

Performance
Requirements

Verification During
Software Systems

Development
Using UML model Transformation Approach

Abdullatif M. AlAbdullatif

PhD Candidate
School of Mathematical and Computer Science

Computer Science Department

Supervisor

Prof. R. J. Pooley

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the
information contained in it must acknowledge this thesis as the source of the quotation or information.

I Abstract

Requirements verification refers to the assurance that the implemented system reflects

the specified requirements. Requirement verification is a process that continues through

the life cycle of the software system. When the software crisis hit in 1960, a great deal

of attention was placed on the verification of functional requirements, which were

considered to be of crucial importance. Over the last decade, researchers have addressed

the importance of integrating non-functional requirement in the verification process. An

important non-functional requirement for software is performance. Performance

requirement verification is known as Software Performance Evaluation. This thesis will

look at performance evaluation of software systems. The performance evaluation of

software systems is a hugely valuable task, especially in the early stages of a software

project development. Many methods for integrating performance analysis into the

software development process have been proposed. These methodologies work by

utilising the software architectural models known in the software engineering field by

transforming these into performance models, which can be analysed to gain the

expected performance characteristics of the projected system.

This thesis aims to bridge the knowledge gap between performance and software

engineering domains by introducing semi-automated transformation methodologies.

These are designed to be generic in order for them to be integrated into any software

engineering development process. The goal of these methodologies is to provide

performance related design guidance during the system development. This thesis

introduces two model transformation methodologies. These are the improved state

marking methodology and the UML-EQN methodology. It will also introduce the

UML-JMT tool which was built to realise the UML-EQN methodology. With the help

of automatic design models to performance model algorithms introduced in the UML-

EQN methodology, a software engineer with basic knowledge of performance

modelling paradigm can conduct a performance study on a software system design. This

was proved in a qualitative study where the methodology and the tool deploying this

methodology were tested by software engineers with varying levels of background,

experience and from different sectors of the software development industry. The study

results showed an acceptance for this methodology and the UML-JMT tool. As

performance verification is a part of any software engineering methodology, we have to

define frame works that would deploy performance requirements validation in the

context of software engineering. Agile development paradigm was the result of changes

in the overall environment of the IT and business worlds. These techniques are based on

iterative development, where requirements, designs and developed programmes evolve

continually. At present, the majority of literature discussing the role of requirements

engineering in agile development processes seems to indicate that non-functional

requirements verification is an unchartered territory. CPASA (Continuous Performance

Assessment of Software Architecture) was designed to work in software projects where

the performance can be affected by changes in the requirements and matches the main

practices of agile modelling and development. The UML-JMT tool was designed to

deploy the CPASA Performance evaluation tests.

II Dedication

In the Name of God Most Grateful Most Merciful

I dedicate this thesis to my family, especially…

My Wife Ebtehaj who is true to her name, the source of my happiness. I thank

her for all the support, patience and understanding.

My Parents who supported me materially and morally.

III Acknowledgements

Professor Robert J. Pooley has been the ideal thesis supervisor. His sage advice,

insightful commentary and patient motivation aided the writing of this thesis. I

would also like to thank Dr. Peter J.B. King whose steadfast support was

greatly needed and deeply appreciated.

This work has been carried out at the department of computer sciences at the

school of mathematical and computer science. I would like to thank all the

personnel of the department and school for their appreciated support.

Finally, I would like to thank King Saud University in Riyadh, Saudi Arabia,

for providing me with the scholarship which supported me financially during

my stay here in Edinburgh.

IV Table of Contents

CHAPTER 1: INTRODUCTION ... 1

1.1 SOFTWARE PERFORMANCE EVALUATION: WHAT? .. 1

1.2 SOFTWARE PERFORMANCE EVALUATION: WHY/WHY NOT? ... 3

1.3 SOFTWARE PERFORMANCE EVALUATION: FINDING THE SOLUTION ... 3

1.4 CONTRIBUTIONS AND MAJOR RESULTS ACHIEVED ... 4

1.5 THESIS OUTLINE ... 7

CHAPTER 2: INFORMATION SYSTEM ENGINEERING .. 10

2.1 SOFTWARE ENGINEERING PARADIGMS .. 10

2.1.1 Conventional Software Engineering... 12

2.1.2 Agile Development Methodology .. 16

2.1.3 Conventional Vs. Agile Development Methodologies .. 18

2.2 REQUIREMENTS ENGINEERING... 19

2.2.1 Gathering and Representing Requirements ... 20

2.2.2 Validating/ Verification of Requirements .. 22

2.3 UML SYSTEM AND DATA MODELLING .. 25

2.3.1 Use-case Diagram .. 26

2.3.2 Sequence Diagram ... 26

2.3.3 Deployment Diagram ... 28

2.3.4 Example: Video Search System .. 28

2.4 SOFTWARE ENGINEERING MODELLING AND CASE TOOLS ... 31

2.4.1 Drawing Tools .. 31

2.4.2 CASE and iCASE Tools ... 32

2.5 CASE TOOL MODEL REPRESENTATION ... 32

2.5.1 UML XMI Representation ... 33

2.5.2 Working with an XMI Document.. 37

2.6 SUMMARY ... 39

CHAPTER 3: SOFTWARE PERFORMANCE EVALUATION ... 41

3.1 SOFTWARE PERFORMANCE STUDY: MODELLING AND EVALUATION .. 41

3.1.1 System Abstraction and Performance Models ... 42

3.1.2 Performance Model Evaluation ... 44

T a b l e o f C o n t e n t | VII

3.1.3 Performance Analysis .. 45

3.2 PERFORMANCE EVALUATION: SIMULATION .. 45

3.2.1 Simulation Study Steps... 46

3.2.2 Simulation: For and Against ... 47

3.3 PERFORMANCE EVALUATION: ANALYTICAL MODELLING ... 47

3.3.1 Markov Chains ... 48

3.3.2 Stochastic Petri-Nets .. 52

3.3.3 Queuing Networks ... 54

3.4 OTHER PERFORMANCE EVALUATION TECHNIQUES... 62

3.4.1 Process Algebra.. 62

3.4.2 Workload Modelling .. 64

3.5 PERFORMANCE MODELLING FOR SYSTEM DESIGN ... 66

3.6 PERFORMANCE MODEL EVALUATION TOOLS .. 68

3.6.1 JMT Queuing Network Solution Tools .. 71

3.6.2 JMT Queuing Network Analysis Tools .. 72

3.7 SUMMARY ... 72

CHAPTER 4: INTEGRATING PERFORMANCE EVALUATION IN SOFTWARE ENGINEERING 74

4.1 SOFTWARE PERFORMANCE ENGINEERING .. 75

4.1.1 PASA ... 77

4.1.2 SPE Methodology ... 78

4.2 PERFORMANCE ENGINEERING IN AGILE DEVELOPMENT .. 80

4.2.1 CPASA ... 81

4.2.2 CPASA at Work ... 84

4.3 PERFORMANCE EVALUATION OF SYSTEM ARCHITECTURE .. 86

4.3.1 Evaluating the Methodologies ... 88

4.3.2 UML to Performance Model Methodologies ... 90

4.4 SUMMARY ... 92

CHAPTER 5: AN APPPLICATION OF THE STATE MARKING METHODOLOGY ... 94

5.1 THE STATE MARKING METHODOLOGY .. 95

5.1.1 System Representation .. 95

5.1.2 State Marking With GSPN .. 96

5.1.3 State Marking With Markov Chains ... 97

5.2 EXTENDING THE METHODOLOGY ... 98

5.2.1 Input Model Representation .. 100

5.2.2 Output Performance Model ... 101

5.2.3 Extracting the Performance Model .. 102

5.2.4 Example: Web Video Application ... 106

5.2.5 Evaluating the methodology .. 109

T a b l e o f C o n t e n t | VIII

5.3 REALISATION OF THE METHODOLOGY ... 110

5.3.1 MARCA Package .. 111

5.3.2 Performance Model Building Tool ... 111

5.4 SUMMARY ... 113

CHAPTER 6: UML–EQN METHODOLOGY ... 114

6.1 EXPLAINING THE METHODOLOGY ... 114

6.1.1 The Methodology Steps ... 116

6.1.2 Explanation Example ... 117

6.2 PERFORMANCE PARAMETERS CAPTURE ... 119

6.2.1 Performance Parameter Required ... 120

6.2.2 Performance Data Card ... 124

6.2.3 Example ... 125

6.3 CONSTRUCTING THE SOFTWARE MODEL ... 127

6.3.1 Communication Maps .. 127

6.3.2 Communication Map Construction .. 128

6.4 CONSTRUCTING THE MACHINE MODEL ... 130

6.5 FINALISING THE PERFORMANCE MODEL .. 132

6.5.1 Defining Job Classes ... 132

6.5.2 Connecting the Network .. 133

6.5.3 Example ... 134

6.6 EVALUATING THE METHODOLOGY .. 136

6.7 SUMMARY ... 137

CHAPTER 7: REALISATION OF THE METHOD: UML-JMT TOOL ... 139

7.1 USDX PARSER ... 139

7.1.1 USDX Class Diagram .. 140

7.1.2 USDX Model Extraction Methods ... 141

7.2 JMT SUITE .. 147

7.2.1 Queuing Network Solution Tools ... 148

7.2.2 Queuing Network Analysis Tools ... 148

7.2.3 Queuing Network Representation ... 149

7.3 UML-JMT TOOL DESIGN .. 150

7.3.1 UML-JMT: Components.. 151

7.3.2 UML-JMT: Class Diagram ... 151

7.3.3 UML-JMT: Activity Diagram ... 153

7.3.4 UML-JMT and JMT: the Integration ... 155

7.4 UML-JMT TOOL IMPLEMENTATION .. 156

7.4.1 Implementation of the Interface .. 156

7.4.2 Implementation of the Network Generation Engine .. 157

T a b l e o f C o n t e n t | IX

7.5 SUMMARY ... 161

CHAPTER 8: QUANTITATIVE EVALUATION .. 163

8.1 DEMONSTRATING UML-JMT ... 163

8.1.1 PDC for the IRS ... 164

8.1.2 Using UML-JMT to study the IRS performance .. 170

8.1.3 IRS Performance Results .. 177

8.1.4 UML-JMT as an Experimentation Tool ... 178

8.2 VALIDATING THE RESULTS’ DEGREE OF ACCURACY... 179

8.2.1 Case Study: Payment Switch .. 180

8.2.2 Payment System Architecture and Scenarios ... 181

8.2.3 Payment System Performance Study ... 188

8.2.4 Payment System Performance Results... 190

8.3 SUMMARY ... 193

CHAPTER 9: QUALITATIVE VALIDATION .. 195

9.1 THE STUDY .. 196

9.1.1 Objectives .. 196

9.1.2 Method .. 197

9.1.3 Experimental Design .. 199

9.2 GENERAL METHODOLOGY EFFECTIVENESS ANALYSIS .. 201

9.2.1 Pre-orientation Interview Analysis ... 202

9.2.2 Post-orientation Interview Analysis ... 206

9.3 USABILITY OF THE UML-JMT TOOL ... 211

9.3.1 Usability Metrics .. 211

9.3.2 Results .. 212

9.3.3 Analysis .. 214

9.4 CONCLUSION ... 216

9.4.1 Study Outcomes ... 216

9.4.2 Suggestions .. 218

9.5 SUMMARY ... 218

CHAPTER 10: CONCLUSION .. 221

10.1 CONTRIBUTIONS AND ACHIEVEMENTS ... 221

10.2 OPEN PROBLEMS AND FUTURE WORK .. 223

10.2.1 Model Transformation Methodologies .. 224

10.2.2 CPASA Framework ... 224

10.2.3 Improving the UML-JMT Tool .. 225

10.3 RELEVANT PUBLICATIONS ... 226

APPENDIX A: USDX PARSER DOCUMENTATION ... 227

T a b l e o f C o n t e n t | X

APPENDIX B: QUALITATIVE STUDY QUESTIONS .. 231

APPENDIX C: QUALITATIVE STUDY RESULTS ... 236

MODEL TRANSFORMATION METHODOLOGIES REVIEW ... 240

REFERENCES ... 248

V Acronyms

AD Activity Diagram

CASE Computer Aided Software Engineering

CD Class Diagram

CoD Collaboration Diagram

CPASA Continuous Performance Assessment Of Software Architecture

DD Deployment Diagram

DOM Document Object Model

DTD Document Type Definition

EG Execution Graph

EQN Extended Queuing Networks

GSPN Generalised Stochastic Petri Nets

JMT Java Modelling Tool

LQN Layered Queuing Networks

MOF Meta Object Facility

MVA Mean Value Analysis

NFRs Non-Functional Requirements

OMG Object Management Group

PASA Performance Assessment Of Software Architecture

PCD Performance Data Card

PEPA Performance Evaluation Process Algebra

PFQN Product Form Queuing Networks

QN Queuing Networks

QoS Quality Of Service

SA Software Architecture

SAX Simple API For XML

SC State-Chart Diagram

SD Sequence Diagram

SPA Stochastic Process Algebra

SPE Software Performance Engineering

SPN Stochastic Petri Nets

TDD Test Driven Development

UC Use-Case Diagram

UML Unified Modelling Language

USDX Use-Case, Sequence And Deployment Diagrams XMI Parser

XMI XML Metadata Interchange

XML Extensible Mark-Up Language

1

CHAPTER

Introduction

 1

Chapter 1: Introduction

Software systems are built according to users‟ defined specifications, known as system

requirements. These requirements describe how the systems are supposed to work. In

software engineering, there are two types of system requirements; functional and non-

functional. Functional requirements are the ones defining how the system will react in

different scenarios. Non-functional requirements represent the quantitative and

qualitative specifications of a system i.e. constraints on time and other resources[4].

Requirement engineering is an essential branch of system engineering and different

system engineering schools of thought have diverse views on it. One of the well-known

requirement engineering processes consists of elicitation, analysis, specification,

validation/verification and management[4]. Other taxonomies exist for requirement

engineering process and all of these processes share validation and verification as key

tasks. Requirement validation means checking that the given requirement can be

implemented (i.e. being realistic and conflict free), while requirements verification

refers to the assurance that the implemented system reflects the specified requirements.

Requirements verification is a process that continues through the life cycle of the

software system.

Since the discovery of the software crisis in 1960, much attention has been given to the

verification of functional requirements as it was identified as being particularly

significant [5]. Most of the methods that were used in verification, such as prototyping,

were focused only on functional requirements. Even the modelling languages that were

used to model these requirements focused only on modelling functional specification.

Over the past decade, researchers have addressed the substance of integrating non-

functional requirement in the development process. One of the principal non-functional

requirements for software is performance. Performance requirement verification is

known as Software Performance Evaluation.

1.1 Software Performance Evaluation: What?

Software performance evaluation is defined as the process of analysing and optimising a

system under study, in order to ensure this system satisfies the performance

Cheaper 1| Introduction

2

requirements specified in the performance non-functional requirements specifications

[6]. Performance evaluation involves the description of the system through the process

of modelling; using this model, the system under study can be analysed according to

observations gathered from the dynamic (time dependent) behaviour of the system, and

the data flow between the components composing the system. Using data gathered from

this analysis (i.e. throughput, resource utilisation and bottlenecks in the system), we can

optimise the design of the system to be effective from a performance point of view. In

the process of creating the models used in performance analysis, an abstract view of the

system under study is first selected. This view is chosen to cover performance critical

scenarios; these scenarios will be parameterised to define the points that affect the

performance of the system. This abstract view will be used to construct the performance

model of the system. The goal of these methodologies is to provide performance related

design guidance during the system development.

There are a variety of performance analysis techniques that can be classified according

to how they are described or solved. The leading solution techniques for performance

models are analytic, numerical and simulation. Simulation is the most general and

flexible means of performance modelling. It has many uses, but its results are usually

only approximations and the cost of increased accuracy is longer execution times of the

simulation performance model. Analytical techniques provide models which can be

solved symbolically for the average (steady state) behaviour of a system. Unfortunately,

only a very limited set of models have such solutions. Even fewer have exact solutions.

Numerical techniques involve deriving an underlying model, typically a continuous

time Markov chain, which can be solved for a given set of parameters by solving a set

of simultaneous equations. These are somewhere between analytical and simulation

models, being more general but slower than analytic techniques and less general but

faster than simulation [7]. We will discuss the performance evaluation methodologies in

more detail in Chapter 3 of this thesis.

These performance evaluation techniques are known as stochastic performance

evaluation methods. The term “stochastic” refers to a stochastic variable which is used

to emulate the effect of the external environment on the non-deterministic behaviour of

the modelled software system. These performance predicting techniques are also known

as non-deterministic performance evaluation techniques due to the behavioural nature of

Cheaper 1| Introduction

3

the system they evaluate. Throughout the rest of the thesis, we will use these two terms

to describe performance evaluation techniques.

1.2 Software Performance Evaluation: Why/Why not?

As the size and complexity of modern software systems increases, the need for methods

to assist in design decisions and the assurance of the design quality is becoming more

significant. Currently most of the software engineering processes require continuous

verification of the implementation and design of the system against the functional and

non-functional requirements. As we said earlier, research has only concentrated on the

methodologies and tools for the verification of functional requirements. As Smith et al.

explained[8], the earlier the performance verification process is undertaken, the more

certain we are of finding any design faults that may affect the quality of the final

software product. Despite its importance in the software design process, it is widely

acknowledged that the lack of performance requirement verification is mostly due to the

knowledge gap between software engineers/architects and performance engineering

experts. In addition, most of the well known performance evaluation processes require an

extra budget required to fulfil the performance evaluation task. This budget will be

invested in hiring professional system modellers or in programming simulation models

for the system. This overhead in financial and time resources can cause the exclusion of

this task from the software project plans.

1.3 Software Performance Evaluation: Finding the Solution

The lack of utilisation of non-deterministic performance evaluation techniques has

inspired researchers to find comprehensible, cost efficient techniques that will allow

system architects to complete the performance analysis task without any of the additional

costs listed in the previous section. One approach, which has been investigated widely, is

to use the system architectural and behavioural characteristics represented in software

modelling languages (e.g. UML) as the source to generate an equivalent performance

model for the system under study. These methodologies utilise the structural and

behavioural aspects of the system represented in different notations of a UML model, in

addition to expected workload characterisation of the projected system, to generate a

performance evaluation model that can be solved or simulated to assess the expected

QoS specifications of a suggested design. Literature reports a number of methodologies

for transforming UML diagrams to different types of performance models. Although

these methodologies can help in capturing the performance aspects of the designs that

they represent, the simplicity of these methodologies and the degree of automation of the

Cheaper 1| Introduction

4

performance evaluation test provided by them, will affect the ability to merge these

methodologies in the non-functional requirements verification task in any of the software

development processes. We will discuss these methodologies and their evaluation in

detail, in Chapter 4 of this thesis.

The main problem with similar methodologies is that they cannot be generalised to all

system types; this is due to the fact that different systems, with different architectures,

require specific performance evaluation techniques, and different performance measures

require different modelling paradigms. This leaves us in a stalemate in the process of

bridging the knowledge gap between software performance evaluation and software

engineering. The solution is a straightforward method that will assist the software

engineer in conducting software evaluation without any extended knowledge of

performance analysis terminology. This can be achieved by designing a model

transformation methodology that will assist the user of this methodology from the

beginning of performance parameter capturing through to the analysis of the

performance characteristics gained from solving the resulting performance model. This

methodology will be designed to produce a performance model general enough to be

capable of representing the architectural and behavioural aspects of a wide-rang of

software information systems.

The main objective of this thesis is to design this methodology and to use it to create a

tool capable of assisting software engineers in software performance evaluation tasks.

The objective behind designing such a methodology and the associated tool is to black

box the performance evaluation process so that the user of the methodology will only be

concerned with representing the projected system architecture and behaviour and

gathering the required performance characteristics and workload, and setting the

objective of the performance study. This methodology will be designed with a view to it

being deployable in major software engineering paradigms. As the methodology

deploys non-deterministic performance evaluation techniques, the methodology will be

designed to fit into the design validation phase of the software development cycle. We

will discuss the deployment of software performance validation in the software

development methodologies in Chapter 4 of this thesis.

1.4 Contributions and Major Results Achieved

The need for a methodology that will assist the user in choosing the performance study,

capture the required performance variable and simplify the build and analysis of the

Cheaper 1| Introduction

5

performance model, inspired the author of this thesis to come up with the UML-EQN

methodology discussed in Chapter 6. This methodology adopts the SPE (Software

Performance Engineering) framework[6] in dividing the architectural model of the

system under study into two meta-models; software and machine models. This will give

the designer the benefit of testing different alternatives of structural and behavioural

configurations. This performance study would help the designer in deciding an initial

design for the projected system. The UML-EQN methodology (published in [9]) takes

advantage of the use-case, sequence diagrams to build the software model and

deployment diagrams to structure the machine model. The resulting performance model

is an EQN (Extended Queuing Network) performance model.

The methodology introduces an assisted method for gathering the performance related

variable essential for the performance evaluation process. This method is called the

Performance Data Card (PCD) [9]. PCD is a data sheet used for supporting the capture

of the performance variables used in the build and analysis of the performance model.

With the help of automatic design models to performance model algorithms, introduced

in the UML-EQN methodology, a software engineer with basic understanding of

performance modelling paradigm can conduct a performance study on a software

system design.

The UML-EQN methodology was implemented as a tool which builds on one of the

queuing network solving and analysis tools named the JMT suite[10]. The tool which

realises the UML-EQN methodology is called the UML-JMT tool (published in [11]).

The UML-JMT tool works as a wizard that assists the user in identifying and collecting

the required architectural and performance specifications of the system under study,

then aggregates these inputs and builds an output performance model, formatted to be

solved using the analysis tools provided in the JMT suite. The JMT analysis tools

provide the user with abilities to conduct different types of performance studies that will

assess a projected system architectural design task.

As performance verification is a part of any software engineering methodology, we

have to define frame works that would deploy performance requirements validation in

the context of software engineering. Agile development paradigm was the result of

changes in the overall environment of the IT and business worlds. These techniques are

based on iterative development, where requirements, designs and developed

Cheaper 1| Introduction

6

programmes evolve continually. This paradigm depends on continuous automated

testing for the purpose of verifying the implementation of the current release against the

current set of requirements. At present, the majority of literature discussing the role of

requirements engineering in agile development processes seems to indicate that non-

functional requirements verification is an unchartered territory. CPASA was designed to

work in software projects where the performance can be affected by changes in the

requirements and matches the main practices of agile modelling and development. The

author of this thesis has suggested the CPASA -Continuous Performance Assessment of

Software Architecture-(published in[12]) framework for the assessment of a system

performance during the development of this system, using incremental and agile

development paradigms. The UML-JMT was designed to implement the performance

evaluation tests specified in this framework. Continuous assessment of software

performance requires a comprehensible tool that provides the user with performance

characteristics of a design. The UML-JMT is designed to be used as an automatic

testing tool for the verification of performance non-functional requirements. This

functionality is essential in incremental and agile software engineering processes. In

software developed using these development processes, continuous verification of the

requirements is a fundamental operation. This comes back to the fact that these software

development paradigms allow continuous change in requirements. These changes may

have effects on the overall performance of the system.

The UML-EQN methodology and tool were validated both quantitatively and

qualitatively. The quantitative validation was derived by comparing the results gained

from the UML-JMT tool to the results provided by another performance evaluation

paradigm. The qualitative validation aimed to study the attitude of software engineers

with different backgrounds, levels of experience and from different sectors of the

software development industry, toward the tool and the methodology. The main

objective of conducting this qualitative study is to investigate the efficiency of the

general methodology, and the usability of the UML-JMT tool. The efficiency of the

methodology will be investigated by identifying the challenges faced when deploying

the performance evaluation in real software system projects in the industry. These

challenges are represented in the knowledge gap between software performance and

system engineering, and the availability of tools which assist software engineers in

automating the build and analysis of the required performance models. The study also

investigates any other factors that may lead to disregarding the performance evaluation

Cheaper 1| Introduction

7

at the system design stage, such as the system size and the ability to interpret the

resulting performance data gained from the performance study. The study will

investigate the usability of the UML-JMT tool from the perspective of learnability,

effectiveness and user satisfaction. The work described in this thesis has appeared in

some publications which are explicitly detailed in 10.3.

1.5 Thesis Outline

This Thesis is composed of ten chapters. The first three chapters are classified as

background chapters, aiming to set the context of this thesis. In Chapter 2, we will

discuss relevant terminology related to the software engineering domain. This is

important as the main objective of the thesis is to provide a performance evaluation

methodology in the context of software engineering terminology. In that chapter, we

will define software systems engineering, discuss some of the software engineering

schools of thought and the different development paradigms available. Then we will

discuss requirement engineering and validation (as a task of software engineering) and

explain the importance of validation of performance non-functional requirements. As

this thesis discusses the UML model transformation approach; we will need to define

UML modelling as it is the standard modelling paradigm used for representing the

behavioural and architectural aspects of a software system. This chapter will also

provide background about CASE and modelling tools as well as background about XMI

model representation.

In Chapter 3, we will provide background information related to software performance

evaluation technologies. In that chapter, we will define the software performance

evaluation process and its importance. We will then explain the process of software

performance evaluation, describe the fundamental terminologies used in the process,

and detail the main techniques used to perform this process. In that chapter, we will also

discuss the use of these modelling terminologies in software systems performance

modelling, in the context of the “best” paradigm that can model these systems. We will

also clarify why EQN was chosen as the output model in the UML-EQN methodology,

and justify the reason for choosing the JMT suite for performance model analysis in the

UML-EQN tool.

Chapter 4 will discuss integrating performance evaluation in software engineering

paradigms. These are represented in the software performance engineering frameworks.

We will define the role of performance evaluation in software development and describe

Cheaper 1| Introduction

8

how to integrate performance evaluation into the software engineering process for the

two main software engineering paradigms (conventional development and agile

development). For the conventional (i.e. waterfall development paradigm), we will

describe the PASA framework [13], whereas for the agile development paradigm, we

will introduce the CPASA framework. In this chapter, we will also provide a literature

review of performance model building methodologies based on the model

transformation technique. We will evaluate these based on a set of criteria that we will

define and justify.

Chapter 5 explains a methodology that was the result of the author‟s first work in the

field of performance evaluation automation techniques. When developing this

methodology, the work involved automating the extraction of a generic performance

model. The methodology extended in this chapter is based on the state marking

methodology originally developed by King and Pooley[14]. The state marking

methodology concentrates on capturing the behavioural aspects of the modelled system

in a behaviour oriented performance model. The original state marking methodology

proposed a method for extracting GSPN performance models from a meta-model

composed of collaboration and state-chart models. The limited generality of the GSPN

and the non-standard input model used, motivated the author to extend the state marking

methodology. The extended methodology proposes a systematic approach for extracting

Markov chain models from performance annotated sequence UML models[1].

Chapters 6 and 7 represent the main contributions of this thesis. In Chapter 6, we

introduce a methodology dedicated to assisting software engineers in conducting

performance studies from the early stages of the systems life cycle. The UML-EQN

methodology includes steps which begin with gathering performance parameters needed

to build the performance model. The methodology provides systematic algorithms that

are designed to facilitate the process of converting the design model to an EQN

performance model. In Chapter 7, we will discuss the UML-JMT tool, the tool that

implements the UML-EQN methodology and act as a UML interface for the queuing

network solving tools in the Java Modelling Tools (JMT) suite. The UML-JMT Tools is

a graphical user interface tool that will help users in building a performance model for

their software system, in a wizard like approach. The user will supply the tool with the

performance data card entries in a question and answer format. The tool will then use

the UML-EQN conversion algorithms to construct a performance model based on the

Cheaper 1| Introduction

9

user entries. This model can be solved and analysed in a simulation based queuing

network solver provided by the JMT suite. This chapter represents a full technical

specification for the development of the UML-JMT tool.

As we discussed earlier, the methodology and the tool described in Chapters 6 and 7

were validated quantitatively and qualitatively. The validation Chapters 8 and 9 will

discuss the validation of the methodology and tool discussed in this thesis from both the

qualitative and the quantitative points of view. In the qualitative validation in Chapter 9,

we will investigate the attitude of a sample from software engineers toward the

methodology and the tool. In Chapter 8, we will investigate the methodology and the

tool from the context of the results provided by the UML-JMT tool. What we are

searching for is to investigate whether the performance indices provided by

performance models built by the UML-JMT tool are valid to a degree of accuracy. The

methodology we are deploying for the quantitative validation is by comparing the

results gained from a performance model produced by the UML-JMT tool and analysed

by the JMT suite, to the same performance indices provided by a similar tool. We will

also compare the results provided by the UML-JMT tool to the results gained by a real

benchmarking exercise. This chapter will also be used to demonstrate the use of the

UML-JMT in two case studies. In the last chapter, we will conclude the thesis by

summarising the contributions and the results gained during the study, and outlining the

open areas of research and the future work in this research domain.

10

CHAPTER

Information System Engineering

 2

Chapter 2: Information System Engineering

Software information systems can be defined as the software used for the

representation, processing, and distribution of information. Software information

systems are a class of software that have a number of homogenous users interacting

with the system through an interface. These systems are usually run on a single or

multiple servers[15]. These specifications distinguish information systems from other

classes of software such as real-time systems, scientific systems or expert systems. In

this thesis, we are only concerned with information systems; therefore, in the following

chapters “software system” will correspond to information systems software. Software

engineering can be defined as the systematic process of development and maintenance

of software systems. This chapter will cover software engineering concepts and

terminologies. In addition, it will provide the reader with technical knowledge regarding

software engineering and software modelling which will be needed in the following

chapters. At the beginning of Section 2.1, we will discuss some of the key software

engineering paradigms. In Section 2.2, we will discuss one of the important branches of

software engineering, requirement engineering. In this section, we will also discuss the

gathering and verification process of requirements, specifically performance

requirements. In Section 2.3, we will discuss the UML modelling notations[16]. UML is

a standard modelling notation used to represent data, process, scenarios and

architectural aspects of the system. This notation is becoming a common language in

most of the software engineering methodologies and tools. These notations are used as

the input for the performance model generation methodologies discussed in this thesis.

Section 2.4 will discuss the tools used in the deployment of software engineering

methodologies. Finally, Section 2.5 will cover the technical aspects of the standard

representation of UML models‟ notations in CASE tools.

2.1 Software Engineering Paradigms

The IEEE standard defines software engineering as “the application of a systematic,

disciplined, quantifiable approach to the development, operation and maintenance of

software; that is, the application of engineering to software” [17]. The software

engineering field was introduced after the introduction of the high-level oriented

Cheaper 2| Information Systems Engineering

11

programming languages problem. The so-called software crisis arose as the size of

software systems and resources expanded. The need for a methodology for managing

the production, development and maintenance of software systems, inspired the

suggestion of a number of different methodologies. Each of these methodologies

represents a system of techniques and principles which implement the rules defined by a

specific school of software engineering. There are a number of formal published

methodologies, and a larger number of informal company defined methodologies. The

formal methodologies are the ones defined with standard specifications. Defining the

“Best” methodology for developing software systems is a controversial issue. Some

opinions argue that a fixed methodology will limit the designer‟s ability to generate

professional, independent and creative designs. Other opinions attempt to define the

best methodology depending on the nature and domain of the developed project.

Currently there are two main trends in software engineering that might be distinguished

as old and new schools of software engineering. The old school (we will call it

conventional software engineering) follows a discrete process, with a pre-defined set of

deliverables after each phase. It requires a comprehensive understanding and

specification of the problem domain and the system's requirements before the system

implementation can begin. Most of the methodologies that are classified as conventional

are either generalisations or related to the waterfall system development process. The

main title of the new school of software engineering is "requirements are meant to

change". Agile software development methodology is a trend that propagates from the

industry of software development. The main goals of the agile development

methodologies are:

 Increasing the business value of developed software systems, and

 Providing a realistic method of development in a world where customers change

their requirements continually.

This is made possible by the development practices adopted by the agile development

disciplines, such as just-in-time requirements, short-frequent releases, test-driven

development … etc. In the following subsections, we will discuss each of these trends

by describing the techniques and practices for each of these development paradigms, in

general.

Cheaper 2| Information Systems Engineering

12

2.1.1 Conventional Software Engineering

The first software engineering paradigm was the waterfall model[18], which was

inspired by older engineering disciplines, such as civil and mechanical engineering. The

main motive behind the introduction of the waterfall model is to manage the complexity

of the design of software systems as it defines the design as a process that goes through

multiple phases. Each of these phases must be signed-off before progressing to the next

phase. When a problem arises in any phase, the process will be backtracked to the

previous phase(s) where it will be investigated and solved before repeating the sign-off

procedure(s). W. Royce introduced the waterfall model in 1970. Since then, several

improvements of the original model have been introduced (e.g. Spiral Model [19],

Chaos Model [20], V-Model [21]). Although these improvements touched the sign-off

and minimised the risk of backtracking, the phases were generally similar. The phases

of the conventional waterfall model are shown in Figure 2.1. This diagram distinguishes

the main phases of the waterfall model as follows:

 Problem analysis: In this phase, an explicit model of the environment where the

system is going to be deployed is created.

 Requirement specification: In this phase, after the analysis of the organisation

model, the requirements of the system needed for the organisation will be

collected. This part involves the introduction of the broad solution of the

problem in hand, and it is usually classified as one of the hardest and most

Problem Analysis

Requirement Specification

Design

Implementation

Testing

Maintenance

Figure 2.1: The Waterfall model phases

Cheaper 2| Information Systems Engineering

13

significant phases of the system development. The criticality of this phase

caused the introduction of processes and techniques dedicated for this phase. We

will discuss later in Section 2.2.

 Design: This phase involves designing the system that will realise the functional

requirements defined in the previous phase. Usually the decomposition approach

is used to define components that will compose the system.

 Implementation: In this phase, the different components defined in the design

phase are coded in the chosen programming language.

 Testing: In this phase, the functional and non-functional requirements are tested

in the system implemented in the previous phase.

 Maintenance: New requirements and functionality are usually added to the

software system as the users start using these systems. In this phase, the

developed system is added with new requirements. It is generally agreed that

most of the effort is spent in this phase.

This methodology provides a structured and disciplined engineering approach in the

development of software systems. In addition, it distinguishes the phases of software

development, which can help in the specification of problematic phases. This is

essential as the cost of solving software defects increases exponentially with time. The

waterfall model adopts what is called Big Design Up Front approach. This means that

there will be time emphasis in the beginning of the project on understanding the

problem domain and the customers‟ requirements, and on producing consistent design.

The documentation sign-off process between phases helps in the limitation of problems

caused by users who do not know their exact requirements or developers not

understanding the project domain.

On the down side, in practice it is rare to go straight from requirements, to design, to

implementation, without backtracking. The validation of the requirement against the

design starts just before the end of the implementation phase, and that will cause a

costly backtrack if there are any unsatisfied requirements[22]. This comes back to the

low visibility of the end-product in the phases prior to the implementation phase. This

problem was tackled by most of the improvement models built upon the waterfall

model. In Spiral software development, system visibility is improved via continuous

prototyping process. The prototypes produced in each of the developments are the result

of improvement of an initial prototype of the suggested design, and of the prototype of

Cheaper 2| Information Systems Engineering

14

the previous stage. The V-model provides a means of reducing backtrack risks by

merging the requirement validation and verification processes as early as possible. The

Unified Process (UP) defined one of the important improvements to the original

waterfall models. It improved visibility of project outputs by providing deliverables to

the customer at the end of pre-defined fixed time iterations.

The Unified Process (UP)

One of the modifications of the waterfall model that was aiming to avert backtracking is

the Unified Process (UP). The UP represents a process framework that provides an

infrastructure for developing software projects. The UP provides essential guidelines for

development such as software development framework, lifecycle model, collaboration,

and interaction. Therefore, The UP needs to be customised for specific organisations or

projects[23]. One of the widely used customisations is the Rationale Unified Process

(RUP) developed by IBM[24]. The development life of a project in UP consists of a

series of cycles. Each cycle concludes with a product release. This release increases the

visualisation of the project. These releases can be blue prints for the project,

documentations or developments of working functionalities. Each cycle consists of four

phases:

 Inception - where the plans of the work are committed.

 Elaboration - where the basic architecture of the work is decided, construction

plans are laid and risk assessment is done.

 Construction - phase in which a beta-release of the system is provided.

 Transition - where the customer is introduced to the system.

These phases are further divided into fixed time iterations. Each cycle is developed

through the core waterfall workflow model (requirements, analysis, design,

implementation and test).

The main features of the UP models can be summarised in the following points:

 Model based: The UP model uses UML for all of the systems‟ blue prints as

well as an assessment problem solving. It provided models for capturing the

requirement and visualising the solution of the problems (requirements). Figure

2.2 illustrates the model-based phases that the UP models have and the types of

models produced in each phase. We will discuss the UML modelling notations

further in Section 2.3.

Cheaper 2| Information Systems Engineering

15

 Use-case driven: A use-case specifies a series of activities and behaviours which

the system can perform, and that will provide functionalities and a result of

value to a particular actor[23]. Use-cases are used to define the functional

requirement. In the UP development; each iteration involves implementing by

defining the scenarios and alternatives of this specific use-case, then it will take

this use-case through requirements all the way to implementation, test and

deployment.

 Architecture centric: this means that an architectural view of the system is

essential through the development.

 Iterative and incremental: All of the phases of the UP are divided into a series of

iterations. Each of the iterations ends with an increment to the system; this is

presented as a release of the system that contains added or updated

functionalities.

The main disadvantage of the UP resides in the heavy weight of the process. This is

caused by the training, documentation and tools required to deploy the process. In

addition, visibility of the project is not always gained; this return to the modelling

artifices used in UP (UML) may not be understood by the customer. As in the waterfall

model, requirements change in later stages of development is still exceedingly difficult.

Use-Case Model

Behavior Model

Deployment

Model

Design Model

Analysis Model

Test Model

Specefication

Realised
Structured

Implemented
Verified

Figure 2.2: Model produced after each phase of the UP development

Cheaper 2| Information Systems Engineering

16

2.1.2 Agile Development Methodology

The agile development process evolved in the software development industry. It was

introduced after numerous challenges caused by the stakeholders‟ requirements, which

tend to change in the majority of software projects. The agile development process

concentrates on the business value of the software system by allowing customers to

concentrate only on the requirements that they will utilise. Also, in the computer world,

the value of the technology decreases rapidly with time; delivering the software on an

incremental basis will increase the value of a software system. Another advantage of

incremental releases of software systems is the increased visibility, which will allow

customers to point out any unanticipated features early. This will reduce the project‟s

risk. Examples of software development methods which deploy the agile development

methodology include DSDM[25] (Dynamic Systems Development Method), SCRUM

[26]and XP[27] (eXtreme Programming).

There are a set of principles which distinguish agile development from conventional

development methodology, which are as follows:

 Deliverables are full working functionalities.

 The Software project is delivered in incremental releases.

 Requirements are allowed to change until their functionalities are delivered.

 Development teams have to be complete and empowered to make decisions.

Agile development defined a set of techniques and practices that will allow the

deployment of the above principles, some of which are:

 Just in time requirements: Requirements of functionality are only specified at the

iteration in which this functionality‟s requirements are developed.

 Test Driven Development (TDD): Any functionality developed will be tested

using a predefined test provided by the customer. These tests represent the

system specification.

 Pair programming: This involves paring the programmers in the development on

the same development station, where one of them is coding; the other will be

considering the development strategy.

 Stakeholder involvement: A representative of the stockholders has to be at the

development site to assist in decision making.

 System consistency kept by refactoring the design.

Cheaper 2| Information Systems Engineering

17

Figure 2.3 [28] illustrates a model outlining the agile software development process. As

with any software development process, it consists of the requirements, design,

implementation and testing tasks. It differs from the conventional phase oriented

development process in the continuous deployments of these tasks on small-scale

projects, each of which represents a functional component(s) of the overall system. The

agile development process is a component oriented development process, in which the

functionalities of the system are decomposed to simpler, easy to develop components.

Each of these components is developed in a time scaled phase called iteration. At the

beginning of each iteration, the requirements for this particular component are

identified, and at the end of the iteration, a fully tested, approved segment of the

projected system is released.

Each agile project starts with an initial iteration. In this iteration, an initial requirements

and architecture envisioning process takes place [28]. At this stage, software engineers

only identify the basic functionalities needed in the system. These functionalities can be

modelled as abstract use-cases. Based on these requirements, an initial architectural

representation of the system can be suggested. This architectural definition of the

system clarifies the components composing the system. This will be used to construct

the project iterations plan. In most of the agile developments methodologies, the

iterations are arranged in a priority stack, sorted according to the value of functionality

provided by the iteration and the number of details available to the stakeholder. At the

end of the initial iteration, the software engineer is supposed to have a broad

understanding of the project domain, initial functionalities list (use-case diagram) and a

project iterations plan.

Initial Iteration

-Define the initial

requirements

-Design the

architecture

-Define the

iterations stack

Iteration N

- Identify the

requirements for

this release

-Develop this

release using TDD

The release will be tested with the stakeholders as a final acceptance test,

users will be trained, and the release will be deployed with the system

already developed.

Iteration N-1

Figure 2.3: Agile development process

Cheaper 2| Information Systems Engineering

18

In the implementation iterations, each iteration ends with some functionalities of the

projected system, tested and released to be used by the system‟s users. At the beginning

of each iteration, the detailed requirements of the functionalities developed in this

iteration are identified by the stakeholders. These requirements are usually presented as

user stories. The user stories are textual representations of the use-cases of the system.

The user stories do not cover all possible exceptions and pathways that are explained in

the use-cases. For that reason, agile development rules insist that the customer

(someone who understands the business case) is always available with the design team

in order to clarify the business purpose, to help with conducting tests and to make

small-scale decisions. The implementation of these functionalities is done by close-knit

design/coding teams working together to implement the functionalities defined by the

user stories[28].

The verification of the developed segment of software against the functional

requirement is carried out at the end of each iteration. This is done using tests that are

written before the implementation starts. These tests are usually provided by the

customer, and any code written will be validated through the tests. These tests are seen

as the system specification. The consistency of the design is gained through refactoring.

The designer in an agile methodology will always start with a simple user story design

and then build on the design of this story.

One of the main disadvantages of the agile methodology in the refactoring strategy is

that it only covers the system itself and not the published interfaces which are essential

in any system. It is not practical to refactor these APIs and some other codes, and

therefore, thinking for today and forgetting about tomorrow is not always adequate.

Some of the practices required by the agile methodology cannot be practiced either

because of human resistance (programmers refuse to work in pairs), or for physical

reasons (the client does not live in the same geographical area as the programmers).

2.1.3 Conventional Vs. Agile Development Methodologies

Conventional and agile development methodologies provide strong and structured

approaches for the development of software projects. Each of the methodologies has its

strengths and weaknesses. From a project manager‟s point of view, choosing between

these methodologies will depend primarily on the nature of the project and the

development team. Selecting a development methodology that developers are familiar

with, or are willing to consider is essential. Literature reports methods for classification

Cheaper 2| Information Systems Engineering

19

of the best development methodology depending on the projects‟ characteristics. Some

of these techniques come in the form of a decision tree [29], where the answers for a set

of questions about the nature of the project, will offer a proposal for the best

development methodology. Boehm and Turner[30] suggested a process for selecting the

best development methodology with respect to risk assessment. They set up five

variables characterising the project nature, these are:

 Dynamism: This variable represents the degree of change expected in the

requirement, along the development period. As this variable increases, the

project leans more toward agile development.

 Size of the development team: This variable represents the number of developers

involved in the project. Agile development works best with small-scale

development teams; therefore, this variable increases as the project moves

towards the conventional development.

 Criticality of the project: This variable measures the degree of criticality of the

project, based on a scale starting from “many lives” to “comfort”. As the

criticality of the project increases, the project manager is advised to adopt a

conventional development methodology.

 Personnel: The variable concerned with the experience of the development

team. As the development team is more experienced, agile methodology can be

used with reduced risk.

 Culture: The culture of the development team is a decisive factor when selecting

a methodology. This variable concentrates on the discussion making culture of

the development team. As management and discussions move toward central

management, the best development methodology is conventional.

2.2 Requirements Engineering

Software requirements can be defined as the functions, constraints and actual goals of

the software systems[4]. Requirements engineering is the branch of software

engineering which manages and controls the requirements, and requirement related

activities. As requirement engineering is a part of the software engineering process,

different software engineering schools have diverse views of the requirement

engineering methodology. However, the main and most important activities in any

requirement engineering methodology are requirement gathering, validation and

verification. Requirement gathering includes elicitation and analysis of the user

specified requirements. Requirement validation is concerned with checks made on the

Cheaper 2| Information Systems Engineering

20

requirements to verify if they can be implemented (i.e. being realistic or not conflicting

with each other). Requirements verification involves the assurance that the implemented

system reflects the specified requirements. Requirement verification is a process that

continues through the life cycle of the software system. Requirements are generally

classified into two categories depending on the nature of these requirements. These

categories are functional and non-functional requirements. Functional requirements

define the functions, behaviours, inputs and outputs of a software system. Non-

functional requirements determine the qualitative and quantitative aspects of the system

(i.e. performance, security, availability, usability etc).

In this section, we will discuss the gathering and verification processes for both types of

requirement. We will concentrate on non-functional requirements, as this thesis covers

performance requirement verification. Subsection 2.2.1 will cover requirements

gathering and representation. Section 2.2.2 will discuss the process of requirements

verification. We will discuss these two aspects from the point of view of the software

development methodologies discussed in the previous section.

2.2.1 Gathering and Representing Requirements

Requirements gathering process is concerned with clarifying the requirements of the

projected system from the system‟s users, and turning the view of these requirements

from vague to specific by representing these requirements in a form understandable by

the developers and customers. There are many techniques used to gather requirements

from the user which include:

 Interviewing/ questionnaires: The main stakeholders using the system are

interviewed/questioned (depending on the number of users) and asked about

their expectations of the system functionalities, and the expected qualitative and

quantitative specifications.

 Observation: Most software systems are developed to replace another system;

this system might be old software system or a manual system. One method used

in understanding the requirement of a system involves observing the process of

the existing system, and analysing the documents that describe the processes of

this system.

In conventional development methodology, detailed requirements are gathered in a

specification before the implementation starts. On the other hand, agile development

Cheaper 2| Information Systems Engineering

21

requires full specification for any functionality at the time of development of this

functionality. Therefore, requirement gathering and representation can be seen as a

phase in conventional development and as a continuous activity in agile development.

Representation of functional requirements is a widely researched area, and there are

abundant examples of standards used to represent the functional requirements. One of

the standards used to represent functional requirements is UML (Unified Modelling

Language) which we will discuss in more detail in the next section. As we said in the

definition of functional requirement, these requirements include functional

specifications, data structures and behaviours. Modelling languages provide diagrams

that are used to represent and abstract each of the aspects defined by the functional

requirements. These models are used to increase the visibility of the project for both the

customer and the developer. Another way of representing functional requirements is

through prototyping, where a sample of the system is provided for the user in order to

determine whether it reaches their expectations.

Non-functional requirements can be seen not as requirements, but rather constraints on

the functional requirements defined in the specification documents. However, for them

to be managed and tested in accordance with the requirement engineering

methodologies, they are considered to be requirements. When defining non-functional

requirements there is a main principle that should be satisfied, which is “it should be

testable”. A requirement that could not be tested should not be classified as a

requirement. IEEE-Std 830 – 1993 [31]listed 13 non-functional requirements to be

included in any software requirements document. Examples of these requirements are

performance, acceptance, security, reliability... etc. The non-functional requirement we

are concerned with in this thesis is the performance requirement. We need to know what

the performance requirements are for a software system, and how are they expressed in

the requirement specification sheet.

Performance requirements are one of the fundamental non-functional requirements that

need to be documented and tested from the early stages of the system development life

cycle. If a system does not satisfy stakeholders‟ performance expectations, it is deemed

to be “non-functional”. There are three principal classes of performance requirements

that need to be captured and documented for any software system[32], these are:

Cheaper 2| Information Systems Engineering

22

 Response Time: It will describe how fast the system handles individual requests.

The response time requirement should define the maximum satisfactory time

that the user should experience when performing a task. It is measured by

calculating the time from when the user is given the “Go” command, until

he/she has received enough feedback to proceed toward the next task. A

response time should be supplied for each class of job and user.

 Throughput: This requirement will describe the maximum number of requests

that the system should handle.

 Concurrency: Accounting for how many threads of work should be serviced

simultaneously.

Most of the original, well-known, standard modelling languages do not tend to have

specific models for presenting non-functional requirements (i.e. UML use-case

diagrams). Non-functional requirements were presented as notes in other modelling

notations. This will minimise the chance of automating requirement engineering

activities (i.e. verification) in CASE tools. In UML, the performance and time

information were later introduced to the standard in the UML Profile for Schedulability,

Performance and Time[1]. This profile is an extension of the UML standard to

accommodate UML quantitative performance annotations. These annotations allow the

association of performance related quality of service (QoS) characteristics with selected

elements of a UML model [1]. The profile explains these extensions to the UML

standard in the context of the standard itself. It defines stereotypes, tagged values and

constraints that represent the performance requirements and resource allocation of the

modelled system[33].

2.2.2 Validating/ Verification of Requirements

As we said earlier, validation is concerned with checks for errors, conflicts and

ambiguities in the requirements before these requirements are committed to design and

implementation. On the other hand, verification concentrates on checking that the

design/ implementation reflects these requirements. Because requirement validation is a

task associated with requirement gathering, the validation of requirements is seen with

respect to software development methodology. Requirement validation includes

checking the requirement specification documents for problems that may affect the

design and implementation of the system. These problems include:

Cheaper 2| Information Systems Engineering

23

 Clarity of requirements: These will be checks for ease of understanding, as the

requirements might be inadequately expressed, or parts of the requirement have

been omitted accidentally.

 Missing Requirements: In some cases, specific requirements are missed and not

declared in the requirement specification.

 Conflicting requirements: Some requirements might conflict with other

requirements.

 Unrealistic requirements: In some cases, a requirement cannot be implemented

with the available technology, or with the restrictions applied.

These problems are identified in the requirement review meetings; these meetings

involve stakeholders and software and requirements engineers. During these meetings,

the requirement specification documents are continually reviewed and checked for the

above problems. Once a problem is found, the meeting committee will decide a solution

for it. In agile development methodology, these meetings will take place during the

development iterations in the form of iteration initial meetings and urgent meetings with

onsite stakeholders for requirements clarification.

Requirements verification is a task associated with software testing. In conventional

development methodologies, requirements verification is done after the implementation

of the system‟s functionalities. For agile development, the verification process is carried

out throughout the software development life span. There are multiple techniques used

in the requirement verification process. Ways for verifying functional requirements

include prototyping, manual writing and model verification[22]. Model verification is

an essential process of requirement verification that will ensure that all the models

representing the system are consistent with the requirement specifications. Some CASE

tools provide automated model verification functionalities. Not all requirements can be

verified, and some requirements are classified as hard to test and verify. Examples of

such requirements are those which affect the system as a whole, such as performance

and other non-functional requirements. For these requirements, particular tests are

required in order to perform the verification process.

Cheaper 2| Information Systems Engineering

24

As was declared in the 2.2.1, currently there are limited representations and modelling

notations for non-functional requirements, therefore, the automation of the verification

process is still an open area. As we said earlier, the main goal of this thesis is to find a

methodology that will allow the verification of performance non-functional requirement

from the early stages of the system life cycle. This verification process tends to be

automated by taking advantage of the architectural and behavioural models developed

during the design of the software system. Figure 2.4 illustrates the process of

performance requirements verification. At the first stage, the performance requirements

mentioned in 2.2.1 are captured and analysed, and the required performance indices are

specified. There are two ways of acquiring the performance characteristics of the

suggested design of the system. These are analytical modelling and simulation; which

will be discussed in the next chapter. The resulting performance indices from the

performance study which represent the expected performance characterisation of the

modelled system will be then analysed and validated against the initial performance

requirements. The goal of this validation is to provide performance related design

guidance during the system development. The performance requirements verification

process will be further explained in Chapter 4 of this thesis.

Figure 2.4: Performance requirements verification process

Performance requirement

capture and analysis

Characteristic workload/

system parameters

Simulation

Monitoring of real system

Modelling

Workload/system behaviour

Analysis of measured

values

Analysis by mathematical

methods

Verification: Compare results with expected

QoS Values

Cheaper 2| Information Systems Engineering

25

2.3 UML System and Data Modelling

Since the introduction of the waterfall methodology, the alterations and enhancement

methods have concentrated on increasing the visibility of the projected software system

during each phase. As subsection 2.1.2 showed, one of the improvements provided by

the UP method was the models produced after each phase which represent the result of

that phase. There were several suggested modelling languages; some for modelling the

process and others for modelling data. Data oriented modelling arrived first with the

relational oriented models[34] and entity relation models[35]. The process modelling

was followed by the arrival of flowcharts and structure chart diagrams (DFD)[36] and

other models like Yourdon charts[37] and behaviour models[38]. Because data and

structure must work together in software systems, integrated modelling languages were

needed to provide a more accurate and comprehensive representation of the system.

These models tried to represent both the static and dynamic aspects of the system.

Examples of early versions of these languages are the JSD[15] and ACM/PCM[39].

The diversity of the modelling languages contradicted the main objective behind

introducing them in the first place. This objective was to introduce a common language

for all software engineers and the customers. This means that a consistent modelling

language needs to be standardised for use in the software engineering community. UML

(Unified Modelling Language)[40] was suggested by the OMG to provide a semi formal

language for specifying, visualising and documenting software artefacts. UML provides

graphical notations that will allow the user to describe multiple static and dynamic

views of the system. Each model provided by UML provides a description of the system

depending on the phase and functionality of this specific model (see Figure 2.2). UML

provides a variety of modelling views of the system that comes in the form of a

Diagram. These diagrams include:

 Use-case Diagrams: These provide specification of the functional requirements

as use-cases and users, participating systems as stakeholders and the association

between them, to illustrate the relation between these entities.

 Class Diagrams: These provide a static representation of the classes composing

the system and the association, multiplicity and inheritances relation between

them.

 Behaviour Diagrams: These provide the dynamic interaction aspects of the

system. There are two types of behaviour diagrams; state-chart and activity

diagrams.

Cheaper 2| Information Systems Engineering

26

 Interaction Diagrams: These are used to describe the dynamic interaction of

objects through the exchange of messages using service/function calls. There are

two kinds of interaction diagrams; sequence and collaboration diagrams.

 Deployment Diagrams: These are used to model the configuration of the run-

time processing elements of the software components.

In this section, we assume that the reader is familiar with UML; therefore we will only

consider the relevant UML diagrams deployed in the methodologies explained in this

thesis. These are use-case, sequence and deployment diagrams. We will describe these

diagrams with a simple example. For further information about UML, the reader can

refer to[40].

2.3.1 Use-case Diagram

Use-case diagrams describe the system‟s functional requirements relation with the

actors using the system. The actors are the external users of the system. They can be

human users or external systems communicating with the system being modelled. Use-

case diagrams are used as a functional requirement specification document. Each use-

case represents a function or a service provided by the system. Different scenarios might

represent each of these use-cases. The graphical representation of a use-case is an oval

with the name of the use-case inside it. The actors are represented graphically using a

stick figure with the name of the actor beneath it, as shown below:

The specification of who-is-using-what in the system is represented by an association

between the actor stick figure and the case. An actor can be associated with multiple

use-cases and a use-case can also be connected with many actors. Other associations

that define the relations between use-cases exist. These relations can be inclusion,

extension and generalisation. We are not concerned with these associations in this

thesis.

2.3.2 Sequence Diagram

Sequence diagrams are used to describe the internal behaviour of use-cases. This

behaviour is specified by the interaction of the components (usually objects) involved in

the implementation of this scenario. This interaction defines the scenarios representing

the functionality of this use-case. The interaction is displayed as a set of ordered

Use-case Name

Actor

Cheaper 2| Information Systems Engineering

27

messages and each of these messages is sent from one component to another. These

messages represent calls for services provided by these components. Components taking

part in the interactions are displayed horizontally, each in a box with the name of the

component. Each box has a lifeline represented by a dotted line and a parallel solid line

covering the time when the component is live in the interaction. Interaction messages

(service calls) are represented by arrows originating from the caller component to the

called component. Each of these messages has a name labelling the arrow which

represents the message.

There are two types of messages; synchronous and asynchronous messages. The type of

the message is denoted by the graphical representation of the arrowhead. Reply

messages for synchronous messages are represented by an arrow with a dotted body.

Messages originate from the position in the life of the calling component representing

the time of the calling (i.e. the order of the calling), to the position on the lifeline where

the function on the called component is invoked. A component may call a function on

its own available functions list. The component can therefore be the sender and the

receiver of a message, in what is called a recursive call.

Comp1 Comp2

Comp3

Call

Asy Call

return

recursive call

Message

{n>5}

Conditional calls can be represented in a sequence diagram by introducing a label on the

message(s) controlled by this condition. This label will have the controlling condition

written inside it. Iteration can be represented by including all the messages that are

included in the loop, in a label that has the number of iterations, or the loop control

condition. Concurrency can also be modelled in a sequence diagram by organising the

messages to be called, one after the other, originating from the same calling component.

Cheaper 2| Information Systems Engineering

28

2.3.3 Deployment Diagram

A deployment diagram in UML illustrates the configuration of the runtime platform on

which the software system runs. The system is shown as a set of nodes representing the

different physical locations on which software components are located. These nodes

have their own specification (processor speed, memory etc) and are interconnected by a

communication media which has its own specification (i.e. transportation rate). Nodes

are graphically represented in a deployment diagram by a box with the name of the node

written in the top left hand corner. External components interacting with the system are

represented as nodes with connections to the systems node (i.e. sensors, external

database servers). Inside each node is a collection of components which reside in this

physical node representation. Components residing in a node are drawn inside the box

representing this node as rectangle with ports (as shown in the figure below) with the

name of the component inside. The association connections between the nodes may be

labelled with the specification of the type of connection.

User Side Server

Component1

Component2

DB
*

*

Internet

7mbps

2 processors

3 MHrz

memory 4GB

4 processors

2 MHrz

memory 8GB

2.3.4 Example: Video Search System

The example is for a video searching system that will allow the users to share and add

video clips. This system will cache all clips previously stored, or of interest to the user

(according to his/her profile) when the network usage is idle. Figure 2.5 shows the use-

case diagram of the system.

z z

Cheaper 2| Information Systems Engineering

29

As the above abstract description of the system explains, the system is used to add,

search and view videos clips. The use-case diagram is surrounded by a system boundary

with the name of the system on top. There is only a single actor named user. The two

use-cases in this system are: add video and search video. There are two search

operations; internal (in the local cache) and external (in a central database). Note that

we have only one search use-case. This comes back to the requirement that the search

operation is not transparent to the user. If the requirement insisted that the user chooses

where to search, then we would have two use-cases defining the search operation.

Figures 2.6 and 2.7 show the sequence diagrams defining the scenarios of the add video

and search use-cases respectively. The system is constructed from three main

components which are: interface, internal DB and the VDB (video database). In the

add-video use-case, there is only one scenario accounted in this abstraction of the

system, which is adding a video successfully.

Interface

Top Package::User

VDB

Add Video

Add video

Figure 2.6: Sequence diagram of the “Add video” use-case scenario

Video Search System

User

Add Video

Search Video

*

*

*

*

 Figure 2.5: Use-case diagram for the video search system

Cheaper 2| Information Systems Engineering

30

This is done (as shown in 2.6) by the user requesting to add a video clip by calling the

add-video function in the interface component. The interface component will process

the video and send it to the VDB in an “add video” request. Figure 2.7 describes the

scenarios for the search use-case. The two scenarios are for when the requested video is

available in the system internal cache; then it will be played directly to the user. The

second scenario describes when the requested video is not found locally; then the VDB

will be searched, and references will be passed to the user. Figure 2.8 shows the

deployment diagram of the video system. In this diagram, we have two nodes on which

the components of the system will reside. At the user side, there will be the interface

and the internal database, and at the video server side there will be the VDB. The two

nodes will be connected through the internet.

Interface

Top Package::User

VDB

Search Vedio

internalDB

Search Vedio

Return Refrences

Return Refrences

Interface

Top Package::User

Search Vedio

internalDB

Search Vedio

Return Refrences
Return Refrences

Search Vedio

Return Refrences

Figure 2.7: Sequence diagram of the Search video use-case scenarios; internal search and

external search.

Video

Video

Video

Video

References
References

References

Video

Cheaper 2| Information Systems Engineering

31

2.4 Software Engineering Modelling and CASE Tools

There are many types of tools that support software systems engineering which are

available commercially or as open source. These tools provide diagrammatic modelling

representations for data, flow-control, process, objects and structure of the software

systems. The functionalities provided by these tools include model and consistency

checkers, code generation, system simulators and even documentation generators[41].

These tools range from straightforward drawing tools that will allow the designer to

represent the system in a specific modelling paradigm (i.e. UML) by providing basic

representation functionality, to full computer aided software engineering (CASE) tools

which provide more automated functionalities. This section will discuss these tools, and

the functionalities that they provide to the software engineer. As a part of the

methodology we are discussing in this thesis depends on drawing or CASE tools to

represent the design model for the software system under study, we need to understand

these tools and how they represent software systems.

2.4.1 Drawing Tools

The main goal of a drawing tool is to support the creation and management of graphical

models of a software system [42]. A drawing tool usually supports only one or a few

static or dynamic modelling paradigms. A drawing tool consists essentially of two main

components. The graphical support system is responsible for creating the drawings of

the model. Usually this model is represented as a graph of nodes and links. The second

component is the information repository. This component is used to store and retrieve

the model. It will also organise the information of the model to provide some

functionalities like version management, consistency checking and documentation

generation[42]. Newer versions of drawing tools may include import and export agents

that allow the transformation of the model from one modelling or CASE tool, to

User Side

Video Server

Interface

internal DB

VDB

*
*

Internet

Figure 2.8: Deployment diagram for the video search system.

Cheaper 2| Information Systems Engineering

32

another. Drawing tools provide easy to use model generation tools, but they do not

provide an aid to the software engineer in deploying a software engineering

methodology. Also, they do not provide functionalities that will provide support in the

management of the project or its phases.

2.4.2 CASE and iCASE Tools

CASE tools combine the graphical support of the drawing tools with more efficient

functionalities like code generation, formal model verification, prototype generation and

model animation, plus all the features usually provided by the drawing tools [41]. An

example of a simple CASE tool is ArgoUML[43]. This tool is a widely used open

source UML modelling tool that covers all the UML 1.4 standard diagrams. The

ArgoUML provide a variety of functionalities that include forward engineering (code

generation for java, C# and PHP), reverse engineering (for java Class/jar files),

documentation generation, model checking using simulation and UML model Exporting

and Importing using XMI.

Although CASE tools provide a wider range of functionalities and services than

drawing tools, the problem of project management and phase distinguishing is that these

could cause confusion in the state of the project and in the deployment of the

development methodology. This inspired the development of the integrated CASE

(iCASE) tools. iCASE provide a multiple CASE tools environment. These CASE tools

cover every phase of the development methodology. The transformation between these

case tools is hidden from the user side as all the integrated CASE tools have a common

graphical interface and a common repository. The iCASE tools provide support for

multiple modelling paradigms, with links between these models in the context of the

project. For example, a project is modelled in UML and ER (entity relation) has models

for the system and the database. An iCASE tool could provide the functionalities to

model, verify and generate code for the goal system from these two different modelling

paradigms.

2.5 CASE Tool Model Representation

The representation of the model in the CASE tool depends entirely on the

implementation of that tool. In some cases, an engineer would need to utilise the

functionalities of a different CASE tool other than the one he started the project on

originally. The model transformation from one CASE tool to another was classified as a

difficult task in the past. OMG has issued a standard model exchange language that is

Cheaper 2| Information Systems Engineering

33

used to export and import design models in CASE tools. XMI(XML Metadata

Interchange)[44] is used to represent any MOF(Meta-Object Facility) Model to be

exchanged between CASE tools. This section will discuss in detail, the XMI

representation of the UML models. We will need this information in Chapter 7 where

we will implement an XMI parser for the tool discussed in this thesis.

2.5.1 UML XMI Representation

As we saw in the previous section, majority of the later CASE and drawing tools offer

the functionality to export UML models. The exported model is presented in a standard

exportation schema (i.e. XMI documents). XMI documents are actually XML schemas

structured in a standard defined by the OMG, this standard is usually reviewed and

updated regularly to a newer versions. The XMI specification contains a complete

pattern for syntax and encoding needed to export and import models, with complete

DTDs for UML and other MOFs. The XMI standard we are explaining in this section is

version 1.4 which was the latest version, the ArgoUML [43] (the UML modelling tool

that we have adopted) can also export at the time of the writing of the UML-JMT tool.

The latest version of XMI specification, at the time of writing this thesis, is version

2.1.1[45]. This version supports additional enhancements and repository-based

configuration management for model-driven, team-based software development[46].

The XMI document explained in this section is taken from a file extracted using the

ArgoUML tool. In this section, we will try to explain what an XMI document is, how it

represents a UML model and how we can retrieve this model from the XMI document.

The XMI standard explains how different UML diagrams and notations are represented.

We will only concentrate here on the UML models used in the methodologies discussed

in this thesis; these are Use-case, Sequence and Deployment diagrams. We will discuss

the different parsing strategies that can be used to retrieve the UML notations from the

XMI model. Throughout this section, we will use the same simple video search example

explained in 2.3.4 as an example of a UML model.

Cheaper 2| Information Systems Engineering

34

XMI File Format

A Sample for an XMI document defined for a UML model extracted by ArgoUML

modelling tool is shown in Figure 2.8. The document is an XML file, which indicates

that the XML version and encoding processing instruction must be shown at the

beginning of the document, as the XMI schema declare the encoding is optional. The

XMI root element, which indicates that this XML document is actually an XMI

document, has two main nested sub-elements. The attributes for the XMI element

include the XMI schema version, and the name space for the MOF model represented in

this document (in our example it is a UML model), and the date of creation of the

document. The first internal element of the XMI root node is the header element which

contains documentations and declarations of the document. The documentation part

includes naming the exporter program and its version. In the example from 2.3.4, it is

ArgoUML with an exporter v0.26.2. The declaration includes the type of model

represented in the document and the version of the XMI conversion specification. The

second element nested in the XMI root element is the content element. Inside this

element are the elements that represent the UML model and encapsulate all the sub-

elements which represent this model‟s diagrams and notations. Each component,

attribute or association is represented as an element. Each diagram has its specification

nested inside it as elements[45]. Next, we will describe the representation of the use-

case, sequence and deployment diagrams.

<?xml version = '1.0' encoding = 'UTF-8' ?>

<XMI xmi.version = '1.2' xmlns:UML = 'org.omg.xmi.namespace.UML' timestamp = 'Wed Jul 08

15:56:49 BST 2009'>

 <XMI.header>

 <XMI.documentation>

 <XMI.exporter>ArgoUML (using Netbeans XMI Writer version

1.0)</XMI.exporter>

 <XMI.exporterVersion>

 0.26.2(6) revised on $Date: 2007-05-12 08:08:08 +0200 (Sat, 12 May 2007) $

 </XMI.exporterVersion>

 </XMI.documentation>

 <XMI.metamodel xmi.name="UML" xmi.version="1.4"/>

 </XMI.header>

 <XMI.content>

 … The UML Model Elements …

 </XMI.content>

</XMI>

Figure 2.8: XMI File Structure

Cheaper 2| Information Systems Engineering

35

Use-case Diagram Representation

The use-case diagram consists of actors and use-cases, and associations between

them[40]. These are represented in the XMI document inside the model element name

space nested inside the content element. The actor elements are defined as follows:

<UML:Actor xmi.id = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EA6'

 name = 'user' isSpecification = 'false' isRoot = 'false' isLeaf = 'false'

 isAbstract = 'false'/>

The tag UML:Actor defines that this is an actor of namespace UML. Each element in

the XMI document that represents a UML notation is given a unique xmi.id which is

used to define associations. This actor represents the only actor in the video example

that symbolises the user of the system. The name of the actor is defined in the name

attribute. The use-cases are defined inside the model element in the same way, but with

a different name tag as UML:UseCase. In our example one of the use-cases defined in

Figure 2.5 is the Search use-case and it will be represented in the XMI document as

follows:

<UML:UseCase xmi.id = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EA8'

 name = 'Search' isSpecification = 'false' isRoot = 'false' isLeaf = 'false'

 isAbstract = 'false'/>

The association is represented in the use-case diagram by introducing an association

element tagged with UML:Association which holds an “xmi.id” and a “name” elements.

Inside it, connections are defined, each connection having two association end elements

that contain the xmi.id of the participating elements in the connection[45]. In our

example the association between the actor „user‟ and the use-case „search‟ is defined as

follows:

<UML:Association xmi.id = '…' name = 'SearchVideo' …>

 <UML:Association.connection>

 <UML:AssociationEnd…>

 <UML:AssociationEnd.participant>

<UML:UseCase xmi.idref = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EA8'/>

 </UML:AssociationEnd.participant>

 </UML:AssociationEnd>

 <UML:AssociationEnd …>

 <UML:AssociationEnd.participant>

<UML:Actor xmi.idref = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EA6'/>

 </UML:AssociationEnd.participant>

 </UML:AssociationEnd>

 </UML:Association.connection>

</UML:Association>

The association tag is similar in all the association definitions for the different UML

diagrams. The definition of the association for a specific diagram is defined inside the

element representing this diagram.

Sequence Diagram Representation

Cheaper 2| Information Systems Engineering

36

Sequence diagrams are represented by a group of components (objects) with messages

between them which define a processing scenario[40]. A sequence diagram is presented

in XMI as an element tagged with the name „UML:Collaboration‟. In its attributes are

the scenario‟s name and XMI id. The opening and closing tags for the sequence diagram

defining the „Add video‟ scenario shown in Figure 2.6 are as follows:

<UML:Collaboration xmi.id = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EC4'

name = 'AddVideo' isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'>

 == Sequence Diagram elements ==

</UML:Collaboration >

Inside the collaboration element there are elements representing the components

participating in this scenario, association between these components and the

collaboration interaction element defining the messages between the components. The

components are defined as elements with the “UML:ClassifierRole” tag. The attributes

for this element include the component name and XMI id. Inside this component is the

multiplicity role for this component (we are not concerned with it in our tool). An

example of the VDB (video database) in the sequence diagram shown in 2.6 is as

follows:

<UML:ClassifierRole xmi.id = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EC8'

name = 'VDB' isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'>

…

</UML:ClassifierRole>

The association rules are defined for each interacting component using an association

element similar to the one defined for the use-case diagram. The collaboration

interaction part of the sequence diagram representation contains a group of message

elements that define each message call interaction between the components. Each

message element has attributes of name and xmi.id, and has three main child elements

which are the sender, receiver and the communication connection. The sender and

receiver elements contain the id of the sending and receiving component respectively.

The communication connection element identifies the id of the association rule defining

the connection between these two components. One of the messages in the „add video‟

scenario is from the interface to the video database and is represented as follows:

<UML:Message xmi.id = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000ED0'

 name = 'Add video' isSpecification = 'false'>

<UML:Message.sender>

<UML:ClassifierRole xmi.idref = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EC5'/>

</UML:Message.sender>

<UML:Message.receiver>

<UML:ClassifierRole xmi.idref = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EC8'/>

</UML:Message.receiver>

<UML:Message.communicationConnection>

Cheaper 2| Information Systems Engineering

37

<UML:AssociationRole xmi.idref = '-119--61-27-76--3ca482dc:1222ca7a717:-

8000:0000000000000ECC'/>

</UML:Message.communicationConnection>

</UML:Message>

Deployment Diagram Representation

Deployment Diagram is a collection of nodes grouping components in the same location

or the platform [40]. In an XMI document, deployment diagram is defined as a group of

elements representing the nodes with association elements, representing the

connectivity between these nodes. The association components are the same format as

the ones described previously for the use-case representation. The elements representing

the nodes are tagged with the name “UML: Node” and as with the other UML notations

has the attributes name and xmi.id. Each of the node elements contains a set of child

elements representing the components in this node. In Figure 2.8, the deployment

diagram contains two nodes representing the user side and the server side. The server

node is represented in the XMI document as follows:

<UML:Node xmi.id = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EB8' name =

'Server' isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'>

<UML:Component xmi.id = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EBC'

name = 'VDB' isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'>

<UML:Component.deploymentLocation>

<UML:Node xmi.idref = '-119--61-27-76--3ca482dc:1222ca7a717:-8000:0000000000000EB8'/>

</UML:Component.deploymentLocation>

</UML:Component>

<UML:Node.deployedComponent>

<UML:Component xmi.idref = '-119--61-27-76--3ca482dc:1222ca7a717: 8000:0000000000000EBC'/>

</UML:Node.deployedComponent>

</UML:Node>

2.5.2 Working with an XMI Document

Although the use of XMI to express the object model of software systems and generate

implementation classes from design models is a hot topic in research and development,

the existence of tools and libraries to support the extraction and management of UML

models, other than class diagrams, is limited. There have been some attempts to

construct a library that reads an XMI file and arranges all the model diagrams in the

form of objects that can be used and analysed, but most of these attempts are in their

early stages or even prototypes. Most of the programming community in the

programming forums advise each other to build their own parser that will fulfil the

programmer‟s specific needs using the available XML parsers libraries, given that XMI

document is actually an XML document. This will cause an overhead in the

development as the developer will need to know the XMI schema for UML. Even still,

this was the method we used in the development of the parser for the UML-JMT tool.

Cheaper 2| Information Systems Engineering

38

When trying to parse an XML document, a programmer has the option of using one of

two kinds of parsers which differ from each other in the way that they deliver the XML

elements, either as event driven, as in SAX(Simple API for XML)[47], or a one that

provides an entire structure document, as in DOM(Document Object Model)[48]. We

will discuss them briefly next.

SAX

SAX is an event based API that allows the serial parsing of an XML document. The

user will define a set of event handlers that will execute when the parser encounters one

of the events (i.e. finding an element node, text node, XML instruction or comment).

The event is fired at the beginning and the end of the encounter (i.e. opening and closing

tags)[47]. As SAX does not have an internal structure to represent the XML document,

SAX parser does not require large space of memory, therefore, a SAX parser will not

face any difficulty parsing large XML documents. The streaming nature of SAX and the

fact that it does not require a structure makes it run faster than DOM. On the other hand,

the fact that an overall picture of the document cannot be given by SAX makes it harder

to implement some programs that require a complete access to the document, like some

types of validation and XSLT and XPath which require to have access to any node in

the tree all times [49].

DOM

DOM is a defined standard for accessing and analysing XML documents. The DOM

parser works by loading the entire XML document into a tree structure. The root of the

tree represents the root element in the document object and the internal elements,

attributes and text, as the child nodes. DOM parser provides APIs that allow the

programmer to traverse the tree in all directions. It also allows the user to check the type

of node or retrieve all the elements of a specific type. Figure 2.9 demonstrates a partial

view of a DOM tree structure of an XMI file with the XMI tag as the root and elements

representing the different UML notations, and diagrams as child nodes. Although only

the elements were displayed in the figure, attributes are also represented as child nodes.

The DOM parser offers an easy to navigate, whole document approach to the user. On

the down side, the footprint of the DOM tree on the memory may cause difficulties in

parsing large-scale documents. The java DOM library was used in the light weight XMI

parser that was implemented for the UML-JMT tool. We chose to use DOM because the

Cheaper 2| Information Systems Engineering

39

Figure 2.9: Partial DOM tree for an XMI document with use-case sequence and

deployment diagrams.

<XMI>

<XMI.header>

<XMI.content>

xmi.version

…

<XMI.documentation>

<UML:Model>

<UML: Actor>

<UML: UseCase>

<UML: Node>

<UML: Collaboration>

<UML: Association>

<UML:Component>

<UML:Dependency>

<UML: Association>

<UML:ClassifierRole>

<UML: Association>

< UML:interaction>

< UML:Message>

< UML:Message.sender>

 < UML:Message.receiver>

parser passes the document object from one model extractor to the other. We will

explain this parser later in Section 7.1.

2.6 Summary

The main objective of the thesis is to provide a performance evaluation methodology in

the context of software engineering terminology. As performance is one of system‟s

characterises that are affected by the whole system, the integration of the performance

engineering into software engineering will depend on the availability of the

requirements. This is why we distinguished the software engineering paradigms

according to the availability of the requirements to conventional (i.e. waterfall

development paradigm) and agile. This Chapter discussed the relevant terminology

related to the software engineering domain. In this chapter, we defined software systems

engineering, discussed some of the software engineering schools of thought and the

different development paradigms available. Then we discussed requirement engineering

and validation (as a task of software engineering) and explained the importance of

validation of performance non-functional requirements. As this thesis discusses the

UML model transformation approach; we have defined UML modelling as it is the

standard modelling paradigm used for representing the architectural aspects of a

Cheaper 2| Information Systems Engineering

40

software system. This chapter also provided background knowledge about CASE and

modelling tools as well as background about XMI model representation.

41

CHAPTER

Software Performance Evaluation

3

Chapter 3: Software Performance Evaluation

Performance of a computer system is a behavioural aspect of the system which is

concerned with resources in the system‟s environment. These resources include time

and usage of the system‟s physical artefacts. Performance evaluation is the process of

assessing the performance of the software system. The performance aspects of a

computer system are evaluated by calculating performance related measurements called

the performance indices. These indices relate to the speed of response, usage of

resources, and the usage of the system in the context of the organisation. The

performance evaluation task can be carried out by direct measurement of the existing

systems or by modelling the projected systems. The importance of system performance

evaluation arises from the need for methods for analysing and optimising existing

software systems to improve its performance aspects. Furthermore, performance

evaluation could be used to assess the design of projected systems, by validating that a

suggested design would provide the expected performance measures. This chapter will

present the process of software systems‟ performance evaluation. Section 3.1 will

describe the performance evaluation task as inputs, processes, and outputs theme.

Sections 3.2, 3.3 and 3.4 provide an in-depth description of some of the key

performance evaluation paradigms used in software performance evaluation. As this

thesis is oriented toward non-deterministic performance evaluation in the early stages of

software development, Section 3.5 will discuss the suitability of the previously

discussed performance evaluation paradigms for this task. Section 3.6 will discuss the

tools used to evaluate a software system‟s performance, by setting criteria for evaluating

them.

3.1 Software Performance Study: Modelling and Evaluation

A software system performance study involves analysing the performance

characteristics of a system in response to changes in the system‟s environment variables

(i.e. number of users, number of servers etc). The goal of a software performance study

is to compare the actual system performance indices to the anticipated ones, and

eventually, tune the system to achieve the best performance that can be gained from the

Cheaper 3| Software Performance Evaluation

42

system. Figure 3.1 shows a diagram illustrating the process of a performance study. A

performance study starts by identifying a set of performance objectives; these objectives

are set to be the expected performance indices clarified in the system specification

document (i.e. non-functional requirements specification). The next step involves

constructing an abstract representation of the system, called a Model. This model will

only concentrate on the aspects of the system that affect the performance indices under

study. This model can be viewed as a function representing the system, with variables

representing the change in the system‟s environment. The next step involves evaluating

the system performance model and generating the real performance indices. This

depends mainly on the performance modelling paradigm used, as we will see in the next

section. The next step involves analysing the resulting performance indices and

comparing them to the ones defined as objectives, and constructing plans to achieve

these objectives. These plans are translated to tunings and alterations on the design or

specifications, which in return, will require a new performance study to inspect how

these changes affected the system‟s performance. In this section, we will further explain

the modelling, evaluation and analysis steps.

3.1.1 System Abstraction and Performance Models

A performance model of a software system can be defined as an abstract view of that

system which focuses on the artefacts that define the performance characteristics of the

Identify

Performance

Objectives

Model and

Parameterise

the System

Evaluate the

performance

model

Analyse

resulting

performance

indices

Tune the

system

Figure 3.1: Steps of a software system performance study

Cheaper 3| Software Performance Evaluation

43

system under study. As mentioned earlier, performance models work as functions

representing the system‟s behaviour (and/or) structure, and providing a relation

between change in the performance defined by the system characteristics and

performance indices defining the system. The behaviour of the system is characterised

by the events and actions that define the system. Performance characteristics include

performance related state variables such as job arrival rate for the system or the service

time for one of the system components. Performance indices are the measurements used

to indicate the performance of the system (i.e. throughput, response time, utilisation …

etc). The process of abstracting a system to a performance model depends mainly on the

nature of the performance study. The main factors that control the abstraction process

are the performance measure required and the controlling performance variable.

There are a variety of performance modelling techniques, each of which has its own

uses and limitations. Performance modelling methodologies can be distinguished as

three main trends. These are as follows:

 Simulation: Where a prototype of the system is abstracted, programmed and

executed with different control variables and performance indices are measured

from the different simulation runs. We will discuss simulation in Section 3.2.

 Analytical Modelling: Where the systems‟ architecture or state space are

modelled visually or symbolically and then transformed to mathematical

equations that can be solved analytically or by simulation, to calculate estimates

of the performance indices. Examples of analytical models are Markov Chains,

Queuing networks and Petri-nets. We will discuss them in more detail in Section

3.3.

 Formal Modelling: Where the structure and behaviour of the software system is

translated to algebraic equations that can be translated to analytical models,

which can be solved to provide meaningful performance indices. Examples of

the formal modelling techniques are Process algebra, and PEPA models. We

will discuss them in more detail in Section 3.4.

Choosing between these performance modelling methodologies depends mainly on the

system type and the stage in which the performance study is conducted. As performance

evaluation studies are necessary throughout the system life span, the different

performance evaluation methodologies can be seen as complementary to each other.

Different performance evaluation methodologies can be used in different stages of the

system development and run. As an example, in the design phase, the amount of

Cheaper 3| Software Performance Evaluation

44

information about the system is limited and a performance study is needed to justify a

design or to choose between different designs alternatives. In this stage, analytical

modelling appears to be the “best” tool to conduct such a study. As the system

progresses and goes through the maintenance phase, more definite and exact results are

needed where measurements of the system can be undertaken to aid tuning. We will

discuss some of the main performance modelling paradigms later in this chapter.

3.1.2 Performance Model Evaluation

Performance model evaluation can be defined as extracting performance characteristics

of the system represented by the performance model. These performance characteristics

represent the performance indices required by the performance study. The variety of

performance indices that can be extracted depends mainly on the performance

evaluation paradigm being used (as simulation provides no limit to the extracted

indices). The common and most notable performance indices studied in most software

systems are:

 Throughput (X): This measurement represents the rate of completed „jobs‟

over a period of time (T).

 Utilisation (U): This measurement represents the rate of usage of the system‟s

resources.

 Service Time (S): Represents the average time required by a resource to

accomplish a job.

 Response Time (R): Time interval from issuing a request to when a response

is returned.

The process of extracting these performance indices from a performance model depends

utterly on the performance evaluation paradigm used, as mentioned in 3.1.1. However,

the equations used to drive these values are known as the operational laws. Operational

laws are a set of fundamental laws and their derivations, which are used to calculate the

performance indices from basic measured performance quantities. These quantities are

T (the time in which the system was monitored), A (the number of jobs arrived in time

T), C (number of jobs completed at time T) and B (the length of time that the system

was busy). The operational laws state:

 (Arrival Rate) =A/T

(Throughput) X=C/T

(Utilisation) U=B/T

(Service Time) S= B/C

Cheaper 3| Software Performance Evaluation

45

These fundamental equations are extended to other laws, such as utilisation law, Little‟s

law, and general response time law …etc. With the help of making general assumptions

about the system, the above performance indices can be derived. Later in this chapter,

we will discuss in more detail how we can solve or execute a performance model.

As discussed earlier, the degree of correctness of the resulting performance indices

depends mainly on the performance modelling paradigm being used. Simulation models

tend to provide a high degree of accuracy and model details, regardless of the type of

system being used. On the other hand, analytical and formal models require the model

to satisfy some constraints in order to extract performance indices with a high degree of

accuracy, therefore, the performance measures gained from an analytical or formal

performance study are expressed as approximations.

3.1.3 Performance Analysis

Analysis of performance is required for one of the following tasks:

 Design justification and experimentation: This type of performance study is

usually conducted in the early stages of the system development life cycle. If

there are multiple candidate design alternatives, performance studies are used to

choose the best design that will implement the non-functional requirements

specified for that system. This can be done by studying the performance indices

for the different design alternatives (if there are alternatives) and comparing

them to the required specifications.

 System tuning: When a system is experiencing performance problems, a

performance study is conducted to locate the source of this problem. The system

is modelled, and the performance indices are calculated. Alterations are made on

the model to locate the problematic parts of the system. Changes are then

suggested according to change to the performance indices.

 Specifying systems limitations: In any system, it is necessary to discover its

limitations in order to prevent unexpected crashes. Using performance studies, a

system could be tested to find its breaking point.

3.2 Performance Evaluation: Simulation

Simulation is defined as an imitation of the operations of a process or system, monitored

over a period of time[50]. Simulation performance study involves the construction,

implementation and execution of what is called a simulation model. This model is

based on the structure and behaviour of the system, and the performance characteristics

Cheaper 3| Software Performance Evaluation

46

of the system. Simulation performance studies provide a high degree of accuracy and

detail, which can provide performance indices, which can express more accurate values.

Evaluation of a simulation model involves implementing and executing a simulation

program. This will provide no limitation on the types of system architectures and

behaviours being modelled, as in other modelling paradigms that we will see later. This

section will discuss briefly, simulation performance study methodology. In the next sub-

section, we will discuss the process of conducting a simulation study. In 3.2.2, we will

discuss the advantages and disadvantages of simulation.

3.2.1 Simulation Study Steps

A simulation study can be described as the process of monitoring the system state over

a period of time. The system state is defined by a collection of variables describing the

system in a given point of time. These variables are chosen according to the nature and

goal of the performance study. State variables can have a discrete or continuous nature.

The change of the system state is denoted as an event; these events can occur within the

system itself or in the surrounding environment. Events may occur at a discrete point of

time or continuously. Accordingly, simulation can be distinguished into three main

types:

 Continuous time simulation: In this type of simulation, the system state will

be monitored and changes recorded continually over time. This type of

simulation behaviour is described using differential equations. Continuous

time simulation is usually used in scientific analysis software.

 Discrete time simulation: In this type of simulation, the state of the system

is captured in each time cycle. Note that the state may not change for

multiple clock cycles.

 Discrete event simulation: This type of simulation is used with systems that

have a state that does not change continually with time. The discrete nature

of computer systems makes this kind of simulation more suitable to use.

J. Banks et. al. has illustrated in their book “Discrete-event system simulation”[50], the

steps of conducting a simulation study. It starts by formalising the problem and

understanding the system to be simulated, and then objectives of the study are set.

These objectives are formulated in the form of questions that need to be answered at the

end of the study. The nature of the objectives will determine whether simulation is the

best paradigm to accomplish the study objectives. The plan of the study will specify its

Cheaper 3| Software Performance Evaluation

47

stages and the resources needed to execute it. In the next phase, the simulation model

will be abstracted in a form that will allow all the required performance indices to be

obtained with minimal complexity. The next phase involves collecting the data required

to perform the simulation study. This data include traces of an existing system, or

information about the work load. The next phase involves model translation. At this

stage, the simulation model is implemented into a simulation program. This can be done

using special purpose simulation languages (e.g. SIMULA[51]) or using conventional

programming language, equipped with simulation libraries (e.g. SimPack[52]). After

the simulation program is verified for errors and validated for representing an accurate

representation of the system under study, the experiments implementing the simulation

study are decided. This includes variables defining the length of the simulation run and

the number of replications. At this stage, the simulation program is ready for execution.

At the execution time, the monitored variables defining the system state are analysed

and performance indices calculated. At the end of each run, a documentation of all the

outcomes is produced. After the analysis phase, a document containing a description of

the study and documentation of the simulation program and simulation results is

formed[50].

3.2.2 Simulation: For and Against

As we stated above, simulation performance studies are seen as the most flexible

approach to computer performance modelling. This comes as a result of the degree of

accuracy provided by the simulation results and the unlimited, unrestricted modelling

spectrum allowed in simulation studies. There are almost no limits to the range of

performance measures that can be monitored and calculated in a simulation

performance study. Furthermore, there are no assumptions forced on the system that

could restrict the use of simulation for specific system architecture. All of this comes at

a cost, which is translated in the large computational cost and resource requirements of

a simulation study. The costs arise from the enormous effort required to conduct a

simulation study. This effort is spent in the analysis and development of the simulation

program. In addition, the results of a simulation program need further efforts to interpret

them into useful performance measures.

3.3 Performance Evaluation: Analytical Modelling

Analytical performance modelling involves building notational or formal models which

represent the modelled systems‟ structural or state space behaviour. Analytical

modelling is regarded as one of the cost efficient performance prediction techniques.

Cheaper 3| Software Performance Evaluation

48

The degree of accuracy of the performance measures gained from an analytical

performance study depends mainly on the complacence of the system to the

assumptions specified in each of the analytical modelling paradigms. In a study for the

accuracy of the throughput, utilisation and response time for analytical models [53],

analytical results were compared to numerical and simulation results and the error

margin was 10% for throughput and utilisation, and around 30% for response time.

Analytical performance analysis will provide a low cost, sufficient solution for tasks

like capacity planning and design aid. This thesis is concentrating on the use of

analytical models as a design aid in the early system development stages.

There are a number of analytical modelling approaches in literature, we are only

concentrating on Markov Chains and Queuing Networks, as these are the basis for the

two methods discussed in this thesis. This section will discuss three of the most well

known paradigms in analytical performance modelling. Section 3.3.1 will discuss

Markov chains, Section 3.3.2 will briefly discuss Petri-Nets, and finally Section 3.3.3

will discuss queuing networks.

3.3.1 Markov Chains

Markov chains form the basis for model–based analytical performance evaluation in

many areas of science and engineering. It can be described as the low level language for

modelling. The Markov chain is named after the pioneer mathematician Andrei Markov

who introduced the finite-state Markov chains. The use of stochastic Markov models in

performance evaluation tasks can be described in two main activities. The first use is the

evaluation of the probability of an observed behaviour, for example, the probability for

the occurrence of that behaviour (i.e. the buffer is full). The second activity is to find the

best design in terms of performance; this is done by observing the different behaviours

that a system can take and adjusting the system‟s design and parameters so that the

design can deliver the best performance possible. By solving the Markov model, a series

of performance indices and observations can be obtained from the model. Haverkort

[54] had two categories for the outcomes of such a performance study. They are; system

oriented (i.e. utilisation) and user oriented (i.e. waiting time, throughput).

A Markov chain is a stochastic process, with all the random variables constricting this

stochastic process have the Markov property. A stochastic process is a set of random

variables {Xk, kK} where K is known as the index set which is the controlling index

Cheaper 3| Software Performance Evaluation

49

for the change of the random variables. Markov chain models come as discrete and

continuous time models. For continuous time models, K will represent time. The

Markov property states that the future value of a random variable Xk depends only on its

current value and not on any previous values. This is called the memory less property:

Pr{ Xk=i| Xk-1, Xk-2 ,…, X1}= Pr{ Xk=i| Xk-1}

A Markov model is a finite automaton containing a set of distinct states that a system

can take, known as the state space S. Starting from an initial state, the model represents

the state transitions from the current state, to another state according to a set of

probabilities associated with the states, known as Transition Probability.

Figure 3.2 shows an example of a Markov model with two states. The states are labelled

with numbers. At the time of state change, the decision of the next state will depend

only on the current state and is controlled by the transition probability:

pij=Pr{Xk=j׀Xk-1=i}  i,j S.

The transition probability has to comply with the following rule: The total transition

probability from state i to all possible states must be equal to 1:

 
j

ijp 1

Software system is modelled as a Markov chain by abstracting the system as a set of

states (S) that represent all the states that would have an effect on the system‟s

performance characterisation. As we said earlier, the process of choosing an abstraction

of the state depends mainly on the objective of the performance study.

Deriving performance indices from a Markov model depends on calculating the Steady

state probability distribution. This represents the probability distribution of the

transition from one state to another when the system enters into a regular pattern

behaviour. The study state theorem states that, for every finite, time homogeneous,

irreducible Markov process there will be a steady state probability distribution. This

Figure 3.2: state transition diagrams of a Markov Model

example with two states.

Cheaper 3| Software Performance Evaluation

50

distribution will not change as the model changes or states progress in time. Gaining the

stationary distribution in a Markov model involves the solving of the Global balance

equation. The global balance equation is an equation extracted from the probability flux

for a specific state (probability of transition from one state in time to another). The

study state assumption states that the performance study will take place when the

system enters in the equilibrium stage. This means that the system is in a state where its

behaviour is regular and predictable. Using this assumption, we can declare that the

total flux out of a state is equal to the total flux into a state [55]. First we define

k(i)=Pr{Xk=i} for all iS; Where is a vector containing the probability distributions

of each state. The global balance equation will be:

ji

j

ij

pji

p











)()(

1



Probability distribution will be used to calculate the performance indices. For example,

utilisation of a device can be calculated as the total probabilities that the system is in a

state where the device is being used. Rate-based measures (i.e. throughput) are related

to measures in which some event occurs. This will be the product of the rate of the

event and the probability that this event has taken place [55]. Operational laws are used

as will to calculate other performance indices[56]. Next we will describe the stationary

distributions for both discrete and continuous time Markov chains, but first we will

clarify the assumption that must exist in a Markov chain for it to be solvable.

Assumptions of Markov Chains

For a Markov chain to be solvable by global balance equations, there are some

properties that Markov models have to satisfy. These are as follows:

 A Markov chain is irreducible: This means that all the stats can be reached from

all other states. For any states i, j S, state i is said to be reachable by state j iff :

P{Xn=j| X0 =i} > 0 for any n≥0 where n  K

States i,j are said to be commute if these states are reachable to each other. A

Markov chain is said to be irreducible if all of its states are commute.

 A Markov chain is positive recurrent: This means that a state visited must have

some probability that it will be visited again. A state is recurrent if it has a finite

hitting time of that which is:

Pr{ Xk=i for some k>1| X1 =i }=1

Positive recurrent state is a recurrent state with a finite expectation, e.g. if Ti is

the time between visits to state i, then i is positive recurrent if E(Ti)<∞.

Cheaper 3| Software Performance Evaluation

51

Discrete Time Markov Chain

In Discrete time Markov chains; state change is carried out after fixed time slots. The

system modelling depends on the behavioural modelling of the system represented by

state change. Markov chains are represented as either state transition diagrams (as in

Figure 3.2) or as probability matrix. The probability matrix P of a Markov model with n

states is a nxn matrix with the transition probability for state i to j is in the i
th

 row and j
th

column of P. The probability matrix for the Markov chain in Figure 3.2 is:















qq

pp
P

1

1

From the global balance equation defined above, we can conclude that:

k+1 = k P

can be gained by solving the above equation. For the example, in Figure 3.2 we can

find that solving the equation by linear algebra, the values for vector  are:

qp

p

qp

q









)1(;(0)

1)1((0)





Continuous Time Markov Chain

Continuous time Markov chain is a Markov chain with an index set represented by time

(T). We say that the set of random variables {X(t):t≥ 0} is a continuous time Markov

chain if:

P{X(s+t)=j | X(u); u≤ s} = P{X(s+t)=j | X(s)}

This is the Markov property for a continuous time Markov chain. In a continuous time

Markov chain model, the dynamic behaviour of the system is modelled by the

transitions between the states, and the time spent in each state (sojourn time) which

usually represents the processing time. From the memoryless property of Markov chain

and the property transition that does not change over time, we can conclude that the

distribution of time between the changes of states does not depend on previous states.

This means that the sojourn time is memoryless[56] and therefore, the only probability

distribution to represent time distribution between changes of states, is the exponential

probability distribution function. If Ti is the sojourn time for state i and qi is the total

transition rates for any state i→j:





ji

iji qq

Then we can say that:

)(ii qExpT 

Cheaper 3| Software Performance Evaluation

52

And further, the transition probability from i to j can be calculated as qij/qi.

In continuous time Markov chain, the transition matrix has a special form and is called

the generator matrix Q. In Q the entry of the i
th

 row and j
th

 column is qij where ij. the

diagonal elements are chosen to make the sum of all rows equal to zero:

qii=-qi

Calculating the study state probability distribution  for continuous time, Markov chain

depends on the global balance equation. The global balance equation for continuous

time Markov chain is:

ji

ij

j

ji

iji qq 


 

 After normalizing the global balance equation, the general form of the equation will be:

Q=0

Solving this equation using linear algebra with the equation:

 
i

i 1)(

Will extract the values of vector .which will be used to calculate the performance

indices of the system.

Markov chains models provide flexibility in modelling any system type and

representing any behaviour. The only downside of Markov chains comes in what is

known as state explosion. In large and complex systems, the number of states could

make the model difficult to solve. As a result, the complexity of solving the global

balance equation increases as the state space grows.

3.3.2 Stochastic Petri-Nets

Petri nets were introduced in 1964 by Karl Petri [57] as a graphical description

language used to model large and complex systems‟ concurrency and synchronisation.

The first Petri Nets were concerned with the test of systems for functional correctness

(i.e. deadlock, liveness…). The need to study quantitative properties of systems led to

the addition of a time element to the models, which introduced Stochastic Petri Nets

(SPN)[58] and Generalised Stochastic Petri Nets (GSPN)[59]. SPN came as a solution

for the Markov chain state explosion problem. SPN can be seen as a higher level

language that uses a performance analysis technique based on Markov theory. The

solution of a SPN corresponds to the solution of an underlying Markov chain which can

be gained by modelling the SPN states, as we will see shortly.

Cheaper 3| Software Performance Evaluation

53

SPN models represent systems as a set of Places and Transactions, and a set of Arcs

connecting places and transactions to each other. In the graphical representation, the

places are drawn as open circles, transitions as bars, and arcs as arrows. Figure 3.3

shows an example of a SPN model for a system that has two parts that might fail and

need to be repaired. The status of the system is modelled by the whole graph, unlike

Markov models where each node in the graph represents a status of the system. SPN

uses what is known as the token game to describe the behaviour of the system. The

system is modelled in multiple states and in each time step, the tokens (modelled as

solid circles located inside the places) will move (fire) from one place to the next

state(s) according to set rules:

 A transaction is enabled if it has tokens placed that it is connected to as output.

 Only enabled transactions can fire.

The Marking of SPN models represents the distribution of tokens inside the parts of the

model; it is represented by the number of tokens in each place. The markings are used

as model status records. The reachability set represent all the reachable markings for the

model from the initial marking. The solving of a SPN depends on building an equivalent

Markov chain with the state space represented by the reachability set and the transition

rates between the states of the Markov model presented by the transition rate between

the markings. By solving this Markov model, we can extract the required performance

indices of the model.

We stated earlier that the motivation for introducing Stochastic Petri-Nets is to

overcome the state explosion problem found in Markov chains. This is demonstrated in

Figure 3.3 where we have a model of a system that has two replicated parts that provide

that same service. The model is to represent the availability of the system. In a Markov

chain the number of states depends on the number of parts modelled in the system, that

is, if the system has another part, we will need another state. For the SPN model we will

only need to add a new token in the initial marking, without changing the model.

Although SPN solution is based on a Markov chain, the problem of state explosion is

lessened as there are normalising algorithms and simulation tools that would help in the

solution of SPN models. The drawback of SPN is its lack of generality advantage that

was available in Markov models, as it is difficult for it to model certain types of system

architectures, such as systems with specific scheduling schemes for sharing

resources[60].

Cheaper 3| Software Performance Evaluation

54

3.3.3 Queuing Networks

One of the main drawbacks of analytical performance modelling techniques was in the

lack of intelligibility in the abstracted models. Usually that abstracted model represents

a system‟s status behaviour in a form only understood by the modellers themselves. The

use of queuing theory in computer performance studies started in the 1960s, and

although this use was in its simplest form, it was obvious from that time that queuing

models were the future of computer performance evaluation. The first use of queuing

theory in computer based performance evaluation was to model time sharing

systems[61]. The study was to evaluate different CPU scheduling and disk management

strategies. At first, queues were used as a unit that represent the entire system but later,

queuing networks were used to get more realistic models representing the components

of a system. Computer systems can be viewed as a set of loosely coupled components

(software or hardware) which interact with each other by executing jobs or transactions.

This view of computer systems made queuing networks more instinctive to use as a

modelling technique for evaluating performance.

Figure 3.3: Comparing Markov Chain Model to an

equivalent SPN model for system frailer status of a

system with two parts.

Cheaper 3| Software Performance Evaluation

55

A queuing network is a representation of the system as a set of service centres which are

connected to each other in a topology that represent the systems‟ architecture. A service

centre is a queuing system that consists of a queue and a server. The parameters that

define a queue are the queuing discipline and its capacity. Queuing discipline defines

the algorithm used to control the order of jobs in the queue. There are some known

queuing disciplines which are considered in most of the queuing networks solutions,

such as FIFO (first come first out) and LIFO (last in first out). The capacity of the queue

defines the size of the buffer that can hold waiting jobs. Another parameter for the

queue which can exist in some simulation solutions of queuing networks is the drop

strategy which defines the strategy used to reject incoming jobs to the service centre

after the queue buffer becomes full. The parameters that define a server are the service

time distribution and the number of servers. Workload is defined in a queuing network

by an arrival rate or the number of users depending on the type of the queuing network.

Queuing networks can be open or closed depending on the behaviour of the job inside

the network. In open networks, jobs tend to leave the network after they are completed,

whereas in closed networks, they will return in another round. Queuing networks can

have multiple classes of jobs, each with its own workload and routing strategy.

The A/B/X/Y/Z notation is used to describe a queuing system which was suggested by

D. Kendall. It defines the type of a queuing system by describing the properties and

parameters that define it. The notation A/B/X/Y/Z stands for:

A - inter-arrival time distribution

B - service time distribution

X - number of servers

Y - system capacity (in the queue and in service)

Z - queuing discipline

The default value for Y is ∞ (i.e. there is no limit to the buffer) and for Z is FIFO, if the

queue have Y and Z as default the type can be written as A/B/X. the inter arrival

distribution and service distribution can be of type M (Markov exponential distribution),

D (deterministic), G (general) … etc. An M/M/1 queue is a queue with an exponential

arrival rate, an exponential service rate and a single service centre, unlimited queue and

FIFO queuing strategy.

Computer systems modelling using queuing network models can be employed on

different levels of abstraction. The queuing network may represent the underlying

Cheaper 3| Software Performance Evaluation

56

hardware or components (software/hardware) architecture of the system. In this thesis,

we are concentrating on the component view of the system. The process of modelling a

system as a queuing network starts by defining all the service providing components.

These components will be represented in the system as service centres. The

characterisation of these components (workload, service time … etc) can be gained

from the specification of this component (i.e. if the component is a DBMS, the

specifications of the DBMS will include the performance characteristics of this

component). The classes of the jobs can be defined from the type of processes or

scenarios running in the system. The topology on which the service centres are

connected depends on the architecture of the system. Delays can be added to a queuing

network model, to add overheads like thinking time and network latency. Delays are a

special kind of service centres, where the queues are infinite and the jobs remain for a

time, defined by a wait time distribution. Figure 6.9 shows a queuing network for a

video search system.

A queuing network can be solved either analytically or by simulation. Simulation

provides a general technique where a variety of system architectures and queuing

discipline can be modelled. Moreover, simulation provides more accurate results.

Simulation is used usually with non-product form queuing networks. These are queuing

networks that do not apply the assumptions insisted on by the algorithms defined for

analytical queuing networks solution. The analytical solution of a single M/M/1 queuing

system relies on defining a continuous time Markov chain with a state depending on the

systems population, as follows:

1 2

 

3

 

-------0

m m m m

Where jobs arrival rate is defined as exponentially with parameter , and the service

time is also defined exponentially with parameter m. For some classes of queuing

networks with general arrival and service distribution, they can be modelled with a

particular discrete time Markov chain named birth-death Markov process. A queuing

network solution is based on defining a Markov chain with a state space defined by the

number of customers in each service centre queue. The computational complexity of the

Cheaper 3| Software Performance Evaluation

57

analytical solution limited its generality. Product-form queuing networks are a distinct

family of queuing networks that have simple and efficient solutions. In the next two

sub-sections, we will discuss the analytical and simulation solutions of queuing

networks. First we will define product form queuing networks and their analytical

solutions and limitations. Then we will discuss an alternative approach for solving

queuing networks, this approach involves using operational laws previously discussed.

This approach is called Mean-value Analysis (MVA). After that, we will describe the

Extended Queuing Network EQN by discussing its properties and solution. Note that we

will be using EQN in the methodology discussed in Chapter 6.

Product-Form Queuing Networks

Product form queuing networks are defined as a class of queuing networks that satisfy a

set of assumptions. These assumptions qualify this class of queuing networks to be

solved analytically, using product-form equations. The importance of the product form

solutions for queuing networks lies in the reduced complexity that these solutions

provide, as the complexity of these solutions grows linearly with the number of service

centres, compared to exponential growth observed in Markov chains. This will provide

balance between the accuracy of the performance results gained and the efficiency of

the model evaluation and analysis[62]. Product-form networks have some properties

that will help in producing models with different levels of abstractions for a system.

One of these properties is the aggregation theorem described in [63]. The aggregation

theorem allows the replacement of a portion of the queuing network with a single

queuing system that has the same performance characteristics of the replaced sub

network, without change in the resulting performance indices[63]. This will aid the

design evaluation of software systems as the model is extended and more information is

known about it.

We stated earlier in this subsection that product-form queuing network solution requires

the network to satisfy a set of assumptions. Some of these assumptions are related to the

assumptions defined by the underlying Markov process representing a queuing network.

Examples of such assumptions are:

 Service centre flow balance: This implies that the number of arrival jobs is equal

to the number of departure (finished) jobs in the observed time period.

 One step behaviour: Only a single customer may arrive or depart from a service

centre.

Cheaper 3| Software Performance Evaluation

58

One of the main assumptions for a product form queuing network is quasi-reversibility.

Quasi-reversibility of a service centre implies that the current state, and past departures

and future arrivals, are independent[62]. The quasi-reversibility property was

distinguished in [64] as a set of assumptions which are as follows:

 Routing homogeneity: This means that the routing patterns for different job

classes between service centres, does not depend on the state of a queuing

network.

 Device homogeneity: The service rate for a specific class of jobs depends only

on the number of jobs and classes in this service centre.

 Homogenous external arrival times: This implies that arrival rates for new jobs

do not depend on the status of the system.

The solution of the product form queuing networks progressed in several stages and in

each stage new distributions and disciplines were added. The solution of product form

queuing networks depends on providing normalised equations that will solve queuing

networks of a specific type and discipline. At first Jackson[65] introduced a solution of

exponential, open queuing networks. His solution was based on the Burke’s

theorem[66] which implies that each service centre in a chain of exponential Poisson

driven service centres can be analysed independently according to the following

equation:

p(k1,k2,…,kn)=p1(k1),p2(k2),…pn(kn)

where p(k1,k2,…,kn)is the probability of finding k1 jobs in service centre 1 and kn jobs at

service centre n and pi(k) is the solution of the corresponding service centre. Gordon and

Newell[67] generalised Jackson‟s solution by including closed queuing networks where

the job‟s arrival is not defined by a Poisson process, but as a fixed population. The

product form equation that they produced was:

 


N

i
ii

K

i
N

k

x
kkkp

i

121
)(G(K)

1
),...,,(



Where G(K) is a normalisation constant given by:





N

i ii

k

i

k

x
KG

i

1)(
)(



Normalisation constants can also be calculated using the convolution method which was

provided by Buzen[68]. The convolution algorithm provides a method to derive average

performance indices from model solution and the normalisation constants. This

algorithm has a polynominal calculation complexity in terms of queuing network

Cheaper 3| Software Performance Evaluation

59

number of centres and jobs. The BCMP[69] solution integrated several early results in a

single framework for queuing networks with:

 Multiple customer classes

 Different queuing disciplines (FIFO, LIFO)

 Open, closed and mixed queuing networks

 Fixed probability job class change

 Different service time distributions

Currently most of the product-form queuing networks evaluation packages provide

BCMP solutions or extensions of that solution. Examples of these packages are

RESQ[70], QNAP2[71] and HIT[72].

Mean-value Analysis

The mean value analysis[73] provides an alternative approach to extracting performance

indices from product-form queuing networks models. MVA algorithm provides an

approach for calculating the mean values for the main performance indices, avoiding

direct evaluation of the normalisation constants. MVA algorithm provides a basis for

the approximation algorithms used to solve large product form QN and non-product

form queuing networks. This algorithm gets its popularity from its dependence on

operational laws basis. MVA provides an operational (non-stochastic) analysis where

the variables defining service centres and queuing networks are exact measurements

rather than stochastic variables. This means that the treatment of these variables will be

exact rather than probabilistic. We talked earlier about the operational laws in 3.1.2 but

here we will discuss them in more detail. Operational laws were originally described by

Buzen [74] and later extended by Denning and Buzen [75]. If we consider a queuing

network with N service centres, if we observe this model for a finite time T, and

calculated the performance characteristics of each service centre i and found that the

number of arrival jobs is Ai and the number of completed jobs is Ci, and at time T the

device i was busy for Bi time. The basic operational law for calculating performance

indices for service centre i is as follows:

Arrival rate i=
T

Ai

Throughput Xi=
T

Ci

Utilisation Ui=
T

Bi

Cheaper 3| Software Performance Evaluation

60

Mean service time Si=
i

i

C

B

If we calculate the total number of jobs completed in the system to be C, we can

calculate the visit ratio Vi for each service centre, and the throughput of the queuing

network X with the following equations:

C

C
V i

i 

T

C
X 

From the relations above we can prove the utilisation law:

SXU ii 

When the number of incoming jobs is equal to the number of completed jobs, the device

is said to be flow balanced, which is a requirement for PFQN. From this, the force flow

law is concluded as follows:

ii XVX 

Little’s law is one of most fundamental laws in calculating results of a queuing network.

It defines the relation between queue length Q and the resident time R (time spent on a

job in a service centre). Little‟s law states that the average number of jobs in a service

centre is equal to the average resident time, multiplied by the jobs arrival rate. And by

considering flow balance devices, the formula for Little‟s law will be:

iii RXQ 

Little‟s law can be applied, not only to a single service centre, but also to the whole

network (as the network satisfies the flow balance requirement). The general formula

for Little‟s law for a queuing network is:

XRQ 

Q is the total number of jobs residing in the network, and can be calculated by adding

the jobs residing in each service centre representing the network:





N

i

iQQ
1

 From Little‟s law we can conclude that:

 



N

i

ii RXXR
1

If we divide the equation by the throughput X and use the force flow law equation, we

will have the general response time law:

Cheaper 3| Software Performance Evaluation

61





N

i

ii RVR
1

The operational laws previously stated are sufficient for open queuing networks. This is

due to the fact that, when applying the flow balance assumption to the whole system,

these equations will provide a steady state for the system under study[62]. This is not

true for closed and mixed queuing networks. This is due to a circular dependency in

such networks between the throughput for customer classes and the service centre queue

length. A solution for this problem was suggested in [73] where the expected queue

length notation was introduced. The expected queue length for a specific job class

arriving in a service centre is equal to the average queue length of that service centre,

after removing one job of the same class from the system. MVA solution is used in the

JMT queuing network solver and simulator, which is the one used in the tool UML-

JMT, which implements the UML-EQN methodology discussed in this thesis.

Extended Queuing Networks

Product-form queuing networks provide a balanced trade-off between accuracy

extracted performance indices and complexity of evaluating the performance model.

The main drawback of product form queuing networks arises from the restricted class of

queuing networks it represents. An accurate representation of the properties of a large

spectrum of computer systems could not be gained due to these restrictions. Extended

queuing network can be defined as a generalised product form queuing network with

added properties. Some of the generalised properties in EQN include:

 Extended queuing scheduling: A new queuing scheduling discipline was

allowed (i.e. priority). This was necessary to model systems, allowing these

types of scheduling discipline.

 Marking Jobs: This means adding information about the job, such as the

message length in networks modelling communication networks.

 Network status routing: New options for the routing procedure were added.

These routing procedures depend on the status of the queuing network. An

example of such routing procedure is load dependent routing where a job is

routed to the (longest, shortest or fastest) queue.

 Jobs holding multiple resources: The main drawback of conventional

product form queuing networks is its limitation in modelling jobs, in that it

is capable of holding multiple resources, although this is a common activity

in computer systems. EQN allows modelling such activity by introducing

passive and active queues. Active queues are the conventional queues. A

Cheaper 3| Software Performance Evaluation

62

job is allowed in EQN to hold resources in several passive queues and a

single active queue.

 Extended arrival and service process distributions: Extended variety if

distributions are added to represent the arrival and service process

distribution.

 Concurrency: A new notation that was added to EQN is fork/join service

centres. Fork/join notation is used to model jobs served in parallel. This is

usually used in modelling parallel and grid systems. A fork station

receiving a job will split this job into a number of identical jobs scattered to

the service centres, connected by the fork/join stations. The join station

works as a synchronization centre to collect all the completed jobs.

The extensions added to product form networks to reach EQN, contradicts with most of

the assumptions made by the solution algorithms for product-form queuing networks.

This will make a generalisation of the product form analytical solution include all EQN

properties, unfeasible. Currently most of the modern queuing network evaluation tools

provide analytical functionalities for solving product-form queuing networks and

simulation tools for providing solutions tools for non-product form queuing networks.

With the massive computation power of current computer systems, simulation is no

longer causing a problem of computational resource requirements.

3.4 Other Performance Evaluation Techniques

Even though Analytical modelling and simulation can be described as being two of the

key performance evaluation paradigms, there are other practical performance evaluation

techniques. In this section, we will briefly discuss some of these techniques. First we

will discuss a formal modelling paradigm known as process algebra modelling and its

extensions. Then we will discuss an alternative approach to a performance study which

is workload analysis.

3.4.1 Process Algebra

A process algebra model is a semantic model describing the behaviour of a system.

Process algebra started as an aid to study the behaviour of concurrent systems.

Originally, process algebra was found to offer algebraic means for the verification of the

functional characteristics of a system. To study performance measures of software

systems, time information has to be added to the behaviour model presented by process

algebra. Two types of time annotated process algebra emerged; stochastic process

Cheaper 3| Software Performance Evaluation

63

algebras, used to describe and investigate the behaviour of resource-sharing systems,

and timed process algebras for real-time systems[76]. As this thesis is concentrating on

software systems, which are classified as resource sharing systems, we will only discuss

stochastic process algebra (SPA) in this section. The time information is added in the

form of random variables representing the time in which they occur and duration of

each activity. The evaluation of the semantic model represented by SPA provides means

for the investigation of both functional, and non-functional aspects of the system. The

functional aspects include (as we recall) functionalities presented by the system and the

absence of deadlocks. The non-functional aspects include performance, reliability and

availability[76]. SPA models are evaluated by solving an underlying continuous time

Markov chain that can be driven from the semantic of the SPA.

The idea of SPA originated from the original time annotated process algebra, where

time segment was associated with actions to define time duration before this action

occurs. The need was to represent this time as stochastic. The first SPA extension

dedicated for studying the performance characteristics, was TIPP[77]. Another

extension of the SPA for performance was PEPA [78]. These extensions of SPA (and

others) provided languages used to represent the semantic representation of the

modelled system and the associated stochastic variables. Most of these extensions

provided tools that will transform the semantic form to the equivalent Markov chain

which will be evaluated (usually by simulation[76]) to deliver the performance results

of the model. Examples of these tools are TIPPtool[79] and PEPA workbench[80].

Process algebra offers attractive features which gives it the ability to represent both

structural and behavioural aspects of the modelled system. A PEPA model extends

traditional process algebra by associating the actions with a random variable that

represents that duration of that action which is assumed to be exponentially distributed.

PEPA models are a formal description of the components composing a system and the

behavioural interactions between these components. The interaction is described as a

series of actions represented as a pair (α, r) where α is the action type and r is the

parameter of the exponential distribution governing the duration of that action. The

structure and behaviour of the system is demonstrated by demonstrating relation

between the components and the behaviour of each component using a set of

combinators defined in the PEPA syntax. An example of a PEPA model representing a

web based system has two components: a Browser and a Server. A Browser either

Cheaper 3| Software Performance Evaluation

64

display data from its cache or retrieve it from the Server, in which it will have to send a

request, process the request and download the result. The PEPA model for that system

is as following:

Server ::= (send, T).(process,µ).(download, T).Server

Browser ::= (display,p1α)(cache ,m). Browser+ (display,p2α). (send, T).(

process,µ).(download, T). Browser

WebSystem ::= Browser <{ send , process , download }> Server

As the Server require a request sent by an acquirer, the action for the send is

distinguished by a Top duration, which means that the rate of the action is outside the

control of this action. The behaviour of the Server component is demonstrated by a

sequence of actions in which the request will be sent, processed, downloaded then the

server will be released. This is distinguished by the prefix(.) combinator. The Browse

component has two options, either to display content from the cache, or to obtain this

content from the server according to the probability p1 and p2. The choice (+)

combinator defines the different scenarios a component may have. The web system is

composed by the cooperation of the two components Server and Browser, this is

indicated by the cooperation combinator which include the cooperation set that contain

the action types involved in that cooperation.

Stochastic process algebras provide a formal method for investigating functional and

non-functional aspects of a software system. As we recall from the previous chapter, the

process of validating functional and non-functional requirement are placed in separate

stages. This comes back to the lack of a methodology that could include both

validations in a single study. SPA provides a means to complete such a task and

although the SPA extensions discussed above concentrate on performance, the research

area is still relatively new. An SPA model could be the input for a CASE tool where

verification and code generation are part of the automated tasks. On the down side,

formal representation and lack of visualisation will make the modelling and

understanding of these models much harder.

3.4.2 Workload Modelling

In computer systems, users generate requests in the form of commands, data,

invocations … etc; these inputs are collectively called workloads. Workload modelling

involves studying a system‟s performance by analysing the real or synthetic workload

characteristics of the system. From the definition, we can ascertain that workload

Cheaper 3| Software Performance Evaluation

65

modelling involves two main procedures named workload characterisation and

workload analysis. Workload characterisation involves collecting workload measures of

the system under study according to the specification of that study. Workload analysis

depends on the raw data collected during the previous phase into meaningful

performance indices, and load distributions that will aid the decisions made on the

system status. Workload modelling is usually a task involved in evaluating performance

characteristics of existing systems. Such studies are essential for system tuning, to

check the best alteration and the effect of this alteration. Workload modelling is also

beneficial in component based systems to verify the compatibility between components

by means of benchmark studies.

 There are two types of workload characteristics (real and synthetic), which can be

distinguished by where and how these characteristics are obtained. Real workload

characteristics are taken from live runs of a system by logging performance

measurements required by the performance study. The kinds of measurements obtained

from such runs are neither controlled, nor repeatable. Furthermore, it does not usually

cover the whole system‟s functionalities, which weakens their role in the process of

gaining an overall performance study that covers all aspects of the system. The

importance of real workload characterisation arises from the information they provide

regarding frequency of usage, which is an essential performance measurement used in

any performance study. Synthetic workload characterisation is obtained by conducting

controlled and parameterised experiments using test or real data, which are called

benchmark tests. Benchmark tests provide a means to gather measurements of the

system that covers all possible behaviour and load scenarios. The main drawback of

benchmarking is the lack of realism and the overhead costs.

Workload analysis involves using the measures collected from the system to obtain a

clear view about the system that will assist in decision making. This involves selecting

the components and parameters on which the study will be built and normalising the

collected data to calculate performance indices. Workload analysis can be done by

manually studying the logs of the experiments, or by using workload analysis tools. An

example of a workload analysis tools is the JWAT, which is one of the tools provided

by the JMT suite. This tool provides a means for analysing log files containing

characteristics of resource utilisation or traffic requests, using a set of known statistical

techniques (i.e. k-Means)[81]. As we stated earlier, workload modelling provides easy

Cheaper 3| Software Performance Evaluation

66

and flexible methods to achieve relatively realistic measures of software systems

performance. There is, however, one condition which is that the systems have to exist.

3.5 Performance Modelling for System Design

As the title of this thesis suggests, we are concerned with performance evaluation in the

design phase of a system‟s life cycle. We require a performance evaluation

methodology that will provide a means to easily and flexibly study and characterise

systems performance measurements with limited information about the system. At the

design phase, the type of performance study usually conducted falls into one of these

categories:

 Choosing the “best” design: At the design stage, there are usually multiple

design alternatives. Choosing among these designs depends on different

measures. One of the important criteria for selecting a design is performance.

The design with the best performance readings will be selected, in accordance

with other aspects (e.g. cost).

 Validating a Design: As we clarified in the previous chapter, the validation of a

design against non-functional requirements was a task left until the testing

phase, and this can lead to catastrophic problems in software projects.

Performance non-functional requirements can be verified against the suggested

design in the design phase, where errors are still easy and cheap to fix. This can

be done by conducting a performance study with the objective of comparing the

required performance non-functional requirements to the actual measures of the

suggested design.

The challenge in studying performance in early stages of system life arises from the

limited amount of performance related data available at that stage. The performance

data usually ranges from previously measured performance characteristics of

hardware/software (off the shelf) components, which can be gained from the

components specification document, to estimates for the expected workload for the

different functionalities of the system. This can be calculated on the basis of predictions

or historical data gained from previous or similar systems.

In the previous sections, we have introduced the main trends of performance evaluation

technologies. Each of these paradigms has its strengths and weaknesses and the domain

in which they become the best available technology. The requirements for a

Cheaper 3| Software Performance Evaluation

67

performance evaluation technology to conduct a performance study in the design phase

can be summarised as the following:

 Can report performance description of the system to an acceptable degree of

accuracy with respect to cost, with minimal information about the system

 Reflect both the structural and behavioural aspects of the system

 Simple enough for modelling, inspecting and solving

 Cost efficient

We can directly exclude the workload analysis technique from our candidates list. This

is due to the fact that this type of performance evaluation practice requires the system to

exist. Simulation, on the other hand, can be used to evaluate the system performance at

an early stage. Simulation programs can be built to a degree of abstraction related to the

amount of information available about the system. The problem arises from the cost

requirement. The amount of time and programming resources required to conduct such

a study exceeds the potentials of that study.

From the previous requirement, it is obvious that the best performance evaluation

paradigm is either analytical (Petri-nets, Queuing networks) or formal modelling. We

noticed earlier that all of these performance evaluation paradigms provide cost efficient,

flexible, and acceptably accurate performance evaluation of a system. Queuing

networks models reflect both the structural and behavioural aspects of the system. The

strength of the queuing network arises from the structure oriented nature of this

modelling paradigm. On the other hand, Petri-nets and process algebra tend to be more

behaviour oriented. For the sake of our requirements, from a design point of view,

structural aspects are more salient, making queuing network more suitable for the scope

of our work. Cortellessa et.al.[82] evaluated these three performance modelling

paradigms from the perspective of the software designer. In an experiment using

product-form queuing network, GSPN and TIPP process algebra to model an XML

translator, the study objective was to find the most acceptable paradigm for software

design. The study focused on two main dimensions which are relevant in the design

level, which are the adequacy (use the paradigm to conduct a performance study at the

design level), and ease of conducting a comparative experiment using this paradigm.

The conclusion of the study stated that although product form queuing networks lacked

representation of behavioural aspects, QN seemed to behave better with respect to the

adequacy and easiness dimensions. We chose to adopt EQN in this thesis, as it

Cheaper 3| Software Performance Evaluation

68

compensates for the drawbacks of limited representation of behaviour with the different

extensions discussed earlier.

3.6 Performance Model Evaluation Tools

As we saw in the previous sections, the process of evaluating a performance model to

derive performance indices requires intense mathematical and statistical background,

along with deep knowledge of the modelling paradigm itself. This encouraged the

development of automated tools for the solving and evaluation of performance models.

These tools ranged from single tools to evaluate a particular modelling paradigm, to

sophisticated capacity management and planning environments. In the earlier versions

of these tools, a model evaluation algorithm would be implemented, which can work

only on a single class of models. These tools were used primarily in research areas. An

example of such tools is the PEPS Markov model solver[83]. This solver was dedicated

to solving complex Markov models. Later, more advanced tools were developed that

provided a complete solution for a specific modelling paradigm. These tools

accompanied multiple algorithms for solving different classes of a specific modelling

paradigm, as well as simulation of the model fall-out of the scope of the solving

algorithms. An example of such tools is QNAP2[71]. QNAP2 tools are a queuing

network evaluation tool that provides the user with multiple options for solving the

network analytically (e.g. conventional, MVA, ITERATIV…, depending on the class of

queuing network) or by simulation. QNAP2 requires the user to represent the queuing

network in a PASCAL-like language. The notations written in the queuing network

description code, as well as the execution code, will instruct the solver with the type of

solution and which queuing network solving algorithm. Another example of such tools

is PEPA workbench[80], which provides solutions to the PEPA formal stochastic

algebra.

Currently most commercial performance evaluation tools come as a part of capacity

management and planning environments. These environments provide the user with a

wide range of performance evaluation techniques which include modelling, simulation

and workload analysis. These environments usually incorporate multiple performance

evaluation tools. An example, the BEST/1 queuing network tool (which was one of the

first commercial queuing networks packages) is now a part of the BMC capacity

management environment. Some of these environments provide multiple performance

evaluation paradigms that can model the system with different abstraction notation and

at different levels of hierarchy depending on decisions taken from the specification of

Cheaper 3| Software Performance Evaluation

69

the system and the performance study objectives. Examples of these tools are the

IMSE[84] and the HIT[72] environment. The IMSE provides functionalities to study a

system performance by multiple performance evaluation paradigms. Modelling is

available through both queuing networks and Petri-nets. In IMSE, the performance

indices of the system under study is predicted by experimenter tools that work on a

special model of the system called PrM notation.

Table 3.1: Comparison between some of the performance evaluation tools according to

generality, simplicity and extendibility criteria.

 P
E

P
S

Q
N

A
P

2

P
E

P
A

B
M

C

IM
S

E

H
IT

J
M

T

E
x
te

n
d

ib
ili

ty

Ability to extend the tool through a structured

interface

0 1 1 1 1 1 1

The interface is a standard interface and the

model generation can be done easily

0 0 0 0 0 0 1

The ability to provide both model and

experimentation data through this interface

0 1 1 0 0 1

S
im

p
lic

it
y

The representation of the performance

model in a graphical form

1 0 0 1 1 1 1

The experimentation process is easy, and

the results are clearly displayed

1 1 1 1 1 1 1

Alterations to the performance model on the

tool are easy.

0 1 1 0 0 1

G
e
n
e
ra

lit
y

Support multiple performance models and

performance evaluation paradigms

0 1 0 1 1 1 0

Support multiple performance evaluation

paradigms

0 0 0 1 1 0 1

Support EQN 0 1 0 1 1 1 1

In this thesis, we were looking for a queuing network evaluation tool which we will use

as the basis for the tool implementing the UML-EQN methodology. With the variety of

performance evaluation tools available, we have to set some criteria for choosing the

best one for our needs. The first criterion was extendibility which means that the tools

need to be able to interact with our tool. This interaction can be by embedding any of

the systems in the other or by allowing a common interaction language between the

tools. Another decisive criterion is simplicity, which covers both the use of the tool for

Cheaper 3| Software Performance Evaluation

70

PEPS QNAP2 PEPA BMC IMSE HIT JMT

Generality 0 2 0 3 3 2 2

Simplicity 2 2 2 2 2 2 3

Extendibility 0 2 2 1 1 1 3

0

1

2

3

4

5

6

7

8

9

Figure 3.4: Comparison between some of the performance evaluation tools according to

generality, simplicity and extendibility.

modelling and visualising the performance indices. One of the main simplicity rules was

that the model needs to be defined in the same way that the methodology specifies. As

an example, in queuing networks, the network model needs to be modelled visually with

graphical notations. This will prove the clarity of the model. Using textual notations to

represent graphical models will undoubtedly increase the effort the user has to make in

order to improve or inspect the model. One key criterion, which we partly considered

(as the methodology is for EQN), is generality which denotes the coverage of the tool of

performance evaluation methodologies. This includes the range of performance study

paradigms and the variety of algorithms adopted. Table 3.1 shows a survey composed

by the writer of this thesis for comparing a number of performance model evaluation

tools according to the criteria discussed above. For each criterion we specified three

properties which can be classified as being important in the performance model

evaluation tool we are seeking. We gave scours for each tool according to these

articulated properties as shown in Table 3.1. Figure 3.4 shows a comparison between

the total scours for each of the criterions, the graph clearly shows that the tool most

suitable to be the performance evaluation tool is the JMT suite.

The queuing network evaluation tool that we are using in this thesis is the JSIMgraph

which is a part of the JMT suite[81]. The Java modelling tools suite is a collection of

performance evaluation tools that provide modelling and capacity planning, and

analysis functionalities. The reason for choosing JMT is that it matched all the criteria

we had set for the required model evaluation tool. From a generality point of view, JMT

Cheaper 3| Software Performance Evaluation

71

provides the means to evaluate queuing networks models analytically and by

simulation. It also provides workload characterisation and analysis tools which can

provide characteristics that can be used as inputs for performance models in the other

tools provided by the suite. As for simplicity, JMT provides full graphical modelling

and analysis capabilities that will allow the user to build, inspect and update queuing

networks models easily. The tools also provide user-friendly analysis tools that will help

the user in studying the performance indices generated by the solving tools. Expanding

the JMT tool to include performance models created by our UML-JMT tool was

possible as the JMT main design goal was extendibility. Next we will discuss the

queuing network solution tools and analysis tools available in JMT. In Section7.2, we

will discuss the technical aspects of the JMT suite which allow the extendibility of the

tool.

3.6.1 JMT Queuing Network Solution Tools

The JMT suite provides two main methods for solving a queuing network. Queuing

networks can be solved analytically or through simulation. The analytical solution

provided by the JMVA tool provides the exact analysis of product-form queuing

networks through a stabilised version of the MVA algorithm[81]. The simulation

solution is provided by a discrete event simulator for the analysis of queuing networks

called JSIM[85]. The JSIM supports several probability distributions for characterising

service and inter-arrival times, as well as different routing strategies[86]. JMT suite

provides simulation solution through two tools, the JSIMwiz, which is a wizard

interface for the JSIM simulator, and the JSIMgraph. The JSIM graph is a graphical

user interface tool that allows the user to design and amend a queuing network model as

a workbench. As the model generated by the UML-EQN methodology may include

non-product-form aspects (i.e. fork and join), we chose to use the JSIM simulator as the

main queuing network solver. The model produced by the UML-JMT tool is configured

to be opened by the JSIMgraph, where the user can amend the model and conduct the

performance analysis experiment. A great feature of the JSIMgraph tool is that it can

open a model designed inside it in the JMVA tool, provided that this queuing network is

a product-form queuing network. This means that if the model produced by the UML-

JMT tool does not have any non-product-form aspects, this model can be solved either

analytically or by simulation.

Cheaper 3| Software Performance Evaluation

72

3.6.2 JMT Queuing Network Analysis Tools

The JMT queuing network analysis tools provide a set of analysis functionality that will

help the user of the tool to study the performance indices of the system. These

functionalities can be working on a fixed set of input parameters or on a variable control

parameter. An analysis tool available in the JMT suite called the What-if analysis tool,

allows the user to set one or more control parameters (can be the number of users,

workload … etc) ,and this tool will evaluate the performance model for the performance

indices that the user selected along the ranges selected for this control variable. This

will allow the user to observe the change in the system behaviour as the conditions

around the system change. The JMT suite provides different performance indices for the

user, such as throughput, utilisation and respond time. These can be for the whole

system or for a specific work station or job class. Other performance indices that

describe the performance of specific stations include, queue length, queue time,

residence time, response time and utilisation. The reader can refer to the JMT suite user

manual[87] for more information about the tools analysis functionalities.

3.7 Summary

Performance evaluation is the process of assessing the performance of the software

system. The performance of a computer system is defined by performance related

measurements called the performance indices. These indices relate to the speed of

response, utilisation of resources, and the usage of the system in the context of the

organisation. This Chapter provided background information related to software

performance evaluation technologies. This included defining the software performance

evaluation process and its importance. It also explained the process of software

performance evaluation, describing the fundamental terminologies used in the process,

and detailing the main techniques used to produce a performance study. The objective

of this chapter is to investigate the different performance evaluation paradigms in order

to determine the “best” modelling paradigm that would be most appropriate to represent

the architectural specifications of a software system. To do this, we provided an in-

depth description of some of the key performance evaluation paradigms used in

software performance evaluation. The evaluation of these paradigms was in terms of the

cost efficiency, the generality of the model, ability to maintain architectural aspects and

the cleanness in representing these architectural aspects. At the end of this comparison,

we found that the EQN would provide the “best” modelling paradigm. The choice of

this modelling paradigm is also related to the availability of analysis tools that would

Cheaper 3| Software Performance Evaluation

73

solve this performance model for the required performance indices. We found that JMT

matched all the criteria we had set for the desired model evaluation tool. Therefore,

JMT was chosen to be extended in the performance evaluation tool developed in this

research.

74

CHAPTER

Integrating Performance Evaluation

in Software Engineering 4

Chapter 4: Integrating Performance Evaluation in Software Engineering

When the software crisis hit in 1960, a great deal of attention was placed on the

verification of functional requirements which were considered to be of crucial

importance [5]. Most of the methods that were used in verification, such as prototyping,

only focused on functional requirements, and even the modelling languages used to

model these requirements focused on representing functional specification. Over the last

two decades, researchers have addressed the importance of integrating qualitative

requirement into the development process. One of the principal qualitative requirements

for software is performance. The process of verifying the performance requirements of a

software system is one of the tasks defined by software performance engineering.

Software performance engineering is a means of integrating performance evaluation

techniques into software development processes. Performance engineering processes

include techniques that will assist software engineers with performance evaluation

related tasks, either during the development or maintenance of a software system[88].

Performance evaluation task can be carried out in any phase of the system development

life cycle. However, it is rare for a system to be fully designed and functionally tested

before any attempt is made to determine its performance characteristics. This is due to

the fact that redesign of both hardware and software is costly, especially in the late

stages of the development cycle, and may cause delayed system delivery. Also, it is

possible that the system in hand cannot be tested by direct experiment for a reason

related to its nature (i.e. dangerous, disruptive …), or because the system does not yet

exist[55]. Despite its importance, the modelling process requires highly trained

modellers; this is because the modelling process is said to be an art which requires

experts who have significant experience in performance modelling terminology. The

supplementary budget required to achieve performance evaluation often causes the

exclusion of this task from software project plans. This event has inspired researchers to

find methodologies that will allow system architects to complete the performance

analysis task without any of the additional costs listed above. One methodology

Cheaper 4| Integrating Performance Evaluation in Software Engineering

75

investigated involves the generation of the performance model from the system

architecture model (SA), represented in UML. The UML model represents how the

system components interact with each other. Using this information plus statistical data

about the system and QoS requirements, a performance model can be generated.

This chapter will discuss software performance engineering processes for both

conventional and agile software development methodologies, and the performance

evaluation techniques used in the performance evaluation tasks defined by software

performance engineering. Section 4.1 will discuss the terminology of software

performance engineering. As agile development was recently deployed, literature did

not report any attempts to define a performance engineering method for system

architecture assessment. Therefore, in 4.2 the author has suggested a method for

assessing the performance of a projected design in agile development. Section 4.3 will

provide a survey of some of the work done in the field of generating performance

models from design models.

4.1 Software Performance Engineering

Software Performance Engineering refers to the performance related analysis and

activities incorporated in the software engineering process[88]. The importance of

software performance engineering arises from the need for methods that will provide

assurance of the quality of software systems during development and maintenance. This

is essential as the size and complexity of modern software systems are continually

increasing. As Smith et al. explained, the earlier the performance validation process is

undertaken, the more confident we are of finding any design faults that may affect the

quality of the final software product[8]. In general, performance engineering tasks are

incorporated into the development‟s design and test phases as a means of ensuring that

the suggested design meets the QoS requirements. Moreover, performance engineering

can be used in the maintenance phase for identifying and solving possible performance

related problems. This thesis is concerned with the first role of software performance

engineering, that is, the performance non-functional requirements verification role

during the development of software systems.

Literature reports a number of performance engineering methodologies used to verify

the software architecture against performance non-functional requirements. Work on

this includes The Software Architecture Analysis Method (SAAM)[89], the

Architecture Trade-off Analysis Method(ATAM)[90] and Performance Assessment of

Cheaper 4| Integrating Performance Evaluation in Software Engineering

76

Software Architecture (PASA) [13]. All of these methods provide an approach for

evaluating the performance of software architecture. These approaches do not only

concentrate on the generation and analysis of the performance model, but also on the

methods used in gathering the performance related information, assessing the system

from a performance perspective and suggesting methods for solving any performance

problems. This defines the main difference between software performance engineering

methodologies and performance evaluation methodologies. We can identify the

performance evaluation methodologies as the methodologies mainly concerned with the

generation of the performance model used to evaluate a system performance. These

methodologies can be deployed in the performance evaluation step of a performance

engineering methodology. We will discuss some of these methodologies in Section 4.3.

PASA is one of the complete performance engineering methodologies dedicated to

information systems performance assessment. It provides a method for assessing and

solving performance problems related to software architecture, with respect to technical

and economic aspects. PASA will be discussed in more detail in the next sub-section.

As we explained earlier in the previous two chapters, the use of performance evaluation

in non-functional requirement verification involves conducting a performance study on

the architectural design of the projected system, by abstracting the critical behaviour

that is expected to affect the performance. This performance study will evaluate the

performance capabilities of the suggested design with respect to expected workloads.

Despite its importance in the software development process, it is generally

acknowledged that the lack of performance engineering deployment is mainly due to the

knowledge gap between software engineers/architects and performance engineering

experts, rather than to fundamental issues. In addition, most of the well known

performance evaluation processes require an extra budget to fulfil the performance

evaluation task. This budget will be invested in hiring professional system modellers or

in programming simulation models for the system. This overhead in financial and time

resources can cause the exclusion of this task from the software project plans. This has

inspired researchers to find comprehensible, cost efficient technologies that will allow

system architects to perform the performance analysis task without any of the extra

costs listed above. One approach, which has been investigated widely, is to use the

system architectural and behavioural characteristics represented in software architecture

modelling language (e.g. UML) as the source to generate an equivalent performance

model for a system. These methodologies utilise the structural and behavioural aspects

Cheaper 4| Integrating Performance Evaluation in Software Engineering

77

of the system represented in different notations, in addition to expected workload

characterisation of the projected system, to generate a performance evaluation model

that can be solved or simulated to assess the expected QoS specifications of an

architectural design.

4.1.1 PASA

The PASA method is a performance evaluation process for software architecture. It was

introduced by Williams and Smith as the nectar of their experience in software

performance engineering. The idea behind the introduction of PASA is stated in [13]

“Our experience is that performance problems are most often due to inappropriate

architecture choices rather than inefficient coding”. PASA provides techniques and

strategies for identifying and solving potential performance risks in suggested

architectural designs. PASA is scenario based, which means that the performance

analysis of the software architecture will concentrate on a set of critical scenarios with

respect to performance. The criticality of these scenarios arises from the workload

characterisation or service demand expected in these scenarios.

The PASA method is specified to be deployed in the design and test phases of a

conventional development process. It starts with the suggested architectural design in

hand and a set of potential key scenarios with large workloads or service demands. The

next step is to identify the objective quantitative performance acceptance measures.

These are usually gained from the non-functional requirements specification. The next

step includes building a performance model from the architectural design and the

critical scenarios. This model will be solved and analysed to gain the expected

performance indices of the suggested architectural design. As part of the analysis, the

calculated performance indices will be compared to the expected performance

characterisation to evaluate the performance of the architectural design. If any potential

risks arise from the results of the analysis, PASA suggested three main strategies for

eliminating these risks. These structures include deviation from the architectural style,

alternative interaction between components, and refactoring. The last step of the PASA

method includes economically analysing the suggested architecture. This analysis

includes studying the cost/benefits trade-offs of the suggested architectures and the

potential alterations on that architecture.

Cheaper 4| Integrating Performance Evaluation in Software Engineering

78

Williams and Smith summarise the activities of the PASA methodology in ten steps

quoted from [13] which are:

1. Process Overview: The first step of the assessment involves an orientation

process for the project staff on the importance and steps of the performance

study.

2. Architecture Overview: The suggested architecture(s) are presented by the

system architects.

3. Identification of Critical Use-Cases: The most important functionalities

expected to affect the system performance are identified.

4. Selection of Key Performance Scenarios: The scenarios of the critical use-cases

are identified.

5. Identification of Performance Objectives: The intercepted QoS measurements

are identified.

6. Architecture clarification and discussion: Participants conduct a more detailed

discussion of the architecture and the specific features that support the key

performance scenarios. Problem areas are explored in more depth.

7. Architectural Analysis: The architecture is analysed to determine whether it will

support the performance objectives.

8. Identification of Alternatives: If a problem is found, alternatives for meeting

performance objectives are identified.

9. Presentation of Results: Results and recommendations are presented to

managers and developers.

10. Economic Analysis: The costs and benefits of the study and the resulting

improvements.

The PASA method suggests the use of the SPE [6](Software Performance Engineering)

methodology and the SPEED tool [91] for performance evaluation tasks identified in the

PASA method. We will discuss them further in the next subsection.

4.1.2 SPE Methodology

One of the first complete methodologies to integrate performance analysis into the

software development process, was the SPE (Software Performance Engineering)

methodology by Williams and Smith [6; 92]. The SPE adopted a new trend in system

performance evaluation by considering both the architecture and behaviour of a system

rather than considering only one of them. Prior to the SPE methodology, the system

performance was measured by evaluating either the hardware configuration or the

Cheaper 4| Integrating Performance Evaluation in Software Engineering

79

behaviour of this system by a suitable modelling paradigm. SPE introduced the

combination of these two fundamental aspects in two Meta models named Software

model and Machine model. The software model is represented in SPE by a notation for

modelling the behaviour and resource usage called the Execution Graph (EG). EG is a

graphical representation of the functional and resource demand characterisation of a

system. The machine model is represented in SPE as a QN, as discussed earlier in

Chapter 3. The separation of the structural and behavioural characterisation will provide

the modeller with flexibility which will allow him/her to experiment with different

hardware/software configurations.

The SPE uses a top-down approach in the specification of the EG. The EG is a directed

graph with nodes representing the functional components composing the system. These

components can be detailed or abstract, depending on the stage of the performance

study and criticality of the role of this component in the overall functionality of the

system. The SPE adopts the 80/20 rule, which states that 20% of the total functionalities

of a software system will determine 80% of the performance. Therefore, when initially

constructing the EG, only the most common functionalities will be explained in detail.

Between the nodes of EG are arcs that define the execution paths in an EG. These arcs

are parameterised with probabilities depending on the frequency of the execution path

they represent. The EG is also annotated with the attributes representing the resource

requirement for each of the functionalities’ execution paths. These annotations are

called demand vectors. The analysis of the EG provides information about the

performance of each of the execution paths. This is done in the basic analysis of the EG,

where the EG is analysed in a bottom-up manner. In the basic analysis, the best, worst

and expected delays are calculated for each of the execution paths. This is done starting

from the leaf nodes and continuing upward. The information gained from this analysis,

along with the hardware and software components model represented by the machine

model, are added to a system execution model which will provide performance

measures for the projected system. The SPE methodology was automated by SPE.ED

[91], a performance modelling tool specifically designed to support the SPE

methodology. In SPE.ED the user must identify the scenarios he/she wants to inspect, in

terms of a modelling language that represents the EG. SPEED will then construct an

EQN for the system; this EQN will be solved to provide the requested performance

measures.

Cheaper 4| Integrating Performance Evaluation in Software Engineering

80

Although SPE provides simple, effective and cost efficient methodology for software

performance evaluation, its dependability on non-standard software behaviour

modelling notations (EG) is one of its drawbacks. This was solved in [13] and [93]

where UML behaviour models were suggested as a starting point for building the EG.

These methods provided algorithms for using the system’s UML sequence diagrams to

construct the EG and its UML deployment, and class diagrams to create the EQN of the

system. This method of extracting the performance model from the software’s UML

architectural and behaviour model is the latest trend in software performance

engineering. Literature reports a number of methodologies for transforming specific

UML diagrams to different types of performance models [2-6]. Although these

methodologies can help in capturing the performance aspects of the designs that they

represent, the simplicity of these methodologies and the degree of automation of the

performance evaluation test provided by these methodologies will affect the ability to

merge these methodologies in the non-functional requirements verification task in any

of the software development processes. These methodologies will be discussed further

in Section 4.3.

4.2 Performance Engineering in Agile Development

As previously discussed in Chapter two, changes in the overall environment of the IT

and business worlds require different techniques that can adapt to the current

requirements of the business. Requirements such as increasing the business value of

developed software and decreasing the costs caused by developed, unused

functionalities, inspired developers to adopt alternative routes in software development

project management. The terms agile and incremental became keywords when talking

about software development techniques. These techniques are based on iterative

development, where requirements, designs and developed programmes evolve

continually. These paradigms depend on continuous automated testing for the purpose

of verifying the implementation of the current release against the current set of

requirements. At present, the majority of literature discussing the role of requirements

engineering in agile development processes [29; 94; 95] seems to indicate that non-

functional requirements verification is an unchartered territory. This was originally true

for conventional development methodologies, such as waterfall or RUP, until

frameworks were introduced to incorporate performance assessment as part of the

development process.

Cheaper 4| Integrating Performance Evaluation in Software Engineering

81

As we discussed in the previous section, PASA is a framework for studying the

performance aspects of a software design. PASA concentrates on systems developed in

a conventional software engineering approach, where a full and finalised requirements

specification is ready for the designers at the start of the design phase. This is not true in

agile development processes, where requirements evolve and can only be finalised

during an iteration of the development of a component where its requirements are

specified. In response to this, CPASA (Continuous Performance Assessment of

Software Architecture) is an extension to the PASA framework, which is adjusted to

work in software projects where the performance can be affected by changes in the

requirements. CPASA is, in fact, designed with agile and incremental software

development processes in mind. It was developed on the basis that, since continuous

change in the requirements will eventually have an effect on design, checks should be

made in each cycle to ensure that the performance characteristics of this design are not

adversely affected. To achieve this, the CPASA framework matches the main practices

of agile modelling and development. This section will discuss the CPASA formwork.

We will first discuss the extension of the original PASA framework (CPASA) to allow

it to be deployed in an agile development methodology, and then we will discuss the

deployment of the CPASA in the development, using the performance evaluation tool

developed by the writer of this thesis, which is discussed in detail in Chapter 7.

4.2.1 CPASA

As previously mentioned, CPASA is an extension of the PASA method. The motivation

behind this extension was to customise the steps of the PASA method to be deployed in

the expansively adopted agile development process. PASA was designed on the basis of

the conventional development processes, where the full set of requirement and design

specifications are decided in the early stages of the development cycle. PASA adopt a

method for assessing the performance characteristics of the architecture design. The cost

of maintaining performance problems arising from this stage is undoubtedly lower than

if these problems are found later. As discussed in Chapter 2, in agile development, the

requirements specification for a component is only available at the time of development

of this component. In several cases, these requirements will cause a change in the

instant architectural design of the overall system. Since continuous change in the

requirements will eventually have an effect on design, checks should be undertaken in

each cycle to ensure that the performance characteristics of this design are not adversely

affected.

Cheaper 4| Integrating Performance Evaluation in Software Engineering

82

The CPASA method was designed, from the outset, to be integrated into an agile

development process without affecting the overall agility of the development process.

The requirements of the CPASA method to evaluate the performance aspects of a

system‟s architecture are all utilised from the information and artifices generated and

used in any agile development process. The philosophy of the agile development

methodology can be summarised in the following points:

 Continuous requirements elicitation and design

 Continuous test driven implementation

 Automated testing

 Continuous integration

 Continuous feedback

The CPASA method was designed to maintain these points in the development process

while providing the performance verification required during system development. In

this section, we will discuss the effect of the CPASA method of performance

assessment on the agile development process, by discussing the deployment of the

CPASA method in the development of an agile project.

The main extension of the PASA methodology suggested by CPASA can be

summarised by extending the scope of deployment of the PASA method from simply

the design phase, to the whole development process. This comes back to the fact that the

agile development process relies on continuous requirement/design iterations. Another

alteration of the original PASA method is by concentrating and minimising the

Initial Iteration

Iteration N

Iteration N-1

Figure 4.1: Outline of the CPASA method in agile development process.

Initial Requirements

Initial Design

PE

Initial

Design

Inspection

Update Design

Start Development

PE Design

Refactoring

Cheaper 4| Integrating Performance Evaluation in Software Engineering

83

performance assessment steps to allow the CPASA to be included in the short/fast

iterations of the agile development process.

The CPASA method consists of continuous PE (Performance Evaluation) tests (shown

in Figure 3 as pentagon shapes). Each PE consists of the following steps:

 Construct Performance Model: As in PASA, the architectural design and the key

scenarios will be used to automatically construct a performance model. This

model will be used to study the expected performance capabilities of the instant

design. The scenarios used to construct this model depend on the stage in which

the model is built (which iteration). This will depend on the amount of

information about the scenario gained by the stakeholder.

 Solving/Analysis of the Performance Model: The solving and analysis of the

performance model built in the previous step should be automated to implement

the automatic-continuous-testing tenet of agile development. There are several

ways for implementing similar automatic tests as we saw in Section 2. In the

next section, we will discuss the UML-JMT tool which was developed to

provide an automatic tool for verifying performance of non-functional

requirements during agile development.

 Tuning or Refactoring (if needed): If potential risks arise, the agile development

process adopts refactoring as a procedure for correcting any problems in relation

to architecture. We propose two types of changes in the architecture in regard to

performance. If the performance can be solved by simple tuning on the

components configurations (number of service threads), we call it a minor

refactor. If a full refactor is needed, we call it a major refactor.

We will further explain the PE steps in the next sub-section where we will discuss the

PE test using the UML-JMT tool developed to deploy the CPASA method.

The main outline of the CPASA method deployment in an agile development process is

shown in Figure 4.1. The initial architectural design of the projected system is verified

in the initial iteration, where the system requirements and structure are envisioned. In

this stage, the main components of the system are distinguished and the structure in

which these components interact is specified. Furthermore, the behaviour in which these

components interact is outlined. These components will be developed during each

iteration. The initial design inspection is concerned with assessing the performance

aspects of the initial architectural design. This will help in validating the suggested

Cheaper 4| Integrating Performance Evaluation in Software Engineering

84

design and comparing different design alternatives. The process of comparing these

alternatives will be based on both the technical and economical aspects of the suggested

architectures. As discussed in Section 3, by the end of the initial iteration, the initial

architecture and initial plan will be determined. During the implementation iterations,

more information about the implemented component will be released. This returns to

detailed requirements gained during each of the iterations. These requirements will

include new performance characteristics and new potential critical scenarios. This could

affect overall performance on the instant architecture. These emerging requirements will

potentially have an impact on the design; therefore, a re-inspection study of the

performance capabilities of the instant architecture is required. After each iteration, a

performance study is conducted to re-inspect the design. If the performance was

adversely affected by these changes, a design refactoring is indicated which can alter the

design so that it can provide the required performance measures.

4.2.2 CPASA at Work

As a part of the work in this thesis, a performance assessment tool (UML-JMT [11])

was developed. This tool was designed to deploy the CPASA Performance evaluation

tests. The UML-JMT tool is an interactive system that provides the software designer

with the means to automatically assess the performance characteristics of an

architectural model represented in UML, by converting this architectural model and

some key scenarios to an equivalent EQN (Extended Queuing Network) performance

model. This will help in the process of requirement verification for performance non-

functional requirement. UML-JMT adopts a component oriented view of software

systems. That is, it models a system as a set of components. These components reside in

the system according to a specific structure and interact according to specified

behaviours. The component based representation will allow the conduct of performance

studies with different degrees of abstraction. This is essential in agile development as

the level of detail about the system specifications increases as the development

iterations proceed. At the initial iteration, the UML-JMT tool can be used to verify that

the configuration of the initial architecture will meet the anticipated performance

requirements. As the iterations progress, the UML-JMT tool can be used to build more

detailed performance models which can be used to obtain more accurate performance

indices representing the system. As requirements may change, the UML-JMT can be

used to study the effect of these changes in the overall system performance

characteristics. The performance requirements verification process provided by the

Cheaper 4| Integrating Performance Evaluation in Software Engineering

85

Construct the Architectural

model from the available

information about the system

The UML-JMT tool will

assess the software

engineer in a wizard

like process in the

building of the

performance model

(See section 8.1)

Is the performance of

the architecture

acceptable?

Yes

Processed

to the Next

Iteration

Reactor

Architecture

Design

No

Minor

Major

The performance

reported by the

performance study can

be compared with the

expected performance

characteristics

specified by the

stakeholders

Performance studied on

the system

performance model can

be deployed easily by

the what-if tool

The constructed

Performance model can

be opened and

amended by the user

for fast tuning

Performance

information about the

expected performance

characteristics will be

collected in the wizard

Figure 4.2. Using the UML-JMT as PE tool for CPASA assessment

Cheaper 4| Integrating Performance Evaluation in Software Engineering

86

UML-JMT tool can assist the user with the building of a relatively accurate

performance model from the design specifications of the system under study, which can

be simulated to provide the performance indices of the design. These indices can be

compared to the required performance aspects of the projected system. The main

advantage of the UML-JMT is that it provides a highly accurate, cost-efficient means of

evaluating the performance characteristics of a software design.

Figure 4.2 illustrates the process of using the UML-JMT tool for conducting the PE

tests specified in the CPASA method. The UML-JMT will accept UML models

representing the architectural design and the key scenarios deployed in that architecture.

UML-JMT will receive these as an XMI document containing the use-case, sequence

and deployment UML diagrams modelling the structure and behaviour. The UML-JMT

will analyse these diagrams then it will query the user about the performance

characteristics of the required performance model (i.e. workload intensity, service time,

average delay in networks … etc). The EQN performance model representing the

studied architecture will be opened to the user in the JMT performance evaluation suite

[81]. This model can be tested using the model evaluation tools available in the JMT

suite (i.e. what-if tool [96]). The results will be available for the user to compare with

the anticipated performance indices. If the results do not meet the required performance

measures, the user can make a major or minor modification to the architecture. A major

refactoring decision will require the PE test to be repeated, as the performance model of

the new architecture design will differ from the old design. Minor tuning can be carried

out on the performance model directly. Such minor tuning includes increasing the

number of service threads, using a faster network, using faster hardware … etc.

4.3 Performance Evaluation of System Architecture

The previous two sections have discussed the software performance engineering

methodologies. We explained earlier that software engineering methodology employs

performance evaluation techniques for the process of assessing the performance aspects

of system architecture. We have already discussed one of these methodologies (SPE) in

4.1.1. As we previously explained, one of the drawbacks of this methodology was in its

dependability on a non-standard system architecture and behaviour notation. This

drawback was caused by the absence of a similar standard until the introduction of the

UML modelling notations (see 2.3). The introduction of the UML notation led the

research of performance evaluation to utilise the UML architecture and behaviour

Cheaper 4| Integrating Performance Evaluation in Software Engineering

87

artefacts in the process of building the performance model used in the performance

study of the performance evaluation procedure.

Literature reports a number of methodologies for extracting a variety of performance

models from different architectural and behavioural UML models. King and Pooley

suggested the state marking methodology to derive GSPN performance models from

UML diagrams [97]. Also Grao et al. [98] suggested a methodology to translate a UML

activity diagram - associated with performance annotations from UML proposed profile

- to GSPN. Ping and Petriu suggested an algorithm that will transform UML to Layered

Queuing Networks (LQN) [99]. More recent papers have suggested algorithms to

translate UML to Stochastic process algebra; examples are a method by Canevet et al.

which describes an algorithm that will automate the extraction of PEPA models from

UML state chart and collaboration models [100], and a paper by Bennett et al. which

describes their methodology for extracting FSP models from UML models [101]. In this

thesis we will explain two methodologies for extracting Markov models and EQN from

UML models, and we will discuss this in Chapters 5 and 6 respectively. In this section

we will discuss some of the methodologies suggested for performance evaluation of a

system‟s architecture by evaluating these methodologies against a set of criteria which

we defined. These criteria define the fundamental aspects that should be available in a

performance evaluation methodology in order for it to be effectively used in a

Usecase Name

actor

Comp1 Comp2

Comp3

Call

Asy Call

return

recursive call

Message

{n>5}

UML Models

+

Workloads

and

Performance

Characterisation

UML to Performance model

methodology

Equivalent Performance

model

Performance Model

Evaluation Tool
Amend

system’s

Design

Analyse Performance indices

Figure 4.3: The steps of a system performance study using the UML to performance models

methodologies

Cheaper 4| Integrating Performance Evaluation in Software Engineering

88

performance engineering process. We will discuss and justify these criteria in Sub-

section 4.3.1. Then, in Sub-section 4.3.2, we will make a survey of a selected set of

performance model extraction methodologies in the context of these criteria.

Figure 4.3 illustrates a template of the role played by the methodologies discussed in

this section, in the process of conducting a performance study. The methodologies

discussed here start by collecting the information required to build the performance

model from the UML architectural and/or behavioural models. The UML models used

differ from one methodology to another; this will depend mainly on the type of the

resulting performance model. Along with the UML models, the system workloads and

resource demands are also required in the process of building the performance model.

The process of building the performance model differs from one methodology to the

next. The result of these methodologies is a performance model that can be solved by a

performance evaluation tool. The solution can be analytical or by simulation, depending

on the type of the performance model. Some of the methodologies provide tools that

will include the two blocks in Figure 4.3 which represent the building process and the

evaluation process. The performance indices gained from the evaluation of the

performance model can be analysed in order to suggest plans for amending the system‟s

design.

4.3.1 Evaluating the Methodologies

The main goal of these performance model building methodologies is to decrease the

costs of conducting the performance study tasks deployed in any performance

engineering framework. These costs arise from the resourses and the time needed for

programming simulation models. These methodologies intend to reduce the knowledge

gap between software engineering and performance engineering, by providing a black

box approach that will help in conducting the performance study, which is important in

the performance requirement verification process. To achieve this goal, the

methodology has to comply with four main criteria which are:

Time Efficiency: The methodology has to be cost efficient in the sense that it will

generate performance models with an acceptable degree of accuracy and with minimal

cost. One of the important resources in software development, apart from financial

resources, is time. This is essential in the context of software performance engineering

as one of the main causes for the exclusion of performance engineering from project

Cheaper 4| Integrating Performance Evaluation in Software Engineering

89

plans is, once again, the complexity and time consumption of this procedure. The

methodology has to provide results that do not require extra time to learn or deploy. The

efficiency criterion can be measured by the following factors:

 The deployment of the methodology does not require the use of non-standard

models or meta-models for the system or the performance. The time required to

learn these new models will affect the simplicity of the methodology, and

further still, will conflict with the goal of bridging the knowledge gap between

software and performance engineering.

 The resulting performance model has to be easy to evaluate (solve) and

analyse. The performance model produced needs to be supported by efficient

and easy-to-use evaluation and analysis tools.

 Availability of tools that deploy the methodology is one of the key factors that

defines the time efficiency of a methodology. This will help in providing

software engineers with minimal knowledge in performance engineering

terminology, with the means to conduct performance assessment studies,

without the need to fully understand the steps or the theory of the methodology.

This factor is also related to the automation criterion.

Generality and Transparency: The generality and transparency criteria are mainly

related to the performance model produced by the methodology. The ability of a

methodology to represent a performance model capable of representing all classes of

system architectures is an essential factor. As we discussed previously in Chapter 3,

some analytical performance models are limited in their representation of some

architectural and behavioural aspects. This limitation will affect the generality of the

methodology. We have already discussed the requirements of studying a system

architectural design in Section 3.5 and we explained that analytical modelling provided

the “best” performance models from the cost-time perspective. And we further

explained that queuing networks provided the means to combine architectural and

behavioural aspects of a software design. The limitation of the analytical solution

algorithms for product-form queuing networks led us to adopt simulation based

solutions for non-product form queuing networks. Transparency criterion means the

ability to reflect the architecture and behaviour from the performance model. This is

essential in reverse engineering process. In some cases, design tuning is made directly

to the performance model. The ability to trace these changes to the design model is a

useful feature.

Cheaper 4| Integrating Performance Evaluation in Software Engineering

90

Automation: automation means that the methodology needs to be systematic in a way

which allows it to be automated in the tool that will deploy it. The availability of a tool

for deploying the methodology is essential in automating the non-functional

requirements verification task, which is a beneficial practice in some software

engineering methodologies (e.g. Agile). Also, it is essential in the time efficiency

criterion, as we discussed above.

4.3.2 UML to Performance Model Methodologies

Literature reports a range of methodologies dedicated for transforming UML models to

equivalent performance models. These methodologies differ from each other in the

deployment of UML as a representation of the system architecture or as structural

language used to represent a specific system structure or behaviour. The deployment

and utilisation of these methodologies depend on the stage of development, on which

these methodologies can be deployed, the objective and nature of the performance study

and the level of detail of the information available during the deployment of the

performance study. The complacence of these methodologies with the criteria discussed

in the previous section depend largely on the type of performance model produced, the

nature of the transformation method (syntactic or semantic) and degree of the effort

invested in realising these methodologies.

For the methodologies that embrace the architectural prospective of the UML models,

these methodologies consult UML models that represent both the structural and

behavioural aspects of a system. The resulting performance model is a model capable of

representing both of these aspects (i.e. queuing networks, stochastic process algebra and

simulation models). Most of these methodologies have a high degree of generality as the

performance models produced are capable of representing a broad range of systems

structural and behavioural characteristics, except for these methodologies that produce

analytical models with limitations on the assumptions made by the solution algorithms

(e.g. PFQN such as [102]). The leading methodology for this class of model

transformation methodology is the SPE [6; 92] discussed earlier and the methodologies

adopting the same concept of separation the software and machine models (e.g. [93;

102; 103; 104; 105]). These methodologies depend on the queuing network as the core

output performance model, and therefore, the degree of efficiency from the prospective

of the simplicity of solving the performance model will be high. The dependability of

Cheaper 4| Integrating Performance Evaluation in Software Engineering

91

some of these methodologies on representing the software model as an execution graph

will limits the efficiency as the notation used is a non-standard modelling notation.

Most of the methodologies adopting the SPE method create an extended version of the

queuing networks modelling paradigm (i.e. EQN (e.g. [93])and LQN(e.g. [102; 103;

104])) which will provide them with a high level of generality; on the other hand, there

are methodologies that generate forms of PFQN which will affect their generality.

These methodologies adopt syntactic algorithm that maps UML models to equivalent

performance models. This will improve the transparency of the methodology as this will

enable the preservation of the architectural aspects of the system, and will maintain a

notational linkage between the performance model and the UML models. In some of the

methodologies not adopting SPE method, the performance model produced will affect

the levels of efficiency and transparency. This return to the relation between the

performance model generated by the methodology and the nature of the algorithms

needed to build them. For example, the generation of PEPA model (e.g. [100]) will

require a semantic algorithm that may affect the transparency and further will loss the

link between performance and architectural models. Also, the generation of simulation

models (e.g. [106]) may affect the efficiency as the analysis of simulation results are

time consuming.

Another type of model transformation methodologies adopt the UML as a notation for

representing a particular structural or behavioural aspect of the system that need to be

represented as a performance model. The majority of these methodologies are dedicated

for generating a behavioural performance model for a system (e.g. GSPN [97; 107;

108]). This may affect the generality of a methodology, as these performance models

are restricted in the sense of the types of system they can represent. Also, although these

methodologies adopt both semantic and syntactic transformation algorithms, the

behaviour dependent performance models produced by these methodologies will

eventually affect the transparency of the methodology.

We have composed a survey for some of the work done in this field. We have discussed

the methodologies in the context of the criteria we discussed in the previous section. For

each of the methodologies discussed, we provided the input UML models, the output

performance model, and summarized the performance model generation process. Then

we classified these methodologies‟ compliance with the criteria defined in 4.3.1 as

High, Mid (medium) or Low. High compliance reflects that the methodologies comply

Cheaper 4| Integrating Performance Evaluation in Software Engineering

92

with the entire factor defining a criterion or have extra features that cover the missing

factors. Medium compliance refers to the methodology complying with some of the

factors and low refers to the methodology not complying with any of the factors which

define the criterion. For simplicity, the survey is formatted in a table form. Table 1 in

appendix D contains a survey of some of the methodologies for performance evaluation.

We have constricted it to methodologies that adopt the SPE method of separating

structural and behavioural aspects. This is a return to the use of this method in the key

performance model building methodology, as discussed in Chapter 6 of this thesis. For

the same reason, we also concentrated on methodologies generating QN models. We

have included in the survey selected methodologies that produce other types of

performance models (i.e. Petri Nets, Process algebra and simulation).

4.4 Summary

Software Performance Engineering refers to the performance related analysis and

activities incorporated in the software engineering process. The importance of software

performance engineering arises from the need for methods that will provide assurance

of the quality of software systems during development and maintenance. In general,

performance engineering tasks are incorporated into the development‟s design and test

phases as a means of ensuring that the suggested design meets the QoS requirements.

The integration of the performance engineering into software engineering will depend

on the availability of the requirements, as performance is one of system‟s characterises

that are affected by the whole system. This is why we distinguished the software

engineering paradigms according to the availability of the requirements to conventional

(i.e. waterfall development paradigm) and agile. For the conventional, we have

described the PASA framework, whereas for the agile development paradigm, we

introduced the CPASA framework. This chapter defined the role of performance

evaluation in software development and described how to integrate performance

evaluation into the software engineering process for these two main software

engineering paradigms.

Software engineering methodology employs performance evaluation techniques for the

process of assessing the performance aspects of system architecture. We have discussed

the role played by the model transformation methodologies in the process of conducting

a performance study. And we have composed a set of criteria for comparing these

methodologies according to the system types they service and the nature of the

algorithms used for the conversion process. This chapter included a literature review of

Cheaper 4| Integrating Performance Evaluation in Software Engineering

93

these methodologies based on these criteria. This comparison was essential for the

design of a methodology that will avoid any drawbacks this thesis domain.

94

CHAPTER

An Application of the State Marking

Methodology 5

Chapter 5: An Appplication of the State Marking Methodology

This chapter explains a methodology which was the result of the author‟s early studies

in the field of performance evaluation automation techniques. This methodology was

published in [33; 109]. The work involved when developing this methodology consisted

of automating the extraction of a generic performance model. The development of the

methodology concentrated on three fundamental criteria:

 Firstly, the method has to be simple which will allow the user to deploy it easily

without the need for learning new notations or out of context operations.

 Secondly, the method has to be general in terms of its ability to model any

expected system.

 Thirdly, the method has to be systematic in a way that will allow the

methodology to be automated; this will allow the development of a tool to

deploy the methodology.

The methodology extended in this chapter is based on the state marking methodology,

originally developed by King and Pooley[14]. The state marking methodology

concentrates on capturing the behavioural aspects of the modelled system in a behaviour

oriented performance model. The original state marking methodology proposed a

method for extracting a GSPN performance model from a meta-model composed of

collaboration and state-chart models. The limited generality of the GSPN and the non-

standard input model used, motivated the extension of the state marking methodology.

The extended methodology proposes a systematic approach for extracting Markov chain

models from performance annotated sequence UML models[1]. Section 5.1 will

summarise the original state-marking methodology developed by King and Pooley.

Section 5.2 will discuss the extension suggested by the author of this thesis. As the

extended methodology was not developed as a tool, Section 5.4 will discuss the

technical requirements and possibilities for the development of a tool that will deploy

this methodology.

Cheaper 5| Application of The State Marking Methodology

95

5.1 The State Marking Methodology

The State Marking Methodology is a performance evaluation methodology that can be

classified as one of the structural model based methodologies described in Section 4.3.

The state marking methodology captures the behavioural aspects of a software system

by building a performance model which represents the overall system states. The

methodology was first introduced by King and Pooley in [14]. Their proposed

methodology was to use a behavioural model composed from the UML collaboration

and state chart diagrams for deriving GSPN performance models. The suggested

methodology builds the GSPN with states representing change in the UML behaviour

model. The resulting GSPN will represent a modelling of the overall behaviour of the

modelled system. Although this method provides a simple approach to extract

performance models from UML model, the use of GSPN as the target performance

model affected the generality of the method, as it lacks the ability to model some kinds

of system architectures (i.e. some systems with specific scheduling schemes for sharing

resources). Pooley avoided this problem in [3] as he generalised the method to generate

Markov chain performance models directly from UML collaboration-state chart

diagrams. This gave the method the advantage of simplicity and generality. This section

explains the state marking methodology and evaluates this methodology in order to

justify the work carried out in modifying and automating this method.

5.1.1 System Representation

The state marking methodology utilises a number of UML models in the process of

extracting the required performance model. The workload characterisation of the

modelled system is represented in the use-case model. Different use-cases represent

each functional request representing the main workloads affecting the system. The

structural specification of the system is represented by the collaboration UML model.

The collaboration model of a system represents the objects composing the systems with

associations representing the interaction between these objects. The state-chart diagram

defines the internal behaviour of each of the components composing the system. It is

composed of a set of states with transactions between them. The transactions are

triggered by a set of actions. State marking methodology uses a meta-model known as a

collaboration-state model, which is a combination of collaboration and state-chart

models.

Cheaper 5| Application of The State Marking Methodology

96

 The model shown in figure 5.1[3] represents a producer consumer system with a buffer.

The system consists of three objects; a producer, a consumer and a three spaces buffer.

The collaboration-state diagram shows the interaction between the objects as the

producer objects add to the buffer and the consumer takes from the buffer. Inside each

of these objects there is a state chart that represents the behaviour of that object. This

state chart will model the internal behaviour of the object itself as it performs its

functions. This diagram represents the different states that a system can have and is used

in the process of marking and registering the different states of the system behaviour in

the performance model.

5.1.2 State Marking With GSPN

The process of building a GSPN from a collaboration-state model is as follows:

 For each object in the collaboration diagram, build a corresponding SPN model

as follows:

Figure 5.1: Registering the systems states for produced consumer system [3]

Cheaper 5| Application of The State Marking Methodology

97

 Each state in the state-chart model representing the object has a place in the

SPN model.

 Each transition in the state-chart models represents transitions in the SPN

model. The mapping of the transitions between the SPN model and the

state-chart model depends on the states involved this transition taking into

consideration that transitions in the SPN have only one input place and one

output place.

 The Token is placed in the state, representing the current state of the state

chart model.

 After constructing the individual PN models for each state model, these

individual PN will be connected together to compose a global PN that represent

the entire system according to the association defined by the collaboration

diagram.

5.1.3 State Marking With Markov Chains

The extension of the state-marking methodology suggested by Pooley in [3] used the

same concept as the original state marking methodology. It involved transforming a

UML collaboration/state model into a Markov chain model. The transformation

approach involved a marking algorithm that will catch and register the state of the entire

system for each step executed. Each of the registered states will represent a state of the

overall Markov chain. The arcs between the states are represented with steps causing the

move from one step to the other, as shown in Algorithm 5.1. Applying the algorithm on

the produced consumer system shown in the collaboration-state model in Figure 5.1, the

Markov chain model in Figure 5.2 can be gained. This extension of the methodology

current state = new_state

snapshot set = current_state

while (there exist more actions)

{

 Take an action

 new_state = Execution of action on the current state

 if (new_state in snapshot set) // the state already exist

 add an edge from the current state to new state

 else

 {

 add new_state

 add an edge from current state to new state

}

 Current_state= new_state

}

 Algorithm 5.1: State marking methodology for transforming UML (collaboration-state

chart) diagram to Markov chain.

Cheaper 5| Application of The State Marking Methodology

98

can be viewed as producing the reachability graph of the SPN. This would improve the

methodology by making the methodology more systematic.

One of the reasons for extending the methodology to produce Markov chain as the

performance model comes back to the useful performance indices and the availability of

analysis information provided by a Markov model. Another advantage gained from

using the Markov chain is its generality in the context that a Markov model is capable of

representing all kinds of system behaviours. As explained in Chapter 3, the solution of a

Markov chain model involves solving its state transition matrix. The representation of

some large and complex systems, such as a Markov chain, can be extremely difficult.

This is due to the number of states in such a system that can grow exponentially with

the number of elements.

5.2 Extending the Methodology

The previous section explained the deployment of the state marking methodology to

obtain different types of behavioural performance models from a meta-model composed

from the collaboration and state-chart models. As we recall from 4.2.1, the usage of

non-standard meta-models as the input models for the methodology might affect the

Figure 5.2: Markov Chain produced from the deployment of the State marking methodology

on the produced consumer system in Fig 5.1 [3]

Cheaper 5| Application of The State Marking Methodology

99

simplicity of the methodology, and as a result, will affect the time/efficiency factor for

the deployment of the methodology. Although the deployment of the methodology does

not require altering the originality of the two models, the non-standard coupling of the

two models will affect the simplicity of deploying the methodology. The original

methodology for extracting GSPN used a systematic algorithm for the performance

model generation. This algorithm used a one-to-one approach for defining the GSPN

network places and transactions from the state-chart model. The Markov model version

of the transformation methodology required a simulation-based algorithm (Algorithm 1)

for capturing the system‟s states snapshots. This algorithm has the disadvantage of its

dependent on the state space, in addition to the complexity of systematically defining a

generic algorithm for generating all the states in a system's state space. This inspired

AlAbdullatif and Pooley[33] to extend the state marking methodology to avoid the

disadvantages mentioned above, and to take the state marking methodology to the

scenario level. The original state marking methodology aims to represent a

comprehensive model representing the behavioural aspects of the whole system. In

some performance studies, it is more convenient to consider the performance of specific

critical scenarios than to study the performance of the system as whole.

The extended state marking methodology uses a standard UML behaviour model as its

input system model. This model was chosen for its ability to represent the behavioural

and collaboration aspects of the different scenarios representing the behaviour of the

system. The UML model used in the extended methodology is the performance-

annotated sequence diagram. This class of UML diagrams comply with the recently

adopted UML Profile for Schedulability, Performance and Time[1]. The extended

methodology defines a systematic algorithm for building a Markov performance model

from a performance annotated sequence diagram. This algorithm builds a performance

model based on the artefacts of the sequence diagram(s) used in the modelling process.

This section will describe the extended version of the state marking methodology. First,

we will explain the UML model used as the input for this methodology. Then we will

discuss the Markov model used as the output and process of mapping the workload

information annotated in the UML model on the performance model. Finally, we will

discuss the steps of the methodology and further explain the methodology, using an

example.

Cheaper 5| Application of The State Marking Methodology

100

5.2.1 Input Model Representation

As explained in Chapter 2, In UML an interaction diagram is one that shows how a

group of participants (objects and actors) in a system collaborate in some behaviours.

Sequence diagrams as well as collaboration diagrams are members of the interaction

diagrams family. They can be used to capture a specific scenario of the system by

showing how the objects involved in that scenario collaborate by exchanging messages

to perform a specific behaviour. There are four main types of message in a sequence

diagram; synchronous, asynchronous, reply and found messages. Synchronous

messages are the ones in which the sender will enter a wait state until a reply from the

receiver arrives. Asynchronous messages are the ones in which the sender will continue

with its work after sending the message to the receiver. Reply messages are sent in

response to a synchronous message and found messages are the messages initiated from

outside the sequence diagram, to start the scenario.

The participants in sequence diagrams have a life line that represents the flow of actions

resulting from participation in the scenario by that member. An activation bar on top of

the life line shows the time during which the participant is active in the interaction.

Control logic can be modelled in sequence diagrams using interaction frames. The

interaction frame labelled „loop‟ is used to model iteration in a section of the sequence

diagram, while the labels „alt‟ and „opt‟ are used to model conditional sections.

Interaction frames can also be used to illustrate concurrency with the help of the label

„par‟, representing concurrent activities, and „region‟, to mark a critical section [110].

Figure 5.9 in the example shows a sequence diagram: The participating members are

drawn at the top of the diagram as boxes. Each of these boxes has a dotted line coming

down from it, representing the life line. The thick grey line on top of a life line is the

activation bar. The messages are denoted by arrows, each message type having a

specific arrow style; a synchronous message is presented with black arrow head,

whereas an asynchronous message is presented with an empty arrow head. Reply

messages take the form of a dotted line arrow. Figure 5.9 shows a loop activation frame;

this frame is presented as a box covering the area that it affects with the guard condition

in the corner.

Annotated Sequence Diagrams

One of the main concerns in the performance model building methodologies is the

representation of performance workload and resource usage characteristics of the

Cheaper 5| Application of The State Marking Methodology

101

modelled system. In the early methodologies where UML was not a standard modelling

notation, different techniques were suggested for representing these performance

characteristics (e.g. SDL[111], LOTOS[112]). Pooley and King proposed in [97] a

method to include performance data in UML diagrams in the form of performance tags

(time labels). Chapter 7 of the "UML Profile for Schedulability, Performance and

Time"- adopted by OMG in 2005 - is an extension of the UML standard to

accommodate UML quantitative performance annotations. These annotations allow the

association of performance related quality of service (QoS) characteristics with selected

elements of a UML model [1]. The profile explains these extensions to the UML

standard in the context of the standard itself. It defines stereotypes, tagged values and

constraints that represent the performance requirements and resource allocation of the

modelled system.

The main stereotypes used for performance modelling include PAclosedLoad,

PAopenLoad, PAhost, PAstep and PAresource. The first two of these stereotypes

represent the way the work is fed to the system or, as it is often described, the workload.

The PAclosedLoad stereotype represents a closed workload; it has four tags:

PArespTime, PApriority, PApopulation, PAextDelay. PAopenLoad models an open

workload with the tags: PArespTime, PApriority, PAoccurrence. The objects or

participants in the system are classified as either PAhost, modelling a processing

resource with tags including: PAutilisation, PAschdPolicy, PApreemptable, PAthrough-

put, or PAresource, modelling a passive resource with tags including PAutilisation,

PArespTime, PAthroughput. A PAstep models a scenario step with tags including

PAdemand defining a step‟s execution time, PArespTime defining a step‟s response

time, PAprob which represent probability to execute the step and PAdelay which shows

the time before executing the step [1].

5.2.2 Output Performance Model

The output performance model from this methodology represents a CTMC (Continuous

Time Markov Chain) discussed earlier in Chapter 3. The sequence diagram that we will

use to define a performance model in this methodology will be annotated with the

performance stereotypes defined above. Each of the performance stereotypes can be

accompanied by an appropriate sequence diagram section. The workload tags can be

added to the found message at the beginning of the diagram to define the nature, ratio of

the initiating messages and the expected QoS characteristics of the scenario in hand.

Cheaper 5| Application of The State Marking Methodology

102

λ: PAprob of the step stereotype of the message

δ: ratio for message arriving.

γ: if there is a timeout the average lost message ratio.

c w n

λ

δ
γ

Figure 5.3: Markov model for a Synchronous message.

Host and resource stereotypes can be used to describe the performance features of the

participating members in the scenario that will help in the performance study of the

system. The main stereotype that will be used is the PAstep, which will be used to

describe the performance tags for every message defining the collaboration between the

participants. The performance information that they define in their tags will be used to

label the arcs in the Markov chain model. PAstep will also be used to define the

performance information for the interaction frames in a diagram, such as defining the

average number of iterations in a loop or the probability of a condition being true. This

kind of performance information is a key factor in the performance model that we are

trying to build.

5.2.3 Extracting the Performance Model

 The method for extracting the performance model is as follows: First an initial state is

defined, recording the initial state of the system before executing the first step. Then, for

each of the steps defining the scenario in hand, the step is “executed” and the status of

the system is marked, which may create a new state of the system or return to one

passed through before. If this state is a new state, then a new node is created in the

Markov chain with an edge from the previous state to the new state. This edge will be

tagged with suitable a PAstep tag (usually PAprob) depending on the current model.

This algorithm will continue until all the steps are executed. For simplicity, we will use

the probabilities to mark Markov edges instead of rates, as probabilities can be

computed from these rates as explained in Chapter 3. The resulting series of markings

of the sequence diagram forms the Markov chain model of the system. The execution of

a step will differ according to the type of diagram element being executed in the step.

There are a number of elements in a sequence diagram, as described above, and each of

these will have a different representation in the performance model.

Cheaper 5| Application of The State Marking Methodology

103

δ: the priority that the looping condition evaluated true.

c x o

1-δ

δ

Figure 5.5: Markov model for a loop frame.

n

Synchronous/Asynchronous Messages

We will now describe how a performance model can be constructed using a variety of

readymade Markov Chains performance model components, these pre-cast performance

model components will cover sequence diagram notations such as messages and

interaction frames, composing a sequence diagram. For synchronous messages, the

system will be in a specific state, noted in Figure 5.3 as state c. In the execution of the

action (response to the message), the system will wait for a response from the receiver,

which means that it will reach the wait state denoted by w. The rate for moving from

state c to w is noted by λ which represents the PAprob tag of the PAstep stereotype for

that specific message. When the message is in the waiting state w, it will either go to a

new state, n, on the arrival of the response message, with a rate of δ representing the

average time for the reply message to arrive, or, if no reply arrives, the system will wait

for a time out and then re-send the message (there is no constraint on multiple

messages) and return to state c. The rate for resending the message  depends on the

average lost message ratio.

λ: PAprob of the step stereotype of the message

c
n

λ

Figure 5.4: Markov model for asynchronous message.

Cheaper 5| Application of The State Marking Methodology

104

Figure 5.4 shows a Markov model of the system in the case where it receives an

asynchronous message. As stated earlier, in the case of an asynchronous message the

sender will send the message and then the system will continue with the next step

without waiting. In this model, we have a current state c for the system, and when the

message is processed the system will enter another state n, with a probability, λ.

Synchronous and asynchronous messages represent the most common artefact used in

sequence diagrams, this is true as the main goal of a sequence diagram is to illustrate the

collaboration between the participating members of a scenario with messages.

Loop Interaction Frames

A looping interaction frame in a sequence diagram is shown as a Markov model in

Figure 5.5. The content of the loop frame will be surrounded with a loop model. State x

is the beginning of that loop, and state n is the inspection state where the loop condition

will be checked. If it is true, an arc will return to x or another state (say o) indicating

that we are out of the loop. The δ represents the probability that the looping condition

evaluated as true.

Alt/opt Interaction Frames

In the case of a conditional interaction frame (alt and opt), the system will be in a new

state if the condition evaluated is true, and either in the same state, or an alternative

state, if the condition evaluated is false. This is represented in Figure 5.6 which shows

how an alt frame can be modelled as a Markov chain. δ represents the probability that

the condition evaluated is true. The system will be in a new state n if the condition

evaluates to true and in another state o otherwise.

Figure 5.6: Markov model for an Alt frame.

δ: the probability that the condition evaluated true.

δ

o

+!

1- δ

δ

n

c

Cheaper 5| Application of The State Marking Methodology

105

Figure 5.7: Markov model of a two process critical section.

O, O`

i, O`

O, i`

i, w`

w, i`

The model for an opt frame is similar to Figure 5.6 but has only a single outgoing arc

from state c representing the system when the condition evaluates to true, when the

system enters a new state n. It returns to the original state c otherwise.

Region Interaction Frames

The region interaction frame is used to identify a critical section that only a single

process can enter at any time. The modelling of a critical section in a Markov model

depends on the number of processes trying to access the critical section at a given time.

Figure 5.8 shows how a critical section for a two process system is modelled; the states

that a process can have are either to be out of a critical section (O), inside the critical

section (i) or waiting to enter the critical section (w). In the figure the two processes

start out of the critical section (state [O,O`]) and either of them can enter the critical

section (one of the states [i,O`]or [O,i]), usually with similar probability. In the case

where one of them is inside the critical section and the other tries to enter, the latter will

enter the waiting state ([i,W`] or [W,i`]). From the wait state it will enter the “in” state

when the process occupying the critical section leaves the critical section (one of the

states [i,O`]or [O,i]).

The number of possible states for such a model will grow rapidly as the number of

participating processes increases. Other modelling schemes like Petri Nets provide

simpler notations to represent similar situations, but ultimately, the model underneath

Cheaper 5| Application of The State Marking Methodology

106

will be as complex as the one in Figure 5.7. Our method states that for every critical

section in the system, this critical section will be modelled according to the number of

processes potentially trying to access it, and then be added to the complete model. This

process, although a long one, is the only obvious way to model a critical section in a

Markov model.

Parallel Interaction Frames

If we try to model parallel behaviour of a system, the main issue that may arise is that a

parallel interaction frame represents the concurrent execution of actions (messages) in

the system being modelled. In the case of encountering a parallel interaction frame, each

of the execution branches will be modelled as a separate Markov model and these two

models will fork at the beginning and join at the end of the parallel behaviour.

5.2.4 Example: Web Video Application

The case study that will be used in this chapter is derived from the example provided in

the Section 5.9 of the “UML Profile for Schedulability, Performance and Time” [1]. The

system described is a web video application. This allows users to access video streams

through their web browsers where they will be connected to a video server that contains

Send Form

Terminal Playout

Browser Video Window Video Player Video Server Web Server

 Process selection

Confirmation

Initial Play out

Initialize Player

Show frame

Loop

*N

Figure 5.8: sequence diagram of a web video application, modified from [1]

Cheaper 5| Application of The State Marking Methodology

107

the streams. The video server then plays the requested stream on a video window that

contains a video player. The components of the web video application and the relations

between them are shown in Figure 5.8. In this case study we will choose one of the

possible scenarios of the system, and then model this scenario as a sequence diagram.

Using the QoS priorities described for this system in [1], we will compose an annotated

sequence diagram and, finally, we will use our methodology to compose a Markov

performance model from this diagram.

Figure 5.8 shows a sequence diagram for the scenario of a user accessing a video

stream. First of all the user will choose a video to be played on their browser and the

request for that video will be passed to the web server which will select the video server

that has this specific stream. The web server will initialise a video player for the user

and will start streaming frames to that player, to be shown in a video window. This

process will continue until all frames of the video are sent to the user player, as

described in the figure with a loop frame that will iterate for N times, where N is the

number of frames of the stream.

The type of performance annotation to be added depends mainly on the context of the

experiment. The performance requirement for this system is described in [1] in terms of

response time for messages. In our case we require information about the probability of

a message being sent. In the QoS there is a requirement for the confirmation response

time stated as “the response time for the confirmation to the user that the request has

been received”. This requirement is specified as a probability that the delay in receiving

the confirmation will not last longer than half a second in 95% of the cases: Probability

(Confirmation delay > 500 ms) < 0.05 or, expressed as a percentile measure: 95th

percentile (Confirmation delay) < 500 ms” [1]. In this case, the time out constraint on

the synchronous message process selection is to be less than half a second and the

probability that the confirmation will arrive is 0.95, and 0.05 to resend. Another

example of performance information that may be added to the system is on the video

stream, as the frames fed back to the user should be displayed at regular intervals of

30ms, that the probability of a frame being displayed late is less than 1%: Probability

(Interval between frame display instants < 30 ms) > 0.99. For our study we will use

these two requirements and add them to the sequence diagram which will be consulted

in the performance model building process.

Cheaper 5| Application of The State Marking Methodology

108

Figure 5.9 shows the sequence diagram with added performance information. The labels

added to the sequence diagram contain stereotypes for performance information and

tags with their values. In this diagram we added two stereotypes: One of the load type

as the system has a closed load with NU users where each user has an average delay

between ending one session and beginning another of 20 minutes. The other is the

PAstep for labelling each of the messages in the diagram with a probability of

occurrence according to the performance requirements that we describe in the QoS.

Figure 5.10 shows the Markov chain performance model extracted from the annotated

sequence diagram. The state a, is the initial state and is a part of the representation of

the first synchronous message in the sequence diagram, known as process selection.

This representation includes also the states b and c as the waiting and response states

respectively. The second message in our diagram is initial playout. This is an

asynchronous message which will be modelled as in Figure 5.4 with state d. The same is

true for the rest of the messages in the diagram, but, as we have a loop activity frame

Figure 5.9: Annotated sequence diagram of a web video application, modified from [1]

Send Form

Terminal Play out

Browser Video Window Video Player Video Server Web Server

 Process selection

Confirmation

Initial Play out

Initialize Player

Show frame

Loop

*N

PAclosedLoad

PApopulation= $NU

PAextDelay= 20 min

PAprob = 1

PAprob = 0.95

PAprob = 1

 PAprob =1

PAprob = 0.99

PAprob =1

10.99

PAprob = 1

Cheaper 5| Application of The State Marking Methodology

109

surrounding the messages send frame and show frame, the representation of these two

messages must be boxed in a loop model like the one in Figure 5.5. Here the x state in

Figure 5.5 is represented with the f state in Figure 5.10 and the n state is represented by

the i state. The ratios labelling the arcs are extracted from the PAProb tags in the

diagram. The  variable depends upon the average number of frames in the streams N.

5.2.5 Evaluating the methodology

The performance evaluation of software systems is a highly valuable task, especially in

the early stages of a software project. Many methods for integrating performance

analysis into the software development process have been proposed. It is essential that

these methodologies are simple, general and described systematically. We have

evaluated the original state marking methodology in the beginning of this section and

have noticed that the UML model used in this methodology affected the simplicity of

the methodology, and the algorithm used in the Markov chain version of the

methodology affected the automation of the original methodology. The version

suggested by AlAbdullatif and Pooley focused on covering the disadvantages of the

previous versions of the methodology. The input sequence diagram model chosen for

this methodology represents a standard UML model suggested by the OMG in the UML

Profile for Schedulability, Performance and Time. The output performance model

represented by a Markov chain is general in the sense that all aspects of behaviour

represented in a sequence diagram are covered by the methodology. The Algorithm

provided by the methodology provides a systematic approach for building the output

performance model, which will assist the automation of the methodology. The

disadvantages of this methodology arise from the state-explosion problem reflected in

the use of Markov chains as the output model. This problem is one of the main

problems which limits the use of Markov chains in modelling complex systems.

Figure 5.10: Markov chain of the video application sequence diagram

a b c
w

d e f g

i

h

0.05

1

0.95

1

1 1

λ

1 0.99

1

1-λ

Cheaper 5| Application of The State Marking Methodology

110

In the context of the scope of this thesis, this methodology provides a straightforward

and efficient way of representing the behavioural aspects of a software system in a

performance model. As we recall from Chapter 3, the requirements of a performance

model to study the performance aspect of a software design, required this performance

model to include both the architectural and behavioural aspects of the system under

study. Markov models lack the ability to represent architectural aspects of software

systems. Furthermore, Markov models lack the model transparency criterion discussed

in Chapter 4. This inspired the author to develop the performance evaluation

methodology discussed in Chapter 6.

5.3 Realisation of the Methodology

As we recall from Image 4.3, the role of a UML to performance model transformation

methodology can be summarised in preparing a performance model representation that

can be evaluated by a performance model evaluation tool. The output performance

model produced by this methodology is a CTMC model. Literature reports many tools

for solving and evaluating Markov chains, either by numerical solutions (i.e. calculating

the equilibrium probability distribution), or by simulation for evaluating semi-Markov

models. Examples of these tools are Computer-Aided Rate Modelling and Simulation

(CARMS) [113], Markov Analysis Software (MKV)[114], Symbolic Hierarchical

Automated Reliability and Performance Evaluator(SHARPE)[115] and Markov Chain

Analyzer(MARCA)[116]. Most of these tools are dedicated to solving Markov chains

(apart from commercial availability and reliability tools) and concentrate on calculating

the equilibrium probabilities and transition rates between the states of the chain. This

comes back to the variety of uses that Markov chains have in different QoS applications

(i.e. performance, availability and reliability). The translation of the outcomes of the

Markov chain analysis to useful performance measures was explained in Chapter 3. The

use of one of the previous tools as a performance model evaluation tool for the

produced performance model will require the user to calculate the performance

measures from the produced probability distributions, as discussed in Chapter 3. This

conflicts with the main objective of automating the performance evaluation study,

which is closing the knowledge gap between software and performance engineering.

This section will discuss a possible implementation for the methodology previously

discussed in Section 5.2. This implementation prepares a performance model to be

solved using the MARCA tool.

javascript:void(0);
javascript:void(0);
javascript:void(0);

Cheaper 5| Application of The State Marking Methodology

111

5.3.1 MARCA Package

MARCA is a software package designed to generate and determine mathematical

properties of large Markov chain models [116]. The mathematical properties include

stationary probability, transient distributions and mean time. This tool was developed by

W. Stewart in FORTRAN. MARCA provides different means for representing the

analysed Markov chain, which include a graphical representation for drawing the

Markov network and text based interface for providing the Markov chain in the form of

a transition matrix. This allows us to use this tool as the evaluation tool for our

methodology. This can be done by writing a tool that will use the methodology in 5.2 to

generate a text file that will include the transition matrix of the output performance

model. This tool stores the transition matrix in a compact form which permits very large

state spaces to be analysed. MARCA provides a wide selection of numerical solution

methods for computing the stationary behaviour (i.e. stable direct solvers based on

Gaussian elimination ,LU decomposition and single vector iterations (power, Gauss-

Seidel, SOR, preconditioned power)) the tool provides a variety of techniques for

computing the transient behaviour such as:

 Randomization

 Runge - Kutta

 Adams-Bashforth/Moulton

 Matrix powering for small systems (< 120 states)[116]

5.3.2 Performance Model Building Tool

The tool that we are suggesting to implement the methodology in 5.2 will build a

Markov model solvable by the MARCA tool. The tool suggested will build the output

performance model according to the state marking algorithm discussed above, in the

form of a transition matrix. This transition matrix will include the probabilities and

demands annotated in the sequence diagram. The MARCA tool manual provides a full

specification of the formant of the text file, representing the transition matrix and other

required information used in the analysis of the Markov chain model. The tool can use

an XMI representation of the sequence diagram(s) representing the behaviour of the

system under study, as the input document. The XMI representation of the model is a

standard model exchange format in most of the UML modelling packages. An XSLT

parser can be used to generate a text file representing the output model. XSLT

(extensible Style sheet Language Transformations)[117] was developed by the

Cheaper 5| Application of The State Marking Methodology

112

W3C organisation especially for transformations of XML documents. XSLT is a

core technology for processing XML documents. The XSLT parser will be used to

query the sequence diagram XMI document for the artefacts described in 5.2.3 and

write the appropriate Markov chain representing this artefact. Once all the artefacts are

complete, a complete Markov model can be generated by combining all individual

Markov representations into a single Markov chain.

A component diagram of the suggested tool is illustrated in Figure 5.11. The XMI

parser will be used to extract the UML sequence diagram notations needed in the

conversion process. This XMI parser can be any standard XML parser, either XSLT or a

dedicated XMI parser written for this tool. The notations to be detected in the parsing

process include:

 The Association messages, these messages can be detected by the message

and association tags in the XMI document (See Chapter 2) and the type of

message can be found in the attributes of the association.

 Interaction Frames can be detected by the fragment tag in the XMI

document. The type of interaction will be declared in the type attribute.

 The Performance Annotations for the workload, probabilities and time

demand.

The Performance Model Generation component is responsible for deploying the

transformation method described in the extended methodology to generate a Markov

model representation, stored in the form of states and edges between them. This Markov

Figure 5.11: Components of a tool for the extended state marking methodology

XMI

Parser

Performance

Model

Generation

Engine

Markov

State
Markov

Model

Edge

Transition

Matrix

Generator

Cheaper 5| Application of The State Marking Methodology

113

model will be transformed to a transition matrix by the transition matrix generator

component. This transition matrix will be formatted to be solved by the MARCA tool.

This design of the suggested tool will give it the benefit of extendibility. The tool can be

extended to another tool by developing a new driver for that tool. This driver is

represented by the transition matrix generator component.

5.4 Summary

This chapter explained a methodology which was the result of the author‟s early studies

in the field of performance evaluation automation techniques. The methodology

explained in this chapter is based on the state marking methodology. The state marking

methodology concentrates on capturing the behavioural aspects of the modelled system

in a behaviour oriented performance model. The original state marking methodology

proposed a method for extracting a GSPN performance model from a meta-model

composed of collaboration and state-chart models. The limited generality of the GSPN

and the non-standard input model used, motivated the extension of the state marking

methodology.

The extended methodology proposes a systematic method for extracting Markov chain

models from UML-SPT models. This chapter started by an explanation of the original

state marking methodology, and how it was extended to increase its automation level to

directly generate the reachability graph representing the GSPN. The methodology

explain in this chapter was aiming to provide a syntactic algorithm that provide means

for building a performance model from an annotated UML-diagram. Although this

algorithm was systematic in a way that will allow the automation of this methodology,

the simplicity of the deployment of this method and its tool is still an issue. This is

caused by the employment of the UML-SPT as the input model. This model although

provide a standard modelling notation, the representation of the performance data as

tags and symbols would increase the ambiguity when conducting a performance

experiment. This gave us an idea of changing the technique when collecting data for a

performance study, which we will be explain in the next chapter.

114

CHAPTER

UML–EQN Methodology

6

Chapter 6: UML–EQN Methodology

In this chapter, we present a methodology dedicated to assisting software engineers in

conducting performance studies from the early stages of the systems development life

cycle. This methodology is called UML-EQN[9]. The UML-EQN methodology

provides a systematic process for gathering performance parameters needed to build the

performance model and converting the design model to an equivalent EQN (Extended

Queuing Networks) performance model. This methodology was implemented in a tool

called UML-JMT[11] which extends the JMT (Java Modelling Tool) suite [118] that

will operate as its UML interface. This chapter is arranged in six sections. Section 6.1

will define the methodology‟s objectives and steps. Section 6.2 will discuss the first step

of the UML-JMT methodology, which is the gathering of performance parameters; this

step distinguishes this methodology from a lot of its rival methodologies. Section 6.3

will discuss the software model and the algorithm used in the building of the

methodology. In Section 6.4, we explain the algorithms used to build the machine

model which represents the base model for the end performance model. In Section 6.5,

we explain the algorithms used to finalise the projected performance model. And finally

in 6.6 we will evaluate the UML-EQN methodology using the criteria discussed in 4.2.

During the explanation of each of the steps of the methodology, we will use an example

of a video depository system (explained in 2.3.4) where we will study the performance

indices of a suggested design for such a system, and compare it to an existing system.

6.1 Explaining the Methodology

The UML-EQN methodology is classified as a performance evaluation methodology,

similar in its functionality to the methodologies discussed in 4.3. As we recall, these

methodologies play the role of the performance verification test in performance

engineering methodologies. The UML-EQN methodology is dedicated to assisting

software engineers in deploying performance engineering methodologies throughout a

system‟s life cycle. The ability of the methodology to work with different levels of

abstractions allows this methodology to be deployed from an early stage of system

development. The name of the methodology suggests the input and output models

Cheaper 6| UML-EQN Methodology

115

involved. The methodology utilises UML structural and behavioural models in the

process of building an equivalent Extended Queuing Networks (EQN) performance

model. The methodology includes multiple steps that start with assisting the user in

gathering performance data needed to build the model. The other steps involve multiple

algorithms used to convert the UML models to an EQN performance model. The UML-

EQN methodology (like all UML based methodologies) was designed with the objective

of providing software engineers with a method for conducting performance verification

tests required in performance engineering methodologies, with limited effect on the

overall project budget. This can be done by allowing the software engineers themselves

to perform the performance verification task. This is possible as the methodology was

designed with a main objective of bridging the knowledge gap between software

engineering and performance engineering. This gap is caused by the skills required to

gather performance related information and the process of abstracting the systems‟

architecture and behavioural aspects in a suitable performance model.

As stated earlier, the UML-EQN methodology provides methods and algorithms that

will assist the software engineers with limited knowledge in performance evaluation

terminology, in the process of conducting a performance study, starting from the data

gathering step and building the performance model from the UML design model.

Another objective that was considered during the design of the methodology was to

adopt a standard design model notation. This is why UML was chosen to represent the

architectural and behavioural representation of the studied system. We have already

discussed in Section 3.5 why the queuing networks are the “best” performance model

for validating the performance of a software design. And we saw in 3.3.3 why the EQN

provides a more general performance model because of the limitations of the analytical

solution provided for product form queuing networks. One of the key objectives that

was considered during the design of the methodology involved the methodology

complying with one of the best known software performance engineering

methodologies, PASA. The original PASA methodology suggested the use of SPE

methodology for the performance evaluation task, but the use of non-standard behaviour

models (Execution graph) could affect the deployment of this methodology (see 4.2.2).

The UML-EQN takes advantage of the fact that, in SPE, software and machine models

are separated, giving the analyst the ability to study different design alternatives. The

methodology uses available system data at each stage of the design to construct an

abstract performance model of the system. The level of abstraction and the accuracy of

Cheaper 6| UML-EQN Methodology

116

the produced model will depend primarily on the stage of the design cycle where the

model was constructed, in addition to the accuracy of the data used. Another objective

of the UML-EQN methodology was for it to be light-weighted. By light weighted, we

mean that the deployment of this specific methodology should be easy and with

minimal resources. This is essential for it to be deployed in agile development

performance engineering methodologies such as CPASA. Next we will provide

summaries of the steps of the methodology, and the example we will use to explain it in

the next sections of this chapter.

6.1.1 The Methodology Steps

The UML-EQN methodology is composed of four main steps. These are as follows:

Performance data gathering, Software Model construction and Machine Model

construction, then finally merging these models and transforming them according to an

algorithm to produce an EQN performance model. Next we will summarise each of

these steps:

The performance data gathering is the first step of deploying the UML-EQN

methodology which should be adopted as a part of the requirements collection tasks.

The methodology arranged the required data needed in the deployment of the

methodology in what we called a performance data card (PDC). The PDC consists of

information about the structural and behavioural aspects of the system under study.

Also, it lists the required performance and workload characterisation expected from the

system. As we explained earlier, these steps are intended to guide software engineers

through the first step in software performance engineering. We will explain this step in

Section 6.2.

Software Model Construction: The construction of the software model SM refers to the

identification of the key scenarios of the software system. This involves defining the

main use-cases in the system and their scenarios as use-case and sequence diagrams,

and assigning performance measures gathered in the first step, such as the workload

intensities and service demand on the resource requirement to the different scenarios. At

the end of this step, a meta software model known as a communication map will be

produced. A communication map is a probability graph representing the behavioural

aspects of the system under study. This step will be further explained in Section 6.3.

Cheaper 6| UML-EQN Methodology

117

Machine Software Model Constriction: The machine model MM is a basic model

representing the components composing the system and their relation to the hardware

platform. This model is based on Extended Queuing Networks EQN [6]. The building

of the MM is dependent on the UML Deployment Diagram (DD). We will further

explain this step in Section 6.4.

Finalising the Performance Mode: At this stage, we have a SM representing the

software as a communication map and a MM representing an initial view of the queuing

network. The last step of constructing the performance model is to finalise the EQN

model. This includes connecting the service centres of the MM according the

communication maps, defining the QN job classes and routing these classes through the

QN according the communication maps. This step will be explained further in Section

6.5.

6.1.2 Explanation Example

During the explanation of the UML-EQN methodology in the next four sections, we

will explain the methodology with the aid of an example. This example is for the same

video system discussed in Section 2.3.4. As we recall, this system will cache all clips

previously stored or of interest to the user (according to his/her profile) when the

network usage is idle. The main goal of the performance study is to compare the

architectural alternatives for video streaming systems. We have suggested that

architecture that allows caching related video clips in the user‟s station, which will

decrease the time required to search and access video clips in future searches. The study

Figure 6.1 Annotated use-case diagram

Cheaper 6| UML-EQN Methodology

118

will examine the response time in the suggested architecture and compare it to the

average response time measured on a sample of video streaming systems.

Figure 6.1 displays the use-case diagram of the system. According to this diagram the

video search system allows users to either add video clips or search for them. We

assumed that 90% of requests to the system involve searching the video depository,

whereas add requests represent only 10% of the workload on the system. The suggested

system is composed of three main components; interface, internal search and video

database (external). The connection between external and internal components is

through the internet. The suggested architecture of the video stream system is shown in

Figure 6.2, which illustrates the deployment diagram of the system. In this diagram, we

interface VDB

User

{}

Add Video

Upload Clip

Figure 6.3. SD diagram of add Use-case

Node1

Node2

interface

VDB

Enternal search

* *

Figure 6.2. Deployment diagram of the video stream system architecture

Internal

Cheaper 6| UML-EQN Methodology

119

have two nodes representing the local user‟s station and the remote video database. The

association between these nodes represents an internet connection.

As we explained earlier, the use-cases defining the behaviour of the system are the

“add” and “search” use-cases. For each of these use-cases, we define the possible

scenarios of behaviour. These scenarios are shown in Figures 6.3 and 6.4 as sequence

diagrams. Figure 6.3 shows a possible scenario for the adding a video, and Figure 6.4

describes the scenarios for the search use-case. The two scenarios are for when the

requested video is available locally, when it will be provided directly to the user, or,

when it is not local, the video will then be searched for in a video database and, if

found, played to the user.

6.2 Performance Parameters Capture

One of the essential tasks in any performance engineering methodology is performance

parameters capture task. The performance parameters are the parameters defining the

performance critical architectural and behavioural aspects of the studied system, as well

as the workloads, frequencies and resources demand defining the usage of this system.

The performance parameters capture is known to be one of the most difficult tasks in

software performance engineering. This is due to a number of reasons which include:

 The difficulty of defining the nature and source of these parameters without

extensive knowledge in performance evaluation terminology.

 The difficulty of abstracting the software into the performance critical parts.

Figure 6.4 Sequence diagram of Search Use- case.

Cheaper 6| UML-EQN Methodology

120

 The capturing and prediction of the performance parameters relating to

workload and temporal data defining resource demand is difficult.

Most of the performance evaluation methodologies ignore the performance parameters

capture support task. This will have an impact on the deployment of these

methodologies as the user will have a vague view of the inputs to this methodology.

Defining a set of clear performance parameters and a method that assists the user of the

methodology in capturing these parameters is essential for strengthening the cost

efficiency of the methodology.

6.2.1 Performance Parameter Required

The majority of software performance engineering frameworks describe a set of

performance parameters, which are required in the performance analysis task. Williams

and Smith have grouped these parameters in [119]. The categories that they provided

were as follows:

 Performance objectives: Performance objectives describe quantitative criteria for

evaluating the performance characteristics of the system under study. These

objectives can be expressed as constraints on the performance characterisation

(i.e. response time, throughput or resource usage) or as explicit performance tests

(e.g. design validation or stress tests). We already discussed these performance

characterisation indices and performance tests in chapter 3 of this thesis.

 Workload specifications: the workload specification is defined by the intensity of

use for each use-cases representing the system. Usually in performance studies,

the most used use-cases are the only ones taken into consideration. This return to

the 80/20 role that states that 20% of the use-cases, represent 80 % of the system

load. Each of these use-cases are defined by a number of scenarios, the most

frequent of these scenarios are called the critical scenarios. The workload

specification is represented by the intensity of each of these critical scenarios. The

workload intensity is determined by the rate at which these scenarios are executed.

The intensity will depend manly on the type of the system under study. The

intensity of interactive systems can be articulated as the arrival rate that would

trigger these scenarios or as the number of concurrent users and the amount of

time between their requests. For real-time systems, the intensity is described in

terms of the arrival rate of the events that activate and maintain the workload.

 Software behaviours: The software behaviour describes the software execution

path(s) -Scenarios- for each use-case. The software behaviours should identify the

Cheaper 6| UML-EQN Methodology

121

software components that involved in implementing this scenario, the order in

which they execute, and any repetition, in addition to conditional and/or parallel

execution of components for the corresponding workload.

 Execution environment: The execution environment describes the platform on

which the proposed system will be executed. This environment consists of the

hardware configuration, which will include the distribution of the software

components on the hardware nodes, the internal configurations of these nodes

(e.g. the processing power and operating system used) and the type of

connectivity between these nodes.

 Resource requirements: Resource requirements approximate the amount of

service time required from key components representing the system. Software

scenarios specify resource requirements, in terms of the components visited

during the execution of that scenario. Service times reflect the performance related

characteristics of the execution environment. The service time is measured by

calculating the average time required by the component in order for it to complete

the service.

 Processing overhead: Performance related characteristics necessitate the inclusion

of external/internal overhead processing that would have an impact on the overall

performance. Such overheads include networks delays and users‟ thinking time.

Overheads are treated as a software resource, in the sense that, the overhead

specification would list resource requirement as the average time of this overhead.

As discussed before, one of the challenging parts of any performance studies lies in

defining the performance requirement. This return manly to the fact that different

performance studies require different representations of the categorise specified above.

Currently, determining what information is required and the most appropriate way of

expressing it requires expert judgment [119]. Table 6.1 summarises these categories in a

requirement elicitation form. In this table, we have classified the categories as questions

that will determines the type of information required and the source that should be

consulted in order to answer this question. This table was the basis for the PDC used in

the UML-EQN methodology. We have classified the systems to real time and

information system, as the type of performance information depend on the system type.

As we declared in the beginning, this thesis is only considering information systems.

Cheaper 6| UML-EQN Methodology

122

Table 6.1: summary of the performance requirements categories, their source and rational.

Question
Source of

information
Rationale

System type

Information System real-time systems

What is the system

type?

System

Specifications

Type of system will alter the

performance specifications.
Information System or real-time systems

What are the expected

performance

objectives?

NFR

Specifications

Information needed to

compare the expected

performance specification of

the understudy design with the

requested quantitative

specification in NFRs.

Response time: The number of

seconds to respond to a user

request.

Response time: The amount of

time required to respond to a

given external event.

Throughput: Number of

transactions to be processed per

unit time.

Capacity Throughput: Refers to

the number of events of a given

type that the system must be able

to process in a given amount of

time.

Load Throughput: Refers to the

number of events of (multiple)

different types that must be

processed in a given amount of

time.

Resource usage: Expected

utilisation on a specific resource.

Resource usage: Expected

utilisation on a specific resource.

What are the

components

composing the

system?

Class Diagram
To describe the static inter

component communication.

Cheaper 6| UML-EQN Methodology

123

workload

description
Sequence

Diagram

The most frequent functions

that the system performs

determine the overall

performance of the system,

thus these functions need to be

captured.

Intensity

User Req.

Specifies the rate at which

each use of the system being

modelled is requested.

Arrival rate for requests/ the

number of concurrent users and

the amount of time between their

requests.

arrival rate of the events that

trigger and sustain the workload

Resource

Requirements

Workload

description

Resource requirements

estimate the amount of service

required from key devices in

the hardware configuration.

Software plans typically

specify resource requirements

for processing steps in terms

of the software resources.

Cheaper 6| UML-EQN Methodology

124

6.2.2 Performance Data Card

We have composed a method for assisting the use of UML-EQN methodology in the

first stage of deploying the methodology (performance parameters gathering). It is clear

that performance gathering should be adopted as a part of the system‟s requirements

collection phase of software development. Requirement gathering cards have been a

common method used in collecting requirements and user stories in both conventional

and agile development methodologies. We have therefore adopted a similar approach in

assisting the user of the UML-EQN methodology in finding the required parameters for

the deployment of the methodology and the source of these parameters. We arranged the

required data in what we called a performance data card (PDC).

Table 6.2 gives a summary of the types of performance data that an analyst should look

for. Performance objectives describe the expected performance measurements of the

system which are needed to compare the predicted performance specification of the

design under study, with the requested quantitative specification in the system‟s Non-

Table 6.2. List of important performance data required for model building (performance data

requirement card)

Information Source of

information

Value

Performance objectives NFR Specifications Response time/

Throughput/ Resource

usage or type of

experiment.

System Components,

functionalities

(software)

Sequence Diagram,

Use-case diagram

Actors/ use-cases/

scenarios/ components/

interactions

System Components

(platform)

Deployment Diagram Nodes/components/

intercommunication types

Workload Use-case Diagram Probabilities of the use of

each functionality

Sequence Diagram Probability of use of each

component

Resource Requirements Deployment Diagram Execution times/delays

Cheaper 6| UML-EQN Methodology

125

Functional Requirements (NFRs). This information is needed only if a QoS requirement

in defined in the NFR specification. The components involved in the system and the

connectivity of these components are important in the model building in order to

describe the dynamic aspects of the system. This is represented by the UML diagrams.

This is a scenario based methodology where the scenarios, defining the system

behaviour, are used to construct the model (software model). Consequently we choose

use-case and sequence diagrams as bases for extracting information about the system

components and their connectivity. The platform design, on which the system rests, is

represented by a deployment diagram. Workload defines the rates and distributions of

each of the functionalities (in UML terms, use-cases) and the rates at which each of the

components composing the system are invoked. Resource requirements estimate the

amount of service required from key devices in the hardware configuration. This

information can be taken from the UML deployment diagram along with the system

specifications for components involved in the system [93].

6.2.3 Example

This section we describe the PDC for the example explained previously in 6.1.2. The

PDC for that performance study is shown in table 6.3. As explained previously, a PDC

starts with an objective of the performance study, which is explained in the first row of

the table. The system‟s components, functionalities and the critical scenarios defining

these functionalities are explained in the second row of the table. Important to any

performance study id the expected workload for that system, which is defined here by

the expected arrival rate of the search and add jobs for the system. The frequencies row

–fourth row- explains the expected frequency for each of the functionality as a part of

the coming jobs. We assumed in this example that 90% of the users will be searching

the system and 10% will be adding new clips. For the add use-case, there is only a

single scenario, representing a successful addition of a clip. Which means that 10% of

the total workload will represent add scenario. On the other hand, the search use-case

has two main scenarios which are internal and external. We assumed that each have a

frequency of 60% and 40% of the total search respectively (i.e. we have a probability

60% to find clips locally). As the search use-case covers 90% of the total workload, we

can calculate the individual workload for each of the scenarios covered in this use-case

as shown in table 6.3. Another key entry necessary in the PCD is the resource

requirement. The last row of the table contains the processing time required by each of

the components to handle a jobs.

Cheaper 6| UML-EQN Methodology

126

Table 6.3. PCD for the Video System discussed in 6.2.1

Information Value Description

Performance

objectives

Decrease

response time/

utilise the

internal search

The main goal of this system is to decrease the

time required to conduct the search by utilising

the internal search, as this system is an

information system the response time will be

measured in the time (sec) for the user to conduct

a search/add. We will compare this against

searching on YouTube where the average

response time found in a small study by the

author, was 8 seconds.

System

Components,

functionalities

See Figures

6.1,6.2,6.3,and

6.4

The system is composed of three main

components; interface, internal search and video

database (external). The connection between

external and internal components is through the

internet.

Arrival rates 7.26 jobs/second

Frequencies

Add As this is the only scenario for add it will have a

frequency of 1. By multiplying it by 0.1(as the

add use-case is assumed to have 10% of the total

number of operations), the frequency of this

scenario is 0.1.

Search internal We assumed that 60% of the items being searched

will be found internally. Taking into account the

search/add ratio, this means that the internal

search have a frequency of 0.54

Search. External We assume that 40% of searches done by the

users, the user will not find items in an internal

search, which means that an external search is

required. This means that the external search

frequency is 0.36

Search Assuming that 90% of time user search

add Assuming that 10% of time user add new clips

Resource

requirements

resource type Time(Avg.)

Interface Process 0.3 sec

Internal search Process 0.5 sec

External search Process 0.9 sec

internet Network 5 sec

Cheaper 6| UML-EQN Methodology

127

6.3 Constructing the Software Model

We have discussed previously that the UML-EQN methodology adopts the separation

between the software and machine models in the process of extracting the EQN

performance model. The software model is a meta-model used to define the behaviour

aspects of the modelled system. The behaviour of a component based software system is

represented by the possible communication routes between its components. The software

model used in the UML-EQN methodology is known as Communication Maps. Each of

these maps models the possible execution routes for each of the use-cases representing

the functionalities of the system. These maps will be used to define the job classes in the

final EQN model, and the routing of these jobs in the queuing network. The

communication maps are constructed using an algorithm from the use-case and sequence

diagrams, and the performance parameters gathered in the PDC. This section will explain

the process of constructing the communication maps.

6.3.1 Communication Maps

A communication map is a graph representing the behavioural communication between

the components of a system for a specific functionality of the modelled system. This

Log in fail (0.1) Authenticated (0.9)

S

(login,user,security)

 (Athenticate,Security,Bank DB)

 (Select service,user,service list)

 (Show balance, service list and Bank DB)

 (Bank DB,Security log,5)

Figure 6.5. Communication map of a simple bank system.

Cheaper 6| UML-EQN Methodology

128

involves defining the main use-cases in the system and their performance critical

scenarios, and assigning them with performance parameters gathered in the first step,

such as the workload and intensities of these scenarios. The communication maps are

built from the use-case, defining the use-cases, and sequence diagrams representing the

behaviour of the scenarios representing these use-cases. Each communication map will

represent the behaviour of a single use-case, where each route in the communication

map will represent a possible scenario of this use-case. The elements of the graph

representing the communication maps are the messages representing the

communications, which we call demand vector. A demand vector is a vector (n, A, B)

that defines the name of this communication, n, the origin component A, and the goal

component, B. Each of these vectors represents a transaction in the scenario of the

functionality. The communication map representing a use-case is a reduction of all the

routes representing the scenarios which define this use-case. The reduction algorithm is

defined in the next subsection. The change in behaviour of the scenarios in a use-case is

represented by a probability split separating the transaction route with the probability of

executing this scenario. This can be calculated by multiplying the probability of

executing the use-case by the frequency of the specified scenario. The probability split

is represented graphically in the communication map as a triangle.

 Figure 6.5 shows an example of a communication map for a simple online banking

system. This communication map represents the show balance use-case. The two

scenarios are for the user to login correctly and select the „show balance‟ option from

the service list or to have an incorrect login. After the two transactions of the login

process we have the probability separator with the probability value separating the

routes of processing. On the edges of this separator are the probability values of each

route. In this example we assumed that only 10% of time users may log in incorrectly.

6.3.2 Communication Map Construction

The construction of the communication map starts with the identification of the

performance critical scenarios for each of the use-cases that define the functionalities of

the system. For each of these scenarios, we define the demand vectors. As these

scenarios are represented as sequence diagrams, the demand vectors represent the

transactions in the sequence diagrams with the name of this transaction as the name of

the communication, the origin as the sending component, and the goal component as the

receiver component. These demand vectors are chained together according to the order

Cheaper 6| UML-EQN Methodology

129

of the transactions they represent. Other kinds of notation of the sequence diagram

(conditional, loop, concurrent) are taken into account according to the following rules:

 Conditional transactions: Introduce a probability split separating the transaction

route with the probability of each branch executing, to a branch representing the

conditional transaction.

 Loop transactions: Make a probability split on the loop condition with the arc

leading back to the top of the loop by adding the appropriate probabilities.

 Concurrent transactions: Introduce a fork/join communication with the

probability of each branch executing to a true value.

As we explained before, each communication map will represent the behaviour of a

single use-case, where each route in the communication map will represent a possible

execution scenario. Therefore, we will need to reduce the different execution routes

representing a use-case generated in the previous step, to a single communication map.

This can be done according to the following rules of reduction:

 If transactions from different scenarios have the same demand vector, we reduce

them to a single transaction assuming them to be representing the same function.

 If different transactions exist, we apply a probability split separating the

transaction route with the probability of executing this scenario which can be

calculated by multiplying the probability of executing the use-case by the

frequency of the specified scenario.

Appling this algorithm to generate the software model from the video system discussed

in 6.1.2 will result the communication maps shown in Figures 6.6 and 6.7. In Figure 6.6,

the communication map is applied for the “add” use-case. Figure 6.7 shows the

communication map for the use-case “search”. As this use-case has two scenarios, with

Figure 6.6. Communication map of use-case “add”

S

(add(S1), User, interface)

(add(S2), interface, VDB)

Cheaper 6| UML-EQN Methodology

130

different execution paths, after the search into the internal database, a probability split is

administrated with the probabilities taken from the performance data card.

6.4 Constructing the Machine Model

The machine model MM is a basic model representing the components of the system

and their relation to the underling hardware platform. This model is based on an EQN

and it represents the service centres and delays in the final performance model. This

simple MM is usually exploited in early stages of the development life cycle where the

analyst or designer has limited knowledge of the underlying hardware platform. The

process concentrates on helping the designer to assess different architectural design

alternatives in the early stages, and as the knowledge of the system increases, a more

detailed model can be developed. The building of the MM is based on the UML

deployment diagram model representing the architecture of the projected system. As we

recall from 2.3.3, a deployment diagram defines the components in the underlying

hardware platform and the topology of the connectivity between them, and that a

deployment diagram is a set of interconnected nodes, where each of these nodes houses

a set of components. In this methodology, we assume the nodes to represent the

Figure 6.7. Communication map of use-case “Search”

S

Search (S1), User, interface search)

S4 , Interface, User

S3 , IS, Interface S5, IS, VDB

S6,VDB, IS

S7, IS, Interface

S8, VDB, User

IS= Internal Search

VDB= Video Database

Search (S2), interface, IS)

0.6 0.4

Cheaper 6| UML-EQN Methodology

131

hardware servers, and that each of these nodes houses a set of software services

(represented as the components). The type of connection between these nodes (which is

defined in the deployment diagram) will assist us in characterising the properties of the

delay centres that will be used to simulate the network latency (i.e. the holding time in

these delay centres).

The first step of constructing the MM is defining the type of network. The type of

network (open/closed) depends mainly on the type of system and knowledge of the

users. If the system is classified as closed, with a limited number of users requesting

services from the system in continuous basis (a system servicing a department in an

organisation), we choose the network to be closed. On the other hand, if the number of

users is unknown (i.e. a web service system) we choose the network to be open. Adding

the components that will classify the network include:

 If the queuing network is chosen to be open, we add source and sink stations

that represent the origin and destination of all jobs entering the system. These

stations will be used to calculate important performance measures, such as

response time and throughput.

 If queuing network is chosen to be closed, we add a delay station representing

the thinking time of the users in the network. The thinking time represents the

average time between the users‟ requests for services from the system.

The process of constructing the MM components involves defining the service and

delay centres. These represent the software service centres and simulation of

communication overhead between them. The rules used to define those are as follows:

 Each component in each node defines a service centre. These service centres

have some properties that need to be defined, such as the mean service time,

maximum queue length etc.

 Each connection between the nodes defines a delay which depends on the type

of connection between these nodes. Delay centres are infinite queues, which are

used to simulate communication overhead.

By applying the previous rules to the deployment diagram in Figure 6.2 for the video

search system, we will arrive at the basic MM shown in Figure 6.8. In this model, we

have a source and sink stations which represent the origin and end of all jobs entering

the system in open queuing networks. The service centres represent the three

components (Interface, Internal DB and VDB), and the delay centres are found to

Cheaper 6| UML-EQN Methodology

132

simulate the internet connection between interface, the VBD and the VDB and the

interface components.

6.5 Finalising the Performance Model

At this step, we have an SM representing the software behaviour (inter-component

connectivity) as a communication map and an MM representing an initial queuing

network (the queuing network components). The inter-connectivity of the service

centres is defined by the interactions between the components declared in the SM

communication maps. The last stage of constructing the performance model is to

finalise the EQN model. This includes:

 Defining the job classes of the queuing network

 Connecting the network according to the topology defined in the SM(s)

 Parameterising the performance characteristics of the queuing network

At the end of this stage, an EQN model is produced; this model is a non-product form

network as it allows notations which are not allowed in product form queuing networks

(i.e. fork/join) to be used. This section discusses the steps of finalising the performance

model in detail.

6.5.1 Defining Job Classes

As described above, the end performance model is represented as a multi-class queuing

network. Each of these classes will present one of the scenarios representing the overall

behaviour of the system. Multi-class queuing networks are usually used to model

systems with complex routing and varied performance characteristics. As we recall, this

methodology is targeting software systems which can be obviously modelled as a multi-

class queuing network, due to the assortment of behaviours a system could have, each

with its own performance demand and characterisation. Therefore, the process of

web

Interface

web VDB

Internal DB

S

Figure 6.8: The components of the EQN representing the MM of the video system.

Cheaper 6| UML-EQN Methodology

133

defining the job classes for the potential performance model can be summarised in

defining a job class for each of the scenarios representing the functionalities of the

modelled system. The processes of defining the job classes and parameterising these job

classes will be done according to this algorithm:

For each leaf node in a communication map(s):

 Define a job class named as the scenario they represent.

 Depending on the network type:

 If the network is open: This class will have an arrival rate equal to the

frequency of the communication route represented by the scenario

defining this route.

 If the network is closed: This class will have a number of users equal to

the total number of users, multiplied by the frequency of this scenario.

6.5.2 Connecting the Network

The last step of the construction process of the performance model includes connecting

the queuing network, routing the job classes and parameterising the service stations.

Connecting the queuing network is done according to the following algorithm:

 For each communication map we start by making the connections between the

components of the queuing network, according to the following rules:

 For each demand vector in the communication map:

 If the two components in the demand vector are within the same

node, add a connection between the service centre representing these

components else add the connection to the delay and then to the other

component.

 If there is a probability split, connect to each of the goal components

with appropriate probability.

 If there is a fork communication, add a fork station to the network.

 If there is a join communication, add a join station to the network.

The calculation of the job routes for each of the job classes will depend on the routing

of the scenarios representing these job classes in the communication maps. The routing

of the job classes depends on the job‟s distribution probability in each of the service

centres for jobs leaving each of the service centres. A problem may arise from jobs

visiting a service centre more than once in a specific scenario. We avoided this problem

by calculating the the probability of exit from a loop is the reciprocal of the average

number of iterations of the loop. The algorithm for routing the job classes is as follows:

Cheaper 6| UML-EQN Methodology

134

 For each of the service centres

o For each job class:

 Set the departing probability to 0 if the communication route for the

scenario does not lead to a service centre connected to this service

centre.

 Set the departing probability according to the frequency calculated

from the probability splits and the number of visits to this service

centre.

The last step of constructing the performance model is to parameterise the service

centres and delay stations with appropriate time demands gained from the PDC. The

service time can be defined as a random variable defined as the exponential function

xexf  )(where 1/ is the average number of seconds the job spends in the service

centre. This distribution will be used to simulate the time spent in the service centre or

the delay station by each job.

6.5.3 Example

Figure 6.9 shows the resulting EQN after applying the algorithms in Section 6.5.2 on

the MM in Figure 6.8. From the possible communication maps represented in Figures

6.6 and 6.7, we define three possible job classes that we associate with the arrival rates

in Table 6.3. The three possible communication routes represented in the

communication maps correspond to the “add”, “internal search” and “external

search” scenarios; in Figure 6.9, we differentiate them using three coloured routes. We

set the arrival rates for each of the classes with the frequency values shown in Table 6.3,

and for each of the service centres and the delay stations we define the required time to

Cheaper 6| UML-EQN Methodology

135

be spent in each of them, according to the performance data card resource values. The

departure probability from a service centre is calculated according to the number of

visits this job class makes to this specific queue. In the case of the internal search job

class, the jobs visit the interface queue, then the internal search queue and then finally

back to the interface. The jobs are routed from the interface to the internal search or the

sink station. The probability is given as a 0.5 for each centre as the jobs are either new

jobs or jobs returning from the internal search.

Table6.4. Values of the system response time as the rate of job demand increase

 100% 122% 144.44% 166.67% 233.34% 255.56% 278% 300%

Avg (s) 6.157 6.074 5.719 6.287 7.013 7.392 7.959 8.993

Max(s) 6.663 6.37 6.122 6.758 7.414 7.925 8.604 9.388

Min (s) 5.652 5.779 5.317 5.815 6.613 6.859 7.314 8.597

To solve the model we used the UML-JMT tool which implements this methodology

(Chapter 7) to translate the UML diagrams in XMI format into an EQN model. This

model was designed to be solvable by a non-product form queuing network simulator

included in a queue solving suite called the Java Modelling Tool (JMT). The resulting

queuing network, as it is extracted from the tool, is shown in Figure 6.10.

The study of the system involved observing the response time as the job requests

increased to 300% from 7.26 requests/second. Table 6.4, taken from the JMT tool,

shows the effect on the response time as demand for jobs increases. The increase in the

response time as the demand increases is shown in the graph of Figure 6.11.

Figure 6.10. EQN obtained by introducing UML model of the video system to the UML-JMT

tool

Cheaper 6| UML-EQN Methodology

136

6.6 Evaluating the Methodology

As we described in Section 4.2, the main objective of introducing performance model

building methodologies is to reduce the cost of conducting the performance study tasks.

In 4.3.1 we introduced a set of criteria which we assumed would have to be met in order

for the proposed methodology to provide the user with the best assistant in the

performance evaluation task. It is only fair to evaluate the UML-EQN methodology

against these criteria, as we did in 4.3.2. As we recall from 4.3.1, the criteria that we set

in order to evaluate the performance evaluation methodologies are:

Time Efficiency: The UML-EQN methodology was built to provide a cost efficient

method for evaluating the performance of projected software systems to an acceptable

degree of accuracy; we will discuss later, in Chapter 8 the validation of the resulting

performance model produced by this methodology. During the build of this

methodology, we chose the input and output to be employed and asserted that only

standard modelling notations that will not require the user to spend more time learning

new modelling notations, would be used. Furthermore, the meta-models used during the

deployment of the methodology (software and machine models) were chosen to be

simple or a subset of a standard modelling notation, although the tool implementing this

methodology masks the user entirely from interacting with these meta-models.

Figure 6.11. Chart for the effect of user demand on response time from the UML-JMT tool

Cheaper 6| UML-EQN Methodology

137

The resulting performance model from this methodology was chosen to be easy to

evaluate and this is why we chose EQN. It is clear from the steps of the methodology

that the performance model produced was intended to be prepared for a specific EQN

simulation tool. This tool is the JMT queuing network simulation suite[118]. This suite

provides the user with a powerful and user friendly queuing network analysis and

simulation tools. We will discuss further, the efficiency of the UML-EQN methodology

when we consider the results of the trial of the UML-JMT tool, along with a sample of

software engineers from the industry, in Chapter 9.

Generality: the resulting performance model from the UML-EQN methodology

represented by EQN provides no limitation on the class of system architectures that can

be modelled using this performance model. Thanks to the generic representation of the

queuing networks to the component based software system, and the extra features

provided by the EQN, the resulting performance model provides a comprehensive

modelling notation that is capable of representing the most important architectural and

behavioural features in most modern software systems.

Transparency: UML-EQN was developed with the aim of providing a methodology

that not only assists the performance engineering, but can also assist in the reverse

engineering process. The performance model represented by a multi-class EQN model

is designed to be routed back to the original architectural and behaviour models used to

construct it.

Automation: the methodology was implemented as a tool named UML-JMT. This tool

will be discussed in detail in the next chapter.

6.7 Summary

The UML-EQN methodology is a methodology dedicated to assisting software

engineers in conducting performance studies from the early stages of the systems

development life cycle. The ability of the methodology to work with different levels of

abstractions allows this methodology to be deployed from an early stage of system

development. The methodology utilises UML structural and behavioural models in the

process of building an equivalent Extended Queuing Networks (EQN) performance

model. The methodology includes multiple steps that start with assisting the user in

gathering performance data needed to build the model. The other steps involve multiple

algorithms used to syntactically convert the UML models to an EQN performance

Cheaper 6| UML-EQN Methodology

138

model. These systematic steps will help in achieving our main objective of bridging the

knowledge gap between software engineering and performance engineering. This

chapter discussed the UML-EQN objectives and steps. Each of the steps was discussed

in details and explained with an example. We also evaluated the UML-EQN

methodology using the criteria discussed in 4.2. Our evaluation of the methodology

showed that the simple syntactic algorithms provided by this methodology for building

the performance model increased its transparency and time efficiency. Also, the

comprehensive output modelling paradigm produced by this methodology is capable of

representing the most important architectural and behavioural features in most modern

software systems; this in return was accounted in favour of the generality of this

methodology.

139

CHAPTER

 Realisation of the Method: UML-JMT

Tool 7

Chapter 7: Realisation of the Method: UML-JMT Tool

The previous chapter discussed the UML-EQN methodology and how this methodology

can be used to derive EQN performance models form a system‟s UML diagram. In this

chapter, we will discuss the UML-JMT tool[11], a tool that implements the UML-EQN

methodology. The UML-JMT tool was designed to work as a UML interface for the

queuing network solving tools in the Java Modelling Tools suite JMT[118]. The UML-

JMT Tools is a graphical user interface tool that will help users in building a

performance model for their software system in a wizard like approach. The user will

provide the tool with the performance data card entries in a question and answer

approach. The tool will then use the UML-EQN conversion algorithms to construct a

performance model based on the user entries. This model can be solved and analysed in

a simulation based queuing network solver, provided by the JMT suite. This chapter

provides a full technical specification of the UML-JMT tool.

Section 7.1 will discuss the design and implementation of the USDX XMI parser; which

is a parser specially written for this tool. Section 7.2 will briefly describe the JMT suite,

discussing its solving and analysis tools and how can it be extended by our tool. Section

7.3 will discuss the design of the UML-JMT tool by listing the key components that

define this tool and explain the class diagram of this tool. Finally, Section 7.4 will

describe how the design can become a reality by discussing the implementation aspects

of the UML-JMT tool.

7.1 USDX Parser

The USDX parser (Use-case, Sequence and Deployment diagrams XMI parser) is a Java

library developed specifically for the UML-JMT tool. It provides classes and operations

that will help the analysis of UML models represented in XMI document. It is built on

top of the javax DOM XML parser. This section will explain the design and

functionalities of this parser. Section 7.1.1 will discuss the class diagram of the parser

by explaining the classes that represent the UML model after the parsing operation.

Section 7.1.2 will explain the model extraction algorithm for each of the UML

Cheaper 7| Realisation Of The Method: UML-JMT Tool

140

diagrams. The complete Java documentation for the USDX parser library can be found

in Appendix A.

7.1.1 USDX Class Diagram

Figure 7.1 shows a class diagram of the USDX parser. The USDX parser consists of

two main parts which are the XML document reader, represented by the file reader

class, which is responsible for opening the XMI document file and making essential

checks, such as the well-formed check and check with the XMI DTD. The file reader

then generates a document object. The document object is generated by the javax DOM

XML parser. This document object is passed back to the USDX class in order to be used

in UML model extraction. The second part of the USDX parser is the UML structure

represented in the UML Model class. The UML Model class is responsible for

providing a structured and easy to use container for the UML model. Our assumption

for this version of the parser is that there is only one UML model per XMI file.

According to our class definition, a UML model consists of a use-case diagram, a

deployment diagram and a set of scenarios which implement the use-cases. In XMI

specification, all the UML notations have an ID and a name as well as other attributes

that we are not concerned with in this version of the parser and therefore, we will not

include them in the extracted model. We have defined a super class named UML

Notation; this will include all the common attributes and operations required by any

UML Notation subclass (xmiID and Name and their getters and setters). The Use-case

Diagram class contains a set of actors and a set of use-cases and the association between

them. These are represented by lists of the sub-classes; Actor, Use-case and

Association. The Deployment Diagram class includes a list of nodes, and the association

between them this is represented by the two sub-classes:

 DDNode: Consists of a set of Component classes representing the components

of that node.

 Association: Represents the connectivity between the nodes.

Sequence diagrams are represented by the class scenario. Class scenario contains the

following attributes:

o Components: These are the interacting components in the sequence

diagram. They are represented by a list of Component classes.

o Associations: The connectivity between the components is defined here by a

list of Association classes.

Cheaper 7| Realisation Of The Method: UML-JMT Tool

141

o Messages: All the messages in the interaction are represented as a list of

Message classes. Each Message class has a Sender and Receiver of type

component.

7.1.2 USDX Model Extraction Methods

The extraction and build of the UML model is done using the model extraction methods

in the USDX class. These methods are derived from a method called an extract model

which comes from the constructor of USDX. The constructor of the USDX parser is

invoked with a string parameter representing the XMI document file name. This file

name is passed to the file reader object which will return (if all checks are passed) an

object of type org.w3c.dom.Document. This object will be used to traverse the DOM

tree representing the XMI file and extract the UML model notation. Each diagram is

extracted in a separate method named: extractUseCaseD(), extractDeploymentD() and

extractSequenceD(). First we will briefly describe the Document class and the method

Figure 7.1: Class Diagram for the USDX Parser.

+UMLNotation()

+getID() : String

+setID()

+getName() : String

+setName()

-xmiID : String

-Name : String

UML Notation

+Connected() : Boolean

-partecepents : UML Notation

Association

Component

+Message(Sender,Recever)()

+getSender() : Component

+getRecever() : Component

-Sender : Component

-Recever : Component

Message

+getComponents() : Component

+addComponent()

-Components : Component

DDNode

+addComponent()

+addAssocation()

+addmessage()

+getComponents() : Component

+getAssocations() : Association

+getMessages() : Message

-Components : Component

-Assocations : Association

-Messages : Message

Scenario

+getNodes() : DDNode

+isConnected() : Boolean

+addNode()

-Nodes : DDNode

-Assocations : Association

DeplymentDiagram

Actor

UseCase

+getActors() : Actor

+getUseCases() : UseCase

+addActor()

+addUseCase()

+isconnected()

-Actors : Actor

-UseCases : UseCase

UseCaseDiagram

+getDeployemntDiagram() : DeplymentDiagram

+getUseCaseDiagram() : UseCaseDiagram

+getScenarios() : Scenario

-DeploymentDiagram : DeplymentDiagram

-UsecaseDiagem : UseCaseDiagram

-SequanceDiagrams : Scenario

UMLModel

+XMICheck() : Boolean

+GenerateDoc() : <unspecified>

-XMIFile

+DOMTree

FileReader

-extractModel()

-extractUsecaseD()

-extractSequenceD()

-extractDeplymentD()

+USDX(String File)()

+getUMLModel()

-FileReder

-UMLStruc : UMLModel

USDX

1

*

1

*

11

11

11

1

*

1*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

Cheaper 7| Realisation Of The Method: UML-JMT Tool

142

we are going to use from it. Next we will discuss the extraction algorithm for each of

the UML diagrams.

DOM Document

The org.w3c.dom.Document interface is a java interface which represents a whole XML

or HTML document. In practice, it references the root of the document which can be

used to access the rest of the tree representation of the document; see Figure 2.9. In this

representation, the tree is constructed from node classes which are used to encapsulate

elements, attributes, text and comments etc. The methods that we are going to use from

Document class are shown in the next table[120]:

getElementById(String elementId) Returns the Element whose ID is given

by the “elementId” parameter.

getElementsByTagName(String tagname) Returns a node list of all the Elements

with a given tag name in the order in

which they are encountered in a pre-

order traversal of the Document tree.

The methods we are going to use from node class are shown in the next table[120]:

 NamedNodeMap: getAttributes() Return a “NamedNodeMap” containing

the attributes of this node (if it is an

Element) or null otherwise.

 NodeList: getChildNodes() Returns a NodeList that contains all

children of this node.

 Node: getNextSibling() The node immediately following this

node.

 Node: getParentNode() Return the parent node of this node.

 String: getNodeName() Return the name of the node.

 Short: getNodeType() Return number representing the type of

the node to be compared to constants.

String: getNodeValue() Return the value of the nude.

Boolean: hasChildNodes() Returns whether or not this node has any

children.

Cheaper 7| Realisation Of The Method: UML-JMT Tool

143

Use-case Diagram Extraction

The extraction of the use-case diagram is split into three main steps which are as

follows:

First, extracting the actors and creating the actors list this can be done using the

following pseudo code:

NodeList : Actors  Document.getElementByTagName(“UML:Actor”);

This will collect all the XML element in the tree with the name tag UML:Actor and

store it in the node list named Actor. The problem will arise because the name tag

actor is not only available when defining the “actors” notations but also in the

association (see section 2.5.1). To solve this we will look for the elements that have an

id attribute which means that they are being defined. This can be done as follows:

for(i=0;i<Actors.length();i++)

{

 NodeMap Attributes  Actors.item(i).getAttributes();

 Node N Attributes.getNamedItem(“xmi.id”);

 If(N!=null)

{

 Create a new Actor object

Get the name and xmi id using getNamedItem and set the name and

Id for the Actor

Add the Actor to the Actor list in the Usecase object

}

}

Second, extracting the use-case using the same method used for extracting the actors,

but with changing the tag name in the „get ElementByTagName‟ method to

“UseCase”.

Third, extracting the associations. Note that we have already extracted the actor and

use-case elements in the associations using the „getElementByTagName‟ method. For

each of these elements, we traverse the parents until we find the parent named

UML.Association and collect the name and ID from it. We then get the other UML

notation connected to it by traversing this association tag until we find the other

notation. This will be done by comparing the XMI id. The addition of the association

found will be conditioned with the uniqueness of the association id in the list of

Cheaper 7| Realisation Of The Method: UML-JMT Tool

144

associations. Note that we assume that the associations are always between actors and

use-cases. A pseudo code for this operation is as follows:

for(i=0;i<Actors.length();i++)

{

 NodeMap Attributes = Actors.item(i).getAttributes();

 Node N= Attributes.getNamedItem(“xmi.idref”);

 If(N!=null)

{

Node=Actors.item(i).getparentNode();

 While((Node.getName()!==”UML.Association”)&&(Node!=Document))

 {

 Node=Actors.item(i).getparentNode();

 }

If (Node.getname()==”UML.Association”)

{

o Get the id and name.

o Check if the association already exist in the list by

checking the id against the ids in the association list.

o If it is new create new association.

o Add one of its ends as Actors(i).

o Find the other association by traversing the child nods

until it is found.

o Add association to the List

}

}

}

Deployment Diagram Extraction

The deployment diagram extraction operation involves the extraction of all the nodes in

the document, then creating the objects defining these nodes from type DDNode by

analysing the node element to extract the component information from them. The next

step is to define the associations between the nodes using the same method used in the

use-case diagram association extraction. The extraction of the nodes is done using the

following line:

 NodeList : Nodes  Document.getElementByTagName(“UML:Node”);

At this step, all the elements with tag UML:Node are in the elements list named „nodes‟.

As we recall, this includes the elements that defines the deployment diagram nodes and

the ones defining the associations. These can be differentiated by the attributes in that

element (i.e. if the attributes list includes name attributes or xmi.id attributes). Because

the component elements are not direct children of the node element, as they are nested

Cheaper 7| Realisation Of The Method: UML-JMT Tool

145

in structuring elements, we need a method that will search for them down the children

tree of the node element. The following „get Node‟ method is a recursive method that

will search in the children of the given node until it finds the child that has the tag name

given in the parameter list, and return its parent. The pseudo code for the „getNode‟

method is as follows:

Node:getNode(String name,Node N)

{

NodeList: Children N.getChildNodes();

 for (int k  0; k < Children.getLength(); k++)

 {

 Node: aChild  Children.item(k);

 if (aChild.getNodeType()==Node.ELEMENT_NODE)

 if(aChild.getNodeName()==name)return aChild.getParentNode();

 else

 if(aChild.hasChildNodes())return getNode(name,aChild);

 }

 return null;

}

The pseudo code for extracting the nodes and adding them to the node list is as follows:

for(i0;i<Nodes.length();i++)

{

 NodeMap:Attributes  Nodes.item(i).getAttributes();

 Node:N Attributes.getNamedItem(“xmi.id”);

 If(N!=null)

 {

DDNode:Nnew DDNode(theAttribute.getNodeValue());

N.setName(attributes.getNamedItem("name").getNodeValue());

 Node: childParent getNods(“UML:Component”,Nodes.item(i));

NodeList:ComponentschildParent.getChildNodes();

for(j0;i< Components.length();j++)

{

 if (Components.item[j].getNodeType()==Node.ELEMENT_NODE)

 {

 if ((Components.item[j].getNodeName()=="UML:Component"))

 {

 NamedNodeMap:attr Components.item[j].getAttributes();

 Component:Cnew Component(attr[“Name”]);

Cheaper 7| Realisation Of The Method: UML-JMT Tool

146

 C.setID(attr[“xmi.id”]);

 N.AddComponent(C);

 }

 }

}

 Add Node to the List of Nodes in the Deployment Diagram

}

Sequence Diagram Extraction

Extraction of sequence diagrams from an XMI document includes extracting all the

scenarios elements tagged with the name “UML:Collaboration”. Unlike the case

diagram and the deployment diagram, all of the elements related to the sequence

diagram are inside this element. Therefore, after the extraction of the sequence diagrams

nodes using this line:

NodeList:ScenariosDocument.getElementByTagName(“UML:Collaboratio

n”);

We will be working with the scenario nodes to extract the components collaborating in

this scenario, associations between them and the messages defining the interactions in

this scenario. The pseudo code for extracting the scenarios and adding them to the

sequence diagrams list is as follows:

 for(i0;i< Scenarios.length();i++)

{

// create a Scenario Object and set its name and xmi.id

NodeMap:Attributes  Nodes.item(i).getAttributes();

Node:N Attributes.getNamedItem(“xmi.id”);

Scenario:Snew Scenario(theAttribute.getNodeValue());

S.setName(attributes.getNamedItem("name").getNodeValue());

//find all the components in the sequence diagram

Node: childParent getNods(“UML:ClassifierRole”, Scenario.item(i));

NodeList:ComponentschildParent.getChildNodes();

for(j0;i< Components.length();j++)

{

 if (Components.item[j].getNodeType()==Node.ELEMENT_NODE)

 {

if ((Components.item[j].getNodeName()=="UML:ClassifierRole"))

{

 NamedNodeMap:attr Components.item[j].getAttributes();

Cheaper 7| Realisation Of The Method: UML-JMT Tool

147

 // check if the element is a new component or an association

 Node:IDN attr.getNamedItem(“xmi.id”);

 if(IDN!=null)

 {

 // create a component object and set its name and xmi.id

Component:Cnew Component(attr[“xmi.id”]);

 C.setName(attr[“Name”]);

 S.AddComponent(C);

 }

 }

 }

 We will find and add associations using the same method we

used for use-case and deployment diagrams as the

association involved elements are already in the list of

components extracted earlier. Note that we will check the

parent of the Association participant first to be positive

it is not in a message element.

// find all the messages elements

Node: childParent getNods(“UML:Message”, Scenario.item(i));

NodeList:MessageschildParent.getChildNodes();

for(j0;i< Messages.length();j++)

{

 if (Messages.item[j].getNodeType()==Node.ELEMENT_NODE)

 {

if ((Messages.item[j].getNodeName()=="UML:Message"))

{

 NamedNodeMap:attr Messages.item[j].getAttributes();

 // create a Message object and set its name and xmi.id

Message:Mnew Message(attr[“xmi.id”]);

 M.setName(attr[“name”]);

 Find the sending and receiving by their id and set

the sender and receiver in the M object.

 S.AddMessage (M);

}

 }

 Add S to the List of Sequence Diagrams list.

}

7.2 JMT Suite

The performance model generated by the UML-JMT tool is structured to be solved and

analysed by the queuing network solution and analysis tools provided by the JMT suite.

The Java Modelling Tools (JMT)[81] suite is a free, open source suite that consists of a

Cheaper 7| Realisation Of The Method: UML-JMT Tool

148

number of performance evaluation tools. The suite provides different tools that offer

analytical and simulation solutions for the queuing networks. Among these tools are

functionalities that will help the user to perform analysis experiments on individual

performance indices, with different control variables[81]. As we recall from Section 3.6,

one of the main reasons for choosing this tool to expand was the fact that is built on an

XML data layer; that is, all the models provided to this suite are structured in an XML

document format. In this section, we will discuss the tools that provide solutions and

analysis for queuing networks and describe how these queuing networks are represented

in the suite‟s tools. Section 7.2.1 will discuss the JSIMgraph, the tool that we will use to

solve the queuing network. Section 7.2.2 will describe the queuing analysis tools

available in the JMT suite, and finally, in 7.2.3 we will outline the structure of the XML

file that will contain the performance model.

7.2.1 Queuing Network Solution Tools

The JMT suite provides two main methods for solving a queuing network; analytically

or through simulation. The analytical solution provided by the JMVA tool provides the

detailed analysis of product-form queuing networks through a stabilised version of the

MVA algorithm[81]. The simulation solution is provided by a discrete event simulator

for the analysis of queuing networks called JSIM. The JSIM supports several probability

distributions for characterising service and inter arrival times, as well as different

routing strategies[86]. JMT suite provides simulation solution through two tools, the

JSIMwiz which is a wizard interface for the JSIM simulator, and the JSIMgraph. The

JSIM graph is a graphical user interface tool that provides a workbench that allows the

user to design and edit a queuing network model. As the model generated by the UML-

EQN methodology may include non-product-form aspects (i.e. fork and join), we

choose to use the JSIM simulator as the main queuing network solver. The model

produced by the UML-JMT tool is configured to be opened by the JSIMgraph, where

the user can adjust the model and manage the performance analysis experiment. A great

feature of the JSIMgraph tool is that it can open a model designed inside it in the JMVA

tool, provided that this queuing network is a product-form queuing network. This means

that if the model produced by the UML-JMT tool does not have any non-product-form

aspects, this model can be solved either analytically or by simulation.

7.2.2 Queuing Network Analysis Tools

The JMT queuing network analysis tools provide a set of analysis functionality that will

help the user of the tool to study the performance indices of the system. These

Cheaper 7| Realisation Of The Method: UML-JMT Tool

149

functionalities can be working on a fixed set of input parameters or a variable control

parameter. An analysis tool available in the JMT suite, called the What-if analysis tool,

allows the user to set one or more control parameters (can be the number of users,

workload … etc), and the tool will evaluate the performance model for the performance

indices that the user selected along the ranges and that they selected for this control

variable. This will allow the user to observe the change in the system behaviour as the

conditions around the system change. The JMT suite provides different performance

indices for the user, such as throughput, utilisation and respond time. These can be for

the entire system or a specific station or job class. Other performance indices, which

describe the performance of specific stations, include queue length, queue time,

residence time, response time and utilisation. The reader can refer to the JMT suite user

manual[87] for more information about the tool‟s analysis functionalities.

7.2.3 Queuing Network Representation

As we mentioned earlier, the performance models in the JMT suite are saved in XML

format. An extracted part of the XML schema that represents the performance model

design is shown in Figure 7.2. As the Figure shows, the performance model is presented

as a set of stations and a declaration of the user classes. The stations represent both the

Figure 7.2: XML file schema for the performance model in JMT suite [2]

Cheaper 7| Realisation Of The Method: UML-JMT Tool

150

service stations and the delay stations. Each station contains a queuing part and a

service part. The queuing part defines the specification of the queue, such as the queue‟s

maximum length, drop strategy … etc. The service part includes information about the

service specifications such as the service time, number of services etc. The difference

between the service station and a delay lies in the queue length, as the delays have

unlimited number of servers by default. The job class declaration defines an element for

each job class with its source station and name, and number of customers or workload,

depending on the type of network. Other elements not shown in Figure 7.2 include the

sink/source elements in an open network which define the start and end stations for each

job and connection elements which define the connectivity between the different

elements in the network.

7.3 UML-JMT Tool Design

We saw in Section 2.5.1 of this thesis how a UML diagram is represented in an XMI

document. The previous section showed how we used a special XML parser to represent

the UML models‟ notations as a Java UML Model object. We also talked about the JMT

performance model solver and its analysis tools. This information was essential to

discuss the design of the UML-JMT tool. This section will explain the main

components composing the UML-JMT tool and how these components interact with

each other in order to generate the EQN performance model. In 7.3.1 we will provide

details of these main components by defining them and explaining their responsibility.

Section 7.3.2 will explain the structure model of the tool by explaining the class

diagram of the UML-JMT tool. The behaviour model of the tool will be explained in

7.3.3 by discussing the activity diagram representing the tool‟s behaviour. In 7.3.4 we

will explain how the UML-JMT tool can be integrated with the JMT suite and how they

can both be a part of the design model in the performance model framework described

in Chapter 4.

Figure 7.3: UML-JMT Components

Face

USDX

QNGE

Cheaper 7| Realisation Of The Method: UML-JMT Tool

151

7.3.1 UML-JMT: Components

To give the tool the advantage of extendibility and maintainability, we have adopted a

component oriented design for the UML-JMT tool. If we want to view the UML-JMT

as a set of interacting components, an abstract component oriented view of the tool can

be seen in Figure 7.3. The tool is composed of three main components which are: Face,

QNGE (Queuing Network Generator) and USDX. The Face represents the main

interface of the tool; it defines the wizard responsible for gathering the UML model and

performance data from the user (implementing the performance data gathering task).

The QNGE represents the main model converting engine. These two components pass

information to each other, relating to the UML model and the performance data. The

QNGE takes advantage of the USDX parser, mentioned previously, to generate an

object representation of the UML model. This model will be analysed by the QNGE to

prepare the performance data card that will be queried in the UML-JMT interface to be

filled by the user. The QNGE will also generate the communication map used in the

UML-EQN methodology. It will also define the delay centres that will simulate the

communication delays. Table 7.1 explains the Rationale of each of these components.

7.3.2 UML-JMT: Class Diagram

Figure 7.4 illustrates the class diagram of the UML-JMT tool. The UML-JMT class is

the main class that launches the program. This can be done by creating and starting the

wizard implementation defined in the class GUI. The GUI class implements a graphical

Table 7.1: the main components composing the UML-JMT tool explanation

Component Name Rationale

Face

Interface

component

The main interface of the UML-JMT tool:

 Implements the performance data collection of the

UML-EQN methodology,

 Collect input/output files names,

 Collect the performance data,

 Launch model generator.

QNGE

Queuing

Network

Generator

Engine

The model conversion engine:

 Starts the model extractor

 Make the assumption checks

 Generate and write the model according to users

requirements

USDX XMI parser
It will be used to extract the UML model from the

input XMI file(see 7.1)

Cheaper 7| Realisation Of The Method: UML-JMT Tool

152

user interface wizard that will guide the user, step by step, in the generation of the

performance model. It will do this by first asking the user for the input UML model

XMI document. This document will be passed to the to a model conversion engine. This

engine will make a number of checks on the input document; these checks are for the

structure of the XMI document and the assumptions of the UML-EQN methodology. If

the document passes the test, the GUI class will receive the names of use-cases,

scenarios and delays from the conversion engine, and use this information in the

creation of the performance data card. The performance data card will be passed back to

the conversion engine in order to generate the performance model. The GUI class

represents the Face component in the component representation of the tool. The USDX

class represents the XMI parser we discussed earlier and also represents the USDX

component.

The QNGR component is represented by a set of classes; the main class that implements

the functionality of the QNGR component is the QNGen class. The other classes are

used to represent the EQN components; these classes are as follows:

1. Service Centre: As its name suggests, this class will represent service centres in

the queuing network. Each service centre is composed of a server and a queue.

The server defines the number of servers in this service centre and the service

time. The queue defines the maximum number of waiting jobs the queue can

hold (will be -1 if the queue is infinite), and the drop strategy. This class has

getter for its fields and “writeCS” method which will write the XML element

representing this service centre, according to the JMT structure.

2. Delay: A delay represents an infinite queue that will hold jobs for a specific

length of time. These will be used to simulate communication delays and

thinking time in the performance model. The delay class contains a list of the

involved service centres (i.e. the delay centres that will connect through this

delay), delay time and the queue specification. The delay methods include the

method write delay which writes the XML element that will define this delay.

3. ComMap: This class represents the communication map used in the UML-EQN

methodology to route the communication between the service centres.

The QNGen will use the algorithms defined in Chapter 6 to generate the service centres,

delays and communication maps. The method convert of the QNGen class will start the

process of writing the performance model XML file. This will be done by calling the

Cheaper 7| Realisation Of The Method: UML-JMT Tool

153

preparation methods that will print the header and footer of the document, define the job

classes and the type of network. Next, the service centres and delay centres will be

added to the document by invoking their right method. The communication between the

service centres will be defined by the communication map „getDestinations‟ method.

We will explain this process in more detail in the next section. The PDC class defines

the Performance Data Card; it will be used to pass data on the UML model to the GUI,

and the performance data gathered from the user to the queuing network generator

engine.

7.3.3 UML-JMT: Activity Diagram

An activity diagram showing the process of interaction between the UML-JMT tool

components is shown in Figure 7.5. The GUI will ask the user for the file name of the

XMI document containing the UML model. This file name will be passed to the model

generation engine where a USDX parser object will be created. The parser will be given

the file name of the XMI document where it will conduct a check on the file structure

Figure 7.4: Class Diagram for the UML-JMT tool.

Face

USDX

QNGE

Cheaper 7| Realisation Of The Method: UML-JMT Tool

154

and content (check the notations available in the XMI document). If the document

passes the checks, a UML model object will be created and if not, the user will be given

an error message and asked to supply another document. If the UML model is created,

this model will be checked for the methodology assumptions explained in the previous

Figure 7.5: Activity Diagram for the UML-JMT tool.

Cheaper 7| Realisation Of The Method: UML-JMT Tool

155

chapter. If the assumptions are not met, the user will be notified and asked to enter a

new file. Otherwise, the conversion process will start. The delays, service centres and

communication maps will be generated from the UML model and the performance data

card required from the user will be prepared. This performance data card will be passed

to the GUI where it will be requested from the user in an interactive way. After the

performance data is gathered from the user, it will be passed back to the conversion

engine where service centre objects and delay objects are updated, and the convert

method is invoked.

7.3.4 UML-JMT and JMT: the Integration

As mentioned in Section 7.2.3, JMT suite is built upon an XML communication

platform. This means that all the queuing network analysis tools in the JMT suite save

the structure of the queuing networks, and the analysis and results in the form of an

XML document. This gives us the opportunity to implement a tool that uses the UML-

EQN methodology as the UML interface agent for the JMT suite. This interface is

implemented through the UML-JMT tool. The UML-JMT tool will deal with the UML

diagram of the system being modelled in XMI format and then it will generate the

corresponding EQN model in accordance with the UML-EQN methodology. This EQN

model will be appended with the performance data collected from the user using the

performance data card wizard (which we will discuss later in this chapter). The EQN

model will be outputted in an XML document formatted in the JMT suite queuing

network DTD. This model can be solved and analysed using the JMT QN simulator and

Figure 7.6: UML-JMT tool location in the process of producing performance model from

design model.

XML Queuing Network Representation

JMT

UML Modelling Tool

UML-JMT

XMI

Cheaper 7| Realisation Of The Method: UML-JMT Tool

156

analysis tools discussed in the previous section. Figure 7.6 illustrates the role of the

UML-JMT tool in the performance model generation process.

7.4 UML-JMT Tool Implementation

This section will explain the implementation aspects of the components defining the

UML-JMT tool shown in Figure 7.3. We have already explained the design and

implementation of the USDX parser in Section 7.1 and are therefore only considering

the implementation of the two other components in this section. Section 7.4.1 will talk

about the implementation of the interface component represented in the UML-JMT

class diagram by the class GUI. The implementation of the functionalities of the

queuing network generation engine will be described in 7.4.2.

7.4.1 Implementation of the Interface

The interface of the UML-JMT tool is implemented as a graphical user interface wizard.

This wizard is an interactive question and answer method used to increase the usability

of the tool. Figure 7.7 shows an activity diagram that illustrates the flow of the wizard.

The wizard will start by asking the user the name of the XMI document that includes the

UML model. If the document does not pass the essential checks discussed earlier, the

GUI

Get Documment Name
Get Queuing Network Type

Get WorkLoad Get Number of Users

Get Service centre info.

Get Output File

Convert and print Convertion results

[File Name]

[File Check OK] [Error in Document]

[Closed Network]

Get Frequencies

[Open Network]

Get Delay Time

Figure 7.7: UML-JMT interface flow.

Cheaper 7| Realisation Of The Method: UML-JMT Tool

157

user will be notified of the type of failure and given a suggestion to fix it. If the

document passes the document check, the GUI object will be supplied with information

about the model‟s use-cases, job classes, service centres and delays in the PDC passed

from the conversion engine. The wizard will ask the user for the type of queuing

network (Open/Closed) and, according to the user‟s response, he/she will be asked for

the number of users, or the workload for each job class, for closed and opened queuing

network respectively. The user will progress by supplying performance data regarding

the frequencies of each scenario; service centres specifications and delay centre timing.

The user will then be asked to select the output file name. When the user is satisfied

with the performance data he/she supplied, they can then proceed with the conversion

operation. The user will then be given the results of the conversion operation and will

then be able to open the resulting performance model in the JMT suite.

7.4.2 Implementation of the Network Generation Engine

As explained in the previous section, the heart of the queuing network generation engine

component is the QNGen Class. The methods QNGen class can be divided into pre-

conversion and conversion methods. The pre-conversion methods are responsible for

preparing the performance model elements that do not depend (or depend partly) on the

user entered performance data. These elements include:

 Communication Maps: The communication maps are used to define the

connections between the service centres. They are created by reducing the

communication routes (message flow) for scenarios representing the same use-case.

The representation of the communication map class in Figure 7.4 shows that a

communication map is a set of messages. The messages are presented as a linked list

with each of them pointing to one or more next messages. The pseudo code for

creating a communication map for a use-case is as follows:

CommunicationMap: UC=new CommunicationMap(usecase name);

// get all the messages of the Scenarios belonging to US

UMLDiagram.Message:M[][];

for(i0;all scenario belonging to UC)

{ for(j0;all massages in scenario i)

{

 M[i++][j++]USDX.UMLMode.Sequancediagrams.get(i).getMessage(j);

}

}

//create in initial COM tree with the first row of messages

message:prev;

Cheaper 7| Realisation Of The Method: UML-JMT Tool

158

for(i0;i<M[0].ColCount;i++)

{

 message:mesnew message(M[0][i]);

 if(prev!=null)

 {

 prev.next.add(mes);

 }

 prev=mes;

 UC.addmassage(mes);

}

//create the COM tree branches with the remaining rows of the messages

// if the massage is not found in the initial tree add a branch

for(i1;i<M.rowCount-1;i++)

{

 message:prev;

 for(j0;j< M[i].ColCount;j++)

 {

 if(M[i][j]!=UC[j])

 {

 message:mesnew message(M[i][j]);

if(prev!=null){UC[j-1].next.add(mes);}

UC.addmassage(mes);

 prev=mes;

 }

 }

}

The process of creating a communication map involves creating an initial tree with one

of the scenarios of the use-case (the one with the longest message list). The next step is

the creation of branches of that tree. This process includes comparing the initial tree

with the messages of the other scenarios. If the messages differ, then we create a new

branch.

 The job classes: These will be extracted from the scenarios of the UML according

to the algorithm in 6.5.1. Although the identification of the job classes does not

depend on the performance data, the declaration of the job classes in the

performance model file depends on the queuing network type. We can classify the

identification of job classes as a pre-conversion operation, because the job classes

Cheaper 7| Realisation Of The Method: UML-JMT Tool

159

are needed in the in the PDC to identify the number of users or workload, for closed

or open queuing networks. The declaration of job classes in the PCD can be

completed using this pseudo code:

for(i0;i<USDX.UMLModel.SequanceDiagrams.getlenght();i++)

{

PCD.JobClass.add(USDX.UMLModel().SequanceDiagrams.get(i).getName);

}

This will produce a list of scenario names that will represent the list of job class

names.

 The service centres: According to the algorithm in 6.5 for defining the service

centres, the service centres are represented by the components of the deployment

diagram. We need to specify the service centres before the conversion operation

because we need to consult the user about the specifications of the service and queue

parts of it. The list of service centres will be passed to the interface in the PDC

where they will be updated with performance data, which is essential for the

building of the performance model. The body of the method that creates the list of

service centres has the following pseudo code:

length USDX.UMLModel.DeploymentDiagrams.getComponents().getlength();

for(i0;i< length;i++)

{

Name=USDX.UMLModel.DeploymentDiagrams.getComponents().get(i).getName()

;

ServiceCentre:SC=new ServiceCentre(Name,new Server(),new Queue());

PCD.ServiceCentres.add(SC);

}

This loop will create a service centre for each component in the deployment diagram

with empty server and queue sections.

 Delay stations: Delay stations are created if there is a connection between two

components in a sequence diagram, but these components are in different nodes in

the deployment diagram. As with the service centres, the time of the delay will be

updated by the user in the PDC. The pseudo code for extracting the delay centres is

as follows:

for(all M:Messages in the Communication maps)

{

if(!USDX.UMLModel.DeploymentDiagram.RInTheSameComp(M.sende,M.receiver)

)

Cheaper 7| Realisation Of The Method: UML-JMT Tool

160

{

Delay D=new Delay(M.Sender.getName()+M.receiver.getName());

D.setInvolvedM(M);

 Delays.add(D);

}

}

The method „RInTheSameComp‟ in deployment diagram class remain true if the two

sent parameters of type component are in the same node, and false if otherwise. The

method will be tested against all the messages in the communication map. Each time a

message involves components in separate nodes, a new delay is defined. It will be

named with a concatenation of the names of the two components, and this message is

added to the involved messages list in this delay. The delays list is defined as a set in

which there are no duplications. If another message is involved in this delay, it will be

added to the involved list in this delay.

Convert

Open output file Stream

Print File Header

Print Source StationPrint User Terminal

Print Sink Station

Print Job Classes

Print Service Centres

Print Delay Centres

Print Connections

Print File Closer

[Closed Network] [Opened Network]

Figure 7.8 Convert Method Activity Diagram.

Cheaper 7| Realisation Of The Method: UML-JMT Tool

161

The Convert method of the QNGen class implements the main functionality of the tool,

which is the generation of the performance model. As we explained in 7.2.3, the

queuing network model in JMT suite is represented as an XML document. The Convert

method performs its function by writing the XML document representing the

performance model. It will do this by calling internal methods that will add elements to

the XML document. Figure 7.8 illustrates the main activities defining the Convert

method. The structure of the generated XML document will depend on the type of

queuing network chosen by the user. The main difference between the open and closed

queuing network in the JMT structure is in the definition of the start and end points. In

an open network, the start station is represented by a source station, and all the finished

jobs go to a sink station. These stations are used in the calculation of the throughput.

For the closed queuing network, the end and start stations are represented by a delay

known as Terminal which simulates the users‟ thinking time. As we can expect, the type

of the network will affect the coding of the elements representing the service centres,

delay centres and communications. Therefore, the print methods defined in the classes

representing these elements are implemented to cover open or closed networks.

The print methods defined in the service centre, delay and message classes are designed

to accept a parameter as a file handle and to print the XML element code for the object

they represent. The message class print method will prints the connection element that

defines the connectivity between the queuing network components. These are defined

according to the communication map messages. All the messages in the communication

maps will be reduced to avoid duplicated messages (have the same sender/receiver). In

this instance, the resulting messages will be used to define the connection by printing

them and using the sender/receiver as the source and target attributes of the connection

element. If the message is one of the involved messages in a delay, then this message

will be translated to two connections; one from the source of the delay and the other

from the delay to the target.

7.5 Summary

The UML-JMT Tools is a graphical user interface tool that will help users in building a

performance model for their software system in a wizard like approach. The user will

provide the tool with the performance data card entries in a question and answer

approach. The tool will then use the UML-EQN conversion algorithms to construct a

performance model based on the user entries. This model can be solved and analysed in

a simulation based queuing network solver, provided by the JMT suite. This chapter

Cheaper 7| Realisation Of The Method: UML-JMT Tool

162

provides a full technical specification of the UML-JMT tool. In this chapter, we have

discussed the implementation of the UML-JMT tool. The implementation of this tool

involved working with UML models in XMI format, this is why the USDX parser was

designed. This chapter discussed the design and implementation of the USDX XMI

parser. The performance model generated by the UML-JMT tool is structured to be

solved and analysed by the queuing network solution and analysis tools provided by the

JMT suite. We have discussed in this chapter the queuing network format deployed in

the JMT tool and. The chapter also discussed the design and implementation of the

UML-JMT tools and how it was divided into components that implements the

conversion algorithms discussed in chapter 6.

163

CHAPTER

 Quantitative Evaluation

8

Chapter 8: Quantitative Evaluation

In the last two chapters, we have seen the description of the model transformation

methodology (UML-EQN) and how it was realised as a performance evaluation tool

(UML-JMT). In this chapter and the next, we will discuss the evaluation of our

methodology from both qualitative and the quantitative points of view. In the qualitative

evaluation in Chapter 9, we will investigate the attitude of a sample of software

engineers toward the methodology and the tool. In this chapter, we will investigate the

methodology and the tool in the context of the deployment as an aid in conducting a

performance study and the degree of accuracy of the results provided by the UML-JMT

tool. What we are looking for is to demonstrate the use of the tool and to verify that the

performance indices provided by performance models built by the UML-JMT tool are

valid to a degree of accuracy. The methodology we are considering for the quantitative

evaluation is by demonstrating the deployment of the tool as an aid for conducting a

performance evaluation study and comparing the results gained by a performance model

produced by the UML-JMT tool and analysed by the JMT suite to performance indices

provided by a deterministic benchmarking exercise. This chapter will be used for

demonstrating the use of the UML-JMT and for validating the results gained from the

tool in two case studies. In Section 8.1 of this chapter, we will explain the first case

study where the performance of an information retrieval system will be studied. In 8.2,

we will investigate the performance of a national payment switch.

8.1 Demonstrating UML-JMT

In this section, we will provide an example that will demonstrate the deployment of the

UML-JMT tool as an aid in a performance evaluation study. This demonstration involves

an information retrieval system discussed in [93], and it was used to demonstrate a

similar methodology named PRIMA-UML which was realised with the XPRIT tool. The

objective of this case study is to demonstrate the use of the performance data gathering

mechanism deployed in UML-JMT tool and the analysis tools available in the JMT suite,

and compare their role in the performance evaluation experiment to the role of a similar

tool. We choose this example because the end performance model generated by the

Cheaper 8| Quantitative Evaluation

164

PRIMA-UML is an execution graph which will be translated using the SPE methodology

to an EQN, the same as the one produced by our methodology.

8.1.1 PDC for the IRS

The example in the PRIMA-UML paper showed an information retrieval system with

internal and external search modes. The internal search was done on a local database and

the external was performed using three browsers searching information on the Internet.

In this section, we discuss the UML diagrams representing the architectural and

behavioural characteristics of the IR system. The IR system offers the user two types of

search - internal and external. Before the user can search the database, the system will

authenticate the user by checking a username and a password.

Table 8.1 explains in detail the PCD of the information retrieval system performance

study. The objective of the study is to study the effect of increasing the number of users

in the system on throughput and response time, and how are they effected by the

utilisation of the different components of the system.. The architecture of the system is

defined by the structural and behavioural UML models represented by the deployment

(Figure 8.2), use-case (Figure 8.1) and sequence diagrams (Figures 8.3-6). The critical

scenarios that define the system behaviour are as follows:

 S1: The authentication process fails. (Figure 8.3).

 S2: The authentication succeeds and the user finds the searched item Figure

(Figure 8.4)

 S3: The authentication succeeds and the user did not find the searched item.

(Figure 8.5)

 S4: The authentication succeeds and the user searched for a remote item. (Figure

8.6)

The performance characteristics of the IR system defined by the work load and the

service demand are shown in tables 8.1.1 and 8.1.2 respectively.

Cheaper 8| Quantitative Evaluation

165

Table 8.1: PDC for the IRS.

Objective To study the effect of increasing the number of users in the system on

throughput and response time, and how are they effected by the

utilisation of the different components of the system.

Use-cases

Figure 8.1: Use-case diagram of the IR system.

The IR system can have two use-cases, either to search the local

database or the remote database. In both of these operations the

system will authenticate the user first.

Architecture

Figure 8.2: Deployment diagram of a suggested architecture of the

IRS.

The suggested architecture of the IR system where the system is

working in two different nodes: a user side node representing the

user machine and the Internet node representing the server

containing the database searched by the browsers. In the user side,

the components available are application, main interface and the

local database. The user component is placed in the user side node to

Cheaper 8| Quantitative Evaluation

166

model the stakeholder position in the system. The two nodes are

connected by an Internet connection

Scenarios

Figure 8.3: Sequence diagram of the authentication process fails scenario.

S1: Scenarios of a local operation where the user tries to access the IR

database but the authentication operation fails.

Figure 8.4: Sequence diagram of the authentication succeeds and the user

finds the searched item scenario

Cheaper 8| Quantitative Evaluation

167

S2: Scenario of a local operation representing a successful search

operation in the IR database

Figure 8.5: Sequence diagram of the authentication succeeds and the user

did not find the searched item scenario.

S3: Scenario of a local operation where the user will not find the

requested item of search.

Figure 8.6: Sequence diagram of the authentication succeeds and the user

searched for a remote item scenario.

Cheaper 8| Quantitative Evaluation

168

S4: Scenario of a remote operation. The user will ask the application

programme to conduct a search remotely and the application

programme will conduct this search concurrently in three different

browsers.

Table 8.1.1:

Workload

(Assumed by

the Author)

S1 S2 S3 S4

5% 25% 20% 20%

Table 8.1.2:

Service

Demand

(Seconds)

Component Service time (Seconds)

Interface 0.00001

Application 0.00001

Local DB 0.0005

Browser1 0.0005

Browser2 0.0005

Browser3 0.0005

Thinking Time 5

Cheaper 8| Quantitative Evaluation

169

STP1: Create /Extract UML XMI Document (Fig. 8.8)

STP2:Get Queuing Network Type (Fig. 8.10)

STP4.1:Get Workload Ratio STP4.2:Get Number of Users(Fig.8.12)

STP5:Get Service centre info. (Fig 8.13)

STP6:Get Delay times for each delay centre (Fig 8.14)

STP7:Get Output File (Fig. 8.15)

STP8: Convert and print Conversion results (Fig .8.16)

[File Name]

[File Check OK (Fig. 8.9)]
[Error in Document]

[Closed Network] [Open Network]

According to

Network type

STP3:Get Frequencies for each scenario (Fig 8.11)

STP9:Open the Resulting QN model in JMT(Fig 8.17)

STP10:Solve Model, Analyse results(Fig 8.18-8.19)

Figure 8.7: Flowchart for the process of conducting a performance study using the UML-

JMT tool

Cheaper 8| Quantitative Evaluation

170

8.1.2 Using UML-JMT to study the IRS performance

In this section, we will explain the steps for conducting the performance evaluation test

for the IRS using the UML-JMT tool. The steps for conducting a performance test using

this tool are explained in Figure 8.7. This figure shows a flowchart diagram with the

steps needed to conduct this performance study. As the diagram shows, there are ten

steps for conducting a performance study. These are as follows:

Step 1-Creating the Design Model:

The first step is to model the structural and behavioural characteristics of the IR system.

This can be done by defining the titles and owners of the main user stories as a use-case

diagram (Figure 8.1), and then further explaining the scenarios of these user stories as

Figure 8.8: UML-JMT Tool Wizard interface

Figure 8.9: UML-JMT Tool Wizard interface after the XMI file is chosen and error checked

Cheaper 8| Quantitative Evaluation

171

sequence diagrams (Figures 8.3, 8.4, 8.5 and 8.6). The suggested architecture of

components‟ distribution is modelled in a deployment diagram (Figure 8.2). We have

used the ArgoUML [43] tool to model the design representation of this system. The

ArgoUML tool allows us to export an XMI representation of this model which we will

use as an input to the UML-JMT tool. We have exported the modelled UML design in a

file named IRS.xmi. When starting the UML-JMT tool, a wizard like GUI will run. The

interface for the GUI representing the tool is shown in Figure 8.8. The first screen of the

wizard contains an instructions pane that will be used to provide the user with

instructions and inform him/her of any errors (i.e. if the XMI document supplied does

not pass the initial test and why). In the screen shot in Figure 8.8, the instruction pane

requests the user to choose an XMI document file. After choosing the input XMI file

using the browse button, the XMI representation of the UML model will be checked for

consistency, and the result of this check will be displayed on the instruction pane (see

8.9). If the file passes all the initial tests, the user is instructed to proceed to the next step.

When the user clicks „next‟, the USDX parser will construct the internal object

representation of the model. Next, the interface component will prepare the PDC for the

user to complete.

Step 2 - Choosing Queuing Network Type:

This will be done by choosing network type depending on the type required by the

performance study. For the example used, we choose to represent the model as a closed

queuing network. This is because the network in the example which we are comparing

the results gained in this example with is a closed queuing network. (Figure 8.10).

Figure 8.10: Choosing the Queuing network type Screen

Cheaper 8| Quantitative Evaluation

172

Step 3 - Setting the Frequencies:

After choosing the network type, the user will be asked to provide the frequencies for

each of the scenarios identifying the system. The names of the scenarios will be listed in

a table along with empty fields that will be used by the user to write in the frequencies.

In this example, we assumed that half of the time users search locally and the other half

they search remotely. For the local search, we assumed that 50% of the time the user will

find their search item, 10% they will log in with incorrect authentication and 40% will

not find their searched item (Table 8.1.1). The screen shot of the frequency collection

step is shown in Figure 8.11.

Figure 8.12: Entering the number of users of each of the scenarios

Figure 8.11: Entering the frequency of each of the scenarios

Cheaper 8| Quantitative Evaluation

173

Step 4 - Setting the Number of Jobs/Workload:

Depending on the type of network chosen by the user, they will have to supply the

number of jobs or the workload for closed and open networks, respectively. The screen

that collects this information shows the list of scenarios and the fields that the user will

use to insert the number of jobs (users) of this specific type. (Figure 8.12).

Step 5 - Setting the Service Centres:

In this step, the user will be provided with the components composing the system under

study and he/she will be asked to supply the service time (in seconds) and the number of

servers in each service centre. In this example, the application and main interface

components need 0.01 ms to complete a job, whereas the Local DB and the browsers

require 0.5 ms. the number of servers in all the service centres are 1. (See Table 8.1.2,

Figure 8.13)

Step 6 - Setting the Delay Centres:

The Delay Centres extracted from the model will be shown to the user in order to

provide the average delay time for each of them. The screen collecting the delay times is

shown in Figure 8.14. We have decided to give half a second for each connection. As we

are modelling a closed queuing network, another delay is added to the delay list. This

delay represents the thinking time of the users supplying jobs to the network. We have

assumed that the thinking time can be an average of 5 seconds.

Figure 8.13: Entering the service demand time for each component

Cheaper 8| Quantitative Evaluation

174

Step 7 - Choosing the Output File:

The last step before starting the conversion process is to choose the output file where the

performance model will be saved. The file is a JMT suite simulation file with the

extension (.jsimg). In this example, we chose to call the file IRS.jsimg. (Figure 8.15).

Figure 8.15: Entering the service demand time for each component

Figure 8.14: Entering the service demand time for each component

Cheaper 8| Quantitative Evaluation

175

Step 8 - Convert and Print Conversion Results:

When the user clicks the convert button, the conversion progress can be monitored on a

progress bar. The conversion process will include writing the performance model XML

file. After the resulting file is created, the user can open this file in JMT suite to be

solved and analysed.

Steps 9 & 10 - Opening/Solving the Performance Model:

The last step of the performance study is to open the generated model in the JMT suite

and to solve this model. As we mentioned earlier, the queuing network model is designed

to be solved in the JSIMgraph(explained in 7.2.1) tool of the JMT suite (Figure 8.16).

Figure 8.17: The performance model generated by the UML-JMT wizard

Figure 8.16: Opening the Resulting Performance model in the JMT suite

Cheaper 8| Quantitative Evaluation

176

After choosing the file generated by the UML-JMT tool, the generated model will open

(Figure 8.17). The next step is to choose the performance indices that need to be studied.

The performance indexes‟ choice screen allows the study of any performance index for

any class or component. This will supply the user with a wide range of performance

readings for the systems‟ under study. For this experiment we chose the system‟s

throughput, response time and the utilisation for the components. We will use the

„What-if‟ analysis tool to conduct a performance study of observing the change of the

system‟s performance readings as the number of customers increases (Figure 8.18).

Therefore, we select the control parameter in the „What-if‟ tool to be the number of

Figure 8.19: The result of the performance study showing the throughput/user growth

Figure 8.18: The What-if analysis tool used to study the throughput of the IRS

Cheaper 8| Quantitative Evaluation

177

customers and set the ranges for that parameter and the number of executions of the

simulation study.

After we start the simulation process, the „What-if‟ study will start and will simulate the

network with the required number of users for the specified number of executions. The

results of the simulation will be shown with the maximum, minimum and mean values

for the systems throughput for each case, with a specific number of jobs in the system

(Figure 8.19).

8.1.3 IRS Performance Results

Figure 8.20 shows the performance results gained after testing the effect of increasing

the number of users in the system from 40 to 1000 users. These results can be used to

evaluate the performance characteristics of the suggested design. For instant, the system

throughput reading in 8.20(a) shows that the system will arrives at the peak throughput at

500 users when it will deliver 50 jobs/s. On the other hand, the responded will begin to

extend when the number of users of the system exceeds the 200 mark (as 8.20(b) show)

by comparing this to the throughput and utilisation graphs, we can clearly see that the

cause of this increase in the responded time is caused by the full capacity of the Local

DB component. This gives us an indication that we need to improve this component in to

gain a shorter respond time. Figure 8.20(d) gives us an indication that this component did

Figure 8.20: Performance results of the IR system extracted from the UML-JMT tool..

Cheaper 8| Quantitative Evaluation

178

not reach its full capacity although the system reached its maximum throughput. This

means that the current configuration for this component is suitable for now.

8.1.4 UML-JMT as an Experimentation Tool

In this section, we have demonstrated the use of UML-JMT tool and JMT suite in a

performance evaluation experiment. This was done by explaining the performance data

gathering wizard implementing the PDC, and the experimentation functionalities

provided by the what-if analysis tool available in the JMT suite. This combination

provides a semi-automated experimentation suite for aiding the evaluation of a system‟s

performance.

 We stated earlier that the closest combination to our own combination is the one

provided by the XPRIT tool that implements the PRIMA-UML methodology and the

SPE.ED tool for evaluation the resulting performance model, as they used the same

UML models and generate the same output performance model. We can clearly view

the differences between the two combinations particularly in the level of assistant

offered by the UML-JMT tool in the automation of performance model building and the

experimentation aid provided by JMT tool. The UML-JMT provides a UML interface

for a user-friendly performance evaluation suite that provides easy to understand,

standard visualisation of the resulting EQN model, also, experimentation tools that will

assist the performance study. As we saw in this section, the user is asked to provide a

UML representation of the system architecture. This model will be consulted to build a

set of performance variables, which are required to conduct the performance study,

these variables will be queried from the user in a question answer method. The resulting

performance model can be inspected and amended by the user (if required) in the JMT

workbench. We saw how can we select of the performance characteristics under study

and the nature of theta study can be easily done in the JMT tool We have discussed

earlier the what –if experimentation tool available in the JMT suite.

 On the other hand, the XPRIT tool require the user to specify the temporal and

frequency data in the UML model in the UML-SPT format discussed earlier in 5.2.1.

This method was not ideal for the users as we will discuss in the next chapter, as all the

participants interviewed preferred the question/answer method adopted by the UML-

JMT tool. This UML model will be used to build the machine and the software (EG)

models specified in the SPE methodology. These models can be opened in the SPE.ED

Cheaper 8| Quantitative Evaluation

179

tool. In this tool, the user will be able to annotate the EG with the appropriate workloads

and frequencies. The resource requirements are defined as to be predefined template

(i.e. CPU, DB, and Screen) or it can be used defined, which means that it can be

separated if a detailed study is required. Then the software and machine models can be

companied to an EQN, which will be solved using a discrete event simulator for a

predefined set of performance indices. The SPE.ED tool provides an excellent analysis

tool that provides the ability to compare results of different configurations of the design,

thanks to the SPE database which stores models and results of previos performance

studies and provides functionalities to compare them. Although this analysis tool

provide the ability to analyse the performance model using a query system that specify

and goal performance characterisation and a testing workload, it lacks the ability of

experimentation available in the what-if analysis which allow the experiment to be

conducted within an changing environment(workload, service time ... etc). Also, the

visualisation used in the SPE.ED tool for the performance model and the performance

results do not offer the standard notational representation of the queuing networks as

figure 8.21 shows.

8.2 Validating the Results’ Degree of Accuracy

As part of the quantitative validation of the UML-EQN methodology and the UML-JMT

tool, we will validate the degree of accuracy of the performance results gained from the

Figure 8.21: Snapshot of a performance model and its results in SPE.ED tool

Cheaper 8| Quantitative Evaluation

180

tool when realising this methodology. The degree of accuracy is measured by the margin

of error between the performance results forecast by the tool for a system‟s design,

compared to the real performance results taken from the system after it has been

developed. As we explained earlier, the non-deterministic system modelling

methodologies provide performance results ranging from 10-30% of accuracy. The

results accuracy validation process that we will discuss in this section will involve

studying the performance characteristics of a payment gateway by studying the effect of

the suggested design on the throughput of this system. We will start this section by

explaining the payment switch system. In 8.2.2, we will explain the specifications of the

system under study by explaining the architecture, and scenarios of the system. 8.2.3

will explain the steps of the performance study, and finally, we will discuss the results

and compare them to the results gained from the real system.

8.2.1 Case Study: Payment Switch

In this case study, we will consider a national payment switch designed to deploy

electronic card based payments. The name of the payment switch will be anonymous in

this thesis as the author has signed a non-disclosure agreement for all the information

regarding this system. This payment switch was founded to allow payment operations for

all the cards issued by the banks participating in this switch to be used in all the POS

(Point Of Sale) terminals used by retailers who have a merchant account with any of the

member banks. This can be accomplished by linking all POS terminals throughout the

country to a central payment switch, which in turn processes and re-routes the acquirer

financial transactions to the card issuer, whether it is a local bank, VISA, AMEX or

MasterCard. The payment switch was founded in 1991, and since then, the number of

POS terminals has increased from 18,537(1993) to 76,104(2008). The number of cards

issued with this payment switch logo has jumped from 5.56m in 2001 to 13.23m in 2009,

and consequently the number of POS transactions has jumped from 18m transactions in

2001 to 121m transactions in 2008. This massive increase in the demand of the services

of this payment switch required the owners of the switch to upgrade the payment switch

system. The system upgrade project was initiated in 2002 with a full system change at

both hardware and software levels.

In this case study, we will discuss the performance characterisation of this payment

switch system from the throughput perspective. This will include checking the

architecture that was suggested for the new upgraded system for its ability to deliver the

Cheaper 8| Quantitative Evaluation

181

number of transactions potentially required in the RFP for the upgrade project. The RFP

of the upgrade project stated that the payment system should be capable of processing

more than 100 transactions/second(TPS) This increase is reflected by the strategic plan

of the payment switch to expand the number of POS terminals and payment cards and to

introduce new types of electronic payments, such as internet and mobile payments. As

the new payment system is currently online, we will use the UML-JMT tool to

investigate the expected throughput of the original suggested system architecture and we

will compare the results to the actual throughput of the online system. This will provide

us with an indication of the accuracy of the results provided by the UML-JMT tool.

8.2.2 Payment System Architecture and Scenarios

The payment system we are considering in this case study provides financial services

that include both ATM and POS related transactions. In this case study, we will only

consider the POS transactions and operations. Figure 8.22 shows the logical architecture

of the portion of the system responsible for the POS operations. The payment system

consists of a payment switch responsible for connecting the POS terminals to the

member banks‟ systems. The banks are connected to the payment switch by a private

secure high speed network. The payment switch is also connected to the major credit

card issuers‟ gateways to forward any credit card operations. As credit card operations

only represent a small proportion of the total number of transactions, we will only

Joint Network

Payment Switch

Banks

P/C

POS terminal

X.25

TCP/IP

External Card Issuers

Gateway

Figure 8.22: logical architecture of the payment system

Cheaper 8| Quantitative Evaluation

182

consider the debit card operations passing through the payment system. The POS

terminals are connected to the payment switch through a third party communication

network. This network is an X.25 network. As the payment switch only recognises

network packets formed as TCP/IP, a protocol converter is used to convert the TCP/IP

packets to X.25 and back to TCP/IP for all transactions between the payment switch and

the POS terminals.

System Architecture

Figure 8.23 shows the deployment diagram of the payment system. In this diagram, the

system is scattered among four sites representing the retailer where the POS terminal is

located, the payment switch, the retailer bank and the card issuer banks. In the payment

switch site, the system has two components, which define the performance

characteristics of the system. These are the transaction router component, responsible

for analysing and forwarding the financial transactions from and to the POS terminal,

and the member banks. The other component residing in the payment switch is the

protocol converter (P/C). This component is responsible for encapsulating the TCP/IP

networks packets travelling on the X.25 network connecting the POS terminal to the

switch. The card issuer and retailer banks‟ sites contain the bank systems which are

responsible for issuing the authentication and approval or denial transactions for online

Retailer
Payment Switch

Card Issuer bank Retailer Bank

POS Terminal

P/C

Switch

CIBSys

RBSys

1

*

11 1

1

Figure 8.23: Deployment Diagram of the Payment system

Cheaper 8| Quantitative Evaluation

183

payments. The card issuer bank is the bank where the customer holding the card has

his/her accounts. The retailer bank is the one responsible for providing the retailer with

the certified POS terminal and opening a merchant account for the retailer.

System Scenarios

This case will include the financial transactions passing in the payment system, as they

represent the majority of the transactions and can therefore be seen as the critical

transactions shaping the performance characterisation of the system. By applying the

80/20 rule, we have grouped the transactions with similar scenarios and found that the

system will cover five main scenarios. These are as follows:

Normal transaction: Where a full normal transaction passes through the switch. Figure

8.24 shows the scenario of a normal transaction. The numbers on the messages

represent the ISO payment transaction numbers illustrated in [121]. The transaction

starts with a financial request (1200) which will be forwarded to the switch through the

protocol converter. The switch will confirm the transaction format and the originated

POS terminal and then forward this request to the card issuer system. The card issuer

system will respond to this request after checking the customer‟s account and available

funds, and will then reply to this message, instructing it to either go forward with the

operation or decline it in a financial request response (1210). If the decision is to accept

the operation, the switch will issue a financial advice (1220) to the retailer bank and

forward the financial request response to the POS terminal. The retailer bank will send a

POS P/C Switch CIBSys RBSys

1200

1200

1200

1210

1220

1210

1210 1230

Figure 8.24: Normal transaction scenario in the payment system.

Cheaper 8| Quantitative Evaluation

184

financial advice response (1230) to the switch to confirm the completion of the financial

transaction.

Transaction Declined: this scenario covers all the scenarios where the transaction will

be declined because of a problem with the card or card holder‟s account. These

scenarios include problems with the PIN entered in the terminal, invalid account;

exceeding limits, no funds … etc. The sequence diagram covering all of these scenarios

is shown in Figure 8.25.

POS P/C Switch

1200

1200

1421

1421

Figure 8.26: Problem with the transaction.

POS P/C Switch CIBSys

1200

1200

1200

1210

1210

1210

Figure 8.25: Transaction decline scenario in the payment system.

Cheaper 8| Quantitative Evaluation

185

The authentication of the card and card holder‟s account is requested from the card

issuer bank by a financial request message. This message will originate from the POS

terminal and will be forwarded to the card issuer bank by the switch. The response to

this financial request will arrive from the card issuer system with declaim if any of the

refusal conditions accrue. The switch will then forward the response to the POS

terminal and the transaction will end.

PO P/ Switc CIBSy RBSy

1200

1200

1210

1210

1200

1220

1220

1230

1220

1210

Figure 8.28: No response from the retailer bank system.

POS P/C Switch CIBSys RBSys

1200

1200

1210

1210

1200

1420

Figure 8.27: No response from the card issuer system.

Cheaper 8| Quantitative Evaluation

186

Problem with financial request: If there is a problem caused by network noise or faulty

POS terminals. These problems will arise in the form of problematic financial requests.

The financial requests arriving at the switch will be checked for the authenticity of the

sending POS signature and retailer etc. If any problems are found, the switch will reply

to the POS with an acquirer reversal advice message (1421).

No response from issuer bank: In the case that there is no response from the first

financial advice sent to the issuer bank, the advice is sent again as a (1420) message. If

there is no response for the second transaction, the operation will be declined.

Retailer bank time out: In the case where there is no response from the retailer bank, the

transaction will be stored in the switch in a special (store and retrieve database). When

the connection is resumed, the transactions will be sent to the retailer bank afterwards.

The frequency of each of these scenarios is shown in Table 8.2. These frequencies are

taken from an average count of scenarios that occurred during the run of the original

payment system. In this table, we can see the frequency of each of the scenarios and

sub-scenarios covered by the general scenarios that we explained earlier.

Table 8.2: Scenarios frequency for the payment switch system

Scenario Sub-scenarios Frequency (%)

Normal transaction Approved normal transaction 93%

Transaction declined Invalid card, no funds, incorrect PIN,

exceeds limit, restricted card, exceeds

PIN retry , invalid PIN block, PIN

key error, lost card

4%

Problem with financial

request

Invalid merchant, no original, invalid

transaction, invalid amount, invalid

capture date, no from account, no to

account, message format error,

invalid issuer

1%

No response from issuer

bank
Issuer down, invalid response code 1%

Retailer bank time out Invalid acquirer , invalid response

code
1%

Cheaper 8| Quantitative Evaluation

187

System Components Demand and Network Delays

The payment switch components and their service times are shown in Table 8.3. For

each of the components, we have explained briefly, the hardware and software

components composing the system within the limits approved by the non-discloser

agreement signed to study this system. As the table reveals, the system‟s hardware is

mounted on an IBM p690 rack, with the hardware for the switch and the P/C located in

the same machine. The average service time for the switch and the P/C were rounded by

taking the system specifications of the products used for the switch and the P/C

components, and the time required to process and forward one of the transaction‟s

messages when the system resources are fully utilised (as we are doing an upper bound

analysis). The member banks‟ systems were calculated by averaging the result of the

following formula:

 Average time= Average response time – Average network delay

Table 8.3: Payment system’s components service time and specifications

Component Specification Avg. Service

time/ Message

Switch The switch is running an IST switch system[122]

deployed on an IBM p690 machine with 32 ways

at 1.1 GHz Power4 CPUs and 100 GB RAM,

with 8 processors and 26 GB RAM dedicated for

POS transactions. The machine has 48 18GB

disks running at 15000 RPM. The operating

system on which the machine is running is an

IBM AIX 5.1 maintenance level 2, Kernel 32&64

bits. The DBMS running the switch database is a

Sybase ASE 12.5.0.3.

0.057sec/

message.

P/C The Protocol converter is a 4 processor multi-

threaded program dedicated to POS transactions

which is used to convert the protocol from X.25

to TCP/IP and back again to X.25. The machine

is located in the same switch rack.

0.008

sec/message

CIBSy Each member bank has its own switch interface

system we have taken the upper bound of the

processing time between the banks systems.

0.32

sec/message
RBSy

Cheaper 8| Quantitative Evaluation

188

Although the results for the member banks are moderately diverse, we have taken the

upper bound from all the banks and averaged them to represent the service time in the

bank system components. Table 8.4 shows the average network latencies in the payment

system. There are two kinds of networks; X.25 and the SJN. Both of these networks are

explained in the table and the delays are taken from experimenting with the existing

switch system.

8.2.3 Payment System Performance Study

The main objective of the study is to investigate the throughput of the switch component

in the payment system. This throughput performance measure will be compared to the

throughput gained from the benchmarking experiment conducted earlier the system

configuration. We will also study the effect of the P/C becoming a bottleneck in the

system. This will be done by checking the utilisation of the P/C component and

comparing the utilisation of the switch component when the P/C component reaches the

full utilisation point. We started the performance study by designing the use-case,

sequence and deployment diagrams using the ArgoUML tool. Next we extracted the

XMI document representing the payment system architecture from this tool. This

Table 8.4: Payment system’s network delays

Component Specification Avg. Service

time/ Message

X.25 Provided by a third party telecommunication

company, the network has a speed of 1MB.

Represented in the queuing network as delay

stations (POS_P/C and P/C_POS1).

0.3sec/ message.

SJN SJN network is the backbone network of all

services. It consists of backbone routers and

switches, firewalls and L3 switches, to be utilised by

any server within that network. It uses 1GB network

cables between core devices and provides 100MB

interfaces to end users. Some servers get 1GB

interfaces depending on their needs. Represented in

the queuing network as delay stations

(Switch_CIBSys, Switch_RBSys, CIBSys _Switch

and CIBSys Switch) .

0.135

sec/message

Cheaper 8| Quantitative Evaluation

189

document was fed to the UML-JMT wizard and used (as we saw in 8.1) to define the

system‟s performance characteristics (service time, delays). The performance model that

was generated from the UML-JMT tool is shown in Figure 8.29. This performance

model represents an open queuing network with four queues and six delay stations, each

of which represents a network connection between the system‟s components.

The network is designed with five job classes, each of which represents a scenario route.

These classes are characterised with the percentage tied to the frequency and the arrival

rate of payment transactions to the system. We then define the performance indices that

we seek to monitor during the queuing network simulation. As we explained earlier, in

this performance study, we will concentrate on the throughput and the utilisation of both

the P/C and switch components. The study will be designed to investigate the effect of

increasing the arrival rate on the throughput and utilisation of the system. We will use

the „what-if‟ tool to design a study for increasing the arrival rate from 10 TPS to 300

TPS to monitor the system saturation point and the utilisation of the P/C compared to

the utilisation of the switch.

Table 8.5: P/C component utilisation when the system load increases to 300 TPS from

10TPS.

Load

(TPS)
10 42.2 74.4 106.6 138.8 171.1 203.3 235.5 267.7 300.0

Mean 0.63 0.73 0.83 0.91 1.00 1.00 1.00 1.00 1.00 1.00

Max 0.64 0.75 0.85 0.93 1.02 1.02 1.02 1.02 1.02 1.02

Min 0.61 0.72 0.82 0.90 0.98 0.98 0.98 0.98 0.98 0.98

Figure 8.29: Queuing network generated for the payment system, as shown in the JMT

suite.

Cheaper 8| Quantitative Evaluation

190

8.2.4 Payment System Performance Results

As we explained earlier, the performance study is concerned with investigating the

effect of the P/C with its current configuration of becoming a bottleneck, and comparing

the throughput of the switch system and switch component, with the results gained from

the benchmarking exercise deployed on the system. In this sub section, we will discuss

the results gained from the performance study.

P/C Component effect

The effect of the P/C component will be studied by investigating the utilisation of this

component and comparing it to the utilisation of the switch component which is directly

feeding from the P/C. Tables 8.5 and 8.6 and Figure 8.30 show the results gained from

running a simulation of the performance model representing the payment system in

Figure 8.28 when the system load increases from 10TPS to 300 TPS. The results

showed that the switch component was fully utilised (utilisation =1) from the early run

of 10 TPS where the P/C component was only around half its capacity of an utilisation

of (0.63). Figure 8.30 shows that the P/C component only reaches its full capacity when

Table 8.6: Switch component Utilisation when the system load increases to 300TPS from

10TPS.

Load

(TPS)
10.0 42.2 74.4 106.6 138.8 171.1 203.3 235.5 267.7 300.0

Mean 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.95 0.96

Max 1.02 1.02 1.02 1.02 1.02 1.02 1.00 0.98 0.96 0.98

Min 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.93 0.94 0.94

Figure 8.30: P/C and Switch components’ utilisations when the system load increases to

300 TPS from 10TPS.

Cheaper 8| Quantitative Evaluation

191

the load reaches (138.8) TPS, which will slightly affect the switch component utilisation

(0.95), but to an accepted degree.

The performance study results show that the P/C component does not cause a bottleneck

in the system. This is clear from the fact that the switch component was fully utilised,

though the P/C component did not reach its full capacity. Although Figure 8.30 shows a

drop in the switch component utilisation and this drop occurred after the protocol

converter reached its full capacity, this drop in the utilisation can be classified as a

minor drop. This information can support the system designers with confidence in the

current configuration of the system, in the context of design and resources, given that

the switch system provided the expected throughput, as we will explain next.

Table 8.7: Switch component throughput (MPS) when the system load increases to 300TPS from

10TPS.

Load

(TPS)
10.0 422 74.4 106.6 138.8 203.3 235.5 267.7 300.0

Mean 139.2 142.7 142.5 142.8 143.3 138.9 139.0 136.9 137.3

Max 141.6 144.8 146.3 146.9 148.5 140.7 149.1 144.0 145.8

Min 136.9 140.6 138.8 138.9 138.5 137.3 130.3 130.6 129.7

Figure 8.31: Switch component throughput when the system load increases to 300TPS from

10TPS.

Cheaper 8| Quantitative Evaluation

192

Switch Component Throughput

The benchmarking exercise deployed on a system configuration similar to the payment

switch configuration, with transaction generators representing the POS terminals and

transaction handling agents representing the member banks systems, showed that the

POS switch component is capable of handling a maximum load of (132

Message/Second). The performance results gained from the queuing network in Figure

8.29 are shown in Table 8.7 and Figure 8.31. The Figures in the table and that graph

show that the switch component reaches its saturation point of 143 MPS. The graph in

Figure 8.31 shows that the switch sustains an average level of throughput until the P/C

component reaches its full capacity point.

We can validate the results gained from the UML-JMT tool by comparing the results

gained from this performance study to the results found in the benchmarking exercise.

The difference between the throughput provided by the model produced by the UML-

JMT tool and the throughput gained from the bench marking test does not exceed the

(7%) difference. This is acceptable since the average margin of error in non-

deterministic model based performance testing for throughput, is around 10 %.

Payment System Throughput

As explained earlier, the potential throughput of the system was able to produce 100

TPS. The system throughput performance index calculated for the performance model

representing the payment system showed that this figure can be reached by using the

suggested design and system configuration. Table 8.8 and Figure 8.32 show the results

of the system throughput. The results showed that the system reached a throughput of

96.75 TPS with the system still out of the saturation state. This indicates that the system

with the current architecture and configuration is capable of reaching the targeted TPS

rate.

Table 8.8: Payment system throughput when the system load increases to 300TPS from 10TPS.

Load

(TPS)
10.0 42.2 106.6 138.8 203.3 235.5 267.7 300.0

Mean 6.89 24.89 60.80 78.14 91.25 94.54 95.37 96.75

Max 7.59 25.66 62.71 81.49 94.33 97.05 97.46 98.41

Min 6.30 24.16 58.99 75.05 88.36 92.15 93.36 95.15

Cheaper 8| Quantitative Evaluation

193

8.3 Summary

The role of the UML-JMT tool in the process of validating a system‟s performance

requirements can be summarised in papering the performance model required to

conduct the performance study used for the validation. UML-JMT provides together

with the analysis and experimentation tools available in the JMT suite a solution for

semi-automating the performance evaluation task. This chapter is dedicated to

evaluating the use of the UML-JMT tools as an aid for evaluating a system‟s design. We

have demonstrated the UML-JMT tool in this chapter in two case studies. The first case

study was dedicated to demonstrating the usability of the tool for conducting a

performance evaluation experiment. This demonstration included snapshots that provide

the reader with experience of the user when utilising this tool. As this tool is deploying

a different method for collecting the system characterisation used to build the

performance model different than the one utilised in other similar tools, we compared

the performance evaluation experience for this tool and a similar tool at the end of the

first case study.

The second case study was dedicated for evaluating the degree of accuracy of the

performance results gained from the tool. The degree of accuracy is measured by the

margin of error between the performance results forecasted by the tool for a system‟s

design, compared to the real performance results taken from the system after it has been

Figure 8.32: Payment system throughput when the system load increases to 300TPS from

10TPS.

Cheaper 8| Quantitative Evaluation

194

developed. This case study showed that the results gained from the UML-JMT was

acceptable to a valid degree as the error margin was inside the acceptable average error

in non-deterministic model based performance testing. This case study demonstrated as

will how this tool can be deployed in a real system context.

195

CHAPTER

 Qualitative Validation

9

Chapter 9: Qualitative Validation

Non-deterministic performance evaluation methodologies were designed to provide a

means of evaluating software systems designed from an early stage of system

development. We have seen that the deployment of these methodologies is challenged

by the complexity represented in the design and analysis of the performance models.

Therefore, a range of methodologies have emerged for simplifying the performance

model building process. These methodologies depend on transforming architectural

models to equivalent performance models. The main goal of these methodologies is to

simplify the performance model building and analysis task in order to make the non-

deterministic model pass performance testing, which is part of an engineered system

development process. These methodologies did not meet their goal as the non-

deterministic performance testing was not a common practice in the software

development industry. As one of the main components of this thesis is the UML-EQN

methodology and the UML-JMT tool, we decided to conduct a qualitative validation

test that will investigate the attitude of a sample of software engineers towards the

methodology and the tool. This study will investigate the methodology‟s level of

efficiency and the tool‟s usability. This study will also investigate the accuracy of the

assumptions taken by the model transformation methodologies.

The main objective of this qualitative study is to investigate the effectiveness of the

method transformation methodology by studying the level of knowledge that members

of the software engineering community support for this specific paradigm of

performance requirements validation, and the reasons for the lake of utilisation for this

paradigm in the software development industry. Our hypothesis state that, the lack of

deployment of this performance requirements validation paradigm returns manly to the

knowledge gap between software and performance engineering domains. The

introduction of the UML-EQN tool was aiming to bridge this knowledge gap by

introducing methods for assisting the performance study initiation, starting at gathering

the performance data required for the performance study and ending with efficient, easy

to use experimentation functionalities available in the JMT tool. As a part of the

Cheaper 9| Qualitative Validation

196

objectives, we need to investigate if the cause of this knowledge gap returns to the

absence of knowledge about the paradigm itself or does it return to problems in the

model transformation methodology.

The study involved interviewing a group of software engineers from different sectors of

the software development sectors. The study involved demonstrating two performance

requirement validating tools based on the model transformation methodology one of

them is the UML-EQN. The reason for demonstrating the second performance

validation tool is to investigate the user‟s acceptance and attitude toward the method

usually adopted in collecting the performance study data (UML-SPT) compared to the

method adopted in the UML-EQN (PDC). The study was aiming to assess the

participants‟ level of acceptance and their attitude toward the non-deterministic

performance validation as a design aid in general and the model transformation

methodology for deploying this methodology specifically. These satisfaction metrics

were measured before and after the introduction of a treatment represented as workshop

explaining the validation paradigm deployment using the demonstrated tools. The study

also involved studying the usability of the UML-EQN tool using a standard usability

test.

This chapter contains four sections. Section 9.1 will discuss the qualitative study design

in detail. Section 9.2 will discuss the results and analysis of the first part of the study,

which investigates the effectiveness of the model transformation methodologies in the

software development process. Section 9.3 will explain and analyse the results of the

UML-JMT usability test, and finally, Section 9.4 will conclude this chapter by

summarising the results and outcomes of the study, and discussing the improvements

suggested for the methodology and the tool.

9.1 The Study

In this section, we will explain the design and steps of the qualitative study. We have

composed this section in the same format suggested in the ISO9241-11 standard format

for usability reports. This section will explain the objectives, method and design of the

qualitative study.

9.1.1 Objectives

The main objective of conducting this qualitative study is to investigate the efficiency of

the general methodology of the non-deterministic study of systems performance, and

usability of the UML-JMT tool compared to similar tools. The efficiency of the

Cheaper 9| Qualitative Validation

197

methodology will be investigated by identifying the challenges against deploying the

performance evaluation in real software system projects in the industry. These

challenges are represented in the causes of the knowledge gap between software

performance and system engineering, and the availability of tools which support

software engineers in automating the build and analysis of the required performance

models. The study also investigates any other factors that may cause disregarding the

performance evaluation at the system design stage, such as the system size and the

ability to interpret the resulting performance indices gained from the performance study.

The study will investigate the usability of the UML-JMT tool from the perspective of

learnability, effectiveness and user satisfaction. The learnability factor will investigate

knowledge gained by the user in the software performance engineering context after

learning to use the UML-JMT tool. The effectiveness factor tests if the functionalities

and results provided by the tool reaches the users expectations. The satisfaction factor

will test the tool‟s ease of use and appearance.

9.1.2 Method

The experiment was composed of four phases. In two of these phases, the participants

were involved in a structured interview. A structured interview is conducted with a

moderately open framework which allows for a focused, conversational, two-way

communication[123]. They can be used to both, give and receive, information and this

helps in gaining information as well as providing explanatory knowledge to the

participants. Structured interviews can be used to acquire specific quantitative and

qualitative information, obtain general information relevant to specific issues, and gain

a range of insights into specific issues[123]. Between the two interviews, the

participants were involved in a workshop that discusses essential background

knowledge of software performance engineering terminology and introduces the

participants to the UML-JMT and XPRIT tools[124]. Afterwards, the participants were

given the opportunity to use the UML-JMT tool to execute a scenario example which

was explained in the workshop. After a participant executes this scenario, he/she will be

asked to provide suggestions to improve the tool and evaluate its usability, using the

standard IBM computer systems usability questioner (CSUQ)[125]. In this section, we

will provide information regarding the experiment environment which includes

information regarding the participants and the context of the experiment.

Cheaper 9| Qualitative Validation

198

 Participants

 The subjects chosen for this study represent software engineers with different academic

and professional backgrounds. The participants were chosen from a range of sectors

which heavily employ software systems. Table 9.1 shows the sectors and the

organisations in which the participants work. The organisations were chosen to be in

Saudi Arabia. We believe that the result of the study cannot be affected by

chronological (age), geographical (location), or cultural factors. This comes down to the

strong belief that software development cannot be affected by such factors. The study

was conducted on 21 participants with an average experience of around 9 years, ranging

from 2 to 27 years of experience. In a question to describe the magnitude of the largest

project they were involved in, in terms of budget, number of components, time and man

power. The participants were given a five scale measure to describe this project where 1

represents a project with less the 3 components, with a budget of < 10K$, manpower of

<3 personal and scheduled < 3 months, and 5 represent a project with > 15 components

with a budget of >10M$, manpower of >30 personal and scheduled > 24 months. The

participants scored an average of (3.63) with scores ranging from 1 to 5. This indicates

that the participants in this study represent an acceptable sample of software engineers

with time and practical experience and who represent different sectors of the industry.

Choosing the right sample size is essential for any qualitative usability study, as it

determine the accuracy of generalising the outcome of the study. The recommended

sample size defined in [125] can be calculated as following:

nario tasks/sceofnumber scenarios ofnumber 5Size Sample Acceptable 

Table 9.1: the business sectors the participants work in.

Public service sector King Saud University(KSU)

Ministry of Finance(MoF),

Ministry of Defence and Aviation(MoDA),

Ministry of Water and Electricity(MoWE)

Banking sector Saudi Arabian Monitory Agency Banking Technology

Department(SAMA-BTD)

Institute of Banking (IOB)

Al-Tawiniya

Telecommunication sector Mobily

Software Warehouses Chip CS

 AlFisaliah ITS

Cheaper 9| Qualitative Validation

199

As we have a single scenario with 4 items, 20 participants are an acceptable sample

size. The full information of the participants can be found in Appendix C, Table C1.

Scenario of the Experiment

As explained above, the experiment will involve a workshop that explains the

terminology of software performance testing in the design stage. The workshop will use

the example of the information retrieval system explained in Chapter 8 as an example of

the two tools explained in the workshop. At the end of the workshop, the subjects are

given the opportunity to evaluate the usability of the UML-JMT tool. They will be

provided with two XMI files; one containing the UML diagrams for the information

retrieval system, and the other containing an invalid UML diagram (there are three types

of problematic XMI files). This file will be used to show the user the error reporting

function available in the tool. The scenario in the experiment is to make a stress test for

the architecture selected for the system. This task consists of five tasks:

Task 1: The participant will be asked to use the UML-JMT wizard to perform the model

transformation task, as explained in the workshop.

Task 2: The user will be asked to open the resulting performance model in the JMT

suite - JSIMgraph tool, and to select the objective performance indices. In this scenario,

it will be the system‟s throughput.

Task 3: The user is asked to use the „what-if‟ tool to inspect whether the increase in the

number of users from 10 to 1000 will affect the system‟s throughput. The user will be

asked to identify the saturation point on the throughput graph.

Task 4: The user will be asked to change service time on some of the service centres

and investigate how this will affect the throughput.

9.1.3 Experimental Design

The actual study is composed of four stages. Two of them are structured interviews and

one will consists of a workshop that will cover software performance engineering

terminology and a number of methodologies similar to the UML-EQN methodology,

together with the methodology under study. The interviews are designed to examine the

participant‟s knowledge before and after providing the subjects with knowledge about

software performance engineering and methodologies. The steps of the study and the

activities conducted in each step are discussed in this section:

Cheaper 9| Qualitative Validation

200

Step1 - Setting the par: In this step the subject will be asked a set of questions that will

determine the level of knowledge that they have on the software performance

engineering field, and how much experience (academically or professionally) they had

before taking part in the workshop. The set of questions and the rationale for each of

these questions is shown in Table B1 in Appendix B.

Step 2 - Providing the knowledge (workshop): The subjects will be provided with basic

knowledge covering areas of software performance engineering terminology. This will

help them to understand the importance of the software performance study and to be

able to comprehend the methodology under study. The knowledge will be provided in a

workshop consisting of three sections. The activities in each section are defined as

follows:

Section 1: Explaining Performance Engineering

 Definition of software performance studies and their importance

 Functional requirement vs. non-functional requirement validation

 Performance studies: modelling vs. simulation

 Modelling paradigms

 Inputs and outputs of a performance study

Section 2: Explaining Model Transformation Methodologies

The subject will be given a brief description of three methodologies for conducting

performance studies, two of which are UML based. The methodologies are chosen to

have similarities because of the time limit and not to confuse subjects who are new to

the area. Two of the methodologies, including the one under study (UML-EQN),

adopted the SPE (Software Performance Engineering) framework. Therefore, the SPE

methodology should be explained first. The second methodology is called PRIMA-

UML, which is based on the SPE framework. The last methodology will be the one

under study, UML-EQN. The criteria we explained in Chapter 4 for evaluating model

transformation methodologies will be explained to the user.

Section 3: Explaining the Tools

XPRIT and UML-Tools will be explained using the information retrieval system

example from 8.1.

Cheaper 9| Qualitative Validation

201

Step 3 - Collecting Results: In this step, the subject will be interviewed again to ask

them questions that will determine the level of knowledge that the subject has gained on

the software performance engineering field, and which of the methodologies and tools is

most convenient for the software performance test task. The questions to be asked are

shown in Table B2 in Appendix B.

Step 4 - Testing the System: The participants will be asked to execute the scenario

explained in the previous section. This will prepare them to answer the usability

questionnaire in Step 5.

Step 5 - Evaluating UML-JMT Usability: The users will be asked to answer the IBM

CSUQ questionnaire for evaluating the usability of the UML-JMT system.

9.2 General Methodology Effectiveness Analysis

One of the goals of this study is to investigate the causes of the infrequent deployment

of non-deterministic software performance testing in the industry. A common claim for

this in major publications comes back to the knowledge gap caused by the non-

deterministic heavy-weighted mathematical and statistical terminology used in software

performance evaluation. As discussed in the early chapters of this thesis, the

introduction of model transformation methodologies aimed to bridge this knowledge

gap by black-boxing the performance model building and analysis tasks which will

make the performance testing process a semi-automated task. All of the literature

discussing the lack of non-deterministic performance testing only speculated on the

reasons for this problem. We have decided, as a part of this qualitative study, to make

grounds for our claims by investigating the attitude of software engineers toward non-

deterministic software performance testing. This will be done by asking the participants

their opinion on non-deterministic performance testing, with and without model

transformation tools, and before and after providing the participant with basic

knowledge of performance testing.

The effectiveness of the model transformation based performance testing was explained

to the participant through the use of the UML-JMT and XPRIT tools. The study was

organised as a structured interview, as we explained in the previous section. This

interview was divided into two parts. In the first interview, the participants were asked

questions about their level of experience and their attitude towards performance testing

in general, and non deterministic performance testing. The participants were then

Cheaper 9| Qualitative Validation

202

introduced to model transformation performance testing with the UML-JMT and XPRIT

tools. Next, the participants were asked about their knowledge and confidence level to

conduct a performance study using the same methodology and if they would use it in

future projects. The questions for the two parts of this structured interview are shown in

tables B1, B2 of Appendix B. Most of the questions in this interview are based on a

scale that measures the participant‟s perspective on articulated issues concerning

performance testing and the tools offering the performance testing task. In this section,

we will discuss the results of the interviews by analysing the participant response to

each of the questions.

9.2.1 Pre-orientation Interview Analysis

In this section, we will analyse the interviews conducted before providing the

participants with the orientation workshop discussed in the previous section. This

interview is designed to investigate the participant‟s level of experience and knowledge

in the context of UML and software performance testing. We previously used the level

of experience in 9.1.2 to prove that the participant sample covers a broad spectrum of

software engineers. We will analyse the questions in Table B2 as groups representing

the experience, UML knowledge and performance engineering knowledge.

Experience

The experience level is defined in this interview by three main factors; the magnitude

the participant is involved in software development, the nature of this participation from

the context of development stage (analysis, design, development, test or all) and the size

of the biggest project the participant has been involved. These factors are used to ensure

that the sample involved in this study represents software engineers from different

levels of experience and academic and industrial backgrounds. The first factor is gained

from the participant‟s response to Q1 of the interview stating “have you been involved

in software development (1 for very few times and 5 for majorly)” the average score

gained for this question was 4.33, with a maximum score of 5 and a minimum score of

3. The participants who chose 3 are more involved in the support and maintenance of

software systems. The second factor is represented in Q2 of the interview stating “In

what stage are you usually involved? (1 - Analysis; 2 – design; 3 – development; 4 –

test; 5 - all)”. 76 % of the participants said that they are usually involved in all of the

development stages, where the rest of them usually involved in analysis and testing. The

Cheaper 9| Qualitative Validation

203

third factor is concerned with the size of the project they were involved in, as discussed

already in 9.1.2. The results gained from these factors represent an indication that the

participants chosen are a part of the targeted sample of software engineers, as we

explained earlier.

Figure 9.1: The UML knowledge frequency graph indicating the participant’s level of

knowledge and usage.

UML-Knowledge/Usage

The main model transformation methodologies for non-deterministic system‟s

performance testing adopted UML modelling notation as the base model used to extract

performance model used in the performance test. This was based on the suggestion that

UML is the standard modelling notation widely used in the industry for development

and documentation. As part of this study, we wanted to investigate this suggestion by

asking the participant about their level of knowledge and usage of the UML standard.

We asked the participants the question “Describe your knowledge/usage of UML (1 - no

knowledge; 2 - learned it but never used it; 3 - use it occasionally; 4 - commonly use it;

5 - used it in all the projects I am involved in)” to investigate this factor. Figure 9.1

shows the frequency of each of the answers provided by the participants.

The result gained from this was unexpected as around 82% of the participants have

either never used UML in development or documentation, or only used it occasionally.

A number of the participants who had used the UML notations in some of the projects

UML Knowledge

0.00%

14.28%

42.85%

38.09%

4.76%

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Knowledge Level

F
re

q
u

a
n

c
y

Cheaper 9| Qualitative Validation

204

they have participated in, responded by “they only use UML when the notation is

specifically requested in the project specifications” [RUH03, 04, 17] and when asked

about the reasons for not using the UML notation, most of the participants put this down

to the time required to compose these models which represents an overhead in time

resource. 14.28% (3) of the participants indicated that they use UML commonly in the

project they are involved in. When we returned to these participants‟ information they

were found to work in the same organisation (MOF). This indicates that the organisation

development policy is the main reason for these participants to deploy UML. This factor

partly affects the effectiveness of the model transformation methodology which

assumed that UML is a standard notation commonly used in software development.

This effect was reflected in the usability effectiveness factor, as we will see in the next

section.

Performance Engineering Knowledge/Usage

One of these study objectives is to investigate if one of the reasons for not deploying

non-deterministic performance testing in the industry comes down to the lack of

knowledge about this performance testing paradigm. We will investigate this assertion

by asking the participants about their knowledge and experience in non-deterministic

model based performance testing. This will take place before and after providing the

user with information about this paradigm in a concentrated workshop. We asked the

participants this question “Describe your knowledge of software performance

engineering study (1- I‟ve just heard about it; 2 - I heard about it but could not use it; 3 -

I have heard about it but would not use it; 4 - I have used it several times; 5 - I

commonly use it)” to clarify the knowledge and experience level they have for this

performance testing paradigm. Figure 9.2 shows the distribution of the answers

provided by the participants. 57% of the participants replied as they had never heard

about this performance testing paradigm before, whereas 33% replied that they have

prior-knowledge of this paradigm but have never used it before because of the

difficulties they faced due to the complexity of the paradigm. 5% of participants said

that they know this paradigm but they would not use it as “the high cost of this

paradigm would not make it efficient with the projects they were involved in” [RUH12],

another 5% said that they have used non-deterministic model based performance testing

before but they would not use it again due to “the high cost, low accuracy factor”

[RUH03]. The source of knowledge of the participants who have prior knowledge of

non-deterministic model based performance testing is mostly from non-academic

Cheaper 9| Qualitative Validation

205

resources, and only one participant said that he heard about this paradigm from his

academic background.

Figure 9.2 The non-deterministic performance testing knowledge/experience frequency graph

indicating the participant’s level of knowledge and usage.

This gives an indication that one reason, which may cause the lack of knowledge about

this paradigm, comes down to the shortage of academic programs covering this

paradigm. The participants were asked “Based on your knowledge, how important do

you deem software performance engineering study to be? (1 - not important; 2 - it can

be included in the testing phase; 3 - good practice for some projects; 4 - important for

some projects; 5 - essential for all projects)”, to measure their attitude toward testing

performance during the development of a software system. Figure 9.3 shows that 76%

of the participants agreed that software performance should be included in the software

development process, whereas 14% of them thought that it is a good practice, but is a

low priority. One participant thought that the current method of including performance

testing in the testing phase is the best practice. One participant thought that performance

testing is an overhead in any software project budget. The participants were asked the

current approach used to test the performance, if any. The question was “In any of the

previous projects you have participated in, has a performance study been conducted in

this project? (1 – none; 2 - real system test; 3 - spreadsheet; 4 - simulation; 5 -

benchmarking)”. Figure 9.4 illustrates the percentage of techniques used for

performance testing, as per the last question. .

Non-Determenistic Performance Testing Knowledge

0.00%

4.76%4.76%

33.33%

57.14%

0

2

4

6

8

10

12

14

1 2 3 4 5

Knowledge Level

F
re

q
u

a
n

c
y

Cheaper 9| Qualitative Validation

206

Figure 9.3: Performance testing importance frequency graph indicating the participant’s level

of importance

Figure 9.4: Performance testing techniques used by the participants

9.2.2 Post-orientation Interview Analysis

In this section, we will analyse the interviews conducted after providing the participants

with the orientation workshop. This interview is designed to investigate the participant‟s

level of knowledge and confidence with respect to conducting a model based software

performance test. We will also discuss the participant‟s reaction to the two tools

presented in the workshop and whether they think they could be utilised in future

projects. Finally, we will investigate the importance of using standard modelling

notation as an input in performance testing tools. We will analyse the questions in Table

 Performance Testing Importance

42.85%

33.3%

14.3%

4.7%4.7%

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Importance Level

F
re

q
u

a
n

c
y

None
34%

Real system
33%

Spreadsheet
14%

Simulation
5%

Benchmarking
14%

Cheaper 9| Qualitative Validation

207

B2 as groups representing the performance engineering knowledge and confidence,

tools evaluation and importance of standard notation.

Figure 9.5: Comparing knowledge levels before and after the participants are provided with

performance testing workshop

Knowledge increase and confidence

As we discussed earlier, we want to compare the knowledge level of the participants

before and after introducing the basic terminology of non-deterministic model-based

performance testing and the tools designed to simplify the testing process. At the end of

the workshop, we asked the participants the question, “Describe your

knowledge/experience in software performance engineering study? (1 - I still do not

understand this paradigm; 2 - I understand it but could not use it; 3 - I think I have the

basic knowledge to conduct a study; 4 - I think I have the necessary knowledge to

conduct any performance test; 5 - I knew it already)”. Figure 9.5 shows a comparison of

the participants‟ replies to the corresponding question asked before the workshop. 76%

of the participants thought that they have the necessary knowledge required to conduct a

performance test and the system design level, whereas the other 24% thought that they

had all the necessary terminology they need to conduct a performance test. To test the

confidence of the participants when using the tools for conducting performance tests,

we asked them, “How confident are you in your current knowledge of software

performance study with the provided tools? (1 - not confident; 2 - need more

background knowledge; 3 - I can conduct simple performance tests with assistance; 4 - I

1
2

3
4

5

Before tools introduction

After Tools introduction

0 0

16

5

0

12

7

1
1

0

0

2

4

6

8

10

12

14

16

Comparing knowlegde level of Performance testing

Before tools introduction

After Tools introduction

Cheaper 9| Qualitative Validation

208

can conduct simple performance tests without assistance; 5 - I can conduct any

performance tests)”. Figure 9.6 shows the results gained from this question. The results

showed that 38.1 % of the participants needed more background information to conduct

the performance testing task. When asked about the information required, they needed

one or more of the following:

1- Information about the UML use-case, sequence and deployment diagrams and

the tools used to model and extract the XMI format for them.

2- Information regarding analysing and interpretation the performance results from

design decisions.

3- Information about queuing networks.

Figure 9.6: Confidence level of the participants to conduct a performance testing task using the

suggested tools

47.6 % of the participants thought that they could conduct a performance study but with

assistance, particularly in the area of interrupting the performance indices. 9.5 % of the

participants were confident enough to conduct the study and utilise its results to make

design decisions. We noticed that the participants who said that they needed more

details were the ones who did not have any background knowledge about model based

performance testing, although some of them chose the

third answer. The participants

who were confident to conduct the study tended to have some background in the

discussed paradigm. This gives an indication that if we provided the participants with

4.8%

9.5%

47.6%

38.1%

0.0%
0

2

4

6

8

10

12

1 2 3 4 5

Cheaper 9| Qualitative Validation

209

more knowledge regarding performance indices, analysis and their relation to design,

then they could have had more confidence to use the model based performance testing

paradigm.

Importance of practice and subsequent utilisation of the tools

We asked the participants the same question about their opinion on non-deterministic

performance testing, taking into account the existence of tools like UML-JMT and

XPRIT. We asked the participants the same question that we asked them in the first

interview, which was, “Based on your current knowledge, how important do you

consider software performance engineering study to be (1 - not important; 2 - it can be

included in the testing phase; 3 - good practice for some projects; 4 - important for some

projects; 5 - essential for all projects)”. We found that the percentage of participants

agreeing that performance evaluation is an important task to be included in most of the

software projects, increased from 76.15% to 85.71%, and the participants who thought

that the performance test is important in some projects changed to only 9.5%. Only one

participant thought that it is a good practice. We noticed that none of the participants

thought that non-deterministic software performance testing is not a good practice after

they were introduced to the assisting tools. We asked the participants about the

possibility of utilising the tools demonstrated to them in future projects and all of them

agreed that these tools can be utilised for performance evaluation of software designs,

but only on large scale and complex projects.

Comparing the performance assistant tools

As discussed previously, the introductory workshop provided for the participants

included the demonstration of two tools, which provide assistance to software engineers

in conducting performance testing. These are UML-JMT and XPRIT tools. Both of

these tools were demonstrated in the same case study. Part of this qualitative study was

to compare the UML-JMT tool to the nearest tool related to it, in terms of functionality

and methodology deployed. This is the XPRIT tool. We asked the participants their

opinion on these two tools by giving a score on the degree that they think they will be

using or recommending any of the tools in their future projects. They were asked to

provide a score out of 5 (1 - will not endorse or use, and 5 - will definitely recommend

or use this tool). The scores gained for these two questions showed that the average

score for XPRIT was 2.33 (46.7%), whereas the participants gave the UML-JMT tool an

average score of 3.87 (77.3%). This is an indication that the participants preferred the

Cheaper 9| Qualitative Validation

210

UML-JMT tool. They justified their decision for recommending the UML-JMT tool

because it provided them with an easier approach for providing the performance

characterisation data required for the test using the performance data card gathering

wizard.

Figure 9.7: Participants’ attitude toward learning new software modelling paradigms to be

used in performance evaluation or other NFR verification tasks

Importance of Standard Notation

To investigate whether the users had any prior knowledge in the UML standard and the

adequacy of updating the UML standard or defining a new modelling notation for a tool

capable of providing assistant in performance or other NFR verification tests, we asked

the participants the following question, “Are you willing to learn new software

modelling paradigms to be used in performance evaluation or other NFR verification

tasks”? (1 – no; 2 - yes, if it will provide accurate results and other NFR verification

tests; 3 - yes, if it provide more readable verification tests; 4 - yes, if it provides more

accurate performance test indices; 5 - yes, if it is part of a large CASE tool).

As Figure 9.7 shows, most of the participants (42.86%) indicated that they are willing to

learn a new modelling notation if it was supported by a tool that will provide a

verification test for all or most of the NFRs. 23.81% of the participants concentrated on

the readability of the results gained from the tools, even if the tool is not comprehensive

for all the NFRs. 19.04% concentrated on the accuracy of the results gained from the

0.0%

19.04%

23.81%

42.86%

14.28%

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

Cheaper 9| Qualitative Validation

211

tool. 14.28% of the participants did not agree to use a tool with a modelling notation

which requires learning. This indicates that the participant‟s order of requirement for an

assisting NFR verification tool is firstly, to be comprehensive, secondly, for it to have

readable results and thirdly, to provide more accurate NFR indices.

9.3 Usability of the UML-JMT tool

According to the ISO 9241-11 standard [126], the usability of a software system is

defined as “the context to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified context of

use”[126]. Effectiveness defines the degree of accuracy and completeness that the

system users achieve from the use of the system. It relates to the ease of use of the

tested system and how the required tasks were achieved[126]. Efficiency relates to the

level of effectiveness achieved in relation to the quantity of resources expended. This is

usually measured by the mean time required by a user to perform a task[126].

Satisfaction is defined as the freedom of discomfort and positive attitudes toward the

use of the product. Satisfaction describes the user‟s subjective response when using the

product. The key factors that should be taken into consideration when testing the

satisfaction of a system are the user acceptance of the product and the ease of use[126].

In this study, we will only concentrate on the effectiveness and satisfaction of the

system, as the context of the study concentrates on the ability of the user to perform the

task regardless of the time required to complete the task, this comes down to the nature

of this task, which can be classified as infrequent.

9.3.1 Usability Metrics

The user satisfaction factor can be tested using a number of methods. The most common

method for testing it is the use of standard usability questionnaires which are answered

by system users to record their subjective reaction toward using the system. There are a

number of standard usability questionnaires, such as ASQ[127], PSSUQ[125],

QUSI[128], SUMI[129], and CSUQ[125]. In this user satisfaction test, we chose to use

the IBM Computer System Usability Questionnaire (CSUQ) as it provides an overall

satisfaction indictor, and the fact that CSUQ is recommended for non-laboratory setting

tests[125]. The CSUQ is a 19-item questionnaire (See Table B3, Appendix B) designed

for the purpose of assessing user satisfaction with the computer system under study. The

items in CSUQ are 7-point likert scales. The likert scale is designed to measure a user‟s

attitude or reaction by quantifying subjective information[126]. The CSUQ scale is

anchored at the end points with; strongly disagree (1) and strongly agree (7). The CSUQ

Cheaper 9| Qualitative Validation

212

has four score-metrics that consist of the average scores to responses in a group of

questions which represent the metrics measured by these questions. These score metrics

are; overall score, system use score, information quality score and interface quality

score. The overall score reflects a comprehensive index of the degree of satisfaction for

the system. The other scores indicate the degree of learnability, adoption and ease of use

of the system. The effectiveness factor matrix is also covered in the CSUQ as item 4

and 5 of the questionnaire quoted, “I am able to complete the suggested work quickly

using this system” and “I am able to efficiently complete the suggested work using this

system” can be used to measure the user‟s ability to complete the functionality of the

system, along with the percentage of the participants completing the test scenario

discussed in 9.1.2.

Figure 9.8: Standard deviation graph for the response of the participants in the usability study

9.3.2 Results

Table C2 in Appendix C shows the scores provided by the participants of the usability

test to measure their satisfaction factor. As mentioned above, we have chosen the CSUQ

test for this section of the usability test. Table C2 describes the individual scores given

for each question in the questionnaire along with accumulative statistical results needed

for the analysis of this questionnaire. The second last row of the table shows the mean

score given for each of the questions, and the last row shows the percentage this score

represents on the overall satisfaction scale of 7. We chose to call it a satisfaction scale

Standerd Deviation

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19

Cheaper 9| Qualitative Validation

213

as the questions are designed as positive articles describing the user‟s attitude towards

the system. We only can claim that the mean score for each question represents the

general feeling that the users have for the system if there is no significant difference in

the variance between individual scores for each question.

We have calculated the Standard Deviation for scores given for each of the

questionnaire‟s items. The standard deviation is a measure to test the range of variation

among data sets from the mean value[130]. Figure 9.8 Shows that the standard deviation

ranges from 0.57 to 1.24, which means that the mean value of each of the questions

represents the general score, with a difference ranging from 8-17%. This level of

variance is acceptable for measuring the attitude of users towards a software system,

bearing in mind that the satisfaction factor includes factors that depend mainly on the

individuals, such as the user interface. The relatively small standard deviation results

Table 9.2: Satisfaction metrics and rules for calculating the accumulative score for them.

Metrics Description
Representing

Questions

OVERALL Overall subscale, indicating the overall

satisfaction factor by averaging the

satisfaction scores of all the questions.

Q1-Q19

SYSUSE System use subscale, indicating the degree

of satisfaction for using the system

covering the user‟s attitude towards the

overall satisfaction, ease of use, how easy

it was to learn the use of the system and

the efficiency in terms of time and

productivity.

Q1-Q8

INFOQUAL Information quality subscale, indicating

the user satisfaction with the organisation

and comprehensibility of information in

the system. This information includes on-

screen messages, error messages and

documentation.

Q9-Q15

INTERQUAL Interface quality subscale, indicating the

user‟s satisfaction with the GUI in the

context of use and appearance.

Q16-Q18

Cheaper 9| Qualitative Validation

214

allow us to use the mean value of the scores of each question as an indicator of the

general attitude towards the question.

9.3.3 Analysis

The IBM CSUQ defined four main metrics to define satisfaction. These are;

OVERALL, SYSUSE, INFOQUAL and INTERQUAL. These metrics can be measured

by accumulatively averaging the scores representing the users‟ reaction to a set of

questions to determine the satisfaction factors these questions represent. Table 9.2

explains these factors and the set of questions representing the accumulative score for

these metrics. Figure 9.9 shows the average scores of each of the questions and the

accumulative scores for each of the satisfaction factors, presented as a percentage of the

7 scale measure used in the questionnaire. Table 9.3 provides the individual usability

sub-scale measures calculated for each of the participants.

Figure 9.9: Average scores for all the questions in the questioner and the usability sub-scales

results.

The satisfaction sub-scales show acceptable scales as Figure 9.9 shows that the system

overall sub-scale scored 78% of the scale of satisfaction. For the system use, the system

scored 79% which indicates that the system provides an acceptable degree of

learnability and ease-of-use. The information quality scored 76% and the interface

quality scored 78%. These results provide an indication that the users of the system

were satisfied with the use, look and feel of the UML-JMT system. The participants pin

pointed some areas in the interface that need to be updated and provided some

suggestions to improve the usability of the UML-JMT tool, some of which we will

discuss in Section 9.4.

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19

OVERALL =78%

SYSUSE =79% INFOQUAL =76%
INTERQUAL

=78%

Cheaper 9| Qualitative Validation

215

The percentage of participants who were able to complete the whole scenario explained

in 9.1.2 was 100%. The time of completion and the degree of assistance varied from one

to another, however, as discussed earlier, we will be ignoring the time factor as it does

not affect the usability of the system, as the nature of the system is not time dependant.

As previously discussed, we will use the scores of items 4 and 5 from the questionnaire

to analyse the effectiveness of the system. As Figure 9 shows, the participants‟ average

score for item 4 was 5.2 (74%) and for item 5 it was 5.3 (76%).

Table 9.3: Results of the satisfaction metrics for the UML-JMT system.

Participant OVERALL SYSUSE INFOQUAL INTERQUAL

RUH01 5.68 5.63 5.57 6.00

RUH02 5.68 5.88 5.71 5.00

RUH03 5.47 5.25 5.71 5.67

RUH04 5.89 6.00 5.86 5.33

RUH05 5.37 5.38 5.43 5.33

RUH06 5.37 5.38 5.29 5.33

RUH07 5.79 5.38 6.00 6.00

RUH08 5.53 5.75 5.71 4.33

RUH09 4.68 4.13 5.00 5.00

RUH10 5.37 5.75 5.14 4.67

RUH11 4.47 4.75 4.00 4.33

RUH12 5.68 5.75 5.43 6.00

RUH13 5.32 5.50 5.43 4.67

RUH14 6.21 6.50 5.86 6.00

RUH15 5.63 6.00 4.71 6.33

RUH16 5.05 4.88 4.57 6.33

RUH17 5.63 5.88 5.43 5.33

RUH18 5.68 5.75 5.43 6.00

RUH19 5.74 5.88 5.29 6.00

RUH20 5.58 5.63 5.29 5.67

Average 5.49 5.55 5.34 5.47

% of an overall scale

of 7 78.46% 79.29% 76.33% 78.10%

Cheaper 9| Qualitative Validation

216

Although these scores provide an acceptable indicator of effectiveness, the SD of these

two items was highest among the other items of the questionnaire, as shown in Figure

9.8. This indicates that the scores provided by the participants ranged over a wider

spectrum than the other items. If we return to the previous interviews analysed in 9.2

results we can find the reason for this difference in the scores provided. The

dependability of the UML-JMT tool on UML standard modelling notations, which were

not commonly deployed by, or known to (at least to some of) the participants in the

projects they were involved in, affected the effectiveness of this tool. Another reason for

this range in the scores became apparent when deploying the last step of the

performance study scenario which includes stress testing the IR system. The knowledge

gap between software and performance engineering became visible again as some

participants faced difficulties interpreting and analysing the throughput results and

graph.

9.4 Conclusion

We have conducted this study to investigate the attitude of software engineers working

in the software development industry towards model based non-deterministic

performance evaluation methodologies and tools, in the context of their adequacy to be

deployed in an engineered style. We were concerned with analysing the reasons that

may cause the low appreciation of this performance testing paradigm. This section will

summarise the main outcomes of the study. We will also suggest some improvements to

the UML-JMT tool that might increase its effectiveness and usability.

9.4.1 Study Outcomes

We noticed from the results of the interview that a large percentage of the participants

did not have any prior knowledge of the model based non-deterministic performance

testing and its role in non-functional requirements verification. This affected their

judgment of its importance in the software development practice. The cause of this lack

of knowledge mainly comes down to the basic training provided to the software

engineers on an academic level, and only less than 5 % of the participants have come

across this performance testing paradigm at the academic training level. We noticed

that, as the participant‟s level of knowledge of this specific paradigm increased, their

attitude towards the importance and level of deployment this paradigm can take in the

software development process, have increased. This indicates that one of the main

reasons for unpopularity of this verification paradigm, besides its complexity, is the

absence of knowledge about the paradigm. As the complexity factor was predominantly

Cheaper 9| Qualitative Validation

217

solved by the introduction of the model-assistant building methodologies which convert

the architectural models to equivalent performance models, the main cause of

complexity became the analysis and interpretation of the performance indices gained

from solving the generated performance models. This can be solved by providing

functionalities in the performance testing tools which describe the performance indices

gained from the performance studies in software engineering and design terminology.

The main model transformation methodologies for non-deterministic system

performance testing adopted UML modelling notation as the base model to generate the

performance model used in the performance test. This was based on the suggestion that

UML is the standard modelling notation widely used in the industry for development

and documentation. As a part of this study, we wanted to investigate this suggestion by

asking the participants about their level of knowledge and usage of the UML standard.

The result gained in this study showed that the assumption set by all of the model

transformation methodologies is not always true. We noticed that the organisation

development policy is the main reason for these participants to deploy UML. This factor

partly affects the effectiveness of the model transformation methodology which

assumed that UML is a standard notation commonly used in software development.

This is also one of the factors leading to model transformation based performance

testing methodology being less frequently used in the industry. Although we found that

UML notations were not widely used, we noticed that more than 80% of the participants

were willing to use standard or non standard modelling notations dedicated for NFR

verification if it will assist them in producing reliable tests. Consequently, we can

assume that model transformation methodologies still provide valuable assistance

methods to simplify the performance model building task.

The system usability study concentrated on the level of satisfaction and effectiveness

scales. The satisfaction sub-scales show acceptable scores, as discussed earlier in 9.3.3.

Also, the percentage of completion and the sub-scales dedicated to effectiveness showed

a high acceptance rate in the context of effectiveness. Although these scores provide an

acceptable indication of effectiveness, the SD of these two items was the highest among

the other items of the questionnaire, as shown in Figure 9.8. This is due to the

dependability of the UML-JMT tool on UML standard modelling notations which were

not commonly deployed by the participants. Another factor that may affect the

efficiency is the output format of the performance studies. The knowledge gap between

Cheaper 9| Qualitative Validation

218

software and performance engineering became visible again as some participants faced

difficulties interpreting and analysing the throughput results and graph.

9.4.2 Suggestions

During the study, the participants were asked to provide suggestions for the UML-JMT

tool. Here, we list some of the suggestions provided by the participants:

1- The UML-JMT tool needs to be part of a larger CASE tool which provides more

functionalities including other NFR verification tests.

2- The tool needs to provide automatic analysis of the performance data by

identifying problematic design areas and providing suggestions for them. This

can be done by deploying anti-patterns deduction algorithms.

3- The results need to be more in the software engineering context as they are still

explained in performance engineering terminology. One suggestion is adding an

intelligent report generator capable of reading the results and providing the

performance study results and suggestions to amend the design.

4- The tool performance data card wizard needs to provide more assistance to the

user by providing him/her with more information about the requested data and

the source of this data. Also, the wizard needs to provide the performance data

for off-the-shelf components commonly used, such as web servers and DBMS.

5- The adaptation of hardware related modelling notation instead of a component-

based modelling view of the system architecture.

We will explain the possible modifications to the system in the next chapter when we

discuss the future work.

9.5 Summary

One of the main contraptions of this thesis is the validation of the resulting

methodology and tool from qualitative point of view in the software industry. This

validation was undertaken by conducting a qualitative study that involved

demonstration the tool to software professionals and investigating their attitude toward

it specifically and toward the use of nondeterministic model transformation based

performance requirement validation methodology in general. The main objective of this

qualitative study is to investigate the effectiveness of the method transformation

methodology by studying the level of knowledge that members of the software

engineering community support for this specific paradigm of performance requirements

validation, and the reasons for the lake of utilisation for this paradigm in the software

development industry. Our hypothesis state that, the lack of deployment of this

Cheaper 9| Qualitative Validation

219

performance requirements validation paradigm returns manly to the knowledge gap

between software and performance engineering domains. The introduction of the UML-

EQN tool was aiming to bridge this knowledge gap by introducing methods for assisting

the performance study initiation, starting at gathering the performance data required for

the performance study and ending with efficient, easy to use experimentation

functionalities available in the JMT tool. As a part of the objectives, we need to

investigate if the cause of this knowledge gap returns to the absence of knowledge about

the paradigm itself or does it return to problems in the model transformation

methodology.

The study involved interviewing a group of software engineers from different sectors of

the software development sectors. The study involved demonstrating two performance

requirement validating tools based on the model transformation methodology one of

them is the UML-EQN. The reason for demonstrating the second performance

validation tool is to investigate the user‟s acceptance and attitude toward the method

usually adopted in collecting the performance study data (UML-SPT) compared to the

method adopted in the UML-EQN (PDC). The study was aiming to assess the

participants‟ level of acceptance and their attitude toward the non-deterministic

performance validation as a design aid in general and the model transformation

methodology for deploying this methodology specifically. These satisfaction metrics

were measured before and after the introduction of a treatment represented as workshop

explaining the validation paradigm deployment using the demonstrated tools.

The main results of this study showed a complacence of the participants‟ views with the

hypothesis set before the study. Our hypothesis about the absence of knowledge about

the non-deterministic performance requirement validation was realised as more than

half of the participants did not hear about this paradigm before, and none of them came

across it at the academic level. The introduction of the method transformation

methodology changed the attitude of the participants toward the importance of

validation at the design level, and increased their level of confidence on conducting this

type of study. This gives an indication that our hypothesis of the knowledge gap causing

the lack of utilisation of this paradigm in the industry is true. The only hypothesis that

was contradicted by the study‟s results was the one declared by most of the performance

evaluation tools in the availability of the UML models as an artefact that could be

utilised in the process of performance evaluation is not always true as majority of the

Cheaper 9| Qualitative Validation

220

participants declared that UML is not a used standard during development. Although the

participants declared that UML modelling is an overhead in the development process,

they declared that it will be useful with the availability of tools similar to the tools

demonstrated in the study.

221

CHAPTER

Conclusion

10

Chapter 10: Conclusion

The final chapter of this thesis will summarise the achievements gained in the field of

software system performance engineering, and will provide some of the conclusions and

suggestions for future work in this field. Section 10.1 will summarise the novelties,

improvements and extensions provided by the work discussed, compared to the original

work, and the extent to which the work in this thesis meets the requirements of software

performance engineering. Section 10.2 will outline and discuss some of the

improvements and open problems related to the domain of this work. Finally, Section

10.3 will outline the relevant articles published during the preparation of this thesis.

10.1 Contributions and Achievements

In this thesis, we have considered performance evaluation of software systems. The

performance evaluation of software systems is a hugely valuable task, especially in the

early stages of a software project. The goal of performance evaluation is to provide

performance related design guidance during the system development. Literature reports

many methodologies for integrating performance analysis into the software development

process. These methodologies work by utilising the software architectural and

behavioural models known in the software engineering field, by transforming these

models into performance models that can be analysed to attain the expected performance

characteristics of the projected system. We discussed in the early chapters that the

utilisation of non-deterministic model transformation methodologies faces a challenge

caused by its own terminology. This is caused by the knowledge gap between software

and performance engineering. The work of this thesis aims to bridge this knowledge gap

by introducing a semi-automated transformation methodology which was designed from

the beginning to be generic, in order for it to be integrated into any of the leading

software engineering development processes. The first work of the author was to

determine the key criteria that should be covered in the model transformation

methodology so that it can provide the user with the black-box effect which can support

the bridging of the two knowledge domains. These criteria were discussed in 4.3.1.

Cheaper 10| Conclusion

222

The first attempt to develop a model transformation methodology was the extension of

the state marking methodology discussed in Chapter 5. We showed that the automation

criterion can be applied to the original methodology; as we explained an algorithm for

systematically constructing a Markov chain model from a UML sequence diagram.

Although the method we presented in Chapter 5 automates the generation of Markov

chain performance model, we can only describe this method as an assisted method, as the

modeller is required to identify the appropriate model for the system architecture in

hand, and furthermore, know the type of system performance variables to annotate the

sequence diagram model with, in order to generate the required performance data. We

believe that a fully automated method will only be true if it provides the modeller with

assistance in gathering the required performance variables needed for the performance

evaluation process, as well as providing the user with the required performance indices.

The need for a methodology that will assist the user in choosing the performance study,

capture the required performance variable and simplify the build and analysis of the

performance model inspired the author to come up with another methodology, which

was the UML-EQN methodology discussed in Chapter 6. This methodology adopts the

SPE framework in dividing the architectural model of the system under study into two

meta-models, which are called the software and machine models. This will give the

designer the benefit of testing different alternatives of structural behavioural

configurations. This performance study would help the designer to decide an initial

design for the projected system. The UML-EQN methodology takes advantage of the

use-case and sequence diagrams to build the software model and deployment diagram

for structuring the machine model. The resulting performance model is an EQN

performance model. We introduced the performance data card, a data sheet used for

supporting the capture of the performance variables used in the build and analysis of the

performance model. With the help of an automatic design model to performance model

algorithms introduced in the UML-EQN methodology, a software engineer with basic

knowledge of performance modelling paradigm can conduct a performance study on a

software system design. This was proved in a qualitative study where the methodology

and the tool deploying this methodology were tested by software engineers with

different levels of background, experience and from different sectors of the software

development industry. The study results that we explained in Chapter 9 showed an

acceptance for this methodology and the UML-JMT tool which deploys this

methodology from these participants.

Cheaper 10| Conclusion

223

In Chapter 7, we discussed the design and implementation of the UML-JMT tool. This

tool is based on the UML-EQN methodology. The UML-JMT tool formats the output

model so that it can be solved and analysed using a non-product form queuing network

simulation engine available in the JMT suite[10]. Although the JMT suite provided a

variety of performance model building and solving and analysis tools, it lacked the

ability to adopt software design models as the starting point for the performance study, a

requirement seen in literature as the solution to close the gap between software

engineering and performance engineering. UML-JMT comes as a bridge to fulfil this

requirement. The UML-JMT tool provides the user with abilities to conduct different

types of performance studies that will assist in the system design task. The UML-JMT is

designed to be used as an automatic testing tool for the verification of performance non-

functional requirements. This functionality is essential in incremental and agile software

engineering processes. In software developed using these development processes,

continuous verification of the requirements is a fundamental process. This comes down

to the fact that these software development paradigms will allow continuous change in

the system‟s requirements. These changes may have effects on the overall performance

of the system. The author has suggested the CPASA framework (discussed in 4.2.1) for

the assessment of a system performance during the development of these systems, using

incremental and agile development paradigms. The UML-JMT was designed to

implement the performance evaluation tests specified in this framework. Continuous

assessment of software performance requires a comprehensible tool that provides the

user with performance characteristics of a design. This tool is designed to fulfil the needs

of software engineers with minimal knowledge of performance engineering theory, as it

introduces a fully automated model building and analysis approach provided by the

UML-JMT tool and the analysis tools available in JMT suite. The UML-EQN

methodology and the UML-JMT tool were validated quantitatively by comparing the

results gained by the UML-JMT tool and by comparing the results provided by similar

performance model transformation tools and other performance evaluation paradigms, as

the case study discussed in Chapter 8 showed.

10.2 Open Problems and Future Work

The work presented in this thesis was aiming to bridge the performance engineering

process for software systems by introducing model transformation methodologies and

methods for deploying these methodologies in different software engineering

Cheaper 10| Conclusion

224

paradigms. This section will discuss some of the open areas and future work in the same

field of research, in both the theoretical and practical parts of this work.

10.2.1 Model Transformation Methodologies

The results gained from the qualitative study discussed in Chapter 9 reviewed some of

the grey areas that the research community have taken for granted, which in return,

caused the lack of utilisation of the non-deterministic performance evaluation practice

in the real software development world. One of these areas is the assumption, made in

all of the method transformation methodologies, that UML is a standard modelling tool

used in the development of the majority of software systems. We found that most of the

software engineers consider the UML modelling an overhead. A large percentage of the

software engineers interviewed agreed that the UML models would be useful if the

performance tools provided results with an acceptable degree of accuracy. This gives an

indication that the real requirements of the software engineering community are to have

freedom in the type of software architecture format provided to the performance

evaluation tool. This means that we require extensions of the model transformation

methodologies that would transform different UML notations (i.e. activity or state chart

diagrams for the scenario), or even take advantage of the re-engineering approaches

used to build UML-models from source code, which can be used to generate the

performance model.

Another open area in the UML-EQN methodology is in the performance parameters

capturing support method. We have introduced an uncomplicated approach represented

by the PDC which only introduces the user of the methodology to the name and type of

the performance parameter required. This support method requires additional effort in

terms of how it can be included in the requirement gathering task, and in providing

users of the methodology with methods for acquiring these parameters.

10.2.2 CPASA Framework

Agile software development methodologies are the latest trends in the software

development industry. These methodologies focus on increasing the business values of

the software system and decreasing the potential risks in the development process. One

of the likely risks in any software development is the system not meeting the potential

performance expectations. The main factor for such a risk is caused by improperly

designed architecture. In Chapter 4, we introduced the CPASA framework, an extension

to the PASA method which was designed primarily for the conventional software

Cheaper 10| Conclusion

225

development methodology. The CPASA framework has been extended to be deployed

on agile developed projects. The primary philosophy of CPASA is continuous change in

the initial plans which require continuous assessment of the architecture‟s performance.

We have introduced the various steps of the CPASA method and explained how to

employ this method using the UML-JMT tool. The CPASA is a generic method that was

suggested for agile development methodologies. Future work for this framework

includes customising it for specific agile development methodologies (i.e. XP, scrum …

etc.) that would include performance testing as one of the development practices for

these agile development methodologies, and furthermore, building specialised CASE

tools for continuous testing based development which will include the UML-JMT tool as

one of the tools used in the deployment of these development methodologies.

10.2.3 Improving the UML-JMT Tool

During the qualitative study discussed in Chapter 9, the participants were asked to

suggest services that they expect from a performance evaluation tool. Some of the

participants‟ suggestions provided ideas for improvements and extensions that can

increase the acceptance and assistance required from the methodology and the tool. One

of the main suggestions was to represent the tool in a software engineering context. This

is essential as the expected users faced some problems trying to cope with the

performance engineering terminology. We partly solved this problem by re-designing

the PDC wizard to eliminate any pure performance engineering terminology. The results

and benefit of these results still faces a considerable challenge. The tool needs to

provide automatic analysis of the performance data by identifying problematic design

areas and providing suggestions for these problematic designs. This can be done by

deploying anti-patterns deduction algorithms that can be used to identify anti patterns,

which could cause performance problems. The results need to be more in the software

engineering context as they are still explained in performance engineering terminology.

One suggestion is adding an intelligent report generator capable of reading the results

and providing the performance study results and suggestions, to amend the design.

Another suggestion is to provide readymade performance tests which are known in the

field of software engineering (i.e. stress test, bottleneck … etc.), which can be selected

by the user at the PDC wizard. Also, a full report is generated at the end of the test in

software engineering terminology. This can be done as the JMT suite stores the test type

and the performance results in the same XML file that contains the performance model.

Cheaper 10| Conclusion

226

Currently, the UML-JMT tool requires a full manual written in the context of software

engineering knowledge domain. This manual will include the necessary background

knowledge, which is essential for typical software engineer in order for his/her to

perform a full performance elevation study using this tool. Moreover, the tool needs

enhancements on the interface to include hints, and help files that would facilitate the

use of the tool, and that will assist the user in finding the source of the entries required

to carry out the performance study.

10.3 Relevant Publications

The work described in this thesis has appeared in some publications. These are listed

here:

 The state marking methodology was published in various versions in [109] and

[131]. The latest version, which was discussed in Chapter 5, was published in

[33].

 The criteria used to evaluate the model transformation methodologies discussed

in 4.6 were published in [33].

 The UML-EQN methodology discussed in Chapter 6 was published in [9]

 The realisation of the UML-EQN methodology represented by the UML-JMT

tool was published in [11]. This paper also included the quantitative validation

discussed in Chapter 8.

 The deployment of the performance engineering in agile development context

represented by the CPASA approach, discussed in Chapter 4, was published in

[12].

227

Appendix

USDX Parser Documentation

A

Appendix A: USDX Parser Documentation

The USDX parser (Use-case, Sequence and Deployment diagrams XMI) parser is a Java

library developed specially for the UML-JMT tool. It provides classes and operations

that will help the analysis of UML models represented in XMI document. It is built on

top of the javax DOM XML parser. The Class diagram of the USDX parser package is

shown in Figure 7.1. This Appendix contains the java documentation for this parser.

class UMLModel

This class represents the main container for the UML model

extracted from the XMI file. This class will invoke the

extraction methods for all the UML components searched in

the XMI File. In addition, it will store the extracted

components in containers named with the same name as the

UML notation they represent.

Functions

UMLModel(Document) Constructor, expect the document

object of the XML (XMI) file, and it

will invokes the different

extraction functions for all the UML

notations being extracted.

void FindActors(Document) Traverse the XMI file and extract

the Use-Case entries.
Void

FindUseCase(Document)

Traverse the XMI file and extract

the UseCase entries.

void

getScenarios(Document)

traverse the XMI file and extract

the Scenarios entries

public DeploymentDiagram

getDeploymentDiagram()

Returns deployment diagram

representation

public SequanceDiagram

getSequanceDiagram(String

Name)

Returns the sequence diagram named

“Name”

class SequanceDiagram

This Class represents the Sequence Diagram of the System

under study. It will contain a set of Components and a Set

of Messages or connections.

A p p e n d i x A

228

the operations in this class include a function that will

parse the XMI file and collect all information regarding

the Sequence diagram and store it in the Components list

Functions

SequanceDiagram(String

name, Document doc)

Constructor, expect the document

object of the XML (XMI) file, and

the name of scenario this sequence

diagram represents. The constructor

will invoke the sequence diagram

extraction function

private void

ExtractSD(Document

doc)

Traverse the XMI file and extract

the sequence diagram represented by

the scenario

String getName() Returns the scenarios name.

public String getId() Returns the XMI ID of the scenario,

public

ArrayList<Message>

getMessages()

Returns the sequence diagram set of

messages in an array list of

messages

class DeploymentDiagram

This Class represents the Deployment Diagram of the System

under study. It will contain a set of nodes. the operations

in this class includes function that will parse the XMI

file and collect all information regarding the deployment

diagram and store it in the nodes list.

Functions

DeploymentDiagram(Document

doc)

Constructor, expect the document

object of the XML (XMI) file, a.

The constructor will invoke the

deployment diagram extraction

function.

private void

ExtractDD(Document doc)

Traverse the XMI file and extract

the deployment diagram.

public boolean

Rinthesamenode(Component

a,Component b)

Returns true if the two components

sent are in the same node.

public ArrayList<String>

getComponentsNames()

Returns the list of components

class DDNode

The node Class will represent all the nodes representing

A p p e n d i x A

229

the Deployment Diagram Representing the Hardware of the

system each of the nodes will have its name, set of

components and the nodes connected to it. when created the

node will be given a name (the name will be extracted from

the XMI file)

 the class provide a set of operations for:

 returning the name of the node

 adding a node to be connected

 adding a component to be the set of components

 Checking if a given node is connected to a node

 checking if a given component exist in this node

 and overwriting the equal function

Functions

public DDNode(String name) Constructor, takes the node’s name

and creates the connection and

components lists

public boolean

isComponent(Component C)

Returns true if the component sent

is a member of the components list

of this node

public void

AddComponent(Component C)

Adds a new component to this node

public boolean

IsConnected(DDNode N)

Return true if this node is set to

be connected to the node in the

parameter list
public void

setConnection(DDNode N)

Sets a connection between this node

and the node N in the parameter

list

public String getName() Returns the nodes name

public boolean

equals(DDNode N)

Overwrite the equals function by

defining the equality between two

nodes objects

public String getId() Returns the XMI id of the node

class Component

The Component Class will represent all the components

representing the system under study each of the components

will have its name and set of components connected to it.

when created the component will be given a name (the name

will be extracted from the XMI file)the class provide a set

of operations for:

- returning the name of the component

- adding a component to be connected

- Checking if a given component is connected to a component

- and overwriting the equal function

Functions

boolean equals (Component obj)

A p p e n d i x A

230

Overwrite the equals function by defining the equality

between two components objects.

 String getId()

this function will returns the XMI ID of the component

 String getName()

this function will return the name of the component

Returns:
the name of the component

 boolean IsConnected(Component C)

 Parameters:

C - the Component to be Searched in the Connection list

Returns:
true if the Components are connected

 void Print()

Void setConnection(Component C)

this Function will add a new Component to the list of connected

components

Parameters:

C - is the component to be added to the list

231

Appendix

Qualitative study Questions

B

Appendix B: Qualitative study Questions

The experiment used to validate the qualitative aspects of the methodology and the tool

was composed of four phases. In two of these phases, the participants were involved in

a structured interview. A structured interview is conducted with a moderately open

framework which allows for focused, conversational, two-way communication. The

questions of the interviews and the rationale for each question are shown in Tables B1

and B2.

Afterwards, the participants were given the opportunity to use the UML-JMT tool to

execute a scenario example explained in the workshop. After a participant executes this

scenario, he/she will be asked to offer suggestions to improve the tool and evaluate the

usability of the tool using the standard IBM computer system usability questionnaire

(CSUQ)[125]. This questionnaire is shown in Table B3.

Table B1: Pre-orientation questions asked for the participants of the qualitative study

on the structured interview.

Question Rationale

1 Have you been involved in software

development? (1 for very few times, 5 for

extensively)

To know the frequency the

participant is involved in

software development.

2 In which part of the process are you usually

involved? (1 – analysis; 2 – design; 3 -

development; 4 – test; 5 – all)

To clarify which participants are

more involved in the analysis

and design phases, as they are

the more likely to come across

performance engineering.

3 Describe the biggest project you were

involved in (1 represents a project with less

than 3 components, with a budget of < 10K$,

man power of <3 personal and scheduled < 3

To define the scale of experience

the subject has by the finding out

the size of projects he/she was

involved in.

A p p e n d i x B

232

months. And 5 represents a project with > 15

components with a budget of >10M$, man

power of >30 personal and scheduled > 24

months.)

4 Describe your knowledge/usage of UML (1 -

no knowledge; 2 - learned it at university but

never used it; 3 - use it occasionally; 4 - use it

regularly; 5 – use it in all the projects I have

been involved in)

Test the subject knowledge and

experience with UML as it

represents a main part of the

methodology.

5 Describe your knowledge of software

performance engineering study? (1 – I‟ve

only just heard about it; 2 – I‟ve heard about it

but could not use it; 3 – I‟ve heard about it but

wouldn‟t use it; 4 – I‟ve used it several times;

5 - I use it regularly)

Test the subject's previous

knowledge of performance

engineering.

6 If you have knowledge and experience in

performance engineering, what is the source

of your knowledge?

Determine how many subjects

know and have used

performance engineering study

in the market.

7 Based on your knowledge, how important do

you consider software performance

engineering study to be? (1 - not important; 2 -

it can be included in the testing phase; 3 -

good practice for some projects; 4 - important

for some projects; 5 - essential for all

projects).”

Test the subject‟s opinion on the

importance of performance

engineering.

8 Has a performance study been conducted in

any of the previous projects that you have

participated in? (1 – none; 2 - real system test;

3 - spreadsheet; 4 - simulation; 5 -

benchmarking)

Test how common it is for

performance engineering studies

to be undertaken in projects.

A p p e n d i x B

233

Table B2: Post orientation questions asked for the participants of the qualitative study

on the structured interview.

Question Rationale

Describe your knowledge/experience software

performance engineering study. (1 - I still don‟t

know this paradigm; 2 - I know of it but couldn‟t

use it; 3 - I think I have the basic knowledge to

conduct a study; 4 - I think I have the necessary

knowledge to conduct any performance test; 5 – I

knew it before).

Test the subject's current

knowledge of performance

engineering.

How good is your current knowledge of software

performance study with the provided tools? (1 -

not confident; 2 - need more background

knowledge; 3 - I can conduct simple performance

tests with assistance; 4 - I can conduct simple

performance tests without assistance; 5 - I can

conduct any performance test).

Determine the level of the

subject's knowledge of

performance engineering.

Based on your knowledge, how important do you

consider software performance engineering study

to be? (1 - not important; 2 - it can be included in

testing phase; 3 - good practice for some projects;

4 - important for some projects; 5 - essential for all

projects).”

Test the subjects‟ opinion on the

importance of performance

engineering.

In any of the previous projects you have

participated in, has a performance study, like the

one described here, been conducted? (1 none 5 all

of them)

Test how often the performance

engineering methodologies are

undertaken in projects.

Based on the knowledge you received earlier, will

you be using or recommending software

performance studies in your future projects?

Test the subject‟s confidence in

using software performance study.

A p p e n d i x B

234

Based on the knowledge you received earlier, will

you be using or recommending PRIMA-UML

methodology in your future projects?

Test the subject confidence of

using PRIMA-UML.

Based on the knowledge you received earlier, will

you be using or recommending UML_EQN

methodology in your future projects?

Test the subject confidence of

using UML-EQN.

Are you willing to learn new software modelling

paradigms to use them in performance evaluation

or other NFR validation tasks? (1 - no; 2 - yes, if it

will provide accurate results and other NFR

verification tests; 3 - yes, if it provides more

readable validation tests; 4 - yes, if it provides

more accurate performance test indices; 5 - yes, if

it is part of a large CASE tool).

To evaluate the willingness of the

subjects to learn new modelling

notations.

What are the best features that you found in the

UML-JMT tool?

To find the subject‟s view on the

features that he/she will

recommend the UML-JMT for.

What would you suggest to improve the UML-

JMT tool?

To locate future developments in

the UML-JMT tool.

What are the best features that you found in the

JMT suite?

To find the subject‟s view on the

features that he will recommend

the JMT for.

A p p e n d i x B

235

Table B3: IBM Computer System Usability Questioner (CSUQ)

Based on your use of the UML-JMT system

strongly

disagree

 strongly

agree

1 2 3 4 5 6 7

Q1 Overall, I am satisfied with how easy it is to use this

system.

Q2 It was simple to use this system.

Q3 I can effectively complete my work using this system.

Q4 I am able to complete the suggested work quickly using

this system.

Q5 I am able to efficiently complete the suggested work

using this system.

Q6 I feel comfortable using this system.

Q7 It was easy to learn to use this system.

Q8 I believe I became productive quickly using this

system.

Q9 The system gives error messages that clearly tell me

how to fix problems.

Q10 Whenever I make a mistake using the system, I recover

easily and quickly.

Q11 The information (such as on-screen messages, and other

documentation) provided with this system is clear.

Q12 It was easy to find the information I needed.

Q13 The information provided for the system is easy to

understand.

Q14 The information is effective in helping me complete the

tasks and scenarios.

Q15 The organisation of information on the system screens is

clear.

Q16 The interface of this system is pleasant.

Q17 I like using the interface of this system.

Q18 This system has all the functions and capabilities I

would expect it to have.

Q19 Overall, I am satisfied with this system.

236

Appendix

Qualitative Study Results

C

Appendix C: Qualitative study Results

This appendix contains some of the relevant results from the qualitative study in

Chapter 9. Table C1 has the information of the participants involved in the qualitative

study. It contains the reference number, name, place and nature of work, and the

experience measured in number of years. Table C2 contains the results of the CSUQ

questionnaire with the standard deviation, mean and median calculated for the results.

 Table C1: Participants in the Qualitative Study

Number Name

Place of

Work Position Experience Nature of work

RUH01

Nader

Almarzouki

SAMA

BTD

System

Analyst 2

Application support

and system analysis

RUH02 Zyad AlBisa

SAMA

BTD

System

Analyst 2.5

Development and

support of SPAN II

and SAREI systems

RUH03

Simon

Ainsworth

SAMA

BTD

Freelance

Consultant 27

Support, consultancy

and enhancement for

SARIE system

RUH04 Fisal ALHarbi Chip CS

Project

Manager 10

Project manager in

different scale systems

RUH05

Abdulraman

Alkhanifer KSU

Vice Director

of Portal and

E-Services 8 Project management

RUH06

Hussain

ALHaddad KSU

Portal and E-

Services Dep. 9

Team leader of design

and development

RUH07

Abdulaziz

ALOraiji KSU

Director of

Portal and E-

Services 10

Software design and

analysis

RUH08

Abdullah

AlSaleh KSU

Portal and E-

Services Dep. 1.8

System analyst in

KSU Portal

RUH09

Omar S.

ALAbdullatif AlTawiniya

Project

Manager 27 Project manager

RUH10

Hussain

ALMutere

MODA-

CERT

Director of

CERT 5

Project design and

management

RUH11

Fawaz

Abdulrahaman

Ministry of

Water and

Electricity

System

Analyst 5

Project design and

development

RUH12

Abdullah

ALMubarak IOB IT Manager 15

Finding solutions to

support the business

A p p e n d i x C

237

Number Name

Place of

Work Position Experience Nature of work

activities

RUH13

Ahmad

ALHaddab

SAMA

BTD

Head of

Application

Development

and Support 7

Design and

development of the

business applications

RUH14

Abdulaziz

ALNadari

SAMA

BTD

System

Analyst 7

System design and

development

RUH15

Mohammed

AlRowaijeh

Ministry of

Finance

Assistant

Project

Manager 3.5

System design and

development

RUH16 Ali ALEssa MOF

Project

Coordinator 2

System design and

development

RUH17

Abdulaziz

AlDahmash

SAMA

BTD

System

Analyst 7

Application support

and system analysis

RUH18

Khalid

Alangari Mobily

Manager of

Mobily

Programs 10

Managing and tracing

corporate systems

RUH19

Bader

Mohammed MOF

Project

Coordinator 5

System design and

development

RUH20

Mohammed

Massoud Chip CS

Project

Manager 15

System design and

development

RUH21

Ahmad

AlSharqi

AlFisaliah

ITS

SAB

Consultant 8

Design, customisation

and support of SAB

systems

A p p e n d i x C

238

Table C2: Results of the CSUQ questionnaire gained from the qualitative study for the UML-JMT tool usability

Participant Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19

RUH01 6 6 5 6 6 5 5 6 5 6 6 5 6 6 5 6 6 6 6

RUH02 6 6 6 6 5 7 6 5 6 7 6 6 5 6 4 5 5 5 6

RUH03 6 6 4 6 4 6 6 4 5 6 6 4 6 6 7 6 7 4 5

RUH04 6 6 6 6 7 5 6 6 5 6 6 6 7 6 5 5 6 5 7

RUH05 6 6 5 4 5 6 7 4 5 6 5 5 5 5 7 6 6 4 5

RUH06 5 5 5 5 6 6 6 5 6 5 5 5 5 5 6 6 6 4 6

RUH07 6 6 4 4 4 6 6 7 6 7 6 4 6 6 7 6 6 6 7

RUH08 5 5 6 6 6 7 5 6 5 6 5 6 7 7 4 4 5 4 6

RUH09 4 4 5 2 3 4 5 6 6 3 5 5 4 6 6 5 5 5 6

RUH10 6 6 6 5 6 5 6 6 6 5 6 5 5 5 4 5 4 5 6

RUH11 6 6 4 4 4 5 5 4 3 5 5 3 4 3 5 5 5 3 6

RUH12 6 6 5 6 6 6 6 5 6 5 6 5 5 6 5 6 6 6 6

RUH13 6 7 5 4 4 6 7 5 5 6 6 5 6 5 5 5 5 4 5

RUH14 5 7 6 7 6 7 7 7 6 5 6 6 6 6 6 6 6 6 7

RUH15 6 6 6 6 6 6 6 6 4 4 5 4 5 5 6 6 6 7 7

RUH16 5 4 6 4 4 6 4 6 4 4 4 6 4 6 4 7 6 6 6

RUH17 6 6 6 7 6 5 6 5 4 6 5 5 6 5 7 5 6 5 6

RUH18 6 6 5 6 6 5 7 5 5 6 6 5 6 4 6 6 6 6 6

A p p e n d i x C

239

RUH19 6 7 6 5 6 6 6 5 4 5 5 6 6 6 5 6 6 6 7

RUH20 6 5 6 5 6 5 6 6 5 5 4 6 6 6 5 6 6 5 7

RUH21 6 6 5 6 6 6 6 6 6 5 5 5 5 6 5 6 5 6 6

Statistical

Results
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19

Standard

Deviation
0.57 0.83 0.75 1.24 1.08 0.80 0.79 0.89 0.89 0.99 0.68 0.85 0.89 0.89 1.05 0.68 0.66 1.02 0.67

Median 6 6 5.5 5.5 6 6 6 5.5 5 5.5 5.5 5 6 6 5 6 6 5 6

Mean 5.7 5.8 5.35 5.2 5.3 5.7 5.9 5.45 5.05 5.4 5.4 5.1 5.5 5.5 5.45 5.6 5.7 5.1 6.15

% of 7 point

Scale
81 83 76 74 76 81 84 78 72 77 77 73 79 79 78 80 81 73 88

240

Model Transformation Methodologies Review

In this appendix we provide a survey of some of the work done in the field of generating

performance models from design models. We will discuss the methodologies in the

context of the criteria we discussed in section 4.3.1. For each of the methodologies

discussed, we will provide the input UML models, the output performance model, and

will summarise the performance model generation process. Then we will classify these

methodologies‟ complacence with the criteria defined in 4.3.1 as High, Mid (medium)

or Low. High compliance reflects that the methodologies comply with the entire factor

defining a criterion or have extra features that cover the missing factors. Medium

compliance refers to the methodology complying with some of the factors and low

refers to the methodology not complying with any of the factors which define the

criterion.

For simplicity, the survey is formatted in a table form. Table D1 contains a survey of

some of the methodologies for performance evaluation. We have constricted it to

methodologies that adopt the SPE method of separating structural and behavioural

aspects. This is a return to the use of this method in the main performance model

building methodology, as discussed in Chapter 6 of this thesis. For the same reason, we

also concentrated on methodologies generating QN models. We have included in the

survey selected methodologies that produce other types of performance models (i.e.

Petri Nets, Process algebra and simulation). There are many papers which review other

methodologies that the reader can refer to(e.g.[132; 133]).

Appendix

Model Transformation

Methodologies Review
D

A p p e n d i x D

241

Table D1: A survey of Software model to performance model transformation methodologies.

Methodology Input Output Methodology Summary Criteria

Time Efficiency Generality Transparency Automation

SPE [6; 92]

Williams and

Smith

SD,DD,

EG

EQN The original SPE methodology was

described in sec.4.1.2, in [92], the

SPE methodology was extended to

utilise UML models in creating EG

used in the creation of the end EQN

model.

(Mid)

- The SPE uses a

non-standard

meta-model

represented by

the EG.

- EQN are easy

to solve and tools

to simulate and

analyse are

available

(High)

- The EQN

performance

model produced

by SPE is

capable of

representing any

class of system

architecture[62]

(See 3.5).

(High)

- QNs preserve

the structure of

the components

representing the

system.

(High)

- SPE was

automated by a

tool called

SPEED[91].

PRIMA-UML

Cortellessa,

Mirandola [93]

UC,SD,

DD

EQN This methodology was an extension

of the original SPE methodology. It

provided algorithms for building the

system and machine models

specified in the SPE methodology

form UC, SD and DD. This

methodology uses an intermediate

execution graph generated from the

SD and feeds the results of it along

(Mid)

- Like SPE, this

methodology

uses a non-

standard meta-

model

represented by

the EG.

(High)

- The EQN

performance

model produced

is capable of

representing any

class of system

architecture.

(High)

- QNs preserve

the structure of

the components

representing the

system.[82]

(High)

- A tool based on

this methodology

was described in

[134]

A p p e n d i x D

242

Methodology Input Output Methodology Summary Criteria

Time Efficiency Generality Transparency Automation

with information from both UC and

DD to generate an EQN.

- EQN are easy

to solve and tools

to simulate and

analyse are

available

UML-

LQN[103]

Cortellessa, et

al

CD, SD LQN The methodology extends the SPE

methodology, as it uses an EG to

build a LQN, it differs from the

above methodology in its utilisation

of CD and SD in the process of

building the EG. The methodology

defines a complete approach for

collecting the necessary performance

characteristics of the system under

study.

(Mid)

- This

methodology

uses a non-

standard meta-

model

represented by

the EG.

- LQN are easy

to solve and tools

to simulate and

analyse are

available.

(High)

- The LQN

performance

model produced

by SPE is

capable of

representing any

class of system

architecture.

(High)

- QNs preserve

the structure of

the components

representing the

system.

(Low)

- Although the

methodology

provided a

systematic way

for producing a

QN model, there

was no tool to

automate it.

Architectural

patterns

Petriu and

Wang

CoD,

SD

LQN The methodology considers a

significant set of architectural

patterns; these patterns are specified

by CoD and SD. The methodology

suggests corresponding performance

(Mid)

- This

methodology

uses a non-

standard meta-

(High)

- The LQN

performance

model produced

(High)

- QNs preserve

the structure of

the components

(High)

- This

methodology was

automated by two

A p p e n d i x D

243

Methodology Input Output Methodology Summary Criteria

Time Efficiency Generality Transparency Automation

[104] model based on LQN for each of

these patterns. The methodology

suggests that more complex SA

models can be constructed by

combining set of patterns that

compose the system. The

methodology depends on an SPE

approach in which the LQN is built

using a meta execution model.

model

represented by

the EG.

- LQN are easy

to solve and tools

to simulate and

analyse are

available

is capable of

representing any

class of system

architecture.

representing the

system.

tools

[104; 135] these

two tools provide

that same

functionality but

differ in the

method of

representing the

performance

characterisation

of the system.

UML-QN [105]

Pooley, King

DD PFQN The methodology suggested that QN

can model UML DD, mapping the

resources in the deployment

diagrams to service centres and the

communication links to the queues

themselves. The methodology

introduced a method to add

performance data in UML diagrams

in the form of performance tags

(time labels).

(High)

- No meta-model

- PFQN have

efficient

algorithms and

tools to solve and

analyse.

(Low)

- The

methodology

output model is

PFQN which

have limits in the

solving

algorithms for a

range of system

architectures.

(High)

- QNs preserve

the structure of

the components

representing the

system.

(Low)

- Although the

methodology

provided a

systematic way

for producing a

QN model, there

was no tool to

automate it.

UML-QNE

(UML Queuing

UC, AD

,DD

PFQN Te methodology takes advantage of

the hardware/software model
(High)

(Low)

(High)

(High)

A p p e n d i x D

244

Methodology Input Output Methodology Summary Criteria

Time Efficiency Generality Transparency Automation

Network

Evaluator)

Balsamo et.al.

[102]

UML-

SPT[1]

separation found in SPE. The

hardware baseline is extracted from

the DD, where the AD and UC are

used to define the behaviour of the

routing between the service centres

defined by the components of the

DD. The methodology uses the

UML-SPT that is performance

characterisation is annotated in the

input UML models.

- Direct mapping

no meta-model

- PFQN has a

range of efficient

algorithms and

tools to solve and

analyse.

- The

methodology

output model is

PFQN which

have limits in the

solving

algorithms for a

range of system

architectures.

- Writer

suggested the use

of EQN in the

case of fork/join

in ADs.

- QNs preserve

the structure of

the components

representing the

system.

- A tool is

implementing this

methodology

(UML Queuing

Network

Evaluator) [102]

 The tool

depended on

translating these

UML diagrams

represented as an

XMI.

ArgoSPE.

Martinez and

Merseguer

[107]

SC, AD,

ID

UML-

SPT[1]

GSPN The methodology involves

translating UML-SPT model to a

GSPN model. The methodology take

advantage of behaviour UML models

represented as SC, AD and ID to

directly map them to an equivalent

GSPN model, performance

characterisation is annotated in the

input UML models.

(High)

- Direct mapping

no meta-model

- The ArgoSPE

provide a query

based system

where the user

will query the

performance

(Mid)

- The

methodology

output model is

GSPN which is

limited for

behavioural

modelling[82]

See 3.5.

(Low)

- GPSN does not

preserve the

architecture of

the modelled

system.[82]

(High)

- ArgoSPE as a

plug-in in

ArgoUML[43]

A p p e n d i x D

245

Methodology Input Output Methodology Summary Criteria

Time Efficiency Generality Transparency Automation

aspects of the

UML model

directly proving a

black box effect.

UML to GSPN

Bernardi et al.

[108]

SC,SD GSPN The methodology uses the state

diagram to provide information

about the single objects of a system.

The sequence diagrams provide

information about inter-object

communication. The information

gathered will construct the wanted

model.

(Mid)

- Direct mapping

no meta-model

- GPSN models

are complicated

in the context of

representation.

(Mid)

- The

methodology

output model is

GSPN which is

limited for

behavioural

modelling.

(Low)

- GPSN does not

preserve the

architecture of

the modelled

system.

(Low)

- Although the

methodology

provided a

systematic way

for producing a

GSPN model,

there was no tool

to automate it.

State Marking

methodology

[97]

CoD,

SC

GSPN Method for deriving performance

models based on (GSPN) from UML

collaboration-state chart diagrams.

The suggested methodology takes

advantage of the idea of marking,

used in GSPN modelling as the state

of the system at each step in the

model‟s execution. The overall

marking of the system will form the

(Mid)

- Direct mapping

no meta-model

- GPSN models

are complicated

in the context of

representation.

(Mid)

- The

methodology

output model is

GSPN which is

limited for

behavioural

modelling.

(Low)

- GPSN does not

preserve the

architecture of

the modelled

system.

(Low)

- Although the

methodology

provided a

systematic way

for producing a

QN model, there

was no tool to

A p p e n d i x D

246

Methodology Input Output Methodology Summary Criteria

Time Efficiency Generality Transparency Automation

required performance model. automate it.

PEPA to UML

Canevet et al.

[100]

SC,

CoD

PEPA The methodology associates

exponentially distributed random

variables to actions, The

methodology work by extracting

information related to PEPA from

SC and CoD to capture information

related to state machines and their

components; and how these

components collaborate. This

information will be used by a

Cooperation to generate the PEPA

system equation.

(Mid)

- The clarity of

PEPA provide a

challenge to the

user

See 3.5.

(High)

- The PEPA

performance

model produced

is capable of

representing any

class of system

architecture.

(Low)

- PEPA does not

preserve the

architecture of

the modelled

system.

(High)

- The

methodology is

automated as

[100] described

the integration of

ArgoUML with

PEPA workbench

Simulation

SimML

Arif and Speirs

[106]

SD, CD Simulati

on

The methodology work by

Transforming the UML diagrams

into a simulation model described as

an XML document. The XML

notation used to describe the

simulation model has been called

SimML (Simulation Modelling

Language). This model is then

translated into a simulation program,

which can be executed and provides

(Low)

- The analysis of

simulation model

especially for

complex and

large systems can

be a complicated

process.

(High)

- The use of

simulation allow

the method to

include all

system

architectures.

(High)

- The use of

simulation will

allow reverse

engineering.

(High)

- The tool

implementing this

methodology

known as

 SimML[106].

A p p e n d i x D

247

Methodology Input Output Methodology Summary Criteria

Time Efficiency Generality Transparency Automation

performance results.

248

 References R
References

[1] OMG, UML Profile for Schedulability, Performance, and Time Specification,

Object Management Group, 2005.

[2] G.Serazzi, Java Modelling Tools - System Manual, Dipartimento di Elettronica e

Informazione Milano - Italy, v.0.1, Jan. 2009.

[3] R. Pooley, Using UML to Derive Stochastic Process Algebra Models. in: N. Davies,

and J. Bradley, (Eds.), Proceedings of the Fifteenth UK Performance

Engineering Workshop, University of Bristol, Bristol, UK, 1999, pp. 23-33.

[4] I. Sommerville, and P. Sawyer, Requirements engineering: a good practice guide,

John Wiley & Sons, Inc. New York, NY, USA, 1997.

[5] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering,

Prentice Hall Englewood Cliffs, NJ, 1991.

[6] C.U. Smith, Performance Engineering of Software Systems, Addison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA, 1990.

[7] R. Pooley, Software Engineering and Performance: a Roadmap, Proceedings of the

Conference on The Future of Software Engineering

 International Conference on Software Engineering, , ACM Press New York, NY, USA,

Limerick, Ireland 2000, pp. 189-199.

[8] C.U. Smith, and M. Woodside, Performance Validation at Early Stages of Software

Development., Performance 99, Istanbul, Turkey, 1999.

[9] A.A. Abdullatif, and R. Pooley, From UML to EQN: Studying System Performance

from an Early Stage of Systems Life Cycle. in: K. Djemame, (Ed.), Proceedings

of the 25th UK Performance Engineering Workshop, University of Leeds,

Leeds, 2009, pp. 111-122.

[10] M. Bertoli, G. Casale, and G. Serazzi, The JMT Simulator for Performance

Evaluation of Non-Product-Form Queueing Networks, Proceedings of the 40th

Annual Simulation Symposium IEEE Computer Society Washington, DC, USA

Norfolk, Virginia, USA, 2007, pp. 3-10.

[11] A.A.L. Abdullatif, and R.J. Pooley, UML-JMT: A Tool for Evaluating

Performance Requirements, Proceedings of the 17th IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems,

IEEE, Oxford, England 2010, pp. 215-225.

[12] R.J. Pooley, and A.A.L. Abdullatif, CPASA: Continuous Performance Assessment

of Software Architecture, Proceedings of the 17th IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems,

IEEE, Oxford, England 2010, pp. 79-87.

[13] L.G. Williams, and C.U. Smith, PASA: a Method for the Performance Assessment

of Software Architectures, Proceedings of the 3rd international workshop on

Software and performance ACM New York, NY, USA, Rome, Italy 2002, pp.

179-189.

R e f e r e n c e s

249

[14] P. King, and R. Pooley, Derivation of Petri Net Performance Models from UML

Specifications of Communications Software, Computer Performance Evaluation.

Modelling Techniques and Tools: 11th International Conference, TOOLS 2000,,

Springer, Schaumburg, IL, USA, , 2000, pp. 262-276.

[15] M.A. Jackson, Principles of Program Design. Studies In Data Processing 12 (1975)

300-312.

[16] OMGSpecification, UML 2.0 Specification, Object Management Group, 2005.

[17] A. Abran, J.W. Moore, P. Bourque, and R. Dupuis, Guide to the software

engineering body of knowledge: trial version, IEEE, 2001.

[18] W.W. Royce, Managing the development of large software systems: concepts and

techniques, Proceedings of the 9th international conference on Software

Engineering, IEEE Computer Society Press, Monterey, California, United

States, 1987.

[19] B.W. Boehm, Software engineering, Classics in software engineering, Yourdon

Press, 1979, pp. 323-361.

[20] L.B.S. Raccoon, The Chaos Model and the Chaos Cycle. ACM SIGSOFT Software

Engineering Notes 20 (1995) 55-66.

[21] IBAG, V-Model Documentation, 2006.

[22] I. Sommerville, Software Engineering. 7th Edition, Pearson/Addison-Wesley,

2004.

[23] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development

Process, Addison-Wesley, 1999.

[24] P. Kruchten, The rational unified process: an introduction, Addison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA, 2000.

[25] J. Stapleton, DSDM, Dynamic Systems Development Method: the Method in

Practice, Addison-Wesley Professional, 1997.

[26] K. Schwaber, and M. Beedle, Agile Software Development With Scrum, Prentice

Hall Upper Saddle River, NJ, 2001.

[27] K. Beck, and C. Andres, Extreme Programming Explained: Embrace Change,

Addison-Wesley Professional, 2004.

[28] S.W. Ambler, and R. Jeffries, Agile Modeling: Effective Practices for Extreme

Programming and the Unified Process, Wiley New York, 2002.

[29] Sujoy Bose, M. Kurhekar, and J. Ghoshal, Agile Methodology in Requirements

Engineering, SETLabs, 2008.

[30] B. Boehm, and R. Turner, Balancing Agility and Discipline: A Guide for the

Perplexed Reading, MA: Addison-Wesley, 2004.

[31] H.F. Hofmann, and F. Lehner, Requirements engineering as a success factor in

software projects, IEEE Computer Society, 2001, pp. 58-66.

[32] A. Podelko, Performance Requirements, 2006.

[33] A.A. Abdullatif, and R. Pooley, A Computer Assisted State Marking Method For

Extracting Perfomance Models From Design Models. International Journal of

Simulation Systems, Science & Technology 8 (2008) 36-46.

[34] E. Codd, A relational model for large shared data banks. Communications of the

ACM 6 (1970).

[35] P.S. Chen, entity relation models: toward a unified viwe of data. ACM transactions

on Database systems(TODS) 1 (1976) 9-36.

[36] T. DeMarco, J.D.W. Prize, and S. Prize, Structured Analysis and system

specification, Yourdon Press, NewYork, 1979.

[37] E. Yourdon, and L.L. Constantine, Structured design: fundamentals of a discipline

of computer program and systems design, Prentice-Hall, Inc. Upper Saddle

River, NJ, USA, 1979.

R e f e r e n c e s

250

[38] C.H. Kung, and A. S lvberg, Activity modeling and behavior modeling, North-

Holland Publishing Co. Amsterdam, The Netherlands, The Netherlands, 1986,

pp. 145-171.

[39] M.L. Brodie, and E. Silva, Active and passive component modelling: ACM/PCM,

North-Holland Publishing Co. Amsterdam, The Netherlands, The Netherlands,

1986, pp. 57-107.

[40] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language User Guide,

The (Addison-Wesley Object Technology Series), Addison-Wesley

Professional, 2005.

[41] I. Vessey, and A.P. Sravanapudi, CASE tools as collaborative support

technologies, ACM New York, NY, USA, 1995.

[42] K.E. Kendall, and J.E. Kendall, Systems analysis and design, Prentice-Hall, Inc.

Upper Saddle River, NJ, USA, 2002.

[43] J. Robbins, Argo UML, University of California, open source UML modeling tool

and includes support for all standard UML 1.4 diagrams.,v.0.81, 2001.

[44] O.M. Group., XML Meta Data Interchange (XMI) – Proposal to the OMG

OA&DTF RFP 3: Stream-based Model Interchange Format (SMIF),

Framingham,, October 1998.

[45] OMGSpecification, XMI MOF 2.0/XMI Mapping Specification, v2. 1.1, Object

Management Group, 2007.

[46] A.S. Tools, ARTiSAN Studio 6.1 Features SysML Requirements Modelling, XMI

2.1, Embedded systems directory and blog, ARTiSAN Software Tools, 2006.

[47] D. Megginson, Sax 2.0: The Simple API for XML, 2000.

[48] B. McLaughlin, and J. Edelson, Java & XML, O'Reilly Media, Inc., 2006.

[49] W.S. Means, and M.A. Bodie, The Book of SAX: the Simple API for XML, No

Starch Press, 2002.

[50] J. Banks, J.S. Carson, B.L. Nelson, and D.M. Nicol, Discrete-event System

Simulation, Prentice Hall Budapest, Hungary, 2001.

[51] O.J. Dahl, and K. Nygaard, SIMULA: an ALGOL-based Simulation Language.

Communications of the ACM 9 (1966) 671-678.

[52] P.A. Fishwick, SimPack: Getting Started With Simulation Programming in C and

C++, Proceedings of the 1992 Winter Simulation Conference, ACM New York,

NY, USA, 1992, pp. 154-162.

[53] K. Salah, On the Accuracy of Two Analytical Models for Evaluating the

Performance of Gigabit Ethernet Hosts. Information Sciences 176 (2006) 3735-

3756.

[54] B.R. Haverkort, Markovian Models for Performance and Dependability Evaluation.

Lectures on Formal Methods and PerformanceAnalysis, Lecture Notes in

Computer Science 2090 (2002) 38-83.

[55] J. Hillston, Modelling and Simulation, University of Edinburgh, 2005.

[56] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge

University Press New York, NY, USA, 1996.

[57] C.A. Petri, Kommunikation mit automaten. Schriften des iim nr. 2, Technical

Report RADC-TR-65-377, Institut fur Instrumentelle Mathematic, Griffiths Air

Base, New York 1962.

[58] M.K. Molloy, Performance Analysis Using Stochastic Petri Nets. Computers, IEEE

Transactions on C-31 (1982) 913 - 917.

[59] M.A. Marsan, G. Conte, and G. Balbo, a Class of Generalized Stochastic Petri Nets

for the Performance Evaluation of Multiprocessor Systems. ACM Transactions

on Computer Systems (TOCS) . ACM New York, NY, USA 2 (1984) 93 - 122

[60] P.J. Haas, Stochastic Petri Nets: Modelling, Stability, Simulation Springer, 2002.

R e f e r e n c e s

251

[61] L. Kleinrock, Queueing Systems. Vol. 2, Computer Applications, Wiley New

York, 1976.

[62] G. Haring, C. Lindemann, M. Reiser, and S. Balsamo, Product Form Queueing

Networks. Performance Evaluation: Origins and Directions, Lecture Notes in

Computer Science 1769 (2000) 377-402.

[63] K.M. Chandy, U. Herzog, and L.S. Woo, Parametric Analysis of Queuing

Networks. IBM Journal of Research and Development 19 (1975) 36-42.

[64] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik, Quantitative System

Performance: Computer System Analysis Using Queueing Network Models,

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1984.

[65] J.R. Jackson, Jobshop-like Queueing Systems. Management Science 50 (2004)

1796-1802.

[66] P.J. Burke, The Output of a Queuing System. Operations Research 4 (1956) 699-

704.

[67] W.J. Gordon, and G.F. Newell, Cyclic Queueing Networks with Exponential

Servers. Operations Research 15 (1967) 254-265.

[68] J.P. Buzen, Computational Algorithms for Closed Queueing Networks with

Exponential Servers. Communications of the ACM 16 (1973) 527 - 531.

[69] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios, Open, Closed, and

Mixed Networks of Queues with Different Classes of Customers. J. ACM 22

(1975) 248-260.

[70] W.J. Oates, Manufacturing Modeling Using RESQ, Proceedings of the 16th

conference on Winter simulation IEEE Press Piscataway, NJ, USA, Dallas, TX

1984, pp. 356-359.

[71] D. Potier, and M. Veran, QNAP2: A Portable Environment for Queueing Network

Modelling, the french national institute for research in computer science and

control., Le Chesnay, Yvelines 1984.

[72] H. Beilner, J. Mater, and C. Wysocki, The Hierarchical Evaluation Tool HIT. in: D.

Potier, and R. Puigjaner, (Eds.), 7th Int. Conf. on Modelling Techniques and

Tools for Computer Perf. Evaluation 1994.

[73] M. Reiser, Mean-value Analysis of Closed Multichain Queuing Networks. Journal

of the ACM (JACM) 27 (1980) 313-322.

[74] J.P. Buzen, Fundamental Laws of Computer System Performance, Proceedings of

the 1976 ACM SIGMETRICS conference on Computer performance modeling

measurement and evaluation ACM New York, NY, USA Cambridge,

Massachusetts, United States 1976, pp. 200-210.

[75] P.J. Denning, and J.P. Buzen, Operational Analysis of Queueing Networks. ACM

Computing Surveys (CSUR) 10 (1978) 225-261.

[76] H. Hermanns, U. Herzog, and J.P. Katoen, Process Algebra for Performance

Evaluation. Theor. Comput. Sci. 274 (2002) 43-87.

[77] N. Gotz, U. Herzog, and M. Rettelbach, Multiprocessor and Distributed System

Design: The Integration of Functional Specification and Performance Analysis

using Stochastic Process Algebras Performance Evaluation of Computer and

Communication Systems 729 (1993) 121-146.

[78] H. Hermanns, U. Herzog, and J.P. Katoen, Process Algebra for Performance

Evaluation. Theoretical Computer Science 274 (2002) 43-87.

[79] N. Halbwachs, D. Peled, H. Hermanns, V. Mertsiotakis, and M. Siegle, TIPPtool:

Compositional Specification and Analysis of Markovian Performance Models.

Computer Aided Verification 1633 (1999) 683-683.

[80] S. Gilmore, and J. Hillston, The PEPA Workbench: A Tool to Support a Process

Algebra-based Approach to Performance Modelling, Proceedings of the Seventh

International Conference on Modelling Techniques and Tools for Computer

R e f e r e n c e s

252

Performance Evaluation, Springer-Verlag New York, Inc. Secaucus, NJ, USA,

Vienna, Austria 1994, pp. 353-368.

[81] M. Bertoli, G. Casale, and G. Serazzi, JMT: Performance Engineering Tools for

System Modeling. ACM SIGMETRICS Performance Evaluation Review 36

(2009) 10-15.

[82] V. Cortellessa, A. Di Marco, and P. Inverardi, Three Performance Models at Work:

A Software Designer Perspective, Proceedings of FOCLASA 2003, the

Foundations of Coordination Languages and Software Architectures, Electronic

Notes in Theoretical Computer Science , Elsevier B.V., CONCUR 2003 ,

Marseille, France, 2004, pp. 219-239.

[83] B. Plateau, J.M. Fourneau, and K. Lee, PEPS: a Package for Solving Complex

Markov Models of Parallel Systems. Modelling techniques and tools for

computer performance evaluation 397 (1989) 291.

[84] P. Hughes, and D. Potier, The Integrated Modelling Support Environment, ESPRIT

II-IMSE Project 1989.

[85] M. Bertoli, G. Casale, and G. Serazzi, The JMT Simulator for Performance

Evaluation of Non-product-form Queueing Networks, Proceedings of the 40th

Annual Simulation Symposium (ANSS'07), IEEE Computer Society, Norfolk,

Virginia 2007, pp. 3-10.

[86] M. Bertoli, G. Casale, and G. Serazzi, An Overview of the JMT Queueing Network

Simulator, Politecnico di Milano - DEI, 2007.

[87] D.d.E.e. Informazione, Java Modelling Tools - Users manual,v.v.0.5, 2009.

[88] M. Woodside, G. Franks, and D.C. Petriu, The Future of Software Performance

Engineering. in: L.C. Briand, and A.L. Wolf, (Eds.), Proceedings of the

International Conference on Software Engineering, 2007 Future of Software

Engineering IEEE Computer Society Washington, DC, USA 2007, pp. 171-187.

[89] R. Kazman, G. Abowd, L. Bass, and P. Clements, Scenario-Based Analysis of

Software Architecture. IEEE Software 13 (1996) 47-55.

[90] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, The

Architecture Tradeoff Analysis Method, Proceedings of the 21st international

Conference on Software Engineering, ACM, New York, NY, Los Angeles,

California, United States, , 1999, pp. 54-63.

[91] C.U. Smith, and L.G. Williams, Performance Engineering Evaluation of Object-

Oriented Systems with SPE* ED. Computer Performance Evaluation Modelling

Techniques and Tools, Lecture Notes in Computer Science 1245 (1997) 135-

154.

[92] L.G. Williams, and C.U. Smith, Performance Evaluation of Software Architectures,

Proceedings of the 1st international workshop on Software and performance

ACM Press New York, NY, USA, Santa Fe, New Mexico, United States 1998,

pp. 164-177.

[93] V. Cortellessa, and R. Mirandola, PRIMA-UML: a Performance Validation

Incremental Methodology on Early UML Diagrams. Special issue on unified

modeling language (UML 2000) 44 (2002) 101-129.

[94] F. Paetsch, A. Eberlein, and F. Maurer, Requirements Engineering and Agile

Software Development, Proceedings of the IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises IEEE, 2003,

pp. 308-313.

[95] A. Eberlein, and J.C.S. do Prado Leite, Agile Requirements Definition: A View

from Requirements Engineering, Proceedings of the International Workshop on

Time-Constrained Requirements Engineering (TCRE'02), Germany, 2002.

[96] D.d.E.e. Informazione, Java Modelling Tools, Dipartimento di Elettronica e

Informazione, Performance Evaluation Modelling v.0.7.4, 2009.

R e f e r e n c e s

253

[97] P. King, and R. Pooley, Using UML to Derive Stochastic Petri Net Models,

Proceeding of the 8th Int. Workshop on Petri Net andPerformance Models

PNPM '99, Zaragoza, Spain, , 1999, pp. 45-56.

[98] J.P. López-Grao, J. Merseguer, and J. Campos, From UML Activity Diagrams to

Stochastic Petri nets: Application to Software Performance Engineering,

Proceedings of the 4th international workshop on Software and performance

ACM Press New York, NY, USA, Redwood Shores, California 2004, pp. 25-36.

[99] G.P. Gu, and D.C. Petriu, Early Evaluation of Software Performance Based on the

UML Performance Profile, Proceedings of the 2003 conference of the Centre for

Advanced Studies on Collaborative research IBM Press, Toronto, Ontario,

Canada 2003, pp. 66-79.

[100] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens, Performance

Modelling With UML and Stochastic Process Algebras. IEE Proceedings:

Computers and Digital Techniques 150 (2003) 107–120.

[101] A.J. Bennett, and A.J. Field, Performance Engineering With the UML Profile for

Schedulability, Performance and Time: a Case Study, IEEE Computer Society's

12th Annual International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems (MASCOTS'04), IEEE Computer

Society Washington, DC, USA Volendam, NL, 2004, pp. 67-75.

[102] S. Balsamo, R. Mamprin, and S. Marzolla, Performance Evaluation of Software

Architectures With Queuing Network Models. in: C. Bobenau, (Ed.), Proceeding

of the European Simulation and Modeling Conference (ESMc'04), Paris, France,

2004, pp. 206-213.

[103] V. Cortellessa, A. D‟Ambrogio, and G. Iazeolla, Automatic Derivation of

Software Performance Models from CASE Documents. Performance Evaluation

45 (2001) 81-105.

[104] D.C. Petriu, and X. Wang, From UML Descriptions of High-Level Software

Architectures to LQN Performance Models. Applications of Graph

Transformations with Industrial Relevance 1779 (1999) 217-221.

[105] R. Pooley, and P. King, Unified Modelling Language and Performance

Engineering. IEEE proceedings. Software 146 (1999) 1-10.

[106] L.B. Arief, and N.A. Speirs, A UML Tool for an Automatic Generation of

Simulation Programs, Proceedings of WOSP 2000, ACM Press New York, NY,

USA, 2000, pp. 71-76.

[107] E. Gomez-Martinez, and J. Merseguer, ArgoSPE: Model-Based Software

Performance Engineering. Petri Nets and Other Models of Concurrency -

ICATPN 2006, Lecture Notes in Computer Science 4024 (2006) 401-410.

[108] S. Bernardi, S. Donatelli, and J. Merseguer, From UML Sequence Diagrams and

Statecharts to Analysable Petri Net Models, Proceedings of the 3rd international

workshop on Software and performance ACM Press New York, NY, USA,

Rome, Italy 2002, pp. 35-45.

[109] A.Abdullatif, and R.Pooley, From UML Design to Markov Chain Performance

Models, UK Performance Engineering Workshop (UKPEW06), Bournemouth

University, Poole, UK., 2006.

[110] U. Force, OMG UML Specification, Object Management Group, 1999.

[111] F. Bause, and P. Buchholz, Protocol Analysis Using a Timed Version of SDL,

Proceedings of the 3rd Int. Conf. on Formal Description Techniques (FORTE

'90), Springer, 1991, pp. 269-285.

[112] N. Rico, and G. von Bochmann, Performance Description and Analysis for

Distributed Systems Using a Variant of LOTOS. in: B. Jonsson, J. Parrow, and

B. Pehrson, (Eds.), Proceedings of the IFIP WG6.1 International Symposium on

R e f e r e n c e s

254

Protocol Specification, Testing and Verification XI North-Holland Publishing

Co. Amsterdam, The Netherlands, The Netherlands, 1991, pp. 199-213.

[113] P. Pukite, and J. Pukite, Markov Modeling for Reliability Analysis, Wiley-IEEE

Press, 1998.

[114] isograph-software, MKV- Markov Analysis Software v.3.0, 1993.

[115] Kishor S. Trivedi, SHARPE 2002: Symbolic Hierarchical Automated Reliability

and Performance Evaluator, International Conference on Dependable Systems

and Networks, Washington, D.C., USA 2002.

[116] W.J. Stewart, MARCA: Markov Chain Analyzer. A Software Package for

Markov Modelling,v.3.0, 1996.

[117] J. Clark, XSL Transformations (XSLT) W3C 1999.

[118] M. Bertoli, G. Casale, and G. Serazzi, Java Modelling Tools: an Open Source

Suite for Queueing Network Modelling and Workload Analysis, QEST 2006,

IEEE Press, Riverside, US, 2006, pp. 119-120.

[119] L.G. Williams, and C.U. Smith, Information Requirements for Software

Performance Engineering. Quantitative Evaluation of Computing and

Communication Systems, Lecture Notes in Computer Science 977 (1995) 86-

101.

[120] R. Mordani, J.D. Davidson, and S. Boag, Java API for XML Processing, ,Sun

Microsystems, V1.1, 2001.

[121] ISO, Financial Transaction Card Originated Messages - Part 1: Messages, Data

Elements and Code Values, International Organization for Standardization,

2003.

[122] e.C. Corporation, IST/SWITCH, eFunds Canada Corporation, payment software

suite,v.7.4, 2004.

[123] T. Wengraf, Qualitative Research Interviewing: Biographic Narrative and Semi-

Structured Methods, Sage Pubns Ltd, 2001.

[124] V. Cortellessa, M. Gentile, and M. Pizzuti, Xprit: An XMI-based Tool to

Translate UML Diagrams Into Execution Graphs and Queueing Networks,

Proceedings. First International Conference on the Quantitative Evaluation of

Systems,. QEST 2004. , University of Twente, Enschede, The Netherlands.,

2004, pp. 342-343.

[125] J.R. Lewis, IBM Computer Usability Satisfaction Questionnaires: Psychometric

Evaluation and Instructions for Use. International Journal of Human-Computer

Interaction 7 (1995) 57-78.

[126] ISO, Ergonomic Requirements for Office Work with Visual Display Termenals

(VDTs): Guidence on Usability 9241-11, International Organization for

Standardization, 1998.

[127] J.R. Lewis, Psychometric Evaluation of an After-scenario Questionnaire for

Computer Usability Studies: the ASQ. ACM SIGCHI Bulletin 23 (1991) 78-81.

[128] J.P. Chin, V.A. Diehl, and K.L. Norman, Development of an Instrument

Measuring User Satisfaction of the Human-computer Interface, Proceedings of

the SIGCHI conference on Human factors in computing systems ACM New

York, NY, USA, Washington, D.C., United States 1988, pp. 213-218.

[129] J. Kirakowski, and M. Corbett, SUMI: The software usability measurement

inventory, John Wiley & Sons, 2006, pp. 210-212.

[130] G.E.P. Box, J.S. Hunter, and W.G. Hunter, Statistics for Experimenters:

Design,Innovation, and Discovery, Wiley-Interscience New York, 2005.

[131] A. AlAbdullatif, and R.Pooley, Automating State Marking Methodology for

Extracting Performance Model from Design Model, Saudi Innovation

Conference 2007 Newcastle University Newcastle 2007.

R e f e r e n c e s

255

[132] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, Model-based

Performance Prediction in Software Development: a Survey. IEEE Trans. Softw.

Eng. 30 (2004) 295-310.

[133] S. Balsamo, and M. Simeoni, Deriving Performance Models from Software

Architecture Specifications. ACM SIGSOFT Software Engineering Notes 27

(2001) 6–9.

[134] A. D‟Ambrogio, and G. Iazeolla, Design Of XMI-Based Tools For Building EQN

Models Of Software Systems. in: P. Kokol, (Ed.), Proceeding Software

Engineering - 2005, ACTA Press, Innsbruck, Austria, 2005.

[135] C.P. Dorina, and S. Hui, Applying the UML Performance Profile: Graph

Grammar-Based Derivation of LQN Models from UML Specifications,

Proceedings of the 12th International Conference on Computer Performance

Evaluation, Modelling Techniques and Tools, Lecture Notes in Computer

Science, Springer London, UK, , 2002.

256

End of Document

