
Geometric margin domain description with

instance-specific margins

Adam W. Gripton

A dissertation submitted to the Postgraduate Studies Committee

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Heriot-Watt University

Department of Physics

School of Engineering and Physical Sciences

May 17, 2011

The copyright in this thesis is owned by the author. Any quotation from the

thesis or use of any of the information contained in it must acknowledge this

thesis as the source of the quotation or information.

Abstract

Support vector domain description (SVDD) is a useful tool in data mining, used

for analysing the within-class distribution of multi-class data and to ascertain

membership of a class with known training distribution. An important property

of the method is its inner-product based formulation, resulting in its applicability

to reproductive kernel Hilbert spaces using the “kernel trick”. This practice relies

on full knowledge of feature values in the training set, requiring data exhibiting

incompleteness to be pre-processed via imputation, sometimes adding unneces-

sary or incorrect data into the classifier. Based on an existing study of support

vector machine (SVM) classification with structurally missing data, we present a

method of domain description of incomplete data without imputation, and gener-

alise to some times of kernel space. We review statistical techniques of dealing

with missing data, and explore the properties and limitations of the SVM proce-

dure. We present two methods to achieve this aim: the first provides an input

space solution, and the second uses a given imputation of a dataset to calculate an

improved solution. We apply our methods first to synthetic and commonly-used

datasets, then to non-destructive assay (NDA) data provided by a third party. We

compare our classification machines to the use of a standard SVDD boundary, and

highlight where performance improves upon the use of imputation.

i

Acknowledgements

I would like to thank my supervisor, Dr. Weiping Lu, for constant help and guid-

ance throughout this project and for allowing me the independence to guide my

research direction whilst ensuring I remained focused. I also owe my gratitude to

Prof. Michael Christie, whose critical feedback and mentoring have allowed this

thesis document to do justice to the project. My thanks also go to Prof. David

Corne for many helpful discussions and providing his services as internal exam-

iner, as well as external examiner Dr. Bruce Worton for his constructive criticism.

I also acknowledge the input of Dr. Peter Clifford and Dr. Geoff Nicholls for

their in-depth discussion of multi-classifier methods in that I include in §3.4.3.

Thanks also to David Tax for his input during the ICPR 2010 poster session.

Finally, I offer my gratitude to the ever-helpful library staff at Heriot-Watt

University, Edinburgh University and Glasgow University for providing me ease

of access to the necessary material I required to produce this document.

This project was funded by a CASE award principally funded by the Engineer-

ing and Physical Sciences Research Council (EPSRC). Acknowledgement is also

due to the Atomic Weapons Establishment (AWE) for providing the emissions

dataset, and to the team there for providing general advice and support.

ii

Contents

1 Introduction 1

1.1 What is classification? . 1

1.1.1 A simple exercise . 2

1.1.2 Features of a decision rule 4

1.1.3 Stability and feature extraction 8

1.1.4 Model simplicity . 11

1.1.5 Occam’s razor . 12

1.1.6 Curve fitting . 13

1.1.7 Remarks . 15

1.2 Verification . 16

1.2.1 Expert replacement . 18

1.2.2 Target for this study . 21

1.2.3 Remarks . 23

1.3 Project motivation . 24

1.3.1 Central theme . 24

1.3.2 Application to the external dataset 25

1.3.3 Structure of thesis chapters 26

iii

CONTENTS iv

2 Classification with full data 29

2.1 Conventions . 29

2.2 Classification methods . 32

2.2.1 Bayes’ Theorem . 32

2.2.2 Naı̈ve Bayes classification 33

2.2.3 Parzen windows . 35

2.2.4 Principal component analysis (PCA) 36

2.2.5 Linear discriminant analysis 39

2.2.6 Support vector machines 40

2.2.7 Support vector domain description 44

2.2.8 Domain described SVC 45

2.2.9 Using multiple classifiers 46

2.3 Kernel spaces . 48

2.3.1 Definitions . 49

2.3.2 The kernel trick . 50

2.3.3 Kernel centring . 52

2.3.4 Kernel standardisation 53

2.3.5 Kernel SV methods . 55

2.4 Solving optimisation problems 56

2.4.1 SVM . 56

2.4.2 SVDD . 59

2.4.3 Domain described SVC 60

2.4.4 Support vectors . 62

2.4.5 Quadratic programming and LibSVM 64

CONTENTS v

3 Dealing with missing data 65

3.1 Background . 65

3.1.1 Notation . 66

3.1.2 Models . 66

3.1.3 Assumptions . 68

3.1.4 Common types of missingness 70

3.1.5 Structurally missing data 74

3.2 Simple methods . 77

3.2.1 Trivial methods . 78

3.2.2 Imputation . 79

3.2.3 Adding extra features . 81

3.3 Expectation-maximisation (EM) 83

3.3.1 Algorithm . 84

3.3.2 Example . 85

3.4 Methods for structural missingness 87

3.4.1 Infinite imputations . 88

3.4.2 Other methods . 90

3.4.3 Discussion of multi-classifier methods 92

3.5 Discussion of statistical imputation 97

4 Geometric SVM with instance-specific margins 100

4.1 Introduction . 100

4.2 GMSVM formulations . 102

4.2.1 Method 1: hard margin formulation 103

4.2.2 Method 2: quadratic approximation 104

4.2.3 Method 3: soft margin formulation 105

CONTENTS vi

4.3 Discussion of GMSVM method 107

4.3.1 Weighting terms . 108

4.3.2 Kernel extension . 111

5 Exact centre domain description 113

5.1 Motivation . 113

5.2 Re-derivation of linear SVDD for GM 115

5.2.1 Introduction . 115

5.2.2 Formulation . 116

5.2.3 Objective function . 121

5.3 Development of kernelisable system 122

5.3.1 Introduction . 122

5.3.2 Non-separability of distance metric 125

5.3.3 Distance matrices . 126

5.3.4 Well-behaved linear kernel 127

5.3.5 Well-defined kernel distance in non-FDC 129

5.4 Exact centre-based method . 133

5.4.1 Formulation . 134

5.4.2 Value-based algorithm 134

5.4.3 Gradient-based algorithm 135

5.4.4 Comments . 137

5.5 Preliminary tests . 138

5.5.1 Iris data, variable missingness ratio 139

5.5.2 Differing centre points 142

5.5.3 Random data, variable margin softness 143

5.5.4 Discussion of preliminary tests 143

CONTENTS vii

5.6 Results on synthetic data . 148

5.6.1 Other experimental variables 148

5.6.2 Synthetic datasets . 151

5.6.3 Observations . 152

6 Dual optimisation domain description 155

6.1 Algorithm . 155

6.1.1 Motivation . 155

6.1.2 Derivation . 159

6.2 Discussion . 164

6.3 Method preparation . 165

6.4 Joint optimisation approaches . 167

6.4.1 Naı̈ve constrained optimisation 168

6.4.2 Particle swarm optimisation 169

6.4.3 Comments on results . 177

6.5 Cross validation . 178

6.5.1 Recap of cross validation 178

6.5.2 Shape of windowing function 179

6.5.3 Other parameters . 182

6.6 Method preparation . 183

6.7 Results on synthetic data . 185

7 Radiation emissions data 188

7.1 Introduction . 188

7.2 Spectroscopy data . 189

7.2.1 Gamma rays . 189

CONTENTS viii

7.2.2 Interaction with matter 190

7.2.3 Real-life spectra . 193

7.2.4 Detector differences . 195

7.2.5 Calibration information 197

7.3 Neutron data . 198

7.3.1 Interaction with matter 198

7.3.2 Multiplicity arrays . 199

7.3.3 Data files . 202

8 Tests on emissions data 204

8.1 Feature extraction . 204

8.2 Selected features . 206

8.2.1 Compton edge position 206

8.2.2 Area under graph . 208

8.2.3 Neutron features . 209

8.2.4 Neutron tail properties 211

8.3 Pre-processing . 214

8.4 Results tables . 219

8.4.1 Categorised by Fissile Element 219

8.4.2 Cross validation on Fissile Element 227

8.4.3 Categorised by Shielding Method 231

9 Conclusions 237

9.1 Interpretation of results . 238

9.1.1 Synthetic datasets . 238

9.1.2 Provided datasets . 240

CONTENTS ix

9.2 Evaluation of project . 242

9.2.1 Appraisal of methods . 242

9.2.2 Further work . 245

9.2.3 Concluding remarks . 247

A NDA data and supporting notes 248

A.1 Introduction . 248

A.2 Experimental geometry . 252

A.3 Data structure . 255

A.4 Received consignments . 256

List of Tables

1.1 Odd-one-out number sequences 3

3.1 Types of missing data . 95

5.1 Exact centre, linear kernel . 140

5.2 Exact centre, quadratic kernel . 141

5.3 Differing centre points . 142

5.4 Comparison structure . 150

5.5 XCDD results: 2-D cluster with value filter 152

5.6 XCDD results: Two disjoint 2-D clusters 153

5.7 XCDD results: One common dimension 153

6.1 DODD results: 2-D cluster with value filter 185

6.2 DODD results: Two disjoint 2-D clusters 185

6.3 DODD results: One common dimension 186

7.1 Comparison of detectors . 196

7.2 Typical neutron multiplicity array 201

8.1 Summary of features used . 214

x

LIST OF TABLES xi

8.2 Characterisation of feature groups 215

8.3 Data and feature groups . 215

8.4 Breakdown of data by class and subclass 217

8.5 NDA results: Fissile element 1: Cf-252 220

8.6 NDA results: Fissile element 2: Uranium 221

8.7 NDA results: Fissile element 3: Plutonium 222

8.8 NDA results: Fissile element 4: Ba-133 223

8.9 NDA results: Fissile element 5: Co-60 224

8.10 NDA results: Fissile element 6: Cs-137 225

8.11 CV study: Zero imputation, Linear kernel 228

8.12 CV study: Zero imputation, Quadratic kernel 228

8.13 CV study: Mean imputation, Linear kernel 228

8.14 CV study: Mean imputation, Quadratic kernel 229

8.15 CV study: NN imputation, Linear kernel 229

8.16 CV study: NN imputation, Quadratic kernel 229

8.17 CV study: PSJO method, Linear kernel 230

8.18 CV study: PSJO method, Quadratic kernel 230

8.19 CV study: Method comparison, total correctly predicted 230

8.20 Shielding study: Radii for Element 1 232

8.21 Shielding study: Radii for Element 2 232

8.22 Shielding study: Radii for Element 3 233

8.23 Shielding study: Radii for Element 4 233

8.24 Shielding study: Radii for Element 5 234

8.25 Shielding study: Radii for Element 6 234

8.26 Shielding study: Minimal radii, linear kernel 235

LIST OF TABLES xii

8.27 Shielding study: Minimal radii, quadratic kernel 235

A.1 Full description of NDA data, page 1 253

A.2 Full description of NDA data, page 2 254

A.3 Full description of NDA data, page 3 255

A.4 Summary of received data . 257

List of Figures

1.1 Odd-one-out images . 2

1.2 Altering images . 8

1.3 Human vs. machine classification 10

1.4 Model simplicity example . 11

1.5 Occam’s razor: curve fitting . 13

1.6 Expert replacement system . 19

1.7 Signal construction in assigned dataset 20

2.1 Parzen windowing . 35

2.2 PCA and LDA . 37

2.3 SVM and SVDD . 41

2.4 Inner product contours . 41

2.5 Domain described SVC - linear 45

2.6 Domain-described SVC: adapted method (a = 1, q = 1/2) 61

3.1 Subspace sphere expansion . 93

4.1 Geometric SVM: Underestimation of margin 101

5.1 SVDD with missing data . 116

xiii

LIST OF FIGURES xiv

5.2 KPCA with missing data comparison 130

5.3 XC variable margin part 1 . 144

5.4 XC variable margin part 2 . 145

6.1 Kernel completions in feature space 159

6.2 PSO example . 172

6.3 Realisations of support vectors 176

7.1 Photoelectric absorption . 191

7.2 Compton scattering . 192

7.3 Pair production . 193

7.4 Multiple Compton events, single escape peak 195

7.5 Comparison between NaI and HRGS detector 197

7.6 Operation details of the TCA . 200

8.1 Location of Compton edge by fissile material 207

8.2 Difference in areas under graph by shielding method 209

8.3 Neutron mean multiplicity data, by fissile material 210

A.1 Experimental geometry . 252

Chapter 1

Introduction

1.1 What is classification?

Classification is, put simply, the basis of all decision making. It is the process

whereby the nature of an inherent property of an object is analysed or predicted.

The capiscum pepper can be classified by colour into red, yellow, green or or-

ange. People can be classified by gender, race, religion, occupation, amongst a

variety of other classes. Music could be classified by the nature of its tempo,

its timbre or its mood. It extends also to analysis of utility or worth: a picture

could be classified as a work of art or a child’s scribbling; an old clock could be

classified as a priceless antique or a worthless fake; a political policy could be

classified as worthy of submission as a bill in Parliament, or considered unworthy

and thrown out. Classification is at once both informative and predictive, works

essentially on known data, and when employed for prediction uses feature infor-

mation – measurable aspects of an object’s known properties – to form the basis

of the nature of the labelling of an object. It is both subjective and objective, and

1

1.1 What is classification? 2

both highly specialised and the most natural reflex known to man: juries debate

over long time periods to classify defendants as guilty or otherwise based on the

interpretation of complex evidential data, yet even in the womb an unborn baby

can recognise a voice as belonging to its parent from instinct alone. Most signif-

icantly, it is an inherent ability bestowed upon all living things, but is something

that an untrained computational system is entirely incapable of. Furthermore, as

we shall see, unlike many other tasks, the task of programming a computer with

artificial intelligence, which we broadly define here as simply the ability to clas-

sify in whichever context the term is used, is sometimes highly complicated and

requires significant programming effort to attempt. This dichotomy is no more

clearly seen than in the field of image recognition.

1.1.1 A simple exercise

(a) (b) (c) (d)

Figure 1.1: Four images: Which is the odd one out?

To demonstrate this ability inherent in a natural cognitive (and not necessarily

human) mind, we shall begin this discussion with a few simple questions. Firstly,

we shall ask which of the following 200 × 200 pixel images in Figure 1.1 is the

odd one out. Next, we consider the set of sequences of numbers given in Table

1.1, and ask for each of these four sequences, which number is the odd one out.

1.1 What is classification? 3

{1, 13, 47, 28, 39, 11, 17, 25} (1.1)

{9, 121, 144, 49, 57, 64, 16, 100} (1.2)

{e, π,
√

2,
5

7
, (3)1/3} (1.3)

{5, 19,−13, 37, 61, 15, 2} (1.4)

Table 1.1: In each sequence, which is the odd number out?

For the first problem involving images, the choice would immediately be clear

to even a small child; image (b) depicts a puppy whereas the others depict kit-

tens. Nevertheless, the high-speed decision-making computations involved in our

brains when computing this seemingly trivial decision are themselves complex,

and a decision which seems simple to us would perhaps not be as simple to a

computer. We return to this point below. In the second exercise, it takes only

a passing knowledge of primary-school arithmetic to deduce the answers to the

first two problems: in the first, 28 is the only number we could call ‘even’, and

in the second we see that 57 is the only number here which is not a square of a

natural number. In the third, we may require some high-school mathematics in

recognising that 5
7

is the only rational number in this set. However, with the fourth

problem, no amount of intuition is seemingly of help. Is it (−13), being the only

number below zero? Is it 15, being the only number whose modulus is non-prime?

Perhaps it is 2, for being the only even number? Suddenly we see that it is not

always possible to be sure of ourselves in seemingly simple challenges such as

this. We could, for example, have realistically said that in the first problem, 47 is

the only number above 40; or that in the second, 64 is the only sixth-power of a

1.1 What is classification? 4

natural number in the list. Figure 1.1(a) could equally be seen as different, since

it depicts a sleeping animal, whereas the others are awake. A multitude of rules

could be derived, in fact, to prove that in any of the cases above, one particular

number or image, or even many, could be said to ‘stick out’ apart from the others,

although some rules make more intuitive sense than others. What is wrong, for

example, with saying 100 is the only number in sequence 1.2 that is equal to 100?

1.1.2 Features of a decision rule

In general, the following questions could be posed of the way in which we could

handle any process of classification:

• How do we choose from a seemingly infinite wide range of decision criteria

to arrive at the most ‘intuitive’?

• How do we know when a problem can and cannot be solved in a simple

way?

• Why in this problem is it better to develop a decision rule based on the data

given, as opposed to proposing a model a priori (before any evidence)?

• How can we convince ourselves that our decision rule is accurate and will

hold true given novel data – that is, new examples drawn similarly on which

to test our basis of decision-making?

• Would a computational machine be able to arrive at the same conclusions

as us given the problems above?

1.1 What is classification? 5

All of these concepts are important in the fields of classification and machine

learning. Machine learning can be defined1 as:

“The process or technique by which a device modifies its own behav-

ior as the result of its past experience and performance.”

The motivation for training a computer to perform a classification task, as opposed

to, say, attempting to perform the same task by employing humans alone, is sim-

ple to frame. Suppose we had one million sets of images of kittens and puppies

due to various types of photographs, similar to those given in Figure 1.1 above,

and it was important that they were classified accurately and quickly. Although

a human operator may be able to process sets of odd-one-out challenges involv-

ing discrimination between kittens and puppies with a good degree of accuracy

– perhaps over 99% – the nature of the human body would ensure that the time

taken to process a million sets of these images would be roughly 16 weeks of flat-

out work on a 35-hour per week schedule, non-stop at the rate of one every two

seconds. However, although this may cause considerable psychological stress to

the unfortunate person involved, it is still true that the accuracy rate would ulti-

mately be impressive given only the intuition imparted onto the person as a child

growing up, with no special training needed in order to perform this particular

task. This example leads us to the following ‘philosophy’ behind the difference

between human learning and artificial intelligence:

Humans, although slow and inefficient, are incredible classification

machines in terms of accuracy, intuition and simple model compari-

son.
1McGraw-Hill Dictionary of Scientific and Technical Terms, 6th edition

1.1 What is classification? 6

The numerical examples above show this well, in that we can say it makes more

sense given the first set of data to look at the remainder of each datum when di-

vided by two, rather than to say (albeit still correctly) that only one of these num-

bers is above 40. Both decision rules lead to one of the datapoints being classified

differently from the rest, which achieves the required aim, and yet working with

odd or even numbers seems more suited to this task. If we were asked to describe

our thought processes in how we may reach this decision of one model’s prove-

nance over another, however, we may be stumped; similarly, if we were asked

to design a hard-and-fast rule for when the even-number criterion should be ap-

plied to a dataset and when the above-40 criterion should be applied, it is equally

unclear. To give an example of this, which is the odd one out in the following

dataset?

{1005, 1001, 1007, 39, 1008, 1011, 1009, 1023} (1.5)

Although this dataset has the same properties as Set 1.1 above – namely, it has

eight elements each consisting of natural numbers – it now seems more obvious

which of these competing rules to apply: clearly the entry 39 ‘looks’ more out of

place, even though 1008 is again the only even number in the set. Briefly returning

to the image classification problem above, we also see from the variance present

amongst the images of kittens that a hard-and-fast rule is difficult to arrive at.

Image (a) in Figure 1.1 does not show open eyes, restricting our knowledge of their

colour; image (c) shows a different colour of cat and (d) has an off-white and non-

trivial background. When we consider trying to impart this intuitive knowledge to

a computer in terms of definite code it can use to arrive at a decision, therefore, the

scale of the problem is daunting. Furthermore, the lack of intuition and common

sense possessed by a computer means that when the images in Figure 1.1 are

1.1 What is classification? 7

considered by the machine, instead of seeing kittens and puppies, it sees:

{x1, x2, x3, x4 : xi ∈ N200×200
k } (1.6)

where here Nk refers to the set of natural numbers between 1 and the colour depth

involved, perhaps {1 . . . 256} or {1 . . . 224}. That is, the computer will only see

datapoints consisting of lists of numbers which have 40,000 entries each. With

this information alone, the machine classification process is all but futile. As the

data are of image form, we know a priori that the pixel values will be highly

correlated, with all 40,000 bits per image of information clearly not all being re-

quired; and thus moving any of the images by one pixel in any direction, while

completely changing the vector of numerical values, will alter very little about the

given information to the human observer. Conversely, altering the pixel values

with a complex but known re-arrangement function will produce an entirely oblit-

erated image to the human observer, but one which can be perfectly reconstructed

– and can therefore be seen as equivalent – to a computer. However, suppose for

a moment that all this intuitive information and training data could be given to

a computer, such that it could perform the evaluation of the following decision

function:

f : N200×200
k → {0, 1}, (1.7)

with equal accuracy to a human observer; that is, it can take an image such as

those above and produce a binary result it decrees to be the most likely nature

of the image concerned, with 0 and 1 referring, say, to a kitten or a non-kitten

respectively (it is somewhat misleading to assume that 200× 200 pixel images of

white noise could be meaningfully ‘classified’ as being of a puppy, hence our no-

tation here; if this is also required, we might adapt our training data and decision

1.1 What is classification? 8

function to map to {0, 1, 2} instead). With the speed and reliability of computers,

plus their lack of fatigue and ability to compute non-stop for an indefinite con-

tinuous time period, even if this function evaluation takes 0.1 seconds – itself a

somewhat conservative estimate – the required classification of the four million

images (equivalent to choosing the ‘odd-ones-out’ one million times) would take

4.62 days, meaning an operator could leave the machine running at 5pm on Friday

and have results by 9am on Wednesday!

1.1.3 Stability and feature extraction

The only challenge which presents itself here, of course, is to be able to accurately

construct a function f from enough training data to begin with, and ensure that the

decision function is somehow stable – that is, it can deal with novel data which

have been altered in some realistic way:

(a) Trans. (b) Stret. (c) Noisy (d) Obscured (e) Mapped (f) All

Figure 1.2: Effects of altering images

• (a) translated through a small number of pixels in any direction

• (b) stretched or skewed by a small amount

• (c) augmented by a small amount of noise (Poisson or Gaussian)

• (d) obscured over a small amount of the picture by e.g. a black box

1.1 What is classification? 9

• (e) mapped into a different colour map, or (f) a combination of these.

Generally, these properties can apply to a wider class of datatypes than images

alone, and some form of them can often be queried of any classification process.

In general, good feature extraction from raw data is necessary and sufficient to

have a classification system exhibiting reasonable performance. For example, it is

clear that if our decision rule was based solely on the value of the pixel at location

(x1, y1), it would be incredibly unstable, whereas a sufficiently good feature ex-

traction algorithm could find in an image, for example, the orientation of the ears

or analyse the markings of the animal independently of the information corruption

present in the image. A common rule, and one which a designer of an artificial

system would do well always to observe, is that wherever features are extracted

from raw data, it is usually more useful for them to have some physical signifi-

cance based on the nature of the raw data which has been observed. If we know

that our classifier will be dealing with pictures of animals and its task is to classify

their nature, what is the use in simply querying the value of one particular pixel

if we know from the outset that this pixel would be rendered meaningless by any

of the corruption methods detailed above? Similarly, if we have a collection of

natural numbers, it is perhaps of significance that they belong to N and not R, and

thus a general technique applying to real numbers in general may not always be

the best one – we return to this concept of simplicity in the section §1.1.4 below.

Examples in literature This example, though in itself not very serious, is in

fact indicative of many open problems in machine learning. Chechik et al [14]

give some good examples of these in their paper, notably those of obscuring ar-

eas in handwritten digit recognition from the MNIST data set due to LeCun [43],

1.1 What is classification? 10

and detection of the presence of vehicle shapes in closed-circuit camera images,

studied by Berg [7] amongst others. Moreover, the abilities of humans over com-

puters to recognise heavily distorted data is put to use by the CAPTCHA sys-

tem [46]. Though here, we maintain the examples as being those with respect

to image analysis, it is important to remember that human recognition can also

be equally astute in terms of more general numeric settings, as seen above with

the numerical-based classification problems. Figure 1.32 shows examples of these

(a) Handwritten digits (b) Feature detection in image

(c) CAPTCHA

Figure 1.3: Examples of human vs. machine classification

three contexts of image analysis; all three instances show situations where human-

based picture classification can easily detect something, but where machines clas-

sically find it difficult to extract the correct meaningful information. Figure (a) is

taken from the paper by Chechik et al and shows an example of a major feature of

the number 6 being obscured. Figure (b), from the paper by Berg, demonstrates

the attempted finding of the helicopter object within the image by an automated

algorithm. Finally, Figure (c) demonstrates the utility of the CAPTCHA algo-

2Subfigure 1.3(b) is reproduced with kind permission of Alex Berg, www.acberg.com.

1.1 What is classification? 11

rithm, which prevents automated ‘spam’ entries, generated by a so-called ‘bot’

script, from leaking into the submission forms of websites by requiring that these

words are typed in along with the submission data. As shown, the letters are often

subject to re-shaping by some nonlinear contour and obstruction by lines; features

that a human eye can pick out and see beyond, where a machine would find it

difficult.

1.1.4 Model simplicity

“A theory with mathematical beauty is more likely to be correct than

an ugly one that fits some experimental data.” – Paul Dirac

(a) Observed data (b) One scenario (c) Another scenario

Figure 1.4: Model simplicity: Which scenario is more likely?

To illustrate the importance of the simplicity of a model, consider the example

given here in Figure 1.4 taken from the book by MacKay [50]. In Figure 1.4(a) we

see a simulated “picture” with boxes lined up and an obstruction to the view (e.g. a

tree). Figures (b) and (c) give two possible scenarios for the model, each providing

their own completion of the sector of the image which we cannot see. Figure (b)

provides a model that behind the ‘tree’ there is one large cyan building; Figure

(c) says instead that two cyan buildings of equal height are positioned behind

1.1 What is classification? 12

it, with a small gap in between them smaller than the obstruction. Both models

are, therefore, consistent with the observed data. Intuitively, we may say that the

scenario given in Figure 1.4(b) is somehow more ‘likely’, because the likelihood

of there being two boxes which just happen to be of the same colour and size with

the gap between them falling behind the obstruction is perhaps quite slim. In a

similar way, if we return to the set of numbers given in Equation 1.5 we could

say that given the information that one point is to be classified differently from

the others, the model of whether an entry is greater or less than (say) 1000, would

intuitively be more likely than an odd vs. even model. Both of these ‘hunches’

rely on the assumptions we make about the model that has generated the data in

the first place: with the boxes, for example, the assertion that two congruent cyan

boxes next to each other is unlikely may itself assume that the distribution, colour

and size of boxes is randomly distributed.

1.1.5 Occam’s razor

“It is vain to do with more what can be done with less.” – William of

Ockham (Occam) (c. 1288 - c. 1348)

This quote from Occam, a Franciscan friar, shows that this principle has been

understood for many centuries. The principle attributed to him known as Oc-

cam’s razor [11], namely “entities must not be multiplied beyond necessity”3, is

a significant consideration in all classification tasks. An heuristic principle alone

as opposed to a rigorous mathematical theorem, it implies of many competing

models used to describe a phenomenon that in general the simplest explanation

3Original Latin: “entia non sunt multiplicanda praeter necessitatem”

1.1 What is classification? 13

should be seen as the most likely. We can see this illustrated with the boxes ex-

ample above: why assume that there are two boxes of the same colour and shape,

thus complicating the model and adding extra parameters unnecessarily, where

we could just say it is likely that only one box exists?

1.1.6 Curve fitting

Figure 1.5: Occam’s razor in curve fitting: which approximate fit is more likely?

A similar problem arises when we look at a simple curve-fitting problem to a

handful of one-dimensional datapoints. The challenge, as presented in Figure 1.5,

is to find firstly a member of the class of functions which are polynomials over

the variable x, and furthermore a set of parameters governing a model based on

this class member of functions which is optimised over a least-squares fit to best

fit the data as given. To clarify, the three fits that we depict in Figure 1.5 are the

following members of the polynomial class over x:

f0(x; c(0)) = c
(0)
0 (1.8)

f1(x; c(1)) = c
(1)
0 + c

(1)
1 x (1.9)

f2(x; c(2)) = c
(2)
0 + c

(2)
1 x+ c

(2)
2 x2 (1.10)

1.1 What is classification? 14

where here c(0) ∈ R, c(1) ∈ R2 and c(2) ∈ R3 are the parameters for each of these

models, and it is assumed that we have an optimisation procedure capable of find-

ing, in each case, the maximum likelihood (ML) value of each of these parameter

vectors over their respective domains, given the data. That is, the following ob-

jective for the error function committed by each of the functions fk above can be

minimised over c(k) in each case:

ĉ(k) ≡ arg min
c
φk(c

(k)) =
7∑
i=1

(
yi − fk(xi; c(k))

σi

)2

, (1.11)

where (xi, yi) refer to the observed data, and σi refers to each of the errors involved

in these measurements (this error function is known as a weighted least-squares

fit). In the diagram, this observed data with error bars is given with the dark blue

line; the fit for f0 is green, f1 red and f2 cyan. It is visually obvious that f1 fails to

make much improvement on the fit provided by the constant function f0; however,

f2 could be seen as a better model fit. However, care should be taken before we

make a statement such as “f2 is thus clearly the better fit to this dataset”; note that

there exist seven datapoints in this example, and thus the following function could

be constructed:

f6(x; c(6)) =
6∑

k=0

c
(6)
k xk, (1.12)

providing a ‘sextic’ fit over the data such that for the correct value of c(6), the

mean-squared error would be zero, or less technically that the polynomial function

φ6(x) would pass exactly through the centre of each datapoint as shown. Clearly,

it is erroneous to say that this model is therefore perfect: it only fits the data as

it is so complex, and even a small change in the values of the points (xi, yi) may

result in a wildly different function definition for f6. This situation is analogous

to that alluded to in the previous section, where in the odd-one-out exercises it is

1.1 What is classification? 15

somehow not intuitive to come up with decision rules such as:

• “In exercise 1.2, 100 is the odd one out as it is the only value xi for which

xi = 100”

• “Figure 1.1(c) is a kitten as the RGB value of its pixel at (60, 40) is (212,

157, 116)”

From the examples given above, we see that the major challenge presenting a

designer of an artificially intelligent classifier is twofold: to pick out the best fea-

tures according to the task it is required to perform, and to process the data in the

most efficient, meaningful and appropriate way, again according to the problem

in hand. Good classification could be therefore seen as something of an artform;

no two problems will be the same, as the types of data and the end results are

so wildly varying. Mathematical methods provide the basis of how to classify in

certain cases, but in general there is no one-size-fits-all way of designing a general

classifier, simply because such a concept does not exist. Prior information about

the required task must always be employed, and sensible, human decisions made

on a priori knowledge must provide the foundations behind the designing of a

code in order for reasonable results to be expected.

1.1.7 Remarks

By employing artificial intelligence in solving classification problems, we achieve

the following aims:

• We can categorise objects or concepts according to their measurable quan-

tities.

1.2 Verification 16

• We can make decisions on the nature of an object based on realistic models

of how these features interact with each other.

• We can make predictions of the nature of a novel object when we have

the required information about the nature of other examples we have seen

before: this is known as training data and will be dealt with in depth in

Chapter 2.

• We can quantify certainty, i.e. ascertain how sure we are about a decision

given sufficiently good statistical methods.

In Chapter 2, we will return to techniques which ensure the proper management

of data. We have observed in this chapter that classification is a natural and vital

process in living things which is, in all but fairly trivial cases, a difficult problem

to train an automatic computational system to reproduce well through artificial

intelligence. We have also noted that the principle of Occam’s razor shows that

the simplicity of a model is a vital property of any context in which classification

is taking place, and should be of primary consideration in any realistic attempt to

classify data. Thus, Chapter 2 will build a more mathematical basis into the ways

in which mathematical classification is performed with abstract datasets, through

methods such as alignment techniques, use of Bayes’ theorem and distribution

estimation amongst others.

1.2 Verification

The problem of pattern recognition and feature extraction in gamma-ray emis-

sion spectra from decaying radioactive sources is one which, once researched,

1.2 Verification 17

could yield far-reaching and contextually surprising applications in many areas.

A third party corporation, along with the EPSRC4, have provided partial funding

to this project on the basis that classification techniques could be used to anal-

yse data collected by their Non-Destructive Assay (NDA) group from the decay

of radioactive elements, more details on which are provided in later chapters. A

major problem when dealing with radioactive material which cannot be readily

inspected is that of verification. An engineer charged with the task of verification

of a fissile material may be presented with the following obstacles:

• The machinery he is allowed to use during inspection may be limited in its

accuracy or clarity;

• The time in which he is allowed to make observations may be limited (‘short

count times’);

• The signal may be deliberately altered in some (possibly nonlinear) way;

• A shielding method may be imposed to make the signal weaker or noisier;

and so on.

In each of these cases – and indeed when discussing any potential obstacles – we

need to ask two important questions:

1. After these tactics have been applied to limit the information which the

engineer may obtain, is it still mathematically possible to verify presence of

a material, and if so, to what confidence level?
4Engineering and Physical Sciences Research Council

1.2 Verification 18

2. Suppose, knowing the way in which the data had been corrupted, the en-

gineer designed a relevant ‘decision-boundary’ algorithm to which infor-

mation was input and whose output was, for example, the most likely sub-

stance which was present. Could this machine itself be inspected to deduce

its training data?

These questions are the main motivation for a mathematical study into whether

a classifier can be produced in each case, and whether it can somehow be made

‘singular’: that is, to make the following representative function non-invertible:

f : (T,X)→ (ĉ, α) (1.13)

where here T represents the set of training data, X the set of observations, ĉ

some maximum likelihood estimate for the class of data being observed, and α

the confidence level that this decision is correct. This type of analysis lends itself

well to Bayesian statistical methods, since a quantitative estimate must ultimately

be produced for both the outcome and its likelihood. Using tools such as principal

component analysis, similar dimensional-reduction problems can be implemented

for noisy images. One of the initial aims of a study into this area is to ascertain

the effect each above obstacle would result in, and the ways in which this can be

resolved by statistical methods.

1.2.1 Expert replacement

The usual way of performing this type of analysis – where, say, the results of

a spectroscopy experiment conducted on a decaying piece of radioactive mate-

rial will provide input, and a list of constituent elements/shielding provide results

for output – is for experts to be employed. These scientists, usually with deep

1.2 Verification 19

knowledge of the idiosyncracies of the experiment in question (and therefore with

significant a priori knowledge of the model driving the data construction), would

require as much clear information as possible about the data, and they would use

their experience to determine their statement about the nature of the object being

studied. This project seeks to reduce the need for experts, instead concentrating

on the creation of a “black box” decision making machine which can be operated

by a layman and which, ideally, itself would not contain any sensitive information;

but which would provide the same answers as those of an expert’s opinion.

Technical issues How are experts replaced? Questions that may be raised of a

black box machine would be of the form:

• Would it be possible for anyone to inspect its contents publicly?

• What sort of results would it produce?

• How trustworthy would its results be?

• How stable (insensitive to small alterations in initial conditions) would it

be?

• How secure would knowledge of training data be on inspection?

Figure 1.6: Expert replacement system

1.2 Verification 20

Figure 1.7: Signal construction in assigned dataset

1.2 Verification 21

The usual process can be modelled as an iterative flowchart, as shown in Fig-

ure 1.6. In terms of how a signal is constructed, Figure 1.7 shows the relevant

flowchart for this. As a result of this complex process, there are many potential

features of a spectroscopy-based signal to analyse, thus giving plenty of choice

for the features to extract. In a consultation regarding this project, however, it

was agreed that any classification procedure should not attempt to ‘re-invent the

wheel’ by approximating too closely the methods of an expert in the usual process:

clearly, if a great deal of knowledge was gained about exactly how the processes

in Figure 1.7 affected a signal and their quantitative nature in each case of a de-

caying material and shielding method, the project would – paradoxically – end up

being of little worth, since many of these facts would already need to be known.

1.2.2 Target for this study

If this project is to have been regarded as a success, it must have achieved two

aims. Firstly, it must shed light on the “expert replacement black box” classifi-

cation problem as originally posed, on condition that sufficiently complete and

inter-comparable training data is provided; secondly, it must break new ground in

terms of an abstract classification problem. The latter aim we describe more in

depth in the following section §1.3. These should be seen as two parallel aims:

if we are to be successful in the mathematical theory behind techniques based on

types of data found in the consignment, results gained through our process should

be able to carry over to using it in this particular application.

Clearly, any classification system is only ever as good as the data it is provided

with, and thus we shall dedicate a section later on to describing the various feature

extraction algorithms we shall employ. As stated above, effective feature extrac-

1.2 Verification 22

tion in any application will lead to accurate measurements of underlying physical

quantities that change the nature of the observations, leading ultimately to better

separation of data by property in the feature space. This in itself is a requirement

of a classifier which can give results that are more reliable, and with a greater

degree of certainty.

In conclusion, the following should be seen as a “high-level” target for the

study:

A rough “black box” classifier, which can take spectral, neutron and

image information and produce some sort of statement about what is

going on, insofar as it will be able to tell information set A from B

with a certain accuracy.

Consultation The form of data provided was always seen as crucial in order

to give the project the best chance of success, in that consultations were held at

an early stage to ensure that the data was complete in terms of the nature of the

classification that was required to be done. Furthermore, the final dataset showed

a sufficient quantity of data to perform a classification task: a classifier system

can only function if there is an element of inter-comparability in the data suite it is

provided with; and equally, the more repeated experiments, different timescales,

etc. the better in terms of enhancing a classifier’s usefulness. Another way in

which the external liaison parties were of significant assistance was by providing

useful pointers towards feature extraction: this will be covered more fully in a

later section.

1.2 Verification 23

Factors beyond the remit As we shall see, there are inevitably other factors

regarding the set of experimental data, such as apparatus distance, location in the

room, geometry of the hemispherical shell, etc., which should be considered as

beyond our remit. The priorities for the study will lie in examining the differ-

ences between fissile elements, shielding material, and timescale. Nevertheless,

the study should be seen as a success if it is relatively simple to provide an ex-

tension of its method should another very significant parameter arise which was

hitherto unaccounted for. Caution should again be exercised here, however, as ex-

plained in the above section regarding Occam’s razor: it can sometimes be tempt-

ing to try and model extra variables, but this may only have an effect of degrading

an otherwise elegantly simple system.

1.2.3 Remarks

This report will also, therefore, serve as an introduction to this area of study. A full

explanation of the process of gamma-ray spectrometry and neutron data collection

will be given in Chapter 7, detailing the relevant phenomena which occur, and

in many cases must be overcome, in the analysis of a gamma-ray spectrum. A

discussion on shielding methods will be provided, and the effects of the above

corruption tactics will be considered. The theory will be used to examine the data

which has been received, and finally in Chapter 8 a full set of results and analysis

will be produced on the relevant data.

1.3 Project motivation 24

1.3 Project motivation

So far, we have introduced the following parts of the thesis: Chapter 2 will give

a survey on statistical methods for classification given a dataset; Chapter 7 will

describe the feature extraction process and consider the types of data provided;

and Chapter 8 will provide the necessary results on the set we have been provided

with. The remainder of the thesis we dedicate to developing a new technique

in classification, based on certain specific assumptions about phenomena which

could occur within an abstract dataset, most notably that of missing data. In order

to achieve this, we shall need to base it around a certain theme, which we describe

below.

1.3.1 Central theme

The following subsection describes a ‘vision’ for this project. Various terms used

in the paragraph which follows will be terms that shall be described in later chap-

ters, since the technical details are not within the scope of this introduction section.

Thus, for now we describe the project conceptually. The thesis is as follows:

Thesis specification It is possible to create a non-parametric statistical classi-

fication machine designed for a general, abstract dataset of real values, such that

where data is missing through non-applicability rather than being not measured,

the classifier can use the given information for the data present without making

any assumptions about the distribution of the missing data, thus avoiding impu-

tation methods. Furthermore, the process will be readily extendable to certain

types of kernel reproducing Hilbert spaces. In particular, we shall show that sup-

1.3 Project motivation 25

port vector domain description based classification, a method used in literature for

multi-class analysis, can be extended to handle missing data in a way which elim-

inates the need for a pre-processing step via an imputation method. The method

will have direct applications to the structure and type of data present in the dataset

provided, and thus will achieve two aims. Firstly, it will provide a logical, rig-

orous extension to methods already present in literature dealing with kernels and

those dealing with missing data; and secondly, it will provide some insight into a

way in which the provided dataset could be analysed in this way.

1.3.2 Application to the external dataset

Writing retrospectively, we can describe the reasoning behind the choice of di-

rection as described above. As we shall see in Chapter 7, the provided datasets

consisted of multiple experiments per session using different types of detection

equipment. These in themselves were incomplete, in that sometimes a particu-

lar detector would not be used. Thus, given a sensible feature extraction process

which provides some features for each of the detector readings themselves, the

natural state of the full dataset produced will be that of one with missing data.

We wish to provide a method which does not assume the results of any detector

experiment that was not performed, whilst being able to operate in a kernel space

and thus provide greater flexibility with regards to the subtle non-linear features

which could be exhibited by any abstract dataset.

1.3 Project motivation 26

1.3.3 Structure of thesis chapters

This thesis document will be divided into three principal sections, corresponding

to three themes: firstly, we deal with the background information and litera-

ture reviews in Chapters 2, 3 and 4; secondly, we introduce our two methods in

Chapters 5 and 6, including the results of application of these methods to artificial

data in §5.6 and §6.7. Finally, we devote Chapters 7 and 8 to a full study of the

physical processes, feature extraction and classification involved with the dataset

provided for us, drawing our conclusions from the study in Chapter 9. The three

themes are explored in more detail below.

Background and Literature As already mentioned, Chapter 2 will deal with

classification in a very general sense, observing the ‘usual’ methods which are

used to arrange and classify abstract datapoints with statistical methods. It will

describe these methods with the assumption that no data is absent within a dataset,

and will thus also explore the methods of kernel spaces, describing the processes

involved in extension to these more general formulations. The concept of the

support vector description machine will be introduced with the intention of devel-

oping it later once combined with methods described in the following chapters.

Chapter 3 will provide a full introduction into the current statistical theory of

missing data, paying particular attention to the cases where a known probabilistic-

based method works on specific assumptions of an underlying parametric model

driving the dataset and the modelling of the missingness case as being essentially

random. We will comment on various useful methods which have been developed

in this case, and show in which situations they could exhibit shortcomings or make

too many assumptions. Methods dealing with structurally missing data will fol-

1.3 Project motivation 27

low so as to provide some basis for building a later theory specifically tuned to this

type of data absence. Following on from this, Chapter 4 will provide an in-depth

description to a method developed by Gal Chechik et al for training a specific

type of classifier – the support vector machine – to handle structurally missing

data. This description will introduce the concept of instance-specific margins on

which we shall later build our methods. We review the methods used and note the

analysis with which Chechik et al arrived at each method. We observe the areas

of this method it is possible to take forward and motivate our use of the instance-

specific margin, itself taken from the principle of this method. Particular care will

be taken in the analysis of how their method applies to reproducing kernel Hilbert

spaces, as this is an important property a classification method can possess to gen-

eralise into an arbitrarily complicated mapping space, thus being able to combine

a method designed for use on the input features into an equivalent one applied to

complex products of these.

Our methods In Chapters 5 and 6 we take ideas from the previous three chap-

ters and show how they can be combined into a full theory of the support-vector

domain description function that operates under the presence of structurally miss-

ing data. The concept of the SVDD, and the motivation for its use, will be taken

from Chapter 2, as will the concepts involving the use and utility of kernel spaces;

the theories already present to deal with multiple imputations will be used from

Chapter 3; and the concept of instance-specific margins from Chapter 4 will also

feed into the theory. Specifically, Chapter 5 will deal with the introduction of

our ‘exact-centre’ (XC) method, and Chapter 6 with our ‘dual-optimisation’ (DO)

method. We provide results in both of these chapters from analysis of datasets

1.3 Project motivation 28

with structurally absent features, and identify the situations in which they out-

perform an SVDD with imputed data in terms of sphere volume.

Provided data Chapter 7 will introduce the physical concepts behind radiation

emissions data, giving a full background into the structure of the dataset and the

processes which produced the various kinds of data. This information will then

be used in Chapter 8 to motivate the choice of physically significant features

we decided to extract; we shall then provide a full account of the classification

activities we performed on the dataset, giving our conclusions to the whole study

in Chapter 9.

Chapter 2

Classification with full data

2.1 Conventions

Datasets We define a dataset X = {xi}Ni=1, typically xi ∈ Rd, as being a col-

lection of N observations (known as datapoints) of some phenomenon, each of

these being furnished with d distinct characteristics, known as features. The nat-

ural way to describe a structure such as this is in matrix form, with the matrix X

being conventionally of dimension (N × d). A well known example is Fisher’s

iris data [23]: this dataset contains N = 150 points corresponding to observa-

tions made of different iris flowers. Each point contains d = 4 features, denoting

the different observations made: namely the sepal length and width, and the petal

length and width. Each flower was measured in all of these ways, producing a

dataset with 600 pieces of information in total.

Classes In many cases, the nature of the observed phenomenon being recorded

by the data X may exhibit the ability to be divided into classes. In the case of

29

2.1 Conventions 30

Fisher’s iris data, these classes denote the 3 different species of iris (setosa, versi-

color and virginica) being measured, and this known information was recorded at

the same time as the measurements. In general, where it is appropriate to include

this information, the dataset may be accompanied by some class data y = {yi}Ni=1,

yi ∈ N, the purpose of which is to assign a label to each datapoint xi describing

its particular nature. Often we find that yi ∈ {0, 1}: this is known as binary

classification, and specialised techniques exist to make full use of this assump-

tion. Where there exist more than two distinct classes, the zero class is usually

omitted by convention: correspondingly, the iris data would be accompanied by

yi ∈ {1, 2, 3}.

Training and testing data We can define a classifier, or classification machine,

as follows:

A classification machine is a system which, once provided with suit-

able training information furnished with class data, can make an in-

formed decision as to the likely class of a given testing point it is

required to analyse.

Returning again to the iris dataset, a good classifier trained on Fisher’s data will be

able to accurately output the likely species of an iris flower we provide, given only

the same four measurements obtained from it as detailed above. The data bank

required for preliminary analysis by a classifier in order to make an informed de-

cision is known as the training data, and will consist of datapoints XTR furnished

with class data yTR. The information subsequently used to challenge the classi-

fier is known as the testing (novel) data, and will consist only of datapoints XTE ,

the classifier’s task being the accurate output of the unknown yTE . The training

2.1 Conventions 31

information typically affects a classifier’s behaviour; the testing information does

not. Occasionally a classifier will also be able to accurately reject a sample as not

being likely to reside in any of the trained classes, and in this case a reject class is

sometimes permitted in the output yTE , rather than force the classifier to make a

guess it considers to be inaccurate.

Cross validation In many cases, the ideal output yTE is known a priori, and the

task is instead to assess a classifier’s performance. Cross validation is often used

for this purpose: a small, representative sample of data XR is removed, and the

classifier is trained on the remaining points. The classifier is then shown XR as

testing data and required to give its estimation of the corresponding class infor-

mation yR, which is known by the examiner. The classifier’s estimations are then

recorded alongside the true class information and the process is repeated with a

different section of X being used as XR. Usually this is done in such a way that

all data is included in XR at some stage; stochastic cross validation employs a

random approach instead. When this evaluation process finishes, various statistics

can be derived for each class from comparison of the classifier results with the

‘true’ class values:

true positive values Data in class k, classified correctly as within k.

true negative values Data not in class k, classified correctly as outwith k.

false positive values Data not in class k, classified incorrectly as within k.

false negative values Data in class k, classified incorrectly as outwith k.

Two important values can be calculated from these:

Sensitivity:
TP

TP + FN
; Specificity:

TN

FP + TN

2.2 Classification methods 32

The former is maximised for a class if the classifier manages to correctly classify

all those points whose true value is within the class; the latter is maximised if no

points outside the class are misinterpreted as being within it. Often a classifier

will be trained to produce a minimum sensitivity, and its specificity will be taken

as the measure of efficacy.

A popular, publicly available collection of datasets is maintained by the University

of California, Irvine: the UCI repository [3] contains both binary and multi-class

data for use in machine learning. In the literature, comparisons between classi-

fication methods are often derived using sets from this suite as a benchmark. It

includes, amongst others: Fisher’s iris data, BUPA breast cancer data and an Al-

dermaston glass experiment. In §6.5 we will describe this in further detail and

introduce a study linked to this thesis project based on a cross-validation proce-

dure applied to the provided data.

2.2 Classification methods

2.2.1 Bayes’ Theorem

The basis of most Bayesian statistical methods is that of Bayes’ theorem:

Pr(Y |X) =
Pr(X|Y) · Pr(Y)

Pr(X)
. (2.1)

When applied to datasets, with X as a proposed model (parameters) and Y as

the event of making a certain set of observations, this theorem states that “what

we know now is proportional to the influence of our observations and what we

knew before”. Bayesian classification theory is based on the use of Pr(Y |X), the

posterior probability of observing the data Y given that the model is X . Pr(Y),

2.2 Classification methods 33

the a priori probability of observing Y , must be set subjectively, but would be

dominated by a sufficient mass of evidence Pr(X|Y), perhaps to the contrary. We

may therefore think of Equation 2.1 as follows:

posterior =
prior× likelihood

evidence
(2.2)

=⇒ posterior ∝ prior× likelihood. (2.3)

This approach towards probability involves using known data to arrive at a maxi-

mum likelihood estimate of what the parameter(s) driving the system were. Gen-

eration of a posterior probability density function (PDF) makes use of Bayes’

Theorem, recasting it in the form:

P (ωk|v) =
P (ωk)p(v|ωk)∑K
i=1 P (ωi)p(v|ωi)

. (2.4)

Here, the ωk are the events corresponding to a testing datapoint being in class k,

and v denoted the model information with which the classifier has been trained.

The capital P refer to the a priori probabilities of ωk, and the lowercase p refer

to some measure of the degree of evidence linking this point to class k. The de-

nominator here normalises over all possible classes; the reject class as mentioned

above may be included here and made equal to a constant. This formula results in

an a posteriori probability being assigned to the testing point’s chance of being in

class k.

2.2.2 Naı̈ve Bayes classification

We can use Equation 2.4 to form a simple classification system to estimate the

nature of testing data based on known training data X . Let there be K classes

in a set of training data, and let X(k) = {x(k)
i }

Nk
i=1,

∑
Nk = N be training data

2.2 Classification methods 34

representing the class k ∈ {1 . . . K}; let y be our novel point and let the event

ωk read “y is in the class k”; we recast Equation 2.4 using Equation 2.3 as the

following:

P (ωk|y,X) = P (ωk|X)P (y|ωk, X) · constant. (2.5)

Firstly, the constant term is simply the normalisation term in Equation 2.4 and

may, for now, be discarded. The first term, P (ωk|X), is the prior probability that

any new datapoint will belong to the class k, without knowledge of the datapoint

itself but knowing the training data X . We may have prior information on this;

however, it is usually safe to take this as Nk

N
. Estimating the term P (y|ωk, X), the

likelihood function of a realistic observation of y given that it is purported to be

in class k and the relevant training information X , is more difficult and requires

certain assumptions. If we let y (and thus xi) to have dimension d, this term is the

following:

P (y|ωk, X) = P (y a realistic member of X(k)) (2.6)

= P ((y1, y2, . . . , yd) a.r.m. (X
(k)
1 , X

(k)
2 , . . . , X

(k)
d)) (2.7)

We now make the naı̈ve independence assumption; that the realistic membership

of each yj to the set X(k)
j are all independent. Thus we can recast these equations

as:

P (y|ωk, X) =
d∏
j=1

P (yj a.r.m. X(k)
j) (2.8)

=
d∏
j=1

P (yj|ωk, X) by notation (2.9)

=⇒ P (ωk|y,X) ∝ P (ωk|X)
d∏
j=1

P (yj|ωk, X). (2.10)

2.2 Classification methods 35

All that remains is to choose the one-dimensional function P (yj|ωk, X) given the

set X(k). A popular method is using a Gaussian function with mean equal to that

of the X(k) and a known variance, 1√
2πσ2

exp(−1
2σ2 |yj − µ(k)

j |2). This function can

thus be computed over all classes, and then normalised according to Equation 2.4

to provide a valid posterior PDF (PPDF) for any given novel point (with perhaps

a K + 1th reject class of constant probability added), with the highest probability

of class membership being decided as the maximum a posteriori (MAP) class of

choice.

2.2.3 Parzen windows

(a) Dataset (b) PPDF contours

Figure 2.1: Parzen windows: (a) the dataset; (b) the probability contours

A particularly useful derivative of the Bayes classifier is that of Parzen win-

dows [60] [37], which uses similar techniques to those described above to estimate

the distribution of (a class of) a dataset. Referring again to our training data X

split into constituent classes, for each element x(k)
i ∈ X(k) we perform the follow-

ing operation:

f(y; x
(k)
i) =

1√
2πσ2

K

exp(
−1

2σ2
K

‖y − x
(k)
i ‖2) (2.11)

2.2 Classification methods 36

In principle, f(y; x) (the Parzen kernel) could be any bounded function of two

variables, but as before the Gaussian kernel is often used since it describes a

probability-based proximity measure of the two vectors. Once a kernel has been

created for each testing point relative to the known data of class k, the sum is

taken and normalised to form a PPDF:

f(y; x(k)) =
1

Nk

Nk∑
i=1

f(y; x
(k)
i) (2.12)

This PPDF is then provided priors and normalised over all classes in the same way

as with naı̈ve Bayes classifiers. As shown in diagram 2.1, it can generate elegant

PPDF contours, but has the drawback that over multiple dimensions, instability

may occur and computational time is a great deal more than with the naı̈ve Bayes

classifier, especially for large datasets. This method is often used effectively in

lower-dimensional classification problems; for example, Eftestol et al. [21] use

the Parzen windowing method to try and improve prediction of the occurrence of

a cardiac arrest in medical patients given defibrillation readings. Improvements

have also been made on this simple method, for example that due to Babich [4]

who improves on the computational time needed to compute a Parzen window

kernel classifier by a weighting process.

2.2.4 Principal component analysis (PCA)

In many situations where more than one feature is measured for each datapoint,

the features chosen for measurement may be highly correlated. This may not be

desirable, and a transformed dataset may be sought for which the features are

statistically independent. This is known as principal component analysis, or the

Karhunen-Loève (KL) transform. Conceptually, it identifies the main set of or-

2.2 Classification methods 37

(a) PCA (b) LDA

Figure 2.2: Alignment: (a) PCA; (b) LDA

thogonal axes over which the dataset is distributed, producing a small set of co-

ordinates representing the data well, and which themselves are uncorrelated - and

hence more useful as parameters. To perform PCA, we require the covariance

matrix of the centred data to be diagonal. Define the centred dataset thus:

X̂ = {X̂i} = (Xi − µX), where µX = {µXj } =

{
1

N

N∑
i=1

Xij

}d

j=1

(2.13)

The covariance matrix is then C = X̂X̂T . This array captures the relation be-

tween the features of the data, and must be diagonalised to ensure non-correlation:

thus we solve:

find V,Λ such that V −1CV = Λ,Λ diagonal (2.14)

This is equivalent to the eigenvalue problem λv = Cv, which can be solved for a

set of eigenvalues λk (the diagonal values of Λ), sorted by magnitude, and corre-

sponding eigenvectors vk (the columns of V). At this stage, only those columns of

V,Λ and rows of Λ with nonzero λk are retained. In order to normalise the eigen-

vectors and thus maintain the distance preserving nature of the transformation, the

2.2 Classification methods 38

condition is introduced that:

λk(v̂k · v̂k) = 1 =⇒ V̂ = {v̂k} =
vk√
λk

(2.15)

The transformed data can now be expressed as:

X∗ij =
N∑
k=1

CikV̂kj =⇒ X∗ = CV̂ . (2.16)

Novel data Y can, in turn, be processed thus:

Y → Y − µX = Ŷ → Ŷ X̂T = CY → CY V̂ = Y ∗. (2.17)

That is, centring is performed with respect to the original data X . If the λk are

sorted in the process such that λ1 is greatest, this process produces an orthonormal

transformation that re-aligns the axes about the dataset in such a way that the

new first axis (known as the first principal component of the data) experiences

the greatest variance within the dataset, and subsequent axes successively less

variance.

In practice, the formulae above will often not be used as shown, since the

main aim of PCA is usually one of dimension reduction, to alleviate the problem

as stated above of many highly-correlated features. This process is now easily

achieved since we have optimally realigned the data: a simple projection of data

onto the first l < d principal components is computed by replacing V with a matrix

made up of those columns k for which λk > ε, with ε some tolerance parameter.

The more columns kept, the more true to life the projected results, but also the

more difficult and/or unstable the problem will be of accurate classification - this

is termed the Curse of Dimensionality. For example, PCA is useful in “identikit”-

style projection of faces [88] onto their basic features, and hence in distinguishing

2.2 Classification methods 39

“obviously” different face shapes, colours, layouts, etc. from each other, but is not

always the most efficient method for more subtle feature extraction (e.g. scars).

2.2.5 Linear discriminant analysis

Although PCA is suitable for use in a situation where class information is not

present or unimportant, an alignment system may instead be required to rearrange

the data to maximise separation between known classes. Here, as demonstrated by

Zhuang and Dai [89], PCA may no longer be helpful. Linear discriminant analysis

(LDA) [26], also often used in image-classification procedures [20], addresses

this problem by instead of looking at the variance of each class over the whole

dataset, substituting this for a comparison between two quantities, calculated for

each class: the between-class scatter Sb and within-class scatter Sw, defined thus:

Sb =
1

N

K∑
k=1

Nk‖µk − µ‖2, (2.18)

Sw =
1

N

K∑
k=1

Nk∑
i=1

[X
(k)
i −Nk]. (2.19)

Here K is the number of classes, Nk is the number of datapoints in each class,

µk denote class-specific mean vectors and X(k)
i denotes the ith datapoint belong-

ing to the kth class of data. These equations have the effect of comparing the

“directions” of each class with each other; computing the eigenvectors for this

transformation then involves minimising the ratio of these two quantities, namely

the Fisher criterion:

WLDA = arg max
|W TSbW |
|W TSwW |

.

This quantity is undefined if Sw is singular, which often occurs when the dimen-

sion of each datapoint is far higher than the number of training points (e.g. face

2.2 Classification methods 40

recognition): this is known as the small sample size problem. Thus a combina-

tion of PCA followed by LDA is often used in applications, so dimensionality of

a problem is reduced beforehand (see e.g. [32]). Martinez et al. [53] show that

the choice of which method to use is sometimes complex, and that LDA is not

necessarily more effective despite its incorporation of class-specific information.

Belhumeur [6] also alludes to this in a study of face recognition. In its raw form,

LDA handles binary-class data by design; however, studies such as that of Ma [49]

show that its use can occasionally be extended to multi-class datasets. In certain

situations, it can be adapted to kernel spaces (see §2.3), as shown by Mika [56],

although this paper shows also that this method can lead to an ill-posed problem.

Local hyperplane classification Widely used in classification literature, with

examples due to Chen and Liu [15], Mika [57], Tao Yang [87] and Jian Yang [86],

localised Fisher discriminant analysis is a popular method for combating the non-

singular form often encountered when performing discriminant analysis in a ker-

nel space. These papers broadly proposed localised methods of separation of data

with binary class information, to render tractable the problem of kernel discrimi-

nant analysis at a smaller scale.

2.2.6 Support vector machines

Originally proposed in its original form by Vapnik [80], a widely-used method of

binary classification, the support vector machine, involves constructing a maxi-

mally separating hyperplane between data distributed in two distinct subspaces.

The full derivation of the SVM can be found in the book by Schölkopf and

Smola [69]; we give a brief derivation here. Consider the geometric implication

2.2 Classification methods 41

d

0 2 4 6 8
0

1

2

3

4

5

feature f1

SVM demonstration

f2

(a) SVM

0 2 4 6 8
0

1

2

3

4

5

feature f1

SVDD demonstration

f2

(b) SVDD

Figure 2.3: Demonstration of (a) a support vector machine; (b) support vector

domain description.

Figure 2.4: Inner product contours

2.2 Classification methods 42

of the set of points in an inner product space V , defined as follows:

H(w) = {x ∈ V : 〈w,x〉 − b = 0} (2.20)

Figure 2.4 shows an example of this in R2: the contours for this function describe

a set of parallel lines, with the particular path describing those points for which

〈w,x〉 ≡ 〈w,w〉 passing through the point w and being perpendicular to the

vector (Ow). Thus, equation 2.20 is the general equation in an inner product space

of a hyperplane: that is, if the dimension of the vector space is d, it describes a

(d− 1)-dimensional surface through the space, separating points according to the

side of the boundary on which they fall, and thus inducing a classification function

as follows:

fw,b(x) = sgn(〈w,x〉+ b). (2.21)

The purpose of the scalar b should be obvious from Figure 2.4: it acts as a scalar

according to which of the parallel lines characterised by our choice of w we wish

to assign the boundary. Choosing b ≡ 〈w,w〉 clearly recovers the hyperplane

passing through the point w itself. However, note that this could also be achieved

by scaling w by a constant K, and accordingly b by K2. We thus have a redun-

dant degree of freedom, which is corrected by adding a further requirement. The

canonical form of the hyperplane H defined in Equation 2.20 is one of the two

unique planes which satisfy:

min
i
|〈w, xi〉| = 1. (2.22)

This requirement is equivalent to demanding that the point closest to the hyper-

plane has a distance of 1/‖w‖. The purpose of a support vector machine classifi-

cation is as follows: Given a dataset X , to find the optimal hyperplane, which will

2.2 Classification methods 43

separate two classes of data on either side with maximal margin [81]. Should this

margin be found subject to the canonical constraints given in Equation 2.22, it is

clear that, since it will fall between datapoints on either side (see Figure 2.3(a))

with margin 1/‖w‖, we have that the total margin is ρ = 2/‖w‖; to be clear, this

is the quantity we wish to maximise. Thus, values of w which minimise the quan-

tity ‖w‖ will be advantageous. If we assume that the partitions of the data which

are thus classified will be those values on one side with labels yi ≡ 1 and those

on the other with yi ≡ −1, as a result of Equation 2.22 we have the following

formulation:

w · xi + b ≥ 1 (yi = 1),

w · xi + b ≤ 1 (yi = −1)

=⇒ yi(w · xi + b) ≥ 1. (2.23)

By solving an optimisation problem, the SVM can find a decision boundary such

that the proportion of data in each class on each side of the boundary is max-

imised. The method was later adapted by Cortes and Vapnik [17] to include kernel

methods (discussed in §2.3), making the process more flexible when the bound-

ary between the classes is non-linear. In the linear formulation, the separating

boundary may be derived by solving the following optimisation problem:

(w, ξ, b) = arg min
w,ξ,b

1

2
‖w‖2 + C

N∑
i=1

ξi (2.24)

such that yi(w · xi + b) ≥ 1− ξi∀i, ξi ≥ 0, (2.25)

where here we note that minimising ‖w‖ is equivalent to the (easier) problem of

minimising 1
2
‖w‖2. Here, yi ∈ {−1, 1} is the binary class information, C ∈ [0, 1]

is the parameter which allows for a soft margin in the case that not all data may

2.2 Classification methods 44

be separated linearly, thus allowing some data to be classified on the opposite side

to the majority of its respective class, if this solution ends up more optimal; ξi are

the corresponding error terms that allow this soft margin to be implemented. The

choice of C is usually chosen on the particular basis of the problem in question;

however, various papers have attempted to address the problem for choosing the

optimal value of this pay-off parameter in an SVM context, most notably that of

Hastie [33] and, in the context of SVDD as we shall introduce below, the paper

due to Sjöstrand et al. [71].

2.2.7 Support vector domain description

Tax and Duin [77] proposed a variant on the standard support vector machine, the

domain description (also known as one-class SVM), dealing with the problem of

providing a compact spherical description of (one class of) a dataset. This method

is useful where only status of presence in a well-defined region is necessary; it

has also been used in hybrid multi-class classification methods (see below). The

formulation is somewhat similar to standard SVM; however, instead of producing

a hyperplane boundary, a sphere is fitted around the data:

(a, ξ, R) = arg min
a,ξ,R

R2 + C
N∑
i=1

ξi (2.26)

such that ‖xi − a‖2 ≤ R2 + ξi∀i, ξi ≥ 0. (2.27)

The ξi terms here again have the effect of providing a soft-margin classifier, withC

the parameter governing the penalty on making some of these terms nonzero, thus

allowing some data outside the sphere if there exists a more optimal solution this

way. Note the case C = 1 is known as a hard margin classifier and is equivalent

to not allowing the ξi terms to be non-zero.

2.2 Classification methods 45

In §2.4, we shall see how both these formulations can be solved using a

quadratic program (see §2.4.5) and how the solution depends entirely on the po-

sition of those data nearest the boundary itself, making the methods desirably

insensitive to outliers. Note also that the solutions above do not involve the data

xi explicitly; they may be arrived at using only the inner products between data

values, with no necessity to include the data itself in the calculation. Both of these

concepts are important in the use of kernel spaces.

2.2.8 Domain described SVC

(a) DSVC PPDF (b) DSVC contour

Figure 2.5: Domain described SVC in the linear case

Lee and Lee [44] describe a system, the domain described support vector clas-

sifier, that uses ideas from the Parzen window classifier (§2.2.3) and the SVDD

(§2.2.7) to create a powerful multi-class classification machine with the informa-

tion gleaned from using the latter to process each class in turn. A similar process

to achieve the same aim is also described in Kang and Choi [38]. Lee and Lee

process each class independently via SVDD and construct the following function

to simulate a Parzen window classifier based on distances from the sphere centres

2.2 Classification methods 46

(cf. Equation 2.12):

p(y;X(k)) =
1

2
(Rk − fk(y)) (2.28)

where fk(y) = 1− 2
∑
i

α
(k)
i exp(−q‖y − x(k)

i ‖2) (2.29)

+
∑
i,j

α
(k)
i α

(k)
j exp(−q‖x(k)

i − x
(k)
j ‖2).

where here Rk (see §2.4.4) and α(k)
i refer to the solutions of an SVDD problem

on the constituent classes. This function is then used for classification according

to Bayes’ theorem as a likelihood function, with the posterior being calculated to

within a multiplicative constant (evidence) for each novel point and each class by

adding a prior and taking the maximum over all classes:

k = arg max
k=1...K

Nk

N
(Rk − fk(y)). (2.30)

We return later in §2.4.3 to this method of classification, as well as showing how

to derive Rk, in the context of kernel spaces.

2.2.9 Using multiple classifiers

Many classification methods are based around the concept of a dataset with only

two classes. The question naturally arises, therefore, as to ways of dealing with

multi-class data, where it is unrealistic to rearrange into two classes. A method of-

ten used is to aggregate the results of several two-class classifiers, novel data then

being classified according to some (possibly weighted) pre-defined decision rule

once results have been obtained from the two-class combinations. Two main ways

of achieving this are known as one-against-one and one-against-all. One-against-

one classification works on a dataset involving K classes and applies K(K−1)
2

two-

class classifiers according to the following method:

2.2 Classification methods 47

• Split the dataset X up into K constituent classes, {Xk}Kk=1

• For k1 = 2 . . . K:

• For k2 = 1 . . . k1:

• Create a classifier Ck1,k2 to distinguish between Xk1 , Xk2

• Increment k, and repeat the loop.

We therefore have (K − 1) classifiers referring to each constituent class of the

dataset, and thus for a novel datapoint, to consider its candidacy in each class we

must weight the results of these K − 1 classifiers. Clearly, the way in which this

is done is important as it affects the final decision. It will also be affected by the

form of output involved in the binary classification step: e.g. using an SVM will

produce K − 1 decision boundaries for each class.

Since this method produces so many different results, which may be highly

contradictory, the true nature of a novel point is often unclear. One-against-all

classification uses a slightly different method to reduce the number of binary clas-

sifiers:

• For k = 1 . . . K:

• Split X into two parts: Xk (entries of class k), Yk (otherwise)

• Create a classifier Ck to distinguish between Xk and Yk

• Increment k, and repeat the loop.

This method produces K separate binary classifiers, but has the disadvantage that

in the case where classes describe very different properties of a dataset, it will

2.3 Kernel spaces 48

not always be reasonable to combine them for a binary classifier to analyse, and

thus the results may lack in rigour what they gain in simplicity. Other methods

which can be used to combine these separate ‘weak’ classifiers into a more robust

machine include boosting [25] and bagging (bootstrap aggregating).

2.3 Kernel spaces

When we classify data, the appropriate method we use - whether naı̈ve Bayesian

posterior-PDF analysis, SVM, SVDD or other methods - will often depend on

the structure inherent in the dataset. For example, a multiclass dataset with well-

defined clusters may require little more than a simple PPDF classification ma-

chine, whereas two-class data with a complex boundary of separation may require

a support vector based method.

In this section, we will introduce the concept of a kernel space. This concept

may be applied where a linear standard method fails to identify classes within

a dataset with a sufficiently descriptive boundary, producing too many classifi-

cation errors. Its main purpose is to map datapoints into a higher-dimensional

superspace, within which a linear classification system may be applied to produce

more desirable results. We will also show how, due to the structure of linear for-

mulations of classifiers, the explicit computation of this mapping is not necessary,

thus providing a tool for exploring mappings of data into very high, even infinite,

dimensional superspaces. Furthermore, we will show that despite not having an

explicit mapping, functions such as mean and variance can be standardised over

the feature space, allowing for more stable results.

2.3 Kernel spaces 49

2.3.1 Definitions

Recall the definition of a dataset X as given in §2.1. The input space is the vector

space in which all members of this dataset, xi ∈ X , reside. For convenience we

shall assume elements of X are real and have d features each; we thus refer to the

input space as Rd.

Kernel spaces Define a mapping as follows:

φ : Rd → RD

Usually we have D > d – also, D is not required to be finite, the only condition

being that ∀x ∈ Rd,‖φ(x)‖ is finite. The mapping φ is not defined explicitly;

rather, it is defined implicitly to conform to the following relation:

∃k(x, y) such that ∀x, y ∈ Rd, k(x, y) = φ(x) · φ(y). (2.31)

If φ satisfies Equation 2.31, then k is known as a kernel function; we refer to φ

as its respective kernel mapping and its domain RD is known as a reproducing

kernel Hilbert space (RKHS). Hereafter, we refer to this domain simply as kernel

space. More generally we shall refer to the space in which algorithms are applied

as feature space, to distinguish it in the case that kernel space is the same as input

space (hereafter referred to as the linear case). Some examples of valid kernel

functions k(x, y) are given below.

• Linear kernel k(x, y) = x · y

• Quadratic kernel k(x, y) = (1 + x · y)2

• Polynomial kernel k(x, y) = (1 + x · y)p for some p

2.3 Kernel spaces 50

• Hyperbolic tangent (sigmoid) kernel k(x, y) = tanh(κ(x · y) + Θ)

• Radial basis function (RBF) kernel k(x, y) = exp(−‖x− y‖2/2σ2)

Note that these functions do not tell us the structure of the underlying map φ:

indeed, in the case of RBF the explicit mapping is notoriously intractable [74].

Smola et al [73] provide some insight as to the connection between Green’s func-

tions on regularization operators and support vector kernels; for now we simply

assume that our kernels have the above forms and we operate from a viewpoint

of not requiring the explicit form to be known, or ‘simple’. Other situations may

also be identified where the exact choice of kernel will not be known a priori, but

instead will be due to the result of a statistical training procedure; examples of this

are due to Weinberger et al. [83], Lanckriet [42] and de la Torre and Vinyals [79].

Chen [15] instead uses an optimisation procedure based on the Fisher criterion

similar to that used in LDA §2.2.5. In some cases, however – notably that of the

quadratic kernel – it is possible to visualize the explicit mapping φ as well. For

example, let d = 3 so x = (x1, x2, x3) ∈ R3, and consider the following mapping:

φ : (x1, x2, x3)→ (1,
√

2x1,
√

2x2,
√

2x3, x
2
1, x

2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3)

It is straightforward to verify that if k(x, y) = (1 + x · y)2, then condition 2.31

is satisfied. This example also serves to show that φ need not be unique: if we

replace the final three elements of φ(x) with (x1x2, x1x3, x2x1, x2x3, x3x1, x3x2)

the same result is achieved.

2.3.2 The kernel trick

Fortunately, the explicit computation of φ is rendered unnecessary if condition

2.31 holds; as we shall see, knowing φ exists is sufficient. Mercer’s theorem,

2.3 Kernel spaces 51

mentioned by Schölkopf [68] gives a simple condition for a valid mapping φ to

exist: that of positive definiteness, or equivalently, non-negative eigenvalues of the

following matrix:

K = {Kij} = {φ(xi) · φ(xj)} = {k(xi, xj)} (2.32)

The matrix K is known as the kernel matrix of the mapping and plays a crucial

part in the analysis of the domain RD. Indeed, if we recall the method of PCA

introduced in §2.2.4, we can identify the number of non-infinitesimal eigenvalues

of the matrix K as being the number of meaningful principal axes on which a

PCA method would project data from RD. In general, with a well chosen kernel

this will be greater than the dimension of the original data d, thus motivating the

use of the space φ; the use of kernel methods allow deeper patterns within the

distribution of a dataset to be studied. The kernel trick, as popularly known in

literature, is the concept that in certain cases, knowledge of K (and the existence

of φ) can allow us to study classification methods applied to the projected dataset

φ(X), without having to compute φ explicitly. Note that the matrix K, while not

giving the explicit values of each φ(x), does give values of all the inner products

{φ(xi) · φ(xj)}, and therefore if a classification method can be formulated in a

way such that values of datapoints are only mentioned implicitly through their dot

products with each other, then this data can also be analysed in a kernel space

RD = φ(Rd) characterised uniquely by its kernel function k satisfying Equation

2.32.

2.3 Kernel spaces 52

2.3.3 Kernel centring

Suppose we have a simple, explicit mapping φ : R2 → R4, with φ(x1, x2) =

(1, x1, x2, x1x2)1, and suppose that we have a dataset X = {xi ∈ R2} which we

have standardised; i.e. we have µj = 0, σj = 1∀j ∈ {1, 2}. Clearly, the projected

data φ(X) does not have this property. In general, we will not know φ; however,

standardisation is still possible. Schölkopf [68] notes the following relation: If

X = {xi}Ni=1, K = {Kij} = {k(xi, xj)},

then the centred kernel Kcen, equivalent to ensuring that µj = 0∀j ∈ {1 . . . D} in

kernel space, is given by:

Kcen = K −OK −KO +OKO, (2.33)

where O ∈ Rn×n, Oij ≡ 1/n. (2.34)

Similarly, if we now wish to map novel data Y into this centred kernel space, we

compute U = {Uij}(m,n)
(i,j)=(1,1) = {k(yi, xj)}, and apply the following:

U cen(K) = U −O∗K − UO +O∗KO (2.35)

where O ∈ Rm×n, Oij ≡ 1/n. (2.36)

To see this process in action with the given mapping function, consider two vectors

x and y. The kernel matrix K is therefore of dimension (2 × 2) and has the

following entries:

Kxx = 1 + x2
1 + x2

2 + x2
1x

2
2, (2.37)

Kyy = 1 + y2
1 + y2

2 + y2
1y

2
2, (2.38)

Kxy = Kyx = 1 + x1y1 + x2y2 + x1y1x2y2. (2.39)
1Note this is a valid kernel as we know φ, thus k trivially exists.

2.3 Kernel spaces 53

We see that O is a (2× 2) matrix with entries 1
2
, and thus:

OK =
1

2

 Kxx +Kxy Kxy +Kyy

Kxx +Kxy Kxy +Kyy

 , (2.40)

KO =
1

2

 Kxx +Kxy Kxx +Kxy

Kxy +Kyy Kxy +Kyy

 , (2.41)

OKO =
1

4
{Kxx +Kyy + 2Kxy}. (2.42)

If we let x = (2, 3), y = (5, 7), we have:

φ(X) =

 1 2 3 6

1 5 7 35

 =⇒ φ(c)(X) =

 0 −1.5 −2 −14.5

0 1.5 2 14.5

 (2.43)

The kernel matrices are:

K =

 50 242

242 1300

 , K(c) = 216.5

 +1 −1

−1 +1

 . (2.44)

Following the above equations yields:

OK = (KO)T =

 146 771

146 771

 , {OKO}ij = 458.5, (2.45)

yielding the required centred kernel as described above.

2.3.4 Kernel standardisation

Kernel PCA We now have all the tools necessary to perform principal compo-

nent analysis (§2.2.4) in a kernel space; just as the covariance matrix C was the

inner product matrix of the centred dataset given in the matrix X̂ , C = X̂X̂T , we

now replace C with Kcen as described in this section:

find V,Λ such that V −1KcenV = Λ,Λ diagonal (2.46)

2.3 Kernel spaces 54

It is then a simple case of following Equations 2.15 and 2.16 to find the principal

components of a dataset in kernel space, and Equation 2.17 (using U in place of

CY) to map onto these axes a set of given novel data:

Y → k(Y,X) = U → centred = U cen(K) → U cen(K)V̂ = Y ∗. (2.47)

Kernel whitening The method of PCA, and its kernel equivalent, ensure a dis-

tance preserving rotation of axes in feature space which aligns directions in a

dataset with greatest variance up against the principal axis, with subsequent di-

rections of decreasing variance against each subsequent axis in turn. However,

this may not be our aim: in order to perform a technique such as support vec-

tor description(§2.2.7), in both linear and kernel feature space, it is useful to map

data to principal axes with equal variance, i.e. perform some meaningful stan-

dardisation. This cannot be done in the general case with kernels, as the concept

is somewhat meaningless in cases where one implicit dimension may intrinsi-

cally have zero variance (consider the valid kernels of the form φ : (x1, x2) →

(1, · · ·) above); however, the method of kernel whitening, introduced by Tax and

Juszczak [78], achieves a similar aim to data projected with KPCA. Recall Equa-

tion 2.15; this condition was introduced to ensure the transformation merely ro-

tated the data (i.e. it preserved distances). Replacing this condition by:

λ2
k(v̂k · v̂k) = 1 =⇒ V̂ = {v̂k} =

vk
√
N − 1

λk
(2.48)

ensures instead that when we reconstruct the data onto the principal axes in the

same fashion as Equation 2.16, we achieve transformed data XW with zero mean

and unit variance. Creating the requisite kernel matrix is achieved with KW =

2.3 Kernel spaces 55

XWX
T
W , and mapping novel data to these axes is done according to Equation 2.35

as per normal.

2.3.5 Kernel SV methods

As a consequence of the fact that the objective functions for both the SVM method

(§2.2.6) and the SVDD method (§2.2.7) are reliant only on the values of the inner

products of data points, as opposed to using the explicit values of the data itself,

they can be adapted for use in kernel spaces. A comprehensive review of kernel-

based learning algorithms can be found in Muller et al. [58]. For SVM, the kernel

analogue of Equations 2.24 and 2.25 is as follows:

(w, ξ, b) = arg min
w,ξ,b

1

2
‖w‖2 + C

N∑
i=1

ξi

such that yi(w · φ(xi) + b) ≥ 1− ξi∀i, ξi ≥ 0. (2.49)

The kernel formulation for SVDD (Equations 2.26 and 2.27) is:

(a, ξ, R) = arg min
a,ξ,R

R2 + C
N∑
i=1

ξi

such that ‖φ(xi)− a‖2 ≤ R2 + ξi∀i, ξi ≥ 0. (2.50)

Note the subtle differences between the linear-space and kernel-space formula-

tions: the only changes are that xi have been replaced by their mapped equivalents

φ(xi). In the next section, we use these general forms to show that quadratic pro-

gramming can help solve the formulations in the more general, kernel case. The

linear case is a special case of this where φ(x) = x and k(x, y) = x · y.

2.4 Solving optimisation problems 56

2.4 Solving optimisation problems

It is possible to greatly simplify the procedure of solving Equations 2.49 and 2.50

by the method of Lagrange multipliers. We will show that the solutions have a

simple representation as a weighting vector and ultimately depend only on a few

points in the dataset, thus making computations with the solution possible even

for large datasets.

Lagrangian multipliers The strong Lagrangian principle states that if we wish

to minimise a function f(x) (called the primal objective) subject to the constraints

gi(x) ≤ 0, g=
j (x) = 0, we may construct the following function:

Λ(x, α) = f(x) +

N1∑
i=1

αigi(x) +

N2∑
j=1

βjg
=
j (x) (2.51)

with the property that the minimum will occur at a point where∇xΛ = 0; further-

more, the Wolfe dual problem [28] states that if we can successfully maximise Λ

over all x, α ≥ 0 we have an equivalent problem (the dual objective) and thus this

(hopefully less intractable) x will lie at the same point. We now apply this method

to SVM and SVDD.

2.4.1 SVM

Suppose we wish to perform the equivalent of a linear SVM on a dataset X ∈

RN×d that has been mapped to another space according to some function φ : Rd →

RD such that ∃k(x, z)∀x, z ∈ Rd, k(x, z) = φ(x) · φ(z). Let {yi} ∈ {−1, 1} be

the relevant binary class information. The constraints in Equation 2.49 can be

2.4 Solving optimisation problems 57

rearranged thus:

gi, hi ≤ 0

where gi(w, ξ, b) = 1− ξi − yi(b+ w · φ(ξi)), (2.52)

hi(w, ξ, b) = −ξi. (2.53)

Thus the Lagrangian for SVM (with αi, βi ≥ 0∀i) is as follows:

Λ(w, ξ, b, α, β) =
1

2
‖w‖2+C

N∑
i=1

ξi+
N∑
i=1

αi [1− ξi − yi(b+ w · φ(ξi))]−
N∑
i=1

βiξi.

(2.54)

Taking derivatives with respect to the primal variables (w, ξ, b) we find:

∀k ∂Λ

∂wk
= 0 =⇒ w =

N∑
i=1

αiyiφ(xi), (2.55)

∂Λ

∂b
= 0 =⇒

N∑
i=1

αiyi = 0, (2.56)

∀i∂Λ

∂ξi
= 0 =⇒ C = αi + βi. (2.57)

Equation 2.57, together with the requirement that αi ≥ 0, βi ≥ 0, implies αi ∈

[0, C]. Using these relations we find:

‖w‖2 =

∥∥∥∥∥∑
i

αiyiφ(xi)

∥∥∥∥∥
2

=
∑
i,j

αiαjQij = αTQα (2.58)

where Qij = yiyjφ(xi)φ(xj) = yiyjk(xi, xj). Thus:

α = arg max
α

Λ =
1

2
αTQα +

∑
i

αi −
∑
i

αiyi(b+ w · φ(xi)) (2.59)

2.4 Solving optimisation problems 58

where the second term here uses αi = C−βi. The third term, using relation 2.55,

can be expanded:∑
i

αiyi(b+ w · φ(xi)) = b
∑
i

αiyi +
∑
i,j

αiαjyiyjφ(xi) · φ(xj)

= 0 +
∑
i,j

αiαjQij

= αTQα. (2.60)

Thus the solution can be expressed (with L = −Λ) as:

α = arg min
α
L(α) =

1

2
αTQα− eTα (2.61)

where e is a vector of all ones, under the conditions ytα = 0 (from Equation 2.56)

and αi ∈ [0, C]∀i. This is now in a general quadratic form (see §2.4.5), and can

be solved using standard optimisation solvers. Furthermore, the Karush-Kuhn-

Tucker (KKT) conditions (see p. 13 and Ch. 6 of [69]) ensure that under certain

continuity conditions, this solution for α is globally optimal:

KKT conditions: If, and only if, the functions f : Rd → R and

gi : Rd → R are continuously differentiable and convex and the func-

tions g=
j : Rd → R are affine, and a minimum is found (that is, a

point with coefficients α, β satisfying ∇L = 0 where L is defined as

in Equation 2.51), then this point is a global minimum of the minimi-

sation problem as stated.

Once an optimal α is known, the feature-space position relative to the margin can

be computed for any novel point z to within the constant factor b by the following

formula:

δz =
N∑
i=1

αiyik(xi, z) (2.62)

2.4 Solving optimisation problems 59

In order to classify z on a side of the margin we need to know the value of the

constant factor b. This is derived by consulting the margin distances of particular

points, known as support vectors, described below.

2.4.2 SVDD

A similar approach, as introduced by Schölkopf et al [67], is used to analyse the

SVDD objective function. The constraints in Equation 2.50 can be rearranged

thus:

gi, hi ≤ 0

where gi(a, ξ, R) = ‖φ(xi)− a‖2 −R2 − ξi, (2.63)

hi(a, ξ, R) = −ξi. (2.64)

Thus the Lagrangian for SVDD is as follows:

Λ(a, ξ, R, α, β) = R2 + C
N∑
i=1

ξi −
N∑
i=1

αi
[
R2 + ξi − ‖φ(xi)− a‖2

]
−

N∑
i=1

βiξi.

(2.65)

Taking derivatives yields:

∂Λ

∂R
= 0 =⇒

N∑
i=1

αi = 1, (2.66)

∀k ∂Λ

∂ak
= 0 =⇒ a =

∑N
i=1 αiφ(xi)∑N

i=1 αi
=

N∑
i=1

αiφ(xi), (2.67)

∀i∂Λ

∂ξi
= 0 =⇒ C = αi + βi =⇒ αi ∈ [0, C]. (2.68)

Using Equation 2.68 and cancelling terms in
∑
ξi,
∑
αiξi we find:

Λ = R2

(
1−

∑
i

αi

)
+
∑
i

αiKii − 2a ·
∑
i

αiφ(xi) + ‖a‖2
∑
i

αi (2.69)

2.4 Solving optimisation problems 60

where Kij = φ(xi) · φ(xj). Using Equations 2.66 and 2.67 allows simplification:

Λ =
∑
i

αiKii −
∑
i,j

αiαjKij (2.70)

Finally, putting d = diag(K) and L = −Λ as before, we have another solvable

QP form:

α = arg min
α
L(α) = αTKα− dTα, (2.71)

where eTα = 1 (from Equation 2.66) and as before, αi ∈ [0, C]∀i. To find the

distance from the centre in feature space of a novel point denoted z, the following

equation is used:

R2
z = k(z, z)− 2

∑
i

αik(xi, z) +
∑
i,j

αiαjk(xi, xj). (2.72)

In §2.4.4 we shall discuss how this equation may be used to determine the effective

radius of our enclosing sphere, and how it is related to the cost parameter C. Once

the radius of the sphere is calculated, it is a simple matter of comparing it to the

radii of novel points; similarly, the radii of the training points themselves have an

inherent connection to the values taken by the coefficients αi.

2.4.3 Domain described SVC

Recall the DDSVC method as described in §2.2.8, which allows a shape similar

to a posterior PDF function - related to density of datapoints - to be cast over the

support contour of a dataset in linear space, with the purpose of providing informa-

tion as to the distribution of the dataset within the sphere described by the SVDD

method; Lee and Lee show [44] that creating one of these for each class and com-

paring results across classes can result in elegant, accurate decision boundaries for

2.4 Solving optimisation problems 61

x (xsv, e−qR
2
)

y = e−q‖x−a‖
2

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1

Figure 2.6: Domain-described SVC: adapted method (a = 1, q = 1/2)

novel data. Here we adapt this method to provide a kernel analogue, substituting

kernel distance in feature space for Euclidean distance in linear space. For data

belonging to each class k in turn, known as X(k) as before, consider the following

function:

p(y;X(k)) = exp
(
−q
∥∥φ(y)− a(k)

∥∥2
)
− exp

(
−qR2

k

)
(2.73)

where
∥∥φ(y)− a(k)

∥∥2
= k(y, y)− 2

∑
i

α
(k)
i k(y, x

(k)
i) (2.74)

+
∑
i,j

α
(k)
i α

(k)
j k(x

(k)
i , x

(k)
j).

Figure 2.6 shows the motivation for this formula: support vector points, defining

the feature-space distance R away from the centre point a, will take the value

e−qR
2 when the windowing function is used; setting this as the threshold then

ensures that these points lie on the decision boundary and anything “inside” will

have a closer distance in feature-space to the centre.

2.4 Solving optimisation problems 62

2.4.4 Support vectors

The reason for the term “support vector” in the names of these two classifica-

tion methods comes from the phenomenon encountered in most cases when these

quadratic programs are solved. In both cases, the coefficients αi will split up into

a trichotomy of classes:

• αi = 0: inner points

• αi = C: outer points

• 0 < αi < C: support vector points

The relationship between these three classes is as follows: The solutions to the

above QP problems will usually exhibit a small number (o(1) in many cases) of

support vectors, and the classification boundary will be continuously dependent

on these points alone. In most simple cases, most points will be inner and have

null coefficient. This corresponds to their error terms ξi, mentioned in the primal

but not dual problems, not needing to be used. if C < 1 it may be the case that

some points are outside the boundary; for these points, αi = C and they also play

no part in the classification boundary. This is equivalent in the primal formulation

to their ξi coefficients being non-zero. In the SVDD case, for example, this will

be the case if the optimal solution denotes that all points except these can be fit in

a sphere around a certain point, such that this sphere’s primal objective function

(related to its radius) is smaller than if all points were included (thus all ξi terms

were zero). In both SVM and SVDD cases, the boundary is defined as being the

line on which only the support vectors lie.

2.4 Solving optimisation problems 63

SVM classification To calculate which side of the boundary lies a novel point

z, we need to know the shift b used in the primal formulation. We calculate, using

Equation 2.62, the shifted positions δi, relative to the margin, of those data for

which 0 < αi < C. By design of the SVM algorithm, it should be the case that all

δi for which yi = −1 are “separate” numerically from the values taken by those

data with yi = 1. For example, it may be the case that:

max
{i:yi=−1}

δi < min
{i:yi=1}

δi.

We can therefore take b to be in the centre to provide a decision boundary:

b =

∑
i∈Sv

αiδi∑
i∈Sv

αi
(2.75)

We may now use the following equation to classify a novel point:

ωz = sgn

(
b+

N∑
i=1

αiyik(xi, z)

)
. (2.76)

SVDD classification For the domain description, the process is largely similar.

The optimal radius R is defined as being the feature-space distance (see Equation

2.72) between any support vector and the centre of the sphere. We thus use this

equation to provide a decision boundary for novel data:

z ∈ S ⇐⇒ R2 ≥ k(z, z)− 2
∑
i

αik(xi, z) +
∑
i,j

αiαjk(xi, xj). (2.77)

The fact that usually the number of support vectors is very low compared to the

size of the dataset makes these methods particularly popular in simple classifi-

cation machines due to the simple computation of a decision boundary of novel

points which only needs to use the values of a handful of the training data.

2.4 Solving optimisation problems 64

2.4.5 Quadratic programming and LibSVM

LibSVM [13] is a package designed by Chih-Jen Lin et al. at National Taiwan

University, for the express purpose of solving the optimisation problems as de-

rived in §2.4.1 and §2.4.2. The observation made in this paper is that SVM, SVDD

and various other formulations of problem similar to this can all be reduced to the

general form of a quadratic program. This definition is given below.

Definition A quadratic program is an optimisation problem that takes the fol-

lowing form:

x = arg min
x

1

2
xTQx + cTx, (2.78)

such that Ax ≤ b, A=x = b=. (2.79)

Here, x, c ∈ RN , Q ∈ RN×N , A,A= ∈ RM×N , b,b= ∈ RM . The name arises

from the analogue it provides in Rd with solving a quadratic equation in one di-

mension: the Q term denotes how products between two values in the vector x

contribute to the objective function, and c the linear terms in x. Technical de-

tails of the solution methods given are provided in [22]; this paper, included as

an accompaniment to the LibSVM package, describes an active-set method for

solving the quadratic programming problems. In practice, we have usually used

algorithms built into the MATLAB Optimization Toolbox [55] to solve each in-

stance; these programs use a similar method and have proved adequate for the

requirements of this study. A reference to LibSVM is included here as its active-

set approach, though beyond the remit of this document, is a commonly-used

approach for convex quadratic program solving.

Chapter 3

Dealing with missing data

3.1 Background

Until now we have considered only methods that operate on datasets such that,

for all datapoints {Xi}Ni=1 and all considered features {fk}dk=1, we can identify

a unique value (usually a real number) pertaining to the measurement taken of

datapoint i with respect to feature k. We have called the relevant entry Xik or

similar to identify with an element in a matrix; consequently, it has been conve-

nient to think of the full dataset X as being a “normal” matrix over R, that is

X ∈ RN×d. We will henceforth refer to this situation as being the full data case

(FDC). However, in many cases there will be missing data present in either train-

ing or testing datasets. If it is attempted to naı̈vely use the classification methods

described above on such a dataset, usually nonsensical results will follow; it is

thus important to have a knowledge of techniques in dealing with missing data.

Comprehensive reviews of statistical methods commonly used in the analysis of

datasets in the presence of missing data include the book by Schafer [65] and that

65

3.1 Background 66

of Little and Rubin [47]. Finally, for completeness, some statistical methods are

used to analyse the case where data is not missing, but rather uncertain, such as

the study due to Bi and Zhang [9] which provides an SVM style classifier in this

case.

3.1.1 Notation

In the following chapter we shall make use of the following notation. As before,

we define the dataset X ∈ RN×d = {xi}Ni=1, xi ∈ Rd, as our dataset, and we

introduce the idea of a presence matrix Π = {πij} for i ∈ {1 . . . N}, j ∈ {1 . . . d},

possessing binary values πij ∈ {0, 1}. This matrix will denote the presence πij =

1 or missingness πij = 0 of the value Xij denoting the jth feature of the datapoint

xi. We hereafter use the algebraic notation Z2 to denote {0, 1}, whence Π ∈

Z(N×d)
2 .

3.1.2 Models

In order to perform statistical analysis with missing data, we need to be sure of

the data framework in which we are working. To this end, it is useful to define an

underlying statistical model, assumed to be a probability distribution with certain

parameters, driving the sampling of the data and the missingness pattern. Care

must be taken when defining the most general case, since there will most likely

be elements of dependency between the values of the dataset and their presence

status, thus precluding the analysis of the dataset X and presence matrix Π sep-

arately. For example, consider a survey in which respondents are encouraged to

provide their annual salary, or else denote a lack of response; clearly there is po-

3.1 Background 67

tential in this situation for the probability of non-response to vary according to the

underlying values which would have been observed (for example, those on very

low or very high incomes may be more reticent to declare this in the survey). In

general, we can define the following probability density model for each datapoint

x ∈ Rd and presence row π ∈ Zd
2:

f : {Rd × Zd
2} → R, (3.1)

Pr(x = x̂, π = π̂) = f(x̂, π̂; ζ). (3.2)

Here, the function of the model parameter ζ is a very general one, providing in-

formation for the model both in the sense of the dataset and the distribution of

missingness. As this is a probability distribution, we have the following relation:

∀ζ,
∫ ∞
−∞

dxd · · ·
∫ ∞
−∞

dx1

1∑
πd=0

· · ·
1∑

π1=0

f(x, π; ζ) ≡ 1. (3.3)

Dependence between features is an important concept: for example, consider the

following two-dimensional Gaussian distribution:

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
−1

2(1− ρ2)

[
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2

])
. (3.4)

Note that this distribution, as we expect, is of type R2 → R in the full data case,

and it has five parameters (ρ, σ1, σ2, µ1, µ2). In particular, the correlation index ρ

allows for correlation between the two features. This simple example illustrates

that dealing with the models feature-by-feature is also not general enough.

Distinctness A common assumption is often made, however, which makes anal-

ysis significantly more tractable. This is the principle of distinctness, described in

3.1 Background 68

Little and Rubin [47] amongst others, and requires that there exists some partition

of the features of the model-governing parameter ζ , which we will hereafter refer

to as ζ = (θ, ψ) in keeping with the notation of this book, such that:

f(π|θ, ψ,x) = f(π|ψ,x)∀x, ψ, (3.5)

f(x|θ, ψ, π) = f(x|θ, π)∀θ, π. (3.6)

The above equations denote that θ is the model for the data alone, and likewise ψ

for the missingness structure. The parameter space in which the original model ζ

resides must thus be equal to the Cartesian cross product of those spaces for θ and

ψ. Schafer [65] observes that:

. . . in many situations this is intuitively reasonable, as knowing θ will

provide little information about ψ and vice versa.

In §3.1.4 we will cover various common terms when dealing with properties which

can be possessed by the p.d.f given by f . For now, it is important to reiterate that

even with the (fairly weak) assumption of distinctness, we have a very general

model, in which feature correlations are catered for as well as inter-dependency

of the distributions of x and π on the values taken by one another, even if we make

the above assumption that the model parameters themselves do not interfere.

3.1.3 Assumptions

Throughout this chapter, we will make it clear under which assumptions certain

techniques of dealing with missing data operate. A list of common assumptions

is provided below for reference. This is not an exhaustive list, and neither should

it be implied that these assumptions in any way discredit various methods: their

3.1 Background 69

review in the following chapter is primarily to provide completeness with the liter-

ature, and show situations in which other methods can, rightly, be used. It should

also be noted that by definition, a review of existing methods would not be re-

quired if there existed one particular method which out-performed all others in

every case. Disclaimer aside, methods often operate under the following condi-

tions, all of which are given also in converse form to illustrate the wide range of

properties which may be assumed for a given application:

1. Data are missing (completely) at random (MAR or MCAR).

2. Conversely, data are not missing at random (NMAR); perhaps a model is

known relating the values of datapoints to the distribution of missingness.

Chapter 1 of the Little and Rubin book gives a good example of this, where

data are conditionally missing on their value.

3. There is a known, or calculable, model of the distribution of the data θ (a

parametric method).

4. Conversely, data must be filled in without any assumptions on model type.

5. The parameters of a data model θ are distinct from those governing the

mechanism behind the pattern of missingness. That is, in the notation used

above in §3.1.2, we have the joint parameter space of θ and ψ being the

direct product of the parameter spaces of θ and ψ.

6. Conversely, there may be a causation relation between the values which

could be taken by a datapoint and its missingness, meaning the models f θ

and fψ were in fact only marginals of a non-trivial joint distribution f (θ,ψ)

giving extra information about the correlation between the models.

3.1 Background 70

7. The missingness of data in a dataset indicates true values that are meaningful

for analysis (the primary assumption made in the book by Little and Rubin,

numbered Assumption 1.1 in the Second Edition).

8. Conversely, missing data is known to be structurally missing (see §3.1.5). It

may also be unknown - see §3.4.3 for a brief discussion on ways of dealing

with this.

A commonly-used term to denote the case of the two assumptions of MAR and

data model distinctness is ignorable [16]. These definitions are discussed more

fully in the following section.

3.1.4 Common types of missingness

Missing at random A common type of missingness used in literature related to

data with incomplete observations is the phenomenon of being missing at random

(MAR), which we mentioned above in §3.1.3. A concise definition of this is

given by a website1 maintained by the London School of Hygiene and Tropical

Medicine [12]:

. . . given the observed data, the missingness mechanism does not de-

pend on the unobserved data.

Thus, two datapoints which share values within their mutually observed features,

under the condition of being MAR, would have the same models for the distribu-

tion of their missing values. An example would be:

X =

 x1 = a b ·

x2 = a · c
(3.7)

1Available at www.missingdata.org.uk.

3.1 Background 71

Here, since x1 and x2 share their value a corresponding to feature f1, we can say

that the missing value x22 will be drawn from the same distribution (but will not

necessarily be the same value) as the value x12, here labelled b, and likewise x13

distributed as c: that is, if this system is MAR, by virtue of the first datapoint x1,

we know that the missingness mechanism can only ever depend on features f1

and f3, and by a similar argument with x2 it depends only on f1 and f2, whence

it can only ever depend on the value of f1 (although it is not guaranteed it does –

it is simply the only option available). Note also that this very specific statement

can only be made as the points share exact values of features, in their values for

feature f1. Thus, the only conditioning (under MAR) on the missingness inherent

in the points x13 and x22 was that xi1 = a. Rubin [64] provides the following

technical definition:

The missing data are missing at random if for each, possible value of

the parameter φ [which we refer to as ζ], the conditional probability

of the observed pattern of missing data, given the missing data and

the value of the observed data, is the same for all possible values of

the missing data.

This definition can be cast into the following form: Each (x, π) combination can

induce a partition of the vector x into an ‘observed’ and a ‘missing’ portion, de-

noted and defined hereafter as:

xobs = {xi : πi = 1},

xmis = {xi : πi = 0}.

3.1 Background 72

We define data as being missing at random if the model has the following property

for every x and π:

f(π|ζ, xobs, xmis) ≡ f(π|ζ, xobs) (3.8)

This definition requires a careful interpretation. It is now possible to see why the

above example required the values x13 and x22 to have the same distribution:

f(π|ζ, x1 = a, x2 = b, x3 = x13) = f(π|ζ, x1 = a, x2 = b)∀x13, (3.9)

f(π|ζ, x1 = a, x2 = x22, x3 = c) = f(π|ζ, x1 = a, x3 = c)∀x22, (3.10)

→ {with x22 = b , by (3.10)}

f(π|ζ, x1 = a, x2 = b, x3 = c) = f(π|ζ, x1 = a, x3 = c) (3.11)

→ {with x13 = c , by (3.9)}

f(π|ζ, x1 = a, x2 = b, x3 = c) = f(π|ζ, x1 = a, x2 = b) (3.12)

=⇒ f(π|ζ, x1 = a, x3 = c) = f(π|ζ, x1 = a, x2 = b) (3.13)

= f(π|ζ, x1 = a). (3.14)

Missing at random, then, does not imply that the missingness pattern is completely

unrelated to the data values. In fact, it does not even preclude the distribution of

π being unrelated to the parameters driving the model; however, as we mentioned

above, if it is true that data are MAR and furthermore the parameters θ and ψ

making up the general model ζ are distinct, we have the following equation for

ignorability:

f(π|ζ, x) ≡ f(π|ψ, xobs). (3.15)

This is a common framework under which to operate, and implies that the mech-

anism governing Π cannot itself tell us anything about the data model θ. Un-

fortunately, all of these conditions (distinctness, MAR and thus ignorability) are

3.1 Background 73

in general very difficult to infer from a given dataset with no prior knowledge

about the model driving the data collection process [12]. One important prop-

erty of ignorability, used extensively in statistical methods for missing data, is

that the expectation of a model parameter is unbiased. Suppose, for example,

we have a set {x1 . . . xn} ∈ R of one-dimensional data and our model was

f(x|θ) ∼ N(θ1, θ2), i.e. θ ≡ (µ, σ2): if this set can now be split into an ob-

served part xobs = {x1 . . . xp} and a missing part xmis = {xp+1 . . . xn}, and we

assume that the missingness mechanism is ignorable, it is true to say that:

xobs ∼ N(µ̂, σ̂2) =⇒ xmis ∼ N(µ̂, σ̂2) (3.16)

for any estimator (µ̂, σ̂2) we care to infer from the observed data xobs; in particular

this works for the maximum likelihood estimator for µ, i.e. the sample mean of

xobs.

Missing completely at random The model can be simplified further still if we

make the highly restrictive assumption that where missingness exists, it has noth-

ing whatsoever to do with either the model governing the data collection nor the

actual values taken by the data: it is simply a model all of its own, and could

in theory be applied to any similar datasets of the same dimension. This is the

missing completely at random (MCAR) assumption, and implies:

f(x, π; ζ) ≡ g(x; θ) · h(π;ψ) (3.17)

⇐⇒ f(π|ζ, x) ≡ f(π|ζ)∀x (3.18)

(compare Equation 3.8 for the definition of MAR). Note that even this assumption

provides for the different features to have varying distributions of missingness,

3.1 Background 74

perhaps as Bernoulli trials with different success probabilities; it also allows cor-

relation between missingness features (e.g. if f1 is missing then there is a high

probability that f2 is as well, etc.). This model is often, however, seen as too re-

strictive, because the nature of many data collection scenarios may often imply a

causation relation between the data values and whether they will be present. A

succinct review of these methods is also given in [24]. Finally, if the following

relation is true:

f(π|ζ, xobs, xmis) is non-trivially dependent on xmis (3.19)

then the data is said to be not missing at random (NMAR), as may be expected.

Scheid [66] provides some insight as to how model selection could be performed

in some of these cases. An example of this is covered in detail in Little and Rubin,

where a system is investigated such that the absence of features means that they

are above or below a certain value, resulting in expressions such as the following

(c.f. Little and Rubin p. 13):

f(πj|ζ, xj) =

 1, xj > α,

0, xj ≤ α.
(3.20)

Here, the distribution of π clearly can depend on the missing values, as the miss-

ingness indicator is itself entirely governed by the position of the data features.

Thus, if xj ≤ α here, then it is true that xj ∈ xmis and f(π|ζ, x) is clearly depen-

dent on its value.

3.1.5 Structurally missing data

In the previous section, when describing common model structures inducing in-

complete data, we have consistently used the assumption numbered as ‘7’ in

3.1 Background 75

§3.1.3 (hereafter referred to as the validity assumption): that is, these models

make the implicit assumption that missing data values hide meaningful comple-

tions of data features with some valid physical interpretation. That is, the model

works on the following basis:

We shall do the best we can with the data available to us in terms

of understanding its model; however, at every point we would prefer

to be working with the full dataset, involving the inclusion of those

features hidden by the missing data structure.

However, quite a different situation results when we relax the validity assumption.

Thus, we progress to the converse Assumption 8, hereafter referred to as the struc-

turally missing assumption. Chechik et al [14] motivate their paper on instance-

specific margins in SVM (discussed in full in Chapter 4) with structurally missing

data. They describe it as per the following four quotes:

• “Unlike the case where a feature exists but its value is not observed . . . a

feature may not even exist (structurally absent) for some of the samples.”

• “. . . samples have varying subsets of observable features due to the inherent

properties of the instances.”

• “. . . in some cases, features are known to be nonexisting, rather than have

an unknown value.”

• “. . . each data instance reside in a lower dimensional subspace of the feature

space, determined by its own existing features.”

Although a fairly recent consideration, work has been done with the structural

missingness assumption in areas of classification theory, such as the study on

3.1 Background 76

clustering due to Wagstaff [82] and second-order cone program based regression

analysis due to Shivaswamy et al [70]; these papers all describe a similar system

with regards to structurally missing data. A rigorous definition of the properties

of such a dataset is, however, complex by nature. Since it is an assumed property

of data rather than something which can be made statistically obvious, a certain

mathematical definition is not obvious. However, as is apparent from the above

quotes, Chechik et al define such a phenomenon as every point lying in its own

instance-specific subspace of the combined feature space. The best way, perhaps,

would be to define a prior probability for the missingness pattern and then provide

some model for each. If we let F = {1 . . . d}, and define F = P(F), the power

set of F denoting all possible subsets, and D = 2d so that |F| = D, define the

missingness selection prior as:

Φk = Pr(Iπ = Fk)∀k ∈ {1 . . . D}, (3.21)

D∑
k=1

Φk = 1, (3.22)

where Iπ denotes the indices of π equal to 1 (or equivalently 0). Thus, for every

possible missingness pattern, we can assign a probability Φk that it will occur in

the ‘next’ datapoint for analysis. For a given dataset X , this induces a partition

{X〈k〉}Dk=1 of datapoints {x〈k〉i ∈ Rdk}Nk
i=1, with the relevant features present as

given in the index set Fk, where dk = |Fk|: that is, the number of present features

given in the missingness arrangement k. Next, for every k a specific probability

model fk(x; θk) must be produced:

θk ∈ RMk , f : Rdk → R

such that ∀θk ∈ RMk ,

∫
x∈Rdk

f(x; θk)dx ≡ 1. (3.23)

3.2 Simple methods 77

At first this formulation may seem entirely intractable, with a dataset with even

10 dimensions producing 210 = 1024 potential partitions, each with their own

probability model of Mk variables dealing with very different types of datapoints

with features ranging from null sets to full complements. However, things can

be made at least conceptually simpler in developing the methods to deal with this

case, if a binding philosophy can be introduced to the problem of classifying such

a seemingly disparate set of points:

In all subsequent methods, with structurally missing data it is impor-

tant that every datapoint feature present in a dataset must contribute

to a procedure, with no pre-processing or assumption being made on

any basis involving ‘true’ values.

Thus, to deal with this type of data, an exclusive-and-exhaustive approach must

be adopted: we work with the data that is there, and assume nothing else. This

philosophy underpins the entirety of the work described in Chapter 5 as we seek

to improve on existing methods using an imputation-avoiding approach.

3.2 Simple methods

In this section, we briefly overview some simple ways of dealing with datasets

with missing features, assuming no prior knowledge of the model concerned, ei-

ther for the data distribution θ or the missingness pattern ψ. We provide this here

as an introduction to various ways available to a method for which no useful infor-

mation is either available or desirable, partially motivated by providing a context

in which to develop methods for structurally-missing data, described above in

§3.1.5. Chapter 6 of the thesis due to Marlin [52] also provides a good review in

3.2 Simple methods 78

this area. Further analyses are given by Weir [84], Marwala [54] and Allison [1].

We shall note some trivial methods and provide a brief overview of imputation

methods.

3.2.1 Trivial methods

There are two simple methods, largely too basic to be used much in literature,

which we mention here: case deletion and marginalisation. The former could be

applied in any relevant context; the latter could potentially be used in a classifica-

tion task.

Case deletion Also known as complete-case analysis, we define case deletion

as the pre-processing of a dataset X ∈ RN×d via the deletion of any datapoint

xi ∈ Rd which does not have its entire complement of features: equivalently,

the decision might be made to delete from analysis any feature {xij}Ni=1 ∈ RN

which is not shared by all datapoints in the set, depending on the ratio of N to

d according to how much information would be lost in either case. Apart from

the cases where data is both missing completely at random and largely complete,

such that case deletion did not impact significantly on the inherent properties of

the distribution of the data, this method is generally too cavalier with the rejection

of data to be suitable. For example, consider the following dataset:

X =

x11 x12 x13 ·

x21 x22 · x24

x31 · x33 x34

· x42 x43 x44

 (3.24)

3.2 Simple methods 79

This dataset would be completely obliterated by case or feature deletion, despite

only a quarter of its values being missing. As we let (N, d) → ∞ in a similarly

structured example, we end up with datasets whose missingness ratio Nm/N → 0

but all of which would be left as null sets under deletion.

Marginalisation When computing the distance of a point x with missing data

away from either another point y (which may be incomplete) or a centre point

a (which is assumed to be of full data), it could be argued that the missingness

could be worked around by only considering those features shared by both points.

Although an assumption similar to this is used as the starting point from where

methods in later chapters shall be derived, great care must be taken over its use in

a ‘normal’ classification procedure as the distance metric which is produced will

not obey the triangle inequality. In particular, if a distance is required between

two points x and y which do not share features, their distance will be calculated

this way as being zero. If Parzen windowing (§2.2.3), for example, is used with

this instance-specific distance metric, probability contours will result with ‘waves’

propagating to infinity in each feature dimension, and the resulting map will not be

normalisable over all feature space as a result. Thus, the use of instance-specific

margins (which we shall return to later) in this way with standard classification

methods should also be discouraged.

3.2.2 Imputation

The process of imputation, the verb to impute literally meaning ‘to attribute or

assign as a characteristic’, refers to the process of the pre-filling of a dataset with

missing data values, so that a complete (full-data case) dataset is obtained, to

3.2 Simple methods 80

which standard methods, usually of classification, can be applied. It is a widely

used method in many areas, including the use by Armknecht [2] in price impu-

tation in finance. Clearly, there exist many different ways of doing this, all with

their own models and assuming different prior information – sometimes more,

sometimes less or none – about the distribution of the extant data. It is important

to note that although choice of imputation method itself may well depend on the

empirical distribution of the dataset, the overriding feature of imputation methods

is that, as mentioned in this section’s introduction, no model is required to be ex-

plicitly stated in terms of the distribution of either data or presence matrix. Once

chosen, any imputation method should be able to work given a dataset alone. We

review a few methods here, which we shall use later on in this account as bench-

marks with which to compare the methods we will devise for instance-specific

geometric margin analysis.

Zeros Imputing a dataset by zeros is a very simple, if rather rudimentary, way

of completion of missing data. This process, although basic, performs reasonably

well when the dataset has been centred; that is, for each feature j with data entries

{xij}Ni=1, over all present data xij ∈ Xobs(j), the mean is already zero. Where this

is not the case or centring is inappropriate, this method can cause unnecessarily

inaccurate completions of a dataset.

Means A slight generalisation of the imputation by zeros method is to impute by

the restricted-data mean values of each feature in turn, thus avoiding the problem

where data has not been centred. Thus, for each j, we split the specific feature

vector X(j) into Xobs(j) and Xmis(j) according to those points where this feature

3.2 Simple methods 81

was observed or missing, and define for all i such that xij ∈ Xmis(j):

xij ←
1

Nobs(j)

Nobs(j)∑
i=1

x
(i)
obs(j), (3.25)

where Nobs(j) denotes the number of datapoints with feature j present, and x(i)
obs(j)

(for i ∈ {1 . . . Nobs(j)}) as being the jth feature of the ith datapoint of X with this

property.

Nearest neighbours Algorithm 1 describes a simple approach related to clus-

tering methods, which imputes datapoints using a nearest-neighbours algorithm.

3.2.3 Adding extra features

In their paper, Chechik et al [14] noted a simple method of completing a dataset

that involved the creation of a new set of augmented features, to display the pres-

ence or absence of data as appropriate. This could be done in many ways, the

most basic being the augmentation of the data matrix X with the (0, 1) realisation

of the presence matrix Π, thus resulting in the (N × 2d) matrix, then imputing in

some other manner. The advantage of this is that it is made more obvious where

a feature has been filled in, setting it apart in feature space from its fellow points

which were perhaps complete before processing; the obvious disadvantage of this

is that the dataset itself grows, which (apart from issues regarding computational

complexity) does not easily allow a direct comparison of efficiency with a method

that has only been set to work with the original d-dimensional dataset once com-

pleted. A refinement of this method would be to apply an analytical algorithm to

the presence matrix Π to ascertain the number of distinct patterns of missingness

3.2 Simple methods 82

Algorithm 1 Nearest-neighbour imputation algorithm
for xi : i ∈ {1 . . . N} do

Let obsi be the index of observed features of xi, misi the missing features

index, with xobs(i), xmis(i) the relevant vectors of values.

if obsi = ∅ (i.e. xi is entirely null) then

Fill with feature averages as per ‘mean imputation’ above

else

Xobs ← (columns of X indexed by obsi)

QX ← (index of points in Xobs with present features)

X ′obs ← (Xobs restricted to non-null points)

Make vector of distances d between each point in X ′obs and original vector

xobs(i), with distances calculated only in dimensions with mutually-present

features

Remove original datapoint, take indices of K nearest datapoints

Impute xmis(i) with the feature means of these K points

end if

end for

3.3 Expectation-maximisation (EM) 83

present, thus reducing the number of flags. For example, if it was deduced that

only 3 missingness patterns occurred within a dataset (which may well be more

likely to naturally be the case than the maximum of 2d), it would be perfectly rea-

sonable to assign a ‘classification’ flag as an extra dimension of, say, {−1, 0, 1}

depending on the particular pattern of each datapoint.

3.3 Expectation-maximisation (EM)

The so-called Expectation-Maximisation (EM) method (see Schafer [65], Bor-

man [10] among others) is a method that has been applied for decades in dealing

with the best way to perform imputation on a dataset with missing data. The cen-

tral assumptions are that data is missing due to meaningful data being omitted, and

generally operates under the ignorability assumption of a MAR pattern and inde-

pendence of model and presence distributions; however, it is designed for use in a

general case. A model f(x|θ) of the underlying process from which the complete

dataset X would have been drawn is a pre-requisite, at least in a well-estimated

form. A reasonable estimate of the parameter vector θ itself is also useful as a

starting point. No prior information about the missingness distribution or its pa-

rameters ψ is assumed, so we hereafter work only with θ. The technique was

introduced for maximum likelihood estimates from incomplete data by Dempster

et al [18], and later Ghahramani and Jordan [27] apply the technique to supervised

learning from incomplete datasets. It is also covered in depth in the book by Little

and Rubin [47]. Essentially, the purpose of the EM algorithm is to optimise both

data completion and model parameter selection, by alternating between iterative

steps concerning both these objectives one after the other.

3.3 Expectation-maximisation (EM) 84

3.3.1 Algorithm

The process involved in computing an EM-based estimate of the most likely dis-

tribution of data in a dataset can be depicted in a two-step iterative process, com-

monly known as the ‘E-step’ and the ‘M-step’. In simple terms, these calculations

can be described thus:

1. Calculate a general expression for the complete-data likelihood L(θ|x), and

thus log-likelihood function l(θ|x), for a set of fully observed data x and

any given model parameters θ. Identify the sufficient statistics S(1) . . . S(m)

which would be required in this expression to evaluate its expectation. Thus

l = l(θ, S(j)) should be a function of the model parameters θ and statistics

S(j), but should not otherwise explicitly depend on the data values.

2. Form an expression for the expectation of each of the statistics S(1) . . . S(m)

conditional on the observed data, using regression analysis to compute these

if necessary2.

3. Decide on an initial estimate of the parameter θ0. Let k = 0.

4. Calculate the current values S(1)
k . . . S

(m)
k of the sufficient statistics identified

in step 1, based on the observed data and the current estimate of the model

θk.

5. E-step: Identify a particular likelihood objective function based on the

current values of these statistics Sk, lk(θ;Sk) being a function of θ only.

6. M-step: Calibrate the current estimate of θ by maximising this particular

objective with respect to θ; increment k and return to step 4.
2See the bivariate normal example on p. 170 of Little and Rubin for an example of this.

3.3 Expectation-maximisation (EM) 85

These steps can be summed up by the following iterative relation (see [10]):

θk+1 = arg max
θ

{
EZ|x,θk

{log p(θ|x, z)}
}
, (3.26)

where EZ|x,θk
(·) ≡

∫
z

p(z|x, θk)(·)dz. (3.27)

Here, we use z as shorthand for the data which is missing, and use the integral

sign over z to conventionally describe that we are conditioning over all possible

completions of the data in x. Thus, these equations state that at each iterative

step, we should search for the optimal θ which maximises the expression given in

Equation 3.26, based on our previous assumptions for the values of z and θ. This

is best understood given a worked example, from Little and Rubin (page 168),

described in the next section.

3.3.2 Example

Suppose we are aware that, in a set of data X = {x1 . . . xn}, that the xi are in-

dependently and identically distributed (i.i.d), under a normal distribution xi ∼

N(µ, σ2), so that here θ = (µ, σ2); furthermore, x1 . . . xr are present and ob-

served, with xr+1 . . . xn being missing. The expression for the p.d.f. is the follow-

ing familiar form:

f(xi;µ, σ
2) =

1√
2πσ2

exp

(
−1

2σ2
(xi − µ)2

)
(3.28)

3.3 Expectation-maximisation (EM) 86

Thus, the complete-data likelihood function is as follows:

L(µ, σ2;X) =
n∏
i=1

f(xi;µ, σ
2)

= (2πσ2)
−n
2 exp

(
−1

2σ2

n∑
i=1

(xi − µ)2

)

=⇒ l(µ, σ2;X) = −n log |σ| − 1

2σ2

(
n∑
i=1

x2
i − 2µ

n∑
i=1

xi + nµ2

)
= −n log |σ| − 1

2σ2

(
S2 − 2µS1 + nµ2

)
, (3.29)

where the values:

S1 =
n∑
i=1

xi and S2 =
n∑
i=1

x2
i

are the sufficient statistics for this problem: given full data, they are directly cal-

culable from this and known values. The next step is to derive the calculation

of these statistics in the presence of missing data, so that the proper expectation

of this expression can be calculated. Clearly, under this model and any estimate

(µ′, σ2(′)) for each missing data value {xi}nr+1, we have S1 = µ′. For the expecta-

tion of x2
i , we refer to the definition of σ2:

σ2(′) = E(xi − µ′)2

= E(x2
i)− 2µ′E(xi) + (µ′)2

= E(x2
i)− (µ′)2

=⇒ E(x2
i) = (µ′)2 + σ2(′).

Thus:

S1(X;µ′, σ2(′)) =
r∑
i=1

xi + (n− r)µ′, (3.30)

S2(X;µ′, σ2(′)) =
r∑
i=1

x2
i + (n− r)

[
(µ′)2 + σ2(′)] . (3.31)

3.4 Methods for structural missingness 87

Thus, by Equation 3.29, every time we estimate (µ, σ2) and thus compute at each

step the requisite values – say (e1, e2) – of these statistics, we can create a partic-

ular objective function l(µ, σ2; ej) (by substituting these values in appropriately

to the general objective given above) which can be maximised for the parameter

values (µ, σ2), thus giving a calibrated value for these parameters for passing to

the next step.

3.4 Methods for structural missingness

Up until now, we have provided methods which either assume that the missingness

of data is either ignorable (or similar) and/or can be modelled by some statistical

distribution ψ. However, in order to deal with the complex concept of structurally

missing data, as described above in §3.1.5, we require new tools. Recall that the

binding philosophy must always be one of using the maximum available amount

of information in a dataset without making any assumptions as to the ‘true’ na-

ture of the ‘hidden’ data, as in this case this information may be meaningless or

unhelpful. In preparation for a study in later chapters of our own methods for

classifying data under this assumption, we briefly review the study by Dick [19]

in §3.4.1. This process is designed to work in a kernel-induced feature space, and

later we shall build on the concepts which shall be introduced here, in the design

of our system. More information on model-based multiple imputations, which are

not necessary for this study, are to be found in the book by Rubin [63], Chapter 10

of Little and Rubin [47], and Chapter 3 of Schafer [65]. These methods are based

on the EM algorithm described above, and work on a similar basis – that of multi-

ple completions of a dataset resulting in a full matrix to which a standard method

3.4 Methods for structural missingness 88

can be applied. Papers by Banasik and Crook [5] and Tanner and Wong [76] show

how the data augmentation method can be used for classification. Where a model

exists, this method may also be of some empirical help, although the infinite-

imputation method covered here is more general. After explaining this method,

and identifying some other ways in which the problem of nonparametric missing

data has been tackled in literature, we turn attention in §3.4.3 to a review of a con-

sultation entered into regarding the potential use of multi-classifier methods for

structurally missing data, and the selection procedures which would be required

should it not be clear whether the missing data was ignorable or structural.

3.4.1 Infinite imputations

Uwe Dick [19] asserts that learning from incomplete data in a kernel-induced fea-

ture space is possible via a process of so-called ‘infinite imputations’, the model of

which we shall now describe. Allow the dataset X ∈ RN×d to have missing data,

so that the presence matrix Π ∈ ZN×d
2 has some values for which πij = 0. Since

the total number of features in the dataset is equal to Nd, we can view the space

ΩX of all possible imputations as being isomorphic to RM , where 0 ≤ M ≤ Nd

is a measure of the number of missing features in the entire dataset. Dick defines

the following:

ωX ∈ ΩX ∼ RM (3.32)

such that ωX is a single realisation of an imputation ofX , induced by a completion

vector q ∈ RM : thus, ωX itself is the same size as X (and can thus be indexed

similarly) but has the constraint that ωij ≡ xij for all (i, j) such that πij = 1.

Thus, ΩX has M free parameters and is, as required, isomorphic to the parameter

space RM inhabited by q. Dick observes that this relation induces a family of

3.4 Methods for structural missingness 89

kernels:

K(ω)(xi, xj) = k(ωi, ωj) (3.33)

Thus, if some probability measure p : RM → R can be deduced from prior

information regarding the likelihood of different completions, we can define the

kernel product with respect to the measure p as follows:

K(p)(xi, xj) =

∫
ω∈ΩX

K(ω)(xi, xj)dp(ω) (3.34)

As this kernel function itself can produce the required kernel matrix {k(xi, xj)}

for the given imputation distribution prescribed by p, the general learning problem

for any optimisation criterion R(α,K) dependent on the kernel matrix K (and

regularising function Q) can be formulated as follows:

R̂(K,γ) = arg min
α,p

R(K,γ)(α, p) = R(α,K(p)) + γQ(p) (3.35)

such that ∀ωp(ω) ≥ 0,
∫
ω∈ΩX

p(ω)dω ≡ 1. (3.36)

Dick observes that this more general case of optimisation procedure integrates

over infinitely many realisations of the completion of the dataset X . Since the

functional parameter p is allowed to vary, in theory any imputation can be reached,

and the process is ‘guided’ by the regularising function Q(p), with the parameter

γ ∈ (0,∞) acting very similarly to the payoff-cost parameter C used in a tradi-

tional SVM approach (see §2.2.6). Although this is an intractably large space over

which to search, Dick shows that there must always exist an optimal distributional

parameter p̂ which is supported on at most n + 2 different imputations, and thus

uses a greedy algorithm to solve the optimisation procedure.

3.4 Methods for structural missingness 90

3.4.2 Other methods

Here we briefly review some other methods which have been adopted for tackling

missing data problems. Three lines of study are covered: using second-order cone

programming for handling an uncertain data structure, Smola’s kernel extension

of support vector methods into problems with missing data, and finally the work

on geometric margin clustering due to Wagstaff.

Cone programming with uncertain data Shivaswamy et al [70] propose a

method, based on previous observations by Bhattacharyya et al [8] regarding

second-order cone programming, to prove that the support vector machine classi-

fier (§2.2.6) can be adapted in the case where measurements are uncertain. The

paper operates under the framework that the following familiar constraint in the

‘certain data case’ of:

yi(b+ 〈w, xi〉) ≥ 1− ξi (3.37)

(compare Equation 2.25), is replaced by the following:

PX {yi(b+ 〈w, xi〉) ≥ 1− ξi} ≥ 1− κi. (3.38)

Thus, the deterministic constraint is replaced by a probabilistic one, with a further

attribute κi to allow for the softness of the probabilistic margin to be altered. They

formulate results assuming both a worst distribution and a normal distribution of

each xi under assumptions of a given mean and variance, and show that in this

case (using Chebyshev inequalities) the classification via a support vector machine

of the xi can be successfully formulated into a second order cone program (see

Equation 4.9 for the definition of this in the context of Chechik et al’s SVM study).

3.4 Methods for structural missingness 91

Kernel extensions with missing data Smola and Hofmann [72] make insights

into the problem of ‘systematically dealing with incomplete data’, observing that

there is no unified framework to tackle the general case which does not entirely

rely on a pre-imputation step. They define an exponential family of functions of

datapoints as a vector φ : Rd → Rm of sufficient statistics for a datasetX = {xi ∈

Rd} with a probabiltiy density model θ (see §3.3 for use of sufficient statistics in

the E-M method above); thus, in the full data case, we may define a probability

density involving exponential terms in an exponential-normal form as:

p(x; θ) = p0(x) exp (〈φ(x), θ〉 − g(θ)) , (3.39)

where g is a specifically-chosen function based on the logarithm of the integral

of p0e
〈φ(x),θ〉. They extend this in the incomplete-data case using a model based

on θ in a similar way to that of EM, and thereafter set out a framework of kernel

classification methods which would be able to adapt in this case. They mention

that these methods are very susceptible to non-convexity and that the integrals

required in computing the requisite functions g for the incomplete-data analysis

may be intractable. However, they show that the system can successfully be used

in some cases to perform parameter estimation and support vector classification

in the presence of the data-driving model θ.

Geometric margin clustering Mentioned above, the paper by Wagstaff [82]

proposes a clustering system to deal with essentially the same generality of data

structure as the Dick paper [19] mentioned in the previous section. He observes

that much clustering work in literature relies heavily on either imputation or mar-

ginalisation, and to deal with missing data in a non-parametric, general manner he

proposes a form of K-means clustering utilising the following model: ∃ a set of

3.4 Methods for structural missingness 92

soft constraints 〈xi, xj, s〉 such that:

∀xi, xj, s = −
√ ∑

fk∈Qi∧Qj

(xik − xjk)2, (3.40)

where Qi refers to the set of present features in datapoint xi. Thus, no constraints

are made in any dimension not shared by the two. The parameter s represented

by this expression refers to the strength of the constraint; that is, s represents

the (geometrical instance-specific) distance of least separation which should be

achieved between xi and xj . In most cases not all these constraints will be satisfied

on an initial iteration, and thus Wagstaff proposes an optimisation procedure for

clustering which minimises the total weight of violated constraints present in each

iteration. This study shows that the idea of using a geometric margin to separate

values with missing data has applications in other areas of classification; later on

we shall present it in kernel form and show that results can be achieved with a

support vector description system.

3.4.3 Discussion of multi-classifier methods

In studies involving the classification of missing data, the nature of missingness of

any absent features, and hence the best method to use, may not always be obvious;

imputation methods are in general more suitable for use where the assumption

regarding absent datapoints being meaningful analysis, and more advanced meth-

ods suited to multiple imputations are intuitively more relevant where there exists

structurally missing data. It is not always optimal to consider every single piece of

missing data as being structurally absent. Furthermore, in the case of datapoints

with features we do consider to be structurally absent, it does not make sense to

train a classification system on imputed data and automatically expect its results

3.4 Methods for structural missingness 93

Figure 3.1: Subspace sphere expansion. New outside point added dimension by

dimension would fit within existing one dimensional bounds, suggesting mono-

centric method using projection is flawed.

to be meaningful when projected back into the subspace in which the structurally

missing data resides; in fact, it is more useful to see the structural missingness

as defining a different ‘type’ of data altogether. The problem which needs to be

addressed is that which arises where we have data which is partly unobserved,

but we do not know a priori whether this is because it is MAR or structural. We

wish to be able to consider a dataset and find a best-fit model which can tell us

the likelihood of a given feature being structurally absent. If we are to avoid is-

sues regarding the assigning of parameters to incorrect subtypes of data, such as

measuring the distance between a projected d-dimensional centre and structurally

absent (d − p) dimensional datapoints (see Figure 3.1), we must build a whole

new classifier for each different combination of statuses of features present in the

training set. The status of each feature may be considered to be one of two types:

“structurally absent where missing” or “omitted (MAR) when missing”, giving

2d types for a d-dimensional feature space. To apply a multi-classifier method,

3.4 Methods for structural missingness 94

we must resolve the question of when to consider features as being each of the

following:

• Structurally absent: this leads to a more rigorous classifier, but the potential

issue arises that we will have less data with which to train, as we have

further split the full set into ’subtypes’ of different patterns of presence and

absence;

• Missing at random: meaning we can approach a more general classifier

which has been trained on a higher quantity of more varied data but leading

to the issue that we must again use imputation, and of course come up with

a certain way of doing this.

Processing data where the categorisation of ‘missingness type’ is unclear thus

requires a conclusion, given a training set, on the most likely nature of each di-

mension: whether we can say that, when a datapoint is missing a certain feature,

it is MAR or structural. However, a more fundamental question in the presence of

structurally absent data is how to process the data once it has been split into sub-

types of ‘missingness pattern’, with a separate classifier trained on every subset.

Ranking these ‘mini-classifiers’, which may be giving conflicting results given

a test point, against each other to form a more rigorous conclusion is a difficult

problem. Another potential issue is that of small sample size, and that not enough

data may be present to properly train a structural classifier; in certain cases (partic-

ularly that of image processing) this may be overcome by creating a critical mass

of data above and beyond the given training set, by producing extra ‘prototypes’:

Perez [62] provides an example of this method on handwritten digits. This is the

point at which prior information comes into play: we may know an important fact

3.4 Methods for structural missingness 95

Table 3.1: Types of missing data

Model
√√ √

× ×
√
×× No. of types

RR PP PP PP PP 1

RS PP PA PP PA 2

SR PP PP AP AP 2

SS PP PA AP AA 4

Legend
√

This feature is present for this training point

× This feature is absent for this training point

R When missing, consider as omitted but underlying

S When missing, consider as structurally absent

P Classify with assumption of existence

A Omit with assumption of structurality

3.4 Methods for structural missingness 96

about the nature of where the training data came from which may eliminate some

possibilities when we attempt to deduce the nature of each feature type. It is pos-

sible, for example, that a classifier may “learn as it goes along” by employing a

cross validation technique, thus always being open to the idea of changing its view

of the nature of each feature but in a continuous way; this method would be near-

optimal if ‘subsequent’ training data was similar to what a classifier had already

seen. A weighting method could also be used to rank classifier results. As an ex-

ample, consider a training set in two dimensions. Table 3.1 shows our options for

classifying each pattern of missingness which could be present in a training set,

depending on which model we choose. In general, the following relation applies:

f : (Zd
2,Zd

2)→ Zd
2

where f(p,q) = p ∨ q, (3.41)

where a value of ‘true’ is assumed by the glyphs of R, P and
√

as depicted by

Table 3.1. From the table above, we can see the choice between four separate

models, some of which give 2 or 4 (in general up to 2d) perhaps conflicting opin-

ions as to the class of a given test point. Not only do we have to deduce the best

model, but in the case where this model involves presence of structurally absent

data, how to deal with the multiple classifier results. Rigorous answers to both of

these questions are not clear; however, there is perhaps scope for using a method

such as reversible-jump MCMC [30] in terms of the latter question of multiple

classifier interpretation. Cross-validation (see §2.1) could be used to choose the

best model, combined with the extra data simulation technique described above if

this were appropriate. We could condition on the nature of the model and obtain

results under each assumption, thus ultimately making the optimal result a func-

tion of the correlation between each feature variable. Another open question is

3.5 Discussion of statistical imputation 97

on whether we ultimately come up with one optimal model, or whether we con-

sider each model in turn for a given testing set, perhaps with a weighting vector

already assigned, or even allowing the classification system to morph as it went

along, thus providing flexibility but perhaps less surety as to the true nature of the

underlying process.

This discussion is an excerpt from a consultation held with Dr Peter

Clifford and Dr Geoff Nicholls, University of Oxford, 17th July 2008.

3.5 Discussion of statistical imputation

In this chapter, we have reviewed various different methods employed widely in

literature for dealing with datasets with missing data. As described in §3.1.3, all

of them either work best, or exclusively operate by design, when based on a set of

assumptions about the nature of both the dataset and its missingness pattern. Of-

ten, a statistical method for missing data will rely on the ignorability assumption

as given in Equation 3.15, or some probability-based model ζ for the distribution

behind the data, which may itself partition as ζ = (θ, ψ), based on facts that are

known a priori about the nature of the measurements. Others make assumptions

about the relevance of performing certain procedures: the EM algorithm (§3.3) is

an example of where at the outset, the method intends to only consider the case

where data-filling is a reasonable thing to do. It has advantages, however, in the

effective estimation of these parameters in many cases, and the selection of an op-

timal model to fit the observed data. Dick’s method of infinite imputations (§3.4.1)

extends the ideas of EM to work over whole probability distributions of poten-

tial data completions, making it an important tool in the analysis of incomplete

3.5 Discussion of statistical imputation 98

data using an imputation-avoiding approach. Furthermore, Wagstaff’s geometric-

margin clustering algorithm makes in-roads into systems where no prior distribu-

tion is assumed and that the practice of imputation (see §3.2.2) is too rudimen-

tary; in subsequent chapters we will consider further this paradigm, and devise

a system to work under the assumptions of structurally missing data, notably

the binding philosophy as mentioned in §3.1.5: that all present data should be

used, and no absent data should be arbitrarily infilled at any point during the algo-

rithm. Furthermore, we will pursue a system which blends this philosophy in with

kernel methods: as Smola [72] correctly observes, precious little has been con-

sidered in the literature about a realistic extension of missing-data methods into

kernel-induced feature spaces, with many statistical methods necessarily working

on what would be termed ‘input space’ alone. Smola’s system based on the under-

lying sufficient statistics is a good start, but we seek a system to deal with this case

non-parametrically. In Chapter 4, we will consider the useful study performed by

Gal Chechik et al into performing an SVM classification procedure with struc-

turally missing data, using their method of geometrical instance-specific margins

to only consider the data present in each feature as being relevant for its decision

boundary calculation. By considering the models presented in this chapter and

next, we can identify a system which will bring together parts of each and provide

a classification system for the support vector domain description (§2.2.7) which is

capable of the following:

• Classifying data in a non-parametric method: that is, assuming nothing

about the underlying distribution θ of the dataset or its missingness pattern

ψ.

• Where data are missing, to consider them as being structurally absent, and

3.5 Discussion of statistical imputation 99

adopting an approach towards classification that every present instance of

every datapoint will contribute to the classification procedure, but nothing

will be arbitrarily assumed about the in-filling of absent data.

• Working effectively in a kernel-space, again in a way which is not equivalent

to any arbitrary imputation of a dataset.

The following chapters will outline the basis of the design of this classification

machine, starting with a full study into the work done by Chechik on geometric

margin classification. The realisation of these targets, although ambitious, will

thus be able to build on the many developments in various areas already made in

the area of missing data analysis.

Chapter 4

Geometric SVM with

instance-specific margins

4.1 Introduction

In Chechik et al’s paper of 2008 [14], they consider the problem of performing

a support vector machine computation on a dataset with missing features, whilst

avoiding the pre-imputation of the partial dataset. Their paper is motivated by

the idea of structurally missing data, which we introduced in the previous chap-

ter §3.1.5; to re-cap from the previous chapter, they define this type of data as

occurring when the following is true:

“. . . unlike the case where a feature exists but its value is not observed,

here we focus on the case where a feature may not even exist (struc-

turally absent) for some of the samples . . . features that are known to

be non-existing, rather than have an unknown value.”

100

4.1 Introduction 101

Figure 4.1: Underestimation of the margin. Note that ρ2 underestimates the mar-

gin as it measures to an imputed point over both dimensions, whereas ρ1 only

measures in the dimension for which features are valid.

They reason that, instead of viewing datapoints as vectors of features in the same

space, we should see them as residing only in the subspace of the main frame of

reference for which features are present. This is to avoid the scenario where poor

imputation of data may make those datapoints with missing features end up too

close to a margin, and therefore be seen by a classifier as being ‘too important’ due

to the data that has been filled in (see Figure 4.1). For example, for x = (x1, ·, x3),

we see that the main input space is R3 but that the datapoint resides in the subspace

isomorphic to R2. In a usual SVM, the full-data geometric margin is given by:

ρ(w) = min
i

yi(w · xi)
‖w‖

. (4.1)

However, this is ill-defined where xi does not have full features. Thus Chechik

et al recommend replacing this by a different metric, known in the paper as an

instance-specific margin:

w = arg max
w

(
min
i
ρi(w)

)
, (4.2)

4.2 GMSVM formulations 102

where ρi(w) =
yi(w

(i) · xi)
‖w(i)‖

, (4.3)

where here w(i) is equivalent to the projection of w into the subspace for which

xi has valid features, and:

‖w(i)‖2 =
∑

k:fk∈Qxi

w2
k, (4.4)

and Qxi
⊆ {1 . . . d} denotes the indices for which xi has present features. At this

stage, it should be noted that the derivation of a solution of an SVM in the usual,

full-data case, requires the following function to be simplified:

w = arg max
w

(
min
i

yi(w · xi)
‖w‖

)
, (4.5)

by removing the denominator ‖w‖ from the inner minimisation step, since it does

not depend on the instance i. This is not possible in the new formulation, since the

denominator is as given in Equation 4.3, precluding the use of a simple quadratic

programming method for solution. Essentially, this is because the QP depends

on a system which uses only the inner products between the datapoints and the

margin w, and their classes. Recall that this property is what makes the SVM

a powerful machine to use in kernel-induced feature space. However, the com-

putation of w(i) requires knowledge of the dimensional structure of each of the

xi.

4.2 GMSVM formulations

In their paper, Chechik et al describe three separate algorithms to solve this more

complex problem formulation given above by Equations 4.2 and 4.3, which we

briefly review here. They first provide a simple, exact formulation of the problem

4.2 GMSVM formulations 103

in the hard-margin, linear case and show that this can be reduced to a convex

algorithm structure known as a second-order cone program (SOCP); secondly, a

method is developed to provide an approximation to the margin and reduce to a

familiar quadratic programming form, solvable similarly to the SVM as stated in

§2.4.1. Finally, they develop an exact method that uses scalings of the full norm

to approach a constrained optimisation problem that can take into account soft

margins for the non-separable case.

4.2.1 Method 1: hard margin formulation

This method uses a familiar approach towards minimax optimisation, by intro-

ducing an auxiliary parameter γ as a bound, and transferring the objective into the

constraints, meaning that for each given γ a solution can be sought, then γ can

be optimised itself to provide a desirably tight bound. Thus, the above problem is

transformed into the following:

(w, γ) = max
w,γ

γ

such that γ ≤ min
i

yi(w
(i) · xi)
‖w(i)‖

. (4.6)

The constraint given by Equation 4.6 is equivalent to γ being less than the quantity

given for all i, whence:

γ ≤ yi(w
(i) · xi)
‖w(i)‖

∀i ∈ {1 . . . N} (4.7)

=⇒ γ‖w(i)‖ ≤ yi(w
(i) · xi)∀i ∈ {1 . . . N}. (4.8)

If we fix γ as constant, this program now obeys the general form of a second-

order cone program, which is solvable in a convex manner (see [48] and [70]

4.2 GMSVM formulations 104

for examples of its use in the context of missing and uncertain data) and has the

following general form:

x = arg min
x

fTx (4.9)

such that ∀i, ‖Aix + bi‖ ≤ cTi x + di. (4.10)

Chechik et al make the comments that although this method is perfectly reason-

able in the hard-margin (i.e. separable SVM) case, there is no obvious way of

extending the method to include a soft-margin formulation, since the derivation

tends to lead to trivial solutions of w ≡ 0 when these are included in the usual

manner.

4.2.2 Method 2: quadratic approximation

In §4.1 we discussed how the denominator present in Equation 4.3 precludes the

use of a quadratic program, as it cannot be taken out of the minimisation step

of Equation 4.2. The next method presented in the discussed paper provides a

workaround to this, via approximation of this norm. Recall the definition of the

original denominator, given in Equation 4.4:

‖w(i)‖2 =
∑

k:fk∈Qxi

w2
k.

The second algorithm replaces this with an approximate norm thus:

‖w‖
2

=
1

N

N∑
i=1

‖w(i)‖2, (4.11)

4.2 GMSVM formulations 105

where ‖w(i)‖2 is given as above. To see how this works, consider the following

dataset:

X =

x11 x12 x13

x21 x22 ·

x31 · x13

· · x43

 ,w =

w1

w2

w3

 . (4.12)

Then, for example, ‖w(2)‖2 = w2
1 + w2

2, and:

‖w‖
2

=
1

4
(3w2

1 + 2w2
2 + 3w2

3).

From here it is simple to form an objective of the form of a quadratic program

(see §2.4.5) with soft margins:

(w, b, ξ) = arg min
w,b,ξ

1

N

N∑
i=1

1

2
‖w(i)‖2 + Cξi (4.13)

such that ∀i, yi(b+ (w(i) · xi)) ≥ 1− ξi. (4.14)

Chechik et al point out that this method is expected to do well if there is a reason-

able similarity between the instance-specific norms; this is the case for datasets

where there is only a small degree of missingness. However, for datasets where

many features are absent, the ansatz norm given in Equation 4.11 will not be a

good approximation.

4.2.3 Method 3: soft margin formulation

Finally, a method is introduced to address the exact formulation with soft margins.

The complex instance-specific norms ‖w(i)‖ are replaced with scalings of the full

norm, by way of coefficients si = ‖w(i)‖/‖w‖. Thus Equations 4.2 and 4.3

4.2 GMSVM formulations 106

become:

w = arg max
w

1

‖w‖

(
min
i

yi(w
(i) · xi)
si

)
, (4.15)

where si =
‖w(i)‖
‖w‖

. (4.16)

Thus, the problem of the SVM process with soft margins can be reduced to the

following equations (take ξ ≡ 0, b = 0 to recover the separable approach):

(w, b, ξ, s) = arg min
w,b,ξ,s

1

2
‖w‖2 + C

N∑
i=1

ξi (4.17)

such that ∀i, 1

si

(
yi(b+ (w(i) · xi))

)
≥ 1− ξi. (4.18)

Chechik et al note that this program is not in a QP form. In fact, it is non-convex in

w and requires an iterative dual-optimisation procedure to approach a reasonable

solution. We first take the si to be constant and create the familiar Wolfe dual

problem with respect to the Lagrangian multipliers αi ∈ RN , as outlined in §2.4:

α = arg min
α

1

2
αTBα− eTα, (4.19)

where 0 ≤ α ≤ C,B = {Bij} =
yiyj
sisj

(xi · xj),
N∑
i=1

αiyi = 0. (4.20)

Note here that B, analogous to the class-endowed kernel matrix used in §2.4.1 to

solve the usual, full-data case SVM problem, is dependent on our choice of si,

framing the problem as needing a dual-optimisation procedure; every iteration of

s will produce a different SVM problem to solve. It is important to note that the

term (xi · xj), which would not usually make sense outside the FDC (see §5.3),

must be replaced by the analogous dot-product but where the xi have been pre-

imputed by zeros, thus allowing the exclusion of the product terms (by assigning

4.3 Discussion of GMSVM method 107

them zero value) where either xi or xj are not present. The optimal margin for

classification can then be computed thus:

w =
N∑
i=1

αi
yi
si
xi, (4.21)

again analogously to the usual SVM formulation. Once the minimal value of this

optimisation step has been computed, the si can be updated by the simple relation:

s
(k+1)
i =

‖w(i),(k)‖
‖w(k)‖

(s(k)) (4.22)

This relation makes sense as the optimal solution w will inevitably depend con-

tinuously on the choice of s held constant; also, as a result of Equation 4.21,

if the minimal value for w is also a minimum over choices of s, then clearly

s
(k+1)
i ≡ s

(k)
i ∀i. The authors reason that this guarantees convergence to some

minimal value, albeit sometimes local. Multiple starting points were used over

several runs to ensure a good result; they also point out that this method means

that the greatest computational burden in computing theBij can be derived before-

hand, as theB is just a vector scaling of the kernel matrixK0 for the zero-imputed

dataset.

4.3 Discussion of GMSVM method

In this section, we discuss the third method mentioned above, as this is the process

for which we will attempt to create an analogue with our SVDD classifier. Note

firstly that the objective function depends on the datapoints xi only in terms of

their (zero-imputed) dot-products with each other, rendering it as a suitable form

to which kernel methods can be applied (see §2.3). The formulation in kernel

4.3 Discussion of GMSVM method 108

space is straightforward, and takes the form of Equations 4.19 and 4.20 being

replaced by the following pair of kernel-based equations:

α = arg min
α

1

2
αTBα− eTα (as before),

where 0 ≤ α ≤ C,B = {Bij} =
yiyj
sisj

k0(xi, xj),
N∑
i=1

αiyi = 0. (4.23)

Here, k0 refers to the kernel function k(x, y) working only on those features for

which both points x and y have data present. We consider those kernels that are

based on the inner products of datapoints, that is k(x, y) = f(x · y); thus, the

formulation k0 can be easily achieved by applying k to zero-imputed data, as

described above. The reliance of k on the dot product between points in this way

ensures that this step is equivalent to ignoring non-present feature elements.

4.3.1 Weighting terms

This method relies on the creation of kernels that can handle missing data. As

we will see later in §5.3, this is not a natural property of a kernel space, and

accordingly the GM-SVM method provides a way in which kernel spaces can be

adequately dealt with. The paper by Chechik et al uses the the following map,

effectively from input space to itself but able to deal with missing features:

h : {R,NaN}d → Rd, hk(x) =

 xk : xk present;

0 : xk absent.
(4.24)

Thus, when the map h is applied to each datapoint in turn, the effect on a kernel

based on the dot product will be that if either feature of a given pair is absent, that

feature shall be ignored. Chechik et al argue that this approach is different to pre-

imputation by zeros (which would produce an identical kernel to that given above)

4.3 Discussion of GMSVM method 109

by virtue of the si terms ensuring that the datapoints are weighted correctly. Let

us return to the definition of these terms:

si =
‖w(i)‖
‖w‖

, where ‖w(i)‖2 =
∑

k:fk∈Qxi

w2
k. (4.25)

The major assumption behind this extension into kernel space is that the si derived

this way will continue to perform the same rôle once the main objective equations

have been kernelised, à la Equation 4.23. However, we see above that the defi-

nition of ‖w(i)‖ is itself dependent on an explicit depiction of the margin vector

w, which is not a luxury available to us in kernel-induced feature space. The

latter observation is derived from the only meaningful representation of a kernel

analogue of w in feature space (compare the definitions as per §2.4.1):

w =
N∑
i=1

αi
yi
si
φ(xi), (4.26)

which itself is intractable: this is the original motivation for the dual problem of

the αi Lagrangian multipliers to begin with. Thus, we find that in general, we

cannot hope to provide meaningful scaling terms si if the explicit form of the

mapping function is not known. However, occasionally it may be the case that it

can be found. Let us again consider the quadratic kernel, k(x, y) = (1 + (x · y))2.

In a two-dimensional case we have the following explicit form for φ:

φ(x1, x2) = (1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2). (4.27)

We now show how the si can vary from the linear to the quadratic case. Take a

datapoint x1 with a present feature in f1 and absent in f2; we write x1 = (x11, ·).

It is trivial to verify that in the linear case:

s2
1 =

w2
1

w2
1 + w2

2

.

4.3 Discussion of GMSVM method 110

We see that φ has six dimensions, thus we model our boundary vector w ∈ R6

and define the following:

‖w(i)‖2 ≡
∑
k∈Gi

w2
k, (4.28)

where k ∈ Gi ⇐⇒ {[φ(xi)]k does not involve any features not in Qxi
} (4.29)

This seemingly convoluted definition, which itself relies on the explicit form of

φ, is entirely consistent with the linear case and includes dimensions of φ not

dependent on any features of xi (i.e. constants). Under this definition we have:

‖w(1)‖2 =
∑

k∈{1,2,4}

w2
k (4.30)

= w2
1 + w2

2 + w2
4

=⇒ s2
1 =

w2
1 + w2

2 + w2
4

w2
1 + w2

2 + w2
3 + w2

4 + w2
5 + w2

6

. (4.31)

This is plainly different from the linear case mentioned above; the definitions of

the wi are also different, so there is no correspondence between the two defini-

tions.

Adapted input-space method We do, however, find that given a special case

the si can prove explicitly computable. Suppose the following is true: For kernels

based on the dot product k(x, y) = f(x ·y) as above, let the vector w be restricted

to input space. We now seek its equivalent mapping φ(w), and perform a similar

analysis. In this case, Equation 4.3 becomes:

ρi(w) =
yi(φ(w(i)) · φ(xi))

‖φ(w(i))‖
(4.32)

4.3 Discussion of GMSVM method 111

where, if we continue the above assumption, we can reasonably define the quantity

w(i) itself (compare Equation 4.24) as:

(w(i))k =

 wk : xk present;

0 : xk absent.
(4.33)

Under the above assumptions, Equation 4.32 is equivalent to:

ρi(w) =
yi(φ(w(i)) · φ(xi))

‖φ(w(i))‖
(4.34)

A similar analysis to the linear case can now be performed if we let:

s2
i =

f(‖w(i)‖2)

f(‖w‖2)
. (4.35)

to arrive at an analogous relation to Equation 4.18. We have adapted this case

in §5.4; it is subtly different from the usual case where the objective vector (w

here, a in SVDD) resides in a usually singular point in kernel feature space and

has no preimage in the input space. Here, if we assume that w itself resides in

input space This example shows that great care should be taken with definitions

of scaling terms such as these, as working in a kernel-induced feature space is a

complex extension and scalar values, in general, cannot be expected to behave in

the same way when transformed.

4.3.2 Kernel extension

The above examples show that great care should be taken with definitions of scal-

ing terms such as the si, as working in a kernel-induced feature space is a complex

extension and scalar values, in general, cannot be expected to behave in the same

way when transformed. For example, it is also simple to verify that even the

4.3 Discussion of GMSVM method 112

adapted form of the exact method described above fails when the widely-used

radial basis function (RBF) kernel is used:

k(x, y) = exp
(
−q‖x− y‖2

)
(4.36)

As this equation is not dependent on the dot product, missing out features is not

equivalent to pre-imputation with zeros. In fact, even if the ‘geometric’ distance

metric (see §5.3.2 and Equation 5.20) is used, we find that as the RBF kernel has

the effect of mapping all data onto a hypersphere in feature space of radius 1, the

si terms have no effect: they merely cancel down to si ≡ 1
1
≡ 1. In general, the

approach towards kernel space used in these methods does not take into account

the parametrisation of curves and surfaces that would be the result of including

free parameters in input space (i.e. missing data without imputation): we hope

to make inroads into this with our algorithms developed for the SVDD case. The

following chapter will present a method designed to work in purely input space,

before outlining the obstacles that will, in general, stand in the way of an analysis

of kernel spaces when dealing with missing data.

Chapter 5

Exact centre domain description

5.1 Motivation

In this chapter, we describe methods we have devised to provide a solution to the

problem of performing support vector domain description (SVDD) with a dataset

with missing data. We take our lead from the studies of Chechik et al [14] on

performing an SVM on structurally missing data; as described in §4, the moti-

vation for their method came from a study of fitting data to an optimal margin

with respect to the subspace in which each datapoint had present features. This

itself was inspired by the challenge of working with structurally missing data,

where imputation methods may provide spurious, meaningless completions of a

dataset in which data may be missing for a good reason, rather than sub-optimal

collection methods. In §2.2.7, we observed that SVDD is a similar method to the

SVM classification process that instead provides a description of the domain of a

dataset; it is a reasonable question, therefore, to ask whether the ideas put forward

by Chechik et al about measuring in feature-specific subspaces could be extended

113

5.1 Motivation 114

in this case to a similar support-vector based method. In §2.3, we learned about

the power of kernel functions, which have the ability to extend classification meth-

ods such as these into arbitrarily complex feature spaces, with the ‘kernel trick’

(§2.3.2) ensuring that under reasonable conditions, the explicit mapping does not

have to be itself computed. We can thus identify four major aims of this study.

Our system must be able to:

• Perform a one-class domain description of a dataset, in a way in which

the inclusion status of novel data can in some way be ascertained, and if

necessary pave the way for use of a hybrid method such as DSVC (described

in §2.2.8) for multi-class classification problems.

• Deal rigorously with missing data, in a way which avoids imputation meth-

ods: that is, it must use all of the data present in input space, without adding

or guessing at the data absent from the dataset.

• Work effectively with kernel-induced feature spaces in a way which is rig-

orous and conforms to the principles described in §2.3, and avoids the need

to explicitly address the mapping function φ of any given kernel.

• Cancel down in the ‘full data case’ to the same solution that would be given

by a kernel SVDD.

The following chapter will describe the derivation and properties of our first me-

thod, which we term our exact-centre system. It should be seen as a forerunner

to our main algorithm, known as our dual-optimisation system, that we will cover

later in Chapter 6, and the material in this chapter should therefore be seen as

describing the necessary preliminary work to prepare the ground for the latter

method.

5.2 Re-derivation of linear SVDD for GM 115

Section structure In §5.2, we demonstrate a way in which all but the third aim

as stated above can be achieved, by considering a simple method of performing

and solving a SVDD machine in linear input space only. We then identify the main

challenges which arise in generalising this method to non-spherically distributed

data by introducing kernel functions in §5.3, and outline ways in which these

challenges can be overcome. In §5.4, we demonstrate an algorithm designed to

find a centre in input space which provides a kernelisable domain description

solution with respect to missing data whilst avoiding the use of imputation: this

is the method we refer to as our exact-centre method. We test this method in the

subsequent sections, with §5.5 showing the first tests we performed on MCAR

data and our experiments with different missingness levels and kernel functions;

finally, in §5.6 we propose a more rigid comparison structure for this and the

following chapters for comparing incomplete datasets side-by-side, and use this

structure to analyse our exact-centre system on synthetic data.

5.2 Re-derivation of linear SVDD for GM

5.2.1 Introduction

In the paper of Chechik et al [14] regarding a geometric margin approach to SVM,

they argue that their system always provides larger margins in the missing data

case, unless the classifier is orthogonal to the missing feature in question, and

compare this to the imputation case which underestimates the margin, giving the

point with missing data too much weight on the classification process. This is the

main motivation for the approach described in this section – since it can be simi-

larly argued that in SVDD, we try and minimise the radius of the enclosing sphere

5.2 Re-derivation of linear SVDD for GM 116

existing feature

m
is

si
ng

fe
at

ur
e

imputed point

r
2

r1

Figure 5.1: SVDD with missing data

(see Figure 5.1); given an imputation of a point with missing data, we find that

its distance from the centre is always larger than if a geometric margin approach

had been used. Thus, the same risk is encountered but with the opposite objective:

that if a point is badly imputed it will have too great a distance from the centre,

and thus again be seen as too important by a classifier. Using a geometric margin

approach would ensure that the distances are only measured from points with re-

spect to the features they have present – Chechik et al describe this as measuring

only in the subspace of input space for which we have mutual feature presence.

We will show that in the linear case, using dimensional information from input

space, we can re-formulate the SVDD method to arrive at an optimisable quantity.

5.2.2 Formulation

In this section, we use a method similar to the SVDD method we described in

§2.4.2 to investigate the formulation of the linear SVDD in the missing data case.

Let X ∈ RN×d be the dataset with missing features, and let Π = {πij} be the

5.2 Re-derivation of linear SVDD for GM 117

dataset’s unique presence matrix: that is, the binary matrix such that:

πij =

 1 if feature Xij is present;

0 if feature Xij is absent.
(5.1)

In order to compare the distances of points based on their perpendicular distance,

it is necessary to incorporate the matrix Π into an adapted distance metric. Sup-

pose we had a point x = (x1, x2) ∈ R2 and another point y = (y1,NaN) with

missing data in the second dimension; an ideal distance metric will compare the

distance of y from x only in the subspace for which both x and y have features

(that is, only the first dimension in this case) – yielding ‖y− x‖2 = (y1− x1)2. In

general, we can define the linear geometric distance1 thus:

‖a− b‖2
G =

d∑
j=1

πajπbj(aj − bj)2, (5.2)

where πaj, πbj are binary values denoting the presence or absence of the jth di-

mensions of a,b respectively, and the multiplication of them acts as an ‘AND’

gate: the main part of the summation will be ignored if either aj or bj is missing.

By convention in this definition, we take the value of zero multiplied by an un-

defined missing value to equal zero; to add rigour, we may envisage both vectors

to be pre-imputed (e.g. by zeros) initially. In order to compare distances using

a geometric margin approach, we must adapt the problem as stated in Equations

1Note this the input-space definition; later in the chapter we will show that another, more

general, formulation can yield the same result.

5.2 Re-derivation of linear SVDD for GM 118

2.26 and 2.27 to the following:

(a, ξ, R) = arg min
a,ξ,R

R2 + C
N∑
i=1

ξi (5.3)

such that

[
d∑
j=1

πij(xij − aj)2

]
−R2 − ξi ≤ 0, (5.4)

−ξi ≤ 0∀i. (5.5)

Note the only difference between these equations and the abovementioned linear

formulation of SVDD in the full data case is that we have included the values of

πij in the constraints; everything else is left the same, therefore we still seek a

‘ball’ around a unique, full-data centre point a and a dimensionally homogeneous

radius R. Intuitively, in terms of the distances between this centre point and data

with missing features, the ‘ball’ will have more of a hypercube structure. We

construct a Lagrangian for this system:

Λ(a, ξ, R, α, β) = R2+C
N∑
i=1

ξi−
N∑
i=1

αi

[
R2 + ξi −

d∑
j=1

πij(xij − aj)2

]
−

N∑
i=1

βiξi.

(5.6)

Proceeding as in §2.4.2 we take derivatives with respect to the primal variables to

derive new conditions:

∀i∂Λ

∂ξi
= 0 =⇒ C = αi + βi =⇒ αi ∈ [0, C] (as before); (5.7)

∂Λ

∂R
= 0 =⇒

N∑
i=1

αi = 1 (as before); (5.8)

∀k ∂Λ

∂ak
= 0 =⇒ ak =

∑N
i=1 αiπikxik∑N
i=1 αiπik

. (5.9)

Equation 5.9 shows that this system is more complex, as we can no longer simply

express a as a weighted sum of the xi as in the full data case. We put these

5.2 Re-derivation of linear SVDD for GM 119

relations back into Equation 5.6 to derive our objective function:

Λ = R2 + C
∑
i

ξi − C
∑
i

ξi −
∑
i

αi

[
R2 + ξi −

∑
j

πij(xij − aj)2

]

= R2 +
∑
i

αi

{[∑
j

πij(xij − aj)2

]
−R2

}

=
∑
i

αi

{∑
j

πij(xij − aj)2

}

Λ =
∑
i

αi

{∑
j

πij(xij)
2 − 2

∑
j

πijxijaj +
∑
j

πija
2
j

}
. (5.10)

We can now introduce the definition of the aj as per Equation 5.9, to arrive at our

optimisable quantity:

Λ =
d∑
j=1

Λj where Λj =
N∑
i=1

αiπijx
2
ij −

(
∑

i αiπijxij)
2∑

i αiπij
. (5.11)

The form of this latter equation is similar to that used in statistics to compute

variance in a dataset. Suppose we have a probability mass function (p.m.f.), de-

fined over a list of one-dimensional datapoints xi, with corresponding probability

masses pi; if
∑
pi = 1, as would usually be the case for a valid p.m.f., we define

the variance thus:

Var X|pi
=
∑
i

pix
2
i −

(∑
i

pixi

)2

(5.12)

Suppose, however, that
∑
pi 6= 1; to maintain the same units we introduce a

normalising factor. Define the generalised variance as:

VarG X|pi
=

∑
i pix

2
i∑

i pi
−
(∑

i pixi∑
i pi

)2

(5.13)

5.2 Re-derivation of linear SVDD for GM 120

Returning to the definition of Λ above, if we let wj =
∑N

i=1 αiπij , we have:

Λ =
d∑
j=1

wjVarG Xj|αj :πij=1 (5.14)

where here Xj denotes the jth dimension (column) of the dataset X . That is, if

we take each dimension j in turn, we can create a one-dimensional probability

mass function over those points in that dimension of input space i where πij =

1, taking probability mass of αi at each present point. We use the generalised

variance since, in general, the sum of these points will not be unity outside the

FDC, since some data in each dimension will be missing (and
∑
αi = 1 only

over all datapoints). For example, if:

X =

x11 x12 x13

· x22 x23

x31 · x33

x41 x42 ·

 , α =
1

10

1

2

3

4

 (5.15)

then Λ is calculated thus:

Λ =
8

10
VarG X1 +

7

10
VarG X2 +

6

10
VarG X3. (5.16)

This method makes intuitive sense in terms of the behaviour of support vectors in

linear space. To maximise Λ, we must choose α such that the weighted sum of the

projections of the dataset onto each axis, adorned with point-masses designated

by the coefficients αi, is maximal. When using the classical FDC form of SVDD,

we find that those Xij for which αj is largest are the support vectors and those

outside the sphere: thus maximising the variance of a p.m.f. when the data is

projected onto each axis.

5.2 Re-derivation of linear SVDD for GM 121

5.2.3 Objective function

In order to be able to maximise the quantity Λ effectively, it is an advantage if

we can provide an optimisation solver with a gradient function. We return to the

original, data-based definition of Λ as given in Equation 5.11:

Λ =
d∑
j=1

Λj where Λj =
N∑
i=1

αiπijx
2
ij −

(
∑

i αiπijxij)
2∑

i αiπij
.

Since we are specifying the problem in terms of the coefficients αi, we compute

the corresponding gradient of each of the Λj , with a view to their summation once

this has been derived. For all k ∈ {1 . . . N}:

∂Λj

∂αk
= πkjx

2
kj − 2πkjxkj

(∑
αiπijxij∑
αiπij

)
+ πkj

(∑
αiπijxij∑
αiπij

)2

(5.17)

=⇒ ∂Λj

∂αk
= πkj

(
xkj −

∑
αiπijxij∑
αiπij

)2

. (5.18)

The second term here can be equated with the centre of mass of datapoints along a

dimension j with their features present; in particular, this gradient function com-

putes the distance of xkj away from this dimensional centre of mass. Since the

constraints on α given by Equations 5.7 and 5.8 are the same as in the SVDD case,

an optimisation solver, for example MATLAB’s Optimization Toolbox function

fmincon, can now be used to find a constrained minimal value of the additive

inverse of the value Λ =
∑

Λj .

Comments In itself, this system thus provides an effective – if rather computa-

tionally intensive – way of deriving an accurate weighting vector α for an SVDD

in linear (input) space, with geometric margins: that is, the values of any missing

data are not ‘guessed’ at any point during the calculation, and in §5.5 we show that

5.3 Development of kernelisable system 122

on simple problems, this method can be effective. Thus, on its own the method is a

reasonable self-contained algorithm for dealing with spherically-distributed data.

However, its utility is limited given that the exact values of datapoints, along with

their presence/absence status, must be known; this precludes the use of kernel

methods, in which the full-data case SVDD method gains its degree of versatility.

Unfortunately, the processes necessary in moving from input space to a gener-

alised feature space are not simple: in the next section, we describe the obstacles

which must be overcome to gain a rigorous algorithm which does not need to

address feature-space values explicitly.

5.3 Development of kernelisable system

5.3.1 Introduction

If we are to produce a system which caters for non-spherically distributed data

whilst maintaining a geometric radius formulation, a few observations must be

made. Firstly, in the full data case, domain description, along with many other

classification techniques, is rarely used in the linear formulation, relying instead

on the kernel methods introduced in §2.3 and described in detail in §2.3.5 and

§2.4.2. Secondly, that the very formulation of a rigorous inner product k(x, y) =

φ(x) · φ(y), whether in input space or feature space, requires use of products

between corresponding features of the datapoints involved, since:

(x · y) =
d∑

k=1

xkyk.

If we wish to avoid using any imputation methods on missing data expressions

such as xkyk must be dealt with properly in cases where, say, xk is present and

5.3 Development of kernelisable system 123

yk is absent. Thirdly, that Mercer’s theorem of function analysis [68] implies that

the mapping φ always exists in a well-defined fashion if K = {Kij} is positive

definite. The following observations lead to the following theorem.

Theorem There does not exist a suitable positive definite kernel function

k(x, y) = φ(x) · φ(y),

which uses all dimensions of input data in some way, and can be applied to

a dataset with missing features for a use in a kernelisation of a classification

technique using a geometric radius approach; that is, avoiding the use of pre-

imputation of the dataset.

Proof By contradiction; suppose there were a positive definite kernel k(x, y).

Then there exists a well-defined mapping φ such that k(x, y) = φ(x) · φ(y); let us

assume φ has dimension D2. Thus, for a given pair of datapoints (x, y), k(x, y) =∑D
t=1 φt(x)φt(y) for some convergent series of functions φt(x). Either we are in

the full data case (i.e. all features of both x and y are well defined), a degenerate

no-data case (where some features are defined for neither x nor y), or there exists

some k0 ∈ {1 . . . d} such that xk0 (without loss of generality) exists and yk0 is

absent. Let T be the subset of {1 . . . D} such that the functions {φt(x) : t ∈ T}

are dependent on the kth0 dimension. Either T is empty (in which case the kth0

dimension is never used, violating the principle of full use of the present data in

input space) or each of the corresponding functions {φt(y) : t ∈ T} are functions

of a non-existent variable, which cannot be made well-defined without imputation

2D is allowed to be infinite without loss of generality, since φ must converge to a unique value

∀x ∈ Rd in the input space.

5.3 Development of kernelisable system 124

of a value for yk0 . Thus, a suitable φ cannot exist to apply to all data, and K

cannot itself be positive definite.

Comments As well as the implication that any candidate K cannot be positive

in anything but the full data case, thus implying a non-convex problem and pre-

cluding the use of many standard methods for solving a quadratic program (see

§2.4) with a positive definite kernel, this theorem also shows us that a suitable φ

cannot exist. We return to the quadratic kernel for an example:

K(x, y) = (1 + x · y)2

Here, as mentioned in previous chapters, an explicit depiction of φ is well known.

For example, for x ∈ R2:

φ(x) = {1,
√

2x1

√
2x2, x

2
1, x

2
2,
√

2x1x2} (5.19)

Dimensions 3, 5 and 6 are meaningless here if x2 is absent. Indeed, the term
√

2x1x2, despite providing information about x1, is rendered meaningless itself if

this is the case. Indeed, even in linear space where a statement such as:

φ(x) = {x1,NaN}

is somewhat more ‘well-defined’ in terms of the lack of feature products, it still

cannot satisfy the condition of φ(x) · φ(y) being well-defined in any case where a

y2 is present.

Alignment This result is more significant than it initially seems, since it pre-

cludes the use of standard methods for aligning data such as kernel PCA and

kernel whitening (§2.3.4), as a consequence of their reliance on an inner-product

5.3 Development of kernelisable system 125

based formulation or equivalent. It also makes the common practice of centring

a kernel in feature space (§2.3.3) difficult, since the theory behind this method

assumes a priori that means can be taken over all present data in a dimension.

Intuitively, it also makes sense that a method such as (kernel) PCA, when used

naı̈vely, cannot be meaningful when incomplete data is studied. Take the example

of a linear PCA method applied to a dataset of two dimensions: we may visualise

incomplete data as being infinite lines parallel to one of the axes, and use a form

such as x = (x1,NaN) to describe entries in a dataset. The function of a linear

PCA is essentially to find a rotation of the axes such that the principal axis lines

up with the direction of greatest variance in the data; even if this solution did ex-

ist, the images of the incomplete data after mapping would describe skewed lines

not parallel to the axes, with no simple way of describing their orientations in the

usual |X| = (N × d), xij ∈ {Rd,NaN} dataset matrix form. This problem is

exacerbated in the kernel PCA case, where the images of these lines may describe

curves parametrised by complex functions.

5.3.2 Non-separability of distance metric

In §5.2 we see that in linear space, the concept of introducing geometric margins

for missing data to the SVDD system is a reasonable one, and have shown the

simple quantity that needs to be maximised in this case. However, this system

depends greatly on being able to explicitly address data in feature space, which

is too strong an assumption for successful deployment of a kernelised system. In

linear space, missing data can be simply visualised as lines or planes parallel to

the axes, and can be described using a simple matrix Π to designate the subspace

over which features for any given datapoint are to be considered. The ease of

5.3 Development of kernelisable system 126

formulation of a method in the linear case relies on the separable form of the

distance metric. For example, for x ∈ R2:

‖x− a‖2 = π1(x1 − a1)2 + π2(x2 − a2)2 =
∑
j

πjfj(xj). (5.20)

This equation shows that the usual distance metric has a natural analogue in linear

space by introducing the linear binary weights πj to include or exclude datapoints

as necessary; the form remains separable in the input variables. We soon see,

however, that naı̈vely mapping the lines and planes created by this method into

even a simple kernel space makes the system much more complex.

Example Consider again the kernel mentioned in §2.3.3 in the context of kernel

centring; it has the following form:

φ(x1, x2) = (1, x1, x2, x1x2). (5.21)

Suppose we are to consider the mapping of a point x = (x1, x2) into this kernel

space:

‖φ(x)− a‖2 = (1− a1)2 + (x1 − a2)2 + (x2 − a3)2 + (x1x2 − a4)2 (5.22)

Unlike the form of Equation 5.20, this form is not linearly separable in the input

variables (x1, x2); the fourth term maps lines to quadratic curves, thus precluding

the simple solution of a presence matrix Π.

5.3.3 Distance matrices

In order to discuss the problem of finding distances between incomplete data

within a kernel-induced feature space, we first consider the concept of a distance

5.3 Development of kernelisable system 127

matrix. Let the dataset X be of dimension N × d, with entries xij ∈ {R,NaN}.

Define the (N ×N) kernel matrix K in the usual way (as in Equation 2.32):

K = {Kij} = {φ(xi) · φ(xj)} = {k(xi, xj)}

In the full data case, there is a function we can apply to a matrix K to recover a

matrix of distances between the datapoints. Let:

D = {Dij}, where Dij = Kii +Kjj − 2Kij (5.23)

It now holds that the entries of the (N × N) matrix D denote the squares of the

inter-point distances in feature space:

Dij = k(xi, xi) + k(xj, xj)− 2k(xi, xj) (5.24)

= φ(xi) · φ(xi) + φ(xj) · φ(xj)− 2φ(xi) · φ(xj)

= ‖φ(xi)− φ(xj)‖2. (5.25)

This relation is no longer true outside the full data case; however, there are linear

formulations allowing a similar object to be constructed, as shown below.

5.3.4 Well-behaved linear kernel

Despite the limitations presented in §5.1, it is possible to create a matrix L which

has the property of being “well-behaved” in linear space. Using the same defini-

tion of the presence matrix Π with entries πij as in §5.2, consider the following

distance matrix:

∆G = {δGij} =

√√√√ d∑
k=1

πikπjk(xik − xjk)2 (5.26)

5.3 Development of kernelisable system 128

This is an intuitive way to express distances in linear space, with distances be-

tween points taken only along the subspace of input space for which both points

share dimensions. Compare this equation with the definition of δij in the full data

case above, the inter-point distances of which take equal or greater value than

those achieved using geometric radii. With this in mind, the question arises as to

whether we can construct a matrixKG such that, when Equation 5.23 is applied to

it, a geometric distance matrix results. Consider the following general formulation

of a linear inner product:

KL = {KL
ij} =

d∑
k=1

µ(xik, xjk) (5.27)

Clearly, with full data, the usual inner product is produced by µ(x, y) = xy.

Furthermore, this is a dimension-separable formulation since each expression de-

pends only on one dimension at a time. Given Π as defined above, if we instead

let µ be defined as:

µ(xik, xjk) =
1

2

(
x2
ikx

2
jk − πikπjk(xik − xjk)2

)
, (5.28)

then we find that:

• When πij ≡ 1, µ(xik, xjk) = xikxjk as with the usual inner product;

• If we compute Dij = Kii + Kjj − 2Kij where K is constructed with this

definition of µ, we find that the distance matrix produces the required inter-

point distances in linear space as described above.

Although it may be tempting to think it is possible to perform a method such

as SVDD with this ‘geometric’ kernel, we soon find that the results it produces

outside the full data case can be spurious. The kernel ceases to be positive definite

5.3 Development of kernelisable system 129

when missing data is introduced, despite the well-defined nature of the distance

matrix D on which it is based. In fact, the kernel above was somewhat arbitrarily

chosen: since there are less degrees of freedom in a distance matrix than a kernel

matrix, in principle there are many K we could choose to satisfy the relation

given in Equation 5.23. Although it may be computationally possible to use this

kernel in an SVDD computation, the results will be meaningless; if a kernel is

not positive definite it does not have an equivalent mapping function φ. The same

problem arises with the radial basis function (RBF) kernel matrix, used widely in

literature:

k(x, y) = exp

(
−1

2σ2
‖x− y‖2

)
(5.29)

This kernel, uniquely among standard mappings, is not directly based on the dot

product but instead on a distance measure. If we replace the term ‖x − y‖2 with

a geometric measure as per Equation 5.26, we find the same problem: as soon

as missing data is introduced, the kernel ceases to be positive definite. As ex-

plained above, this result is actually quite expected, since we have shown that it

is not reasonable to expect a mapping function φ to exist which can emulate a

geometric margin approach exactly without assuming some form of imputation.

These examples show that the task of creating a classification method to work in

a projected space is non-trivial and cannot rely on using standard methods.

5.3.5 Well-defined kernel distance in non-FDC

As a means of capturing exactly what is meant by a geometric distance, let us

return to the linear case, as given in §5.2 and Equation 5.2. The approach of com-

paring features only in the subspaces for which both vectors have each feature

present is motivated by a desire to avoid imputation; this, in turn, meaning we can

5.3 Development of kernelisable system 130

avoid spurious inferences, which may cause points with missing data to act too

strongly upon a classifier. As we have seen, in the linear case this is achieved by

taking differences of feature values only where both vectors have features present.

In two dimensions, this may be visualised as the minimum distance from a point

to a line. In Figure 5.2(a), this is illustrated: the green lines show the contours

(a) Before (b) After

Figure 5.2: Data completions: (a) linear space; (b) quadratic feature space

along which distance has been measured from the red line – representing a data-

point with missing feature f2 – to various points in the cluster of blue data of full

features. Clearly, if the data were transformed orthogonally, this would remain

the case; however, if the data underwent some non-orthogonal or even non-linear

transformation, as demonstrated in Figure 5.2(b), the points in linear space rep-

resenting the ‘optimal completions’ along the red line are no longer guaranteed

to be optimal in the transformed case. However, it does demonstrate that another

point does exist with such an optimal property, and therefore that it is reasonable

to ask the location of this point.

Optimisation-based distance metric Consider the following implicitly defined

distance between two points in linear space. For x with features Qx ⊆ {1 . . . d}

5.3 Development of kernelisable system 131

and y with features Qy ⊆ {1 . . . d} we define the linear geometric distance (in

this context) as:

‖x− y‖2
G ≡ min

d∑

k=1

(xk − yk)2 :
xk ∈ {1 . . . d} \Qx,

yk ∈ {1 . . . d} \Qy

 . (5.30)

For example, consider the following pair of vectors x,y ∈ R4:

x =

x1

x2

·

·

 , y =

y1

·

y3

·

 . (5.31)

Here, we see Qx = {1, 2}, Qy = {1, 3}, thus the definition here of the geometric

distance between the two vectors will be:

‖x− y‖2
G ≡ min

x3,x4,y2,y4

d∑
k=1

(xk − yk)2 (5.32)

In this linear case, as expected, we have the optimal solution of cross-imputation

of values (here y2 would be optimally imputed as y2 = x2, etc), which recovers

Equation 5.2 as required, since the solution xk = yk makes the summation zero

for this term if either feature xk or yk is missing. However, we now have a form

which is possible to kernelise. We note that, for a kernel mapping function φ, by

the definition of its implicit kernel function k, we have:

‖φ(x)− φ(y)‖2 ≡ k(x, x) + k(y, y)− 2k(x, y). (5.33)

It is natural, therefore, to provide a kernelised analogue of Equation 5.30:

‖φ(x)−φ(y)‖2
G ≡ min

D∑
l=1

({φ(x1 . . . xk)}l − {φ(y1 . . . yk)}l)2 :
xk 6∈ Qx,

yk 6∈ Qy

 .

(5.34)

5.3 Development of kernelisable system 132

The sum within the braces simplifies as a result of relation 5.33, to give an analo-

gous, generalised definition of Equation 5.30. With respect to a suitable mapping

function φ, we thus define the feature space geometric distance as:

‖φ(x)− φ(y)‖2
G ≡ min

k(x, x) + k(y, y)− 2k(x, y) :
xk 6∈ Qx,

yk 6∈ Qy

 . (5.35)

As an example, we propose a similar problem to that visited in §2.3.3, with two

vectors defined as:

x =

2

3

·

 , y =

5

·

7

 .

The kernel map we shall consider is that of the quadratic kernel, k(x, y) = (1 +

(x · y))2. Note first that in the linear case, the geometric distance has an obvious

solution based on cross-imputation:

x1 =

2

3

7

 , y1 =

5

3

7

 ,

with ‖x1 − y1‖2 = (2 − 5)2 = 9. To demonstrate that this trivial answer to the

optimisation problem 5.30 is not applicable in the kernel case, we compute the

feature-space distance between the two vectors using Equation 5.33:

‖φ(x1)− φ(y1)‖2 ≡ 3969 + 7056− (2 · 4761) = 1503.

However, if we had used the following imputation instead:

x2 =

2

3

7.27804

 , y2 =

5

2.56119

7

 ,

5.4 Exact centre-based method 133

then a more optimal distance is produced:

‖φ(x2)− φ(y2)‖2 ≡ 4484.95 + 6651.98− (2 · 4848.31) = 1440.31.

The difficulty arises from the fact that we may not address the structure of φ ex-

plicitly: the mapping function describes sometimes complex (and not explicitly

known) relations between input variables and their behaviour in feature space, but

does not allow completely free movement; we may only vary the parametrisations

of the feature-space curves with respect to the variables in input space for which x

and y have missing features. The best we can hope for is that an efficient optimi-

sation procedure succeeds in finding the minimum kernelised geometric distance

for every pair of vectors given. To arrive at an optimal centre point using this pro-

cess is quite possible, as we shall see in the next section; it does, however, re-cast

the problem as one of a different order of computational complexity due to this

extra step of optimisation.

5.4 Exact centre-based method

In this section, we show that it is possible to create a system somewhat separate to

those methods used in classical SVDD, which nevertheless produces a meaningful

centre of a dataset of arbitrary dimension, such that this centre point, given a

good optimisation algorithm, will conform to similar constraints with respect to a

dataset and a kernel function.

5.4 Exact centre-based method 134

5.4.1 Formulation

We consider only hard margins first, and only kernel functions based directly on

the dot product, k(x, y) = f(x · y); we comment on other cases below. We

also assume, prior to performing the classification process, that the data is in a

linear-missing form (X,Π) - that is, the pattern of missing data can be simply

described by a binary presence matrix Π of the same size as the dataset X . Using

the definition of the geometric margin in kernel feature space given in Equation

5.35, we begin with the following problem formulation:

a = arg min
a
R(a),

where R(a) = max
i
‖φ(xi)− φ(a)‖2

G. (5.36)

Note the immediate differences between this formulation and that given in Equa-

tion 2.50: instead of optimising over a list of weighting coefficients {αi}, we seek

an input-space solution directly. Also, it is not yet obvious how to extend this

method to soft margins, as neither a pay-off parameter C nor corresponding error

margins ξi are present here. This is also an unconstrained problem: there are no

limitations on the values our parameter a may take, unlike the previous formula-

tions which had very specific restrictions on the values αi could take, derived via

the dual of the initial problem.

5.4.2 Value-based algorithm

A straightforward way of minimisingR(a) as given in Equation 5.36 can be found

via a simple algorithm, detailed in Algorithm 2. Two loops of optimisation are

required, since this describes only a single run given a candidate vector for a.

Despite this computational expense, however, this algorithm has been shown to

5.4 Exact centre-based method 135

work reasonably well on simple kernel mapping functions. In §5.5 and §5.6 we

show the situations for which even a relatively naı̈ve approach such as this can

produce pleasing results. As we have two unconstrained optimisation algorithms,

a program such as MATLAB’s fminunc may be used. When this program is

run, a warning message will usually show to say that the ‘large-scale’ method

could not be used, as we have not provided any gradients explicitly anywhere in

the above algorithm. To remedy this, the following subsection will show a way

of refining the above algorithm slightly to ease the computational burden on the

optimisation process.

5.4.3 Gradient-based algorithm

In the above algorithm, we see that the following micro-set of data is produced for

each i:

S =

 xi1 xi2 . . . xid

a1 a2 . . . ad

 (5.37)

where we assume that some of the xij will be missing; this matrix is recomputed,

therefore, for every completion vector c ∈ Rhi we choose to allow this matrix to

contain full data, and thus making the notion of inter-point distance make sense.

It is reasonable, then, to ask how this inter-point distance, denoted above as d,

changes with our choice of c, the intention being to find an expression for the

gradient vector ∇c(d). As mentioned above, we proceed using kernels based on

the dot product, k(x, y) = f(x · y). The distance between the datapoint xi and

centre point a, in the full data case, can then be expressed as:

di = ‖xi − a‖2 = f(xi · xi) + f(a · a)− 2f(xi · a). (5.38)

5.4 Exact centre-based method 136

Algorithm 2 Value-based algorithm
Require: candidate centre vector a ∈ Rd

Initialise va ∈ RN

Let h ∈ RN = {hi} ← (number of present features in xi)

for i ∈ {1 . . . N} do

Initialise Sa,i ∈ R2×d with: S1j ← xij , S2j ← aj

if hi = 0 then

d← k(xi, xi) + k(a, a)− 2k(xi, a)

else

Initialise c ∈ Rhi

repeat

Complete S with values from c

K(c) ∈ R2×2 ← Ki1,i2 = k(Si1 , Si2)

d(c)← K11 +K22 − 2K12. Optimise this quantity with respect to c

until optimiser convergence in c

end if

vi ← d

end for

With respect to the given candidate a, the dataset’s optimised maximal distance

is now maxi(vi)

5.4 Exact centre-based method 137

Taking derivatives with respect to each spatial dimension l, and using the chain

rule, we find:
∂di
∂xil

= 2xilf
′(xi · xi)− 2alf

′(xi · a). (5.39)

Thus, provided we have a kernel based on the dot product in a way whose deriva-

tive is readily calculable, we can incorporate useful information about the direc-

tion of descent into Step 7 of the algorithm above, when optimising for c. Further-

more, a gradient for the outer optimisation loop can also be computed via tech-

niques of automatic differentiation. In practice, we have seen that the approaches

with and without gradient information always converge to the same result, but

the approach without this information is many times faster; however, it is envis-

aged that for more complex kernels, this gradient information may well make the

system more robust to global minima, as it allows a large-scale approach.

5.4.4 Comments

This method provides a simple process towards an input-space kernel-based centre

of a dataset; however, it has a few obvious drawbacks. The first is its high compu-

tational complexity when given a dataset of high dimension: this sort of dataset is

a major factor governing the use of kernel methods, since the kernel matrix need,

in general, only be computed once, whereafter the dimension of the dataset X

need not matter. Secondly, and related: as mentioned in §5.3.1, important ‘data-

herding’ techniques such as centring and whitening have no obvious analogue

when used on datasets with missing features, forcing us to work in the highly re-

strictive case where a presence matrix can be directly appended to the data, instead

of being able to use pre-alignment methods. Thirdly, the parameter C, allowing

for soft margins, has disappeared completely: the above algorithm works on hard

5.5 Preliminary tests 138

margins only. An automatic differentiation package could be used to optimise, for

example, the second- or third- highest deviation; however, it is obvious even in a

one-dimensional setting that these functions may easily end up jagged and non-

differentiable in multiple places as a result. Fourthly, no provision has been made

for kernels not based around the dot product: a similar analysis was conducted

for the RBF kernel, but it was found that this kernel’s easily-derived property of

mapping every datapoint onto a hypersphere of radius 1 in feature space caused

serious problems to the application of this method.

5.5 Preliminary tests

In order to test the viability of the system we have described above, various pre-

liminary tests were conducted on first the popular ‘iris’ dataset due to Fisher, and

then random “clusters” of data (that is, random i.i.d. normally distributed with a

given mean and equal dimension variance) to ensure the efficacy in these cases.

The following outlines the results of these tests and compares them to imputation

followed by ‘usual’ classification methods. These results are included primarily

for completeness; in §5.6 we will describe a more organised structure to allow

full comparisons of our method to imputation methods. The following results are

less rigidly organised, as they were conducted before the standard process was de-

cided; in certain cases, as we shall see, they do nevertheless produce useful results,

and are interesting in that when the MCAR type of randomness is applied in this

way, our methods are not expected to perform that much better than imputation

methods as they have a structurally-missing paradigm behind their formulation.

5.5 Preliminary tests 139

Imputation schemes In both the following preliminary tests and the more com-

plete structure of the full investigations, as well as later in Chapter 6 where we test

our full method on synthetic data, the following three imputation schemes will be

compared as standard:

• Zeros: The dataset will be simply imputed with zeros (denoted in the below

table as ‘Imp 0’)

• Means: The dataset will be filled in with the feature-specific means of each

dimension (denoted below as ‘Imp µ’).

• Nearest Neighbours: A nearest neighbour scheme as used in the paper by

Chechik et al [14] is applied, with the parameter K denoting number of

nearest neighbours set to a value of K = 3 (denoted ‘Imp NN’).

5.5.1 Iris data, variable missingness ratio

In Tables 5.1 and 5.2, we show the preliminary results derived using the exact-

centre method of §5.4 and employing the linear kernel: that is, operating in input

space. Tests were performed with the Iris dataset, which has size 150 × 4 and

has three constituent classes, each being 50 datapoints in size. The hard mar-

gin formulation was used: that is, no points were allowed outwith the bound-

ary. The aim of this preliminary test was to vary a missingness ratio: the iris

dataset was ‘made incomplete’ with a missing-completely-at-random (MCAR)

algorithm, in five different cases where the proportion of omitted features was

{10%, 20%, 30%, 40%, 50%} of the full set. These tables compare our method to

the three imputation methods as outlined above when applied to these artificially

incomplete datasets, and show that in the linear case our method finds a smaller

5.5 Preliminary tests 140

Table 5.1: Exact centre, linear kernel

Class Missing XC Imp. Imp. Imp.

Ratio method 0 µ NN

1 10 1.5586 2.0639 1.9785 1.9786

2 10 1.5574 1.7586 1.7586 1.7586

3 10 1.9622 2.2924 2.2923 2.2924

1 20 1.6529 1.6855 1.8144 1.8144

2 20 1.6029 1.626 1.6442 1.6504

3 20 1.3174 1.8369 1.8184 1.842

1 30 1.2913 1.7745 1.7459 1.746

2 30 1.3617 1.75 1.7053 1.7514

3 30 1.6755 2.0601 1.967 1.9173

1 40 1.3092 1.6953 1.3855 1.3671

2 40 1.2952 1.4529 1.6598 1.8608

3 40 1.5052 1.9937 1.9417 2.0201

1 50 1.4691 1.7894 1.5603 1.6853

2 50 1.1536 1.4873 1.2492 1.5665

3 50 1.7153 2.0911 1.759 1.9208

5.5 Preliminary tests 141

Table 5.2: Exact centre, quadratic kernel

Class Missing XC Imp. Imp. Imp.

Ratio method 0 µ NN

1 10 8.52 7.8535 7.4214 7.3579

2 10 3.7225 3.7883 3.7883 3.7884

3 10 7.2694 7.4911 7.4133 7.4131

1 20 6.0789 6.9867 6.0122 6.5323

2 20 3.5618 3.374 3.5127 3.6858

3 20 7.7284 5.553 5.2482 5.5505

1 30 5.2783 7.1164 6.8612 6.8612

2 30 3.1434 3.7927 3.9657 3.836

3 30 5.4948 5.9759 5.8383 6.284

1 40 4.8038 5.6856 5.6793 5.2002

2 40 2.7277 3.8197 3.6507 4.5012

3 40 4.9921 5.4823 5.4478 5.7156

1 50 5.1435 5.7873 6.2021 6.6363

2 50 2.8192 3.0824 2.9077 3.1869

3 50 4.7889 5.8125 5.6753 6.0724

5.5 Preliminary tests 142

descriptive radius for this dataset in all cases. Table 5.2 shows analogous results

using the quadratic kernel k(x, y) = (1+x ·y)2 instead, and we see some cases do

not out-perform imputation: we return to this choice of kernel in the next section.

5.5.2 Differing centre points

In the linear kernel case, we also performed another preliminary test to ascertain

the differences between the actual centres achieved with our method and imputa-

tion methods. In the first test, we left the exact-centre method to run and find its

own optimal centre point (we label this method 1); in the second test, we simply

used the instance-specific feature averages over the present data in each dimen-

sion and calculated the minimal radius with respect to this centre point with our

geometrical margin method (labelled method 2); and finally, we compared both

of these results to the use of a classical SVDD method with mean-imputation, and

calculated the relevant sphere size with our method (3a) and with respect to the

mean-imputed dataset (3b). The dataset on which is operates is of size 300 × 6

and is a Gaussian cluster centred around a single point with equal dimensional

variance. These results are summarised in Table 5.3.

Table 5.3: Differing centre points

Meth. a R2

1 (−0.1923,−0.1189,−0.1312,−0.0401, 0.2173, 0.0524) 13.0476

2 (0.0277, 0.0576,−0.0931, 0.0831, 0.0751,−0.0260) 14.6442

3a (−0.0499,−0.0013,−0.0568, 0.1548, 0.0945,−0.0644) 14.2785

3b n/a 14.2899

5.5 Preliminary tests 143

5.5.3 Random data, variable margin softness

We also conducted preliminary tests with a random 100 × 15 cluster data, dis-

tributed similarly to the cluster as given in the previous sub-section, after 40% of

the datapoints were removed through an MCAR procedure. Figure 5.3 shows re-

sults derived for the two kernel functions above; Figure 5.4 applies the same tests

to square-root based and logarithm-based kernels. The variable in each of the

graphs as shown depicts the softness of the margin required. Note that the radii as

shown in the graphs in Figures 5.3 and 5.4 are not referential of full, optimisation-

based analyses with the exact-centre method, but rather refer to the querying of

the maximal radius from random centre points, given the softness of the margin,

in comparison to the margins between the centre point and the imputed data. This

test was run purely to show the extent to which the margins could differ from im-

puted to geometric instance-specific, in the cases where different kernel functions

were used. Note at this point that we have used two ‘extra’ kernels whose Mercer

validity is questionable: the square-root based kernel having the following form:

k(x, y) =
√
|1 + x · y| (5.40)

and the logarithmic kernel being:

k(x, y) = log |1 + x · y|. (5.41)

5.5.4 Discussion of preliminary tests

We note at this point that the MCAR nature of the missingness means that we do

not expect our developed methods, in general, to work any better than imputation

methods, since there is nothing ‘special’ about the way in which data has been

5.5 Preliminary tests 144

(a) Linear kernel

(b) Quadratic kernel

Figure 5.3: Exact centre, random data with variable margin softness

5.5 Preliminary tests 145

(a) Square-root based

(b) Logarithm-based

Figure 5.4: Square-root and logarithmic kernel results

5.5 Preliminary tests 146

rendered absent. In §5.5.2, and the first portion of §5.5.1, we have dealt with

this issue by considering the linear kernel: that is, working in input space, thus

guaranteeing a pre-image of the derived centre-point which is a valid member of

the same vector space as the datapoints themselves. Thus, here we may reasonably

expect it to perform at least as well, but perhaps not by much. Note at this point

that the use of different kernels does not guarantee as good an image in input space

as that in kernel space, and this is one of the major drawbacks of the exact-centre

method, as described in the previous chapter.

Observations As shown in Table 5.1, in the case where a linear kernel was

used, we have shown that the exact-centre method finds centre-points and radii

which are smaller than those given when imputation methods were used, for all

classes and all missingness ratios. This is a good result, as it shows that a com-

pact description of the dataset can be made in all cases whilst still utilising all

the present data. As a result of the linear nature of the kernel space, this result is

also quite expected. The instance-specific margins are designed to deliver smaller

inter-particle distances than the use of any imputation method in the case of miss-

ing data, and these results confirm that the optimisation procedures which led to

these results were sufficiently convergent to produce these improved results. In the

quadratic case (Table 5.2), however, the inability to project an optimal SVDD so-

lution to a pre-image in input space is shown with the non-optimal radii achieved

in some cases by our method. Nevertheless, for higher degrees of missingness it is

shown that a smaller radius can still be calculated: this result is also expected, as

higher degrees of missingness would require a higher proportion of the data to be

(perhaps badly) imputed using classical methods. We provide further insight, and

5.5 Preliminary tests 147

corroborating results, in Table 5.3; here, we show that even in the linear case the

computed centre points may be wildly different when our optimisation procedure

is used, as a result of the different weightings which will result from data with

missing features. The radii, in this case, show a clear preference for the (slower)

method which allows the exact-centre algorithm to compute its own specific centre

point; it shows that merely taking the feature averages cannot produce an accept-

ably tight result, even if the instance-specific margins are used on this point; and

finally, they show that when applied to a classical SVDD, the radius reported in

this case is better than the mere use of feature averages, but can still be improved

upon by the subsequent calculation of the radius with respect to this point using

our method. Thus, the deployment of the exact-centre method may very well be

heuristically chosen with application: an imputation and SVDD could be used to

find the centre point, with the subsequent particle-specific radii being computed

by one run-through of our method; or multiple runs could be completed should

the dataset be sufficiently simple that optimisation for a centre point is reasonable

in terms of computational time. Finally, Figures 5.3 and 5.4 shows that when the

softness of the margin is allowed to vary, and different kernel functions are used,

the use of higher-degree polynomials results in a smaller improvement over im-

putation methods; the use of the log- and the square-root-based ‘pseudo-kernels’

shows here the converse. That is, if we were to do the opposite and ‘reduce’ the

polynomial degree, a better fit can be achieved. These graphs also show that the

improvement given a known centre point is made higher by a softer margin.

5.6 Results on synthetic data 148

5.6 Results on synthetic data

In this section, we will describe a more regimented approach to comparing our

method with the three different imputation schemes we mentioned above. In ad-

dition, we test under combinations of further aspects of the experiment that we

can vary, which we outline here.

5.6.1 Other experimental variables

Kernels Throughout these results, we consider only kernels based on the inner

product between datapoints, of the general form k(x, y) = f(x · y), since this is

the framework through which the above methods were both derived. In particular,

we will, in all cases, consider the performance of our methods with respect to two

mapping functions: firstly, they will be considered in the ‘usual’ input space, by

applying a linear kernel f(s) = s; secondly, their performances with respect to a

feature space induced by a quadratic kernel f(s) = (1 + s)2 will be compared.

It is worth noting at this point that the purpose of this thesis is not to explore

exhaustively the performances these methods would produce given multiple dif-

ferent kernels, as we set out primarily to show that such a method is reasonable

and can produce meaningful results in the case of the inner product based kernel.

Soft margins It is also important that a method be well-suited to data classifica-

tion in the presence of soft-margins, which our exact centre method, as described,

is capable of producing. It performs this by allowing a parameter which describes

how many datapoints to omit in the input data; that is, once the deviations of the

parameters are sorted by size, if there are Ok omissions in each class k, the re-

5.6 Results on synthetic data 149

ported radius of the dataset will simply be that of the (Ok + 1)th datapoint instead

of the first (i.e. the maximal margin). This contrasts starkly, however, with the

behaviour of the payoff parameter C as used in the SVDD case: the relation be-

tween C and the proportion of the data excused from membership of the circle is

not clear. Therefore, in comparing our devised methods with those derived from

pre-imputation followed by an SVDD analysis, we have performed the SVDD test

multiple times, until the parameter C is discovered that has the effect of rendering

half the data outside the sphere. Accordingly, a number to omit of Ok = Nk/2 is

passed to the exact centre method for comparison. Thus, in the comparison table

below:

• ‘Hard’ denotes where a hard margin, that is C = 1 or the omission rate

Ok = 0, is used.

• ‘Soft’ denotes the case where, in the imputation-SVDD case, C is set such

that the number of the coefficients αi for each class such that αi = C is

equal to Nk/2; or, in the exact centre case, the omission rate Ok is set at

Ok = Nk/2.

We thus arrive at the following structure for comparing our methods with these

‘standard’ approaches:

5.6 Results on synthetic data 150

Table 5.4: Comparison structure

Linear kernel Quadratic kernel

Hard, Imp 0 Method 11 Method 21

Hard, Imp µ Method 12 Method 22

Hard, Imp NN Method 13 Method 23

Hard, XC Method 14 Method 24

Hard, DO∗ Method 15 Method 25

Soft, Imp 0 Method 16 Method 26

Soft, Imp µ Method 17 Method 27

Soft, Imp NN Method 18 Method 28

Soft, XC Method 19 Method 29

∗ We include our dual-optimisation (DO) method here for completeness.

Thus, for each dataset we consider, the following will be performed to result

in the complete suite of results for comparison as described above:

1. Consider a dataset X ∈ RN×d, composed of a set of datapoints {xi}Ni=1,

where xi ∈ Rd, and its class vector c ∈ RN , with ci ∈ {1 . . . K}. Ensure

that the data is aligned, centred, etc. properly according to the application

required.

2. Break the dataset up intoK constituent parts {X(k)}Kk=1, where the contents

of each {X(k)} denote those datapoints xi such that ci = k. Let the size of

these classes be denoted Nk for each k.

3. Perform three separate imputations of each class of the data corresponding

to those detailed above for Imp 0, Imp µ and Imp NN, denoting these X(k)1,

5.6 Results on synthetic data 151

X(k)2, X(k)3 respectively, thus resulting in a suite of 3K separate datasets.

4. Perform a hard-margin SVDD analysis with a linear kernel on each of these

3K imputed datasets, thus fulfilling Methods 11, 12 and 13 as above. Retain

the optimal coefficient vector α and the corresponding radiusR for each set.

5. For each dataset, perform a series of soft-margin SVDD analyses, iterating

the value of the payoff parameterC until it can be shown thatNk/2 (rounded

down if necessary) of the coefficients αi are such that αi = C; i.e. half the

data is outside the margin. This fulfils Methods 16, 17 and 18.

6. Repeat the previous two steps with respect to the quadratic kernel (1+x·y)2;

this fulfils Methods 21, 22, 23, 26, 27 and 28.

We now have the information required to apply both the method we have described

in this chapter and the dual-optimisation system we will cover in Chapter 6 to the

results of imputation of data followed by a process of SVDD analysis. We com-

plete this chapter’s analysis by applying our exact-centre method to three datasets

we have devised to exhibit structural missingness, the construction of which we

now describe.

5.6.2 Synthetic datasets

Table 5.5 denotes radii achieved with a 100×2 dataset, normally distributed about

the origin with unit variance in each dimension, with a filter applied to render all

values xij with |xij| > 1 as missing.

Table 5.6 denotes radii achieved with a 50× 4 dataset composed of two clus-

ters. The first cluster resides in dimensions (f3, f4) alone, and consists of a nor-

5.6 Results on synthetic data 152

mally distributed cluster of 25 points with mean (1, 1) and unit variance. The sec-

ond cluster resides in (f1, f2) and is a similarly distributed cluster about (−1,−1),

again with unit variance.

Table 5.7 denotes radii achieved with a 90 × 3 dataset designed so that all

datapoints have a common feature f1, but some (25) have the feature f2 present,

some (30) the feature f3, and some (35) the feature f4. Each of the 90 datapoints

thus has exactly two features, either of pattern f12, f13 or f14. Features are again

distributed normally with means of (1, 2, 3, 4) as per each feature, with unit vari-

ance.

Table 5.5: XCDD results: 2-D cluster with value filter
Linear kernel Quadratic kernel

Hard, Imp 0 1.25289 1.88347

Hard, Imp µ 1.25289 1.88347

Hard, Imp NN 1.25289 1.88885

Hard, XC 1.25289 2.36436

Soft, Imp 0 0.64761 1.00597

Soft, Imp µ 0.62838 0.96624

Soft, Imp NN 0.74140 1.16572

Soft, XC 0.42162 0.78634

5.6.3 Observations

In the study on the 2-D cluster with a value filter (Table 5.5), it is shown in the

hard-margin case that no improvements are made in either the linear or quadratic

case with our exact-centre method; however, it does show that in this case, our

5.6 Results on synthetic data 153

Table 5.6: XCDD results: Two disjoint 2-D clusters

Linear kernel Quadratic kernel

Hard, Imp 0 2.67234 11.11552

Hard, Imp µ 2.23574 11.07670

Hard, Imp NN 2.23574 11.07670

Hard, XC 2.23057 10.57009

Soft, Imp 0 1.48615 3.87435

Soft, Imp µ 1.04090 3.96493

Soft, Imp NN 1.04053 3.96490

Soft, XC 0.98055 3.08169

Table 5.7: XCDD results: One common dimension
Linear kernel Quadratic kernel

Hard, Imp 0 4.29481 24.42394

Hard, Imp µ 2.32852 21.03813

Hard, Imp NN 2.52866 23.25400

Hard, XC 2.31592 20.26059

Soft, Imp 0 2.68217 11.57337

Soft, Imp µ 1.05515 9.23119

Soft, Imp NN 1.44247 12.50144

Soft, XC 0.99583 7.73160

5.6 Results on synthetic data 154

method does not perform worse, which is the main observation here. The impu-

tation methods, indeed, all produce the same radial result in this case. However,

when a soft margin is allowed, we see that our method is effective in finding a

smaller descriptive radius for this dataset in both linear and quadratic kernel cases.

This result is satisfying and concurs with the observations made in the previous

section that softer margins can produce a greater improvement in the use of our

methods over imputation. Table 5.6, showing the results of the dataset with two

disjoint clusters, tells a slightly different story: here, the radii show a small im-

provement with the use of our method even in the hard margin case. Furthermore,

this is carried over to the quadratic kernel, which itself is a good result since, as

we stated above, this forerunner method is not always expected to perform bet-

ter with this mapping. As expected, the soft margins also show an improvement.

These results give us important clues as to the precise nature of the types of dataset

for which both this method and the one we will describe in Chapter 6 would find

favour in application. Finally, we consult Table 5.7, referring to the dataset with

one common dimension. With a hard margin, improvements here are, so far, to be

found in all cases and with both kernels, with some tests performing impressively

and producing significantly smaller radii. We shall continue the analysis of these

synthetic datasets when we analyse our DO method in §6.7.

Chapter 6

Dual optimisation domain

description

6.1 Algorithm

6.1.1 Motivation

Although the method described in §5.4 produces results which are favourably

comparable to imputation methods in some cases (see §5.6), extending the system

into kernel space does not guarantee better performance. This is because the main

motivation for extending a classifier into kernel space, as previously mentioned in

§2.3.2, is so more features can be considered other than those dimensions present

in input space. Since our centre point a can only be allowed to vary over the orig-

inal input space according to this method, a different approach is motivated: one

that takes into account the full dimensionality of the mapped space φ.

155

6.1 Algorithm 156

Extending input space Recall that, in §2.4, we express the objective vector (the

margin w in SVM, and the centre point a in SVDD, hereafter referred to as a) as

a weighted combination of the datapoints after mapping into kernel space:

a =
N∑
i=1

αiφ(xi) (6.1)

Thus, in cases where we do not wish to compute φ explicitly, the exact represen-

tation of a is intractable, and we use the N coefficients αi to provide a projection

into an N -dimensional subspace (where hopefully N � d). We appeal to proper-

ties of linear dependency using the following definition:

Definition (Linear dependence) A set of vectors, a1, . . . , an ∈ Rd,

are said to be linearly dependent if there exists a set of coefficients

λ1 . . . λn, with not all λi = 0, such that:
n∑
i=1

λiai = 0, (6.2)

where 0 ∈ Rd is the zero vector. If it is not the case that Equation 6.2

holds, then the set a1, . . . , an is said to be linearly independent.

In kernel space, the following two factors influencing the choice of method can be

identified:

• Linearly-dependent vectors in input space will not necessarily be linearly

dependent in kernel space;

• The preimage of a ∈ RD will not, in general, exist in input space.

To see both these points, we revisit the simple kernel mapping used in §2.3.3,

φ(x1, x2) = (1, x1, x2, x1x2). If we take x1 = (1, 2), x2 = (2, 4), we see that

6.1 Algorithm 157

although x1 and x2 are linearly dependent and define only a one-dimensional basis

(since x2 − 2x1 ≡ (0, 0), thus satisfying Equation 6.2) – their mappings φ(x1) =

(1, 1, 2, 2) and φ(x2) = (1, 2, 4, 8) form a linearly independent set. Also, if we

take α = (0.5, 0.5) we derive their centre of mass in feature space:

a = 0.5

1

1

2

2

+ 0.5

1

2

4

8

 =

1

1.5

3

5

 ,

which is not expressible as a preimage in input space for any combination a =

φ(x1, x2). Thus, in the general case, there is a clear motivation to use the full

kernel-induced feature space, as it gives further choices for selection of the opti-

mal vector for these classification methods.

Further comments Note also that, if specification of a vector α is the main

method of determining a centre point according to Equation 6.1, this equation

requires that to avoid complete collapse of the definition of a yielding only trivial

results, the mapped data basis {φ(xi)} must all be of full features. Again, to

see this with the simple kernel mentioned above, consider the following: x1 =

(1,NaN), x2 = (NaN, 4), x3 = (3, 6). Even though here x3 is of full data, any

nontrivial combination of these datapoints will yield a = (1,NaN,NaN,NaN), a

nonsensical vector giving zero dimensions of information. Thus an important fact

arises:

In order to perform meaningful completions of datapoints with re-

spect to a centre point a defined as in Equation 6.1, we must have a

6.1 Algorithm 158

dataset which has been imputed in some fashion to avoid collapse of

the subspace in which a resides.

Four corollaries of this soon follow:

• a must itself have full features.

• For every derivation involving a given dataset X , there must be another set,

which we will call X∗, of readily-imputed data such that a can be derived

according to Equation 6.1.

• As a result, the exact definition of X∗ is almost arbitrary, as long as it is

sufficiently large (N∗ � d) to provide a good basis in the domain of φ.

However, although it is tempting to conclude that taking X∗ = Id recovers

the original method in §5.4, this is not the case: we discuss this below.

• Unlike in the full data case, our choice of values which can be taken by αi

are no longer restricted, since they are no longer tied to our original dataset.

The above points show that knowing the kernel matrix between the data itself

is almost useless; as shown in Figure 6.1, we cannot expect to be able to express,

in general, a relation between the completions with respect to feature-space points

and those with respect to linear combinations of those points. Thus, for every α

denoting a definition of a feature-space a we consider, we must again optimise a

completion with respect to it, knowing that even if the interpoint completions were

known, it would not be of much use. With this in mind, we now derive a general

method for full access to the feature space defined by the span of the images of

the datapoints in X∗.

6.1 Algorithm 159

φ(x1)

φ(x2) φ(x3)

αφ(x2) + (1− α)φ(x3)

−4 −2 0 2 4

−2

0

2

4

Figure 6.1: Kernel completions in feature space

6.1.2 Derivation

With these points in mind, we derive from first principles a method to calculate the

FDC “centre point” of a dataset in kernel space and show that optimal completions

of missing data with respect to this point are possible. Let X = {x1, · · · , xN} be

our dataset, assumed to have some features missing, and let X∗ = {x∗1, · · · , x∗M}

be our FDC dataset (not necessarily with M = N , as explained above). Let our

centrepoint be described as follows:

a =
N∑
i=1

αiφ(x∗i) (6.3)

To compute distances from points in X to this centrepoint for a given set of αi,

we must calculate the following set of distances:

d = {δj}Nj=1 =

∥∥∥∥∥φ(xaj)−
M∑
i=1

αiφ(x∗i)

∥∥∥∥∥
2

(6.4)

6.1 Algorithm 160

The first question is how we complete the xj optimally (in input space) with re-

spect to the kernel that implicitly defines φ and the specific problem conditions

defined by the vector α and the imputed dataset X∗. Expanding out Equation 6.4

gives:

δj = k(xj, xj)− 2
M∑
i=1

αik(x∗i , xj) +

(M,M)∑
(i1,i2)=(1,1)

αi1αi2k(x∗i1 , x
∗
i2

) (6.5)

where here we have dropped the a superscripts for clarity. We henceforth operate

in the case where k(x, y) = f(x · y) for some function f ; this equation thus

becomes:

δj = f(xj · xj)− 2
M∑
i=1

αif(x∗i · xj) +

(M,M)∑
(i1,i2)=(1,1)

αi1αi2f(x∗i1 · x
∗
i2

) (6.6)

In input space, xj will have d features, either present or missing. For a feature

l that is missing we can calculate the derivative of δj with respect to its value as

follows:
1

2

∂δj
∂xjl

= xjlf
′(xj · xj)−

M∑
i=1

αix
∗
ilf
′(x∗i · xj) (6.7)

Using this gradient, we can compute (via an optimisation procedure) the optimal

completion of each datapoint xj in turn, with respect to a given, known vector α

describing the kernel-space centre point we wish to consider. Furthermore, the

following quantity can be just as readily computed, showing the reliance of each

of the δj on the vector α itself:

1

2

∂δj
∂αm

= −f(x∗m · xj) +
M∑
i=1

αif(x∗i · x∗m) (6.8)

This quantity should be used with caution: in order to compute the vector δ of

distances {δ1 . . . δN} from a =
∑M

i=1 αiφ(x∗i), we need to first optimise the com-

pletion of each xj with respect to this quantity. Therefore, a gradient-descent must

6.1 Algorithm 161

be applied for every point based on the quantity given in Equation 6.7. Once this

optimisation loop has been completed, only then is it valid to consider altering the

vector α via Equation 6.8, since ‘optimising’ α with respect to each xj on-the-fly

would otherwise be meaningless.

Sanity check We mentioned the case above that it is possible to take X∗ = Id

to recover the exact centre method mentioned in Chapter 5. We note that in this

case, Equation 6.7 cancels to:

1

2

∂δj
∂xjl

= xjlf
′(xj · xj)− αlf ′(xjl), (6.9)

which cancels down in the linear case to the familiar result of having a minimum

at xjl ≡ αl.

Coefficient optimisation In order to optimise a multi-variable objective func-

tion against a multi-variable argument, it is often useful to compute the matrix of

Jacobians J = {Jmj}, where the Jmj are defined as in Equation 6.8, for passing

to an optimisation solver. The following is a simple way of achieving this: Let X∗

be the full-data (M×d) computational dataset as described above, and letX(a) be

the original (N × d) dataset with missing data completed optimally with respect

to a given weighting vector α. Furthermore, let eN be the vector of all ones, of

length N . Then the formula for the (M ×N) transformation matrix is given by:

J = −2
[
f(X∗(X(a))T)− (f(X∗(X∗)T)α)eTN

]
. (6.10)

Thus Jmj , for m ∈ {1 . . .M} and j ∈ {1 . . . N}, can be seen as the following:

“If Jmj < 0, deviation δj would benefit – i.e. grow smaller – if the coefficient αm

were increased”. How this process then proceeds is largely heuristic, and depends

6.1 Algorithm 162

on the structure of the problem. If a hard margin classifier is required, it may be

seen as appropriate to concentrate on the datapoint with largest deviation; a softer

margin would require changing α values for xj with smaller deviations, ignoring

the higher ones as being outside the sphere. Either way, the values of J can be

used to draw a potentially better α in an iteration procedure.

Minimax optimisation Suppose we wished to enclose a sphere with a hard mar-

gin. In MATLAB’s Optimization Toolbox, the function fminimax can be used

to perform this computation automatically. Given the transformation matrix J as

described above, the following function will be optimised:

α = arg min
α
f(α), wheref(α) = max

i
δai . (6.11)

The extension of this formula to soft margins is not obvious; the fminimax func-

tion does rely heavily on the continuity and convexity of the case where only the

maximal deviation need be minimised. Softer margins could not be dealt with

in this way as a result of the algorithm used for the computation of the ‘mini-

max’ solution; the gradient discontinuity proves a problem where the identity of

the datapoint with maximal deviation ‘switches’. However, it is still heuristically

possible to inform our choice of α manually. We summarise this process in Algo-

rithm 3. As with Algorithm 2, we require a run of the algorithm for each candidate

vector α; once the results have been found for each iteration, we may use Equa-

tion 6.10, along with the deviations δj , to inform another unconstrained optimiser

as to the best way to alter the vector α according to some set rule (e.g. for hard

margins, the αi with the greatest deviation might be adjusted). Thus we derive a

new candidate α and repeat the algorithm until the result is satisfactory.

6.1 Algorithm 163

Algorithm 3 Dual-optimisation method
Require: X∗ ∈ RM×d as auxiliary data

Require: candidate weighting vector α ∈ RM

Initialise δa ∈ RN and cell array C of size N , where each Ci is at largest a

vector of size d

Let h ∈ RN = {hj} ← (number of present features in xj)

for j ∈ {1 . . . N} do

if hj = 0 then

daj ←(dj as per equation 6.6)

else

Initialise c ∈ Rhi

repeat

xcj ← {xobsj ;xmisj ← c}

d(c;xobsj)← f(xcj · xcj)− 2
∑M

i=1 αif(x∗i · xcj)

+
∑(M,M)

(i1,i2)=(1,1) αi1αi2f(x∗i1 · x
∗
i2

)

until optimiser convergence in c to ĉ

end if

Cj ← d(ĉ)

end for

With respect to the given candidate α, the dataset’s optimised maximal distance

is now maxj(δj).

Reconstruct X using the elements of C to form a FDC dataset X(α) optimally

completed with respect to the candidate α

6.2 Discussion 164

6.2 Discussion

Rôle of auxiliary data By virtue of no longer being directly tied to the dataset,

it is worth examinining the significance of the auxiliary data matrix X∗ in more

detail. It is required through the problem of not being able to adequately map

datapoints with missing data to a centre point a via dual coefficients α as described

above. Although it may be hoped, through the analogues between this method and

the SVDD system of providing coefficients αi in the Wolfe dual problem, that this

method always provides a superior range over feature space than the exact centre

method described in §5.4, this is not necessarily the case. We demonstrate this

via a method similar to proof by contradiction, by considering the question we

alluded to in §6.1.1 above of whether the exact centre method can be arrived at

as a special case of the dual-optimisation method. That is, if we take X∗ = Id,

and our exact-centre method produces an optimal solution a = {ai} with respect

to the subspace of feature space it is obliged to operate within, does there always

exist some vector {αi} such that:
d∑
i=1

αiφ(ei) = φ

(
d∑
i=1

aiei

)
? (6.12)

Here, by similar convention to classical mechanics, we have the vectors ei ∈ Rd

defined as the ith row of Id. If there were a solution to this, and we maintain our

consideration of dot-product based kernel functions, it would imply:

∀a,b ∈ Rd,∃α ∈ Rd

such that
d∑
i=1

αif(bi) ≡ f

(
d∑
i=1

aibi

)
, (6.13)

i.e. that the function f is separable in the variables bi; this condition is not sat-

isfied by the quadratic kernel, but is trivially satisfied in the linear case, where

6.3 Method preparation 165

the two situations are equivalent. However, in the general case it does raise the

question of whether a ‘near’ point can be derived as a reasonable initial guess for

an optimisation procedure: this will be covered later in §6.6.

Further comments We have described a system that, given a kernel based on

the dot product, a dataset with missing data and some sort of iteration rule gov-

erning how to act when given a list of deviations δj , can provide a description of

a dataset in kernel space whilst completely avoiding the need for imputation of

extra data, all the while providing the data with their optimal completions with re-

gards to the curves and surfaces their projections would describe in kernel-induced

feature space. The main drawback of this method is that of computational com-

plexity, but we will see in §6.7 that the results it can produce on simple enough toy

examples show that the method is a potentially promising one. The dual optimisa-

tion step does add a large amount of computational time, but – unlike the previous,

exact centre-based method – the results have the advantage of being able to search

the whole of the feature space instead of the subspace defined by the span of the

input space alone.

6.3 Method preparation

It is important to have a framework in place where our developed methods are

given reasonable points at which to begin optimisation procedures: this applies

to both the XC method described in Chapter 5 and the DO method above. In

§6.2 we observed that it was not always possible to find, for every point a in input

space, an equivalent representation α in dual space: a fact which is true even in the

full data case. Thus, it is not always reasonable to expect the coefficient vectors

6.3 Method preparation 166

α as given by the normal imputation-SVDD methods described above to be the

optimal solutions for our methods, which avoid imputation altogether. Indeed, we

have seen that when using anything other than linear kernels, the preimage of a

in input space may not exist; this causes problems with our exact-centre method,

which requires an input-space solution to be found. In the linear case, the starting

point is trivial, as we use the centre point implied directly by the coefficients αi,

and thus take:

a0 =
N∑
i=1

αix
I
i ,

where the points xIi describe one definition of the imputed dataset and the exact-

centre optimisation process can be repeated for all three separate centres in this

way to find the best result. In other cases, however, the definition of a itself will

be intractable; as a general optimal starting point for our exact-centre method, we

therefore consider the following point:

a0 = arg min
a

{
‖φ(a)− aI‖2 : a ∈ Rd

}
(6.14)

where aI =
∑N

i=1 αiφ(xIi), from the results of analysis from a given imputation

method as stated above. It follows that:

a0 = arg min
a

f(a · a)− 2
N∑
i=1

αif(a · xIi) +

(n,n)∑
i,j

αiαjf(xIi · xIj)

 . (6.15)

The third term in this sum does not depend on a, and thus we have a nonlinear

(but fairly ‘simple’) optimisation problem based on the first two terms here to

determine the optimal starting point a0. This simple process can, again, be re-

peated with the three definitions of the imputed dataset XI , with the exact-centre

optimisation process started from each point in turn.

6.4 Joint optimisation approaches 167

6.4 Joint optimisation approaches

In this section, we detail another approach to the problem of an optimal imputa-

tion with respect to a kernel function, and show two methods in which it may be

applied. We shall relax the requirement of Equation 5.35: that is, defining the dis-

tance from an incomplete datum from the centre of an enclosing sphere as being

the instance-specific mean over all possible imputations of that point alone, and

instead we see the entire dataset as a whole and perform a joint optimisation with

respect to the missing data over the entire set and the weighting vector α. Thus

we seek:

(α̂, X̂mis) = arg min
α,Xmis

(
max
i
‖φ(xi)−

N∑
j=1

αjφ(xj)‖2

)
. (6.16)

There are both advantages and drawbacks of this formulation. One major advan-

tage is immediately obvious, in that we have eliminated the problems inherent in

§6.1 regarding the requirement of the provision of an auxiliary dataset and the

decoupling of the connection between the parameter α and the datapoints. This

is a very significant improvement, since it means that not only can computational

time be greatly reduced by the lack of need to perform several tests on an heuristic

basis and choose the best result, but it also brings rigour back into the system as

the αi can, once again, be seen as relating directly to the xi. Thus the Lagrangian

constraints, derived in §2.4.2 for SVDD in the case of full data, can be re-instated:

N∑
i=1

αi = 1, a =
N∑
i=1

αiφ(xi), αi ∈ [0, C]. (6.17)

Furthermore, this system has an advantage in that the result as produced, should

the optimisation process function correctly, will explicitly give both the best im-

putation X̂mis and the required Lagrangian coefficients α̂ for direct entry into the

6.4 Joint optimisation approaches 168

quadratic expression for the minimal radius as required. This was also not the

case above, since the spaces in which the data and the α coefficients resided were

different, albeit in general isomorphic to one another (should a sufficient number

of different points be used in X∗ to permit basis coverage, and under regularity

assumptions about the kernel function).

It is also clear from this new formulation, however, that this is computation-

ally a far more difficult problem than simply taking each datapoint in turn and

minimising its missing data component with respect to a given set of αi and a

kernel function, as in §6.1. We now have the entire (N + Σmis) dimensional

space through which to search for a minimal imputation, and although the rela-

tions given in Equation 6.17 will help immensely with the search space for α, it

still remains a daunting task, especially if we are dealing with datasets with a high

proportion of data absence. We detail below the results of naı̈ve optimisation, and

also introduce the method of particle swarm optimisation which assists in this

type of problem.

6.4.1 Naı̈ve constrained optimisation

For some datasets, particularly those that are smaller or simpler, proceeding di-

rectly to a constrained optimisation procedure, using one of the functions written

for e.g. the MATLAB Optimization Toolbox, may be a realistic option. Let di be

the distance from the centre point of point i; to compute the gradient for applica-

6.4 Joint optimisation approaches 169

tion of a gradient-descent method to find the minimal value, we note that:

∂di
∂xml

=

 2(1− αi)
[
xilf

′(xi · xi)−
∑

j αjxjlf
′(xi · xj)

]
m = i;

−2αm

[
xilf

′(xi · xm)−
∑

j αjxjlf
′(xm · xj)

]
m 6= i.

(6.18)

= 2(αm − δim)

[
N∑
j=1

(αj − δij)xjlK̇jm

]
, (6.19)

where δij is the usual Kronecker delta index, and K̇ is a kernel matrix composed

of the values K̇ij = f ′(xi · xj). To construct the necessary family of matrices

{D(l)}im ≡ ∂di

∂xml
for use as derivative information in an optimisation procedure,

we note that if we create a matrix Bij(α) = αj − δij and a matrix Q(l)
ij = xilK̇ij ,

we have:

D
(l)
im = 2Bim

(∑
j

BijQ
(l)
jm

)
= 2Bim

{
BQ(l)

}
im

(6.20)

=⇒ D(l) = 2B ⊗ (BQ(l)), (6.21)

where ⊗ is the matrix Hadamard product {A ⊗ B}ij ≡ AijBij . Alternatively,

another approach is to use an automatic differentiation package such as TOMLAB

to compute derivatives with respect to datapoints ‘on-the-fly’. In any case, it is

thus straightforward to pick out the relevant indices and submit a vector containing

the current iteration’s values of both the imputation Xmis and the vector α, and

apply a standard optimisation procedure such as fminimax to solve Equation

6.16.

6.4.2 Particle swarm optimisation

Algorithm 4 describes a well-known method of optimisation known as particle

swarm optimisation (PSO). Proposed originally in 1995 by Kennedy and Eber-

hart [39], it is often used where gradient information for an objective function

6.4 Joint optimisation approaches 170

that needs to be minimised is either difficult to obtain or is known to be highly

irregular or discontinuous. It precludes the need to compute and descend along

gradients at the expense of several extra parameters that need to be tuned; al-

though these can themselves be optimised, as shown in e.g. Pedersen [61]. The

method is based around a random search of feature space via a ‘swarm’ of par-

ticles driven by stochastic choices of extra velocity parameters appended to each

feature. When a member of the swarm finds a new (perhaps local) minimum of

the objective function, it may then pass the positional information of this point to

other swarm members, who then have their new velocity proposals attracted to-

wards this point whilst still randomly searching the local structure. At no point is

gradient information either used or necessary for the operation: the optimisation

is done purely on a ‘high-score’ basis. As information is passed between swarm

members, it holds that the greater the swarm, the more effective the algorithm, but

clearly also the greater the computational time.

The end effects of PSO, in the ideal case, are that most swarm members con-

verge on the minimal point of the objective function; a stopping criterion can thus

be adopted that requires a proportion of the members to be within a certain spa-

tial tolerance of the current minimum, or the method can just be run for a certain

number of iterations. It is not used as a sampling method as it does not use prob-

abilistic acceptance criteria such as the Metropolis-Hastings ratio; rather, when

properly tuned it is theoretically a good way to address the problem of local min-

ima or a high-dimensional feature space with sometimes discontinuous gradients.

The tunable hyper-parameters are shown in the pseudocode for Algorithm 4, and

we will not pay them too much further attention except to say that in the results

gleaned from running PSO tests on the applied data, good results were achieved

6.4 Joint optimisation approaches 171

Algorithm 4 Particle swarm optimisation
Require: function f : Rd → R to minimise

Initialise x0, iterations N , swarm size M , inertia I , correction χ, stepsize σ

Let xi ← x0, vi ← 0, yi ←∞ ∀i = 1 . . .M

for k = 1 . . . N do

for i = 1 . . .M do

xi ← xi + σvi

if f(xi) < yi then

x∗i ← xi

yi ← f(xi)

end if

end for

ι̂← arg mini yi

for i = 1 . . .M do

θ
(p)
j ∼ U [0, 1] for p = 1, 2, 3; j = 1 . . . d

vi ← Iθ(1)vi + χ
[
θ(2)(x∗i − xi) + θ(3)(x∗ι̂ − xi)

]
end for

end for

6.4 Joint optimisation approaches 172

Figure 6.2: PSO example on f(x) = ((x1 − 20)2 − 25)2 − 0.5x1 + (x2 − 10)2.

6.4 Joint optimisation approaches 173

by fixing these parameters as the following:

• x0: Gaussian cluster about origin with standard deviation 5. Note that this

standard deviation does matter in terms of the efficiency of the algorithm.

Too small and the algorithm converges too quickly on an unrealistic point;

too large and the risk of non-convergence is encountered.

• Swarm size M = 20

• Iterations N : shown in the applied results chapter but stopped after a con-

vergence criterion of 90% of the swarm (18 members) having an objective

value of within 0.001 of the member with the minimal objective

• Step size σ = (1.3)−1, taken from original code by Elshamy1. This param-

eter also contributes significantly towards the efficiency and probability of

convergence.

• Inertia I = 1

• Correction factor χ = 2

Finally, we note here that clearly the efficiency of any PSO algorithm will be

improved by hyper-optimisation for these parameters themselves, and thus is a

branch of further work in the study we present here.

Toy example Figure 6.2 shows a typical run of a PSO procedure. The objec-

tive function is quartic in the horizontal (first) dimension, and has two significant

minima: near (15, 10) and near (25, 10). The latter is the global minimum, and

1PSO code is available online at ‘MATLAB Central’ by Wesam Elshamy (wesamelshamy@

yahoo.com).

6.4 Joint optimisation approaches 174

between the points there is an area where the objective function is much higher.

The blue dots show the randomised starting points; after 20 iterations, we see the

green dots have begun to cluster about the local, non-global minimal point on the

left of the figure, as no better point has yet been reported in feature space. We

also see that there is still some variance in the iterations for the simpler, quadratic

feature x2. However, by 40 iterations, this is gone: the method has converged on

x2 = 10 as a minimum in the second feature; more significantly, however, a better

point has been found in the x1 direction, and the swarm is now attracted to this

improved point nearer (25, 10). By 60 iterations, the teal dots show more of the

swarm members clustering, and by 80 iterations, the purple dots show that most

of the swarm is now near to this point with far less spatial variance.

Application to GMSVDD In §2.4.2, we showed that in the full-data case, a

support vector domain description system can be built to derive an optimal α for

a given dataset, and thus provide some form of explicit depiction of the position

of the most optimal centre point of a dataset. Furthermore, we noted that this is in

the form of a quadratic programming procedure, thus in general allowing efficient

optimisation methods to be employed in its solution due to the guaranteed positive

semi-definiteness of the kernel matrix K. This is certainly always the case with

a full dataset; however, in the case of missing data, we may consider all possible

imputations and conclude that the procedure that describes a full-data SVDD can

be viewed as the function:

α̂(Xmis)← Q(Xmis|Xobs) : RN×d → RN (6.22)

' R
∑

i hi → RN , (6.23)

6.4 Joint optimisation approaches 175

where Q(Xmis), conditioned on the known portion of the dataset Xobs, provides

an optimal QP solution α̂ for any completion Xmis we provide, by filling in the

dataset X as required and running a quadratic program to derive the problem-

specific optimal α. This can be viewed as a function as with any other; in particu-

lar, however, we note that due to the structure of the problem, a small difference in

the imputation may lead to a large jump in the optimal α, so this form is not given

well to gradient-descent methods if a search for a minimal radius over the feature

space Xmis is required. Figure 6.3 shows how α̂ changes as we pick different ran-

dom imputations for a set of incomplete data. The predominantly light-coloured

area in this figure denotes those data for which α = 0. This clearly illustrates

the phenomenon, alluded to in §2.4.4, that in most support-vector tests with dot-

product kernels, most of the training points xi end up with coefficients of αi = 0

for sufficiently largeC, denoting their membership of the region inside the sphere.

Only a handful of coefficients end up nonzero, to denote their presence either on or

(if C < 1) outside the sphere. Crucially, the output α̂may be turned into a unique2

minimal radius R using relation 2.77 from §2.4.4, giving us a function with a sin-

gle output argument R to minimise. We can motivate the use of a non-gradient

method for this problem via careful consideration of the effect of the missing data

parameter space on R. Given a current realisation of the missing features in a

dataset, and thus a sphere with a centre given by α and known radius R, we con-

sider the gradient of R with respect to the missing features in all incomplete data

with α = 0. The gradient of α, and hence R, will only have a nonzero derivative

should the alteration change the support vectors: this itself involves an alteration

in the missing features of an incomplete datum sufficiently large to take it near

2Unique, as ideally all support radii are equal; in general, take the minimum over all SVs.

6.4 Joint optimisation approaches 176

Figure 6.3: 100 realisations of support vectors on a 100× 5 dataset

the enclosing sphere. When it does approach the sphere, however, it may well be

that another optimal solution can be formed and the identities of the support vec-

tors in α may completely change, thus suggesting that the feature space over all

missing entries in a dataset resembles a landscape with large, flat regions where

no gradient information will be of use, interspersed with critical points at which

the values of α jump in a discontinuous manner, and accordingly the landscape in

R, although in general continuous, will not be differentiable. Thus, in this con-

text, even if gradient information ∇XR could be rigorously calculated, it would

not be of much use to an optimisation procedure due to the non-smooth nature

of the objective function, and we therefore see the suitability to this problem of a

non-gradient search method such as PSO.

6.4 Joint optimisation approaches 177

6.4.3 Comments on results

While both of these methods were seen to work reasonably well in a few straight-

forward test cases, the main methods we tested in all cases were more consistent

with their performance, both in terms of producing reasonable results and in pre-

dictability of computational time. Accordingly, we have not included a suite of

results for the naı̈ve contrained optimisation method as it did not always converge

on a meaningful result; furthermore, we have provided results (marked ‘PSJO’)

from the particle-swarm joint optimisation method only in the case of the applied

data, as a better performance was recorded in this case versus the simulated struc-

turally incomplete datasets. Only hard margin (C = 1) results were included,

although by design it would also be perfectly valid to include results gleaned

through either method for smaller values of C, thus producing analogous soft-

margin results. These methods, however, are not intended to contribute towards

the main breadth of this thesis; rather, they have been included here and a lim-

ited number of results included from the PSO method to illustrate that such an

optimisation is possible. This gives us the important result that given a kernel

function, an explicit optimal imputation is usually possible without conditioning

upon the provision of a readily-imputed dataset a priori. Furthermore, the results

produced are in the same form as the full-data SVDD, with the same constraints on

α and with the same inherent link between these Lagrangian coefficients and the

datapoints themselves, thus giving them greater structural significance than those

results produced with the main two methods. Ultimately, however, all the ap-

proaches as described in this chapter do compute the same notion of inter-particle

distance in a dataset with missing features, and it is thus a valid action to compare

their results side-by-side.

6.5 Cross validation 178

6.5 Cross validation

It is important to note that when dealing with any form of classification problem,

whether it be in the context of missing data or otherwise, whether we use support

vector methods, naı̈ve Bayesian methods or otherwise, ultimately the only statis-

tics that provide a benchmark to the efficacy of a method are to be derived via

a cross validation procedure. With this in mind, despite the greater part of our

results section being devoted to proving that smaller sphere sizes can be achieved

via the use of our novel methods, it is also necessary for us to provide CV-based

statistics as a sanity check, to show that our methods can compare favourably

with uninformed imputations of datasets. Therefore, we shall include CV results

in the study of Chapter 8; in particular, the study governing the classification by

fissile element, as deriving meaningful CV results from this study is particularly

straightforward.

6.5.1 Recap of cross validation

In §2.1 we touched upon this method; here, we shall describe how we have adapted

Lee and Lee’s domain described support vector classification system (DSVC, see

§2.2.8) to provide a small-scale indicative evaluation of our methods via a cross-

validation on testing data. Recall the following two definitions of the statistics

commonly used to assess a classifier’s performance:

Sensitivity:
TP

TP + FN
; Specificity:

TN

FP + TN

Essentially, regardless of context a cross validation procedure is performed as fol-

lows: A section of the data (the testing set) is taken out and stored to one side,

as is its class information, whereupon a classifier is then trained on the remaining

6.5 Cross validation 179

points (the training set). The results gleaned from the trained classifier are then

used to inform decisions about the nature of the testing points, the idea being that

if the classifier is good, then the validation step will produce predicted class in-

formation that largely agrees with the actual class information that was originally

hidden from view.

Missing data The situation is a little more complex within the context of miss-

ing data, which motivates this study as a whole. As the training and testing sets

must necessarily be separated before any computations are derived from the full

dataset, the issue arises of how a testing set with missing data can be correctly

classified. Thus, we shall adopt the following paradigm:

Testing data will be imputed as a whole, using the methods described (zeros,

feature specific means, nearest-neighbours) as if it were a complete dataset

in its own right, since we are not permitted to use the known class informa-

tion;

Training data will be split up into its constituent classes before imputation, then

the subset of the full dataset corresponding to each class identity will be

imputed as a separate dataset.

PSJO method The use of this method already implies an imputation of the full

dataset, and thus we simply apply set splitting on its own.

6.5.2 Shape of windowing function

In order to perform domain described support vector classification, we create a

sphere around each class and use only the support vectors to create a Gaussian

6.5 Cross validation 180

support function about the dataset based solely on the distance of points in feature

space from the centre of our spherical domain:

p(z|a, R) ∝ exp(−q‖z− a‖2), (6.24)

where, as before, in the full data case we have:

‖z− a‖2 ≡ f(z · z)− 2
N∑
i=1

αif(xi · z) +
N∑

(i1,i2)=1

αi1αi2f(xi1xi2), (6.25)

where a ≡
∑N

i=1 αiφ(xi) and R is the kernel distance to a support vector. It

quickly becomes obvious that it is incorrect to take one universal scaling parame-

ter q, since we would prefer all our support windows to be conceptually “the same

size”. Lee and Lee [44] advocated the use of the pseudo-density function that we

adapted in §2.4.3 by subtracting the value of the density function at the support

vector points to give them null density, but this does not ensure the windows them-

selves are of a similar shape. Radii with larger length scales will end up flat and

heavily curtailed using this method; to ensure homogeneity of window shape we

shall investigate the scaling of q ≡ 1
2σ2 required to ensure inter-class equality of

the integral below the probabilistic curve. This shall also have the advantage of

not unnecessarily penalising smaller radii.

Spherical integrals We wish to achieve homogeneity of the integral within the

sphere of the area under the required Gaussian probability density function. Con-

sidering a normal distribution with original mean and unit diagonal variance in

the required dimension d, we note:

Id ≡
1

(2π)d/2

∫ ∫
. . .

x ∈ Bd
1

∫ ∫
exp

(
−1

2
‖x‖2

)
dx1dx2 · · ·dxd, (6.26)

6.5 Cross validation 181

where we define Bd
s := {x ∈ Rd : ‖x‖2

2 < s2}, thus the domain here is the

unit hypersphere in d dimensions. Using a change of co-ordinates to a spherical

system we can rewrite this as follows:

Id ≡
1

(2π)d/2

∫ 1

r=0

∫ π

φ1=0

· · ·
∫ π

φd−2=0

∫ 2π

φd−1=0

exp

(
−r2

2

)
|J |dφd−1 · · · dφ1dr,

(6.27)

where |J | = rd−1 sind−2(φ1) sind−3(φ2) · · · sin(φd−2).

The inner integral is trivial and gives a factor of 2π; for the remaining integrals,

we can use the separability of the expression under integration to split this into a

product. Furthermore, using the fact that:∫ π

0

sinm(x)dx ≡
√
πΓ
(
m+1

2

)
Γ
(
m+2

2

) , (6.28)

we see this is a telescopic product whose terms nearly all cancel, giving a factor

of πd/2−1/Γ(d/2). After making the substitution s = 1
2
r2, the integral in r is also

simplified, leaving:

Id ≡
1

Γ(d/2)

∫ 1
2

s=0

s
d
2
−1 exp(−s)ds = γ̂

(
1

2
,
d

2

)
, (6.29)

where γ̂ is the regularised lower incomplete gamma function defined as γ̂(x, a) =

1
Γ(a)

∫ x
0
ta−1 exp(−t)dt, which is also the definition used in MATLAB for the func-

tion gammainc(x,a).

The chi-squared distribution To scale this result in σ or R, we consider the

χ2 probability distribution, which uses the lower incomplete gamma function as

its cumulative density function. Specifically, for a random variable Q2 distributed

according to a χ2 distribution with d degrees of freedom, we have:

p(Q2 < r2) = p(‖N (0, Id)‖2 < r2) = γ̂

(
r2

2
,
d

2

)
, (6.30)

6.5 Cross validation 182

where here we use the definition of the χ2 distribution as the sum of squares of

Gaussians, or equivalently the 2-norm of a d-dimensional Gaussian distribution.

We may now use the frequentist definition of probability to conclude:∫
‖x‖<R

fZd (x)dx = γ̂

(
R2

2
,
d

2

)
, (6.31)

where fZd (x) is the pdf of a d-dimensional standard normal distribution and we

have used the fact that its integral over x ∈ Rd is equal to unity. Replacing each

xi by Xi = σxi throughout, so that
∏d

j=1 dxj = 1
σd

∏d
j=1 dXj , we can show with

straightforward algebra that R scales with σ irrespective of dimension, leading us

to the main result of this section, which shall guide our choice of σ to choose for

the support windows:

1

(2πσ2)d/2

∫ ∫
. . .

x ∈ Bd
R

∫ ∫
exp

(
−1

2σ2
‖x‖2

)
dx = γ̂

(
R2

2σ2
,
d

2

)
. (6.32)

To apply this to choosing an adaptive σ based on the known value of R, we can

invert this function so that we may pick a σ such that 100(1 − α)% of the prob-

ability mass will be found within the enclosing sphere, for a value of α we shall

choose (in the experimental results we choose α = 0.05). Thus:

R2

2σ2
= γ̂−1

(
1− α, d

2

)
=⇒ σ2(α;R, d) =

1
2
R2

γ̂−1
(
1− α, d

2

) . (6.33)

6.5.3 Other parameters

The following is a list of other parameters which are tunable in the cross-validation

procedure, and the values we use here for them:

• iterations: the number of times we stochastically choose a selection of

the dataset for a training/testing data split (200).

6.6 Method preparation 183

• rejectlevel: we incorporate a reject class to ensure that the classi-

fiers are not forced to pick one of the existing classes, which can improve

specificity for those classes which would otherwise be erroneously chosen

(0.01d).

• alpha: as above, we set this at 0.05, meaning 95% of the probability mass

will be contained in the hypersphere we derive.

• C: We set the cost parameter for SVDD at C = 1 throughout, but this is not

crucial and soft margins are consistent with this method.

• The proportion of data in the testing set (20%).

Furthermore, we define the dimension d as the number of non-infinitesimal eigen-

values of the kernel matrix of a typically imputed dataset.

6.6 Method preparation

The process for the dual-optimisation method is slightly more complex. From

preliminary trials, the process seems to be very sensitive to local minima, and

thus merely starting from the requisite α in each case yields a null optimisation

process, with the final point not having moved from the initial guess. Thus, some

care must be taken with regards to initial point selection. We use the following

process. For each type of imputation and appropriate kernel, retrieve the vector

α given as the optimal value in the original comparison test. Then substitute this

vector into the deviation function for the DO method as given in Equation 6.6

to find the geometric-margin based maximal distance with respect to this ‘target

guess’, using as X∗ the corresponding specific imputation of X . One type of

6.6 Method preparation 184

imputation method will work best – that is, induce a minimal max-deviation with

respect to its own dataset. This particular imputation of X we now denote as our

X∗ and perform the following pseudo-code process:

• Initialise α0 as some normally-distributed (M × 1) vector, with M the size

of X∗ (where here clearly M = N).

• Initialise α = α0, u = 0, t = 0, v = maxi di the maximal distance com-

puted using Equation 6.6, using X∗ and α0.

• While (t− u) < τ : (otherwise break; this ensures a count since last update.

τ = 10 is reasonably effective)

• t← (t+ 1)

• αp = α+ σpZN , where Z is an N -length normally-distributed noise vector,

and σp = 0.1 is effective.

• dp = maxi di where this is computed in the same fashion as above but using

αp as the coefficient vector.

• If dp < v: α← αp, u← t, v ← dp, otherwise no update.

• End ‘while’ loop and thus repeat until condition is breached.

After this process, we can take our initial α as being the last value obtained

by α: that is, one that was unbeatable in τ consecutive Monte-Carlo style it-

erations. The MATLAB function fminimax can now be used with this α as

the starting point. To ensure speed of convergence we generally have also set

options.MaxFunEvals=300 or similar, as by 300 evaluations of the func-

tion described by maxi di, a reasonable value has usually been reached.

6.7 Results on synthetic data 185

6.7 Results on synthetic data

Table 6.1: DODD results: 2-D cluster with value filter
Linear kernel Quadratic kernel

Hard, Imp 0 1.25289 1.88347

Hard, Imp µ 1.25289 1.88347

Hard, Imp NN 1.25289 1.88885

Hard, XC 1.25289 2.36436

Hard, DO 1.25289 1.88347

Table 6.2: DODD results: Two disjoint 2-D clusters

Linear kernel Quadratic kernel

Hard, Imp 0 2.67234 11.11552

Hard, Imp µ 2.23574 11.07670

Hard, Imp NN 2.23574 11.07670

Hard, XC 2.23057 10.57009

Hard, DO 2.23039 10.58504

6.7 Results on synthetic data 186

Table 6.3: DODD results: One common dimension
Linear kernel Quadratic kernel

Hard, Imp 0 4.29481 24.42394

Hard, Imp µ 2.32852 21.03813

Hard, Imp NN 2.52866 23.25400

Hard, XC 2.31592 20.26059

Hard, DO 2.31557 19.67628

These tables show similar results to those gained in the previous chapter with

the exact-centre method, and we have included the results given there by way

of side-by-side comparison. In Table 6.1, as with the previous methods, no im-

provements are to be seen in either the linear or quadratic cases with the dataset

exhibiting value filtering; again, this is not a bad result as we have shown our

methods to not underperform imputation. Table 6.2, referring to the two disjoint

clusters dataset, shows a small improvement in the linear case and a more sig-

nificant one in the quadratic case, with both of our methods performing equally

well; finally, an even more encouraging result is shown in Table 6.3, where the DO

method achieves a smaller radius than XC, which itself outperforms all imputation

methods.

General comments The second method we have described attempts to rectify

this by performing a dual optimisation process: that is, optimising an objective

given a parameter value, and then optimising this value itself, so that a greater

dimension of a given feature space: indeed, as shown above, any given feature

space we care to consider, can be explored. Its main drawbacks involve the lack of

provision for hard margins as a result of breaking the correspondence between the

6.7 Results on synthetic data 187

weighting coefficients αi and the data, as is the case with the Wolfe dual problems

described above in the full data case.

The remainder of this document will deal with the dataset provided for us by

the external sponsor, and the results gleaned will include runs from both our exact-

centre and dual-optimisation methods, with a joint optimisation PSO approach

being used in some cases to demonstrate that our geometric margin approach can

hold up to a full cross-validation test.

Chapter 7

Radiation emissions data

7.1 Introduction

For the purposes of this investigation, the Non-Destructive Assay (NDA) group

collected two sets of data from a range of experiments involving spectral analysis

of radioactive material, in the hope that algorithms could be provided allowing

remote analysis of the composition of the material being processed. Two major

properties of the experimental data were seen by the NDA group as being desirable

for classification: that of the nature of the fissile material and also that of the

shielding method being used. The data consignment was provided by an external

third-party and the author of this thesis was not involved in the data collection

process. Its constitution will therefore be described in full in Appendix A. In this

chapter, we shall describe the two types of experimental measurement found in

the data suite which we intend to use in our analysis, and give a full description

of the physical processes involved in each, thus providing crucial background

concerning the selection of features we shall make in the next chapter. The two

188

7.2 Spectroscopy data 189

categories of data structure we have chosen to consider are spectroscopy counts

and neutron arrays. Much of the information we give in this chapter is summarised

from sections of a comprehensive text on this subject by Glenn Knoll [41].

7.2 Spectroscopy data

7.2.1 Gamma rays

Definition Gamma rays (γ-rays) are electromagnetic (EM) waves that occur at

the highest frequencies of the spectrum. They are one of three main forms of

emission produced when radioactive materials decay, the others being α- and β-

particles. Unlike these other emissions, however, γ-rays do not carry any electro-

magnetic charge, nor do they have any intrinsic mass; when a material decays in

a γ-ray manner, neither its atomic number nor mass changes. Gamma rays occur

in the form of photons, and are produced as a by-product of α- or β- particle de-

cay, as a result of excess energy needing to be released from the nucleus after the

α/β-particle emission. The energies of γ-ray photons vary between 101 – 105 keV;

they are the most penetrating form of ionising radiation. Thick (∼ 100mm) lead

or concrete is often used to shield users during experiments that produce γ-ray

emissions.

Spectroscopy When a radioactive element decays producing γ-ray radiation,

certain distinct energies of photons are produced in varying amounts. The resul-

tant spectrum showing the relation between photon energy and activity is unique

to one isotope, and thus studying a γ-ray emission spectrum is a method of de-

ducing the material that is decaying: this is known as gamma ray spectroscopy.

7.2 Spectroscopy data 190

Radiation is collected over a set time period to produce a time-independent spec-

trum of the γ-ray signature. A γ-ray spectrometer can be defined as any system

where the energy spectrum of incoming γ-ray photons is measured over a period

of time: this will generally involve causing the γ-ray to cause another particle to

produce activity, such as a photoelectron. The spectrometer can then generate an

electrical pulse whose size can be readily measured. Spectrometers fall into two

main types of material in their construction: scintillators (organic) and semicon-

ductors (inorganic). The differences between these in terms of readings and other

properties are summarised below in §7.2.4, but first we explain here how γ-rays

progress from their emission from the fissile material’s nucleus to the statistics on

the histogram.

7.2.2 Interaction with matter

In order to be measured, γ-rays must first be converted into photoelectrons, which

in turn are amplified and processed into detector counts by a photomultiplier tube

(PMT), producing the energy-activity spectrum. Photoelectrons are produced

through interactions between the γ-rays and the electrons of the atoms within

a specially manufactured crystal inside the detector. These interactions can hap-

pen in three different ways: photoelectric absorption, Compton scattering and pair

production.

Photoelectric absorption This occurs when a γ-ray comes into contact with

an electron - generally in the K-shell – orbiting an atom of detector material; it

transfers all its energy to the electron and thus disappears. The photoelectron is

then detected with energy equal to that of the incident photon, minus the binding

7.2 Spectroscopy data 191

energy required to release it from orbit, Eb. This binding energy is then released

once the remaining electrons reassemble, usually through a characteristic X-ray,

which is then absorbed itself; if nothing escapes from the detector, effectively “all”

the γ-ray energy is converted into detectable form. Photoelectric absorption could

thus be said to be the most “preferable” interaction: if an energy-count graph were

to be plotted where only absorption were taking place, only a full-energy peak at

exactly the γ-ray energy would be shown (see Figure 7.1).

E

counts

Eγ

Figure 7.1: Photoelectric absorption

Compton scattering This occurs when the γ-ray instead comes into contact

with an unbound (free) electron. Instead of transferring all of its energy for detec-

tion, only partial absorption occurs and a lower-energy γ-ray escapes, unlike the

absorption case. The proportion of energy transferred depends on the scattering

angle, θ, i.e. the angle through which the γ-ray is deflected. Two extremes can be

identified: where θ = 0 and the γ-ray passes through without loss of energy; and

where θ = π (a ‘head-on collision’) and the γ-ray transfers the maximum possible

energy to the recoil electron. The latter is defined as Emax = Eγ − Ec, where Ec

is the maximum recoil energy; it is not possible for a Compton recoil electron

7.2 Spectroscopy data 192

to absorb all of the energy of the γ-ray. Thus, in an energy histogram exhibit-

ing Compton scattering, a continuum of energies are present between E = 0 and

E = Eγ −Ec, depending on the distribution of values of θ. The polar probability

distribution of these recoil angles is as follows:

Pr
d

(θ) ∝ dσ

dΩ
= Zr2

0

(
1 + cos2 θ

2(1 + α(1− cos θ))2

)(
1 +

α2(1− cos θ)2

(1 + cos2 θ)(1 + α(1− cos θ))

)
(7.1)

Here, α is the energy of the photopeak γ-ray divided by 511 keV, the rest mass

of an electron (m0c
2; α is nondimensional), θ ∈ [0, π) is the scattering angle,

Z is atomic number and r0 is the radius of an electron. Sampling θ from this

distribution and combining with the recoil energy equation given by the following:

Ee− = hν

(
(hν/m0c

2)(1− cos θ)

1 + (hν/m0c2)(1− cos θ)

)
(7.2)

will produce a continuum of energies known as the Klein-Nishina cross-section

(see Figure 7.2).

E

counts

Eγ

Ec

Figure 7.2: Compton scattering

Pair production This occurs if the energy of the incident ray is large enough

to reach the intensely-charged region (Coulomb field) around the nucleus of the

7.2 Spectroscopy data 193

absorbing material. Its energy may then be used to produce an electron-positron

pair, which according to relativity theory has combined energy hν − 2m0c
2, i.e.

that of the incident γ-ray, less the energy required to produce the mass of the

pair, where m0 is the mass of an electron (or positron). As 2m0c
2 ≈ 1.02MeV,

this process therefore can only occur at γ-ray photon energies above this. The

electron’s kinetic energy is detected as per the previous two cases; however, the

positron is antimatter surrounded by “hostile” electrons, and thus quickly annihi-

lates, producing two annihilation photons each of energy m0c
2. These photons

then escape from the detector, with only the kinetic energy from the original pair

being detected. This results in a double-escape peak which is 2m0c
2 short of the

energy of the γ-ray (see Figure 7.3).

E

counts

Eγ

2m0c
2

Figure 7.3: Pair production

7.2.3 Real-life spectra

In practice, when measuring emissions spectra of γ-rays, all of the above three

reactions may be taking place, with some energy being detected in each case and

some escaping. The size of the detector must therefore be taken into account,

7.2 Spectroscopy data 194

since there will be ‘by-product’ γ-rays which may take part in multiple interac-

tions at lower energies. At one extreme is a hypothetical ‘large’ detector, which

conserves the total input. In this case, a full-energy peak will be the only feature

on the resultant histogram. In practice, some photons will escape; in a hypothet-

ical ‘small’ detector, exactly one reaction is allowed to occur for each detected

γ-ray. Assuming only one distinct frequency of radiation is provided, two sub-

cases arise: If hν > 2m0c
2, pair-production effects would show, otherwise only

the Compton continuum and full-energy peak would be present. In reality, a de-

tector will allow both, producing multiple Compton events and/or a single escape

peak where one of two annihilation photons escapes, occurring at E = Eγ−m0c
2

(see Figure 7.4).

Useful features It was suggested that the useful features which could be taken

from this spectroscopy data would involve the study of the location of the Comp-

ton edge – where it exists, this is defined as the termination point of the visible

Klein-Nishina cross-section as described in the ‘Compton scattering’ paragraph

of §7.2.1 above. We describe the feature extraction process to isolate an estimate

of this feature in §8.2.1. Secondly, it was observed that although in general, the

position of the Compton edge is more a feature of the fissile material being stud-

ied, the shape of the cross-section prior to this point is heavily affected by the

nature of the shielding method being used; we thus created an estimate of this fea-

ture, related to the area under the graph of an energy histogram upto the estimated

Compton edge location, and describe the algorithm we used for this in §8.2.2.

7.2 Spectroscopy data 195

E

counts

m0c
2

Figure 7.4: Multiple Compton events, single escape peak

7.2.4 Detector differences

The essential requirement of any spectrometry system is that of linearity. Since

the energy of the γ-ray must first be translated into the kinetic energy of a photo-

electron before it can be detected, it is vitally important to ensure that the detector

achieves this with a near linear relation between its channel number (i.e. the en-

ergy bins used for classification of the various frequencies of incoming rays) and

the actual energies produced. This requires a step of calibration of a detector;

this will be described in more detail in Appendix A. Two desirable traits are ef-

ficiency and resolution of the detector. Other general factors which may affect

choice of detector material are that of price - which can vary significantly, and is

of particular concern if large-scale tests are to be conducted; the temperature at

which the detector material can be operated; the sensitivity towards the ambient

temperature; the size of unflawed crystals that may be produced (important for

semiconductors) and the sensitivity towards bias voltage (how the power required

to operate the detection device affects the output - this is particularly relevant with

photomultiplier tubes amplifying results from scintillators). All these factors are

7.2 Spectroscopy data 196

used in the following comparison of the two detector types. For the purpose of the

Table 7.1: Comparison of detectors

Scintillator Semiconductor

Example NaI (sodium iodide) HPGe (germanium)

Material nature Organic Inorganic

Operating Temp. 300K (r.t.p) 77K (liquid N)

Price Cheaper (factor of 10)

Manufacture Easy to mass-produce Difficult

Temp. Sens. Sensitive Insensitive

Bias Voltage Sensitive Insensitive

Resolution Poor (8%) Excellent (0.15%)

Efficiency More efficient Less

experiments we analyse, the main discriminating factors between the two detec-

tors used were that the NaI detectors showed only general shape, with the specific

peaks taking many more energy bins to describe and as a result sometimes not be-

ing visible; the HRGS detectors, however, picked out these peaks very specifically

(see Figure 7.5). This is known as the spectral resolution and is a desirable trait

in spectrometers; the main drawbacks with the semiconductors are not in their

experimental readouts but in considerations of practicality and cost, as outlined

above. Statistically, a peak’s well-definedness can be derived through the measure

of full width at half maximum (FWHM). As the name suggests, this measure is

used to denote the width of a peak at the benchmark point of half of its maximal

amplitude. If the peak is a perfect Gaussian shape, the following equation relates

7.2 Spectroscopy data 197

Figure 7.5: Comparison between NaI and HRGS detector

the FWHM to the variance:

FWHM = 2
√

2 log 2σ ≈ 2.35482σ. (7.3)

Clearly, smaller values of the FWHM are more beneficial to spectral signature

readings. The manufacturer’s rating of a spectrometer’s efficiency is based on

three main factors – it is marked higher if:

• the amount per unit activity of γ-rays removed from the beam (analogous

to the detection probability mentioned above) is high;

• a large amount of detector material is available;

• the signal can be readily extracted for processing into a spectrum.

7.2.5 Calibration information

In §7.2.4 above, we mentioned that the linearity of a spectroscopy system is im-

portant. The calibration information is an expression of the linearity of a detector

7.3 Neutron data 198

of this type: that is, how good the representation is in the collection bins rela-

tive to the actual spectrum being produced. It takes the form of three coefficients

a0, a1, a2. These coefficients are devised via a least-squares fit on known spectral

data, to calibrate a detector. They provide the following bestfit relation between

the channel number k and the energy E of the incident γ-ray:

E = a0 + a1k + a2k
2 (7.4)

Thus, in an ideal world it will be the case that a0, a2 ≈ 0, with a1 providing

the required linear relation. However, if these coefficients are known, analysis

is usually straightforward, especially if the calibration coefficients are the same

between the background reading and spectral reading (see below).

7.3 Neutron data

In addition to the spectroscopy readings as detailed above, neutron emissions data

was simultaneously taken for many of the experiments. Four detector panels were

used to collect neutron readings, which were fed into a Time Correlation Analyser

(TCA). We describe their interaction with matter in this section, and explain the

form of the data which was received.

7.3.1 Interaction with matter

The detectors operated with Helium-3 gas-filled tubes at 10atm pressure; this type

of neutron detector is used to gathering neutrons of far lower energies (0.025

eV) than those produced in fission events (2 MeV), thus the tubes were initially

surrounded by high-density polyethelene (HDPE), which has sufficient hydrogen

7.3 Neutron data 199

content to “slow down” these particles to those that a Helium-3 tube may detect.

The HDPE scatters the neutron energy many times over to reduce it to the ‘ther-

mal’ level of 0.025 eV, whereupon it may be captured by the He-3 gas and be

detected: this process takes of order O(10−5)s. Once the slowed neutron has been

captured by an atom within the helium gas, a charge is deposited within the tube

and accelerated by the bias voltage towards the anode and cathode. An ampli-

fier/discriminator unit then sends a 5V pulse to the TCA.

Thus, an experimental run-through of a fission/detection process will involve

a stream of pulses being sent to an analysis machine, where each pulse would

represent a point in time at which (a few tens of microseconds previously) a fission

event had occurred of neutron type within the nucleus of the fissile material being

studied. Note the immediate differences from the γ-ray spectroscopy described

above: with spectroscopy we have full information about the different energy

levels at which γ-rays were being produced and a set time period over which

to measure, but no information about when these emissions took place within

that time period (as it is less important to spectroscopy readings); with neutron

experimental data we shall expect ample information about the times at which

events happened but we do not attempt to provide information about characteristic

energies, since this information will have been lost via the “deceleration” process

of the HDPE casing, in order to make the neutrons detectable to begin with.

7.3.2 Multiplicity arrays

Once the pulses are sent to the TCA, they must be processed to provide meaning-

ful information. Although, in principle, it would be possible to record the exact

times at which every reaction occurs, this information is largely redundant: more

7.3 Neutron data 200

incoming ν-emission pulses

t1 = τ0 = 6.4µs

t2 = 2τ0 = 12.8µs

t3 = 3τ0 = 19.2µs

t16 = 16τ0 = 102.4µs

Figure 7.6: Operation details of the TCA

informative (and succinct) is a process of recording multiplicities. The function of

the TCA is, at the simplest level, to open a time gate, count the number of pulses

received during this window, close the time gate and record its result. The TCA

used in these experiments is capable of opening 16 simultaneous time gates of

different widths (see Figure 7.6). It requires the shortest time gate to be specified:

we refer to this as t = τ0, and the 16 time gates will then be the scalar multiples of

this fundamental timescale: t ∈ {τ0, 2τ0, . . . , 16τ0}. In terms of this suite of data,

it was decided to let τ0 ≡ 6.4µs.

Periodic triggers Readings from three separate trigger methods were used: the

periodic, signal and delayed trigger methods. Hereafter, we refer only to those

readings taken from the periodic trigger experiments, as this suite was judged to

be sufficient for discrimination between properties of the different experiments.

Figure 7.6 illustrates how the periodic trigger functions. The raw, time-series data

7.3 Neutron data 201

Table 7.2: Typical neutron multiplicity array

Multiplicity Gate τ0 Gate 2τ0 Gate 3τ0 . . . Gate 16τ0

0 (‘zeros’) 223.4m 110.9m 73.4m . . . 12.5m

1 (‘ones’) 1.54m 1.52m 1.51m . . . 1.37m

2 (‘twos’) 43775 52177 58646 . . . 118305

3 260 622 963 . . . 7457

4 4 16 28 . . . 478

5 0 0 0 . . . 19

is shown at the top of the diagram, with the time gate windows depicted below.

For each time gate, a multiplicity histogram is compiled to show the frequency

of the reception of ‘zero’ neutrons within that particular window; ‘one’ neutron

event; and so on. Consider, for example, the event that nothing happens initially,

then a pulse is received at 2.2τ0: if we let the detector run for a time period of

4τ0, we will see the first time gate record t1 = (0, 0, 1, 0) and thus produce a his-

togram of h1 = (3, 1). Similarly, the 2τ0 time gate will record t2 = (0, 1) and

thus produce h2 = (1, 1). Over a sufficient amount of time, these histograms will

thus be expected to approximate a Poisson process, with means linearly scaling

according to time gate. The following table shows an example of a typical peri-

odic trigger multiplicity array: This experiment was taken from a Californium-

252 source with aluminium shielding, over a time period of 24 minutes = 1440

s. The sum of the events corresponding to the first time gate show that the gate

was opened 225,000,000 times: at a time gate of τ0 = 6.4µs, this figure is in-

deed equal to 1440 s. The same verification can be performed for each of the

time gates. If we take the weighted sum with respect to the multiplicities on any

7.3 Neutron data 202

column (which is valid since the time gates were opening simultaneously over the

same experimental period), we find that this source, over the total time allowed,

produced 1,630,000 fission events in total. Thus, if this were a purely Poisson

process, we expect to have mean multiplicities over the time gates roughly equal

to λk = k 1.63m
225m

= 0.007244k, which we find, for this experiment, is in fact very

accurate. We shall later see, however, that the process does not produce an ex-

act replica of the expected Poisson distribution for these means, and the deviation

from the expected distribution is a useful feature to be able to measure: we have

included a description of this later in the section on meaningful feature extraction,

in §8.2.4.

7.3.3 Data files

During the course of any given experiment, as with the spectroscopy datasets,

there will be assigned one of 8 master time scales, ranging from T = 300s to T =

14400s. The neutron data was collected in parts over the course of this timescale

– again, this is in contrast to the spectroscopy data, which was simply left to run

over the entire time scale and energy histogram information collected at the end.

With the neutron readings, T is broken up into ten constituent parts ti of length

T/10. A multiplicity array is taken for each of the ti from i ∈ {1 . . . 10} and every

multiplicity matrix recorded as an independent experiment; this is to incorporate

any time-specific feature information that may be of use. Thus, for example, the

longest time scale is T = 14400s = 240m so each of the ti = 1440s = 24m∀i.

Useful features It was suggested that the best features to consider within these

multiplicity arrays would include the mean multiplicity rate (as described above)

7.3 Neutron data 203

and the ‘tail’ properties: that is to say, how far the tail of the distribution typically

extends beyond the mean multiplicity. We have taken this to be virtually equiv-

alent to a study of the deviation from the expected Poisson distribution with the

given multiplicity mean and describe the extracting of these features in §8.2.3 and

§8.2.4.

Chapter 8

Tests on emissions data

8.1 Feature extraction

In its raw form, we cannot hope to be able to make any immediate inferences from

the data in terms of a potential design of a classification machine. This is where a

thoughtful and appropriate process of feature extraction is important. In general,

feature extraction can be defined as any process which reduces high-dimensional

data – which, in general, is suspected to be highly correlated – to a ‘small’ set of

manageable features, usually themselves with some physical significance. This

reduces the redundancy inherent in most ‘real-life’ datasets; indeed, feature ex-

traction is most often used as an initial pre-processing step in the field of image

processing. In general, the exact methods of feature extraction will be heuristic,

subjective and will rely heavily on the context of the data set and the prior informa-

tion which is known: in our case, we know our data comes from detectors, and we

have given information previously on the meaning of these readings. This allows

us to make intelligent decisions as to the best ways of extracting features. A tech-

204

8.1 Feature extraction 205

nical report due to the Lawrence Livermore National Laboratory [29] performs a

similar task based on classification of gamma-ray spectra; Hilario et al. [34] give

a good example of this prior information being used in a similar situation: that of

protein mass spectra. For the general case, this may sometimes be more difficult;

to address this, Guyon et al. [31] give a useful flowchart-style set of instructions,

which we partly reproduce here:

• If there is knowledge of the domain (the case of our data is an example of

this), then construct a list of ‘ad hoc’ features.

• Normalise the range and numerical position of the features – it is usual to

standardise, that is ensure that µj = 0, σj = 1∀j where j is the dimension

number of input space.

• If interdependence of features is suspected, it is likely there will be some

correlation between the feature values. The above alignment methods, such

as PCA, can assist with finding a more independently-aligned set of prod-

ucts of features.

• If necessary, either prune the numbers of features or construct extra features

made of weighted sums.

• Reduce noise if this is suspected within the dataset, according to some

heuristically chosen method.

In addition to the above flowchart, well-used statistical methods of feature se-

lection based purely on numerical properties of the dataset are also common, a

good example of this being due to Kira et al. [40]. The dimensionality reduc-

tion methods we covered in the previous sections, §2.2.4, §2.2.5, and their kernel

8.2 Selected features 206

equivalents, briefly covered in §2.3.4, are very widely used in all forms of feature

extraction, especially when dealing with highly correlated image data. A few ex-

amples of this can be found in Liang [45] (in the context of kernel discriminant

analysis, the kernel form of LDA), Xu [85] (where the kernel form of PCA is

used to aid in the feature extraction process) and Honkela [35]. As an alternative

method for extracting information, wavelet analysis [51] is a relatively modern

process used for this purpose: Sullivan [75] uses this Fourier-transform inspired

method to deal with similar spectra to the ones we study. A comprehensive re-

view of statistical pattern recognition methods – a category under which all these

methods fall – is due to Jain et al. [36]. The following two sections will describe

the features we have chosen to select in the context of the data from the provided

experiments, and the reasons behind these choices; we shall then explain how we

have pre-processed this data to achieve an easily-analysable dataset. Finally, we

perform our classification methods upon this processed dataset, and note the com-

parisons with imputation methods in a similar way to those results given in §5.6

and §6.7.

8.2 Selected features

8.2.1 Compton edge position

In Figure 8.1 we consider three separate spectra taken from sources of californium,

uranium and plutonium (in blue, green and red respectively). By inspection, we

see that for the uranium and plutonium spectra, the point at which the cross-

sectional portion of the reading ceases – the Compton edge – is clearly visible;

in fact, the position is different according to the fissile element being studied. In

8.2 Selected features 207

Figure 8.1: Location of Compton edge by fissile material

the californium spectrum, however, no such edge is apparent. We describe an al-

gorithm to approximate the location of the Compton edge, and later we shall use

it in our feature extraction process.

Code The following list summarises the code that is relevant to extracting this

first feature:

1. Consider a spectrum vector s ∈ RN , where N = 4096 for an NaI spectrum,

or N = 16384 for an HRGS spectrum. Instead of the usual notation, label

the entries of s as s = {si}(N−1)
i=0 (use this notation for all subsequent vectors

of length N).

2. For this spectrum, retrieve the following information: its timescale Ts ∈ R

in minutes, its relevant background b ∈ RN , the timescale of the back-

ground Tb, and the calibration coefficients (which must be commensurate

between spectrum and background) a0, a1, a2.

3. Create a calibration vector c ∈ RN = {ci}(N−1)
i=0 via ci = a0 +a1(i)+a2(i2).

8.2 Selected features 208

4. Perform background cancellation and time normalisation via s′i = si

Ts
− bi

Tb
.

5. Apply the map f(s) = sign(s) log(1 + |s|) to each member of the vector s′.

Thus n = f(s′).

6. Standardise this vector so that it has zero mean and unit variance.

7. Let the series n0
j =

∑j
i=1 δ

0(ni), where δ0(ni) takes the value 1 if ni < 0,

otherwise it is zero. That is, this vector is a cumulative count of the number

of values n takes which are below zero.

8. Decide on a series of threshold levels {tk : k ∈ {1 . . . NT}. For each

threshold level tk, let the feature value corresponding to this threshold be

the value that c takes at the point where the vector n0 reaches the proportion

Ntk. For example, if tk = 0.1, the feature value will correspond to the point

(in keV) at which the first 0.1N of the values of n were below zero.

8.2.2 Area under graph

In Figure 8.2 we now consider various different types of uranium spectrum. The

bare spectrum, denoted here in blue, is an equivalent, ‘zoomed-in’ image of the

green uranium spectrum shown in Figure 8.1; the remaining spectra show the

effects of different shielding methods (of the form described above) applied to

the source. We see that although the Compton edge stays the same throughout

(occurring at ≈ 210− 220 keV), the shape of the spectral readings in the portion

before the Compton edge seem to differ according to the shielding method used.

We describe an algorithm to integrate below each curve, with a right-hand limit

denoted by the feature found in §8.2.1. As shielding methods are also important to

8.2 Selected features 209

Figure 8.2: Difference in areas under graph by shielding method

our study, we shall include this feature next in our dataset. Extracting this feature,

once the steps for extracting feature 1 have been followed, is straightforward:

simply sum the points under the curve between zero and designated points along

the energy axis. For the purposes of this experiment, three cut-points were applied,

at 250, 500 and 750 keV, and area under the graph summed for each.

8.2.3 Neutron features

Neutron data is an integral, and important, part of our data consignment, and as

Figure 8.3 shows, it can provide a very useful reading as to the nature of a fis-

sile element involved in an experiment. This graph displays four distinct sections,

with the entries along the x-axis denoting different experiments. The graph dis-

plays differences between material with respect to the neutron data-based mean

multiplicity in such a clear way that the distinction between the different sections

is visually obvious. In the short initial section, background readings have been

taken; in the second section, californium (our element 1) was allowed to decay; in

8.2 Selected features 210

Figure 8.3: Neutron mean multiplicity data, by fissile material

the third section, we consider uranium (our element 2), and in the fourth section

plutonium (our element 3). The following describes how the neutron readings

involved in Figure 8.3 were obtained.

Neutron data structure In §7.3, we described the interaction of a time-corr-

elation analyser (TCA) detection system with radioactive emissions of the type

involving expulsion of neutron particles. Table 7.2 gives an example of how this

data is presented to the end-user for analysis. In §7.3.3, we explained how, during

any given experiment, the master time scale T was broken up into 10 equal seg-

ments of length T/10 and neutron arrays were presented for each subsection. We

thus arrive, in general, with the following data structure:

N ∈ Rk×16×10

where k is the maximum multiplicity observed in the entire experiment (over the

master time scale T), 16 denotes the 16 separate time gates as being multiple

of τ = 6.4µs, and 10 denotes each (T/10)-second long segment of the experi-

8.2 Selected features 211

ment. Occasionally the latter will not be the case, as for some experiments (as

outlined in the ‘Exceptions’ paragraph of Appendix A.1) not all ten timeframes

were completed, but this is not of great significance, as we shall see in the follow-

ing descriptions.

Computing mean multiplicity Computing the mean multiplicity feature for

neutron data is straightforward. It is calculated thus:

λjm =

∑k
i=1 (i− 1)Nijm∑k

i=1Nijm

=
1

ηjm

k∑
i=1

(i− 1)Nijm. (8.1)

8.2.4 Neutron tail properties

From this 3-D array N , we compute the following two matrices:

λ ∈ R16×10

η ∈ R16×10

Here, ηjm designates the total number of gate openings involved in the exper-

iment, and λjm designates the average number of neutrons per opening in the

experiment, for each different width of time gate and sub-period of the experi-

ment, calculated by dividing the neutron count by the number of openings. They

are calculated thus:

ηjm =
k∑
i=1

Nijm, (8.2)

λjm =

∑k
i=1 (i− 1)Nijm∑k

i=1Nijm

=
1

ηjm

k∑
i=1

(i− 1)Nijm. (8.3)

Note that λ takes this form since the ith member of the first dimension of N

describes the data for multiplicity (i − 1): row 1, as described above, denotes

8.2 Selected features 212

‘zeros’, row 2 ‘ones’, etc. We now compute another 3-D array L from these

values, designed to emulate the expected behaviour of a Poisson process should

the parameters λ and η be those governing the model, by defining:

L ∈ Rk×16×10

Lijm = ljm ∈ Rk (8.4)

ljm ∼ ηjm · Poisson(λjm) (8.5)

on the set {0, 1, . . . , (k − 1)}.

Thus, we have L as an ‘expected model’, and N as the ‘real data’ for our neutron

experiment. It is mentioned above that the neutron tail often extends beyond the

expected range for a perfect Poisson process, and in order to analyse to what extent

this happens, the following array is created:

D =
N

L
.

In general, we find that for any given time period m ∈ {1 . . . 10}, the relationship

between i and j, given sufficient ‘good’ data, often describes a curve similar to

that of x → 1
x
. The deviation fraction described by the entries of D decays with

the time gate width j in this manner, with a lower limit of 1. Thus, it makes sense

to try and fit a rational function to this relation. We use the MATLAB function

lsqcurvefit.m, from the Optimisation Toolbox, to fit a rational polynomial

least-squares fit to the data. The following polynomial is selected:

ρ(x) =
p0x

m + p1x
m−1 + p2x

m−2 + . . .+ pm−1x+ pm
q0xn + q1xn−1 + q2xn−2 + . . .+ qn−1x+ qn

(8.6)

Setting np = nq = 1 we have:

ρ(x) =
p0x+ p1

q0x+ q1

(8.7)

8.2 Selected features 213

Dividing top and bottom through by q0 we obtain:

ρ(x) =
r1x+ r2

x+ r3

(8.8)

where r1 = p0
q0

, r2 = p1
q0

and r3 = q1
q0

. The above method of describing the

curve is included here for completeness, as there exist rational polynomial solvers

more adapted to handle this general form; however, MATLAB’s lsqcurvefit

provides a general nonlinear solver. We thus use it in the following manner in

order to fit this curve:

lsqcurvefit(@(s,X)(s(1).*X+s(2))./(X+s(3)),

[1,0,1],(1:v)’,Dm);

with the starting point at (1, 0, 1) denoting the curve x
1+x

. Here, the variable Dm

denotes the means over all time periods of the entries in the matrix D(i)
jm, where i

is a given multiplicity, whence:

D̂
(i)
j =

1

Nm

Nm∑
m=1

Dijm, (8.9)

where the size of the third dimension of D, denoted by Nm, is usually 10: this

shows that under this system, neutron arrays are treated invariantly with respect to

the number of time periods contained in the experiment. Of the above parameters

r1, r2, r3, observe that r1 and r3 are the most significant: this equation describes

rational functions of a similar shape to x→ 1
x

which are singular at x = −r3 and

whose limit is r1 as x → ∞. These ri are used as features 14-16 (for ‘ones’),

17-19 (‘twos’) and 20-22 (‘threes’) where these are available; the data for ‘zeros’

were discarded. Features 23-25 denote the reconstruction error committed by

fitting these models for each category respectively.

8.3 Pre-processing 214

8.3 Pre-processing

Table 8.1: Summary of features used

Feature number Detector Description

1 NaI Compton edge, threshold 0.05

2 NaI Compton edge, threshold 0.10

3 NaI Compton edge, threshold 0.20

4− 6 HRGS Compton edge, threshold {0.05, 0.10, 0.20}

7 NaI Area under graph, cut-point 250 keV

8 NaI Area under graph, cut-point 500 keV

9 NaI Area under graph, cut-point 750 keV

10− 12 HRGS Area under graph, cut-point {250, 500, 750} keV

13 Neut. Mean multiplicity λ

14 Neut. Poisson fit r1 for ’ones’

15 Neut. Poisson fit r2 for ’ones’

16 Neut. Poisson fit r3 for ’ones’

17− 19 Neut. Poisson fit r1,2,3 for ’twos’

20− 22 Neut. Poisson fit r1,2,3 for ’threes’

23 Neut. χ2 error, ’ones’

24 Neut. χ2 error, ’twos’

25 Neut. χ2 error, ’threes’

An important aspect of data recovery is the ability to process exactly what is

necessary, and a set as complex as this cannot be dealt with naı̈vely. In a raw

form, 372 experimental events took place, each containing one or more of the

8.3 Pre-processing 215

Table 8.2: Characterisation of feature groups

Feature group Feature numbers Identifiable with

F1 1,2,3,7,8,9 f1, f2 for NaI

F2 4,5,6,10,11,12 f1, f2 for HRGS

F3 13,14,15,16,23 ν multiplicity and ‘ones’

F4 17,18,19,24 ν ‘twos’

F5 20,21,22,25 ν ‘threes’

Table 8.3: Data and feature groups

Datagroup Member points F1 F2 F3 F4 F5

D1 1
√ √ √

D2 14
√

D3 102
√ √ √

D4 142
√ √

D5 17
√ √ √ √ √

D6 9
√ √ √ √

D7 4
√ √

D8 7
√

D9 1
√ √

8.3 Pre-processing 216

three categories of readings taken: NaI spectroscopy, HRGS spectroscopy and

neutron readings. This was collected into a structural datatype, with different

fields denoting the different types of data, headers, etc. Firstly, on inspection of

the composition of the whole consignment, an index array was created to denote

which background should be used with each reading, by way of cancellation of

the radiation which would have been present in the ether at the time the experi-

ment was taken. Special care needed to be taken over this, as the spectroscopy

experiments had variable coefficients of calibration, and in order to make back-

ground cancellation meaningful, the same calibrations needed to be used when

performing this. Information about relative timeframes was also incorporated into

this array so that, if necessary, the data could be scaled up to that of the rele-

vant background, so direct spectrum-on-spectrum subtraction cancellation could

be performed. An index vector {1 . . . 372} was created, and the following steps

were then taken:

• Remove the indices corresponding to background spectra (39 of these).

These include the backgrounds with strange calibration coefficients, men-

tioned earlier.

• Remove the mixed-element readings, since these have no direct comparison

opportunities (6 of these).

• Remove those spectra with a hemi-shell interface shine: this was a problem

which occurred during the Set 1 readings (8 of these).

• Remove those with fissile element 7, the ‘active’ Barium source (22 of

these).

The breakdown of the distribution of data may then be described as follows:

8.3 Pre-processing 217

• By set: 98 in Set 1a, 18 in Set 1b1, 181 in Set 3.

• By timeframe: (37, 38, 38, 35, 39, 38, 37, 35) occurring with timescales of

(5, 10, 15, 20, 30, 60, 120, 240) minutes.

• By fissile element: (45, 69, 59, 39, 39, 46) occurring with element (1, 2, 3,

4, 5, 6).

• By shielding method: (49, 48, 54, 8, 8, 10, 48, 72) with shielding method

(0, 1, 2, 3, 4, 5, 6, 7).

Table 8.4: Breakdown of data by class and subclass

0 1 2 3 4 5 6 7 Total

1 9 8 8 8 12 45

2 8 8 8 8 8 8 21 69

3 9 8 8 10 8 16 59

4 8 8 8 8 7 39

5 7 8 8 8 8 39

6 8 8 14 8 8 46

Total 49 48 54 8 8 10 48 72

From these remaining sets of raw data, we can now engage in the task of the

extraction of these features, using a system following the recipes as stated above

during the feature description sections. Table 8.1 outlines the features that were

used to make up the ‘raw’ dataset. Where a feature was not present because the

experiment was not performed on that day, it is left missing, as a challenge for our

1Those in Set 1 with different calibration coefficients.

8.3 Pre-processing 218

classification machine. The other cause of missingness is when the indicators of

a good fit to a x → 1/x fit in the neutron data, which we use here as our features

23-25, were not sufficiently low: we have deleted the relevant features where

either the χ2-based fit for ‘ones’, ’twos’ or ‘threes’ exceeded 1 (sometimes these

fits were so bad that their χ2 error referenced O(106) or higher). The only other

piece of pre-processing at this stage is to apply the following mapping function to

feature number 13, the mean multiplicity of the neutron data:

x −→ <[log(x)] = log |x| (8.10)

This is to cater for the fact that mean multiplicities show a far more useful vari-

ance when taken as logarithmic values, while avoiding the production of nonsense

results should the background levels be so similar that the feature argument ends

up slightly below zero. In this case, it does not matter as it will be classified as if

it were a very small amount above zero instead.

Alignment As a result of our particular choice of features, a certain amount

of within-group alignment, via the PCA method (see §2.2.4) may be used at this

stage. It turns out, therefore, that our dataset X , of size (297× 25), has 9 distinct

presence patterns existent in its rows, and 5 in its columns. This means that the

data can be characterised into a 9 × 5 array of sub-groups. We consider first

the 5 separate patterns of features; Table 8.2 shows how groups of features can

be considered as being ‘similar’ in that they describe the same properties of a

dataset. Note that the neutron multiplicity is put in the same group as the ‘ones’,

since the latter flags were present for all data. Secondly, we consider the partition

of the data itself: Table 8.3 shows how the different groups of data are distributed

among these features. In order to pre-process the data, we performed a linear

8.4 Results tables 219

PCA on each feature group in turn, using only those datapoints which had those

features present as part of the analysis and kept the first two principal components

in each case. As PCA was used, and not a whitening procedure, the orthogonality

of the transformation was maintained and thus the variances differed according to

the actual variance in those directions; this was thought to be appropriate in order

to give more importance to those principal components with the highest variance.

Thus, our final dataset X̂ , once all pre-processing had taken place, was of size

(297× 10), as a result of taking these two components for each of the five groups

present.

8.4 Results tables

8.4.1 Categorised by Fissile Element

The following tables, labelled Table 8.5 to 8.10, show the sets of results we have

conducted through classification of the processed NDA data, initially by fissile el-

ement type. Taking the same form as Table 5.4, we compare our devised methods

directly with processes involving the pre-filling of data via three imputation meth-

ods, and in all cases compare performance in linear space with that of quadratic

kernel space. We have arrived at optimal centres via the ‘warm start’ methods as

described in §6.3 and §6.6 and compared the size of the radii achieved with the

solution arrived at through standard methods.

8.4 Results tables 220

Table 8.5: NDA results: Fissile element 1: Cf-252
Linear kernel Quadratic kernel

Hard, Imp 0 6.1135 31.2656

Hard, Imp µ 6.1135 31.2436

Hard, Imp NN 6.1135 31.2357

Hard, XC 6.1100 33.3050

Hard, DO 6.1095 31.2356

Hard, PSJO 6.1095 31.2251

Soft, Imp 0 3.7723 18.3113

Soft, Imp µ 3.7190 18.0375

Soft, Imp NN 4.2173 19.4690

Soft, XC 2.7454 16.9038

PSJO iterations 38 90

8.4 Results tables 221

Table 8.6: NDA results: Fissile element 2: Uranium
Linear kernel Quadratic kernel

Hard, Imp 0 5.4887 50.9168

Hard, Imp µ 5.3995 50.9168

Hard, Imp NN 5.4115 50.9168

Hard, XC 5.3995 52.4335

Hard, DO 5.3995 50.9168

Hard, PSJO 5.3995 50.9168

Soft, Imp 0 1.6412 9.1676

Soft, Imp µ 0.8887 7.5507

Soft, Imp NN 1.2879 10.3296

Soft, XC 0.8319 5.8288

PSJO iterations 82 36

8.4 Results tables 222

Table 8.7: NDA results: Fissile element 3: Plutonium
Linear kernel Quadratic kernel

Hard, Imp 0 4.0994 21.5392

Hard, Imp µ 4.0994 21.5566

Hard, Imp NN 4.0994 21.5601

Hard, XC 4.0994 23.6893

Hard, DO 4.0994 21.5392

Hard, PSJO 4.0994 21.5310

Soft, Imp 0 2.9210 12.5147

Soft, Imp µ 2.8996 12.5282

Soft, Imp NN 2.9017 12.5607

Soft, XC 1.0130 9.4269

PSJO iterations 22 29

8.4 Results tables 223

Table 8.8: NDA results: Fissile element 4: Ba-133
Linear kernel Quadratic kernel

Hard, Imp 0 2.9482 14.5697

Hard, Imp µ 2.6633 14.3735

Hard, Imp NN 2.6633 14.3735

Hard, XC 2.6633 15.3242

Hard, DO 2.5587 14.1981

Hard, PSJO 2.5923 14.1419

Soft, Imp 0 1.7145 7.7913

Soft, Imp µ 1.6621 8.0464

Soft, Imp NN 1.6980 8.3258

Soft, XC 0.5634 1.3318

PSJO iterations 211 111

8.4 Results tables 224

Table 8.9: NDA results: Fissile element 5: Co-60
Linear kernel Quadratic kernel

Hard, Imp 0 3.4087 11.2224

Hard, Imp µ 3.3495 11.4088

Hard, Imp NN 3.3534 11.4072

Hard, XC 3.3490 11.3428

Hard, DO 3.3490 11.1860

Hard, PSJO 3.3651 11.1886

Soft, Imp 0 1.6682 8.1721

Soft, Imp µ 1.6254 8.4695

Soft, Imp NN 1.6123 8.3533

Soft, XC 0.4718 3.0885

PSJO iterations 122 138

8.4 Results tables 225

Table 8.10: NDA results: Fissile element 6: Cs-137
Linear kernel Quadratic kernel

Hard, Imp 0 3.5531 16.8503

Hard, Imp µ 3.5221 16.8180

Hard, Imp NN 3.5350 16.9787

Hard, XC 3.5221 17.4725

Hard, DO 3.4936 16.3896

Hard, PSJO 3.4936 16.2072

Soft, Imp 0 1.5152 4.1718

Soft, Imp µ 1.3890 4.5136

Soft, Imp NN 1.8601 5.6570

Soft, XC 0.7218 1.5844

PSJO iterations 64 94

8.4 Results tables 226

Discussion These tables show that in the hard margin case, the exact-centre

method and the dual-optimisation method can be shown to have comparable and

sometimes superior results to using imputation alone, if we take as our measure of

goodness the tightness of the bound given for the cluster of data, and therefore the

smaller values of the radius R. Care should be taken, however, when interpreting

the soft margin results, as these often show an unrealistically high improvement

in the enclosing radius of the dataset when the exact-centre method is used over

any imputation method. There is a simple reason for this: the imputation methods

are forced to use all dimensions of the dataset and fill in as required, whereas

the exact-centre method, on knowing that half of the datapoints in the soft-margin

case may be discarded, simply ignores those with full data. This does not mean the

above results are useless, however; it is merely an indication that in this case, the

missingness of the NDA data is not exactly structural. It is true that where there

is missing data, the experiments themselves were not carried out, as opposed to

there being some underlying value which the experimental team failed to measure

properly; however, this is not the same as the case of pure structural missingness,

as it is reasonable here to say that had the missing experiment taken place, there

would be a commensurate reading to provide features in this case. In the case of

true structural missingness, the very fact that data was not there would itself be

a very significant part of the makeup of the dataset, and thus in this case, these

results would be more meaningful. Arguably, however, it is still important to note

that the above results do show that the exact-centre classification machine works

particularly well given the requirement of a soft margin, and the results still hold

true, in that the geometric distances from the full-data centre of the data which

was used by the classifier in these seemingly unrealistic cases, were all within a

8.4 Results tables 227

bound far smaller than that to be found through the imputation methods discussed.

8.4.2 Cross validation on Fissile Element

In this section, we briefly outline the results from our cross validation study to

show that under the benchmark of overall classification performance, our method

can also compare favourably with imputation. To this end, we use the results

gleaned from the particle swarm optimisation tests as they refer directly to an op-

timal completion of the dataset, without further analysis being required to recover

this as with the case of the exact-centre and dual-optimisation methods. As be-

fore, each class of data (i.e. points with a given nature of fissile element) was

taken as a separate entity and training and testing sets were taken stochastically

from the entire dataset, whereupon the optimal completion was used that resulted

from the same SVDD that provided the results for §8.4.1. In the case of Class 1, as

it is 10-dimensional compared to the 6-dimensional other classes, the final four di-

mensions were discarded, thus making the following results an underestimation of

the performance. As noted in §6.5, we consistently take 20% of the points out for

testing and repeat the process over 200 iterations. As the full dataset contains 297

points, this makes for a training set of 238 points (whose class constitution was

allowed to naturally differ from test to test depending on the points selected), and

a testing set of 59 points for each test. Thus, results show over 59× 200 = 11800

points the total numbers classified correctly and wrongly from each class. In each

of the following tables, the rows denote the predicted class values and the columns

the actual nature of the data. We include the reject class set at a probability density

of (0.01)d, where in the linear case d = 6 and in the quadratic case d = 28.

8.4 Results tables 228

Table 8.11: CV study: Zero imputation, Linear kernel

1 1343 424 886 1045 1334 637

2 161 1595 42 283 5 172

3 0 0 1422 0 0 0

4 52 568 5 102 8 107

5 130 32 13 0 183 836

6 21 121 13 152 11 78

Rej. 0 19 0 0 0 0

Table 8.12: CV study: Zero imputation, Quadratic kernel

1 1035 1181 0 271 0 97

2 74 361 79 61 38 68

3 43 0 1488 0 0 23

4 165 687 58 126 27 241

5 84 0 0 0 1242 528

6 384 521 707 1103 205 862

Rej. 0 41 0 0 0 0

Table 8.13: CV study: Mean imputation, Linear kernel

1 1443 487 846 896 1447 893

2 180 1715 31 322 3 190

3 0 1 1474 15 0 5

4 29 306 8 130 8 70

5 71 38 3 65 62 556

6 31 170 40 131 11 80

Rej. 0 43 0 0 0 0

8.4 Results tables 229

Table 8.14: CV study: Mean imputation, Quadratic kernel

1 1099 1412 11 290 27 169

2 91 301 94 48 74 74

3 38 3 1548 6 1 61

4 76 426 29 183 15 127

5 72 1 0 1 1288 605

6 384 557 656 1064 165 775

Rej. 0 29 0 0 0 0

Table 8.15: CV study: NN imputation, Linear kernel

1 1424 107 739 788 1184 593

2 195 1867 25 282 23 184

3 2 4 1442 6 2 7

4 52 574 19 181 10 175

5 132 33 33 118 290 752

6 33 111 28 192 24 91

Rej. 2 61 0 0 0 15

Table 8.16: CV study: NN imputation, Quadratic kernel

1 1159 1471 6 248 37 156

2 106 433 124 95 124 118

3 77 8 1683 4 12 185

4 125 586 61 315 30 215

5 138 22 0 1 1281 772

6 161 243 420 851 95 396

Rej. 0 36 0 0 0 6

8.4 Results tables 230

Table 8.17: CV study: PSJO method, Linear kernel

1 1579 371 861 760 1463 696

2 154 1977 32 332 0 180

3 0 0 1304 3 0 0

4 1 385 31 232 10 119

5 42 0 48 0 49 690

6 36 69 75 198 11 89

Rej. 0 3 0 0 0 0

Table 8.18: CV study: PSJO method, Quadratic kernel

1 1242 1562 101 318 295 130

2 78 387 107 56 49 273

3 89 13 1654 10 0 79

4 80 563 77 690 38 336

5 97 0 0 0 1088 655

6 186 164 382 440 103 414

Rej. 0 44 0 0 0 0

Table 8.19: CV study: Method comparison, total correctly predicted

Imp.0 Imp.µ Imp.NN PSJO

Lin. 4723 4904 5295 5230

Quad. 5114 5194 5267 5475

8.4 Results tables 231

8.4.3 Categorised by Shielding Method

In addition to the above study, a shielding method domain description machine

was also built, results of which are in Tables 8.20, 8.21, 8.22, 8.23, 8.24 and 8.25

in this section, with each table pertaining to the analysis of one fissile element.

In these tables, for each element in turn, we perform a domain description clas-

sification task with a hard margin, for each shielding method contained within.

This is repeated for the shielding methods numbered 0, 1, 2, 6 and 7 from above:

these correspond to Bare, Aluminium, Steel, Lead and CHON shieldings respec-

tively. Having the entire suite of hard-margin results present for all methods and

element/shielding combinations means that conclusions may be drawn on the pat-

terns which emerge. Although soft-margin results analogous to those performed

in the ‘usual’ tests above were collected, it was not thought necessary to include

them in analysis as their meaning would not be very pertinent, such is the small

sample size of each particular combination: sometimes there will be just 8 data-

points in each set, as described in Table 8.4 above.

8.4 Results tables 232

Table 8.20: Shielding study: Radii for Element 1

Shield Kernel Imp 0 Imp µ Imp NN XC DO

0 Lin 3.4686 2.7956 2.8045 2.7956 2.7955

1 Lin 2.9181 2.9181 2.9181 2.9181 2.9181

2 Lin 1.5248 1.2515 1.2515 1.2515 1.2516

6 Lin 2.9637 2.9090 2.9090 2.9090 2.9090

7 Lin 2.2000 1.9449 1.9777 1.9422 1.9402

0 Quad 17.0310 19.1062 19.2031 19.2217 16.9367

1 Quad 19.6761 19.6761 19.6761 21.2543 19.6761

2 Quad 9.6191 8.2597 8.2597 8.3557 8.2597

6 Quad 20.3526 20.1868 20.1868 20.2669 20.1868

7 Quad 6.7867 7.0448 7.4152 7.1021 6.7077

Table 8.21: Shielding study: Radii for Element 2

Shield Kernel Imp 0 Imp µ Imp NN XC DO

0 Lin 1.0987 1.0946 1.0946 1.0946 1.0946

1 Lin 5.1671 5.1671 5.1671 5.1671 5.1671

2 Lin 0.525 0.525 0.525 0.525 0.525

6 Lin 2.7501 2.7501 2.7501 2.7501 2.7501

7 Lin 1.7574 1.0958 1.0969 1.0958 1.0943

0 Quad 4.1239 4.1111 4.1111 4.2338 4.1111

1 Quad 47.8537 47.8537 47.8537 48.0793 47.8537

2 Quad 2.8614 2.8614 2.8614 2.8634 2.8614

6 Quad 17.4315 17.4315 17.4315 18.1869 17.4315

7 Quad 6.6775 4.9068 4.9846 4.9551 4.9182

8.4 Results tables 233

Table 8.22: Shielding study: Radii for Element 3

Shield Kernel Imp 0 Imp µ Imp NN XC DO

0 Lin 0.9312 0.4595 0.4595 0.4595 0.4595

1 Lin 2.1647 2.1647 2.1647 2.1647 2.1648

2 Lin 0.8323 0.4899 0.4899 0.4899 0.4899

6 Lin 1.3343 1.1979 1.1979 1.1979 1.1979

7 Lin 2.0321 2.0321 2.0321 2.0321 2.0321

0 Quad 2.277 1.4559 1.4559 1.4601 1.4559

1 Quad 8.7729 8.7729 8.7729 8.9248 8.7729

2 Quad 1.9331 1.3595 1.3595 1.3672 1.3595

6 Quad 2.7433 3.1537 3.1537 3.1821 2.7424

7 Quad 4.6487 4.6169 4.6169 4.9933 4.6169

Table 8.23: Shielding study: Radii for Element 4

Shield Kernel Imp 0 Imp µ Imp NN XC DO

0 Lin 0.7305 0.1469 0.1469 0.1469 0.1473

1 Lin 2.2083 2.1566 2.1566 2.1566 2.1566

2 Lin 1.2942 1.1351 1.1351 1.1351 1.1351

6 Lin 0.7483 0.3872 0.3872 0.3872 0.3872

7 Lin 0.5637 0.2893 0.2893 0.2893 0.2896

0 Quad 1.7300 0.4122 0.4122 0.4106 0.4170

1 Quad 10.4382 10.3936 10.3936 10.6071 10.3936

2 Quad 4.3591 4.0918 4.0918 4.1445 4.0918

6 Quad 3.4118 2.3247 2.3247 2.2563 2.3230

7 Quad 1.2161 0.7134 0.7134 0.7162 0.7134

8.4 Results tables 234

Table 8.24: Shielding study: Radii for Element 5

Shield Kernel Imp 0 Imp µ Imp NN XC DO

0 Lin 2.2311 2.1570 2.1570 2.1570 2.1570

1 Lin 2.0861 1.9423 1.9423 1.9423 1.9423

2 Lin 2.6584 2.5962 2.5962 2.5962 2.5962

6 Lin 3.2832 3.2358 3.2358 3.2358 3.2358

7 Lin 1.9986 1.8906 1.8906 1.8906 1.8906

0 Quad 11.0464 11.0092 11.0092 11.2344 11.0017

1 Quad 10.9149 10.6021 10.6021 10.7534 10.6018

2 Quad 11.0592 11.3380 11.3380 11.5530 11.0567

6 Quad 10.6106 10.8323 10.8323 11.0461 10.5980

7 Quad 10.4586 10.2295 10.2295 10.3287 10.2585

Table 8.25: Shielding study: Radii for Element 6

Shield Kernel Imp 0 Imp µ Imp NN XC DO

0 Lin 1.5768 1.3945 1.3945 1.3945 1.3945

1 Lin 2.2386 2.0929 2.0929 2.0929 2.0929

2 Lin 2.3555 2.3350 2.3350 2.3219 2.3203

6 Lin 1.6997 1.6338 1.6338 1.6338 1.6338

7 Lin 3.1375 3.1375 3.1375 3.1375 3.1375

0 Quad 2.8832 3.5453 3.5453 3.6203 2.8832

1 Quad 7.5913 7.5913 7.5913 7.8601 7.5913

2 Quad 6.8881 7.0075 7.0075 8.5692 6.8662

6 Quad 5.2915 5.6310 5.6310 5.5091 5.2904

7 Quad 15.2593 15.2404 15.2633 15.4751 15.2387

8.4 Results tables 235

Table 8.26: Shielding study: Minimal radii, linear kernel

Sh 0 Sh 1 Sh 2 Sh 6 Sh 7

Fis 1 2.7955 2.9181 1.2515 2.9090 1.9402

Fis 2 1.0946 5.1671 0.5250 2.7501 1.0943

Fis 3 0.4595 2.1647 0.4899 1.1979 2.0321

Fis 4 0.1469 2.1566 1.1351 0.3872 0.2893

Fis 5 2.1570 1.9423 2.5962 3.2358 1.8906

Fis 6 1.3945 2.0929 2.3203 1.6338 3.1375

Table 8.27: Shielding study: Minimal radii, quadratic kernel

Sh 0 Sh 1 Sh 2 Sh 6 Sh 7

Fis 1 16.9367 19.6761 8.2597 20.1868 6.7077

Fis 2 4.1111 47.8537 2.8614 17.4315 4.9068

Fis 3 1.4559 8.7729 1.3595 2.7424 4.6169

Fis 4 0.4106 10.3936 4.0918 2.2563 0.7134

Fis 5 11.0017 10.6018 11.0567 10.5980 10.2295

Fis 6 2.8832 7.5913 6.8662 5.2904 15.2387

8.4 Results tables 236

Discussion Plainly, with this set of results, it is more difficult to interpret the

conclusions which can be drawn. With the study relating to fissile element given

in §8.4.1, the main purpose was to see in which cases smaller radii could be

achieved when using the methods we developed in comparison to imputation pre-

processing, and thus results were simple to arrive at; it is in some cases very clear

where these methods can excel, and as long as the caveats given in the ‘Discus-

sion’ section are noted, it is clear that our results could be of some use to datasets

such as these. However, when performing the shielding method analysis, it is

noted that the efficacy of our methods has already been shown and we are thus

merely performing an empirical study into what can be said of the dataset as given.

To make sense of these results, we interpret them as follows: A shielding method

is essentially a barrier against which meaningful analysis may be made. In the

case that a shielding method is overpoweringly effective, it will be the case that

no meaningful information can penetrate, thus making classification of the mate-

rial’s properties almost impossible. We shall interpret smaller radii in the case of

each fissile/shielding combination to imply that the cluster of data was compact in

feature space, and thus that it was possible to process the necessary information

for classification, thus resulting in a lower volume of hypersphere, which itself

(when combined with a hybrid computational classification method) would lead

to more distinctive clusters and therefore better classifier performance. Accord-

ingly, the first observation we make, consulting Tables 8.26 and 8.27, is that as

expected, the ‘Bare’ results in most cases produce smaller class-specific radii than

others, meaning greater classification accuracy. This result is encouraging, as it

shows that shielding is generally causing the sub-classes to be more widespread,

and thus have a greater chance of overlap.

Chapter 9

Conclusions

This project has achieved the following aim:

We have created a domain-descriptive utility to calculate the mini-

mal enclosing sphere of any given dataset in the presence of missing

data, under no assumptions about any models governing its distribu-

tion. Throughout, we have avoided the uses of imputation, and shown

that our method can be effective in certain types of kernel space, with

soft and hard margins, and works best where the nature of missing

data is structural. Thus, we have extended existing work relating to

three fields of theory: the SVDD classification machine, the instance-

specific SVM method of Chechik et al, and that of dealing with miss-

ing data. We have also applied our methods to the provided NDA

dataset, and shown them to be effective in terms of classifying by

fissile material and in a shielding study.

In this section, we will review the methods we have introduced and the results

they were produced through a more general view. We shall interpret the results

237

9.1 Interpretation of results 238

gleaned from Chapters 5, 6 and 8, and consider the facts that are shown by these.

Furthermore, we shall discuss the various ways in which this project could be

improved, and the ways it would be possible to take it forward given a wider

remit.

9.1 Interpretation of results

9.1.1 Synthetic datasets

In the above technical chapters, we provided a brief discussion as to the areas in

which our results on synthetic datasets proved to be satisfying and those where our

methods fell short. We note again, before continuing any further that no method

is perfect, and that the fact that in some cases our methods failed to produce better

results than the use of imputation methods does not necessarily make them inef-

fective. Indeed, in many cases it was shown that a marked improvement can be

made on the margins involved with imputing data, and as long as this information

is interpreted in the correct manner, these results in particular show that our meth-

ods can be made effective in some cases. It is also important to note, as we did

in §5.5, that in the case of the preliminary tests in this chapter, the randomness

mechanism was entirely arbitrary: we made data absent by applying an MCAR

(missing completely at random) algorithm, and thus it is perhaps unreasonable

to expect a method honed to the analysis of structurally missing data to perform

significantly better when the inherent nature of the missingness in the dataset it

is presented with is not even structural. There is a conceptual difference here

between:

9.1 Interpretation of results 239

• data that is missing in such a way that we may write (not measured); and

• data that is missing because it is not applicable.

An obvious question that may be asked, where the methods do show a significant

overall improvement (for example, in parts of the full structural analysis given in

§5.6 and §6.7), is the following: just because our methods are apparently achieving

smaller descriptive radii for a dataset, does that necessarily mean they are overall

better classification methods? The answer is clearly no: consider, for example, a

Parzen window classifier with a kernel function of infinitesimal variance, so that

the classifier produces an incredible density of probability over the immediate

neighbourhood of each training datapoint, and virtually zero elsewhere. Thus, the

‘enclosing sphere’ radii of each datapoint would be virtually zero, and yet this is

clearly not a good method of classification. Arguably, however, this is not what we

set out to achieve in the first place at all. A full study of the various hybrid meth-

ods which could then be used to perform a cross-validated, sensitivity/specificity

analysis on all the data given here is arguably unnecessary. We have shown that

a stable classification process can be built which uses all the particle information

present and does not use any information that is not present, thus achieving the

aim of an analysis machine designed to work with structurally missing data as

given in §3.1.5. It is not intended to be a catch-all procedure for handling all types

of data, but we showed above the various situations in which our methods can

give good pointers as to what a reasonable description of a dataset could be with-

out the need for use of the pre-imputation procedure. Ultimately, our remit was a

divergent one, in that we sought to improve two fields at once: firstly, we extend

Chechik et al’s plane-based binary classification process in the presence of struc-

turally missing data to domain description, which is a method commonly used

9.1 Interpretation of results 240

for multi-class classification; secondly, we refine and improve the way their paper

dealt with kernel spaces to emerge with a method that deals with these concepts

more rigorously. Evidence that at least in some cases, we can show that a smaller

descriptive radius can be provided for a dataset in both linear and quadratic cases,

with both of the methods we have developed, shows these methods to be of worth

at least in terms of being able to ascertain whether the visualisation of a dataset

as having non-parametric structural missingness is a good one. We certainly do

not intend the interpretations of our results to be a single-minded refutation of

the tried and tested imputation methods that are sometimes incredibly effective

in the useful completion of datasets; indeed, this is why in Chapter 3 we were at

such pains to give a careful, thorough analysis of common parametric methods,

as some or all of these could equally be perfectly fine for use on a dataset where

some of the assumptions we listed in this chapter are valid. One of the main ad-

vantages of our methods, when they are shown to be effective, is that they make

no assumptions whatsoever about the underlying distribution of the data, and they

should therefore be seen as an aid to a proper analysis where the exact nature of a

dataset is perhaps not clear for whichever reason.

9.1.2 Provided datasets

In §8.4, we provided results from two disjoint experiments performed on the

dataset provided by the external company, which we subsequently processed to

extract some meaningful features. After showing in the previous chapter, and

with the abovementioned tables, that in some situations our methods can prove

effective, these results were included as applications of this method to a ‘real-life’

category of data to assess how well they could perform. In both tasks – that of

9.1 Interpretation of results 241

classifying the different fissile elements in §8.4.1 and the shielding method study

in §8.4.3 – we observe that the total amount of information given to the classifier

is actually relatively small. Three major points may be raised of this study:

• Firstly, by nature of how the dataset was ultimately organised, it could easily

be argued that the type of missingness dealt with in this set is not entirely

structural.

• Secondly, the process by which the features were originally extracted was

largely heuristic and fairly crude.

• Thirdly, in order to reduce the enormous problem of a black-box classifier

down to one which is manageable via standard methods, a lot of information

had to be discarded from the raw consignment of data before any serious

analysis could take place.

These points notwithstanding, numerically the results show that our methods in

many cases performed well on the NDA dataset, and it should certainly not be

assumed therefore that the methods should only work where the nature of the

missingness of data is exclusively structural. We have therefore proven that it

is possible to classify incomplete ‘real’ experimental data in a way which is not

tantamount to ‘guessing’ what the results of the experiments were that were not

carried out. This in itself is an advantage, as the simulation of real experimental

data may itself be a complex issue, and contrapositively the creation of features

extracted from presumed experimental data would require knowledge of correct

statistical distributions: where the feature extraction algorithms and the process

of producing the raw data is as complex as it is in this example, this step alone

is nontrivial. Thus, it could be seen that the major factor by which our method

9.2 Evaluation of project 242

can improve understanding of generic incomplete experimental data such as this,

is precisely that it avoids the need for simulation. It is still true that this dataset

could still be analysed, with perhaps impressive results, using any non-parametric

completion procedure, but these methods will always force a degree of subjectivity

or assumption, whereas potentially our methods achieve the same aim without

needing to take these sometimes arbitrary ‘guesses’. Naturally, this is all subject

to the same caveats as given in the previous section: namely, that the presence

of a smaller radius in comparison with imputation methods, etc. will not always

guarantee that mathematically the solution is superior, but in the cases where the

end-user is forced to decide between a parametric or non-parametric analysis,

these methods may well be seen to have worth.

9.2 Evaluation of project

9.2.1 Appraisal of methods

It is always important, in a conclusive appraisal, to see what any new method

developed for a particular purpose can achieve, along with its limitations. Al-

though in itself our method describes an entirely self-contained system for com-

putation of an optimal domain-descriptive margin around a dataset in the presence

of (structurally) missing data, it should be seen simultaneously as a first attempt

at a more general theory. At present, both methods have heavy reliance on the

complex machinery involved in the optimisation algorithms necessary for their

execution. This is a subject we only briefly touched upon when describing these

methods, as the practical application of commands such as fminunc was seen

as more important than the design of the algorithms themselves. It is important to

9.2 Evaluation of project 243

note, however, that the heavy-duty use of these algorithms makes the convergence

process very slow when compared to the simple application of a system such as

SVDD after an imputation method has been applied. Both the exact-centre and

the dual optimisation methods use two loops of an optimisation process to con-

verge on a best-fit solution: the inner process regarding the optimal completion

of a dataset given a parameter, and the outer process being the optimisation of

these parameters themselves. Thus, one major criticism of these methods would

simply relate to their inefficiency in terms of computational time. This is less of a

problem than may be initially thought, however: this thesis has merely served to

show such a thing is possible, rather than to say that this is an appropriate method

to use in all cases. It is hoped that further studies into this area may take this

into account, and build on the structures we have introduced here to produce a

system of greater elegance to handle similar data-driven problems in a rigorous,

non-parametric fashion. Moreover, our methods have essentially the same form,

and thus computational complexity, as the statistical sampling procedure known as

randomised maximum likelihood (RML) [59] – and should therefore be dismissed

as too inefficient only if other methods based on a similar looping procedure are

also to be thought of as being of little significance.

It should also be noted that these methods depend, from the outset, on kernels

based on the inner products of datapoints, and thus we have not covered the case of

the popular radial basis function (RBF) kernel. Various logistical problems would

arise from the use of this kernel due to its property of mapping every point to

an infinite-dimensional hypersphere of unit radius; as a result, these methods fail

when applied to this kernel. Clearly, some adaptation would be necessary to bring

RBF kernels into the remit of these methods. Furthermore, although we showed

9.2 Evaluation of project 244

in §5.5 that the effectiveness of our exact-centre method is somewhat inversely

proportional to the degree of polynomial kernel function, it should be noted again

that the square-root and logarithm-based kernels used in this section are not valid

in a Mercer sense, and thus should not be seen as valid for a serious analysis in

the full-data case: there is no implied mapping function which they could be said

to be equivalent to. On a side-note, however, the application of our kernel-based

methods to structurally missing data ties them in with relatively new concepts in

the artificial intelligence field, and will hopefully provide a springboard on which

further analysis can be made marrying these two fields.

The method we have referred to as the ‘dual optimisation’ method has some

obvious areas in which improvement could be of use. Most pertinently, and ar-

guably ironically, its very performance relies on a method of pre-imputation to

create a master dataset we have referred to as X∗, which itself both violates the

principles of structurally missing data and has the unfortunate side-effect of loos-

ening the inherent ties between the coefficient weighting vector α and the dataset

itself (as discussed in the relevant sections). Further studies may serve to plug this

inconsistency, effectively introduced as a temporary measure to provide a halfway

house between the exact-centre method on input space, and the intractability of a

full working in feature space. If this could be resolved, and the ties between X∗

and α reinstated, the optimality constraints on α could therefore also be brought

back such that a more analogous analysis relating to the computation of the full-

data case SVDD result could be derived. This would have far-reaching implica-

tions for this method in terms of its ability to deal with soft margins, which we

did not cover above in the dual-optimisation method’s analysis, due to the lack of

any efficient algorithms to deal with a ‘relaxed minimax’ problem: that is, min-

9.2 Evaluation of project 245

imising the kth largest value of a set of objectives. If the definition of α were to

be reattached like this, we could demand again something similar to:

∀i, αi ∈ [0, C],
N∑
i=1

αi ≡ 1, (9.1)

thus providing a far better framework with which to analyse soft margins using

this more versatile method.

Finally, we include some comments about how our methods can be affected by

large proportions of missingness in a dataset. For our applied dataset, generally

the proportion of absent features was between 20-30%, and we found that in this

case our methods could function properly and produce interesting results. How-

ever, care should be exercised when applying these methods to datasets with a very

high (50% +) proportion of missing values. In theory, there is no reason our meth-

ods would not be able to function under these conditions, but the results they may

produce may be of doubtful use, in a similar way to the results we obtained when

leaving half of the datapoints out of an enclosing sphere using the exact-centre

method: the resulting sphere sizes were abnormally small, and their interpretation

in terms of the structure of the datasets on which they were operating is unclear.

9.2.2 Further work

With the above criticisms in mind, we may identify further areas in which a study

could be taken forward relating to this project. Most significantly are the points

raised above: the heavy reliance on optimisation procedures could be made more

rigorous by using further mathematical methods on the theory of structurally miss-

ing data: it is a convincing argument that these methods could be made far more

efficient should an artificially-intelligent machine be able to come up with, say,

9.2 Evaluation of project 246

an analytic relation between kernel type and the best completion to use when

analysing two datapoints with missing data. This is an interesting area and a nat-

ural extension of this project, which would yield both efficiency and versatility

in terms of the mathematics behind why it is effective. Secondly, further insight

into the exact nature of whether data is structurally missing or not would perhaps

bear fruit: this area has not been extensively covered in literature, as this type

of data is arguably relatively rare in terms of the examples of datasets available

publicly. If this method should be a pointer towards whether a non-parametric

method should be assuming anything about the nature of absent data, would it

make sense for another process to pre-determine if the structural absence of data,

based on the present values and any known models, is even a statistically rea-

sonable assumption to make? Thirdly, the prevalence of the radial basis function

cannot be ignored, and thus any extension to this work would need to consider a

form where this type of kernel could be effectively studied, as instance-specific

geometric kernel distances in RBF feature space are still reasonable quantities to

query. Fourthly, as discussed above, the issues relating to the decoupling of the

significance of the vector α when relating to a dataset would be another obvious

direction in which to perform further work, and may indeed be the most fruitful

should it lead to a more elegant handling of the soft-margin problem, possibly

based on the same principles as those used for the joint optimisation technique we

included for the applied dataset. Finally, a deeper analysis of the relationship be-

tween the structure of a dataset and the conditional behaviour of these algorithms

would be of use, as at present we have not really touched on issues regarding the

shape of the landscape that results from the optimisation-based measures of dis-

tance. Further analysis of the structure of this would help analysis into the most

9.2 Evaluation of project 247

appropriate optimisation methods and assist in making this system more efficient.

Related to this is a full study of what would happen to the optimisation landscape

if a large amount of the data were missing; clearly, in this case, it is more im-

portant to demand that the dataset, despite being heavily incomplete, would still

in some sense exhibit structural missingness, as if this were not the case, the re-

sultant outputs of sphere radii would be almost meaningless. Therefore, future

work on this area would involve an in-depth analysis of how to construct a large,

heavily structurally incomplete dataset in a rigorous and meaningful manner, and

investigate how our methods would react to this scenario.

9.2.3 Concluding remarks

The field of classification is almost peerless when considered in terms of general-

ity of application, variety of analytical methods and variance of the complexity of

algorithms for imparting the required artificial intelligence: for every application,

inevitably some methods will work perfectly, others badly. Neither will it ever be

seen as unnecessary; the proliferation of AI methods in all areas of modern life

ensures classification will never cease to find diverse uses. As we showed at the

start, perhaps it is yet too soon to hope that the artificial intelligence of comput-

ers in pattern recognition will challenge the astounding intuitive capabilities of

the human mind in many significant areas – but to assume any class of problems

will forever be unsuitable for machine intelligence methods is both ignorant and

incorrect, as is the assertion that we can ever have completed our studies in clas-

sification. In this field, it would seem, the computational scientist’s work is never

done.

Appendix A

NDA data and supporting notes

The following information has been adapted from supporting material provided

by the AWE.

A.1 Introduction

The first set, consisting of experiments conducted between January – March 2006,

was delivered for analysis in the autumn of 2006; after further discussion, this

dataset was augmented by a second set, consisting of experiments carried out be-

tween November 2007 – January 2008. Delivery of this set and its corresponding

background measurements was completed in June 2008. There were two main

methods of measurement seen as useful for analysis: spectroscopy data and neu-

tron array data. Both are described below; a more in-depth discussion of radiation

analysis may be found in the book by Knoll [41].

Data exists describing emissions of various radioactive materials when al-

lowed to decay. For each of these, experiments were conducted with various

248

A.1 Introduction 249

shielding materials (aluminium, steel, lead, and an organic compound known as

CHON), and over different time scales ranging from 5 minutes to 4 hours. Bare

readings were also taken, as were background readings, and in most cases four

separate detectors were used for each experiment: a sodium iodide (NaI) scintilla-

tor spectrometer, a high-purity germanium (HPGe) semiconductor spectrometer,

a neutron array and a gamma camera.

Coding system In Tables A.1, A.2 and A.3 which follow, a coding system

is used to designate each experiment by fissile material, shielding method and

timescale of the experiment. Blocks of experiments are coded by set number to

designate the order in which they were received, and the dates are also recorded.

The individual sets are covered below; the following universal code is used for the

experimental properties. Time codings are arranged thus:

ti =

0 : T = 5 mins

1 : T = 10 mins

2 : T = 15 mins

3 : T = 20 mins

4 : T = 30 mins

5 : T = 60 mins

6 : T = 120 mins

7 : T = 240 mins

.

A.1 Introduction 250

Fissile element codings are arranged:

fi =

0 : background

1 : Californium-252

2 : Uranium

3 : Plutonium

4 : Barium-133

5 : Cobalt-60

6 : Caesium-137

7 : Large Barium source

8 : Mixed sources

.

Finally, for the shielding methods we have:

si =

0 : bare reading

1 : aluminium

2 : steel ball

3 : steel planar to γ detector

4 : steel planar to N detector

5 : lead ball

6 : lead ball with GI

7 : CHON

.

These shielding designations only apply to those experiments where fi 6= 0, i.e.

where there existed a fissile source to analyse; for the background readings, the si

were instead used to designate the instance (equivalent to date) of that particular

background reading. During the classification process, some of these designations

(e.g. shielding methods 3 and 4, or 5 and 6) ended up being relaxed in places: see

A.1 Introduction 251

below for a fuller description of this. In the tables below, there is an entry for each

date and timescale combination, since usually the fissile element and shielding

method were kept constant on a given date. Thus, in each cell, we have denoted

an ‘s’ if there was a Sodium iodide scintillator-based spectroscopy experiment at

that timescale on that day; similarly ‘g’ for Germanium; and ‘n’ will denote a

Neutron array experiment, which (as stated above) will generally consist of ten

equal arrays of timescale T/10.

Exceptions The following facts are stated here as inconsistencies with the com-

pleteness of the observed data in some way:

• 11-1-2006: This background reading was unnaturally large and was dis-

carded from the background-cancellation process.

• 6-2-2006: In the 20 minute test, the tenth and final reading from the neutron

array was not present.

• 27-2-2006 to 13-3-2006: The spectroscopy experiments performed between

these dates were calibrated differently. Background data from 27-2-06 was

used for these.

• 7-11-2007 to 8-11-2007: The HRGS experiments were calibrated with un-

usual attenuation coefficients; the overlap readings from 20-11-2007 were

used instead and these were discarded.

• 9-11-2007: In the 10 minute test, only the first seven neutron timeframes

were present.

A.2 Experimental geometry 252

• 28-11-2007: The 4-hour neutron test was run for 4 times as long, making a

16-hour test with 40 ‘frames’. The first 10 were kept.

A.2 Experimental geometry

(a) Detectors (b) Shield setup

Figure A.1: Experimental geometry

Figures A.1(a) and A.1(b) describe the experimental geometry used during

the collection of the data consignment. The nature of these is not too significant

in terms of a classification task, but is re-produced here to show that multiple

detectors would in general be used in parallel when analysing any particular fissile

element and shielding method combination.

A.2 Experimental geometry 253

date set fi si 0 1 2 3 4 5 6 7

11-1-2006 1 0 1 sg

13-1-2006 1 1 0 n

13-1-2006 1 3 0 n

16-1-2006 1 3 0 sgn sgn sgn sg sgn sgn sg sgn

17-1-2006 1 3 1 n n n n n n n n

18-1-2006 1 2 1 sgn sg sg sg sgn sgn sgn sgn

19-1-2006 1 1 1 sgn sgn sgn sgn sgn sgn sgn sgn

23-1-2006 1 1 0 sg sg sg sgn sgn sg sg sg

24-1-2006 1 3 1 sgn sgn sgn sg sgn sgn sgn sgn

25-1-2006 1 3 2 sgn sgn sgn sg sgn sgn sgn sgn

26-1-2006 1 1 2 sgn sgn sgn sg sgn sgn sgn sgn

27-1-2006 1 2 2 sg sg sg sg sg sg sg sg

1-2-2006 1 2 0 sg sg sg sgn sgn sgn sgn sgn

2-2-2006 1 2 3 sg sg sg sg sg sg sgn sg

6-2-2006 1 2 4 sgn sgn sgn sgn sgn sgn sg sg

7-2-2006 1 0 2 n n n n n n sgn

9-2-2006 1 3 5 sgn sgn sgn sgn sgn sgn sgn sgn

10-2-2006 1 0 3 sg

27-2-2006 1 0 4 s gn

28-2-2006 1 3 6 sg sg sg sg sg sg sg sgn

2-3-2006 1 3 5 n n

13-3-2006 1 3 7 sg sg sg sg sg sg sgn sgn

Table A.1: Full description of NDA data, page 1

A.2 Experimental geometry 254

date set fi si 0 1 2 3 4 5 6 7

7-11-2007 4 0 5 sg sg sg sg sg sg sg sg

8-11-2007 4 0 6 sg sg sg sg sg sg sg sgn

9-11-2007 3 7 5 sn sn s sn sn s sn

20-11-2007 4 0 7 sg sg sg sg sg sg sg sg

21-11-2007 3 7 5 sgn sgn sg sg sgn sgn sg sgn

22-11-2007 3 7 7 sg sg sg sg sgn sgn n

23-11-2007 3 4 7 sgn sg sg sgn sg sg sgn

26-11-2007 3 1 7 sg sg sg sg sgn sgn sg sgn

28-11-2007 4 0 8 n,n n n

29-11-2007 3 1 7 n n n n

30-11-2007 3 2 7 s s s s s s s sn

3-12-2007 3 2 7 n n n n n

5-12-2007 3 6 7 sgn sgn sgn sg sgn sgn sg sgn

7-12-2007 3 2 6 sgn sgn sgn sg sgn sgn sg sgn

10-12-2007 3 1 6 sgn sgn sgn sg sgn sgn sg sgn

12-12-2007 3 6 1 sgn sgn sgn sg sgn sgn sg sgn

13-12-2007 3 4 1 sgn sgn sgn sg sgn sgn sg sgn

4-1-2008 3 4 2 sgn sgn sgn sg sgn sgn sg sgn

7-1-2008 3 6 2 n n n n n n

8-1-2008 3 6 2 sg sg sg sg sg sg sg sg

9-1-2008 3 2 7 sgn sgn sgn sg sgn sgn sg sgn

10-1-2008 3 3 7 sgn sgn sgn sg sgn sgn sg sgn

Table A.2: Full description of NDA data, page 2

A.3 Data structure 255

date set fi si 0 1 2 3 4 5 6 7

11-1-2008 3 4 6 sg sg sg sg sg sg sg sgn

14-1-2008 3 6 6 sg sg sg sg sg sg sg sgn

15-1-2008 3 5 7 sg sg sg sg sg sg sg sgn

16-1-2008 3 5 1 sg sg sg sg sg sg sg sgn

17-1-2008 3 5 2 sg sg sg sg sg sg sg sgn

18-1-2008 3 5 6 sg sg sg sg sg sg sg sgn

21-1-2008 3 4 0 sg sg sg sg sg sg sg sgn

21-1-2008 3 5 0 sg sg sg sg sg sgn sg

22-1-2008 3 6 0 sg sg sg sg sg sg sg sgn

22-1-2008 3 8 0 sg sg sg sg sg sg

Table A.3: Full description of NDA data, page 3

A.3 Data structure

As described above, the experimental data we have analysed is due to three detec-

tors that were used in the collection of data from one type of source behind one

shielding method at a time, typically describing the experimental diet for one spe-

cific day. Generally, all timeframes were covered on any one day. For the neutron

data, the data came in the form of typically thirty matrices describing multiplicity

data, of which the ten describing the periodic trigger method of data collection

were kept, giving rise to a matrix N ∈ Rk×16×10, where k signifies the highest

multiplicity experienced in that test. Background readings were also taken for

neutron data, and had the singular purpose of providing background multiplicity

information of neutron emissions in the environment (see §8.2.3 for a discussion).

For the spectroscopy experiments, however, the data were a little more complex

A.4 Received consignments 256

and had three constituent parts:

• Spectral readings: These are the experimental data themselves, with req-

uisite calibration information. They have the form of a vector s ∈ Rm, with

the entries marked from 0 to (m−1); in the case of an NaI detector we have

m = 4096 and for HRGS m = 16384.

• Calibration information: As described above, the 3 coefficients giving the

energy information for the bins. The equation given in §7.2.5 translates the

bin numbers into energy readings.

• Background readings: These were taken at various points during the data

gathering process and allow, in the case that their coefficients are the same

as the spectral readings, simple background cancellation by subtraction.

The timeframe, as described above, will also be known, giving a simple way to

review the counts per second in any given experiment.

A.4 Received consignments

The following detail the various consignments of raw data which were received,

in the order in which they were sent.

Set 1 was received August 2006, and provides data for the experiments con-

ducted in the time period January – March 2006. These were supplemented with

gamma camera imaging data; it was later decided that this did not produce enough

useful information for this particular study.

A.4 Received consignments 257

Set 2 was received July 2007, and showed different types of spectroscopy data

which could also come up in a study with a wider remit: plastic scintillator data

was provided to show that in this case, very little information may be conveyed.

A PIDIE set of Plutonium readings was also produced for our comparison.

Set 3 was received March 2008 and was the major completion of the experimen-

tal part of this project. It described the experiments for November 2007 – January

2008, and served the purpose of ‘completing the set’ in terms of the fissile ele-

ment and shielding methods for neutron and spectroscopy data. This is shown in

Table A.4 below. After this large consignment of data was received, only certain

background readings were absent; it was, however, possible from here to provide

full analyses based on the entire consignment.

Set 4 described the missing backgrounds which were required for full complete-

ness; these were received June 2008.

Table A.4: Summary of received data

1 2 3 4 5 6 7 8

Cf252 HEU Plut Ba133 Co60 Cs137 BaLge Mixed

0 Bare 1 1 1 3 3 3 3

1 Alum 1 1 1 3 3 3

2 Steel 1 1 1 3 3 3

3 Lead 3 3 1 3 3 3 3

4 CHON 3 3 1 3 3 3 3

A.4 Received consignments 258

Further information We also include some technical information here about

the assigned dataset, gleaned from liaison sessions with the team responsible for

the data collection:

• Elements generally combine linearly with regards to spectroscopy data,

should there be more than one element present in a data collection set.

• The exact definition between the shielding methods given is not too signifi-

cant; merely the knowledge that they are different should suffice.

• The nature of the background readings is not significant.

• Backgrounds from different dates will generally be continuously transi-

tional.

• Calibration coefficients come from simple curve-fitting on known peaks.

Bibliography

[1] Paul D. Allison. Missing data. Sage university papers. Quantitative applica-

tions in the social sciences ; no. 07-136. Sage, Thousand Oaks, Calif., 2002.

[2] Paul A. Armknecht and Fenella Maitland-Smith. Price imputation and other

techniques for dealing with missing observations, seasonality and quality

change in price indices. IMF working paper ; WP/99/78. International Mon-

etary Fund, Statistics Department, Washington, D.C., 1999.

[3] A. Asunción and D.J. Newman. UCI machine learning repository, 2007.

[4] G. A. Babich and O. I. Camps. Weighted Parzen windows for pattern classi-

fication. IEEE Transactions on Pattern Analysis and Machine Intelligence,

18(5):567–570, 1996.

[5] John. Banasik and Jonathan N. Crook. Reject inference, augmentation, and

sample selection. Working paper series ; no. 05/04. Credit Research Centre,

University of Edinburgh,, 2005.

[6] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisher-

faces: recognition using class specific linear projection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997.

259

BIBLIOGRAPHY 260

[7] A. Berg. Shape matching and object recognition using low distortion corre-

spondences. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR). Citeseer, 2005.

[8] C. Bhattacharyya. A second order cone programming formulation for clas-

sifying missing data. In Advances in neural information processing systems

17: proceedings of the 2004 conference, page 153. The MIT Press, 2005.

[9] J. Bi and T. Zhang. Support vector classification with input data uncertainty.

Advances in Neural Information Processing Systems, 17:161–168, 2004.

[10] Sean Borman. The Expectation Maximization algorithm, a short tutorial,

July 2004. Updated 9th January 2009.

[11] Encyclopaedia Britannica. Ockham’s razor (philosophy), 2009. [Online;

accessed 7th December 2009].

[12] James Carpenter. Missing at Random (MAR), March 2005. Retrieved 19th

November 2009. Web page resource.

[13] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector

machines, 2001. Software available at http://www.csie.ntu.edu.

tw/˜cjlin/libsvm.

[14] Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, and Daphne Koller.

Max-margin classification of data with absent features. J. Mach. Learn. Res.,

9:1–21, 2008.

BIBLIOGRAPHY 261

[15] B. Chen, H. Liu, and Z. Bao. A kernel optimization method based on the

localized kernel Fisher criterion. Pattern Recognition, 41(3):1098–1109,

March 2008.

[16] John B. Copas and Guobing Lu. Missing at random, likelihood ignorability

and model completeness. The Annals of Statistics, 32(2):754–765, April

2004.

[17] Corinna Cortes and Vladimir Vapnik. Support vector networks. In Machine

Learning, volume 20, pages 273–297, 1995.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39(1):1–38, 1977.

[19] Uwe Dick, Peter Haider, and Tobias Scheffer. Learning from incomplete

data with infinite imputations. In ICML ’08: Proceedings of the 25th inter-

national conference on Machine learning, pages 232–239, New York, NY,

USA, 2008. ACM.

[20] Q. Du. A linear constrained distance-based discriminant analysis for hyper-

spectral image classification. Pattern Recognition, 34(2):361–373, February

2001.

[21] Trygve Eftestol, Kjetil Sunde, Ole, John H. Husoy, and Petter A. Steen. Pre-

dicting outcome of defibrillation by spectral characterization and nonpara-

metric classification of ventricular fibrillation in patients with out-of-hospital

cardiac arrest. Circulation, 102(13):1523–1529, September 2000.

BIBLIOGRAPHY 262

[22] Rong E. Fan, Pai H. Chen, and Chih J. Lin. Working set selection using

second order information for training support vector machines. J. Mach.

Learn. Res., 6:1889–1918, 2005.

[23] R.A. Fisher. The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7:179–188, 1936.

[24] Gabriel Frahm and Uwe Jaekel. A generalization of Tyler’s M-estimators

to the case of incomplete data. Computational Statistics & Data Analysis,

54(2):374–393, February 2010.

[25] Yoav Freund. Boosting a weak learning algorithm by majority. In COLT

’90: Proceedings of the third annual workshop on Computational learning

theory, pages 202–216, San Francisco, CA, USA, 1990. Morgan Kaufmann

Publishers Inc.

[26] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Com-

puter Science and Scientific Computing Series. Academic Press, 2nd edition,

September 1990.

[27] Zoubin Ghahramani and Michael I. Jordan. Supervised learning from in-

complete data via an EM approach. In Advances in Neural Information Pro-

cessing Systems 6, volume 6, pages 120–127, 1994.

[28] Daniel Gildea. The Wolfe dual, Spring 2008. University of Rochester.

Retrieved 19th November 2009 from http://www.cs.rochester.

edu/˜gildea/2008_Spring/wolfe.pdf.

BIBLIOGRAPHY 263

[29] T.B. Gosnell. Gamma-ray identification of nuclear weapon materials. Tech-

nical Report UCRL-ID-127346, Lawrence Livermore National Laboratory,

February 1997.

[30] Peter J. Green. Reversible jump markov chain monte carlo computation and

bayesian model determination. Biometrika, 82(4):711–732, December 1995.

[31] Isabelle Guyon. An introduction to variable and feature selection. Journal

of Machine Learning Research, 3:1157–1182, 2003.

[32] Jintae Han, Hoeil Chung, Sung-Hwan Han, and Moon-Young Yoon. Score-

moment combined linear discrimination analysis (SMC-LDA) as an im-

proved discrimination method. Analyst, 132(1):67–74, 2007.

[33] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire

regularization path for the support vector machine. J. Mach. Learn. Res.,

5:1391–1415, 2004.

[34] Melanie Hilario, Alexandros Kalousis, Christian Pellegrini, and Markus

Müller. Processing and classification of protein mass spectra. Mass Spec-

trometry Reviews, 25(3):409–449, 2006.

[35] A. Honkela, H. Valpola, A. Ilin, and J. Karhunen. Blind separation of non-

linear mixtures by variational Bayesian learning. Digital Signal Processing,

17(5):914–934, September 2007.

[36] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pattern

recognition: A review. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(1):4–37, January 2000.

BIBLIOGRAPHY 264

[37] R. Jenssen, J. Principe, D. Erdogmus, and T. Eltoft. The Cauchy-Schwarz

divergence and Parzen windowing: Connections to graph theory and Mercer

kernels. Journal of the Franklin Institute, 343(6):614–629, September 2006.

[38] W. Kang and J. Choi. Domain density description for multiclass pat-

tern classification with reduced computational load. Pattern Recognition,

41(6):1997–2009, June 2008.

[39] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of

IEEE International Conference on Neural Networks, volume 4, pages 1942–

1948, 1995.

[40] Kenji Kira and Larry A. Rendell. A practical approach to feature selec-

tion. In ML92: Proceedings of the ninth international workshop on Machine

learning, pages 249–256, San Francisco, CA, USA, 1992. Morgan Kauf-

mann Publishers Inc.

[41] Glenn F. Knoll. Radiation detection and measurement. Wiley, New York,

3rd edition, 2000.

[42] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent E. Ghaoui,

and Michael I. Jordan. Learning the kernel matrix with semidefinite pro-

gramming. J. Mach. Learn. Res., 5:27–72, 2004.

[43] Yann Lecun and Corinna Cortes. The mnist database of handwritten digits,

1998 – 2009. Available at http://yann.lecun.com/exdb/mnist/.

[44] Daewon Lee and Jaewook Lee. Domain described support vector classifier

for multi-classification problems. Pattern Recognition, 40(1):41–51, January

2007.

BIBLIOGRAPHY 265

[45] Z. Liang, D. Zhang, and P. Shi. Robust kernel discriminant analysis and

its application to feature extraction and recognition. Neurocomputing, 69(7-

9):928–933, March 2006.

[46] Mark Lillibridge, Martin Abadi, Krishna Bharat, and Andrei Z. Broder.

Method for selectively restricting access to computer systems, April 1998.

United States Patent 6195698.

[47] Roderick J. A. Little and Donald B. Rubin. Statistical analysis with missing

data. Wiley series in probability and statistics. Wiley, Hoboken, N.J., 2nd

edition, 2002.

[48] M. Lobo. Applications of second-order cone programming. Linear Algebra

and its Applications, 284(1-3):193–228, November 1998.

[49] Junshui Ma, J. L. Sancho-Gomez, and S. C. Ahalt. Nonlinear multiclass dis-

criminant analysis. IEEE Signal Processing Letters, 10(7):196–199, 2003.

[50] David J. C. MacKay. Information theory, inference and learning algorithms.

Cambridge Univ. Press, 2003.

[51] S. G. Mallat. A theory for multiresolution signal decomposition, the wavelet

representation. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 11(7):674–693, July 1989.

[52] Benjamin Marlin. Missing data problems in machine learning. PhD thesis,

University of Toronto, 2008.

BIBLIOGRAPHY 266

[53] Aleix M. Martinez and Avinash C. Kak. PCA versus LDA. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 23(2):228–233, Febru-

ary 2001.

[54] Tshilidzi Marwala. Computational intelligence for missing data imputation,

estimation and management : knowledge optimization techniques. Informa-

tion Science Reference,, Hershey, Pa., 2009.

[55] The Mathworks. Matlab optimization toolbox user’s guide.

[56] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller. Fisher dis-

criminant analysis with kernels. In Neural Networks for Signal Processing

IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Work-

shop, pages 41–48, 1999.

[57] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. Smola, and K. R. Müller.

Constructing descriptive and discriminative nonlinear features: Rayleigh co-

efficients in kernel feature spaces. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(5):623–628, 2003.

[58] K. R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An intro-

duction to kernel-based learning algorithms. IEEE Transactions on Neural

Networks, 12(2):181–201, 2001.

[59] Dean Oliver, Nanqun He, and Albert C. Reynolds. Conditioning permeabil-

ity fields to pressure data. In Proceedings of the 5th European conference on

the Mathematics of Oil Recovery, September 1996.

[60] Emanuel Parzen. On estimation of a probability density function and mode.

The Annals of Mathematical Statistics, 33:1065–1076, 1962.

BIBLIOGRAPHY 267

[61] M.E.H. Pedersen and AJ Chipperfield. Simplifying particle swarm optimiza-

tion. Applied Soft Computing, 10(2):618–628, 2010.

[62] Claudio A. Perez, Claudio M. Held, and Pablo R. Mollinger. Handwrit-

ten digit recognition based on prototypes created by euclidean distance. In-

formation, Intelligence, and Systems, International Conference on, 0:320,

1999.

[63] Donald B. Rubin. Multiple imputation for nonresponse in surveys. John

Wiley, Hoboken, N.J., Wiley Classics Library edition, 2004. Previous ed.:

New York : John Wiley, 1987.

[64] Donald D. Rubin. Inference and missing data. Biometrika, 3(63):581–592,

1976.

[65] Joseph L. Schafer. Analysis of incomplete multivariate data. Monographs

on statistics and applied probability ; 72. Chapman & Hall,, London :, 1997.

[66] Sandro Scheid. Selection models for nonignorable missing data. Anwen-

dungsorientierte Statistik ; Bd. 8. P. Lang,, Frankfurt am Main; New York,

2005.

[67] Bernhard Schölkopf, John C. Platt, John, Alex J. Smola, and Robert C.

Williamson. Estimating the support of a high-dimensional distribution. Neu-

ral Computation, 13(7):1443–1471, 2001.

[68] Bernhard Schölkopf, Alexander Smola, and Klaus R. Müller. Nonlinear

component analysis as a kernel eigenvalue problem. Neural Computation,

10(5):1299–1319, 1998.

BIBLIOGRAPHY 268

[69] Bernhard. Schölkopf and Alexander J. Smola. Learning with kernels: sup-

port vector machines, regularization, optimization, and beyond. Adaptive

computation and machine learning. MIT Press,, Cambridge, Mass. :, c2002.

[70] Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, and Alexander J.

Smola. Second order cone programming approaches for handling missing

and uncertain data. J. Mach. Learn. Res., 7:1283–1314, 2006.

[71] Karl Sjöstrand, Michael S. Hansen, Henrik B. Larsson, and Rasmus Larsen.

A path algorithm for the support vector domain description and its applica-

tion to medical imaging. Medical Image Analysis, 11(5):417–428, October

2007.

[72] Alex Smola and S. V. N. Vishwanathan. Kernel methods for missing vari-

ables. In In Proceedings of the Tenth International Workshop on Artificial

Intelligence and Statistics, pages 325–332, 2005.

[73] Alex J. Smola, Bernhard Schölkopf, and Klaus R. Müller. The connection

between regularization operators and support vector kernels. Neural Net-

works, 11(4):637–649, 1998.

[74] I. Steinwart, D. Hush, and C. Scovel. An explicit description of the repro-

ducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Transactions

on Information Theory, 52(10):4635–4643, 2006.

[75] C. J. Sullivan, M. E. Martinez, and S. E. Garner. Wavelet analysis of sodium

iodide spectra. IEEE Transactions on Nuclear Science, 53(5):2916–2922,

2006.

BIBLIOGRAPHY 269

[76] M.A. Tanner and W.H. Wong. The calculation of posterior distributions

by data augmentation. Journal of the American Statistical Association,

82(398):528–540, 1987.

[77] David M. J. Tax and Robert P. W. Duin. Support vector domain description.

Pattern Recogn. Lett., 20(11-13):1191–1199, 1999.

[78] David M. J. Tax and Piotr Juszczak. Kernel whitening for one-class classi-

fication. In SVM ’02: Proceedings of the First International Workshop on

Pattern Recognition with Support Vector Machines, pages 40–52, London,

UK, 2002. Springer-Verlag.

[79] De La Torre and O. Vinyals. Learning kernel expansions for image classifi-

cation. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE

Conference on, pages 1–7, 2007.

[80] V. Vapnik. Estimation of dependences based on empirical data. Nauka, 1979.

[81] Vladimir N. Vapnik. The nature of statistical learning theory. Statistics

for engineering and information science. Springer,, New York :, 2nd edition,

c2000.

[82] K. Wagstaff. Clustering with missing values: No imputation required.

In Classification, Clustering, and Data Mining Applications (Proceedings

of the Meeting of the International Federation of Classification Societies),

pages 649–658, 2004.

[83] Kilian Q. Weinberger, Fei Sha, and Lawrence K. Saul. Learning a kernel

matrix for nonlinear dimensionality reduction. In ICML ’04: Proceedings

BIBLIOGRAPHY 270

of the twenty-first international conference on Machine learning, New York,

NY, USA, 2004. ACM Press.

[84] James William Weir. A review of some missing data methods. Thesis

(M.Sc.) - University of Glasgow, 2006.

[85] Y. Xu, D. Zhang, F. Song, J. Yang, Z. Jing, and M. Li. A method for speeding

up feature extraction based on KPCA. Neurocomputing, October 2006.

[86] Jian Yang, David Zhang, Jing-Yu Yang, and Ben Niu. Globally maximizing,

locally minimizing: Unsupervised discriminant projection with applications

to face and palm biometrics. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(4):650–664, 2007.

[87] Tao Yang and Vojislav Kecman. Adaptive local hyperplane classification.

Neurocomputing, 71(13-15):3001 – 3004, 2008. Artificial Neural Networks

(ICANN 2006) / Engineering of Intelligent Systems (ICEIS 2006).

[88] Yu Zhang and Eric Sung. EDFCES: a new example-driven 3D face construc-

tion and editing system. MG&V, 17(3):313–346, 2008.

[89] X. Zhuang and D. Dai. Improved discriminate analysis for high-dimensional

data. Pattern Recognition, 40(5):1570–1578, May 2007.

