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Abstract— Increasing prevalence of DC sources and loads has

resulted in DC distribution being re-considered at a micro-grid

level. However, in comparison to AC systems, the lack of a

natural zero crossing has traditionally meant that protecting DC

systems is inherently more difficult – this protection issue is

compounded when attempting to diagnose and isolate fault

conditions. One such condition is the series arc fault, which poses

significant protection issues as their presence negates the logic of

overcurrent protection philosophies. This paper proposes the

IntelArc system to accurately diagnose series arc faults in DC

systems. IntelArc combines time-frequency and time domain

extracted features with hidden Markov models to discriminate

between nominal transient behavior and arc fault behavior

across a variety of operating conditions. Preliminary testing of

the system is outlined with results showing that the system has

the potential for accurate, generalized, diagnosis of series arc

faults in DC systems.

(Index Terms) – Fault diagnosis, arc discharges, DC power

systems, hidden Markov models, wavelet transforms

I. INTRODUCTION

he prevalence of DC distribution is a consequence of an

increasing reliance on distributed renewable energy

sources, higher penetrations of electric vehicles and storage

systems, and an overall rise in DC loads such as computers,

solid-state lighting and building networks [1]. This prevailing

trend is not limited to land-based systems, as attempts to

further optimize aircraft [2] and shipboard systems [3] using

the more-electric and all-electric concepts has also given rise

to an increased dependence on DC distribution within such ad-

hoc configurations. In general, employing DC distribution

over AC has the potential to reduce losses in feeders, provide

improved power quality, enhance reliability and reduce the

number of power conversion stages [4]. However, ensuring

that the distribution network is properly protected throughout

fault conditions is a principal challenge which must be

addressed before these perceived benefits are fully realized. It

is well established that the lack of a natural zero crossing

means that the protection of DC systems is inherently more

difficult to achieve in comparison to AC systems [5];

furthermore, protecting DC systems from fault conditions that

have traditionally been difficult to detect exacerbates this

protection challenge. The series arc fault is one such fault

condition that poses significant protection issues [6].

Series arc faults occur in series with loads at unintended

points of discontinuity within an electrical circuit [7]. These

circuit imperfections often emerge as a contact separation or
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loose connection– in harsh operating environments vibration

often results in series arcing exhibiting intermittent behavior.

These faults introduce additional impedance between source

and load, and the resultant decrease in network current means

they are particularly difficult to detect using conventional

overcurrent protection practices. At DC levels, the increased

probability of a sustained arcing event means they present a

significant fire hazard. Their presence has been known to

affect the secure and reliable distribution of power in

photovoltaic [8], aircraft [9], and shipboard [10] systems.

Previous systems have been developed that aim to detect the

onset of series arc fault conditions, however, major challenges

still exist with regards to increasing overall accuracy of

detection and establishing generalized systems that can

accurately diagnose faults across a variety of operating

conditions. This paper proposes IntelArc, an intelligent

diagnostic system that aims to address these challenges.

IntelArc is based on the Hidden Markov Model (HMM) [11],

and uses features extracted from network data in both the time

and time-frequency domains.

The next section of the paper describes arc faults, including

difficulties in detecting series conditions and previously

proposed diagnostic systems. Section III discusses the

suitability and benefits of using HMM for arc fault diagnosis

(AFD). Section IV describes the method of the IntelArc

system, and elaborates on: an arc fault model used for

generation of synthetic training data; extraction and selection

of fault features from the training data; and, HMM training.

Section V uses two case studies to test and validate the

IntelArc method and conclusions are provided in Section VI.

II. SERIES ARC FAULTS & EXISTING DIAGNOSTIC SYSTEMS

Normal arcing events occur during mechanical switching

operation of circuit breakers and contactors [12] – these

devices are designed to withstand arc formation and normal

arcing is typically highly transient and unsustainable.

Conversely, arc current through ionized gas during fault

events may be fully sustained; the high heat generated can

lead to partial volatilization of the conductors and increases

the risk of fire to surrounding insulation [13]. There are many

conditions which may cause an arc fault, including [7]:

Chemical, electrical and mechanical deterioration of

wiring and interconnections.

Presence of moisture or fluids on the insulation

enabling leakage currents to create small electrical

discharges across voids to other conductors: this

condition is termed wet arc tracking.

Loose terminal connections.
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Fig. 1: Example of a sustained series arc current waveform.

Arc faults are categorized as either parallel or series - this

paper focuses solely on the detection and diagnosis of series

arc fault conditions. Series arcing usually begins with either

chemical corrosion of pin-socket connections or loose

connections in series with loads. A significant detection issue

with the series arc fault is the fact that, as the ionized gap is in

series with the load, fault current actually decreases below

load rated current and well below relay trip curves.

In DC supplied systems there is no natural current zero. As

a result, arcing conditions are more sustainable and,

potentially, more dangerous – a typical series arc current

waveform in a DC system is illustrated in Fig. 1, where arcing

over a sustained period is evident. This waveform was

captured using a network model of a 270VDC rectifier

interfaced system supplying a purely resistive load - the fault

model described in Section IV (A) was implemented in this

network model to characterize arc fault conditions. The

hazards that series DC arc fault events pose to safety and

reliability of supply, combined with the associated detection

difficulties, has resulted in significant scope for the

development of accurate diagnostic systems to mitigate their

impact.

Systems for diagnosing arc faults are classified as either

mechanical or electrical [14]. Electrical based systems extract

arc features in the time [15], frequency [16] or time-frequency

[17] domains, and algorithms analyze these extracted features

to determine the presence of arcing events.  The transient,

non-stationary, characteristics of arcing conditions means that

systems that rely on time-frequency domain extractions hold

the most promise for accurate diagnosis of arc fault

conditions.

Series DC AFD systems based on all three feature

extraction methods have been proposed in the literature. Guo

et al. [18] defined a system that identifies a period of time

between a sudden drop in load current and arc ignition as an

arc precursor time. Kilroy et al. [19] developed a system based

on averaging load current signals over time periods. Momoh

[20] proposed a system that used spectral energy from nominal

and fault events to train separate artificial neural networks

(ANN). Other time domain and frequency domain series DC

AFD methods are outlined in [21-23]. Yunmei et al. [24]

described a system based on time-frequency domain features

that utilized the energy of extracted wavelet transform (WT)

[25] coefficients for fault diagnosis. Yao et al. [26] developed

a system based on time and time-frequency features for

application to representative DC microgrid networks. The

system used statistics calculated from current data, and

coefficients extracted using the WT, for fault diagnosis.

Despite the development of multiple AFD systems, major

challenges still exist concerning maintaining high diagnostic

accuracy across a range of operating conditions. Accurately

diagnosing faults that are often highly intermittent and cause

reductions in system current is already a difficult task -

attempting to develop an accurate and generalized diagnostic

system is a significant challenge. Reliance on algorithms that

compare extracted features with basic thresholds, as the

majority of these systems do, will not suffice in meeting this

challenge based on robustness to noise alone. Consequently,

this paper proposes IntelArc, a machine learning (ML) based

system that uses extracted features to train HMM and

increases the potential for an accurate and generalized

diagnostic performance.

III. HMM BASED ARC FAULT DIAGNOSIS

A range of ML techniques have the potential to diagnose

series DC arc faults, including; ANN [20], support vector

machines (SVM) [27] and Bayesian networks [28]. HMMs

[11] can be used in classification problems associated with

noisy time-series data even though they do not have exact

domain knowledge of the problem [29]. Traditional

applications of HMM are in speech, handwriting and gesture

recognition [30]. More recently, they have been applied in

classifying patterns in process trend analysis [31], machine

condition monitoring [29] and AC transmission/distribution

networks [32, 33] – they have not previously been applied for

diagnosis of series DC arc faults. HMMs assume that the

system modeled is a Markov process with unobserved

(hidden) states, and that system data is a noisy observation of

this process.

The main benefit of applying HMMs in this application area

is their suitability for detection of non-stationary signals – this

feature makes them ideal for diagnosis of faults that exhibit

highly transient characteristics. The flexible choice of

observation model, a Gaussian mixture distribution for

example, makes them robust to noise and removes the need for

normalization constants, which could otherwise result in

different scaling factors between training and test data sets,

hampering generalization capability. As probabilistic models,

HMMs also provide a log-likelihood (LL) metric that

quantifies the probability of various fault hypotheses – this

form of diagnostic explanation is not provided by ANNs for

example, which would only provide a binary classification or

regression with no accompanying confidence metric. The

probabilistic formulation is also attractive from the perspective

of combining models, which can be performed through well-

understood axioms of probabilistic inference. An HMM based

system is also highly scalable and can be readily updated (i.e.

without retraining multiple models) to include models of

emergent system conditions. Through formal model selection

procedures, over-fitting of HMMs can be avoided - while

choice of the most likely model could be by optimizing LL,

using Bayesian information criterion (BIC) [30] instead

ensures the fit is not overly representative of the training

examples by penalizing model complexity.
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Fig. 2: Outline of IntelArc method - only three trained HMM are illustrated for brevity: these relate to models of nominal steady-state, nominal

transient and series arc fault conditions respectively. In practice, further HMM relating to different conditions could be trained and

implemented within the framework

IV. INTELARC – METHOD OVERVIEW

Fig. 2 outlines the method of the proposed IntelArc system.

The system utilizes a framework of trained HMM relating to

different network conditions. Features are extracted from

windows of network current data and applied to each trained

HMM within the framework for inference of series arc faults.

Current can be sampled at various locations throughout the

network and each load current window covers 50ms of system

operation. Each HMM outputs a LL measure which quantifies

the similarity of on-line data with the trained parameters of the

HMM. An algorithm analyses the LL output of each HMM

every 50ms, and the system outputs an alarm if there is

sufficient evidence to suggest the presence of arc fault

conditions – 50ms was deemed a sufficient length of time to

safely diagnose and isolate arcing conditions and also decrease

the probability of false detections. The process is repeated as

new windows of current data become available.

A. Generation of Arc Fault Data

A software model was used for generation of arc fault data.

The model was proposed by Uriarte et al. - a complete

description of the model is provided in [34]. The model was

designed to represent arcing conditions between electrodes

that separate at a constant speed and eventually dwell at a

fixed distance. Arc voltage, current, and resistance outputs

were compared to similar DC arc models within literature [35]

to assess similarity and thus ensure that it is accurately

representative of series DC arc conditions.

Fig.3: Comparison of model outputs with Paukert’s formulas.

The model is a hyperbolic approximation of dynamic arc

voltage and current that assumes arc impedance is

predominantly resistive. Non-intermittent fluctuations in

voltage and current are used to represent unsuccessful

quenching attempts. Arc voltage gradient of the model i.e.

how voltage varies with arc gap was compared with

previously defined values by both Browne (12V/cm) [36] and

Strom (13.4V/cm) [35].

Average gradient of the model was ≈ 10V/cm. Despite

exhibiting slightly lower values, there is agreement with

Browne and Strom’s models, particularly for smaller electrode

gaps. V-I characteristics of fixed length arcs are generally

considered to be inverse and non-linear below a current

transition level. For arc currents above this level (which is

defined to be in the region of 10-13A for small electrode gaps

[37]), voltage increases only minimally with current.

Evaluation of model V-I behavior showed minimal agreement

with lower current characteristics, although it did accurately

characterize voltage for current ranges above the transition

level. In this sense, an associated caveat of the model is that

voltage output at arc currents below ≈ 10A are less accurate.

Paukert [38] defined a formula that quantified arc

impedance; a comparison between model impedance and this

formula for various electrode gaps is provided in Fig. 3.The

general non-linear characteristic of arc impedance was

captured within the model where resistance increases

significantly at lower current values and becomes almost

constant at higher current. There is also acceptable agreement

with Stokes, albeit with arc resistance slightly lower for

corresponding current magnitudes – this suggests that arc

voltage magnitude is slightly lower than the empirical formula

proposed.

Arcing current frequency spectrums up to 200 kHz were

observed within data simulated in the basic system model

described in the following sub-section using the fast Fourier

transform (FFT) – spectrums across different fault conditions

are illustrated in Fig.4. Analysis of the spectrums highlighted

greater energy content at higher harmonic levels under arcing

conditions in comparison to nominal background noise.

Indeed, there is roughly a 25dB disparity at a frequency as low

as 10 kHz.  FFT results were comparable to those presented in

[39]. Overall, these comparisons validate accuracy of the fault

model with a sole inconsistency concerning V-I characteristics

at low current levels. However, voltage gradients, arc
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Fig. 4: Frequency spectrums throughout different arc fault conditions.

impedance and frequency characteristics showed relative

agreement. Generation of intermittent series fault data was

required to test IntelArc’s ability to accurately diagnose

intermittent events. Hence, the sustained fault model proposed

in [34] was extended to include fault intermittency. This

extension includes functionality that randomly switches the

voltage developed across a sustained arc fault from arc voltage

to zero to represent intermittent separation of contactors – the

process of initiating a sustained fault and then switching

voltage across the fault to zero at a random time after fault

onset can be reproduced multiple times throughout one

simulation run of the model to create intermittent conditions.

B. Arc Fault Feature Extraction & Selection

In ML based diagnostic systems, features extracted from

data should be optimally discriminative between the different

conditions/behaviors under consideration [40]. Extracting

features in the time-frequency domain highlights the

frequency components that are present at particular points of

time in a signal - the transient characteristics of arc faults

means that, theoretically, there should be relatively significant

differences between the time-frequency extracted features of

nominal and fault conditions. The discrete WT (DWT)

extracts different bands of frequencies from a signal through

successive filtering and down-sampling. Different bands of

high frequencies are output as detail coefficient levels whereas

bands of low frequencies are output as approximate coefficient

levels [41]. Analyzing how the detail and approximate

coefficient levels vary throughout different system conditions

was the main goal of feature selection. For further information

on DWT theory refer to [41].

Training data was simulated using a basic system model

comprising a six pulse passive diode rectifier feeding an either

purely resistive or reactive load. AC input to the rectifier was

230VAC, with frequency varying between 50-400Hz

throughout different simulation runs, to provide 270VDC to

the load.  Fault conditions were initiated on the load feeder

using randomized instances of the intermittent arc model

described and validated in the previous sub-section: speed of

electrode separation was randomized between 5 and 25mm/s,

and the distance at which the electrodes dwell was randomized

between 1 and 15mm.   System current is sampled at 20 kHz

and has 5 kHz noise – the noise model is Gaussian distributed

with 0 mean and 0.001 variance that is sampled every 20ms

throughout each simulation to model sensor noise. 5 kHz was

chosen as this lies in the middle of the observed 0-10 kHz

bandwidth of a 20 kHz sampled signal. The following sub-

sections describe feature extraction and selection from the

simulated training data.

1- Time-Frequency Domain Extraction – Approximate

Coefficients

Fig. 5 (a) illustrates a training data example of a 50ms

window of normalized system current throughout nominal

conditions (left) with the associated level 1, 3 and 5 extracted

DWT approximate coefficients (right). Transient features are

ideally extracted using a DWT mother wavelet [46] that

possesses sharp characteristics and, consequently, the db2

mother wavelet was selected. Coefficients were extracted from

the current data using MATLABs wavelet toolbox [44]. DC

ripple, as a result of an upstream rectifier, is evident in the

sampled current. The approximate coefficients extract the

time-frequency response across the lower frequency sub-bands

and high frequency noise is filtered out as the levels increase

and sub-bands get both lower and narrower. In contrast, Fig. 5

(b) shows an example of normalized current data during arc

fault conditions with associated extracted approximate

coefficients. The sudden decrease in load current is a result of

an unsuccessful quenching attempt that, in comparison to Fig.

5 (a), significantly changes the magnitude and shape of the

approximate coefficients during fault conditions.

Diagnostic systems based on HMM rely on features that

capture temporal dynamics – modeling the distribution of the

approximate coefficients using a Gaussian mixture model

(GMM) [30] enables the dynamics of each coefficient to be

assessed through designation of each data sample to a

particular mixture. As an example, GMMs of approximate

level 1 coefficients were developed using the nominal and

series arc fault training data to analyze the dynamics across

each condition and determine features that increase

discrimination capabilities - these are illustrated in Fig. 6 (a)

and Fig. 6 (b) respectively. The following steps were

undertaken throughout GMM development:

Analysis of the distribution of DWT coefficients for each

condition - a non-parametric Kernel density estimation

was used to determine general shape of the distribution.

Use of Gaussian distributions to analyse the probability of

coefficients falling between specified ranges in the data -

the example in Fig. 6 shows four different Gaussians that

model the distribution of four different ranges in the data,

although this number may vary depending on desired

resolution.

Within the fault condition GMM there is significant

disparity between the areas of each Gaussian mixture with an

increased probability of coefficients exhibiting magnitudes

close to one. In comparison to nominal conditions, the number

of transitions between mixtures across a sequence of data

samples is likely to be significantly less. These differing

characteristics highlighted that approximate coefficients are a

useful feature for discriminating between nominal and series
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Fig. 5: Examples of DC current and associated DWT extractions for

(a) nominal conditions and (b) arc fault conditions.

arc fault conditions. Selecting the levels of coefficients was

necessary to optimize detection accuracy and limit feature

redundancy. It was evident from analysis of the extracted

DWT approximations that coefficients begin to level out as the

levels increase and the frequency sub-bands get closer to zero

– the examples in Fig. 5 emphasize the flatness of Level 5

coefficients in comparison to Levels 1 and 3. This is not ideal

as the distributions begin to cluster within certain regions and

this reduces the number of transitions during nominal

conditions. Consequently, DWT approximate coefficient

levels 1, 2 and 3 were selected as suitable features for AFD to

minimize the effect of extremely low frequency bands on

detection accuracy.

2- Time-Frequency Domain Extraction – Detail Coefficients

Transient arc fault signals contain high frequency

components that are also potentially useful for detection. The

DWT detail coefficients, which extract high frequency

components, are therefore an important feature to consider.

Similar to the case of approximate coefficients, it is necessary

to select detail coefficients that optimally discriminate

between various conditions.

Fig. 7 illustrates GMMs of detail level 1 coefficients for

both nominal and fault conditions extracted from 50ms

windows of normalized current data during each condition.

Current during nominal conditions contains both DC ripple

and measurement noise; DC ripple results in level 1 and 3

coefficient increases every 12.5ms (or 200 samples for a 20

kHz sampled signal). Measurement noise also increases the

magnitude of detail coefficients although, as noise is random,

the coefficient increases are less predictable. 5 kHz noise has a

notable effect on level 3, whereas level 1 is less affected.

During fault conditions the detail coefficients are mainly

affected by the arc fault transients, and coefficient increases

are particularly evident at the lower levels - relative to

nominal system conditions, coefficient magnitude increases at

lower levels are significantly more prominent under fault

conditions. The increased probability of higher coefficient

magnitudes results in a greater number of transitions between

mixture components in a GMM of fault conditions – in

comparison, the GMM of nominal condition data has

Fig. 6: Model of the DWT approximate extractions using a GMM for

(a) nominal conditions and (b) arc fault conditions.

significantly less transitions between mixtures. The

differences in detail coefficients between conditions confirm

they are an excellent feature for use in the HMM based

IntelArc. Analysis of each detail level showed that levels 3-5

did not optimize discrimination between each condition as

they do not capture the higher frequency transients present

throughout arc fault events.

In practice, noise from power electronic converters will not

be limited to 5 kHz and may be present across the entire 0-10

kHz observable bandwidth. Noise between 5-10 kHz will have

an effect on lower level detail extractions; however, the salient

higher frequency signatures of arcing will still be present

within these features and they will remain useful for diagnosis.

This is not the case at increased detail levels as the higher

Fig. 7: Model of the DWT detail extractions using a GMM for (a)

nominal conditions and (b) arc fault conditions.
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frequency components are filtered out - their inclusion in

IntelArc will likely impair detection. Consequently, the

number of DWT detail extractions is limited to lower levels

with only levels 1 and 2 being selected as suitable features.

3- Summary of Arc Fault Feature Extraction and Selection

The process of modeling the probability distributions of

extracted coefficients under different network conditions is

critical for using HMM for AFD as it enables appreciation of

the coefficient dynamics under each network condition and

simplifies the HMM training stage. While previously proposed

systems [26] have used WT extracted features for AFD, the

studies outlined here, to the best of knowledge, are not

available in literature.

The author’s studies determined that the three approximate

and two detail DWT coefficients extracted from system

current with a 20 kHz sampling frequency would be utilized

for series DC arc fault detection within the IntelArc system.

Time domain features were also extracted using statistical

analysis of the windows of system current data. Specifically, a

time domain feature based on a moving average across 50ms

windows was extracted. Calculation of the moving average

limits DC ripple and separates the normalized data into

distinct regions for each condition. Signals are also generally

smoother with the majority of high frequency noise removed.

The feature is complementary to the WT coefficients as the

general distinctions between nominal and fault conditions are

highlighted.

C. HMM Training

Feature selection determined that six feature vectors in total

were used to train each HMM. These features included:

DWT approximation coefficient levels 1, 2 and 3.

DWT detail coefficient levels 1 and 2.

Moving average of system current.

The number of hidden states and mixture components for

each HMM within the system are summarized in Table I. The

increased number of hidden states in the nominal steady-state

model is a consequence of the WT approximation features as a

greater number of states emphasize higher transition rates.

Limiting the number of hidden states and mixture components

of the fault and nominal transient models reduces the risk of

over fitting the models to training examples; over fitting the

nominal steady-state model is less of an issue as data under

this condition is likely to be more consistent across a range of

network scenarios. The Expectation-Maximization algorithm

[30] was used for model training.

D. AFD Algorithm

Accurate AFD within IntelArc is dependent on correct

interpretation of the LL outputs of each trained HMM - this

sub-section provides examples of these outputs throughout

various network conditions and describes the algorithm for

analyzing them to infer network condition. On-line application

of IntelArc involves the use of features extracted from 50ms

windows of current data being recursively applied to each

trained HMM. Sliding windows with an interval of 10ms and

overlap of 40ms are applied to the fault and nominal HMM,

TABLE I

No. of Hidden States and Mixtures within each HMM.

HMM Model No. of

Hidden States

No.

of Mixtures

Nominal Steady-State 10 10
Nominal Transient 4 4

Series DC Arc Fault 6 6

while 50ms consecutive windows are applied to the nominal

transient HMM. The algorithm analyses the LL outputs of

each HMM at 50ms intervals – hence five LL outputs from the

nominal and fault models and one LL output from the nominal

transient HMM are analyzed at each interval. The use of

sliding windows is advantageous for detection of intermittent

arc events as there is increased potential for detection of

changes in fault current across shorter time frames.

Fig. 8 (a) illustrates a typical example of DC network

current across steady-state, nominal transient and intermittent

series arc fault conditions: a simple load switch models a

nominal transient event and is evident at roughly 4 seconds

while intermittent arcing events develop at roughly 9 seconds

and results in periods of decreased system current. Both the

duration of each intermittent fault event and the level of

current reduction are variable, and the aim of the system is to

diagnose these highly variable events in real-time. The

corresponding LL outputs of each trained HMM are illustrated

in Fig. 8 (b). The only points in time throughout the 10s period

where the LL of the nominal model is not greater than both the

fault and transient model LLs are during the load switching

event and the intermittent arcing events.

Fig. 8: (a) Example of network current throughout various conditions

(b) corresponding LL outputs of trained HMM (c) LL Ratio Test.

Note the increase at 4s caused by the nominal transient event – the

corresponding LL increase of the transient model beyond the nominal

and fault models at this point results in no fault being diagnosed.
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Fig. 9: Summary of the complete IntelArc method

During the load switching event, the LL of the nominal

model decreases which could potentially indicate the presence

of a fault; however, the simultaneous LL increase of the

nominal transient model results in a fault not being diagnosed

in this instance. In comparison, throughout the intermittent

arcing events, the LL of the fault model increases beyond that

of the nominal and transient models, which is indicative that

arc fault conditions are present and hence diagnosis of a fault

is prescribed by the system.

Another useful measure used that indicates an increased

probability of fault presence is a LL ratio test [30] between the

nominal and fault models – this ratio quantifies the difference

between the two hypotheses, and points in time where it is

greater than one may imply series arc fault conditions. An

illustration of the LL ratio test for this example is provided in

Fig. 8 (c).

A summary of the complete IntelArc method, including

application of network data to each trained HMM and the

algorithm for interpretation of the model outputs is illustrated

in Fig. 9. The algorithm compares the LL outputs to

predetermined thresholds to determine if there is a significant

probability of series arc fault presence during each 50ms

observational period. If all of the specifications described in

Fig.9 are not met, nominal operation is assumed.

Predetermined thresholds were set through analysis of

HMM LL outputs across different operational scenarios.

Normalization ensures IntelArc is generally neutral to

different levels of DC ripple and current magnitude. However

performance may be affected by different forms of reactive

loading. Differences in inductive and capacitive loading may

impact setting of LL thresholds and it is therefore imperative

that diagnostic performance is assessed across different types

of load – the case studies in the following section investigates

these issues.

V. CASE STUDIES

The two case studies described in this section were used to

evaluate and validate diagnostic accuracy of IntelArc. The

basis of the first case study is the repeated injection of

intermittent series arc faults into a DC power network model

for generation of test data where the time of fault onset (s) is

known; the test data is input to the system for inference of

network condition, and its outputs are compared with known

behavior to verify accuracy and detection time. The second

case study used fault data generated using a representative DC

testbed to test IntelArc accuracy.

A. Case Study 1 - DC network model & testing methodology

The DC test network model on which arc faults were injected

is illustrated in Fig. 10. MATLAB Simulink/SimPower

Systems [48] and associated block libraries were used to

model the network – the arc fault model, described in Section

IV, could be implemented at any desired location in the

network model using the drag and drop functionality of the

software. The fault model is capable of producing a wide

range of conditions and, as such, enabled the generalization

capabilities of the method to be tested. Network topology

includes a distribution busbar fed from a rectifier that, in turn,

provides DC power to two load centers through separate

feeders. This basic network architecture may be representative

of low voltage DC microgrids that are either interconnected

with a main grid [1] or stand-alone e.g. within an aircraft or

shipboard system [2, 43].  The passive rectifier has either

230VAC input to commutate to 270VDC or 115VAC input to

commutate to 28VDC – these are typical distribution levels in

aerospace applications. Lumped element models consisting of

resistors, inductors and capacitors were used to model resistive

and reactive loads. The two load centers are directly interfaced

to the system and do not include additional conversion stages.

Series arc faults were modeled on the load feeders and current

through the feeder is sampled at either the load centers or the

busbar. Practically, it would be more suitable for current to be

sampled at the main distribution busbar to relieve hardware

issues - measurements would be communicated to a central

data acquisition system for processing which in turn would

communicate to protection devices in the event of fault

detection. As part of the case study, a total of sixty model

simulations were run for generation of individual test cases,

where each simulation lasted 10 seconds. Each test case

includes: periods of nominal steady-state behavior on both

load feeders; nominal transient events on both feeders; and

series intermittent arc fault behavior on one feeder. The

current profile in Fig. 8 (a) is a typical example of simulated

current on the faulted feeder throughout one of the test cases.

Nominal transient events are modelled through basic
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Fig. 10: Test DC network model architecture

TABLE II

Test DC Network model parameters.

Network Model Parameter Value

AC line Resistance, 0.641 Ω/km

DC line Resistance, 0.641 Ω/km

AC Line Inductance 0.34 mH/km

DC Line Inductance, 0.34 mH/km

DC Line Capacitance, 0.1µF/km

DC side filter Capacitance, 1mF

DC Voltage level, 270VDC or 28 VDC

Load Resistance Ranged between 2 and 25Ω

Load Inductance Ranged between 1.25 and 7mH

Load Capacitance Ranged between 0.1 and 7µF

DC Feeder Length Ranged between 45 and 90m

switching of loads within the load centers.  To fully test the

generalization capabilities of IntelArc, network parameters

such as feeder lengths, fault location along the feeder, onset

and duration of each fault event, load types and voltage levels

were varied throughout each simulation run, and 5 kHz

Gaussian noise was added to the sampled current to model

sensor noise - a description of the network model parameters

is provided in Table II. Forty tests were conducted at 270VDC

and twenty were conducted at 28VDC.  This case study does

not consider switching noise from active power converters.

Each 10 second test case was divided accordingly into

individual data windows and applied sequentially to the AFD

system as described in Section IV (D).

2- Case Study 1 Results

Results of the sixty individual test cases are summarized in

Table III. In total, 59 out of 60 test cases were correctly

diagnosed equating to overall accuracy of 98.3% and an

average detection time from fault onset of 57.1ms: the

incorrectly diagnosed test case was the result of a false

positive (FP) during a nominal transient event under inductive

loading. 97.5% of 270VDC tests were accurately diagnosed

while 100% of the arcing events at 28VDC were accurately

identified. This basic case study has highlighted various

attributes of the proposed system, including:

Detection of variable duration intermittent arcing

events.

Detection of arcing events with variable decreases in

load current magnitude.

Detection across a range of load currents.

Accurate detection of all intermittent fault events.

Some instances of nominal system transients result in

false detection.

Acceptable detection time.

Original testing highlighted a higher rate of FPs as a result

of nominal transients. This was attributed to the LL of the

nominal steady-state model significantly decreasing at the

transient event (as expected) before increasing to a value more

associated with fault conditions immediately after the

switching event, which results in the system incorrectly

diagnosing the presence of an arc fault. To alleviate this

problem, it was determined that diagnosis of a fault event

cannot be made for 100ms after a transient event has been

diagnosed. Trade-offs do exist between false detection, non-

detection and detection time. LL thresholds may be tuned to

improve issues surrounding the rate of FPs although this may

lead to non-detection of some intermittent events (there was

no occurrence of false negatives in the test cases) as well as an

increased detection time. Future work will continue to

optimize thresholds to improve accuracy and refine reliability

of the method to move towards commercial application.

IntelArc operated effectively under different types of

reactive loading although further testing should be undertaken

with capacitive loading to fully assess the impact it may have

on system performance. It is generally assumed [44] that

detection within highly capacitive networks is more

challenging as the resistance to changes in load voltage

impacts the arcing noise signatures. A similar line of

discussion extends to the type of load interface whereby the

internal control of power electronic converters can also alter

fault current dynamics [44].

B. Case Study 2

The IntelArc method has also been tested using data

generated within a DC network testbed which has means of

inducing series arc faults. These initial experimental studies

have tested the methods ability to accurately diagnose faults in

the presence of converter and measurement noise. A one-line

diagram of the testbed is illustrated in Fig. 11 and photographs

depicting various system elements are provided in Fig. 12. The

setup consists of a four-quad active rectifier providing DC

power to a main busbar through two solid-state power

controllers (SSPCs). Two separate loads, a directly interfaced

resistive load bank and two parallel motors interfaced using a

buck-boost DC/DC converter, are connected to the main

busbar. Two current measurements are taken at each

respective feeder and a voltage measurement is taken at the

main bus bar. This equipment and configuration is limited to a

maximum of 40V, 320W which allows representation of low

voltage DC networks. As part of the case study, series arc

faults were induced between the source and busbar with use of

a fault throwing unit that consists of a stepper motor

intermittently separating two contacts [34] – see Fig. 12 (b).
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Table III

Summary of Case Study 1 Results

Also, switching within the variable load bank was used to

capture nominal transient behavior. Electrical current data

sampled at 20 kHz was captured at the source feeder using an

oscilloscope during steady state, series arc fault and nominal

load switching behaviors. This data was used to test the

accuracy of the IntelArc method that was trained using data

generated from the software model described in Section IV.

Current data captured at the source feeder and the

corresponding diagnostic outputs of IntelArc are illustrated in

Fig. 13. Within this test example, the nominal load switch did

not result in false diagnosis, while the intermittent fault

conditions were accurately diagnosed. Five tests have been

conducted with the onset of arcing occurring at two different

power levels outlined in Table IV – IntelArc accurately

identified the onset of fault conditions in each test case and

load switching behavior did not result in FPs.

Fig. 11: One-line diagram of DC testbed setup

Fig. 12: (a) Depiction of various components within the experimental

DC testbed configuration and (b) Series arc fault throwing unit

The next significant step would be implementing IntelArc

onto the microcontroller. Testbed data would be collected,

processed and analyzed using the integrated microcontroller to

allow diagnosis of series arc faults in real time. In the event of

fault detection, control signals would be communicated to

SSPCs to isolate the fault and thus test time between fault

onset and isolation.

C. Comparison of IntelArc with existing AFD methods

The hybrid DWT and time-domain detection method

proposed in [26] was shown to be accurate at low current and

low voltages. However, accuracy at 240 and 300VDC with

25A system current was only 40% and 60% respectively and

only sustained, not intermittent, faults are considered. Also,

testing under reactive loading was not undertaken. Case Study

1 highlighted the ability of IntelArc to detect accurately across

270VDC and 28VDC levels and different forms of reactive

loading. Detection time is the order of 100ms – almost double

the average detection time of IntelArc. Test results of the

ANN method utilizing FFT features in [20] showed limited

accuracy in fault cases in comparison to IntelArc, as only 40%

of five fault scenarios were accurately diagnosed. Testing did

not consider nominal transient behavior. The main limitation

of frequency domain extractions of non-stationary transient

arc fault signals is there is no representation of how the

frequency contributions change throughout time.

Fig. 13: (a) Experimental data captured using the DC testbed. Within

this test case, a nominal load switch occurred at 0.4 s and the onset of

intermittent series arcing occurred at 2.4s (b) Corresponding

diagnostic outputs of the IntelArc outputs. IntelArc is not affected by

the nominal load switch and accurately detects arcing at the

appropriate time.

Load Type Load

Interface

Voltage

Level

(VDC)

No. of

Tests

No. of

correct

diagnoses

Diagnosis

Accuracy

(%)

Summary of

incorrect

diagnoses

Average Detection

Time (ms)

Average

Duration of

arcing event

(ms)

Inductive Rectifier 270 30 29 96.67 1xFP 56.9 97

28 10 10 100 - 55.5 89

Capacitive Rectifier 270 10 10 100 - 62.4 104.4

28 10 10 100 - 53.7 101.2

Totals 60 59 98.3 - 57.1 97.905
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Table IV

Summary of Case Study 2 Results

Voltage Level

(V)

Current

Level (A)

No. of

Tests

IntelArc

Accuracy (%)

33 5.5 3 100

28 8 2 100

The DWT analysis method in [24] claims high accuracy,

although generalization is not proven as test results are only

provided at 28VDC levels and values of load impedance are

unchanged throughout testing. The method relies on

observation of a certain number of abnormal events over a

100ms period – thus, minimal detection time will be 100ms.

A benefit of HMMs is the minimal computation effort

required during calculation of LL statistics. IntelArc would be

computationally inexpensive as only the trained parameters,

and not associated training data, of each HMM are required

for hardware implementation. The basis of the algorithm itself

are the Viterbi algorithm [47] for calculating the LL of each

HMM and the DWT for feature extraction – the Viterbi

algorithm has computational complexity of ( ), where

is the number of hidden states in each model, and the 1-D

db2 DWT has linear complexity ( ). The overall effect of

computational complexity on fault detection time is an avenue

for further investigation and will be assessed with further

hardware implementation.

Overall, the IntelArc method, that combines DWT feature

extractions with HMM, provides an excellent platform for

accurate, generalized and robust diagnosis of series DC arc

faults.

VI. CONCLUSIONS

This paper has proposed IntelArc, a series AFD system for

application to DC networks, which is based on HMM and

utilizes time-frequency and time domain features extracted

from network current data. The choice of advanced ML

method was motivated by the need to improve diagnostic

accuracy and generalize across a range of network operating

conditions. In particular, analysis of the temporal dynamics of

DWT coefficients and their use for implementation within the

HMM based system determined the ranges of detail and

approximate coefficients that would optimize system

performance. Two case studies validated accuracy of the

method. IntelArc can now be further tested in the DC testbed

with the benefit of using an accurate arc fault software model.

In this context, development would remain software based

with utilization of data from the validated arc fault model to

train the respective fault HMM; parameters and algorithms

would be integrated onto a microcontroller and the methods

ability to isolate faults would be tested in real-time.

Accelerating IntelArc through technology readiness levels

(TRL) will require further consideration of the effect that

noise emissions and interference from system devices have on

detection accuracy.  Deployment within compact DC

networks, with current sensors located at the closest upstream

busbar, means that transmitted fault signals and data should

remain uncorrupted. However, further consideration will also

be given to this issue at higher TRL.

The aspect of software development for hardware

application would be of significant importance and benefit;

while the ability of ML approaches for various forms of fault

diagnosis are well documented [45], the main drawback of

their approach is a requirement for fault data, which is often

unavailable. Access to an accurate series arc fault model that

enables instances of fault data to be readily available, and

from which a generalized, accurate AFD system could be

developed, is of significant advantage. The adoption of DC

distribution is prevailing, and this paper has shown the

potential for IntelArc to improve reliability and security of

supply within such networks through diagnosis and isolation

of hazardous, and difficult to detect, series arc fault

conditions.

REFERENCES

[1] D. Salomonsson, et al., ‘Protection of low-voltage DC microgrids’, IEEE
Trans. Power Del., vol. 24, no. 3, pp. 1045-1053, Jul. 2009

[2] S.D.A. Fletcher et al., ‘Determination of protection system requirements

for DC unmanned aerial vehicle electrical power networks for enhanced
capability and survivability’, IET Electr. Syst. Transp., vol. 1, no. 4, pp.

137-147, Dec. 2011

[3] H. Hamilton and N.N. Schulz, ‘DC protection on the electric ship’, in
IEEE Electric Ships Technologies Symp., Arlington, VA, May 2007,  pp.

294-300

[4] D.J. Hammerstrom, ‘AC versus DC distribution systems: Did we get it
right?’ in IEEE Power Engineering Society General Meeting, Tampa, FL,

Jun. 2007, doi: 10.1109/PES.2007.386130

[5] S.D.A. Fletcher et al., ‘Optimizing the role of unit and non-unit protection
methods within DC microgrids’ IEEE Trans. Smart Grid, vol. 3, no. 4, pp.

2079-2087, Dec. 2012

[6] X. Yao et al., ‘Impact evaluation of series DC arc faults in DC
microgrids’, in Applied Power Electronics Conf. and Expo., Charlotte, NC,

Mar. 2015, pp. 2953-2958

[7] B.G. Moffat et al., ‘Failure mechanisms of legacy aircraft wiring and
interconnects’, IEEE Trans. Dielectr. Electr. Insul. vol. 15, no. 6, pp. 808-

822, Jun. 2008

[8] J. Johnson and J. Kang, ‘Arc fault detector algorithm evaluation method
utilizing pre-recorded arcing signatures’, in IEEE Photovoltaic Specialists

Conf., Austin, TX, Jun. 2012, doi: 10.1109/PVSC.2012.6317856

[9] M. Faifer et al., ‘A method for the detection of series arc faults in DC
aircraft power networks’, in IEEE Instrumentation and Measurement

Technology Conf., Minneapolis, MN, May 2013, pp. 778-783

[10] J.D. Herbst et al., ‘Flexible test bed for MVDC and HFAC electric ship
power system architectures for navy ships’, in IEEE Electric Ships

Technologies Symp., Alexandria, VA, Apr. 2011, pp. 66-71

[11] L.R. Rabiner, ‘A tutorial on hidden Markov models and selected
applications in speech recognition’, Proc. IEEE, vol. 77, no. 2, pp. 257-

286, Feb. 1989

[12] V.V. Terzija and H.J. Koglin, ‘On the modelling of long arc in still air
and arc resistance calculation’,  IEEE Trans. Power Del. vol. 19, no. 3,

pp. 1012-1017, Jul. 2004

[13] D. Li et al., ‘A method for residential series arc fault detection and
identification’, in IEEE Conf. on Electrical Contacts, Vancouver, BC,

Sep. 2009, pp. 8-14

[14] G. Liu et al., ‘A survey on arc fault detection and wire fault location for
aircraft wiring systems’, SAE Int. Jour. Aerosp., vol. 1, no. 1, pp. 903-

914, Jan. 2008

[15] J.C. Zeurcher and D.L. McClanahan, ‘Apparatus and method for real
time determination of arc fault energy, location and type’, US Patent 7

068 045, Jun. 27, 2006

[16] M.T. Parker et al., ‘Electric arc monitoring systems’, U.S. Patent 6 772

0777, Aug. 3 2004
[17] M. Michalik et al., ‘High impedance fault detection in distribution

networks with use of wavelet based algorithm’, IEEE Trans. Power Del.,

vol. 21, no. 4, pp. 1793-1802, Oct. 2006
[18] S.Y. Guo et al., ‘DC arc detection and prevention circuit and method’,

U.S. Patent 6 683 766, Jan.27, 2004

[19] D.G. Kilroy and W.H. Oldenburg, ‘DC arc fault detection and protection’
US Patent 2007/0 133 135, Dec. 5, 2006



11

[20] J.A. Momoh and R. Button, ‘Design and analysis of aerospace  dc arcing

faults using fast Fourier transformation and artificial neural network’, in

IEEE Power Eng. and Soc. General Meeting, Toronto, Canada, 2003, doi:
10.1109/PES.2003.1270407

[21] M. Dargatz and M. Fornage, ‘Method and apparatus for detection and

control of dc arc faults’, U.S. Patent 8 179 147, May 15, 2012
[22] J. Zeurcher et al., ‘Detection of arcing in dc electrical systems’ U.S.

Patent 2004/0 027 749, Feb. 12, 2004

[23] Y. Ohta and H. Isoda, ‘Arc detecting device and aircraft equipped
therewith’, E.U. Patent 2 120 306, Nov. 18, 2009

[24] G. Yunmei et al., ‘Wavelet packet analysis applied in detection of low

voltage dc arc fault’, in IEEE Conf. on Industrial Electronics and
Applications, Xi’an, China, 2009, pp. 4013-4016

[25] ‘The wavelet tutorial’, [Online]. Available:

http://person.hst.aau.dk/enk/ST8/wavelet_tutotial.pdf [Accessed: 16-Jul-
2015]

[26] X. Yao et al., ‘Characteristic study and time-domain discrete wavelet

transform based  hybrid detection of series DC arc fault’, IEEE Trans.
Power Electron., vol. 29, no. 6, pp. 3103-3115, Jun. 2014

[27] M. Sarlak and S.M. Shahtrash, ‘SVM based method for high impedance

fault detection in distribution networks’, Int. J. for Comp. and Math. in
Electr. and Electronic Eng., vol. 30, no. 2, pp. 431-450, 2011

[28] O.J. Mengshoel et al., ‘Probabilistic model-based diagnosis: An electrical

power system case study’, IEEE Trans. Syst. Man Cybernet. A., Syst.
Humans, vol. 40, no. 5, pp. 874-885, Sep. 2010

[29] Q. Miao and V. Makis, ‘Condition monitoring and classification of

rotating machinery using wavelets and hidden Markov models’,
Mechanical Syst. and Signal Process., vol. 21, no. 2, pp. 840-855, Feb.

2007

[30] K.P. Murphy, ‘Machine Learning: A probabilistic perspective’, MIT
Press, 2012

[31] K.C. Kwon and J.H. Kim, ‘Accident identification in nuclear power

plants using hidden Markov models’, Eng. App. of Artificial Intel., vol.
12, no. 4, pp. 491-501, Aug. 1999

[32] T.K. Abdel-Galil et al., Disturbance classification using hidden Markov

models and vector quantization’, IEEE Trans. Power Del., vol. 20, no. 3,
pp. 2129-2135, Jul. 2005

[33] N. Perera and A.D. Rajapakse, ‘Development and hardware

implementation of a fault transients recognition system’, IEEE Trans.
Power Del., vol. 27, no. 1, pp. 40-52, Jan. 2012

[34] F.M. Uriarte et al., ‘A DC arc model for series faults in low voltage
microgrids’, IEEE Trans. Smart Grid, vol.3, no.4, pp2063-2070, Dec.

2012

[35] R.F. Ammerman et al., ‘DC arc models and incident-energy
calculations’, IEEE Trans. Ind. Appl.,   vol. 46, no.5,  pp.1810-1819, Sep.

2010

[36] T.E. Browne, ‘The electric arc as a circuit element’, Journal of the
Electrochemical Soc., vol.102, no.1, pp. 27-37, 1955

[37] A.D. Stokes and W.T. Oppenlander, ‘Electric arcs in open air’, J. of

Physics D: Applied Physics, vol.24, no.1, pp.26-35, Jan. 1991
[38] J. Paukert, ‘The arc voltage and arc resistance of LV fault arcs’, in Proc.

Int. Switching Arc Phenomenon Symp., Lodz, Poland, 1993

[39] J. Johnson and K. Armijo, ‘Parametric study of PV arc-fault generation
methods and analysis of conducted DC spectrum’, in IEEE Photovoltaic

Specialist Conf., Denver, CO, Jun. 2014, pp. 3543-3548

[40]S.Khalid et al., ‘A survey of feature selection and extraction techniques in
machine learning’, in Science and Inf. Conf., London, UK, Aug. 2014, pp.

372-378

[41] R.X. Gao and R.Yan, ‘From Fourier Transform to Wavelet Transform: a
historical perspective’ in Wavelets: Theory and Applications for

Manufacturing, Springer Science, 2011, Ch. 2, pp. 17-32

[42]’Wavelet Toolbox’. [Online]. Available:
http://uk.mathworks.com/products/wavelet/ [Accessed: 03-Feb-2016]

[43] X.Feng et al., ‘Multi-agent system based real time fault management for

all-electric ship power systems in DC zone level’, IEEE Trans. Power
Syst., vol. 27, no.4, pp. 1719-1728, Nov. 2012

[44] ‘Codes and Standards for PV Arc Fault Mitigation’. [Online]. Available:

http://energy.sandia.gov/wp-content/gallery/uploads/Bower_Arc-
PV_Codes-Detection-mitigation.pdf. [Accessed: 04-Feb-2016]

[45] W.G. Fenton et al., ‘Fault diagnosis of electronic systems using

intelligent techniques: A review’, IEEE Trans. Syst. Man Cybern. C,
Appl. Rev., vol.31, no.3, pp. 269- 281, Aug. 2001

[46] Z. Wang et al., ‘Arc fault signal detection – Fourier transformation vs.

wavelet decomposition techniques using synthesized data’, in
Photovoltaic Specialist Conf., Denver, CO, 2014, pp. 3239-3244

[47] G.D. Forney Jr., ‘The Viterbi algorithm’, Proc. IEEE, vol. 61, no. 3, pp.

268-278, 1973

[48] ‘Simscape Power Systems’. [Online]. Available:
http://uk.mathworks.com/products/simpower/. [Accessed: 20-Sep-2016].

Rory Telford is a Research Assistant within the

Institute for Energy and Environment at

University of Strathclyde where he received his

BEng and MSc degrees in Electronic and

Electrical Engineering in 2008 and 2011

respectively. He is currently pursuing the Ph.D.

degree in Electronic and Electrical Engineering

from the University of Strathclyde. His research interests

include application of AI techniques, data driven fault

diagnostics and power system modeling and analysis.

Stuart Galloway is a Reader within the Institute

for Energy and Environment. He obtained his

MSc and PhD degrees in mathematics from the

University of Edinburgh in 1994 and 1998

respectively. His research interests include

power system optimization, numerical methods

and simulation of novel electrical architectures.

Bruce Stephen (M’09, SM’14) currently holds

the post of Senior Research Fellow within the

Institute for Energy and Environment at the

University of Strathclyde. He received his B.Sc.

from Glasgow University and M.Sc. and PhD

degrees from the University of Strathclyde. His

research interests include power system condition monitoring,

renewable integration and characterizing low voltage network

behaviour.

Ian Elders obtained his BEng(Hons) and PhD

from the University of Strathclyde, Glasgow in

1994 and 2002 respectively. He is currently a

Research Fellow with the University of

Strathclyde, and most recently has carried out

research in collaboration with Rolls-Royce and

SP Energy Networks. His research interests include the

design, planning, monitoring, and management of smart

distribution systems.


