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Abstract: This analysis follows and integrates the line of inquiry started in past author�s works 

(Phys. Fluids, 15(3): 776-789, 2003, and Phys. Fluids 16(2): 331-343, 2004) about the typical 

instabilities of Marangoni flow and associated hierarchy of bifurcations in laterally heated floating 

zones with various shapes and aspect ratios. The main motivation for re-examining this kind of 

problems, which so much attention have attracted over the last twenty years, is the recent discovery 

(Kudo, Ueno and Kawamura, (2014), in Japanese, DOI: 10.1299/transjsme.2014tep0095) of a 

chaotic state in region of the space of parameters where on the basis of existing theories and earlier 

results for the classical liquid-bridge problem with organic fluids, the flow should be relatively 

regular in time and with a simple structure in space.  Axisymmetric computations are used to obtain 

the steady basic state, and then the Navier Stokes equations are solved in their complete, three-

dimensional, time-dependent and non-linear formulation to investigate the evolution of azimuthal 

disturbances. It is shown that the �apparent� doubling or quadrupling of the azimuthal wavenumber 

in the equatorial plane, previously reported for the case of floating zones of liquid metals, is 

replaced for high-Prandtl-number liquids by the complex interaction of disturbances with distinct 

spatial and temporal scales. These disturbances become critical at relatively comparable values of 

the Marangoni number. The unexpected multiplicity of waveforms and competition of spatial 

modes is explained according to the increased complexity of the considered system in terms of flow 

topology and structure with respect to the classical half-zone configuration.  

 

Key words: Marangoni flow, Lateral heating, Instability and bifurcation in Fluid Dynamics, Chaos 

 

I. Introduction 

 

Marangoni flows and related instabilities have attracted much attention over recent years
1-6

. Zone 

melting (or zone refining or floating zone process, FZ) is a group of similar methods, specifically 

conceived for the purification of crystals, in which such flows play a fundamental role. With such 

methods, a short portion of a rod of an initially impure or polycrystalline material is melted, and the 

molten zone is moved along the rod. The liquid region grows at expenses of impure solid at its 

forward edge and leaves a wake of purer solid behind it as it moves along the bar. As the liquid 

cools, the material crystallizes on the seed-part of the rod.  

Since the melt never comes into contact with anything but vacuum (or inert gases), there are no 

impurities that the melt may incorporate by dissolving the crucible material as it would be in the 

Czochralski (CZ) crystal growth method. Accordingly, materials with higher purity and less 

contamination can be obtained (see, e.g., Benz
7
). 
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With a growing number of facilities around the world this technique is gaining popularity as the 

method of choice for the growth of a wide range of materials, including metals, semiconductors 

(Cröll et al.,
8
), high-temperature superconductors, new magnetic materials and a variety of 

conventional and nonconventional oxides (Saurat and Revcolevschi
9
, Shindo et al.,

10
; Shindo

11
; 

Balbashov and Egorov
12

; Kimura and Kitamura
13

; Revcolevschi and Jegoudez
14

; Moest et al.,
15

). As 

an example, the list of oxide materials includes simple oxides such as ȕ-Ga2O3 or TiO2, as well as, 

complex oxides such as the spin Peierls material CuGeO3 (Revcolevschi and Jegoudez
14

). Although, 

high-quality crystals of ȕ-Ga2O3 as large as 2.5 centimeters in diameter have been reported by 

Villora et al.,
16

, oxides grown by this technique for industrial applications are essentially Y3Fe5O12 

(Balbashov et al.,
17

; Shindo et al.,
10

; Balbashov and Egorov
12

) and the abovementioned TiO2 

(Higuchi and Kodaira
18

). 

Detailed historical notes about the development of FZ technique can be found in Dabkowska and 

Dabkowski
19

 and an earlier paper by Dabkowska and Gaulin
20

. Here we limit ourselves just to 

observing that the main difference between metallic materials and oxides lies essentially in the 

related value of the Prandtl number (Pr defined as the ratio of the melt kinematic viscosity to its 

thermal diffusivity, which is generally <1 for the former materials and >1 for the latter). Another 

difference comes from the macroscopic appearance of these materials (liquid metals and 

semiconductor melts are generally opaque while oxide melts tend to be transparent to visible light).  

Another important distinction must be introduced with regard to the typical flow instabilities that 

can emerge in the melt during the processing of the material. Such instabilities have detrimental 

effects which tend to lower the quality of crystals. It is known that their nature, the hierarchy of 

bifurcations and ensuing effects depend on the kind of material considered, namely the 

aforementioned Prandtl number.  

The amount of existing literature on such subjects is really impressive (especially if one considers 

what has been done for the so-called half-zone liquid bridge, a popular simplified model of the FZ 

process, Refs [1-6] and references therein). Here, due to page limits we limit ourselves to recalling 

the points still requiring attention, and recent (still unexplained) findings. Along these lines, we start 

from the simple realization that while there has been an intensive effort to model the FZ  processing 

for the case of metals and semiconductors in the full-zone configuration (Baumgartl et al.,
24

; Croll 

et al.,
8
; Lappa

22-25
 Minakuchi et al.,

26
; Houchens and Walker

27
; Gelfgat et al.,

28
; Lin et al.,

29
), only a 

few modeling attempts have been appearing in the literature to understand what is happening inside 

oxide molten zones (Chen, and Chieh
30

; Lan
31

).  

More recently, Bouizi et al.,
32

 investigated the stability of the axisymmetric basic state, with respect 

to 3D perturbations over a large range of Prandtl number values including both categories of 

materials (10
-3≤Pr≤10

2
). This important analysis confirmed that the main findings related to more 

than 30-years of studies on the companion liquid-bridge problem can be qualitatively applied to the 

effective FZ processing technique, i.e. the first flow bifurcation is of a stationary type for Pr<<1, 

whereas for large Prandtl number values (Pr>0.3) the first bifurcation implies the onset of 

oscillatory flow.  
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Most recently, however, some authors (Kudo et al.,
33

) reported on the existence of a chaotic state in 

a parameter regime where on the basis of existing theories and earlier results for the liquid bridge, 

the flow should be relatively regular in time and with a simple structure in space (single-frequency 

and single wavenumber flow).  

Following an approach similar to that undertaken by Sakurai et al.,
34

, these authors carried out a 

series of experiments using a substance (silicone oil with Pr =28.1) that is liquid at ambient 

temperatures. A fluid zone was formed between two horizontal supporting disks (made of metal or 

of a transparent material) with heat being provided to the liquid through its free surface by means of 

a ring heater. The simplicity of the configuration and the great advantage coming from the 

utilization of a material that is transparent and in a liquid state at ordinary temperature allowed these 

researchers to visualize convection by tracer particles from different perspectives. In this way, Kudo 

et al.,
33

 succeeded in identifying precisely the flow transition point and the modal structures in the 

oscillatory flow. Most surprisingly, although slightly supercritical conditions had been considered, 

the dominant modal structures was found to be a peculiar combination of disturbances with 

different azimuthal wavenumbers m = 1, 2, and 3 (a superposition of distinct waves with different 

spatial modes). In a rather unexpected way, these modal structures were observed to have the 

characteristics of a standing or a travelling wave, changing from one to another irregularly with the 

resulting dominant modal structures not depending on the aspect ratio (another important 

distinguishing feature with respect to earlier studies dealing with the classical liquid-bridge 

problem
1-6,35

).  

Motivated by these unexpected results as well as by the general lack of numerical results for 

floating zones of high-Pr materials (full-zone configuration) here we concentrate on the 

mathematical modeling and analysis of such experiments. In particular, the problem is investigated 

by means of numerical solution of the time-dependent Navier-Stokes equations in their complete 

formulation (three-dimensional, non-linear and time-dependent).    

 

II. Physical and mathematical model 

 

A. Modeling the floating zone: �Full zone� configuration 

Two model geometries can be used to simulate the flow in a floating zone: �half zone� and �full 

zone�. A complete and exhaustive description of these models can be found in Ref. 24. Here we 

simply recall that the half zone (a portion of liquid held between two disks at different temperatures 

and with an adiabatic liquid/gas interface) is supposed to model the flow in a half of the real 

floating zone under the assumption that heat is provided to the fluid essentially along the axial 

direction and under the constraint that the flow is symmetric by reflection about the midplane. With 

the full zone (a column of liquid held between two disks at the same temperature and heated 

through the free surface) such restrictions are removed (which makes this geometrical model more 

effective in reproducing some of the typical features of the real processes used for crystal growth). 
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Figure 1: Sketch of the full zone with its ring heater and reference system 

 

B. Basic assumptions 

 

As shown in Fig. 1, we assume the floating zone to be confined between two coaxial cylindrical 

disks of diameter D having an axial distance 2L. Because these disks are intended to mimic the 

upper and lower solid-melt interfaces of a real floating zone, they are kept at the same temperature 

0T  assumed to represent the typical melting point temperature of the considered material (hereafter, 

the overbars are used to denote dimensional quantities). As the liquid is heated at the mid-height by 

an external ring heater, the maximum system temperature, maxT , is established on the free surface. 

Following Lappa
22

, the maximum temperature difference achieved for the axi-symmetric (2D) 

solution assumed as initial condition for the three-dimensional (3D) computations (denoted by T  ) 

is used for the definition of the Marangoni number.  
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The liquid is homogeneous and Newtonian. In order to properly capture the physics at work in the 

experiments by Kudo et al.,
33

, the dependence of the kinematic viscosity on the temperature is 

modeled via the relationship:  

 














Tc

TT
cT o

2

0

1exp)(     (1) 

where )( 0To    and c1 and c2 are coefficients depending on the specific liquid and the range of 

temperatures considered. Here we assume viscous dissipation to be negligible. Moreover, following 

common practice in the literature, both the liquid density   and the surface tension  , 

characterizing the (volume and surface, respectively) physical forces affecting the considered 

system, are modeled as: 

 

)( 0TTTo      (2a) 

)( 0TTTo      (2b) 

that is, linear relationships where o  and o  are the respective values for 0TT  , while 

TddT /   and TddT /   are positive coefficients accounting for the decrease of these 

physical quantities with T.   

The interface is assumed to be nondeformable and axisymmetric around the z-axis. The geometrical 

aspect ratio of the full zone AF is defined as AF=2L/D; the aspect ratio of the corresponding half 

zone (half of the considered full zone) would read accordingly AH=L/D=AF/2. 

 

C. Governing equations and boundary conditions 

 

The governing equations for mass, momentum and energy can be cast in condensed non-

dimensional conservative form as:  

 

0 V             (3a) 

     gT

s

o iTVVVVp
t

V *2
Pr2Pr 




       (3b) 

  TTV
t

T 2



          (3c) 

 

where V and p are the non-dimensional velocity and pressure, Pr is the Prandtl number  /Pr o  

where   is the thermal diffusivity and  is the nondimensional viscosity o / :  
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










Tc

T
c

2

1 ~exp , where 022
~ Tcc     (4) 

Moreover,  s

oV  is the strain rate tensor :
 

 

     IVVV
ss

o 
3

1

 
   (5a) 

that for incompressible flow reduces to 

 

   
2

T
ss

o

VV
VV


    (5b) 

The gradient of nondimensional viscosity, in turn, can be rewritten as: 
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
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
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
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
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


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


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






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2

2

21

2

12

2
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~

~

~exp
~

~

Tc

cc
T

Tc

T
cT

Tc

cc
    (6) 

Furthermore,  

 




0

3
* Lg T
T      (7) 

is a dimensional quantity [K
-1

] related to the classical Rayleigh number Ra by the relationship Ra = 
*

T  ( )T with ig being the unit vector along the direction of gravity. 

The above non-dimensional equations result from scaling the cylindrical co-ordinates (r z, ) by half 

of the axial distance between the circular disks (L) and the velocity components along the axial, 

radial and azimuthal directions ( VVV rz ,, ) by the energy diffusion velocity V =  /L; the scales 

for time and pressure are, respectively, L/  and  /L. The temperature (the only primitive 

variable intentionally left dimensional) is measured with respect the initial temperature 0T . 

 

T=( 0TT  )  (8) 

 

No-slip conditions and assigned values of temperature are imposed on the rigid disks at z = 1: 

 

V(z=-1, r,  , t) = 0; (z=-1, r,  , t) =  0 0 1 r AF/  ; 0 2   (9a) 

 

V(z= 1, r,  , t) = 0; (z= 1, r,  , t) = 0 0 1 r AF/  ; 0 2   (9b) 
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Stream-surface conditions (zero normal velocity) and shear stress balance (the so-called Marangoni 

condition) are used as relevant boundary conditions on the free surface (r=1/AF,   1 1z , 

0 2  ) for kinematic problem closure: 
 

 

Vr(z, r=1/AF,  , t) = 0  (10a) 

),,/1,(),,/1,( * tArz
z

T
tArz

r

V
FTF

Z 






       (10b) 

),,/1,(),,/1,(),,/1,( * tArz
T

tArzVtArz
r

V
r FTFF 








    (10c) 

where  




00

* LT

T    (11) 

is a dimensional quantity [K
-1

] related to the classical Marangoni number Ma by the relationship 

Ma = *

T  ( )T . Closure of the resulting mathematical problem finally requires a condition of 

prescribed heat flux J(z) at the liquid-gas interface: 

)(),,/1,( zJtArz
r

T
F  




  (12) 

Many models have been proposed in literature to simulate surface heating due to a ring heater. It is 

known that the shape of the effective profile of heat flux at the interface may depend on several 

factors (see, e.g., Otani et al.,
36

; Rivas and Vazquez-Espi
37

). For consistency, we adopt the model 

developed by Lappa
22

, i.e. the radiative flux generated by a ring heater having negligible thickness 

and positioned around the equatorial plane of the full zone at a fixed distance h from the free 

surface.  

A mathematical expression for such a flux can be derived taking into account the radiative 

contribution brought to the overall flux by each infinitesimal element pertaining to the ring. 

According to Fig. 1, this contribution can be cast in compact form as: 

 

)cos(
4

11
)(

2






Q

L
zj 






   (13) 

where Q is the power supplied to the ring heater,  the distance between the points C (on the ring 

heater) and P (on the free surface) and  is the angle between n (unit vector orthogonal to the free 

surface in P) and the direction PC. The total flux at the generic point P on the interface can be 

finally obtained via straightforward integration of eq. (13), as follows:  
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
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


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2
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~

~
4

1
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


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
   (14) 

where: 

 

 222

2

2 cos)1(21)1(
1

FFF

F

AzhAhA
A

    (15a) 

 222 cos)1(21)1(

1cos)1(
)cos(

FFF

F

AzhAhA

hA









   (15b) 

)1(

1
cos

~ 1

FhA
    (15c) 

and  is the free-surface emissivity. 

 

 
III. Numerical method 

 

A. Projection Method 

 

These techniques are known under several names: projection method, fractional-step method or 

pressure-correction method (also simply referred to as primitive-variables approach). This class of 

methods originates from the studies by Harlow and Welch
38

, Chorin
39

 and Temam
40

. Despite some 

minor differences, basically, a common feature of all these variants is their �turning around� the 

relationship between the pressure and the velocity that is established for incompressible fluids 

(basically, from a purely mathematical point of view, they rely on the Ladyzhenskaya 

decomposition theorem
41

, which states that any vector function can be split into a part of given 

divergence and the gradient of a scalar potential). This approach proceeds as a type of fractional 

step method by first considering a simplified momentum equation and then updating the velocity 

field using the computed pressure to account for the conservation of mass. More precisely, at each 

time step, an intermediate velocity field is determined without the knowledge of the correct pressure 

field, and therefore no incompressibility condition is enforced. The intermediate velocity field is 

then modified by a second step in which a pressure equation is solved and then the related results 

are used to produce a divergence-free vector field
42

.  

 

B. Space Discretization and Regularization 

 

The computational domain has been discretized with a staggered grid, the fluxes and velocities 

being located at the centers of the faces and, the scalar variables T and p at the center of the cells, 

respectively. Centered finite-difference schemes with a second-order accuracy have been retained 
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for the spatial discretization of both diffusive and convective terms in the momentum equation, 

whereas a third-order accurate (quick) scheme has been expressly used for the convective 

contributions appearing in the energy equation (given the delicate role played by temperature 

disturbances in the considered dynamics). Additional care has been taken in order to damp the 

spurious oscillations that might be introduced by the well-known issue with the diverging behavior 

of the surface velocity in proximity to the hot and cold corners. This singularity, potentially 

affecting the flow at any contact free surface/solid boundary, can jeopardize the physical 

consistency of the numerical solution and also seriously delay convergence, leading in some 

circumstances to oscillations that may result in grid-divergence (Bouizi et al.,
32 

and references 

therein).  

Usually such a regularization is not necessary for low Prandtl number fluids (Pr<<1) since in this 

case the singularity is implicitly bypassed by the filtering properties of the local approximation of 

the differential operators (in practice, the finite-difference schemes automatically act to regularize, 

through some filtering mesh-dependent function, the initially singular formulation and the 

numerical solution converges, asymptotically with the mesh refinement, to the solution of a 

continuous problem
22-25

). 

Nevertheless, the explicit regularization becomes a critical requirement for high Prandtl number 

liquids (Pr>1) and in particular for large values of the Marangoni number. For these cases grid 

convergence cannot be obtained or occurs only if very dense (often prohibitive for three-

dimensional simulations) computational meshes are used. In this case, the regularization approach, 

rather than relying on the intrinsic filtering properties of the numerical scheme (which in this case 

are not sufficient), tries to get an explicit regular continuous formulation of the problem through 

appropriate modeling of the underlying physical regularity
32

. 

Here, we introduce the regularizing function as 

 
n

n

z
z 















1

)(   1z         (16a) 

 

to be inserted in the boundary conditions (10b) and (10c), i.e.: 

 

TzMa
n

V
Sn  )(




         (16b) 

 

where n is the so-called filtering parameter, to be increased until an asymptotic behavior is attained 

(to be considered as a proof of the physical relevance of the model). 
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C. Grid Refinement and Validation 

 

For the case of liquid metals, where no regularization is required, the present code was validated 

through comparison with other results available in the literature for low-Pr fluids
22

. 

For the high-Pr case, where regularization is a critical requirement, our approach was tested by 

checking its convergence under mesh refinement for both the half- and full-zone configurations.  

 

TABLE I: Comparison with the results of Melnikov et al. (2011), liquid bridge of NaNO3 with 

aspect ratio AH=0.34, Ma=20600 (m is the disturbance azimuthal wavenumber,  the associated 

angular frequency). 

 

 
Figure 2: Surface profile of axial velocity (axisymmetric computations) for Pr=28.1, AF =0.63, 

Ma2.3x10
4
, Ra4.2x10

3
, versus mesh resolution NzxNr. 

 

For the first case the method was verified on the test case reported by Melnikov et al.,
43

 (results of 

the validation study are summarized in Table I, the reader being also referred to Ref. 44 for further 

details). Results for the full-zone (silicone oil with properties shown in Table II) are summarized in 

Fig. 2, where the solution mesh-independence is shown in terms of surface velocity profile. We 

could obtain proper convergence by applying the regularization technique illustrated in Sect. III.B, 

achieving it for n=4 and 15.0 . 

By increasing the mesh resolution from 55x35 to 60x40, we found the percentage variation 

experienced by the maximum surface velocity for AF =0.63 to be less than 2%, which indicates that 

Ref      Grid 

(NzxNrxN)

Mode  

   m 

Nondimensional angular frequency of 

the hydrothermal wave (=2f/m) 

Melnikov et al. (2011) 40x40x32 3 73.3 

Present 32x40x40 3 71.4 
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the former grid may be considered sufficiently dense to guarantee mesh independence. Moreover, 

following earlier indications provided by Lappa
22

 for comparable values of the full-zone aspect 

ratio (see table II in that work), we decided to use 70 points in the azimuthal direction.  

Following the same procedure, a mesh 65x35x70 was deemed to be sufficient for AF =0.88. 

 

IV. Results 

 

The properties of the considered fluid (after Kudo et al.,
33

) are reported in Table II 

 

TABLE II: Properties of the considered 2 cSt Silicone oil at  0T = 25 C 

Fluid density ȡ [kg m
-3

] 873 

Kinematic viscosity 0 [m
2
s

-1
] 2.0 × 10

−6
 

c1 coefficient [-]  5.892 

c2 coefficient [C] 273.15 

Thermal diffusivity  [m
2
s

-1
] 7.12 × 10

−8
 

Thermal conductivity  [W m
-1

K
-1

] 0.11 

Prandtl number [-] 28.1 

Thermal expansion coefficient ȕT [K
-1

] 1.24 × 10
−3

 

Surface tension coefficient T [Nm
-1

K
-1

]  7.15 × 10
−5

 

 

The liquid is a silicone oil with Prandtl number Pr=28.1. Simulations have been performed for a 

fixed value of the diameter D of the disks supporting the liquid zone, assumed to be D=3.5 mm. 

However, in order to explore the system sensitivity to the geometrical aspect ratio, two distinct 

values of AF have been considered, i.e. AF = 0.63 and AF = 0.88, as in the experimental study by 

Kudo et al.,
33

. Still following this study, the diameter of the ring heater DH has to be fixed to 4.2 

mm for the considered size of the liquid zone, which means the distance between it and the surface 

of the liquid is 0.35 mm only. The resulting values of the parameters 
*

T  and *

T , defined by eqs. 

(11) and (7), respectively are summarized in Table III, together with the related value of the 

nondimensional distance h. 

 

TABLE III: Parameters used for the simulation 

 

AF   [-] L [m] 
*

T    [K
-1

] *

T    [K
-1

] h   [-] 

0.63 1.1 x 10
-3

 634 114.5 0.318 

0.88 1.54 x 10
-3

 886 312 0.227 

 

By application of a radiative heat flux (eq. 14), the heat transport is maximum in the surface region 

of the liquid zone and changes the driving temperature gradients in the surface by itself (i.e. via the 
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Marangoni stress acting on the free interface; as an example, the relationship between )( T and the 

quantity Q  as provided by axisymmetric simulations is shown in Fig. 3 for AF=0.63 and AF=0.88). 

As already explained in Sect. IIB, such a temperature difference is used as a reference value for the 

evaluation of the non-dimensional Marangoni and Rayleigh numbers (Ma=
*

T  )( T and Ra= *

T  

)( T , respectively). 

 

a)      b) 

 

Figure 3: Temperature difference as a function of Q  for Pr=28.1 (axisymmetric numerical 

simulations): a) AF =0.63, b) AF =0.88. 

 

A. The structure of the basic flow and the onset of oscillatory flow 

 

Prior to embarking into an exhaustive description of the 3D results, it is worth providing some 

initial and fundamental information about the structure of the basic (axisymmetric steady) flow field 

(which will prove very useful later when discussing the general features of the supercritical state).  

a) b) 

 

Figure 4: Sketch: a) typical flow in the full zone under normal gravity conditions;                  

b) thermocouples distribution along the circumferential extension at a fixed axial position (z=1/2 

and z=-1.2 for the upper and lower half of the floating zone, respectively). 
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Along these lines, we start from the simple observation that due to the presence of gravity, which 

breaks the ideal system symmetry with respect to the equatorial plane, the basic state  is no longer 

symmetric with respect to z=0 (as it would be in microgravity conditions
22

).  

Indeed, two clearly distinguishable toroidal rolls are present in the floating zone, each being driven 

by the temperature gradient established between the area of maximum heating and one of the 

supporting disks. Despite the intrinsic symmetry of the geometry and thermal and kinematic 

boundary conditions, these rolls are strongly asymmetric (Fig. 4a).  

The nature of this asymmetry can be explained on the basis of simple rational arguments, among 

them, the delicate interplay established between buoyancy effects and thermocapillarity that is 

established in each half of the floating zone. Because, roughly speaking, the upper half might be 

thought of as a system being heated from below, while an opposite situation might be imagined for 

the lower half, the reader will easily realize that buoyancy will be acting as a force supporting 

surface Marangoni flow and opposing to it according to whether it is located above and below the 

equatorial plane, respectively. Instructive examples along these lines can be found for instance in 

the earlier literature published for the simplified half-zone case (the classical liquid bridge, see, e.g., 

Frank and Schwabe
1
).  

Similar effects are at the root of the pattern-forming mechanism in the complete floating zone. The 

flow consists essentially of two superposed toroidal rolls, with the roll located in the upper half 

(where Marangoni and buoyant flows are concurrent) being stronger and protruding to a large 

extent into the lower half; by contrast, the (weaker) bottom roll takes an axially stretched shape and 

is confined to a region of relatively small radial extension located in proximity to the liquid/gas 

interface (Fig. 4a). Each of these convection rolls is bounded by a wall from one side and it is free 

to interact in nonlinear way with the opposite convection roll from the other side
23

.  

These relatively simple considerations reinforce the idea that, quantitatively speaking, earlier results 

for the half zone might be of scarce relevance to the present case as the complete structure of the 

convective field would be required in principle to account for non-linearities and other complex 

effects arising from the mutual interaction of the two superposed toroidal vortices.  

In facts, this conjecture is confirmed by the value of the critical Marangoni number provided by the 

present analysis. This value is much smaller (50%) than that reported in the past for liquid bridges 

in equivalent conditions. Following common practice in the literature, we determined it by 

extrapolating to zero the disturbance growth rate obtained by monitoring the time history of the 

azimuthal disturbances for different values of the Marangoni number. Through this procedure, in 

particular, we obtained: Macr8.7x10
3
 and Macr1.46x10

4
 for AF=0.63 and AF=0.88, respectively. 

Such values are in reasonable agreement with those reported experimentally by Kudo et al.,
33

 

namely Macr7.x10
3
 for AF=0.63 and Macr1.2x10

4 
AF=0.88, the observed 20% difference being 

probably due to the unavoidable differences between experiments and numerical simulations 

(despite the effort we put in reproducing at the best of our capabilities the effect of a ring heater, it 

must be taken into account that in our model the thickness of the wire was assumed to be negligible, 

which is obviously an idealization). Another source of difference could be related to the weak, but 
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not negligible, deformation displayed by the surface shape during the experiments (this will be the 

subject of a future paper entirely devoted to model such aspects).  

Interestingly, by comparison of numerical simulations carried out turning off and on, respectively, 

the dependence of viscosity on temperature, we could discern that assuming a constant viscosity 

would even determine an increase in the difference between the current values of the critical 

Marangoni number and those obtained experimentally (the numerically determined values at 

constant viscosity being Macr1.087x10
4
 for AF=0.63 and Macr1.73x10

4 
AF=0.88), which justifies 

our decision to consider such a dependence. 

 

B. Flow spatial structure 

 

Still following Kudo et al.,
33

 we have explored a relatively range of supercritical conditions: 

0<1.5 ( defined in the classical way, i.e. as (Ma- Macr)/ Macr). 

Given the peculiarity of the considered problem, insights into the considered dynamics have been 

sought through mathematical modeling and numerical solutions reflecting a combination of 

concepts, points of view and principles, complementing each other and allowing �capturing� and 

describing the physics of the problem under different perspectives.  

Along these lines, as an example, 1) our direct observation of the maps of azimuthal velocity in 

cross-sections perpendicular to the zone axis has been instrumental in identifying the dominant 

azimuthal wavenumber and its odd or even symmetry, while 2) we have used the phase shifts 

related to signals provided by numerical probes at the same axial and radial coordinates but 

different azimuthal locations to detect the prevailing spatiotemporal oscillatory mode (Fig. 4b, the 

reader being referred to Sect. V for some additional details into the criteria used to identify the 

prevailing waveform and related transitions). 

By such a strategy we could discern that while for relatively small values of , the flow shows the 

classical evolutionary process with a disturbance having well-defined wavenumber growing in time 

until its amplitude is saturated and a stable oscillatory pattern with well-defined frequency is 

established (just as it occurs when liquid bridges are used), with the full zone it is sufficient to 

slightly increase  above 0.3 to get very unusual scenarios. Some snapshots along these lines are 

shown in Figs. 5-8 (for brevity results are presented for AF=0.63 and Ma 2.3x10
4
, the dynamics 

obtained for the other considered value of the aspect ratio and of  being very similar from a 

qualitative point of view; we concentrate on such a value of the Marangoni number to allow direct 

comparison with earlier results obtained for the liquid bridge at comparable values of Pr and Ma, 

Lappa et al.,
35

). 

Careful analysis of these plots, especially those showing the distribution of the azimuthal velocity in 

cross-sections perpendicular to the z axis, indeed reveals almost immediately that the flow displays 

an increased degree of complexity with respect to earlier half-zone based results. An immediate and 

unambiguous identification of the azimuthal wavenumber is indeed rather difficult. Different 

disturbances with distinct spatial structure seem to overlap in space and alternate in time.  
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We found the best approach to deal with such intricacies to be based on the direct observation of the 

multicellular structures emerging in selected cross sections of the two opposing rolls and on the 

examination of the spatial morphology and topology of some selected disturbance isosurfaces.  

Indeed, by inspection of Figs. 5-8, the reader will immediately realize that the �multiplicity� of the 

involved azimuthal modes is N=4, as the azimuthal wavenumbers m=1, 2, 3 and 4 can be identified 

in isolated or combined form. Such figures also provide interesting information of the relative 

amplitude of disturbances in the two rolls. Indeed, by denoting with ),,()( tzrf mdown  and 

),,()( tzrf mup  the amplitude of the generic disturbance with azimuthal wavenumber m in the lower 

and upper roll, respectively, cross-comparison of sections at z=1/2 and z=-1/2 leads to the general 

conclusion that for a given z>0, ),,(),,( )()( tzrftzrf mdownmup  , with  

),,(),,( )()( tzrftzrf mupmdown           (17a)  

which in some circumstances and for some specific modes (Figs. 5 and 6) even reduces to  

0),,()(  tzrf mdown            (17b)  

 

 

 

 

 

Figure 5: Snapshots of azimuthal velocity distribution at different times in cross-sections 

perpendicular to the z axis (z=1/2, upper half, Pr=28.1, AF =0.63, Ma2.3x10
4
, Ra4.2x10

3
). 

 
 

Figure 6: Snapshots of azimuthal velocity distribution at different times in cross-sections 

perpendicular to the z axis (z=-1/2, lower half, Pr=28.1, AF =0.63, Ma2.3x10
4
, Ra4.2x10

3
). 
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Figure 7: Snapshots of isosurfaces of azimuthal velocity at different times (AF =0.63). The 

isosurfaces correspond to three distinct values of the nondimensional azimuthal velocity (-7x10, 

2x10, 1.1x10). 
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The most striking finding or feature is that, while a relatively rich set of of azimuthal wavenumbers 

is allowed for the upper roll (m= 1,2,3,4 and related combinations or �hybrid states� as explained 

before), the variety of such modes is dramatically reduced when the lower roll is examined (there, 

only disturbances with m=1 and m=2 in disjoint or combined form seem to be a persistent feature of 

the dynamics, with some occasional manifestations of the m=3 mode). This conclusion is also 

supported by the results shown in Fig. 7. 

It can be clearly seen there that the distribution of isosurfaces (showing the space distribution of 

azimuthal velocity) undergoes a dramatic change in the lower half of the domain. Most of 

disturbance �nodes�, clearly visible in the form of separated �pillows� with different colors 

distributed along the circumferential direction above the equatorial plane, are indeed replaced by 

�blank regions� (even leading to a completely patternless state in some circumstances) if one looks 

at their distribution under this plane. This is especially true for the disturbances with m=3 and m=4 

(the corresponding isosurfaces or �pillows� are no longer visible in the lower half), which indicates 

that eq. (17b) (which we have introduced before without providing, however, too many details), 

effectively holds and it is satisfied essentially in the large wavenumber part of the spectrum of 

disturbances. 
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Figure 8: Snapshots of isosurfaces of radial velocity (left) and temperature (right) distributions at 

different times (AF =0.63). The values corresponding to the isosurfaces are (-2x10
2
 and 10

2
) for the 

radial velocity and (11 and 22) for the temperature, respectively. 
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C. Temporal Dynamics  

 

Having finished a description of the flow from a spatial perspective, it is now instructive to attempt 

an interpretation of the related temporal dynamics on the basis of past �models�, which so much 

success have enjoyed in the framework of analyses devoted to the liquid bridge (namely, the so-

called �standing wave� and �travelling wave�).  

Although such waveforms have been successfully applied to describe the dynamics of supercritical 

Marangoni flow in a variety of circumstances, a critical assessment of the the present numerical 

results leads to the conclusion that a direct application of them to the present case is not so 

straightforward as one would imagine. The numerically simulated dynamics are indeed rather 

irregular, even apparently erratic in some circumstances.  

A more accurate inspection of the stages of evolution displayed by the system, however, reveals 

that some timeframes of limited extent can be effectively identified in which the system may be said 

to partially fit the just discussed theoretical behaviors (the reader being referred to the quite regular 

waveforms in Figs. 9-12).  

 

 
 

Figure 9: Four snapshots of azimuthal velocity distribution at z=1/2 (upper half) evenly spaced in 

time showing the propagation of a disturbance in the clockwise direction (Clockwise traveling 

disturbance originating at to46.7 s, 0.7 s, AF =0.63). 

 

 
Figure 10: Four snapshots of azimuthal velocity distribution at z=1/2 (upper half) evenly spaced in 

time showing the propagation of a disturbance in the anticlockwise direction (Anticlockwise 

traveling disturbance originating at to51.6 s, 0.7 s, AF =0.63). 
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Figure 11: Four snapshots of azimuthal velocity distribution at z=-1/2 (lower half) evenly spaced in 

time showing a pulsating regime with wavenumber m=1 (standing wave originating at to48.4 s, 

1.1 s, AF=0.63).  

 
Figure 12: Four snapshots of azimuthal velocity distribution at z=-1/2 (lower half) evenly spaced in 

time showing a pulsating regime with wavenumber m=2 (standing wave originating at to45.9 s, 

0.7 s, AF=0.63). 

 

As an example, we could discern in the overall sequence of snapshots provided by the numerical 

simulations a disturbance travelling in the clockwise direction in the upper half (z=1/2) of the full 

zone, starting at a time to46.7 and ending at t47.4.  

A similar (clearly recognizable) behavior could be detected after approximately 5 seconds of 

simulated dimensional time (to51.6). The disturbance, however, was found to to propagate in the 

opposite direction in this second instance (i.e. in the anticlockwise sense). 

Some timeframes clearly displaying a pulsating scenario could be identified as well, especially 

when looking at the sequence of snapshots related to the lower half (as witnessed by the sequences 

reported in Figs. 11 and 12 showing recognizable standing waves with dominant wavenumber m=1 

or m=2, respectively). These observable behaviors were not exclusive of a given roll, nor were they 

truly progressive in time. We observed frequent transitions from one waveform to the other and vice 

versa in both superposed rolls.  

 

V. Discussion 

 

A. Past Studies 

 

Over recent years, other notable cases representing a �deviation� with respect to the standard 

occurrence of known (and expected) modes have been detected and studied for different kinds of 
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convection
45-48

. The experiments by Kudo et al.,
33

, supported by the present numerical results, 

however, are a first example of exotic dynamics reported for Marangoni flow in floating zones. 

Earlier studies focusing on the simplified liquid bridge problem revealed great sensitivity to the 

aspect ratio and well distinct thresholds for different modes in the space of parameters. Furthermore, 

for not too large supercritical conditions, these studies have always shown patterns with a regular 

behavior in time with a fixed (well-defined) value of the azimuthal wavenumber.  

 

B. The Mental Divisibility of the Flow and the Disturbances Selection Mechanism 

 

In this section we will show how the key to interpret the present numerical results lies essentially in 

the mental divisibility of the flow into two distinct overlying circulation systems with different 

intensity and morphological properties. 

Along these lines, it is convenient to start the discussion by recalling that, if these rolls were 

isolated, on the basis of past findings for the classical liquid bridge, owing to their different 

geometrical properties they should undergo rather different instability behaviors. Some additional 

interesting information could be also drawn on the basis of the earlier works by Lappa
22-25

.  Though 

those studies were concerned with a low-Pr fluid (silicon melt), they could demonstrate that when a 

two-roll configuration is considered, the interaction of the two opposing vortices can lead to a 

significant lowering of the instability threshold with respect to the liquid-bridge case and ensuing 

significant increase in the complexity of the resulting supercritical flow. A similar complexity has 

been highlighted by Gelfgat et al.,
49

, who examined a cylindrical configuration relevant to the so-

called vertical Bridgman crystal growth method (melt undergoing buoyancy convection). These 

authors identified the potential complex interaction of several azimuthal modes which become 

critical at relatively close values of the Rayleigh.  

Evidence supports the idea that similar mechanisms are at play for the configuration considered 

here. It can be indeed argued that due to the aforementioned interplay between the two opposing 

circulation systems, which acts expanding the set of potential disturbances and lowering 

accordingly the instability threshold (as already known for the case of liquid metals), several 

azimuthal modes are excited at the same time for the considered value of the Marangoni number. In 

turn, the variety of modes and their diversification according to the roll (upper or lower), can be 

interpreted on the basis of the different geometrical properties of such convective systems and the 

different role taken by gravity according to whether the considered region is located over or under 

the equatorial plane. 

 

C. An Interpretation of the Spatio-temporal Dynamics  

 

The interpretation of the spatio-temporal behavior requires a much more elaborated discussion.   

For the liquid-bridge (half zone) problem and high values of the Prandtl number (see, e.g., 

Shevtsova et al.,
5
), as already discussed to a certain extent in Sect. IV.C., typical oscillatory 
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waveforms are known to be standing waves or travelling waves. Possible smooth transitions from 

the pulsating to the travelling regime have been observed by different authors for increasing values 

of the Marangoni number or for sufficiently long observation times (for slightly supercritical 

conditions
35

). More rarely, transitions from the travelling wave to the standing wave have been 

obtained numerically (Melnikov, 2013, private communication), but a continuous (though irregular) 

switching from one another has never been observed in the framework of past studies dealing with 

the liquid bridge. 

We have already discussed (Sect. IV.C) the possibility to identify some short timeframes in which 

the classical models of standing wave or the travelling wave seem to be effectively applicable to 

describe the present flow. Nevertheless, a more in depth analysis of such dynamics calls for a 

different (complementary and less heuristic) approach based on the analysis of the disturbances 

propagating along the circumferential direction, their superposition and the resulting behavior in 

terms of signals provided by probes located at specific positions in the fluid.  

In the remainder of this section, in particular, we will base most of our arguments on the well-

known possibility to represent the supercritical state of Marangoni flows in liquid columns in terms 

of superposition of disturbances traveling along the clockwise and anticlockwise azimuthal 

direction. Indeed, one of the most interesting outcomes of past theoretical efforts for the liquid-

bridge problem was the recognition for the effective dynamics and related transitional stages 

occurring in real experiments to be largely determined by the relative amplitude with which these 

counter-propagating waves interact (equal or different amplitudes, Kuhlmann and Rath
50

).  

Modeling each disturbance as a wave having an amplitude B(r,z), phase G(r,z) and angular 

frequency =2f of the type   ),(exp),( zrGtmizrBF   , Kuhlmann and Rath
50

 were 

able to show analytically that a superposition of two counter-propagating waves with the same 

amplitude should simply result in  )),(cos()cos(),(2 zrGtmzrBF    i.e. a standing wave 

(since in this case the oscillatory term does not depend on , this situation represents a waveform 

characterized by maximum and minimum disturbances fixed in space with the minimum being 

continually replaced by the maximum and vice versa, as soon as cos(t-G(r,z)) changes its sign). In 

a similar way, mathematical developments for the case in which the amplitude of the two 

hydrothermal waves is not the same (i.e. a superposition with an arbitrary amplitude ratio  

(0<<1)), led Kuhlmann and Rath
50

 to express the resulting flow as 

 tGmmzrBF   ),(bcos)(a),(  where  )(cos)1()(a 22

omm    

 2
122 )(sin)1( om    and ),(b Gm ),()tan(

1

1
tan 1 zrGm o 











 



, which, because 

the oscillatory term depends on , should be regarded as an analytic representation of a wave 

travelling with the phase of the oscillations depending continuously on  . 

The most remarkable consequence of such theoretical developments is that, according to the first 

model (the standing wave resulting from the superposition of waves having the same amplitude), 

one should expect all the signals measured by thermocouples located at the same axial and radial 

coordinates (with different azimuthal positions) to be in phase or in phase opposition (only two 
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values of phase shift being allowed, namely G=0 or G=), whereas in the second case (different 

amplitude) the set of phase shifts of the resulting disturbance should not be discrete but continuous 

with G depending linearly on the angular distance separating the thermocouples, provided such a 

distance   is shorter than /m
35

. 

 

a) 

 

b) 

Figure 13: Signals provided by eight thermocouples at a fixed axial position evenly spaced along 

the azimuthal direction, as shown in Fig. 4b (AF =0.63, Ma2.3x10
4
, Ra4.2x10

3
): a) z=1/2 (upper 

half), a continuous phase shift can be seen; b) z=-1/2 (lower half), only discrete values of phase 

shift are allowed. 
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Although, rigorously speaking, the analytic relationship defined above applies to the simplified case 

of disturbances with a well-defined (fixed) value of the wavenumber (m), the related general 

principles can be easily extended to the case of a multi-wavenumber spectrum of disturbances. 

Indeed, the resulting signals (plotted versus time) should be yet expected to display recognizable 

clustering of maxima and minima for the pulsating case and vice versa significant scattering of such 

extrema in the rotating case [provided, the angular distance between subsequent thermocouples 

satisfies the criterion defined above, which for the present case involving values of the azimuthal 

wavenumber up to m=4, would correspond to </4, a requirement largely met by the nine evenly 

spaced probes shown in Fig. 4b].   

The numerically computed signals provided by such thermocouples are shown in Fig. 13a and 13b 

for z=1/2 and z=-1/2, respectively. The strong amplitude variation experienced in time by these 

signals according to the azimuthal position of the probe clearly indicates that the amplitude of 

disturbances is not constant in time. The most interesting outcome of this figure, however, is the 

information it gives on the prevailing (pulsating or rotating) behavior of the flow.  

Scattering of peaks for z=1/2 (Fig. 13a) as opposed to ordered accumulation of minima and maxima 

at certain temporal locations for z=-1/2 (Fig. 13b), illustrates that the different properties of the two 

facing toroidall rolls also have an impact on the selection of the dominant waveform. On the basis 

of such signals, indeed, it can be concluded that �on average� while the lower roll tends to support a 

pulsating behavior, the upper one promotes the superposition of waves resulting in an azimuthally 

propagating disturbance. 

 

 

a)   b) 

Figure 14: Oscillatory behaviors in the phase space (AF =0.63, Ma2.3x10
4
, Ra4.2x10

3
): a) z=1/2 

(upper half), b) z=-1/2 (lower half). 
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This feature can be made even more evident by taking a look at Fig. 14, where the oscillatory 

behavior as monitored by two close thermocouples satisfying the condition </mmax has been 

represented in the phase space. This figure provides some additional meaningful information as it 

indicates that the behaviors elucidated above in terms of phase shift and amplitude of the signals 

correspond to well-defined �attractors� in the Ti�Tj plane. Similar plots have been frequently used 

in the literature as idealized versions of the state of the considered system and its possible dynamic 

evolution.  

For instance, looking at the interplay between T2 and T1, it becomes evident that in the first case 

(upper half), although the curve produced by plotting T2 as a function of T1 over the time has quite 

an irregular shape owing to the presence of many competing oscillatory modes (Fig. 15a), it 

circumscribes a region of finite (non-negligible) area. By contrast, in the second case (lower half), 

despite the complex spectrum of involved spatial modes and related frequencies (Fig. 15b), the 

resulting curve is much more regular, producing in the (T1, T2) plane a sort of narrow band inclined 

with respect to the horizontal and vertical axes.   

 

 

 

Figure 15: Typical frequency spectra of temperature signals: a) z=1/2 (upper half), b) z=-1/2 (lower 

half). 
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Additional interesting insights can be obtained by examining the typical frequency spectrum of 

temperature signals in the upper and lower rolls (reported in Fig. 15a and 15b, respectively). Indeed, 

some notable differences can be clearly distinguished. While oscillatory modes with relatively high 

amplitudes are located in the medium and high-frequency part of the spectrum for z=-1/2, 

disturbances cluster essentially in the low-frequency part for z=1/2. Moreover, on average, the 

amplitude of such modes versus the frequency displays a decreasing trend for the upper roll and, 

vice versa, an increasing behavior when the lower rolls is considered.  

The existence of values of frequency common to both spectra, however, witnesses the expected 

interdependence or connection between rolls (as an example, the f3.2 Hz frequency dominant in 

the lower roll is still present, though with a reduced amplitude, in the spectrum pertaining to z=1/2 

where most of the high-amplitude modes are of a rotating kind; similarly some of the frequencies 

which are typical of the upper roll temperature signals, e.g.,  f0.48 Hz, survive in the frequency 

spectrum of the lower roll, where the set of high-amplitude disturbances comprises essentially 

pulsating modes). 

Remarkably, the intriguing finding about the dominance of rotational or pulsating modes in the 

upper or lower toroidal roll, respectively, could have been anticipated (at least from a qualitative 

point of view) on the basis of earlier findings for the liquid bridge problem. As an example, in 

Lappa et al.,
35

 standing waves were found to be long lasting for relatively shallow liquid bridges 

(where the toroidal roll takes a shape and morphology similar to that of the roll seen here in the 

lower half of the full zone), whereas they were observed to be quickly taken over by travelling 

waves for larger aspect ratios (rolls more extended in the axial direction). 

Obviously, the present situation is much more complex because of the non-linear interaction among 

different disturbances with distinct azimuthal wavenumber that allows their relative amplitudes to 

change in time; moreover, the reciprocal influence of the two overlying and interpenetrating rolls 

evidenced by the frequency spectrum analysis, must be adequately taken into account. Perhaps the 

most relevant way to model these two influential factors would be to put a dependence on time 

directly in the parameter accounting for the relative amplitude of each couple of counterpropagating 

waves (m) and to assume for such a ratio a proper dependence on the axial coordinate (perhaps, 

this observation might stimulate other researchers in this field to elaborate in the future a 

courageous and exhaustive analytical model along these lines).  

 

VI. Conclusions 

 

So far, research activity dealing with the typical instabilities of Marangoni flow occurring during 

the processing of materials by the FZ method have been overwhelmingly devoted to the half-zone 

model (the so-called liquid bridge). Recently experiments by Kudo et al.,
33

 revealed that an 

apparently chaotic state can emerge when the experiments are based on the full-zone configuration 

in a region of the space of parameters where on the basis of existing theories and earlier results for 

the classical liquid-bridge problem with high-Pr fluids, the flow should be relatively regular in time 
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and with a simple structure in space (i.e. not too large supercritical conditions). Motivated by such 

unexpected experimental findings, a mathematical and numerical framework has been specifically 

elaborated to elucidate the spatial structure of fluid-dynamic disturbances, their nature and temporal 

behavior.   

The present paper may be regarded as a natural continuation of an already existing full-zone-based 

line of inquiry where, however, the main focus was on liquid metals or semiconductor melts.  

Starting from a cardinal concept, i.e. the possibility to model (or �view�) the flow as two distinct 

overlying circulation systems, we have shown how the key to interpret the supercritical flow state 

lies essentially in the mental divisibility of the flow into two toroidal rolls with different intensity 

and morphological properties (due to the presence of buoyancy breaking the original system 

symmetry with respect to the equatorial plane). 

A more in depth analysis of such dynamics has been based on a complementary (and less heuristic) 

approach based on the examination of the disturbances propagating along the circumferential 

direction, their superposition and the resulting behavior in terms of signals provided by probes 

located at specific positions in the fluid. A rich spectrum of convective dynamics has been revealed 

accordingly, consisting of modes with different spatial structure (wavenumber) appearing in 

isolated (single mode) or combined (hybrid state) form.   

A possible categorization of the observed phenomena has been attempted according to the 

prevailing effect: the upper toroidal roll can be said to support a combination of travelling waves 

counter-propagating with different azimuthal wavenumbers and different amplitudes, whereas for 

the lower roll, the superposition of such waves results essentially in an oscillatory mechanism of a 

pulsating kind due to the similar amplitude with which waves of a given azimuthal wavenumber 

overlap. Moreover, for such a roll the spectrum of disturbances displays a much simpler structure, 

with a significant shrinkage of the number of modes involved. 

The apparently �intermittent� response of the system is the consequence of the interference (non-

linear interaction) among all such modes. The related interconnected feedback loops and �iterative� 

processes make the system extremely sensitive to the interaction between the upper and lower rolls 

causing frequent switching from rotating to pulsating behaviors and intermediate (hybrid) situations 

in which the resulting scenario is apparently erratic. 

Among the other questions being examined by the present paper we also included an attempt to 

address other points of critical importance to contemporary research in these fields, namely: 1) 

which percentage of what we have learned in the framework of earlier studies dealing with 

simplified configurations such as the liquid bridge can be applied or transferred to the proper 

interpretation of fluid-dynamic phenomena occurring in more complex and realistic configurations; 

and 2) what is the best (or most effective) practical and theoretical approach to investigate such 

apparently chaotic Marangoni flows or to help investigators to discern the complex interrelations 

among various aspects that are not independent of one another. 
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