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Abstract

This thesis considers the calculation of phase from sets of phase contrast and defocused

images.

An improvement to phase contrast imaging is developed that combines three phase
contrast images. This method results in a reduction in the phase error by a factor of up
to 20 in comparison to using a single image. Additionally the method offers the
potential for optimisation and the extension to an arbitrary number of images.

Phase diversity using defocused images is considered in more depth where the intensity
transport equation is used to calculate the phase. First a Green's function approach to
solving this equation was considered. One of the Green's functions stated in the
literature is shown to be incorrect, the other two are shown to be correct both giving
equivalent phase estimates. A further improvement is made to this method by removing

the singularities in the phase calculation process.

As an alternative to the Green's function solution a Fourier transform approach is also
considered. A complete solution to the intensity transport equation is derived with
inclusion of the boundary conditions. This completes the method incompletely

described in the literature.

Through simulation, generic key factors are identified for the potential optimisation of

experimental and numerical process to improve the estimated phase.

Determining 3D structural information of an object from the phase calculated in a single
plane is considered using an iterative process. It is shown that this process is limited but

can be used, in some cases, to generate an approximate representation of the object.
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Chapter 1 — Introduction

1.1. Introduction
Light can be described as a wave, which can be characterised by amplitude and phase.
When the light undergoes transmission, reflection or diffraction there is a change in

both the amplitude and phase of the wave.

In general, when light is detected by, for example, the eye or a camera, the intensity is
measured. For most practical optical measurements the intensity is proportional to
energy and can be calculated from the square of the amplitude but does not contain
information about the phase.

There are situations where light interacts with an object and there is little or no change
to the amplitude of the wave. In these cases, the objects are invisible to conventional
instruments but the objects have changed the phase of the wave. Therefore, properties of

some objects that can only be known from the phase change.

For example, the difference in density of a transparent cell, in comparison to its
surroundings, causes a change in phase of the illuminating light. The change in the
phase relates to the shape, structure and refractive index of the cell, Popescu, et al. [1].

There are other areas where phase information is required. For example in
ophthalmology phase information is required to calculate the aberration in a patient’s
eye, Campbell [2], or in astronomy, when using adaptive optics to compensate for
viewing through the atmosphere, Roddier [3].

Since phase cannot be measured directly, an indirect method is required. Using an
indirect method either exploits some known property of the wave, for example
interference, or modifies the wave in a known way, for example measuring a defocused
image. From the measured intensity data, the phase can then be calculated. This requires

knowledge of the specific imaging process.



This thesis examines methods for determining phase from intensity measurements
through detailed theoretical analysis. It examines the limitations of standard methods
and identifies opportunities for improving the data analysis and the experiment process.

1.2. General Wavefront Sensing Methods
There are three general methods for determining phase information, interferometry

gradient measurements and phase diversity.

1.2.1. Interferometry
The first method is interferometry; there are two types of interferometers, common path
interferometers and non-common path interferometers. This section describes each of

these types of interferometer.

Interferometry is an old and well-understood technique. The principle of an
interferometer is to exploit a property of the waves to produce a pattern in the measured
intensity that can be used to calculate changes in the phase of the illuminating wave.
Interferometers use at least two coherent beams of light, which are added together
causing an interference pattern. Although more than two beams of light can be used, the
discussion below is restricted to the special case of using two beams of light, as this

method is not considered further in this thesis.

In general, interferometry combines the beams at an angle to produce fringes of equal
inclination. A common example of this type of interferometer is a Mach-Zender
interferometer, Hecht [4], as shown in Figure 1.1. This instrument uses a laser to
produce a coherent source that passes through a beam splitter to give to two waves each

with lower amplitudes.

Figure 1.1 shows the path of the beam of light, in red, emanating from the source and
being split by the first beam splitter. These two beams then take different paths before
being recombined. Differences in the waves caused by propagating along different paths
cause an interference pattern, which is measured on the detector. Placing an object in
the path of one of the beams causes a phase change. The phase change is caused by
changing the path length of the beam. This will modify the interference pattern from

which the phase can be calculated.
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Figure 1.1 Schematic of a Mach-Zender interferometer

In general interferometry has the advantage of high resolution but is experimentally
difficult as it requires a well defined reference beam against which the phase can be
calculated, Lago, et al. [5]. Interferometry is also sensitive to vibration induced errors
between the two optical paths. This increases the need for environmental control and

thus reduced the applicability of this method in, for example, microscopy.

1.2.2. Common Path Interferometry
A common path interferometer is a variation on the previously described interferometer,
where the beam of light is separated. In this imaging system shown in Figure 1.2, a

single beam of light passes through the imaging system.

If there is no object then the light is focused in a small area of plane C. This area is
defined as the reference wave. This light is passing directly through the instrument.
When an object is introduced, the wavefront is modified so the light no longer passes
directly through the instrument. Therefore, some of the light passes outside the area of
the reference wave. The light that passes outside the reference area is called the

scattered wave. This wave relates to the wavefront that is to be determined.

The modified wavefront can be due to the interaction of the light with an object, for
example a cell, which modifies the wavefront as shown in plane A. The complex
amplitude propagates from plane A, through the lens in plane B and is focused onto

plane C.
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Figure 1.2 Schematic of a general common path interferometer. The Black lines represent the path of the

light when there is no object.

To make the phase visible a phase change is applied to the reference wave in plane C
represented by the dashed line. The modified wave then passes through a second lens,
plane D, to the camera, plane E, the two parts of the wave interfere, producing an
interference pattern. The modification of the reference wave relative to the scattered
wave causes modulations in the intensity that relate to the phase difference between the
reference wave and the wave modified by the object.

A common example, of this type of instrument, is phase contrast imaging, Zernike [6],
(described in full in Chapter 2) where a constant phase change of +7/2 radians is
applied to the reference wave. The phase shift can be applied, for example, using a
uniformly thick piece of glass except where the reference wave passes through. In this
area, the glass is a different thickness causing a relative phase change, Born, et al. [7].
The application of the phase change causes modulation in the measured intensity that

relate directly to the phase object.

Figure 1.3 a) shows the set weak phase. Figure 1.3 b) shows the images with no phase
shift in this image there are no modulations relating to the object. Figure 1.3 ¢) shows
the phase contrast image with a phase shift of z/2 radians. In this image, there is a

direct relation between the modulations in the intensity and the object.

Other examples of this general principle include various types of point diffraction
interferometry Mercer, et al. [8], Neal, et al. [9] Fourier phase microscopy, Lue, et al.
[10] and fast Fourier phase microscopy, Popescu, et al. [11]. These methods all convert

the phase information into visible intensity modulations.
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Figure 1.3 Example of phase contrast images. a) show the set phase. b) an image generated with no phase

shift and c) an image generated with a phase shift of 7:/2 radians

The advantage of a common path interferometer is that both the scattered and the
reference waves propagate along the same path, therefore, the instrument is insensitive
to aberrations induced by, for example, mechanical vibration or air fluctuations Rodrigo,
et al. [12]. The disadvantage of this process is that to calculate the phase the reference
wave needs to be known. In general, neither the reference nor the scattered wave are
known and they are not separable, approximations for the reference wave are introduced
to the analysis causing errors in the estimated phase.

1.2.3. Gradient Measurements
The second general method to determine phase is to calculate the local gradient of the

wavefront. The derivative of the wavefront is calculated with respect to the x and vy

axis’s from which the phase is calculated. These derivative can be approximated using
the measurement from, for example, a Shack Hartmann wavefront sensor, Platt [13], or

a lateral shearing interferometer, Hariharan [14].

Shack Hartmann wavefront sensors are widely used to determine phase. The principle
of this sensor is illustrated in Figure 1.4. To calibrate the instrument, Figure 1.4 a), the
unmodified wavefront illuminates an array of lenses, marked in red, these lenses focus
sections of the illuminating beam on to the measurement plane giving a set of spots,

marked in red.
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Figure 1.4 Schematic of a Shack Hartmann wavefront sensor. a) shows the instrument illuminated by a
plane wave for calibration. b) shows an illuminated object which modifies the phase and the position of

focal points.

After calibration, the instrument can be illuminated by a modified wavefront, Figure 1.4
b). Each part of the beam of light that illuminates each individual lens is propagating in
a different direction due to the phase change caused by the object. This causes the spots
to move from the initial calibrated position. This displacement combined with the
distance between the measurement plane and the array of lenses can be used to give an

estimation of the first derivative of the phase with respect to the x and y direction.

This information can then be used to determine the phase, Zou, et al. [15].

Calculating phase from Shack Hartmann measurements has the advantage that the phase
can have a wide dynamic range and the calculated phase is not wrapped, Tyson [16]. A
disadvantage of this method is the complexity in aligning and calibrating the instrument,
Rousset [17].
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Figure 1.5 Schematic of the principle of phase diversity using defocused images.

1.2.4. Phase Diversity

The final general method to determine the phase is known as phase diversity, Gonsalves
[18] and Jefferies, et al. [19]. Originally used for application in astronomy this method
uses multiple images each of which has a different, but known, phase change applied to
the wavefront during the imaging process. The phase modification is applied in
conjunction with reimaging through additional optics or propagation. The images are
therefore linked by the application of the phase change, so from this data using a
suitable inversion process, the phase can be determined.

A common phase modification applied to the wavefront is a defocus phase change. This
is illustrated in Figure 1.5 for a wavefront in plane A, propagating to the right. The
defocused measurements can be made, for example, by physically moving the camera to
a different position, as shown in the figure, or using a beam splitter and two cameras to
capture the images simultaneously. When using two images one or both of them will be

out-of-focus.

The application of a defocus phase change is not a requirement as equations have also
been derived using spherical aberration, Allen, et al. [20], and astigmatism, Petersen, et

al. [21], to modify the intensity from which the phase can be calculated.

From the phase diverse data, the phase can be calculated using iterative processes,
Misell [22]. Equations can be derived that use the difference between the two images as
the input data, Campbell, et al. [23], from which the phase can be calculated. To link the
images an equation can also be derived that relates the derivative of the intensity, with
respect to the propagation direction, to the phase, Allen, et al. [20]. This derivative can

later be estimated using a finite difference approximation.
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Figure 1.6 An example of defocused measurements. a) shows the set phase. b) shows the measurement
from plane B of Figure 1.5. ¢) shows the measurement from plane C. d) shown the measurement in plane
D.

A special case of phase diversity is curvature sensing. First introduce by Roddier [3] in
1987 for applications in astronomy, Curvature sensing has since been using in other
areas, for example in ophthalmology for determining aberrations in patients eyes, Diaz-
Douton, et al. [24].

When the intensity is constant in the plane where the phase is to be calculated,
illustrated as plane C in Figure 1.5, and two defocused images are recorded, in planes B
and D, equal distances from plane C, the measured data relates to the curvature of the
phase, Roddier [3].

The analysis in the following chapters assumes that the intensity in plane C is constant
and is defined over a sharp edged disk, this is necessary to simplify the analysis. For
example, if the phase is defined as shown in Figure 1.6 a) then the measured intensity in
plane C of Figure 1.5, and shown in Figure 1.6 c), does not show modulations in the
intensity relating to the phase. This is similar to the phase contrast example, Figure 1.3

b), when there is no phase shift to the reference wave.

If the camera is moved to planes B and D in Figure 1.5 then images like the ones shown
in Figure 1.6 b) and d) can be measured. When using phase contrast images, there was a
direct relation between the measured intensity and the phase. Using defocused images
this benefit is lost and post processing of the data is required to obtain a view of the

phase.

When using a phase change that is equivalent to propagating a wavefront from one
reference plane to another, the phase can be related to the intensity, Roddier [3], by a

differential equation,
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= P(X)V(x,2) -5 (X—1,)A-Vg(X,2). (1.2)

Where the intensity I, is a constant over the aperture with unspecified shape, P(x) .An

outward pointing unit vector is denoted by A which is normal to the perimeter, C of the

aperture, ¢ denotes a Dirac delta function at position r, on the perimeter of the

aperture which has an area A.

This differential equation, the intensity transport equation (ITE), describes the curvature
sensing setup, Roddier [3]. By solving this equation, the phase can be calculated from

the intensity and known parameters of the imaging system.

There are numerous proposed solutions in the literature to solve this equation. These
solutions often involve approximations, for example expressing the phase using a finite
number of base functions Gureyev, et al. [25], Gureyev, et al. [26], ignoring the
boundary conditions Dorrer, et al. [27] or numerically solving the equation Allen, et al.
[28]. All of which introduce errors into the solution. There are two method described in

the literature that can solve this equation exactly. This is discussed in full in Chapter 3.

Phase diversity is generally not used as a common method for determining phase due to
the extensive post processing of the data that is require to obtain useful information Lee,
et al. [29]. However phase diversity has the advantage of being experimentally simple
Jefferies, et al. [19], using fewer optical components than interferometry or a Shack
Hartmann wavefront sensor, this reduces potential experimental errors, for example, due

to misalignment to components.

1.3. Aims and Objective of this Thesis

There are applications where knowledge of the phase can be used to determine
properties of transparent or semi-transparent objects. So far, this chapter has described
general methods for calculating the phase from the intensity measurements. Each of
these methods has fundamental advantages and disadvantages and the choice of the

individual method will depend on the