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Abstract 
 

This thesis presents a fundamental study on etching of diamond surfaces.  Details of the 

growth by microwave plasma Chemical Vapour Deposition (CVD) and etching by 

microwave hydrogen plasma, oxygen reactive ion etching (RIE) and thermal oxidation 

are presented.  

Prolonged exposure of {100} diamond surfaces to microwave hydrogen plasma was 

investigated by atomic force microscopy (AFM).  Reduction of surface roughness has 

been observed while formation of etch pits has not been detected.  X-ray photoelectron 

spectroscopy (XPS) detected the removal of graphitic carbon and reduction of oxygen 

under hydrogen plasma etching.  Electrical sheet resistivity has been observed to be 

depended on the texture of the CVD diamond films as well as on the ambient exposure 

time.  Both the surface and electronic properties are shown to agree with theoretical 

models. 

Formation of columnar structures accompanied the oxygen RIE of CVD diamond films 

and cubo-octahedral crystallites.  Using scanning electron microscopy (SEM) and AFM 

the preferential formation of columnar structures in the inter-granular area of the 

diamond films has been detected.  Surface contamination by silicon oxide has been 

identified by EDAX on the diamond surface and specifically on the columnar structures. 

Analysis by XPS demonstrated that the RIE etched surfaces were oxygen terminated 

and also were partially graphitised.  A discussion on the mechanism of columnar 

formation has been presented.  

From the thermal oxidation of cubo-octahedral CVD diamond crystallites the activation 

energies and pre-exponential factors of the {100} and {111} diamond surfaces were 

measured, using optical profilometry, to be 221 ± 34 kJ mol
-1

, 2.3 x 10
9 

nm s
-1

 Pa
-1

 and 

286 ± 29 kJ mol
-1

, 1.9 x 10
14

 nm s
-1

 Pa
-1

 over the temperature range 535
o
C to 600

o
C 

respectively.  Thermal oxidation of {100} and {111} diamond surfaces was 

accompanied with the formation of etch pits, increase of surface roughness and the 

exposure of {113} diamond surfaces between the {100} and {111} surfaces.  A 

mechanism for the thermal oxidation of the diamond surfaces has been proposed.  
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Chapter 1.  Introduction 

The plethora of unique physical and chemical properties of diamond has fostered a 

substantial research effort in the past thirty years for the utilisation of the material for a 

wide range of technological applications [1]. Due to the limited availability of diamond 

substrates many of the applications have been restricted in the past. The enormous 

research effort in the last few decades into the chemical vapor deposition (CVD) of 

diamond has provided a rich source of research data and, significantly, the commercial 

availability of large polycrystalline and single crystal diamond substrates. 

 

1.1 Diamond devices  

 

Diamond films are amongst the most favorable materials for hard coatings that can be 

used for a variety of applications. One such application, which has been discussed in the 

literature [2], is the coating for plasma facing components of tokamak fusion reactors. 

Since diamond has demonstrated a higher erosion resistance to hydrogen plasma 

exposure [3] than the commonly used graphite it is considered the future material as 

protective coatings for the key divertor components. 

Diamond has attracted enormous attention as a suitable material for the fabrication of 

electronic and optical devices. So far there are reports on the successful fabrication of 

diamond-based X-ray detectors [4, 5], diodes [6], ultraviolet (UV) photo-detectors [7-9], 

light emitting diodes [10] and electron emitting [11, 12] devices. Recently impurities 

within the diamond lattice have attracted lot of attention as some are active optical 

centers. More specifically, the nitrogen-vacancy (N-V) colour centre in diamond is an 

ideal candidate for hybrid solid state quantum devices [13].  

Conducting diamond has attracted attention as a material for microelectrodes and as an 

ideal platform material for bio-interfaces. This is due to the superior electrochemical 

properties of diamond including a wide potential window [14], chemical stability, 

excellent bio-compatibility [15] and bio-inertness which has been demonstrated in a 

number of electrochemical [16, 17] and biological [18] applications.  
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1.2 Diamond surfaces 

 

The intrinsic physical properties are a crucial factor for the potential applications of 

diamond although the surface properties and geometries are equally important for the 

prospective applications. The properties of any device would be affected by the nature 

of the termination and morphology of the diamond surface.  

A crucial step in diamond device fabrication would be the processing and polishing of 

the surface down to atomic scale level. Working with a chemically inert substrate which 

is the hardest material known is very demanding. Reducing the surface roughness of 

diamond has been the subject of extensive research and different routes have been 

explored. Mechanical polishing of the diamond surface by abrading material is one of 

the most commonly applied post-growth techniques to attempt to produce an atomically 

smooth surface. Such techniques lead to a damaged diamond surface, with an intrinsic 

surface roughness depending on the direction of polishing with respect to the 

crystallographic axes, which could dramatically affect the performance of any potential 

diamond device.  

In the past years there has been enormous experimental work focused on the 

optimisation of single diamond crystal growth with atomically smooth surfaces by 

examining the effect of deposition process parameters [19], such as temperature, gas 

composition, pressure and substrate orientation. Surface crystal defects on diamond 

surfaces, such as hillocks and etch pits [20, 21], have been investigated as their presence 

induces surface roughness and incorporation of impurities. Despite the work done so far 

on the CVD of homoepitaxial diamond growth surface defect formation is still not well 

understood.  

1.3 Surface treatments 

 

A wide range of surface treatments has been applied for the reduction of the surface 

roughness of single crystal and polycrystalline diamond films [22-30]. Plasma-based 

treatments have demonstrated that, under optimal process conditions, atomically smooth 

surfaces [27, 30, 31] are formed. Plasma-based treatments following growth is, 
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therefore, worthy of further exploration to understand the mechanism underlying the 

improved quality of the homo-epitaxial diamond [32-35] surface.  

The termination, and thus chemistry of diamond surfaces, can be altered upon exposure 

to various plasmas [36-39] including that of hydrogen plasmas. Not only has a reduction 

of the surface roughness to atomic level been demonstrated but also a concomitant 

change in electronic properties, notably the formation of p-type surface conductivity 

[40-44], which is an intriguing property for future electronic applications.  

Oxygen terminated diamond surfaces are hydrophilic and alter the chemical reactivity 

[45], electrical conductivity [46, 47], field emission [48] and Schottky barrier [49] of 

the crystal. The modification of the diamond surface to make it chemically reactive is 

very important for the functionalisation of the surface with biomolecules, such as 

proteins, DNA and enzymes. Oxidation of diamond surfaces can be achieved by 

different routes such as: photochemical reactions [50], plasma treatments [51, 52] 

thermal [53, 54], electrochemical [55, 56] and ozone treatments [57, 58]. The 

introduction of oxygen-carbon functional groups on the diamond surface, such as ether 

(C-O-C), carbonyl (C=O) and hydroxyl (OH), has shown to be strongly dependent on 

the process conditions and crystallographic orientation [228, 240]. 

The focus of the work reported in this thesis is the effect of microwave hydrogen 

plasma treatment on diamond films with (100) crystallites epitaxially aligned to the 

underlying single crystal silicon substrates. In addition the interaction of oxygen with 

diamond surfaces has been examined by means of reactive ion etching and thermal 

oxidation. As diamond oxidation has been found to be strongly depended on 

crystallographic orientation, the present studies have been conducted on CVD diamond 

films as well as on isolated individual CVD diamond cubo-octahedral crystallites with 

well-defined (100) and (111) diamond planes.  
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Chapter 2.  CVD diamond films 

2.1 Introduction 

 

The element carbon forms the basic unit of organic chemistry, biological molecules and 

results in life on earth. Due to the catenation property of carbon to form chains or rings, 

not only with single bonds, but also with double and triple bonds, and with bonding 

variety to other chemical elements, carbon forms nearly ten million known chemical 

compounds [59]. 

 

As the sixth element of the Periodic Table, an isolated carbon atom has a ground-state 

electronic configuration of 1s
2
2s

2
2p

2
. There are two core electrons occupying the 1s 

orbital and four valence electrons equally distributed between the 2s and 2p orbitals. To 

accommodate the geometries of bonding in carbon the four valence electrons are 

promoted to the valence state of 1s
2
2s

1
2px2py2pz. Elemental carbon can exist in the 

three main allotropes, namely: 

 

Graphite: The crystal structure of graphite is shown in Figure 2.1a). It comprises 

hexagonal symmetric basal planes. The valence electrons of each carbon atom form 

three equivalent sp
2
 orbitals for bonding within the planes whereas the planes are held 

together by van der Waals forces. Each carbon atom in the hexagonal rings forms three 

 covalent bonds, having a strength of 524 kJ/mol [60]. The distance between the basal 

planes is 0.335 nm whilst the distance between the adjacent atoms in the basal hexagons 

is only 0.142 nm. The anisotropic crystal structure of graphite results in large 

anisotropic properties of the material. Due to the delocalised -cloud above and below 

the planes of carbon atoms the material is an electrical conductor. As the adjacent 

planes are held by weak van der Waals forces they can slip past each other therefore 

making graphite a soft material.  

 

 

 

 

 



Chapter 2: CVD diamond films 

 

5 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 sp
2
 carbon crystal structure: a) graphite and b) C60 molecule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Diamond crystal structure. 

 

Fullerenes: A schematic representation of a simple C60 molecule is shown in Figure 

2.1b). The carbon atoms are arranged in five- and six- membered rings to form spherical 

shells that contain exactly 60 carbon atoms: the first fullerenes C60 [61]. From the 

discovery of a C60 other fullerenes have been reported in which a number of interesting 

shaped molecules are possible such as spheres, ellipses or cylinders. The fullerenes 

molecules are very stable structures and the four valence electrons are fully utilised in 

bonding [61].  

 

a) b) 



nm
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Diamond: is a network of tetrahedrally coordinated carbon atoms, as shown in Figure 

2.2, with a short bond length (0.154 nm) and high bond strength of 711 kJ/mol [60]. The 

carbon atom is hybridised forming four equivalent sp
3
 orbitals. Each carbon atom forms 

four covalent bonds with the neighboring atoms with an angle of ca. 109
o
 directly 

toward the four corners of a tetrahedron [60].  

 

The diamond crystal structure is a face-centered cubic (FCC) lattice, where the basis 

comprises two identical carbon atoms at each lattice point: one at (0, 0, 0) and the other 

at )
4

1
,

4

1
,

4

1
( , where the coordinates are given as fractions along the cube sides. This is 

equivalent as two interpenetrating FCC lattices, offset from one another along a body 

diagonal by one-quarter of its length.  

 

The unit cell of diamond, Figure 2.2, has a cube length (o) measured to be ~ 3.57 Å 

(0.357 nm) at room temperature [60] where the centre-to-centre C-C bond length is ≈ 

1.54 Å equivalent to one quarter of the cubic body diagonal. There are eight carbon 

atoms within the unit cell and therefore the atomic number density corresponds to 

8/o
3
 ≈ 1.76 x 10

23
 cm

-3
. 

 

Diamond exhibits a range of remarkable properties due to its isotropic crystal structure. 

The mechanical and physical properties [62, 63] of single crystal diamond are 

presented in Table 2-1 whilst the optical and electrical properties are summarised in 

Table 2-2. 

 

The three-dimensional stability of the tetrahedral bonding arrangement and the 

incompressibility of the C-C bonds are responsible for diamond‟s extreme hardness. 

Natural diamond is used for the calibration of the Mohs hardness scale, on which 

diamond has the maximum value of 10.  

 

At the equilibrium position the C-C bonds are relatively short. Due to their small size 

the carbon atoms are able to come close to each other before they experience net 

repulsive forces. Overlap of the orbitals of the adjacent carbon atoms in a C-C bond, 

creates a large energy separation between the occupied bonding orbitals and the 

unoccupied antibonding orbitals. This creates the formation of a very large energy gap 

between the valence and conduction band states in the electronic structure of diamond.  
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Property Value 

Crystal Structure Diamond (cubic) 

Lattice constant  3.567 Å  

Density 3.51 g cm
-3 

[69] 

Atomic concentration  1.763 x 10
23

 cm
-3

 

Thermal conductivity (300 K) 2 x 10
3
 W m

-1
 K

-1
 

Thermal expansion coefficient (300 K) 0.8 x 10
-6

 K
-1

 

Mechanical hardness 90 GPa 

Bulk modulus 1.2 x 10
12

 N m
-2

 

Melting point 4000
o
C 

Heat capacity 0.4715 J g
-1 o

C
-1

 

Heat of formation 714.4 kJ mol
-1

 

Modulus of elasticity 700-1200 GPa 

Poisson‟s Ratio 0.1-0.29 

 

Table 2-1 Mechanical and physical properties of single crystal diamond [68].  

 

Property Value 

Refractive index (10 m) 2.40 

Visible light spectrum 2.40 – 2.46 

Dielectric constant (45 MHz – 20 GHz) 5.6 

Dielectric strength 10
6
 V /cm

 

Electrical resistivity (single crystal) 10
16

  cm 

Electronic bandgap (indirect) 5.45 eV 

Electron mobility (300 K) 2200 cm
2
 V

-1
 s

-1
 

Hole mobility (300 K) 1600 cm
2
 V

-1
 s

-1
 

Saturated drift velocity 2.7 x 10
7
 cm s

-1
 

 

Table 2-2 Optical and electrical properties of diamond. 

 

 

Diamond is characterised as a large band-gap semiconductor, if not as an insulator at 

room temperature, with an indirect bandgap of ~ 5.45 eV at 300 K [62].  
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2.2 The synthesis of diamond 

The discovery, in 1772, that diamond is a carbon allotrope by the French scientist 

Lavoisier triggered the early attempts to synthesise diamond using graphite as a starting 

material. These methods were proven to be extremely difficult because, at room 

temperature and pressure, graphite is the thermodynamically stable allotrope of carbon. 

The difference between the standard enthalpies of diamond and graphite is 2.9 kJ mol
-1

 

[64]. The presence of a large activation barrier between the two phases prevents kinetic 

interconversion to take place under normal conditions i.e. 298 K and 1 atm pressure.  

 

2.2.1 The high pressure high temperature synthesis 

 

In contrast to the early work, diamond can be formed under conditions where is 

thermodynamically the most stable form of carbon. This principle is the basis of high-

pressure high-temperature (HPHT) synthesis to convert graphite to diamond. This 

technique was announced by ASEA in 1955 [65] and General Electric in 1955 [66] and 

since then it has been extensively used to produce synthetic diamond. Usually the 

process involves the presence of a suitable metal catalyst which reduces the activation 

energy for the conversion. The HPHT technique originally produced single crystal 

diamonds of very small sizes and this limited the applications of the material. There are 

a number of factors which affect the quality of the grown crystal. An excellent review 

has been published for the growth of large single crystals of diamond by HPHT 

synthesis [67]. 

 

2.2.2  The chemical vapour deposition of diamond 

 

The chemical vapour deposition process (CVD) is one of the most common techniques 

used in the fields of microelectronics and photonics for the growth and deposition of 

different materials. The principles of the CVD process involve the mixing of different 

gases in an environment that provides excitation of the gases in a manner to cause the 

deposition of a solid layer of material.  
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The use of the CVD process in the growth of diamond was initiated by using a carbon 

containing gas in a low pressure regime. First attempts using this concept were 

performed by Eversole [69] and Deryagin et al [70] under low pressure and on natural 

diamond crystals at 900
o
C. For those early experiments the growth rate was very small 

because graphite was deposited at the same time, since both phases were able to grow. 

The addition of atomic hydrogen into the gas mixture during the deposition process led 

to preferential etching of any graphitic phases compared to diamond [71, 72]. Further 

improvement of the process by the Russian research group led to the growth of diamond 

on non-diamond surfaces [73]. 

 

In 1982 the Japanese research group in the National Institute for Research in Inorganic 

Materials (NIRIM) developed a hot filament reactor for the growth of diamond films. 

This technique showed that good quality diamond can grow on non-diamond substrates 

at a growth rate of ~1 m h
-1

 [74]. It took only one further year to develop another 

method to grow diamond using a microwave plasma reactor [75].  

2.2.3 Low pressure diamond synthesis 

 

To date, there have been substantial technological advances in the growth of single 

crystal (homoepitaxial growth) diamond and polycrystalline diamond films which have 

been performed using different techniques. The different types of growth systems are 

categorised according to the type of activation mechanism used in the gas-phase for the 

deposition of diamond. They can involve thermal methods, such as hot filament and 

oxyacetylene torch, and plasma methods such as DC electric discharge and microwave 

plasmas. From the engineering point of view they may vary but they share common 

features as growth systems: 

 

1. They use a large amount of electrical or chemical energy to achieve dissociation 

of molecular hydrogen and hydrocarbon molecule, as they need  

i) a carbon containing gaseous precursor such as CH4 diluted in an excess 

of hydrogen (1% vol. CH4) to form fragments which are reactive at the 

deposition surface. 

ii)  to dissociate molecular hydrogen sustaining a super-equilibrium 

concentration of gas-phase hydrogen atoms. 
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2. They operate at moderately low pressures, usually a few Torr to 1 atm. 

3.  The gas temperature is high, typically 1700
o
C around the activation zone. 

Cooling is applied to the substrate to ensure and maintain a substrate temperature 

in the range approximately 600 – 900
o
C. 

 

Hot Filament CVD 

 

The development of the hot filament (HF) CVD process by Matsumoto [76] in 1982 

initiated research which led to the industrial production of CVD synthetic diamond. In a 

typical HF reactor Figure 2.3, a metal coil is heated to around 2000
o
C at a reduced 

pressure (~ 20 Torr) of the reactant gas mixture of H2/CH4. The substrate temperature 

depends on the filament temperature and the distance between the substrate and the 

filament. It is feasible to heat the substrate independently to 600 – 900
o
C, as well as to 

apply a bias voltage either to the filament or the substrate.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Schematic representation of a hot-filament CVD reactor. 

 

The gas flow design of the HF reactor is very important as diffusion is the dominant 

transportation process of the active reagents to the substrate. A metal carbide layer 

forms around the residual filament under CVD conditions. Molecular hydrogen adsorbs 

on the carbide layer, where thermal energy causes dissociation to atomic hydrogen 

which diffuses back to the gas mixture. Atomic hydrogen production is limited by the 

surface area of the filament and the available surface sites for dissociation. For the 

extended growth of diamond the thermal and mechanical stability of the metal carbide 

H2/CH4 

Pump 

Filament 

Substrate 

Heater 

Substrate Holder 
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layer is crucial. For example tantalum is one of the preferable metals for filament as it 

remains rigid at high temperatures.  

 

HFCVD technology is one of the most popular processes for the growth of synthetic 

diamond because of its basic simplicity, low cost, easy of scale up and it is feasible to 

coat different types of substrates with diamond films on various complex geometries. In 

summary large area of material can be coated with high growth rates [77]. Nevertheless 

the application of the HF technology is limited due to the quality of the diamond films 

produced, because of the possible contamination from the filament source material [78]. 

 

The DC arc-jet reactor 

 

The DC arc-jet reactor is one of the most common plasma-jet systems used for diamond 

deposition. Extremely high flow rates of process gases are used in the plasma, which are 

ionised by high electrostatic potentials. There is a secondary chamber that is used to 

expand the jet which reaches the substrate surface at high velocities. The technology is 

categorised according to the pressure of the second chamber (which could be 100 Torr 

to 1 atm) and the method used to sustain the discharge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Schematic diagram of DC arc jet plasma reactor used for diamond 

deposition.  

H2/CH4 
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In the DC arc-jet, ionisation is caused by the high electric field that is used to drive high, 

steady currents through the flowing process gas. A schematic illustration of a typical 

plasma jet employed for diamond deposition is showed in Figure 2.4. Very high growth 

rates have been obtained using the DC arc-jet reactor [79], but the deposition of 

diamond is limited to a small area exposed to the jet. Since arc-jets generate high 

temperature the thermal shock at the surface of the substrate is large and could lead to 

delamination of the underlying deposited material. Sophisticated cooling systems have 

usually been employed in the plasma-jets to avoid this problem.  

2.3 Microwave plasma enhanced chemical vapour deposition synthesis 

 

Due to its simplicity, flexibility and early commercial availability the microwave 

plasma enhanced chemical vapour deposition (MPECVD) became the most widely 

technique used for the deposition of high quality synthetic diamond within a relatively 

low pressure gas regime. 

 

In this type of CVD process the excitation energy is provided to the gas mixture by 

means of microwave power, with a frequency of 2.45 GHz as most commonly used. 

The MPECVD systems are also referred to in the scientific literature as microwave 

plasma assisted CVD (MPACVD). The substrate to be coated is contained within the 

same chamber as the process gases. Microwave power is then coupled into the 

chamber through a dielectric window via a waveguide and an antenna for the creation 

of a plasma discharge. A stub tuner is used to tune the microwave matching circuit, as 

shown in Figure 2.5. The substrate is usually immersed in, or adjacent to, the plasma in 

the chamber.  

 

A schematic representation of the processes that take place during the MPECVD 

diamond growth is shown in Figure 2.6. Free electrons in the gas are accelerated by 

coupling with the electrical component of the microwave field. Electron energy is 

transferred to the system through gas-phase collisions leading to vibrational excitation, 

molecular dissociation and, ultimately, ionisation of molecular hydrogen. As a 

consequence this creates a non-equilibrium plasma and the atomic hydrogen, which 

may be also be in a energetically excited form, initiates the radical gas-phase chemistry 

[80]. 
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Figure 2.5  The schematic diagram of the microwave plasma CVD reactor. 

A schematic representation of the processes that take place during the MPECVD 

diamond growth is shown in Figure 2.6. Free electrons in the gas are accelerated by 

coupling with the electrical component of the microwave field. Electron energy is 

transferred to the system through gas-phase collisions leading to vibrational excitation, 

molecular dissociation and, ultimately, ionisation of molecular hydrogen. As a 

consequence this creates a non-equilibrium plasma and the atomic hydrogen, which 

may be also be in a energetically excited form, initiates the radical gas-phase chemistry 

[80]. The diamond precursors impinge on the substrate and, under the right conditions, 

diamond growth takes place. The design of the MPECVD reactors is such to ensure 

that the local maximum in the microwave field intensity lies above the water-cooled 

substrate. The geometry and dimensions of the reactor provides stability of the  plasma 

within the reactor [81]. 

 

There has been impressive progress on increasing the microwave power capabilities 

and technologies of MPECVD systems since the 1980‟s, which has led to a significant 

increase of the deposition rate and the quality of the material [82,83]. Microwave 

activation for diamond growth creates an electrode-free discharge which enables the 

use of high temperatures and/or higher pressures for process conditions avoiding 

equipment degradation and sample contamination. A drawback of using MPECVD 

technology is the high cost of the design and manufacture of the systems especially 

when high powers are used. 
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Figure 2.6 Schematic representation of the different processes taking place during 

diamond MPECVD. 

A direct comparison between various MPECVD systems is impossible since the design 

of the reactors differs. As well as the way of providing heating to the substrate, gas 

pressures and the gas composition differ from one research group to another. Despite 

this a model has been developed for the MPECVD diamond growth process that agrees 

broadly with the experimental results. The detailed mechanism of diamond growth by 

MPECVD is not completely understood especially the surface processes [84]. 

Analytically we consider the different processes that take place during the MPECVD 

diamond growth as shown in Fig. 2.6. 

 

2.4 Gas-phase processes in CVD diamond synthesis 

 

In CVD diamond synthesis the gas chemistry involves reaction of hydrocarbon species 

and their dissociated fragments. Attempting to understand the gas phase chemical 

kinetics of C/H/O species and growth mechanism has seen an enormous effort in 

experimental, theoretical and modeling research in CVD diamond synthesis. 
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2.4.1  Formation of atomic hydrogen 

The CVD diamond synthesis, at the low pressure regime, is carried out in the excess of 

molecular hydrogen in the gas mixture. Formation of atomic hydrogen is crucial for 

the gas chemistry during the CVD process.  

The formation of atomic hydrogen achieved by the electronic dissociation of molecular 

hydrogen in a microwave plasma CVD system 

 

H2 +e
-
 2H + e

- 

 

and by thermal decomposition of molecular hydrogen on the hot filament surface: 

 

H2 2H 

 

Within an appropriate pressure regime, energy transfer from electrons to heavy third 

bodies (M) can occur, giving the third bodies energy enough to dissociate molecular 

hydrogen, thus: 

H2 +M→ 2H + M 

 

The consumption of atomic hydrogen can be achieved by a number of reactions, but 

the rates of atomic hydrogen formation and consumption equalise resulting in a steady 

state of atomic hydrogen within the plasma. Plasma process parameters, mostly the 

pressure and the microwave power, influence the concentration of atomic hydrogen 

species. Consumption of atomic hydrogen can be achieved through formation of 

molecular hydrogen by third body reaction:  

 

H + H + M(H2) → H2 + M(H2) 

 

Such a reaction is strongly influenced by the pressure and the reaction rate may 

become very slow at low pressures. Diffusion of atomic hydrogen to the chamber walls 

or the substrate may occur before atomic hydrogen recombines in the gas phase.  
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2.4.2 Hydrocarbon chemistry  

The presence of hydrocarbon species in the plasma mixture introduces new pathways 

for the consumption of atomic hydrogen. Therefore the dynamic hydrogen 

abstraction/hydrogen addition reactions with hydrocarbons are the dominant process 

within the CVD reactor. 

The formation of hydrocarbon species: CH3, CH2, CH and C are feasible via a series of 

fast (H-shifting) reactions, in the hot plasma regions, involving the H abstraction 

reaction: 

CHy + H  CHy-1 + H2   y = 4-1  

C2Hx + H  C2Hx-1 + H2   x = 6-1 

While in the cooler regions of the plasma, addition reactions can take place. 

 

CHy + H + M  CHy+1 + M   y ≥ 0 

C2Hx + H + M   C2Hx+1 + M  x ≥ 0 

 

although the reverse reaction path is possible requiring a third body (M).  

The various CHy (y ≤ 4) species exhibit a wide spatial distribution of relative densities 

in the CVD growth chamber, as their densities depend on the local H atom density and 

the gas temperature Tgas.  

 

It would be expected that C2Hx species would be present under typical CVD growth 

conditions. It has been observed experimentally that the same concentration of 

methane (CH4), methyl (CH3), acetylene (C2H2), H and ethylene (C2H4) were evident 

[85] in a MPECVD system when either acetylene/hydrogen gas mix or 

methane/hydrogen gas mix was deployed under the same process conditions. 

 

The C2Hx species are formed by CHy radical recombination reaction path ways: 

 

CHx + CHy   C2Hx+y 

CHx + CHy  C2Hx+y-1 + H 

CHx + CHy  C2Hx+y-2 + H2 
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For example the formation of acetylene, can achieved by the following reaction paths: 

 

CH3 + CH3   C2H6  

C2H6 + H  C2H5 + H2 

C2H5 + M  C2H4 + H + M 

C2H4 + H  C2H3 + H2  

C2H3 + H  C2H2 + H2  

or     C2H6 + M  C2H2 + 4H + M 

 

The formed C2Hx species in the plasma undergo a series of gas-phase H-shifting 

(abstraction and /or addition) reactions. Acetylene C2H2 has been found to be the most 

thermodynamically favoured hydrocarbon at high Tgas. Through a series of 

recombination and H-shifting reactions the formation of CnHx species (n > 2) can be 

achieved and as the carbon mole fraction increased in the input gas mixture such 

species gain an increasing relative abundance.  

 

The MPCVD reactors are characterised by a steep Tgas gradient. As a consequence the 

total gas phase number densities, the H atom densities and the inter-conversion 

reaction rates between these species are all sensitive functions of location within the 

reactor chamber. Advanced mass spectroscopic techniques [86-88] had been employed 

and the presence of stable hydrocarbon species like CH4, C2H2 and C2H6, and CH3 

radicals have been reported under typical CVD diamond gas mixtures and process 

conditions.  

 

Recent studies on the gas-chemistry of MPCVD reactors show that interconversion 

between CH4 → C2H2 takes place and it is sensitive to local Tgas and [H] which are 

influenced by the process conditions (pressure, input power, input gas mixing ratios, 

etc) and location inside the reactor. Transient species such as C2 and CH radicals, and 

electronically excited H atoms, were found to be independent of the carbon source gas 

in the CVD reactor. Therefore any chosen hydrocarbon source gas will be converted 

into a mixture dominated by CH4 and C2H2 through interconversion reactions [86].  
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2.4.3 Growth additives 

 

Oxygen 

 

The addition of oxygen in the gas growth mixture of diamond, either in the form of 

molecular oxygen or as an oxygen- containing compound e.g. CO, CO2, alcohol or 

acetone, is very common [89-92]. The presence of oxygen in the gas mixture has been 

proposed to improve the film quality [92] since oxygen etches graphite rapidly or any 

other non-diamond components and removes these phases from the diamond film. The 

presence of oxygen in the gas mixture has been found to: 

 

i) increase growth rates [84] 

ii) alter the  parameter [89], which describes the shape of diamond cubo-

octahedral crystals and  is defined as the ratio between the growth rates of 

{100} and {111} diamond faces respectively. 

iii) reduce impurity incorporation such as boron [93] and nitrogen [90]. 

 

Despite the type of carbon source used in the MPECVD system acetylene has been 

reported [84] to be the dominant stable hydrocarbon product arising from the plasma. 

It is believed that oxygen consumes acetylene through a complex multi-reaction 

process that can be summarised thus, 

 

C2H2 + O2 → 2CO + H2 

Considerable research into MPECVD has established that it is feasible to grow 

diamond under very precise ratios of carbon, hydrogen and oxygen. This is 

exemplified by the ternary phase diagram developed by Bachmann and co-workers 

[94]], as shown in Figure 2.7. According to the collated observations the successful 

growth of diamond takes place under precise ratios of C-H-O which is independent of 

the type of carbon containing species and the growth method. Diamond growth is 

achieved on a narrow region of the Bachmann phase diagram defined as the diamond 

growth region in Figure 2.7, below this region no growth is achieved while above it 

no-diamond carbon is generally deposited.  
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Figure 2.7 A simplified form of the Bachmann phase diagram for diamond growth 

in C–H-O containing CVD systems [94].  

 

Halogens 

 

Other types of gases that have been used in CVD growth gas mixtures are fluorine and 

chlorine, either as pure gas or as organic species containing fluoro- or chloro- groups 

[95-98]. The role of these species is not completely understood but, as with all those 

systems, it is believed that they contributed to improve the growth surface stabilisation, 

preferential etching of non-diamond carbon or to enhance the concentration of the 

growth species. When halogens are used for the growth of diamond it has been found 

to result in halogen terminated surfaces as well as to decrease the growth temperatures. 

The incompatibility of present CVD reactor materials and pumps to halogen species 

excluded their use in this work. 

 

Nitrogen 

Nitrogen is one of the most common impurities found in natural diamond. When  

added to the CVD growth gas mixtures it leads to a profound increase in the growth 

rate [99]. Addition of nitrogen at low concentrations in the gas mixture produces high 

quality highly oriented/textured films [100-102]. There is an ongoing debate about the 
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effect on the growth of diamond films. One of the mechanisms that has been proposed, 

as with oxygen, is the preferential etching of the non-diamond carbon by nitrogen 

species. The drawback of nitrogen addition to the growth mixture is that the resulting 

diamond films have altered electronic properties via the incorporation of nitrogen in 

the diamond lattice. Nitrogen is an interstitial donor with ionisation energy of 1.7 eV 

[102] and since this level is deep the presence of nitrogen produces a diamond 

insulator at room temperature.  

 

Dopants 

By adding dopants into the growth gas mixture during CVD growth the electronic 

properties of the diamond films can be altered. It is believed that a low concentration 

of dopants does not change the chemistry of the diamond growth. The mechanism of 

how the dopants influence the growth is still not understood. The incorporation of 

dopants into the crystal lattice alters the electronic properties of diamond creating both 

n-type and p-type semiconductor behaviour of the material. The successful 

incorporation of nitrogen [102], phosphorus [103-105] and boron [106-109] into the 

diamond lattice has been demonstrated.  

 

Boron doped diamond exists in nature and is a p-type semiconductor, with an acceptor 

level of 0.37 eV above the valence band maximum. Growth of p-type diamond by 

CVD techniques can be achieved by addition of diborane (B2H6) or trimethylboron 

B(CH3)3 into the gas mixture. The incorporation of boron atoms has been found to 

depend on the growth facet of diamond. The incorporation ratio of boron is higher for 

the (111) plane rather for the (100) indexed planes [109]. As a consequence there is an 

spatially inhomogeneous boron distribution within the polycrystalline diamond films 

[106].  

 

There are several impurities that introduce n-type doping in diamond. Nitrogen is an 

interstitial donor, with a very deep donor level of 1.7 eV. Phosphorus creates a donor 

level of 0.6 eV below the conduction band minimum  

 

The addition of a dopant precursor gas into the growth chamber contaminates the 

chamber wall. Thus subsequent deposited materials will contain the dopant. One 

solution to overcome this problem is the use of different reactor chambers for doped 

and intrinsic diamond film growth.  
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An alternative route to diamond doping, commonly employed, is ion-implantation. 

This method allows the doping of selective areas on the film surface as well as the 

formation of areas with different conductivity. Ion implantation is always accompanied 

by lattice damage. The ion damaged areas are converted to graphite by annealing due 

to the metastability of the sp
3
 diamond configuration with respect to the 

thermodynamically stable sp
2
 bonding configuration of graphite [110-111].  

 

2.5 Surface chemistry in CVD diamond synthesis  

 

The current understanding of the macroscopic mechanism of CVD diamond synthesis 

originates from the extensive research work done experimentally and theoretically. The 

bonding and structures of diamond surfaces have been analysed extensively by the 

modern techniques of theoretical chemistry. The focus of the theoretical research is 

based on the relative stability of surface structures and their reaction barriers for 

different adsorbate species. While surface science methods have attempted to unravel 

the CVD growth mechanism of diamond it is acknowledged that further advances in 

surface chemistry may rationalise the growth rate and quality of diamond crystals.  

The general model [84] for CVD diamond synthesis on hydrogen terminated diamond 

surfaces is a two step process as growth takes place under conditions of excess 

hydrogen. Growth is initiated by site activation via a surface hydrogen abstraction 

reaction: 

H(g) + CH(s)  H2(g) + C*(s) 

 

followed by addition of hydrocarbon radical where (s) represents surface species. 

 

H (g) + C* (s)  CH (s) 

 

In this simple growth model the number of active sites is determined by the competition 

between formation of active sites and hydrogen atom recombination with the surface 

radicals [112]. 
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2.5.1 Diamond surfaces 

 

The surface processes during CVD diamond growth is dependent on the crystal planes 

exposed to the gas phase. In the case of polycrystalline CVD diamond films, the 

morphology of the deposited film strongly depends on the relative growth rates of 

{111} and {100} planes. Figure 2.8 shows the atomic geometries, in perspective views, 

of clean (100) and (111) diamond surfaces [113]. However, it should be recognised that 

steps may also exist on diamond surfaces. 

 

 

 

 

 

Figure 2.8 Atomic geometries for the clean a) (100) (2x1) surface and b) (111) (2x1) 

Pandey-chain surface [113]. 

 

The {100} diamond surface results from a network of vertically oriented zigzag chains 

of carbon atoms. As each new layer of atoms is added to the structure the chains rotate 

by 90
o
 due to lattice symmetry. The (100) diamond surface of polycrystalline diamond 

reveals square facets characteristic of (100)-highly oriented/textured CVD diamond 

thin films. 

 

Clean (100) diamond surfaces are completely free from hydrogen and exhibit a 2x1 

reconstruction symmetry with -bonded dimer rows [114]. Hydrogen termination of 

(100) diamond surface has also been observed directly by scanning tunnelling 

microscopy (STM) to show the 2x1 reconstructed.[115-117] surface. 
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Several theoretical models have been developed to describe the stability of hydrogen 

terminated (100) diamond surfaces [118-120]. The monohydride termination has been 

found to be the most stable form of the (100) 2x1 surface [121] . Each carbon atom of 

the C-C dimer rows of the (100) 2x1:H surface has two back bonds to the diamond 

lattice and one bonded to hydrogen, as depicted in Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Schematic of (100) 2x1:H diamond surface and the different surface 

steps [122].  

Theoretical models predict the monohydride-dimer bond length to be 1.60 Å [123,124] 

in agreement with measurements by dynamic low energy electron diffraction (LEED). 

Vibrational modes of C-H dimer rows have been observed by FTIR at 2919 cm
-1

 for 

the asymmetric mode and 2899 cm
-1

 for the symmetric stretch modes. The values are 

in agreement with theory.  

 

On ideal {111} diamond surfaces each carbon atom is bonded to three other 

neighbouring carbon atoms to form a network of hexagons. The diamond (111) surface 

reconstructs to domains of (2 x 1) unit cells upon annealing to the hydrogen desorption 

temperature of  900
o
C [125-127]. According to Pandey‟s chain model [128] the clean 

hydrogen-free surface is reordered in -bonded chains. To date, the accepted view [125-

127] of the of (111) hydrogen terminated diamond surface, shows a 1x1 surface 

reconstruction, where the surface dangling bonds are saturated with hydrogen atoms. A 
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simple model of C(111) 1x1:H surface consists of each carbon surface atom bonded to 

each hydrogen atom, as shown in Figure 2.10, with different types of surface steps. The 

surface C-H bond produces a sharp vibrational mode at 2832 cm
-1

, as observed by FTIR 

[129-130].  

 

The dimer rows produce an angle of 120
o
 to each other on the (111) surface. Steps with 

a height of 0.2 nm have been observed on the (111) diamond surface [129] which is in 

agreement with the theoretical value of a single bilayer step of 0.206 nm [126]. Other 

diamond planes have been observed macroscopically [32, 33], however due to their 

scarcity {110} and {113} diamond surfaces are not well characterised.  

 

 

Figure 2.10 Schematic of the hydrogen terminated (111)(1x1) :H diamond surface, 

with representation of steps, a) a step edge with a local {110} like structure, and b) 

a step edge with a local {100} dihydride structure [131]. 

2.5.2 Diamond growth mechanism  

 

The diamond growth mechanism, governed by surface chemical reactions, has been the 

subject of vast research, debate and controversy over the last 20 years. Plasma 

spectroscopic techniques of CVD diamond growth indicated the importance of the 

methyl radical and acetylene as the dominant precursor species. The presence of other 

a) 

b) 
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hydrocarbon radicals, C and C2 show lesser concentration inside the plasma therefore 

their importance on CVD diamond growth was assumed to be negligible. Based on 

those experimental observations, different macroscopic mechanisms have been 

proposed for the CVD diamond growth. Methyl, CH3, [112,132], acetylene (C2H2) 

[133-137] or both radicals have been considered as the dominant precursor species 

leading to diamond growth.  

Growth on the {100} surface 

  

Many growth models consider a (100):H 2x1 reconstructed diamond surface, and 

incorporation of CH3 radical into the growing surface [137]. Growth is initiated by 

hydrogen abstraction from one of the C-H dimer bonds and the creation of a surface 

radical. The radical site on the (100) surface will undergo addition of methyl radicals 

following diffusion from the gas-phase towards the diamond surface, as shown in steps 

1-3 of Figure 2.11 [138]. The incorporation of the adsorbed methyl radical into the 

surface dimer bond is accompanied by an additional H abstraction and bond 

rearrangement, as shown in steps 4-6 of Figure 2.11. The addition of an H atom to the 

surface radical completes the process, as shown in steps 6-7 in the Figure 2.11. At the 

growth temperatures used during diamond CVD growth the inserted CH2 may be 

unstable and different reaction pathways have been discussed in the literature for the 

removal/etching of CH2 or CH3 [125, 138]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.11 Reaction path for incorporating a CH2 group into a C–C dimer bond, 

energies are quoted in units of kJ mol
-1

. Reprinted from [140]. 
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Incorporation of methyl radicals can also be feasible across the trough between two 

dimer rows. This mechanism has been proposed by Harris [132, 135] and further 

developed by Harris and Goodwin [140] including the Garrison et al [137] mechanism 

so-called GDSB. Two different reaction paths have been proposed for the incorporation 

of methylene across the trough between successive C-C dimers in a chain row. Figure 

2.12 shows the two reaction paths; the steps 8 to 12 depicts the methyl addition to a 

surface radical followed by the formation of a surface radical by hydrogen abstraction. 

The reaction path is terminated by rearrangement to form the inserted methylene 

structure. Steps 8, 13 to 11 and 12, starts from a biradical site where methyl radical is 

incorporated into one radical site followed by hydrogen abstraction and the insertion of 

methylene between the two dimer rows. The analytical work by Cheesman et al [138], 

on bridging the trough in a dimer chain, concluded that the best site for CH3 adsorption 

is adjacent to a dimer already bridged by CH2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Reaction path(s) for incorporating a CH2 group across the trough in a 

dimer chain that has one pre- and post-incorporated dimer as immediate 

neighbors [138]. Energies are quoted in units of kJ mol
-1

 

The reaction path from 10 to 11, shown in Figure 2.12, proposes feasible surface 

migration of radical sites between the surface dimer and an adjacent adsorbed CH3 

group. Frenklach et al [141, 142] suggested that surface migration is important for the 

growth of (100) diamond surfaces and assists in the growth of dimer rows and the 

ultimate formation of smooth surfaces. So far there is no direct experimental evidence 

on surface migration during CVD diamond growth. Empirical observations on single 
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crystal diamond growth under CVD growth conditions, support the diffusion 

(migration) of absorbed species to the edges of the surface steps, therefore promoting 

the formation of large crystal domains with very smooth surfaces [19,143]. But post 

growth treatment of (100) diamond surface in hydrogen plasmas also indicates that 

etching and migration processes take place simultaneously under CVD growth 

conditions. A very recent 1D Monte Carlo model of the CVD diamond growth 

mechanism developed by May and co-workers [144] managed to reproduced many 

surface structures observed empirical on (100) diamond surfaces. According to their 

model, adsorbed species on the surface can migrate along and across dimer rows, and 

their presence is essential for step growth and the formation of smooth surfaces. 

Growth rates would be predicted to reduce without surface migration, by the above 

mentioned model, and formation of rough and spiky diamond surfaces would be 

promoted.  

 

A growth mechanism has been proposed by the addition of acetylene to the (100):H 

2x1 diamond surface [133,145], as shown in Figure 2.13. Methyl and acetylene radical 

species have been proposed as dominant precursor species for few diamond growth 

models [125, 146].  

 

Recent macroscopic growth models [147] on CVD diamond growth promote the view 

that hydrocarbons with 2 or more carbons, such as CxHy (x ≥ 2) cannot contribute to 

the growth of the diamond surface. Due to the -scission reactions the concentration of 

those carbon species is low both in the gas phase and in the growing diamond surface.  

The -scission reaction process stops the formation of polymer chains on the growing 

diamond surface, as shown in Figure 2.14. Carbon groups such as C2H2 and C2H4 can 

be removed from surface-adsorbed hydrocarbon species containing two or more 

carbon by the abstraction of a terminal hydrogen atom followed by rearrangement to 

break the C-C bond to the terminal H and to release the gaseous C2H2 or C2H4 species. 
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Figure 2.13 Diamond growth mechanism proposed by Skokov, Weimer and 

Frenklach for the addition of acetylene onto the (100):H 2x1 surface [145]. 

 

 
 

 

 

Figure 2.14 The removal of surface ethyl group by -scission process [147].  

 

The size of crystallites on polycrystalline CVD diamond films has been found to depend 

strongly on the ratio between CH4 and H in the gas mixture. In this manner diamond 

films with crystallite sizes ranging from several microns have been grown as well as 

crystallites in the order of few nanometers. Contrary to the growth models which 

consider methyl as the dominant precursor for the growth process, work conducted by 

May et al [148-151] involved the competitive growth by all the C1 radical species that 

could be present in the gas mixture in the vicinity of the growing (100) diamond 

surface.  
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Hydrogen abstraction on the (100) 2x1 reconstructed surface forms two types of surface 

radical sites, as is shown in Figure 2.15: monoradical sites which exhibit a single 

dangling bond on a surface carbon atom, and biradical sites, where two surface radical 

sites have been formed on adjacent carbons. The occurrence of radical sites strongly 

depends on the local surface geometry. According to the developed model, methyl 

radicals are still the major growth precursor, which can add to biradical sites, 

terminating and stabilising the surface dangling bonds.  

 

 

 
Figure 2.15 Radical sites on (100) diamond surface during CVD growth. The 

labelling of the sites is in accordance with the scheme of Skokov et al [145]. 

When radicals such CH and C are incorporated onto surface radical sites, they can be 

added to both biradical and monoradical sites, as they create less steric repulsion. After 

addition to surface radical sites they remain highly active, as they still contain dangling 

bonds. The fate of the added CH and C species have been investigated, as well as the 

importance of surface migration of CH2 (induced by H abstraction) on the grown (100) 

diamond surface [150, 151].  

 

In summary the proposed model suggest that the relative concentration of [H] and [CH3] 

species at the growing surface, depends on the process conditions which, in turn, 

strongly affects the growth rate, morphology and crystal size of the diamond film.  
 

Growth on the diamond {111} surface 

 

The microscopic {111} diamond surface, as observed on many occasions, is rough and 

contains many steps, terraces and kinks. In comparison with the {100} diamond surface 

growth on the {111} plane is much faster and occurs via a more complicated process. 

In contrast to (100):H 2x1 diamond surface, the (111):H 1x1 surface has not been 

investigated to the same level and, on the microscopic level, the growth mechanism is 

less well understood.  
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Microscopic growth models, starting with (111) 1x1:H surface, have proposed a 

mechanism in which CH3 addition to the growing {111} surface occurs up to a 

monolayer coverage to which CH3 is finally added to form a new layer [152]. Models 

adopting CH3 radicals predict very slow growth rates for the (111) diamond surface via 

layer nucleation. Models incorporating CHx radicals into the lateral growth of the (111) 

diamond surface have been successful by modelling step edges and kinks [153-155] 

producing a step-flow process for monolayer growth [156]. Recently Butler and 

Oleynik [131] investigated the plausible growth sequence for the nucleation of the next 

layer of growth on a diamond (111) surface and more specifically they examined the 

formation of commonly observed twins on those diamond surfaces. The models 

consider C2Hy species as a way to avoid the complications of CHy additions. 

Comparable growth rates have been produced by the addition of the species into the 

growth [125, 156]. So far no mechanism has predicted the high surface roughness of the 

as-grown {111} diamond surface.  

2.5.3 Textured diamond growth 

 

Textured diamond growth is characterised “by the evolutionary selection of specific 

crystallite orientation” [157]. Thus the resulted film surface is terminated 

predominantly by one type of facet. The plane with the direction of slowest growth 

perpendicular to the surface dominates the morphology as  modelled by Van der Drift 

[158].  

 

The crystal structure can be described in terms of the relative rates of growth 

orthogonal to {100} and {111} diamond surfaces. The  growth parameter introduced 

by Wild et al. [159, 160] describes the crystal by means of k100 and k111 the growth 

rates of {100} and {111} diamond faces respectively and can be measured by the 

relative sizes of the crystal facets. According to the α parameter various crystal shapes 

can be created, as shown in Figure 2.16. 

 

 

 

The α parameter, describes the relative growth rates and the resulting diamond 

crystallite shape. 
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Figure 2.16 Idiomorphic crystal shapes for different values of the growth 

parameter α [161]. 

The reaction rate at each low index plane is different; therefore depending on 

experimental conditions the reaction rates for each plane can be enhanced or retarded. 

The relative growth rates determine the morphology of the growth diamond surface. 

The knowledge of the reaction mechanism on the low-index planes of diamond is vital 

for the understanding of the diamond nucleation and growth, since it is believed that 

the rate-limiting processes are generally thought to occur on sites associated with these 

particular surfaces.  

2.6 Oriented {100} diamond growth 

 

Diamond crystallites can be grown with defined crystallographic surfaces by 

controlling the growth parameters. Those crystallites can be randomly oriented about 

the azimuthal axis or aligned with the silicon crystallographic axes. Those films result 

in high angle grain boundaries which affect the mechanical, electrical and structural 

properties of the films.  

 

Nucleation is the initial step for diamond heteroepitaxy. The nucleation density and 

rate are crucial issues for the deposition of diamond films. A common diamond 

nucleation method is to abrade the substrate material, producing high energy pits and 

scratches in the substrate that will act as diamond nucleation centers. Despite being the 

most common nucleation process it is not applicable to substrates with complex 

geometries or when attempting to grow heteroepitaxial smooth surfaces. Most 

commonly the substrate is abraded or scratched with fine (~ 1m) industrial diamond 

paste or particles. Abrading substrates with diamond paste or particles produce high 

nucleation density, as the diamond particles scratch the substrate and are embedded in 

the near surface acting as seed crystals for the nucleation. A follow-up treatment for 

the scratched surface is the ultrasonic vibration with an abrasive paste in methanol or 

1.0 1.29 1.5 2.0 3.0 
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acetone. It had been observed that such films exhibit better uniformity and higher 

nucleation densities (10
7
 – 10

11
 cm

-2
) [161]. 

 

The nucleation route would create randomly oriented nucleation centers which will 

grow into randomly oriented diamond crystallites and be inimical to heteroepitaxy. 

Biasing pretreatment of the substrate has been introduced in order to increase the 

diamond nucleation density [162, 163]. This nucleation route is referred as bias 

enhanced nucleation (BEN) and is commonly applied to both microwave and thermal 

CVD systems.  

 

By selecting the right gas phase growth mixture, substrate, BEN, suitable pre-treatment 

and the correct plasma conditions it is feasible to deposit diamond crystallites that are 

locally epitaxially aligned to the underlying substrate [164]  

 

The mechanism of diamond nucleation enhancement by BEN has been controversial. It 

is widely accepted that the application of bias between the substrate and the plasma, 

causes the movement of the plasma closer to the substrate, allowing gaseous ions to be 

accelerated towards the substrate and subsequent implantation into the near surface. 

The plasma chemistry of the system may be altered during the BEN procedure by the 

removal of those positive ions (the substrate is normally negatively biased) or/and 

movement of them closer to the substrate. The changes caused by BEN on the growth 

process are not completely understood. 

 

Early observations show the formation of a layer of -SiC [165] on silicon substrates, 

which was confirmed by infrared spectroscopy [166] and TEM measurements [167]. 

The formation of a -SiC layer between the silicon and the diamond may to be 

necessary to reduce the lattice mismatch between the two materials. Theoretical 

calculations and TEM observations support another model of diamond growth onto 

silicon without an intermediate -SiC layer. 

 

When bias is applied to MPCVD systems the plasma ball is shaped and deforms, as in 

the case for the MPECVD system at Heriot Watt University. On the application of the 

bias a planar ring appears around the base of the ball plasma and the whole plasma 

moves closer to the substrate. It seems that the area where the plasma deforms 

corresponds to the area of localised epitaxy. Using a DC voltage of -320 volts and 
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biasing for few minutes to the point where the bias current begins to increase is 

necessary to achieve the highest nucleation density.  
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Chapter 3. CVD diamond growth 

3.1 The CVD growth system  

 

All the chemical vapour deposition (CVD) diamond thin films that have been used in 

these studies have been grown using an ultra-high vacuum (UHV) microwave plasma 

chemical vapour deposition (MPCVD) system that has been designed and built-in house 

at Heriot-Watt University [168]. 

 

Heriot-Watt‟s MPCVD system has the following important design specifications:  

 

o Free standing plasma in order to avoid sputtering of substrate or chamber materials. 

o Low base pressure system (< 10
-8

 mbar) for high purity growth. 

o Operating pressure of 10-100 mbar. 

o The system is controlled via a computer for continuous unattended running and 

prevents user errors. 

o Substrate heating temperatures up to 1000
o
C. 

o The deposition parameters can be controlled independently. 

o The substrate is electrically isolated and enables bias enhanced nucleation. 

o Incorporation of mass spectrometer for in-situ gas and vacuum analysis. 

o Separate load-lock facility that enable the load or removal of the sample without 

venting the main chamber to atmospheric pressure and avoiding any nitrogen 

ingress.  

o Viewing windows for in-situ optical measurements of the plasma and the substrate 

conditions. 

o Capability to accept substrates up to 100 mm in diameter. 

 

The MPCVD system comprises two main sections: the actual growth chamber and a 

load-lock for sample entry/removal. The load-lock section of the system minimises any 

intrusion of nitrogen during the growth process and any atmospheric contamination of 

the growth chamber. Figure 3.1 shows the actual system whilst a schematic 

representation is shown in Figure 3.2. 
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Figure 3.1 The 1kW MPCVD growth system at Heriot-Watt University. 

 

Figure 3.2 Schematic diagram of the 1kW MPCVD growth system. 
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The two stainless steel vacuum chambers of the system are connected through a gate 

valve, the growth and the load-lock chambers, which are sealed with UHV grade copper 

gaskets. The growth chamber is constructed from a 380 mm (15 in.) diameter stainless 

steel sphere (Leisk Engineering/VSW). It has 16 ports in total, for viewing, for in-situ 

monitoring, gas inlets, for the heater, for the microwave applicator, vacuum gauges, 

pumping port and the gate valve. The growth chamber volume is ~40 litres and behaves 

as a stirred flow reactor. There are two pressure regimes in which the chamber operates. 

During sample transfer and between experiments it operates at a base vacuum pressure 

of < 10
-8

 mbar. During deposition experiments the pressure was varied up to 100 mbar 

by the introduction of reagent gases. 

 

The entrance of the load-lock and the water cooled quartz window, through which the 

microwave radiation propagates into the chamber, are sealed with viton O-rings. 

 

A liquid nitrogen trapped oil diffusion pump (Edwards EO4), with a pumping speed of 

600 l s
-1

, is used to pump the main growth chamber to base pressure of more than 10
-8

 

mbar. The diffusion pump is backed by a rotary pump (Edwards EDM124), with a 

pumping speed of 14.6 m
3
 hr

-1
. The growth chamber can be isolated from the diffusion 

pump by a computer controlled gate valve. The system pumps are fitted with a nitrogen 

purge to their ballast valves and / or exhaust lines to dilute any potential explosive gases 

below their explosion limits before they come into contact with air. The growth 

chamber pressure, in the 10
-4

-10
-11

 mbar range, is monitored using a UHV trigger 

Penning gauge (Leisk), while the diffusion pump backing pressure is monitored with a 

Pirani gauge (Edwards PRH10). 

 

The operation and safety of the system is controlled from a Hewlett Packard computer 

using HP basic software developed in-house. Microlink units are used to connect the pc 

to the pressure gauges, the gas mass flow controllers, the vacuum valves, most of the 

pumps and the microwave power supply. For safe system operation the substrate 

transfer arm, water flows, chamber pressure and exhaust gas hood are all interlocked 

with the computer. 
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The samples were placed on a molybdenum holder on the top of the heater platen. The 

heating element is a serpentine graphite resistor powered by an 8 kW low voltage power 

supply. To provide vacuum integrity between the chamber and the heater, but also to 

ensure that neither the plasma nor the gases in the chamber are in contact with the 

heating element, the heater is fully encapsulated in a stainless steel and molybdenum 

platen. The heater element is fully purged with argon before heating to ensure that 

degradation or oxidation of the graphite elements does not occur. Water cooling is 

provided to the two electrodes, the bottom flange and to the stainless steel casing 

component of the platen.  

 

The heater can be controlled by setting up the percentage of the transformer output 

power. This can be set to a specific value, ramped from one value to another or cycled 

between two values.  For control purposes the temperature of the heater is measured by 

a thermocouple which is located within the body of the heater. It should be noted that 

this measured temperature is not the actual surface temperature of the substrate.  The 

temperature of the sample and the heater could be measured during the experiments 

using a (Micron 3003) two–wavelength pyrometer operating in 1.17 and 1.25 m range. 

The platen, where the sample placed, is electrically isolated from the chamber by a 

ceramic break allowing a bias-voltage to be applied between the chamber and the 

sample platen. 

 

The microwave system comprises a 1 kW magnetron producing 2.45 GHz radiation 

from an RFA switch mode power supply, a circulator, a dummy load, motor driven 

tuning stubs and an antenna which feeds the microwaves from the rectangular 

waveguide into a circular microwave applicator. The design and the construction of the 

applicator was carried out at Heriot-Watt University. The applicator is fitted with a 

water-cooled quartz window which is sealed with Viton O-rings to maintain the vacuum 

integrity between the reaction chamber and the rest of the microwave system.  

 

A perforated stainless steel extension is fitted below the window, extending down 

towards the substrate, allowing the cavity to extend into the chamber. This encourages a 

stable plasma ball to form at the end of the cavity extension just above the substrate 

surface, but still allows for optical monitoring of the plasma. It is also possible to obtain 

a stable plasma ball in the centre of the chamber even with the heater and platen 

completely removed and the lower port blocked off. For safety reasons, the microwave 
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waveguides are flushed with nitrogen so that, in the event of failure of the quartz 

window, nitrogen would flood into the hydrogen filled chamber rather than air. The 

windows are screened with fine metallic mesh to prevent microwave leakage into the 

laboratory.  

 

The samples are introduced into the growth chamber via the load-lock. The main section 

of the load-lock is an extended six-way cross, which has four 150 mm internal diameter 

ports. One supports an x-y translation stage with a linear motion transfer arm and one 

providing access to the main chamber. The other two are blocked off to allow for future 

expansion. There are two 200 mm diameter flanges, the top to provide sample access 

and has a viton L-rubber seal, the bottom one is fitted with a bellows-sealed linear 

motion system for moving samples up and down. In addition the six-way cross is fitted 

with two viewports to ease the sample loading and transfer. The top flange is fitted with 

a Viton O-ring sealed fused quartz window. One pumping line leads from the load-lock 

to a smaller six-way cross. This cross is fitted with four ports, to which two pressure 

gauges and an inlet, where argon is used to vent the system, are connected.  The load-

lock chamber is pumped using a turbo-molecular pump (Balzers TPU050) to a pressure 

of around 10
-7

 mbar backed by an Edwards E2M2 rotary pump (with pumping speeds of 

50 L s
-1

 and 2.8 m
3
 hr

-1
 respectively) via a computer controlled gate valve. The pumps 

are fitted with a nitrogen purge to the exhaust lines, so that if the main chamber valves 

or pumps fail, the reactant gases can be pumped away safely through the load-lock. The 

pressure is monitored in the load-lock by a combination of an Edwards (PRH10) Pirani 

and a Penning (CP25K) gauge. The two gauges monitor the 10
3
-10

-3
 mbar and 10

-2
-10

-7
 

mbar ranges, respectively. Argon is used to vent the system in order to minimise the 

amount of oxygen, nitrogen and water vapour entering the system. A cassette 

mechanism is incorporated within the load-lock which has four positions for circular 

molybdenum 4” diameter sample holders, minimising the number of times the system 

has to be opened to the atmosphere. The samples are transferred to the growth chamber 

by a magnetically coupled transfer arm fitted with a fork which locates slots in the 

molybdenum holders. The system is controlled through a pc that allows the automated 

venting and pump-down sequences. 
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The pc controller is a 20 MHz Hewlett Packard series 9000, model 340, which is 

connected to several input/output units which allow controls and monitoring of most of 

the system‟s components. The pc program is written in HP Basic. To summarize the 

program performs the following main functions: 

 

 Remote operation of all the valves and most pumping groups 

 Control of gas flows via a mass flow controllers 

 Remote control of the heater platen 

 Elaborate checks to prevent operator error 

 Pressure monitoring for leaks 

 Mass spectrometer operation and data collection 

 On screen display of the system status  

 Automatic shutdown in case of system failure 

 

Relatively high pressures and flow rates are used during deposition and this is achieved 

using mechanical/Roots pump (Edwards) combined with an automated throttle valve 

(MKS). The process gases are admitted into the growth chamber via mass flow 

controllers and computer-controlled pneumatic valves. Two types of mass flow 

controllers are used: 

 

a) MKS (model 2259B)  for CO (0-10 sccm), CH4 (0-10 sccm) and H2  

(0-1000 sccm) 

b) Brooks (model 5850TR) flow- meter for Ar (0-100 sccm) and O2 (0-10 sccm). 

 

In each case there is an absolute on/off valve fitted immediately downstream of the flow 

controller.  These flow controllers are connected to two corresponding units which act as 

power supplies, readout and control units. 

 

a) An MKS 247C 4-Channel readout unit and 

b) A Brooks 5876 dual channel unit. 

 

As has been mentioned previously, the important design specifications of the MPCVD 

system allowed control of the flow rates of the process gases and the growth chamber 

pressure. To achieve this, the output from a Baratron gauge is used to control a throttle 

valve controller (MKS 5252A) connected to an (MKS type 253-A) sealing butterfly 
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throttling valve on the chamber pump line. The Edwards gauges are powered by and 

read via a Leisk (VC50 UHV) Penning controller and the Baratrons by an MKS PDR-

C2C readout unit. Chamber pressures were measured using Penning gauges (MKS and 

Edwards) and capacitance manometers (MKS). 

 

Safety features have been incorporated into the hardware and into the pc software in 

order to avoid user error and equipment failures. For example, in the event of a main 

power failure, the pc is reset and the power is lost from all the electrically operated 

valves which are arranged so as to shut off all gas flows and close all the gate valves. 

Power is also lost from the heater, so the sample is cools down safely and at the same 

time the plasma is extinguished. When the power returns the pc software does not 

automatically restart, so there is no gas flow, no valves opens and the heater element 

remains off. At the same time an interlock ensures that the microwave power supply 

remains off. As described above there are also safety features in the case of cooling 

water failure and fume cupboard failure. 

 

3.2  CVD diamond films growth details  

 

3.2.1  Substrate preparation  

 

The CVD diamond thin films have been grown on single crystal silicon wafer substrates 

(Compart) during these studies. Prior to any growth experiment the silicon substrates 

were subjected to a cleaning procedure in order to remove both organic and inorganic 

contamination. The properties of the silicon substrates are summarised in Table.3-1 as 

provided by the manufacturer. 

 

 

 

 

 

 

Table 3-1 Properties of silicon wafers used in CVD diamond thin film growth. 

Diameter / mm 100 

Crystallographic Orientation (100) 

Thickness / m 525 

Surface finish Mirror polished in one side 

Dopant Boron (p-type) 

Resistivity /  cm 1 - 20 
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The cleaning procedure of the silicon wafers prior to any CVD diamond thin film 

growth consisted of the following steps: 

o Ultrasonic agitation of the wafer, in a glass beaker with 400 ml of acetone 

(Fisher, reagent grade) for 5 min, 

o followed by ultrasonic agitation of the wafer, in a glass beaker with 400 ml of 

methanol (Fisher, reagent grade) for 5 min. 

o  Ultrasonic agitation of the wafer, in a glass beaker with 1 L of deionised water 

(>15  cm) and three drops of a proprietary cleaning agent, (Decon 90), for 10 

min. 

o Further 10 min of ultrasonic agitation of the wafer, in a glass beaker with fresh 1 

L of deionised water without the Decon solution. 

o Finally 10 min of ultrasonic agitation of the wafer, placed in a glass beaker with 

1 L of deionised water.  

o The wafer was removed from the baker with clean stainless steel tweezers and 

drying it under a stream of filtered oxygen free nitrogen (BOC, 99.9 %) at 5 bar. 

o The complete dried wafer was stored in a clean fluoroware box. 

 

The effectiveness of the above mentioned cleaning sequence has been verified using 

laser ionisation microprobe analysis (LIMA), prior to and after the procedure. 

 

3.2.2 The diamond growth procedure 

 

For a CVD diamond thin film growth experiment, the silicon wafer was transferred to a 

molybdenum boat in the load-lock of the 1 kW CVD kit. The load-lock was evacuated 

to a vacuum of around 10
-6

 to 10
-7 

mbar using a turbomolecular and rotary pump. At that 

stage the diffusion pump valve was closed, isolating the main chamber and the load-lock 

gate valve was opened. The molybdenum boat and the wafer were transferred to the 

platen using the magnetically driven transfer arm. After placing the molybdenum boat 

and wafer on the platen (substrate heater), the transfer arm was withdrawn from the 

main chamber and the load-lock gate valve was closed.  

 

The main chamber was pumped, by opening the diffusion pump gate, to a stable 

pressure value of 10
-7

 to 10
-8

 mbar. Then the main chamber was isolated again by 

closing the diffusion pump gate valve. Hydrogen gas (Linde, 99.999%) was used to fill 
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the main chamber to a pressure of ~ 20 Torr. The platen (substrate heater) was then set 

to ramp up to the desired power setting, typically ramping at 0.5 % full power per 

minute. 

 

The growth/deposition of the (100) highly oriented CVD diamond thin films on silicon 

substrates consists of the following stages: 

 

o Hydrogen plasma etching.  

o Pre-carburisation. 

o Bias enhanced nucleation. 

o (100) textured growth. 

o Hydrogen plasma termination. 

For each of the above stages the process conditions are summarised in Table 3-2. After 

the desired substrate temperature was achieved and stabilised, the main chamber 

pressure was reduced to 20 Torr using the by-pass line and hydrogen gas flow was 

introduced into the chamber, usually using a gas flow of 500 sccm.  

 

 

       Stage 

Bias/ 

V 

Gas Flow Rate / 

sccm 

Temperature/  

o
C 

Power/ 

W 

Pressure/  

Torr 

Time/  

hr 

H2 CH4 CO 

H2 - Clean 0 500 0 0 840 500 35 0.5 

Pre-Carburisation 0 300 6 0 840 500 35 3 

Bias Enhanced 

Nucleation 
-320 300 6 0 800 220 20.7 0.3 

Textured Growth 0 85 2 70 730 800 36 20-70 

H-Termination 0 500 0 0 730 800 36 1 

 

Table 3-2 Process conditions for CVD (100) highly oriented CVD diamond thin 

films growth. 

As the main chamber pressure was stabilised the microwave power was then increased 

gradually until the plasma was ignited, usually below 300 W. When the plasma was not 

initiated at >220 W of applied microwave power, a change of the electrical field caused 

by the movement of the mechanical shutter protecting the front window of the chamber, 

enabled the plasma to be ignited.  
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Table 3-3 Gas purity and composition. 

For each of the growth stages shown in Table 3-2, the desired pressure and microwave 

power were then gradually obtained at a rate of 2 Torr and 50 W per minute to minimise 

any thermal shock on the main chamber windows and substrate, thus avoiding any 

cracking of the chamber windows.  

 

The platen (substrate heater) was grounded for all the growth stages except in the case 

of the bias enhanced nucleation (BEN) stage. The platen was electrical isolated from the 

main chamber during the BEN growth stage and a negative bias of -320 V D.C. was 

applied relative to the grounded chamber, while the current flow through the platen was 

recorded as a function of time. The diamond nucleation considered to occur at the point 

was the current flow through the platen rises sharply [164]. At that point the negative 

bias is turned off and the platen was again earthed. 

 

The purity and composition of the gases that are used during the CVD diamond thin 

film growth experiments are shown in Table 3-3 as provided by the manufacturer. 

 

The temperatures at each of the growth stages shown in Table 3-2, were recorded using 

a two-wavelength (1.17 m and 1.25 m) pyrometer (Micron 3003) focussed at the 

centre of the substrate through the main chamber quartz window at an angle of 70 

degrees to the substrate normal.  

 

 

 

 

 

Gas Purity  

/ % 

Impurities / ppm 

H2O CxHn N2 O2 Ar 

H2 99.999 2 0.3 3 1 - 

CH4 99.995 3 12 5 1 - 

CO 99.997 8 1 8 2 2 

Growth  mixture --- <5 <1 <6 <2 <1 
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3.3  Diamond sample cleaning procedure 

 

The as-grown (100) CVD diamond thin films, before any further treatment or 

examination, were sliced into square samples of around 1cm x 1cm dimensions with the 

use of diamond pen or by laser machining. Due to the potential contamination that might 

arise from the cleaving method, a cleaning procedure was adopted to ensure the sliced 

surfaces were clean before any further analysis or experiment.  

3.3.1  Solvent cleaning procedure 

 

This cleaning procedure is similar to the procedure used for the cleaning of the silicon 

wafer before the diamond CVD growth synthesis and consisted of the following steps: 

o Ultrasonic agitation of the diamond sample, in a glass beaker with 100 ml of 

acetone (Fisher, reagent grade) for 10 min, 

o followed by ultrasonic agitation of the diamond sample, in a glass beaker with 

100 ml of methanol (Fisher, reagent grade) for 10 min. 

o Deionised water with three drops of Decon 90, has been used for further 10 min 

of ultrasonic agitation of the diamond sample in a glass beaker. 

o Further 10 min of ultrasonic agitation of the diamond sample, in a glass beaker, 

in 100 mL deionised water without Decon solution. 

o The diamond sample was removed from the beaker using clean stainless steel 

tweezers, while a stream of filtered oxygen free nitrogen (BOC, 99.9%) at 5 bar 

was use to dry the sample, before it was placed and stored into clean fluoroware 

box. 

3.3.2  Acid cleaning procedure 

 

This cleaning procedure was used in cases where the contamination of the diamond 

samples was not removed by the adaptation of the solvent cleaning procedure. The 

procedure consisted of the following steps: 

o The diamond sample was placed into a glass beaker using stainless steel 

tweezers. 

o A solution of 9:1 H2SO4 : HNO3 was added to the samples in a glass beaker.  

o The fluorinated polypropylene beaker was connected with a glass condenser.  

o The heater element was set to the desired temperature. 

o The acid solution was allowed to reach boiling point and boiled for 15 min.  
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o After the elapsed time of 15 min the heater element was turned off and the acid 

solution was allowed to cool down. 

o The cooled acid solution was removed from the beaker before the diamond 

sample was removed using stainless steel tweezers. 

o The diamond sample was subject to ultrasonic agitation for 10 min in 100 mL of 

deionised water. 

o The diamond sample was removed from the beaker using clean stainless steel 

tweezers, while a stream of filtered oxygen free nitrogen (BOC, 99.9%) was use 

to dry the sample, before it was placed and stored into clean fluoroware box. 

3.4 In situ analysis 

 

The 1 kW MPCVD system, is equipped with an optical emission spectrometer and a 

quadrupole mass spectrometer to characterize the plasma as well as the chamber vacuum 

integrity respectively.  

3.4.1 Optical Emission Spectroscopy  

 

Optical emission spectroscopy (OES) is one of simplest and oldest methods to monitor 

plasma processes. A typical OES system comprises a monochromator, which generally 

is a diffraction grating, and a detector to monitor the light emitted from the plasma 

source. The emission of radiation from plasma was collected through a fibre-optic cable 

to the monochromator. The light was dispersed and recorded as a function of 

wavelength. The resolution of the system is determined largely by the resolution of the 

dispersing element of the monochromator.  The OES system has limited spatial 

resolution and is typically a line of sight technique, although the collection of light could 

be further improved by the use of collection lenses. Optical emission spectroscopy 

(OES) measures the emission of light from the excited states of species within the 

plasma. The technique is useful due to its easy implementation and applicability for 

certain species. 

 

The optical emission from the microwave plasma was monitored by a computer-

controlled, grating-based, optical spectrum analyzer (Monolite 6800). The emission of 

the plasma was collected through a 50 mm diameter quartz lens to a fibre-optic cable 

which was connected to the input slit of the spectrometer. The analyser consists of a 

scanning grating monochromator, a PMT detector and a system controller interfaced to 
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a computer. The grating and the PMT are optimized to a bandwidth of 200-900 nm and 

system resolution of 0.7 nm. These parameters were used for monitoring the plasma 

composition while each spectrum collected from an average of 4000 scans to reduce the 

spectral noise level.   The analyzer wavelength was calibrated using a HeNe laser before 

any measurement was taken.  

 

3.4.2  Mass spectrometry 

 

The 1kW growth system was equipped with a mass spectrometer placed downstream 

from the plasma region; the distance between the plasma and the sampling region is 

long and thus enables the analysis of residual gas or stable gas species in the growth 

chamber. Because of the relatively high chamber pressures of 10-100 mbar, the pressure 

is reduced by pumping the gas through a needle valve by a Balzers TPU050 

turbomolecular pump backed by a Balzers Duo 1.5A rotary pump, with pumping speeds 

of 50 L s
-1

 and 1.8 m
3
 hr

-1
 respectively. The mass spectrometer comprises a 1-100 amu 

quadrupole head with a corresponding VSW vacuum analysis controller. The system 

control is interfaced with the computer system software which provides data acquisition 

and analysis. The program has designed accordingly so the user can select the specific 

mass range or a series of masses with time or both.  

 

3.4.3  Optical dual-wavelength pyrometry 

 

As it was stated earlier the sample temperature was measured using an optical dual-

wavelength pyrometrometer. This technique provides the ability to measure the surface 

temperature of any material of unknown emissivity. The temperature is determined by 

measuring the ratio of thermal energies at two infrared wavelength bands. The Micron 

model 3003 system used in these studies consists of a dual infrared detector head 

assembly equipped with a radiation chopper, electronic driver and preamplifier. The 

pyrometer operates at 1170 nm and 1250 nm, having a spot size of 0.38 cm diameter at 

a working distance of 30 cm and had a temperature resolution of ≥ 1%. The response 

time of the equipment is around 100 milliseconds. The calibration of the pyrometer was 

performed using a black body radiation source such as a stainless steel sample which 

has been heated in a tube furnace whose temperature is measured with a K type 

thermocouple. The pyrometer can then operate effectively within the temperature range 



Chapter 3: CVD diamond growth 

 

47 

of 400
o
C to 1000

o
C, taking in consideration the absorption and the reflectivity of the 

chamber window.  

 

3.5  Post growth analysis 

 

The quality of the (100) CVD diamond films after successful growth were subject to the 

following characterisation techniques. 

3.5.1  Optical microscopy 

 

Diamond thin films have been examined using an optical microscope (Leica DMRM) at 

a 1000x magnification using white light in reflectance mode. The microscope was 

equipped with a three-color CCD camera which enabled the image to be captured on 

either a computer or on video printer. This enabled the examination the samples prior to 

further analysis, and to provide with information about the sample morphology and 

crystallographic habit. 

3.5.2 Scanning electron microscopy (SEM) 

 

The operation of SEM is based on scanning the surface of the material with electrons 

under high vacuum. The electron bombardment of the material will cause the emission 

of secondary electrons which consequently forms an image. A simple schematic 

diagram of the working principles of a SEM is given in Figure 3.3.  

 

During these studies a Hitachi S-2700 SEM with a Princeton Gammatech detector and 

software has been used when high magnification images were required. Whilst diamond 

thin films are insulating materials; very good images can be obtained at 8 and 10 keV 

without the need for gold-coating the samples since diamond is an excellent secondary 

electron emitter.  

 

A Philips XL30 Enviromental Scanning Electron Microscope (ESEM) located in the 

Institute of Petroleum Engineering at Heriot-Watt University has also been used. 

Occasionally a Hitachi S-4100 field emission SEM with an Oxford instruments ISIS 

EDX system with germanium detector located at the University of the West of Scotland, 
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Paisley, was employed when images of high magnification and additional features of 

the SEM were needed.  

 

Figure 3.3 A simple schematic diagram of the SEM operation components. All the 

components were under high vacuum. The electron beam travels through the 

condensing lenses, scan coils and the objective lens before focusing on the sample 

surface. Emitted secondary electrons were collected by the detector and amplified 

before the output signal was generated.  

These features include back scattering and energy dispersive X-Ray analysis (EDAX). 

The back scattering analysis uses another detector to measure the electron flux, while 

the output signal - the electrons that are back-scattered from the surface - is a measure 

of the different atomic masses within the materials being examined. The back-scattered 

images are composed of areas where relative high atomic masses produce an intense 

signal whereas areas with lower relative atomic masses produce signals which are less 

intense. The EDAX analysis is used for qualitative and quantitative chemical analysis of 

the chemical materials. The germanium detector of the ISIS EDX system is fitted with a 

window capable of transmitting low energy X-rays and able to detect all elements from 

boron to uranium. 
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3.5.3  Atomic force microscopy  

 

Atomic force microscopy was used to examine the surfaces of diamond films when 

higher resolution images were required. Investigation of the surface roughness was also 

employed using the instruments software. A Topometrix Accurex scanning probe 

microscope was used in contact mode. A Dimension TM 3100 AFM has been used in 

tapping (non-contact) mode. Commonly used scanning probe microscopes contain the 

components illustrated in Figure. 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Schematic of a generalised AFM system. A cantilever is scanned over 

the sample surface either keeping a constant average distance between the tip and 

the sample or a constant resonant frequency. A photo-detector monitors any 

change on the laser beam reflected from the back of the cantilever. 

An atomic force microscope probes the surface of a material with a sharp tip, which is 

located at the free end of a cantilever. As the tip approaches the sample surface, the 

forces between the tip and the sample surface cause the cantilever to bend or deflect. As 

the tip is scanned over the sample surface an optical detector measures the cantilever 

deflection. The measurements allow a computer to produce an image of the surface 

topography. The deflection of the cantilever from the sample surface is a result of 

several forces that act between the cantilever and the sample surface. There are two 

regimes where the AFM operates, contact mode and tapping (non-contact) mode. 
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When the AFM operates in contact mode the cantilever tip is in physical contact with 

the sample. Usually the spacing between the cantilever and the surface is few Å. As the 

scanner traces the tip across the samples surface the contact force causes the cantilever 

to bend to accommodate changes in surface topography. Optical techniques are often 

employed on AFM to detect the position of cantilever. A position-sensitive 

photodetector (PSPD) is used to measure the laser beam reflected off the back of the 

cantilever. Topographic data of the samples surface can be produced by the detection of 

the cantilever deflection.  

 

During the tapping (non-contact) mode the cantilever vibrates near the surface of the 

sample. The distance between the cantilever and the surface is ten to hundred Å. A stiff 

cantilever vibrates near its resonant frequency (100 – 400 kHz) with an amplitude of a 

few tens to hundreds of Å. The system monitors changes in the resonant frequency or 

vibrational amplitude as the tip scan near the sample surface and keeps it constant with 

the aid of a feedback system that moves the scanner up and down. By keeping the 

resonant frequency or amplitude constant, the system also keeps the average tip to 

sample surface distant constant. Using the same principle as in contact mode, the 

motion of the scanner is used to generate a data set.  

3.5.4 Optical metrology 

 

Optical surface metrology is a non-contact, non-destructive technique that enables 

surface texture and topography measurements of solid surfaces.  The technique utilises a 

high resolution optical microscope for the projection of interference pattern on the 

selected area of the material/surface. A NewView series optical profilometer (Zygo) has 

been used for the 3D inteferometric metrology of the diamond thin films and diamond 

cubo-octahedral crystallites. The Zygo optical profilometer system provides wide lateral 

area measurement as well as subnanometer z image resolution. Its offers a fast, high 

accuracy, non-destructive, 3D metrology of surface features and it uses MetroPro
TM

 

software for advanced data analysis. 
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3.5.5  Fourier transform infrared (FTIR) spectroscopy 

Fourier transform infrared (FTIR) spectroscopy is a commonly used technique to 

analyse materials by measuring absorption in the infrared region of the spectrum. The 

optical set-up of the FTIR spectrometer is shown schematically in Figure 3.5, and the 

principle is based on a Michelson interferometer. A broadband beam of infrared 

frequencies is passed through a beam splitter, where it is divided into two optical 

beams. One beam reflects off a flat mirror which is fixed in place, while the other beam 

reflects off a flat movable mirror which moves very short distances (typically few 

millimeters) away from the beam splitter. The two beams recombine back at the beam 

splitter after they reflected off of their respective mirrors. Constructive or destructive 

interference will occur depending on the path length difference of the two beams. The 

resulting signal is called an interferogram and has the property that every single data 

point that comprises the signal has information about every infrared frequency which 

originates from the source. The analysis of the produced interferogram is accomplished 

by Fourier transformation. A computer is used for this transformation and the intensity 

versus frequency spectrum is then produced.  

 

FTIR spectroscopy is an excellent tool for both qualitatative and quantitative analysis of 

a material. Since all frequencies are measured simultaneously an FTIR spectrum can be 

collected in few seconds. The high optical throughput of the equipment along with the 

use of sensitive sensors reduces of the noise level of the collected signal. The fast 

collection of data enables signal averaging which reduces the random measurement 

noise. It is a non-destructive technique, which provides very accurate measurements 

without the need for external calibration, since an internal HeNe laser is used as a 

wavelength calibration standard. From a mechanical point of view it is simple 

equipment, with only one moving part (movable mirror) therefore limiting the 

possibility of mechanical breakdown. 

 

Infrared studies of diamond films were performed on a computer-controlled Nicolet 

510P FTIR spectrometer. The equipment allows the collection of spectra in the region 

of 4000-400 cm
-1

 with minimum spectral resolution of 4 cm
-1

. The sample chamber was 

purged with dry nitrogen prior to any measurement to eliminate absorption from water 

vapour and carbon dioxide. Before any measurement a background spectrum was 

collected from a piece of silicon substrate and background correction was applied to the 

spectrum of the sample. 
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Figure 3.5 Schematic of the optical arrangement of the FTIR spectrometer. An 

infrared beam with a range of frequencies is directed at the beam splitter. The 

produced two beams recombine and produce an interferogram before passing 

through the specimen. 

A Bruker 66v infrared spectrometer was also used for infrared studies of the diamond 

thin films. The spectrometer is equipped with a IRScopell microscope, used in the 

visible mode, to locate either the highly oriented region or the azimuthally disordered 

region on the diamond thin films samples or any other treated area of the sample. The 

IR spectra collected were averaged 32 times with a resolution of 4 cm
-1

, using either the 

reflection and transmission mode. The background spectrum was collected for each 

mode using a piece of silicon wafer. Interference fringes caused by the overlap of the 

waves reflected from the air-diamond and substrate-diamond interfaces dominated the 

IR spectra. Since those fringes were out of phase in the reflectance and the 

transmittance mode, addition of the two spectra led to the removal of those features.  

 

3.5.6 Laser Ionisation Microprobe Analysis  

 

Laser ionisation microprobe analysis, (LIMA), was used to establish the elemental 

composition of the deposited diamond thin films. All analyses were performed using a 

Kratos Analytical 401L LIMA system that had been modified to incorporate a post-

ionisation facility. In this technique a focused Nd:YAG laser ( = 266 nm) pulse of 3 to 

5 ns duration is used to ablate and ionise a portion of the sample surface with a spatial 

resolution of ca. 1 m. The composition of the ionised plasma plume is then analysed 

by time-of-flight (ToF) mass spectrometry. All measurements were performed by 
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Edinburgh Surface Analysis Technology (ESAT) at Heriot-Watt University. The system 

has the capability of micron lateral resolution measurements with ppm sensitivity. 

LIMA analysis of diamond thin films had been performed to examine the contamination 

of the samples surface, after the cleaning procedure and growth. 

 

3.5.7 X-Ray Diffraction  

 

X-Ray diffraction (XRD) relies on the scattering of X-rays from a crystalline lattice. 

The electrons within the atoms in a solid will scatter a small proportion of the X-ray 

beam. A detector measures the angle at which the rays are diffracted. Using Bragg‟s 

law, Equation.3-1, it is possible to determine the atomic plane spacing (and thus unit 

cell dimension) and the crystallographic phases of the material.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Schematic diagram of the general case of Bragg’s law. 

In theory, we assume that a parallel, monochromatic beam of X-Rays (of wavelength, ) 

strikes a set of lattice planes with spacing of dhkl and making a glancing angle  with 

them. Bragg‟s law describes the diffraction of X-rays from a set of lattice planes with 

Miller indices, hkl, as: 

 

λ = 2 dhkl  sinθ   Equation 3-1 

 

where  is the diffraction angle of the X-rays. In general the condition for a diffraction 

to occur shown schematically in Figure 3.6. 
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XRD was used to identify the presence of the diamond phase on silicon substrates. XRD 

also provided a way of checking whether the diamond surface has been graphitised or it 

has been affected by any applied treatments. It should be worth mentioned here that 

extended studies on the texture of CVD diamond films on silicon and other materials 

have been based on the evaluation of x-ray diffraction (XRD) pole figure measurements 

[169]. Due to the limitation of the X-ray diffractometer used, pole figure measurements 

have not been employed in these studies. Diffraction patterns of the diamond thin films 

were collected on a computer controlled Phillips PW 1730 powder X-Ray 

diffractometer using CuKa (1.541 nm) radiation thought the range of 30 < 2 / 
o
 < 100.  

A Siemens/Bruker D500 incident X-Ray, power diffractometer, was equipped with a 

scintillation detector was able to record the 2 angles and the corresponding d-spacing 

map, with each step of the detector. For this work, in the XRD analysis, each step size 

corresponded to a 2 angle of 0.02
o
. The computer data base then can be used to 

identify the matching peaks of the XRD analysis. 

3.5.8 X-Ray Photoelectron Spectroscopy  

 

X-ray photoelectron spectroscopy (XPS) utilises X-ray electromagnetic radiation to 

induce photoionisation of the core electrons of the samples atoms and analysis of the 

kinetic energy distribution of the emitted photoelectrons to study the composition of the 

near surface region of the sample. This technique is based on the principle of the 

photoelectric effect, where the photon is absorbed by an atom in a solid, leading to 

ionisation and the emission of a core (inner shell) electron with kinetic energy given as: 

 

   Equation 3-2 

 

where BE is the binding energy of the photoelectron referenced to the Fermi level of the 

solid, h is the X-ray photon energy, EKE is the kinetic energy of the photoelectron and 

is the work function of the spectrometer. An electron energy analyser is used to 

measure the kinetic energy distribution of the emitted photo electrons and a photo 

electron spectrum can thus be recorded.  

 

 

 



Chapter 3: CVD diamond growth 

 

55 

A Scienta ESCA300 spectrometer of the Central Laboratory of the Research Councils in 

Daresbury has been used for the XPS analysis of the diamond thin films. An overview 

of the instruments operation and important features is given below. All the spectra 

collected have been recorded using Al K (1486.7 eV) radiation that has been generated 

by electron bombardment of a water-cooled aluminum-covered titanium alloy disk 

rotating at 4000 rpm. Seven toroidally bent -quartz (1010) crystals were used to 

monochromate the X-rays with a FWHM = 0.26 eV and focus the X-ray beam in a 

rectangular spot, (approximately 6 x 0.5 mm, at 45
o
 to the sample). A multi-element 

lens is used to collect the ejected electrons by the sample and focus them to a slit 

aperture (either 1.9 or 0.8 mm) at the entrance of a hemispherical electron analyser. 

Usually 5-element lens were used to collect spectra with high electron transmission but 

with poor spatial resolution. The addition of a 3 element lens between the sample and 

the main lens reduced the area under investigation and yielded a spatial resolution up to 

25 m. However the insertion of the lens decreased the electron through-put and the 

signal-to-noise ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 The Scienta ESCA300 X-ray photoelectron spectrometer. The sample 

analysis chamber is at the centre and the hemispherical analyser is located at the 

top of the photograph. 

The energy of the electrons can be controlled by passing them through two hemispheres 

(600 mm diameter and 100 nm apart) at fixed potential. The setting of the potential 

allows the passing of specific energy electrons. The default potential of 150 eV has been 
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used and increased to 300 eV for spatially resolved spectra measurements. Also, the 

observation of electrons with a wide range of kinetic energies is feasible with the 

application of a retardation voltage at the electron lens. The spectral resolution of the 

system was 0.4 eV. On the exit of the hemispherical analyser a multichannel detector 

was mounted consisting of two 40 mm diameter microchannel plates, a phosphorus 

screen and CCD camera. The real-time monitoring of the signal is achieved through the 

display of the data from the CCD camera on a TV and recorded by a PC using XPS 

software supplied by the manufacturer.  

 

Samples were placed on VG ESCALAB MkII stainless steel stubs using electrically 

conducting double-sided adhesive tape. Samples were transferred from the 

turbomolecular pumped load lock (1x10
-6

 mbar) to the liquid nitrogen trapped diffusion 

pumped preparation chamber ( < 2x10
-8

 mbar) using wobble sticks. The samples were 

then transferred by the means of rack-and-pinion railway to the diffusion pumped 

analysis chamber (< 4x10
-9

 mbar) that was trapped with liquid nitrogen. For the final 

stage the samples were transferred to a high precision XYZ manipulator. The chamber 

is equipped with a binocular microscope with a take-off angle set that allowed the 

positioning of the samples.  

 

For compositional analysis the initial spectra were collected by a fast survey scan across 

the full range of measurable energies to identify the elements present in the sample. 

Taking this information as a basis, spectra were collected at higher energy resolution 

using longer collection times to produce an improved signal to noise ratio for 

quantitative analysis.  

 

3.6  Diamond growth 

3.6.1  Optical microscopy 

 

Optical microscopy has been the first stage of sample characterisation, since it provides 

information about the texture, crystal size and the orientation of the films. Figure 3.8 

shows optical microscope images of the as-grown (100) highly oriented and azimuthally 

disordered regions of the polycrystalline diamond thin film on silicon wafer. 
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Figure 3.8 Optical microscope images of the as-grown (100) CVD diamond thin 

films on silicon, a) highly oriented region and b) azimuthally disordered area of the 

(100) diamond thin film. 

 

3.6.2 Scanning electron microscopy 

 

The analysis of the diamond thin films using scanning electron microscopy has been 

performed after the optical microscopy analysis, since SEM images provide better 

resolution and magnification of the area under investigation. Images were taken with 

accelerating voltages of 8 keV and 10 keV, with corresponding electron depth of 640 

and 890 nm respectively. These depths were calculated from Equation 3-3. and the 

density of diamond [170]. 

  Equation 3-3 

Where, x(m) is the electron penetration depth, Eo is the acceleration voltage in keV 

and  is the density , for diamond the value of 3.52 g / cm
3
 was taken. 

 

SEM images of the as-grown (100) highly oriented and azimuthally disordered areas of 

a polycrystalline CVD diamond thin film are shown in Figure 3.9. The cross section of 

the as-grown diamond thin film grown on silicon is show in Figure 3.10 providing 

evidence of the columnar growth mechanism of the CVD diamond thin films. 

 

 

 

a) b) 
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Figure 3.9 Images of scanning electron microscopy of as-grown a) highly oriented 

and b) azimuthally disordered (100) polycrystalline CVD diamond thin film. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 SEM images of the cross section of an as-grown a) highly oriented and 

b) azimuthally disordered (100) polycrystalline CVD diamond thin film, showing 

the columnar growth mechanism of the MPCVD diamond synthesis. 

 

 

 

 

 

 

 

 

a) b) 

a) b) 
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3.6.3  Atomic force microscopy 

 

The surfaces of (100) polycrystalline CVD diamond thin films have been examined 

using the contact mode of AFM as shown in Figure 3.11. The Topometrix Accurex 

scanning probe microscope provides software that allows the surface characterisation of 

the area under examination. The surface roughness values, as Ra and Rms, were 

measured for the AFM scan area as well as on any selected area of the scan.  

 

The (100) diamond crystallites exhibit tilts in both orthogonal directions due to the 

growth mechanism. When the surface roughness values were to be measured on each 

individual crystallite the use of the 3-point leveling function of the software allowed the 

correction of the crystallite tilts by fitting a plane and leveling all the selected area. This 

method provides an accurate measurement of the surface roughness values of individual 

crystallites. Table 3-4, shows the surface roughness values, averaged over the surface of 

10 different crystallites, following the above procedure. The average surface roughness 

values are within measured error range the same for both highly oriented and highly 

azimuthally disordered (100) polycrystalline CVD diamond thin film. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Atomic force microscope image of an as-grown a) highly oriented and 

b) azimuthally disordered (100) polycrystalline CVD diamond thin film. 

 

 

 

a) 

b) a) 
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Table 3-4 Average surface roughness values of as-grown (100) CVD diamond thin 

films. 

3.6.4  Fourier Transform Infrared spectroscopy 

 

When the CVD diamond thin films were subjected to infrared spectroscopy, oscillations 

resulted from interference between light rays that have undergone multiple internal 

reflections within the film were observed. The interference spectrum prohibited the 

collection of information regarding the infrared absorption bands. Figure 3.12, shows 

the interference fringes produced both on the transmittance T(v) and reflectance R(v) 

measured spectrum of the highly-ordered (100) CVD diamond thin film. Both T(v) and 

R(v) were out of phase for the corresponding wavenumber range. Information regarding 

chemical bonding in the material could not been obtained directly, although the film 

thickness could be measured.  

 

Minimal transmission occurs when double the thickness of the film is equal to a half-

integral number of wavelengths inside the film,  

   Equation 3-4 

 

where m is the frequency (in cm
-1

) or wavenumber corresponding to the mth 

interference minimum, n is the refractive index of the film (for diamond n  2.41 [171]), 

d is the thickness of the film and m is an integer – the order of the interference pattern. 

For a particular interference minimum the value m can be obtained by dividing m by 

the average spacing between minima. The thickness of the film can be obtained by 

plotting m vs m.  

 

 

 

 

Roughness Values on individual crystallites Ra / nm Rms / nm 

Azimuthally disordered (100) region  3.3 ± 0.3 4.1 ± 0.1 

Highly oriented (100) region 3.1 ± 0.1 3.9  ± 0.2 
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Figure 3.12 FITR spectra of free-standing CVD (100) highly ordered diamond thin 

film. Reflectance and transmittance spectra were collected at the same location of 

the sample. 

 

The infrared spectrum A(v) of the (100) diamond thin film, was obtained by the 

addition of the R(v) and T(v). The region 2700 cm
-1

 to 3100 cm
-1

, is shown in Figure 

3.13, which corresponds to the CH stretching region and is of significance. In this 

spectral region absorption bands due to the stretching modes of sp
3
- and sp

2
- bonded 

CHx, are commonly observed for CVD diamond thin films.  

 

Deconvolution of the CHx stretch region to different sp
2
 and sp

3
 peaks performed using 

peak positions and assignments accordingly to the published data, as shown in Figure 

3.14. The deconvolution was carried out by fitting the minimum number of component 

peaks required to achieve a satisfactory fit. The initial positions of the peaks were 

obtained from published data [172-176] and all bands assumed a Gaussian peak shape. 

The peak positions are listed in Table 3-5.  

 

 

Wavenumbers (cm-1) 
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Table 3-5. Characteristic CHx (x = 1- 3) stretching vibration frequencies of CVD 

diamond films. 

The dominant absorption peak observed near 2918 cm
-1

, as well as the absorption peak 

at 2852 cm
-1

are attributed to the asymmetric and symmetric stretching bands of sp
3
 – 

bonded CH2 groups, respectively. The intensity of the asymmetric absorption band is 

usually greater compared to the symmetric absorption band in CVD diamond thin films 

[175]. The absorption bands at 2879 cm
-1

 and 2961 cm
-1

, are due to the symmetric and 

asymmetric stretch bands of sp
3
 – bonded CH3 groups, respectively.  

 

The two absorption peaks at 2815 cm
-1

 and 2829 cm
-1

 are most likely to originate from 

the CH stretch band on a (111) - like surface, since the absorption peaks around 2820 

cm
-1

 and 2830 cm
-1

 relate to a hydrogen-terminated (111) diamond surfaces that were 

expected to be present at the grain boundaries of the (100) diamond film [174]. The 

absorption peak at 3017 cm
-1

 is related to sp
2
-CH carbon bonds within the diamond 

film. 

 

 

 

 

 

 

 

 

 

 

 

Wavenumber [cm
-1

] Relative percentage area (%) Mode of vibration 

2815 5.2 CH on (111)   / N – CH3 

2829 12.4 CH on (1x1)(111) 

2852 13.8 Symmetric sp
3
 CH2, 

2879 19.7 Symmetric sp
3
 CH3 

2918 31.3 Asymmetric sp
3
 CH2 

2961 14.4 Asymmetric sp
3
 CH3 

3017 3.2 sp
2
 CH 
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Figure 3.13 Absorption spectrum of polycrystalline diamond film, between 3100 – 

2700 cm-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 The CH stretch region of the as-grown (100) CVD diamond film, 

deconvoluted into a number of component peaks.  

 

 

Wavenumber (cm-1) 

Wavenumber (cm-1) 
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An FTIR spectrum from a CVD single crystal diamond plate were collected and shown 

in Figure 3.15, within the region of 7000 cm
-1

 to 400 cm
-1

 with a spectral resolution of 4 

cm
-1

.  The spectrum shows the intrinsic absorption in the two-phonon range between 

2666 cm
-1

 and 1333 cm
-1

, while absorption in the three-phonon region at 3300 – 2750 

cm
-1

 was also observed. As in the case of polycrystalline CVD diamond films, this 

region also contains information about hydrogen bonded to carbon in the diamond film. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Absorption spectrum of single crystal CVD diamond film, showing the 

characteristic intrinsic two-phonon absorption region of diamond between 2666 

and 1333 cm
-1

. 

3.6.5 Laser ionisation microprobe analysis 

 

The chemical composition of the diamond thin film surface and near-surface regions has 

been examined using the LIMA technique. The solvent cleaning procedure was tested 

using the LIMA technique and verified to remove organic contamination from the 

diamond sample surface. Figure 3.16, shows the mass spectrum that has been collected 

from the surface of an as-grown (100) diamond thin film after the cleaning procedure. 

As it can been see from Figure 3.16. the chemical elements that were detected with the 

LIMA technique were carbon with a minor peak due to sodium, providing direct 

evidence for the effectiveness of the cleaning procedure that has been used for all the 

(100) diamond thin films. Using the LIMA technique it was feasible to make 

Wavenumber (cm-1) 
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measurements on different locations on the sample. Information could be provided on 

the entire diamond surface and not just from one location.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Surface chemical composition of an as-grown (100) diamond thin film, 

following cleaning procedure. 

The effectiveness of the acid treatment to remove contamination from the diamond 

surfaces that was applied to some of the diamond thin films has also been verified by 

LIMA analysis. The same acid treatment has also been referenced in the literature [177] 

as a method for producing an oxygen-terminated diamond surface. The LIMA technique 

has been successfully applied to detect oxygen attachment on diamond powders [178]. 

The acid treatment was not intended to produce an oxidised diamond surface. No traces 

of oxygen were detected on the diamond surface. It was believed that the duration and 

the temperature of the acid treatment were insufficient to produce a significant oxidised 

diamond surface. 

 

3.6.6  X-ray diffraction analysis 

 

The X-ray diffraction patterns of a CVD (100) oriented diamond thin film is shown in 

Figure 3.17 while the most intense peaks obtained from the spectrum are presented in 

Table 3-6. For each peak, the 2 value, corresponding d-spacing and the percentage 

intensity of the peak, with respect to the highest intensity peak, is listed.  

 

 

C 
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Table 3-6 Significant XRD peaks in as-grown (100) CVD diamond thin film 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 X-ray diffraction pattern within the range of 2 values from 30
o
 to 

100
o
 in XRD of a CVD (100) diamond thin film on silicon substrate. 

 

The dominant peak observed at 69.3
o
, has been identified as the (400) crystallographic 

plane of the Si substrate of the CVD diamond film. The other peaks that have been 

observed correspond to the diamond crystal planes.  

 

 

 

 

 

2 d-spacing % of largest peak (hkl) 

43.9 2.0594 10.11 d(111) 

69.0 1.3586 53.46 Si (400) 

69.3 1.3540 100.0 Si(400) 

75.2 1.2612 0.99 d(220) 

91.4 1.0757 1.10 d(331) 

Cd(111) 

Cd(220) 

Si(400) 

Cd(331) 
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3.6.7  X-ray photoelectron spectroscopy  

 

A survey scan of X-ray photoelectron spectra of a typical CVD (100) diamond thin film 

is shown in Figure 3.18. The carbon C1s peak can be seen at  285 eV; the feature 

observed at  310.6 eV it is attributed to plasmons created during the emission of the 

C1s electrons and the carbon Auger transition is observed at  1223 eV. The presence of 

oxygen was been detected at oxygen O 1s   532 eV and oxygen Auger transition at   

974 eV. Whilst the as-grown diamond thin films contain oxygen on the surface, the 

origin of the oxygen may arise from a number of sources.  

 

High resolution C 1s and O 1s spectra of a typical diamond thin film are shown in 

Figure 3.19. Integration of the area under the electron core peak, using a linear base 

line, is proportional to the average concentration of the respective elements that are 

present within the analysis volume. Since the spectra were collected with charge 

compensation the C1s component peak position is measured relative to the main sp
3
 

carbon peak. The high resolution XPS spectra enables the number of different 

component peaks to be specified which could be convoluted to produce the total C1s 

peak shape. Analysis of the high resolution XPS data is discussed and presented in 

subsequent chapters. In these chapters the surfaces of the as-grown diamond thin films 

will be compared to surfaces subject to the different physical process. 
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Figure 3.18 Wide scan XPS spectra from an as-grown CVD (100) highly oriented 

diamond thin film.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 High resolution XPS spectra of the i) C 1s and ii) O 1s peaks of an as-

grown diamond thin film. 

 

 

a) C (1s) b) O (1s) 
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3.7 Conclusions 

 

Microwave plasma chemical vapour deposition has been used to produce high quality 

(100) faceted diamond thin films on (100) crystalline silicon substrates. Biased 

enhanced nucleation was used to achieve high azimuthal orientation of the diamond 

nuclei with the underlying substrate.  

 

The emphasis of the work was to produce highly oriented (100) diamond films with 

defined surfaces. Films with highly ordered (100) diamond crystallites with an area of 

around 3 cm
2
 per 4” diameter wafer were able to be produced. 
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Chapter 4. Hydrogenation of (100) CVD diamond 

surfaces 

4.1 Introduction 

 

In this chapter, the prolonged exposure of (100) highly oriented CVD diamond films to 

microwave hydrogen plasma treatment is presented. The interaction of atomic hydrogen 

with diamond surfaces has been an area of great interest, since hydrogen is used for the 

CVD growth process but also due to the unique physical and chemical properties that 

hydrogen terminated diamond surfaces exhibit. This chapter describes experiments on 

the effects of prolonged exposure to atomic hydrogen where atomic force microscopy 

has been employed to examine any change to the surface morphology. Infra-red and X-

ray photoelectron spectroscopy have been used to examine the effects on the chemical 

composition of the hydrogenated diamond surfaces. The electrical analysis carried out 

on the hydrogenated diamond surfaces will also be presented on this chapter. The 

analysis consisted of I-V characteristics of the diamond surfaces after hydrogen plasma 

treatment.  

4.2  Hydrogenated (100) diamond surfaces 

 

Hydrogen plasma treatment is commonly employed to terminate the CVD diamond 

surface. This serves three reasons (i) to eliminate any non-diamond carbon material that 

may have deposited on the surface (ii) to remove oxygenated functional groups and (iii) 

to maintain a sp
3
 electron configuration on the diamond surface. The successful 

homoepitaxial CVD growth of device-grade atomically smooth (100) diamond surfaces 

using low methane concentration using a CH4/H2 plasma, indicated the importance of 

H2 plasma treatment on CVD diamond growth [179]. When hydrogen plasma treatment 

of substrates has been employed prior to CVD homo-epitaxial growth,  atomically 

smooth diamond surfaces have been produced [34].  
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The unique physical and chemical properties of hydrogen terminated diamond surfaces 

have attracted a considerable amount of research. The p-type surface conductivity (SC) 

[44] and negative electron affinity [180-181] of hydrogenated diamond surfaces are 

very desirable properties for the development of diamond-based electronic devices. So 

far the fabrication of in-plane-gated FET‟s [182] and single- hole transistors (SHTs) 

[183] have been demonstrated using the nanoscale local anodic oxidation (AFM) 

technique [184] on a H-terminated diamond surface. The H-termination of diamond 

carbon bonds provide a template for organic molecules attachment and therefore for 

potential applications in biotechnology. 

 

The hydrogen termination of diamond is most commonly achieved by microwave-

assisted plasma treatment [27, 30, 143, 185-195] or by hot-filament-assisted treatment 

[117, 121, 196-199]. The interaction of atomic hydrogen with the (100) diamond 

surface has been the subject of many investigations using a variety of experimental and 

theoretical methods [27, 30, 117, 121, 123-124, 129, 141, 142, 145, 146, 185-201]. 

 

When atomic hydrogen interacts with the diamond surface the surface undergoes 

reconstruction and different hydrogen bonding configurations have been suggested in 

the literature. A simple schematic representation of the possible surface reconstructed 

structures of the hydrogenated diamond surface is depicted in Figure 4.1. A fully 

hydrogen-passivated (100) (1x1):2H diamond surface would contain two hydrogen 

atoms per unit cell and due to strong repulsion between the two hydrogen atoms such a 

surface reconstruction would be energetically unfavorable.  

 

Theoretical models using empirical and semi-empirical techniques [118-120] have 

shown that the diamond (100) surface reconstructs via the formation of rows of 

symmetric dimers upon hydrogenation. The mono-hydrogenated C(100)–(2x1):H 

surface is considered to be the most stable hydrogenated {100} diamond surface [121]. 

Figure 4.1 (a) shows schematically the C(100)-(2x1):H reconstructed surface which 

consists of C-C dimers where each surface carbon atom is bonded to one hydrogen 

atom, and has two back bonds to the diamond lattice.  
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Figure 4.1 Schematic of the (100) diamond hydrogen terminated surface 

reconstructions. a) the C(100)-(2x1):H monohydride configuration and b) the 

C(100)-(1x1):2H dihydride configuration  

STM studies [117, 194, 197] under UHV showed that such a surface has terraces 

consisting of atomic planes with dimer rows that are rotated by 90
o
 relative to the dimer 

rows of the adjacent atomic plane. A single domain (2x1) dimer reconstructed surface is 

revealed in the latter. Figure 4.2 shows STM topographies of the (100)-(2x1):H 

diamond surface of the a) unoccupied and b) occupied states respectively reproduced 

from reference [202].  In Figure 4.2 a) the bright lines highlight the CH-CH dimer rows 

of the (2x1) reconstructed surface; the 90
o
 rotation of the dimer rows on each adjacent 

atomic plane is apparent from the STM topography. The arrows in Figure 4.2 a) show 

the observed defect structures such as point defects and missing rows.  

 

Two different types of steps have been observed on the (100)-(2x1):H diamond surface. 

Single atomic steps that contain dimer rows parallel to the step edges are marked as SA 

steps and are highlighted in Figure 4.2 a) whilst single atomic step edges where the 

dimer rows are perpendicular to the step edges are referred as SB steps [197]. The 

schematic representation of the atomic steps formed on the (100)-(2x1) :H diamond 

surface shown in Figure 4.3 is reproduced from reference [194]. As highlighted on 

Figure 4.2 b) the inter-row distance was measured to be  5.0 ± 0.2Å, whilst the bright 

features within the lines were measured to be separated by 2.5 ± 0.2Å and are attributed 

to the single geometry of CH-CH dimers [194, 202]. The length of the monohydride 

dimer bond has been measured by dynamical low energy electron diffraction (LEED) 

[186] to be 1.60Å which is in agreement with the theoretical models [123-124]. Infrared 

spectroscopy confirmed that the vibrational modes of the C-H dimer species are coupled 

Hydrogen atom 

Carbon atom second layer 

Carbon atom top layer 

Carbon atom third layer 

b) 

a) 
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producing symmetric and antisymmetric stretching modes at 2919 cm
-1

 and 2899 cm
-1

 

respectively [121].  

 

Figure 4.2 STM topographies of the hydrogenated diamond (100)-(2x1):H surface 

(a) unoccupied states and (b) occupied states. The bright lines on the top 

topography indicate the C-C dimer rows in the vicinity of the step (SA) [202].  

 

X-ray photoelectron spectroscopy measurements on the hydrogenated diamond surface 

show a shoulder shifted by 0.5-0.8 eV towards a higher binding energy compared with 

the C 1s bulk peak. The shoulder has been observed to be characteristic of partially 

covered diamond surfaces by hydrocarbon species, possibly methyl groups [202-203].  

 

The reconstructed surface had been found to be stable to air exposure. Annealing the 

hydrogenated surface in UHV at the hydrogen desorption temperature region of 900-

1200
o
C produces a hydrogen-free surface. After annealing a new shoulder appears on 

the C 1s peak shifted by 0.9 eV towards lower binding energy for the diamond (100) 

surfaces. This feature has been attributed to the surface atoms that undergo relaxation to 

-bonded dimer rows of the 2x1 reconstructed surfaces. The activation energy of 3.4 eV 

has been calculated for the transition from the mono-hydrogenated to hydrogen-free 

reconstructed surface [203]. 
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Figure 4.3 Schematic of the diamond C(100):H surface showing the steps and 90° 

domain rotation in successive C-atom layers [53]. 

4.3  Etching of diamond with hydrogen plasma 

 

When activated hydrogen is used to etch diamond, either neutral or ionised mono-

atomic hydrogen i.e. H or H
+
 react with the surface and remove material. Experimental 

observations [199, 204] show that atomic hydrogen etches graphite faster than diamond. 

This data is in agreement with theoretical calculations [205]. Hydrogen plasma 

treatment removes the sp
2 

carbon from the diamond film, which has been co-deposited 

on the diamond surface [117]. Amorphous carbon phases are generally located at the 

grain boundaries in polycrystalline CVD diamond films [206].  

 

Etching experiments with a conventional CVD reactor using a hydrogen plasma under 

growth conditions (800 W, 780 
o
C, 30 torr, 200 sccm) show that hydrogen plasma will 

etch polycrystalline CVD diamond film with a rate of 0.15 m/h [207]. Removal of the 

amorphous carbon forms was confirmed by Raman spectroscopy and resulted in 

improvement of the crystal quality. It has been found that negatively biasing the 

diamond samples during the hydrogen plasma results in faster etch rates [208]. Stoner et 

al [209] attributed the high etch rates for negatively biased-assisted plasma etching to 

the following mechanism. Diamond surfaces which are negatively biased in a hydrogen 

plasma will result in electron emission. The emitted electrons graphitise the exposed 

surface which can be etched faster by the plasma.  

 

Studies show that H
+
 ion bombardment of diamond films during growth/etching 

experiments occurs preferentially at the grain boundaries and causes redeposition of the 

material [207]. Depending on the process conditions of the negative biased plasma, 
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conical, island formation or tips-cones structures can been formed on polycrystalline 

diamond CVD films [210]. Zhang et al [211] attributed the formation of conical tips to 

the formation of an unevenly distributed electron emission caused by the defective sites 

and grain boundaries of the CVD diamond films. Therefore preferential etching by 

energetic hydrogen ions at the defective sites and column boundaries is caused by the 

local distribution of the plasma sheath.  

 

Jiang et al [212] observed that crystallite grains grew laterally and their surface area 

increased on a (100)-oriented polycrystalline diamond film after a negative bias 

hydrogen treatment for the duration of 20 hours. The (100) facets were roughened after 

the treatment while an etch rate of 0.05m/h was obtained. The cause of the lateral 

growth of the crystallites has been attributed to a preferential redeposition on the sides 

of the (100) facets where the H
+
 ion damage is weak.  

 

Creation of fibrous structure had been observed on polycrystalline CVD diamond film 

and diamond powders by changing the process parameters of the above etching 

mechanism [213]. Transmission electron microscopy confirmed that the fibrous 

structure consists of randomly oriented nanocrystals with a diameter smaller than 10 

nm. 

 

Ando et al [214] showed that etching of diamond whiskers by a microwave hydrogen 

plasma depends strongly on the pressure. Experimental observations show that 

homoepitaxial growth of diamond occurred at low pressures whilst the etching rate was 

low. It was notable that the growth rate depended on the crystal orientation of the 

diamond surface and the final shape of the whiskers depended on the duration of the 

plasma treatment. 

 

There has been a controversy [30,187, 189] about the surface morphology of the (100) 

diamond surface after hydrogen plasma treatment. Atomically smooth diamond surfaces 

have been produced by microwave plasma treatment [27, 30,185, 187-189]. For a single 

crystal (100) diamond surface the roughness value has been reduced from 2 nm (rms) to 

0.8 nm (rms) after exposure to hydrogen plasma treatment (1.2 kW, 870 
o
C, 40 mbarr) 

for 3 hours, while the surface roughness of (111) diamond surface had been reduced 

from the initial value of 7 nm to 0.8 nm after a plasma treatment of 17 hours [189]. In 

contrast there are references on the roughening of the (100) diamond surface after 
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hydrogen plasma treatment either by means of microwave or hot-filament treatment 

[190, 191, 196]. AFM analysis demonstrated the formation of macro-steps running 

parallel to [110] direction [185,190]. 

 

Pyramidal-type etch pits with square-symmetry have been observed to have been 

formed on the (100) diamond surface [30,143, 192, 197, 198] after hydrogen plasma 

exposure. The sides of the etch pits were found to comprise steps on the {111} facets 

[143, 192]. The etch pit density has been related to surface dislocation density [197] and 

misorientation angle of the diamond surface [30]. The roughening of the (100) diamond 

surface by hot-filament-assisted hydrogen treatment was examined by infrared 

absorption spectroscopy [196] and it was attributed to the formation of {111} oriented 

nanofacets on the (100) diamond surface. The same morphological changes have been 

observed on the (110) diamond surface [196, 200] whilst the (111) diamond surface 

remained intact [129]. 

 

The surface morphological changes due to exposure to atomic hydrogen produced by 

both microwave and hot-filament assisted etching have been examined by Cheng et al 

[199] and Küttel et al [189]. Smoothing of the (100) diamond surface has been observed 

by microwave hydrogen plasma treatment; whilst a roughening of the (100) diamond 

surface has been observed by hot-filament hydrogen exposure. The discrepancy 

between the two results has been suggested to be due to the higher energy ions present 

in a microwave-assisted plasma [196].  

 

Smoothing of the (100) diamond surface has been attributed by many authors to etching 

[195, 197]. According to this mechanism atomic hydrogen etching occurs preferentially 

on the edges of the atomic steps of the (100) diamond surface. UHV STM studies [195] 

of the exposure of (100) diamond surface to atomic hydrogen produced by hot-filament 

treatment, showed that atomic-hydrogen etching is strongly temperature dependent.  

 

For substrate temperatures of ≤ 500
o
C atomic hydrogen etching is highly isotropic and 

etching proceeds on both SA and SB atomic steps on the (100) diamond surface, leading 

to the formation of a very rough surface, with high density of square-etch pits. As the 

facets of the square-etch pits consist of (111) diamond surfaces enlargement of the etch-

pits with plasma exposure time leads to (111) faceting of the (100) diamond surface 

[185, 196]. At elevated substrate temperatures of 1000
o
C, the hydrogen etching 
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becomes anisotropic resulting in smooth surface with large domains while large etch 

pits have not been observed on the (100) diamond surface. Atomic steps SB were found 

to be rough while atomic steps SA were observed to be smooth. In addition double type 

A steps have been observed on the etched (100) diamond surfaces. These observations 

support the anisotropic etching mechanism of atomic hydrogen on the (100) diamond 

surface at elevated temperatures of 1000
o
C [195].  

 

Ri et al [30] observed a strong dependence on the misorientation angle of the surface 

morphological changes that occur on the (100) diamond surface after microwave 

hydrogen plasma treatment. Atomically smooth surfaces were produced after atomic 

hydrogen exposure for low misorientation anglesoff < 1.5
o
. The surface roughness 

increased after hydrogen plasma etching with the increase of the misorientation angle. 

Based on these experimental observations a simple model has been proposed based on 

the anisotropic etching of hydrogen plasma treatment, where the active sites for etching 

are the step edges. A strong dependency on the etch pit density and the misorientation 

angle of diamond substrates was also discussed.  

 

Lee and Badzian [143, 192] observed square-etch pits with fourfold symmetry on the 

(100) diamond surfaces after microwave hydrogen plasma exposure. The etch-pit 

density has been found to decrease with the increase of the misorientation angle of the 

diamond surface. The edges of the etch pits were found to be parallel to the <110> 

directions, while macrosteps along the [110] direction were observed which are in 

alignment with the orientation of the surface misorientation angle. Macrosteps parallel 

to [110] directions were also observed on the homoepitaxial diamond films grown on 

the plasma treated surfaces. Based on those experimental results the authors suggested 

that atomic hydrogen etching occurs by the migration of atomic steps along the <110> 

direction. The increase of the etch pit density with the decrease of the surface 

misorientation angle has been attributed to the creation and regression of new steps on a 

low angle misorientated surface.  

 

Jiang and Rickers [215] employed AFM topography to examine the etch pit formation 

after hydrogen plasma treatment on (100) polycrystalline CVD diamond films. They 

correlated their experimental observations with the formation of the etch pits due to 

crystal defects present at the grain boundaries of the (100) polycrystalline CVD 

diamond films. 
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Based on STM observations under UHV conditions Stallcup et al [198] proposed that, 

at a substrate temperature of 500
o
C, during hydrogen plasma treatment, the formation of 

dihydrides is favourable at the step edges. Such hydrocarbon species would exhibit 

stressed C-C bonds and they would be highly prone to etching. The stress is caused by 

the steric repulsion of the dihydride units. Etch pits formed due to etching perpendicular 

to the (100) diamond surface and lateral growth of the etch pits would occur due to 

preferential etching of steps at the edges of the pits.  

 

Hydrogen atom-assisted surface diffusion has been proposed by Rawles et al [27] to be 

the dominant mechanism for the smoothing of the diamond surfaces during hydrogen 

plasma treatment. Observations made by SEM on diamond powders subjected to 

microwave-assisted hydrogen plasma treatment, for a substrate temperature range of 

700-900
o
C, showed that the size of diamond powders remained unchanged while 

faceting occurred. Hydrogen diffusion has been suggested to be responsible for those 

experimental observations.  

 

Surface diffusion of the adsorbates has been proposed by many authors as a mechanism 

for the growth of smooth (100) diamond surfaces. Quantum mechanical calculations 

proposed that surface migration is significant during (100) diamond growth, at least on 

the 5-20 Å length scale, and assists the growth of dimer rows and smooth surfaces 

[145]. 

 

Frenklach and Skokow [141] modelled diffusion on the diamond surface during growth 

and according to their model diffusion is most favorable to occur along the surface sites 

where the hydrogen has been removed by abstraction. When the surface migration is 

included into the theoretical models, it predicts higher growth rates than those observed 

experimentally [146].  

 

Other mechanisms that have been proposed for the growth of smooth (100) surfaces are 

i) anisotropic etching and ii) the preferential etching of under-coordinated atoms. The 

latter model, developed by Bettallie et al [146] based on quantum mechanical and 

kinetic Monte-Carlo calculations of the plasma CVD diamond growth, includes 

hydrogen etching. The model shows that etching plays a key role in the growth of 

smooth (100) diamond surface and it predicts that the probability of CH2 removal from 

the (100) facets decreases for isolated, step-sited and surface CH2 groups. Thus the 
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growth/etching of (100) diamond surface proceeds layer-by-layer involving steps. 

Further analysis and quantum mechanical modeling of the -scission mechanism of the 

(100) diamond surface growth showed that preferential etching could explain the 

growth of atomically smooth 2x1 dimer reconstructed surfaces [201].  

4.4  The surface conductivity of diamond 

 

High surface conductivity was first observed on single crystal diamonds and CVD 

grown diamond films subjected to hydrogen plasma treatment [40]. Due to the nature of 

the treatment any possible modification induced will be restricted to the near surface 

region therefore the phenomenon was initially referred as hydrogen-induced surface 

conductivity. Surface conductivity of diamond films has been observed experimentally 

to be enhanced after exposure to a hydrogen plasma [216]. 

 

The typical surface conductivity, measured at room temperature, is observed in the 

range of 10
-4

 to 10
-6

 
-1

cm
-1

 created by p-type carriers with a lateral density in the range 

of the order of a few times 10
13

 cm
-2

 and a carrier mobility measured to be 10 to 100 

cm
2
V

-1
s

-1 
[217]. There is very little temperature dependence on the carrier concentration 

and mobility [217]. Empirical observations lead to the conclusion that hydrogen plasma 

is responsible for the formation of a p-conducting layer on the diamond surface. Such a 

unique surface property makes diamond a candidate material for electronic applications 

[182, 183]. 

 

Several models have been suggested to explain the distribution of acceptors responsible 

for the hole-accumulation layer.  It was proposed that hydrogen forms point defects that 

act as shallow electron acceptors and provide the mobile holes [217]. The formation of 

such a distribution of acceptors was not clear. Some models suggested that they reside 

on the diamond surface [218], form layers 10 nm into the bulk of diamond [217] and 

even reside  30 nm below the diamond surface [219].  

 

The surface conductivity of CVD diamond films and hydrogen plasma treated natural 

diamond crystals was found to depend strongly on the surface conditions. Upon 

hydrogen desorption, via thermal annealing in vacuo [220] and oxidation [217] the 

surface conductivity decreased and vanished. Based on those observations the relevance 

of hydrogen was suggested to be an indirect influence for the observed surface 
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conductivity. Maier et al [44] provided evidence to support the idea that chemisorbed 

hydrogen is necessary but not sufficient for the formation of surface conductivity. They 

postulated that for diamond surface conductivity electron acceptors are provided by 

atmospheric adsorbates. According to this model, Maier et al [44] suggested transfer 

doping via a redox reaction in an adsorbed water layer. The transfer doping model 

describes the exchange of electrons between an intrinsic semiconductor and surface 

material that acts as an electron acceptor. Therefore a thin wetting layer of molecules 

can be formed on the diamond surface upon exposure to ambient air which can accept 

electrons from the diamond via the reaction: 

 

2H3O
+
 + 2e

-
 → H2 + 2H2O 

 

provided that the chemical potential of the absorbate layer is below the Fermi-level of 

diamond. This model has been supported by ab initio results and tight-binding 

molecular dynamics model calculations [221]. Experimental evidence provided by 

Hellner et al [220], Nebel et al [36, 42], Kulesza et al [222] and others [223, 224] 

support the transfer doping mechanism suggested by Maier et al [44]. Figure 4.4 

summarises the p-type surface transfer doping of hydrogenated diamond surfaces.  

 

In the general case of transfer doping the valence band maximum of the semiconductor 

must be at high energy, while there must be low-energy unoccupied states in the 

adsorbed material. Therefore, for the electron doping transfer mechanism to occur, a 

semiconductor with low ionisation energy is necessary as well as an adsorbed material 

with high electron affinity. The induced electron transfer between the surface acceptors 

and the diamond will be accompanied by electric fields that tend to equalise the Fermi 

levels and prevent any further electron transfer. The induced charge transfer creates 

band-bending towards the diamond surface and, since in the vicinity of the surface the 

Fermi level is below the maximum valence band, a hole accumulation layer is formed. 
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Figure 4.4 Schematic representation of the energy level of the diamond-surface 

acceptors material to illustrate the transfer doping of hydrogenated diamond. 

Scheme a) refers to the energy level before the electron transfer interface and b) 

displays the energy level in equilibrium after charge transfer. 

 

As carbon has higher electronegativity
1
 ( = 2.5) than that of hydrogen ( = 2.1), the 

polar carbon-hydrogen bonds on the diamond surface create surface dipoles C 
-

- H
+ 

 

with a positive component perpendicular to the surface. As a consequence the energy 

levels move upwards towards the vacuum energy. Therefore the electron affinity and 

ionisation energy are reduced in comparison with that of a clean diamond surface. The 

hydrogen terminated diamond surface exhibits a negative electron affinity of 1.3 eV and 

ionisation energy of 4.2 eV as labeled in the schematic diagram in Figure 4.4.  

 

In contrast the termination of a diamond surface with oxygen atoms creates surface 

dipoles C
+

 - O
-

 since the electronegativity of oxygen ( = 3.4) is much higher than that 

of carbon. Downward band-bending of the energy levels would be produced due to 

oxygen atom termination causing the increase of the ionisation energy and the electron 

affinity. Therefore it would be expected that oxygen termination of diamond surfaces 

would cause the depletion of holes in the sub-surface region of diamond and suppress 

the surface conductivity as observed experimentally [217]. 

 

 

 

                                                           
1
The eletronegativity values are referred to the Pauling scale. 
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The electrochemical transfer model of Maier et al [44], based on the electron transfer 

from the valence band of diamond to hydronium ions H3O
+ 

can be considered as a 

possible microscopic mechanism for the surface transfer doping of diamond via 

atmospheric adsorbates. A number of different redox couples have been suggested in 

the literature as possible ways for the electrochemical surface transfer doping of 

diamond by an atmospheric adsorbate [58, 224]. Ristein et al [225] compared the band 

gap energy of clean and hydrogen terminated diamond with a number of common 

semiconductors. Only the valence band maximum of hydrogen terminated diamond 

overlaps with the atmospheric window. As a consequence, hydrogenated diamond 

surfaces are uniquely prone to an electrochemical surface transfer mechanism. 

 

4.5  Experimental procedure 

 

Microwave hydrogen plasma treatment has been applied to MPCVD (100) highly 

oriented polycrystalline diamond thin films. Highly oriented CVD diamond samples 

have been grown on p-type silicon (100) wafers following the procedure described in 

Chapter 3. The diamond thin films were cut into 1x1 cm square pieces and before any 

analysis and treatment were subjected to solvent cleaning. 

 

The diamond thin films were analysed before and after they were returned to the 1 kW 

CVD system for additional exposure to hydrogen plasma. The same procedure 

described for the CVD diamond growth process, discussed in Chapter 3, was employed 

for the operation of the 1kW MPCVD system. 

 

Details of the process conditions used for the microwave-assisted hydrogen plasma 

treatment applied to diamond samples are given in Table 4-1. The conditions were 

chosen to be approximately the same as the ones used for the growth of CVD diamond 

to ensure that the diamond surface was exposed to the similar amount of atomic 

hydrogen flux as during growth.The duration of each hydrogen plasma treatment was 4 

hours. At the end of each treatment the sample was removed, via the transfer arm from 

the UHV CVD chamber, for analysis and loaded back again for further plasma 

treatment. 
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Parameters Etching 

H2 gas flow (sccm) 500 

Substrate Temperature (
o
C) 800 

Gas Pressure (Torr) 35 

Microwave Power (W) 700 

Total duration (h) 20 

 

Table 4-1 Hydrogen plasma treatment process conditions. 

4.6  Experimental results  

 

The effect of the hydrogen plasma treatment on the surface morphology has been 

verified by the use of atomic force microscopy (AFM), the chemical structure of the 

near surface by X-ray photoelectron spectroscopy (XPS) and hydrogen incorporation by 

FTIR. Whilst all these post treatment techniques allow the investigation of the process 

effect on the diamond surface, mass spectroscopy and optical emission spectroscopy 

have been employed during the hydrogen plasma treatment in order to confirm the 

purity and consistency of the plasma. 

 

4.6.1  Mass spectrometry 

 

The quadrupole mass spectrometer response was calibrated with known concentrations 

of methane in hydrogen in an empty MPCVD chamber. Sufficient time was allowed to 

elapse before sampling since the system behaves as a perfectly stirred reactor.  

 

Mass spectra collected during the calibration procedure are shown in Figure 4.5. 

Hydrogen was the only species identified by mass spectroscopy during the H-plasma 

stage. With 0.1 % of methane in the hydrogen mixture small quantities of methane 

related fragmentation peaks also became apparent. The methane signal (measured at m/z 

= 16) was proportional to the inlet CH4 concentrations (of up to approximately 1.0 %) 

with a total flow rate of 1000 sccm. Methane decomposition is caused by plasma 

ignition. As shown in Figure 4.6, an increase in the yields of CH4
+
 and CH3

+
 is observed 

as a function of the initial CH4 concentration.  
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Stable products of C2H2 and C2H4 arise from microwave plasma decomposition of 

diluted methane in hydrogen mixtures at microwave power less than 1kW [226]. 

Neither acetylene nor ethylene was detected for the plasma process parameters used. 

The relative proportions of those stable products are determined by the proportion of 

methane in the original mixture [227]. According to John et al [226] signals of C2H2 

and C2H4 products increase as a function of the initial CH4 concentration, while 

significant amounts were detected above 1.0 vol.% of CH4 in a hydrogen gas mixture. 

 

During each subsequent microwave hydrogen plasma treatment, the composition of the 

plasma was monitored by the collection of the mass spectra. Dynamic response of ions 

at (m/z = 15) and (m/z = 16), during the course of a H2 plasma treatment are plotted in 

Figure 4.7. 

 

 

Figure 4.5 Mass spectra from hydrogen and different percentages of methane 

obtained from a hydrogen plasma with an empty CVD chamber (pressure, 35 torr; 

microwave power, 700 W and temperature, 800
o
C). 
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Figure 4.6 Dependency of the methyl ion yield (m/z = 15) and methane ion yield 

(m/z = 16) with the percentage of methane in hydrogen (pressure, 35 torr; 

microwave power, 700 W and temperature, 800
o
C). 

Figure 4.7 Average dependency of peak intensity at (m/z = 16) and (m/z = 15) with 

the duration of hydrogen plasma treatment, (35 torr, 700 W and 800 
o
C). 

 



Chapter 4: Hydrogenation of (100) CVD diamond surfaces 

 

86 

The average intensity of the peaks presented in Figure 4.7 was weak and decreased 

along with the treatment duration. This behaviour was observed for all five hydrogen 

plasma treatments. From comparison with the calibration mass spectra, the initial 

amount of methane inside the plasma chamber was ≤ 0.2% and approached a value 

below 0.1 % after 3 hrs of plasma treatment.  

 

The measured yields of at the peaks at m/z = 15 and 16 decreased with the duration of 

the hydrogen plasma treatments. These results indicated that the presence of 

hydrocarbon in the CVD chamber was due to the etching of carbon deposited material 

on the chamber walls and it did not originate from the etching of the diamond surface. 

One might expect to that the level arising from the etching of the diamond film would 

be constant for the duration of the plasma treatment and do not decrease over the course 

of time.  

4.6.2  Optical emission spectroscopy 

 

Optical emission spectra were collected during the hydrogen plasma treatments. The 

characteristic Balmer emission lines, Hnm) and H (486.1 nm) of hydrogen 

were observed as shown in Figure 4.8. The emission lines from CHx species were not 

observed at any time during the hydrogen plasma treatments. 

 

4.6.3 Scanning electron microscopy 

 

Scanning electron microscopy has been employed to examine the diamond thin films 

prior and after the hydrogen plasma treatments. No morphological changes have been 

observed to occur on the diamond surface on the magnification scale of SEM, as shown 

in Figure 4.9. 
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Figure 4.8 Optical emission spectra from the hydrogen plasma (35 torr, 700 W and  

800
o
C). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 SEM image of a) azimuthally disordered and b) (100) highly oriented 

CVD diamond thin film after 20 hrs of microwave-hydrogen plasma treatment 

(pressure, 35 torr; microwave power, 700 W and temperature, 800
o
C). 

a) b) 

H 

H 
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4.6.4  Atomic force microscopy 

 

Atomic force microscopy has been used to analyse the surface of a specific area on the 

diamond thin films prior and after each plasma treatment. AFM images of the same 

location of (100) highly oriented CVD diamond film treated in microwave hydrogen 

plasma at substrate temperature of 800
o
C, pressure of 35 torr, gas flow rate of 500 sccm 

and applied microwave power of 700 W, are shown in Figure 4.10. 

 

No appreciable morphological changes have been observed on the (100) highly oriented 

CVD diamond crystallites, including either pitting or roughening of the diamond 

surface. Some small raised features appeared on the diamond crystallites surface after 

the plasma treatment, and some raised features also remained. It is not clear if those 

features are due to diamond or contamination resulting from material handling and 

processing. 
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Figure 4.10 AFM images of the same (100) highly oriented CVD diamond 

crystallites after successive microwave-assisted hydrogen plasma treatments. (a) 

as-grown film, (b) 8 hours, (c) 16 hours and (d) 20 hours. 

By selecting a specific (100) diamond crystallite from the (100) highly oriented CVD 

diamond film the surface morphology of the crystallite has been examined over the 

entire duration of the hydrogen plasma treatments. The SPMLab NT Vers.5 Analysis 

software supplied by Topometrix ThermoMicroscopes enabled the analysis of cross-

sections on the AFM topographic images. Figure 4.11 shows the AFM topographic 

image and cross-section taken from the as-grown {100} highly oriented CVD diamond 

crystallites. 

(c) (d) 

(b) (a) 
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Figure 4.11 AFM topographic image and cross-section of as-grown {100} highly 

oriented CVD diamond crystallites. 

 

On a specific location of the surface of the first crystallite (labelled as A) was relative 

smooth whilst the surface of the second crystallite (labelled as B) comprised a small 

crater of 325 ± 10 nm width and small triangular feature of 3 nm height.  

 

Figure 4.12 (a-d) shows the surface cross-sections taken from the AFM topographic 

images from the B labelled crystallite of Figure 4.11, before and after each consecutive 

hydrogen plasma treatment. 

 

The triangular feature vanished after the sample had been subjected to hydrogen plasma 

treatment for 4 hours. The lateral dimensions of the crater, towards the <110> diamond 

directions, have been increased (Figure 4.12 b). The crater width after 4 hours of 

hydrogen plasma treatment was 587 ± 10 nm.  

 

As further hydrogen plasma treatment was applied to the (100) diamond surface the 

lateral dimensions of the crater feature increased further (Figure 4.12 c). The hillock 

highlighted in Figure 4.12 (a-d), reduced its lateral dimensions after 8 hours of 

hydrogen plasma treatment (4.12 c).  

 

 

 

 

(100) 

(100) 

A 

B 
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Figure 4.12 AFM topographic cross-sections of a) as-grown and subjected to b) 4 

hours c) 8 hours and d) 12 hours of hydrogen plasma treatment of (100) diamond 

crystallite. 

After 12 hours of subsequent hydrogen plasma treatments (Figure 4.12 d), the cross-

section of the (100) diamond surface shows different surface morphology in comparison 

with the as-grown diamond (100) surface (Figure 4.12 a). Due to lateral etching along 

the <110> directions of the (100) diamond surfaces the crater dimensions have 

increased dramatically to 800 nm width and the hillock has reduced its height 

considerably.  

 

On the left side of the cross-section a step feature appeared after 8 hours of hydrogen 

plasma treatment with a (110) diamond facet. As the (100) diamond surface was 

subjected to further hydrogen plasma treatment (16 hours in total) the surface hillock 

decreased in height and lateral dimensions (Figure 4.13 (a)). The crater has increased 

further its lateral dimensions and the diamond step on the left of the cross-section 

increased its height. 

 

 

 

 

d) c) 

b) a) 
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Figure 4.13 AFM topographic cross-sections of (100) CVD diamond crystallite 

subjected to a) 16 hours and b) 20 hours of hydrogen plasma treatment. 

 

After the total 20 hours of hydrogen plasma treatment the (100) diamond surface, as it 

shown in Figure 4.13 (b), was flatter. The hillock was etched away while the crater 

lateral dimensions had increased. The (110) facet of the step on the left on the cross-

section was smoother. 

 

From the AFM topographic cross-sections it was feasible to deduce a value for the 

vertical and lateral etch rates of the (100) diamond surface induced by the hydrogen 

plasma treatments. The value of 14 ± 6 nm/hour for the vertical etch rate on the (100) 

diamond surface, as well as the value of 28 ± 4 nm/h for the lateral etch rate on the 

<110> directions were obtained from these studies. The measured etch rates values 

indicated anisotropic etching occurred on the (100) highly oriented CVD diamond by 

microwave hydrogen plasma treatment. Isotropic etching of (100) diamond surface 

cannot be supported by the present results, as equal vertical and horizontal etch rates on 

the diamond surface would have resulted in increased depth and width of the surface 

crater structure. According to STM investigations of hydrogen plasma etching of (100) 

diamond surface isotropic etching occurs at lower substrate temperatures (e.g. ~500
o
C 

[200]) than 800
o
C that has been used for the present hydrogen plasma treatments. In 

contrast the lateral increase of the crater dimensions on the (100) diamond surface 

supports the anisotropic etching model suggested by Ri et al [30] and verified 

experimentally by others [27, 30,185, 187-189, 197]. 

 

 

 

a) b) 
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The AFM topographies of the 20 hours hydrogen plasma treated (100) highly oriented 

CVD diamond films revealed that the step feature on the left side of the cross-sections 

in Figure 4.13 (a-b) is the edge of (100) diamond crystallite (labelled as C in Figure 

4.14). The C crystallite is shown on the AFM topographic cross-section on the hydrogen 

plasma treated (100) highly oriented CVD diamond film in Figure 4.14. It has been 

discussed in Chapter 2 that the growth of polycrystalline CVD diamond films proceeds 

by competitive growth between individual crystallites. The present results suggested 

that as the two neighbour (100) highly oriented diamond crystallites intersected, in this 

case crystallites B & C, lateral growth of (100) diamond C crystallite surface occurred 

on the surface of B (100) diamond crystallite surface. The crater structure observed on 

the surface of the as-grown (100) diamond surface, Figure 4.12 (a), was a structural 

feature due to the lateral growth of C (100) diamond crystallite on the surface of B (100) 

diamond crystallite and due to the vertical growth of the B (100) diamond surface.   

 

 

 

 

 

 

 

 

Figure 4.14 AFM topographic image and cross-section of (100) highly oriented 

CVD diamond crystallites that have been subject to 20 hours of hydrogen plasma 

treatment (35 torr, 700 W and 800
o
C). 

 

Figure.4.15 shows the variation of the surface roughness after 0, 4, 8, 12, 16 and 20 

hours of microwave hydrogen plasma treatment. The SPMLab NT Ver.5 Analysis 

software enables the measurement of the surface roughness on any selected area of the 

AFM topographic images. The data plotted on Figure 4.15 are the average values of 

measurements taken from ten different {100} CVD diamond crystallites from the highly 

oriented diamond film. The crystallite tilts in orthogonal directions have been removed 

before the surface roughness data were collected using the levelling function of the 

AFM software.  

(100) 

(100) 

[110] 

A 

B 

C 

B 
C 
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The surface roughness of (100) highly oriented diamond crystallites decreases after each 

treatment. After prolonged exposure of the (100) diamond surface to microwave 

hydrogen plasma an average surface roughness value of  1 nm has been attained. 

 

Figure 4.15 Variation of mean roughness (Ra) measured from AFM analysis, over 

the surface of ten {100} CVD diamond crystallites as a function of the duration of 

the ex situ microwave-assisted hydrogen plasma treatment. Error bars are the 

standard deviation of the mean.  

 

The present AFM topographic results show the smoothing of the (100) diamond surface 

after exposure to atomic hydrogen produced by microwave- CVD plasma. The average 

measured value of the surface roughness reduced from 2.4 nm for the as-grown surface 

to 1 nm after 20 hours of hydrogen plasma. 

 

The use of AFM topographic cross-section analysis enabled the measure of the vertical 

and lateral etch rates of (100) diamond at the present hydrogen plasma conditions used. 

The measured vertical etch rate of 14 ± 6 nm/h for the (100) diamond surface is much 

lower than the already reported etch rates of 150 nm/h [207] and 50 nm/h [212]. A 

direct comparison between the present results work and the previous published data 
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cannot be made as diamond samples have been growth under different conditions and 

gas mixtures, as well as due to the different type of CVD reactors and hydrogen plasma 

process conditions have been used. It has already been demonstrated experimentally and 

theoretically that sp
2
 carbon would be etched faster in comparison with sp

3
 carbon by 

hydrogen plasma treatment. High quality (100) highly oriented CVD diamond films are 

likely to be etched at a lower etch rate in comparison with other polycrystalline CVD 

diamond films. (100) diamond surfaces have been etched preferentially along the <110> 

diamond direction in comparison with the vertical etch rate on the (100) diamond 

surface.  

 

We have observed the etching and removal of hillocks from the diamond surface. 

Previously published STM analysis of hydrogen plasma treatment of (100) CVD 

diamond crystallites shows that hydrogen etches away the hillocks formed during 

growth on the diamond surface and microscopic steps have been observed on the etched 

surface [195]. The resolution of the AFM topographic images was not adequate to 

examine formation of atomic steps on the <110> directions on the (100) diamond 

surface. Therefore it is not possible from the present data to deduce a detailed 

microscopic model for the hydrogen plasma etching of (100) diamond surface.  

 

Ri et al [30] observed the smoothing of the (100) diamond surface after exposure to 

hydrogen plasma treatment and attributed the smoothening effect of hydrogen plasma 

treatment to anisotropic etching of step edges. Whilst the smoothing effect of hydrogen 

plasma treatment is identical to that reported by Ri et al [30] for natural diamond, the 

appearance of square-etch pits on the (100) surface following etching reveals significant 

differences. For natural diamond Stallcup et al [197] observed that square etched pits 

are formed due to dislocations and etching proceeds isotropically on the SA and SB 

steps. Lee and Badzian [143, 192] also observed the formation of square etch pits on the 

surface of natural (100) diamond after hydrogen plasma exposure to be correlated with 

the surface misorientation angle. The nature of nuclei responsible for the formation of 

etch pits in natural diamond is uncertain. Surface defects, such as crystal dislocations 

and impurities can be more reactive under microwave hydrogen plasma, as they often 

include amorphous carbon or graphite. Etching would be preferential on those surface 

features and it may lead to the formation of surface etch pits. 
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For polycrystalline (100) CVD diamond films the dislocation density has been found to 

be in the order of 2x10
10

 /cm
2
 localised near the grain boundaries of the crystallites 

[215]. Such dislocations have induced square etch pits after hydrogen plasma treatment 

on the surface of polycrystalline diamond films [215]. Square-etch pits have not been 

observed by the AFM topographic results presented here for the 20 hours duration of 

hydrogen plasma treatment. In the model presented here, hydrogen atoms saturate the 

dangling bonds on the (100) diamond surface. The step edges would be more reactive 

and removal of the step edges would occur faster than etching at the intervening 

terraces. As the density of the atomic steps on the terraces approaches a fundamentally 

small value, a true layer-by-layer mechanism will be attained leading to the formation of 

atomically smooth (100) diamond surfaces.  

 

4.6.5  Fourier Transform Infra-Red Spectroscopy 

 

Transmission FTIR spectra of an as-grown (100) highly oriented CVD diamond film on 

silicon and after it has been exposed to microwave hydrogen plasma treatment are 

shown in Figure 4.16. The diamond sample was  1 cm
2
 and an aperture was used to 

ensure that the IR beam collected data from the film. The spectra were not corrected for 

the presence of the silicon reference. 

 

The principal components of the as-grown diamond film present on the IR spectrum are: 

CHx peak (3000-2800 cm
-1

), SiO2 asymmetric stretch (1100 cm
-1

), SiC peak (800 cm
-1

) 

and the substrate Si peak (600 cm
-1

).  

 

The CHx and Si peaks can be clearly be identified in the spectrum. However the peaks 

due to SiO2 and SiC are relatively minor in the untreated film. 

 

After the diamond film on silicon had been subjected to H2-plasma treatment for 4 

hours a very strong and broad SiC peak appears in the spectrum. There are no changes 

observed to the other silicon related absorption bands.  
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Figure 4.16 FTIR spectra of an as-grown (100) highly oriented CVD diamond film 

deposited on silicon treated with a hydrogen plasma at 800
o
C and 35 Torr.  

 

The intensity of the stretching vibrational band of CHx decreased after exposure to 

hydrogen plasma treatment. Despite purging the sample chamber with dry nitrogen it 

was not feasible to eliminate the presence of water vapour absorption at 4000-3600 cm
-1

 

and 2100-1200 cm
-1

, and CO2 at 2400-2300 cm
-1

. 

 

A very strong IR absorption of the SiC band has been observed for the hydrogen plasma 

treated diamond film. The SiC band usually is observed on the IR absorption spectrum 

of CVD diamond films grown heteroepitaxially on silicon substrates with the pre-

treatment (carburization) and bias enhanced nucleation steps. Experimental evidence 

shows that the intensity of the SiC absorption band decreases as the diamond film 

thickness increases [228]. 

 

 

 

   Si 
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For the further analysis of the broad SiC absorption peak observed at 900-700 cm
-1

, the 

absorption due to silicon reference has been removed and the data have been 

normalized. Figure 4.17 shows the variation of the SiC band with the duration of the 

plasma treatment. The intensity of the band increased with the prolonged exposure to 

plasma and the band shape became sharper.  

 

The SiC band has been deconvoluted with three Gaussian and Lorentzian mixture peaks 

bands, as this was the minimum number of the bands which enabled a good fit to the 

spectrum. The three bands were: one sharp band at 797 cm
-1

 and two low broad bands 

centered at ~ 750 cm
-1

 and ~837 cm
-1

. The absorption peak at 797 cm
-1

 has been 

assigned to the transverse optical TO phonon vibration of cubic silicon carbide (-SiC) 

[165]. The peak observed at 750 cm
-1

 has been assigned to the SiC stretching mode 

[229] that is usually observed at 760 cm
-1

. The absorption band at 832 cm
-1

 could be 

assigned to amorphous silicon carbine [228], as shown in Table 3-2. 

 

The peak wavenumber, FWHM and percentage of the Gaussian-Lorentzian components 

derived from the peak fitting of the broad SiC peak are shown in Figure 4.18. The data 

are presented as a function of the duration of the hydrogen plasma treatment.  

 

The sharp peak at 797 cm
-1

 dominates the broad SiC envelope for all the measured 

spectra. The peak percentage area increases slightly with the exposure to the hydrogen 

plasma. The FWHM increases up to 12 hrs of treatment while further exposure to 

hydrogen plasma reduces the FWHM, indicating a very sharp band.  

 

The band percentage area observed at 750 cm
-1

 remained constant (± 3%) up to 16 hrs 

of treatment, while a reduction of ~ 10 % observed after 20 hrs of hydrogen plasma 

exposure. The same trend was observed for the FWHM, the broad peak reduces in 

width after the 20 hrs of hydrogen treatment. A small reduction has been observed in 

the FWHM and percentage area of the peak at 832 cm
-1

, after 12 hrs H2-plasma 

treatment. Subsequent exposure to hydrogen plasma increased and restored the initial 

shape of the peak 
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Figure 4.17 FTIR spectra of the SiC band dependence on the exposure to hydrogen 

plasma treatment. 

 

 

Wavenumber/ cm
 -1

 FWHM /cm
-1

 Area / % Assignment Ref 

750 72    24.5 SiC stretching mode [229] 

797 39 57.1 cubic -SiC [165] 

837 62 18.4 a:SiC [228] 

 

Table 4-2 Peak components of the deconvoluted SiC infrared absorption band. 
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Figure 4.18 a) wavenumber, b) FWHM and c) percentage area of the SiC band 

peak components.  

a) 

b) 

c) 
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Whilst a very weak signal of SiC has been observed for the as-grown diamond film, the 

FTIR data indicated the presence of silicon carbide on the material after exposure to the 

hydrogen plasma.  

 

The formation of silicon carbide as an interfacial layer between the silicon substrate and 

the diamond film during the growth process has been confirmed experimentally [167, 

233]. Silicon carbide is formed by diffusion of carbon atoms into the silicon substrate 

during CVD diamond growth. It is clear that the silicon carbide layer is formed during 

either the carburisation and/or the bias step, as both CVD diamond growth stages 

provide hydrocarbon species to the silicon substrate. Typically the thickness of the SiC 

would be few atomic layers, since its thickness would depend on the availability of Si 

atoms which originate from the silicon substrate. The growth of SiC has been achieved 

by using gas mixtures of CH4 and H2 with or without SiH4 over silicon substrate [231] 

by HFCVD and conditions similar to those used for diamond CVD deposition. 

 

The present data showed only a thin layer of interfacial silicon carbide for the as-grown 

diamond film on silicon, its major detection was made following hydrogen plasma 

treatment.  

 

The formation of silicon carbide without the presence of silicon precursor gas can be 

achieved through the following reaction paths; atomic hydrogen would react with the 

silicon substrate either by etching or diffuse into the silicon substrate. The etching of 

silicon would occur through the reaction: 

 

Si + H → SiH
*
   (reaction 1) 

 

and SiH
*
 radicals would be formed. In the presence of CH radicals the formation of 

silicon carbide can achieved through: 

 

SiH + CH – SiC + H2    (reaction 2) 
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Following the subsequent microwave hydrogen plasma treatments, it was observed that 

the (uncoated with diamond) silicon substrate had changed color and it looked darker. 

According to the present data the formation of silicon carbide has been on the silicon 

substrate area that surrounds the CVD diamond film.  

 

It is not completely understood how the formation of silicon carbide was enhanced on 

the silicon substrate from a hydrogen plasma treatment without a hydrocarbon source. 

Optical emission spectroscopy has not observed any hydrocarbon species during the 

course of the plasma treatments. The small hydrocarbon peaks measured by mass 

spectroscopy decreased with the duration of the plasma treatments. If the measured 

hydrocarbon peaks originated from the diamond surface then they would have been 

expected to display constant values for the duration of the treatments. As their intensity 

decreases it can be postulated that they originate from carbon deposited on the chamber 

walls, which can be etched away by the hydrogen plasma. Although atomic force 

microscopy data show that redeposition of diamond did not take place during the course 

of the plasma treatments, instead AFM analysis showed etching of the diamond surfaces 

with reduction of the surface roughness. Simultaneously non-sp
3
 carbon etched from the 

diamond surfaces could be a possible source of hydrocarbons for the enhancement of 

silicon carbide.  

 

The intensity of the CHx stretching band at 3000 – 2800 cm
-1

, was apparently reduced 

after the diamond film was subjected to hydrogen plasma treatment. Infrared absorption 

signals collected after subsequent hydrogen plasma treatment were very weak and 

unreliable for ensuring deconvolution analysis. For that reason data only from the as-

grown and samples subjected to 4 hrs and 6 hrs of hydrogen plasma treatment (800
o
C 

and 35 Torr) were deconvoluted. The deconvolution of the CHx stretching band was 

performed by fitting the minimum number of component peaks required to achieve a 

satisfactory and repeatable fit, as shown in Figure 4.19.  

 

The best fit deconvolution of the CHx vibrational band was performed using five 

Gaussian-Lorentzian bands. Only for the sample treated for 16 hrs was necessary to use 

a sixth band. Details of the peak components of the as-grown diamond film are listed in 

Table 4-3 along with their FWHM and relative percentage area. 
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Wavenumber / cm
-1

 FWHM / cm
-1

 Area /% Assignment 

2822 25.9 11.9 sp
3
 CH on (111) 

2846 34.4 15.4 sp
3
 CH2 symmetric 

2879 34.8 42.3 sp
3
 CH3 symmetric 

2918 39.1 21.5 sp
3
 CH2 asymmetric 

2944 34.4 8.9 sp
3
 CH3 asymmetric 

Table 4-3 Peak components of the CHx infrared absorption bands [172-176]. 

On polycrystalline diamond films most of the hydrogen is expected to be located at the 

grain boundaries, and it would occur in different hydrocarbon groups including CH, 

CH2 and CH3.  

 

From the present data it is possible to identify that there is no discernible CH sp
2
 or sp 

like carbon groups in the film, which are assigned to absorption peaks above 3000 cm
-1

, 

as would be expected for a high quality diamond film. The band component observed at 

2822 cm
-1

 can be assigned to stretching vibration of sp
3
 CH groups on (111)-like 

diamond surface. The peaks components observed at 2846 cm
-1

 and 2918 cm
-1

 are likely 

to be the symmetric and asymmetric C-H stretching vibration modes of sp
3
 CH2 groups 

that usually appear at 2850 cm
-1 

and 2920 cm
-1

 respectively as indicated in previous 

studies. While the peak at 2879 cm
-1

 corresponds to the symmetric stretching vibration 

mode of sp
3
 CH3 groups normally observed at 2880 cm

-1
, and the corresponding 

asymmetric vibration mode of sp
3
 CH3 group is typically observed around 2960 cm

-1
, in 

those spectra an sp
3
 CH3 component peak was observed at 2944 cm

-1
. 

 

The sixth peak component necessary for the satisfactory fit of the deconvolution process 

of the 16 hrs plasma treated diamond sample, observed at 2984 cm
-1

 was assigned to the 

absorption peak of sp
3
 CH groups on the reconstructed (100)-(2x1) diamond surface.  

 

Details of the peak components, (wavenumber, FWHM and percentage area) produced 

by the deconvolution process of the CHx band envelope are presented in Figure 4.20. 

From the present data, it was observed that there no change in peak wavenumber within 

the measured experimental error, for the duration of the plasma treatments. A 

remarkable decrease in the FWHM and percentage area of the peak at 2879 cm
-1

 has 

been observed after the plasma treatment.  
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The peak at 2822 cm
-1

 assigned to CH groups on (111) diamond surface, remains 

approximately constant for both the peak FWHM and percentage area, indicating that 

negligible changes have occurred due to the hydrogen plasma treatment on the (111) 

diamond surfaces. On {100} textured CVD diamond films, we would expect the grain 

boundaries to be dominated by (111) diamond planes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Deconvoluted CHx stretching band of an a) as-grown (100) highly 

oriented CVD diamond on silicon and b) after subject to a microwave hydrogen 

plasma for 4 hrs at 800
o
C and 35 Torr. The deconvolution resulted into five 

Gaussian-Lorenzian peaks (colored line). 

a) 

b) 
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Figure 4.20 Measured a) peak frequency, b) FWHM and c) percentage area of the 

peak components of the CHx stretching band resulted from the deconvolution of 

the band envelope. Data were collected with the duration of the H2 plasma 

treatment. 
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The symmetric stretching vibrational band of sp
3
 CH2 at 2846 cm

-1
, remained unaltered 

after the first 4 hrs of hydrogen plasma treatment. But a change of 5% has been 

observed to occur for the peak percentage area after 16 hrs of treatment. The FWHM 

and peak percentage area of the asymmetric stretching vibrational band of sp
3
 CH2 

observed at 2918 cm
-1

 increased linearly with the duration of the hydrogen plasma 

treatment. Between the as-grown and the 16 hrs hydrogen treated diamond sample there 

was an increase of 12.9% on the peak percentage area. Both stretching vibrational bands 

have been associated with CH2 on (100) 2x1 reconstructed surface, an increase of the 

peak components contribution to the CHx stretching envelope can be associated to the 

increase of the hydrogen coverage of the (100) 2x1 diamond surface. 

 

For the symmetric stretching vibration band of sp
3
 CH3 at 2879 cm

-1
 both its FWHM 

and peak percentage area decreased with the duration of the hydrogen plasma. The 

FWHM was reduced by 22.3 cm
-1

 and the peak percentage are by 28.8 % after 16 hrs of 

hydrogen plasma treatment. Those were the most dramatic changes that have been 

observed on the bands components of the deconvolution process as a function on the 

hydrogen plasma treatment duration.  

 

On the contrary the asymmetric stretching vibrational band of sp
3
 CH3 observed at 2944 

cm
-1

 did not produced any changes on measured values of FWHM, while the peak 

percentage area decreased by 5% after 4 hrs and increased by 3.8 % after 16 hrs of 

hydrogen plasma treatment. Percentage changes were measured from the initial value of 

the as-grown diamond film. 

 

According to the results of the deconvolution process of the CHx absorption band, we 

observed the increase of the CH2 groups to the absorption data with the increase of the 

hydrogen plasma exposure. Such observation can be assigned to the monohydride 

coverage of the (100)-(2x1) diamond surface. The decrease of the symmetric CH3 group 

absorption with the duration of the plasma exposure, can be suggested to be due change 

of the surface coverage from CH3 to CH2. While the absorption related to CH on (111) 

diamond surface remained unchanged indicating no change occurred by the hydrogen 

plasma treatment.  
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4.6.6  X – Ray photoelectron spectroscopy 

 

Figure 4.21 compares the wide survey XP spectra of typical as-grown and microwave 

plasma treated (100) highly oriented CVD diamond films. The peaks identified on the 

spectrum are denoted on the figure. The C 1s peak can be seen at 284.7 eV with its 

plasmons at the high energy side of the peak. The O 1s peak is observed at 532 eV. 

Clearly both samples contained oxygen within the region analysed by XPS. The two 

peaks located at 1220 eV and 970 eV are the Auger electrons for carbon and oxygen 

respectively. For the as-grown diamond film the Si 2s and Si 2p peaks were observed at 

152 eV and 102 eV respectively. Silicon peaks were not observed for the microwave-

assisted hydrogen plasma treated diamond film. 

 

Figure 4.21 Wide scan XP spectra from (a) as-grown diamond sample and (b) a 

hydrogen plasma treated (100) highly oriented CVD diamond sample. 
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The XPS data presented here were collected from diamond samples (  1 cm
2
) on 

silicon and data were acquired from the epitaxial aligned region of the film. It has been 

described in chapter 3 that this region is grown on the periphery of the diamond film 

and it is in the vicinity of the uncoated silicon substrate. It may be possible that the 

collection of XP spectra, from the as-grown diamond sample, included area of the 

uncoated silicon substrate.   

 

For the as-grown diamond film the presence of oxygen may possibly originate from CO 

that has been used during the diamond deposition process. Therefore a small amount 

may be incorporated into the diamond film. Another possible origin of oxygen on 

diamond surfaces could be due to contamination by exposure to ambient conditions 

[232]. Microwave hydrogen plasma treatment reduces the amount of oxygen present on 

the film surface.  

 

Specifically the elemental composition of the two diamond samples is presented in 

Table 4-4. All the values have been determined using the ESCA software.  

 

 

 

 

 

 

 

 

Table 4-4 XPS determined elemental composition for as-grown and hydrogen 

plasma treated (20 hrs) (100) diamond films. 

The change in the peak shape depending upon surface termination can be seen when 

high resolution spectra of C 1s and O 1s peaks of as–grown and hydrogen plasma 

treated diamond films are compared in Figure 4.22.  

 

The C 1s spectrum of the as–grown diamond film displays an asymmetric peak with a 

tail on the high binding energy region. For the hydrogenated diamond the C 1s spectrum 

has a symmetric shape.  

 

Sample Atomic species Area % 
   

As – grown  C 1s 87.4 

 O 1s 9.0 

 Si 2p 3.6 

Hydrogenated C 1s 96.7 

 O 1s 3.3 
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Figure 4.22 High resolution C 1s and O 1s XP spectra of as-grown and hydrogen 

plasma treated (20 hrs) (100) highly oriented CVD diamond films. 

C 1s 

O 1s 
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The shape of the O 1s spectrum of the two samples is identical and only the area differs, 

indicating the reduced levels of bonded oxygen, as has been observed on the survey 

scan data. 

 

The peak areas of the high resolution C 1s and O 1s peaks are proportional to the 

concentrations of the respective species in the sample region under analysis. As the XP 

spectra were collected without charge compensation the C 1s components peak 

positions are measured relative to the main sp
3
 carbon peak. 

 

Deconvolution of the high resolution spectra was carried out by fitting the minimum 

number of peak components which provided accurate and repeatable fitting. The 

position of the peak components was determined by previously published data [228, 

333-335]. A Gaussian-Lorentzian mix function has been used to describe the shape of 

the peak components and a linear background has been used for the analysis.  

 

Interesting trends were observed for the as-grown and microwave hydrogen plasma 

treated (100) diamond films. The deconvoluted C 1s peaks are shown in Figure 4.23 

while their average binding energies and FWHM of the component peaks are listed in 

Table.4-5. 

 

Sample Peak assignment BE shift (relative to sp
3
 

carbon peak) / eV 

Peak FWHM 

/ eV 

Area / 

% 

As - grown Diamond (sp
3
) 0 (by definition) 0.6 78.9 

 Graphitic (sp
2
) - 0.6 ± 0.2 0.7 3.7 

 Hydrocarbon (CHx) + 0.5 ± 0.1 0.8 12.3 

 Ether (C-O) + 1.6 ± 0.1 0.8 3.2 

 Carbonyl ( C=O) + 2.0 ± 0.4 1.3 1.9 

Hydrogenated Diamond (sp
3
) 0 (by definition) 0.60 78.1 

 Hydrocarbon (CHx) + 0.4 ± 0.1 0.86 21.9 

Table 4-5 XPS C 1s components position, FWHM and integral area. The BE of the 

main peak occurs at 284.7 eV. 
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Figure 4.23 Deconvoluted high-resolution XP spectrum from the C 1s binding 

energy of an as-grown CVD diamond film, showing raw data (black circles) 

components peaks (coloured lines) and the sum of the peaks (black line). Binding 

energies are referenced to the main (sp
3
) carbon peak. The high energy region has 

been magnified and presented in the insert.  

 

The high resolution spectrum of the C 1s binding energy region of a (100) highly 

oriented CVD polycrystalline as-grown diamond thin film has been deconvoluted into 

five components, as listed in Table 4-5. The most intense peak centred at 284.7 eV can 

be attributed to the bulk diamond sp
3
 component [233, 235].  The binding energies of all 

the other peak components are given relative to this peak.  

 

The peak shifted by - 0.6 eV (blue line) towards the lower binding energy region this 

peaks can be assigned to graphitic carbon species sp
2
 [228]. Three components were 

fitted to the high energy side of the C 1s spectrum. The peak shifted by + 0.5 eV with 

respect to the main sp
3
 peak can be ascribed to carbon atoms bonded in polyhydride 

configurations CHx (x ≥ 3), located at the grain boundaries of the film [202, 203]. 
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The remaining two components are shown in more detailed on the inset graph of Figure 

4.23. The peak shifted by + 1.6 eV can be attributed to ether functional groups [233, 

235], whilst the peak shifted by + 2.0 eV is attributed to carbonyl functional groups 

[235]. Therefore the small amount of oxygen present on the diamond surface appears to 

be either singly or doubly bonded to carbon atoms. 

 

The C 1s peak of the hydrogen plasma treated diamond has been deconvoluted into two 

components, Figure 4.24. The main component was centred at 284.7 eV is attributed to 

the bulk diamond peak (sp
3
) and the second component peak positioned at + 0.42 eV 

can be attributed to polyhydride carbon species, CHx (x ≥ 3).  

 

It is possible to identify that there were no peaks at the low binding energy side 

attributed to sp
2
 carbon forms. Atomic hydrogen attacks and removes any graphitic and 

amorphous carbon phase in comparison with diamond. Thus hydrogen plasma treated 

diamond resulted in a surface free of graphitic carbon.  

 

The peaks observed at the high binding energy side attributed to oxygen bonded species 

on the diamond surface were absent. The removal of oxygen groups from the surfaces 

of diamond powders upon hydrogenation had been examined by means of FTIR 

spectroscopy [236]. Results shown the hydrogenation did not proceed at temperatures 

below 500 
o
C and that desorption of C=O is the dominant process. But since diamond 

powders comprise random crystallographic facets, those results [236] cannot be 

interpreted in terms of any specific diamond crystallographic surface.  

 

There are two possible reaction mechanisms for the removal of oxygen species from the 

diamond surface by hydrogen plasma. One way is the stepwise reduction of carbonyl or 

ether by hydrogen molecules and/or hydrogen atoms to produce C-H surface groups. 

Alternatively here the simple thermal desorption of the carbonyl or ether groups to form 

either CO or CO2, with subsequent hydrogen adsorption on the surface carbon atoms. 
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Figure 4.24 Deconvoluted high-resolution XP spectrum from the C 1s binding 

energy of a hydrogen plasma (800
o
C, 20 hrs) treated CVD diamond film, showing 

raw data (black circles) components peaks (coloured lines) and the sum of the 

peaks (black line). Binding energies are referenced to the main (sp
3
) carbon peak. 

The peak components of the C 1s binding energy spectra are summarised in Table 

4-5. 

 

The O 1s peaks were deconvoluted into two peak components, as that was the minimum 

number of peaks which produced an accurate and repeatable fitting procedure. The 

deconvoluted O 1s peaks of the as-grown and plasma treated diamond samples are 

shown in Figure 4.25. 

 

For the as-grown diamond film the main peak component was located at 532.2 eV 

(FWHM = 1.31 eV) and it was assigned to carbonyl groups, whilst the second peak 

component at 533.0 eV (FWHM = 1.50 eV) was attributed to ether groups. For the O 1s 

peak of the hydrogen plasma treated diamond sample two similar components emerged. 

The main peak component was observed at 531.8 eV attributed to carbonyl group, 

whilst the second peak component was located at 533.0 eV, and was assigned to ether 

groups, details of the peak components characteristic are listed in Table.4-6.  
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Figure 4.25 Deconvoluted high-resolution XP spectrum from the O 1s binding 

energy of a) as-grown and b) hydrogen plasma treated CVD diamond film, 

showing raw data ( black circles), component peaks (coloured lines) and the sum of 

the peaks ( black lines).  

b) H- plasma treated diamond 

a) as-grown diamond 
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Sample Peak assignment BE shift (relative to 

sp
3
 carbon peak) / eV 

Peak FWHM 

/ eV 

Area / % 

As - grown Carbonyl (-C=O) 532.2 1.3 83.0 

 Ether (-C-O-C-) 533.0 1.5 17.0 

Hydrogenated Carbonyl (-C=O) 531.8 1.4 63.5 

 Ether (-C-O-C-) 533.0 1.6 36.5 

Table 4-6 XPS O 1s peak components position, FWHM and percentage area. 

 

The assignment of the peaks from the O 1s region is less well established than that from 

the C 1s region. Both diamond samples presented the same oxygen-carbon functional 

groups. The peak components of O 1s binding energy region should display binding 

energy shifts related to the formal oxidation states of the oxygen atoms. We would also 

expect the curve fitting of C 1s peak to produce results that would correlate with those 

of the O 1s peak fitting procedure.  

 

The Si 2p peak of the as-grown diamond film was deconvoluted into two peak 

components, Figure 4.26. The main peak component was located at 102 eV while the 

second one was shifted by +0.8 eV. Details of the components peak arising from the 

deconvolution process of Si 2p are presented in Table 4-7. 

 

Both peak components exhibits binding energies which are between that of the Si 2p of 

SiO2 (104 eV) and that of SiC (100 eV). The peak at 102 eV could be assigned to 

silicon oxycarbide and the latter peak at 102.8 eV to non-stoichiometric silicon oxide 

SiOx (x < 2) [237]. It is very unlikely that silicon would be present on the surface of the 

as-grown diamond film. Possibly the contribution of the silicon peaks on the XP spectra 

originate from the actual silicon substrate, as the uncoated silicon substrate could have 

been included in the area of XPS analysis.  

 

The formation of silicon oxide and silicon oxycarbide phases, has been observed by XP 

spectroscopy when oxygen has been added to the CVD diamond growth mixture [237] 

as interfacial layers between silicon substrate and diamond layer. Although it is not 

clear if the formation of the interfacial layer is caused by the presence of oxygen during 

the growth process and/or oxidation by exposure to air. 
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Sample Peak assignment BE eV Peak FWHM / eV Area / % 

As - grown SiO2 102.0 1.1 69.2 

 SiOx (x<2) 102.8 1.0 30.8 

Table 4-7 XPS Si 2p peak components position, full width at half maximum and 

integral area. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Deconvoluted high-resolution XP spectrum from the Si 2p binding 

energy region of an as-grown (100) highly oriented CVD diamond film on silicon. 

Raw data presented here as black circles, component peaks with coloured lines and 

the sum of the peaks with black line. 

The presence of silicon species could be due to the formation of silicon carbide during 

the diamond growth. As it has been discussed previously it could also be induced by 

migration of silicon to the surface by the growth process from the silicon substrate.  

 

The results presented here show that microwave hydrogen plasma treatment of CVD 

diamond removes graphitic carbon and oxygen phases from the surface layers. The 

amount of oxygenated carbon groups on the surface or near surface is reduced after the 

treatment but not entirely removed for the durations of treatments performed.  
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Table 4-8 summarises the previously reported positions of peaks on diamond surfaces 

and compares them to the results obtained from the present XPS results. A comparison 

of this work and the reported peak shifts shows a good agreement. The present peak 

fitting is consistent with previously reported data [228, 233]. 

 

Diamond 

sp3 C-C 

Graphitic 

sp2 C-C 

CHx 

(x ≥ 2) 

Ether 

-C-O-Cc 

Carbonyl 

-C=O 

Carboxyl 

-C-OOH 

Surface State Ref 

284.7 - 0.6 + 0.5 + 1.6 + 2.0  As-grown This 

work 
 + 0.4    Hydrogenated 

 -0.7 + 0.5 + 1.2 + 2.0 + 2.9 Thermally oxidised [233] 

 -0.5  + 1.0 + 2.25 + 3.3 Thermally oxidised [228] 

 -0.5 + 0.6 + 0.9  + 4.5 Electrochemically 

oxidised 

[234] 

 -1.3 + 0.5 + 1.2 – 1.9 + 3.6 + 4.5 Electrochemically 

oxidised 

[55] 

 

Table 4-8 Comparison of this work and literature XPS binding energies of 

diamond surfaces containing carbon and oxygen groups. 
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4.6.7 Electrical characterisation  

 

The methods and results of the electrical analysis carried out on as-grown and hydrogen 

plasma treated (100) polycrystalline CVD diamond films will be presented in this sub-

section. The analysis consisted of investigating the current/voltage (I-V) characteristics 

of the (100) CVD diamond films. 

It is well documented that hydrogen plasma treatment on diamond surfaces induces the 

surface conductivity phenomena, as discussed in section 4.4. With this knowledge it 

was felt that the I-V measurements will be an important characterisation technique for 

investigating the hydrogenation of the (100) polycrystalline CVD diamond films by 

hydrogen plasma. 

The I-V characteristics were obtained from as-grown and hydrogen plasma treated (100) 

CVD diamond. Sheet conductivity measurements on azimuthally and highly-oriented 

(100) CVD diamond films were examined to study the effect of surface morphology. 

Finally the effect on sheet conductivity of prolonged exposure of a hydrogenated (100) 

diamond surface to ambient conditions was examined. 

I-V Probe station 

The I-V characteristics were measured on a probe station shown schematically in Figure 

4.27. The Wentworth Labs station used consisted of a sample holder with vertical 

movement, a microscope and two electrical probes on magnetic bases for stability. The 

probes were connected to a 4140B HP pA meter/DC voltage source and their 

movements were micrometer-controlled in the x, y and z directions. The current and 

voltage readings were collected using an in-house built HPVee program. All 

measurements were taken in ambient light and at room temperature. Evaporation of 

metallic contacts has been omitted and thereby both electrical probes were pressed 

directly into the sample surface. The distance between the probes was kept 

approximately 3 mm for all the measurements taken. 
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Figure 4.27 Schematic diagram of the probe station used for current/voltage 

characteristics. 

The potential difference was supplied in a stepped formation: settings used for the I-V 

measurements are listed in Table.4-9. 

 

 

  

 

 

 

Table 4-9 Experimental parameters for the I-V measurements. 

 

Current-voltage characteristics of an as-grown and a hydrogenated (100) highly oriented 

CVD diamond film deposited on silicon are plotted in Figure 4.28. The hydrogenation 

of the (100) diamond surface was achieved by exposure to a hydrogen plasma for 4 

hours (800
o
C, 700 W and 35 torr). For both I-V measurements the diamond samples 

were exposed to atmospheric air following hydrogen plasma treatment.  

 

 

 

 

Start voltage 0 V 

 

Plateau Voltage 100 V 

 

Step Voltage 0.5 V 

 

Step Delay Time 1 sec 

PC 

HP4140B 

Probes 
Diamond film 

Sample holder 
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Figure 4.28  Current–voltage characteristics measured on as-grown (100) highly 

oriented CVD diamond film under room temperature and pressure (black 

squares), and subjected for 4 hours to hydrogen plasma treatment at substrate 

temperature 800
o
C and hydrogen pressure of 35 torr (red circles). 

As seen in Figure 4.28, the current-voltage characteristics for both, as-grown and 

hydrogen plasma treatment (100) diamond samples, exhibit the same trend. For low 

applied voltages the characteristics show a linear relationship, while for high applied 

voltages the current-voltage relation was found to be; 

 
 

for both samples. The resistance, R, of the diamond samples has been determined from 

the I-V plots of Figure 4.28, for low applied voltage range, from:  

 

    Equation 4-1 

 

For the as-grown {100} diamond sample the value of R= 134 k has been determined, 

while for the hydrogen plasma treated diamond sample the resistance value of  

R= 1.68 k  
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Although the as-grown diamond film was terminated in a hydrogen plasma, the 

measured resistance decreased by 132.4 kW, by further 4 hrs of hydrogenation. 

Similarly, upon hydrogenation of single crystal and polycrystalline diamond the 

conductivity was found to decrease by several orders of magnitude [216]. 

 

Four-point probe method 

 

The resistivity of a given specimen is commonly measured using an array of collinear 

four-point probes; this technique can provide reliable measurements when the following 

aspects are considered [238]: 

 

 The area of contact between each of the pin-like probes and specimen should be 

small compared with the distance s between the probes, as depicted in Figure 

4.29. 

 A significant parameter to determine the resistivity is the specimen thickness , 

and there are different solutions for thicknesses being larger, comparable and 

smaller than s.  

 

 

 

 

 

 

 

 

Figure 4.29 A collinear four-probe array on a sample of thickness .  

 

For various values of constant current, the voltage is measured across the inner two 

probes to determine the resistance, R, according to: 

 

    Equation 4-2  

 

s 

I 

I 

s 
s 

s 
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The resistivity of the specimen , is expressed as: 

 

  Equation 4-3 

For the case where the interprobe spacing is larger than the specimen thickness,  

 s >> , , then sheet resistivity s can be expressed as: 

 

 

s = 4.5324R (
-1

)   Equation 4-4  

 

The experimental apparatus used to measure the sheet resistivity of the diamond films, 

is depicted in Figure 4.30. A digital multimeter (Keithly 160 B) has been used to 

measure the potential difference between the two inner probes, while the two outer 

probes were connected to a programmable current source (Keithley 224). For this 

specific arrangement the probe diameter was  0.08 mm and the probe interspacing was 

 0.625 mm. This technique has been used to measure the sheet resistivity of the 

hydrogen plasma treated diamond films on silicon. Before any plasma treatment the 

diamond thin film thickness was measured, using SEM images, from the cross-section 

of the {100} diamond thin films to be of the order of ~ 5 m. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30 A schematic diagram of the 4 probe station used to measure the sheet 

resistance of hydrogen plasma treated diamond films. 

Digital 

Multimeter 

Current  

Source 
Probe distance = 0.08 mm 

s = 0.625 mm 
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The high resistivities of the as-grown CVD diamond films on silicon did not allow the 

collection of I-V data because the maximum compliance voltage of the current source 

was 100V and this was insufficient to derive the minimum current through the diamond.  

 

Exposure to hydrogen plasma for 4 hrs at 800
o
C and 35 Torr resulted in the decrease of 

the sheet resistivity and the successful collection of I-V data. Four-probe measurements 

were taken of the azimuthally disordered and highly oriented areas of the CVD diamond 

film after 4 hrs of microwave-assisted H2 plasma treatment (800
o
C and 35 Torr), to 

determine the sheet resistivities. In Figure 4.31, the I-V characteristics were plotted for 

both areas of the diamond sample and linear fitting procedure was applied to the data. 

The linear equations for the I-V of the azimuthally aligned diamond and highly oriented 

regions were found to be I(A) = 1.25x10
-4 

V(Volts) - 4.06x10
-9

 and  

I(A) = 2.57 x 10
-4

V(Volts) - 1.09x10
-9

 respectively.  

 

Figure 4.31 Current–voltage data plot for the azimuthally disordered (black 

circles) and highly oriented (red circles) (100) CVD diamond films. Details of the 

linear fitting procedure are listed in the inset tables.  
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From Figure 4.31, R = 8 ktherefore, s = 36.26 k


 for the azimuthally 

disordered (100) diamond region and R = 3.9 k and thens = 17.63 k


 for the 

highly oriented (100) diamond region. The thickness of the conducting layer is 

uncertain therefore  cannot be calculated. 

 

The surface resistivity values measured for the highly oriented and azimuthally 

disordered (100) CVD diamond films provide evidence for the effect of surface 

morphology and grain boundaries on the surface electrical properties of the diamond 

films. The crystallites in the azimuthally disordered diamond films exhibit large tilt 

angles in both x and y directions. As a consequence those surfaces can act as electron 

traps and disrupt the current flow in the lateral direction. However the grain boundaries 

can include sp
2
 carbon which enhances the diamond conductivity [239]. XPS analysis 

presented in sub-chapter 4.6.6 shows that hydrogen plasma treatment removes graphitic 

forms of sp
2
 from the CVD diamond surfaces and possibly in the intergranular regions. 

From the data presented here the large tilts and grain boundaries of azimuthally 

disordered (100) CVD diamond crystallites have a strong effect in decreasing the 

diamond film surface conductivity. 

 

Figure 4.32 shows measured values of sheet resistivity from both azimuthally 

disordered and highly oriented (100) CVD diamond films as a function of the exposure 

time to atmospheric air after hydrogen plasma treatment. For both areas of the diamond 

films the sheet resistivity exhibits the same trend.  

 

The surface resistivity has been decreased by exposure to ambient conditions (room 

temperature and pressure) by 31 k/sq for the highly oriented (100) diamond film. 

While for the azimuthally disordered (100) diamond films the surface resistivity only a 

small and possibly insignificant decrease of 18.6 k/sq has been observed.  

 

Saturation of the surface resistivity has been observed for both highly disordered and 

highly oriented (100) CVD diamond films by exposure to ambient conditions for 20 

hours. A small variation in the surface resistivity has been observed on the azimuthally 

disordered CVD diamond as a function of the exposure time to ambient atmospheric 

conditions. These small variations are more likely to have been caused due to the 

positioning of the tips on the surface of the azimuthally disordered diamond surface.  
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The present results are in accordance with the transfer doping model [44] presented in 

4.4. The surface resistivity of {100} CVD diamond films has been decreased upon 

exposure to ambient atmosphere and reduction of the surface resistivity has been 

achieved by further exposure to air.  

 

It was not feasible to measure the surface resistivity in vacuo directly after the hydrogen 

plasma treatment due to the limitations of the MPCVD system. Experimental 

observations support the view that chemisorbed hydrogen on the diamond surface is not 

directly responsible for the decreased surface resistivity of diamond crystals. Exposure 

to atmospheric condition is necessary for the reduction of the surface resistivity. 

 

Figure 4.32 Sheet resistivity for the highly oriented and azimuthally disordered 

diamond films as a function of exposure to ambient air after microwave-assisted 

hydrogen plasma treatment. 

 

According to the transfer doping model of Maier et al [44] when the hydrogenated 

diamond surface is exposed to ambient conditions a thin layer of water is formed on the 

diamond surface. Electron transfer from the diamond valence band maximum to the 

conduction band of the absorbates via a redox reaction will cause the formation of a 

hole accumulation layer in the diamond subsurface. The experimental evidence 

provided by Nebel et al [42] showed that the discrete electronic states created by the 

transfer doping on the hydrogenated diamond surface will be affected by: a)  the 

arrangement of the H-termination, b) by the arrangement of the adsorbates on the 
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diamond surface and c) by the diamond surface roughness. Taking into account the 

models of Maier et al [44] and Nebel et al [42], the observed saturation of the measured 

surface conductivity of (100) CVD diamond films can be attributed to the full coverage 

of the diamond surface with absorbates by prolonged exposure to atmosphere. After full 

coverage of the diamond surface with adsorbates the surface resistivity cannot be 

reduced any further. Increase of the surface resistivity has not been observed by 

extended exposure of microwave-assisted hydrogen plasma treated polycrystalline CVD 

diamond films to air, as reported by Kulesza et al [222].  

 

4.7 Conclusions 

 

Surface morphological studies of the (100) highly oriented CVD diamond show the 

surface smoothing effect of prolonged microwave-assisted hydrogen plasma treatment. 

The vertical etch rates of high quality CVD diamond have been determined by AFM 

measurements. Faceting and square etch pits that are widely reported [30,143, 192, 197, 

198] to form on natural diamond surfaces by hydrogen plasma treatment were not 

observed in this study. The data are consistent with the mechanism of anisotropic 

etching on dimer row edges on the (100) diamond surface as proposed by Ri et al [30]. 

 

Infra-red absorption spectroscopy demonstrated that exposure to hydrogen plasma 

treatment resulted in a relative enhancement of the CH2 groups on the (100) diamond 

surface and grain boundaries and the decrease of the symmetric CH3 groups. This is 

consistent with the coverage of (100) diamond dangling bonds with monohydrides in 

the 2x1 surface reconstruction.  

 

Analysis of the high resolution XPS data was consistent with the fact that the (100) 

diamond surface is terminated by hydrogen. Hydrogen plasma treatments resulted in 

removal of graphitic and oxygen functional groups from the diamond surface. 

 

Exposure of (100) CVD diamond films to hydrogen plasma treatment reduced the 

surface resistivity of the diamond film. Exposure to ambient conditions produced a 

further decrease of the surface resistivity of the diamond film in support of the transfer 

doping model [44]. Saturation of the measured surface resistivity for both azimuthally 

disordered and highly oriented (100) diamond films has been observed after long 
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exposure to ambient conditions. These results are in accordance with the model 

proposed by Maier et al [44] . 
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Chapter 5: Reactive ion etching of CVD diamond 

5.1 Introduction 

 

Patterning of diamond surfaces has been successfully achieved by reactive ion etching 

(RIE). Despite the limitation of the RIE process, namely low etch rates and resulting 

texture of the etched diamond surface, the fabrication of diamond devices has been 

realised by the use of reactive ion etching under different gas chemistries. One of the 

most intriguing phenomena associated with oxygen reactive ion etching on diamond 

CVD films is the formation of columnar structures. Many authors have attributed the 

phenomenon to the deposition of electrode material onto the diamond surface during 

RIE.  

 

Formation of columnar structures on diamond films has attracted attention for potential 

application as field effect emitters [243, 244], as well as micro-probes for biological 

applications [278]. The formation of columnar structures has been utilised in many 

publications with the use of a coating or resist layer and a subsequent RIE process [271, 

272, 275, 278, 280]. To date there are no reports on the dependence of columnar 

structures on the different crystallographic planes of diamond films.  

 

The present study presents the results of reactive ion etching carried out on (100) highly 

oriented and azimuthally disordered CVD diamond films on silicon using oxygen RIE. 

The effects of reactive ion etching process parameters, such applied pressure, RF power 

and gas flow rate have been investigated with respect to the formation of columnar 

structures. The use of both types of diamond films enabled the effect of grain 

boundaries areas on columnar structure formation to be examined. Finally isolated 

cubo-octahedral CVD diamond crystallites have been etched under different RIE 

oxygen conditions and the results have been correlated with those of the CVD diamond 

films. 
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5.2 Patterning of diamond 

 

A crucial processing step in the fabrication and realisation of micro- and nano- 

electronic devices is a reproducible and controllable etching procedure. As diamond 

offers remarkable chemical inertness and hardness properties, the removal of surface 

layers in a smooth and damage free manner is difficult by conventional wet etching 

techniques. At normal temperatures diamond is chemically inert against acids and 

solvents, although it reacts with oxygen at temperatures above ~ 600
o
C [240]. Under 

such high temperatures and chemically aggressive environments finding a material 

appropriate for masking purposes to control the etching/patterning process is a problem.  

 

Selective deposition [241-244] and replication [245] has also been applied to CVD 

diamond film technology for the realisation of diamond devices. Several simple 

diamond MEMS microstructures have been realised using these techniques such as 

microlever beams, bridges [242], laser to fibre alignment [245], micro-motors [246] and 

microtips for field emission [243, 244]. Despite the promising published results both 

selective deposition and replication techniques present some disadvantages, as low 

growth nucleation density of the selective deposited film. Etching and patterning of 

diamond has also been demonstrated using laser processing [247, 248]. 

 

The limitations of the above mentioned techniques have encouraged the investigation of 

several dry etching processes for patterning of diamond surfaces. Plasma etching, ion 

beam etching, reactive ion etching and reaction ion beam etching fall into the family of 

dry etching processes. These techniques have been developed and applied for fine 

patterning in ULSI and photonic devices. The fabrication of micro-electromechanical 

parts (MEMs) has also been demonstrated by these techniques. Processes such as ion 

beam etching, reactive ion etching and electron cyclotron resonance etching have all 

been explored and produce uniformly etched structures in diamond. Several prototype 

diamond devices have been fabricated by dry etching. To date there are published 

reports on the development of diamond cold cathodes [249], field effect transistors 

[250, 251], MEMs [252], optical diffractive elements [253], piezoresistive pressure 

sensors [254], in-plane-gated field effect transistors [255], diamond microlenses 

structures [256] and X-ray lenses [257]. 
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5.3 Dry etching patterning 

 

The directionality of an etching process is defined by three typical etching profiles: 

isotropic, partially anisotropic and completely anisotropic, as shown in Figure 5.1. In 

case of isotropic etching the horizontal and vertical etch rates of the material are 

comparable and lead to the under-etching of the mask material as depicted in Figure 5.1 

a). Anisotropic etching is characterised by high vertical etch rate in comparison with the 

horizontal etch rate of the material, leading to high aspect ratio etch patterns as shown in 

case of completely anisotropic etching in Figure 5.1 c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Schematic representation of the different etch profiles define the dry 

etching process technology, a) isotropic, b) anisotropic and c) completely 

anisotropic etching. 

 

Dry or plasma etching technology generally provides highly anisotropic etching, 

through two general mechanisms associated with the process a) physical sputtering and 

b) chemical reactions. Figure 5.2 shows schematically that dry etching can be 

categorised as a) physical sputtering, b) chemical etching and c) ion-enhanced etching 

[258].  
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Figure 5.2 Schematic representation of the mechanisms occurring during plasma 

etching. 

During physical sputtering; ions are accelerated as they cross the plasma sheath above 

the substrate electrode and they transfer large amounts of energy and momentum as they 

bombard on the substrate surface. This causes the removal of the substrate material. The 

high energies of the ions involved in sputtering can significantly damage the substrate 

material, produce a rough and uneven surface, and yield low etch rates and selectivity.  

 

Chemical etching during dry etching proceeds in the following steps i) the production of 

reactants in the plasma ii) the transport of the reactants to the substrate surface and iii) 

the adsorption of the reactants on the substrate surface. The necessary chemical 

reactions take place on the substrate surface which results in the desorption of volatile 

etch products from the substrate surface. The removal rate of the substrate material is 

associated with little or no physical sputtering. Therefore the removal rate tends to be 

equal in the vertical and lateral direction on the substrate material. This causes the 

significant undercut of the masking material and therefore limits the transfer of fine 

features on the substrate material. As there is no ion bombardment, the plasma induced 
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damage is low and, depending on the volatile etch products formation, it can produce 

high selectivity.  

 

During ion-enhanced etching both physical sputtering and chemical etching are present. 

The ions accelerated across the plasma sheath perpendicular to the surface of the 

substrate, produce a higher vertical material removal. As ion bombardment provides 

energy/momentum transfer to the substrate surface it improves the desorption rate of 

volatile etch products formed via chemical etching of the substrate surface.  

 

A sidewall etching inhibiting mechanisms involve the addition of polymer forming gas 

precursor in the plasma chemistry in order to initiate the formation of a thin film on the 

sidewalls of the etched pattern. Highly anisotropic etch profiles can be achieved with 

polymer formation on the sidewalls of the etch patterns, as it acts as an etch barrier 

preventing lateral etching [258].  

5.4  Reactive ion etching of diamond 

 

Reactive ion etching uses low pressures > 10 mTorr, where the mean free path of ions is 

small and therefore generates low density plasmas.  

 

The first report of reactive ion etching of diamond dates back to 1989 by Sandhu, et al. 

[204], where a low etch rate of 350 A/min was measured for natural single crystal 

diamond using 0.4 keV oxygen ions (200 W, 80sccm, 65mTorr) in a parallel plate RIE 

system. Etch rates of amorphous carbon films were twice as large compared to 

diamond.  

 

Reactive ion etching of diamond has been demonstrated using hydrogen, oxygen, argon, 

fluorine and their compounds [31, 204, 207, 214, 260-268, 270-273]. Most of the 

published experiments have been conducted using pure oxygen plasmas with etching 

rate ranges of 10 – 100 nm/min for single crystals and polycrystalline CVD diamond 

films. It would be expected that oxygen would preferentially attack non-diamond carbon 

phases on the diamond films, and references to preferential etching along grain 

boundaries, crystal imperfections and sp
2
 carbon phases have been reported [23, 263].  

 

Etching of diamond with a pure oxygen plasma is attributed to the formation of excited 

O* and O2* radicals by energetic electrons accelerated by the RF field of RIE system. 
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Upon interaction of radicals with the carbon atoms of the diamond surface etching 

proceeds by the formation of volatile products such as CO and CO2. Mass spectroscopic 

studies during the RIE of diamond films show the presence of proportionally more CO2
+
 

in comparison with CO
+
 species [266]. This phenomenon has been attributed to the 

formation of CO2 by the products of the etching process rather than due to etching of 

the diamond surface. The etching/oxidation mechanism of amorphous carbon and 

hydrogen terminated diamond films proceeds by hydrogen abstraction and oxygen 

addition [266]: 

 

C + O → C
*
 + OH (g) 

C
*
 + O →CO(s), CO(g), CO2(g) 

 

During the reactive ion etching process chemical etching cannot be treated in isolation, 

as despite the low concentration of ions in the plasma, a contribution via physical 

sputtering is vital for the removal of carbon atoms from the diamond surface. The 

addition of argon and fluorine containing precursors in the oxygen plasma has shown a 

dramatic increase of the etch rate of diamond films and crystals [31, 214]. Fluorine 

containing gases when added to an oxygen plasma increase the formation of atomic 

oxygen and therefore the increase of diamond etch rate. The same observations have 

also been verified for ion beam etching, where enhancement of the etch rate is achieved 

using oxygen as a carrier gas [29].  

 

The use of oxygen plasma for the RIE of diamond limits the use of photoresist as a 

masking material for surface fine patterning. Photoresist is the most common masking 

material used for the fabrication of ICs. Since the selectivity
2 

 between the two materials 

is very low the application of organic resists is limited. The choice of masking material 

for diamond RIE etching is not straightforward. The criteria for the selection of masking 

material is based on selectivity ratios between the two materials, good adhesion of the 

masking material with the diamond surface and the suitability of the masking material 

to be patterned by conventional fabrication techniques (e.g. photolithography).  

 

 

                                                           
2
 Selectivity or selectivity ratio in IC technology is defined as the ratio of the etch rate of the material to 

be etched to the etch rate of the masking material. The selectivity ratio controls the masking layers 
thickness and the resolution of the transferred etched pattern.  
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Several metals such as aluminium (Al) [272], tungsten (W), titanium (Ti) [260,261] 

nickel (Ni) and nickel-titanium (Ni-T) [262, 263] have been utilised as masking layers 

for the reactive ion etching of diamond. In addition, there are several studies of SiO2 as 

a masking material for planarization processes [270]. All of the above mentioned 

materials provide good selectivity ratios for the RIE of diamond.  

 

Diamond surfaces etched by RIE show a dramatic increase of surface roughness. 

Oxygen reactive ion etching of polycrystalline CVD diamond films occurs via 

preferential etching along grain boundaries. Oxygen will attack non-diamond forms of 

carbon such as sp
2
 graphitic phases faster than the diamond phase. Since grain 

boundaries have a high areal density of sp
2
 carbon porous diamond surfaces with 

rounded nodules and columnar structures have been observed under specific oxygen 

RIE process conditions [265]. Formation of columnar structures
3
 has been observed 

along the polycrystalline facets of CVD films with no preferential orientation along the 

grain boundaries.  

 

The formation of columnar structures on diamond surfaces upon oxygen RIE has been 

attributed to sputtered material from the electrode of the system, which has 

subsequently been deposited on the diamond surface. The presence of aluminium and 

silicon on the diamond etch surface [31, 264, 271, 272, 274, 275] has been reported 

after the oxygen RIE process. The etch rate of those materials is much lower than that of 

diamond and upon interaction with oxygen would form their corresponding oxides. 

Metallic containing impurities, possibly as oxides, deposited on diamond surface would 

act as micromasks during the etching process and, consequently, cause the formation of 

columnar structures. Also the formation of microchannels has been reported during 

oxygen RIE on diamond surface, which causes the darker coloured appearance of the 

films after RIE [23]. The formation of columnar structures on diamond CVD films has 

been extensively studied in hydrogen plasmas under a negative bias on the substrate 

holder [273, 274].  

 

 

 

                                                           
3
 Columnar structures formed on diamond surfaces due to RIE process have been referred in some 

published work as whiskers and spikes or nano-rods. In these studies only the term columnar structures 
will be used in order to avoid confusion.  
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Smooth diamond surfaces have been obtained by adding fluorine containing precursors 

such as CF4 and SF6, to an oxygen plasma [31, 263]. The addition of fluorine to the 

plasma mixture suppresses the formation of columnar structures on diamond surfaces 

[31, 275]. As fluorine containing precursors are commonly applied to etch silicon, 

aluminium and their oxides the micromasking effect is diminished under those etching 

conditions.  

 

The published reports on the RIE of diamond films and crystals have been carried out 

using commercially available parallel plate RF systems  as well as on MPCVD systems 

[22, 214, 207, 265] capable of isolated application of negative or positive bias of the 

sample substrate.  

 

Ion damage of diamond needs to be addressed as it is known that the bombardment of 

diamond with inert ions leads to a surface rich in sp
2
 bonding. This is due to the 

metastable nature of diamond; if adequate energy is supplied to the diamond, a sp
3
 to 

sp
2
 transition can occur with bond fission and displacement of carbon atoms. In 

addition, one must be concerned with a significant build up of etchant atoms in a 

reactive ion process, as this may have adverse effects on the surface properties of the 

material. 

5.5 Reactive ion etching process 

 

RIE systems can be considered as an electrical circuit and as a chemical reactor 

operating interactively. Typically the plasma used for the reactive ion etching process is 

produced and sustained between two electrodes, where one electrode is capacitively 

coupled to a high frequency (e.g. radio frequency RF of 13.56 MHz) power supply via 

an impedance matching network while the other electrode is grounded. The samples are 

placed on the powered electrode. Figure 5.3 shows the schematic diagram of a typical 

reactive ion etching system. 

 

The cathode, the powered electrode, is considerably smaller in surface area than the 

anode, the grounded electrode. Since the chamber walls are also grounded the ratio 

between the anode and cathode surface areas in this system is quite high. During 

operation of the plasma a negative dc bias voltage develops between the cathode and the 

plasma. The negative dc bias voltage is typically equal to one half of the RF voltage 

peak. This will cause the acceleration of the positive ions, whose energies depend on the 
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Powered 

electrode 

 

Plasma 

Pumping system 

Sample 

13.56  
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magnitude of the bias voltage, across the plasma sheath in a direction perpendicular to 

the cathode. The induced bias will lead to the preferential positive ion bombardment of 

the cathode with minimal sputtering of the anode [344]. The typical pressure regime of 

reactive ion etching ranges from few mTorr to ca. 200 mTorr [258].  

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Schematic representation of reactive ion etching system.  

 

5.6 Experimental 

5.6.1 Diamond Samples 

 

Etching studies presented in the work were conducted on (100) highly oriented and 

azimuthally disordered diamond films deposited on silicon substrate by MPCVD. The 

growth conditions of the films were presented in Chapter 3. The thickness of the 

diamond films were ~ 10 m.  

 

For comparison boron-doped (100) highly oriented and azimuthally disordered MPCVD 

diamond films have also been used. Doping was performed by ion-implantation (EMF, 

University of Edinburgh). The diamond film was subject to a flux of 5 x 10
15

 atoms cm
-

2 
and an implantation energy of 50 keV. After ion-implantation the sample was 

subjected to annealing at 980
o
C (sample temperature) in Ar (BOC 99.998 %) and 80 

torr pressure for 2 hours.  

 

The two types of (100) polycrystalline diamond films, intrinsic and boron-doped, were 

cut into square(~ 10 x 10 mm
2
) samples and subject to solvent cleaning procedure prior 

to any analysis and etching treatments. 
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5.6.2 Reactive ion etching system 

 

The RIE studies of CVD diamond films have been carried out in a capacitively coupled 

13.56 MHz plasma reactor (PlasmaLab 80, Oxford Instruments Ltd). The plasma 

system comprises a vacuum chamber, shown in Figure 5.4, with a base pressure 

maintained by a Roots pump (Edwards Ltd) at a pressure of < 3mTorr. The desired 

process parameters such as: RF power, gas flow rate, chamber pressure, gas selection 

channel and process time can be set up prior any treatment and altered during the course 

of the experiment. The system automatically evacuates the plasma chamber twice at the 

end of any treatment, prior to reaching atmospheric pressure for access to the samples.  

 

The diamond samples have been placed on the self-biased 20 cm diameter water-cooled 

electrode, located on the bottom of the vacuum chamber. The range of etching 

conditions used for this study is presented in Table 5-1. Most of the RIE treatments 

were applied for 60 min, otherwise the time duration is stated.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Parallel plate capacitively coupled plasma system used for the reactive 

ion etching of CVD diamond films. 

Prior to any etching experiments oxygen plasma treatment was applied to an empty 

chamber in order to eliminate possible contamination from previous experiments.  
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Process parameters  

Sample (100) polycrystalline CVD diamond 

Gas O2 (99.999%) 

Gas flow rate 20 – 80 sccm 

Gas pressure 20 – 100 mTorr 

RF power 50 – 250 W 

Time duration 60 min or otherwise stated 

Electrode temperature   14
o
C 

 

Table 5-1 Experimental conditions used for RIE studies of CVD diamond films. 

5.6.3 Optical profilometry  

 

Half of the surface area of the diamond films was covered with a silica mask prior to the 

RIE treatment. The etch steps formed on the diamond films' surface allowed the 

evaluation of the etch rates under different process conditions. The depth of the etched 

steps on the diamond films surface was measured by employing a 3-D optical profiler 

(Zygo. Ltd) and Dektak stylus profiler. Several optical topographies were acquired from 

the surface of the RIE treated diamond films in order to examine the uniformity of the 

etching process over the entire surface areas of the films. The etch rates presented in 

these studies are the average value of twenty individual measurements taken from the 

whole etched film surface. Error bars are one standard deviation of the mean value. 

 

The etch rates of (100) highly oriented CVD diamond films have been determined as a 

function of O2 applied pressure, O2 gas flow rate and RF power at a constant power and 

substrate temperature.  

 

Effect of O2 applied pressure 

 

The effect of applied O2 pressure on the etch rate of diamond films has been examined 

for both the intrinsic and boron-doped CVD films. The oxygen pressure range examined 

was from 20 mTorr to 100 mTorr, and for all the experiments the RF power was kept 

constant at 200 W and the oxygen gas flow rate at 20 sccm. The RIE process was 

applied for the duration of 60 min for each experiment. Figure 5.5 Shows the effect of 
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the applied O2 pressure on the etch rate of intrinsic and boron-doped (100) highly 

oriented CVD diamond films.  

 

Increasing the O2 pressure decreased the etch rate for both intrinsic and boron-doped 

(100) highly oriented CVD diamond films. As can be seen from Figure 5.5, the 

measured etch rates for both types of CVD diamond films decreased linearly with the 

increase of the pressure. The presence of boron dopants within the diamond films did 

not affect the etch rates under the present RIE conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Measured etch rates of intrinsic and boron-doped (100) highly oriented 

CVD diamond films with O2 applied pressure at constant RF power of 200W and 

oxygen gas flow rate of 20 sccm. 

The present results are in agreement with the previous work on etching of diamond 

crystals and films [25, 28, 267], where diamond films, etch rate decreases with the 

increase of the applied pressure.  

 

When the pressure applied to a reactive ion etching process is reduced, the ionisation of 

the gas increases and there is a concomitant increase in the ion density of the plasma. 

Taking account of the present results we can assume that ionic species in the oxygen 

plasma, such as O
+
 and O2

+
, have a very important role in the etching of the diamond 

films.  
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The negative bias on the powered electrode is increased at low pressures and likewise 

the ion flux bombarding the diamonds film surface. The recombination rate in the 

plasma is low at low pressures therefore the energetic ions which accelerate towards the 

diamond film surface undergo very few collisions and impinge the diamonds surface 

nearly perpendicular leading to high etch rates.  

 

As the pressure increases the ionisation of the gas source decreases. As a consequence 

the concentration of ions is reduced in the plasma. The collision rate in the plasma 

increases at higher pressures and therefore the number of accelerated ions which 

bombard the diamond surface with sufficient energy for material removal is reduced. 

 

Effect of O2 gas flow rate 

 

In order to investigate the effect of oxygen gas flow rate on the etch rate of diamond 

films, the reactive ion etching process took place under constant RF power of 200 W 

and applied pressure of 60 mTorr. The range of gas flow rates examined was from 20 to 

80 sccm. Studies were conducted only on intrinsic (100) highly oriented CVD diamond 

films.The measured etch rates as a function of the oxygen gas flow rate are shown in 

Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Etch rate of intrinsic (100) highly oriented CVD diamond films with O2 

gas flow rate at constant RF power of 200 W and a pressure of 60 mTorr. 
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The etch rate of CVD diamond films remained constant up to 30 sccm of oxygen gas 

flow rate. It can be seen from Figure 5.6 that the further increase of the oxygen gas flow 

rate decreases the etch rate, in an approximately linear manner. A plateau of the 

measured etch rate has been observed between 60 and 70 sccm of oxygen gas flow 

rates. Increasing the gas flow rate beyond 80 sccm resulted in a further decrease of the 

diamond etch rates.  

 

The diamond etch rate is dependent on the oxygen gas flow rate as can be seen from the 

present results. The gas flow rate affects, via the residence time
4
 , the amount of reactant 

species present in the plasma. As the oxygen gas flow rate increases, the residence time 

of oxygen species in the plasma decreases. Hence the induced decline of the measured 

etch rates with the increase of the oxygen gas flow rates shows that the residence time is 

insufficient to provide the necessary amount of reactant species for the effective 

removal of material.  

 

Similar results have been obtained by Sirineni et al [23] on CVD diamond films. The 

etch rate of diamond films was enhanced up to 30 sccm of oxygen gas flow rate while at 

40 sccm and beyond of oxygen gas flow rate the etch rates decreased. However there 

are few reports [23] on the effect of oxygen gas flow rate on the etch rate and 

morphology of diamond films and crystals after RIE, Leech et al [265] observed the 

increase of measured etch rate on diamond films with an increase of the oxygen gas 

flow rate.. The discrepancy between the present results and previous studies [23, 263, 

277], has not been reconciled. It is reasonable to rationalise the effect of residence time, 

of oxygen reactant species in the plasma, on the etch rates of diamond CVD films.  

 

Effect of RF power 

 

The effect of applied RF power on the etch rate of intrinsic (100) highly oriented CVD 

diamond films was examined for a constant O2 applied pressure of 20 mTorr and O2 gas 

flow rate of 20 sccm. The duration of each RIE treatment was 60 min and the RF power 

range investigated was from 50 to 250 W.  

 

                                                           
4
 Residence time , is a characteristic parameter of the plasma system and is related to the volume and 

the pumping rate of the system as : = V / S   
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Figure 5.7 shows the measured etch rates values as a function of applied RF power. As 

the applied RF power increased between 50 and 150 W the etch rates of the CVD 

diamond films increased monotonically. A further increase of the RF power between 

150 and 250 W did not produce the same enhancement on the diamond etch rates. 

Above approximately 250 W the etch rates appear to saturate. The etch rate increased 

from 8nm/min to 23nm/min in average from 50W to 250W applied RF power. 

 

Previously published results reported an increase of etch rate with the applied RF power 

[23, 25, 28, 260, 263, 265, 277, 278]. As the applied oxygen gas pressure has been kept 

constant for the above mentioned experiments the enhancement of the RF power, 

induced the increase of dissociation and ionisation in the plasma. Under optimum 

conditions the etching process is accompanied by an enhancement of the oxygen radical 

(O*, O2*) concentration and more energetic ions therefore induce the increase of the 

diamond films etch rate.  

 

Figure 5.7 Etch rate of intrinsic (100) highly oriented CVD diamond films with 

applied RF power at constant oxygen pressure of 20 mTorr and 20 sccm gas flow 

rate.  
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5.6.4 Scanning electron microscopy 

 

The surface texture of the etched CVD diamond films have been evaluated by scanning 

electron microscopy. The surface of an intrinsic as-grown (100) highly oriented CVD 

diamond film is shown in Figure 5.8 a). The diamond film was then subjected to RIE 

process for 60 min at 200 W RF power, 20 mTorr applied oxygen pressure and 20 sccm 

gas flow rate. The etched diamond surface is shown in Figure 5.8 b). The RIE treated 

surface of the (100) highly oriented CVD diamond film has been etched preferentially 

compared to the grain boundaries. The different etch rates were sufficient to delineate 

the crystalline grains. Columnar structures, which have been reported previously [23, 

31, 214, 263, 271, 272, 278], were present on the etched surface of the CVD diamond 

film.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 SEM images from (100) highly oriented CVD diamond films a) prior to 

treatment and b) after 60 min of oxygen RIE at 200 W, 20 mTorr and 20 sccm. The SEM 

images show a perspective view of the diamond surface.  

 

Figure 5.9 shows that oxygen RIE treatment produce square „corrals‟ of columns 

surrounding the (100) crystallites. The columns produced by the oxygen RIE treatment, 

had a diameter of ~390 nm and a height of ~1.2 m under the specified conditions. 

 

 

 

 

 

 

 

b) a) 
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Figure 5.9 Top view of oxygen RIE treated (100) highly oriented CVD diamond 

film.  

The surface of azimuthally disordered (100) intrinsic CVD diamond film, treated under 

the same RIE process conditions, such 200 W of RF power, 20 mTorr applied oxygen 

pressure and 20 sccm gas flow rate, was found to exhibit higher density of columnar 

regions. Figure 5.10 a) shown the surface of as-grown azimuthally disordered (100) 

CVD diamond film, whilst Figure 5.10 b) shows the same diamond surface after oxygen 

RIE process for 60 min.  

 

 

 

 

 

 

 

 

 

Figure 5.10 SEM images of azimuthally disordered (100) CVD diamond film a) 

prior and b) after oxygen RIE treatment at 200W, 20mTorr and 20sccm for 60min. 

The higher density of columnar structures observed on azimuthally disordered (100) 

CVD diamond films have been correlated with the higher density of inter-granular area 

of those CVD diamond films, while the highly oriented (100) CVD diamond films 

exhibit a low inter-granular area, in comparison with the azimuthally disordered (100) 

CVD diamond films.  

a) b) 
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Similarly, preferential formation of columnar structures on the inter-granular area of 

boron-doped (100) polycrystalline diamond films has been observed after oxygen RIE 

at 200W, 20mTorr and 20sccm for 60min. Figure 5.11 shows the a) highly oriented and 

b) azimuthally disordered boron-doped (100) diamond films after RIE treatment. Based 

on these observations, the presence of boron-dopants on the (100) CVD diamond film, 

did not affect the etching process or the resulted surface morphology.  

 

 

 

 

 

 

 

 

 

 

Figure 5.11 SEM images of boron-doped a) highly oriented and b) azimuthally 

disordered (100) CVD diamond film after oxygen RIE, at 20mTorr, 200W and 

20sccm for 60 min. 

 

For higher oxygen pressures the columnar structures were present on the (100) diamond 

surfaces after 60 min of RIE treatment. Figure 5.12 shows the top and perspective view 

of (100) highly oriented CVD diamond films after oxygen RIE treatment for 60 min at 

constant RF power of 200W, 20 sccm gas flow rate and two applied oxygen pressures 

of 40 and 60 mTorr.  

 

As it can be seen from Figure 5.12 a-d) the columnar structures were not restricted only 

to the grain boundaries but they were present on the (100) diamond surfaces after the 

etching process.  

 

 

 

 

 

b) a) 
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Figure 5.12 SEM images of (100) highly oriented CVD diamond films after they 

have been subjected to oxygen RIE treatment for 60 min at 200W, 20sccm at a-b) 

40mTorr and c-d) 60mTorr.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 SEM images of the (100) highly oriented CVD diamond films subjected 

to oxygen RIE for 60min at 200W, 20sccm a) 80mTorr and b) 100mTorr. 

 

a) b) 

d) c) 

a) b) 
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For applied oxygen pressures above 80 mTorr to 100 mTorr the columnar structure 

formation has been suppressed and the formation of very fine structures have been 

observed on the (100) diamond surfaces. Figure 5.13 (a & b) shows the surface of (100) 

highly oriented CVD diamond films after 60 min of oxygen RIE treatment at 200W, 

20sccm 80mTorr and 100mTorr.  

 

Boron-doped (100) CVD diamond films have been subjected to oxygen RIE for the 

pressure range from 40mTorr to 100mTorr, for constant 200W and 20sccm for 60min. 

SEM analysis, on the boron-doped (100) diamond films, revealed exactly the same 

etching mechanism and columnar formation as on the intrinsic (100) diamond films. 

Results indicate that the presence of boron-doping on the CVD diamond films do not 

influence the etching process and does not affect the columnar structures formation.  

 

The effect of the applied RF power has been examined at a constant applied oxygen 

pressure of 20 mTorr and gas flow rate of 20 sccm. Figure 5.14 (a – d) shows the 

surface morphology of the (100) highly oriented CVD diamond films after etching 

within the applied RF power range from 50 to 150 W.  

 

The distribution of the columnar structures was unaffected by the applied RF power 

with only a sparse presence on the (100) planes. The measured etch rate of the diamond 

films as well as the column height have been found to increase with applied RF power. 

 

At a low RF power of 50W the structures adopt a pyramidal shape with sharp tips (~71 

nm) protruding from a ~275 nm structure. While at higher RF power, e.g. 150 W the 

structures adopt a symmetrical geometry as show in Figure 5.14 d). At higher RF 

powers ≥150W, the anisotropy of the oxygen RIE process increases and causes the 

formation of symmetrical column structures.  

 

Formation of columnar structures on diamond surface, induced by reactive ion etching 

process, has been reported in previously [23, 31, 214, 263, 271, 272, 278]. The 

distribution of columnar structures has been found to be independent of the type of 

diamond plane, as a random distribution has been reported for single crystal [31, 214] 

and uncoated polycrystalline CVD diamond films [23, 262, 276].  
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Figure 5.14 SEM images of oxygen RIE treated (100) highly oriented CVD 

diamond films for 60min at 20mTorr, 20sccm a) 50W, b) 100W c) & d) 150W 

applied RF power. 

The studies of Dorch et al [275] show the change of columnar structures on applied 

oxygen pressure or RF power, while, Sirineni et al [23], found that columnar formation 

could be suppressed by using optimised RIE process conditions but Li et al [271], 

observed a random distribution of columnar structures.  

 

In the present studies the distribution of columnar structure formation was found to be 

dependent on the oxygen pressure. At low pressures, of 20 mTorr, the formation of 

diamond columns was not uniform across the whole diamond surface. The distribution 

of columnar structures was restricted on the inter-granular area between the (100) 

diamond crystallites. The surface area of the etched (100) diamond crystallites appeared 

to be smooth after the RIE process.  

 

 

a) b) 

c) d) 
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As the applied oxygen pressure increased the columnar structures were distributed along 

the surface of the diamond films, with preferential formation along the grain boundaries. 

The height of the columnar structures was found to depend on the applied oxygen 

pressure and follow exactly the same trend as the etch rate of the diamond films. 

Etching has been found to be more resistant at the grain boundaries of the CVD 

diamond crystallites.  

 

In order to examine the influence of the crystallographic plane on the formation of 

diamond columns, isolated cubo-octahedral CVD crystallites bounded by {100} and 

{111} diamond have been subjected to oxygen RIE treatment at low applied oxygen 

pressure regime.  

 

One of the as-grown single and isolated CVD cubo-octahedral diamond crystallites is 

shown in Figure 5.15 a). It had been subjected to oxygen RIE treatment for 60 min, at 

200 W, 40 mTorr and 20 sccm and Figure 5.15 b) shows the etched diamond crystallite.  

 

As seen from Figure 5.15 a) & b) the {100} planes of the cubo-octahedral diamond 

crystallite have been etched and formed smooth surfaces, while the {111} planes sho 

surface roughening and the formation of columnar structures.  

 

Figure 5.16 shows azimuthally disordered cubo-octahedral CVD diamond crystallites at 

the periphery of the diamond film that have been subjected to oxygen RIE at 100 W, 20 

mTorr and 20 sccm for 60 min. It can be seen from the SEM image that, despite the 

different orientation of the {100} diamond planes with respect to the underlying silicon 

substrate, all the {100} planes have been etched uniformly and smooth surfaces have 

been produced.  

 

In contrast, the {111} planes of the cubo-octahedral CVD diamond crystallites were 

covered with fine columnar structures. The present observation of the cubo-octahedral 

CVD diamond crystallites correlated with the observations made on the (100) highly 

oriented and azimuthally disordered CVD diamond films. During oxygen RIE the (100) 

diamond planes etched smoothly while the formation of columnar structures is 

favourable at the grain boundaries where {111} diamond surfaces exist.  
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Figure 5.15 SEM images of a) an as-grown cubo-octahedral CVD diamond 

crystallite and b) after it has been subjected to oxygen RIE for 60min at 200W, 

40mTorr and 20sccm. 
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Figure 5.16 SEM of oxygen RIE treated CVD diamond crystallites for 60 min at 

100 W, 20 mTorr and 20 sccm. 

 

5.6.5 Atomic Force Microscopy 

 

The effect of the oxygen RIE treatment was examined by contact mode AFM on the 

surface of (100) highly oriented intrinsic CVD diamond films. The same area on as-

grown (100) highly oriented CVD diamond film was examined before and after each 

subsequent oxygen RIE treatment. The oxygen RIE conditions used for this set of 

experiments were 100 W RF power, 35 mTorr pressure and 50 ccm gas flow rate. The 

duration of the treatments was 3 min, 12 min, 15 min and 15 min (45 min total) of 

oxygen RIE. Figure 5.17 shows AFM topographies from the same area on the (100) 

highly oriented CVD diamond film acquired a) on the as-grown diamond surface b), c) 

and d) after 3 min, 15 min and 45 min of oxygen RIE treatment respectively.  

No apparent surface morphological changes were observed within the AFM resolution 

for up to a total of 30 min duration of RIE treatment on the diamond crystallites. 

Apparently under the present RIE conditions the etch rates are low and the treatment 

duration was not adequate for morphological changes. Small circular particles appeared 

on the surface of diamond crystallites after the initial 3 min of RIE treatment.  
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Figure 5.17 Plan AFM topographies of the same area of (100) highly oriented CVD 

diamond film, a) as-grown and after oxygen RIE treatments at 100W, 35mTorr 

and 50sccm for b) 3 min, c) 15 min and d) 45 min.  

 

It is believed that they are contamination originating from sample handling during 

analysis in between the treatments, although subsequent RIE treatments did not remove 

them from the diamond surfaces.  

 

a) b) 

c) d) 
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Interestingly deposition of material was observed during the last 15 minutes of oxygen 

RIE treatment, Figure 5.17 d). The material was deposited during the RIE treatment and 

it was distributed uniformly on the diamond crystallites surface. Figure 5.18 shows the 

AFM topography from the oxygen RIE treated diamond surface after 45min of 

treatment. The deposited material on the diamond surface was found to exhibit 

columnar structures with great uniformity and coherence along the grain boundaries of 

the diamond crystallites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Perspective AFM topography of (100) highly oriented CVD diamond 

film, O2 RIE treated for 45 min in total at 100 W RF power, 35 mTorr applied 

pressure and 50 sccm gas flow rate.  

Surface roughness was evaluated from averaging over 10 different diamond crystallites 

on the diamond films. 2D-3 point levelling had been applied to the area under 

measurement to eliminate errors introduced due to the tilt of the diamond crystallites. 

The surface roughness was measured for all the subsequent oxygen RIE treatments. As 

shown in Figure 5.19. the average surface roughness, Ra, was found to increase slightly 

after the initial oxygen RIE treatment and remained constant up to 30 min of treatment. 

Surface roughness rapidly increased after 45 min of oxygen RIE as it had been 

accompanied by the deposition of material.  
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The effect of the oxygen pressure on the surface roughness of the (100) highly oriented 

CVD diamond films was examined by AFM. The diamond films had been subjected to 

oxygen RIE for the duration of 60 min at 200 W RF power and 20 sccm oxygen gas 

flow for the range of 40-100 mTorr applied oxygen pressure. Applying the same AFM 

analysis, described above, the surface roughness as measured by AFM decreased 

monotonically with the applied oxygen pressure as shown in Figure 5.20. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Surface roughness of (100) highly oriented CVD diamond films with 

etching time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Surface roughness of oxygen RIE treated (100) highly oriented CVD 

diamond films as a function of applied pressure. 



Chapter 5: Reactive ion etching of CVD diamond  

 

155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 AFM topographies of (100) highly oriented CVD diamond films 

treated for 60 min oxygen RIE at 200 W and 20 sccm, a) 40 mTorr, b) 60 mTorr, c) 

80 mTorr and d) 100 mTorr. 

Figures 5.21 a) to d) show AFM topographies from a) 40 mTorr, b) 60 mTorr,c) 80 

mTorr and d) 100 mTorr applied oxygen pressure. All (100) highly oriented CVD 

diamond films exhibit strong surface roughening and formation of columnar structures. 

The distribution of columnar structures, for applied oxygen pressure of 40mTorr and 

60mTorr, was pronounced along the grain boundaries. As applied oxygen pressure 

increased to 80mTorr and above the formation of columnar structures was on the (100) 

diamond facets as well as on the inter-granular areas surround them. The decrease of the 

measured surface roughness values with applied oxygen pressure is attributed to the 

decrease in the columnar structures height, with applied oxygen pressure.  

There are no reports in the literature on the surface roughness depending on applied 

oxygen pressure,  although, Ando et al [31] and Leech et al [263], reported the increase 

of the surface roughness of single crystal diamond upon exposure to oxygen RIE 

treatment. They also saw the formation of columnar structures on the diamond surface 

after RIE.  

c) 

b) a) 

d 
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5.6.6 X-Ray photoelectron spectroscopy 

 

The wide survey XPS data for a (100) highly oriented CVD diamond film subjected to 

oxygen RIE treatment (250 W, 20 mTorr, 20 sccm for 60 min) was compared to an „as-

grown‟ and hydrogen plasma treated (100) highly oriented CVD films, as shown in 

Figure 5.22. The peaks observed on the XP spectra are denoted on the Figure 5.22 c). 

 

Figure 5.22 Wide scan XP spectra from (a) as-grown, (b) hydrogen–plasma treated 

(20 hr) and (c) oxygen RIE plasma treated (60 min) (100) highly oriented CVD 

diamond films.  
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The C 1s peak is observed at 284.7 eV for all the diamond samples under investigation. 

The O 1s peak observed at 532 eV for all samples and its intensity was observed to vary 

with the surface treatment. The silicon Si 2s and Si 2p peaks were observed at 152 eV 

and 102 eV respectively for the as-grown and oxygen RIE treated diamond films. The 

intensity of both silicon peaks was found to be higher for the oxygen RIE treated in 

comparison with the as-grown diamond films.  

 

The present XPS data of the oxygen RIE treated diamond film demonstrated the 

presence of fluorine F 1s peak at 690 eV and its Auger transition at ~  830 eV, sodium 

Na 1s peak at 500 eV and its Auger transition at ~ 1070 eV and calcium Ca 1s peak at 

350 eV. The surface of the oxygen RIE treated diamond films was found to be 

contaminated with those elements which originated from the RIE treatment. Similar 

surface contamination was observed by XPS analysis on oxygen RIE treated single 

crystal diamond by Ando et al [31] and Dorch et al [275]. 

 

For a (100) highly oriented CVD diamond sample treated with oxygen RIE at 100W, 

50mTorr and 50sccm for 60min, the wide scan spectra (not shown) identified the 

presence of carbon C 1s and oxygen O 1s peaks and the silicon Si 2s and Si 2p peaks. 

No other source of contamination was found to be present on the oxygen RIE treated 

diamond sample. 

 

High resolution XP spectra comprising carbon C 1s, oxygen O 1s, silicon Si 2p were 

collected from the oxygen RIE treated sample at 100W, 50mTorr and 50sccm for 60 

min.  

 

Figure 5.23 compares the high resolution carbon C 1s peak from a hydrogen plasma 

treated (20 hrs) diamond sample with that of oxygen RIE treated (100 W, 50 mTorr and 

50 sccm for 60 min) diamond film.  
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Figure 5.23 High resolution C 1s XP spectra of a hydrogen plasma (20 hrs) and 

oxygen RIE (100 W, 50 mTorr and 50 sccm for 60 min) treated (100) highly 

oriented CVD diamond films.  

 

As shown in Figure 5.23 the intensity of the carbon C 1s peak was greatly reduced for 

the oxygen RIE treated in comparison with that of the hydrogen plasma treated diamond 

film. This has been observed for all the oxygen RIE treated diamond films investigated 

by XPS. The reason why there is such a big difference between the intensity of the two 

peaks is not completely understood. The two carbon C 1s peaks exhibited a pronounced 

shape difference. The plot has been magnified and presented in the insert to highlight 

the shape difference between the two carbon C 1s peaks. For the hydrogen plasma 

treated diamond film the carbon C 1s peak exhibit a symmetric shape, while the carbon 

C 1s peak for the oxygen RIE treated diamond film displays an asymmetric shape, with 

a tail on both low and high binding energy regions due to the presence of graphitic and 

oxygen terminated surfaces. 

 

 

 

 



Chapter 5: Reactive ion etching of CVD diamond  

 

159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 High resolution O 1s XP spectra of a hydrogen plasma (20 hrs) treated 

and oxygen RIE (100 W, 50 mTorr, 50 sccm for 60 min) treated (100) highly 

oriented CVD diamond films. 

The high resolution XP spectra of the oxygen O 1s peak of the oxygen RIE treated (100 

W, 50 mTorr, 50 sccm for 60 min) and hydrogen plasma (20 hrs) treated diamond films 

are compared in Figure 5.24. The shape of the two oxygen O 1s peaks was observed to 

be similar. The intensity of oxygen O 1s peak of the oxygen RIE treated diamond film 

was found to be higher as well as it was observed to be a much broader peak than that of 

the hydrogen plasma treated diamond film.  

 

Deconvolution of the carbon C 1s and oxygen O 1s peaks was carried out by fitting 

components of Gaussian-Lorentzian mix based on previously published data, as 

described previously in Chapter 4.  

 

 

 

 

 

O 1s 
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Figure 5.25 Deconvoluted high-resolution XP spectra from the C 1s binding energy 

peak arising from the oxygen RIE (100 W, 50 mTorr, 50 sccm for 60 min) treated 

CVD diamond film, showing raw data (black circles) component peaks (coloured 

lines) and the sum of the peaks (black line). Binding energies are referenced to the 

main (sp
3
) carbon peak at 284.7 eV. 

 

The C 1s peak of the oxygen RIE treated (100 W, 50 mTorr, 50 sccm for 60 min) 

diamond film has been deconvoluted into five peak components, as shown in Figure 

5.25 and listed in Table 5-2. Relative to the main sp
3
 component, the peak at -0.7 eV 

was attributed to graphitic sp
2
 carbon [228, 235] and exhibits the highest component 

peak area of the all the peak components. The peak assigned at +0.5 eV was attributed 

to the hydrocarbon (CHx) [202, 203], while the peaks at +2.1 eV and +3.7 eV were 

assigned to carbonyl (C=O) and carboxyl (O-C=O) groups respectively [228, 233, 235].  
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Sample Peak Assignment BE shift (relative to 

sp
3
 carbon peak) 

Peak FWHM 

/ eV 

Area/ % 

     

Oxygen RIE 

Treated  

Diamond (sp
3
) 0 (by definition) 0.5 18.2 

 Graphitic (sp
2
) -0.7 1.6 35.6 

 Hydrocarbon (CHx) +0.5 1.2 23.9 

 Carbonyl (C=O) +2.1 2.1 19.3 

 Carboxyl (O-C=O) +3.7 1.0 2.9 

Table 5-2 XPS C 1s peak components position, FWHM and integral area. 

 

There was no requirement to include a deconvolution peak component that could be 

assigned to ether (O-C-O) as observed in the as-grown diamond films. 

 

The best fit for the deconvolution of the oxygen O 1s peak was achieved by fitting three 

peak components, as shown in Figure 5.26 and listed in Table 5-3. The deconvoluted 

peak components could be assigned to ether (O-C-O), carbonyl (C=O) or carboxyl (O-

C=O) groups. Both peak components of the carbonyl and carboxyl groups show 

equivalent contents arising from the oxygen O 1s peak profile whilst the peak at 530.2 

eV assigned to the ether grouping show the lowest FWHM and percentage area of all 

the three peak components.  

 

Sample Peak Assignment BE shift (relative to sp
3
 

carbon peak) 

Peak FWHM 

/ eV 

Area/ % 

     

Oxygen RIE 

Treated  

Ether (O-C-O) 530.2 1.5 6.0 

 Carbonyl (C=O) 531.7 2.0 47.0 

 Carboxyl (O-C=O) 533.5 3.2 47.1 

Table 5-3 XPS O 1s peak components position, FWHM and integral area. 
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Figure 5.26 Deconvoluted high-resolution XP spectra from the O 1s binding energy 

band of oxygen RIE (100 W, 50 mTorr, 50 sccm for 60 min) treated (100) highly 

oriented CVD diamond film, showing raw data (black lines), component peaks 

(coloured lines) and the sum of the peaks (black lines). 

 

The Si 2p peak of the oxygen RIE treated diamond film was deconvoluted into two peak 

components, Figure 5.27. The main peak component was located at 101.7 eV while the 

second one was shifted by + 1.6 eV. Details of the components peak arising from the 

deconvolution of Si 2p are presented in Table 5-4. 

 

Both peak components exhibits binding energies which are between that of the Si 2p of 

SiO2 (104 eV) and that of SiC (100 eV). Similarly with the previous analysis on as-

grown diamond film, the peak at 101.7 eV could be assigned to silicon oxycarbide and 

the latter peak at 103.3 eV to non-stoichiometric silicon oxide SiO2 ( x<2) [237].  

 

The presence of silicon oxide on the diamond surface could possibly originate from the 

silica mask that was used for coating half the diamond surface area during the RIE 

treatments.  
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Sample Peak assignment BE eV Peak FWHM / eV Area / % 

O2 RIE treated SiO2 101.7 1.8 65.7 

 SiOx (x<2) 103.3 2.6 34.3 

Table 5-4 XPS Si 2p peak components position, full width at half maximum and 

integral area. 

 

Figure 5.27 Deconvoluted high-resolution XP spectra from the Si 2p binding 

energy region of oxygen RIE treated CVD diamond film on silicon. Raw data 

presented here as black circles, component peaks with coloured lines and the sum 

of the peaks with black line. 

 

XP spectra analysis, (Chapter 4.) on the surface of as-grown (100) highly oriented 

diamond films, shows the presence of oxygen carbon groups as ether and carbonyl. 

Exposure of diamond surfaces to hydrogen microwave plasma resulted in the removal 

of oxygen carbon groups. On the contrary, oxygen RIE treatment on (100) highly 

oriented diamond surface resulted higher oxidation state groups on the diamond surface. 

Single bonded oxygen has not been detected on the RIE treated diamond surfaces, while 
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carbonyl and carboxyl have been detected. However Vivensang et al [266] observed by 

XPS only C-O bonds on the oxygen RIE treated diamond surfaces.  

 

The present results demonstrate that the oxygen RIE treated diamond surface acquired 

an oxygen-terminated state. As etching of diamond surfaces proceeds by reaction of 

oxygen radicals leading to the formation of volatile products, the low etch rate as well 

as the low oxidation rate of diamond under present treatment conditions would allow 

the formation of oxygen-carbon groups on the diamond surface. The nature of reactive 

ion etching is complex, as both ions and radicals contribute to etching and to the surface 

chemistry. Therefore, any effect caused by radicals or ions cannot be treated in 

isolation. 

 

A relatively small amount of sp
2
 carbon was detected on the as-grown (100) diamond 

films and upon oxygen reactive ion etching the percentage of sp
2
 carbon was found to 

be enhanced. Graphitisation of diamond surface upon exposure to oxygen ions was 

found to take place for ion energies above 200 eV [259], while etching of single crystal 

diamond with a number of different oxygen ion-beam techniques demonstrates the 

graphitisation and the formation of amorphous carbon on the diamond surface [268]. 

The physical sputtering of reactive ion etching is considered responsible for the 

graphitisation of the diamond surfaces upon oxygen reactive ion etching.  

 

The presence of silicon oxides has been confirmed for all the oxygen RIE samples 

examined under XPS. The source of silicon can be attributed to the silica mask used 

under the present reactive ion etching studies. Silicon can be sputtered by energetic 

oxygen ions and deposit on the diamond surface during the reactive ion etching 

treatment. Subsequently, oxidation of the silicon would proceed during the etching 

process.  
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5.6.7 EDAX 

 

Energy dispersive X-ray analysis (EDX) measurements were used to determine the 

qualitative elemental distribution across the samples. The surface of the columnar 

structures as well as the area surrounded them was examined by EDAX.  

 

Figure 5.28 shows the elemental analysis acquired from the different locations on the 

oxygen RIE treated diamond films. EDAX spectra acquired from the top of the ridges 

defining the columnar growth show the presence of significant amount of silicon. The 

etched diamond surface surrounding the columnar structures showed the presence of 

insignificant amount of silicon. For both locations on the diamond sample, the presence 

of oxygen was detected whilst on the diamond area defining the columnar structure 

fluorine and calcium was also detected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28 EDAX spectra taken a) from the top of the columnar structures and b) 

from the underlying silicon substrate. 
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5.7 Discussion 

 

Under the process conditions examined on this project, oxygen reactive ion etching was 

accompanied with the formation of columnar structures on (100) CVD diamond films. 

The distribution of columnar structures was found to depend on the applied oxygen 

pressure. Random distribution of columnar structures was found for high applied 

oxygen pressure, while preferential formation was observed for lower applied oxygen 

pressures. Texture of the diamond films affected the distribution and density of 

columnar structures. It was observed that inter-granular area affect the density of 

columnar structures. Studies on isolated cubo-octahedrals CVD diamond crystallites 

show preferentially formation of columnar structures on {111} diamond facets, while 

the {100} diamond facets were etched producing a smooth surface. Boron doping did 

not affect the formation of columnar structures. The height of the columnar structures 

was found to follow the etch rate of the diamond film, therefore it can be postulated that 

columnar structures were formed at the beginning of the reactive ion etching treatment.  

 

Based on previous published work [31, 207, 214, 260, 261, 275, 279-281]] columnar 

structure formation on uncoated single crystal and polycrystalline diamond occurs 

randomly on the diamond surface. In the case of a diamond surface coated, with a layer 

of silicon oxide or aluminium, formation of columnar structures was found to be 

preferentially at the grain boundaries, with a much lower density on the diamond 

crystallites facets.  

 

For these studies the surfaces of the diamond films under investigation were uncoated 

and a silica mask was used for coating the other half of the sample surface. The 

presence of silicon oxide was confirmed by XPS and EDAX analysis, with preferential 

distribution on the columnar structures tip. Micro-masking is been considered as a 

possible mechanism for the formation of columnar structure upon oxygen RIE on 

diamond surfaces [23, 31, 204, 207, 210, 211, 214, 260- 263, 271-276, 278-281]. Ion 

bombardment by highly energetic oxygen ions can cause physical sputtering of the 

electrode or masking material, which could deposit on the diamond surface. The 

presence of a micro-masking material with a comparable or lower etch rate than 

diamond would protect the surface underneath and would lead to preferential etching.  

 

 



Chapter 5: Reactive ion etching of CVD diamond  

 

167 

Based on the present experimental evidence, reactions between the sputtered silicon and 

the diamond surface might lead to a protecting layer which is less susceptible to plasma 

etching than the underlying diamond.  As the height of the columnar structures formed 

followed the diamond etched depth, it can be assumed that sputtering of the masking 

material, i.e. silicon, would be uniform across the entire film surface and took place at 

the beginning of the etching process. According to present studies the reactivities of the 

sputter material is different on the diamond crystal planes. As grain boundaries were 

found to be more resistant to oxygen RIE than to the exposed crystal planes, it can be 

postulated that chemical reactivity of the sputtered material differs.  

 

5.8 Conclusions 

 

Etching of (100) CVD diamond films was achieved with oxygen reactive ion etching. 

The highest material removal rate was 23 nm min
-1

 at 250W, 20mTorr and 20sccm. 

Boron doping did not affect the etch rate or textured of the treated diamond films.  

 

Columnar structures have been formed under oxygen reactive ion etching on (100) 

highly oriented and azimuthally disordered CVD diamond films. The formation of 

columnar structures was found to predominate at the grain boundaries surrounding the 

(100) diamond crystallites due to impurity passivation. Grain boundaries and {111} 

diamond planes were found to be more resistant to oxygen reactive ion etching than 

{100} diamond facets and it was postulated that chemical reactivity of the sputtered 

material could differ between different diamond planes. 

 

The surface roughness increased dramatically after RIE treatment, and it was found to 

be related with the formation of columnar structures on the diamond surface.  

 

High resolution XPS analysis showed the induce graphitisation of the oxygen treated 

diamond surface and was attributed to oxygen-ion sputtering. The treated diamond 

surface was found to contain oxygen-carbon groups as carbonyl and carboxyl.  
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Chapter 6: Thermal oxidation of CVD diamond 

6.1 Introduction 

 

The work presented here is focused on the thermal oxidation of the low index planes of 

CVD cubo-octahedral diamond crystallites. The aim of these studies was to investigate 

the mechanism of thermal oxidation on the two most common {100} and {111} planes 

of CVD diamond as they were exposed simultaneously to thermal molecular oxygen. In 

this way we were able to examine the thermal oxidation on the individual crystal planes 

and on the individual CVD diamond cubo-octahedral crystallites. 

6.2 Oxidation 

 

There are numerous publications reporting on the oxidation of diamond [53, 54, 178, 

235, 282-310]. The topic has been the subject of research for a considerable time. Work 

on oxidation of diamond was first used as a tool for understanding the synthesis of 

natural diamond [287]. The distribution and occurrence of defects within natural 

diamonds has been studied by means of oxidation [287, 290, 308] as these defects 

create preferred reaction sites for oxidation at the crystal surface.  

The oxidation of diamond surfaces can be achieved by a number of different methods: 

chemical [287, 290, 308], electrochemical [51, 234,  299, 313], photochemical [50], 

plasma or atom beam [235, 294, 296] and thermal processes [18, 53, 178, 234, 235, 

285- 289, 291, 292, 294, 299, 301, 302] have demonstrated the richness of diamond 

oxidation chemistry.  

6.2.1  Chemical  

 

The chemical oxidation of diamond surfaces can be achieved with the use of very strong 

oxidising acids and radical-based chemistry. Molten potassium nitrate [287, 290, 293, 

312] and rare earth metals (e.g. cerium) [311-315] have been commonly applied to 

oxidise and etch diamond surfaces. Occurrence of etch pits on the low-index diamond 
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surfaces accompanies the oxidation with molten potassium nitrate [287, 288] and it has 

been suggested that etching proceeds by a step mechanism. Dislocations and surface 

defects on the diamond surface have been correlated with the formation of surface etch 

pits. To date, chemical etching is the best method for revealing defects ending on a 

diamond surface [290, 308]. 

Boiling solutions of HNO3/H2SO4 and H2SO4/H2O2 have been applied vigorously as 

post-treatment cleaning of diamond surfaces by the removal of graphitic phases and 

organic contamination. Surface post-treatment results in an oxidised diamond surface 

and recently AFM analysis demonstrated the roughening of {111} diamond surfaces 

upon treatment in boiling HNO3/H2SO4 solutions. Immersion in boiling solutions of 

H2SO4/H2O2 produced atomically smooth {111} diamond surfaces [303, 304] and a 

different reaction mechanism was proposed for the oxidation of diamond surfaces by the 

latter reagents. The removal of surface hydrogen termination had been demonstrated for 

the above methods and oxygen functional groups are believed to cover the diamond 

surfaces. However there is not enough data to identify the oxygen functional groups or 

the active species involved in the processes.  

In contrast, oxygen termination of diamond surfaces by means of radical-based 

reactions is more controlled and understood [313, 314-316]. The exposure of the 

diamond surface to gaseous chlorine, activated by UV light, is one of the most common 

approaches used. The dissociated Cl2 molecule reacts with the surface terminated 

hydrogen and removes it from the surface forming HCl, subsequently the surface 

diamond dangling bonds are terminated by Cl atoms. The resulting chlorinated diamond 

surface is unstable in a humid environment and oxygen is subsequently introduced into 

the diamond surface. 

6.2.2 Electrochemical 

 

The surface chemical properties of diamond electrodes have been reported to undergo 

changes upon polarisation treatments. Electrochemical polarisation treatments 

demonstrated the oxidation of diamond electrodes and the presence of oxygen 

functional groups such as hydroxyl and carbonyl groups [234, 317]. Although the 
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oxidation of boron-doped diamond electrodes has attracted great interest the mechanism 

of the electrochemical oxidation of diamond surfaces is not fully understood to date. 

6.2.3 Plasma 

 

Oxygen plasma-based treatments have been used for the patterning of the diamond 

surfaces. Modification of the diamond surface termination upon plasma treatments has 

been demonstrated [234, 266, 318, 319]. As discussed in the previous chapter, plasma 

exposure leading to chemical etching cannot be investigated in isolation as the physical 

processes of ion bombardment and sputtering take place in parallel. Due to the number 

of reactions involved in plasma processes and the different plasma systems reported in 

the literature, the mechanism of the oxidation of diamond surfaces requires further 

investigation. 

6.2.4 Thermal  

 

Thermal oxidation of natural and single crystal CVD diamond has been conducted on 

well defined crystallographic surfaces [53, 282-289, 295, 297-299, 320, ]. Either static 

or flow vacuum systems have been employed for those investigations. The diamond 

sample can be heated in either oxygen or in air at sub- and atmospheric pressures which 

leads to the formation of CO/CO2 and an oxygenated diamond surface.  

Surface morphological changes observed on natural diamond planes triggered the work 

on the thermal oxidation of diamond. Triangular depressions commonly appeared on the 

{111} surfaces of natural diamond samples were the subject of a long dispute. Their 

origin was originally thought to be due to a growth process whilst the work of Frank, 

Puttick and Wilks proved that they are etch pits formed on the crystal surface [287]. 

Similarly, square-shape etch pits have been observed on the oxidised single crystal 

{100} diamond surfaces [284, 287].  

The sides of the etch pits on diamond have been observed to be bounded by steps. The 

relative velocity of those steps was found to be responsible for rotation of the etch pits 

sides with temperature [284, 286]. Etch pits commonly observed on natural and single 
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crystal {111} diamond planes [283, 285-288] exhibit a triangular-shape reflecting the 

crystal three-fold symmetry of this surface shown in Figure 6.1, are referred as trigons 

or etch pits. 

 

According to Frank et al [287] a positive etch pit on the {111} diamond surface would 

be bounded by vicinal {111+} faces with sides parallel to the triad of <110> directions 

where,  is an integer. The steps in such a pit have their normal in < 2> direction, and 

the atoms of these steps are doubly bonded to the lattice. In contrast a negative etch pit 

is bounded by vicinal {111-} faces while the steps in such a pit have their surface 

normal in the opposite <11 > directions and have a three-fold bonding to the surface. 

The atomic arrangement of the various steps is shown in Figure 6.1. 

 

 

 

 

 

Figure 6.1 Schematic of etch-pits on {111} diamond surface, a) positive etch pit and 

b) negative etch pit reproduced from reference [287]. 

Formation of positive etch pits on {111} diamond surfaces has been commonly 

observed after oxidation in the laboratory [283, 285-287, 305, 308], while negative etch 

pits were commonly observed on the surface of natural untreated {111} diamond 

crystals. The rotation by 180
o
 on the etch pits on the {111} diamond surface has been 

observed upon thermal oxidation at elevated temperatures of ca. 900
o
C [286]. 

Etch pits with square symmetry have been observed on the {100} diamond surfaces of 

natural and single crystals [284, 286]. At thermal oxidation temperatures < 700
o
C the 

sides of the etch pits were parallel to the <100> direction, while a 45
o
 rotation of the 

etch pit sides has been observed as the oxidation temperature was raised above >700
o
C 

and the etch pits sides were parallel to <110> [284, 286].  
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Evans and Sauter [286] observed that for the development of well defined etch pits, the 

presence of water vapour was necessary in the gas mixture. However, de Theije and co-

workers [284, 285] observed the formation of well-defined etch pits despite the absence 

of water vapour. The formation of well-defined etch pits and the change in etch pit 

orientation with temperature has been explained by the relative velocities of the 

different types of steps. It was noted that the outline of the etch pits is determined by the 

steps with the lowest velocity. Stabilisation of the {100} surface and [ 2] steps on 

{111} diamond surface by bridging (C-O-C) and carbonyl (>C=O) surface groups, 

explains etching on the diamond surfaces by a step mechanism [283-286].  

Diamond thermal oxidation proceeds faster without the addition of water vapour [284-

286]. The removal rate of carbon atoms strongly depends on the O2 pressure and 

temperature, the crystallographic orientation of the surface [286], the presence of water 

vapour or fluorine [282, 321] and the presence of twinning and graphitic or amorphous 

carbon inclusions [322] in the diamond crystals. Experimental observations of the 

oxidation rate of single crystal diamond shown that {111} diamond surfaces exhibits the 

highest rate, followed by {110} whilst the {100} diamond plane displays the lowest 

oxidation rate [286,323].  

Surface chemistry is vital in the understanding of the oxidation mechanism on diamond 

surfaces. The chemisorption of atomic oxygen on the {100} diamond surface at room 

temperature has been considered in a number of theoretical studies, whilst the {111} 

diamond surface has not been studied in the same extent. Two oxygen configurations 

have been found to exist on the {100} diamond surface; an oxygen atom single bonded 

to two carbon atoms which is referred to as the bridging configuration and corresponds 

to the ether structure (COC) and an oxygen atom double bonded on top of a carbon 

atom which corresponds to carbonyl group (>C=O). Only the former oxygen functional 

group can exist on the {111} diamond surfaces.  

Theoretical studies predict that the two oxygen configurations can coexist due to the 

small energy difference between them [328, 324]. Theoretical work conducted by 

Skokov et al [324] predicts the bridge configuration to be stable for temperatures below 

325
o
C whilst the on-top configuration is more favourable for temperatures higher than 

325
o
C. IR absorption studies on diamond powders shown that the structures of oxygen 
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functional groups strongly depend on the oxidation temperature [313]. Oxygen 

configurations of C-O-C, C=O and C-O-O-C were found to have similar energies on 

{111} diamond surfaces and they could probably coexist [325]. Figure 6.2 shows the 

oxygen bridge structure on a (111) diamond surface. When hydrogen is present, either 

on the diamond surface or in the gas mixture, e.g. water vapour, the formation of –OH 

group on the diamond surfaces has been found [283-285, 310, 324]. Those oxygen 

functional groups could exist on the surface terraces, steps and kinks. Reflectance IR 

studies on oxidised CVD diamond films also show the presence of H2O adsorption 

peaks [326]. 

 

 

 

 

Figure 6.2 Schematic representation of oxygen bridge structure on a (111) 

diamond surface [327]. 

Desorption studies of oxygen on the low-index diamond planes, observed the release of 

CO and CO2 from the {100} diamond surface [313]. One desorption peak has been 

observed for the {110} diamond surface, whereas for the {111} diamond surface two 

desorption peaks have been detected [327]. LEED and AES studies show that O atoms 

adsorbs on the annealed (111) diamond surface in the form of C-O bonds while 

maintaining the (2x1) surface reconstruction. Surface reconstruction of the O/C 

(111)(2x1) surface to (1x1) has been found for exposure to H [328]. 
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6.3 CVD diamond oxidation 

 

The thermal oxidation of CVD diamond films should be identical to that of single 

crystal diamond although the lower defect densities and improved elemental purity of 

CVD diamond films could delineate the fundamental processes. Reports so far on the 

thermal oxidation of CVD diamond films have focused on the etch rates with exposure 

to high temperatures in air [289, 295, 297, 321-323, 326] Preferential removal of non-

diamond carbon has been demonstrated by thermal oxidation [329] and improvement of 

the diamond quality. A number of possible surface oxygen terminations resulting from 

various methods of oxidation have been reported by XPS [18, 233, 235].  

Data on the thermal oxidation of CVD polycrystalline films has been collected by 

thermogravimetric analysis (TGA) [289, 295, 321-323, 326] where the kinetics are 

obtained under non-isothermal conditions. A low oxidation temperature (~ 550
o
C) has 

been reported for CVD films in comparison those of natural diamond [323]. Arrhenius-

type kinetics have been measured for the etch rate of CVD diamond films and the range 

of kinetic energies measured are close to those of natural crystals. 

Thermal oxidation on polycrystalline CVD diamond films is accompanied with surface 

morphological changes depending on the crystal plane. Formation of etch pits on {111} 

diamond planes and selective oxidation at grain boundaries has been observed upon 

thermal oxidation of polycrystalline diamond films [323], which created a highly porous 

film [295, 321, 326]. Prolonged thermal oxidation caused the diamond film to collapse 

“to a lump of cone-like diamond powder” [295] while the formation of diamond needles 

of pyramidal shape has been demonstrated by thermal oxidation of CVD films [297]. 

Surface morphological changes induced by [295] thermal oxidation affect the optical 

transmittance, mechanical strength and thermal conductivity of the CVD diamond films 

[295].  

Previous work on the thermal oxidation of CVD diamond films has been conducted at 

Heriot-Watt University [18, 228, 233, 235, 289]. Surface oxygen termination was found 

to strongly depended on the applied temperature and humidity of the thermal oxidation 

process. The formation of carbonyl functional groups on the diamond (100) surface was 

found to be more favourable at high temperatures and very low humidity. Lower 
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temperatures and higher levels of humidity promote the formation of ether oxygen 

functional groups on the diamond (100) surface. Oxidation of (100) diamond films was 

not observed below  550
o
C, at which point etching of the diamond surface is first 

observed. Thermal oxidation of (100)-highly oriented diamond films did not produce 

pitting or roughening of the surface, suggesting a layer-by-layer mechanism of thermal 

oxidation [289]. A hydrophilic diamond surface produced by heating in oxygen at 

200
o
C suggesting that oxidation of the diamond surface occurs without removal of 

oxidised species from the surface. Surface reactions and monolayer oxygen coverage of 

the diamond surface can be achieved without etching of the surface. 

6.4 Experimental details 

6.4.1 Thermal oxidation set-up 

 

Thermal oxidation of CVD diamond was carried out in the system shown schematically 

in Figure 6.3. The thermal oxidation system comprised a stainless steel vacuum 

chamber which can be pumped by a Pfeiffer-Baltzers turbomolecular and rotary pump 

combination (TPU 050) down to a base pressure of less than 1 x 10 
-6

 mbar. All seals on 

the system were made using viton O-rings. The vacuum in the stainless steel chamber 

was monitored with a Penning gauge (Edwards 8) and for high pressures with a strain 

gauge based pressure transducer (Bell & Howell 327).  

Inside the stainless steel vacuum chamber there is a stainless steel sample holder that 

can be resistively heated to temperatures up to 620
o
C. The heating element of the 

sample holder was controlled by a digital temperature controller (Eurotherm 127) while 

the heater temperature was continuously monitored with a K-type thermocouple. The 

Eurotherm temperature controller provided a temperature stability of ± 1
o
C.  

The vacuum chamber has a quartz window on top with a diameter of 120 mm which 

allowed instrumental and user observation of the sample. During the course of the 

thermal oxidation experiments the temperature of the diamond samples was 

continuously and independently monitored with a second thermocouple mounted on the 

samples surface. A two wavelength (1.17 and 1.25 m) pyrometer (Micron 3003) was 

also used during the thermal oxidation experiments to measure the sample temperature.  
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The vacuum chamber could be filled with Ar and/or oxygen (BOC 99.6 % purity) 

through a needle valve on the side of the chamber. All gases were passed over a 

molecular sieve (zeolite A) to dry them before entering the chamber. The levels of 

oxygen and water in the gas lines were monitored using a BOC Z-ox monitor and 

MEECO model W electrolytic water analyser respectively. 

 

 

 

  

 

 

 

Figure 6.3 schematic representation of the vacuum system used for the thermal 

oxidation of CVD diamond. 

6.4.2 Experimental procedure 

 

Upon inserting the diamond specimens on the vacuum chamber heater/sample holder a 

thermocouple was placed in contact with the surface. The chamber was sealed from the 

atmosphere and the chamber was evacuated using the combination of rotary and turbo 

pumps. When the chamber pressure reached a value of 1x10
-8

 mbar, the chamber was 

isolated from the turbo pumps. Subsequently the chamber was filled with Ar to a certain 

pressure depending on the experimental conditions.  
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The heater was turned on and the temperature was increased by increments of 20
o
C per 

min until the desired experimental temperature setting was attained. The turbo/rotary 

pump combination was kept on for the duration of the thermal oxidation experiments, to 

provide pressure stability in the vacuum chamber. When the chamber pressure and 

temperature were stabilised, oxygen gas was inserted into the chamber while the 

rotary/turbo pumps exhausted the Ar/O2 gas mixture thus keeping the chamber pressure 

stable at the desired pressure setting.  

After the chamber was filled with oxygen, the vacuum cell was isolated from the 

rotary/turbo pump system and the thermal oxidation treatment was initiated. The 

duration of each treatment was determined by the temperature and pressure settings 

chosen. For the whole duration of the thermal oxidation experiments the temperature 

and chamber pressure were monitored. Any changes occurred in those two settings were 

compensated manually providing a stable temperature and pressure setting for the whole 

duration of the thermal oxidation treatments. 

When the experimental time had elapsed, the heater was set to cool down with a 

temperature drop of 20
o
C per min. To ensure that the diamond samples were cooled in 

an inert environment, the oxygen gas was replaced with argon.  

Once the pyrometer temperature reading reached room temperature the chamber was 

evacuated using the turbo/molecular pump. After the system was isolated from the 

vacuum pump system air was allowed inside the chamber up to atmospheric pressure.  

6.4.3 Experimental conditions 

 

Thermal oxidation of CVD diamond cubo-octahedral crystallites was carried out in the 

temperature range 535
o
C to 600

o
C, for pressures of dry O2 in the range 50 torr to 1 atm. 

The thermal oxidation treatment duration was varied between 60 minutes and 9 hours 

depending on the process conditions used. 
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Etching gas 100 %  dry O2  

Pressure 50 Torr – 1 atm 

Diamond substrate CVD cubo-octahedral crystallites 

Etching temperature 535
o
C – 600

o
C 

Etching time 60 min – 9 hours 

Table 6-1 Thermal oxidation (dry O2) conditions for CVD cubo-octahedral 

diamond crystallites. 

6.4.4 Sample characterisation 

 

Thermal oxidation experiments, presented in this work, have been carried out on CVD 

cubo-octahedral diamond crystallites. Those individual diamond crystallites have been 

grown on the periphery of {100}-highly oriented CVD diamond films, as shown in 

Figure 6.4. Isolated CVD diamond crystallites on silicon substrates have been selected 

for the thermal oxidation experiments since they provide both {100} and {111} 

diamond surfaces. Figure 6.4. shows SEM images of individual as-grown CVD 

diamond crystallites. The {100} diamond surfaces exhibit the characteristic square 

shape, while the {111} diamond surfaces have a hexagonal shape.  

 

 

 

 

 

 

 

Figure 6.4 SEM images of as-grown CVD cubo-octahedral diamond crystallites. 
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6.5 Results 

6.5.1 Optical profilometry  

 

A Zygo®optical profilometer has been employed to measure the surface height of 

individual cubo-octahedral CVD diamond crystallites before and after each subsequent 

thermal oxidation treatment. This enabled the collection of data of height changes 

caused due to thermal oxidation on the {111} and {100} diamond planes of the 

crystallites. Using this method the oxidation rates of the {111} and {100} diamond 

surfaces have been measured as a function of the oxidation temperature and pressure.  

 

 

 

 

 

 

Figure 6.5 The diamond {111} oxidation rate as a function of O2 partial pressure at 

600
o
C. 

The temperature range investigated was 535-600
o
C at a pressure of 1 atm (760 torr) in 

dry O2. The oxidation rates at a temperature of 600
o
C for the oxygen pressure range of 

50-760 torr were used to determine the order of reaction. For both {111} and {100} 

diamond surfaces, as can be seen in Figure 6.5 and 6.6 the dependence of the oxidation 

rate of reaction on oxygen pressure is first order and thus follows the equation:  

rate = k PO2 
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The solid lines represent the best fits for the data. These observations are in agreement 

with the first order kinetics previously reported [286, 289] for (100) diamond planes. 

 

 

 

 

 

 

 

Figure 6.6 The diamond {100} oxidation rate as a function of O2 partial pressure at 

600
o
C. 

The anisotropy between the oxidation rates of the {111} and {100} diamond surface is 

observed to be high, with the {111} diamond surface exhibiting the highest oxidation 

rate for all the pressure range investigated. The ratio of the oxidation rates of the two 

diamond planes is shown in Figure 6.7. It has been observed that the ratio of the two 

oxidation rates increases slightly with the applied oxygen pressure. 
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Figure 6.7 Ratio between the oxidation rates of {111} and {100} diamond surfaces 

as a function of the applied O2 pressure. 

 

 

 

 

 

 

 

Figure 6.8 Arrhenius plot of the oxidation rate of {111} diamond surface as a 

function of temperature between 535
o
C and 600 C. The solid line shows the linear 

best fit. 
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For reactions conducted at different temperatures the rate constant, k, was extracted and 

the temperature dependence of the oxidation rate measured. The Arrhenius plots for 

{111} and {100} diamond surfaces have been constructed by plotting ln(k) against 1/T 

as shown in Figure 6.8 and 6.9 respectively, where the solid lines represent the best fit 

for this data. The activation energy (Ea) and pre-exponential factor (A) of the oxidation 

reaction was extracted from the Arrhenius plot for each diamond plane:  

k = Ae
-(Ea/RT)

 

For both diamond planes the slope is constant over the temperature range investigated 

indicating a temperature independent activation energy for both diamond planes.  

 

 

 

 

 

 

 

Figure 6.9 Arrhenius plot of the oxidation rate of {100} diamond surface as a 

function of temperature between 535
o
C and 600 C. The solid line shows the linear 

best fit. 
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For both {111} and {100} diamond surfaces the activation energy was determined from 

the slope of the best-fit straight line to be 286 ± 29 kJ mol
-1 

for the {111} surface and 

221 ± 34 kJ mol
-1 

for the {100} diamond surface.  

The Arrhenius pre-exponential factors were determined from the intercept of the slopes 

to be 1.9 x 10
14

 nm s
-1

 Pa
-1

 and 2.3 x 10
9 

nm s
-1

 Pa
-1

 for the {111} and {100} diamond 

surface respectively. 

For the temperature range of 535
o
C to 580

o
C the anisotropy between the oxidation rates 

of the two diamond surfaces was higher than that at 600
o
C where the ratio between the 

two oxidation rates approaches the value of ~ 0.45, as shown in Figure 6.10. The {100} 

diamond surfaces was found to oxidise more slowly than the {111} surface which have 

the highest oxidation rate for the temperature range investigated. It is worth mentioning 

here that ~ 600
o
C is the temperature reported for the onset of the thermal oxidation of 

CVD diamond films and is consistent with the present observations. 

 

 

 

 

 

 

 

Figure 6.10 Ratio between the oxidation rates of {100} and {111} diamond surfaces 

as a function of temperature at 1 atm pressure. 
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6.5.2 Scanning electron microscopy  

 

Scanning electron microscopy SEM was used to examine the surface morphological 

changes which occurred on thermal oxidation of both {100} and {111} surfaces of 

diamond CVD crystallites. In this sub-chapter the observations made on the {100} and 

{111} diamond surfaces are presented individually.  

The {100} diamond surface 

 

Oxidation at 535
o
C and 1 atm pressure using dry O2 did not cause any morphological 

changes on the {100} diamond surfaces as observed at SEM resolution. The side edges 

of the (100) diamond surface have been etched and the sides appeared roughened. The 

oxidation treatment at 535
o
C was carried out for 9 hours, and the resulting oxidised 

(100) surface is shown in Figure 6.11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 SEM image of the (100) and (111) diamond facets of a thermally 

oxidised CVD cubo-octahedral crystallite at 535
o
C and 1 atm pressure of dry O2 

for 9 hours. 

In contrast, when the thermal oxidation was conducted for the duration of 9 hours at a 

substrate temperature of 565
o
C and 1 atm pressure of dry O2, the {100} diamond 

surfaces were observed to have been etched preferentially on the edges of the four sides 

of the surface where the (100) surfaces intersect with four {111} diamond surfaces. The 

etching process occurred uniformly along the side edges of the {100} diamond facet as 

shown in Figure 6.12.  

(100) 

(111) 

2 m 
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When the substrate temperature was raised to 600
o
C, while keeping 1 atm applied 

pressure of dry O2, the thermal oxidation treatment was limited to 60 minutes duration. 

At the {100} diamond surfaces, as was observed in Figure 6.13, etching of the four 

intersection edges was more pronounced than that at 565
o
C. The {100} diamond 

surfaces remained smooth as evidenced by the SEM images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 SEM image of the (100) and (111) diamond facets of a thermally 

oxidised CVD cubo-octahedral crystallite at 565
o
C and 1 atm pressure of dry O2 

for 9 hours. 

 

 

 

 

 

 

Figure 6.13 SEM image of the cross-section between the (100) and (111) diamond 

facets of a thermally oxidised CVD cubo-octahedral crystallite at 600
o
C and 1 atm 

pressure of dry O2 for 60 min. 
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As the duration of the thermal oxidation was increased to 4 hours at 600
o
C and 1 atm 

pressure of dry O2 the more rapid oxidation caused a catastrophic effect on the cubo-

octahedral diamond crystallites as shown in Figure 6.14. The {100} diamond surfaces 

were roughened with a resulting uneven surface morphology.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 SEM image of the thermally oxidised CVD cubo-octahedral crystallite 

at 600
o
C and 1 atm pressure of dry O2 for 4 hours. 

The difference between the oxidation rates of {100} and {111} diamond surfaces is 

high for the present treatment conditions, as a consequence the fast etching of the {111} 

diamond surface leaves the more stable {100} diamond surfaces. The process is 

accompanied by the exposure of the {110} diamond surfaces at the intersection of the 

{100} diamond surfaces, which are more resistant to oxidation than the {111} diamond 

surfaces. 

 

In order to examine the effect of the pressure of dry O2 during thermal oxidation on the 

{100} diamond surface, a series of experiments were conducted at a substrate 

temperature of 600
o
C for a range of reduced pressures. The duration of each treatment 

was adjusted so that the oxidative etching of the cubo-octahedral crystallites was 

comparable.  
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Figure 6.15 a) shows the SEM image of a thermally oxidised (100) diamond surface at 

395 Torr pressure of dry O2 for 150 minutes. The emergence of a new plane between 

the (100) and (111) diamond surfaces was evident under those conditions. Whilst the 

(100) diamond surface appeared smooth on the SEM images the etched sides of the 

surface appeared to have developed some surface structural ripples. The shape of the 

square shape of the (100) diamond surface had changed to a trapezoid due to the 

oxidation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 SEM images of cubo-octahedral CVD crystallites that have been 

thermally oxidised at a substrate temperature of 600
o
C at different pressures of 

dry O2 and time durations a) 395 Torr and 150 min, b) 200 Torr and 240 min and 

c) 50 Torr for 300 min. 

The same morphological changes were observed on the (100) diamond facets of the 

cubo-octahedral CVD crystallites, Figure 6.15 b) and c), at the reduced pressure of 200 

Torr and 50 Torr of dry O2 respectively. The distinctive change of the (100) diamond 

planar surface to a trapezoid shape has been observed for all the thermal oxidation 

conditions studied. 
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The effect of the treatment duration on the surface morphology of {100} diamond 

surfaces was investigated for a total oxidation duration of 30 hours at 565
o
C and 1 atm 

pressure of dry O2. The sample was removed from the vacuum cell for characterisation 

after 9 hours, 15 hours and 30 hours of subsequent thermal oxidation. Figure 6.16, 

shows the as-grown (100) diamond surface of a cubo-octahedral CVD diamond 

crystallite and after it has been subjected to thermal oxidation under the conditions 

presented in the legend of the Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 SEM images of (100) surface of a CVD cubo-octahedral diamond 

crystallite  a) as grown and after thermally oxidation at 565
o
C and 1 atm pressure 

of dry O2 for b) 9 hours, c) 15 hours and d) 30 hours. 

 

The surface of the (100) diamond facet remained relatively smooth after a total of 30 

hours of thermal oxidation. Neither pitting nor formation of etch pits was observed on 

the (100) diamond facet. Etching of the edges of the sides of the (100) diamond facet 

increased with the thermal oxidation treatment, causing the (100) diamond facet to 

adopt a trapezoidal-like shape after 30 hours of treatment, similarly to the (100) 

diamond facet shown in Figure 6.15 a). 

 

 

a) b) 

c) d) 
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As observed in Figure 6.16 d) a crack developed between the two diamond facets during 

the final part of the process. Cracks have also been observed to some of the cubo-

octahedral CVD diamond crystallites at different stages of the thermal oxidation process 

but not always between the cross-sections of the two diamond facets. It has been 

observed that crystal imperfections, such as cracks were preferentially attacked during 

thermal oxidation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Lateral etch rate of {100} diamond surfaces as a function of the 

duration of thermal oxidation. 

It has been observed that the lateral sides of the {100} diamond surfaces of the CVD 

cub-octahedral diamond crystallites were etched faster than the vertical {100} diamond 

facets, reducing the lateral dimensions of the {100} diamond surfaces. The SEM images 

enabled measurements of the lateral etch rate of the {100} diamond facets for the 

specific process conditions. 

 

Figure 6.17 shows the measured lateral etch rates of the {100} diamond surfaces as a 

function of the oxidation time. The evaluation of the etch rates was made by measuring 

the lateral change on ten individual {100} diamond facets for consecutive thermal 

oxidation treatments.  
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The measured lateral etch rate of the {100} diamond surfaces was not constant for the 

whole duration of 30 hours of thermal oxidation. For the first 15 hours of thermal 

oxidation treatment the lateral etch rate of {100} diamond facet was the same within 

experimental error. The lateral etch rate decreased during the final 15 hours of thermal 

oxidation. The etch rate of {100} diamond facets at the same thermal oxidation 

conditions was measured to be 0.003 ± 0.001 nm sec
-1

, which is lower than the lateral 

etch rates measured for the whole duration of the process.  

 

The present results indicate that the reactions on the lateral oxidation of {100} diamond 

surface were influenced by the duration of thermal oxidation. As the {100} facets were 

always bonded to four {111} diamond facets, reaction on the {100} diamond surface 

cannot be treated in isolation. The high oxidation rate of {111} diamond surfaces under 

the conditions investigated would directly affect the lateral oxidation of {100} diamond 

plane.  

 

The exposed area of the new crystallographic plane, between the {111} and {100} 

diamond surfaces, increased with thermal oxidation. SEM images enabled the 

measurement of the surface area of the new crystallographic plane and an oxidation rate 

of 0.038 ± 0.006 nm s
-1

 has been found for the new crystallographic plane, under the 

present experimental condition, as seen in Figure 6.16.  

 

The nature of the exposed plane evident in the SEM micrographs can be determined. 

Work conducted by Silva et al [331, 332] on a geometrical 3D model which governs the 

homoepitaxial diamond growth on different crystal planes, predicts the coexistence of 

{100}, {111} and {113} diamond planes. Figure 6.18 shows the illustration of the 

topographies within the {100}{111}{113} system, taken from reference [331]. Based 

on this 3D model, the inclusion of {113} diamond planes on the cubo-octahedral 

crystallite would conserve the cubo-octahedral shape of the crystallites although the 

{100} diamond facets would be surrounded by stripes corresponding to {113} diamond 

facets. The percentage surface area of the individual diamond planes on the cubo-

octahedral depends on the growth conditions, according to this 3D geometrical model. 

Theoretical studies conducted by Stekolnikov et al [333] showed that the equilibrium 

diamond crystal shape strongly depends on the absolute surface energies. According to 

their calculations, the {113} diamond facet can be present on the equilibrium crystal 

shape, decreasing the surface energy.  
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Figure 6.18 Illustration of the topologies within the {100}{111}{113} system, 

modelled by Silva et al [331]. White, blue and green represent the {100}, {113} and 

{111} diamond planes respectively. 

 

In order to determine the newly exposed facets between the {100} and {111} diamond 

surfaces were {113} diamond planes, the angles between the {100} diamond surface 

and the exposed surface were evaluated by optical profilometry. The average measured 

value for the angle between the two surfaces was calculated to be 26.8
o 

± 0.7
o
, which is 

close to 25.24
o
 predicted angle between the {100} and {113} diamond surfaces. The 

angle between the {100} and {113} diamond planes has been derived using the 

following equation which defines the angle between two crystal planes:  

 

 

 

where (hkl) defines the first crystal plane and (HKL) defines the second crystal plane 

[334]. 

 

According to these results we could suggest that oxidised cubo-octahedral crystallites 

reveal {113} diamond surfaces which are exposed due to the anisotropy of the oxidation 

rates of the diamond (100) and (111) planes. Such morphological changes caused by 

thermal oxidation on the low-index diamond planes have not been reported before. 

 

The oxidation rates of the different diamond planes measured at 565
o
C and 1 atm 

pressure of dry O2, are given in table 6-2. Oxidation rates of {111} and {100} diamond 

planes were measured by Zygo profilometry, while oxidation rates of {113} and 

{100}Lateral were evaluated from SEM images. The {113} diamond plane exhibits the 

6 m 6 m 6 m 6 m 6 m 
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highest oxidation rate followed by {111}, the lateral oxidation rate of {100} and finally 

the oxidation rate of {100} planes. 

 

Crystal plane Oxidation rate nm/sec 

{113} 0.038 ± 0.009 

{111} 0.023 ± 0.003 

{100}Lateral 0.006-0.012 ± 0.0013 

{100} 0.003 ± 0.0013 

 

Table 6-2 Oxidation etch rates of diamond planes at substrate temperature of 

565
o
C and 1 atm pressure of dry O2. 

High resolution SEM revealed macro-steps on the {113} diamond planes. Figure 6.19 a) 

shows the (100) diamond surface after 30 hours of thermal oxidation at 565
o
C and 1 atm 

pressure of dry O2. The oxidised surface had adopted a trapezoidal-like shape and steps 

were observed parallel to the edges of the surface, such surface steps have their normal 

to <110>. The average step height measured was 72 ± 5 nm, while the distance between 

adjacent steps was 163 ± 4 nm.  

 

The steps were observed on the <110> crystal directions while, at the corners of the 

crystal, rotation on the step direction towards <100> was observed as shown in Figure 

6.19 b). The thermally oxidised {100} surface had a different surface morphology 

compared to the {113} diamond planes, see Figure 6.19 c), indicating a different 

oxidation mechanism.  

 

The mechanism proposed for the formation of {113} diamond planes due to thermal 

oxidation will be presented later in this chapter. 
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Figure 6.19 SEM images of an oxidised (100) diamond surface a) top view, b) high 

magnification image of the outlined area of a) and c) side view of the intersection 

between (113) and (111) diamond planes. Thermal oxidation was conducted at 

565
o
C and 1 atm pressure of dry O2 for 30 hours. 
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The {111} diamond surface 

 

Morphological changes have been observed for the {111} diamond surfaces of CVD 

cubo-octahedral crystallites after thermal oxidation. The {111} diamond surface is not 

stable upon thermal oxidation at 535
o
C and 1 atm applied pressure of dry O2. After 9 

hours of thermal oxidation under these conditions, etching of the {111} diamond 

surface was apparent and it was accompanied by the formation of hollow etch pits 

distributed along the surface with no preferential orientation, Figure 6.20.  

 

 

 

 
 

 

 

 

 

 

Figure 6.20 SEM image of (111) diamond surface of a CVD cubo-octahedral 

crystallite after it has been oxidised for 9 hours at 535
o
C and 1 atm pressure of dry 

O2.  

No published reports exist on etching and roughening of CVD diamond films at 

temperatures lower than 550
o
C. This is the first time that thermal oxidation surface 

changes have been observed at temperatures as low as 535
o
C. As the oxidation kinetics 

at 535
o
C are slow for the {111} diamond surface a long exposure time is needed in 

order to observe surface morphological changes by SEM.  
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Figure 6.21 SEM image of a CVD cubo-octahedral diamond crystallite thermally 

oxidised at 600
o
C and 1 atm pressure of dry O2 for a) 60 minutes and b) 240 

minutes. 

When the substrate temperature was raised to 600
o
C at 1 atm pressure of dry O2, the 

duration of the thermal oxidation was limited to 60 minutes due to the high oxidation 

rate of the {111} diamond surfaces. Under those conditions pitting was observed on the 

{111} diamond surfaces as shown in Figure 6.21 a). As the kinetics are fast at 600
o
C, 

b) 

(111) 

(100) 

(111) 

(100) 

a) 

10 m 



Chapter 6: Thermal Oxidation of CVD diamond 

 

196 

the etch pits were not well-defined and did not have any specific crystallographic 

orientation. 

The (111) diamond surface turns very rough, with large craters after 240 minutes of 

oxidation at 600
o
C, see Figure 6.21 b). The high oxidation rate of the {111} diamond 

facets caused the collapse of the individual cubo-octahedral diamond crystallites and the 

exposure new diamond surfaces between the {111} and the {100} diamond surfaces.  

 

 

 

 

 

Figure 6.22 SEM image of thermally oxidised CVD cubo-octahedral diamond 

crystallite at 600
o
C and 50 Torr of dry O2 pressure for 5 hours. The {111} diamond 

surfaces were rough and triangular depressions have been observed with their 

sides parallel to a triad of <110> directions. 

 

A reduced pressure of dry O2 at 600
o
C caused pitting and the formation of triangular 

depression on the {111} diamond surfaces, as observed in Figure 6.15 a) and b). The 

triangular depressions formed on the {111} diamond surfaces exhibited sides in the 

positive direction, according to the etch pit definition given by Frank et al [287], as 

shown in Figure 6.22.  

Prolonged thermal oxidation was applied to the same sample for a total duration of 30 

hours at 565
o
C and 1 atm pressure of dry O2. The sample was removed from the 

vacuum cell after 9, 15 and 30 hours of treatment for examination. Figure 6.23 a-d) 

shows the SEM images of the same {111} diamond surfaces at different stages of the 

thermal oxidation treatment. 

9 m 

(111) 

(100) 
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Figure 6.23 SEM images of CVD diamond cubo-octahedral crystallites a) as-grown 

and after thermal oxidation at 565
o
C and 1 atm pressure of dry O2 for a) 9 , b) 15 

and 30 hours.  

 

The as-grown {111} diamond surface was not smooth, but comprised surface 

imperfections such as raised features and hollow structures, as shown in Figure 6.23 a). 

The {111} diamond surface appears rough after 9 hours of thermal oxidation. Pitting 

was observed across the entire surface. The raised features have been etched faster than 

the rest of the surface, creating shallow features on the surface, as highlighted as A and 

B in Figure 6.23 b). Present results indicate preferential attack on crystal imperfections. 

As further treatment was applied to the (111) diamond surface, the etch pits became 

deeper and, after 30 hours of thermal oxidation, resulted in a rugged (111) diamond 

surface, Figure 6.23 d). The (111) diamond breaks up in a square {100} facets, as seen 

at the top left hand sector of the facing (111) plane. 

 

c) 

(111) (100) 

a) b) 

c) d) 

A 
B 

A 
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Figure 6.24 SEM images of (111) diamond surface of a CVD diamond cubo-

octahedral crystallite a) as-grown and after it has been thermally oxidised at 565
o
C 

and 1 atm pressure of dry O2 for b) 9 hours, c) 15 hours and d) 30 hours. 

 

The cubo-octahedral shape of the individual diamond crystallites changes upon thermal 

oxidation as curved {111} diamond surfaces are formed, as seen in Figure 6.23 d). 

 

Formation of positive etch pits on the (111) diamond surface has been observed after 9 

hours of thermal oxidation at 565
o
C and 1 atm of pressure of dry O2. From the 

distribution of etch pits on the oxidised (111) diamond surface we can assume that they 

are formed preferentially on surface imperfections, see Figure 6.24 a-d). Further thermal 

oxidation causes an increase in the depth and lateral dimensions of etch pits on the (111) 

diamond surfaces. 

 

a) b) 

c) d) 

(111) 

(100) 
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Figure 6.25 Higher magnification SEM of (111) diamond surface from Figure 6.24. 

After 30 hours of thermal oxidation, Figure 6.24 d), steep well defined positive trigons 

were formed on the (111) diamond surfaces. The oxidised surface turned very rough, 

and square {100} facets were evident on the (111) diamond surfaces.  

The triangular depressions formed on {111} diamond planes have been observed with 

high resolution SEM, as seen in Figure 6.25, to be steep, well defined etch pits with 

pointed bottoms. The sides of the etched pits comprised surfaces parallel to the triad of 

<110> directions and, based on the work by Frank et al [287] on diamond etch pits; they 

can be classified as positive trigons.  

 

The area surrounding the well-defined etch pits was found to be rough with almost an 

amorphous structure. Reported results on the thermal oxidation of {111} diamond 

planes confirmed that graphitisation occurs upon CO desorption. But most frequently, 

this phenomenon accompanies thermal oxidation at the much higher temperatures 

2 m 
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adopted in the present studies. Although, from the present observations, the induced 

graphitisation of the oxidised {111} diamond surface cannot be excluded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.26 High magnification SEM image of positive overlapping etch trigons 

formed on (111) diamond surfaces. 

 

The sides of the etched trigons comprise steps to their in-plane normals to the [112] 

directions, highlighted in Figure 6.26. The etch pits appear to overlap as we have 

observed a large etch trigon to enclose other smaller etched trigons, as shown in Figure 

6.26.  

 

This is the first time positive, well-defined etch pits, referred as trigons have been 

formed due to dry O2 thermal oxidation of the {111} surfaces of CVD diamond 

crystallites.  

 

 

 

 

1 m 
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Figure 6.27 SEM images of (111) diamond surface at different stages of thermal 

oxidation at 565
o
C and 1 atm pressure of dry O2, a) 9 hours, b) 15 hours and c) 30 

hours. 

Upon thermal oxidation imperfections, such as microcracks on the (111) diamond 

surface, were etched preferentially in comparison with the rest of the surface. Figure 

6.27 a-c) shows SEM images of a (111) diamond surface of a CVD cubo-octahedral 

crystallite thermally oxidised at 565
o
C at 1 atm pressure of dry O2 at different oxidation 

times. Etching of the microcracks resulted in extended pits which have been 

preferentially etched. 

Cubo-octahedral crystallites with fivefold twinning symmetry [335] comprising five 

{111} diamond planes were examined at different stages of thermal oxidation, at 565
o
C 

and 1 atm pressure of dry O2 as shown in Figure 6.28 a-d). 

Similar morphological phenomena, as in the case of {111} diamond surfaces, upon 

thermal oxidation have been observed for the planes of fivefold twinned crystallites. 

Hollow structures have been formed on the {111} diamond surfaces while positive etch 

pits, trigons, were observed. Only after prolonged thermal oxidation have the interfaces 

between two {111} twinning planes been affected by oxidation, Figure 6.28 c-d).  

 

 

 

 

a) b) c) 
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Figure 6.28 SEM images of CVD cubo-octahedral diamond crystallite with fivefold 

symmetry, a) as-grown and after thermal oxidation at 565
o
C and 1 atm pressure of 

dry O2 for b) 9 hours, c) 15 hours and d) 30 hours. The crystallite reveals five 

twinned {111} diamond facets. 

 

CVD diamond films 

Although the present studies have been focused on thermal oxidation of cubo-octahedral 

CVD diamond crystallites, a few of the silicon substrates used in these studies included 

the presence of CVD diamond thin films. Similar surface morphological changes have 

been observed for thermally oxidised CVD diamond films. Preferential oxidation has 

been observed on the {111} diamond facets. Roughening of the {111} diamond surface 

has been induced by oxidation, whilst the formation of hollow structures has been 

observed after prolonged thermal oxidation, see Figure 6.29 a-d). Triangular 

depressions, positive etch pits and trigons were not observed within the resolution of 

SEM.  

(111) 
(111) 

a) b) 

c) d) 
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Figure 6.29 SEM images of a thermally oxidised CVD diamond film at 565
o
C for a) 

9 hours (tilted projection, b) 15 hours (tilted projection), c) 30 hours (on-top view) 

and d) 15 hours (on top view). 

The more stable {100} diamond facets of the CVD diamond film have remained intact 

after 15 hours of thermal oxidation, Figure 6.29 a). After 15 hours of thermal oxidation 

the {100} diamond facets appeared to have been etched and the surface exhibits craters.  

More interestingly the grain boundaries, presumably {111} diamond planes, have been 

etched much faster causing the exposure of the inter-granular surfaces. For the 

individual CVD cubo-octahedral crystallites the exposure of {110} diamond planes has 

been observed after 30 hours of thermal oxidation and to a lesser degree, as previously 

observed in Figure 6.16 d). After 30 hours of thermal oxidation the surface of {100} 

facets appears uneven as etching had proceeded at the sides of the crystal facet. 

 

 

6 m 

6 m 

6 m 

6 m 

a) b) 

c) d) 



Chapter 6: Thermal Oxidation of CVD diamond 

 

204 

The diamond {111} planes have been etched preferentially and well-defined etch pits 

have not been observed. The observations made on the CVD diamond films are 

inconsistent with those made on the isolated CVD cubo-octahedral crystallites. The 

surface morphological changes appeared to have been more pronounced for the thin 

films. As oxidation reactions are exothermic, adequate heat conduction is vital for 

maintaining isothermal conditions. Lee. et al [178, 292] show that explosive oxidation 

can be induced by poor thermal conductivity of diamond powders. It is not clear if that 

is also true for the present results on CVD diamond films.  

From the present results it is apparent that the resistance of CVD diamond films to O2 at 

elevated temperatures strongly depends on the surface area of the exposed {111} 

diamond planes.  
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6.5.3 Atomic Force Microscopy 

 

Microscopically the {100} and {111} surfaces of the cubo-octahedral CVD diamond 

crystallites have been examined by contact mode AFM and each low-index plane 

following thermal oxidation will be presented independently  

{100) diamond surface 

Figure 6.30 a-c) shows the AFM topography of the as-grown and thermally oxidised 

(100) diamond surface of a CVD cubo-octahedral crystallite. On the as-grown (100) 

diamond surface hillocks structures were observed which commonly appeared on the 

CVD diamond crystallites {100} surfaces.  

 

 

 

 

 

 

 

 

 

Figure 6.30 AFM micrographs of a) as-grown (100) diamond surface, b) after 60 

minutes and c) 120 minutes of thermal oxidation at 555
o
C and 1 atm pressure of 

dry O2. 

b) 

c) 

a) 



Chapter 6: Thermal Oxidation of CVD diamond 

 

206 

The sample had been subjected to thermal oxidation at 555
o
C substrate temperature and 

1 atm pressure of dry O2. After 60 minutes of thermal oxidation shallow hollow etch 

pits were formed on the surface, as shown in Figure 6.30 b). Hillocks were still present 

on the diamond surface as well as surface contamination.  

 

Formation of new etch pits has been observed after 120 min of thermal oxidation, while 

dissolution and enlargment of the existing etch pits has been observed by AFM, see 

Figure 6.30 c). The increase in the surface roughness of (100) diamond surfaces has 

been measured as a function of time as shown in Figure 6.31. The formation of etch pits 

increased the surface roughness values.  

 

 

 

 

 

 

Figure 6.31 Surface roughness of (100) diamond surface with the duration of 

thermal oxidation. 

Figure 6.32 a-b) shows the AFM micrographs of an as-grown and thermally oxidised 

(100) diamond surface. The oxidation conditions were identical to those presented 

earlier, as in Figure 6.30, (555
o
C and 1 atm) whilst the duration was 60 min. Upon 

thermal oxidation the surface hillocks did not undergo changes, although preferential 

oxidation attacked the regions between the hillocks. Formation of etch pits was 

observed in areas between the surface hillocks. 
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Figure 6.32 AFM micrographs of an a) as-grown (100) diamond surface and b) 

after thermal oxidation for 60 min at 555
o
C and 1 atm applied pressure of dry O2 

 

The (100) diamond surface of a CVD diamond cubo-octahedral crystallite after it has 

been subjected to thermal oxidation at 565
o
C and 1 atm pressure of dry O2 for 30 hours 

is shown in Figure 6.33.  

Figure 6.33 AFM image of the (100) surface of a CVD cubo-octahedral crystallite 

following thermal oxidation at 565
o
C for 30 hours and 1 atm of dry O2. 

 

a) b) 
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Figure 6.34 AFM image of the (100) surface of a CVD cubo-octahedral crystallite 

following thermal oxidation at 565
o
C for 30 hours and 1 atm of dry O2. 

 

Prolonged thermal oxidation of a (100) diamond surface yielded small craters with a 

depth and width range of 10 – 90 nm and 1- 2 m respectively. The small raised 

features which appearing on the (100) diamond surface are believed to be contamination 

due to the sample handling during the AFM characterisation.  

 

Etch pits with pointed bottoms have been observed at the centre of the surface crater 

structures. The sides of the etch pits were found to be along the [110] directions of the 

surface, which is in agreement with the etch pits observed on natural {100} diamond 

crystals oxidised at 750
o
C in dry O2 [284]. It was not possible to resolve the surface 

topography at the etch pits due to AFM instabilities in the high resolution scans. The 

density of the square etch pits was low. Only eight pits were observed in a~ 10 x 10 m 

(100) diamond surface area as shown in Figure 6.34. This corresponds to a etch pit 

density of 8 x 10
10

 cm
-2

 which is close to the reported value of 2 x 10
10

 cm
-2 

for the 

dislocation density of CVD diamond thin films [336]. 
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Figure 6.35 AFM topographic images of the corner of the thermally oxidised (100) 

diamond surface. 

The well-formed etch pits exhibit a depth of 25 nm while the depth for the small ones 

was measured to be around ~ 13 nm. Such a thermally oxidised (100) diamond surface 

was rough due to the formation of craters and etch pits a surface roughness of Ra = 

10.24 nm was measured using the AFM software for the area of the (100) diamond 

shown in Figure 6.31.  

 

AFM topographies on the {113} diamond planes, Figure 6.35., revealed a different 

surface morphology compared to a {100} diamond surface, see Figure 6.36. Neither 

etched craters nor etch pits have been observed on the {113} diamond surface. Instead 

the surface is covered with raised features with a higher areal density closer to the 

intersection with the {111} diamond plane. The height of the raised features varied 

between 6 nm and 16 nm.  

 

Etch pits have also been observed on the (100) diamond surface oxidised for 60 minutes 

at 600
o
C and 1 atm pressure of dry O2. Figure 6.37 a-b) shows the AFM topographies of 

a thermally oxidised (100) diamond surface. The etch pits exhibit square four-fold 

symmetry along the <110> directions, while a few etch pits appear to have a hollow 

shape. Despite the formation of etch pits on the (100) diamond surface the surface 

roughness measured was Ra = 8.54 nm for the surface area shown in Figure 6.37 b).  

(100) 

[110] 

(111) 
(113) 
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Figure 6.36 AFM topographic images of the intersection of the thermally oxidised 

(100)/ (113) diamond surfaces. 

 

 

 

 

 

 

Figure 6.37 AFM topographic images of the (100) diamond surface after thermal 

oxidation at 600
o
C  and 1 atm pressure of dry O2 for 60 min. 

 

The (100) diamond surface of the crystallite oxidised at 535
o
C and 1 atm pressure of dry 

O2 for 9 hours appeared to be smooth under SEM analysis. AFM topography revealed 

that the (100) oxidised surface exhibited small depressions of 1 – 1.5 nm depth and 

larger ones with greater than 10 nm depth, as shown in Figure 6.38. From SEM analysis 

it was found that large depressions were present on the as-grown surface, and could be 

correlated with crystal imperfections. All etch pits exhibited a hollow shape. The 

surface roughness of the surface area under examination was found to be Ra = 2.55 nm. 

Square etch pits have not been observed for these oxidation conditions.  

a) b) 

[110] 

(100) 

(113) 

(113) 
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Figure 6.38 The AFM topography of thermally oxidised (100) diamond surface at 

535
o
C and 1 atm pressure of dry O2 for 9 hours. 

The formation of well-defined etch pits on single crystal {100} diamond surfaces 

without the presence of water vapour has been observed by de Theije and co-workers 

[283]. This is the first time well defined square etch pits have been observed on CVD 

{100} diamond surface after thermal oxidation with dry O2. Discussion on the oxidation 

mechanism and pit formation of (100) diamond surface will be provided in section 

6.6.2. 

 

 (111) diamond surface 

 

Figure 6.39 shows the AFM image of an as-grown (111) diamond facet of a CVD cubo-

octahedral crystallite. The as-grown (111) facet exhibited a concave shape. Raised 

features on the (111) plane are possible contamination due to sample handling.  

 

Due to high surface roughness of the thermally oxidised {111} diamond surface the 

acquisition of AFM surface topographies was not feasible for all the treated samples. 

For this reason the AFM analysis of {111} diamond surfaces presented in this section is 

restricted to 60 minutes of subsequent thermal oxidation treatments on the same sample. 

The conditions of thermal oxidation were chosen to be a substrate temperature of 555
o
C 

and 1 atm pressure of dry O2. AFM micrographs of the as-grown and thermally oxidised 

(111) diamond facets are shown in Figure 6.40 a-d).  
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Figure 6.39 AFM micrograph shows the as-grown (111) surface of a CVD cubo-

octahedral crystallite image illuminated from the right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.40 AFM topographies of (111) diamond surface a) as grown and after 

thermal oxidation at 555 
o
C substrate temperature and 1 atm pressure of dry O2 

for b) 60 minutes, c) 120 minutes and d) 300 minutes.  

a) b) 

c) d) 

(100) (111) 

(111) 

(111

) 
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After the initial 60 minutes of thermal oxidation, the {111} diamond surface appeared 

to experience a soft etching treatment. The surface was relatively stable to thermal 

oxidation. Similar SEM observations were made for the thermal oxidation of {111} 

diamond surfaces at 565
o
C and 1 atm pressure for 60 minutes. There was no evidence of 

surface morphological changes of {111} diamond planes.  

 

A further 60 minutes of thermal oxidation showed that the {111} diamond surface was 

severely attacked as seen in Figure 6.40 c). The surface broke up as isotropic etching 

took place and created a rough surface.  

 

After 300 minutes of thermal oxidation it was obvious that the {111} diamond surface 

was not stable under these conditions. The surface was etched by oxygen by removal of 

carbon equally on steps and between the terraces. Oxidation was accompanied by the 

formation of etch pits which can clearly seen, after 300 min of treatment, in Figure 6.40 

d).  

 

Prior to, and after, each treatment the surface roughness was evaluated from the AFM 

data using the software analysis shown in Figure 6.41 along with the surface roughness 

measured for the intrinsic {100} diamond surface. The measured surface roughness 

values were consistent with the observed surface morphological changes. The surface 

roughness of {111} diamond surface increased with thermal oxidation treatment and a 

very rough surface was formed.  

 

The as-grown (111) diamond plane was examined by AFM, as shown in Figure 6.42 a). 

The surface was covered with bunched steps along the <110> directions with varied 

widths, while two types of steps were observed: double steps of depth of 0.5 nm to 1 nm 

and bunched or macro steps with a varied depth of 1.5 to 20 nm.  

Figure 6.42 b) shows that the {111} diamond surface was stable after 60 min of thermal 

oxidation. The steps had been subjected to etching on the terraces and on the step edges. 

Oxidation of the surface caused the formation of ball-like shapes along the surface. Etch 

pits were not observed on the oxidised surface.  
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Figure 6.41 Surface roughness, Ra, of diamond surfaces upon thermal oxidation.  

 

The oxidative stability of the {111} diamond surface was lost with a further 60 min of 

thermal treatment. As can be seen from Figure 6.42 c) the {111} diamond surface was 

isotropically etched with a further 60 min of thermal oxidation. The surface was etched 

along the surface and along the edges of the steps. The initial surface morphology was 

not able to be resolved and the formation of etch pits occurred. Based on these 

observations neither a layer-by-layer nor step mechanism could be attributed to the 

thermal oxidation of a {111} diamond surfaces. 

After 300 minutes of thermal oxidation the (111) diamond surface became very rough 

with the formation of etch pits, see Figure 6.42 d). Triangular depressions have not been 

observed at this stage of thermal oxidation and all the etch pits exhibit a hollow shape. 

The present AFM topographic images support the chemical roughening of (111) 

diamond surfaces by thermal oxygen.  

As the {111} diamond surface becomes roughened, exposure of new steps and kink 

atoms along different crystallographic direction occurs. Such a surface would not be 

expected to be stabilised by oxygen-carbon groups and so roughening would lead to 

isotropic etching of the surface.  
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Figure 6.42 AFM topographies of a) an as-grown (111) diamond facet and after 

thermal oxidation at a substrate temperature of 555
o
C and 1 atm pressure of dry 

O2 for b) 60, c) 120 and d) 300 minutes. 
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6.6 Discussion  

6.6.1  Kinetic analysis 

 

The temperature variation of the oxidation rate of {111} and {100} diamond planes of 

individual CVD cubo-octahedral crystallites was found to exhibit an Arrhenius-type 

behaviour, which is in consistent with previous studies [282-284, 289, 295, 322, 323, 

327, 328, 337] of natural, CVD single crystal and polycrystalline diamond thin films. 

The activation energy for the oxidation of {100} diamond planes of isolated CVD cubo-

octahedral crystallites was found to be identical with the value reported for 

polycrystalline {100}-highly oriented CVD diamond films [289] grown under identical 

conditions and within the range of values previously reported [284, 295, 321-323] for 

polycrystalline CVD and natural {100} diamond surfaces.  

A summary of the published activation energies for the oxidation of the {100} and 

{111} diamond surfaces by O2 is presented in Table 6-3. The use of sensitive optical 

profilometry to monitor the thermal oxidation of microscopic crystallites enabled the 

measurement of oxidation rates at lower temperatures than previously reported for both 

low-index diamond surfaces. This is the first time the activation energy of {111} CVD 

diamond surfaces has been accurately measured and the value is similar for those 

measured for natural {111} diamond surfaces [283, 323, 338]. 

The linearity of the oxidation kinetics shown in Figures 6.5 and 6.6 demonstrates that 

the activation energy for both diamond planes is constant over the 808-873 K 

temperature range. The activation energies, evaluated for both {100} and {111} 

diamond surfaces, are a measure of the rate determining steps leading to the evolution 

of volatile carbon oxides from the oxygen terminated {100} and {111} surfaces. 

Within the temperature and pressure ranges used in these studies the {111} diamond 

surfaces were found to exhibit higher oxidation rates compared to {100} diamond 

surfaces. These data are in agreement with those reported for natural and single crystal 

diamond surfaces [284, 286, 295, 323, 338]. 
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Sample Crystal plane  E  / kJ mol
-1

 Reference 

CVD (100) 

(111) 

Optical profilometry 221 ± 34 

286 ±29 

This work 

CVD (100) Interferometry 

Thermogravimetric 

analysis 

222 ± 16 

223 ± 2 

 

CVD  Polycrystalline  210 ± 10 [295] 

CVD Polycrystalline  213 [321] 

Natural 

 

Natural 

CVD 

(111) 

(100) 

Polycrystalline 

 260 

199 

229 

[323] 

Single crystal (100) O2 

H2O 

KNO3 

183±15 

270 ± 5 

52 ± 15 

[284] 

Single crystal (111) O2 

H2O 

KNO3 

235 ± 10 

153 ± 12 

173 ± 16 

[283] 

Natural  (100)  230 [338] 

Single crystal (100) CO desorption 

experimental 

CO desorption theoretical 

188 

161 

[330] 

B-doped  

homoepitaxial 

(100) CO desorption 285 [337] 

 

Table 6-3 Values of the activation energy for diamond oxidation. 
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6.6.2  Mechanism of diamond oxidation  

 

The {100} diamond surface 

Within the combined experimental errors, the activation energy of the oxidation of 

{100} CVD diamond surfaces is identical to that of natural diamond reported by de 

Theije et al [284]. Formation of shallow square etch pits accompanies the thermal 

oxidation of natural {100} diamond surfaces and oxidation was suggested to proceed by 

a step mechanism. The thermal oxidation mechanism, proposed by de Theije and co-

corkers [284] supports the stabilisation of dangling bonds on the {100} diamond 

surfaces with oxygen carbon functional groups. Indeed, even at low temperatures where 

desoption rates are negligible, the hydrophilic diamond surfaces are decorated with 

oxygen. In such crystal surfaces the steps are the most reactive sites for dissolution and 

not the terraces. Oxidative etching therefore would proceed by step propagation and be 

slower on the carbon terraces. 

Crystal defects such as dislocations and stacking faults commonly appear on diamond 

surfaces. They provide a source of crystal surface stresses where preferential nucleation 

of monoatonic etch pits occurs. Despite the published work on thermal oxidation on 

natural {100} diamond surfaces, the nature of nuclei responsible for the formation of 

etch pits is still unclear. It has been suggested that well defined etch pits can originate 

from crystal dislocations terminated on the {100} diamond surfaces [284]. 

The formation of well-defined etch pits with sides along the <110> diamond directions 

on extensively oxidised {100} CVD diamond surfaces observed in these studies is in 

agreement with the previously published work at a temperature of 750
o
C [284]. 

However in the present studies the AFM resolution was insufficient to image 

monoatomic steps on the {100} CVD diamond surfaces.  

In addition, the formation of shallow hollow-shape etch pits on thermally oxidised 

{100} CVD diamond surfaces has been observed. Enlargement of the shallow hollow-

shape etch pits with thermal oxidation treatment has been observed as well as the 

complete dissolution of some of the etch pits.  
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The surface roughness increased linearly with the extent of oxidation due to etch pit 

formation, indicating the same mechanism of oxidation for the duration of the oxidation 

period. The nature of the nuclei for the shallow hollow-shape etch pits observed on all 

the oxidised {100} CVD diamond surfaces is not clear. AFM analysis shows 

preferential etch pit formation between the surface hillocks. The SEM analysis shows 

the preferential attack of crystal imperfections. The etched craters on the prolonged 

oxidised (100) diamond surface indicate that the nuclei responsible for their formation 

were etched away and lateral etching of steps caused neighbouring pits to overlap and to 

create large hollow craters.  

Surface contamination was evident on the {100} oxidised surfaces which could either 

reduce the local oxidation rate or promote a catalytic effect of local oxidation. Whilst 

contamination was experimentally difficult to avoid in highly insulating oxidised 

samples the nature of the surface contamination has not been determined. In all of the 

above cases the presence of source nuclei that either increase or decrease the oxidation 

rate, would cause roughening of the surface. As the etch pit nuclei are removed the 

surface would undergo kinetic smoothing, although that would only be feasible in a 

defect free surface.  

In contrast the steep well-defined etch pits along the <110> orientation on the oxidised 

{100} diamond surface show stabilisation of the step sides by oxygen-carbon 

complexes under the present conditions. Steps along the <110> direction are expected to 

be stabilised by >C=O bridging or –COC- ether binding. As in the case of shallow 

hollow-shape etch pits the nature of nuclei responsible for the formation of such etch 

pits cannot be determined from the current studies. A velocity source which lies at the 

bottom of the steep square etch pits would be suggested from the present data. Such a 

type of velocity source can be attributed to crystal dislocations propagating along the 

crystallite to the surface.  

Monolayer coverage of {100} diamond surface, upon thermal oxidation, with oxygen-

carbon functional groups has been demonstrated [234] under similar conditions to those 

described in this thesis for {100}-highly oriented CVD diamond films. High-resolution 

XPS analysis of thermally oxidised {100}-highly oriented CVD diamond films shows 
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the presence of carbonyl (>C=O) and ether (COC) species which reside predominantly 

at the crystallite surfaces.  

Due to the small size of the cubo-octahedral CVD diamond crystallites it was not 

feasible to collect high resolution XP spectra and surface analysis was not carried out on 

such oxidised samples. Based on the previous studies conducted on {100}-highly 

oriented CVD diamond films the assumption of full oxygen coverage of the {100} 

diamond surfaces is a reasonable assumption for the present studies. 

Theoretical models suggest that both the ether and carbonyl functional groups stabilise 

the {100} diamond surfaces [324]. The structure of the oxygen-carbon groups on the 

{100} diamond surface was found experimentally to depend strongly on the thermal 

oxidation conditons and the presence of water vapour [228]. At low temperatures the 

formation of ether type structures was more favorable, while for temperatures above 

600
o
C stabilisation of the (100) diamond surface is achieved by >C=O bridging. As 

thermal oxidation can occur at temperatures below ≤ 600 
o
C, ether type structures would 

be expected to stabilise the steps on the {100} diamond surfaces, although high 

resolution XPS analysis show the presence of both >C=O and –COC- groups on {100}-

highly oriented CVD films . 

The features and thus mechanism of the oxidation of diamond surfaces remained 

unchanged over the oxidation time for the present studies. Therefore it is expected that 

stabilisation of the {100} diamond surface was the same for the entire oxidation 

duration within the range of conditions used. The oxygen-carbon groups present on the 

oxidised {100} and {111} diamond surfaces were not unequivocally established in the 

work on microscopic crystallites and suggestions can be only made based on previous 

studies of continuous films.  

Step mechanisms were responsible for the morphological changes which occured on the 

{100} diamond surfaces. Therefore stabilisation of the steps on the <110> directions 

was achieved using the present oxidation conditions. The rate limiting step for the 

oxidation of non-stepped {100} diamond surfaces is the adsorption of oxygen onto the 

C-C partial -bond.  
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The {111} diamond surface 

 

The activation energy measured for the {111} CVD diamond surfaces is in accord with 

the values measured for natural {111} diamond crystals [283, 323] although the 

appearance of the {111} CVD diamond surfaces after oxidation presents significant 

differences.  

The {111} diamond surfaces were found to be unstable to thermal oxidation; 

anisotropic etching along steps and terraces created a very rough surface with a high 

density of etch pits for the whole range of thermal oxidation parameters used in these 

studies. Upon prolonged exposure to molecular oxygen, the structure breaks up into a 

rugged surface and {100} diamond facets appeared between the {111} diamond surface. 

Those observations are in accordance with the work of de Theije et al [283] for natural 

diamond. 

The formation of positive etch pits i.e. trigons on the oxidised {111} CVD diamond 

surfaces has not been observed previously. Prior reports have observed the formation of 

positive etch pits on natural {111} diamond on the addition of water vapour into the gas 

mixture [283, 285]. Under these conditions of thermal oxidation a step mechanism was 

proposed. AFM analysis from the current studies revealed that oxidation of {111} CVD 

diamond surfaces (with dry O2) does not proceed via steps or by a layer by layer 

mechanism. 

The present results suggest stabilisation of the {111} diamond surface with oxygen-

carbon groups, although an initial H-termination of the as-grown surface would be 

considered during the final stage of the CVD growth process. Stabilisation of the {111} 

diamond surface could be achieved with hydroxyl groups. Under such conditions it is 

known that the surface is stabilised by monovalent –H and –OH groups. In the presence 

of hydrogen the oxidation would proceed via steps and formation of positive etch pits 

which was suggested by –C-O-C-O- zigzag chains occuring along the step atoms [283].  
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Theoretical calculations on the stability of oxygen groups on {111} diamond surfaces, 

predict the coexistance of stable C-O-C and C-OH groups on the diamond surface 

[285].  Such a surface would not expected to be stable on removal of CO from the steps, 

as kinks and terraces would proceed rapidly causing the chemical roughnening of the 

surface. Present SEM and AFM analysis support the isotropic oxidation of {111} 

diamond surfaces with dry O2 and they are in consistent with the reported work [283, 

286, 323]. 

The nuclei for etch pit formation on {111} diamond surfaces have been correlated with 

surface dislocations on single and natural diamonds [283, 286, 290, 307, 308] and 

chemical etching is commonly employed to reveal those crystal imperferctions [287, 

290, 305, 307]. Thermal oxidation with dry O2 revealed the formation of positive etch 

pits preferentially on surface imperfections. As {111} planes exhibit the highest number 

of surface defects and imperfections in CVD diamond they are therefore expected to 

have a high etch pit density formation.  

 

The current evidence supports the isotropic etching of {111} diamond surfaces, where 

etching of carbon atoms proceeds at roughly the same rate from surface steps and 

terraces, and induce a rough oxidised surface. The formation of well-defined and steep 

positive etch pits can be attributed to surface dislocations and stabilisation of the steps 

by –C-O-C- groups.  
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The {113} diamond surface 

 

The current studies have demonstrated that the {113} diamond planes can be revealed 

following oxidation from the existing {100} planes by anisotropic etching between 

{100} and {111} diamond planes. By considering the vertical 2D model of the cross-

sections shown in Figure 6.43 and 6.44 and the experimental evidence presented earlier 

it is apparent that the corner of the {111} and {100} diamond planes intersection would 

be sensitive to oxidation and gradually expose the {113} planes. The results presented 

in this thesis illustrate the insight gained when adjoining {111} and {100} diamond 

planes are both exposed to thermal oxidation. Considering the microscopic view, an 

explanation is required as to why the outer diamond carbon atoms at the edges of the 

{100} planes are attacked more rapidly implying a rapid oxidation of {113} surfaces. 

 

 

 

Figure 6.43 Schematic 2D diagram of the cross-section between the {111},{113} and 

{100} diamond planes with thermal oxidation.  

 

The removal of carbon atoms from the rough {111} diamond planes requires less 

energy than removal of an atom from the smooth {100} diamond planes. The anisotropy 

between the etch rates of the {100} and {111} diamond planes, for the conditions 

examined, was high. The fast removal of the {111} diamond surface would exposed the 

exterior atoms of the {100} diamond planes at the junction of the planes. Experimental 

data observation and the large lateral etch rate of {100} diamond surfaces shows that 

the exposed atoms would oxidise rapidly at these locations.  

The stabilisation of the {100} diamond surfaces with oxygen-carbon groups it has been 

observed and there is evidence that etching proceeds via layer by layer desorption of 

carbon monoxide from the surface. The oxidation rate on {111} diamond planes is 

associated with isotropic etching. Based on those observations it can be suggested that 

(100) 
(113) 

(111) (111) 
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the sides of the {100} diamond surfaces are etched by moving steps created on the 

{100} sides by the fast etch rate of {111} diamond surface. 

A simple two dimensional model of a cubo-octohedral crystallite has been drawn in 

Figure 6.44 with the intersection of the two major planes. The (100) plane is relatively 

smooth and etches slowly; the contribution of the vertical etch rate of plane (100) will 

be ignored in this model. The (111) plane exhibits the greater etch rate and the surface is 

rougher. Steps sited on {100} diamond surfaces are more active and etching proceeds 

on those sites, while etching on {111} attacks each individual atom. Removal of atoms 

from the rough {111} diamond surface will cause the formation of steps at the 

intersection. If the velocity of those steps is faster than that on the {111} diamond 

planes, then step movement on {100} surfaces will be achieved. Removal of all steps 

from the {100} surface would create the initial structure.  

The formation and movement of steps creates the faceting of the {100} diamond planes. 

This model supports the present experimental observations.  Bunched-steps have been 

observed on the exposed {113} diamond with higher density close to the intersection 

with the {111} diamond surfaces. The orientation of the steps was found to be normal to 

the sides of the {100} diamond planes, which correspond to the <110> crystal direction. 

The propagation of those steps was towards the centre of the surface, thus towards the 

{100} diamond surface.  

The generation of steps would depend  on, and be close to the etch rate of {111} 

diamond planes. The angle of the new crystal plane would depend on the ratio of the 

step height, h, and the step distance, , according to:  



h
tan  
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Figure 6.44 Two dimensional schematic of a simple crystal planes produced during 

etching. Top; The (100) surface is flat and etches slowly while (111) surface etches 

fast and its rough. Bottom: Anisotropy between etch rates induced by the creation 

of steps running along the (100) surface.  
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From SEM observations on the exposed {113} diamond surfaces the step height was 

measured to have the average value of 72 ± 5 nm and the bunched step separation was 

measured to 163 ± 4 nm. Using those values in the abovementioned equation the 

calculated value of the new plane angle was found to be 23.8
o
. For comparison, the 

angle between the {100} and the exposed diamond (113) surfaces was measured by 

optical profilometry to be 26.8 ± 2
o
 for the prolonged oxidised diamond crystallites. 

 

Both measured angle values for the new plane are close to the value predicted by theory 

of 25. 24
o
 between the {100} and {113} diamond surfaces. Therefore the present results 

show the exposure of {113} diamond surfaces by the oxidation of carbon at steps on the 

{100} diamond surfaces induced by the high oxidation rate of {111} diamond surface.  

 

The velocity of the step movement/etching on the {113} diamond surfaces, has been 

measured to be high. Instability of the surface steps covered with oxygen-carbon groups 

is low and the oxidation rate is faster than that on {100} diamond surfaces. A slow 

etching surface would disappear after some time from the crystal and the final crystal 

facets would only be dominated by fast etching crystallographic planes.  

 

It was mentioned earlier that the generation of steps on {100} diamond planes depends 

on the oxidation rate of {111} plane and the oxidation anisotropy between the two 

crystal planes. This statement does not hold true for all the experimental conditions 

applied here. For example the anisotropy between the etch rates for the{100} and {111} 

planes is constant between 535
o
C and 565

o
C and therefore one would expect the 

exposure of {113} diamond plane to occur to the same extent for both cases. 

Experimental observations revealed a different situation; the {113} diamond planes 

were observed only for oxidation at 565
o
C after 9 hours of treatment. There was no 

evidence of the new (113) plane at 535
o
C. Therefore the exposure of {113} diamond 

plane is not only effected by the step generation rate along the {100} diamond surface 

but it is strongly dependent on the reaction kinetics.  

 

The {113} diamond plane has been little explored in the literature as it is one of the 

diamond planes that rarely survives CVD diamond film growth. Recently Silva and co-

workers [345] were able to grow homoepitaxial {113} diamond surfaces through careful 

selection of growth conditions predicted by a 3-D geometrical model. The {113} 

diamond faces were stable and slow-growing and it was speculated surface 
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reconstruction to had taken place during growth. The bulk structure of {113} diamond 

plane consisted of alternate rows of two-fold coordinated atoms, as in the (100) 

diamond surface and three-fold coordinated atoms as in (111) surfaces. The structure is 

presented in Figure 6.43 (top). Possible reconstruction models of the {113} diamond 

surface have been suggested [339], but, to date, there are no experimental reports of the 

surface reconstruction of {113} diamond surfaces or the nature of the oxygen-carbon 

groups on such surfaces.  

 

 

 

 

 

 

 

Figure 6.45 a) Schematic plan view of a bulk-terminated (113) diamond surface. 

The dangling bonds are indicated. b) Top view of a (113) (2x1) surface with 

symmetric tetramers as reconstruction elements. A possible unit cell is indicated 

by the thin lines. Filled (open) circles indicate atoms in the top (second) bilayer. 

Dots represent atoms in the third bilayer [339]. 

 

 

 

 

 

 

 

 



Chapter 6: Thermal Oxidation of CVD diamond 

 

228 

6.7   Conclusions 

The rates of dry thermal oxidation of {100} and {111} diamond planes of cubo-

octahedral CVD crystallites in O2 have been measured by optical profilometry for the 

low temperature regime of 535
o
C to 600

o
C. The activation energies of the rate-limited 

step were determined to be 221 ± 34 kJ mol 
-1

 and 286 ± 29 kJ mol 
-1

, respectively for 

the {100} and {111} planes respectively. This is the first report on the reaction order 

and activation energy of CVD {111} diamond surfaces and complements the data 

previously reported for {100} surfaces.  

Formation of etch pits has been observed on CVD {100} diamond surfaces and 

oxidation proceed, under these conditions, via a step mechanism. The results presented 

here are consistent with oxidation mechanism for natural {100} diamond. Isotropic 

etching of {111} CVD diamond surfaces during oxidation occurs, under the conditions 

examined, and positive etch pits are preferentially located on surface imperfections. It is 

the first time well-defined etch pits have been observed on both CVD diamond planes. 

The creation of {113} diamond planes has been observed between the two diamond low 

index planes (100) and (111) upon thermal oxidation. Step propagation along the edges 

of the {100} diamond surface exposes the {113} diamond plane. It was shown that step 

generation on the {100} diamond due to high oxidation anisotropy between the {111} 

and {100} planes is necessary but not directly related to the propagation velocity of the 

generated steps.  
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Chapter 7: Conclusions & future work 

7.1 Concluding remarks 

It has been demonstrated that high quality {100} faceted diamond thin films have been 

deposited on silicon substrates by microwave plasma chemical vapour deposition. High 

azimuthal orientated {100} diamond films have been deposited on silicon substrates by 

applying biased-enhanced nucleation. Atomic force microscopy had shown that on 

average the as-grown {100} diamond thin film crystallites exhibit a surface roughness 

of Ra= 3.1 ± 0.1 nm and Ra = 3.3 ± 0.3 nm for the high azimuthal and azimuthally 

disordered crystallites of the film. The presence of oxygen groups on the as-grown 

{100} diamond surfaces has been observed by XPS analysis. The surface roughness of 

the CVD {100} diamond crystallites was reduced upon further exposure to hydrogen 

microwave plasma, and an average surface roughen of Ra = 0.9 nm has been obtained 

after 20 hours of hydrogen plasma exposure. Smoothening of the (100} diamond 

surfaces was not accompanied by surface pitting or etch pit formation. The anisotropy 

between the etch rate of CVD {100} diamond surfaces and along the <110> directions 

has both evaluated from AFM topographic analysis. Hydrogen microwave plasma 

exposure decreases oxygen coverage on the diamond surfaces, and resulted in a oxygen 

and sp
2
 free surface. The electrical conductivity of the {100) diamond films have been 

found to increase by exposure to hydrogen microwave plasma, subsequently exposure 

to ambient conditions resulted in a further increase of the surface conductivity.  

 

Etching of {100} diamond films by oxygen reactive ion etching has been demonstrated. 

Etch rates have been evaluated as a function of oxygen pressure, RF power and gas flow 

rate. The maximum etch rate measured for {100} highly oriented diamond films was 

found to be 23 nm min
-1

 at 250W RF power and 20mTorr applied pressure. Etching of 

diamond films with oxygen reactive ion etching has been accompanied by the formation 

of columnar structures. Preferential formation of columnar structures has been observed 

on the intergranular area and {111} diamond facets. Surface roughness of the {100} 

diamond crystallites increased dramatically due to columnar formation. The reactive ion 

etched {100} diamond surfaces were found to undergo graphitisation and to contain 

oxygen groups, as carbonyl and carboxyl. Contamination of the diamond surface with 

silicon was observed for all the samples etched by oxygen reactive ion etching. The 
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silicon contamination was found to be preferentially resident on the tip of the columnar 

structures and to a smaller extent on the surrounding diamond area. 

 

The {111} diamond plane was found to exhibit a higher oxidation rate in respect to the 

{100} diamond plane for the temperature range of 535
o
C to 600

o
C. The activation 

energies of  221 ± 34 kJ mol 
-1

 and 286 ± 29 kJ mol 
-1

, have been measured for {100} 

and {111} diamond planes respectively. Crystal imperfections on both {100} and {111} 

diamond surfaces were found to be preferentially attacked by thermal oxidation. Etch 

pit formation accompanied surface morphological changes on both {100} and {111} 

diamond planes up thermal oxidation exposure. Positive, etch-pits referred as trigons 

have been observed on oxidised {111} diamond planes. Also the {111} surface 

undergoes pitting and the surface roughness increased with the duration of thermal 

oxidation. Two different types of etch pits have been observed on {100} diamond 

surface, a square-type with sides normal to [110] directions and a hollow-type 

distributed over the crystallites surface. Although the source of the nuclei for pit 

formation on {100} diamond surfaces is not clear, lateral step propagation resulted into 

enlargement of the pits sides and increase of the surface roughness with the duration of 

thermal oxidation. The diamond {113} plane has been observed to be exposed between 

the {100} and {111} diamond planes under the present thermal oxidation conditions. 

Based on experimental observations in has been proposed in these studies that the high 

anisotropy between the oxidation rates of {100} and {111} diamond planes, induces 

step propagation on the more oxidation resistant {100} diamond plane. As the step 

edges would be more reactive than the terraces it was found that step propagation would 

result in the exposure of the {113} diamond plane. 
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7.2 Further work 

Due to a breakdown on the microwave unit controller of the MPCVD system and 

insufficient funds to provide a replacement of the vital key components the 

investigation on hydrogenation and growth of diamond surfaces has stopped.  

The production of atomically smooth diamond (100) surfaces which are defect free is a 

goal which will be required for epitaxial growth of diamond and the utilisation of 

diamond based devices. In view of the length of time required to attain a roughness 

commensurate with this aim with a pure hydrogen plasma, it would be worth exploring 

the possibility of using hydrogen/oxygen plasmas of differing mole ratios and then 

finally terminating the surface with hydrogen with a pure hydrogen plasma.  

The efficiency of the hydrogen and hydrogen/oxygen plasma to remove surface defects 

from the diamond surfaces can be investigated by employing cathodoluminescence (CL) 

and photoluminescence (PL) spectroscopies.  

One of the major downfalls in the reactive ion etching study of diamond surfaces was 

the inability to control any residue contamination of the RIE system from previous 

etching processes. Reduction and control over any residue contamination and induced 

impurities could be achieved using a RIE system exclusively for etching diamond 

surfaces or by providing a suitable cleaning procedure of the etching chamber prior to 

any etching process.  

The selective formation of columnar structures on (111) diamond surfaces has been 

demonstrated to be influenced by the process conditions of the reactive ion etching 

process. Further investigations are necessary to elucidate the possible mechanism that 

influence and alters the chemical reactivity between the diamond planes with impurities. 

Angle resolved XPS spectroscopy would be able to provide information on the surface 

and in depth distribution of the diamond surfaces upon reactive ion etching. Structural 

changes upon reactive ion etching could be further investigated by HRTEM as well as 

the crystal structure of the columnar structures.  
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Electrical characterisation in vacuo and at room conditions would be able to provide 

crucial information for the possibility of applying the columnar structures for diamond 

electron emitters and diamond electrodes.  

Progress has been made, especially from the analysis of the oxidation of cubo-

octahedral crystallites, on the relative thermal oxidation rates of low index planes of 

diamond. However, further work will be needed to image the respective planes by 

scanning tunnelling microscopy to observe the formation of atomic steps. In this thesis, 

studies were made on intrinsic diamond. With the increasing popularity of boron doped 

diamond as electrodes, it would be informative to study the effect of dopants such as 

Boron or Nitrogen on the oxidation rates of well characterised planes of diamond.  In all 

these samples, additional work would be required to study the effect of water vapour on 

the kinetic parameters since previous work on natural single crystal diamond has 

indicated a change in the mechanism due to the presence of water. 

Finally, there remains considerable uncertainty as to the microscopic mechanism of the 

oxidation of the (111) surface of diamond. The etching proceeds with considerable 

roughening of the surface even at the earliest stages of oxidation. Techniques would 

need to be developed to study monolayer oxidation of the (111) surface to be able to 

observe the movement of the atoms and interaction with molecular oxygen. 

Investigation of thermal oxidation on an atomically smooth (111) diamond surface by 

employing scanning tunnelling microscopy would enable to retrieve important 

information for the oxidation mechanism down to microscopic level.  

There are still a large amount of information to be extracted from the (113) diamond 

surface using STM and other characterisation techniques. Further work on the (113) 

diamond surface will investigate the surface reconstruction and stability upon oxygen or 

hydrogen termination, and a clean carbon surface. Growth on (113) diamond surfaces is 

a possibility, which may open the route to explore new surface phenomena.  
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