenarios when we

overcome the three issues we mentioned in the previous section.

7.5 Future Work

The investigations are continuing in to MDVZRP performance, especially in high

mobility networks. Possible performance enhancements may be investigated by

introducing better route request and route reply mechanisms, to reduce end to end delay,

and hence that reduces the overheads and increases both packet delivery ratio and

throughput especially in high mobility situations.

Additional, enhanced performance is expected by MDVZRP once the following issues

are investigated and resolved:

1. Speed up the search for available routes, by reducing nodes routing table‟s size

to keep only fresh and active routes to each known destination, especially in the

large networks and at high speeds with short pause of time, which increases the

possibility of links breakage and more stale not useful routes.

2. Enhance the existence mechanism to determine routes freshness when multipath

choices are available.

CONCLUSION CHAPTER [7]

193

3. Speed up routing information gathering mechanism at the intermediate nodes,

especially during route reply mechanism RREP, would reduce the end to end

delay.

Furthermore, the current MDVZRP specification states that the RREQ_Threshold

parameter limit the extent to which all the control packets may propagate through the

network, and hence reduced the average overhead as clarified in Phase 1 and Phase 2

results. Till this stage, the RREQ_Threshold sets manually, we hope to find an efficient

mechanism to set its value automatic based on the network area size.

We also concluded that every node that receives RREQ either unicasts a RREP or

rebroadcasts the same RREQ again in case if no information available, since the nodes

are moving, some nodes that received that RREQ may be out of the RREQ sender or

forwarder transmission range for a short period. Therefore, there is a need for an

efficient mechanism to detect the node who expects itself to be out of its neighbour‟s or

(the RREQ sender or forwarder) transmission range in a short period to neglect that

RREQ. This leads to reduce both overhead and weak routes those affected by fast

breakage, and hence increases the MDVZRP‟s performance.

Finally, MDVZRP is utilising multipath as a backup only at this stage, possible

performance enhancements may be investigated by transferring data packets over the

multipath simultaneously.

7.6 Summary

This work has been concerned with the development of a new hybrid routing protocol

for MANETs based on AODV and DSDV structures and mechanisms as a starting

point. The new protocol (MDVZRP) adapts both reactive and proactive mechanisms to

perform a reliable connection between mobile nodes via multi backup paths.

MDVZRP came cross many stages of design and improvement over a period of time

into what it is today. Some of the improvements were in the code itself and others were

in the protocol‟s algorithm technique. MDVZRP‟s packets, agent and functions all are

implemented using C++ under Ns2 (Network Simulator 2).

CONCLUSION CHAPTER [7]

194

Since the protocol shows a good performance in CBR traffic for any network sizes with

low or medium mobility, it did not meet the same performance as well as expected for

high mobility ones. Preliminary results indicate a very promising start for MDVZRP,

which is currently at version 2.00. Further work is likely to lead to additional

improvements to its performance.

APPENDIX A

195

MDVZRP Packet Reception

Algorithm

APPENDIX A

MDVZRP Packet

Reception Algorithm

Packet Receive

recv

Src = My

address

and Num.

forwards=0

Add the IP Header

Source = My

address

 drop the Packet

because of (loop)

Packet I'm forwarding..

Forward Packet

src != my

address &&

dport() ==

ROUTER_PORT

Process

Dst =

BROADCAST

Src = My

address

Send out broadcast

Packet

hand it over to the

port-demux

START

NoYes

YesNo

No

No

No

Yes

Yes

Yes

APPENDIX A

MDVZRP Process

Function Algorithm

Process

Read packet

Headers

Beacon

Packet

(Hello)

receive_Beacon

FRIP

receive_FRIP

RSUP

receive_RSUP

RREQ_

PACKET

receive_RREQ

RREP_

PACKET

receive_RREP

Return

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

APPENDIX B

198

Performance Analysis Flow
Diagram

APPENDIX B

Performance Analysis

Flow Diagram

(C) 100 Nodes, 50 Sources and 20 m/sec Speed

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

Pause Time (Sec)

A
v
e
ra

g
e
 O

v
e
rh

e
a
d

 (
P

a
c
k
e
t)

DSDV

AODV

MDVZRP

Multiple_Random_Scenarios_Gen

erator_Script_File
General_Random_Movement_Script.tcl

Generate Random

Movement Scenarios
CBR_TCP_Random_Movement

_Generator_Script_File

Generate Random

Connections Scenarios
CBR_TCP_Random_Connections

_Generator_Script_File

Trace_anlysis.txt

Ns_trace.tr

Nam_trace.nam

Trace Analysis
(Trace_File_Analyser)

Trace_Analysis_3.awk

Performance Graphs
(Excel or Gunplot)

APPENDIX C

200

Some Script Files used for
Performance Evaluation

APPENDIX C
Performance Evaluation

Script Files

CBR_TCP_Random_Connections_Generator
==
This file generates Number of TCP or CBR connection scenarios according to
N x CONN values , this files for an example generates 1x4 files
==
Part 1 : Some Parameters and Argmentsts Declaration
==
clear # To clear the output screen [CRT]
X=500 # Topology x size (width)
Y=500 # Topology y size (high)
Time=100 # Maximum simulation time
for N in 25 50 100 # Number of Nodes 25 50 100 150 200
 # 250 ..etc
do
for CONN in 5 10 15 20 60 # Num. of Connections
do
 echo " " # print new line
 echo " " # print new line
 DATE="$(date '+%Y%m%d')" # set date
 echo $DATE # print date
 date | awk '{ print $4 }' # print time
 date | awk '{ print $1 $2 $3 $4 }'
==
Part 2 : To Create a TCP Random Connections Files
==
echo " Creating tcp_scen-N"$N-1-C$CONN-4
ns ~/ns-allinone-2.30/ns-2.30/indep-utils/cmu-scen-gen/cbrgen.tcl –
type tcp -nn $N -seed 1.0 -mc $C -rate 4.0 > tcp_scen-N$N-1-C$C-4
echo " The File " TCP_Connections_Scen-N"$N-1-C$CONN ...OK Done!!”
echo “==”
==
Part 3 : To Create a CBR Random Connections Files
==
echo " Creating cbr_scen-N"$N-1-C$CONN "Random Connection File
 Please Wait !!"
 ns ~/ns-allinone-2.30/ns-2.30/indep-utils/cmu-scen-gen/cbrgen.tcl -type cbr -nn
$N -seed 1.0 -mc $CONN -rate 2.0 > CBR_Connections_Scen-N$N-1-C$CONN
echo " The File " CBR_Connections_Scen-N"$N-1-C$CONN OK Done!!”
echo "==="
 done
done

APPENDIX C
Performance Evaluation

Script Files

CBR_TCP_Random_Movement_Generator
==
This file generates Random movement scenarios according CxNxMxP times where C
for example 10 if written as (for C in 1 2 3 4 5 6 7 8 9 10), N is twice if it is written as
(for N in 30 40) for an example, M is only one e.g (for M in 20), and P is 6 if it is written
as (for P in 0 20 40 60 80 100). In this case this scripts generates [C x N x M x P]
10x2x1x6=120 random scenario files.
==
Part 1 : Some Parameters and Argmentsts Declaration
==
lear # To clear the output screen [CRT]
X=500 # Topology x size (width)
Y=500 # Topology y size (high)
Time=100 # Maximum simulation time
for C in 1 2 3 4 5 6 7 8 9 10 # Number of random files to generate
do
 for N in 25 50 100 # Maximum number of Nodes in this network 20 40 60
 do
 for M in 20 # Node's Speed [0-20] meter/sec [eg. 0 1 5..etc]
 do
 #clear # To clear the outpot CRT screen
 for P in 0 20 40 60 80 100 # Pause Time [1 2 3 4 5] /sec or 0 20 40 60 80 100
 # 0 means high mobility no pause time , if simulation

 # Time =100 and P=100 it means no mobility.
 do
==
Part 2 : Some Messages Printing
==
The next 3 lines just for printing a messages show that thescrip is running fine (Ok),
echo means (Print).
echo "File Scenario Program is Running"
echo "The File Scenario Mov_Random_Scen-N"$N"-"$C"-P"$P"-M"$M"-t"$Time"-X"$X"-Y"$Y""
echo # Print nothing just a space line
echo " Under Creation Please Wait!!"
==
Part 3 : To Create Random Movement Scenario Files
==
This is the main command to generate a random scenario according
to the given parameters, see setdest command from ns2 manual.
~/ns-allinone-2.30/ns-2.30/indep-utils/cmu-scen-gen/setdest/setdest -v 1 -n $N -p $P
-M $M -t $Time -x $X -y $Y >Mov_Random_Scen-N$N-$C-P$P-M$M-t$Time-x$X-y$Y
 # Print a message to show that the file is correctly generated.
 echo "The FileScenario Mov_Random_Scen-N"$N"-"$C"-P"$P"-M"$M"-t"$Time"-x"
 $X"-y"$Y" .. Ok ... Done"
 echo " "
 echo " "
 echo " "
 done
 done
 done
 done
exit

APPENDIX C
Performance Evaluation

Script Files

General_Random_Movement_Script.tcl
==
This is the main script.tcl file, receives from the
Multiple_Random_Scenarios_Generator_Script_File, some parameters, argments and
#the 2 following files :
1- Random scenario (Mov_Random_Scen-N..etc)
2- Random connections (CBR_Connections_Scen-N..etc), which generates
two trace files (Ns_trace_'..etc'.tr' and 'Nam_trace_'..etc'.nam'),and saves them in a given path
==
Set New Argments to That Argments Passed From
Multi_Scripts_Generator_Script_File
==
set arg0 [lindex $argv 0] ;# Protocol name DSDV, AODV or MDVZRP [$Protocol_nam]
set arg1 [lindex $argv 1] ;# Pause time value [$p]
set arg2 [lindex $argv 2] ;# Speed value [$M]
set arg3 [lindex $argv 3] ;# Ns trace file name and directory [e.g 'Ns_trace_'..etc'.tr']
set arg4 [lindex $argv 4] ;# Nam trace file and directory [e.g 'Nam_trace_'..etc'.nam']
set arg5 [lindex $argv 5] ;# name of movment file [e.g 'Mov_Random_Scen-N...etc]
set arg6 [lindex $argv 6] ;# x [$x]
set arg7 [lindex $argv 7] ;# y [$y]
set arg8 [lindex $argv 8] ;# Time [$Time]
set arg9 [lindex $argv 9] ;# number of Nodes [$N]
set arg10 [lindex $argv 10] ;# name of connection file [e.g 'CBR_Connections_Scen-N..etc]
set arg11 [lindex $argv 11] ;# senario Number [$C]
set arg12 [lindex $argv 12] ;# Num. of Sources ,Connection Number [$CONN]
==
Some Messages Printing
==
puts "==="
puts [format "%s Is Runing ok........Senario(%d) Pause Time= %d
 Speed= %d Num. Of Connections= %d" $arg0 $arg11 $arg1 $arg2
 $arg12] ;#Print These Argments
puts [format " Please Wait.....!"] ;# Print a message
puts " " ;# Print a line
puts " " ;# Print a line
#exit
==
Define Simulator Network Options
==
set opt(chan) Channel/WirelessChannel
set opt(prop) Propagation/TwoRayGround
set opt(netif) Phy/WirelessPhy
set opt(mac) Mac/802_11
#set opt(ifq) CMUPriQueue ;# use this for DSR
set opt(ifq) Queue/DropTail/PriQueue
set opt(ll) LL
set opt(ant) Antenna/OmniAntenna
set opt(x) $arg6 ;# X dimension of the topography
set opt(y) $arg7 ;# y dimension of the topography
set opt(ifqlen) 50 ;# max packet in ifq
set opt(seed) 0.0
set opt(tr) $arg3 ;# set opt(tr) x555.tr
set opt(adhocRouting) $arg0 ;# set opt(adhocRouting)DSDV,AODV,MDVZRP....etc
set opt(nn) $arg9 ;# how many nodes are simulated
set opt(sc) $arg5 ;# The Random Movement File , For an Example
;# set opt(sc) "Mov_Random_Scen-N...etc"
set opt(cp) $arg10 ;# The Random Connection File , For an Example

APPENDIX C
Performance Evaluation

Script Files

 ;# set opt(cp) "CBR_Connections_Scen-N50-1-C15-4"
set opt(stop) $arg8 ;# Maximum Simulation Time
==
Main Program
==
Initialize Global Variables
create simulator instance
set ns_ [new Simulator]
set wireless channel, radio-model and topography objects
set wtopo [new Topography]
==
Define Ns Trace File, and Set its Format
==
create trace object for ns and nam
set tracefd [open $opt(tr) w];# Ns trace File
in all formats always keep this line
$ns_ trace-all $tracefd
In case You want the Old Ns trace file format use this line
#$ns_ use-taggedtrace ;#-----> Old Ns Trace File Format (False)
In case You want the New Ns trace file format use this line
$ns_ use-newtrace ;# ----> New Ns Trace File Format (True)
==
Define Nam Trace File
==
set namtrace [open $arg4 w] ;# Nam trace file
$ns_ namtrace-all-wireless $namtrace $opt(x) $opt(y)
==
Define Topology
==
$wtopo load_flatgrid $opt(x) $opt(y)
Create God
puts "before god_....." ;#Print a message
set god_ [create-god $opt(nn)]
puts "After god_....." ;#Print a message
==
Define How Node Should Be Created
==
#global node setting
$ns_ node-config -adhocRouting $opt(adhocRouting) \
 -llType $opt(ll) \
 -macType $opt(mac) \
 -ifqType $opt(ifq) \
 -ifqLen $opt(ifqlen) \
 -antType $opt(ant) \
 -propType $opt(prop) \
 -phyType $opt(netif) \
 -channelType $opt(chan) \
 -topoInstance $wtopo \

 -agentTrace ON \
 -routerTrace ON \
 -macTrace OFF
==
Create The Specified Number Of Nodes and Attach Them To Channel1
==
for {set i 0} {$i < $opt(nn) } {incr i} {
 #puts "Starting the node creation......$i....." ;# Print a messag
 set node_($i) [$ns_ node]

APPENDIX C
Performance Evaluation

Script Files

 #puts "motion----------------" ;# Print a message
 $node_($i) random-motion 0 ;# Disable Random Motion
}
==
Define Node Movement Model
==
puts "Loading connection pattern..." ;# Print a Message
source $opt(cp) ;# Read (load) Connection from The Random Connection File
==
Define Traffic Model
==
puts "Loading scenario file..." ;# Print a Message
source $opt(sc) ;# Read (load) Movement from The Random Scenario File
==
Define Node Initial Position In Nam
==
for {set i 0} {$i < $opt(nn)} {incr i} {
 # 30 defines the node size in nam, must adjust it according to
 your scenario
 # The function must be called after mobility model is defined
 $ns_ initial_node_pos $node_($i) 30
}
==
Tell Nodes When The Simulation Ends
==
for {set i 0} {$i < $opt(nn) } {incr i} {
 $ns_ at $opt(stop).000000001 "$node_($i) reset";
}
==
Tell Nam When The Simulation Stop Time
==
#The next line was as a comment...
$ns_ at $opt(stop) "$ns_ nam-end-wireless $opt(stop)"
#The next line is added...
$ns_ at $opt(stop) "stop"

puts " " ;#Print a line (space)
puts " " ;#Print a line (space)

$ns_ at $opt(stop).000000001 "puts \"NS EXITING...\" ; $ns_ halt"
puts " " ;#Print line (space)
proc stop {} {
 global ns_ tracefd namtrace
 $ns_ flush-trace
 close $tracefd ;# Close Trace File
 close $namtrace ;# Close Nam File
}
puts "Starting Simulation * * * Please Wait....." ;#Print a message
$ns_ run

APPENDIX C
Performance Evaluation

Script Files

Trace_File_Analyser
==
This is a script file defines the network topology parameters in part 1, prints some
messages in part 2 and then calles an AWK program called Trace_Analysis_3 to carry
some calculations on a gaiven trace file
==
Part 1 : Some Parameters and Argmentsts Declaration
==
clear # To clear the output screen [CRT]
X=500 # Topology x size (width)
Y=500 # Topology y size (high)
Time=100 # Maximum simulation time
N=100 # Number of Nodes
CONN=60 # Num. of Connections(Sources)
==
Part 1 : Printing Some Messages into trace_analysis.txt File
==
echo " " >> trace_anlysis.txt
echo " T E C H N I C A L
 D A T A S H E E T " >>
trace_anlysis.txt
echo " Performance Evaluation of MDVZRP Ver2.00 v DSDV and AODV Ad Hoc Standard Protocols
 ">> trace_anlysis.txt
#date | awk '{ print $0 $1 $2 $3 $4 $5}' >> trace_anlysis.txt #print time
echo " " >> trace_anlysis.txt
echo " " >> trace_anlysis.txt
date | awk '{ print "Date: "$1" " $3 "-"$2"-"$6 }' >> trace_anlysis.txt
date | awk '{ print "Time: "$4" " $5 }' >> trace_anlysis.txt
echo " " >> trace_anlysis.txt
echo "Senario Parametrs: ">> trace_anlysis.txt
echo "Nodes:"$N >> trace_anlysis.txt
echo "Simulation time:"$Time >> trace_anlysis.txt
echo "Area Size: X"$x "Y"$y >> trace_anlysis.txt
echo "Num. of Connections(Sources):" $CONN >> trace_anlysis.txt
echo " " >> trace_anlysis.txt
echo " ===">> trace_anlysis.txt
for P in 0 20 40 60 80 100 #Pause Time [0 1 2 3 4 5etc or 0 20 30…..etc] m.sec
do
 echo " Number of Nodes:" $N # Number of Nodes
 echo " Number of Sources:" $CONN # Num. of Connections(Sources)
==
 echo " Senario Pause Speed StTime SpTime PDF NRL EED [kbps]
 O/H Send Recive Drop" >> trace_anlysis.txt
==
 for Protocol_name in 'DSDV' 'AODV' 'MDVZRP'
 do
 for C in 1 2 3 4 5 6 7 8 9 10 #Number of times 2 3 4 5 6 7 8 9 10
 do
 for M in 20 # Node's Speed [5 10 15 ... etc] 5 10 15 sec
 do
 echo "Reading " $Protocol_name "trace file please wait Senario No. "$C "Pause "$P "Speed
"$M
==
Part 3 : Calling the AWK 'Trace_Analysis_3.awk' and passing to it Some Parameters
and the trace file to be analysis
==

APPENDIX C
Performance Evaluation

Script Files

awk -v p_name=$Protocol_name -v Senario_No=$C -v pause=$P -v speed=$M -f Trace_Analysis_3.awk
'Ns_trace_P'P'_M'M'_N'$N'_'$C'_CONN'$CONN'_'$Protocol_name'.tr' >> trace_anlysis.txt
echo " ">> trace_anlysis.txt
 done
done
echo " ---">> trace_anlysis.txt
 echo " ">> trace_anlysis.txt
 echo " "
 done
 echo " "
 echo " ">> trace_anlysis.txt
 echo " =====================================">> trace_anlysis.txt
done

APPENDIX D

208

Samples of Performance
Evaluation Technical Data Sheet

APPENDIX D Performance Evaluation Technical Data Sheet

 T E C H N I C A L D A T A S H E E T

 Performance Evaluation of MDVZRP Ver2.00 v DSDV and AODV Ad Hoc Standard Protocols

Date: Tue 2-Mar-2010

Time: 13:08:40 GMT

Senario Parametrs:

Nodes:100

Simulation time:100

Area Size: X500 Y500

Num. of Connections(Sources): 60

 ==

 Senario Pause Speed StTime SpTime PDF NRL EED [kbps] O/H Drop

 DSDV 1 0 20 2.56 100 78.8 0.54 0.06 109.84 1416 692

 DSDV 2 0 20 2.56 100 75.5 0.58 0.05 106.03 1475 814

 DSDV 3 0 20 2.56 100 73.5 0.61 0.02 102.65 1480 866

 DSDV 4 0 20 2.56 100 86.1 0.54 0.01 119.39 1536 449

 DSDV 5 0 20 2.56 100 82.4 0.55 0.01 114.80 1501 577

 DSDV 6 0 20 2.56 100 89.7 0.48 0.01 124.90 1424 336

 DSDV 7 0 20 2.56 100 77.7 0.57 0.02 108.41 1467 733

 DSDV 8 0 20 2.56 100 74.4 0.62 0.04 104.05 1536 841

 DSDV 9 0 20 2.56 100 82.6 0.55 0.01 115.47 1507 575

 DSDV 10 0 20 2.56 100 73.7 0.62 0.04 102.92 1517 866

 --

 AODV 1 0 20 2.56 100 94.6 4.22 0.40 132.34 13287 169

 AODV 2 0 20 2.56 100 96.9 4.97 0.39 134.45 15874 77

 AODV 3 0 20 2.56 100 96.0 4.75 0.29 134.59 15191 99

 AODV 4 0 20 2.56 100 95.0 3.64 0.15 132.87 11510 147

 AODV 5 0 20 2.56 100 98.2 4.13 0.18 136.78 13442 51

 AODV 6 0 20 2.56 100 97.1 3.10 0.27 135.61 9991 78

 AODV 7 0 20 2.56 100 95.4 4.97 0.49 134.01 15856 144

 AODV 8 0 20 2.56 100 95.6 3.94 0.14 134.05 12551 127

 AODV 9 0 20 2.56 100 95.2 4.82 0.51 133.68 15342 130

 AODV 10 0 20 2.56 100 93.5 5.99 0.25 130.41 18580 195

 --

 MDVZRP 1 0 20 2.56 100 85.2 1.01 0.58 119.33 2863 278

 MDVZRP 2 0 20 2.56 100 74.1 1.41 1.54 103.54 3477 413

 MDVZRP 3 0 20 2.56 100 76.3 1.37 1.88 107.19 3485 471

 MDVZRP 4 0 20 2.56 100 95.3 0.95 0.48 133.21 3004 118

APPENDIX D Performance Evaluation Technical Data Sheet

 MDVZRP 5 0 20 2.56 100 92.8 0.92 0.67 129.90 2842 147

 MDVZRP 6 0 20 2.56 100 95.5 0.86 0.25 132.84 2717 145

 MDVZRP 7 0 20 2.56 100 85.7 1.04 0.68 119.77 2963 250

 MDVZRP 8 0 20 2.56 100 86.5 1.11 0.72 119.98 3180 159

 MDVZRP 9 0 20 2.56 100 85.2 1.11 0.93 117.84 3102 278

 MDVZRP 10 0 20 2.56 100 77.5 1.32 1.15 107.74 3389 439

 --

 ==

 Senario Pause Speed StTime SpTime PDF NRL EED [kbps] O/H Drop

 DSDV 1 20 20 2.56 100 79.2 0.71 0.07 111.18 1890 690

 DSDV 2 20 20 2.56 100 70.0 0.74 0.02 97.43 1725 981

 DSDV 3 20 20 2.56 100 77.1 0.70 0.05 107.98 1790 753

 DSDV 4 20 20 2.56 100 80.4 0.64 0.03 111.95 1699 641

 DSDV 5 20 20 2.56 100 86.6 0.63 0.01 121.10 1803 439

 DSDV 6 20 20 2.56 100 78.8 0.65 0.01 110.49 1708 696

 DSDV 7 20 20 2.56 100 75.0 0.77 0.02 104.11 1898 818

 DSDV 8 20 20 2.56 100 81.0 0.64 0.01 113.05 1710 620

 DSDV 9 20 20 2.56 100 77.6 0.67 0.03 108.75 1724 738

 DSDV 10 20 20 2.56 100 75.8 0.68 0.02 106.01 1722 797

 --

 AODV 1 20 20 2.56 100 97.8 3.25 0.16 135.56 10467 71

 AODV 2 20 20 2.56 100 94.5 4.95 0.42 132.12 15567 150

 AODV 3 20 20 2.56 100 95.6 4.19 0.20 133.50 13313 128

 AODV 4 20 20 2.56 100 97.4 3.02 0.32 135.49 9723 86

 AODV 5 20 20 2.56 100 98.8 2.86 0.07 137.84 9377 21

 AODV 6 20 20 2.56 100 97.4 3.60 0.18 134.93 11563 73

 AODV 7 20 20 2.56 100 95.7 4.29 0.14 132.47 13505 117

 AODV 8 20 20 2.56 100 95.8 3.93 0.26 132.70 12416 135

 AODV 9 20 20 2.56 100 96.5 4.46 0.41 135.45 14379 114

 AODV 10 20 20 2.56 100 97.1 3.93 0.20 135.74 12700 86

 --

 MDVZRP 1 20 20 2.56 100 76.1 1.24 1.73 106.36 3127 422

 MDVZRP 2 20 20 2.56 100 65.6 1.44 0.81 91.18 3121 686

 MDVZRP 3 20 20 2.56 100 83.7 0.98 0.80 116.61 2727 315

 MDVZRP 4 20 20 2.56 100 97.4 0.78 0.51 135.32 2519 74

 MDVZRP 5 20 20 2.56 100 86.7 1.04 0.56 121.00 3001 250

 MDVZRP 6 20 20 2.56 100 83.7 0.95 1.09 115.24 2602 265

APPENDIX D Performance Evaluation Technical Data Sheet

 MDVZRP 7 20 20 2.56 100 74.2 1.13 1.02 102.99 2775 373

 MDVZRP 8 20 20 2.56 100 80.1 0.95 1.04 110.98 2502 351

 MDVZRP 9 20 20 2.56 100 66.6 1.41 2.15 92.62 3117 576

 MDVZRP 10 20 20 2.56 100 79.0 1.02 1.66 110.44 2680 416

 --

==

 Senario Pause Speed StTime SpTime PDF NRL EED [kbps] O/H Drop

 DSDV 1 40 20 2.56 100 73.9 0.71 0.02 102.74 1742 846

 DSDV 2 40 20 2.56 100 88.5 0.62 0.01 123.46 1817 373

 DSDV 3 40 20 2.56 100 84.4 0.65 0.02 117.82 1833 513

 DSDV 4 40 20 2.56 100 82.7 0.64 0.01 115.44 1768 567

 DSDV 5 40 20 2.56 100 90.0 0.60 0.01 126.42 1813 330

 DSDV 6 40 20 2.56 100 83.7 0.62 0.02 116.37 1717 537

 DSDV 7 40 20 2.56 100 94.3 0.55 0.01 131.19 1713 183

 DSDV 8 40 20 2.56 100 88.5 0.63 0.02 124.14 1847 377

 DSDV 9 40 20 2.56 100 80.1 0.65 0.02 112.75 1737 645

 DSDV 10 40 20 2.56 100 78.4 0.66 0.02 109.61 1709 706

 --

 AODV 1 40 20 2.56 100 95.5 4.27 0.37 134.40 13648 97

 AODV 2 40 20 2.56 100 95.8 2.55 0.16 134.14 8134 138

 AODV 3 40 20 2.56 100 96.0 3.64 0.24 134.75 11653 128

 AODV 4 40 20 2.56 100 95.2 3.82 0.34 132.17 12004 132

 AODV 5 40 20 2.56 100 99.2 2.34 0.11 138.21 7696 22

 AODV 6 40 20 2.56 100 98.0 3.10 0.27 137.37 10146 48

 AODV 7 40 20 2.56 100 96.0 2.72 0.18 134.07 8675 131

 AODV 8 40 20 2.56 100 97.7 3.06 0.10 136.24 9903 38

 AODV 9 40 20 2.56 100 95.9 3.23 0.13 133.42 10242 134

 AODV 10 40 20 2.56 100 98.7 2.95 0.06 137.07 9602 41

 --

 MDVZRP 1 40 20 2.56 100 82.4 0.90 0.22 115.22 2477 219

 MDVZRP 2 40 20 2.56 100 92.7 0.84 0.31 129.33 2596 50

 MDVZRP 3 40 20 2.56 100 79.5 0.90 0.61 111.11 2387 252

 MDVZRP 4 40 20 2.56 100 86.7 0.81 0.18 120.51 2322 179

 MDVZRP 5 40 20 2.56 100 90.5 0.83 0.30 126.19 2501 92

 MDVZRP 6 40 20 2.56 100 94.3 0.74 0.21 131.66 2313 52

 MDVZRP 7 40 20 2.56 100 92.7 0.78 0.22 127.74 2363 60

 MDVZRP 8 40 20 2.56 100 89.6 0.88 0.27 125.10 2606 90

APPENDIX D Performance Evaluation Technical Data Sheet

 MDVZRP 9 40 20 2.56 100 87.2 0.89 0.22 121.30 2567 127

 MDVZRP 10 40 20 2.56 100 86.7 0.82 0.20 121.99 2371 238

 --
==

 Senario Pause Speed StTime SpTime PDF NRL EED [kbps] O/H Drop

 DSDV 1 60 20 2.56 100 80.2 0.68 0.02 111.85 1816 648

 DSDV 2 60 20 2.56 100 89.2 0.55 0.01 125.12 1647 357

 DSDV 3 60 20 2.56 100 89.3 0.60 0.02 124.72 1785 346

 DSDV 4 60 20 2.56 100 86.1 0.61 0.02 119.97 1728 454

 DSDV 5 60 20 2.56 100 85.5 0.57 0.02 118.76 1624 472

 DSDV 6 60 20 2.56 100 88.1 0.60 0.02 122.71 1752 384

 DSDV 7 60 20 2.56 100 87.1 0.58 0.02 121.74 1674 423

 DSDV 8 60 20 2.56 100 87.3 0.57 0.02 123.42 1669 426

 DSDV 9 60 20 2.56 100 85.1 0.59 0.02 118.96 1681 481

 DSDV 10 60 20 2.56 100 88.4 0.57 0.01 123.05 1661 380

 --

 AODV 1 60 20 2.56 100 96.8 3.55 0.09 134.72 11375 89

 AODV 2 60 20 2.56 100 94.2 3.44 0.27 132.16 10817 188

 AODV 3 60 20 2.56 100 97.5 3.11 0.13 136.79 10126 79

 AODV 4 60 20 2.56 100 95.4 2.74 0.20 134.41 8754 112

 AODV 5 60 20 2.56 100 96.3 3.20 0.33 134.30 10227 99

 AODV 6 60 20 2.56 100 97.9 2.83 0.39 136.61 9197 18

 AODV 7 60 20 2.56 100 94.9 3.83 0.33 130.94 11940 151

 AODV 8 60 20 2.56 100 98.3 3.18 0.10 137.30 10392 52

 AODV 9 60 20 2.56 100 98.8 2.79 0.15 139.77 9286 32

 AODV 10 60 20 2.56 100 97.9 3.54 0.13 135.61 11409 51

 --

 MDVZRP 1 60 20 2.56 100 83.0 0.39 0.50 115.63 1062 279

 MDVZRP 2 60 20 2.56 100 95.0 0.37 0.09 132.33 1166 20

 MDVZRP 3 60 20 2.56 100 93.2 0.35 0.22 130.36 1080 80

 MDVZRP 4 60 20 2.56 100 95.7 0.34 0.11 132.75 1067 72

 MDVZRP 5 60 20 2.56 100 90.7 0.39 0.12 125.74 1175 122

 MDVZRP 6 60 20 2.56 100 95.1 0.31 0.09 132.19 972 72

 MDVZRP 7 60 20 2.56 100 93.3 0.37 0.19 129.73 1140 81

 MDVZRP 8 60 20 2.56 100 95.1 0.34 0.11 133.21 1068 112

 MDVZRP 9 60 20 2.56 100 96.3 0.29 0.17 134.84 922 61

 MDVZRP 10 60 20 2.56 100 93.6 0.37 0.17 129.72 1152 153

 --

APPENDIX D Performance Evaluation Technical Data Sheet

==

 Senario Pause Speed StTime SpTime PDF NRL EED [kbps] O/H Drop

 DSDV 1 80 20 2.56 100 91.3 0.56 0.02 127.51 1713 286

 DSDV 2 80 20 2.56 100 91.6 0.60 0.02 127.35 1807 273

 DSDV 3 80 20 2.56 100 94.5 0.57 0.02 131.41 1772 178

 DSDV 4 80 20 2.56 100 93.4 0.58 0.02 130.33 1798 213

 DSDV 5 80 20 2.56 100 94.1 0.55 0.01 131.87 1741 194

 DSDV 6 80 20 2.56 100 93.1 0.60 0.02 130.74 1865 225

 DSDV 7 80 20 2.56 100 86.9 0.59 0.03 121.37 1712 428

 DSDV 8 80 20 2.56 100 94.7 0.54 0.02 131.75 1693 173

 DSDV 9 80 20 2.56 100 92.7 0.61 0.02 129.92 1882 234

 DSDV 10 80 20 2.56 100 88.0 0.60 0.02 122.99 1741 390

 --

 AODV 1 80 20 2.56 100 97.0 3.27 0.15 134.64 10458 92

 AODV 2 80 20 2.56 100 99.3 2.04 0.08 138.25 6724 21

 AODV 3 80 20 2.56 100 98.8 2.33 0.13 137.88 7628 19

 AODV 4 80 20 2.56 100 98.3 2.61 0.13 136.52 8479 31

 AODV 5 80 20 2.56 100 93.9 2.40 0.08 131.09 7484 90

 AODV 6 80 20 2.56 100 96.9 3.12 0.16 134.21 9944 85

 AODV 7 80 20 2.56 100 95.6 3.36 0.17 133.94 10701 105

 AODV 8 80 20 2.56 100 97.3 2.34 0.19 135.93 7575 57

 AODV 9 80 20 2.56 100 94.5 3.65 0.31 132.88 11522 127

 AODV 10 80 20 2.56 100 98.1 3.03 0.12 137.58 9933 29

 --

 MDVZRP 1 80 20 2.56 100 95.6 0.28 0.11 132.96 890 56

 MDVZRP 2 80 20 2.56 100 96.3 0.32 0.05 134.69 1011 32

 MDVZRP 3 80 20 2.56 100 98.5 0.38 0.09 137.21 1248 9

 MDVZRP 4 80 20 2.56 100 96.0 0.28 0.08 133.90 876 43

 MDVZRP 5 80 20 2.56 100 97.4 0.28 0.05 136.66 901 14

 MDVZRP 6 80 20 2.56 100 98.4 0.30 0.04 137.58 989 14

 MDVZRP 7 80 20 2.56 100 92.9 0.34 0.08 129.60 1047 104

 MDVZRP 8 80 20 2.56 100 98.7 0.30 0.05 138.39 990 33

 MDVZRP 9 80 20 2.56 100 95.2 0.36 0.06 132.34 1132 34

 MDVZRP 10 80 20 2.56 100 95.9 0.36 0.04 133.17 1127 38

 --

APPENDIX D Performance Evaluation Technical Data Sheet

==

 Senario Pause Speed StTime SpTime PDF NRL EED [kbps] O/H Drop

 DSDV 1 100 20 2.56 100 99.7 0.54 0.02 139.10 1802 8

 DSDV 2 100 20 2.56 100 98.9 0.51 0.02 138.56 1674 36

 DSDV 3 100 20 2.56 100 97.2 0.52 0.02 135.23 1678 88

 DSDV 4 100 20 2.56 100 99.6 0.52 0.02 139.60 1738 12

 DSDV 5 100 20 2.56 100 99.1 0.53 0.02 138.17 1749 30

 DSDV 6 100 20 2.56 100 99.9 0.48 0.02 139.64 1610 2

 DSDV 7 100 20 2.56 100 99.8 0.52 0.02 138.88 1718 6

 DSDV 8 100 20 2.56 100 98.9 0.52 0.02 139.43 1737 33

 DSDV 9 100 20 2.56 100 96.3 0.50 0.02 135.19 1623 121

 DSDV 10 100 20 2.56 100 98.3 0.54 0.01 137.80 1773 58

 --

 AODV 1 100 20 2.56 100 97.9 1.65 0.16 135.29 5311 65

 AODV 2 100 20 2.56 100 97.4 1.82 0.27 135.52 5877 39

 AODV 3 100 20 2.56 100 99.4 1.84 0.12 139.40 6118 5

 AODV 4 100 20 2.56 100 99.7 1.55 0.09 139.35 5125 9

 AODV 5 100 20 2.56 100 99.6 1.38 0.03 139.60 4590 12

 AODV 6 100 20 2.56 100 98.2 1.89 0.19 137.75 6208 46

 AODV 7 100 20 2.56 100 99.7 1.58 0.10 139.27 5218 2

 AODV 8 100 20 2.56 100 98.1 1.79 0.20 137.43 5866 51

 AODV 9 100 20 2.56 100 99.8 1.34 0.06 139.86 4467 2

 AODV 10 100 20 2.56 100 99.8 1.48 0.08 139.14 4909 3

 --

 MDVZRP 1 100 20 2.56 100 100.0 0.29 0.02 139.57 964 1

 MDVZRP 2 100 20 2.56 100 99.8 0.29 0.02 138.34 947 7

 MDVZRP 3 100 20 2.56 100 99.8 0.25 0.03 139.50 845 5

 MDVZRP 4 100 20 2.56 100 99.9 0.24 0.02 138.60 805 2

 MDVZRP 5 100 20 2.56 100 99.7 0.29 0.04 139.52 964 9

 MDVZRP 6 100 20 2.56 100 99.9 0.32 0.02 139.11 1065 2

 MDVZRP 7 100 20 2.56 100 99.8 0.31 0.03 138.67 1014 7

 MDVZRP 8 100 20 2.56 100 99.9 0.31 0.02 138.51 1036 2

 MDVZRP 9 100 20 2.56 100 99.7 0.34 0.03 139.56 1143 9

 MDVZRP 10 100 20 2.56 100 99.8 0.24 0.03 139.31 801 3

 --

APPENDIX E

215

Publications Authored

APPENDIX E Publications Authored

[1] Skloul, I. Ib., King, P. J. B., and Pooley, R. J., “MANETs form Zones to

Threshold”, The Fifth International Conference on Systems and Networks

Communications (ICSNC 2010), IEEE Computer society, Nice, France, 22-27 August

2010,.

[2] Skloul, I. Ib., King, P. J. B., and Pooley, R. J., “Performance Evaluation of Routing

Protocols for MANET”, The Fourth International Conference on Systems and Networks

Communications (ICSNC 2009), IEEE Computer society,pp.,105-112, Porto, Portugal,

21-26 September 2009,

[3] Skloul, I. Ib, King, P. J. B., and Pooley, R. J., “Performance Comparison of CBR in

MDVZRP with DSDV and AODV Multipath”, 25th UK Performance Engineering

workshop, modelling and analysis of computer and telecommunication systems, pp.,

Available from: http://www.comp.leeds.ac.uk/ukpew09/papers/09.pdf, Leeds University

6–7 July 2009.

[4] Skloul, I. Ib, Etorban, A., and King, P. J. B., “Multipath Distance Vector Zone

Routing Protocol for Asymmetric Mobile Ad-Hoc Networks”, 24th UK Performance

Engineering workshop, modelling and analysis of computer and telecommunication

systems, UKPEW 2008, pp.,271-284, http://ukpew.org/,Imperial College London, 3–4

July 2008.

 [5] Skloul, I. Ib, Etorban, A., and King, P. J. B., “DVZRP Protocol for Symmtric

Mobile Ad-Hoc Networks”, 9th Annual PostGraduate Symposium on the Convergence

of Telecommunications, Networking and Broadcasting,pp.,171-176, sponsored by the

EPSOURCE (SRC), Liverpool John Moores University, 23-24 June 2008,

[6] Skloul, I. Ib, and King, P. J. B., “Wireless Networks Design and Issues”, PGR,

Research in Information Communication Modelling, Machine and System

Communication Session, ,pp.,22-23,Heriot Watt University,12 Jun 2008.

[7] King, P. J. B., Etorban, A., and Skloul, I. Ib., ”DSDV-based Multipath Routing

Protocol for Mobile Ad-Hoc Networks”, 8th Annual Post Graduate Symposium on the

Convergence of Telecommunications, Networking and Broadcasting,pp.,93-98,

sponsored by the EPSOURCE (SRC), Liverpool John Moores University, 28 - 29 June

2007.

http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.hw.ac.uk/edu/research/pgrconference/2008/gallery2/
http://www.hw.ac.uk/edu/research/pgrconference/2008/gallery2/
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008025.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf

APPENDIX F

217

Bibliography

APPENDIX F Bibliography

Abolhasan, M., Wysocki, T., and Dutkiewicz, E., (2004), “A review of routing

protocols for mobile ad hoc networks”, Ad Hoc Networks, vol. 2 (1), pp., 1–22.

Agarwal, S. and Ahuja, A., (2000), "Route-lifetime assessment based routing (RABR)

protocol for mobile ad-hoc networks", IEEE, vol., (3), pp.,1697-1701, New Orleans.

Ai Hua Ho, Yao Hua Ho and Kien A. Hua, (2009), "Handling high mobility in next-

generation wireless ad hoc networks", International Journal of Communication Systems,

(2009), Published online in Wiley InterScience (www.interscience.wiley.com). DOI:

10.1002/dac.1056.

Bahk, S. and El-Zarki, W., (1992), "Dynamic Multi-path Routing and how it Compares

with other Dynamic Routing Algorithms for High Speed Wide-area Networks",

Proceeding of the ACM SIGCOM, 1992,pp.,53-64.

Barnett, B. L., (1993), "An Ethernet performance simulator for undergraduate

networking", Twenty Forth SIGCSE Technical Symposium on Computer Education,

ACM New York, NY, USA, vol., 25 (1), Miller, March 1993, pp., 145-150.

Basagni, S. and Chlamtac, I., (1998), "A distance routing effect algorithm for mobility"

(DREAM), Proceedings of the 4th annual ACM/IEEE international conference on

Mobile computing and networking Dallas, Texas, United States, pp., 76 - 84, ISBN:1-

58113-035-X.

Bettsttter, C., Resta, G., and Santi, P., (2003), "The node distribution of the random

waypoint mobility model for wireless ad hoc networks", IEEE, Transactions on Mobile

Computing, vol.,(2), pp., 257–269, July–September 2003.

Black, F., (2009), “ Wireless Network Simulation Using Opnet“, Acadimic Edition, Part

1, Available from: <http://4blackfire.blogspot.com/2009_10_01_archive.html>,

accessed on [April, 2011].

Bluetooth, (2007), "Official website", Available from:

<http://www.bluetooth.com/Pages/Bluetooth-Home.aspx>, [Accessed April 201].

Blum, J. J. and Eskandarian, A., (2004), "Challenges of intervehicle ad hoc networks",

IEEE Intelligent Transportation Systems Society , vol., 5 (4), Dec., 2004, pp., 347 - 351,

Digital Object Identifier 10.1109/TITS.2004.838218.

Broch, J. and Maltz, D. A., (1998), "A performance comparison of multi-hop wireless

ad hoc network routing protocols", Proceedings of the 4th annual ACM/IEEE

international conference on Mobile computing and networking, Dallas, Texas, United

States, pp., 85 - 97, ACM Press New York, NY, USA, ISBN:1-58113-035-X.

Boukerche, A., (2009), "Algorithms and Protocols For Wireless and Mobile Ad hoc

Networks",University of Ottawa Ottawa, Canada, Published by John Wiley & Sons,

Inc., Hoboken, New Jersey, ISBN 978-0-470-38358-2 .

Camp, T. and Boleng, J., (2002), "A survey of mobility models for ad hoc network

research, Wireless Communications & Mobile Computing", (WCMC), Special issue on

http://4blackfire.blogspot.com/2009_10_01_archive.html
http://www.ewh.ieee.org/tc/its/

APPENDIX F Bibliography

Mobile Ad Hoc Networking, Research, Trends and Applications, vol., 2 (5), (2002), pp.,

483-502.

Chang, X. (1999), "Network simulations with OPNET", Proceedings of the 31st

conference on Winter simulation, Simulation a bridge to the future, pp., 307-314,

December 05-08, 1999, Phoenix, Arizona, United States .

Chaudet, C., Dhoutaut, D. and Lassous, G., (2005), "Performance issues with IEEE

802.11 in ad hoc networking, IEEE Communication Magazine, vol. 43, no. 7, pp.110-

116.

Clausen, T. and Jacquet, P., (2003), "Optimized Link State Routing Protocol", (OLSR),

RFC Editor, United States, RFC3626. Multi Topic Conference, 2001. IEEE INMIC

2001. Technology for the 21st Century. Proceedings. IEEE International,DigitalObject

Identifier: 10.1109/INMIC.2001.995315,pp., 62 - 68, 2001.

Dhar, S. (2005), "MANET, Applications, Issues and Challenges", the Future,

International Journal of Business Data Communications and Networking, vol., 1 (2),

April - June 2005, pp.,66-92.

Dube, R., Rais, C., and Tripathi, S., (1997), "Signal Stability-Based Adaptive Routing

for Ad-Hoc Mobile Networks", IEEE, Personal Communications Magazine, vol 5, no.

1, pp. 36-45.

Dublin-Research and Markets, (2010),"The Taiwanese WLAN Industry, 2Q 2009, 1Q

2010",< http://www.researchandmarkets.com/research/e41731/the_taiwanese_wlan>.

Egli, J., (1957), "Radio Propagation above 40 MC over Irregular Terrain", Proceedings

of the IRE (IEEE) 45 (10), pp.,1383–1391.

Elsallabi, H., Vainikainen, M. and Vuokko, L. (2007), "An Additive Model as a

Physical Basis for Shadow Fading",

Vehicular Technology, IEEE Transactions on

pp. 13 - 26 , 1(56), Jan. 2007.

Fairhurst, G., (2005), "Address Resolution Protocol", (ARP), Available from:

<http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html>,Last Update, 1-

Dec. -2005, Accessed [May 2009].

Friisø, T. B., Haaland, T., and Radziwill, P., (2003), "Security Challenges in Self-

organizing Wireless", Telenor R&D R 17/2003, Project No TFPFAN, Program Peer-to-

peer computing Security, no. pp., 31. , 9-Aug-2003, ISBN 82-423-0581-1.

Ganapathi, G. J., (2008), "Reference Point Group Mobility and Random Waypoint

Models in Performance Evaluation of MANET Routing Protocols", Journal of

Computer Systems, Networks, and Communications, vol., 2008, Article ID 860364, 10

pages,doi:10.1155/2008/860364 Research Article.

Gloss, B., Scharf, M., and Neubauer, D., (2005), "A More Realistic Random Direction

Mobility Model", in Proceeding of COST 290 4th Management Committee Meeting,

Wi-QoST, Germany, 2005.

http://portal.acm.org/citation.cfm?id=324232&dl=GUIDE&coll=GUIDE&CFID=48740328&CFTOKEN=65601253
http://portal.acm.org/citation.cfm?id=324232&dl=GUIDE&coll=GUIDE&CFID=48740328&CFTOKEN=65601253
http://portal.acm.org/citation.cfm?id=324232&dl=GUIDE&coll=GUIDE&CFID=48740328&CFTOKEN=65601253
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7812
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7812
http://dx.doi.org/10.1109/INMIC.2001.995315

APPENDIX F Bibliography

Goldsmith, A., (2005), "Ad-Hoc Wireless Networks", Routing Wireless

communications, Chapter 16, pp., 535-553, Cambridge University Press,ISBN-13:

9780521837163.

GSM Association, (2010)," Device Field and Lab Test Guidelines" . Available from:

< http://www.gsmworld.com/documents/TS11_10_0.pdf>, 16 December 2010.

Green, E. R., (2004), "System architectures for high-rate ultra-wideband communication

systems", A review of recent developments, Intel Corporation, Hillsbro, OR: Intel Labs,

vol., (6), pp.,241.

Haas, J., (1997), "A new routing protocol for the reconfigurable wireless network", In

Proceedings of the 1997, IEEE 6th International Conference on Universal Personal

Communications, ICUPC'97,San Diego, CA, 12-16 October 1997, pp., 562-566.

Haas, Z. J., Pearlman, R., and Samar, P., (2001), "Interzone Routing Protocol "(IERP),

Wireless Networks Laboratory, School of Electrical Engineering, Cornell University,

Ithaca, NY 14853,United States of America, Available from:

<http://tools.ietf.org/html/draft-ietf-manet-zone-ierp-01#page-i>, IETF, Internet Draft,

draft-ietf-manet-ierp-01.txt.

Haas, Z. J., Pearlman, R., and Samar, P., (2001), "Intrazone Routing Protocol (IARP)",

Wireless Networks Laboratory, School of Electrical Engineering, Cornell University,

Ithaca, NY 14853,United States of America, Available from:

http://tools.ietf.org/html/draft-ietf-manet-zone-iarp-01, IETF, Internet Draft, draft-ietf-

manet-iarp-01.txt.

Haseeb, Z., David, H. and Ivan, A., (2007) ”On-demand Partial-Disjoint Multipath

Routing with Low Density for Mobile Ad-Hoc Networks”, 8th Annual Post Graduate

Symposium on the Convergence of Telecommunications, Networking and

Broadcasting,pp.,233-236, Liverpool John Moores University.

Hoang, L., Nguyen, U. and Trang, N., (2008), “A study of different types of attacks on

multicast in mobile ad hoc networks”, Ad Hoc Networks, Volume 6, Issue 1, Pages 32-

46, January 2008.

Hong, X., Pei, G., and Mario, G., (2000), "Landmark Routing for Large Scale Wireless

Ad Hoc Networks with Group Mobility", Proceedings of IEEE/ACM MobiHOC 2000,

Boston, MA, Aug. 2000.

Hyytia, E., Koskinen, H., and Virtamo, J., (2005), "Random Waypoint Model in

Wireless Networks", In Proceedings of Networks and Algorithms, complexity in

Physics and Computer Science, Helsinki, Finland, pp., 132-156 ACM Press, 2005.

Itoua, S. M., (2008), "Effect of Propagation Models on Ad Hoc Networks Routing

Protocols", Sensor Technologies and Applications, SENSORCOMM 08, Second

International Conference, pp., 752-757, ISBN: 978-0-7695-3330-8.

Jacquet, P., Mühlethaler, P., and Qayyum, A., (1998)," Optimized Link State Routing

Protocol", IETF MANET Working Group, Published Online, Available from:<

http://www.ietf.org/proceedings/98dec/I-D/draft-ietf-manet-olsr-00.txt>.

http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.cs.ucla.edu/NRL/wireless/PAPER/mobihoc00.ps.gz
http://www.cs.ucla.edu/NRL/wireless/PAPER/mobihoc00.ps.gz

APPENDIX F Bibliography

Jayakumar, G. and Gopinath, G., (2007), "Ad Hoc Mobile Wireless Networks Routing

Protocols", A review, vol., (3), pp., 574-582, Journal of Computer Science, Science

Publications, ISSN 1549-3636.

Jianfeng, M., Changguang, W. and Zhuo, M., (2009), “Security Access in Wireless

Local Area Networks From Architecture and Protocols to Realization”, Springer ,ISBN

978-3-642-00940-2.

Johansson, P., Larsson, T. and Hedman, N., (1999), "Scenario-based performance

analysis of routing protocols for mobile ad-hoc networks", Proceedings of the 5th

annual ACM/IEEE, international conference on Mobile computing and networking,

Seattle, Washington, United States, pp., 195 - 206, ISBN:1-58113-142-9.

Johnson, D. B., Hu, J., and Jetcheva, Y. C., (1999), "The CMU Monarch Project‟s

Wireless and Mobility Extensions to ns", Computer Science Department Carnegie

Mellon University, August 1999, Available from: <http://www.monarch.cs.cmu.edu/>.

Khengar, P., (2003), "Design and Performance Evaluation of a New Routing Protocol

for Mobile Ad Hoc Networks", Electrical and Electronic Engineering, Kings College

London, University of London, PhD., Thesis.

Ko, Y. and Vaiday, N., (1998), "Location Aided Routing (LAR) in Mobile Ad Hoc

Networks", Mobile Computing and Networking, MOBICOM'98, October 25-30, 1998,

Dallas, Texas, USA, PP. 66-75.

Kuosmanen, P., (2002), "Classification of ad hoc routing protocols", Finnish Defence

Forces, Naval Academy, Finland, Available from:

<http://keskus.hut.fi/opetus/s38030/k02/Papers/12-Petteri.pdf>, Accessed [May 2009].

Kurkowski, S. C., Mushell, T., and Colagrosso, M., (2005), "A visualization and

analysis tool for NS-2 wireless simulations", iNSpect, Proceedings of the 13th IEEE,

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, pp., 503-506.

Larsson, T. and Hedman, N., (1998), "Routing protocols in wireless ad-hoc networks", a

simulation study, Computer Science and Electrical Engineering, Computer

Communication, Luleå Tekniska University, 1998-12-18, ISSN 1402-1617,ISRN LTU-

EX--98,362--SE, NR 1998:362, Master's Thesis.

Lee, S. J. and Gerla, M., (2001), "Split multipath routing with maximally disjoint paths

in ad hoc networks", In Proceedings of IEEE, ICC 2001, Helsinki, Finland, June 2001,

pp., 3201-3205.

Li, M., Zhang, L., and Li, V., (2005), "An Energy-Aware Multipath Routing Protocol

for Mobile Ad Hoc Networks", Proceeding of ACM SIGCOMM Asia Workshop, April

2005, Beijing, China, pp.,166–174.

Luis, B., Rodolfo, O. and Paulo, P., (2008), “A Telephony Application for Manets:

Voice over a MANET-Extended JXTA Virtual Overlay Network”, E-Business and

Telecommunication Networks Communications in Computer and Information Science,

2008, Volume 9, IV, 347-358, DOI: 10.1007/978-3-540-70760-8_28 .

http://www.springerlink.com/content/?Author=Jianfeng+Ma
http://www.springerlink.com/content/?Author=Changguang+Wang
http://www.springerlink.com/content/?Author=Zhuo+Ma
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=6234&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.monarch.cs.cmu.edu%252F
http://keskus.hut.fi/opetus/s38030/k02/Papers/12-Petteri.pdf%3e
http://www.springerlink.com/content/?Author=Luis+Bernardo
http://www.springerlink.com/content/?Author=Rodolfo+Oliveira
http://www.springerlink.com/content/?Author=Paulo+Pinto
http://www.springerlink.com/content/978-3-540-70759-2/
http://www.springerlink.com/content/978-3-540-70759-2/
http://www.springerlink.com/content/1865-0929/

APPENDIX F Bibliography

Maltz, D. A. and Johnson, D. B., (1996), "Dynamic Source Routing in Ad Hoc

Wireless Networks", Mobile Computing by Tomasz Imielinski and Hank Korth, chapter

5, pp., 153-181, Kluwer Academic Publishers.

Marina, M. K., Perkins, C. E., Royer, E. M., and Das, S. R., (2001), "Performance

comparison of two on-demand routing protocols for ad hoc networks", IEEE, Personal

Communications, Feb., 2001, vol., 8(1), pp., 16-28.

Martin, S., (2011), "From GSM to LTE: An Introduction to Mobile Networks and

Mobile Broadband", John Wiley & Sons, Ltd. Published 2011, ISBN: 0470667117 / 0-

470-66711-7.

Michel, B. and Evangelos, K., (2007), “Principles of Ad Hoc Networking”, Carleton

University, Canada, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England, ISBN: 978-0-470-03290-9.

Mueller, S. T. and Ghosal, R. P., (2004), "Multipath routing in mobile ad hoc networks,

Issues and challenges", Springer, 2965 Performance Tools and Applications to

Networked Systems, pp., 209-234.

Murthy, S. and Garcia-Luna-Aceves, J. J., (1995), "Wireless Routing Protocol", A

Routing Protocol for Packet Radio Networks, Proceeding of ACM International

Conference on Mobile Computing and Networking, pp., 86-95, Nov., 1995, Springer.

Murthy, S. and Manoj, B.,(2004), "Ad Hoc Wireless Networks", Prentice Hall

International, ISBN 0-13-147023-X,2004.

Nandi, S. and Sarma, N., (2007), "Route Stability based QoS Routing (RSQR) in

MANETs," Proc of the 10 th International Symposium on Wireless Personal

Multimedia Communications (WPMC-2007), pp. 770-3, Dec. 2007.

Nasipuri, A. and Das, S. R., (1999), "On-Demand Multi-path Routing for Mobile Ad

Hoc Networks", Proceedings of IEEE ICCCN'99, Boston, MA, pp.,64-70,Oct. 1999.

Nasui, D., Oana, F., Sgarciu, V. and Oprea, B., (2010)," Vehicular Networks in a

Computerized City Using Safe Mobile", The Fifth International Conference on Systems

and Networks Communications (ICSNC 2010), France, Nice, IEEE Computer Society

Publications, pp.,105-110. August 22-27, 2010.

Natarajan, M., (2010), “On the Time between Successive Multi-path Discoveries and

Hop Count Per Multi-path for Zone-Disjoint Routing in Mobile Ad Hoc

Networks”,Recent Trends in Wireless and Mobile Networks ,Communications in

Computer and Information Science, Ankara, Turkey, 2010, Volume 84, Part 1, 254-265,

DOI: 10.1007/978-3-642-14171-3_21, Springer.

Nikos, R. M., (2010), "Explanation of new trace format", Available from:

<http://www.isi.edu/nsnam/ns/doc/node186.html> , Last Update 2009-01-06,

Acessed[April 2010].

http://www.abebooks.co.uk/products/isbn/9780470667118
http://www.abebooks.co.uk/products/isbn/9780470667118
http://www.abebooks.co.uk/products/isbn/9780470667118
http://www.springerlink.com/content/?Author=Natarajan+Meghanathan
http://www.springerlink.com/content/978-3-642-14170-6/
http://www.springerlink.com/content/1865-0929/
http://www.springerlink.com/content/1865-0929/
http://www.isi.edu/nsnam/ns/doc/node186.html

APPENDIX F Bibliography

Nikos, R. M., (2010), "Packet Headers and Formats", Available from:

<http://www.isi.edu/nsnam/ns/doc/node216.html>, Last update 2009-01-06,

Acessed[April 2010].

Nikos, R. M., (2010), "Radio Propagation Models", Available from:

<http://www.isi.edu/nsnam/ns/doc/node216.html>, Last Update 2009-01-06,

Acessed[April 2010].

Nishu, G. and Mahapatra, R., (2009), “MANET Security Issues”, International Journal

of Computer Science and Network Security, Volume.9, No.8, 2009.

NIST, (2001), "Wireless ad hoc networks", Retrieved April 28, 2009, Available from:

<http://w3.antd.nist.gov/wahn_bkgnd.shtml>, Accessed [May 2009], Last update (June

04, 2008).

OMNeT++, (2009), "OMNeT++ Home Page", Available from:

<http://www.omnetpp.org> ", Accessed [Jan 2009].

OPNET, (2007), "OPNET Technologies Inc.", Available from:

<http://www.opnet.com/>, Accessed on [May, 2009], Retrieved May 15, 2009.

Osman, H. and Taylor, H.(2008), "Towards a reference model for m-commerce over ad

hoc wireless networks", Proc. E-Activity and Leading Technologies (E-ALT)

Conference, 2008, pp. 223-232.

Osman, H. and Taylor, H.(2011), " Identity Support in a Security and Trust Service for

Ad Hoc M-Commerce Trading Systems”, Proceedings of 7th. International Symposium

on Frontiers in Networking with Applications, Biopolis, Singapore, pp 285-290, IEEE.

OTcl, (1996), "OTcl-Object Tcl Extensions", Available from:

<http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl/>, Accessed[Oct 2008].

Pearlman, M. R., Haas, Z. J., and Zygmunt, J., (1999), "Determining the Optimal

Configuration for the Zone Routing Protocol", IEEE Journal on Selected Areas in

Communications, vol., 17(8), pp., 1395-1414, August 1999.

Pearlman, M. R., Haas, Z. J., Sholander, P., and Tabrizi, S. S., (2000), "On the Impact

of Alternate Path Routing for Load Balancing in Mobile Ad Hoc Networks", in

Proceeding of IEEE MobiHoc 2000, Boston, MA, pp., 3-10, Aug. 2000,

Pearlman, M. R. and Haas, Z. J., (2000), "Alternate path routing in mobile ad hoc

networks", in the Proceedings of IEEE MILCOM 2000, Los Angeles, CA, pp.,501-

506,Oct. 2000,

Pei, G., Mario, G. and Tsu-Wei, C., (2000), “Fisheye State Routing in Mobile Ad Hoc

Networks”,Proceedings of ICDCS Workshop on Wireless Networks and Mobile

Computing, April 2000, Taipei, Taiwan,pp.D71-D78,available from

http://www.cs.ucla.edu/NRL/wireless/PAPER/pei-wnmc00.ps.gz.

Perkins, C., (1994), "Highly dynamic destination-sequenced distance-vector routing

(DSDV) for mobile computers", ACM SIGCOMM, Computer Communication Review,

vol., 24(4), pp., 234-244.

http://www.isi.edu/nsnam/ns/doc/node216.html
http://www.isi.edu/nsnam/ns/doc/node216.html
http://w3.antd.nist.gov/wahn_bkgnd.shtml
http://www.omnetpp.org/
http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl/
http://www.cs.ucla.edu/NRL/wireless/PAPER/pei-wnmc00.ps.gz

APPENDIX F Bibliography

Perkins, C. and Royer, E., (2001), "Ad Hoc Networking", An Introduction, chapter 1,

pp., 1-28, Addison-Wesley: ISBN 0-201-30976-9.

Perkins, C. and Royer, E., (2001), "Ad hoc Networking", The Ad Hoc On-Demand

Distance-Vector Protocol, chapter 6, pp., 173-219, Addison-Wesley: ISBN 0-201-

30976-9.

Ramanarayana, K. and Lillykutty, J., (2007), “Secure Routing in Integrated Mobile Ad

hoc Network (MANET)-Internet”. Third International Workshop on Security, Privacy

and Trust in Pervasive and Ubiquitous Computing, Pages 19-24, 2007.

Redi, R. A., (2002), "A Brief Overview of Ad Hoc Networks Challenges and

Directions", IEEE Communications Magazine, 50th Anniversary Commemorative

Issue, May 2002, vol., 40 (5), pp., 20-22.

Rice, L., Longley, A., Norton, G. and Barsis, A., (1967), "Transmission loss

predictions for tropospheric communication circuits," U.S. Government Printing Office,

Washington, DC, NBS Tech. Note 101, issued May 1965; revised May 1966 and Jan.

1967Simulation Overview.

Robbins, A., (2001), "Effective awk programming", Available from:

<http://goanna.cs.rmit.edu.au/~milad/gawk.pdf>, last update February 1997,

Accessed[May 2009].

Rodig, Utz; Sreenan, Cormac J. (Eds.),(2009),"Wireless Sensor Networks", 6th

European Conference, EWSN 2009 Cork, Ireland, February 11-13, 2009, Proceedings

Series: Lecture Notes in Computer Science, Vol. 5432, , pp. 375, Subseries: Computer

Communication Networks and Telecommunications.

Roy, R., (2011),"Handbook of Mobile Ad Hoc Networks for Mobility Models", DOI

10.1007/978-1-4419-6050-4_1, Springer Science+Business Media, LLC 2011.

Royer, E. M. and Toh, C-K., (1999), "A Review of Current Routing Protocols for Ad

Hoc Wireless Networks", IEEE Personal Communication, vol.(6), pp., 46-55. April

1999.

Salleh, A. U. I., Din, Z., and Jamaludin, N. M., (2006), "Trace Analyzer for NS-2", 4th

Student Conference on Research and Development, (SCOReD 2006).

Samir, R. D., Robert, C., Jiangtao, Y., and Rimli, S., (1998), "Comparative

Performance Evaluation of Routing Protocols for Mobile Ad hoc Networks", pp.,153,

Seventh International Conference on Computer Communications and Networks

(ICCCN '98), 1998.

Seybold, S., (2005), "Introduction to RF propagation", John Wiley and Sons. pp. 144–

146, ISBN: 978-0-471-65596-1.

Sharvani, G. S., Cauvery, N. K. and Rangaswamy, T. , (2009), “ADAPTIVE

ROUTING ALGORITHM FOR MANET”, International Journal of Next-Generation

Networks (IJNGN),Vol.1, No.1, December 2009.

http://goanna.cs.rmit.edu.au/~milad/gawk.pdf
http://www.springer.com/series/558
http://www.springer.com/series/7411
http://www.springer.com/series/7411

APPENDIX F Bibliography

Sinha, P., Sivakumar, R. and Bharghavan, V., (1999)," CEDAR: Core extraction

distributed ad hoc routing", Proceedings of the Eighteenth Annual Joint Conference of

the IEEE Computer and Communications Societies, INFOCOM '99, New York, NY,

USA,pp.,202-209.

Skloul, I. Ib, Etorban, A., and King, P. J. B., (2008), “Multipath Distance Vector Zone

Routing Protocol for Asymmetric Mobile Ad-Hoc Networks”, 24th UK Performance

Engineering workshop, modelling and analysis of computer and telecommunication

systems, UKPEW 2008, pp.,271-284, http://ukpew.org/,Imperial College London, 3–4

July 2008.

SSFNet, (1999), "Scalable Simulation Framework", Retrieved May 15, 2009, Available

from: <http://www.ssfnet.org/homePage.html>, Accessed [May 2009].

Stefano, B., Irnrich, C. and Violet, R.,(1998), "A Distance Routing Effect Algorithm for

Mobility (DREAM)", Proceeding MobiCom '98 Proceedings of the 4th annual

ACM/IEEE international conference on Mobile computing and networking ACM New

York, NY, USA.

Tachtatzis, C. and Harle, D., (2008), "Performance evaluation of multi-path and single-

path routing protocols for mobile ad-hoc networks", Proc. 2008 Int. Symp. on

Performance Evaluation of Comput. and Telecommun. Systems (SPECTS), Edinburgh,

June 2008.

Taruna, S. and. Purohit, G.N, (2011), "Scenario Based Performance Analysis of AODV

and DSDV in Mobile Adhoc Network", Advances in Networks and Communications

First International Conference on Computer Science and Information Technology,

CCSIT 2011, Bangalore, India, January 2-4, 2011. Proceedings, Part II, CCIS 132, pp.

10–19, 2011.

Thomas, H., Cormen, R., Rivest, L., and Clifford, S. I., (2001), "The Bellman-Ford

algorithm", M. P. a. McGraw-Hill, pp.,588–592, Problem 24-1, pp.,614–615.

Toh, C. K., (1997), "Associativity-based Routing for Ad Hoc Mobile Networks",

Wireless Personal Communications, vol., 4 (2), pp., 103-139.

Toh, C. K., (2001), "Ad Hoc Mobile Wireless Networks: Protocols and Systems",

Publisher: Prentice Hall 2001, 336 Pages,ISBN: 0130078174.

Tsirigos, A. and Haas, Z. J., (2001), "Multipath Routing in Mobile Ad Hoc Networks

,or how to route in the presence of frequent topology changes", in Proceedings of IEEE,

MILCOM 2001, McLean, VA, Oct. 2001, pp., 878-883.

Kevin, F. and Kannan, V., (2010), "The ns Manual", (formerly ns Notes and

Documentation), vol.,(1), Avalable from: <www.isi.ede/nsnam/ns/ns-

documentation.html>, last accessed [April 2010].

Varga, A. (2001), "The OMNeT++ Discrete Event Simulation System", in the

Proceedings of the European Simulation Multiconference, ESM2001, June 6-9, 2001,

Prague, Czech Republic.

http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://ukpew.org/2008/papers/distance-vector-routing-adhoc
http://www.ssfnet.org/homePage.html

APPENDIX F Bibliography

Vetriselvi, V. and Parthasarathi, R., (2007), "Trace Based Mobility Model for Ad Hoc

Networks”, in Proceedings of the Third IEEE, International Conference on Wireless and

Mobile Computing, Networking and Communications, WIMOB, IEEE Computer

Society, Washington, DC, pp.81-81, 2007.

VINT, (1996), "Virtual InterNetwork Testbed", A Collaboration among USC/ISI, Xerox

PARC, LBNL, and UCB, Retrieved May 2009, Available from:

<http://www.isi.edu/nsnam/vint/index.html>, Accessed [19, May 2009].

Wiberg, B., (2002), "Porting AODV-UU Implementation to Ns-2 and Enabling Trace-

based Simulation", Information Technology Department Systems, Uppsala, Sweden,

Uppsala University, Master's Thesis.

Wu, K. and Harms, J., (2001), "Performance study of a multipath routing method for

wireless mobile ad hoc networks", in Proceedings of the Ninth International Symposium

in Modeling, Analysis and Simulation of Computer and Telecommunication Systems,

Cincinnati, OH, Aug. 2001, pp., 99 -107.

Wu, K. and Harms, J., (2006), "Performance Study of Proactive Flow Handoff for

Mobile Ad Hoc Networks", ACM/Kluwer Wireless Networks Journal (ACM WINET),

vol., 12(1), February 2006, pp., 119 - 135, ISSN:1022-0038.

Xiang, Li., (2008), “Wireless Ad Hoc and Sensor Networks: Theory and Applications”,

ISBN-13: 9780521865234, Pub. Date: June 2008, Cambridge University Press.

Yang, S. and John, S. B., (2002), "TORA, Correctness, Proofs and Model Checking",

Available as Technical Report from the Institute for Systems Research, Electrical and

Computer Engineering Department, University of Maryland, December 2002, Master's

Thesis.

Yang, Guang-Zhong,(2006), “Body Sensor Networks”, ISBN 978-1-84628-272-0.

Young-Bae, K. and Vaidya, N. H., (2000), "Location-Aided Routing (LAR) in mobile

Ad Hoc Networks", Kluwer Academic Publishers, vol., 6 (4), pp., 307-321 ISSN:1022-

0038 . Hingham, MA, USA .

Yousefi, S. M. and Fathy, M. S, (2006), "Vehicular Ad Hoc Networks (VANETs),

Challenges and Perspectives", ITS, Telecommunications Proceedings, 6th International

Conference on Publication, June 2006.

Zafar, H., Harle, D. and Ivan, A., (2007), “On-demand Partial-Disjoint Multipath

Routing with Low Delay for Wireless Ad-hoc Networks”,PG Net Preceedings,

8th Annual Post Graduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting,pp.,233-236, 28 - 29 June 2007.

Zafar, H., Harle, D., and Aonovic, I. and Khawaja, Y., (2009), “Performance evaluation

of shortest multipath source routing scheme”, Institution of Engineering and

Technology Communications, IET, May 2009, 3(5),pp., 700 - 713 ,ISSN: 1751-8628.

http://www.isi.edu/nsnam/vint/index.html
http://portal.acm.org/author_page.cfm?id=81100225712&coll=GUIDE&dl=GUIDE&trk=0&CFID=91578446&CFTOKEN=97223983
http://www.amazon.com/Wireless-Hoc-Sensor-Networks-Applications/dp/0521865239/ref=sr_1_1?ie=UTF8&s=books&qid=1225219582&sr=8-1
http://www.springer.com/computer/hci/book/978-1-84628-272-0
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://www.macs.hw.ac.uk/~isi3/PDF/pgnet_24.05.2007%5B2%5D.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Zafar,%20H..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Harle,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Andonovic,%20I..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Khawaja,%20Y..QT.&newsearch=partialPref
http://www.theiet.org/
http://www.theiet.org/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4105970

