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Abstract

We consider the numerical approximation of stochastic differential equations inter-

preted both in the Itô and Stratonovich sense and develop three stochastic time-

integration techniques based on the deterministic exponential time differencing schemes.

Two of the numerical schemes are suited for the simulations of Itô stochastic ordinary

differential equations (SODEs) and they are referred to as the stochastic exponential

time differencing schemes, SETD0 and SETD1. The third numerical scheme is a new

numerical method we propose for the simulations of Stratonovich SODEs. We call

this scheme, the Exponential Stratonovich Integrator (ESI).

We investigate numerically the convergence of these three numerical methods, in ad-

dition to three standard approximation schemes and also compare the accuracy and

efficiency of these schemes. The effect of small noise is also studied.

We study the theoretical convergence of the stochastic exponential time differencing

scheme (SETD0) for parabolic stochastic partial differential equations (SPDEs) with

infinite-dimensional additive noise and one-dimensional multiplicative noise. We ob-

tain a strong error temporal estimate of O(∆tθ + ε∆tθ + ε2∆t1/2) for SPDEs forced

with a one-dimensional multiplicative noise and also obtain a strong error temporal

estimate of O(∆tθ + ε2∆t) for SPDEs forced with an infinite-dimensional additive

noise. We examine convergence for second-order and fourth-order SPDEs.

We consider the effects of spatially correlated and uncorrelated noise on bifurcations

for SPDEs. In particular, we study a fourth-order SPDE, the Swift-Hohenberg equa-

tion, and allow the control parameter to fluctuate. Numerical simulations show a shift

in the pinning region with multiplicative noise.
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Chapter 1

Introduction.

Before the 1950’s, deterministic differential equations were typically used to describe

the dynamics of the systems which occur in applications. However, it is obvious that

in the world we live in today, phenomena that arise are not always deterministic in

nature.

Noise, sometimes referred to as fluctuations or randomness, has now been found to

be important in lots of phenomena, thus it has become important to include random

effects when modelling diverse physical phenomena that arise in engineering, aeronau-

tics, physics, biology, meteorology, oceanography, environmental sciences, etc. Equa-

tions which take into account time dependent random fluctuations are referred to as

stochastic differential equations.

Over the past decades, there has been an increase in the study and research of the

numerical solutions of stochastic differential equations (SDEs). More recently, there

is growing interest in stochastic partial differential equations (SPDEs). In general,

there are very few SDEs for which analytical solutions can be obtained and this is also

true for SPDEs. Hence, the need to develop numerical methods for the solution of

these equations. Noise paths can be generated from the computer. Many approaches

for the numerical solutions are either based on computing many sample paths and

then determining the accuracy of a trajectory or based on computing approximation

to the probability distribution of the solution, and then determine various statisti-

cal measures. The treatment of stochastic differential equation is very different from

1



Chapter 1: Introduction.

the deterministic setting. Consequently, understanding fully the theory, analysis and

solution of this problem is not an easy task, and so we believe that development of

numerical methods to generate solutions to stochastic differential equations will lead

to a better understanding of the subject of stochastic differential equations [25].

This thesis is mainly concerned with the study of numerical approximations to stochas-

tic ordinary and partial differential equations.

We shall review the literature on the numerical approximations of SPDEs later in the

thesis.

1.1 Objectives.

The main objectives of the thesis are the following:

1. Develop an efficient and accurate numerical integration technique for the solu-

tion of Itô SPDEs. The motivation for the development of the numerical method

comes from the work in [18], where a deterministic numerical method called the

exponential time differing (ETD) scheme was derived. This scheme has been

shown to be very promising for semi-linear problems, see for example, the de-

terministic work done for example in [18, 47]. As a result, we seek stochastic

variants of this scheme, which we call the stochastic exponential time differenc-

ing schemes (SETD0) and (SETD1). Since these numerical schemes are to

serve as an alternative numerical method for the solution of SDEs, we carry

out numerical experiments on these schemes and compare against some existing

standard numerical methods.

2. Study the theoretical convergence of the numerical method developed. In par-

ticular, we wish to study convergence in time for the SETD0 scheme in the

strong sense and obtain strong error estimates for SPDEs forced with additive

and multiplicative noise. The style of analysis we use in this work is based on

the work in [55].

3. Develop a new numerical scheme for the solution of SPDEs interpreted in the

2



Chapter 1: Introduction.

Stratonovich sense which we call the exponential Stratonovich integrator (ESI).

We compare numerically the accuracy and efficiency of the ESI with an existing

numerical method known as the Heun scheme which is a natural method used

for discretizing SDEs with Stratonovich noise.

4. Study the effects of spatially correlated and uncorrelated noise on bifurcation

for the SPDE known as the Swift-Hohenberg equation. The motivation for car-

rying out this study comes from the work in [11, 12], in which they present a

bifurcation diagram for the deterministic Swift-Hohenberg equation. In their

work, the bifurcation diagram displays a pinning region, in which stable spa-

tially localized states are contained. Thus, in this thesis, we wish to explore the

effects of noise on the pinning/snaking region by allowing the control parameter

to fluctuate. In particular, we wish to examine the dynamics of the snaking

region when noise is taken into account.

Indeed the studies and analysis of snaking region in the Swift-Hohenberg equa-

tion and the Complex Ginzburg-Laudau equation is currently an active area of

research, see the recent work by [62] and [64].

1.2 Thesis outline

In Chapter 2, we give background material on SODEs and SPDEs and present some

standard numerical integration techniques.

In Chapter 3, we review the subject of deterministic ETD schemes and show the

derivation of three stochastic ETD. We then carry out numerical experiments on four

examples of SODEs using these numerical schemes. These SODEs were interpreted

both in the Itô and Stratonovich sense. We apply six numerical methods, namely the

Heun method, the exponential Stratonovich integrator (ESI), the Lord-Rougemont

(LR) scheme, the Euler-Maruyama (EM) scheme, the stochastic exponential time

differencing schemes (SETD0) and (SETD1), to obtain approximate solutions. For

simulations of SODEs with Stratonovich noise, the Heun and ESI schemes were used,

while for the simulations of SODEs with Itô noise, the SETD0, SETD1, LR and

3



Chapter 1: Introduction.

EM methods were applied. The drift correction formula was used to convert from one

stochastic calculus to the other. Numerical experiments were performed to obtain the

strong and weak order of convergence for all the numerical methods. We also study

briefly SDEs with small noise.

In Chapter 4, we study the theoretical strong convergence of the SETD0 scheme for

SPDEs with additive and multiplicative noise subject to periodic boundary conditions.

We only consider convergence in time and not convergence in space. For SPDEs

with additive noise, we consider the infinite dimensional Wiener process and for the

SPDEs with multiplicative noise, we consider a one dimensional Brownian motion.

We prove strong error estimates for second order and fourth-order SPDEs. For the

case of SETD1 scheme, we will only study numerically the strong convergence of this

scheme in Chapter 5.

In Chapter 5, we numerically investigate the strong convergence of the three numerical

schemes developed in this thesis, that is, the SETD0 and SETD1 schemes for the

direct simulations of Itô SODEs and the ESI scheme for the direct simulations of

Stratonovich SODEs.

The Allen-Cahn equation (second-order SPDE) and the Swift-Hohenberg equation

(fourth-order SPDE) were used as numerical examples in the experiments. These

SPDE examples which are interpreted in the Itô sense were discretized in space by

a Fourier spectral method, this procedure gives rise to a system of Itô SODEs, in

which we then apply the SETD0 and SETD1 schemes to perform the numerical

integration. We also compare the numerical results with the LR scheme and semi-

implicit EM scheme.

On the other hand, in order to use the ESI scheme for numerical integration, we

perform an Itô-Stratonovich correction, so that the resulting Stratonovich SPDEs

gives rise to Stratonovich SODEs upon discretizing the spatial variable first. The

ESI scheme is compared against the standard Heun scheme.

In Chapter 6, we study the effects of stochastic forcing on the Swift-Hohenberg (SH)

equation forced with Itô and Stratonovich noise. In particular we consider noise white

in time and spatially correlated/uncorrelated noise. We allow the control parameter in

4



Chapter 1: Introduction.

the underlying system to fluctuate and perform direct simulations on the SH equation

using the new numerical method we propose in this thesis called the exponential

Stratonovich Integrator ESI scheme. This scheme is also compared against standard

numerical method for the direct simulation of Stratonovich SDEs, called the Heun

method. We also perform a drift correction on the SH equation with Stratonovich

noise, in order to allow us have an Itô equation. This form of equation provides the

framework to allow us take out the systematic contribution of noise by using the

small noise expansion idea in [27]. The resulting ODE system is then examined using

AUTO to obtain bifurcation diagrams displaying the snaking region for the spatially

localized states.

We give concluding discussions on the findings in this thesis in Chapter 7.

5



Chapter 2

Background for SODEs & SPDEs.

In this chapter, we give some background material used in this thesis for the numerical

approximation of SODEs and SPDEs.

2.1 Background for SODEs.

A stochastic ordinary differential equation (SODE) is an equation that incor-

porates time dependent random elements in the differential equation system, see for

example [50, 70]. Equations with noise have been shown to play important modelling

role in many areas such as population dynamics [50], filtering [70], investment finance

[40], biology [50], chemistry [28], circuit simulation [97], wave propagation [57] to

mention a few.

A general autonomous Itô SODE is written in the following form

dX(t) = f(X(t))dt + g(X(t))dW (t), t ∈ [t0, T ] X(t0) = X0, (2.1.1)

where X(t) ∈ Rd, f : Rd → Rd (is known as the drift coefficient), g : Rd → Rd×m (is

known as the diffusion coefficient), and W (t) is a m-dimensional Brownian motion.

The integral formulation of (2.1.1) is

X(t) = X0 +

∫ t

t0

f(X(s))ds +

∫ t

t0

g(X(s))dW (s), (2.1.2)

where the first integral is understood in the sense of a Riemann-Stieltjes integral and

the second integral is understood in the sense of an Itô stochastic integral [23, 50].

6



Chapter 2: Background on SODEs & SPDEs.

The stochastic integral can be interpreted in different ways. The most widely used

interpretations of a stochastic integral are the Itô and Stratonovich, see [50]. It is

possible to switch between one interpretation and the other. The solution to a scalar

Itô-rule stochastic differential equation (2.1.1) with drift coefficient f and diffusion

coefficient g is equivalent to the solution of a scalar Stratonovich-rule SDE with drift

coefficient f̃ and diffusion coefficient g̃, provided g̃ = g , and f̃ = f − 1
2
gg′ [50]. For

many SDEs of practical interest, analytic solutions are rarely available, thus numerical

methods to approximate their solutions are required. A number of computational

techniques have been developed to solve these kinds of equations [50]. Some of such

computational techniques includes the Euler-Maruyama and the Milstein method.

These methods are always derived under the rules of stochastic calculus; SDEs makes

sense in the integral representation (2.1.2). This integral representation contains two

integrals, the ordinary and stochastic integral. The integrand function in the ordinary

integrals follows the rules of deterministic calculus, in which the integrand function in

the Riemann sum approximating the Riemann integral is evaluated at any arbitrary

point in a given interval, however, for the case of a stochastic integral, the integrand

function needs to be evaluated at a specific point in an interval [50]. Consequently,

when the stochastic integral is evaluated at the left-end point, we say such integral is

an Itô stochastic integral and if the stochastic integral is evaluated at the midpoint,

we say such integral is a Stratonovich stochastic integral [70].

Higher order stochastic numerical methods can also be useful in some contexts. It is

usually straight forward to derive these kinds of methods, however, the problem lies in

the complexities involved in the implementation of higher order stochastic integrals,

in addition to the cumbersome calculations of derivatives of the coefficients of the

underlying system. We do not pursue higher order methods in this thesis, as we wish

to examine solutions of SPDES.

SDEs are either forced with additive or multiplicative noise. An SDE is said to have

additive noise if all the entries of the diffusion co-efficient matrix are either constant

or functions of time only. But if the diffusion co-efficient contains functions of the

state variables, then the SDE is said to have multiplicative noise [50].
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Chapter 2: Background on SODEs & SPDEs.

Note that in the case of additive noise, the Stratonovich system coincides with Itô

system [50, 70].

In what follows, we give a quick overview on the concept of Wiener process and

stochastic integrals.

Definition 2.1.1. Wiener process [50, 70].

A stochastic process W (t), t ∈ [0,∞), is said to be a Wiener process if

i. W (0) = 0 (with probability 1)

ii. For 0 ≤ s < t ≤ T, the increment W (t) −W (s) ∼ N (0, t − s) with mean 0 and

variance t− s.

iii. For 0 ≤ s < t < u < v ≤ T , the increments W (v)−W (u) and W (t)−W (s) are

independent.

iv. E[W (t)] = 0 and E[W (s)W (t)] = min{s, t}.

The property E[W (s)W (t)] = min{s, t} can be used to demonstrate the independence

of the Wiener increments. Suppose that 0 ≤ t0 < · · · < ti−1 < ti < · · · < tj−1 < tj <

· · · tn; then

E((W (ti)−W (ti−1))(W (tj)−W (tj−1))) = E(W (ti)W (tj))− E(W (ti)W (tj−1))

− E(W (ti−1)W (tj)) + E(W (ti−1)W (tj−1))

= ti − ti − ti−1 + ti−1 = 0,

and hence the increments W (ti)−W (ti−1) and W (tj)−W (tj−1) are independent.

The sample paths of the Wiener process W (t) are continuous, but nowhere differen-

tiable and not of bounded variation on any finite time interval [50].

The standard Wiener process is also known as Brownian motion. Brownian motion is

a stochastic process which serves as the basis for the theory of stochastic differential

equations. The term “Brownian” was coined from the name of a Scottish botanist,

8



Chapter 2: Background on SODEs & SPDEs.

Robert Brown, who first reported in 1827 experimental observations involving the

erratic behaviour of pollen grains that were bombarded by water molecules.

Itô stochastic integral.

A Japanese mathematician Koisy Itô [45] in the 1950’s, introduced the Itô stochastic

integral. Consider a partition 0 = t0 < t1 < · · · < tM = T with time step size

∆t = (T − t0)/M , the Itô integral is defined as the mean-square limit of the sum in

(2.1.3), whereby the integrand is evaluated at the left-hand endpoint tk = k∆t of the

subinterval [tk, tk+1] , that is,

∫ T

0

g(X(t))dW (t) := ms− lim
M→∞

M−1∑

k=0

g(X(tk)) [W (tk+1)−W (tk)] . (2.1.3)

Here ms- lim denotes the limit in the mean square sense. Evaluating the function

g(X(t)) at the beginning of the subinterval [tk, tk+1] renders g(X(tk)) statistically in-

dependent of [W (tk),W (tk+1)] and thus ensuring that the Itô integral has zero mean

[50, 70].

Let | · | denote the standard Euclidean norm on Rd and | · |F denote the Frobenius

norm on Rd×m.

Existence and uniqueness of strong solutions of Itô SODEs.

Theorem 2.1.1. [50, 13, 48, 23]. Let the functions f and g in (2.1.1) be measurable

on the interval [t0, T ] and suppose for some positive constants c ∈ R and for all

x, y ∈ Rd, the following conditions are satisfied

1. Coefficients f and g satisfy the Lipschitz conditions

|f(x)− f(y)| ≤ c|x− y| and |g(x)− g(y)|F ≤ c|x− y| (2.1.4)

2. Coefficients f and g satisfy the linear growth conditions

|f(x)|2 ≤ c2(1 + |x|2) and |g(x)|2F ≤ c2(1 + |x|2) (2.1.5)

9
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3. X(t0) is independent of W (t), t0 ≤ t ≤ T , and E [X2(t0)] < ∞.

Then there exists a pathwise unique strong solution X(t) of the SDE (2.1.1) with

initial condition X0 on [t0, T ] with

sup
t∈[t0,T ]

E
[
X2(t)

]
< ∞. (2.1.6)

The uniqueness of the solution is pathwise uniqueness, if X(t) and X(t) are two

solutions of the SDE, then

P

(
sup
[t0,T ]

|X(t)−X(t)| = 0

)
= 1. (2.1.7)

Stratonovich stochastic integral.

A Russian physicist R. L. Stratonovich [88] proposed in the 1960s an alternative

stochastic integral, which is widely known as the Stratonovich stochastic integral.

The Stratonovich integral is defined as the mean-square limit of the sum in (2.1.8),

whereby the integrand is evaluated at the mid-point 1
2
(tk + tk+1) of each partition

subinterval, that is,

∫ T

0

g(X(t)) ◦dW (t) = ms− lim
M→∞

M−1∑

k=0

g

(
X

(tk + tk+1

2

))[
W (tk+1)−W (tk)

]
, (2.1.8)

where the symbol ◦ is employed to distinguish the Stratonovich integral from the Itô

integral.

Modelling issue: Itô or Stratonovich

The question as to which of these stochastic integrals to use has been asked in the

literature. While both approaches are correct, the choice of which to use depends on

the modelling process that leads to the SDE formulation. Both of the approaches has

particular features which one can take advantage of.

For instance, Itô stochastic calculus has direct connection with diffusion processes and

martingale theory [40, 70] in which the random variable X(t) is non-anticipating, so

that information about X(t) at time t does not depend on events occurring after time

10
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t. It also allows easy calculations of moments of the solution of an SDE, which offers

many theoretical advantages.

From an application point of view, Itô SDEs are often considered when large number

of independent entities, for example, the sales of shares in finance and bacteria in

biology, while Stratonovich SDE is better considered when the white noise is meant

to be a suitable approximation of a smoother but less tractable noise [40].

In any case, once a particular form of stochastic forcing has been chosen, it is possible

to switch between the two stochastic calculi.

For example, in the scalar case, consider the Itô SDE given in (2.1.1). The equivalent

Stratonovich SDE is given by

dX(t) = f̃(X(t))dt + g(X(t)) ◦ dW (t), (2.1.9)

where

f̃(X(t)) = f(X(t))− 1

2

∂g

∂x
(X(t))g(X(t)). (2.1.10)

The two equations (2.1.1) and (2.1.9), though under different rules of calculus, have

the same solution [70, 50]. Examples of these equations and numerical experiments

carried out on them are presented in chapters 3 and 5.

2.2 Numerical methods for SODEs.

In this section, we outline standard numerical methods for SODEs. We will also be

investigating the convergence of these numerical methods later in the thesis.

There are many definitions of convergence for sequences of random variables. How-

ever, the two most common ways of measuring the accuracy of a numerical solution

of SDEs are strong convergence (which is for problems involving direct simulation,

where it is important that the trajectories of the numerical solution are close to the

exact solution) and weak convergence (where for example, only certain moments of

the solution are of interest).

It has been established that strong convergence implies weak convergence, however

11
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the reverse is not the case [50].

We now give the definitions of strong and weak convergence of a numerical method

for SODEs.

Let [t0, T ] denote the time interval with grid JM
∆t = {t0, t1, · · · , tk, · · · , tM = T} such

that the time grid is equidistant with the time step size ∆t = T−t0
M

and tk = k∆t, for

k = 0, 1, · · · ,M .

Strong convergence [51].

Let XM and X(tM) denote the numerical solution and exact solution of (2.1.1) re-

spectively at step point tM . Then XM is said to converges strongly to X(tM) if

lim
∆t→0

E [|XM −X(tM)|] = 0. (2.2.1)

The numerical solution XM converges strongly with order γ > 0 if there exists a

positive constant C which does not depend on ∆t such that

E [|XM −X(tM)|] ≤ C∆tγ.

Weak convergence [50, 51].

Let XM and X(tM) denote the numerical solution and exact solution of (2.1.1) respec-

tively at step point tM , and let Cm
P (Rd,R) denote the space of m times continuously

differentiable functions ρ : Rd → R such that ρ and all its partial derivatives of orders

up to and including order m, have polynomial growth. Then for this class of test

functions ρ : Rd → R, XM is said to converges weakly to X(tM) if

lim
∆t→0

|E [ρ(XM)]− E [ρ(X(tM))]| = 0. (2.2.2)

The numerical solution XM converges weakly with order β > 0 if for each ρ ∈
C2(β+1)

P (Rd,R) there exists a positive constant C which does not depend on ∆t such

that

|E [ρ(XM)]− E [ρ(X(tM))]| ≤ C∆tβ.
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We recall that | · | denotes the Euclidean norm in Rd.

We now present two schemes in the literature for Itô SDEs and one scheme for

Stratonovich SDEs. For clarity, we outline the schemes for one-dimensional SDEs.

Euler Maruyama method.

The Euler Maruyama method [50] is the simplest stochastic numerical method con-

structed from the stochastic Itô Taylor expansion. The Euler-Maruyama method for

(2.1.1) is defined by

X̂k+1 = X̂k + f(X̂k)∆t + g(X̂k)∆Wk, n = 0, 1, · · · ,M − 1, (2.2.3)

where X̂k is an approximation to the solution X at tk and the noise increment ∆Wk =

W (tk+1) − W (tk) is a N (0, ∆t) distributed random variable. The Euler-Maruyama

(EM) method has strong order of convergence 0.5. However, for SDEs with additive

noise, the strong order of convergence of the Euler-Maruyama method is 1 and weak

order of convergence 1 [50].

If only weak convergence is required, the noise increments can be replaced by simpler

two-point distributed random variables ∆Ŵk with

P
(
∆Ŵk = ±

√
∆t

)
=

1

2
.

Lord-Rougemont method.

Consider the following semi-linear SODE with additive noise

dX(t) =
[
LX(t) + f(X(t))

]
dt + dW (t), (2.2.4)

where L ∈ Rd×d is a linear (matrix) operator and f : Rd → Rd is in general nonlinear.

The Lord-Rougemont (LR) method [54] for equation (2.2.4) is given as

X̂k+1 = e∆tL
(
X̂k + ∆tf(X̂k) + ∆Wk

)
, (2.2.5)

∆Wk = W (tk+1)−W (tk) is an independent and identically distributed normal random

variable.
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Heun method.

The stochastic Heun method [50] for (2.1.9) is written as

X̂k+1 = X̂k +
1

2

(
f(X̂k) + f(X̃k+1)

)
∆t +

1

2

(
g(Xk) + g(X̃k+1)

)
∆Wk, (2.2.6)

where X̃k+1 is an Euler- predictor update for the corrector (2.2.6) given by

X̃k+1 = X̂k + f(X̂k)∆t + g(X̂k)∆Wk. (2.2.7)

We develop three other numerical schemes later in the thesis and examine the Lord-

Rougemont method with multiplicative noise.

Simulating the Wiener process in MATLAB.

In order to simulate numerically the Wiener process W (t) for 0 ≤ t ≤ T , we discretize

the time interval into M segments with partitions 0 = t0, t1, t2, · · · , tk = T , where

∆t = tk+1 − tk, k = 0, 1, 2, · · · ,M − 1. It is well known that W (t) is Gaussian with

E[W (t)] = 0 and E[(W (t))2] = ∆t. The random variable ∆W (tk) = W (tk+1)−W (tk)

is then normally distributed with mean zero and variance ∆t, that is, ∆W (tk) ∼
N (0, ∆t). Then ∆W (tk) can be generated as

∆W (tk) =
√

∆t βk, (2.2.8)

where βk is an independent and identically distributed standard normal random vari-

able with mean 0 and variance 1. Hence, for a given initial condition W0 = W (0), a

realization of the standard Wiener process W (t) at discretization times tk is given by

W (tk+1) = W (tk) + ∆W (tk), k = 0, 1, 2, · · · ,M − 1. (2.2.9)

The Wiener increments which appear in the numerical schemes will be generated using

the built-in random number generator in MATLAB. A single discretized Wiener path

over [0, 1] with number of time subinterval, M = 1000 is displayed in Figure 2.1.

14



Chapter 2: Background on SODEs & SPDEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

W(
t)

Figure 2.1: A single discretized Wiener path over [0, 1] with number of time subinter-

vals M = 1000.

2.3 Background for SPDEs.

In this section, we give some background material on SPDEs and present briefly the

definitions, notations for the norms and function spaces and standard results used in

this thesis.

Preliminaries.

Definition 2.3.1. Spatial domain [71].

A domain D is a non-trivial, connected, open subset of Rd and a domain is bounded

if D ⊂ {x ∈ Rd : |x| ≤ K} for some K > 0. Here |·| denotes the Euclidean norm in

Rd.

Definition 2.3.2. Lebesgue space [77, 19].

A Lebesgue space Lp is the space of measurable functions u(x) whose absolute value

to the pth power is integrable, provided p ∈ [1,∞):

∫

D
|u(x)|pdx < ∞.

This space is endowed with the norm

||u||Lp =

(∫

D
|u(x)|pdx

)1/p

.
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The L2 space is a particular case of the Lp space. It is a Hilbert space with inner

product (u, v) :=
∫
D uv̄dx and norm

||u||L2 =

(∫

D
|u(x)|2dx

)1/2

=
√

(u, u)L2 .

Definition 2.3.3. Sobolev spaces [19, 77, 76].

Sobolev spaces provide the natural setting in which to analyze PDEs. These spaces

give us information about how smooth the functions are.

The Sobolev space Hm(D) is defined through (distributional) derivatives as

Hm(D) = {u : Dαu ∈ L2(D), for all 0 ≤ |α|k ≤ m} (2.3.1)

with norm

||u||m =
{ ∑

0≤|α|k≤m

||Dαu||2L2

}1/2

, (2.3.2)

where α = (α1, α2, · · ·αm) is a standard multi-index notation such that |α|k = α1 +

α2 + · · ·+ αm and Dαu denotes the partial derivative

Dαu =
∂|α|ku

∂xα1
1 ∂xα2

2 · · · ∂xαm
m

. (2.3.3)

When considering Sobolev spaces of periodic functions, carrying out analysis is signif-

icantly more straight forward than for those spaces on bounded domains, since one is

not faced with the issues of boundary. Thus because of this simplification, we shall use

this tool in our error analysis in Chapter 4 where we carry out the strong convergence

analysis of SPDE. In our work, we shall represent the function u(t) as a Fourier series.

With this in mind, we give the definitions of Sobolev spaces for periodic functions.

Let m ∈ R. Then by Hm([0, 2π]), we denote

Hm([0, 2π]) =

{
u ∈ L2([0, 2π]) :

∑

n∈Z
(1 + n2)m|un|2 < ∞

}
, (2.3.4)

where un are the Fourier coefficients of u. The norm is given by

||u||m =

(∑

n∈Z
(1 + n2)m|un|2

)1/2

, (2.3.5)
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where the symbol | · | here denotes the absolute value.

Note that the norm equivalence of (2.3.2) and (2.3.5) is shown in [77].

Remark:

Note that Sobolev spaces with negative exponent are allowed, that is, H−γ([0, 2π])

with γ ∈ R+. Sobolev space with negative exponent allows us to study functions

which are less smooth than L2 functions [96].

The Q-Wiener process [19].

Let H be a Hilbert space with inner product (·, ·) and norm ||·|| and let (Ω,F ,P) be

a probability space.

Let Q be the covariance operator of the Wiener process W (t), t ∈ [0, T ], with eigen-

values λn and corresponding eigenfunctions ψn, then the trace of Q is defined as

follows:

Tr(Q) =
∞∑

n=1

λn. (2.3.6)

If Q ≡ I, then Tr(Q) = +∞ and the Wiener process is called a cylindrical Wiener

process. If Tr(Q) < ∞, the Wiener process is called a nuclear Wiener process or a

Q-Wiener process and Q is in trace class.

Definition 2.3.4. Hilbert-Schmidt operator [19].

An operator T ∈ L(H) := L(H,H) is Hilbert-Schmidt if

||T ||2HS :=
∑
n∈I

||Tψn||2 < ∞, (2.3.7)

where ||·||HS denotes the Hilbert-Schmidt norm and L(H) := L(H, H) is the space

of bounded linear operators from H to H. We denote the space of Hilbert-Schmidt

operators from Q1/2(H) to H by L0
2 := HS(Q1/2(H), H) and the corresponding norm

||·||HS by

||Φ||L0
2

:=
∣∣∣∣ΦQ1/2

∣∣∣∣
HS

=

(∑

n∈Nd

∣∣∣∣ΦQ1/2ψn

∣∣∣∣2
)1/2

, (2.3.8)

where the space Q1/2(H) is defined as the subspace of the space H with the norm

||u||Q1/2(H) =
∣∣∣∣Q−1/2u

∣∣∣∣ , u ∈ Q1/2(H).
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Proposition 2.3.1. Representation of the Q-Wiener process [19, 73].

Let ψn, n ∈ N, be an orthonormal basis of H consisting of eigenvectors of Q with

corresponding eigenvalues λn, n ∈ N. Then an H-valued stochastic process W (t), t ∈
[0, T ], is a Q-Wiener process if and only if

W (t) =
∞∑

n=1

√
λn βn(t)ψn, (2.3.9)

where βn(t), {n ∈ N|λn > 0}, t ≥ 0 are independent and identically distributed real-

valued standard Brownian motions on the probability space (Ω,F ,P).

A general Itô SPDE.

A general Itô stochastic partial differential equation is given as

du =
[
Au + f(u)

]
dt + ε

[
µ + φg(u)

]
dW (t) (2.3.10)

where u is an H-valued random process, A is a linear operator, which is in general

unbounded, acting on the Hilbert space H, defined in D(A) ⊂ H, the functions

f : H → H and g : H → L0
2 are in general nonlinear. W (t) is a Q-Wiener process on

the probability space (Ω,F ,P) with values in H. W (t) is represented in (2.3.9). The

parameter ε allows us to control the intensity of the noise while the parameters µ and

φ allow us to have additive or multiplicative noise SPDE.

When µ = 1 and φ = 0, we have the following Itô SPDE with additive noise,

du =
[
Au + f(u)

]
dt + εdW (t) (2.3.11)

and when µ = 0 and φ = 1, we have the following Itô SPDE with multiplicative noise

du =
[
Au + f(u)

]
dt + εg(u)dW (t). (2.3.12)
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2.4 Existence and uniqueness of the mild solution

of Itô SPDEs.

In this thesis, we consider parabolic SPDEs. We now give the assumptions needed for

the existence and uniqueness of solution of the mild soluton of the Itô SPDE (2.4.8).

Assumption 2.4.1. Assumption on the linear operator A [71].

Assume that the linear operator A is a positive self-adjoint operator and A generates

an analytic semigroup etA, t > 0. Then there exist sequences of negative real eigen-

values {αn}n∈N and an orthonormal basis of H of eigenfunctions {ψn}n∈N such that

the linear operator A : D(A) ⊂ H → H, where D(A) denotes the domain of A. The

operator A and the D(A) are represented as follows:

Au =
∞∑

n=1

αn(ψn, u)ψn, ∀u ∈ D(A),

where

D(A) = {u ∈ H :
∞∑

n=1

|αn|2|(ψn, u)|2 < ∞}. (2.4.1)

Assumption 2.4.2. Assumption on the drift term f [71].

For every u, v ∈ H and for f : H → H, f continuous in H, there exists a constant

C > 0, such that

i. Lipschitz condition on f

||f(u)− f(v)|| ≤ C ||u− v|| . (2.4.2)

ii. Growth condition on f

This condition is a consequence of the Lipschitz condition in (2.4.2)

||f(u)|| ≤ ||f(0)||+ ||f(u)− f(0)|| ≤ ||f(0)||+ C ||u|| ≤ C(1 + ||u||). (2.4.3)

Assumption 2.4.3. Assumption on the diffusion term g for SPDEs with

multiplicative noise [71].
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For every u, v ∈ H and for g : H → L0
2, g continuous in H, there exists a constant

C > 0, such that

i. Lipschitz condition on g

||g(u)− g(v)||L0
2
≤ C ||u− v|| . (2.4.4)

ii. Growth condition on g

This condition is a consequence of the Lipschitz condition in (2.4.4)

||g(u)||L0
2
≤ ||g(0)||L0

2
+ ||g(u)− g(0)||L0

2
≤ ||g(0)||L0

2
+ C ||u|| ≤ C(1 + ||u||).

(2.4.5)

where ||·|| denotes the norm associated to the inner product of the Hilbert space

H and L0
2 is the space of Hilbert-Schmidt operators from Q1/2(H) to H.

Assumption 2.4.4. Assumption on the noise for SPDEs with additive

noise[19].

The covariance operator Q of the Wiener process W (t) satisfies Tr(I−∆)γ < ∞ such

that

∑

n∈Z
(1 + n2)γλn < ∞. (2.4.6)

where λn’s are the eigenvalues of the covariance Q of W (t) and the parameter γ, (γ ≥
−1/2) describes the regularity of the noise.

Definition 2.4.1. (Mild solution) [19].

A predictable H-valued process u(t) is said to be a mild solution of (2.3.10) if

P
(∫ t

0

||u(s)||2 ds < +∞
)

= 1, (2.4.7)

and for any t ∈ [0, T ], we have that

u(t) = etAu0 +

∫ t

0

e(t−s)Af(u(s))ds + ε

∫ t

0

e(t−s)A
[
µ + φg(u(s))

]
dW (s). (2.4.8)
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Theorem 2.4.1. Existence, uniqueness and properties of the mild solution[19].

Assume that the initial solution u0 is an F0-measurable H-valued random variable and

Assumptions 2.4.1, 2.4.2, 2.4.3 (or 2.4.4) holds, then

i. There exist a mild solution u to (2.3.10) satisfying

P
(∫ T

0

||u(s)||2 < ∞
)

= 1.

ii. For any p ≥ 2, there exist a constant C = C(p, T ), such that

sup
0≤t≤T

E||u(t)||p ≤ C(1 + E||u0||p).

iii. For any p > 2, there exist a constant C0 = C0(p, T ), such that

E sup
0≤t≤T

||u(t)||p ≤ C0(1 + E||u0||p),

In this thesis, we use the mild solution approach [19] to study, analyze and build

numerical discretization schemes for SPDEs. Other approaches for analyzing SPDEs

are the variational approach, (see [73]) and the martingale approach, (see [19]).

The existence and uniqueness of the mild solution of a general SPDE is guaranteed

under the assumption that the operator A is the generator of an analytic semigroup,

etA, t ≥ 0 using the fixed point method [17, 19, 73, 90].

2.5 A collection of standard results.

In this section, we collect all the results from the literature which will be needed in

the convergence proof in Chapter 4.

Lemma 2.5.1. Cauchy-Schwarz inequality [23].

Let H be a Hilbert space. Then

|(u, v)| ≤ ||u|| ||v|| ∀u, v ∈ H.

An example of the application of the Cauchy-Schwarz inequality is given by

∣∣∣∣
∫ t

0

uds

∣∣∣∣
2

≤ t

∫ t

0

|u|2ds. (2.5.1)
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Lemma 2.5.2. Gronwall inequality [23, 50, 63].

Let y, z: [t0, T ] → R be integrable with

0 ≤ y(t) ≤ z(t) + C

∫ t

t0

y(s)ds (2.5.2)

for t ∈ [t0, T ] where C > 0. Then for t ∈ [t0, T ]

y(t) ≤ z(t) + C

∫ t

t0

eC(t−s)z(s)ds. (2.5.3)

Lemma 2.5.3. Doob martingale inequality [50].

Let X = {X(t), t ≥ 0} be a separable martingale with finite pth- moment. Then for

any p > 1

E sup
0≤s≤t

|X(t)|p ≤
( p

p− 1

)p

E(|X(t)|p). (2.5.4)

Lemma 2.5.4. Jensen’s inequality [50, 70].

Let (Ω,F ,P) be a probability space and let X : Ω → Rn be a random variable. If

G ⊂ F , φ : R→ R is convex and E
[|φ(X)|] < ∞, then

φ
(
E

[
X|G]) ≤ E

[
φ(X)|G

]
. (2.5.5)

Lemma 2.5.5. Itô isometry [19].

Let φ ∈ L0
2. Then

∫ t

0
φ(s)dW (s) can be defined, and the following isometry property

holds:

E
∣∣∣∣
∣∣∣∣
∫ t

0

φ(s)dW (s)

∣∣∣∣
∣∣∣∣
2

=

∫ t

0

||Eφ(s)||2L0
2
ds. (2.5.6)

Lemma 2.5.6. [56, 71, 74, 99] [smoothing properties of the semigroup].

Assume that the linear operator A generates an analytic semigroup etA, t ≥ 0, with

negative real eigenvalues {αn}n∈N, then for any θ ∈ [0, 1/2) and β ≥ 0 there exist a

constant C > 0 such that

∣∣∣
∣∣∣AβetA

∣∣∣
∣∣∣ ≤ Ct−β for t > 0 (2.5.7)

∣∣∣
∣∣∣A−θ(I − etA)

∣∣∣
∣∣∣ ≤ Ctθ for t ≥ 0. (2.5.8)
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Lemma 2.5.7. [55, 99].

Let Assumptions 2.4.1, 2.4.2 and 2.4.4 hold, then for a mild solution u(t) of a SPDE

(2.3.11), for C > 0 and r ≤ γ + 1

E sup
0≤t≤T

||u(t)||2r ≤ C(1 + ||u0||2r) (2.5.9)

where ||·||r denotes the norm associated to the inner product of the Hilbert space Hr.

The parameters r and γ describe the regularities of the solution and noise respectively.

Lemma 2.5.8. [49].

Let Assumptions 2.4.1, 2.4.2 and 2.4.4 hold, then for a mild solution u(t) of a SPDE

(2.3.11) and for θ < 1 and p ≥ 1

sup
0≤t≤T

E||Aθu(t)||pL2 < ∞. (2.5.10)

Lemma 2.5.9. [49].

Let Assumptions 2.4.1, 2.4.2 and 2.4.4 hold, then for a mild solution u(t) of a SPDE

(2.3.11) and for p ≥ 1

sup
0≤t≤T

E||u(t)||pL2 < ∞. (2.5.11)

2.6 A review on numerical approximation for SPDEs.

Numerical approximation of stochastic partial differential equations has attracted

much attention in recent years. In particular, strong approximation of SPDEs have

been studied extensively, see for example [3, 20, 32, 33, 34, 35, 36, 37, 38, 39, 46, 54,

55, 74, 84, 99].

In this section, we give an overview of some work that has been done in line with nu-

merical approximation techniques and convergence theory for the numerical methods

for SPDEs. We begin by reviewing SPDEs with additive noise.

In [84], a nonlinear reaction diffusion equation driven by additive space-time white

noise on the domain (0, 1) with Dirichlet boundary conditions was considered. A finite

difference approximation was then applied for the spatial discretization of the SPDE

with a spectral approximation to the noise, and then the theta-method was used for

23



Chapter 2: Background on SODEs & SPDEs.

the time discretization of the resulting system of equations. A strong convergence

theory was obtained and it was shown that the scheme for spatial discretization con-

verge with order 0.5 and the scheme for the temporal discretization converges with

order 0.25.

In [33, 34], the authors worked on the strong convergence of finite difference schemes

for the quasi-linear parabolic SPDEs with dirichlet boundary conditions on a bounded

domain in one dimension. Estimates related to the Lp convergence were obtained us-

ing implicit finite difference schemes. Almost sure convergence was shown for the case

where the nonlinear terms of the SPDE are Lipschitz continuous, while convergence

in probability was shown for the case where the nonlinear terms of the SPDE are

not Lipschitz continuous. The authors showed that the implicit and explicit finite

difference schemes converge with order 0.5 in space and 0.25 in time.

In [20], explicit finite difference approximation was applied to a parabolic SPDE with

space-time white noise and a zero nonlinear term, f = 0, the SPDE is supplemented

with periodic boundary conditions. The authors also showed that the scheme con-

verges strongly with order 0.5 in space and order 0.25 in time. The authors show that

these rates are the best attainable if only evaluation of the noise are used. However,

the authors remarked that it is possible to improve this convergence rate by using

suitable linear functionals of the noise.

In [39], the Galerkin methods, collocation methods and finite element method were

used for the space discretization of a quasi-linear evolution equation, while the explicit

Euler scheme, the implicit Euler scheme and the Crank-Nicolson method were used

for the time discretization. The author obtained a strong order of 0.5 for the Implicit

Euler scheme for the case where the SPDE is forced with a smoother noise.

In [55], the authors applied the Galerkin method for the spatial discretization of

a parabolic SPDE, the resulting SODEs were discretized with an stochastic expo-

nential integrator known as the Lord-Rougemont scheme. They considered a type

of noise that allows one to alter the regularity of the noise, so that the higher

the regularity of the noise, the smoother the solution paths, and by implication,

the rate of convergence is improved. They found out that the L2 error decays like
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N−1/2, N−1, N−3/2, N1, N1 for H−1/2, H0, H−1/2, H1, H2 noise respectively, where N

denotes the size of the Galerkin truncation.

Recently, in [46] the authors applied a Galerkin projection to a parabolic SPDE, and

used an exponential Euler scheme for the time discretization of the finite dimensional

Galerkin-SDE. The authors used the linear functional of the noise to achieve a high or-

der of convergence, (instead of using only evaluation of noise, which can only converge

with the optimum rate of 0.25). They showed numerically and proved a convergence

theory to show that the exponential Euler scheme converges with order 1.

In [38], the author considered a parabolic SPDE driven by a multiplicative space-time

white noise. The implicit scheme was used for the discretization and show that it

converges with a temporal rate of ∆tα where α < 0.125.

In [99], finite element method was considered for a linear SPDE forced by multiplica-

tive space-time white noise in a multidimensional case. The piecewise linear finite

element elements method was used for the space discretization of the SPDE, while

the backward Euler method was used for the time discretization of the resulting sys-

tem of SODEs.

In this thesis, our interest is to obtain strong convergence estimates for additive and

multiplicative noise for the stochastic exponential time differencing scheme, see Chap-

ter 4.

2.7 A review on noise in spatially extended sys-

tems.

There has been a great interest in the influence of noise in physical applications as

fluctuation plays important roles in spatially extended systems. Noise has been found

to be useful in many areas: Nucleation of waves in excitable media [86, 85], front

propagation [78, 83], structure formation in excitable media [14], pattern formation

in Turing systems [53], electro-convection in nematic liquid crystals [98], convective

roles in the Rayleigh-Bénard instabilities [1], turbulent flows [80], chemical waves [58]

and phase transitions [94] to mention a few.
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The role of noise can either be constructive or destructive. For example, in statistical

mechanics, the occurrence of noise-induced disordering phase transitions, indicates

that the higher the intensity of noise, the larger the disorder, while on the other

hand, noise induced ordering transitions produces a counterintuitive phenomenon, in

which an increase in noise intensity enhances the order [94]. For example, in the field

of chemical kinetics, the phenomenon in which there is an escape of a system from a

metastable state cannot be possible without the presence of fluctuations [27].

Different kinds of stochastic contribution can be taken into account for the forcing of

spatially extended systems, this could be additive or multiplicative. As we have seen

in [50], additive noise term is a random term that does not depend on the state of the

system, whereas for multiplicative noise, the random term is coupled with the state of

the system. In general, the effects of multiplicative noise on a system are different from

the effect of additive noise [43, 26]. These stochastic contributions can either be taken

in the Itô sense or Stratonovich sense when noise is multiplicative; the interpretation

to consider is a modelling issue. For example, in [26], multiplicative Itô noise was

used to study the Swift-Hohenberg equation and in [43], where noise-induced phase

transition was studied, the multiplicative noise was interpreted in Stratonovich sense.

Also in [81], multiplicative Stratonovich noise was shown to influence the velocity of

kinks in stochastic reaction diffusion equations. The phenomenon of kinks and anti-

kinks have been rigorously studied in [59, 61, 60].

In this thesis, we aim to study the effects of a number of different stochastic forcing

on the Swift-Hohenberg (SH) equation. In what follows, we present how we discretize

a SPDE.

2.8 Numerical discretization for SPDEs.

In this thesis, numerical discretization of SPDEs is carried out by the method of lines

approach, that is to say, we first carry out spatial discretization of the SPDE, this

procedure gives rise to an infinite system of SODEs; and secondly, we discretize the

system of SODEs using time discretization techniques to obtain approximate solutions
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to the SPDEs.

We use the Fourier spectral method for the spatial discretization of SPDEs in this

thesis. In what follows, we briefly explain this numerical method.

2.8.1 Fourier spectral method.

The Fourier spectral method is a method which allows one to represent a given func-

tion u(x) by the orthogonal eigenfunctions of a given operator A. For a detailed

survey on the subject of Fourier spectral method, see [91, 31].

In simulations of SPDEs with periodic boundary conditions, the fast Fourier trans-

form can be used for computations. However, if faced with problems that have other

forms of boundary conditions, such as Neumann or Dirichlet, then the discrete cosine

transform and the discrete since transform can be used respectively.

To describe a numerical scheme for (2.3.10), we consider for the purpose of illus-

tration, an SPDE with additive noise. See Chapters 4 and 5 for the multiplicative

noise case.

Consider the following SPDE

du(x, t) =
[
Au(x, t) + f(u(x, t))

]
dt + εdW (x, t), (2.8.1)

with periodic boundary conditions u(0, t) = u(2π, t) and a given initial condition

u(x, 0). In order to apply the Fourier spectral method on (2.8.1), we need to represent

the function u(x, t) as a Fourier series as follows:

u(x, t) := F−1(un)(x) :=
∑

n∈Z
un(t)einx, (2.8.2)

where the Fourier coefficients ûn are given by

un(t) := (Fu)n :=
1

2π

∫ 2π

0

u(x)e−inxdx. (2.8.3)

The Fourier modes ψn(x) = einx, n ∈ Z are the eigenfunctions of A.

Therefore, for a second-order SPDE with operator A = ∆, we get that

∆u(x, t) =
∑

n∈Z
αnun(t)ψn(x) =

∑

n∈Z
−n2un(t)einx, (2.8.4)
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and for a fourth-order SPDE with operator A = −∆2, we get that

−∆2u(x, t) =
∑

n∈Z
αnun(t)ψn(x) =

∑

n∈Z
−n4un(t)einx. (2.8.5)

Next, we substitute (2.3.9), (2.8.2), (2.8.4) or (2.8.5) into (2.8.1) to get

d
∑

n∈Z
un(t)ψn(x) =

[∑

n∈Z
αnun(t)ψn(x) +

∑

n∈Z
fn(u(t))ψn(x)

]
dt + ε

∑

n∈Z
λ1/2

n ψn(x)dβn(t)

(2.8.6)

where fn is the nth component of the function f , so that f(u(t)) =
∑

n∈Z fn(u(t))ψn and the last term on the LHS of (2.8.6) comes from the definition of

the Wiener process (2.3.9).

Next, we take the inner product of (2.8.6), which is equivalent to multiplying both

sides of (2.8.6) by ψm(x) and then integrate over the domain, to obtain

d
∑

n∈Z
un(t)

∫ 2π

0

ψn(x)ψm(x)dx =
∑

n∈Z
αnun(t)

∫ 2π

0

ψn(x)ψm(x)dxdt +

∑

n∈Z
fn(u(t))

∫ 2π

0

ψn(x)ψm(x)dxdt + ε
∑

n∈Z
λ1/2

n

∫ 2π

0

ψn(x)ψm(x)dxdβn(t). (2.8.7)

Using the orthonormality condition, we end up with the following infinite system of

SODEs

un(t) = etαnun(0)+

∫ t

0

e(t−s)αnfn(u(s))ds+ε

∫ t

0

e(t−s)αnλ1/2
n dβn(t), ∀n ∈ Z. (2.8.8)

A numerical discretization of (2.8.1) requires that we consider a truncation of the

Fourier modes, n in (2.8.8). Thus, if we apply a Galerkin truncation to (2.8.1), and

define finite dimensional subspaces HN of H by HN := span(ψ1, ψ2, · · · , ψN) and

denote by PN : H → HN , the orthogonal projection of H to the subspace generated

by {ψn : |n| ≤ N}, i.e.

PNu =
N∑

n=1

(ψn, u)ψn, (2.8.9)

for u ∈ H and N ∈ N.

Then we can truncate the initial data u0, the functions f and the Wiener process
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W (t) by

uN(0) := PNu(0), f(uN) := PNf(uN), WN(t) = PNW (t) =
N∑

n=1

√
λn ψnβn(t),

for all u ∈ H and N ≥ 1.

Hence, the infinite system of SODEs (2.8.8) becomes

uN
n (t) = etαnuN

n (0) +

∫ t

0

e(t−s)αnfn(uN(s))ds + ε

∫ t

0

e(t−s)αnλ1/2
n dβn(t), ∀|n| ≤ N.

(2.8.10)

We remark at this point, that the time discretization of the system of SODEs (2.8.10)

is one of the objectives of this PhD work. We therefore presented in the following

chapters standard numerical techniques for the integration of these SODEs and also

propose new numerical methods for the solution of SODEs .

Applying Fourier spectral method for the space discretization of the SPDE gives

spectral accuracy in space [6, 91]. The nonlinear terms of the SPDE are evaluated in

physical space, but the time stepping is carried out in Fourier space. Doing this can

give rise to aliasing problems, and so one has to take care to filter out high frequencies

appropriately [24, 91] and we also took account of dealiasing using the 2/3 rule.

Aliasing errors are a source of concern with spectral methods since the high wave

number components interact during the calculation of the nonlinear term giving rise

to wave numbers that are not resolved [6, 15, 30, 91]. These can then reflect back and

corrupt/pollute wave numbers that are carried by the computations [82]. Without

using any de-aliasing technique, the spectral method may suffer from some mild nu-

merical instability [29]. To filter out these aliasing errors, we use the 2/3 de-aliasing

rule [15], whereby, one sets to zero 1/3 of the high frequency modes and keeps 2/3 of

the Fourier modes unchanged [44].

2.8.2 Discretization of the infinite-dimensional noise.

The infinite-dimensional Wiener process is given by

W (t) =
∞∑

n=1

√
λn βn(t)ψn, (2.8.11)
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where βn(t), t ≥ 0 are independent and identically distributed real-valued standard

Brownian motions, ψn(x) and λn respectively denote the eigenfunctions and the eigen-

values of the Q-Wiener process (2.3).

When considering the discretization of a SPDE, we need to truncate (2.8.11) in our

numerical computations for practical purposes. Thus for a given number of spatial

grid points N , we can write the truncated Wiener process as follows:

WN(t) =
N∑

n=1

√
λn βn(t)ψn. (2.8.12)

In this thesis we have shown how to discretize a SPDE using the Fourier spectral

method in Section 2.8.1. Thus when we represent the functions in the SPDE as a

Fourier series, knowing also that the Wiener process (2.8.11) can be likened to a

Fourier series, we get at the end of the spatial discretization, a system of infinite-

dimensional system of SODEs in time such that a time discretization scheme will be

needed to finally obtain the solution of the SPDE. To use the noise in (2.8.12) in a time

discretization scheme at times tk = k∆t on the time interval [0, T ] for k = 0, 1, · · · ,M ,

we take the Wiener increment ∆WN(tk) as a vector in space, such that ∆WN(tk) can

be generated as

∆WN(tk) = WN(tk+1)−WN(tk) =
√

∆t

N∑
n=1

√
λn βk,nψn, (2.8.13)

where ∆t = T/M denotes the time step size , where M ∈ N denotes the number of

time grid points and βk,n are independent and identically distributed standard normal

random variables.

The eigenvalues λn of Q needs to be determined. The choice of the co-efficients λn

will determine the correlation of the path of noise in space. Thus in the numerical

discretization of SPDEs in thesis, we take noise white in time and consider two forms

of spatial regularity/correlation. Firstly, we consider noise in Hγ space and secondly,

we consider noise with exponential decaying correlations. The following sections show

how we construct these two forms of noise.
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2.8.3 Construction of Hγ noise.

Let us assume that the covariance operator Q of the Wiener process W (t) satisfies

the following
∑

n∈Z
(1 + n2)γλn < ∞. (2.8.14)

Then by (2.3.1), W (t) ∈ Hγ in space, where λn’s are the eigenvalues of the covariance

Q of W (t), which needs to be determined. To determine these eigenvalues, we equate

the left hand side of (2.8.14) to a convergent series in the right hand side of (2.8.15),

where ε is a small positive parameter which ensures convergence of the series
∑∞

n=1
1
nr ,

r > 1, as follows:
∑

n∈Z
(1 + n2)γλn =

∑

n∈Z

1

n1+ε
. (2.8.15)

Then for each n, but n 6= 0,

λn = (1 + n2)−γ|n|−(1+ε), n 6= 0, λ0 = 0, (2.8.16)

These eigenvalues will be used in the Wiener process representation in (2.3.9) and this

ensures that the noise is in Hγ space, where γ denotes the spatial regularity of the

noise. This form of noise will be used to carry out numerical simulations in Chapter

5.

2.8.4 Construction of exponentially correlated Wiener pro-

cesses.

The spatial regularity of noise in SPDEs can be related to the spatial correlation and

eigenvalues λn, n = 1, 2, 3, · · · of the covariance operator Q which can be seen in the

representation (2.3.9). In this section, we seek to determine the eigenvalues for the

Q−Wiener process of an SPDE for the case where the boundary condition is periodic.

See [57, 86, 90] for the case where the boundary condition is Dirichlet or Neumann.

Consider the Wiener process representation in (2.3.9) and recall the assumption that

the eigenfunctions of the Q−Wiener process are the same with the eigenfunctions

of the linear operator A of the SPDE. Then for a given spatial correlation C(x) in
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(2.8.18), the eigenvalues λn need to be determined. These coefficients will be derived

in such a way that

E
[
W (t, x)W (t′, x′)

]
≈ C(x− x′) min{t, t′}, (2.8.17)

where the function C(x) accounts for the spatial correlations of the noise [27] and is

given as

C(x) =
1

2ξ
exp

(−πx2

4ξ2

)
, (2.8.18)

where ξ denotes the correlation length.

We remark that the correlation function C(x) approaches the δ function as ξ → 0,

which means that the noise approaches the space-time white noise, in which there is

no correlation between distinct points.

Lemma 2.8.1. Assume that E
[
W (t, x)W (t′, x′)

]
≈ C(x− x′) min{t, t′}, then

√
λn = exp

(−n2ξ2π

2L2

)
. (2.8.19)

To prove Lemma 2.8.1, we will start by proving two preliminary Lemmas.

Lemma 2.8.2. For d ∈ R,

∫ a

−a

e−x2

dx =

∫ a

−a

e−(x+id)2dx. (2.8.20)

Proof. For any contour C in the complex plane, the following result holds.

∮

C

exp(−z2)dz = 0.

To prove the Lemma 2.8.2, we take C to be a rectangle with vertexes in the complex

plane.

The vertices are −a, a, a + id and −a + id.

Let z = x + iy, then dz = dx + idy and z2 = (x + iy)2 = x2 + i2xy − y2.

∮

C

e−z2

dz =

∫ a

−a

e−x2

dx + i

∫ d

0

e−(a+iy)2dy +

∫ −a

a

e−(x+id)2dx + i

∫ 0

d

e−(−a+iy)2dy

=

∫ a

−a

e−x2

dx−
∫ a

−a

e−(x+id)2dx + i

∫ d

0

e−(a+iy)2dy − i

∫ d

0

e−(−a+iy)2dy.
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Next, we show that

∫ d

0

e−(±a+iy)2dy → 0 as a → +∞

∫ d

0

e(±a+iy)2dy =

∫ d

0

e−a2+i2ay+y2

dy ≤
∫ d

0

e−a2+y2

dy = e−a2

∫ d

0

ey2

dy

as a →∞, the integral tends to zero.

Since,

∫ d

0

e±(a+iy)2dy → 0 as a → +∞.

Thus,

∮

C

e−z2

=

∫ a

−a

e−x2

dx−
∫ a

−a

e−(x+id)2dx + i× 0− i× 0

0 =

∫ a

−a

e−x2

dx−
∫ a

−a

e−(x+id)2dx.

Hence,

∫ a

−a

e−x2

dx =

∫ a

−a

e−(x+id)2dx ∀d ∈ R.

Lemma 2.8.3. For a ∈ R,

∫ ∞

−∞
e−ax2

dx =

√
π

a
. (2.8.21)

Proof. In order to prove (2.8.21), we let

I =

∫ ∞

0

e−ax2

dx

so that

I2 =

∫ ∞

0

∫ ∞

0

e−a(x2+y2)dxdy.

The equation in polar form is obtained as

I2 = lim
R→∞

∫ π/2

0

∫ R

0

e−ar2

rdrdθ = lim
R→∞

∫ π/2

0

[∫ R

0

e−ar2

rdr

]
dθ.
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Let x = ar2, so that dx/dr = 2ar and dr = dx/2ar.

If r = 0, then x = 0 and if r = R then x = aR2. Now, I2 reduces to

I2 = lim
R→∞

∫ π/2

0

[∫ aR2

0

e−xr
dx

2ar

]
dθ = lim

R→∞

∫ π/2

0

[
1

2a

∫ aR2

0

e−xdx

]
dθ

= lim
R→∞

∫ π/2

0

[
1

2a

(
−e−x

∣∣∣∣
x=aR2

x=0

)]
dθ = lim

R→∞

∫ π/2

0

[
− 1

2a

(
e−aR2 − e−0

)]
dθ

as R →∞ we get that

I2 =

∫ π/2

0

[
− 1

2a

(
0− 1

)]
dθ =

∫ π/2

0

1

2a
dθ =

1

2a
θ

∣∣∣∣
θ=π/2

θ=0

=
1

2a

[π

2
− 0

]
=

π

4a
.

Finally, we have shown that I2 = π
4a

, this implies that

I =

√
π

4a
=

1

2

√
π

a
.

Therefore,

∫ ∞

0

e−ax2

dx =
1

2

√
π

a
,

and so

2

∫ ∞

0

e−ax2

dx =

√
π

a
,

hence the result.

Proof of Lemma 2.8.1.

Proof. To begin with, we start with the assumption that the Gaussian noise has some

correlation in space with white character in time. Note that

E
[
W (t, x)W (t′, x′)

]
=

∑
n≥1

√
λn

√
λn ψn(x)ψn(x′) min{t, t′} ≈ C(x− x′) min{t, t′}.

(2.8.22)

To get an expression for λn, we set x′ = 0 and t = t′ [86], so that (2.8.22) becomes

∑
n≥1

λnψn(x)ψn(0) ≈ C(x). (2.8.23)
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Next, we take the inner product of (2.8.23) and get that

λnψn(0) ≈
∫

R
C(x)ψn(x)dx. (2.8.24)

Next, we substitute the definitions of ψn(0), ψn(x), and C(x) into (2.8.24) to obtain

λn√
L

=
1√
L

∫

R

1

2ξ
exp

(−πx2

4ξ2

)
exp

(
inπx

L

)
dx. (2.8.25)

Next, cancelling out 1/
√

L from both sides and rearranging the equation yields

λn =
1

2ξ

∫

R
exp

(−πx2

4ξ2

)
exp

(
inπx

L

)
dx

=
1

2ξ

∫

R
exp

(−πx2

4ξ2
+

inπx

L

)
dx. (2.8.26)

Now, let A = π
4ξ2 and B = inπ

L
, so that (2.8.26) reduces to the following equation,

λn =
1

2ξ

∫

R
exp

(
−Ax2 + Bx

)
dx. (2.8.27)

Next, we appeal to the following standard result using a binomial formula

−Ax2 + Bx = −
(√

A x− B
√

A

2A

)2

+
B2

4A
. (2.8.28)

Substitute (2.8.28) into (2.8.27) to get

λn =
1

2ξ

∫

R
exp

(
−

(√
A x− B

√
A

2A

)2

+
B2

4A

)
dx

=
1

2ξ
exp

(
B2

4A

) ∫

R
exp

(
−

(√
A x− B

√
A

2A

)2
)

dx. (2.8.29)

Next, we substitute back what A and B stands for into (2.8.27) to get

λn =
1

2ξ
exp

(−k2ξ2π

L2

) ∫

R
exp

(
−

(√
π

2ξ
x− in

√
π ξ

L

)2
)

dx. (2.8.30)

Then using Lemma 2.8.2, get that

λn =
1

2ξ
exp

(−n2ξ2π

L2

) ∫

R
exp

(
−

(√
π

2ξ
x

)2
)

dx (2.8.31)
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and using Lemma 2.8.3, we get that the integral in (2.8.31)

∫

R
exp

(
− π

4ξ2
x2

)
dx = 2ξ. (2.8.32)

Equation (2.8.31) finally becomes

λn =
1

2ξ
× 2ξ exp

(−n2ξ2π

L2

)
= exp

(−n2ξ2π

L2

)
. (2.8.33)

Hence, the eigenvalues of the Q−Wiener process are obtained as

√
λn = exp

(−n2ξ2π

2L2

)
. (2.8.34)

The derived eigenvalues (2.8.34) will be used in the Wiener process representation

in (2.3.9), so that the noise is exponentially correlated in space. This noise is taken

white in time. This form of noise will be used to carry out simulations in Chapter 6.
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Chapter 3

Numerics for SODEs.

In this chapter, we develop and propose three stochastic time discretization techniques

for the solution of SODEs with an aim to applying these for SPDEs. The derivation

of the schemes is based on the exponential time differencing scheme [18]. Two of the

stochastic integrators can be used for the simulation of Itô SODEs and the other can

be used for the simulation of Stratonovich SODEs. We then numerically investigate

the strong and weak convergence of these stochastic integrators and compare these

schemes against three other standard numerical methods. We consider three examples

of SODEs interpreted in the Itô and Stratonovich sense. Finally, we consider briefly

SODEs with small noise.

3.1 Review on deterministic exponential integra-

tors.

Exponential time differencing (ETD) schemes are numerical integration techniques

that have been successful for the solution of semi-linear differential equations. In par-

ticular, they have been found to be most effective for the solutions of time dependent

PDEs, see [21, 47] for example. This is because time dependent spatially discretized

PDEs are in most cases discretized first in the spatial variables using spectral methods,

finite difference and finite element methods, for example. This spatial discretization
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Chapter 3: Stochastic exponential time differencing schemes.

often leads to a system of stiff ordinary differential equations in time. Therefore, the

need to have effective and stable integration techniques.

A number of methods have been studied and used in the literature to solve these stiff

systems. For example, the integrating factor method [52], linearly-implicit method

also known as the semi-implicit or implicit-explicit method [2, 91, 6] and the expo-

nential time differencing ETD scheme [18].

The ETD schemes were originally discovered in the early 60’s in the area of compu-

tational electrodynamics, however they did not gain much popularity and were not

in use because of the need to compute these exponential function and the functions

which are closely related to the exponential function. Today, there are efficient ways

to compute a matrix exponential. In [68], it was stated that matrix exponential times

a vector can be computed efficiently by the use of Krylov approximations with Lanc-

zos process or by using a scaling and squaring method, and this is what the MATLAB

routine expm is actually based on. Other references where the computation of matrix

exponential have been considered are [42, 4, 67].

Basically, the ETD schemes works on a nonlinear time dependent equation by solving

the linear part of an equation exactly, and then treat the nonlinear part explicitly,

while maintaining good stability and high accuracy [75]. The idea of solving exactly

the linear part of the equation, which is usually stiff in nature is clearly an advan-

tage of the ETD scheme. Other merits include the fact that the exponential function

damps out the behaviour of the linear part of the equation, thereby removing the stiff-

ness or highly oscillatory nature of the problem. The stability of the ETD scheme

has been studied in [18, 75].

The standard ETD methods are derived as follows.

Consider the following semi-linear ODE

du(t)

dt
= Lu + N(u(t)), u(0) = u0, (3.1.1)
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where u : R → Rd, L ∈ Rd×d, N : Rd → Rd and d is the dimensionality of the

problem.

The ETD scheme can be derived using the variation of constant formula as follows:

Pre-multiply both sides of (3.1.1) with the integrating factor e−tL.

e−tL du

dt
= e−tLLu + e−tLN(u, t). (3.1.2)

Re-arranging yields
d

dt
e−tLu = e−tLN(u, t). (3.1.3)

Next, we integrate (3.1.3) over a single time step from t = tk to t = tk + ∆t
∫ tk+∆t

tk

d

dτ
e−τLu(τ)dτ =

∫ tk+∆t

tk

e−τLN(u, τ)dτ,

e−(tk+∆t)Lu(tk + ∆t)− e−tkLu(tk) =

∫ tk+∆t

tk

e−τLN(u, τ)dτ,

u(tk + ∆t) = e∆tLu(tk) + e(tk+∆t)L

∫ tk+∆t

tk

e−τLN(u, τ)dτ, (3.1.4)

substitute τ = tk + θ∆t in the integral to get

u(tk + ∆t) = e∆tLu(tk) + ∆t

∫ 1

0

e(1−θ)∆tLN(u(tk + θ∆t))dθ. (3.1.5)

Equation 3.1.5 is still an exact representation of the solution. Exponential time dif-

ferencing schemes now arise from how we choose to approximate the nonlinear term

N(u(τ), τ) by a polynomial p(θ). The simplest choice of approximating the nonlinear

tern is by a constant at θ = 0.

uk+1 = e∆tLuk + L−1
(
e∆tL − I

)
N(u(tk), tk). (3.1.6)

Higher order based ETD schemes has been developed, for example the fourth-order

exponential time differencing Runge-Kutta (ETDRK4) method [18, 47].

3.2 Derivation of the Stochastic ETD schemes.

Our aim in this section is to derive three new stochastic versions of the ETD scheme.

Two based on Itô interpretation and the other based on Stratonovich interpretation.
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3.2.1 Itô scheme:

Consider the following semi-linear SODE

du(t) = (Lu(t) + N(u(t)))dt + G(u(t))dW (t), u(0) = u0, (3.2.1)

where u : R → Rd, L ∈ Rd×d, N : Rd → Rd, G : Rd → Rd×m and W (t) is an

m-dimensional Wiener process.

By the variation of constant formula for SODEs,

u(t) = etLu(0) +

∫ t

0

e(t−s)LN(u(s))ds +

∫ t

0

e(t−s)LG(u(s))dW (s). (3.2.2)

If we consider the approximation of the functions N and G at the left-end point over

a single time step, from tk to tk+1, we get that

u(tk+1) ≈ eL∆t

(
u(tk) + N(u(tk))

∫ tk+1

tk

e−Lsds + G(u(tk))

∫ tk+1

tk

e−LsdW (s)

)
.

Working out the first integral, and letting uk denote the approximation of u at time

step tk, and using tk+1 − tk = ∆t, we get that

uk+1 = eL∆t

(
uk + N(uk)

∫ ∆t

0

e−Lsds + G(uk)

∫ ∆t

0

e−LsdW (s)

)
(3.2.3)

= eL∆tuk + L−1
(
eL∆t − I

)
N(uk) + G(uk)

∫ ∆t

0

eL(∆t−s)dW (s). (3.2.4)

It turns out that the first two terms on the RHS of equation (3.2.4) is exactly the

same as what we obtained in the deterministic ETD scheme. We are then left with

the calculation of the third term.

There are indeed two ways we can approximate this stochastic integral, so that we

obtain two variants of the SETD scheme.
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3.2.2 First variant of the SETD scheme: SETD0.

To obtain the first variant of the SETD scheme, we approximate the integrand in the

stochastic part of (3.2.4) at the left end point as follows:

G(uk)

∫ ∆t

0

eL(∆t−s)dW (s) ≈ eL∆te−L·0G(uk)

∫ ∆t

0

dW (s) (3.2.5)

= eL∆tG(uk)∆Wk, (3.2.6)

where ∆Wk is given by (2.2.8).

Finally, from (3.2.4) we obtain the following numerical scheme

uk+1 = eL∆tuk+L−1
(
eL∆t−I

)
N(uk)+eL∆tG(uk)∆Wk, k = 0, 1, · · · ,M−1. (3.2.7)

We call this scheme the SETD0 scheme.

3.2.3 Second variant of the SETD scheme: SETD1.

In the derivation of the SETD0 scheme, the integrand in (3.2.5) was approximated

at the left end point. However, to derive the SETD1 scheme, we seek the statistical

information of the integral in (3.2.5) as a whole. The integral is a Gaussian random

variable with mean 0 and the variance we calculate as follows. We know that

V ar[X] = E[X2]−
(
E[X]

)2

, (3.2.8)

therefore by using this definition and the property of Itô- isometry [50, 70], we get

that

V ar

[∫ ∆t

0

eL(∆t−s)dW (s)

]
= E

[(∫ ∆t

0

eL(∆t−s)dW (s)
)2

]
−

(
E

[∫ ∆t

0

eL(∆t−s)dW (s)

])2

(3.2.9)
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= E
[∫ ∆t

0

e2L(∆t−s)ds

]
− 0

=

∫ ∆t

0

e2L(∆t−s)ds

= L−1

(
e2L∆t − I

2

)
. (3.2.10)

Hence, the scheme (3.2.4) now becomes

uk+1 = eL∆tuk + L−1
(
eL∆t − I

)
N(uk) + L−1/2

(e2L∆t − I

2

)1/2

G(uk)βk, (3.2.11)

where βk is an independent and identically distributed standard normal random vari-

able with mean 0 and variance 1. We call this scheme the SETD1 scheme.

We remark that the SETD1 scheme uses the idea of the linear functional of the noise

as presented in the work by Kloeden & Jentzen in which they derived the scheme

which they call the exponential Euler scheme [46] for additive noise. However, the

difference between the SETD1 scheme and the scheme by Kloeden & Jentzen lies in

the fact that the SETD1 scheme was obtained from a multiplicative SDE while the

exponential Euler scheme was obtained from an additive SDE.

3.2.4 Stratonovich scheme: ESI.

Consider the following SDE interpreted in the Stratonovich sense

du(t) = (Lu(t) + N(u(t)))dt + G(u(t)) ◦ dW (t). (3.2.12)

The variation of constants formula gives

u(t) = etLu(0) +

∫ t

0

e(t−s)LN(u(s))ds +

∫ t

0

e(t−s)LG(u(s)) ◦ dW (s). (3.2.13)

We recall that an approximation for the deterministic part of (3.2.13) has been ob-

tained in (3.2.4). Thus an approximation for (3.2.13) over a single time step from tk

to tk+1 is now given by

uk+1 = eL∆tuk + L−1
(
eL∆t − I

)
N(uk) +

∫ tk+1

tk

e(tk+1−s)LG(u(s)) ◦ dW (s). (3.2.14)
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In order to obtain an approximation for the Stratonovich stochastic integral in (3.2.14),

we approximate the integrand using the midpoint rule rather than approximating the

stochastic integral at the left end point of the interval. Thus the integrand in (3.2.14)

is evaluated at the discrete time tk+tk+1

2
as follows:

∫ tk+1

tk

e(tk+1−s)LG(u(s)) ◦ dW (s) ≈ e

“
tk+1−

tk+tk+1
2

”
L
G

(
u(

tk + tk+1

2
)

) (
W (tk+1)−W (tk)

)

=
1

2
e

“
tk+1−tk

2

”
L
(
G(u(tk)) + G(u(tk+1))

)(
W (tk+1)−W (tk)

)

=
1

2
e∆tL/2

(
G(u(tk)) + G(u(tk+1))

)
∆Wk. (3.2.15)

Observe that the formula on the right hand side of (3.2.15) involves the u(tk+1) term,

which needs to be determined. Thus, to proceed in writing down the approximation

scheme for (3.2.12), we use the Euler-Maruyama solution u(tk+1) which we will denote

as ũk+1 (given in (2.2.3)) as an estimate for the u(tk+1) term in (3.2.15). Hence, we

obtain the following numerical scheme for (3.2.12) as:

uk+1 = eL∆tuk + L−1
(
eL∆t − I

)
N(uk) +

1

2
e∆tL/2

(
G(uk) + G(ũk+1)

)
∆Wk.(3.2.16)

where ũk+1 is an Euler-Maruyama scheme used as predictor term, uk is an approxi-

mation to the solution u at tk and ∆Wk is given by (2.2.8). We call this scheme the

exponential Stratonovich Integrator ESI scheme. We propose this new scheme for

the numerical approximation of Stratonovich SDEs. In this thesis, we use the ESI to

simulate SDEs interpreted in the Stratonovich sense and compare the scheme against

the standard Heun scheme.

3.3 Numerical investigation of strong convergence.

We carry out numerical experiments on four examples of SODEs interpreted in both

the Itô and Stratonovich sense. We examine the strong convergence for the ESI,

Heun, LR, SETD0, SETD1 and EM schemes, and also obtain their orders of con-

vergence numerically. The Heun and ESI methods are applied directly to solve the
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SDEs in the Stratonovich form and the SETD0, SETD1, LR and the semi-implicit

EM methods are used to solve the SDEs in the Itô form.

In order to investigate strong convergence numerically, we consider the strong er-

ror in (2.2.1) at final time T given as ε(∆t) := E
[∣∣∣XM − X̂(tM)

∣∣∣
]
. We investigate

how the error depends on the time step size ∆t. Thus, for a choice of ∆t, we calculate

R simulations, such that for each realization, the values of XM and X̂(tM) becomes

Xr
M and X̂r(tM) for r = 1, · · · , R.

The estimate of the strong error ε(∆t) which we denote by ε̂(∆t) is calculated as

follows:

ε̂(∆t) :=
1

R

R∑
r=1

∣∣∣Xr
M − X̂r(tM)

∣∣∣ . (3.3.1)

Equation (3.3.1) gives the numerical strong error estimated from ε(∆t).

Strong convergence requires that the solution paths are followed exactly. To ensure

that we follow the path exactly we make use of the same Wiener process used in the

exact solution. The numerical experiments are then performed over a time interval

t ∈ [0, 1], with nine values of ∆t. The following time step sizes were used to obtain

approximate solutions: ∆t1 = 1/4000, ∆t2 = 1/2000, ∆t3 = 1/1000, ∆t4 = 1/800,

∆t5 = 1/500, ∆t6 = 1/400, ∆t7 = 1/250, ∆t8 = 1/200 and ∆t9 = 1/100.

1000 realizations of solutions were simulated and the numerical strong error (3.3.1) is

obtained by averaging over these number of trajectories.

In the numerical experiments, we also compute the average computer time.

By average computer time, we mean the arithmetic mean of R independent simula-

tions of the computer time (in seconds) it takes to obtain the rth simulation of the

numerical error at time step size ∆ti, i = 1, · · · , 9.

For each i , the average computer time =
1

R

R∑
r=1

Θr
∆ti

, i = 1, · · · , 9, (3.3.2)

where Θr
∆ti

stands for the computer time (in seconds) it takes to obtain the rth

simulation of the numerical strong error at time step size ∆ti, i = 1, · · · , 9 and R

stands for the number of realizations.
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Numerical example 1: Geometric Brownian Motion (GBM) equation [41,

50].

The following autonomous, scalar, linear Itô SDE with multiplicative noise is some-

times used to model stock price evolution:

dX(t) = λX(t)dt + µX(t)dW (t), X(0) = X0, t ∈ [0, 1], (3.3.3)

with exact solution

X(t) = X(0)exp
(
(λ− µ2/2)t + µW (t)

)
. (3.3.4)

In Stratonovich form, the SODE (3.3.3) becomes

dX(t) =
(
λ− 1

2
µ2

)
X(t)dt + µX(t) ◦ dW (t). (3.3.5)

We performed numerical experiment using the EM (2.2.3), LR (2.2.5), SETD0

(3.2.7) and SETD1 (3.2.11) methods to simulate the Itô SDE (3.3.3) and then use

the Heun (2.2.6) and ESI (3.2.16) methods to simulate the Stratonovich SDE (3.3.5).

The SDEs are numerically integrated over the time interval t = [0, 1] with initial value

X(0) = 0.5 and we take the parameters λ = 0.2 and µ = 0.5.

Numerical solutions are then obtained using the 6 methods with a fixed time step

∆t = 1/4000. This time step is used to generate the path for the exact solution

(3.3.4).

Figure 3.1(a) graphically shows the strong convergence of the 6 numerical methods

with errors at the final time, T = 1 computed at various time step-sizes. The slopes

of the convergence for the methods applied to the SDEs (3.3.3) and (3.3.5) are dis-

played in Figure 3.1(a) and their respective strong orders are shown in the legend.

We remark that the LR and SETD0 schemes are both identical since a nonlinear

term is absent in example (3.3.3).

We observe strong orders of convergence of 0.5 for the EM, SETD0, SETD1 and

LR methods and strong orders 1 for the Heun and ESI methods. The rates of con-

vergence obtained for these numerical methods are indeed in good agreement with
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Figure 3.1: Strong convergence of the EM, SETD0, SETD1, LR, Heun and ESI

methods. The SDEs (3.3.3) and (3.3.5) are solved with parameters λ = 0.2, µ = 0.5,

X(0) = 0.5. (a) a log-log plot of the numerical strong error (3.3.1) versus time step-

size, (b) a log-log plot of the numerical strong error (3.3.1) versus average computer

time.
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the theoretical results, (see for example [50]) where the EM method was shown to

have strong order 0.5 and the Heun method is known to converge with strong order

1. We also add in the plot lines of slope 0.5 and 1 for reference.

We also see that the new numerical method we proposed in this thesis called the

exponential Stratonovich integrator ESI scheme has similar accuracy as the standard

Heun method. The Heun method and ESI scheme show great improvement over the

other 4 methods in terms of accuracy. This improvement is known for Stratonovich

SDEs driven by one Wiener process. In [79], the author remarks that the Heun

scheme converging to the solution of a Stratonovich SDE has mean-square order 1 if

the diffusion terms in the SDE commute, in particular, if there is only one driving

Wiener process in the SDE. We will investigate the influence of two driving Wiener

process on SODEs later in the Chapter.

Figure 3.1(b) illustrate the efficiency of the 6 numerical methods applied to the SDEs

(3.3.3) and (3.3.5). We plot the strong error against the average computer time (in

seconds) it takes for the 6 numerical methods. We observe that the Heun and ESI

method are the most accurate schemes, since if we consider a fixed cputime and look

at the errors obtained from the 6 methods used, we see that the Heun and ESI

methods give the smallest error. In addition, if we consider a fixed error, we get that

the Heun and ESI methods are computationally the fastest, thus the most efficient

methods when compared to the EM, LR, SETD0 and SETD1 methods.

Numerical example 2:

Consider the following one-dimensional Itô SDE

dX(t) = −a2X(t)(1−X(t)2)dt + a(1−X(t)2)dW (t), X(0) = X0, t ∈ [0, 1].

(3.3.6)

Using g(X(t)) = a(1 − X(t)2) and g′(X(t)) = −2aX(t) in (2.1.9), we obtain the

Stratonovich form of the SDE (3.3.6) as

dX(t) =

[
−a2X(t)(1−X(t)2)− 1

2

(
a(1−X(t)2)

)(
−2aX(t)

)]
dt+a(1−X(t)2)◦dW (t).

(3.3.7)
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Figure 3.2: Strong convergence of the EM, SETD0, SETD1, LR, Heun and ESI

methods. The SDEs (3.3.6) and (3.3.8) are solved with parameters a = 0.2, X(0) =

0.5. In (a) a log-log plot of the numerical strong error (3.3.1) versus time step-size,

(b) a log-log plot of the numerical strong error (3.3.1) versus average computer time.
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This reduces to

dX(t) = a(1−X(t)2) ◦ dW (t). (3.3.8)

The exact solution of (3.3.8) is also a solution to (3.3.6) and it is obtained as [50]

X(t) = tanh((aW (t)) + arctanh(X0)). (3.3.9)

In Figure 3.2(a), we plot the strong error with respect to the time step-size. The

legend show the strong order of 0.6 for the EM, SETD0, SETD1 and LR methods

and strong order 1 for Heun and ESI methods respectively. These orders obtained

for this numerical example are again in good agreement with the results in theory

[50]. We remark the Heun and ESI schemes are identical when applied to example

(3.3.8) since a drift term is absent.

Figure 3.1(b) displays the plot of average strong error with respect to the average

cputime. We see just as in numerical example 1 that the Heun and ESI method are

the computationally the most accurate and fastest schemes, when compared to the

EM, LR, SETD0 and SETD1 methods.

So far, we have considered two scalar SODEs driven by one Wiener process as test

problems. The linear part of these test problems does not feature stiffness. Also the

test problems are driven by a scalar Wiener process. In what follows, we consider two

test problems whose linear part are stiff. The first test problem is a two-dimensional

SODE driven by one Wiener process (that is, d = 2, m = 1 in Equation (2.1.1)) while

the second test problem is a two-dimensional SODE driven by two Wiener processes

(that is, d = 2, m = 2 in Equation (2.1.1)).

Numerical example 3:

Consider the following two-dimensional semi-linear stiff SODE driven by one Wiener

process.

dX(t) =
[
AX(t) + B

(
X(t)−X(t)3

)]
dt + CX(t)dW (t), X(0) = X0. (3.3.10)
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The Stratonovich form of (3.3.10) is obtained as

dX(t) =
[
AX(t) + B

(
X(t)−X(t)3

)
− B̂X(t)

]
dt + CX(t) ◦ dW (t), X(0) = X0,

(3.3.11)

where

A =


 −100 1

0 − 1
10


 , B =


 1 0

0 1


 , B̂ =

1

2




(
3
4

)2
0

0
(

3
4

)2


 ,

C =




3
4

0

0 3
4


 , X0 =




2
5

3
5


 .
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Figure 3.3: Strong convergence of the EM, SETD0, SETD1, LR, Heun and ESI

methods. The SDEs (3.3.10) and (3.3.11) are solved with parameters a = 0.2, X(0) =

0.5. In (a) is a log-log plot of the numerical strong error (3.3.1) versus time step-

size, and in (b) is a log-log plot of the numerical strong error (3.3.1) versus average

computer time.
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Numerical example 4:

Consider the following two-dimensional semi-linear stiff SODE driven by two Wiener

processes.

dX(t) =
[
AX(t)+B

(
X(t)−X(t)3

)]
dt+CX(t)dW1(t)+DX(t)dW2(t), X(0) = X0.

(3.3.12)

The Stratonovich form of (3.3.12) is obtained as

dX(t) =
[
AX(t) + B

(
X(t)−X(t)3

)
− B̂X(t)

]
dt + CX(t) ◦ dW1(t) + DX(t) ◦ dW2(t),

X(0) = X0, (3.3.13)

where A,B, C and X0 are given as in Numerical example 3.

The matrix D and B̂ for this test problem are given as:

D =


 0 − 9

10

9
10

0


 , B̂ =

1

2




(
3
4

)2 (
9
10

)2

(
9
10

)2 (
3
4

)2


 .

Results for Numerical examples 3 and 4.

Numerical experiments were carried out to simulate the Itô SODEs (3.3.10) and

(3.3.12) using the EM (2.2.3), LR (2.2.5), SETD0 (3.2.7) and SETD1 (3.2.11)

methods while the Stratonovich SODEs (3.3.11) and (3.3.13) were simulated by using

the Heun (2.2.6) and the ESI (3.2.16) methods. Figures 3.3(a) and 3.4(a) displays

the strong orders of convergence of the six numerical methods applied to numerical

example 3 and numerical example 4 respectively. We observe strong orders of ap-

proximately equal to 1 for the Heun and the ESI schemes when applied to SODEs

driven by one Wiener process, these observed orders are two times the strong orders

observed for the Itô schemes. However, when the Stratonovich schemes are applied

to SODEs driven by two Wiener processes as in numerical example 4, we see that

the strong orders of the Heun and ESI are approximately equal to the strong orders

observed for the Itô schemes, see the legends in Figures 3.3(a) and Figure 3.4(a) for

comparison. Figures 3.3(b) and (3.4(b)) displays the average computer time used to

obtain the numerical strong errors of the six numerical methods. We observe that
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Figure 3.4: Strong convergence of the EM, SETD0, SETD1, LR, Heun and ESI

methods. The SDEs (3.3.12) and (3.3.13) are solved with parameters a = 0.2, X(0) =

0.5. In (a) is a log-log plot of the numerical strong error (3.3.1) versus time step-size,

and (b) is a log-log plot of the numerical strong error (3.3.1) versus average computer

time.

52



Chapter 3: Numerics for SODEs.

for a fixed value of the numerical strong error, the Stratonovich schemes are more

efficient than the Itô schemes.

Numerical investigation of strong convergence for

SODEs with small noise.

In many areas of applications in science and engineering, SDEs with small noise are

of interest, as a result a number of studies have been carried out for these kinds of

equation, see for example work by [7, 65]. A system of SDEs with small noise is of

the form [65]:

dX(t) = f(t,X)dt+βg(t,X)dW (t), X(t0) = Xt0 t ∈ [t0, T ], 0 ≤ β ≤ β0, (3.3.14)

where β is a small parameter which controls the strength of the noise in the system and

β0 is a positive number. If the parameter β is close to zero, we recover a deterministic

system and there a number of effective numerical methods for the solutions of systems

of this kind.

The studies of numerical methods for SODEs with small noise were carried out in

[7, 8, 9, 66]. In [66], they show that for SDEs with small noise it is possible to

construct special numerical methods which are more effective and easier than in the

general case. Numerical integration of stochastic differential equations with small

noise has been considered in the mean square sense in [65] and in the weak sense in

[66].

In what follows, we perform numerical experiments to investigate the strong orders of

convergence of the six previously used numerical methods applied to an example of

SDE with a range of noise intensities. In particular, we are interested in observing the

strong orders of convergence for the numerical methods when applied to SDE with

small noise intensity.

In Chapter 5, we will also investigate the strong orders of convergence of numerical

methods applied to SPDEs with small noise intensity.
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Numerical experiments:

Consider the following SDE used in population dynamics [41]

dX(t) = rX(t)(K −X(t))dt + βX(t)dW (t), X(0) = X0 (3.3.15)

where β denotes the strength of the noise.

The Stratonovich version of (3.3.15) is obtained as:

dX(t) =

(
rK − 1

2
β2 − rX(t))

)
X(t)dt + βX(t) ◦ dW (t). (3.3.16)

The solution of (3.3.15) is given as (see [70])

X(t) =
X(0) exp

((
rK − 1

2
β2

)
t + βW (t)

)

1 + X(0)r
∫ t

0
exp

((
rK − 1

2
β2

)
s + βW (s)

)
ds

. (3.3.17)

In this numerical example, we perform numerical experiment to examine strong con-

vergence of the following numerical methods; the Heun (2.2.6), ESI (3.2.16), EM

(2.2.3), SETD0 (3.2.7), SETD1 (3.2.11) and LR (2.2.5).

Since we do not have an explicit analytic solution to (3.3.15), (Note the integral in the

denominator of (3.3.17) ), we take as a true solution, a solution with time step-size

∆t = 2−14. We then solve the SDE with following parameter values X0 = 0.5, r = 2,

K = 1, β ranging from 0 to 1. The subsequent coarser solutions are computed with

the time step-sizes {2i∆t}i=1,··· ,7, the solutions are the averaged over 1000 realizations.

We see from Figure 3.5 the influence of small noise gives the effect that is observable

in the deterministic setting whereby strong order of convergence is 1.

On the other hand, as noise intensity is increased, the strong order gradually re-

duces and approaches ≈ 0.5 for the SETD0, SETD1, EM and LR. The Heun and

ESI methods are also seen to have strong order ≈ 1 for both small and large noise

intensities. These results are in agreement with the theoretical results.
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Figure 3.5: Plot of strong orders of convergence on the y-axis versus increasing noise

intensities β, β ∈ [0, 0.5] on the x-axis obtained using the following method, (a)

SETD0 (b) SETD1 (c) EM (d) LR (e) Heun (f) ESI on multiplicative SDE

(3.3.15).
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Chapter 4

Theoretical convergence proof of

SETD0 scheme.

4.1 Introduction

We study the strong numerical approximation of the following Itô parabolic SPDEs

with three different forms of stochastic forcing.

SPDEs with one-dimensional multiplicative noise

du =
[
Au + f(u)

]
dt + εg(u)dβ(t), t ∈ [0, T ], u(0) = u0, (4.1.1)

where β(t) is a scalar Wiener process defined in Definition 2.1.1.

SPDEs with infinite-dimensional multiplicative noise

du =
[
Au + f(u)

]
dt + εg(u)dW (t), t ∈ [0, T ], u(0) = u0, (4.1.2)

where W (t) is a Q-Wiener process given in (2.3.9).

SPDEs with infinite-dimensional additive noise

du =
[
Au + f(u)

]
dt + εdW (t), t ∈ [0, T ], u(0) = u0, (4.1.3)

where W (t) is a Q-Wiener process given in (2.3.9).

The function u is an H-valued random process. We take H introduced in Chapter

2 to be the Hilbert space L2. The initial condition u(0) = u0 ∈ D(A), where D(A)
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Chapter 4: Theoretical convergence proof of SETD0 scheme.

stands for the domain of A and it is defined in (2.4.1). A is a positive self-adjoint

linear operator and it is the generator of an analytic semigroup etA, t ≥ 0 [19], with

negative real eigenvalues αn. The functions f and g denote the drift and diffusion

part of the SPDEs, and are in general nonlinear, with f : H → H and g : H → L0
2.

The exact assumptions for these functions are given in Assumptions 2.4.1, 2.4.2, 2.4.3

(or 2.4.4). Finally, the SPDEs are supplemented with periodic boundary conditions

on [0, 2π].

Recall from Theorem 2.4.1 in Chapter 2, that the SPDEs (4.1.1), (4.1.2) and (4.1.3)

have unique mild solutions given respectively as

u(t) = etAu(0) +

∫ t

0

e(t−s)Af(u(s))ds + ε

∫ t

0

e(t−s)Ag(u(s))dβ(s), (4.1.4)

u(t) = etAu(0) +

∫ t

0

e(t−s)Af(u(s))ds + ε

∫ t

0

e(t−s)Ag(u(s))dW (s), (4.1.5)

u(t) = etAu(0) +

∫ t

0

e(t−s)Af(u(s))ds + ε

∫ t

0

e(t−s)AdW (s), (4.1.6)

where the Wiener process β(t) in (4.1.4) is one-dimensional and the Wiener process

W (t) in (4.1.5) and (4.1.6) is infinite-dimensional.

4.2 Numerical methods.

We apply a Fourier-Galerkin projection to the SPDEs (4.1.1), (4.1.2) and (4.1.3) and

then use the finite dimensional subspace HN of H and the projection operator PN

introduced in Section 2.8.1, to obtain a finite dimensional SDEs in the space HN .

The SODEs corresponding to the Fourier-Galerkin projection of the SPDEs (4.1.1),

(4.1.2) and (4.1.3) are given respectively by

duN(t) =
[
ANuN(t) + fN(uN(t))

]
dt + εgN(uN(t))dβ(t), (4.2.1)

duN(t) =
[
ANuN(t) + fN(uN(t))

]
dt + εgN(uN(t))dWN(t), (4.2.2)
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duN(t) =
[
ANuN(t) + fN(uN(t))

]
dt + εdWN(t), (4.2.3)

where AN = PNA, such that AN : HN → HN , fN(u) := PNf(u), gN(u) := PNg(u),

uN(0) := PNu(0) and WN(t) = PNW (t) =
∑N

n=1

√
λn βn(t)ψn.

The SODEs (4.2.1), (4.2.2) and (4.2.3) have unique solutions on [0, T ], given re-

spectively by

uN(t) = eAN tuN(0)+

∫ t

0

eAN (t−s)fN(uN(s))ds+ε

∫ t

0

eAN (t−s)gN

(
uN(s)

)
dβ(s). (4.2.4)

uN(t) = eAN tuN(0) +

∫ t

0

eAN (t−s)fN(uN(s))ds + ε

∫ t

0

eAN (t−s)gN

(
uN(s)

)
dWN(s),

(4.2.5)

uN(t) = eAN tuN(0) +

∫ t

0

eAN (t−s)fN(uN(s))ds + ε

∫ t

0

eAN (t−s)dWN(s). (4.2.6)

We can now write down the SETD0 approximation for (4.2.4), (4.2.5) and (4.2.6).

Let [t0, T ] denote the time interval with grid JM
∆t = {t0, t1, · · · , tM = T} such that

the time grid is equidistant with the time step size ∆t = T−t0
M

and tk = k∆t. Then

the SETD0 approximation for (4.2.4), (4.2.5) and (4.2.6) are given respectively by

uN(tk+1) = e∆tAN uN(tk) + A−1
N

(
e∆tAN − I

)
fN(uN(tk)) + εe∆tAN gN(uN(tk))∆β(tk),

(4.2.7)

where ∆t denotes the time step size and ∆β(tk) is a Wiener increment given by (2.2.8).

uN(tk+1) = e∆tAN uN(tk) + A−1
N

(
e∆tAN − I

)
fN(uN(tk)) + εe∆tAN gN(uN(tk))∆WN(tk),

(4.2.8)

where ∆WN(tk) is a Wiener increment given by (2.8.13).

uN(tk+1) = e∆tAN uN(tk) + A−1
N

(
e∆tAN − I

)
fN(uN(tk)) + εe∆tAN ∆WN(tk). (4.2.9)

Denoting the components of uN(tk), fN(uN(tk)), gN(uN(tk)) and WN(tk) by

uN
n (tk) =

(
ψn, uN(tk)

)
, fn

N(uN(tk)) =
(
ψn, fN(uN(tk))

)
,
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gn
N(uN(tk)) =

(
ψn, gN(uN(tk))

)
WN

n (tk) =
(
ψn,W

N(tk)
)
, |n| ≤ N,

where ψn are the eigenfunctions of the linear operator A.

We assume that the linear operator A and the Q-Wiener process have the same eigen-

functions.

The SETD0 scheme for the SPDE (4.1.3) with infinite-dimensional additive noise

denoted componentwise is given by:

uN
n (tk+1) = eαn∆tuN

n (tk) +

(
eαn∆t − 1

)

αn

fn
N

(
uN(tk)

)
+ ε

√
λn eαn∆t∆βk,n, αn 6= 0

(4.2.10)

On the other hand, the SETD0 for the SPDE (4.1.1) with one-dimensional multi-

plicative noise denoted componentwise is given by:

uN
n (tk+1) = eαn∆tuN

n (tk) +

(
eαn∆t − 1

)

αn

fn
N

(
uN(tk)

)
+ εeαn∆tgn

N(uN(tk))∆βk αn 6= 0.

(4.2.11)

where uN
n (tk) denotes the approximation to the function u at discretization times tk

and uN
n (tk) provides an update for uN

n (tk+1).

Also note that the mild solutions (4.1.6) and (4.1.4) represented component-wise are

given by

un(t) = eαntun(0) +

∫ t

0

e(t−s)αnfn
N(u(s))ds + ε

∫ t

0

e(t−s)αn
√

λn dβn(s), ∀n ∈ Z
(4.2.12)

and

un(t) = eαntun(0) +

∫ t

0

e(t−s)αnfn
N(u(s))ds + ε

∫ t

0

e(t−s)αngn
N(u(s))dβ(s), ∀n ∈ Z.

(4.2.13)

Next, we iterate (4.2.10) and (4.2.11) to obtain equations which we can relate to

(4.2.12) and (4.2.13) respectively; these are given as follows. For j = 1, · · · ,M , where

M stands for the number of time discretization,

uN
n (tj) = eαntjuN

n (0)+

(
eαn∆t − 1

)

αn

j−1∑

k=0

e(tj−1−tk)αnfn
N

(
uN(tk)

)
+ε

√
λn

j−1∑

k=0

e(tj−tk)αn∆βk,n,

(4.2.14)
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and

uN
n (tj) = eαntjuN

n (0) +

(
eαn∆t − 1

)

αn

j−1∑

k=0

e(tj−1−tk)αnfn
N

(
uN(tk)

)

+ ε

j−1∑

k=0

e(tj−tk)αngn
N(uN(tk))∆βk. (4.2.15)

where ∆βk and ∆βk,n are independent and identically distributed normal random

variables with mean 0 and variance ∆t.

Equation (4.2.14) is the SETD0 scheme for the time discretization of SPDEs forced

with an infinite-dimensional additive noise and (4.2.15) is the SETD0 scheme for

the time discretization of SPDEs forced with one-dimensional multiplicative noise.

In what follows, we prove convergence results for SPDEs driven by one-dimensional

multiplicative noise and SPDEs driven by infinite-dimensional additive noise. We do

not prove a convergence result for SPDEs driven by infinite-dimensional multiplica-

tive noise, however we perform the numerical simulations for SPDEs with infinite-

dimensional multiplicative noise in Chapters 5 and 6.

4.3 Error Analysis.

We estimate the error in the L2 norm. Thus, we estimate

∣∣∣∣u(tj)− uN(tj)
∣∣∣∣2 =

∑

n∈Z
|un(tj)− uN

n (tj)|2. (4.3.1)

Note that in the expansion of the function u(t), n ∈ Z, however for practical purpose,

we consider

u(t) =
∑

n∈Z
un(t)ψn =

∑

|n|≤N

un(t)ψn +
∑

|n|>N

un(t)ψn, (4.3.2)

and in our error analysis, we consider terms with Fourier modes |n| ≤ N and |n| > N .

We refer to terms with |n| > N as the tail terms.

We now state the conditions that the functions in the SPDEs (4.1.1) and (4.1.3)

are required to satisfy for our convergence proofs.
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Detailed assumptions on the existence and uniqueness of solution of the SPDEs are

given in Chapter 2.

In the convergence analysis, we have two regularity parameters to consider r and γ;

where r gives the regularity of the solution u(t), see Lemma 2.5.7, and γ describes

the spatial regularity of the noise, see Assumption 2.4.4.

We give the following additional assumptions on the functions f, g with the norms

defined by the regularity r.

Assumption 4.3.1. Assumptions on functions f and g;

Consider f : H → H and g : H → L0
2, then the following conditions hold.

1. Lipschitz condition: For x, y ∈ H, for some constant C and r ≥ 0

||f(x)− f(y)||2 ≤ C||x− y||2, ||f(x)− f(y)||2r ≤ C||x− y||2r. (4.3.3)

||g(x)− g(y)||2L0
2
≤ C||x− y||2, ||g(x)− g(y)||2L0

2
≤ C||x− y||2r. (4.3.4)

2. Growth conditions: For x ∈ H, for some constant C0 and r ≥ 0

||f(x)|| ≤ C0(1 + ||x||), ||f(x)||r ≤ C0(1 + ||x||r). (4.3.5)

||g(x)||L0
2
≤ C0(1 + ||x||), ||g(x)||L0

2
≤ C0(1 + ||x||r). (4.3.6)

Note that Hr ⊆ L2 is a property of the Sobolev space Hm, see (2.3.1), also note that

if x, y ∈ Hr, then x, y ∈ L2 by the definition of Sobolev space.

In what follows, we give preliminary results which will be used later in the convergence

proofs.

Lemma 4.3.1. Assume that the u(s) is a mild solution for the SPDE (4.1.2), then

for 0 ≤ t′ ≤ T ,

∫ t′

0

E
[∣∣∣

∣∣∣u(s)− u (bsc∆t)
∣∣∣
∣∣∣
2
]
ds ≤ C(∆t2θ + ε2∆t), (4.3.7)
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where bsc∆t = maxk∈N{tk : tk ≤ s} and tk = k∆t.

Proof. We seek an estimate for the term ||u(s)− u (bsc∆t)||2.
To do this, we write the solution u(s) as a mild solution of the SPDE (4.1.2) as follows;

u(s) = e(s−bsc∆t)Au(bsc∆t) +

∫ s

bsc∆t

e(s−τ)Af(u(τ))dτ + ε

∫ s

bsc∆t

e(s−τ)Ag(u(τ))dW (τ).

(4.3.8)

This means that
∣∣∣
∣∣∣u(s)− u (bsc∆t)

∣∣∣
∣∣∣
2

≤
∣∣∣∣∣

∣∣∣∣∣
(

e(s−bsc∆t)A − I

)
u(bsc∆t) +

∫ s

bsc∆t

e(s−τ)Af(u(τ))dτ

+ ε

∫ s

bsc∆t

e(s−τ)Ag(u(τ))dW (τ)

∣∣∣∣∣

∣∣∣∣∣

2

. (4.3.9)

Next we apply the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) to get that
∫ t′

0

E

[∣∣∣
∣∣∣u(s)− u (bsc∆t)

∣∣∣
∣∣∣
2
]
ds ≤ C

(∫ t′

0

E

[∣∣∣∣
∣∣∣∣
(

e(s−bsc∆t)A − I

)
u(bsc∆t)

∣∣∣∣
∣∣∣∣
2
]

ds

+

∫ t′

0

E




∣∣∣∣∣

∣∣∣∣∣
∫ s

bsc∆t

e(s−τ)Af(u(τ))dτ

∣∣∣∣∣

∣∣∣∣∣

2

 ds +

∫ t′

0

E




∣∣∣∣∣

∣∣∣∣∣ε
∫ s

bsc∆t

e(s−τ)Ag(u(τ))dW (τ)

∣∣∣∣∣

∣∣∣∣∣

2

 ds




≤ C(E1 + E2 + E3). (4.3.10)

We now analyze each of the terms in (4.3.10). Firstly, we consider E1.

Using Lemma 2.5.6 and Lemma 2.5.8, we get that

E1 =

∫ t′

0

E

[∣∣∣∣
∣∣∣∣
(

e(s−bsc∆t)A − I

)
u(bsc∆t)

∣∣∣∣
∣∣∣∣
2
]

ds

≤ C

∫ t′

0

∣∣∣
∣∣∣A−θ

(
I − e(s−bsc∆t)A

)∣∣∣
∣∣∣
2

ds sup
0≤bsc∆t≤t′

E
[∣∣∣∣Aθu(bsc∆t)

∣∣∣∣2
]

︸ ︷︷ ︸
<∞

≤ C

∫ t′

0

(
s− bsc∆t

)2θ

ds

≤ C

∫ t′

0

∆t2θds ≤ C(T )∆t2θ ≤ C∆t2θ. (4.3.11)
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Next, using the Cauchy-Schwarz inequality (2.5.1), the fact that the semigroup is

bounded, we get that

E2 ≤ C

∫ t′

0

E




∣∣∣∣∣

∣∣∣∣∣
∫ s

bsc∆t

e(s−τ)Af(u(τ))dτ

∣∣∣∣∣

∣∣∣∣∣

2

 ds

≤ C

∫ t′

0

(s− bsc∆t) ds

∫ s

bsc∆t

E
[∣∣∣

∣∣∣e(s−τ)Af(u(τ))
∣∣∣
∣∣∣
2

dτ

]

≤ C

∫ t′

0

(s− bsc∆t) ds

∫ s

bsc∆t

∣∣∣∣e(s−τ)A
∣∣∣∣2

︸ ︷︷ ︸
≤C

dτ sup
0≤τ≤s

E
[
||f(u(τ))||2

]
.

Next, applying the growth condition in (4.3.5) and Lemma 2.5.9, we get that

E2 ≤ C

∫ t′

0

(s− bsc∆t) ds

∫ s

bsc∆t

dτ sup
0≤τ≤s

E
[
1 + ||u(τ)||2

]

︸ ︷︷ ︸
<∞

≤ C

∫ t′

0

(s− bsc∆t) ds

∫ s

bsc∆t

dτ

≤
∫ t′

0

(
s− bsc∆t

)2

ds ≤
∫ t′

0

∆t2ds ≤ C(T )∆t2 ≤ C∆t2. (4.3.12)

Applying the Itô-isometry of Lemma 2.5.5, the boundedness of exponential term, the

growth condition in (4.3.6) and Lemma 2.5.9, we get that

E3 =

∫ t′

0

E




∣∣∣∣∣

∣∣∣∣∣ε
∫ s

bsc∆t

e(s−τ)Ag(u(τ))dW (τ)

∣∣∣∣∣

∣∣∣∣∣

2

 ds

≤ Cε2

∫ t′

0

ds

∫ s

bsc∆t

E
[
||g(u(τ))||2L0

2
dτ

]

≤ C(T )ε2

∫ s

bsc∆t

dτ sup
bsc∆t≤τ≤t′

E
[
1 + ||u(τ)||2

]

︸ ︷︷ ︸
<∞

≤ Cε2

∫ s

bsc∆t

dτ ≤ Cε2(s− bsc∆t) ≤ Cε2∆t. (4.3.13)
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Having worked out the estimates for the terms in (4.3.10). We get that

∫ t′

0

E
[∣∣∣

∣∣∣u(s)− u (bsc∆t)
∣∣∣
∣∣∣
2
]
ds ≤ C(∆t2θ + ∆t2 + ε2∆t) ≤ C(∆t2θ + ε2∆t).

Lemma 4.3.2. For x, t > 0, there exists a C > 0 such that

∫ t

0

e−(t−s)xds ≤ Cx−1. (4.3.14)

Proof. ∫ t

0

e−(t−s)xds =
e−(t−s)x

x

∣∣∣∣∣

s=t

s=0

=
1− e−tx

x
≤ Cx−1. (4.3.15)

4.4 Error estimate: multiplicative noise case.

In this section, our aim is to prove a convergence result for an SPDE with one-

dimensional multiplicative noise given in Equation (4.1.1). The SETD0 scheme given

in equation (4.2.15) will be analyzed.

Theorem 4.4.1. Assume that the initial data u0 ∈ D(A)∩H2, θ ∈ [0, 1/2) and r ≥ 0.

Consider that ∆t → 0 and N → ∞ such that ∆tN2 ≤ ν, where ν is some positive

parameter. Then for each T > 0, there exist a C > 0 such that

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + N−r|α−1

N |

+ ε∆tθ + ε2∆t1/2 + εN−r|α−1/2
N |

)
.

(4.4.1)

We prove this Theorem in §4.4.1.

In what follows, we examine two cases of the operator A, that is, A = ∆ and A =

−(∆ + 1)2.
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Corollary 4.4.2. Under the assumptions in Theorem 4.4.1 and for the linear operator

A = ∆ on [0, 2π] with periodic boundary condition, with eigenvalue αn = −n2, for

each n ∈ Z, we have that the strong convergence error estimate is given as

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + N r−2

+ ε∆tθ + ε2∆t1/2 + εN r−1
)
. (4.4.2)

Proof of Corollary 4.4.2. Under the assumptions of Theorem 4.4.1, the root mean

square error estimate for a linear operator with eigenvalues αn = −n2 is obtained as

follows.

The final estimate bounds in (4.4.53) is given as

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N−2r|α−2

N |

+ ε2∆t2θ + ε4∆t + ε2N−2r|α−1
N |

)
. (4.4.3)

Substituting in the αN ’s,

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N2(r−2)

+ ε2∆t2θ + ε4∆t + ε2N−2rN−2
)
. (4.4.4)

Simplify and write the equation in the root mean square sense as follows:

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + N r−2

+ ε∆tθ + ε2∆t1/2 + εN r−1
)
. (4.4.5)

Corollary 4.4.3. Under the assumptions in Theorem 4.4.1 and for the linear operator

A = −(∆ + 1)2 on [0, 2π] with periodic boundary condition, with eigenvalue αn =

−n4 + 2n2 − 1, for each n ∈ Z, we have that the strong convergence error estimate is
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given as

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + ε2∆t + N r−4

+ ε∆tθ + ε2∆t1/2 + εN r−2
)
. (4.4.6)

Proof of Corollary 4.4.3. Under the assumptions of Theorem 4.4.1, the root mean

square error estimate for a linear operator with eigenvalues αn = −n4 + 2n2 − 1 is

obtained as follows.

The final estimate bounds in (4.4.53) is given as

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N−2r|α−2

N |

+ ε2∆t2θ + ε4∆t + ε2N−2r|α−1
N |

)
. (4.4.7)

Note that −n4 + 2n2 − 1 < n4, therefore, |αN | ≤ N4. Substituting in the αN , we get

that

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N2(r−4)

+ ε2∆t2θ + ε4∆t + ε2N−2rN−4
)
. (4.4.8)

Simplify and write the equation in the root mean square sense as follows:

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + N r−4

+ ε∆tθ + ε2∆t1/2 + εN r−2
)
. (4.4.9)

Proof of Theorem 4.4.1.

The error estimate we wish to obtain bounds for is given as

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]

= E

[∑

n∈Z

∣∣∣un(tj)− uN
n (tj)

∣∣∣
2
]

. (4.4.10)
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Note that symbol | · | in (4.4.10) stands for the absolute value sign.

Substituting equations (4.2.13) and (4.2.15) into (4.4.10), we get that

E

[∑

n∈Z

∣∣∣un(tj)− uN
n (tj)

∣∣∣
2
]

≤

E

[∑

n∈Z

∣∣∣∣∣e
αntjun(0)− eαntjuN

n (0) +

∫ tj

0

e(tj−s)αnfn
N(u(s))ds−

(
eαn∆t − 1

)

αn

j−1∑

k=0

e(tj−1−tk)αnfn
N

(
uN(tk)

)
+

ε

∫ tj

0

e(tj−s)αngn
N(u(s))dβ(s)− ε

j−1∑

k=0

e(tj−tk)αngn
N(uN(tk))∆βk

∣∣∣∣∣

2]
. (4.4.11)

Next, we use the following inequality

∣∣∣x + y + z
∣∣∣
2

≤ 3
(∣∣x

∣∣2 +
∣∣y

∣∣2 +
∣∣z

∣∣2
)

(4.4.12)

on the first term in the RHS of (4.4.11) in order to split this error term into three

stand-alone parts, so that we can analyze term by term. This gives us the following

estimate which we split into initial data term, non-linear term and noise term as

follows:

E

[∑

n∈Z

∣∣∣un(tj)− uN
n (tj)

∣∣∣
2
]
≤ 3

(
ID + NLP + NoiseP

)
(4.4.13)

where

ID = E


∑

n∈Z

∣∣∣∣∣e
αntjun(0)− eαntjuN

n (0)

∣∣∣∣∣

2

 , (4.4.14)

NLP = E


∑

n∈Z

∣∣∣∣∣
∫ tj

0

e(tj−s)αnfn
N(u(s))ds−

(
eαn∆t − 1

)

αn

j−1∑

k=0

e(tj−1−tk)αnfn
N

(
uN(tk)

)∣∣∣∣∣

2

 ,

(4.4.15)
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NoiseP = E


∑

n∈Z

∣∣∣∣∣
∫ tj

0

e(tj−s)αngn
N(u(s))dβ(s)− ε

j−1∑

k=0

e(tj−tk)αngn
N(uN(tk))∆βk

∣∣∣∣∣

2

 .

(4.4.16)

We remark that in the process of bounding terms, the constant C changes from line

to line, in some instances C may depend on the final time T , however it is always

independent of ∆t and N .

Initial data terms:

ID = E

[∑

n∈Z

∣∣∣eαntjun(0)− eαntjuN
n (0)

∣∣∣
2
]

. (4.4.17)

We assumed that the initial data uN
n (0) and un(0) coincide, therefore modes that are

less that N in (4.4.17) cancel out and we are left with modes greater than N ; thus,

we are left to analyze the term with |n| > N , this term we have denoted as IDTAIL.

The analysis is as follows:

By the boundedness of the exponential term and using the fact that n4 < 1+2n2+n4,

also using the definition of the Hr norm, we get that

IDTAIL = E
[

sup
0≤tj≤t′

∑

|n|>N

∣∣eαntjun(0)
∣∣2

]
≤ C

∑

|n|>N

∣∣∣un(0)
∣∣∣
2

≤
∑

|n|>N

n−4n4
∣∣∣un(0)

∣∣∣
2

≤

CN−4

( ∑

|n|>N

n4
∣∣∣un(0)

∣∣∣
2
)
≤ CN−4

∑

|n|>N

(
1 + 2n2 + n4

)∣∣∣un(0)
∣∣∣
2

≤

CN−4
∑

|n|>N

(1 + n2)2
∣∣∣un(0)

∣∣∣
2

≤ CN−4
∣∣∣
∣∣∣u(0)

∣∣∣
∣∣∣
2

2
≤ CN−4.

Finally, the tail term of the initial data is bounded by CN−4. Hence,

ID ≤ CN−4. (4.4.18)
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Nonlinear terms:

The NLP in (4.4.15) is given as

NLP = E


∑

n∈Z

∣∣∣∣∣
∫ tj

0

e(tj−s)αnfn
N(u(s))ds−

(
eαn∆t − 1

)

αn

j−1∑

k=0

e(tj−1−tk)αnfn
N

(
uN(tk)

)∣∣∣∣∣

2

 .

(4.4.19)

To obtain error estimate for this NLP term, we find it convenient to consider both

the exact solution and the numerical solution in the same framework. That is to say,

we will convert the time discrete scheme in the second term in the RHS of (4.4.19)

into a time continuous version. Therefore,

NLP = E

[∑

n∈Z

∣∣∣∣
∫ tj

0

e(tj−s)αnfn
N(u(s))ds−

∫ tj

0

e(tj−bsc∆t)αnfn
N

(
uN(bsc∆t)

)
ds

∣∣∣∣
2
]

=

E

[∑

n∈Z

∣∣∣∣
∫ tj

0

(
e(tj−s)αnfn

N(u(s))− e(tj−bsc∆t)αnfn
N

(
uN(bsc∆t)

))
ds

∣∣∣∣
2
]

. (4.4.20)

Next, we use the fact that

e(tj−s)αn = e(tj−bsc∆t+bsc∆t−s)αn = e(tj−bsc∆t)αne(bsc∆t−s)αn . (4.4.21)

We get that (4.4.20) becomes

NLP = E

[∑

n∈Z

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn

{
e(bsc∆t−s)αnfn

N(u(s))− fn
N

(
uN(bsc∆t)

)}
ds

∣∣∣∣
2
]

.

(4.4.22)

Next, we split into three parts the term in the curly bracket in (4.4.22) by adding in

and subtracting out the following terms: fn
N(u(s)) and fn

N (u (bsc∆t)). Following this

approach, (4.4.22) becomes

NLP ≤ E

[∑

n∈Z

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn

(
fn

N(u(s))− fn
N (u (bsc∆t)) +

fn
N (u (bsc∆t))− fn

N

(
uN (bsc∆t)

)
+

(
e(bsc∆t−s)αn − 1

)
fn

N(u(s))

)
ds

∣∣∣∣
2
]

.

(4.4.23)
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Applying the inequality (4.4.12) and the expression in (4.3.2) to (4.4.23), we get that

NLP ≤ C
(
NLP1 + NLP2 + NLP3 + NLPTail

)
, where

NLP1 = E


 ∑

|n|≤N

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn

(
fn

N(u(s))− fn
N (u (bsc∆t))

)
ds

∣∣∣∣
2

 , (4.4.24)

NLP2 = E


 ∑

|n|≤N

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn

(
fn

N (u (bsc∆t))− fn
N

(
uN (bsc∆t)

))
ds

∣∣∣∣
2

 ,

(4.4.25)

NLP3 = E


 ∑

|n|≤N

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn
(
e(bsc∆t−s)αn − 1

)
fn

N(u(s))ds

∣∣∣∣
2

 , (4.4.26)

and

NLPTail = E


 ∑

|n|>N

∣∣∣∣
∫ tj

0

e(tj−s)αnfn
N(u(s))ds

∣∣∣∣
2

 . (4.4.27)

We now wish to obtain estimates for (4.4.24), (4.4.25), (4.4.26) and (4.4.27) .

We start by working out NLP1.

Using the projection operator (2.8.9), the Jensen’s inequality (Lemma 2.5.4), the

boundedness of the exponential term, and the Lipschitz condition in (4.3.3), the NLP1

(4.4.24) becomes

NLP1 ≤ E


 ∑

|n|≤N

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn

(
fn

N(u(s))− fn
N (u (bsc∆t))

)
ds

∣∣∣∣
2



≤ CE

[∫ tj

0

∣∣∣∣
∣∣∣∣PNe(tj−bsc∆t)A

(
f(u(s))− f (u (bsc∆t))

)∣∣∣∣
∣∣∣∣
2

ds

]

≤ C

∫ tj

0

E
[∣∣∣

∣∣∣u(s)− u (bsc∆t)
∣∣∣
∣∣∣
2
]

ds

≤ C

∫ t′

0

E
[∣∣∣

∣∣∣u(s)− u (bsc∆t)
∣∣∣
∣∣∣
2
]

ds. (4.4.28)

Next using Lemma 4.3.1 we get that NLP1 ≤ C∆t2θ + Cε2∆t.
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Next, we work out the NLP2.

Applying the projection operator (2.8.9), the Jensen’s inequality and the Lipschitz

condition (4.3.3), in addition to the boundedness of the exponential term, the NLP2

(4.4.25) becomes

NLP2 ≤ E


 ∑

|n|≤N

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn

(
fn

N (u (bsc∆t))− fn
N

(
uN (bsc∆t)

))
ds

∣∣∣∣
2



≤ E

[∣∣∣∣
∣∣∣∣PN

∫ tj

0

e(tj−bsc∆t)A
(
f (u (bsc∆t))− f

(
uN (bsc∆t)

))
ds

∣∣∣∣
∣∣∣∣
2
]

≤ CE
[∫ tj

0

∣∣∣∣u (bsc∆t)− uN (bsc∆t)
∣∣∣∣2 ds

]

≤ C

∫ t′

0

E
[∣∣∣∣u(s)− uN(s)

∣∣∣∣2 ds
]
. (4.4.29)

Note that we will incorporate this term into the error estimate in the statement of

the theorem by applying the Gronwall’s Lemma, see Lemma 2.5.2.

Next, we work out the NLP3.

Using the projection operator (2.8.9), Jensen’s inequality (Lemma 2.5.4), in addition

to using the fact that A and etA commute, we get that the NLP3 (4.4.26) becomes

NLP3 ≤ E

 ∑

|n|≤N

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn
(
e(bsc∆t−s)αn − 1

)
fn

N(u(s))ds

∣∣∣∣
2



≤ E

[∣∣∣∣
∣∣∣∣PNe(tj−bsc∆t)A

(
e(bsc∆t−s)A − I

)
f(u(s))ds

∣∣∣∣
∣∣∣∣
2
]

≤ E

[∫ tj

0

∣∣∣∣
∣∣∣∣Aθe(tj−bsc∆t)AA−θ

(
e(bsc∆t−s)A − I

)
f(u(s))

∣∣∣∣
∣∣∣∣
2

ds

]

≤ C

∫ t′

0

∣∣∣
∣∣∣Aθe(t′−bsc∆t)A

∣∣∣
∣∣∣
2∣∣∣

∣∣∣A−θ
(
e(bsc∆t−s)A − I

)∣∣∣
∣∣∣
2

ds sup
0≤s≤t′

E
[∣∣∣

∣∣∣f(u(s))
∣∣∣
∣∣∣
2
]

≤ C

∫ t′

0

∣∣∣
∣∣∣Aθe(t′−bsc∆t)A

∣∣∣
∣∣∣
2∣∣∣

∣∣∣A−θ
(
I − e(bsc∆t−s)A

)∣∣∣
∣∣∣
2

ds sup
0≤s≤t′

E
[∣∣∣

∣∣∣f(u(s))
∣∣∣
∣∣∣
2
]

. (4.4.30)
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Next, according to Lemma 2.5.6, the growth condition on function f in (4.3.5) and

also the result in Lemma 2.5.9, the NLP3 (4.4.30) reduces to

NLP3 ≤ C

∫ t′

0

(t′ − bsc∆t)
−2θ

∆t2θds sup
0≤s≤t′

E
[∣∣∣

∣∣∣f(u(s))
∣∣∣
∣∣∣
2
]

≤ C∆t2θ

∫ t′

0

(t′ − bsc∆t)
−2θ

ds sup
0≤s≤t′

E
[(

1 + ||u(s)||2)]

︸ ︷︷ ︸
<∞

≤ C∆t2θ

∫ t′

0

(t′ − bsc∆t)
−2θ

ds

︸ ︷︷ ︸
≤C

≤ C∆t2θ. (4.4.31)

So far, in the estimation of the non-linear terms, we have been estimating terms with

modes |n| < N , we now wish to find estimates for the tail terms of the non-linear

term, that is, error with modes |n| > N .

NLPTail ≤ E

 ∑

|n|>N

∣∣∣∣
∫ tj

0

e(tj−s)αnfn
N(u(s))ds

∣∣∣∣
2

 . (4.4.32)

Applying the definition of Hr norm (2.3.5), the growth condition (4.3.5), Lemma 2.5.7

and Lemma 4.3.2;

NLPTail ≤ E

 ∑

|n|>N

(1 + n2)−r(1 + n2)r

∣∣∣∣
∫ tj

0

e(tj−s)αnfn
N(u(s))ds

∣∣∣∣
2



≤ C(1 + N2)−r

( ∫ t′

0

e(t′−s)αN ds

)2

E


 sup

0≤s≤t′

∑

|n|>N

(1 + n2)r
∣∣∣fn

N(u(s))
∣∣∣
2




≤ C(1 + N2)−r
(
|α−1

N |
)2

E
[

sup
0≤s≤t′

∣∣∣
∣∣∣f(u(s))

∣∣∣
∣∣∣
2

r

]

≤ C(1 + N2)−r|α−2
N |E sup

0≤s≤t′

(
1 + ||u(s)||2r

)

︸ ︷︷ ︸
<∞

≤ CN−2r|α−2
N |. (4.4.33)
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Putting all the estimates bounds for the nonlinear part together, we get that

NLP ≤ C
(
NLP1 + NLP2 + NLP3 + NLPTail

)

≤ C
(
∆t2θ + ε2∆t +

∫ t′

0

E
[∣∣∣∣u(s)− uN(s)

∣∣∣∣2
]
ds + ∆t2θ + N−2r|α−2

N |
)

≤ C
(
∆t2θ + ε2∆t + +N2(m−r)|α−2

N |
)

+ C

∫ t′

0

E
[∣∣∣∣u(s)− uN(s)

∣∣∣∣2
]
ds. (4.4.34)

Noise terms:

The noise term is given as

NoiseP = E


∑

n∈Z

∣∣∣∣∣ε
∫ tj

0

e(tj−s)αngn
N(u(s))dβ(s)− ε

j−1∑

k=0

e(tj−tk)αngn
N

(
uN(tk)

)
∆βk

∣∣∣∣∣

2

 .

(4.4.35)

In order to analyse (4.4.35), we change the second term, that is, the discrete term in

(4.4.35) into a time continuous version for convenience of analysis as follows:

NoiseP = ε2E

[∑

n∈Z

∣∣∣∣
∫ tj

0

e(tj−s)αngn
N(u(s))dβ(s)−

∫ tj

0

e(tj−bsc∆t)αngn
N

(
uN(bsc∆t)

)
dβ(s)

∣∣∣∣
2
]

. (4.4.36)

Following the same approach as in the nonlinear term estimate, we use the identity

in (4.4.21), and get that

NoiseP ≤ ε2E

[∑

n∈Z

∣∣∣∣
∫ tj

0

e(tj−bsc∆t)αn

{
e(bsc∆t−s)αngn

N(u(s))− gn
N

(
uN(bsc∆t)

)}
dβ(s)

∣∣∣∣
2
]

.

(4.4.37)
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Next, the quantity in the curly bracket of (4.4.37) is split up into 3 parts by adding

in and subtracting out the following terms: gn
N(u(s)) and gn

N (u (bsc∆t)); so that

NoiseP ≤ ε2E

[∫ tj

0

∑

n∈Z

∣∣∣∣e(tj−bsc∆t)αn

{
gn

N(u(s))− gn
N (u (bsc∆t)) +

gn
N (u (bsc∆t))− gn

N

(
uN (bsc∆t)

)
+

(
e(bsc∆t−s)αn − 1

)
gn

N(u(s))

}
dβ(s)

∣∣∣∣
2
]

.

(4.4.38)

By the inequality (4.4.12) and (4.3.2),

NoiseP ≤ ε2C{NoiseP1 + NoiseP2 + NoiseP3 + NoisePTail}, (4.4.39)

where

NoiseP1 = E




∫ tj

0

∑

|n|≤N

∣∣∣∣e(tj−bsc∆t)αn

(
gn

N(u(s))− gn
N (u (bsc∆t))

)
dβ(s)

∣∣∣∣
2

 ,

(4.4.40)

NoiseP2 = E




∫ tj

0

∑

|n|≤N

∣∣∣∣e(tj−bsc∆t)αn

(
gn

N (u (bsc∆t))− gn
N

(
uN (bsc∆t)

))
dβ(s)

∣∣∣∣
2

 ,

(4.4.41)

NoiseP3 = E




∫ tj

0

∑

|n|≤N

∣∣∣∣e(tj−bsc∆t)αn

((
e(bsc∆t−s)αn − 1

)
gn

N(u(s))

)
dβ(s)

∣∣∣∣
2

 ,

(4.4.42)

and

NoisePTail = E




∫ tj

0

∑

|n|>N

∣∣∣
(
e(tj−s)αngn

N(u(s))
)
dβ(s)

∣∣∣
2


 . (4.4.43)

We now analyze each of these noise terms. We start by working out NoiseP1.

Applying the projection operator (2.8.9) and the Itô-isometry (2.5.6) to (4.4.40), we

obtain that

NoiseP1 ≤ E

[∫ tj

0

∣∣∣∣
∣∣∣∣PNe(tj−bsc∆t)A

(
g(u(s))− g (u (bsc∆t))

)
dβ(s)

∣∣∣∣
∣∣∣∣
2
]

≤ E

[∫ tj

0

∣∣∣∣
∣∣∣∣e(tj−bsc∆t)A

(
g(u(s))− g (u (bsc∆t))

)∣∣∣∣
∣∣∣∣
2

L0
2

ds

]
.
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Since the exponential term is bounded, and also by using the Lipschitz condition

(4.3.4), we get that

NoiseP1 ≤ E
[∫ tj

0

∣∣∣
∣∣∣u(s)− u (bsc∆t)

∣∣∣
∣∣∣
2

ds

]

≤
∫ t′

0

E
[∣∣∣

∣∣∣u(s)− u (bsc∆t)
∣∣∣
∣∣∣
2
]
ds.

Applying Lemma 4.3.1, we get that

NoiseP1 ≤ C(∆t2θ + ε2∆t). (4.4.44)

Next, we work out NoiseP2.

Applying the projection operator (2.8.9), the Itô-isometry (2.5.6), the boundedness

of the exponential term and the Lipschitz continuity of the function g (4.3.4), we get

that the NoiseP2 in (4.4.41) is

NoiseP2 ≤ CE

[∫ tj

0

∣∣∣∣
∣∣∣∣PNe(tj−bsc∆t)A

(
g (u (bsc∆t))− g

(
uN (bsc∆t)

))
dβ(s)

∣∣∣∣
∣∣∣∣
2
]

≤ CE

[∫ tj

0

∣∣∣∣
∣∣∣∣e(tj−bsc∆t)A

(
g (u (bsc∆t))− g

(
uN (bsc∆t)

))∣∣∣∣
∣∣∣∣
2

L0
2

ds

]

≤ C

∫ t′

0

E
[∣∣∣

∣∣∣u (s)− uN (s)
∣∣∣
∣∣∣
2
]
ds. (4.4.45)

Next, we work out NoiseP3.

Using the projection operator (2.8.9), the Itô-isometry (2.5.6) and Lemma 2.5.6, the

NoiseP3 (4.4.42) becomes

NoiseP3 ≤ E

[∫ tj

0

∣∣∣∣
∣∣∣∣PNe(tj−bsc∆t)A

(
e(bsc∆t−s)A − I

)
g(u(s))dβ(s)

∣∣∣∣
∣∣∣∣
2
]

≤ E

[∫ tj

0

∣∣∣∣
∣∣∣∣e(tj−bsc∆t)A

(
e(bsc∆t−s)A − I

)
g(u(s))

∣∣∣∣
∣∣∣∣
2

L0
2

ds

]

≤ E

[∫ tj

0

∣∣∣∣
∣∣∣∣Aθe(tj−bsc∆t)AA−θ

(
e(bsc∆t−s)A − I

)
g(u(s))

∣∣∣∣
∣∣∣∣
2

L0
2

ds

]
. (4.4.46)
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Using Lemma 2.5.6 and Lemma 2.5.9, (4.4.46) reduces to

NoiseP3 ≤ C

(∫ t′

0

(t′ − bsc∆t)
−2θ

ds

)

︸ ︷︷ ︸
≤C

∆t2θ sup
0≤s≤t′

E
[∣∣∣

∣∣∣g(u(s))
∣∣∣
∣∣∣
2

L0
2

]

≤ C∆t2θ sup
0≤s≤t′

E
[(

1 + ||u(s)||2)
]

︸ ︷︷ ︸
<∞

≤ C∆t2θ. (4.4.47)

So far, in the estimation of the noise terms, we have been estimating terms with

modes |n| ≤ N , we now wish to find estimates for the tail terms of the noise term,

that is, error with modes |n| > N .

Applying the Itô-isometry (2.5.6) to (4.4.49), we get

NoisePTail ≤ E



∫ tj

0

∑

|n|>N

∣∣∣e(tj−s)αngn
N(u(s))

∣∣∣
2

ds


 . (4.4.48)

Applying the definition of Hr norm, the assumption in (4.3.4), Lemma 2.5.7 and

Lemma 4.3.2.

NoisePTail ≤ E



∫ tj

0

∑

|n|>N

(1 + n2)−r(1 + n2)r
∣∣∣e(tj−s)αN gn

N(u(s))
∣∣∣
2

ds




≤ CE




∫ t′

0

(1 + N2)−re2(t′−s)αN

∑

|n|>N

(1 + n2)r
∣∣∣gn

N(u(s))
∣∣∣
2

ds




≤ CE

[∫ t′

0

(1 + N2)−re2(t′−s)αN

∣∣∣
∣∣∣g(u(s))

∣∣∣
∣∣∣
2

r
ds

]

≤ CN−2r

∫ t′

0

e2(t′−s)αN dsE
[

sup
0≤s≤t′

∣∣∣
∣∣∣g(u(s))

∣∣∣
∣∣∣
2

r

]
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≤ CN−2r

∫ t′

0

e2(t′−s)αN dsE sup
0≤s≤t′

[
1 + ||u(s)||2r

]

︸ ︷︷ ︸
<∞

≤ CN−2r

∫ t′

0

e2(t′−s)αN ds

≤ CN−2r|α−1
N |. (4.4.49)

We now collect all the estimates bounds for the NoiseP together as follows:

NoiseP ≤ ε2C{NoiseP1 + NoiseP2 + NoiseP3 + NoisePTail} (4.4.50)

≤ ε2C

(
∆t2θ + ε2∆t +

∫ t′

0

E
[∣∣∣

∣∣∣u (s)− uN (s)
∣∣∣
∣∣∣
2
]
ds + ∆t2θ + CN2(m−r)|α−1

N |
)

≤ C

(
ε2∆t2θ + ε4∆t + ε2N−2r|α−1

N |
)

+ C

∫ t′

0

E
[∣∣∣

∣∣∣u (s)− uN (s)
∣∣∣
∣∣∣
2
]
ds. (4.4.51)

Finally, combining the estimates (4.4.18), (4.4.34) and (4.4.51), we achieve the fol-

lowing inequality

E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
]
≤ C

(
∆t2θ + ε4∆t2 + N−2r|α−2

N |+ N−4

+ ε2∆t2θ + ε4∆t + ε2N−2r|α−1
N |

+

∫ t′

0

E
[∣∣∣∣u (s)− uN (s)

∣∣∣∣2
]
ds

)
. (4.4.52)

and then by Gronwall’s inequality in Lemma 2.5.2, we get that

E

[∣∣∣
∣∣∣u(s)− uN(s)

∣∣∣
∣∣∣
2
]
≤ C

(
∆t2θ + ε4∆t2 + N−2r|α−2

N |+ N−4

+ ε2∆t2θ + ε4∆t + ε2N−2r|α−1
N |

)
. (4.4.53)

Equation (4.4.53) completes the proof of Theorem 4.4.1.
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4.5 Error estimate: additive noise case.

In this section, we examine strong convergence of numerical method SETD0 for

SPDE (4.1.3) driven by an infinite-dimensional additive noise. The error estimate we

wish to obtain bounds for is given as

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]

= E
[∑

n∈Z

∣∣∣un(tj)− uN
n (tj)

∣∣∣
2
]
. (4.5.1)

Thus upon substituting equations (4.2.12) and (4.2.14) into (4.5.1),

E

[∑

n∈Z

∣∣∣un(tj)− uN
n (tj)

∣∣∣
2
]

≤ E

[∑

n∈Z

∣∣∣∣∣e
αntjun(0)− eαntjuN

n (0) +

∫ tj

0

e(tj−s)αnfn
N(u(s))ds−

(
eαn∆t − 1

)

αn

j−1∑

k=0

e(tj−1−tk)αnfn
N

(
uN(tk)

)
+

ε
√

λn

∫ tj

0

e(tj−s)αndβn(s)− ε
√

λn

j−1∑

k=0

e(tj−tk)αn∆βk,n

∣∣∣∣∣

2

 . (4.5.2)

Using the inequality in equation (4.4.12), we can separate (4.5.2) into initial data

terms, non-linear terms and noise terms. We remark that bounds for the initial data

terms and non-linear terms will be like those obtained in Section 4.4. We are just left

with analyzing the noise term for an additive SPDE driven by an infinite-dimensional

Wiener process.

NoisePa = E

[∑

n∈Z

∣∣∣∣ε
∫ tj

0

e(tj−s)αnλ1/2
n dβn(s)− ε

j−1∑

k=0

e(tj−tk)αnλ1/2
n ∆βk,n

∣∣∣∣
2
]

. (4.5.3)

First, we state the theorem for the theoretical convergence of the SETD0 scheme for

SPDEs with infinite-dimensional additive noise.

Theorem 4.5.1. Assume that the initial data u0 ∈ D(A)∩H2, θ ∈ [0, 1/2), 0 ≤ r ≤
γ + 1 and γ > −1. Consider that ∆t → 0 and N →∞ such that ∆tN2 ≤ ν, where ν

is some positive parameter. Then for each T > 0, there exist a C > 0 such that
(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + ε2∆t + N−r|α−1

N |+

ε∆tN−γ|α1/2
N |+ εN−γ|α−1/2

N |
)
. (4.5.4)
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We prove this Theorem in §4.5.1.

Corollary 4.5.2. Under the assumptions in Theorem 4.5.1 and for the linear operator

A = ∆ on [0, 2π] with periodic boundary condition, with eigenvalue αn = −n2, for

each n ∈ Z, we have that the strong convergence error estimate is given as

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + ε2∆t + N−r−2 +

ε∆tN−γ+1 + εN−γ−1
)
. (4.5.5)

Proof of Corollary 4.5.2. Under the assumptions of Theorem 4.5.1, the root mean

square error estimate for a linear operator with eigenvalues αn = −n2 is obtained as

follows.

The final estimate bounds in (4.5.20) is given as

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N−2r|α−2

N |

+ ε2∆t2N−2γ|αN |+ ε2N−2γ|α−1
N |

)
. (4.5.6)

Substituting in the αN ’s,

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N2(r−2)

+ ε2∆t2N−2γN2 + ε2N−2γN2×−1
)
. (4.5.7)

Simplify and write the equation in the root mean square sense as follows:

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + ε2∆t + N−r−2 +

ε∆tN−γ+1 + εN−γ−1
)
. (4.5.8)

Corollary 4.5.3. Under the assumptions in Theorem 4.5.1 and for the linear operator

A = −(∆ + 1)2 on [0, 2π] with periodic boundary condition, with eigenvalue αn =
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−n4 + 2n2 − 1, for each n ∈ Z, we have that the strong convergence error estimate is

given as

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + ε2∆t + N−r−4 +

ε∆tN−γ+2 + εN−γ−2
)
. (4.5.9)

Proof of Corollary 4.5.3. Under the assumptions of Theorem 4.5.1, the root mean

square error estimate for a linear operator with eigenvalues αn = −n4 + 2n2 − 1 is

obtained as follows.

The final estimate bounds in (4.5.20) is given as

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N−2r|α−2

N |

+ ε2∆t2N−2γ|αN |+ ε2N−2γ|α−1
N |

)
. (4.5.10)

Note that −n4 + 2n2 − 1 < n4, therefore, |αN | ≤ N4. Substituting in the αN , we get

that

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N2(r−4)

+ ε2∆t2N−2γN4 + ε2N−2γN4×−1
)
. (4.5.11)

Simplify and write the equation in the root mean square sense as follows:

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C
(
N−2 + ∆tθ + ε2∆t + N r−4 +

ε∆tNγ+2 + εNγ−2
)
. (4.5.12)

Noise terms:

For the theoretical convergence proof of the SETD0 scheme for SPDEs with infinite

dimensional additive noise, we consider the noise term only. The other terms have
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been proved in §4.4. In order to obtain bounds for (4.5.3), we consider terms |n| ≤ N

and |n| > N , we then replace the discrete-time approximation with a continuous-time

approximation. The additive noise term is given as follows:

NoisePa = NoiseP1a + NoisePTail−a,

where NoiseP1a is analyzed as follows:

NoiseP1a ≤ E


 ∑

|n|≤N

∣∣∣∣ε
∫ tj

0

e(tj−s)αnλ1/2
n dβn(s)− ε

∫ tj

0

e(tj−bsc∆t)αnλ1/2
n dβn(s)

∣∣∣∣
2



≤ ε2E


 ∑

|n|≤N

|λn|
∣∣∣∣
∫ tj

0

(
e(tj−s)αn − e(tj−bsc∆t)αn

)
dβn(s)

∣∣∣∣
2



≤ ε2

∫ t′

0

E


 ∑

|n|≤N

|λn|
∣∣∣
(
e(t′−s)αn − e(t′−bsc∆t)αn

)
dβn(s)

∣∣∣
2


 .

By Doob’s martingale inequality in Lemma 2.5.3 and the Itô-isometry, we get that

NoiseP1a ≤ 4ε2

∫ t′

0

∑

|n|≤N

|λn|
(

e(t′−s)αn − e(t′−bsc∆t)αn

)
ds

≤ 4ε2

∫ t′

0

∑

|n|≤N

|λn|e2(t′−s)αn

(
1− e(s−bsc∆t)αn

)2

ds.

This comes from using the following equality,

(a− b)2 = a2(1− b

a
)2. (4.5.13)
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Next, using the fact that 1 − etαn ≤ −tαn for 0 ≤ t ≤ ∆t and Lemma 4.3.2, we get

that

∫ t′

0

e2(t′−s)αn

(
1− e(s−bsc∆t)αn

)
ds ≤

∫ t′

0

(
(s− bsc∆t)αn

)2

e2(t′−s)αnds

≤ (∆tαn)2

∫ t′

0

e2(t′−s)αnds

≤ 1

2
(∆tαn)2|α−1

n |

≤ C∆t2|αn|. (4.5.14)

Hence, using the assumptions on noise in Assumption 2.4.4,

NoiseP1a ≤ 4Cε2∆t2
∑

|n|≤N

|λn||αn|

≤ Cε2∆t2
∑

|n|≤N

|λn|(1 + n2)γ(1 + n2)−γ|αn|

≤ Cε2∆t2
∑

|n|≤N

(1 + n2)−γ(1 + n2)γ|λn||αn|

≤ Cε2∆t2(1 + N2)−γ|αN |
∑

|n|≤N

(1 + n2)γλn

︸ ︷︷ ︸
<∞

≤ Cε2∆t2N−2γ|αN |. (4.5.15)

Next, we consider the tail term left over from the expansion of u(t) for the noise part.

NoisePTail−a = E

[ ∑
n>N

∣∣∣∣ε
∫ tj

0

e(tj−s)αnλ1/2
n dβn(s)

∣∣∣∣
2
]
. (4.5.16)
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By Doob’s martingale inequality in Lemma 2.5.3, the Itô-isometry and the result in

(2.4.6), we get that (4.5.16) reduces to

NoisePTail−a ≤ 4ε2
∑
n>N

∫ t′

0

e2(t′−s)αnλnds

≤ Cε2
∑

|n|>N

(1 + n2)γ(1 + n2)−γλn

∫ t′

0

e2(t′−s)αnds

≤ Cε2(1 + N2)−γ

∫ t′

0

e2(t′−s)αN ds
∑

|n|>N

(1 + n2)γλn

≤ Cε2N−2γ|α−1
N |

∑

|n|>N

(1 + n2)γλn

︸ ︷︷ ︸
<∞

≤ Cε2N−2γ|α−1
N |. (4.5.17)

The estimates for the noise term in the case of SPDE with additive noise:

NoisePa = NoiseP1a + NoisePTail−a = Cε2
(
∆t2N−2γ|αN |+ N−2γ|α−1

N |
)
. (4.5.18)

Finally, combining (4.4.18), (4.4.34) and (4.5.18), we achieve the following inequality

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ∆t2θ + ε4∆t2 + N−2r|α−2

N |

+ ε2∆t2N−2γ|αN |+ ε2N−2γ|α−1
N |

+

∫ t′

0

E sup
0≤s≤t′

∣∣∣∣u (s)− uN (s)
∣∣∣∣2 ds

)
. (4.5.19)

and then by Gronwall’s Lemma (2.5.2), we get that

E
[∣∣∣

∣∣∣u(tj)− uN(tj)
∣∣∣
∣∣∣
2
]
≤ C

(
N2(−2) + ε4∆t2 + ∆t2θ + N−2r|α−2

N |

+ ε2∆t2N−2γ|αN |+ ε2N−2γ|α−1
N |

)
. (4.5.20)

Equation (4.5.20) completes the proof of Theorem 4.5.1.
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Chapter 5

Numerics for SPDEs.

5.1 Introduction.

In Chapter 4, we proved Theorem 4.4.1 and Theorem 4.5.1 on the strong convergence

of the stochastic exponential time differencing (SETD0) scheme applied to SPDEs

forced with one-dimensional multiplicative noise and SPDEs forced with infinite-

dimensional additive noise. We examined the convergence of temporal discretization

in the L2 norm. That is, we look at the numerical convergence in ∆t and not N .

Our aim in this chapter is to numerically investigate the strong convergence of the

SETD0 and SETD1 schemes applied to SPDEs interpreted in the Itô sense and also

investigate the strong convergence of the ESI scheme applied to SPDEs interpreted

in the Stratonovich sense. In all our numerical examples, we only consider SPDEs

with only one driving Wiener process. Thus, the orders of convergence reported is

applicable to SPDEs with one driving Wiener process.

We compare the SETD0 and SETD1 schemes against two other standard Itô schemes,

that is, the LR and the semi-implicit EM methods, and also compare the ESI scheme

against the standard Stratonovich scheme, that is, the Heun scheme. To use the

Stratonovich schemes, we need to perform a drift-correction on an Itô SPDE to ob-

tain a Stratonovich SPDE, for which the Stratonovich schemes can then be applied

directly.

We carry out numerical simulations using the above numerical schemes applied to
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two examples of SPDEs; a second-order SPDE, the Allen-Cahn equation and a fourth-

order SPDE, the Swift-Hohenberg equation. In each example, we consider three types

of stochastic forcing. Firstly, SPDE with one-dimensional multiplicative noise, sec-

ondly, SPDE with infinite-dimensional multiplicative noise and thirdly, SPDE with

infinite-dimensional additive noise. We show graphically the slopes and rates of con-

vergence for each of the numerical schemes. We also compare the efficiency of the

numerical methods. Furthermore, we examine the effects of increasing the spatial

regularity of the noise in our numerical simulations.

5.2 Numerical examples

We consider the following cases. Let ε ∈ R.

1. Allen-Cahn SPDE driven by one-dimensional multiplicative noise, (see §5.4.1).

du =
(
∆u + u− u3

)
dt + εudβ(t), (5.2.1)

du =
(
∆u + u− u3 − ε2

2
u
)
dt + εu ◦ dβ(t), (5.2.2)

where the Wiener process β(t) in (5.2.1) and (5.2.2) is one-dimensional.

2. Allen-Cahn SPDE driven by infinite-dimensional multiplicative noise, (see §5.4.2).

du =
(
∆u + u− u3

)
dt + εudW (t), (5.2.3)

du =
(
∆u + u− u3 − ε2

2
TrQ · u

)
dt + εu ◦ dW (t), (5.2.4)

where the Wiener process W (t) in (5.2.3) and (5.2.4) is a Q-Wiener process

given by (2.3.9) and the TrQ stands for the trace of Q.

3. Allen-Cahn SPDE driven by additive noise, (see §5.4.3).

du =
(
∆u + u− u3

)
dt + εdW (t), (5.2.5)
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where the Wiener process W (t) in (5.2.5) is a Q-Wiener process given by (2.3.9).

The Allen-Cahn equations are supplemented with periodic boundary conditions,

u(0, t) = u(2π, t), where t ≥ 0 and initial condition u(x, 0). In our simulations,

we take u(x, 0) = sin(2x) cos(x).

4. Swift-Hohenberg SPDE driven by one-dimensional multiplicative noise, (see

§5.4.1).

du =
(
ru−

(
∆ + q2

c

)2

u + ρu2 − gu3
)
dt + εudβ(t), (5.2.6)

du =
(
ru−

(
∆ + q2

c

)2

u + ρu2 − gu3 − ε2

2
u
)
dt + εu ◦ dβ(t). (5.2.7)

where the Wiener process β(t) in (5.2.6) and (5.2.7) is one-dimensional, r stands

for the control parameter of the Swift-Hohenberg equation and the parameters

qc, ρ and g are fixed. In our simulations, we take qc = 0.5, ρ = 0.41 and g = 1.

5. Swift-Hohenberg SPDE driven by infinite-dimensional multiplicative noise, (see

§5.4.2).

du =
(
ru−

(
∆ + q2

c

)2

u + ρu2 − gu3
)
dt + εudW (t). (5.2.8)

du =
(
ru−

(
∆ + q2

c

)2

u + ρu2 − gu3 − ε2

2
TrQ · u

)
dt + εu ◦ dW (t), (5.2.9)

where the Wiener process W (t) in (5.2.8) and (5.2.9) is a Q-Wiener process

given by (2.3.9) and TrQ stands for the trace of Q.

6. Swift-Hohenberg driven by additive noise, (see §5.4.3).

du =
(
ru−

(
∆ + q2

c

)2

u + ρu2 − gu3
)
dt + εdW (t), (5.2.10)

where the Wiener process W (t) in (5.2.10) is a Q-Wiener process given by

(2.3.9).

The Swift-Hohenberg equations above are supplemented with periodic boundary con-

ditions, u(0, t) = u(2π, t), where t ≥ 0 and initial condition u(x, 0). In our simulations,
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we take u(x, 0) = cos(0.45x)sech (exp(0.0014x2)). For numerical calculations, we take

the following numerical parameters r = −0.015.

In all these numerical examples, ε denotes the noise intensity.

Remark: For SPDEs with additive noise, the Itô and Stratonovich interpretations are

equivalent.

5.3 Numerical discretization.

For the numerical discretization of the SPDE examples (5.2.1)-(5.2.10), we consider

a Fourier spectral method for the spatial discretization, see §2.8.1 for a brief intro-

duction to this method. This procedure gives rise to an infinite system of stochastic

ordinary differential equations (SODEs) which requires efficient and accurate time

integration techniques in order to obtain solutions.

The SPDEs (5.2.1), (5.2.3), (5.2.5), (5.2.6), (5.2.8) and (5.2.10) are all interpreted in

the Itô sense. Therefore, the Itô schemes outlined in §5.3.1 will be used for the simula-

tions of the resulting SODEs obtained from first performing the spatial discretization.

To use the Stratonovich schemes, we first perform a drift correction on the Itô SPDEs

in order to obtain Stratonovich equations (5.2.2), (5.2.4), (5.2.7) and (5.2.9), such

that the solutions obtained from the different interpretations all converge to the same

solution. These Stratonovich schemes are outlined in §5.3.2. We now define the no-

tations used in the numerical schemes in §5.3.1 and §5.3.2. Let V N tk) denotes the

numerical approximation of the solution uN(t) at discretization times tk = k∆t on

the time interval [0, T ], for k = 0, 1, · · · ,M , ∆t = T/M , denotes the time step-size,

M stands for the number of time subintervals, while N ∈ N stands for the number of

spatial grid points.

To apply the discretization schemes in §5.3.1 and §5.3.2, the linear operator for the

Allen-Cahn SPDE is given by A = ∆, such that ∆ψn = αnψn = −n2ψn, n ∈ Z, and

the linear operator for Swift-Hohenberg SPDE is given by A = r − (∆ + q2
c )

2, such

that r − (∆ + q2
c )

2ψn = αnψn = (r − n4 + 2n2 − q4
c )ψn, n ∈ Z, where αn denotes the

eigenvalues of the operator A. The nonlinear drift terms for the Allen-Cahn SPDEs
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and Swift-Hohenberg SPDEs are given by f(u) = u−u3 and f(u) = ρu2−gu3 respec-

tively. The diffusion terms for the Allen-Cahn SPDEs and Swift-Hohenberg SPDEs

are both given by g(u) = u.

5.3.1 Itô schemes.

1. The stochastic exponential time differencing SETD0 scheme is given by

• Multiplicative noise: one-dimensional case.

V N(tk+1) = e∆tAN V N(tk)+A−1
N

(
e∆tAN − I

)
fN(V N(tk))+e∆tAN gN(V N(tk))∆β(tk),

(5.3.1)

where ∆β(tk) is a Wiener increment given by (2.2.8).

• Multiplicative noise: infinite-dimensional case.

V N(tk+1) = e∆tAN V N(tk)+A−1
N

(
e∆tAN − I

)
fN(V N(tk))+e∆tAN gN(V N(tk))∆WN(tk),

(5.3.2)

where ∆WN(tk) is a Wiener increment given by (2.8.13).

• Additive noise: infinite-dimensional case.

V N(tk+1) = e∆tAN V N(tk) + A−1
N

(
e∆tAN − I

)
fN(V N(tk)) + e∆tAN ∆WN(tk).

(5.3.3)

2. The stochastic exponential time differencing SETD1 scheme is given by

• Multiplicative noise: one-dimensional case.

V N(tk+1) = e∆tAN V N(tk) + A−1
N

(
e∆tAN − I

)
fN(V N(tk)) +

(
A−1

N

(
e2∆tAN − I

2I

))1/2

gN

(
V N(tk)

) ∆β(tk)√
∆t

, (5.3.4)

where ∆β(tk) is a Wiener increment given by (2.2.8).

• Multiplicative noise: infinite-dimensional case.

V N(tk+1) = e∆tAN V N(tk) + A−1
N

(
e∆tAN − I

)
fN(V N(tk)) +

(
A−1

N

(
e2∆tAN − I

2I

))1/2

gN

(
V N(tk)

) ∆WN(tk)√
∆t

, (5.3.5)
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where ∆WN(tk) is a Wiener increment given by (2.8.13).

• Additive noise: infinite-dimensional case.

V N(tk+1) = e∆tAN V N(tk) + A−1
N

(
e∆tAN − I

)
fN(V N(tk)) +

(
A−1

N

(
e2∆tAN − I

2I

))1/2
∆WN(tk)√

∆t
. (5.3.6)

In [46], they proved the convergence of the SETD1 scheme in (5.3.6), that

is, the additive noise case. The scheme was termed as the exponential Euler

scheme in their work and they found out that it is possible to overcome the

order barrier for the rate of convergence of SPDEs with additive noise by taking

advantage of the linear functionals of the noise and the smoothening properties

of the semigroup. They showed that the SETD1 achieve order of convergence 1.

In this thesis, we only show numerically the strong convergence for the SETD1

applied to additive and multiplicative noise.

3. The Lord-Rougemont LR scheme [54] is given as

• Multiplicative noise: one-dimensional case.

V N(tk+1) = e∆tAN

(
V N(tk) + ∆tfN(V N(tk)) + gN(V N(tk))∆β(tk)

)
, (5.3.7)

where ∆β(tk) is a Wiener increment given by (2.2.8).

• Multiplicative noise: infinite-dimensional case.

V N(tk+1) = e∆tAN

(
V N(tk) + ∆tfN(V N(tk)) + gN(V N(tk))∆WN(tk)

)
,(5.3.8)

where ∆WN(tk) is a Wiener increment given by (2.8.13).

• Additive noise: infinite-dimensional case.

V N(tk+1) = e∆tAN

(
V N(tk) + ∆tfN(V N(tk)) + ∆WN(tk)

)
. (5.3.9)

4. The semi-implicit Euler Maruyama EM scheme [50] is given by

• Multiplicative noise: one-dimensional case.

V N(tk+1) = (I −∆tAN)−1

(
V N(tk) + ∆tfN(V N(tk)) + gN(V N(tk))∆β(tk)

)
,

(5.3.10)
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where ∆β(tk) is a Wiener increment given by (2.2.8).

• Multiplicative noise: infinite-dimensional case.

V N(tk+1) = (I −∆tAN)−1

(
V N(tk) + ∆tfN(V N(tk)) + gN(V N(tk))∆WN(tk)

)
,

(5.3.11)

where ∆WN(tk) is a Wiener increment given by (2.8.13).

• Additive noise: infinite-dimensional case.

V N(tk+1) = (I −∆tAN)−1

(
V N(tk) + ∆tfN(V N(tk)) + ∆WN(tk)

)
. (5.3.12)

5.3.2 Stratonovich schemes.

1. The exponential Stratonovich integrator ESI scheme is given by

• Multiplicative noise: one-dimensional case.

V N(tk+1) = e∆tAN V N(tk) + A−1
N

(
e∆tAN − 1

)
fN

(
V N(tk)

)
+

1

2
e∆tAN/2

(
gN

(
V N(tk)

)
+ gN

(
V̂ N(tk)

))
∆β(tk), (5.3.13)

where ∆β(tk) is a Wiener increment given by (2.2.8) and

V̂ N(tk) =
(
I −∆tAN

)−1
(

V N(tk) + ∆tfN

(
V N(tk)

)
+ gN

(
V N(tk)

)
∆W (tk)

)
.

• Multiplicative noise: infinite-dimensional case.

V N(tk+1) = e∆tAN V N(tk) + A−1
N

(
e∆tAN − 1

)
fN

(
V N(tk)

)
+

1

2
e∆tAN/2

(
gN(V N(tk)) + gN

(
V̂ N(tk)

))
∆WN(tk), (5.3.14)

where ∆WN(tk) is a Wiener increment given by (2.8.13) and

V̂ N(tk) =
(
I −∆tAN

)−1
(

V N(tk) + ∆tfN

(
V N(tk)

)
+ gN

(
V N(tk)

)
∆WN(tk)

)
.

90



Chapter 5: Numerics for SPDEs.

• Additive noise: infinite-dimensional case.

V N(tk+1) = e∆tAN V N(tk) + A−1
N

(
e∆tAN − 1

)
fN

(
V N(tk)

)
+ e∆tAN/2∆WN(tk).

(5.3.15)

2. The semi-implicit Heun scheme [50] is given by

• Multiplicative noise: one-dimensional case.

V N(tk+1) =
(
I − ∆t

2
AN

)−1
(

V N(tk) +
∆t

2

(
AN V̂ N(tk) + fN

(
V N(tk)

)
+

+fN

(
V̂ N(tk)

))
+

1

2

(
gN

(
V N(tk)

)
+ gN

(
V̂ N(tk)

))
∆β(tk)

)
, (5.3.16)

where ∆β(tk) is a Wiener increment given by (2.2.8) and

V̂ N(tk) =
(
1−∆tAN

)−1
(

V N(tk) + ∆tfN(V N(tk)) + gN(V N(tk))∆β(tk)

)
.

• Multiplicative noise: infinite-dimensional case.

V N(tk+1) =
(
I − ∆t

2
AN

)−1
(

V N(tk) +
∆t

2

(
AN V̂ N(tk) + fN

(
V N(tk)

)
+

fN

(
V̂ N(tk)

))
+

1

2

(
gN

(
V N(tk)

)
+ gN

(
V̂ N(tk)

))
∆WN(tk)

)
, (5.3.17)

where ∆WN(tk) is a Wiener increment given by (2.8.13) and

V̂ N(tk) =
(
1−∆tAN

)−1
(

V N(tk) + ∆tfN(V N(tk)) + gN(V N(tk))∆WN(tk)

)
.

• Additive noise: infinite-dimensional case.

V N(tk+1) =
(
I − ∆t

2
AN

)−1
(

V N(tk) +
∆t

2

(
AN V̂ N(tk) + fN

(
V N(tk)

)
+

fN

(
V̂ N(tk)

))
+ ∆WN(tk)

)
, (5.3.18)
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where ∆WN(tk) is a Wiener increment given by (2.8.13) and

V̂ N(tk) =
(
1−∆tAN

)−1
(

V N(tk) + ∆tfN(V N(tk)) + ∆WN(tk)

)
.

Numerical implementation.

To test the strong convergence of the six numerical methods, that is, the SETD0,

SETD1, LR, EM, ESI and Heun schemes, we take the number of spatial grid

points as N = 512 and vary time step size, ∆t. Solutions are then obtained at time

step size ∆t = 1/{Mi}i=1,··· ,8 where M1 = 2000, M2 = 1000, M3 = 500, M4 = 400,

M5 = 250, M6 = 200, M7 = 125, M8 = 100 and M9 = 50 for the Swift-Hohenberg

and Allen-Cahn SPDEs.

Since we do not have analytical solutions for the numerical examples, we compute

reference solutions for all the numerical examples (5.2.1)-(5.2.10) with their appro-

priate numerical schemes in (5.3.1)-(5.3.18) on the interval [0, 1] with time step size

∆t = 1/4000.

In our numerical calculations, we take noise that is white in time and we vary the

spatial regularity, such that we get noise in H−1/2, H0, H1/2 and H1, i.e. γ =

−1/2, 0, 1/2, 1 in the Hγ space. Details of how the infinite-dimensional noise is dis-

cretized is outlined in Section 2.8.2.

Figure 5.1 shows the effect of increasing the spatial regularity of the noise. We observe

that the path gets smoother as the regularity γ is increased.

The accuracy of the numerical schemes is measured as the approximate L2-norm of

the global errors in the time interval [0, 1].

The theoretical error
(
E

∣∣∣∣u(tk)− V N(tk)
∣∣∣∣2

L2

)1/2

is estimated by the numerical strong

error which is computed as follows:

error ≈
(

1

R

R∑
r=1

∣∣∣∣u(tk, r)− V N
n (tk, r)

∣∣∣∣2
L2

)1/2

, (5.3.19)

where R denotes the number of computed paths, u(tk, r) denotes the solution u at

time tk at the r-th realization. Throughout this Chapter we used R = 100. We

average over 100 realizations of solutions.
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Figure 5.1: A sample path of Hγ noise used in the numerical simulations of SPDEs

(5.2.1) - (5.2.10), where γ denotes the spatial regularity of the noise. In (a)H−1/2,

(b) H0, (c) H1/2 and (d)= H1. The eigenvalues of the Wiener process used is λn =

(1+n2)−γ|n|−(1+ε), where ε ¿ 1 . We see that the dynamics of the noise gets smoother

as the regularity of the noise is increased.
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Figure 5.2: Convergence in time for the SETD0, SETD1, LR and EM schemes

applied to the AC equation with one-dimensional multiplicative noise (5.2.1) and the

ESI and Heun schemes applied to the AC equation with one-dimensional multiplica-

tive noise (5.2.2). The plot is a log-log plot of the numerical strong error (5.3.19) on

[0, 1]. In (a) is the plot of the numerical strong error (5.3.19) versus time step size ∆t

and in (b) is the plot of the numerical strong error (5.3.19) versus cputime. We see

that the numerical orders of convergence of the Itô schemes are ≈ 0.69 while the or-

ders of convergence for the Stratonovich schemes are ≈ 1.1. We also observe that the

Stratonovich schemes are more accurate than the Itô schemes. In terms of efficiency,

the ESI scheme takes less computational time when compared to the Heun scheme,

while the SETD0, SETD1 and LR schemes are more efficient than the EM scheme.

Finally, the SETD0 scheme for which we proved a convergence result predicts an

order of convergence of 0.5. This predicted order can be seen for larger time step.
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5.4 Numerical convergence results.

In this section, we discuss the strong convergence, accuracy and efficiency of the nu-

merical methods (5.3.1) - (5.3.18). We also report the strong orders of convergence

as calculated numerically. All the plots in this Chapter are presented on a log-log scale.

5.4.1 One-dimensional multiplicative noise.

Figure 5.2 shows the convergence in the root mean square L2 norm for the Itô schemes:

SETD0 (5.3.1), SETD1 (5.3.4), LR (5.3.7) and EM (5.3.10) schemes applied to

(5.2.1) and the Stratonovich schemes ESI (5.3.13) and Heun (5.3.16) schemes applied

to AC equation (5.2.2) at final time T = 1. We observe from Figure 5.2(a) that the

Itô schemes all converge with a strong order of ≈ 0.69. This rate of convergence is

slightly better than the theoretically predicted rate of convergence of order 0.5 for the

SETD0 scheme, which we proved a theoretical convergence result for, in Chapter 4,

see Theorem 4.4.1. We remark that the slopes of convergence computed for the Itô

and Stratonovich schemes all match up, thus implying that they have approximately

the same accuracy. Figure 5.2(b) shows the efficiency of the numerical methods. We

plot the the numerical strong error (5.3.19) against cputime, and we observe that the

SETD0, SETD1 and LR schemes takes less computational time when compared

to the EM scheme, which makes the SETD0, SETD1 and LR schemes the most

efficient amongst the Itô schemes. For the Stratonovich schemes, the ESI is the more

efficient than the Heun scheme at all the time steps.

Figure 5.3 shows the rate of convergence in the root mean square L2 norm for the Itô

schemes: SETD0, SETD1, LR and EM methods when applied to the SH equation

(5.2.6) and the Stratonovich schemes: ESI and Heun scheme when applied to the

SH equation (5.2.7). We observe strong orders of convergence of 0.67 and 1 for the Itô

and Stratonovich methods respectively at final time T = 1. We see in Figure 5.3(a)

that the slopes of convergence of all the Itô schemes match up. Figure 5.3 (b) shows

the efficiency of these numerical methods. We see that the SETD0, SETD1 and LR
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Figure 5.3: Convergence in time for the SETD0, SETD1, LR and EM schemes

applied to the SH equation with one-dimensional multiplicative noise (5.2.6) and the

ESI and Heun schemes applied to the SH equation with one-dimensional multiplica-

tive noise (5.2.7). The plot is a log-log plot of the numerical strong error (5.3.19) on

[0, 1]. In (a) is the plot of the numerical strong error (5.3.19) versus time step size

∆t and in (b) is the plot of the numerical strong error (5.3.19) versus cputime. We

see that the numerical orders of convergence of the Itô schemes are ≈ 0.67 while the

orders of convergence for the Stratonovich schemes are ≈ 1. We also observe that the

Stratonovich schemes are more accurate than the Itô schemes. In terms of efficiency,

the ESI scheme takes less computational time when compared to the Heun scheme,

while the SETD0, SETD1 and LR schemes are more efficient than the EM scheme.

96



Chapter 5: Numerics for SPDEs.

schemes are more efficient than the EM scheme while the ESI scheme is again more

efficient than the Heun method.

5.4.2 Infinite-dimensional multiplicative noise.

Here, we perform numerics on the Allen-Cahn equation and Swift-Hohenberg equa-

tion with infinite-dimensional multiplicative noise, however we do not have theoretical

convergence result to compare with numerical rates of convergence.

Figure 5.4 (a - d) shows the rate of strong convergence at final time T = 1 for the

Itô schemes: SETD0 (5.3.2), SETD1 (5.3.5), LR (5.3.8) and EM (5.3.11) schemes

applied to Itô AC equation (5.2.3) and the Stratonovich schemes: ESI (5.3.14) and

Heun (5.3.17) schemes applied to Stratonovich AC equation (5.2.4) for different spa-

tial regularities of noise. We report in detail the strong orders for each numerical

scheme in the legend of each Figure. We also add slopes of 0.5 and 1 for reference

purpose.

We present simulation results for noise in Hγ, γ = −1/2, 0, 1/2, 1 for the Itô and

Stratonovich schemes. We observe that for H−1/2 noise, the order of strong conver-

gence is ≈ 0.6 for the SETD0, LR, EM and ESI schemes and an order of ≈ 0.8 & 1

for the SETD1 and Heun schemes respectively. The EM method appears to be the

most accurate for the case where noise is in H−1/2, however, we observe that as we

increase the spatial regularity of the noise, from γ = −1/2 to γ = 1, the ESI scheme

is the most accurate numerical method, followed by the SETD1 scheme. For smaller

∆t, the Heun and the ESI schemes have better rates of convergence when compared

to the Itô schemes. We also observe that the strong orders of the numerical methods

increase as we increase the spatial regularity of the noise, γ. In addition, we see that

error decreases as regularity is increased.

In figure 5.5 (a-d), we display the rates of strong convergence for the SETD0 (5.3.2),

SETD1 (5.3.5), LR (5.3.8) and EM (5.3.11) schemes applied to the Itô SH equation

(5.2.8) and the ESI (5.3.14) and Heun (5.3.17) schemes applied to the Stratonovich

SH equation (5.2.9). We observe in this numerical example, that when noise is in

H−1/2, the SETD1 with strong order ≈ 0.8 and ESI scheme with strong order ≈ 0.7
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Figure 5.4: Convergence in time for the SETD0, SETD1, LR and EM schemes

applied to the AC equation with multiplicative infinite-dimensional noise (5.2.3) and

the ESI and Heun schemes applied to the AC equation with multiplicative infinite-

dimensional noise (5.2.4). The plot is a log-log plot of the numerical strong error

(5.3.19) on [0, 1]. From (a) - (d), is the plot of the numerical strong error (5.3.19)

versus time step. In (a) H−1/2, (b) H0, (c) H1/2 and (d) H1 noise. respectively the

most accurate Stratonovich and Itô schemes when noise is in H1.
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are the most accurate of the six numerical methods. In fact the SETD1 scheme does

slightly better in terms of the error constant and strong order of convergence. The

Heun method has a strong order of ≈ 0.9; although, for the largest time step, the

Heun method is the least accurate method, however, as the time step is decreased,

the Heun method out performs the other three Itô schemes, that is, the SETD0,

LR and EM method, see Figure 5.5(a).

Increasing the spatial regularity of the noise, does lead to smaller errors and we see

that this increase in spatial regularity of noise favour the Heun method, such that it

gradually get more accurate than the SETD1 scheme. In this numerical example, we

observe that increasing γ does not seem to have significant effect on the strong orders

of the Itô numerical methods. Finally, when noise is in H1, we obtain strong orders

≈ 0.5 and 1 for the Itô and Stratonovich schemes respectively. The SETD1 is the

most accurate scheme amongst the Itô schemes, while the ESI is the most accurate

scheme amongst the Stratonovich schemes.

5.4.3 Infinite-dimensional additive noise.

So far, we have considered SPDEs with multiplicative noise. We now focus our atten-

tion on SPDEs wth additive noise. In Figure 5.7 (a-d), we show the convergence in the

root mean square L2 norm for the SETD0 (5.3.3), SETD1 (5.3.6) the LR (5.3.9),

EM (5.3.12), ESI (5.3.15) and the Heun (5.3.18) schemes. We observe that when

we take noise in H−1/2, the Itô schemes converge with strong order of approximately

0.5; on the other hand, for the case of Stratonovich schemes, the Heun method has

strong order ≈ 1 while the ESI scheme has a strong order of ≈ 0.5. This low order of

convergence for the ESI scheme is not surprising because the ESI scheme is suited

mainly for Stratonovich equations, and in this numerical example, we are considering

SPDEs with additive noise. Nevertheless, the ESI scheme is more accurate than the

Heun scheme. We also see that increasing the spatial regularity of the noise gives

rise to higher orders of convergence and smaller errors. In this numerical example,

the EM method seems to have the smallest error when compared to the the other Itô

schemes for H−1/2, H0 and H1/2 noise. However, SETD1 scheme turns out to be the
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Figure 5.5: Convergence in time for the SETD0, SETD1, LR and EM schemes

applied to the SH equation with multiplicative infinite-dimensional noise (5.2.8) and

the ESI and Heun schemes applied to the SH equation with multiplicative infinite-

dimensional noise (5.2.9). The plot is a log-log plot of the numerical strong error

(5.3.19) on [0, 1]. From (a) - (d), is the plot of the numerical strong error (5.3.19)

versus time step. In (a) H−1/2, (b) H0, (c) H1/2 and (d) H1 noise. We see that the

ESI and SETD1 schemes are respectively the most accurate Stratonovich and Itô

schemes when noise is in H1.
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Figure 5.6: Convergence in time for the SETD0, SETD1, LR, EM, ESI and Heun

schemes applied to the SH equation with additive infinite-dimensional noise (5.2.10).

The plot is a log-log plot of the numerical strong error (5.3.19) on [0, 1]. From (a) -

(d), is the plot of the numerical strong error (5.3.19) versus time step. In (a) H−1/2,

(b) H0, (c) H1/2 and (d) H1 noise. We see that the numerical orders of convergence

for the Itô schemes and the ESI scheme increase from 0.78 to 0.98 as we increase the

spatial regularity of the noise. The Heun scheme consistently has strong order 1.
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best method amongst the Itô schemes.

Figure 5.6 displays the strong order of convergence for the SH equation (5.2.10) with

additive noise. Clearly, for this numerical example, the EM scheme behaves like the

ESI scheme and they both have the smallest error amongst the Itô and Stratonovich

schemes. The SETD1 and Heun schemes though have the largest error, they both

have strong order 1, which is faster than the other numerical methods. The strong

order of convergence of all the numerical methods increase as the regularity of noise

is increased. Although, we observe that for this fourth-order SPDE, the rate of con-

vergence obtained from using Hγ, γ = −1/2, 0, 1/2, 1 noise is faster compared with

the AC equation. This is because the SH equation has smoother solutions.

5.5 SPDEs with small noise:

In this section, we are interested in investigating the effects of small noise on conver-

gence of numerical methods applied to SPDEs. We carry out experiments in exactly

the same way as the sections above but now with small noise, by taking a noise in-

tensity value of ε = 0.02 in all the numerical simulations.

In Figure 5.8(a), we show the strong order of convergence of the Itô schemes: SETD0

(5.3.1), SETD1 (5.3.4), LR (5.3.7) and EM (5.3.10) schemes applied to the Itô AC

equation (5.2.1) driven by a one-dimensional multiplicative noise and the Stratonovich

schemes ESI (5.3.13) and Heun (5.3.16) schemes applied to Stratonovich AC equa-

tion (5.2.2) driven by a one-dimensional multiplicative noise. We obtain strong orders

of convergence of ≈ 1 for all the numerical methods. The SETD0 for which we proved

a theoretical convergence result in this thesis, (see Theorem 4.4.1) indicates that the

numerical result is indeed in good agreement with theory for small noise. In com-

paring our theory with numerical simulations, we consider that the noise intensity

ε scales like ∆t0.5, in which case the term that dominates in the error estimates as

obtained in the Theorem is ε∆t. We see that the LR scheme has the largest error in

this numerical example when compared to the other numerical methods. In terms of
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efficiency, the SETD0 and SETD1 schemes are computationally the fastest followed

by the ESI and EM scheme. The Heun method is the least efficient, see Figure

5.8(b).

In Figure 5.9(a), we present the strong convergence of the Itô and Stratonovich

schemes applied to the SH equation with a one-dimensional multiplicative noise (5.2.6)

and (5.2.7) respectively using a small noise intensity values of ε = 0.02. All the numer-

ical methods converge with strong order 1. We see that the Heun method behaves like

the ESI scheme. The SETD0 and SETD1 schemes are the most efficient amongst

the Itô schemes and just as we have seen previously the ESI scheme takes less com-

putational time when compared to the Heun scheme, see Figure 5.9(b).

In Figure 5.10, we show for different spatial regularity of noise, the strong con-

vergence of the SETD0, SETD1, LR and the EM schemes when applied to the Itô

AC equation with infinite-dimensional multiplicative noise and the ESI and Heun

schemes when applied to the Stratonovich AC equation with infinite-dimensional mul-

tiplicative noise with small noise intensity ε = 0.02. We observe strong order ≈ 1 when

we take Hγ noise with γ = 0, 1/2, 1. However, when noise is in H−1/2, only the LR

scheme amongst the Itô schemes achieved the strong order ≈ 1 for small noise, but

with the price of larger errors at each time step when compared to the other numerical

method, which are seen to produces strong order ≈ 0.8. In these cases, to achieve an

order 1 rate of convergence, the noise intensity value needs to be taken much smaller.

The observed trends for the AC equation with an infinite-dimensional multiplicative

noise is also seen for the case of AC equation with additive noise forcing, see Figure

5.12.

Numerical simulations to test the strong orders of convergence of the Itô and Stratonoivch

schemes applied to the Itô SH equation with infinite-dimensional noise (5.2.8) and

Stratonovich SH equation (5.2.9) multiplicative noise using small noise intensity value

ε = 0.02 suggest strong orders ≈ 1 when noise is in H1, see Figure 5.11. Similar trend

is also observed for the numerical methods applied to the SH equation with infinite-

dimensional additive noise, see Figure 5.13.
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Figure 5.7: Convergence in time for the SETD0, SETD1, LR, EM, ESI and Heun

schemes applied to the AC equation with additive infinite-dimensional noise (5.2.5).

The plot is a log-log plot of the numerical strong error (5.3.19) on [0, 1]. From (a) - (d),

is the plot of the numerical strong error (5.3.19) versus time step. In (a) H−1/2, (b)

H0, (c) H1/2 and (d) H1 noise. We observe that the numerical orders of convergence

for the Itô schemes and the ESI scheme increase from 0.5 to 1 as we increase the

spatial regularity of the noise. The Heun scheme consistently has strong order 1 as

expected.
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Figure 5.8: Convergence in time for the SETD0, SETD1, LR and EM schemes

applied to the AC equation with one-dimensional multiplicative noise (5.2.1) and the

ESI and Heun schemes applied to the AC equation with one-dimensional multiplica-

tive noise (5.2.2) with small noise intensity ε = 0.02. The plot is a log-log plot of the

numerical strong error (5.3.19) on [0, 1]. In (a) is the plot of the numerical strong

error (5.3.19) versus time step size ∆t and in (b) is the plot of the numerical error

(5.3.19) versus cputime. We see that the numerical orders of convergence of the Itô

schemes and the Stratonovich schemes are ≈ 1.
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(a) error versus ∆t for γ = −0.5
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Figure 5.9: Convergence in time for the Itô schemes: SETD0, SETD1, LR and EM

schemes applied to the SH equation with one-dimensional multiplicative noise (5.2.1)

and the ESI and Heun schemes applied to the SH equation with one-dimensional

multiplicative noise (5.2.2) with small noise intensity ε = 0.02. The plot is a log-log

plot of the numerical strong error (5.3.19) on [0, 1]. In (a) is the plot of numerical

strong error (5.3.19) versus time step size ∆t and in (b) is the plot of numerical strong

error (5.3.19) versus cputime. All the numerical schemes converge to a strong order

of ≈ 1. The SETD0 scheme for which we proved a convergence result suggests an

order of convergence of 1 and this result is in excellent agreement with the numerical

result as shown in this figure.
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Figure 5.10: Convergence in time for the SETD0, SETD1, LR and EM schemes

applied to the AC equation with multiplicative infinite-dimensional noise (5.2.3) and

the ESI and Heun schemes applied to the AC equation with multiplicative infinite-

dimensional noise (5.2.4) with small noise intensity ε = 0.02. The plot is a log-log

plot of the numerical strong error (5.3.19) on [0, 1]. From (a) - (d), is the plot of the

numerical strong error (5.3.19) versus time step. In (a) H−1/2, (b) H0, (c) H1/2 and

(d) H1. We see that the numerical orders of convergence for all the numerical method

is ≈ 1 for Hγ, γ = 0, 1/2, 1. For the case of H−1/2, only the LR and Heun schemes

achieved order 1, the other numerical schemes are of orders ≈ 0.8.
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Figure 5.11: Convergence in time for the SETD0, SETD1, LR and EM schemes

applied to the SH equation with multiplicative infinite-dimensional noise (5.2.8) and

the ESI and Heun schemes applied to the SH equation with multiplicative infinite-

dimensional noise (5.2.9) with small noise intensity ε = 0.02. The plot is a log-log plot

of the numerical error (5.3.19) on [0, 1]. From (a) - (d), is the plot of the numerical

strong error (5.3.19) versus time step. In (a) H−1/2, (b) H0, (c) H1/2 and (d) H1 noise.

We see that the order of convergence for the (5.3.2), (5.3.8), (5.3.11) and (5.3.14) is

≈ 0.8, 0.9, 1, 1 for Hγ, γ = −1/2, 0, 1/2, 1 respectively. The Heun method has order

1 for all the different spatial regularities.
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Figure 5.12: Convergence in time for the SETD0, SETD1, LR, EM, ESI and

Heun schemes applied to the AC equation with additive infinite-dimensional noise

(5.2.5) with small noise intensity ε = 0.02. The plot is a log-log plot of the numerical

strong error (5.3.19) on [0, 1]. From (a) - (d), is the plot of the numerical strong

error (5.3.19) versus time step. In (a) H−1/2, (b) H0, (c) H1/2 and (d) H1 noise. We

see that the numerical orders of convergence for the numerical methods are ≈ 1 for

Hγ, γ = 0, 1/2, 1. For the case of H−1/2, only the LR and the Heun schemes achieved

order 1.
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Figure 5.13: Convergence in time for the SETD0, SETD1, LR, EM, ESI and Heun

schemes applied to the SH equation with additive infinite-dimensional noise (5.2.10)

with small noise intensity, ε = 0.02. The plot is a log-log plot of the numerical strong

error (5.3.19) on [0, 1]. From (a) - (d), is the plot of the numerical strong error (5.3.19)

versus time step. In (a) H−1/2, (b) H0, (c) H1/2 and (d) H1 noise.

110



Chapter 5: Numerics for SPDEs.

5.6 Concluding remarks.

First, numerical simulation results for the SETD0 scheme applied to SPDEs with

one-dimensional multiplicative noise agree with the theoretical convergence results

we proved in this thesis. It was shown that the SETD0 converges with strong orders

0.5 and 1 when applied to SPDEs with large and small noise intensities respectively.

We remark that the strong convergence of the SETD0 scheme also works when ap-

plied to infinite-dimensional multiplicative noise, as we have shown through numerical

experimentation.

Secondly, we observed that the higher the regularity of the noise, the higher the order

of convergence of the numerical methods. We also observe that the error decreases

with an increase in the regularity.

Thirdly, we obtain improved order of strong convergence for small noise SPDEs. Fi-

nally, in most of the numerical examples we carried out simulations on, the ESI

schemes is the most accurate and efficient numerical methods amongst the Stratonovich

schemes and the SETD0 and SETD1 schemes are the most accurate and efficient

amongst the Itô schemes.
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Chapter 6

Numerics for the Swift-Hohenberg

SPDE.

In this chapter, we numerically investigate the influence of stochastic forcing on the

Swift-Hohenberg (SH) equation. We perform experiments with three forms of forcing,

that is, forcing with infinite-dimensional multiplicative Stratonovich noise, infinite-

dimensional multiplicative Itô noise and infinite-dimensional additive noise. In par-

ticular, our aim in this Chapter is to examine the effects of noise on the pinning

region in the bifurcation diagram of the deterministic SH equation, for specific cases

of the control parameter r, see Figure 6.1(b). The numerical methods employed for

the simulation of the equation is the ESI method introduced in section 3.2 for the

case where noise is considered in the Stratonovich sense and the SETD0 method for

the case where noise is taken in the Itô sense. For the case where noise is additive, we

remark that the Itô equation and Stratonovich equation are equivalent, therefore the

SETD0 and the ESI schemes coincides. Finally, we present numerical results for a

range of noise intensities and varying spatial correlation lengths.

6.1 Introduction to the Swift-Hohenberg equation.

The Swift-Hohenberg model for hydrodynamic instability for the Rayleigh-Bérnard

convection was first introduced in 1976 by Swift and Hohenberg [89]. Since then, the
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model has been used for studying nonlinear phenomena in various fields: For exam-

ple, pattern formation and hydro dynamical instability problems where the model

describes the onset of convection in a Rayleigh-Bénard cell heated from below (see

[10, 27]), hydrodynamics [89], nonlinear optics [69], elasticity and solid mechanics

[16]. The Swift-Hohenberg model is a higher-order extension of the classical Fisher-

Kolmogorov model [87].

The model is written as a PDE in the following form:

∂u

∂t
=

(
ru−

(
∆ + q2

c

)2

u + ρu2 − gu3
)
, (6.1.1)

where u(0) = u0 is the initial data to be supplied, x ∈ [−L,L], r ∈ R is the bifurca-

tion or control parameter which may change the qualitative behaviour of the solutions

of (6.1.1) and the parameters qc, ρ and g are coefficients that are taken as fixed. ∆

denotes the Laplace operator. The function u in (6.1.1) plays the same role as the vari-

able for concentration in chemical reactions or temperature in convection problems.

It is well known that the Swift-Hohenberg PDE exhibits multiple stable and unstable

spatially localized states (see, [72, 92, 93]). The deterministic SH equation given in

(6.1.1) has a quadratic and cubic nonlinearity. This form of equation was studied in

[10] in which they showed the existence of these localized states, also the SH equa-

tion with cubic and quintic nonlinearities was investigated in [12] . The homoclinic

snaking is illustrated graphically in the bifurcation diagram for the SH equation, see

Figure 6.1(b), where the snaking is pinned in an interval −0.01453 ≤ r ≤ −0.01245.

Our main aim in this chapter is to study the effects of noise on this pinning re-

gion.

In the literature, the effects of noise have been studied on the SH equation, for exam-

ple, in [95], the phenomenon of stochastic resonance in the Swift-Hohenberg equation

was studied and they showed that the presence of Gaussian space time white noise

in combination with periodic signal in spatial non-linear systems may give rise to or-

dered spatiotemporal structures which are not present in the absence of noise and also

pointed out that the presence of spatiotemporal stochastic resonance arising when the
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system undergoes a bifurcation is a usual mechanism for pattern formation.

It was shown in [27] that when the SH equation with a multiplicative noise term is

used to model the behaviour of the onset of convection in a Rayleigh- Bénard cell,

the noise can induce a shift in the change from conduction to convection, and cause

convection patterns to arise, a phenomenon which will not exist in the absence of

noise. In [27] also, multiplicative noise was found to have a stabilizing effect on the

convective structure.

The motivation for undergoing these studies comes from the work in [10]. In their

work, they investigated the localized states in the deterministic SH equation (6.1.1)

and show a bifurcation diagram with four branches. Two of the branches are ho-

moclinic, the other is flat and the last one is patterned. On one of the homoclinic

branches lie four sample profiles and on the other branch lie two sample profiles. Lo-

calized states were found to lie on the two homoclinic solutions contained in a pinning

interval, a result for the bifurcation of the SH equation, (see Figures 8 & 9 in [10]).

In our work, we examine the dynamical behaviour of the Swift-Hohenberg equation

(6.1.1) forced with multiplicative and additive noise, in particular, we investigate the

effect of noise on the pinning region containing one homoclinic branch for a sam-

ple profile. In the case of multiplicative noise, we consider the scenarios where the

stochastic SH equation is interpreted in the Stratonovich and Itô sense. We perform

continuation on the control parameter r for the deterministic SH equation, and obtain

the bifurcation diagram in Figure 6.1(b).

In order to study the effects of noise on the SH equation (6.1.1), we fix the param-

eters qc, ρ and g by taking qc = 0.5, ρ = 0.41 and g = 1 and then allow the control

parameter r to fluctuate, so that instead of having the term ru in equation (6.1.1),

we will have (r+νdW )u for the case where the stochastic forcing is interpreted in the

Itô sense and (r + ν ◦ dW )u = ru + νu ◦ dW for the case where the stochastic forcing

is interpreted in the Stratonovich sense. The additive noise case does not necessarily

have a direct effect on the control parameter, but we shall investigate this case to see

if we get any effect.
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We perform simulations using the following control parameter values, r = −0.015,

−0.01453, −0.013, −0.01245, −0.012, and then examine the dynamics of the solution

from the start of the integration time t = 0 to T = 8000. The key control parameter

values where we hope to see an effect of noise are the parameter values outside the

pinning interval of the deterministic SH equation, −0.01453 ≤ r ≤ −0.01245, that is,

the control parameters r = −0.015 and / or r = −0.012.

We now give the equations we shall be performing numerical simulations on.

We consider the following SPDEs with infinite-dimensional noise

“Stratonovich“ : du(t) =
[
Au(t) + f(u(t))

]
dt + νu(t) ◦ dW (t), (6.1.2)

“Ito“ :
[
Au(t) + f(u(t))

]
dt + νu(t)dW (t), (6.1.3)

“Additive“ :
[
Au(t) + f(u(t))

]
dt + νdW (t), (6.1.4)

where A = r−
(
∆ + q2

c

)2

and f(u) = ρu2 − gu3. The SPDEs are supplemented with

periodic boundary condition

u(−L, t) = u(L, t); t ≥ 0, L = 80, (6.1.5)

and initial condition

u(x, 0) = cos(0.45x)sech (exp(0.0014x2)); x ∈ [−L,L]. (6.1.6)

Note that in Chapter 5, the domain is [0, 2π]. In this Chapter, we change the domain

to [−80, 80]. Equation (6.1.6) is a ’three-bumps’ function similar to one of the sample

profiles considered in [10], see Figure 6.1(a).

Equations (6.1.2), (6.1.3) and (6.1.4) are respectively the SH equation with infinite-

dimensional multiplicative Stratonovich noise, infinite-dimensional multiplicative Itô

noise and infinite-dimensional additive noise. The parameter ν denotes the noise

intensity and W (t) is the Q-Wiener process, see Section 2.3.

In this chapter, we take noise to be white in time and with exponential decaying

correlations in space, see Section 2.8.4 in Chapter 2.
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Figure 6.1: (a) Plot of the three-bumps initial data. (b) A bifurcation diagram for

the deterministic SH equation (6.1.1) showing the pinning region within which the

solution is stable. We use parameters r = −0.013, qc = 0.5, ρ = 0.41 and g = 1 to

obtain the bifurcation diagram.

6.2 Numerical discretization of the SH equations.

We apply a Fourier Galerkin projection to the SPDEs (6.1.2), (6.1.3) and (6.1.4) and

then use the finite dimensional subspace HN of H and the projection operator PN

introduced in Section 2.8.1, to obtain a finite dimensional SDEs in the space HN .

The SODEs corresponding to the Fourier Galerkin projection of the SPDEs (6.1.2),

(6.1.3) and (6.1.4) are given respectively by

duN(t) =
[
ANuN(t) + fN(uN(t))

]
dt + νuN(t) ◦ dWN(t), (6.2.1)

duN(t) =
[
ANuN(t) + fN(uN(t))

]
dt + νuN(t)dWN(t), (6.2.2)

duN(t) =
[
ANuN(t) + fN(uN(t))

]
dt + νdWN(t). (6.2.3)

To obtain an approximate solution for uN(t) in time on the interval [0, T ], we use the

ESI scheme in (5.3.14) to approximate (6.2.1) and the SETD0 schemes in (5.3.2)

and (5.3.3) to approximate (6.2.2) and (6.2.3) respectively.
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6.3 Numerical implementation & results.

We perform the numerical simulations of (6.1.2) - (6.1.4) using the following numerical

parameters: Number of spatial grid points is 512 with x ∈ [−80, 80], thus giving the

spatial mesh size ∆x = 0.3125. We start the simulation at time zero with a 3 bumps

initial data, see Figure 6.1(a) and then evolve forward in time with a time step size

equal to ∆t = 0.2 until we reach a final time T = 8000. The following range of noise

intensity values ν = 0, 0.1, · · · , 1.5 and correlation lengths ζ = 10, 1, 0.1 were also

used.

Correlation lengths of ζ = 1 and 10 gives spatially correlated noise while a correlation

length of ζ = 0.1 gives spatially uncorrelated noise, since the length scale is less than

∆x.

We first consider the effect of multiplicative Stratonovich noise on the SH equation,

that is, we perform simulation on (6.1.2) using a range of control parameters inside,

outside and on the boundary of the deterministic pinning region. Inside the pinning

region is r = −0.013, outside the pinning region is one to the left and the other to

the right. The parameter to the left of the pinning region is r = −0.015 and to

the right of the pinning region is r = −0.012. Similarly, on the boundary, we have

r = −0.01453 to be the control parameter on the boundary of the left-end pinning

region and r = −0.01245 to be the control parameter on the boundary of the right-end

pinning interval.

6.3.1 Effect of Stratonovich noise on the pinning region in

the bifurcation for the SH equation.

We carry out simulations with all the control parameter values of interest as stated

above and then report the experimental results on a case by case basis.

For all the cases, we will be interested in the behaviour of the solution at the final

time T . In particular, we are interested in counting the number of bumps, so that

we can compare with the initial function, which is a three-bumps function. In what

follows, we present the algorithm used in calculating the number of bumps:
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Algorithm for calculating the number of bumps:

• Simulate the SH equation to obtain the solution u(x, t).

• Store the solution at the final time T , that is u(x, T ) = u(x, 8000).

• Plot the solution u(x, 8000) on the y-axis and the spatial domain, x ∈ [−80, 80]

on the x-axis.

• Set a threshold value θt = 0.15, and plot this value as a horizontal line over the

solution u(x, 8000), such the solution and the horizontal line both intersect.

• Calculate the number of times the solution u(x, 8000) crosses the threshold value

and divide it by 2.

• The resulting answer gives the number of bumps.

We remark that although the individual path of the solution u(x, 8000) is non-smooth.

We perform simulations for R realizations, and then average over the sample R. This

is what we term the average number of bumps.

We observe that R = 20 is sufficient to obtain a path that appears smooth.

Hence, we define the average number of bumps as follows:

Let the number of bumps for the sth realization be denoted by #s
bumps.

Then, for a given R samples, the average number of bumps is computed from:

1

R

R∑
s=1

#s
bumps.

We now begin to consider the different cases of control parameters for our experi-

ments:

Case 1: Outside the pinning region (left-end): r = −0.015

In Figure 6.2, is the plot of the average of number of bumps at final time T = 8000

versus noise intensity values ν = 0, 0.1, · · · , 1.5, for the simulation of (6.1.2). The

error bars along the curve are the computed standard deviations for the number of
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bumps over the range of noise intensity values ν = [0, 1.5]. The error bars are obtained

by using the mean and standard deviations of the number of bumps.

We have also added on the graph, reference lines which allows us to determine the

number of bumps we get at the final time, T for the range of increasing noise in-

tensities. We see in Figure 6.2(a) - 6.2(c) that at noise intensity value ν = 0 which

is the deterministic solution dynamics, the solution at the final time T is the zero

solution even though the time integration was started with a 3 bumps initial data.

We now consider the effects of noise on this deterministic solution dynamics by tak-

ing spatially correlated noise with correlation lengths ζ = 10, see Figure 6.2(a) and

correlation lengths ζ = 1, see Figure 6.2(b). Results suggest that over the range of

noise intensity values ν ∈ (0, 1.5], we do not see any effect of noise on the dynam-

ics of the solution. In other words, when we start the numerical simulations with a

three-bump initial data, we eventually go to the zero solution as we evolve forward

in time. However, when we considered a spatially uncorrelated noise (simulated here

with ζ = 0.1), we see in Figure 6.2(c) from ν = 0.7 that the solution curves begin

to ascend from the zero solution to the 3 bumps count reference line, and eventually

evolve to the periodic solution as noise intensity increases. The case where the so-

lution sticks at the 3 bumps is particularly interesting because that result suggests

that, if we perform simulation on (6.1.2) using noise intensity value ν = 1, correlation

length ζ = 0.1 and a 3 bumps initial data, we will obtain at the final time T = 8000, a

solution dynamics of the SH equation (6.1.2) with 3 bumps. We see clearly in Figure

6.5(b) that the 3 bumps function sticks throughout the integration time, which points

out that the spatially uncorrelated noise has a stabilizing effect on the bifurcations

for the SH equation with multiplicative Stratonovich noise.

This is an interesting phenomenon which is absent in the deterministic scenario and

hence indicates a stochastic resonance when the SH equation is forced with multi-

plicative Stratonovich noise. The implication of this phenomenon is that we will see

a shift of the deterministic pinning region as a result of this stochastic forcing.

To support our claim of stochastic resonance in this case, we perform continuation on

the control parameter r in AUTO using the Stratonovich-Itô corrected equation in
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Figure 6.2: A plot of the average of number of bumps at final time T = 8000 versus

noise intensity ν, for the simulation of (6.1.2) with control parameter r = −0.015 (out-

side the pinning region - left-end). The error bars along the curve are the computed

standard deviations for the number of bumps over the range of noise intensity values

ν = [0, 1.5]. From left to right is the correlation length used for the computations;

in (a) ζ = 10, (b) ζ = 1, (c) ζ = 0.1. Three straight lines have been added to the

graph, the three lines denote a reference line for number of bumps count. The lines

with the vertical axis value 0, 3 and 13 represent respectively, zero, three, periodic

bumps count.

(6.4.2), with the small noise expansion analysis idea in [27]. Details of this is given in

section 6.5. We see clearly in Figure 6.3 that the pinning region is shifted to the left.

In Figure 6.4 & 6.5, we show on a space-time plot of the spatiotemporal evolution of

the solution dynamics of the Stratonovich SH equation (6.1.2) with correlation length

ζ = 0.1 and noise intensities ν = 0, · · · , 1.4. These solutions are average solutions

and were obtained over 20 realizations.

Case 2: On the left-end boundary of the pinning region: r = −0.01453

Figure 6.6(a) & 6.6(b) displays the result for spatially correlated noise applied to
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0

0.05

0.1

r

N

Figure 6.3: Bifurcation diagram for the Stratonovich SH equation with spatially un-

correlated noise. We add in the plot, the bifurcation diagram for the deterministic

SH equation for comparison. We see the pinning interval of −0.1453 ≤ r ≤ −0.01245

for the deterministic SH equation and −0.168 ≤ r ≤ −0.0146 for the SH equation

with Stratonovich spatially uncorrelated noise.
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(a) ν = 0 (b) ν = 0.1 (c) ν = 0.2

(d) ν = 0.3 (e) ν = 0.4 (f) ν = 0.5

(g) ν = 0.6 (h) ν = 0.7 (i) ν = 0.8

Figure 6.4: Spatiotemporal evolution of the solution dynamics of the Stratonovich SH

equation (6.1.2) using fixed control parameter r = −0.015, correlation length ζ = 0.1

and varying noise intensities, ν ∈ [0, 0.8]. Other parameters are qc = 0.5, ρ = 0.41

and g = 1. Solutions were averaged over 20 realizations.
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(a) ν = 0.9 (b) ν = 1 (c) ν = 1.1

(d) ν = 1.2 (e) ν = 1.3 (f) ν = 1.4

Figure 6.5: Spatiotemporal evolution of the solution dynamics of the Stratonovich SH

equation (6.1.2) using fixed control parameter r = −0.015, correlation length ζ = 0.1

and varying noise intensities, ν ∈ [0.9, 1.4]. Other parameters are qc = 0.5, ρ = 0.41

and g = 1. Solutions were averaged over 20 realizations.
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(6.1.2). We see that the three bumps solution which exists in the deterministic set-

ting, when ν = 0, eventually ceases to exist when noise is taken into account, as

we see that all the solutions for the increasing noise intensities do evolve to the zero

solution, in other words, the 3 bumps solution destabilizes to the zero solution with

the inclusion of spatially correlated noise. However, when spatially uncorrelated noise

was used on (6.1.2), the three bumps solution existed in the deterministic setting and

then stabilizes for large range of noise intensity parameter values in ν = [0, 0.9] before

evolving to the periodic solution, see Figure 6.6(c). We also noticed that for noise

intensity value ν ∈ [0.1, 0.4], the behaviour of the average solution is not 3 bumps,

and this is might be as a result of realizations evolving to the zero solution.

Case 3: Inside the pinning region: r = −0.013

We study the effects of noise on (6.1.2) with control parameter r = −0.013, we ob-

serve that for spatially correlated noise with ζ = 10, the solution is stable against

noise for all the noise intensities examined, see Figure 6.7(a). Figure 6.7(b) shows the

result with ζ = 1, we see that the solution is stable against noise for noise intensity

values ν = [0, 0.7] and then slowly evolve towards the periodic solution, although

it never arrived to the periodic solution for the remaining noise intensity values we

experimented with. Finally, Figure 6.7(c) shows that the solution is at stable against

noise although with a smaller range of noise intensities values, that is, ν = [0, 0.4],

when compared with the SH equation with spatially correlated noise. The solution

eventually goes to the periodic solution with increasing noise intensity.

Case 4: On the right-end boundary of the pinning region: r = −0.01245

Figures 6.8(a), 6.8(b) & 6.8(c) display the result of the SH equation (6.1.2) with

control parameter r = −0.01245, we observe that for all the correlation lengths con-

sidered in this experiment, the solution which is stable in the deterministic scenario

is no longer stable even for very small noise, the solution is seen to evolve towards

the periodic solution with increasing noise intensity values. We also observed that as

ζ → 0, the three bumps solution evolves at a much faster rate to the periodic solution,

which indeed gives an indication that spatially uncorrelated noise has stronger effect

on the SH equation (6.1.2).
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Figure 6.6: A plot of the average of number of bumps at final time T = 8000 versus

noise intensity ν, for the simulation of (6.1.2) with control parameter r = −0.01453

(left-end boundary of the pinning region). The error bars along the curve are the

computed standard deviations for the number of bumps over the range of noise in-

tensity values ν = [0, 1.5]. From left to right is the correlation length used for the

computations; in (a) ζ = 10, (b) ζ = 1, (c) ζ = 0.1. The description for the straight

lines in the graph is given in Figure 6.2.
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Figure 6.7: A plot of the average of number of bumps at final time T = 8000 versus

noise intensity ν, for the simulation of (6.1.2) with control parameter r = −0.013

(inside the pinning region). The error bars along the curve are the computed standard

deviations for the number of bumps over the range of noise intensity values ν = [0, 1.5].

From left to right is the correlation length used for the computations; in (a) ζ = 10,

(b) ζ = 1, (c) ζ = 0.1. The description for the straight lines in the graph is given in

the caption to Figure 6.2.

Case 5: Outside pinning region (right-end): r = −0.012

For this case r = −0.012, we see in Figures 6.9(a), 6.9(b) & 6.9(c) that even though

we start at a 3 bumps initial data to march the solution forward, the solution at the

final time T = 8000 is periodic in the deterministic setting, that is, for noise intensity

value ν = 0. Inclusion of noise doesn’t really show any new interesting dynamics, as

can be observed that the solution evolves to the periodic case.

6.3.2 Effects of Itô noise on bifurcation for the SH equation.

In this section we briefly investigate whether Itô noise has any effect on the dynamics

of the solution of Itô SH equation (6.1.3) and if it does, does it lead to the stabilizing
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Figure 6.8: A plot of the average of number of bumps at final time T = 8000 versus

noise intensity ν, for the simulation of (6.1.2) with control parameter r = −0.01245

(right-end boundary of the pinning region). The error bars along the curve are the

computed standard deviations for the number of bumps over the range of noise in-

tensity values ν = [0, 1.5]. From left to right is the correlation length used for the

computations; in (a) ζ = 10, (b) ζ = 1, (c) ζ = 0.1. The description for the straight

lines in the graph is given in the caption to Figure 6.2.
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effects we observed in the Stratonovich case? We carry out in the same manner the

experiment as we implemented in the Stratonovich case. For the Itô case, numerical

experiments to study the effects of noise on the control parameter values of interest

suggests that multiplicative Itô noise does not produce a phenomenon different from

what happens in the deterministic setting. We only report the results of the experi-

ments carried out with control parameter r = −0.015, since we are mainly interested

in what happens outside the left-end of the pinning region in the bifurcation diagram

in Figure 6.1(b). We clearly see that for all the correlation lengths ζ = 0.1, 1 & 10, we

do not see any effect of noise on the dynamics of the SH equation when forced with

Itô noise, see Figure 6.10. The solution remains at the zero state in the deterministic

and for all the ranges of noise intensity considered. For the continuous flow of reading

in this chapter, we do not display the figures for the other control parameter values

here, since the results are not so particularly interesting.

6.3.3 Effects of additive noise on bifurcation for the SH equa-

tion.

In this section, we investigate the effect of additive noise on the SH equation. We

perform numerical simulations on (6.1.4) using the control parameter r = −0.015 in

the same manner as was done for other forms of stochastic forcing. Results shows

(figures not displayed in the thesis) that we do not see any interesting effect of noise

on bifurcation of (6.1.4) whether the noise is spatially correlated or not. Depending

on the model, additive noise has been found in the literature to have stabilized and

destabilized a phenomenon. For example in [5] they show that additive noise gave

some stabilization effect, while in [22], additive noise was found to have a disordering

effect on the convective pattern as the noise intensity is increased in the the two-

dimensional SH equation.

128



Chapter 6: Numerics for the Swift-Hohenberg SPDE.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

2

4

6

8

10

12

14

16

ν

#
 o

f 
b

u
m

p
s

r =  −0.012, ζ =  10

(a) ζ = 10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

2

4

6

8

10

12

14

16

ν

#
 o

f 
b

u
m

p
s

r =  −0.012, ζ =  1

(b) ζ = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

2

4

6

8

10

12

14

16

ν

#
 o

f 
b

u
m

p
s

r =  −0.012, ζ =  0.1

(c) ζ = 0.1

Figure 6.9: A plot of the average of number of bumps at final time T = 8000 versus

noise intensity ν, for the simulation of (6.1.2) with control parameter r = −0.012

(outside the pinning region - right-end). The error bars on the curve connecting the

solutions for increasing noise intensities were calculated as the mean standard error.

From left to right is the correlation length used for the computations; in (a) ζ = 10,

(b) ζ = 1, (c) ζ = 0.1. The description for the straight lines is given in the caption

to Figure 6.2.
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Figure 6.10: Itô case: A plot of the average of number of bumps at final time T =

8000 versus noise intensity ν, for the simulation of (6.1.3) with control parameter

r = −0.015. The error bars along the curve are the computed standard deviations for

the number of bumps over the range of noise intensity values ν = [0, 1.5]. From left

to right is the correlation length used for the computations; in (a) ζ = 10, (b) ζ = 1,

(c) ζ = 0.1. The description for the straight lines in the graph is given in the caption

to Figure 6.2.
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6.4 Drift correction for Stratonovich SH equation

into an Itô equation.

Our objective in this section is to apply a drift-correction formula in (2.1.10) on the

Stratonovich SH equation (6.1.2) to obtain an Itô equation for which the solution are

equivalent.

The stochastic SH equation interpreted in the Stratonovich sense has a nonzero mean

value for the multiplicative noise term, unlike the stochastic SH equation interpreted

in the the Itô sense, whereby the multiplicative noise term has zero mean value, as

the noise itself. Consequently, converting the Stratonovich SH equation (6.1.2) to the

Itô SH equation (6.4.2) implies that we are adjusting the mean of the noise term to

zero.

Converting the Stratonovich SH equation to the Itô formulation, allows us to take

out the systematic contribution of noise [27] on the corrected equation, which then

provides the framework to carry out AUTO computations, see §6.5.

In what follows, we apply the drift correction formula on the Stratonovich SH equation

(6.1.2) given by

du =
[
Au + f(u)

]
dt + νg(u) ◦ dW (t), (6.4.1)

where A = r −
(
∆ + q2

c

)2

, f(u) = ρu2 − gu3, g(u) = u, and W (t) is a Q-Wiener

process given in (2.3.9).

We convert the Stratonovich SH equation (6.4.1) into an Itô equation by using a drift

correction term which uses the trace of Q denoted as TrQ in the correction term

coming from the diffusion term of the SPDE. The TrQ indeed has the contribution of

spatial correlation of the noise.

du =

[
Au + f(u) + ν2TrQg(u)′g(u)

]
dt + νg(u)dW (t), (6.4.2)

where TrQ =
∑

n λn. The λn are the eigenvalues of the Q-Wiener process and it is

computed from (2.8.34), since we are considering noise to be white in time and with

exponential decaying correlations in space.

Small noise expansion analysis as described in [27] suggests that we can take out
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the systematic contribution of noise on the drift term by looking at the average be-

haviour of (6.4.2). Thus, the average behaviour of the (6.4.2) is approximated by the

deterministic equation

du =

[
Au + f(u) + ν2TrQg(u)′g(u)

]
dt, (6.4.3)

which is essentially the equation we considered for AUTO computations. To show that

the solution we get from simulating (6.4.1) and (6.4.2) both have the same result, we

perform numerical experiments on both equations using the same parameter values.

We see in Figure 6.11(a) that applying the ESI method (5.3.14) on (6.4.1) agrees

with Figure 6.11(b) where we applied the SETD0 method (5.3.2) on (6.4.2). We

have plotted in Figure 6.11(c), the L2 norm solutions of the Stratonovich equation

(6.4.1) and the Itô equation (6.4.2) and in Figure 6.11(d) is the plot displaying the

error between the two solutions which is of magnitude ≈ 10−3, which indicates that

the error is very small.

6.5 Continuation on the control parameter.

For the deterministic case, we carried out continuation on the control parameter r in

(6.1.1) using AUTO and present the bifurcation diagram in Figure 6.1(b). To perform

continuation on the control parameter r for the deterministic SH equation (6.1.1), we

need to consider the solution at equilibrium. That is,

0 = ru−∆2u− 2q2
c∆u− q4

cu + ρu2 − gu3. (6.5.1)

The equation is then reduced to the following four-dimensional systems of ODEs.




u̇1 = u2

u̇2 = u3

u̇3 = u4

u̇4 = −2q2
cu3 + (r − q4

c )u1 + ρu2
1 − gu3

1

(6.5.2)

where r is the continuation parameter, g, ρ and qc are parameters which we take to

be 1, 0.41 and 0.5 respectively.
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(a) Solution of (6.4.1). (b) Solution of (6.4.2).
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Figure 6.11: The plots shows the agreement of solution of (6.4.1) and (6.4.2) having

performed a drift correction on (6.4.1). For both equations a path of the solution

is simulated based on the same path of the Wiener process. In (a) is the solution

of equation (6.4.1), in (b) is the solution of the Itô equation (6.4.2) obtained from

performing a drift correction on (6.4.1), (c) is a plot of ||u||2 versus time; The term

||u||2 denotes the norm of the solution of (6.4.1) and (6.4.2) at each point in time over

the integration time. (d) is a plot of error versus time; The expression error in Figure

6.11 stands for the L2 norm of the difference between the solution obtained when

(6.4.1) is discretized using the ESI scheme and the solution obtained when (6.4.2) is

discretized using the SETD0 scheme.
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Chapter 6: Numerics for the Swift-Hohenberg SPDE.

For the stochastic case, we carry out continuation by applying a numerical small

noise expansion analysis on the stochastic SH equation, which means that if we wish

to perform continuation on the Itô equation in (6.4.2), we will neglect the stochastic

contribution of noise on the diffusion part of the equation and only consider the fol-

lowing equation with an extra term in the nonlinearity of the stochastic SH equation,

see equation (6.4.3).

For continuation of the control parameter r on the stochastic SH equation, we denote

the factor ν2TrQ in (6.4.3) by K, and we modify the function u̇4 in (6.5.2) as

u̇4 = −2q2
cu3 + (r − q4

c )u1 + νu2
1 − gu3

1 + Ku1. (6.5.3)

The resulting four-dimensional system of ODEs were then used in AUTO to obtain

the bifurcation diagrams displayed in Figure 6.3.

6.6 Conclusion

We conclude this chapter with the following key results. Bifurcation diagram for

the deterministic SH equation suggests that stable localized solutions are contained

within the pinning region bounded by r = −0.01453 and r = −0.01245, see Figure

6.1(b). We showed that the inclusion of Stratonovich spatially uncorrelated noise in

the SH equation with control parameter r = −0.015 changes the range of the pinning

region by shifting the homoclinic branch which contains the localized stable solution

a further distance to the left on the bifurcation diagram, see Figure 6.3.

We remark that there is an open question in the case of what influence spatially

correlated noise has on the bifurcation of the SH equation because small noise expan-

sion analysis suggests that there exist a control parameter outside the deterministic

pinning region for which stabilization occurs.
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Chapter 6: Numerics for the Swift-Hohenberg SPDE.

@
@

@
@@

ν

r −0.018 −0.015 −0.01453 −0.013 −0.01245 −0.012

0 0 0 1 1 1 0

0.1 0 0 1 1 0 0

0.2 0 0 0 1 0 0

0.3 0 0 0 1 0 0

0.4 0 0 1 1 0 0

0.5 0 0 1 1 0 0

0.6 0 0 1 0 0 0

0.7 0 0 1 0 0 0

0.8 0 0 1 0 0 0

0.9 0 1 1 0 0 0

1 0 1 1 0 0 0

1.1 0 1 0 0 0 0

1.2 0 0 0 0 0 0

1.3 0 0 0 0 0 0

1.4 0 0 0 0 0 0

1.5 0 0 0 0 0 0

Table 6.1: A compact tabular representation of the dynamics of the solutions of (6.1.2)

with spatially uncorrelated noise at final time T = 8000 with varying noise intensities

ν = [0, · · · , 1.5], correlation length ζ = 0.1 and for all the control parameters r

used in the experiment. The cells with 0 indicates instability while the cells with 1

indicates stability. By stability, we mean if we start the simulation of the stochastic SH

equation with three-bumps initial data, then the dynamics of the solution throughout

the integration time is three-bumps in nature, otherwise it is unstable.

135



Chapter 7

Conclusions.

In Chapter 2, we give some background materials on SODEs and SPDEs used in this

thesis. In particular, we give results concerning the existence and uniqueness of so-

lution of Itô SODEs and SPDEs. We also outline standard numerical approximation

techniques for the solution of these equations interpreted in the Itô and Stratonovich

sense.

In Chapter 3, we give a review on the deterministic ETD schemes and then de-

veloped three stochastic versions of the exponential time differencing scheme. Two

of the schemes are suited for the simulation of Itô SDEs, we call these the Stochas-

tic Exponential Time Differencing (SETD0) and (SETD1) schemes; and the other

scheme is suited for the simulation of Stratonovich SDEs, we call this the Exponential

Stratonovich Integrator (ESI). We tested these numerical schemes by numerically in-

vestigating their rates of strong convergence. We compared the ESI scheme against

the standard Heun scheme and compared the SETD0 and SETD1 schemes against

the EM and LR schemes. We considered four numerical examples all interpreted in

the Itô and Stratonovich sense. Numerical results indicate that we get strong orders

of convergence of ≈ 0.5 for the SETD0, SETD1, EM and LR schemes; and strong

orders of convergence of ≈ 1 was obtained for the ESI and Heun schemes for equa-

tions with scalar noise and SODEs driven by one Wiener process. However, we obtain

lower strong orders for the Stratonovich schemes when the SODE is driven by two
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Wiener processes. This result has been reported in the literature, see [79].

In the literature it has been shown that the rate of convergence of a numerical method

can be improved if the strength is noise is considerably small. Thus, we analyzed the

effects of small noise on SODEs using a population dynamics scalar SDE. In addition

to the numerical schemes used above, we carry out simulations with the Milstein

scheme. Numerical results show a rate of strong convergence of order 1 for all the

numerical methods.

The strong order of convergence that were observed numerically are indeed in good

agreement with theoretical results in the literature. We also showed the plots of the

solutions from the different stochastic calculus interpretations, and we see that all the

solution paths agree, which shows that we can use the drift-correction techniques to

carry out Itô-Stratonovich correction and vice-versa, Stratonovich-Itô correction.

The new numerical method we introduced in Chapter 3 called the exponential Stratonovich

integrator ESI was used to carry out simulations. Simulations were also carried out

with the standard Heun method and we observe that we get the same dynamics of

solutions from using the both schemes. Thus, we investigate the accuracy and effi-

ciency of the ESI and Heun schemes by examining their strong order of convergence.

Indeed numerical results suggest that the ESI scheme has approximately the same

accuracy and efficiency as the standard Heun scheme.

In Chapter 4, we proved theoretical strong convergence results for the SETD0 schemes

applied to parabolic SPDEs with infinite-dimensional additive noise and one-dimensional

multiplicative noise. However, we do not prove a convergence result for SPDEs with

infinite-dimensional noise. In all these cases, we consider that the SPDEs have only

one driving Wiener process. For the numerical approximations of SPDEs, we con-

sidered a Fourier based Galerkin approximations for the spatial variables and the

SETD0 scheme for the time variable. We obtained the following strong error esti-

mates, which are in the root mean square sense.
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Multiplicative noise SPDE; see Theorem 4.4.1 .

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C

(
N−2 + ∆tθ + N−r|α−1

N |

+ ε∆tθ + ε2∆t1/2 + εN−r|α−1/2
N |

)
.

Additive noise SPDE; see Theorem 4.5.1.

(
E

[∣∣∣
∣∣∣u(tj)− uN(tj)

∣∣∣
∣∣∣
2
])1/2

≤ C

(
N−2 + ∆tθ + ε2∆t + N−r|α−1

N |+

ε∆tN−γ|α1/2
N |+ εN−γ|α−1/2

N |
)

.

We also show four complimentary results, see Corollaries 4.4.2, 4.4.3, 4.5.2 and 4.5.3.

These results show the strong convergence of the SETD0 scheme applied to a second-

order SPDE (for example, the Allen-Cahn equation) and a fourth-order SPDE (for

example, the Swift-Hohenberg equation) for one-dimensional multiplicative Itô noise

and infinite-dimensional additive noise.

In Chapter 5, we numerically investigated the strong convergence of six numerical

methods for the solution of SPDEs. Four of the numerical methods, that is, the

SETD0, SETD1, LR and EM schemes are suited for the simulation of Itô SPDEs,

while the remaining two numerical methods, that is, the ESI and Heun schemes are

suited for the simulation of Stratonovich SPDEs.

We test the convergence of these numerical methods by performing numerical sim-

ulations on two SPDE examples. We considered a second-order SPDE, that is, the

Allen-Cahn equation and the fourth-order SPDE, that is, the Swift-Hohenberg equa-

tion. In addition, we examined the effects of small and large noise for the convergence

of the numerical schemes.

Numerical results for the SETD0 schemes confirms the convergence proof in Chapter

4, for the case of SPDE with one-dimensional noise, we obtain rates of convergence

of 1/2 and 1 for the case where noise is large and small respectively. These rates are



in excellent agreement with the theoretically predicted rates of convergence.

The ESI scheme was found to be more accurate and efficient than the Heun scheme

in all the numerical simulations on SPDEs interpreted in the Stratonovich sense.

In Chapter 6, we considered the effects of noise on bifurcations for SPDEs. In partic-

ular, we study the effects of spatially correlated and uncorrelated noise on the snaking

region for localized states in Swift-Hohenberg equation. We considered the SH equa-

tion with both the additive and multiplicative noise in dW. For the SH equation with

multiplicative noise, we considered the equation both the Itô and Stratonovich sense.

Direct simulations of the SH equation with Stratonovich spatially uncorrelated noise

suggest that we obtain a stochastic resonance, that is to say, we obtained an effect

which does not exist in the deterministic setting. We see a shift in the snaking region,

this means there is a stabilizing effect of spatially uncorrelated noise on the SH equa-

tion for the range of control parameters where solutions were shown to be unstable

in the deterministic scenario.
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