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“The truth is rarely pure and never simple”

Oscar Wilde



Abstract

The objective of this thesis is to construct a stochastic term structure model for actu-

arial use in the UK.

The starting point of this study is the Wilkie investment model (1995). We review

the Wilkie model by updating the data and re-estimating the parameters. Then, we

focus on the interest rate part of the model and construct a model for the entire term

structure.

We model the UK nominal spot rates, real spot rates and implied inflation spot

rates considering the linkage between their term structures and some macroeconomic

variables, in particular, realised inflation and output gap.

We fit a descriptive yield curve model proposed by Cairns (1998) to fill the missing

values in the yield curve data provided by the Bank of England by changing the fixed

parameters (exponential rates) in the model to find the best set of parameters for each

data set. Once the Cairns model is fitted to the UK yield curves we apply principal

component analysis (PCA) to the fitted values to decrease the dimension of the data

by extracting uncorrelated variables.

Applying PCA to the fitted values we find three principal components which corre-

spond roughly with ‘level’, ‘slope’ and ‘curvature’ for each yield curve. We explore the

bi-directional relations between these principal components and the macroeconomic

variables to construct ‘yield-only’ and ‘yield-macro’ models. We also compare the

‘yield-macro’ model with the Wilkie model.
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Birengel via the emails, gtalk and skype. I am also grateful to Nneoma Ogbonna,

Chenming Bao and Billy (Fei) Yu for their friendship and help in my study.

I wish to thank to Erengul Ozkok, Ugur Karabey, Georgios Papageorgiou, Dave

Jones, my office mates Kokouvi Gamado, Georgios Vasilopoulos, Rebecca Noonan

Heale, Zoe O’Conner and all PhD students and staff in the School of Mathematical

and Computer Sciences.

Thanks also deserves to go to Demet Erbaş, Erinç Engin and Steve Tanghe for
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Introduction

Stochastic investment models are important components in a variety of actuarial work.

They are used for risk assessment and management, valuation of liabilities, determining

mismatching reserves and setting premiums in insurance contracts. Cairns (2004a)

defines the stochastic investment model as a model that incorporates some or all of the

following features:

• a model for total returns; or

• a model for related series, which allows one to infer total returns on the asset

class (for example, dividends and the dividend yield)

• a model for other economic variables such as interest rates, price inflation, and

wage inflation in a way that includes correlation with the assets

• the possibility to include more than one country or economic zone and the asso-

ciated exchange rate process with correlation between different countries.

One of the earliest models which satisfies all these features is the Wilkie model

(1986). The Wilkie stochastic investment model was first introduced in 1986, and

it was updated and extended in 1995. Especially in the following ten years after its

publication many other stochastic investment models were developed in a variety of

ways including different countries (Thomson (1994), Ranne (1998), Yakoubov, Teeger

and Duval (1999), Whitten and Thomas (1999), Chan (2002)).

The main purpose of this thesis is to develop a stochastic investment model con-

sidering the term structures of interest rates and implied inflation for actuarial use

in the UK. This work differs from the previous ones due to modelling the three term
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structures, namely nominal spot rates, implied inflation spot rates and real spot rates

simultaneously with the additional macroeconomic variables such as realised inflation

and output gap. As far as we know, this is the first study which incorporates a time

series model for the entire market-implied term structure of the implied inflation data

in the literature. Since we propose a model for actuarial use we also compare our

model with the Wilkie model. It should be emphisised that being arbitrage-free is not

a requirement for the models developed in this thesis.

In Chapter 1 we review the Wilkie investment model using UK data, including the

Retail Prices Index, both without and with an ARCH model, the wages index, share

dividend yields, share dividends and share prices, long term bond yields, short term

bond yields and index-linked bond yields, in each case by updating the data to June

2009. We also estimate the values of the parameters and their confidence intervals

over various sub-periods to study their stability. Furthermore, we disscuss the Wilkie

model from a statistical and an economical perspective. We conclude the chapter by

discussing a small number of other Wilkie-type stochastic models.

In Chapter 2 we introduce the yield curve terminology by giving some basic defini-

tions, the data and the methodology used by the Bank of England to construct the UK

yield curves. Then we discuss the Cairns model as a descriptive parametric model to

fit the daily spot rates of the three term structures published on the Bank of England’s

web page by changing the fixed parameters (exponential rates in the model) to find

the best set of parameters for each data set. We try three fixed parameter sets which

have been suggested by Cairns (1998) and Cairns and Pritchard (2001) and we also

find one set of optimal parameters for each yield curve data. We compare how well

each parameter set fits some specific dates by examining the mean squared errors. The

overall aim of fitting the Cairns model is to fill in the gaps in the yield curve data.

In Chapter 3 we describe principal component analysis (PCA) and apply PCA to

the fitted values obtained from the Cairns model. Thus we reduce the dimension of the

yield curves by obtaining uncorrelated variables from highly correlated data. We also

examine the robustness of the principal component method to the choice of exponential

parameter sets for the nominal, implied inflation and real spot rates. The first three
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principal components which we call ‘level’, ‘slope’ and ‘curvature’ explain more than

99% of the variability in each yield curve. We use these principal components to

construct the yield curve models.

In Chapter 4 we present a brief literature review on the term structure modelling and

the data we use in this study. The yield-curve models developed by macroeconomists

and financial economists are quite different because of different demands and motives.

While macroeconomists focus on the role of expectations of inflation and future real

economic activity in the determination of yields, financial economists avoid any explicit

role for such determinants. These different attitudes cause a gap between the yield

curve models developed. As well as various recent papers we aim to bridge this gap by

developing a yield curve model considering the bi-directional relations between these

yield curves and some macroeconomic variables. We use monthly, quarterly and yearly

spot rates and realised inflation and ouput gap data to construct a stochastic investment

model.

In Chapter 5 we introduce the ‘yield-only’ model which is based on monthly yield

curve data for the period January 1985 to December 2009. We call this model a ‘yield-

only’ model because an autoregressive model of order one process fits each principal

component of the yield curves quite well and we do not include any macroeconomic

variables into these models. Once we estimate the parameters of the models we ex-

amine the distribution of the residuals, derive the term structures using the principal

components and analyse one-month ahead forecasts by constructing 95% confidence in-

tervals for the means. Furthermore, we check whether our one-month ahead forecasts

satisfy the Fisher relation and whether we can forecast one of the yield curves using

the other two.

In Chapter 6 we present two ‘yield-macro’ models using both quarterly and yearly

data. When we use quarterly data we find that the output gap is significant as an

explanatory variable in some of the yield-curve models. Due to the process of revision

the latest output gap data available is that for the end of 2007 in OECD Economic

Outlook Publications. Thus we use the data for the period 1995-2007 to construct

the ‘yield-macro model-I’ based on quarterly data. According to our analysis the
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output gap and realised inflation affect the slope factor of the nominal interest rates

while realised inflation also affects the curvature factor of the nominal interest rates.

Furthermore, these two yield curve factors have been found significantly important

to explain the realised inflation and output gap as well. Therefore we conclude that

there is a bi-directional relation between the yield curve factors and the macroeconomic

variables. Secondly, we use yearly data including the realised inflation and output gap

for each month starting from January 1985 and ending with December 2009 for the

‘yield-macro model-II’. We model only the ‘level’ factors of the yield curves on a yearly

frequency and note that the realised inflation has been significant in the level factors of

the three yield curves. Since we construct a model for each month we develop twelve

different models at a yearly frequency. We also try to explain the economic rationale

behind the correlations between the variables, examine the fitted vector autoregressive

models and their residuals, and compare the models with the random walk and AR(1)

process in terms of explained variability in the data as well as one-period ahead forecasts

and the Fisher relation check.

In Chapter 7 we compare the quarterly yield-macro model with the Wilkie model

in both philosophical and empirical ways. First, we discuss the structural similarities

and differences between the models. Then we compare the models by analysing the

simulated economic series, nominal and real returns based on different asset classes and

the asset values and the annuity payoffs considering a hypothetical pension scheme.

Finally, In Chapter 8 we present our conclusions and ideas for further research.
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Chapter 1

Revisiting the Wilkie Model

1.1 Introduction

The Wilkie stochastic investment model, developed by A. D. Wilkie, is described fully

in two papers: the original version is described in ‘A Stochastic Investment Model For

Actuarial Use’ (Wilkie, 1986) and the model is reviewed, updated and extended in

‘More On A Stochastic Asset Model For Actuarial Use’ (Wilkie, 1995).

The original Wilkie model (1986) was developed from U.K. data over the period

1919-1982, and was made up of four interconnected models for price inflation, share

dividend yields, share dividends and long-term interest rates. Wilkie (1995) updated

the original model and extended it to include an alternative autoregressive conditional

heteroscedastic (ARCH) model for price inflation, and models for wage inflation, short-

term interest rates, property yields and income and index-linked yields. Furthermore,

these models were fitted to data from numerous developed countries and an exchange

rate model was proposed.

Hardy (2003) describes the Wilkie model as a multivariate model, meaning that

several related economic series are projected together. This is very useful for appli-

cations that require consistent projections of, for example, stock prices and inflation

rates or fixed interest yields. It is designed for long-term actuarial applications such

as simulating assets of financial institutions over many years in the future to study the

risk of insolvency. Since the model is designed to be applied to annual data it is not
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suitable in that form for assessing short-term hedging strategies.

There is a large number of papers such as Kitts (1990), Clarkson (1991), Geohegan

et al. (1992), Ludvic (1993), Harris (1995), Huber (1997), Rambaruth (2003), Hardy

(2004), Nam (2004), Lee and Wilkie (2000) and books such as Daykin et al. (1994),

Booth et al. (1999), Hardy (2003) which describe, compare or criticise the Wilkie

Model. Furthermore, the discussions attached to Wilkie’s 1986 and 1995 papers might

be considered as important references for comments on the Wilkie model. Especially

in the ‘Abstract of Discussion’ part of the 1995 paper there are various comments and

criticisms about the model from twenty academics and practitioners who examined and

applied the model or developed new models which followed in the footsteps of Wilkie

(1986, 1995).

In this chapter, we review the Wilkie investment model only for UK data, including

the Retail Prices Index, both without and with an ARCH model, the wages index, share

dividend yields, share dividends and share prices, long term bond yields, short term

bond yields and index-linked bond yields, in each case by updating the parameters

to June 2009 in Section 1.3 to 1.10. We also estimate the values of the parameters

and their confidence intervals over various sub-periods to study their stability. This

chapter is based on mainly two joint papers: one is a conference paper (Sahin et al.,

2008), ‘Revisiting the Wilkie Investment Model’, which was presented in the 18th

International AFIR Colloquium in Rome, September 30th - October 3rd 2008, and

the other (Wilkie et al., 2010), ‘Yet More on a Stochastic Economic Model: Part

1: Updating and Refitting, 1995 to 2009’, which has been submitted to Annals of

Actuarial Science in February 2010. Additionally, we discuss the Wilkie model from a

statistical and an economical perspective in Section 1.11 while omitting the forecasting

performance of the models which has been discussed in the later paper. Section 1.12

introduces a number of Wilkie-type stochastic models briefly. Finally, Section 1.13

concludes the chapter.
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1.2 Structure and Methodology of the Model

The Wilkie investment model is based on Box-Jenkins (1976) time series models.

The parameters are estimated by using least square estimates or maximum likelihood

method (which gives the same results under the ‘normally distributed residuals’ as-

sumption) calculated by a non-linear optimization method, the Nelder-Mead simplex

method. Almost all models are stationary or integrated of autoregressive order one,

AR(1) or ARIMA(1,1,0). Some of the series are treated as if co-integrated. For exam-

ple, the difference between the logarithm of the share dividends and share prices gives

the logarithm of the share dividend yields, i.e. these two series are co-integrated.

The series in the Wilkie model are correlated and could be modelled simultaneously

by multivariate analysis, using vector autoregressive models (VAR). The model in fact

started as a straightforward VAR model but after crossing out a great many non-

significant values, it was simplified to a cascade model. Figure 1.1 illustrates the

cascade structure of the model where the arrows indicate the direction of influence.

One can see from the figure that the complete model is wholly self-contained. The only

inputs are the separate white noise series, and no exogenous variables are included.

1.3 Retail Prices

The most recent series used for the Retail Prices Index is the one called RPI, and not

any of the other alternative series produced for the UK in recent years. The model for

the U.K. Retail Prices Index (RPI) where Q(t) is the value of a retail price index at

time t, is:

Q(t) = Q(t − 1). exp (I(t)) (1.1)

so that I(t) = ln Q(t) − ln Q(t − 1) is the force of inflation over the year (t − 1, t).
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Figure 1.1: Structure of the Wilkie model

The force of inflation I(t), which is defined as the difference in the logarithms of

the RPI each year, is modelled as a first order autoregressive series. An AR(1) model

is a statistically stationary series for suitable parameters, which means that in the long

run the mean and variance are constant.

I(t) = QMU + QA.(I(t − 1) − QMU) + QE(t) (1.2)

QE(t) = QSD.QZ(t)

QZ(t) ∼ (iid)N(0, 1)

that is QZ(t) is a series of independent, identically distributed unit normal variates.

The model states that each year the force of inflation is equal to its mean rate,

QMU , plus some proportion, QA, of last year’s deviation from the mean, plus a random

innovation which has zero mean and a constant standard deviation, QSD.

The force of inflation, I(t) from 1923 to 2009 is displayed in Figure 1.2. One can

observe from the figure that there was a fall in prices after the First World War, and big

rises during the Second World War and the late 1970s and early 1980s. The inflation

has been positive since the 1960s and especially in the last 15 years it seems to have

been low and stable. However, for the year ending June 2009 the value of I(t) was
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Figure 1.2: Annual force of inflation, I(t), 1900-2009

negative, for the first time since 1959, and by a larger amount negative than in any

year since 1933.

1.3.1 Updating and Rebasing to 1923-2009

We updated the data and re-estimated the parameters of the price inflation model

for the whole period, 1923-2009. In Table 1.1 we compare these with those that were

estimated in 1995. We also show some statistics from both periods: first, the first

autocorrelation coefficient of the residuals, the values of QZ(t), denoted r(QZ)1 ; then

the first autocorrelation coefficient of the squares of the residuals, the values of QZ(t)2,

denoted r(QZ2)1 ; next the skewness and kurtosis coefficients of the residuals, denoted
√

β1 and β2; finally the Jarque-Bera χ2 statistic, equal to the sum of the squares of the

skewness and kurtosis coefficients, in each case divided by the squares of their standard

errors, together with the probability of such a large value of χ2
2 being observed.
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Table 1.1: Estimates of parameters and standard errors of AR(1) model for inflation
over 1923-1994 and 1923-2009

I(t) 1923-1994 1923-2009

QMU 0.0473 (0.0119) 0.0429 (0.0101)

QA 0.5773 (0.0799) 0.5779 (0.0744)

QSD 0.0427 (0.0036) 0.0397 (0.0030)

r(QZ)1 -0.0057 -0.0060

r(QZ2)1 0.0421 0.0691

skewness
√

β1 1.1298 1.2521

kurtosis β2 5.1126 5.9672

Jarque-Bera χ2 33.09 54.65

p(χ2) 0.0000 0.0000

Possible rounded values for practical use, based on the past experience, might be:

QMU = 0.043; QA = 0.58; QSD = 0.04

.

However, the recent experience suggests that a lower mean value, such as QMU =

0.025, might be more appropriate for the future (Wilkie, et.al., 2010). Since the path

of inflation may be very uncertain in the long run, we would not recommend reducing

the standard deviation except perhaps in the short term.

Table 1.1 shows that the estimated parameters over the two periods have not

changed significantly. QMU and QSD have slightly decreased and QA has slightly

increased. Standard errors (in brackets) show that all the parameters are significantly

different from zero. When we compare these two periods by examining the diagnostic

tests, it can be concluded that there is no significant improvement on the model based

on the updated data. The residuals, the observed values of QE, are calculated for

both periods. The autocorrelation coefficients of the residuals and squared residuals

show nothing unusual, i.e. residuals can be considered to be independent and there is

no simple ARCH effect. However, the skewness and kurtosis coefficients, based on the
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third and forth moments of the residuals, are rather large:
√

β1 = 1.1298 and 1.2521,

demonstrating substantial positive skewness; and β2 = 5.1126 and 5.9672, implying

quite heavy tails in the distribution.

The Jarque-Bera test also shows significant non-normality. The test statistics are

33.09 and 54.65 for the two periods, which should be compared with a χ2 variate with

two degrees of freedom. The p-values are zero and therefore, the probability that such

a result would occur at random is negligible.

1.3.2 Parameter Stability

Huber (1997) suggested that, when parameters are estimated over different periods,

very different values may be obtained, indicating that the values of the parameters

are not stable. We investigate the parameter constancy of the models by recursively

estimating the parameters on incrementally larger data sets. Figure 1.3, 1.4 and 1.5

present these recursive estimates and 95% confidence intervals of QMU , QA and QSD,

respectively, for earlier sub-periods (data sets starting in 1923) and later sub-periods

(data sets ending in 2009). In the figures, solid lines show the parameter estimates and

the dotted lines show the 95% confidence intervals. These are based on an assumption

that the parameter value is distributed normally, and are calculated as the estimated

value plus or minus 1.96 times the calculated standard error. Sub-periods with fewer

than 10 observations are omitted in this case.

We explain the graphs by using Figure 1.3, for QMU , as an example. The middle

bold solid line shows the estimated values of QMU for periods starting in 1923 and

ending in the given year. It begins with the period ending in 1932, for which there are

10 years of data from which to estimate the parameters. Over this period we can see

that the estimated value of QMU is negative for the first 10 to 17 years (1923-1939)

which reflect the negative inflation of that inter-war period. We can observe that QMU

tends to increase over most of the period, including two jumps in the early 1940s and

the mid 1970s due to the effects of the Second World War and the oil crisis. After

1980, it drifts slightly down, ending in 2009 at 0.0429, as shown in Table 1.1. The

bold dotted lines on either side of the bold solid line show approximate 95% confidence
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intervals for the corresponding value.

The middle thinner solid line in Figure 1.3 shows the estimated values of QMU

for periods ending in 2009. This line commences in 1923 at the value 0.0429, being

the value for the whole period 1923-2009. The line rises gently as the earlier years of

negative or low inflation are omitted, and reaches a peak at 0.0597 in 1968. For the

most recent years it declines quite sharply, ending at 0.0261 for 2000, the last year

for which we have 10 years date ending in 2009. The thinner dotted lines on either

side of the thinner continuous line show approximate 95% confidence intervals for the

corresponding value. As the periods shorten one would expect the confidence intervals

to widen, being based on fewer observations. In fact they do the opposite. At the

right hand end the confidence limits are quite close to each other. This may suggest

that during a period of low inflation the uncertainty of prices is lower and inflation is

therefore stable. This is most obviously seen from the very low values for QSD in the

recent periods seen in Figure 1.5.

Since we use the same data periods for the right hand end of the bold solid line and

the left hand end of the thinner solid line (i.e. data over the period 1923 to 2009), we

have exactly the same parameter values and confidence limits at these points.

It can be seen that the estimated values of QMU are fairly far apart in the earlier

years and cross over in 1977. However, the confidence intervals overlap for all years

from 1940 onwards. Further a value of 0.030 lies within both confidence intervals for

QMU from 1949 onwards.

Figure 1.4 shows the same features for the autoregressive parameter, QA. Coming

forward from 1923, we see rather low values, starting at around 0.2. The parameter

value jumps in the mid-1970s, from a value of 0.4 to a value of 0.6. Before and after

this period it seems stable. Then reducing the periods, but keeping the end point at

2009, the 0.6 value is apparent for a long period, but in the most recent years the

value has dropped, to well below zero. The confidence intervals overlap for almost all

the periods shown, but are comparatively wide, especially for the most recent years.
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Figure 1.3: Estimates for parameter QMU for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals

When inflation is very stable, and has a low variability, any autoregressive tendency

that might be observed when rates are much higher cannot be identified.

Figure 1.5 shows the recursive estimates of the standard deviation, QSD, of the

inflation model. The most obvious feature is how much lower the values have been

in recent years, and how narrow the confidence interval has also been. This suggests

that a ‘regime switching’ model might reflect the facts rather better than a model

with fixed parameters. The parameter values estimated for the period starting in 1923

indicates that there are two jumps: one is in the early 1940s and the other is in the mid

1970s. The steadily increasing structure of the parameter values and the two jumps

due to the Second World War and oil crises cause bigger jumps in the volatility of the

inflation. The confidence intervals are wide around these jumps and they get smaller

as we increase the data period. When we look at the right hand end, in which we used

the latest years’ values to estimate the parameter, we see that the standard deviation

is very small (about 0.01) and the confidence limits are very close to each other. This
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Figure 1.4: Estimates for parameter QA for periods starting in 1923 and periods ending
in 2009, with 95% confidence intervals
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Figure 1.5: Estimates for parameter QSD for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals

result shows that during a low inflation period it is easier to predict the rate and there

is decreased uncertainty.
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1.4 An ARCH Model for Inflation

Although Wilkie (1986) initially assumed that the residuals of the inflation model

were normally distributed, he observed in 1995 that they are much fatter tailed than

normal distribution. One of the ways to model these fat tailed distributions is using

an Autoregressive Conditional Heteroscedastic (ARCH) model (Engle, 1982). Wilkie

(1995) proposed an ARCH model for the standard deviation of the inflation model.

In this ARCH model the varying value of the standard deviation, QSD(t), is made to

depend on the previously observed value of the principal variable, I(t− 1), which itself

is modelled by an autoregressive series. The suggested model (with a slight alteration

in the notation) was:

I(t) = QMU + QA.(I(t − 1) − QMU) + QE(t) (1.3)

QE(t) = QSD(t).QZ(t)

QSD(t)2 = QSA2 + QSB.(I(t − 1) − QSC)2

QZ(t) ∼ (iid)N(0, 1)

Thus the variance depends on how far away last year’s rate of inflation, I(t − 1),

was from some middle level, QSC (similar to the mean, QMU), but with the deviation

squared, so that extreme values of inflation in either direction would increase the

variance.

1.4.1 Updating and Rebasing to 1923-2009

Estimates of values of the parameters for the period from 1923 to 2009 are shown in

Table 1.2, along with estimates of the values already found for the basic inflation model,

in which QSB = 0 and QSD is a constant equalling QSA. We show two ARCH models,

one with QSC free, the other with QSC = QMU . Since the log likelihoods and the

parameter estimates for these two models are very close, we prefer the QSC = QMU

which has one less parameter to estimate. Although the log likelihood for the ARCH

15



model is distinctly better than for the basic inflation model, the skewness and kurtosis

are little changed. This shows that even with an ARCH model, the residuals for

inflation are considerably fatter-tailed than normal.

As opposed to re-estimating the parameters, changing the structure of the Wilkie

model is not an objective of this chapter (apart from the real yield, R). Therefore,

we do not consider, for example, a regime switching model for inflation or an AR(1)

model with fat-tailed noise, despite the evidence from the statistical tests in Table 1.1

and Table 1.2 that other models might have their merits.

Table 1.2: Estimates of parameters and standard errors of model for inflation, using
an ARCH model, and relevant statistics, over different periods

I(t) 1923-1994 1923-2009 1923-1994 1923-2009

QSC =
QMU

Basic
QSB = 0

QSB and
QSC free

QSC =
QMU

QMU 0.0404
(0.0108)

0.0429
(0.0101)

0.0369
(0.0082)

0.0352
(0.0080)

QA 0.6179
(0.1292)

0.5779
(0.0744)

0.5938
(0.1306)

0.5930
(0.1291)

QSA (= QSD) 0.0256
(0.0150)

0.0397
(0.0030)

0.0227
(0.0032)

0.0227
(0.0032)

QSB 0.5224
(0.2147)

0.6345
(0.2217)

0.6336
(0.2149)

QSC 0.0404 0.0345
(0.0054)

0.0352

r(QZ)1 -0.0060 -0.0229 -0.0221

r(QZ2)1 0.0691 0.0680 0.0674

skewness
√

β1 1.2521 1.2303 1.2314

kurtosis β2 5.9672 5.9294 5.9312

Jarque-Bera χ2 5.76 54.65 53.06 53.13

p(χ2) 0.056 0.0000 0.0000 0.0000

Log likelihood 237.22 246.25 246.22

Possible rounded values for practical use, based on the past experience, might be:

QMU = 0.035; QA = 0.59; QSA = 0.227, QSB = 0.63, QSC = QMU = 0.035

.
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However, a value of QMU = 0.025 might be preferred, as we have suggested in the

previous section.

1.4.2 Parameter Stability

The parameter constancy of the models can be examined by recursively estimating the

parameters on incrementally larger data sets as we have done in Section 1.3.

When we try to estimate the ARCH model of shorter subperiods, we often find that

the estimated value of QSB is very small but negative. This is inconsistent because it

would produce cases in simulations where the variance, QSD2, was negative, as could

happen also if QSA were negative. If the estimate of QSB is negative we can set it to

zero, and revert to the non-ARCH model for inflation, with QSD = QSA.

In the graphs for subperiods, shown in Figures 1.6, 1.7, 1.8 and 1.9 for QMU ,

QA, QSA and QSB, we show the values of the non-ARCH model for the first three

parameters, and omit the value of QSB if it has been set to zero. One can see that this

happens for all subperiods starting in 1923 and ending before 1975, and also for the

subperiod starting in 1981 and ending in 2009. However, for every subperiod starting

after 1985 and ending in 2009 the estimated value of QSB is greater than 1, so the

value of QSD(t)2 would, in the long run, tend to infinity, and the model is unstable.

Figures 1.6 and 1.7 show that the mean and the autoregressive parameters of the

ARCH model are similar to the corresponding parameters of the AR(1) inflation model.

When we look at Figures 1.8 and 1.9, we see two parameters which make the difference

between the AR(1) and ARCH inflation models. Therefore, it is useful to interpret

these two parameters together. When QSB is set to 0, these two models become

identical. The graph of QSA is similar to its equivalent in the AR(1) model, QSD,

until the 1970s. There are several jumps and two of them are significant: one is in

the late 1930s and the other is in the early 1970s. On the other hand, QSB estimates

for the earlier sub-periods are almost zero until the early 1970s which indicates that

the AR(1) model is enough to model the rate of inflation until this year. There is a

sharp decrease in the QSA estimates for the earlier sub-periods after 1970s while there

is significant increase in QSB estimates in early 1970s. This might indicate that after
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the first oil crises the AR(1) model is not sufficient and through the QSB parameter

the ARCH effect comes into the model. Taking this into account decreases QSA and

stabilises it for the rest of the sub-periods. Besides, QSA estimates for the later sub-

periods are quite stable except for two specific jumps and QSB estimates for the later

sub-periods are informative just after the sub-periods including 20 or more years.

To conclude, it is only in the periods that include the 1960s and 1970s that the

ARCH model is a useful description.
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Figure 1.6: Estimates for parameter QMU for ARCH model for periods starting in
1923 and periods ending in 2009, with 95% confidence intervals
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Figure 1.7: Estimates for parameter QA for ARCH model for periods starting in 1923
and periods ending in 2009, with 95% confidence intervals

19



Year

P
a

ra
m

e
te

r 
va

lu
e

1920 1940 1960 1980 2000

−
0

.0
2

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Figure 1.8: Estimates for parameter QSA for ARCH model for periods starting in 1923
and periods ending in 2009, with 95% confidence intervals
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Figure 1.9: Estimates for parameter QSB for ARCH model for periods starting in 1923
and periods ending in 2009, with 95% confidence intervals
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1.5 Wages Index

A series of indices, ending with the index for Monthly Earnings, All Employees, not

seasonally adjusted have been used for the wages model. We use the same notation

as Wilkie (1995), denoting the wages index at time t as W (t), and the force of wage

inflation over the year t − 1 to t as J(t), calculated as

J(t) = lnW (t) − lnW (t − 1) (1.4)

so that W (t) = W (t − 1). exp J(t).

Figure 1.10 shows the values of both the price, I(t), and the wage, J(t), inflations.

These two have been quite similar over the period, especially since 1923. Since 1994,

like price inflation, the wage inflation has been at a much lower, and more stable, level

than in previous years.
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Figure 1.10: Price inflation, I(t), and Wage inflation, J(t), 1900-2009
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1.5.1 Updating and Rebasing to 1923-2009

Wilkie (1995) proposed several models including AR(1), transfer function models and

vector autoregressive models for wages. By examining all these models, he chose the

transfer function model as the most suitable and we re-estimated the parameters for

this model on updated data.

The model for J(t) suggested in 1995 can be written as:

J(t) = WW1.I(t) + WW2.I(t − 1) + WMU + WN(t) (1.5)

WN(t) = WA.WN(t − 1) + WE(t)

WE(t) = WSD.WZ(t)

WZ(t) ∼ (iid)N(0, 1)

Two sets of values of the parameters were suggested in Wilkie (1995), based

on the experience from 1923 to 1994. In both the value of WA was taken as

zero. In one (Model W1) the values of the other parameters were: WW1 =

0.60; WW2 = 0.27; WMU = 0.021; WSD = 0.0233. In the other (Model W2):

WW1 = 0.69; WW2 = 1 − WW1 = 031; WMU = 0.016; WSD = 0.0244. Setting

WW2 = 1 − WW1 enables us to get ‘unit gain’ from prices to wages, i.e. an unex-

pected change in prices produces a corresponding change in wages in the long run, so

that real wages are not significantly influenced by the level of inflation.

As we have done for the inflation models, we re-estimate the parameters for the

whole period, 1923-2009 for wages too. We do this for four different models, with WA

free or set to zero, and with WW2 free or set to 1−WW1. In Tables 1.3 and 1.4 we

compare these with those that were estimated in 1995.

We can observe that the addition of the WA term improves the log likelihood by

very little, and in one of the cases it increases the Jarque-Bera statistics, and further

that the value of WA is not significantly different from zero. So the WA term can be

omitted. We also see that there is not a very big difference between the model with
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Table 1.3: Estimates of parameters and standard errors of two models for wages, with
WA = 0, and relevant statistics, over different periods

Model W1 WW2 free WW2 = 1 − WW1

1923-1994 1923-2009 1923-1994 1923-2009

WW1 0.6021
(0.0645)

0.6020
(0.0592)

0.6878
(0.0572)

0.6843
(0.0509)

WW2 0.2671
(0.0577)

0.2693
(0.0535)

0.3122 0.3157

WMU 0.0214
(0.0035)

0.0200
(0.0030)

0.0159
(0.0029)

0.0150
(0.0032)

WSD 0.0233
(0.0020)

0.0219
(0.0017)

0.0244
(0.0020)

0.0228
(0.0019)

r(WZ)1 0.1860 0.1950 0.1780 0.1833
r(WZ2)1 -0.0068 0.0407 -0.0094 0.0203

skewness
√

β1 0.0147 0.1034 -0.3887 -0.3081
kurtosis β2 3.6555 3.9692 4.6695 5.0074

Jarque-Bera χ2 1.29 3.56 10.17 15.98
p(χ2) 0.52 0.17 0.0062 0.0003

Log likelihood 234.54 288.88 231.48 285.43

WW2 free and the one with WW2 = 1 − WW1 as in Wilkie (1995). However, the fit

on both occasions is not so good. Therefore, there is good reason to prefer the model

with WW2 free, even though this does not give a ‘unit gain’ from inflation to wages.

Possible rounded values for practical use, based on the past experience, might be:

WW1 = 0.60; WW2 = 0.27; WMU = 0.020; WSD = 0.0219

.

or alternatively

WW1 = 0.68; WW2 = 0.32; WMU = 0.015; WSD = 0.0228

.

In both suggested models, we omit the WA term. Furthermore, these are almost

the same as those suggested in Wilkie (1995). In the first model, when WW2 is

free, the kurtosis coefficient is not exceptionally large, and the Jarque-Bera statistic
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Table 1.4: Estimates of parameters and standard errors of two models for wages, with
WA free, and relevant statistics, over different periods

Model W2 WW2 free WW2 = 1 − WW1

1923-1994 1923-2009 1923-1994 1923-2009

WW1 0.5824
(0.0643)

0.5806
(0.0592)

0.6871
(0.0554)

0.6828
(0.0547)

WW2 0.2467
(0.0587)

0.2495
(0.0543)

0.3129 0.3172

WMU 0.0235
(0.0043)

0.0220
(0.0037)

0.0161
(0.0032)

0.0151
(0.0035)

WA 0.1489
(0.0944)

0.01525
(0.0873)

0.0908
(0.0946)

0.0948
(0.0870)

WSD 0.0229
(0.0019)

0.0215
(0.0016)

0.0242
(0.0020)

0.0226
(0.0019)

r(WZ)1 0.0546 0.0603 0.0989 0.1001
r(WZ2)1 0.0627 0.0991 0.0335 0.0633

skewness
√

β1 0.1186 0.2385 -0.3447 -0.2660
kurtosis β2 3.7418 4.0799 4.6329 4.9732

Jarque-Bera χ2 1.82 5.05 9.42 15.14
p(χ2) 0.40 0.0800 0.0090 0.0005

Log likelihood 235.77 290.39 231.94 286.02

is acceptable. In the other model, the high value of the kurtosis coefficient indicates

that the residuals are not close to being normally distributed, though they are less

far away than the inflation residuals, partly because the values of inflation are already

included in the formula, and the wages residuals represent variation over and above

the variation due to inflation.

1.5.2 Parameter Stability

The graphs of the estimated values of the parameters over various sub-periods, those

starting in 1923 and those ending in 2009, for the parameters, WW1, WW2, WMU

and WSD, are displayed in Figures 1.11, 1.12, 1.13 and 1.14 respectively. We do this

only for our preferred model, with WW2 free and WA = 0.

In Figure 1.11 we can see that the estimates for WW1 for periods starting in 1923,

the bold continuous line, are reasonably constant, except for the jump at the early
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1940s, whereas those for periods ending in 2009, the thinner continuous line, drop

quite sharply in the most recent years. The same is true for the estimates for WW2,

which is even more stable in the earlier years. The considerable reduction in these

two factors in recent years is consistent with rather stable increases in both prices

and wages, which gives the impression that the two series have little connection, even

though the connection is very strong when inflation is high.

The charts for WMU are reasonably stable too, except that the estimated value

has risen in the most recent years. This compensates for the reduction in WW1 and

WW2; if wage increases are not dependent on inflation, from which they would obtain

roughly the mean increase in prices, they must have their own, larger, mean increase.

The charts for WSD, however, are much less stable, and show much reduced values

for the shorter recent periods which is consistent with the much more stable pattern

of wages increases in recent years.

25



Year

P
a

ra
m

e
te

r 
v
a

lu
e

1920 1940 1960 1980 2000

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Figure 1.11: Estimates for parameter WW1 for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.12: Estimates for parameter WW2 for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.13: Estimates for parameter WMU for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.14: Estimates for parameter WSD for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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1.6 Share Dividend Yields

The share dividend yield is based on number of indices, since 1962 on the FTSE-

Actuaries All-Share Index. The yield for most of the period has been based on the

gross dividend index, i.e. gross of income tax, which non-tax paying investors, such as

U.K. pension funds, could reclaim (see Wilkie et al., 2010 for details).

The dividend yield, Y (t), is shown in Figure 1.15, at annual intervals, from 1919 to

2009. One can see that it reached very low levels during the late 1990s, but has risen

recently and is now above its long run mid-point of around 4%.
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Figure 1.15: Share dividend yield, Y(t), %, 1919-2009

The original model for Y (t) was:

ln Y (t) = Y W.I(t) + Y MU + Y N(t) (1.6)

Y N(t) = Y A.Y N(t − 1) + Y E(t)

Y E(t) = Y SD.Y Z(t)

Y Z(t) ∼ (iid)N(0, 1)
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1.6.1 Updating and Rebasing to 1923-2007

In Table 1.5 we compare the parameters estimated for the whole period, 1923-2009,

with those that were estimated in 1995, along with the usual statistics.

Table 1.5: Estimates of parameters and standard errors of models for dividend yield,
and relevant statistics, over different periods

1923-1994 1923-2009

Y W 1.7940
(0.5862)

1.5466
(0.4590)

Y MU 3.77%
(0.18%)

3.72%
(0.18%)

Y A 0.5492
(0.1013)

0.6297
(0.0854)

Y SD 0.1552
(0.0129)

0.1570
(0.0119)

r(Y Z)1 0.0778 0.1055

r(Y Z2)1 0.0421 -0.0618

skewness
√

β1 -0.1024 0.3798
kurtosis β2 3.0944 3.3381

Jarque-Bera χ2 0.63 2.51
p(χ2) 0.73 0.29

It can be observed that the values of the Y MU and Y SD are almost unchanged,

while Y W is reduced and Y A is increased. However, all the new parameter estimates

are within, or not much above, one standard deviation away from the original estimates

(based on 1923-1994), so there is no strong evidence of a change in the parameters of

the model on the updated data.

Diagnostic tests for both models show that the residuals appear to be independent;

the autocorrelation function has no high values. The residuals appear to be normally

distributed, too. The skewness and kurtosis coefficients are increased a bit but are still

not far from their expected values which are zero and three respectively. The Jarque-

Bera statistic increased to 2.51, giving p(χ2) = 0.29. The model is still satisfactory.

Possible rounded values for practical use, based on the past experience, might be1:

1However, because of the change in the way in which dividends are now taxed, as described in
Wilkie et al. (2010), it might be appropriate for the future to use the ‘actual yield’ basis, in which
case the value of Y MU should be reduced by 10% to give a value of 3.375%.
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Y W = 1.55; Y MU = 0.0375; Y A = 0.63; Y SD = 0.155

.

1.6.2 Parameter Stability

We examine the stability of the parameters by calculating the recursive estimates on in-

crementally larger data sets as we did in the previous sections. Figures 1.16, 1.17, 1.18,

1.19 present the recursive estimates and 95% confidence intervals of the inflation effect,

Y W , the mean yield, Y MU , the autoregressive parameter of the yield, Y A and the

standard deviation, Y SD, respectively, for the earlier sub-periods (data sets starting

in 1923) and the later sub-periods (data sets ending in 2009). The construction of the

graphs is similar to the ones in the previous sections.

In Figure 1.16, Y W is the parameter which reflects the effect of inflation on dividend

yields. The graph for the earlier sub-periods shows that there are two jumps in the

years 1940 and 1974. These are the years in which the greatest increases in prices and

in yield occurred. The graph suggests that when inflation is high, its effect on yield

is also high. However, over the early and later shorter periods, the influence has been

small or negative, and the confidence intervals are very wide.

When we look at the Y MU graph in Figure 1.17 we can see that, as we extend

the period, the confidence intervals become smaller. Y MU estimates for the earlier

sub-periods have a similar path to QMU estimates for the earlier sub-periods which

justifies the proposition that high inflation, when it occurs, leads to a fall in share

prices and hence to high dividend yields. In Figure 1.17 we see that the estimates

of YMU are very stable, though the confidence intervals widen when there are fewer

observations.

Figure 1.18 shows the autoregressive parameter, Y A. This parameter is quite sta-

tionary except for the very short sub-periods. We should note that when inflation is

high (1940 and 1974), Y A decreases which means that during these years the increasing

inflation effect on yields (Y W increases in these years) explains most of the variability
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in yield and yield does not depend so much on its previous value.

The Y SD graph in Figure 1.19 shows that during low, stable inflation the standard

deviation of the yields is small. The confidence intervals shrink as the sub-periods

extend.
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Figure 1.16: Estimates for parameter Y W for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.17: Estimates for parameter Y MU for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.18: Estimates for parameter Y A for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.19: Estimates for parameter Y SD for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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1.7 Share Dividends

The indices for share dividends and share prices come from the same source as the

share dividend yields. We calculate the ‘force’ of increment in the dividend index t− 1

to t, denoted K(t), as

K(t) = ln D(t) − ln D(t − 1) (1.7)

so that D(t) = D(t − 1). exp K(t).

In Figure 1.20 we show the values of K(t) from 1920 to 2009, along with the rate

of inflation, I(t).
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Figure 1.20: Increase in share dividends, K(t), 1920-2009 and Inflation, I(t), 1900-2009

The original model for share dividends, where D(t) is the value of a dividend index

on ordinary shares at time t and K(t) is the annual change in the logarithm, is:
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DM(t) = DD.I(t) + (1 − DD).DM(t − 1) (1.8)

DI(t) = DW.DM(t) + DX.I(t)

K(t) = DI(t) + DMU + DY.Y E(t − 1) + DB.DE(t − 1) + DE(t)

DE(t) = DSD.DZ(t)

DZ(t) ∼ (iid)N(0, 1)

In Equation 1.8 the function DM(t) is an exponentially weighted moving average

of inflation up to time t. DI(t) takes a proportion of this and a proportion of the latest

rate of inflation. DX is constrained to equal 1−DW , so that there is ‘unit gain’ from

inflation to dividends. K(t) is also influenced by the residuals from the previous year

of dividend yields and dividends itself.

Hence, a model for P (t), the value of a price index of ordinary shares at time t can

be obtained as:

P (t) = D(t)/Y (t)

ln P (t) = ln D(t) − ln Y (t)

1.7.1 Updating and Rebasing to 1923-2009

Table 1.6 shows the estimated parameters and their standard errors. Wilkie (1995)

investigated what happens if he omits the influence of inflation by setting both DW

and DD to zero. Since the log likelihood is worsened substantially, and, in addition,

the crosscorrelation between the residuals of dividends, DE, and the residuals from

inflation, QE, is large he decided to keep these parameters. Moreover, he found it

economically necessary taking into account the direct transfer from retail prices to

dividends.

On the other hand, the estimated value of DMU , the mean rate of growth of real
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dividends, is not much more than one standard error away from zero for both of the

periods. It can, therefore, be set to zero as in the model in Wilkie (1986). However,

since the real rate of growth of dividends is an important element in the total return

on shares Wilkie (1995) preferred keeping this parameter.

Diagnostic tests of the residuals for the model show no remaining autocorrelation.

The Jarque-Bera statistics are 8.16 and 6.27, with p(χ2) = 0.017 and 0.043, so there is

some evidence of fat-tailedness.

Table 1.6: Estimates of parameters and standard errors of models for dividends, and
relevant statistics, over different periods

1923-1994 1923-2009

DW 0.5793
(0.2157)

0.4279
(0.2398)

DD 0.1344
(0.0800)

0.1551
(0.1006)

DMU 0.0157
(0.0124)

0.0111
(0.0110)

DY -0.1761
(0.0439)

-0.2142
(0.0451)

DB 0.5733
(0.1295)

0.4477
(0.1041)

DSD 0.0671
(0.0056)

0.0708
(0.0054)

r(DZ)1 -0.0338 0.0074

r(DZ2)1 0.2260 0.3371

skewness
√

β1 -0.5980 -0.5548
kurtosis β2 4.0344 3.7066

Jarque-Bera χ2 8.16 6.27
p(χ2) 0.017 0.043

Possible rounded values for practical use, based on the past experience, might be:

DW = 0.43; DD = 0.16; DX = 1 − DW = 0.57; DMU = 0.011; DY = −0.22;

DB = 0.43; DSD = 0.07
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1.7.2 Parameter Stability

Figures 1.21, 1.22, 1.23, 1.24, 1.25, 1.26 present the recursive estimates and 95% con-

fidence intervals of the model parameters DW , DD, DMU , DY , DB and DSD for

earlier sub-periods (data sets starting in 1923) and later sub-periods (data sets ending

in 2009). Since we have six parameters for this model, we have omitted the sub-periods

with less than 20 years in order to use enough data to get reasonable estimates. Then

for many periods, including most periods starting in or after 1971, the maximum likeli-

hood estimate of the value of DW is negative, and sometimes also the estimated value

of DD is greater than 1, which would imply that the further back we look at inflation,

the greater the effect on dividend increases. This makes no sense, so we omit the values

of DW and DD for these periods. The values of the other parameters, however, seem

quite sensible, and we leave them in. Sometime DW is greater than 1, which implies

that past inflation has a positive effect, but current inflation a negative one; this is not

entirely implausible.

Where we show it, the value of DD is stable, as is the value of DMU , which is

generally greater than zero, but not by much. The values of DY seem to have been

increasing, and those of DB and DSD decreasing.
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Figure 1.21: Estimates for parameter DW for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.22: Estimates for parameter DD for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.23: Estimates for parameter DMU for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.24: Estimates for parameter DY for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.25: Estimates for parameter DB for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.26: Estimates for parameter DSD for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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1.8 Long-Term Interest Rates

For the long-term bond yields Wilkie (1986, 1995) used ‘consols’ (originally an abbre-

viation for Consolidated Stock) which is a form of British government bond, dating

from 1756. Consols are one of the rare examples of a perpetuity, although they may

be redeemed by the issuer. For long term bond yields, C(t), the earlier values are the

yield on 21
2
% Consols, and the later are the yield on the FTSE-Actuaries BGS Indices

irredeemables index, which is now purely the yield on 31
2
% War Stock (War Loan).

For short-term bond yields, B(t), discussed further in Section 1.9, bank rate or bank

base rate has been used. This is not suitable for measuring short-term movements of

yields, because it changes only occasionally, so is a step function. But this is not a

problem when it is sampled at annual intervals, and it too has a very long past history,

back at least to 1797.

For index-linked yields, R(t), discussed further in Section 1.10, the yield from the

FTSE-Actuaries BGS indices on index-linked stocks, over 5 years, is used with an

assumption of 5% future inflation. This assumption is perhaps too low for the earlier

period and too high for the more recent; the market presumably assumes a varying

forecast future rate.

Figure 1.27 shows the long-term yield, C(t), and the short-term yield, B(t), from

1900 to 2009, and the index-linked yield, R(t), from 1981 to 2009. One can see how

the two nominal yields were low in the first part of the century, rose substantially in

the 1980s, and have reduced a lot in recent years. The index-linked yield has always

been lower than the nominal yields, but has fallen roughly in line with them. It can be

seen that the index-linked yields, for their first few years, were not very different from

the nominal yields at the beginning of the century, though they have now dropped to

much lower levels.

The model for C(t) proposed in Wilkie (1986) included a third order autoregressive

part, but in Wilkie (1995) it was simplified to a first order one. The model became:
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Figure 1.27: Consols yield, C(t), Base rate, B(t), 1900-2009 also Index-linked yield,
R(t), 1981-2009

C(t) = CW.CM(t) + CMU.exp(CN(t)) (1.9)

CM(t) = CD.I(t) + (1 − CD).CM(t − 1)

CR(t) = C(t) − CW.CM(t)

ln CR(t) = ln CMU + CN(t)

CN(t) = CA.CN(t − 1) + CY.Y E(t) + CE(t)

CE(t) = CSD.CZ(t)

CZ(t) ∼ (iid)N(0, 1)

The model is composed of two parts: an expected future inflation, CM(t), and a

real yield, CR(t). The inflation part of the model is a weighted moving average model.

The real part is essentially an autoregressive model of order one with a contribution

from the dividend yield. This model, with CW = 1, fully takes into account the ‘Fisher

effect’ (Fisher, 1907, 1930), in which the nominal yield on bonds reflects both expected
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inflation over the life of the bond and a real rate of interest. It is assumed that there

is no inflation risk premium.

1.8.1 Updating and Rebasing to 1923-2009

Wilkie (1995) fixed CW = 1 and CD = 0.045 as parameters in the consols yield model.

Fixing the value of CD ensured that the values of CR(t) in the period considered were

never negative. However, when we updated the data using the fixed values of CW and

CD, we obtained negative real interest rates, which is not allowed by the structure

of the model. The reason is that the inflation has reduced since 1995, but interest

rates have reduced much faster than the values of CM(t), and in some years CR(t)

would have been negative if we had not adjusted the formula. Therefore, we modified

the model by introducing a minimum value which is called CMIN and we redefined

CM(t) as:

CM
′

(t) = Min(CD.I(t) + (1 − CD).CM(t − 1), C(t) − CMIN)

with still

CR(t) = C(t) − CM(t)

where CMIN = 0.5%, an assumed minimum real rate of interest. If the first condition

inside the Min(,) function applies, then CM(t) and CR(t) are calculated as before,

but if the second applies, then CR(t) = CMIN and the value of CM
′

(t) is reduced

below what it would otherwise have been and this reduced value is carried forward to

the next year. This happened in each year from 1998 to 2000 and again in 2005.

It must be noted that this adjustment does not affect the CM term before 1998

and hence does not affect the parameters previously obtained for 1923-1995.

By introducing the CMIN term, we avoid negative real interest rates. However, as

we will discuss below, the model standard deviation increased a lot and the residuals

do not satisfy the normality assumption any more; this is an unfortunate feature.

In Table 1.7 we compare the parameters estimated for the whole period, 1923-2009,
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with those that were estimated in Wilkie (1995), along with the diagnostic tests. Ex-

cept for CD and CW , whose values are fixed arbitrarily, the values are all somewhat

different from before. The mean level of consols decreased from 3.05% to 2.23% and

the dependence on the residuals of the current year’s dividend yields slightly increased.

Although CA remained almost the same, indicating strong autocorrelation, the stan-

dard deviation of the model increased significantly. Standard errors show that all the

parameters are significantly different from zero. For the first period, the autocorrela-

tion coefficients of the standardized residuals indicate that they are uncorrelated and

we fail to reject the normality assumption for a 0.05 significance level. On the other

hand, when we fit the model to updated data, though the residuals seem uncorrelated,

the Jarque-Bera statistic indicates strong non-normality.

Table 1.7: Estimates of parameters and standard errors of model for ‘consols’, and
relevant statistics, over different periods

1923-1994 1923-2009

CW 1 1
CD 0.045 0.045

CMU% 3.05%
(0.65%)

2.23%
(0.70%)

CA 0.8974
(0.0442)

0.9117
(0.0420)

CY 0.3371
(0.1436)

0.3729
(0.1810)

CSD 0.1853
(0.0154)

0.2571
(0.0195)

r(CZ)1 0.1313 0.0529

r(CZ2)1 -0.0393 0.0724

skewness
√

β1 -0.6662 -1.1039
kurtosis β2 4.5425 6.3959

Jarque-Bera χ2 4.88 59.47
p(χ2) 0.087 0.0000

Possible rounded values for practical use, based on the past experience, might be:

CD = 0.045; CW = 1; CMU = 2.23%; CA = 0.91; CY = 0.37; CSD = 0.257
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1.8.2 Parameter Stability

We examine the stability of the parameters of the modified consols yield model by

calculating the recursive estimates on incrementally larger data sets as we did in the

previous sections. Figures 1.28, 1.29, 1.30 and 1.31 present the recursive estimates and

95% confidence intervals of the mean level of consols yield CMU , the autoregressive

parameter of the consols model, CA, the dependence on the previous year’s dividend

yield innovation, CY , and the standard deviation, CSD, respectively, for the earlier

(data sets starting in 1923) and later sub-periods (data sets ending in 2007).

Estimates for this model are rather unstable, and we have omitted periods of less

than 15 years at the beginning and end. In some cases the maximum likelihood estimate

of CA is greater than one, which would give a non-stationary and unstable model for

C(t). Further, if CA = 1 the value of CMU is indeterminate, and if CA is very

close to 1, the value of CMU is quite uncertain, and the standard errors cannot all be

calculated because the information matrix is singular or nearly so. We have therefore

omitted those few periods where this occurs, but there are still some periods where the

standard errors are very high. The vertical scale has been truncated, so that not all

the confidence intervals are shown.

With these caveats, the values of most of the parameters are reasonably stable,

except for CMU , which jumps around a lot, and CSD, which has been increasing.
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Figure 1.28: Estimates for parameter CMU for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.29: Estimates for parameter CA for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.30: Estimates for parameter CY for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.31: Estimates for parameter CSD for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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1.9 Short-Term Interest Rates

The values for short-term interest rates from 1900 to 2009 have been displayed in

Figure 1.27 along with the long-term interest rates and index-linked yields.

Short-term interest rates are clearly connected with long-term ones, as shown in

Figure 1.27. Wilkie’s (1995) approach was to model the difference between the loga-

rithms of these series where BD(t) is the ‘log spread’:

BD(t) = ln C(t) − ln B(t) (1.10)

Values of the negative of this function from 1900 to 2009 are shown in Figure 1.32.

Note that B(t) is less than C(t) more often than not, though sometimes it is higher,

and the function has wandered around a middle level a bit below zero, like a typical

first order autoregressive series, until this last year, when B(t) has been reduced to

an unprecedented 0.5%, without there being a corresponding fall in long-term interest

rates.

The stochastic model for BD(t) proposed in 1995 was:

BD(t) = BMU + BA.(BD(t − 1) − BMU) + BE(t) (1.11)

BE(t) = BSD.BZ(t)

BZ(t) ∼ (iid)N(0, 1)

so that:

B(t) = C(t).exp(−BD(t))
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Figure 1.32: Log spread, −BD(t) = ln(B(t)/C(t)), 1900-2009

1.9.1 Updating and Rebasing to 1923-2009

When we re-estimate the parameters for the whole period, 1923-2009, as shown in

Table 1.8, we find that the extreme value in 2009 gives extremely high skewness and

kurtosis coefficients. It is reasonable to suspect that the extreme value also distorts the

estimation of the parameters. So we modify the model, introducing an ‘intervention

variable’, BInt(t), which has the value 1 in 2009 and 0 otherwise. We then modify the

formula to give:

BD(t) = BMU + BA.(BD(t − 1) − BMU) + BI.BInt(t) + BE(t)

and fit the parameters. The resulting value of BI is such that the residual BE(t)

in 2009 is zero. We show the parameter estimates also in Table 1.8. We can see that

the estimated values of BA and BSD are not very different from those estimated over

the period 1923 to 1994, though the value of BMU is rather different. We also see

that the skewness and kurtosis are very satisfactory. The parameter values are almost
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the same as those we obtain when fitting 1923 to 2008, omitting the final year, but the

method we have used would be more satisfactory if the outlier were an intermediate

year.

We then recalculate the residuals for the period 1923 to 2009, using the values

for BMU and BA that we estimated using the intervention variable, but otherwise

omitting the intervention variable; we calculate the standard deviation of the residuals,

thus including the extreme value; and we calculate the relevant statistics. These are

shown in the final column of Table 1.8. The standard deviation is now a very little

higher than it was when we did not use the intervention variable, and the statistics are

similar. Estimating a higher standard deviation in this way gives some compensation

for the extreme value, if we choose to simulate using normally distributed residuals. It

would be better to use a different and fatter-tailed distribution.

Table 1.8: Estimates of parameters and standard errors of model for short-term interest
rates, and relevant statistics, over different periods

1923-1994 1923-2009 1923-2009 1923-2009
Without BI With BI Omitting BI

BMU 0.2273
(0.0797)

0.2434
(0.0918)

0.1699
(0.0718)

0.1699

BA 0.7420
(0.0823)

0.6474
(0.1204)

0.7308
(0.0738)

0.7308

BI -2.1881
(0.1808)

BSD 0.1808
(0.0151)

0.2932
(0.0222)

0.1790
(0.0136)

0.2951

r(BZ)1 0.0503 0.0346 0.0211 0.0079

r(BZ2)1 0.0808 -0.0062 0.0611 -0.0066

skewness
√

β1 0.3562 -4.3178 0.3089 -4.4117
kurtosis β2 3.2950 33.3303 3.0506 34.1338

Jarque-Bera χ2 1.57 3605.07 1.39 3795.98
p(χ2) 0.45 0.0000 0.50 0.0000

Log likelihood 63.24 106.18 62.69

Possible rounded values for practical use, based on the past experience, might be:

BMU = 0.17; BA = 0.73; BSD = 0.3
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The residuals for this model are very far from being normally distributed, although

the statistics are quite acceptable when the extreme value in 2009 is allowed for sep-

arately. The economic and financial circumstances in 2009 are quite exceptional, and

it is most uncertain whether short-term interest rates will stay at their exceptionally

low level for a long time, or whether they will revert reasonably soon to a more normal

level in relation to long-term rates. But this reversion might involve long-term rates

falling to very low levels too. The uncertainty is large, so a high standard deviation

seems appropriate.

1.9.2 Parameter Stability

The stability of the parameters is examined using the same method as in previous

sections. The values of BMU , BA and BSD over various subperiods are shown in

Figures 1.33, 1.34 and 1.35. We have included the intervention variable for 2009 in

every case where it is relevant, so the values of BSD are at their lower level, not the

higher one when the extreme in 2009 is included. We can see that the values of all

three parameters have been reducing a bit in the most recent periods, and that none

shows any exceptional values.

Figure 1.33 shows that the mean rate parameter is stable over the whole period.

When we look at the BA graphs in Figure 1.34, we can say that the parameter estimates

for the earlier sub-periods are quite stable and the confidence interval is shrinking as

larger data is considered. The right hand end of the estimates for the later sub-periods

indicate a lower dependence on the previous year’s ratio (i.e. − ln(B(t)/C(t))).

In Figure 1.35, after a sharp decrease until the late 1940s, the estimates for the

earlier sub-periods have had two jumps but still seems stable for the rest of the period

and the estimates for the later sub-periods are relatively constant over the whole period.
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Figure 1.33: Estimates for parameter BMU for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.34: Estimates for parameter BA for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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Figure 1.35: Estimates for parameter BSD for periods starting in 1923 and periods
ending in 2009, with 95% confidence intervals
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1.10 Index-Linked Bond Yields

As mentioned in Section 1.8 we have used the yield from the FTSE-Actuaries BGS

indices on index-linked stocks, over 5 years, with an assumption of 5% future inflation,

to represent the yield on index-linked stocks. We denote this as R(t). It is available

only since 1981. A graph is shown in Figure 1.27.

The model for R(t) suggested in Wilkie (1995) was:

ln R(t) = ln RMU + RA.(ln R(t − 1) − ln RMU) + RBC.CE(t) + RE(t)(1.12)

RE(t) = RSD.RZ(t)

RZ(t) ∼ (iid)N(0, 1)

The term with CE(t) represents simultaneous correlation with the residuals of the

consols yield model. We include also a parameter R0 = R(1980), the unknown value

for the year prior to 1981. Estimating this is equivalent to setting the residual, RE,

for 1981 to zero.

We can observe that the UK index-linked market has perhaps been distorted in

recent years. The UK government is the only issuer of such bonds, and restricts its

issue to a limited proportion of all government borrowing, so the supply of these bonds

is limited, in spite of their low yield and correspondingly high price. Corporations in

the UK do not find it at all tax-efficient to issue such bonds. However, actuaries in

the UK have been pointing out to pension fund trustees that index-linked bonds are

a very satisfactory hedge against pensions wholly or partially linked to the RPI, so

there has been high demand for these bonds, even at low yields, from pension funds

and insurance companies that write such business. It is difficult to say whether these

conditions will continue, or whether the UK government will issue many more such

bonds, or whether the requirements of pension funds will be satisfied at some point

(Wilkie, et.al., 2010).
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We can estimate the parameters for the index-linked model only over the period

1981 to 2009, which is a much shorter period than for the other series. We see from

the graph in Figure 1.27 that the index-linked yield rose reasonably steadily from 1981

to 1991, and since then has fallen reasonably steadily.

1.10.1 Updating and Rebasing to 1981-2009

When we estimate parameters over the whole period for the model suggested in 1994,

which are shown in Table 1.9 we find that the estimated value of RA is 1.0853, which

produces an unstable model for ln R(t), in which the value of ln R(t) is certain to

move in the long run towards either ‘+’ infinity or ‘-’ infinity. A value of ‘-’ infinity

means a long-run value R(t) of zero. Wilkie (1986, 1995) originally took logarithms to

avoid negative values. However, it is not impossible for the yields in index-linked to be

negative.

We could think of two ways of avoiding this instability. First, we set the value

of RA arbitrarily to 0.95. This is a little outside twice the estimated standard error

away from 1.0853. We then estimate the other parameters. The values are shown in

Table 1.9. The log likelihood is worsened by 2.21. However, the skewness and kurtosis

coefficients, which were very large in our first model, are slightly higher in this. This

results substantially from the fall in yields from 1.67 in 2007 to 0.87% in 2008, almost

halving. Another solution we try is therefore to use the unlogged values of R(t) in the

formulae, instead of their logarithms. In our first trial the estimated value of RA is

still greater than 1, at 1.0385, so again we fix the value of RA at 0.95 and estimate the

other parameters. On this occasion the log likelihood is worsened by only 1.35, quite

a small amount. However, for both the unlogged models the skewness and kurtosis

coefficients are reasonably small and the Jarque-Bera probability is satisfactory.

Our preference for future use is therefore to model R(t) rather than lnR(t), using

the formula:

R(t) = RMU + RA.(R(t − 1) − RMU) + RBC.CE(t) + RE(t)
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Table 1.9: Estimates of parameters and standard errors of different models for index-
linked interest rates, and relevant statistics, over different periods

1981-1994 1981-2009 1981-2009 1981-2009 1981-2009
fitting lnR

RA free
RA = 0.95 fitting R

RA free
RA = 0.95

RMU% 4.03 (0.17) 3.16 (1.03) 2.06 (1.16) 2.87 (1.41) 2.96 (1.14)
RA 0.5686

(0.1076)
1.0853

(0.0618)
0.95 1.0385

(0.0526)
0.95

RBC 0.2234
(0.0598)

0.3527
(0.0698)

0.3285
(00744)

0.0083
(0.0014)

0.0079
(0.0015)

R(0)% 2.54 (0.32) 2.53 (0.40) 2.52 (0.28) 2.49 (0.32)
RSD 0.0518

(0.0102)
0.1348

(0.0177)
0.1456

(0.0191)
0.0028

(0.0004)
0.0029

(0.0004)
r(RZ)1 -0.1419 -0.1949 0.1189 -0.0486 0.1286

r(RZ2)1 0.5321 -0.0087 -0.0932 -0.0920 -0.1124

skewness
√

β1 -0.0569 -2.0519 -2.3096 -0.8737 -0.7270
kurtosis β2 3.6306 8.2723 9.7123 3.8073 3.3183

Jarque-Bera χ2 0.28 53.94 80.22 4.48 2.68
p(χ2) 0.86 0.0000 0.0000 0.1066 0.26

Log likelihood 43.60 41.39 155.96 154.61

with possible parameters, rounded:

RMU = 3%, RA = 0.95, RBC = 0.008, RSD = 0.3%

The period for which values of R(t) are available is so short that it is not worth

showing the results for shorter periods.

1.11 Comments on the Wilkie Model

The Wilkie model is a combination of statistics and economics. Hence, it has been

criticised from both statistical viewpoint and an economic viewpoint. In this section

we summarise the comments of various authors on the Wilkie model in these two main

perspectives.
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1.11.1 Statistical Review

We will summarise the statistical reviews of the Wilkie model in five subsections which

consider the methodology, model and parameter uncertainty and non-stationarity,

non-normality of the residuals, heteroscedasticity, and non-linearity as in Rambaruth

(2003).

Methodology

Huber (1997) reviews the Wilkie Model in both empirical and theoretical sense. He

expresses his reservations about the methodology proposed in specifying the Wilkie

model in the discussion of 1995 paper by raising the ‘data-mining’ issue. He criticises

Wilkie’s approach in which he recommended that asset models should be developed by

establishing a linear relationship based on economic theory (or ‘common sense’), fitting

it to the data and then testing whether this relationship satisfies various goodness-of-fit

tests. If the tests are not satisfied, then parameters should be added until the tests are

satisfied or the results should be ignored on theoretical grounds. This methodology

ignores the problems associated with multiple hypothesis testing (which can lead to

data-mining). According to Huber (1997), it basically restricts the model to the Auto-

regressive Integrated Moving Average (ARIMA) class and it does not allow ‘common

sense’ to be influenced by the data which would allow us to improve our understanding

of the economy.

Hardy (2003) points out the problem of ‘data-mining’ by which Huber means that

a statistical time-series approach, which finds a model to match the available data,

cannot then use the same data to test the model. Thus, with only one data series

available, all non-theory-based time-series modelling is rejected. One way around the

problem is to use part of the available data fit the model, and the rest to test the fit.

She emphasises that the problem for a complex model with many parameters is that

data are already scarce.

56



Model and Parameter Uncertainty and Non-stationarity

Kitts (1990) was the first to point out that the parameters of the Wilkie inflation model

(Wilkie, 1986) may not be constant over time. If the mean rate of inflation is likely

to change in the future, i.e. when the current stationary sub-period ends, then the

model is inadequate as it does not necessarily describe the way in which appropriate

investment variables will move over the future long-term.

Huber (1997) examined the parameter constancy of the original price inflation

model by recursively estimating its parameters on incrementally larger data sets. He

drew the graphs of QMU and QA with 95% confidence intervals and concluded that

these parameters may not be constant. However, Huber had some reservations about

interpreting these results because they might simply be due to the non-normality of

the residuals or they could be due to the change in the calculation of the official UK

price index.

For the dividend yield model, he emphasized the sensitivity of the Y W parameter

to the years 1940 and 1974 as Figure 1.16 illustrates. He states that if they are excluded

from the regression, then Y W becomes insignificantly different from zero. The problem

with including Y W is that it results in a general tendency for changes in yields to be

correlated with changes in inflation, but this correlation only seems to be appropriate

for large increases in yields and inflation.

For the consols yield model, Wilkie (1995) noted that CY becomes insignificantly

different from zero when an intervention variable for 1974 was included. Huber argues

that CY appears to have a similar problem to Y W because the parameter CY seems

to describe mainly the event that the largest increase in interest rates coincided with

the largest residual from the share dividend yield model. However, if CY is set to zero,

then the model implies that there is no relationship between equity returns and real

interest rates. He concludes that as this does not appear to be a reasonable assumption,

it may explain why Wilkie (1995) included CY in the model.

Cairns in the discussion of Wilkie (1995) drew attention to the standard errors of

parameters estimates which he found extremely important because not only is a model

an approximation to reality, but it is not known what the ‘true’ set of parameters should
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be for this model. It is, therefore, essential as part of any simulation exercise, to repeat

the exercise many times using a range of parameter values which is consistent with the

past data and with the standard errors of the parameters and their correlations.

Non-normality and Non-independence of Residuals

In 1989, the Financial Management Group of the Institute and Faculty of Actuaries

was assigned the task of criticising the model from a statistical viewpoint (Geohegan et

al., 1992). This group performed some tests of simulations and examined the standard

deviations of returns and correlations between different asset classes at different time

horizons on the Wilkie (1986) model. In this review, Geohegan et al. identified three

areas of concern regarding the suitability of the model.

• The existence of burst of inflation, indicating that once an upward trend in in-

flation is established, there is a tendency for it to continue.

• The existence of large, irregular shocks, such as those in the mid-1970s.

• The possible skewness of residuals.

The only substantive criticism was of the inflation model. The AR(1) model ap-

peared too thin tailed, and did not reflect prolonged periods of high inflation.

In an early review of the model, Kitts (1990) reported that there is some evidence

that the residuals are not independent, so that the model does not capture the frequency

of the occurrence of sustained periods of extreme inflation and deflation. Moreover,

the distribution of the residuals are not normal due to non-constant variance.

Finklestein, in the discussion of Wilkie (1995), expresses his concerns about the

skewness of the data and the assumption of normality. He believes that the underly-

ing probability distributions are stable non-Gaussian which are suggested for further

research in Wilkie (1995).

The motivation behind introducing an ARCH model for the price inflation in Wilkie

(1995) was mainly these criticisms.
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Heteroscedasticity

Since it is the inflation process which drives the Wilkie model, it is crucial that this

model has a good representation.

Geoghegan et al. (1992) reported the existence of bursts of inflation, indicating

that once an upward trend in inflation was established, there is a tendency for it to

continue as mentioned before. This leads to what was described in Engle (1982) as

auto-regressive conditional heteroscedastic (ARCH) model (see also Mills, 1990). In

Appendix B of Geohegan et al. (1992) Wilkie demonstrates how his model could be

adopted to incorporate ARCH effects. In 1995 paper, he suggests using an ARCH

model for inflation that would model the heavy tail. Although it has been seen that

the ARCH model provided a better fit to the data for the period 1923-1995, updating

the data to 2009 showed that it is not as good as it was. The recursive estimates of

the ARCH model parameter, QSB also indicates that since the value is very close to

zero up to early 1970s, the AR(1) process is enough to model the price inflation. As

mentioned in Section 1.4, the ARCH model is a useful description for the periods that

include 1960s and 1970s.

A further problem that is fundamental to all ARCH models is their complex struc-

ture. Also, with small data sets the parameters are unstable which we show in Fig-

ures 1.8 and 1.9.

Non-linearity

In the discussion of Wilkie (1995), Tong comments on the several aspects of linear

models which limits one’s horizon and the need to use non-linear models. First of

all, he criticises the linear models as not respecting the current position while making

a forecast and giving exactly the same prediction interval regardless of the current

position. Second, since the current position is not always known precisely, because of

information delay, there is always some relevance in looking at the sensitivity of the

model to the initial value (current position) which might be a trivial exercise for a

linear model. As a final aspect, introducing the model with some exogenous variables,

then some non-linearity may be required. In the written contribution, Wilkie (1995)
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refers to Tong’s argument and besides stating that he found non-linearity was very

much worthy of further investigation, he pointed out that the many of the data series

were rather too short to allow clear phases of different types to be distinguished.

Whitten and Thomas (1999) suggest that the economy behaves differently in times

of hyperinflation, than it does in times of ‘normal’ inflation levels. By definition, this

belief cannot be incorporated into linear models. Wilkie’s linear model is widely used

and for the most part a good representation of its economic variables. Following the

footsteps of Wilkie (1986, 1995), they thought it best to adapt his model to incorpo-

rate this non-linearity, rather than fundamentally change its formulation. Thus, they

proposed a threshold non-linear model which is discussed briefly in Section 1.12.

1.11.2 Economic Review

Huber (1997) examines the Wilkie model not only in a statistical viewpoint but also

in an economic (theoretical) viewpoint. Although he accepts that economic theory

was considered in the development of Wilkie’s model, he thinks it is inconsistent with

certain orthodox financial economics theories. In this part, we summarise his comments

in three subsections: Fisher relation, rational expectations hypothesis and efficient

market hypothesis.

Fisher Relation

The Fisher relation (Fisher, 1907, 1930) states that expected inflation is fully reflected

in nominal interest rates. As a result, this relation assumes that investors’ expectations

of average future inflation can be approximately determined by subtracting the average

future real return required by investors from nominal interest rates.

The Fisher relation was explicitly included in the long-term interest rate model.

Wilkie model assumes that the average future real return required by investors is given

by CR(t) and that investors’ expectation of average future inflation is given by CM(t).

Huber (1997) shows the values of these two components, over the interval 1923-1994,

calculated using Wilkie’s (1995) long-term interest rate model. We present the same

graph with updated data in Figure 1.36. Huber’s criticism is about the required average
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Figure 1.36: Expected price inflation and real returns, 1923-2010

future real returns by the investors in 1974 which is 10% and the returns over 5% during

most of the interval 1969-1982 implied by Wilkie model. According to Huber (1997)

these returns appear to be high by historical standards. Figure 1.36 shows that with

the new parameters and the adjustment in consols yield model proposed by the papers

Sahin et al. (2008) and Wilkie et al. (2010) the average real return implied by the

Wilkie model is 2.8% for the whole period, 1923-2009 which is quite reasonable under

the current economic conditions. On the other hand, as Huber emphised, even with the

adjusted model, the average expected real returns during most of the interval 1969-1983

is high and the overall average real return for this period is 6.3%.

Rational Expectations Hypothesis

Another point on which the Wilkie model has been criticised is that the model is not

consistent with the rational expectations hypothesis. The concept of rational expecta-

tions asserts that outcomes do not differ systematically (i.e., regularly or predictably)

from what people expected them to be. It does not deny that people often make fore-
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casting errors, but it does suggest that errors will not persistently occur on one side or

the other. To assume rational expectations is to assume that agents’ expectations are

correct on average. In other words, although the future is not fully predictable, agents’

expectations are assumed not to be systematically biased.

In economics, adaptive expectations means that people form their expectations

about what will happen in the future based on what has happened in the past. Adaptive

expectations principle holds that the future values of economic variables, such as future

interest rates or inflation, can be predicted on the basis of previous values and their

margin of error. Adaptive expectations principle is critised being underestimates or

overestimates constantly changing variables, and focuses merely on past performance.

Regarding these terms, one can see that the Wilkie model has been constructed ac-

cording to adaptive expectations. In the discussion of Wilkie (1995), Booth emphasises

the ongoing debates about the lack of rational expectations hypothesis in the Wilkie

model and suggests that it would be an interesting topic for the later studies.

Another criticism about the rational expectation hypothesis came from Huber

(1997) by comparing the smoothed expected inflation, CM(t), with the optimal es-

timate of average future inflation which is equal to QMU . Figure 1.37 illustrates the

method that Huber suggested in order to compare these values. According to Huber

(1997), investors consistently underestimated average future inflation over the interval

1923-1975 and overestimated average future inflation since 1975. Based on Huber’s

forecasts (1997), if Wilkie’s model is true, then investors will continue to overestimate

average future inflation by at least 0.5% until 2012. This contradicts the rational ex-

pectations hypothesis, which states that investors do not knowingly make systematic

ex ante forecasting errors.

Efficient Market Hypothesis

In finance, the efficient market hypothesis asserts that financial markets are ‘infor-

mationally efficient’, or that prices on traded assets, e.g., stocks, bonds, or property,

already reflect all known information and therefore are unbiased in the sense that they

reflect the collective beliefs of all investors about future prospects.
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Figure 1.37: Expected price inflation, 1923-2010

Huber (1997) notes the inconsistency of the Wilkie model with the efficient market

hypothesis. Hardy (2003, 2004) discusses Huber’s criticisms and notes that the Wilkie

model is very close to a random walk model over short terms, and the random walk

model is consistent with the efficient market hypothesis. Likewise, Wilkie (1995), based

on his monthly analysis, emphasises that since, in the short run, the dividend on a share

index changes only very little, most of the change in share prices comes from the change

in the yield, which means that this analysis of the yield transfers almost directly to the

price index, and many investigators have concluded that share prices are close to a pure

random walk, without relating them to dividends. Since for the monthly observations,

the first autocorrelation coefficient, assuming a corresponding AR(1) model is very

close to unity which is also the case for daily observations, Wilkie’s annual model is

quite consistent with an apparent random walk for short-term share price movements.

On the other hand, Huber (1997) mentions another implication of efficient market

hypothesis which is that prices respond to information about events when this infor-

mation becomes known rather than when the events occur. As a result, equity price

changes are likely to anticipate future changes in equity dividends because information
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affecting equity dividends is often available before the dividends are declared. Hence

the term DY.Y E(t − 1) in Wilkie’s dividend model which assumes that equity prices

anticipate future changes in equity dividend growth rates.

1.12 Wilkie-Type Stochastic Investment Models

The Wilkie model has been a pioneer of the stochastic investment modelling. Especially

after its publication (1986) many similar models have been developed for different

countries. In this section, we will briefly discuss five of these models.

The Wilkie-type investment models that we will introduce are: a South African

stochastic investment model (Thomson, 1996), a Finnish stochastic investment model

(Ranne, 1998), an outlier adjusted multiple time-series model (Chan, 2002), TY model

(Yakoubov, Teeger and Duval, 1999) and Whitten and Thomas model (Whitten and

Thomas, 2000).

Thomson (1996) introduced a stochastic investment model using South African

data. The series modelled by Thomson are price inflation, short-term and long-term

interest rates, dividend growth rates, dividend yields, rental growth rates and rental

yields. No exogenous variables are included just as in the Wilkie model, and the model

was intended to be used in asset-liability modelling of South African defined benefit

pension funds. Unlike Wilkie’s model, Thomson’s model is designed for projections

of not more than ten years due to having much shorter years of data available for

South Africa (for the period 1960-1993). Due to stationarity condition to apply Box &

Jenkins methodology, Thomson used ‘prewhitened’ 2 variables for his modelling work.

Although it has a cascade structure, the order of the influence is different from the

one in Wilkie model. Thomson (1996) expresses his reservations about the validity of

the model due to paucity of the data and he emphasises that it would be necessary to

2Prewhitening is an identification method of transfer function models proposed by Box and Jenkins
(1976). If an input series is autocorrelated, the direct cross-correlation function between the input and
response series gives a misleading indication of the relation between the two series. Prewhitenning
is one solution of this problem. Accordingly, first an ARIMA model is fitted to the input series to
reduce the residuals to white noise. Then, the response series is filtered with the same model and
cross-correlate the filtered response series with the filtered input series.
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modify the model as time passes.

Ranne (1998) proposed a stochastic investment model based primarily on Finnish

data. The model is of the same general type as the Wilkie model but the dependencies

between the variables and the equations have been selected differently. The model

structure was determined on the basis of financial time series from twelve industrial

countries. The variables include inflation, wage index, long-term interest rates, other

interest rates, share prices, dividend yield, property prices and rental yield. They also

insert a variable representing the economic cycles which are generated by interaction

between the cycle variable, inflation and interest rates. This cycle variable derived

from the real growth rate of the gross national product. The Finnish model, too, has

several features in common with the Wilkie model; the model is discrete, inflation is

the driving force and the dependencies between the variables go in one direction. The

model’s variables and equations are, however, generally constructed in a different way.

The stochastic variation in the inflation model is divided into inflation shocks and

normal variation. The shocks have been represented by the oil price inflation as two

major inflation shocks in the years 1974 and 1980 (the oil crises).

Chan (2002) adopts the multiple time-series modelling approach to construct a

stochastic investment model for price inflation, share dividends, share dividend yields

and long-term interest rates in the UK. He considers a general VARMA (vector auto-

regressive moving average) model for UK investment data by using outlier adjusted

data. He proposed a VARMA (1,1) model and recommended the model for actuarial

applications not involving extreme stochastic fluctuations.

Yakoubov et al. (1999) describes a stochastic investment model which is the first

fully published model to use earnings rather than dividends to generate price returns.

Another feature of the model is that the equity return is divided into three components

- dividend yield, earnings growth and change in market rating. They emphasise that

by modelling these components separately the model is able to capture one of the key

features of the equity market, namely the high short term volatility which arises from

economic fluctuations. They model price inflation, wage inflation, long and short-term

interest rates, index-linked government bonds, UK equities (in three separate elements:
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force of dividend yield, force of earnings growth and force of change in earnings yield)

and overseas equities. They chose to adopt a cascade structure for the model by

selecting the price inflation as the main driver but a different dependence structure -

there is an explicit link from the ‘change in gilt yield’ into the ‘change in equity yield’.

They also use earnings growth rather than dividend growth, with a link from wage

inflation rather than price inflation.

Tong (1990) in his book Non-linear Time Series: A Dynamical System Approach

has described a class of non-linear time series models based on what he calls the ‘thresh-

old principle’ which suggests that many series previously represented linearly can be

modelled better by non-linear methods. Using this approach, Whitten and Thomas

(1999) suggested a non-linear model. They stated two main purposes to introduce

such a model. First, they introduce threshold modelling to the actuarial profession,

and illustrate how this can complement or replace methods based on autoregressive

conditional heteroscedasticity as suggested by Engle (1982). Second, they aim to en-

courage discussion and experimentation amongst actuaries on the use of non-linear

models. The model considers the series for price inflation, wage inflation, share divi-

dends, share yields, consols yield and base rates. The structure of the model is exactly

the same as the Wilkie model (1995). They choose to model the investment series as

a threshold autoregressive system. There are two regimes proposed for each variable,

conditional on whether inflation is ‘normal’ or ‘high’ at time t. The processes in each

regime (especially the ‘normal’ regime) is similar to those defined in Wilkie model.

They suggest a threshold of 10% to partition (I(t − 1) > 10%) the data. They define

the main disadvantage of the system as that it is more complicated than the Wilkie

model, with an increased number of parameters. Furthermore, the upper regime only

holds eight observation which is too few to perform any proper statistical tests.

Beside those various stochastic investment modelling works, there are several re-

searches on comparison of these types of models such as Harris (1995), Huber and

Verrall (1999), Lee and Wilkie (2000), Rambaruth (2003) and Nam (2004). All these

papers follow different methods to compare the models including re-estimating the pa-

rameters on the same interval, applying some model validation tests (independence,
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normality, likelihood), stability of the model parameters, calculating contingency re-

serves for specific contracts and forecasting by simulation.

1.13 Interim Conclusion: The Wilkie Model

In this chapter we have discussed an early part of our PhD study which was presented

in the 18th International AFIR Colloquium in Rome (2008) and submitted to the

Annals of Actuarial Science (February 2010) as a joint paper. We have revisited the

Wilkie investment model by re-estimating the parameters on updated data to 2009.

We have considered models for retail prices, including an ARCH model, wage inflation,

share dividend yields, share dividends and prices, long-term interest rates, short-term

interest rates and index-linked bond yields. We have also recursively estimated the

parameters on incrementally larger data sets and displayed those recursive estimates

using graphical representation in order to analyse their stability.

The updated parameters of the retail prices model have not changed significantly.

Because of low and stable inflation during last 15 years, the mean level of inflation

QMU and the standard deviation QSD have decreased slightly. The model still does

not satisfy the normality assumption and especially the two parameters QMU and

QSD are not stable over time.

Although the ARCH model satisfies the normality assumption for the 1923-1994

data, its performance gets worse on the updated data and the residuals are not normally

distributed any more. The parameters have not changed significantly. It has been seen

that the suggested ARCH model is a useful description for the periods that include the

1960s and 1970s.

The parameters in the wages models have not changed significantly for the updated

data. The parameter estimates over different sub-periods are quite stable except WSD.

The share dividend yield model is still satisfactory and the parameters are relatively

stable over time.

The performance of the share dividend model is almost the same but its parameters

are not constant over time. The DW , DD and DB parameters and their confidence
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intervals are highly unstable and change greatly as the sub-periods change.

We modified the long-term interest rate model to apply it to the updated data

by introducing a fixed parameter called CMIN which is equal to 0.5%. In order

to avoid negative real interest rates, we used the modified model for 1923-2009 to

estimate the parameters. The value of CMU decreased, and CY and CSD increased

significantly in the model with updated data. The residuals of the modified model are

not normally distributed according to the Jarque-Bera test statistic, and except for

CY , the parameters are not stable either.

The short-term interest rates model is the best model among them all. It satisfies

all the diagnostic tests and fits the data better over the interval 1923-2009. Moreover,

its parameters are quite stable.

We have also re-estimated the parameters for the index-linked bond yields for the

period 1923-2009 but could not study the stability of the parameters due to lack of

data.

Finally, we have presented the comments on the Wilkie model and discussed some

Wilkie type stochastic investment models briefly.
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Chapter 2

A Descriptive Yield Curve Model

for the UK Term Structures: The

Cairns Model

2.1 Introduction

Descriptive model can be defined as a model which takes a snapshot of the bond market

as it is today. The aim is to get a good description of todays prices: that is, of the

rates of interest which are implicit in todays prices (Cairns, 2004b).

A descriptive model, on its own, gives no indication of how the term structure might

change in the future. It is known that there is randomness in the future but this sort

of model does not describe this feature.

Cairns (2004b) summarizes the number of uses descriptive models have as below:

• They can be used to assess which bonds are over- or under-priced (so called

cheap/dear analysis)

• They give a broad picture of market rates of interest which are implied by market

prices.

• They can be used to price forward bond contracts.
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• They can assist in the analysis of monetary policy.

• They can be used in the construction of yield indices.

• Finally descriptive models provide sufficient information to get a precise mar-

ket value of a non-profit insurance portfolio or to price, for example, annuity

contracts.

Van Wijck (2006) discusses the methodology and the applications of the descriptive

yield curve models in details.

In this chapter, we discuss the Cairns model as a descriptive parametric model

to fit the daily nominal spot rates (January 1979-December 2009), implied inflation

spot rates (January 1985-December 2009) and real spot rates (January 1985-December

2009) published on the Bank of England’s web page by changing the fixed parameters

(exponential rates in the model) to find the best set of parameters for each data set.

We try three fixed parameter sets which have been suggested by Cairns (1998) and

Cairns and Pritchard (2001) and then we use the least squares method with a penalty

function to find the optimized set of parameters for each set of yield curve data. We

compare the root mean squared errors obtained by using the four parameter sets for

each yield curve to decide which set of parameters fit each yield curve data best. Once

we decide these exponential rate parameters (C parameter sets), we analytically solve

the equations in Cairns model as described in the following sections and fit these four

different models to the data. We estimate the remaining time dependent parameters

(b parameters) and find the fitted values for each day. We compare these models by

examining the root mean squared errors, fitted values for some specific dates and fitted

values for short, medium and long term maturities for each yield curve to choose the

best set of C parameters. The overall aim of this chapter is to fill in the gaps in the

nominal, implied inflation and real yield curve data provided by the Bank of England

by fitting the Cairns model.

Section 2.2 introduces the yield curve terminology by giving some basic definitions

and the data and the methodology used by the Bank of England to construct UK

yield curves. Section 2.3 presents the Cairns model and the least squares method
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used, including the penalty function, to estimate the optimised C parameter set. In

Section 2.4, we explore the data by looking at some descriptive statistics and estimate

the time dependent b parameters for each C parameter set. We also discuss the nature

of the b parameters by considering the simultaneous correlations between them. We

plot and interpret the standard errors (root mean squared errors) of the residuals and

also the ratios of these errors to decide the best fit in terms of the least squares method

in Section 2.5. We compare how well each model fits some specific dates in Section 2.6.

Similarly, we examine the short term, medium term and long term fit of the models by

considering particular maturities in Section 2.7. Finally, Section 2.8 summarizes this

chapter.

2.2 The Term Structure of Interest Rates and Im-

plied Inflation

This section presents the yield curve terminology by giving some basic definitions (see

Anderson et al., 1996) and introduces how the Bank of England constructs UK yield

curves.

2.2.1 Bond Prices and Interest Rates

A fixed-income bond is the obligation on the bond’s issuer to provide one or more future

cashflows on pre-specified dates. The majority of the bonds have fixed nominal interest

payments and a fixed redemption or maturity date on which the issuer undertakes

to repay the principal originally invested. Although the frequency at which interest

payments are made varies from market to market they are mostly made either annually

or semi-annually. The interest payment on a bond is referred to as a coupon payment.

The Bond Price Equation

The present value (PV) at rate z of an amount X due in m years time is:
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PV (X) =
X

(1 + z)m
(2.1)

where z is the interest rate over the period.

The interest rate z is usually referred to as the spot interest rate for maturity m

years, because it is the interest rate that is applicable today (‘spot’) on an m-year loan.

A bond is simply a stream of future cashflows - a series of coupon payments of size C

payable at times 1,2,...,m and a redemption payment R payable on the maturity date

in m years time. Supposing that the spot interest rates, zi, for every future period, i,

are known, then the present value of an m-period bond is:

PV (m − period bond) =
C

(1 + z1)
+

C

(1 + z2)2
+ ... +

C + R

(1 + zm)m
(2.2)

This equation is often referred to as the bond price equation, formalizing the rela-

tionship between spot interest rates and bond prices (Anderson et al., 1996).

Discount Factors and the Discount Function

Consider an individual payment of size X due at time t. Its present value is simply:

PV (X) =

[
1

(1 + z(t))t

]
X (2.3)

The factor by which X is multiplied to obtain its present value is called the discount

factor. It is simply a transformation of the appropriate spot rate z(t). Since time is

continuous, a continuous discount function denoted δ(.) can be defined that maps time

t to a discount factor. Given such a function the present value of any future cashflow

can be computed by multiplying the cashflow by the appropriate point on the discount

function:

PV (X) = δ(t).X (2.4)

The discount function describes the present value of one unit (e.g. 1, £1, etc.)
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payable at any time in the future and so, if an instrument exists that provides a single,

unit cashflow t years into the future, its price should correspond to the value of the

discount function at that point, δ(t). Such an instrument would be a zero-coupon bond,

a bond that pays no coupon payments and a unit redemption payment on the maturity

date. For this reason, a discount factor is sometimes referred to as a zero-coupon bond

price - the two are exactly equivalent (Anderson et al., 1996).

Continuous Compounding

It is possible to approximate the bond price equation by assuming that coupon pay-

ments are made continuously rather than at discrete points in time, so that interest does

not accrue. Under this assumption of continuous compounding the following equation

can be written:

p = C

∫ m

0

δ(µ)dµ + Rδ(m) (2.5)

where p is the clean price, the price excluding any interest that has accrued since the

issue or the most recent coupon payment of the bond.

Measuring the Return on a Bond

Observing the price of a bond in the market, it is straightforward to measure the ex

ante return associated with that price. Two measures are commonly used: the flat

yield and the redemption yield. The flat yield is analogous to the ‘dividend yield’ on a

share, and is defined as:

Flat yield =
Coupon

Clean Price
(2.6)

The flat yield is normally used to represent the return from holding a bond for

a short period - and is often thought of as the income generated by the bond. The

redemption yield (or yield to maturity) is the bond’s internal rate of return. It is

the single interest rate at which the dirty price (the price of a bond including the

accrued interest) of a bond is equal to the present value of the stream of the cashflows
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discounted at that rate.

p + ai =
C/v

(1 + y/v)vt1
+

C/v

(1 + y/v)vt2
+ ... +

C/v + R

(1 + y/v)vtm
(2.7)

and

ai = t0C (2.8)

where:

y = the (gross) redemption yield

p = clean price of bond

ai = accrued interest

tj = maturity of bond (in years, using the appropriate day count convention)

t0 = the proportion of a period passed since the last coupon payment was made

C = annual coupon payment

R = redemption payment

v = frequency of coupon payments (e.g. v = 2 for semi annual coupons)

2.2.2 The Term Structure of Interest Rates

The term structure of interest rates, also known as the yield curve, refers to the re-

lationship between bonds of different terms and it is a very common bond valuation

method. When interest rates of bonds are plotted against their terms, this is called

the yield curve. Constructed by graphing the yield to maturities and the respective

maturity dates of benchmark fixed-income securities, the yield curve is a measure of

the market’s expectations of future interest rates given the current market conditions.

The present value of any future cashflow can be computed by simply multiplying

its nominal value by the appropriate point on the discount function. Although useful

computationally, the discount function does not immediately provide a measure of the

return associated with purchasing future cashflows at their present value. For this rea-

son, the discount function is often transformed to be presented as a spot interest rate
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curve1, a par yield curve2 or an implied forward rate curve3, all of which describe in

different ways the return from purchasing a stream of future cashflows. Moreover, the

transformation between any two of these curves is unique - given any one, the other

three can be obtained (Anderson et al., 1996).

2.2.3 The Bank of England UK Yield Curves

The Bank of England (2002) estimates yield curves for the United Kingdom on a daily

basis. They are of two kinds. One set is based on yields on UK government bonds

and on yields in the general collateral repo market. It includes nominal and real yield

curves and the implied inflation term structure for the UK. The other set is based on

sterling interbank rates (LIBOR) and on instruments related to LIBOR (short sterling

futures contracts, forward rate aggrements and LIBOR-related interest rate swaps).

These commercial bank liability curves are nominal only. The methodology used to

construct the yield curves is described in the Bank of England Quarterly Bulletin article

by Anderson and Sleath (1999) and a detailed technical description can be found in

Anderson and Sleath (2001).

Anderson and Sleath (2001) presents some new estimates of the UK real and nomi-

nal yield curves for the purpose of assessing monetary conditions. These estimates differ

from those presented in previous studies in a number of ways. First, the yield curves

are estimated using a method put forward by Waggoner (1997) for the United States,

adapted for the UK government bond market. Second, data from the generalised col-

lateral (GC) repo market are used to provide improved estimates of the nominal yield

curve at shorter maturities. Third, estimates of the real yield curve are extracted from

the prices of index-linked gilts within a modified version of the framework suggested

by Evans (1998).

The most basic type of information the Bank is interested in estimating is the

1The spot interest rate curve is the curve of gross redemption yields on zero-coupon bonds.
2The par yield curve specifies the interest rates at which new gilts should be priced if they are to

be issued at par.
3The implied forward-rate curve is the curve of implied short-term interest rates in the future. It

can be used to price (in a riskless way) forward bond contracts.
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implied forward rates of interest at various horizons. These are important since they

reflect the market’s expectations about the future path of interest rates. They also

provide the building-blocks for calculating other term structure variables, such as zero-

coupon yields.

The government liability nominal yield curves are derived from UK gilt prices and

General Collateral (GC) repo rates. The real yield curves are derived from UK index-

linked bond prices. Using the Fisher relationship, the implied inflation term structure

is calculated as the difference of instantaneous nominal forward rates and instantaneous

real forward rates.

The spreadsheets on the Bank’s website (Bank of England, 2010) provide spot rates

and instantaneous forward rates for each type of curve. They also show available points

on each curve out to a horizon of 25 years at half-yearly intervals. For horizons out to

five years points on the curves are also available at monthly intervals.

Types of Instruments

Gilt-edged securities (gilts)

A conventional gilt is a guarantee by the Government to pay the holder of the gilt

a fixed cash payment (coupon) normally every six months until the maturity date,

at which point the holder receives the final coupon payment and the principal. An

index-linked gilt is designed to protect of the value of the investment from erosion by

inflation. This is done by adjusting coupon and principal payments to take account of

accrued inflation since the gilt’s issue (Bank of England, 2002).

General collateral sale and repurchase agreements (GC repo)

Gilt sale and repurchase (‘gilt repo’) transactions involve the temporary exchange of

cash and gilts between two parties: they are a means of short-term borrowing using

gilts as collateral. The lender of funds holds gilts as collateral, so is protected in the

event of default by the borrower. General collateral (GC) repo rates refer to the rates

for repurchase agreements in which any gilt may be used as collateral. Hence, GC repo

rates should in principle be close to true risk-free rates. Repo contracts are actively
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traded for maturities out to one year; the rates prevailing on these contracts are very

similar to the yields on comparable maturity conventional gilts.

2.2.4 Types of Yield Curve Provided

Nominal zero-coupon yields (spot interest rates)

For the data presented on the Bank’s website, the nominal government spot interest

rate for n years refers to the interest rate applicable today (‘spot’) on an n year risk-free

nominal loan. It is the rate at which an individual nominal cash flow on some future

date is discounted to determine its present value.

Let yn=the n-year spot-rate of interest, and Pn be the price now of an n-year zero-

coupon bond, then, for n > 0:

Pn = 1 × (1 + yn)−nyn = P
−

1
n

n − 1 (2.9)

By definition, it would be the yield to maturity of a nominal zero-coupon bond

and can be considered as an average of single period to that maturity. Conventional

dated stocks with significant amounts in issue and having more than three months to

maturity, and GC repo rates (at the short end) are used to estimate these yields.

Nominal forward rates

Forward rates are the interest rates for future periods that are implicitly incorporated

within today’s spot interest rates for loans of different maturities. Equation 2.10 de-

scribes the relationship between the spot rate, yt and the forward rate which is a future

rate agreed now to apply from year t to t + r, ft,t+r.

(1 + yt)
t = (1 + f0,1)(1 + f1,1)(1 + f2,1)...(1 + ft−1,1) (2.10)

We can consider forward rates that rule for different periods, for example, 2-week,

3-month, 6-month or 1-year forward rates. In the limit, as the period of the loan consid-
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ered tends to zero, we arrive at the instantaneous forward rate. Instantaneous forward

rates are a stylised concept that corresponds to the notion of continuous compound-

ing, and are commonly used measures in financial markets. Instantaneous forward

rates are the building blocks of the Bank’s estimated yield curves, from which other

representations can be uniquely derived.

Real spot and forward rates

The return on a nominal bond can be decomposed into two components: a real rate of

return and a compensation for the erosion of purchasing power arising from inflation.

For conventional government nominal zero-coupon bonds, the nominal return is certain

(provided that it is held to maturity) but the real return is not (because inflation is un-

certain). An index-linked zero-coupon bond would have its value linked to movements

in a suitable price index to prevent inflation eroding its purchasing power (so its ‘real

value’ is protected). For such a zero-coupon bond the real return would be certain if

the bond were held to maturity. A real debt market provides information on the ex

ante real interest rates faced by borrowers and lenders who want to avoid the effects of

inflation. In practice, there are factors that mean index-linked gilts do not offer exact

inflation protection, and the UK index-linked gilt market is not as liquid as that for

conventional UK gilts. Nevertheless, this market allows us to calculate real spot and

forward rates analogous to the nominal spot and forward rates described earlier.

Implied inflation rates

As described above, the index-linked gilt market allows us to obtain real interest rates

and the conventional gilt market allows us to obtain nominal interest rates. These

nominal rates embody the real interest rate plus a compensation for the erosion of the

purchasing power of this investment by inflation. The Bank uses this decomposition

(commonly known as the Fisher relationship) and the real and the nominal yield curves

to calculate the implied inflation rate factored in to nominal interest rates. This is often

interpreted as a measure of inflation expectations. As with nominal and real interest

rates, the ‘spot’ implied inflation rates are considered as the average rate of inflation
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expected to rule over a given period.

Similarly forward implied inflation rates can be interpreted as the rate of inflation

expected to rule over a given period which begins at some future date. In the limit,

instantaneous forward implied inflation rates can be calculated just as with real and

nominal rates.

2.2.5 Data Coverage

The Bank of England (2010) publishes the nominal government yield curves which are

available on a daily basis from 2 January 1979, and the real yield curves and implied

inflation term structure are available from 2 January 1985 on their web page. The

absence of data for a given day at a given maturity is due to one of the following

reasons:

• There are no yield curve data for non-trading days, such as weekends and UK

Bank Holidays.

• There are no data for maturities outside the range of covered by existing gilts.

For example, for dates in the past where there was no bond longer than 20 years,

a 20-year spot or forward rate are not provided.

• In addition, the Bank of England only provides data at maturities where they

think the curve can be fitted so that it is stable and meaningful. Instability arises

when small movements in bond prices lead to unrealistically large moves in the

estimated yield curves, essentially because there is not enough information from

observed prices at a given maturity to allow to give a robust fit in that segment of

the curve. This is usually a problem at short maturities where more information

is required because it is expected that the short end of the yield curve exhibits

the greatest amount of structure. This is because expectations about the future

path of interest rates are likely to be better informed at shorter maturities, and

more likely to respond to short term news.

• In March 1997 the Bank started conducting daily money market operations in gilt
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repo. Since this date the Bank has used GC repo data to estimate the short end

of the nominal yield curve, and so the short end of the nominal curve is provided

down to very short maturities after this date. No corresponding instrument is

available to help model the short end of the real yield curve. Since implied

inflation rates are calculated as the difference of the nominal and real curves, an

absence of either real or nominal interest rate data at a given maturity implies

an absence of corresponding implied inflation rate data at that maturity.

2.3 A Descriptive Yield Curve Model: the Cairns

Model

The forward-rate curve model proposed by Cairns (1998) is designed to give an indi-

cation of what interest rates are currently implied by the market. Thus, it does not

provide an arbitrage-free framework within which derivatives can be priced on their

own. The curve introduced below is designed to model fixed-interest bond prices.

Cairns (1998) defines f(t, t + s) to be the instantaneous forward-rate curve observed

at time t for payments to be made at time t + s.

f(t, t + s) = b0(t) + b1(t)e
−c1s + b2(t)e

−c2s + b3(t)e
−c3s + b4(t)e

−c4s (2.11)

The curve is a flexible model with four exponential terms and nine parameters

in total. However, four of these parameters (the exponential rates) are fixed, which

reduces the risk of multiple solutions. If the value of ci where i = 1, 2, 3, 4 is small then

the relevant value of bi affects all durations whereas if ci is large then the relevant value

of bi primarily affects the shortest durations. Considering several choices for the vector

c = (c1, c2, c3, c4), Cairns (1998) suggested using c = (0.2, 0.4, 0.8, 1.6), values which he

found to give good results over the period investigated.

Since we fit the curve on spot rates, R(t, t + s) rather than forward rates, we use

the representation below of the model which is specified by Cairns (1998).
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R(t, t + s) =
1

s

∫ s

0

f(t, t + u)du (2.12)

= b0(t) + b1(t)
1 − e−c1s

c1s
+ b2(t)

1 − e−c2s

c2s
+ b3(t)

1 − e−c3s

c3s
+ b4(t)

1 − e−c4s

c4s

We fit the Cairns Model on to the three daily yield curves, nominal, implied inflation

and real spot rates which are published on the Bank of England’s (2010) web page. We

have 7838 (6320) observations for the nominal (implied inflation and real) spot rates to

fit the curve and estimate the parameters. The daily nominal spot rates are based on

half year maturities starting with 6 months and ending with 25 years, i.e. 50 different

maturities, and the daily implied inflation and real spot rates are based on half year

maturities starting with 2.5 years and ending with 25 years, i.e. 46 different maturities.

Let RkT represent the daily nominal spot rates on different maturities on a single

day, k = 1, 2, ...., 7838 (January 1979-December 2009) and T is the maturity in years,

T = 0.5, 1, ..., 25. On some trading days, yields are not available for all maturities

because the start and end points of the estimated curves depend on the shortest and

longest market instruments for which reliable prices are available. Therefore, the range

of maturities for which yields are available may vary according to the instruments

available.

We can rewrite the model for each day as:

R̂kT = b0(k) + b1(k)
1 − e−c1T

c1T
+ b2(k)

1 − e−c2T

c2T
+ b3(k)

1 − e−c3T

c3T
(2.13)

+b4(k)
1 − e−c4T

c4T

We derive the analytical solution and estimate the b parameters as below.
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R̂kT (b0, b1, b2, b3, b4) = b0d
(T )
0 + b1d

(T )
1 + b2d

(T )
2 + b3d

(T )
3 + b4d

(T )
4

R̂kT = d(T )′b.

Let S(b) =
50∑

T=1

(RkT − R̂kT )2

=
50∑

T=1

(RkT − d(T )′b)2

=
50∑

T=1

(R2
kT − 2RkT d(T )′b + b

′

D(T )b).

S(b) is minimised when
∂S

∂b
=

50∑

T=1

(−2RkT d(T )′ + 2b
′

D(T )) = 0

2
50∑

T=1

b
′

D(T ) = 2
50∑

T=1

RkT d(T )′

b
′

D = RkT d
′

b
′

= RkT d
′

D−1

where:

b =





b0

b1

b2

b3

b4





RkT =
[

Rk1 Rk2 . . . Rk50

]
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d =





1 1 1 . . . . 1

1−e−c10.5

c10.5
1−e−c11

c11
. . . . . 1−e−c125

c125

1−e−c210.5

c210.5
1−e−c21

c21
. . . . . 1−e−c225

c225

1−e−c30.5

c30.5
1−e−c31

c31
. . . . . 1−e−c325

c325

1−e−c40.5

c40.5
1−e−c41

c41
. . . . . 1−e−c425

c425





D(T ) = d(T )d(T )′ .

As we mentioned before, we will present four different C parameter sets we used to

estimate the b parameters for each yield curve data. Three of these sets are proposed

in Cairns (1998) and Cairns and Pritchard (2001) and the last one is obtained using

the least squares method including a penalty function, P (c) which is given below:

Residuals =
∑

(Observed − Fitted)2 + (− log(P (c)) × 0.0001) (2.14)

where

P (c) = c2
1 × exp(−β × c1) × (

c2

c1

− 1)2 × exp(−β × c2

c1

) × (
c3

c2

− 1)2 (2.15)

× exp(−β × c3

c2

) × (
c4

c3

− 1)2 × exp(−β × c4

c3

) × I(0 < c1 < c2 < c3 < c4)

with β = 1.

When we try the numerical optimization without the penalty function, we see that c

values can become negative or equal to each other and the algorithm does not converge.

In order to avoid these problems we add the penalty function which is designed to keep

the c values positive and apart from each other. After trying different multiplication

factors (0.0001, 0.00001, 0.000001 and 0.000001) to decrease the effect of the penalty

function to see how much it dominates the original least square equation, we decided

to use 0.0001 since decreasing the number makes the c values closer. Besides, the

multiplication factor we used gives the smallest root mean square error which indicates a

83



better fit. Furthermore, we increased the β value in P (c) to see its effect on the c values

when we decreased the effect of the penalty function by decreasing the multiplication

function. Increasing the β value does not make a significant change in the c values.

An alternative would have been to fit the Cairns curve each day separately and

estimate all nine parameters simultaneously. However, Cairns (1998) shows that there

might be multiple minima on specific days and the minimisation algorithm may start

at the previous minimum and stay near that minimum. On other days the chosen

minimum might be only a local minimum and not the global minimum. On other

days, the algorithm may jump to what an alternative local minimum. This type of

discontinuity between different days can be referred to as a ‘catastrophic’ jump. At the

time of the catastrophic jump there might be an identifiable shift in the shape of the

fitted yield curve. Fitting one set of values of the c parameters at least means that the

same values are used on all days.

We have tried six different C parameter sets for the yield curve data (C1, C2, C3,

COpt(Nom), COpt(Imp) and COpt(Real)) and estimated the b parameters for every

observation using each set. By changing the C parameter sets we obtained different

loadings for b parameters. The loading on b0 is 1, for each model, a constant that does

not decay to zero in the limit; hence it may be viewed as a long-term factor or overall

level of the spot rate curve. Furthermore, b1 has more influence over the long-term,

while b4 has more influence over the short term (Cairns, 1998; Diebold and Li, 2006).

We plot the loadings on b parameter sets for different C sets in Figure 2.1. Beside

particular influences of the b1 and b4 parameters because of their loadings, an overall

increase in C values improves the fit for short maturities while an overall decrease

improves the long maturity fit. Figure 2.1 shows the factor loadings (C parameter

sets) for each model. When we look at Figure 2.1, we expect that C1, having the

highest factor loadings, captures the short-term movement better than the others since

the loadings on b parameters decay to zero faster than the other C sets. In the same

way, COpt(Imp) should fit the long-term maturities better due to the lower values.
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Figure 2.1: Factor Loadings
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2.4 Parameter Estimates of the Yield Curves

As mentioned in Section 2.2, we use the daily spot rates, for the longest available periods

published on the Bank of England’s web page, to fit the Cairns Model. Therefore, we

have 7838 daily observations for the nominal spot rates and 6320 daily observations for

the implied inflation and real spot rates based on half year maturities. Before fitting

the models with different C parameter sets, we explore the yield curves, considering

some descriptive statistics. Table 2.1 shows these statistics for each yield curve. It is

seen that in a typical yield curve, long rates are less volatile and more persistent than

short rates. The yield curves are not upward sloping.

We display the daily yield curves for specific maturities in Figure 2.2, Figure 2.3 and

Figure 2.4. Figure 2.2 shows the daily nominal spot rates for short-term, medium-term

and long-term maturities. The discontinuity in the black solid lines indicates that the

spot rates for those specific dates are missing. The graphs show that the nominal rates

has been decreasing since 1979 independent from the maturity. There are many missing

values in the data particularly in the long-term (20 and 25-year) maturities which can

be explained by the lack of instruments to obtain those spot rates as we discussed in

Section 2.3. Furthermore, the spot rates are quite stable for the medium and long-term

(10-year to 25-year) maturities since 1998 which coincides with the inflation targeting

policy of the Bank of England.
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Table 2.1: Descriptive Statistics for the Daily Yield Curves

Nominal Spot Rates (%)
Maturity Mean Standard

deviation
Median Minimum Maximum Skewness Excess

kurtosis

0.5 7.1921 3.4366 6.0192 0.3375 15.9315 0.4208 -0.5951

2.5 7.7984 3.2216 6.9589 1.3364 15.6795 0.2062 -0.9535

5 7.9544 3.1481 7.5146 2.2082 15.9370 0.2614 -1.0122

10 8.0488 3.1195 8.1250 3.0576 15.5571 0.2898 -1.0938

15 7.8749 2.9660 8.2566 3.6515 15.0450 0.3329 -0.9727

20 6.6201 2.1746 6.1600 3.7016 13.5690 0.3893 -1.0571

25 4.6714 0.9024 4.4713 3.5915 8.6602 3.3440 11.0137

Implied Inflation Spot Rates (%)
Maturity Mean Standard

deviation
Median Minimum Maximum Skewness Excess

Kurtosis

2.5 4.1343 2.2100 3.2868 -3.0390 9.7851 0.3909 -0.6031

5 4.1446 1.8168 3.5638 -0.9900 9.1030 0.5476 -0.7532

10 4.1277 1.5485 3.5790 1.1549 8.1779 0.5798 -0.8878

15 3.9859 1.2894 3.7118 1.9805 7.4018 0.4740 -0.9583

20 3.4838 0.9207 3.2171 1.9231 6.0000 0.5565 -0.8160

25 2.9202 0.4637 2.8472 1.7835 4.0591 0.6006 -0.4605

Real Spot Rates (%)
Maturity Mean Standard

deviation
Median Minimum Maximum Skewness Excess

Kurtosis

2.5 2.7499 1.0013 2.9619 -0.6634 5.7400 -0.5305 0.2550

5 2.7985 0.8903 2.8721 0.1205 5.1222 -0.3562 -0.5489

10 2.8697 0.9997 3.0558 0.5530 5.0887 -0.1942 -1.2295

15 2.8775 1.0907 3.1543 0.6821 4.9308 -0.1879 -1.3526

20 2.5353 1.1018 2.2311 0.5609 4.8077 0.1166 -1.3584

25 1.5806 0.6001 1.6612 0.4128 3.1241 0.1476 -0.8344
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Figure 2.2: Daily Nominal Spot Rates Data for Different Maturities (1979-2009)
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Figure 2.3 presents the daily implied inflation spot rates for the various maturities

starting from 2.5-year and ending with 25-year maturity for the period 1985-2009.

The short-term implied inflation rates have decreased (even below zero) sharply since

the second half of 2008 due to financial crises experienced by most of the industrial

countries. The effect of the crises is much less on the medium-term and long-term

implied inflation spot rates. There are many missing values especially in the long-term

implied inflation data.
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Figure 2.3: Daily Implied Inflation Spot Rates Data for Different Maturities (1985-
2009)
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As we see in Figure 2.4, the real spot rates (1985-2009) are much more stable except

for the 2008 financial crises period than the nominal and implied inflation spot rates.

The graphs show that the crises mostly affected the short-term real rates. Similar to

nominal rates, there is a continuous decrease in the real spot rates for the medium and

long-term maturities.
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Figure 2.4: Daily Real Spot Rates Data for Different Maturities (1985-2009)
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2.4.1 Model 1 with C1 = (0.2, 0.4, 0.8, 1.6)

The first model we fit has the same C values as Cairns (1998). Table 2.2 shows the

product-movement correlation coefficients between estimated b parameters. It is clearly

seen that while b0 is not linearly related with the other parameters for the nominal and

implied inflation spot rates, there are high positive or negative correlations between b1,

b2, b3 and b4. However, when we look at the correlations between the b parameters for

the real spot rates we see that all parameters are significantly correlated. Although we

do not display them here, the autocorrelation coefficients for all the parameters decay

exponentially which indicates an autoregressive effect. The partial autocorrelation plot

also supports this conclusion since the first lags are significant.

As seen in Table 2.2 there are negative correlations between the lagged values of b1

and b2, b1 and b4 and positive correlations between the lagged values of b1 and b3, b2

and b4.

Table 2.2: Correlation Matrices for the b parameters for Model 1

Nominal Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 0.0223 -0.0378 0.0096 0.0197

b1 0.0223 1.0000 -0.9763 0.9279 -0.8581

b2 -0.0378 -0.9763 1.0000 -0.9807 0.9249

b3 0.0096 0.9279 -0.9807 1.0000 -0.9715

b4 0.0197 -0.8581 0.9249 -0.9715 1.0000

Implied Inflation Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 -0.3608 0.1431 0.0114 -0.0874

b1 -0.3608 1.0000 -0.9304 0.7749 -0.6308

b2 0.1431 -0.9304 1.0000 -0.9418 0.8297

b3 0.0114 0.7749 -0.9418 1.0000 -0.9625

b4 -0.0874 -0.6308 0.8297 -0.9625 1.0000

Real Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 -0.6557 0.4910 -0.5237 0.5644

b1 -0.6557 1.0000 -0.9122 0.8206 -0.8112

b2 0.4910 -0.9122 1.0000 -0.9627 0.9290

b3 -0.5237 0.8206 -0.9627 1.0000 -0.9790

b4 0.5644 -0.8112 0.9290 -0.9790 1.0000
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2.4.2 Model 2 with C2 = (0.1, 0.2, 0.4, 0.8)

For the second model, we use another C parameter set published in Cairns (1998). This

set has smaller values which is appropriate for fitting to the long-term rates compared

with C1. Table 2.3 shows the correlation coefficients between b parameters. All of

the parameters are significantly positively or negatively correlated with each other. b0

has high negative correlations with b1 and b3, while it has high positive correlation

with b2 for the nominal yield curve. Furthermore, b1 and b2, b2 and b3, b3 and b4 are

highly negatively correlated. We see similar high correlations between the parameters

for implied and real rates as well.

Table 2.3: Correlation Matrices for the b parameters for Model 2

Nominal Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 -0.8030 0.7890 -0.7319 0.4931

b1 -0.8030 1.0000 -0.9804 0.8784 -0.5574

b2 0.7890 -0.9804 1.0000 -0.9492 0.6687

b3 -0.7319 0.8784 -0.9492 1.0000 -0.8443

b4 0.4931 -0.5574 0.6687 -0.8443 1.0000

Implied Inflation Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 -0.8543 0.6452 -0.3651 -0.0084

b1 -0.8543 1.0000 -0.9191 0.6875 -0.2463

b2 0.6452 -0.9191 1.0000 -0.9048 0.5179

b3 -0.3651 0.6875 -0.9048 1.0000 -0.8043

b4 -0.0084 -0.2463 0.5179 -0.8043 1.0000

Real Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 -0.6644 0.5346 -0.6021 0.4012

b1 -0.6644 1.0000 -0.9498 0.8316 -0.4013

b2 0.5346 -0.9498 1.0000 -0.9186 0.4155

b3 -0.6021 0.8316 -0.9186 1.0000 -0.6328

b4 0.4012 -0.4013 0.4155 -0.6328 1.0000
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2.4.3 Model 3 with C3 = (0.2, 0.4, 0.6, 0.8)

Model 3 includes the C3 parameter set (Cairns and Pritchard, 2001) whose values

are between C1 and C2 which means we expect it to fit the short term yield better

than C2 does and to fit the long term yield better than C1 does. Table 2.4 displays

the correlation coefficients between b parameters. Again, while b0 is uncorrelated with

the other parameters as in Model 1, b1, b2, b3 and b4 have high negative or positive

correlations with each other for the nominal and real spot rates.

Table 2.4: Correlation Matrices for the b parameters for Model 3

Nominal Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 -0.1150 0.1214 -0.1405 0.1538

b1 -0.1150 1.0000 -0.9785 0.9464 -0.9078

b2 0.1214 -0.9785 1.0000 -0.9908 0.9673

b3 -0.1405 0.9464 -0.9908 1.0000 -0.9919

b4 0.1538 -0.9078 0.9673 -0.9919 1.0000

Implied Inflation Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 -0.4094 0.1818 -0.0703 0.0000

b1 -0.4094 1.0000 -0.9250 0.8347 -0.7562

b2 0.1818 -0.9250 1.0000 -0.9787 0.9372

b3 -0.0703 0.8347 -0.9787 1.0000 -0.9878

b4 0.0000 -0.7562 0.9372 -0.9878 1.0000

Real Spot Rates

b0 b1 b2 b3 b4

b0 1.0000 -0.6517 0.5404 -0.5645 0.5862

b1 -0.6517 1.0000 -0.9407 0.9060 -0.8908

b2 0.5404 -0.9407 1.0000 -0.9898 0.9698

b3 -0.5645 0.9060 -0.9898 1.0000 -0.9915

b4 0.5862 -0.8908 0.9698 -0.9915 1.0000
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2.4.4 Model 4 with COpt(Nom) = (0.10, 0.16, 0.57, 1.24),

COpt(Imp) = (0.06, 0.13, 0.25, 0.54) or

COpt(Real) = (0.11, 0.22, 0.47, 1.14)

Model 4 includes the optimised parameters using the Nelder-Mead numerical opti-

mization method adding the penalty function (see Section 2.3) which prevents the C

parameters taking negative values and keep away from each other, satisfying the con-

dition 0 < c1 < c2 < c3 < c4. The optimization results show that the first three C

values, which are small, fit the long term rates and the last one is relatively larger and

fits the short term rates.

Table 2.5 displays the correlations between b parameters. As in the previous models,

b0, b1, b2, b3 and b4 have high negative or positive correlations with each other.

Table 2.5: Correlation Matrices for the b parameters for Model 4

Nominal Spot Rates COpt(Nom)

b0 b1 b2 b3 b4

b0 1.0000 -0.7892 0.7801 -0.7165 0.5192

b1 -0.7892 1.0000 -0.9943 0.8642 -0.5829

b2 0.7801 -0.9943 1.0000 -0.9008 0.6270

b3 -0.7165 0.8642 -0.9008 1.0000 -0.8317

b4 0.5192 -0.5829 0.6270 -0.8317 1.0000

Implied Inflation Spot Rates COpt(Imp)

b0 b1 b2 b3 b4

b0 1.0000 -0.9477 0.8202 -0.5907 0.2704

b1 -0.9477 1.0000 -0.9513 0.7722 -0.4447

b2 0.8202 -0.9513 1.0000 -0.9208 0.6458

b3 -0.5907 0.7722 -0.9208 1.0000 -0.8778

b4 0.2704 -0.4447 0.6458 -0.8778 1.0000

Real Spot Rates COpt(Real)

b0 b1 b2 b3 b4

b0 1.0000 -0.6282 0.4618 -0.5445 0.4933

b1 -0.6282 1.0000 -0.9361 0.8205 -0.5142

b2 0.4618 -0.9361 1.0000 -0.9250 0.5076

b3 -0.5445 0.8205 -0.9250 1.0000 -0.6329

b4 0.4933 -0.5142 0.5076 -0.6329 1.0000
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2.5 Standard Errors Analysis

We compare the performance of these four different models in different ways. One way

is to analyse the standard errors (root mean squared errors (RMSE)) of the residuals

by fitting these models. We draw the graphs of RMSEs in basis points (bps) for whole

maturities, then for short term, medium term and long term maturities separately and

the graphs of the ratios of these standard errors by taking the best set of C set for

each yield curve based on the mean RMSEs as a reference. The RMSEs are calculated

using the formula below.

The mean squared error for date k is:

Mean Square Error (MSEk) =

∑T
t=1(Rkt − R̂kt)

2

T
(2.16)

Root Mean Square Error (RMSEk) =
√

MSEk (2.17)

where R̂kt is the fitted spot rate, Rkt is the observed spot rate, T = 1, ..., 50 (T =

1, ..., 46 for the implied inflation and real spot rates) is the associated maturity of the

observed day k = 1, ..., 7838 (k = 1, ..., 6320 for the implied inflation and real spot

rates).

To begin with, we draw the graphs of standard errors for whole maturities (6 months

to 25 years or 2.5 years to 25 years) for the whole period (1979 to 2009 for nominal spot

rates and 1985 to 2009 for implied inflation and real spot rates). Figure 2.5, 2.13 and

2.21 show these graphs for nominal, implied inflation and real spot rates respectively.

In order to compare the RMSEs for each C parameter set, we present the graphs in

the same scale. Figure 2.5 indicates that C2 and COpt(Nom) have lower RMSEs

compared to C1 and C3. Since the RMSE values seem very close to each other, we

can compare the fit for these different C sets by examining Table 2.6 which gives the

mean RMSEs for different maturities including overall, short-term, medium-term and

long-term for nominal spot rates. The mean RMSEs are calculated as below:
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Mean RMSE =

∑7838(6320)
k=1 RMSEk

7838(6320)
(2.18)

Table 2.6: Mean RMSE (bps) for Different C Parameter Sets for Nominal Spot Rates

Overall Short-term Medium-term Long-term

Model 1 2.9114 3.1585 2.5175 3.1680

Model 2 1.8320 2.9340 1.2608 1.2361

Model 3 2.1852 2.8310 1.6747 2.1439

Model 4 (Opt) 1.7297 2.5027 1.3287 1.3731

Table 2.6 justifies our comment on Figure 2.5 that Model 1 has the highest mean

RMSE (2.91 bps) while Model 4 has the lowest (1.73 bps) considering all maturities.

Furthermore, we display the ratios of the standard errors for different models on the

logarithmic scale indicating the equality line for the ratios. The reference C parameter

set has been chosen as the one which produces the smallest mean squared errors for

each yield curve. Figures 2.6, 2.14 and 2.22 show these ratios for the nominal, implied

inflation and real spot rates for all available maturities. Figure 2.6 shows that especially

Model 1 and Model 3 produce relatively higher RMSEs compared to Model 4 in which

we use COpt(Nom) as the C parameter set due to having more values above the

equality line which is displaced with red colour. On the other hand, Model 2 performs

slightly worse than Model 4 since the ratios of the RMSEs are quite close to 1 for all

period. Figures 2.7 to 2.12 show the performance of these different C parameter sets

for different maturities. We have decreased the C values in order to have a better fit

for the long term maturities and increased to have a better short term fit. Figure 2.7

shows the standard errors of the models for short term maturities (i.e. from 6 months

to 5 years). By looking at Figure 2.7, we see that Model 4 has the best fit due to its

smaller RMSE. Table 2.6 indicates that Model 4 has the best fit for the short-term

maturities while all of the models have relatively similar mean RMSEs.

Figure 2.8 shows the ratios of the standard errors for the short term maturities

between the three C parameter sets and COpt(Nom) set. These graphs also show that

all models have similar RMSEs.
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Figure 2.9 and Figure 2.10 show the standard errors and ratios of the standard

errors of the models for medium term maturities (i.e. from 5 years to 15 years). Model

2 and Model 4 have better fits with the mean RMSE values 1.26 bps and 1.33 bps

respectively than other two models.

Finally, Figure 2.11 and Figure 2.12 display the standard errors and the ratios of

the standard errors of the models for long term maturities (i.e. from 15 years to 25

years). As we decrease the values of the C parameter set we get a better fit for the long

term. Therefore, Model 2 and Model 4 perform very well due to producing low values.

Figure 2.12 also supports our comment showing that the standard errors of these two

models are quite close to each other and less than Model 1 and Model 3. Table 2.6 also

shows that Model 2 has the smallest mean RMSE for the long-term maturities with

1.24 bps.

Considering all these graphs and the mean RMSEs displayed in Table 2.6, we con-

clude that Model 4 with COpt(Nom) performs better than the other models for the

overall and the short-term maturities while Model 2 with C2 parameter set has the

smallest RMSEs for the medium and long-term maturities for the nominal spot rates.

We chose COpt(Nom) parameter set to fit the Cairns model on to the nominal spot

rates for further work.
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Figure 2.5: Root Mean Squared Errors for Nominal Spot Rates (in basis points)
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Figure 2.6: Ratios of Standard Errors for Different C Parameter Sets for Nominal Spot
Rates
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Figure 2.7: Standard Errors for Different C Parameter Sets for Short Term Nominal
Spot Rates
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Figure 2.8: Ratios of Standard Errors for Different C Parameter Sets for Short Term
Nominal Spot Rates
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Figure 2.9: Standard Errors for Different C Parameter Sets for Medium Term Nominal
Spot Rates
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Figure 2.10: Ratios of Standard Errors for Different C Parameter Sets for Medium
Term Nominal Spot Rates
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Figure 2.11: Standard Errors for Different C Parameter Sets for Long Term Nominal
Spot Rates

5e
−0

2
5e

+0
0

Years

R
at

io
 o

f R
M

S
E

s

1980 1985 1990 1995 2000 2005 2010

RMSE(C1)/RMSE(COpt(Nom))

5e
−0

2
5e

+0
0

Years

R
at

io
 o

f R
M

S
E

s

1980 1985 1990 1995 2000 2005 2010

RMSE(C2)/RMSE(COpt(Nom))

5e
−0

2
5e

+0
0

Years

R
at

io
 o

f R
M

S
E

s

1980 1985 1990 1995 2000 2005 2010

RMSE(C3)/RMSE(COpt(Nom))

Figure 2.12: Ratios of Standard Errors for Different C Parameter Sets for Long Term
Nominal Spot Rates

101



As for the implied inflation spot rates, Figure 2.13 and Figure 2.14 imply that

COpt(Imp) produces the lowest RMSEs for the whole period. Table 2.7 supports this

conclusion and presents that not only for the overall maturities, for the short, medium

and long-term spot rates, Model 4 produces the smallest mean RMSEs. Figures 2.15

to 2.20 show that Model 4 with the COpt(Imp) parameter set is the best among the

others.

Table 2.7: Mean RMSE (bps) for Different C Parameter Sets for Implied Inflation Spot
Rates

Overall Short-term Medium-term Long-term

Model 1 1.0332 1.0812 0.8719 1.1839

Model 2 0.4476 0.5702 0.4266 0.3991

Model 3 0.7339 0.7444 0.6334 0.8372

Model 4 (Opt) 0.3268 0.4924 0.3084 0.2355
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Figure 2.13: Root Mean Squared Errors for Implied Inflation Spot Rates (in basis
points)
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Figure 2.14: Ratios of Standard Errors for Different C Parameter Sets for Implied
Inflation Spot Rates

103



0
1

2
3

4
5

6

Years

R
M

S
E

1985 1990 1995 2000 2005 2010

C1=(0.2,0.4,0.8,1.6)

0
1

2
3

4
5

6

Years

R
M

S
E

1985 1990 1995 2000 2005 2010

C2=(0.1,0.2,0.4,0.8)

0
1

2
3

4
5

6

Years

R
M

S
E

1985 1990 1995 2000 2005 2010

C3=(0.2,0.4,0.6,0.8)

0
1

2
3

4
5

6
Years

R
M

S
E

1985 1990 1995 2000 2005 2010

COpt(Imp)=(0.06,0.13,0.25,0.54)

Figure 2.15: Standard Errors for Different C Parameter Sets for Short Term Implied
Inflation Spot Rates
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Figure 2.16: Ratios of Standard Errors for Different C Parameter Sets for Short Term
Implied Inflation Spot Rates
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Figure 2.17: Standard Errors for Different C Parameter Sets for Medium Term Implied
Inflation Spot Rates
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Figure 2.18: Ratios of Standard Errors for Different C Parameter Sets for Medium
Term Implied Inflation Spot Rates
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Figure 2.19: Standard Errors for Different C Parameter Sets for Long Term Implied
Inflation Spot Rates
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Figure 2.20: Ratios of Standard Errors for Different C Parameter Sets for Long Term
Implied Inflation Spot Rates
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Different from the nominal and implied inflation spot rates, we choose the C2

parameter set as the best to fit the Cairns model on to the real spot rates. Table 2.8

shows that Model 2 performs better than the other models for the overall, medium

term and long term maturities by producing the smallest mean RMSEs while Model 4

with COpt(Real) is the best for the short term maturities. Figures 2.21 to 2.28 can

be interpreted in the same way as the ones for nominal and implied inflation spot rates

and support our conclusion. One might think that it is contradictory if the optimised

set of parameters do not produce the smallest RMSEs. Altough we expect that the

COpt parameter set fits the spot rates best we should consider that it is not a sole

optimisation but we included a penalty function. This penalty function affects the

optimisation process and it could lead to a set of parameter which is not the unique

optimised one.

A general comment on the ratios of the RMSE graph is that when the RMSEs of

two C parameter sets are close to each other the volatility is small. Otherwise, it is

high.

Table 2.8: Mean RMSE (bps) for Different C Parameter Sets for Real Spot Rates

Overall Short-term Medium-term Long-term

Model 1 0.5071 0.5502 0.4252 0.5770

Model 2 0.1154 0.1707 0.0985 0.1008

Model 3 0.3436 0.3698 0.2914 0.3872

Model 4 (Opt) 0.1264 0.1613 0.1106 0.1249
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Figure 2.21: Root Mean Squared Errors for Real Spot Rates (in basis points)

1e
−0

2
1e

+0
0

1e
+0

2

Years

R
at

io
 o

f R
M

S
E

s

1985 1990 1995 2000 2005 2010

RMSE(C1)/RMSE(C2)

1e
−0

2
1e

+0
0

1e
+0

2

Years

R
at

io
 o

f R
M

S
E

s

1985 1990 1995 2000 2005 2010

RMSE(C3)/RMSE(C2)

1e
−0

2
1e

+0
0

1e
+0

2

Years

R
at

io
 o

f R
M

S
E

s

1985 1990 1995 2000 2005 2010

RMSE(COpt(Real))/RMSE(C2)

Figure 2.22: Ratios of Standard Errors for Different C Parameter Sets for Real Spot
Rates
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Figure 2.23: Standard Errors for Different C Parameter Sets for Short Term Real Spot
Rates
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Figure 2.24: Ratios of Standard Errors for Different C Parameter Sets for Short Term
Real Spot Rates
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Figure 2.25: Standard Errors for Different C Parameter Sets for Medium Term Real
Spot Rates
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Figure 2.26: Ratios of Standard Errors for Different C Parameter Sets for Medium
Term Real Spot Rates
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Figure 2.27: Standard Errors for Different C Parameter Sets for Long Term Real Spot
Rates
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Figure 2.28: Ratios of Standard Errors for Different C Parameter Sets for Long Term
Real Spot Rates
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2.6 Observed and Fitted Values for Specific Days

After examining the RMSEs of each model for different maturities and yield curves

we select some days randomly and draw the observed and fitted yield curves for these

days using four models for each term structure. These yield curves show the observed

and fitted values on that specific day and enable us to see how well the models fit the

observed data for those specific dates.

We examine six different days to compare the performance of the models for the

nominal yield curve. Figure 2.29 shows the yield curves for ‘1979-01-02’ which rep-

resents a very early date in our data. Although all the models fit quite well for this

specific date, it can be seen that Model 2 and Model 4 fit the long end of the curve

slightly better due to the lower values of C parameter sets. On the other hand, Fig-

ure 2.30 shows that Model 1 and Model 3 fit the yield curve on ‘1982-12-13’ since they

capture the short term movements better due to the higher values of C parameter sets.

Figures 2.31, 2.32, 2.33 and 2.34 display different shapes of the nominal yield curves for

different dates, ‘1986-11-26’, ‘2002-09-25’, ‘2006-09-08’ and ‘2009-11-05’ respectively of

which Model 4 with the optimisied C parameter set fits the observed yield curves best.

Similarly we examine four random days to see how well the fitted implied inflation

and real spot rates fit the observed spot rates as we have done for the nominal spot

rates. Figure 2.35, 2.36, 2.37 and 2.38 show the observed and fitted values for the

implied inflation spot rates for ‘1985-01-02’, ‘1988-12-12’, ‘1992-11-25’, ‘2008-09-25’

dates. Although all the models fit the observed yield curves quite well, Model 2 and

Model 4 perform slightly better.

Finally, Figure 2.39, 2.40, 2.41 and 2.42 display the observed and fitted yield curves

for the real spot rates for the same dates as the implied inflation spot rates mentioned

above. The graphs show that regardless of the choice of C parameter sets, the fitted

values fit the observed yield curves very well for these specific dates.

To conclude, the figures displaying the observed and fitted values for different C

parameter sets and different yield curves show that the Cairns model fits the different

shapes of yield curves such as upward sloping, downward sloping or humped quite well

112



independent from the choice of the exponential parameter sets.
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Figure 2.29: Observed and Fitted Nominal Spot Rates for ‘1979-01-02’
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Figure 2.30: Observed and Fitted Nominal Spot Rates for ‘1982-12-13’
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Figure 2.31: Observed and Fitted Nominal Spot Rates for ‘1986-11-26’
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Figure 2.32: Observed and Fitted Nominal Spot Rates for ‘2002-09-25’
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Figure 2.33: Observed and Fitted Nominal Spot Rates for ‘2006-09-08’
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Figure 2.34: Observed and Fitted Nominal Spot Rates for ‘2009-11-05’
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Figure 2.35: Observed and Fitted Implied Inflation Spot Rates for ‘1985-01-02’
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Figure 2.36: Observed and Fitted Implied Inflation Spot Rates for ‘1988-12-12’
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Figure 2.37: Observed and Fitted Implied Inflation Spot Rates for ‘1992-11-25’
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Figure 2.38: Observed and Fitted Implied Inflation Spot Rates for ‘2008-09-25’
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Figure 2.39: Observed and Fitted Real Spot Rates for ‘1985-01-02’
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Figure 2.40: Observed and Fitted Real Spot Rates for ‘1988-12-12’
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Figure 2.41: Observed and Fitted Real Spot Rates for ‘1992-11-25’
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Figure 2.42: Observed and Fitted Real Spot Rates for ‘2008-09-25’
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2.7 Fitted Values and Residuals for Specific Matu-

rities

Another way to test which model fits best is to draw graphs of observed and fitted

values for different maturities.

Figures 2.43 to 2.48 show these graphs and the residuals (observed − fitted) for

half year (y(0.5)), 10-year (y(10)) and 25-year (y(25)) maturities for the nominal spot

rates. Note that the residual graphs of the models for each maturity are drawn on the

same scale to make the comparison between the difference in the observed and fitted

values for each model easier. The observed spot rates are shown by black solid lines

while the fitted rates are shown by red solid lines in the maturity specific yield curve

graphs. Figure 2.43 indicates that all models fit well for the half-year nominal yields

since the black solid line is mostly covered by the red solid line which indicates that the

fitted spot rates are very close to the observed ones. However, although the differences

are too small, the residual graphs in Figure 2.44 show that Model 1 fits best due to the

higher values of the C parameter set whose aim is to capture the short-term volatilities

in the yield curve. Model 1 and Model 3 perform better for the 10 year maturities

which are shown in Figure 2.45 and Figure 2.46 while Model 2 and Model 4 fit the

25-year maturity yields much better as seen in Figure 2.47 and Figure 2.48.

Figures 2.49 to 2.54 show the graphs of the observed and fitted values and the

residuals for half year, 10-year and 25-year maturities for the implied inflation spot

rates. For the half year and 10-year maturities, the residuals are quite small (between

-0.0006 and 0.0004) and all four models fit the yield curves equally well. On the other

hand, for 25-year maturity, Model 4 with COpt(Imp) parameter set fits the implied

inflation spot rates best.

According to Figures 2.55 to 2.60, all four models fit the real yield curves very well

while Model 2 and Model 4 produce slightly better fitted spot rates.

Note that there are missing values in the original yield curve data for some specific

days and maturities due to the reasons discussed in Section 2.2.
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Figure 2.43: Nominal Spot Rates - 0.5-Year Maturity
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Figure 2.44: Nominal Spot Rates - Residuals for 0.5-Year Maturity
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Figure 2.45: Nominal Spot Rates - 10-Year Maturity
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Figure 2.46: Nominal Spot Rates - Residuals for 10-Year Maturity

122



4
5

6
7

8

Years

S
p

o
t 
ra

te
s 

(%
)

1980 1985 1990 1995 2000 2005 2010

y(25) for C1

4
5

6
7

8

Years

S
p

o
t 
ra

te
s 

(%
)

1980 1985 1990 1995 2000 2005 2010

y(25) for C2

4
5

6
7

8

Years

S
p

o
t 
ra

te
s 

(%
)

1980 1985 1990 1995 2000 2005 2010

y(25) for C3

4
5

6
7

8

Years

S
p

o
t 
ra

te
s 

(%
)

1980 1985 1990 1995 2000 2005 2010

y(25) for COpt(Nom)

Figure 2.47: Nominal Spot Rates - 25-Year Maturity
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Figure 2.48: Nominal Spot Rates - Residuals for 25-Year Maturity

123



−
2

2
4

6
8

Years

S
p

o
t 
ra

te
s 

(%
)

1985 1990 1995 2000 2005 2010

y(2.5) for C1

−
2

2
4

6
8

Years

S
p

o
t 
ra

te
s 

(%
)

1985 1990 1995 2000 2005 2010

y(2.5) for C2

−
2

2
4

6
8

Years

S
p

o
t 
ra

te
s 

(%
)

1985 1990 1995 2000 2005 2010

y(2.5) for C3

−
2

2
4

6
8

Years

S
p

o
t 
ra

te
s 

(%
)

1985 1990 1995 2000 2005 2010

y(2.5) for COpt(Imp)

Figure 2.49: Implied Inflation Spot Rates - 0.5-Year Maturity
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Figure 2.50: Implied Inflation Spot Rates - Residuals for 0.5-Year Maturity
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Figure 2.51: Implied Inflation Spot Rates - 10-Year Maturity
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Figure 2.52: Implied Inflation Spot Rates - Residuals for 10-Year Maturity
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Figure 2.53: Implied Inflation Spot Rates - 25-Year Maturity
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Figure 2.54: Implied Inflation Spot Rates - Residuals for 25-Year Maturity
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Figure 2.55: Real Spot Rates - 0.5-Year Maturity
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Figure 2.56: Real Spot Rates - Residuals for 0.5-Year Maturity
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Figure 2.57: Real Spot Rates - 10-Year Maturity
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Figure 2.58: Real Spot Rates - Residuals for 10-Year Maturity
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Figure 2.59: Real Spot Rates - 25-Year Maturity
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Figure 2.60: Real Spot Rates - Residuals for 25-Year Maturity
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2.8 Interim Conclusion: Filling the Gaps in the UK

Yield Curves

The aim of the analysis in this chapter is to fill the gaps in three UK yield curves (nom-

inal, implied inflation and real spot rates) by fitting the Cairns model with appropriate

fixed exponential parameter sets. Although the Bank of England publishes the yield

curve data, there are many missing values due to the reasons discussed in Section 2.2.

Since we will use all available maturities in further studies on yield curves, we need

to replace these missing values by fitting a descriptive yield curve model. We have

tried four different fixed parameter sets to apply the Cairns model and decide the ones

which fit the yield curves best. One set of these parameters for each yield curve has

been obtained by the least squares method with a penalty function. The other three

parameter sets have been proposed by Cairns (1998) and Cairns and Pritchard (2001).

We compared these different parameter sets by examining the root mean squared er-

rors, how well they fit specific maturities and specific days. Based on our analysis we

conclude that the parameter sets obtained from the least squares method provide the

best fit for the nominal and implied inflation yield curves while one of the sets sug-

gested by Cairns (1998) performed better on a range of criteria even than the optimised

parameter set for the real spot rates.
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Chapter 3

Principal Component Analysis on

the Fitted UK Term Structures

3.1 Introduction

Once we fit the Cairns model to the UK yield curves we apply principal component

analysis (PCA) to the fitted values to decrease the dimension of the data. The aim

is to reduce the dimension of the yield curves (7838 × 50 for the nominal spot rates

and 6320 × 46 for the implied inflation and the real spot rates) in order to obtain

uncorrelated variables from highly correlated data to construct yield curve models

which are discussed in the following chapters.

Instead of using the original Bank of England yield curve data to apply the PCA,

we use fitted Cairns values in order to consider a full range of maturities in our analysis.

If we used the original yield curves we would eliminate the maturities which include

missing values which would lead us to continue our study without the very short end

and long end of the yield curves. It is convenient to use fitted Cairns values to model

the term structures as we discuss in Chapter 2 that the Cairns model fits the yield

curve data quite well.

Therefore, this chapter discusses the use of the PCA. We introduce the PCA and

its properties in Section 3.2. We apply the PCA on the fitted values for each model

and each yield curve and present the results in Section 3.3. Then we examine the
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robustness of the principal component method to the choice of C parameter sets for

the nominal, implied inflation and real spot rates in Section 3.4. Section 3.5 concludes

the chapter.

3.2 Principal Component Analysis

The method of principal component analysis is primarily a data-analytic technique

that obtains linear transformations of a group of correlated variables such that optimal

conditions are achieved. The most important of these conditions is that the transformed

variables are uncorrelated.

The main idea of the PCA is to reduce the dimensionality of a data set in which

there are a number of interrelated variables, while retaining and explaining as much

as possible of the variation present in the data set. This reduction is achieved by

transforming to a new set of variables, the principal components (PCs), which are

uncorrelated, and which are ordered so that the first few retain most of the variation

present in all of the original variables. Computation of the principal components re-

duces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite

symmetric matrix (Jolliffe, 1986).

The method of principal components is based on a key result from matrix algebra: a

p×p symmetric matrix, such as the covariance matrix S, may be reduced to a diagonal

matrix L by premultiplying and postmultiplying it by a particular orthonormal matrix

U such that

U
′

SU = L (3.1)

The diagonal elements of L, l1, l2, ..., lp are called the characteristic roots, latent

roots or eigenvalues of S. The columns of U , u1, u2, ..., up are called the characteristic

vectors or eigenvectors of S. The characteristic roots may be obtained from the solution

of the following determinental equation, called the characteristic equation:

|S − lI| = 0 (3.2)
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where I is the identity matrix. This equation produces a pth degree polynomial in l

from which the values l1, l2, ..., lp are obtained.

The characteristic vectors may then be obtained by the solution of the equations

[S − lI] ti = 0 (3.3)

and

ui =
ti√
t
′

iti
(3.4)

for i = 1, 2, ..., p. Here, uis are characteristic vectors which make up the matrix

U = [u1 u2 . . . up] (3.5)

which is orthonormal, that is,

u
′

iui = 1 u
′

iuj = 0

for i 6= j (Jackson, 1991).

Geometrically, the procedure described above is nothing more than a principal

axis rotation of the original coordinate axes about their means. The elements of the

characteristic vectors are the direction cosines of the new axes related to the old.

The starting point for the PCA is the sample covariance matrix S (or the correlation

matrix)1. For a p-variable problem,

S =





s2
11 s2

12 . . . s2
1p

s2
12 s2

22 . . . s2
2p

. . . . . .

. . . . . .

. . . . . .

s2
1p s2

2p . . . s2
pp





1It is important to note that the PCA depends on the scale of the variables, i.e. using the covariance
or the correlation matrix leads to different PCs.
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where s2
i is the variance of the ith variable, xi, and sij is the covariance between the

ith and j th variables. If the covariances are not equal to zero, it indicates that a linear

relationship exists between these two variables, the strength of that relationship being

represented by the correlation coefficient.

The principal axis transformation obtained above will transform p correlated vari-

ables x1, x2, ..., xp into p new uncorrelated variables z1, z2, ..., zp. The coordinate axes

of these new variables are described by the characteristic vectors ui which make up the

matrix U of direction cosines used in the transformation:

z = U
′

[x − x] (3.6)

Here x and x are p × 1 vectors of observations on the original variables and their

means.

The transformed variables are called the principal components of x. The ith prin-

cipal component is

zi = u
′

i [x − x] (3.7)

and will have mean zero and variance li, the ith characteristic root.

Transformations

If one wishes to transform a set of variables x by a linear transformation z = U
′

[x − x]

whether U is orthonormal or not, the covariance matrix of the new variables, Sz, can

be determined directly from the covariance matrix of the original observations, S by

the relationship

Sz = U
′

SU (3.8)

However, when U is orthonormal, this characteristic vector solution produces an

Sz that is a diagonal matrix like L producing new variables that are uncorrelated.
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Inversion of the Principal Component Model

It is possible to obtain the original data back by using all the principal components

derived from that data. The equation

z = U
′

[x − x] (3.9)

may be inverted so that the original variables may be stated as a function of the

principal components

x = x + Uz (3.10)

because U is orthonormal and hence U−1 = U
′

.

Residual Analysis

As described above, if one uses a full set of PCs, it is possible to invert the equation

that produced the PCs from the data and, instead, determine the original data from

the PCs. However, x will be determined exactly only if all the PCs are used. If k < p

PCs are used, only an estimate x̂ of x will be produced,

x̂ = x + Uz (3.11)

where U is now p × k and z is k × 1. The above equation can be rewritten as

x = x + Uz + (x − x̂) (3.12)

In this case, the first term on the right-hand side of the equation represents the

contribution of the multivariate mean, the second term represents the contribution due

to the PCs, and the final term represents the amount that is unexplained by the PC

model - the residual. Wherever any PCs are deleted, some provision should be made

to check the residual.
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Principal Components Using a Correlation Matrix

The derivations and properties of PCs considered above have been on the eigenvectors

and eigenvalues of the covariance matrix. In practice, it is more usual to define the PCs

using the correlation matrix instead of the covariance matrix for the following reasons.

A major argument for using correlation matrices, rather than covariance matrices,

to define PCs is that the results of analyses for different sets of random variables are

more directly comparable than for analyses based on covariance matrices. A drawback

of PCA based on covariance matrices is the sensitivity of the PCs to the units of

measurement used for each element of x. If there are large differences between the

variances of the elements of x, then those variables whose variances are largest will

tend to dominate the first few PCs. It is unwise to use PCs on a covariance matrix

when x consists of measurements of different types, unless there is a strong conviction

that the units of measurements chosen for each element of x are the only ones which

make sense. Even if this condition holds, using the covariance matrix will not provide

very informative PCs if the variables have widely differing variances.

Another problem with the use of the covariance matrix is that it is more difficult to

compare informally the results from different analyses than with correlation matrices.

Sizes of variances of PCs have the same implications for different correlation matrices,

but not for different covariance matrices. Also, patterns of coefficients in PCs can

be readily compared for different correlation matrices which are giving similar PCs,

whereas informal comparisons are often much trickier for covariance matrices (Jolliffe,

1986).

3.3 PCA on Fitted Yield Curves

As we discuss in Section 3.2, the PCA attempts to describe the behaviour of a range

of correlated random variables (in this case, the various spot yields for different times

to maturity) in terms of a small number of uncorrelated principal components. This

type of analysis makes it possible to identify a relatively small number of factors that

have affected the behaviour of the entire zero-coupon curve over the period examined.
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This approach was first applied to bond yields by Litterman and Scheinkman (1991),

who found three common factors that influenced the returns on all treasury bonds.

They found that these three factors explained, on average, 98.4% of the observed vari-

ance in yields. The first factor, which they called level, represented an approximately

parallel shift higher or lower in the yield curve. A shock to this factor raised or lowered

all yields by roughly the same amount. Level was by far the most important factor,

accounting for 89.5% of the total observed variance. The second factor was called

steepness, since a positive shock to this factor lowered short term spot rates, while

raising longer term rates. This factor was found to account for a further 8.5% of total

observed variance. A positive shock to the third factor, which they called curvature,

lowered both short and long term yields, while raising mid-term yields. This had the

effect of increasing the degree of curvature in the term structure. The curvature factor

accounted for 2% of the explained variance. This model has been applied to other in-

terest rate markets with similar results, and it has become standard practice in finance

to refer to shifts in yield curves as being driven by three underlying factors: level, slope

and curvature (Johnson, 2005).

We apply the PCA to the fitted Cairns model with different C parameter sets

for three yield curves: nominal, implied inflation and real spot rates. The following

subsections discuss how much of the variability in the data is explained by the first five

principal components for each model and each yield curve. Note that since we apply

the PCA to the fitted Cairns values the first five principal components are sufficient to

explain all the variability in the data. The reason is that by fitting the Cairns model

on to the yield curve data we have already decreased the dimension of the nominal

spot rates from 50 to 5 and the dimension of the implied inflation and the real spot

rates from 46 to 5.

3.3.1 PCA on Fitted Nominal Yield Curves

Table 3.1 shows the results of the PCA of the standardized fitted nominal yield curves

obtained by four different C parameter sets which have been discussed in Chapter 2 in

details. The first row for each model (i.e. each C parameter sets) in Table 3.1 gives the

137



standard deviations of the loadings of the principal components (i.e., the square roots of

the eigenvalues of the covariance matrix). When we calculate the total of the variances

of these loadings we obtain 50 for the nominal spot rates and 46 for the implied inflation

and the real spot rates which are equal to the total number of PCs for the yield curves.

The second row presents the proportion of variance which is calculated by dividing

the corresponding eigenvector (variance) for each PC by the total eigenvectors (total

variance) and can be interpreted as the proportion of the variance explained by that

PC. The third row gives the cumulative proportion of the explained variability by the

PCs.

According to Table 3.1, the first factor, level, accounts approximately for 97% of

the explained variability for each fitted nominal yield curves. The second factor, slope,

accounts for about 2.3% and the third factor, curvature accounts for 0.3% to 0.5% for

the fitted yield curves. By looking at these proportions we can conclude that the choice

of C parameter set does not have a significant effect on the PCs for the nominal spot

rates.

Table 3.1: Importance of the PCs for the Nominal Fitted Yield Curves

Nominal Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 6.978 1.0559 0.38867 0.19144 0.08156
Model 1 Proportion of variance 0.974 0.0223 0.00302 0.00073 0.00013

Cumulative proportion 0.974 0.9961 0.99913 0.99987 1.00000

Standard deviation 6.96 1.0844 0.50555 0.2341 0.08038
Model 2 Proportion of variance 0.97 0.0235 0.00511 0.0011 0.00013

Cumulative proportion 0.97 0.9937 0.99878 0.9999 1.00000

Standard deviation 6.975 1.0604 0.4121 0.20809 0.07270
Model 3 Proportion of variance 0.973 0.0225 0.0034 0.00087 0.00011

Cumulative proportion 0.973 0.9956 0.9990 0.99989 1.00000

Standard deviation 6.97 1.0865 0.49796 0.23222 0.07728
Model 4 Proportion of variance 0.97 0.0236 0.00496 0.00108 0.00012

Cumulative proportion 0.97 0.9938 0.99880 0.99988 1.00000

138



3.3.2 PCA on Fitted Implied Inflation Yield Curves

Table 3.2 shows the standard deviations, proportions and the cumulative proportions

of the explained variability by the PCs for different C parameter sets for the fitted

implied inflation yield curves. Since the proportions of the variability explained by the

PCs are almost equal regardless of the models we can say that it does not make much

difference which C parameter set we used for filling the gaps in the implied inflation

spot rate data in terms of the obtained PCs.

Table 3.2: Importance of the PCs for the Implied Inflation Fitted Yield Curves

Implied Inflation Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 6.580 1.5970 0.34651 0.16844 0.05890
Model 1 Proportion of Variance 0.941 0.0554 0.00261 0.00062 0.00008

Cumulative Proportion 0.941 0.9967 0.99931 0.99992 1.00000

Standard deviation 6.564 1.6416 0.40956 0.22023 0.0490
Model 2 Proportion of Variance 0.937 0.0586 0.00365 0.00105 0.00005

Cumulative Proportion 0.937 0.9952 0.99889 0.99995 1.00000

Standard deviation 6.58 1.605 0.35095 0.1795 0.04068
Model 3 Proportion of Variance 0.94 0.056 0.00268 0.0007 0.00004

Cumulative Proportion 0.94 0.997 0.99926 1.0000 1.00000

Standard deviation 6.565 1.619 0.46583 0.2352 0.07031
Model 4 Proportion of Variance 0.937 0.057 0.00472 0.0012 0.00011

Cumulative Proportion 0.937 0.994 0.99869 0.9999 1.00000

3.3.3 PCA on Fitted Real Yield Curves

Table 3.3 shows the standard deviations, proportions and the cumulative proportions

of the explained variability by the PCs for different C parameter sets for the real spot

rates. Similar to nominal and implied inflation spot rates, the proportions explained

by the PCs for each model indicate that the PCA seems robust to the choice of C

parameter set.
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Table 3.3: Importance of the PCs for the Real Fitted Yield Curves

Real Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 6.596 1.5076 0.44517 0.12883 0.03918
Model 1 Proportion of Variance 0.946 0.0494 0.00431 0.00036 0.00003

Cumulative Proportion 0.946 0.9953 0.99961 0.99997 1.00000

Standard deviation 6.595 1.5108 0.44835 0.14407 0.03546
Model 2 Proportion of Variance 0.946 0.0496 0.00437 0.00045 0.00003

Cumulative Proportion 0.946 0.9951 0.99952 0.99997 1.00000

Standard deviation 6.596 1.5093 0.4445 0.13340 0.03412
Model 3 Proportion of Variance 0.946 0.0495 0.0043 0.00039 0.00003

Cumulative Proportion 0.946 0.9953 0.9996 0.99997 1.00000

Standard deviation 6.595 1.5114 0.44702 0.14326 0.03450
Model 4 Proportion of Variance 0.946 0.0497 0.00434 0.00045 0.00003

Cumulative Proportion 0.946 0.9952 0.99953 0.99997 1.00000

3.4 Robustness of the Principal Components to the

Choice of C=(c1, c2, c3, c4) Parameter Sets

Although the tables in Section 3.3 indicate that the PCA is robust to the choice of C

parameter set we will examine it in more detail in this section.

In the previous chapter we have compared the different C parameter sets in various

ways to decide the best exponential rates to be used for fitting the yield curves. The

aim was to choose the one which produces the values closest to the original yield curve

data. We will make a similar comparison in this section. However, the aim is to test

the robustness of the PCA to the choice of C parameter sets. First, we will compare

the PCs which are obtained by applying the analysis on different fitted term structures

due to using different C parameter sets by deriving the Cairns fitted yield curves using

these PCs. Then we calculate the residuals as the difference between the fitted and

the derived yield curve data using the PCs. We have discussed how to obtain the yield

curve data back by using the PCs as well as calculating the residuals in Section 3.2.

Table 3.4 shows the sum of squares of the residuals for different models (different C

parameter sets) for nominal, implied inflation and real spot rates. Second, we will draw

the loadings of the PCs obtained from the different models for each yield curve on the
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same scale to see their shapes and how much they differ from each other.

Table 3.4: Residual Analysis of the PCs for Different C parameter sets for the fitted
yield curves

Nominal Spot Rates

Number of PCs Model 1 Model 2 Model 3 Model 4

3 339.36 479.99 380.78 469.44
4 52.13 50.63 41.42 46.80
5 0.00 0.00 0.00 0.00

Implied Inflation Spot Rates

Number of PCs Model 1 Model 2 Model 3 Model 4

3 201.20 321.67 214.16 380.91
4 21.92 15.19 10.46 31.24
5 0.00 0.00 0.00 0.00

Real Spot Rates

Number of PCs Model 1 Model 2 Model 3 Model 4

3 114.57 139.11 119.81 137.21
4 9.70 7.95 7.35 7.52
5 0.00 0.00 0.00 0.00

According to the results in Table 3.4, when we use first three PCs to derive the

nominal yield curve back, the PCs obtained from Model 1 gives the smallest errors

while Model 2 gives the largest. Although we see a very small difference between

the explained variability by the first three PCs for the different models in Table 3.1,

analysing the residuals in terms of the sum of squares shows the effect of that small

difference while deriving the original nominal yield curve data back. Moreover, when we

use the first four PCs and calculate the sum of squares Model 3 produces the smallest

values. Since the first five PCs explained all the variability in the data they enable us

to obtain the original yield curves back without any errors.

For the implied inflation yield curve, the residuals obtained from Model 1 give the

best result due to the highest explained variability by the first three PCs showed in

Table 3.2. Although the difference is much smaller between the sum of squares obtained

by using the first four PCs, Model 3 is the best among the others.

We have a similar conclusion for the real yield curve analysis as well. Despite the

fact that the difference in the sum of squares is quite small, Model 1 and Model 3

perform better when we use first three and first four PCs respectively to derive the
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real spot rates back. These results are consistent with the proportion of the explained

variability by these models in Table 3.3.

As a concluding comment, we see that Model 1 is the best for all yield curves

considering the first three PCs and Model 3 is the best for all yield curves for considering

the first four PCs.

As a last step of the comparison of the models we test the robustness of the principal

components of the fitted yield curves to the choice of C parameter sets by displaying

the loadings of the first five principal components (eigenvectors) of the four models for

each yield curve.

Figure 3.1 shows the loadings of the PCs for the fitted nominal spot rates. Each

graph shows the loadings for each PCs obtained from four different models. For exam-

ple, the first graph displays the first PC for each model in different colours. We draw

the loading graphs on the same vertical scale to see the shapes of the PCs and how

they look like relative to each other. When we look at the loadings of the first PC,

levels, we see that they are quite flat and overlap on this vertical scale. The second

graphs represent the loadings of the second PC, slope. The lines are very close to each

other for all models except for small discrepancies at the very short and very long ends.

The third graphs show the loadings for the third PC which is named as curvature. Al-

though there are some differences between the curvature component loadings we can

still conclude that the choice of C parameter set does not have a significant effect on

the obtained PCs. The graphs for the loadings of the forth and fifth PCs show that

there are more varieties in the loadings based on different C parameter sets but since

the contribution of these PCs are very small we can ignore them for our further study.

Figure 3.2 and Figure 3.3 show the loadings of the PCs for the fitted implied inflation

and real spot rates respectively. The first three loadings based on the first three PCs

are mostly overlapping on the displayed vertical scale both for the implied inflation

and real yield curves. However the loadings for the last two PCs are not as close as

the previous ones as in the nominal yield curve graphs.
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Figure 3.1: Loadings of the PCs for Nominal Spot Rates for Different C Parameter
Sets
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Figure 3.2: Loadings of the PCs for Implied Inflation Spot Rates for Different C Pa-
rameter Sets
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Figure 3.3: Loadings of the PCs for Real Spot Rates for Different C Parameter Sets
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3.5 Interim Conclusion: Principal Component Anal-

ysis on the Fitted UK Term Structures

In this chapter we have discussed the PCA and its robustness to the choice of C pa-

rameter set. We compared the PCs obtained from the fitted nominal, implied inflation

and real spot rates for the different C parameters used in Cairns parametric curve. Our

analyses show that the amount of variability explained by the PCs does not change

significantly for different fitted yield curves. However, even the small changes in the

explained variability might affect the size of the residuals noticeably when we drive the

yield curves back using those PCs. Model 1 and Model 3 perform better than the other

two models in terms of producing the closest values to the fitted spot rates when we

use the first three and four PCs to obtain the yield curves back. On the other hand the

graphs of the loadings of the PCs show that the PCA is quite robust to the choice of C

parameter set due to displaying overlapping lines for the most important components.
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Chapter 4

Modelling the Term Structures

4.1 Introduction

The yield-curve models developed by macroeconomists and financial economists are

very different due to particular demands and different motives. While macroeconomists

focus on the role of expectations of inflation and future real economic activity in the

determination of yields, financial economists avoid any explicit role for such determi-

nants. These different attitudes cause a gap between the yield curve models developed.

There are various recent papers which aim to bridge this gap by formulating and esti-

mating a yield curve model that integrates macroeconomic and financial factors (Ang

and Piazzesi (2001, 2003), Hördahl et al. (2006), Wu (2002), Evans and Marshall

(1998, 2001), Kozicki and Tinsley (2001), Ang and Bekaert (2003), Dai and Philip-

pon (2005), Dewachter and Lyrio (2006), Rudebusch and Wu (2004, 2008), Diebold,

Piazzesi and Rudebusch (2004), Diebold, Rudebusch and Aruoba (2006), Diebold and

Li (2006), Diebold, Li and Yue (2007), Lildholdt, Panigirtzoglou and Peacock (2007),

Ang, Bekaert and Wei (2008), Ang, Piazzesi and Wei (2006), Kaminska (2008))

Different from the previous studies, this study aims to model the UK term structures

of interest rates and the term structure of implied inflation simultaneously using the

additional macroeconomic variables in a way that is consistent with macroeconomic

theory. As will be introduced in Section 5.2, the related literature discusses the term

structures of the interest rates but not the term structure of implied inflation. Hence,
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the work is important due to being the first and only study which models all three

yield curves simultaneously so far.

We model the yield curve data for different frequencies. Following the previous

studies on macro-finance models we start with a basic ‘yield-only’ model as a model of

just the yield curve without macroeconomic variables. Then we model the yield curves

simultaneously using the additional macroeconomic variables namely output gap and

realised inflation.

This chapter aims to present a brief literature review and the data we use in the

‘yield-only’ and ‘yield-macro’ models we will discuss in Chapter 5 and Chapter 6 re-

spectively.

4.2 Literature Review

Short-term interest rates have different meanings from a macroeconomic perspective

and a finance perspective. From a macroeconomic perspective, the short-term interest

rate is a policy instrument directly controlled by the central bank to achieve its eco-

nomic stabilization goals. From a finance perspective, the short rate is a fundamental

building block for yields of other maturities, which are just risk-adjusted averages of

expected future short rates. Much recent research has pointed out that a joint macro-

finance modelling strategy would provide the most comprehensive understanding of the

term structure of interest rates (Diebold, Piazzesi and Rudebusch, 2004).

The previous studies on macro-finance models mostly start with a basic ‘yield only’

model as a model of just the yield curve without macroeconomic variables. Then they

incorporate macroeconomic variables and estimate a ‘yield-macro’ model. The stated

aim is to examine the nature of the linkage between the factors driving the yield curve

and macroeconomic fundamentals.

Ang and Piazzesi (2001) is one of the earliest works which describes joint dynamics

of bond yields and macroeconomic variables. They investigate how macro variables

affect bond prices and the dynamics of the yield curve using a term structure model

with inflation and economic growth factors, together with latent variables. They use

148



both observed macro factors and unobserved yield variables in a Vector Autoregression

with a no-arbitrage restriction.

Ang and Piazzesi (2001) use Taylor policy rules (1993) 1 to model the short term

yields. Movements in the short rate rt are traced to movements in observed macro

variables f o
t and a component which is not explained by macro variables, an orthogonal

shock vt:

rt = a0 + a′

1f
o
t + vt (4.1)

Taylor’s original specification uses two macro variables as factors in f o
t . The first

variable is an annual inflation rate and the second variable is the output gap. Another

type of policy rule that has been proposed by Clarida et al. (2000) is a forward-looking

version of the Taylor rule. According to this rule, the central bank reacts to expected

inflation and the expected output gap. This implies that any variable that forecasts

inflation or output will enter the right-hand side of Equation 4.1. Thus, Ang and

Piazzesi (2001) specify the short rate as affine functions of factors

rt = δ0 + δ′11X
o
t + δ′12X

u
t (4.2)

Their approach is to specify the latent factors Xu
t (the superscript u stands for un-

observed) as orthogonal to the macro factors Xo
t (the superscript o stands for observed).

In this case, the short rate dynamics of the term structure model can be interpreted as

a version of the Taylor rule with the errors vt = δ′12X
u
t being unobserved factors. They

use the restrictions from no-arbitrage to separately identify latent factors.

They estimate three models: The estimation based on the current values of the

1Taylor rule is a monetary-policy rule that stipulates how much the central bank should change
the nominal interest rate in response to divergences of actual GDP from potential GDP and of actual
inflation rates from a target inflation rate. Taylor (1993) showed that the behaviour of the nominal
interest rate used by the Federal Reserve as its policy instrument was well described by the simple
formula:

it = πt + r∗t + aπ(πt − π∗

t ) + ay(yt − yt)

In this equation, it is the target short-term nominal interest rate (the federal funds rate in the US),
πt is the rate of inflation, π∗

t is the desired rate of inflation, r∗t is the assumed equilibrium real interest
rate, yt is the logarithm of real GDP, and yt is the logarithm of potential output, as determined by a
linear trend.
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macro variables is called macro model. The version with the full lagged Taylor rule is

denoted as the macro lag model. The estimation without any macro variables is called

the yields-only model. They find that the forecasting performance of a VAR improves

with the no-arbitrage restrictions and macro factors. Variance decompositions show

that macro factors explain up to 85% of the variation in bond yields. Macro factors

primarily explain movements at the short end and middle of the yield curve while

unobservable factors still account for most of the movement at the long end of the

yield curve.

Evans and Marshall (2001) looked at the different types of macroeconomic impulses

on the nominal yield curve. They use a variety of vector autoregression approaches.

They start with an atheoretical empirical exercise that simply asks whether the level,

slope and curvature of the yield curve is significantly affected by the block of macroe-

conomic variables. The only restriction they impose is to assume (following Ang and

Piazzesi (2001)) that the three yields do not feed back to the macro variables. They

confirm Ang and Piazzesi’s (2001) result that a substantial portion of the variability

of short-and medium-term yields is driven by macroeconomic factors. Unlike those

authors, they find that most of the long-run variability of long-term rates is driven by

macro impulses and that the level of the yield curve responds strongly to macro fac-

tors. The strongest responses come from innovations that induce output and inflation

responses in the same direction. Then they employ a structural vector autoregressive

model to identify macro economic impulses.

Evans and Marshall (2001) find that macroeconomic factors have a substantial,

persistent and statistically significant effect on the level of the term structure. This

finding stands in contrast to Ang and Piazzesi (2001), who find that the level of the

yield curve is driven only by latent variables orthogonal to their macro factors.

Ang and Bekaert (2003) develop a term structure model with regime switches,

time varying prices of risk and inflation to identify the real interest rate and expected

inflation components of the nominal yield curve. They find that expected inflation

drives about 80% of the variation of nominal yields at both short and long maturities,

but during normal times, all of the variation of nominal term spreads is due to expected
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inflation and inflation risk.

Rudebusch and Wu (2004) describe the economic underpinnings of the yield curve

by constructing and estimating a combined macro-finance framework. They char-

acterise the relationships between the no-arbitrage latent term structure factors and

various macroeconomic variables. The level factor is given an interpretation as the

perceived medium-term central bank inflation target. The slope factor is related to

cyclical variation in inflation and output gaps. In particular, the slope factor varies

as the central bank moves the short end of the yield curve up and down in order to

achieve its macroeconomic policy goals. In their work, Rudebusch and Wu modelled

macro factors as completely exogenous to the yield curve.

Dewachter and Lyrio (2006) model consistently long-run inflation expectations si-

multaneously with the term structure and show the importance of long-run inflation

expectations in the modelling of long-term bond yields. Their paper also provides a

macroeconomic interpretation for the latent factors found in standard finance models of

the yield curve: the ‘level’ factor represents the long-run inflation expectation of agents;

the ‘slope’ factor captures temporary business cycle conditions; and the ‘curvature’ fac-

tor expresses a clear independent monetary policy factor. Their method improves on

the approach taken in the literature to use long-run expectations of macroeconomic

variables in order to fit the yield curve. A two-step approach is used where long-run

expectations are first filtered from the data using some statistical procedure, and then

subsequently used to fit the term structure. A drawback of this method is that not all

available information is used to filter the long-run expectations since only a subset of

the data series is used.

Diebold and Li (2006) use variations on the Nelson-Siegel (1987) exponential com-

ponents framework to model the entire yield curve as a three dimensional parameter

evolving dynamically. They show that the three time varying parameters may be

interpreted as factors corresponding to level, slope and curvature, and they may be

estimated with high efficiency. They propose and estimate autoregressive models for

the factors to produce term-structure forecasts at both short and long horizons.

Diebold, et al. (2006) estimated a model that summarises the yield curve using
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latent factors (level, slope and curvature) and also includes observable macroeconomic

variables (real activity, inflation and the monetary policy instrument).

Referring to Diebold and Li (2006), they interpret the Nelson-Siegel (1987) curve as

a latent factor model in which β1, β2 and β3 are time-varying level, slope and curvature

factors and the terms that multiply these factors are factor loadings. Thus, they write

yt(τ) = Lt + St

(
1 − e−λτ

λτ

)
+ Ct

(
1 − e−λτ

λτ
− eλτ

)
(4.3)

where Lt, St and Ct are the time-varying β1, β2 and β3.

Starting with the ‘yield-only’ model, Diebold et al. (2006) suggest that a VAR(1)

model might fit the data well by examining the autocorrelations and crosscorrelations

of the three latent factors. Thus, one of the possible structures for the ‘yield-only’

model is as below:

If the dynamic movements of Lt (level), St (slope) and Ct (curvature) follow a vector

autoregressive process of first order, then the model forms a state-space system. The

transition equation, which governs the dynamics of the state vector, is





Lt − µL

St − µS

Ct − µC




=





a11 a12 a13

a21 a22 a23

a31 a32 a33









Lt−1 − µL

St−1 − µS

Ct−1 − µC




+





ηt(L)

ηt(S)

ηt(C)




(4.4)

t = 1, ..., T . The measurement equation, which relates a set of N yields to the three

unobservable factors, is





yt(τ1)

yt(τ2)

.

.

.

yt(τN)





=





1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−τ1λ

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−τ2λ

. . .

. . .

. . .

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−τNλ









Lt

St

Ct




+





ǫt(τ1)

ǫt(τ2)

.

.

.

ǫt(τN)





(4.5)

t = 1, ..., T .
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While previous works only consider a unidirectional macro linkage, because inflation

and output are assumed to be determined independently of the shape of the yield curve,

but not vice versa, Diebold et al. (2006) are particularly interested in analyzing the

potential bidirectional feedback from the yield curve to the economy and back again.

They also compare their approach with others that have been used in the literature

such as an unrestricted VAR model for a set of yields (Evans and Marshall (1998,

2001)). They indicate one potential drawback of such a representation as the results

may depend on the particular set of yields chosen. A factor representation, as above,

can aggregate information from a large set of yields. Such an approach restricts the

factors to be orthogonal to each other but does not restrict the factor loadings at all. In

contrast, their model allows correlated factors but restricts the factor loadings through

limitations on the set of admissible yield curves. For example, the Nelson-Siegel form

guarantees positive forward rates at all horizons and a discount factor that approaches

zero as maturity increases. Alternative restrictions such as no-arbitrage could also be

imposed.

Given the ability of the level, slope and curvature factors to provide a good rep-

resentation of the yield curve, Diebold et al. (2006) relate them to macroeconomic

variables and construct a yield-macro model. They use an expanded version of the

above state-space model and estimate the parameters of the new model. Their mea-

sures of the economy include three key variables: manufacturing capacity utilization,

the federal fund rates and annual price inflation. These three variables represent, re-

spectively, the level of real economic activity relative to potential, the monetary policy

instrument and the inflation rate, which are widely considered to be the minimum set

of fundamentals needed to capture basic macroeconomic dynamics. The measurement

errors associated with the yields-macro model are essentially identical to those of the

yields-only model. They find strong evidence of macroeconomic effects on the future

yield curve and somewhat weaker evidence of yield curve effects on future macroeco-

nomic developments. Hence, although bidirectional causalty is likely to be present,

effects in the tradition of Ang and Piazzesi (2001) seem more important. They also

relate their yield curve modelling approach to a traditional macroeconomic approach
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based on the expectations hypothesis. The results indicate that the expectation hy-

pothesis 2 may hold reasonably well during certain periods, but that it does not hold

across the entire sample.

Lildholdt, Panigirtzoglou and Peacock (2007) estimate yield curve models for the

United Kingdom, where the underlying determinants have a macroeconomic interpre-

tation. The first factor is an unobserved inflation target, the second factor is annual

inflation and the third factor is a ‘Taylor rule residual’, which among other things,

captures the effects of the output gap and monetary policy surprises in the Taylor

rule. They find that the long end of the yield curve is primarily driven by changes in

the unobserved inflation target. At shorter maturities, yield curve movements reflect

short-run inflation and the Taylor rule residual including the output gap effect.

Ang, Piazzesi and Wei (2006) build a dynamic model for GDP growth and yields

that completely characterizes expectations of GDP which does not permit arbitrage.

Contrary to previous findings, they predict that the short rate has more predictive

power than any term spread.

4.3 Data

To construct the ‘yield-only’ and ‘yield-macro’ models, we use nominal government

spot interest rates extracted from the conventional gilt market, real spot interest rates

and implied inflation rates extracted from the index-linked gilt market by the Bank of

England (2010). We use all available maturities i.e. 50 different maturities for nominal

rates (starting from 6 month and ending with 25 years) and 46 maturities for real rates

and implied inflation (starting from 2.5 years and ending with 25 years). As for the

macroeconomic variables we use realised inflation obtained from the Retail Price Index

and output gap provided by the OECD Economic Outlook publications.

The output gap, as defined by the OECD in the Economic Outlook, is the difference

between actual Gross Domestic Product (GDP) and potential GDP as a percent of po-

tential GDP. Potential GDP has been defined as the level of output that an economy

2The expectations hypothesis of the term structure states that movements in long rates are due to
movements in expected future short rates.
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can produce at a constant inflation rate. However an economy can temporarily produce

more than its potential level of output at the cost of creating inflationary pressures.

Therefore, while GDP is compiled according to international guidelines and observed

the same cannot be said for the potential GDP. Not only is the methodology for es-

timating potential GDP open to discussion with the estimate itself usually depending

on the estimate of capital stock, the potential labour force (which in turn depends

on the demographic factors and on the participation rates), the estimate for NAIRU

(non-accelerating inflation rate of unemployment or structural rate of unemployment)

and the level of labour efficiency (Tosetto, 2008).

The output gap is linked to the concepts of ‘capacity’ and ‘demand/supply’. When

actual output exceeds the economy’s potential, the output gap is positive and when

actual output is below potential output, the output gap is negative. A positive output

gap is also referred to as excess demand, while a negative to as excess supply. Therefore

in theory when spending in the economy is high in relation to capacity (positive output

gap), this tends to put upward pressure on prices and, accordingly inflation will also

tend to rise.

The output gap is often subject to considerable revision over time. This is due

to the fact that as for any measure of the business cycle potential activity, which is,

in this case potential output or potential GDP as a target variable is unobservable.

So the measure of the gap between actual and potential output: is not well defined,

sensitive to the choice of the estimation technique, and also sensitive to the available

dataset and therefore itself often subject to considerable revision over time. However

uncertainty about the size and the movements of the output gap is not the only one

which policymakers have to face and it does not imply that the output gap and the

potential output estimates are not useful, because they still contain information, even

if measured with error (Tosetto, 2008).

As for the realised inflation, we calculate the annual inflation by taking the difference

of the logged values of quarterly RPI data.
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Chapter 5

Modelling the UK Term Structures:

The Yield-Only Model

5.1 Introduction

We use monthly data to construct the UK ‘yield-only’ model. First we introduce

the data by presenting some descriptive statistics in Section 5.2. Section 5.3 discuses

the ‘yield-only’ model along with the principal component analysis applied on the

data, auto- and cross-correlations among the PCs, suitable models for each variable

and an analysis of the residuals respectively. Section 5.4 describes how we derive the

term structures back and examine the one-month ahead forecasts by constructing 95%

confidence intervals for the forecasts. Furthermore, we check whether our one-month

ahead forecasts satisfy the Fisher relation and whether we can forecast one of the yield

curves using the other two in Section 5.5. Finally, Section 5.6 concludes.

5.2 Data

To construct the ‘yield-only’ model, we use monthly UK nominal government spot

interest rates extracted from the conventional gilt market, monthly real spot interest

rates and monthly implied inflation rates extracted from the index-linked gilt market

by the Bank of England. As we have discussed in Chapter 2, first we fit the Cairns
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model in order to use all available maturities, i.e. 50 different maturities for nominal

rates (starting from 6 month and ending with 25 years) and 46 maturities for real rates

and implied inflation (starting from 2.5 years and ending with 25 years).

In Table 5.1, we present the summary statistics for the fitted monthly nominal and

real interest rates and implied inflation rates at representative maturities (in years).

Although a typical yield curve is upward sloping, and the long rates are less volatile and

more persistent than short rates, due to having a relatively short period of data we see

that the means of the yield curves for different maturities are quite close to each other.

Considering the standard deviations, although they do not change significantly, the

volatilities decrease for nominal and implied inflation data as the maturities get longer.

The minimum (maximum) values for the shortest maturities for all three yield curves

are lower (higher) than the minimum (maximum) values for the longest maturities. The

autocorrelation functions indicate significant correlations for one month, six months

and twelve months (one year) lags in the yield curves. These high correlations show

that the interest rates and implied inflation rates depend highly on their previous

values. Although the autocorrelation functions decay very slowly for the three yield

curves, which might indicate non-stationarity, we will assume that they are stationary.

It is more an economic assumption rather than a statistical one. We do not have a

sufficiently long period of data here to justify the stationarity of the yield curves, but

observation over far longer periods shows that yields must be stationary (Homer, 1963).

5.3 The Yield-Only Model

5.3.1 PCA on the Monthly Yield Curve Data

We apply PCA on monthly values of the fitted nominal spot rates, implied inflation

spot rates and real spot rates to obtain the three most important components of these

yield curves.

Tables 5.2, 5.3 and 5.4 show the results of the principal component analysis

based on the mean adjusted fitted yield curves. It is seen that the first five principal

components explain all the variability in the data. The first factor, level, accounts for
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Table 5.1: Descriptive Statistics for the Fitted Monthly Yield Curves

Nominal Spot Rates (%)

Maturity Mean Std.
Dev.

Med Min Max Skewness Kurtosis ρ(1) ρ(6) ρ(12)

0.5 6.79 3.22 5.81 0.28 14.82 0.55 -0.25 0.98 0.86 0.73

2.5 6.81 2.68 6.29 1.55 13.49 0.32 -0.77 0.98 0.86 0.75

5 6.93 2.53 6.45 2.41 12.95 0.30 -1.13 0.98 0.88 0.79

10 6.99 2.41 6.63 3.36 12.36 0.28 -1.41 0.98 0.91 0.84

15 6.85 2.25 6.66 3.82 11.48 0.20 -1.60 0.99 0.92 0.86

20 6.64 2.08 6.62 3.86 10.43 0.09 -1.74 0.99 0.93 0.88

25 6.41 1.93 6.56 3.75 9.41 0.04 -1.78 0.99 0.94 0.88

Implied Inflation Spot Rates (%)

Maturity Mean Std.
Dev.

Med Min Max Skewness Kurtosis ρ(1) ρ(6) ρ(12)

2.5 4.07 3.01 3.11 -6.37 10.72 0.45 0.06 0.97 0.85 0.77

5 4.10 2.03 3.28 -2.37 9.41 0.50 -0.52 0.98 0.87 0.80

10 4.14 1.64 3.61 0.50 8.49 0.57 -0.87 0.98 0.87 0.80

15 4.04 1.39 3.65 2.05 7.67 0.52 -0.95 0.97 0.88 0.80

20 3.86 1.14 3.74 2.16 6.64 0.32 -1.10 0.97 0.87 0.79

25 3.66 0.92 3.79 2.06 5.56 0.07 -1.26 0.97 0.85 0.77

Real Spot Rates (%)

Maturity Mean Std.
Dev.

Med Min Max Skewness Kurtosis ρ(1) ρ(6) ρ(12)

2.5 2.61 1.74 2.54 -2.29 7.90 -0.04 -0.12 0.91 0.57 0.37

5 2.74 0.95 2.95 -0.23 5.26 -0.47 -0.04 0.91 0.62 0.45

10 2.85 0.97 3.02 0.55 4.94 -0.24 -1.10 0.96 0.83 0.73

15 2.88 1.07 3.13 0.72 4.90 -0.19 -1.32 0.98 0.90 0.83

20 2.86 1.14 3.16 0.63 4.74 -0.21 -1.38 0.99 0.93 0.86

25 2.82 1.21 3.21 0.49 4.72 -0.24 -1.39 0.99 0.93 0.88

96%, 95% and 95% for the nominal, implied inflation and real spot rates respectively.

Slope factors account for 4%, 5% and 4% and curvatures account for less than 1% for

all yield curves. Thus, the first three principal components explain more than 99% of

the variability in the term structures. Although the curvature factors seem to explain

very little, it is important to include this component to capture the hump shape of the

yield curves for some specific dates.

Figure 5.1 shows the loadings of the first three principal components for the monthly

fitted yield curves. The first factor, level is relatively flat and represents an approxi-

mately parallel shift in the yield curve; the second factor, slope takes negative values
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Table 5.2: Importance of the PCs for the Fitted Nominal Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 16.249 3.3570 0.80963 0.54153 0.18836
Proportion of variance 0.956 0.0408 0.00237 0.00106 0.00013
Cumulative proportion 0.956 0.9964 0.99881 0.99987 1.00000

Table 5.3: Importance of the PCs for the Fitted Implied Inflation Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 9.340 2.0980 0.66632 0.38008 0.11611
Proportion of variance 0.946 0.0477 0.00481 0.00157 0.00015
Cumulative proportion 0.946 0.9935 0.99829 0.99985 1.00000

Table 5.4: Importance of the PCs for the Fitted Real Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 7.127 1.495 0.4556 0.16869 0.03995
Proportion of variance 0.954 0.042 0.0039 0.00053 0.00003
Cumulative proportion 0.954 0.996 0.9994 0.99997 1.00000
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Figure 5.1: Loadings of the PCs for the Monthly Fitted Yield Curves

on the short maturities and positive values on the long maturities to capture the slope

of the curve and the third factor, curvature takes negative values for the short and long

maturities and positive values for the medium maturities to give the hump shape to the

yield curve. The three components for the three yield curves have similar shapes. The

slope and curvature factors of the nominal and real spot rates seem much closer than

the corresponding factors of the implied inflation spot rates. The similarity between

the first three principal components of the yield curves may indicate the existence of
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some common principal components which will be discussed as a further research in

Chapter 8.

Figure 5.2, 5.3 and 5.4 present the time series graphs of the first three PCs of the

monthly fitted yield curves for the nominal, implied inflation and real spot rates on

the same scale. Drawing the time series graphs of the PCs on the same scale make it

easier to see the explanatory power of these components of the variability in the data.

As the percentage of the variability explained by the PC decreases, the graph becomes

flatter. This explains why the graphs for the second and third PCs are much flatter

than the first one for three yield curves.

The graphs of the first PCs of the nominal and real spot rates show that the levels

of the interest rates are mostly decreasing since 1995 whereas the level of the implied

inflation is relatively stable. This might be consistent with the “inflation targeting

policy” of the bank of England after 1995. The relative stability of the implied inflation

level factor after 1998 can be explained by the independence of the Bank of England

to set the monetary policy in 19971.

1In 1997, as well as modifying the inflation target, the Bank of England was given independence
to set interest rates by the new Government. This was a major change in the policy framework.
It meant interest rates would no longer be set by politicians. The Bank would act independently
of Government, though the inflation target would be set by the Chancellor. The Bank would be
accountable to parliament and the wider public (Bank of England, 2010).
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Figure 5.2: PCs of the Monthly Fitted Nominal Spot Rates
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Figure 5.3: PCs of the Monthly Fitted Implied Inflation Spot Rates
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Figure 5.4: PCs of the Monthly Fitted Real Spot Rates
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5.3.2 Correlations Between the Monthly Yield Factors

Table 5.5, Table 5.6 and Table 5.7 show the lagged correlations between the PCs

of the three yield curves. The lag k value in the tables is the correlation between

x[t] and y[t − k] where x[t] is the variable whose autocorrelation function has been

displayed by red colour and y[t − k] represents all the other variables. We assume

that all the variables are stationary. We use N , I and R as the abbreviations for the

nominal, implied inflation and real spot rates respectively. PC represents the principal

component.

Chatfield (2004) states that if a time series is completely random, and the sample

size is large, the lagged-correlation coefficient is approximately normally distributed

with mean 0 and variance 1/n. Assuming normality and independence, the standard

error of each autocorrelation and crosscorrelation coefficient is 1/
√

n where n is the

number of observations in the series. Since we have 300 monthly observations, the

standard error of the coefficients is equal to 1/
√

300 = 0.058. We assume that the

coefficients which are greater or less than three standard errors (i.e. 3×0.058 = 0.174)

are significant.

As seen from the below tables, all PCs have strong auto-correlations. The auto-

correlation functions of the first PCs (NPC1, IPC1 and RPC1) decay very slowly

and even for the lag 12 the auto-correlation coefficients are higher than 0.80. This

might indicate non-stationarity in the data. As we have discussed previously, our

analysis is based on the assumption that the spot rates are stationary. We also take

the first difference of each PC and calculate the correlation coefficients. Taking the

difference removes the auto-correlations and produce stationary ‘random walk’ series.

Since modelling the yield curves using AR processes is economically reasonable we will

continue our study by using the yield curve data themselves instead of the changes in

the yield curves. Another reason to use the levels of the yield curves instead of the

yield changes is that the economic theory states that the levels of the interest rates

and the macroeconomic variables are connected.

The high auto-correlations in the first PCs indicate that the level of the spot rates

highly depends on the level of the previous month rates. There is a significant negative
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simultaneous and lagged correlation between the level and slope factors of the spot

rates.

The lagged cross-correlations between the first PCs of the yield curves are quite

high. This is consistent with the Fisher relation which defines the nominal interest

rates as the sum of the expected future inflation (implied inflation) and real interest

rates. The second PCs (slope factors) and the third PCs (curvature factors) of the

yield curves also have significant simultaneous and lagged cross-correlations.
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Table 5.5: Lagged Correlations between the Monthly Yield Curves - I

NPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) 1.000 0.000 0.000 0.962 -0.039 -0.020 0.926 0.043 0.051
(1) 0.986 0.010 -0.049 0.940 -0.031 -0.049 0.924 0.044 0.053
(2) 0.970 0.027 -0.087 0.917 -0.021 -0.066 0.919 0.052 0.055
(3) 0.955 0.045 -0.120 0.898 -0.013 -0.076 0.913 0.067 0.051
(4) 0.940 0.061 -0.145 0.880 -0.004 -0.089 0.907 0.080 0.045
(5) 0.926 0.077 -0.169 0.863 0.004 -0.104 0.900 0.096 0.036
(6) 0.913 0.092 -0.191 0.848 0.008 -0.116 0.892 0.115 0.017
(7) 0.901 0.103 -0.206 0.836 0.005 -0.127 0.886 0.136 0.001
(8) 0.892 0.112 -0.216 0.825 0.003 -0.142 0.881 0.151 -0.008
(9) 0.882 0.121 -0.225 0.812 0.005 -0.156 0.876 0.158 -0.008
(10) 0.870 0.133 -0.229 0.800 0.009 -0.162 0.870 0.167 -0.008
(11) 0.858 0.143 -0.234 0.786 0.013 -0.169 0.863 0.174 -0.011
(12) 0.845 0.153 -0.237 0.771 0.017 -0.176 0.854 0.180 -0.013

NPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) 0.000 1.000 0.000 -0.018 0.783 -0.155 0.115 0.432 0.156
(1) 0.004 0.967 0.036 -0.014 0.733 -0.162 0.118 0.439 0.129
(2) 0.008 0.928 0.060 -0.010 0.678 -0.170 0.123 0.442 0.120
(3) 0.013 0.891 0.075 -0.006 0.629 -0.181 0.127 0.444 0.117
(4) 0.016 0.849 0.095 -0.005 0.577 -0.168 0.131 0.435 0.102
(5) 0.020 0.803 0.107 -0.006 0.526 -0.164 0.136 0.413 0.099
(6) 0.024 0.757 0.117 -0.009 0.482 -0.158 0.145 0.381 0.107
(7) 0.027 0.716 0.116 -0.013 0.448 -0.144 0.153 0.344 0.097
(8) 0.030 0.671 0.107 -0.018 0.412 -0.139 0.161 0.307 0.084
(9) 0.033 0.626 0.100 -0.019 0.370 -0.133 0.165 0.289 0.064
(10) 0.038 0.583 0.097 -0.017 0.332 -0.128 0.171 0.270 0.045
(11) 0.049 0.539 0.090 -0.011 0.295 -0.124 0.181 0.245 0.019
(12) 0.064 0.496 0.089 0.001 0.264 -0.104 0.195 0.212 -0.008

NPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) 0.000 0.000 1.000 0.053 -0.094 0.390 -0.046 -0.093 0.117
(1) 0.011 -0.033 0.875 0.052 -0.115 0.300 -0.027 -0.104 0.130
(2) 0.012 -0.048 0.771 0.044 -0.136 0.243 -0.018 -0.088 0.145
(3) 0.015 -0.055 0.668 0.038 -0.141 0.218 -0.008 -0.080 0.147
(4) 0.017 -0.064 0.581 0.030 -0.140 0.183 0.002 -0.090 0.166
(5) 0.021 -0.071 0.493 0.026 -0.131 0.145 0.015 -0.102 0.179
(6) 0.025 -0.067 0.412 0.027 -0.117 0.122 0.020 -0.092 0.171
(7) 0.032 -0.073 0.345 0.033 -0.124 0.105 0.026 -0.074 0.153
(8) 0.041 -0.074 0.268 0.039 -0.128 0.080 0.035 -0.052 0.149
(9) 0.051 -0.074 0.214 0.045 -0.114 0.047 0.048 -0.054 0.174
(10) 0.061 -0.065 0.172 0.052 -0.089 0.047 0.058 -0.063 0.192
(11) 0.069 -0.052 0.117 0.057 -0.054 0.024 0.068 -0.071 0.219
(12) 0.077 -0.039 0.052 0.063 -0.024 0.015 0.076 -0.071 0.250
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Table 5.6: Lagged Correlations between the Monthly Yield Curves - II

IPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) 0.962 -0.018 0.053 1.000 0.000 0.000 0.792 0.143 0.084
(1) 0.956 -0.017 0.006 0.977 0.002 -0.032 0.807 0.117 0.101
(2) 0.945 -0.007 -0.031 0.951 0.010 -0.045 0.817 0.092 0.118
(3) 0.935 0.006 -0.061 0.931 0.017 -0.045 0.820 0.089 0.119
(4) 0.925 0.020 -0.080 0.916 0.023 -0.049 0.821 0.095 0.115
(5) 0.915 0.033 -0.105 0.898 0.027 -0.064 0.822 0.099 0.107
(6) 0.904 0.047 -0.133 0.882 0.027 -0.076 0.822 0.116 0.087
(7) 0.896 0.059 -0.154 0.870 0.024 -0.088 0.823 0.134 0.070
(8) 0.890 0.069 -0.169 0.859 0.022 -0.100 0.824 0.145 0.056
(9) 0.883 0.079 -0.185 0.849 0.025 -0.122 0.824 0.151 0.056
(10) 0.875 0.094 -0.193 0.838 0.028 -0.139 0.824 0.161 0.064
(11) 0.867 0.106 -0.203 0.827 0.033 -0.155 0.822 0.169 0.068
(12) 0.857 0.120 -0.209 0.815 0.038 -0.162 0.818 0.178 0.066

IPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) -0.039 0.783 -0.094 0.000 1.000 0.000 -0.054 -0.011 0.264
(1) -0.045 0.781 -0.068 -0.004 0.946 -0.016 -0.057 0.053 0.249
(2) -0.047 0.778 -0.050 -0.008 0.895 -0.030 -0.053 0.105 0.257
(3) -0.051 0.772 -0.038 -0.014 0.856 -0.041 -0.049 0.137 0.251
(4) -0.054 0.761 -0.023 -0.019 0.815 -0.034 -0.047 0.160 0.231
(5) -0.058 0.745 -0.016 -0.025 0.775 -0.045 -0.047 0.178 0.226
(6) -0.058 0.717 -0.002 -0.033 0.726 -0.048 -0.038 0.176 0.224
(7) -0.058 0.690 -0.001 -0.042 0.685 -0.044 -0.028 0.164 0.211
(8) -0.058 0.665 0.004 -0.048 0.647 -0.061 -0.019 0.160 0.215
(9) -0.057 0.639 0.028 -0.050 0.603 -0.056 -0.014 0.165 0.214
(10) -0.053 0.612 0.051 -0.051 0.563 -0.051 -0.004 0.156 0.208
(11) -0.044 0.584 0.075 -0.046 0.524 -0.056 0.008 0.152 0.201
(12) -0.028 0.554 0.097 -0.033 0.489 -0.048 0.025 0.140 0.185

IPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) -0.020 -0.155 0.390 0.000 0.000 1.000 -0.078 -0.402 -0.473
(1) -0.021 -0.168 0.351 -0.001 -0.005 0.826 -0.076 -0.381 -0.433
(2) -0.018 -0.173 0.342 0.001 -0.024 0.719 -0.070 -0.358 -0.368
(3) -0.015 -0.181 0.332 0.000 -0.043 0.653 -0.063 -0.349 -0.310
(4) -0.010 -0.196 0.335 0.000 -0.067 0.576 -0.055 -0.352 -0.238
(5) -0.004 -0.211 0.332 0.009 -0.087 0.493 -0.051 -0.340 -0.182
(6) -0.004 -0.215 0.325 0.007 -0.098 0.434 -0.051 -0.333 -0.108
(7) -0.001 -0.235 0.290 0.000 -0.111 0.356 -0.038 -0.351 -0.059
(8) 0.003 -0.241 0.244 -0.005 -0.123 0.304 -0.025 -0.356 -0.015
(9) 0.006 -0.241 0.233 -0.008 -0.134 0.260 -0.014 -0.343 0.032
(10) 0.011 -0.234 0.227 -0.008 -0.140 0.235 -0.002 -0.334 0.071
(11) 0.023 -0.235 0.190 -0.009 -0.136 0.174 0.023 -0.355 0.122
(12) 0.025 -0.222 0.146 -0.018 -0.130 0.126 0.041 -0.349 0.171
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Table 5.7: Lagged Correlations between the Monthly Yield Curves - III

RPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) 0.926 0.115 -0.046 0.792 -0.054 -0.078 1.000 0.000 0.000
(1) 0.906 0.129 -0.088 0.776 -0.045 -0.098 0.980 0.029 -0.017
(2) 0.886 0.145 -0.121 0.762 -0.041 -0.117 0.958 0.072 -0.036
(3) 0.869 0.160 -0.153 0.746 -0.037 -0.136 0.942 0.104 -0.046
(4) 0.851 0.169 -0.183 0.728 -0.030 -0.155 0.928 0.118 -0.057
(5) 0.834 0.181 -0.203 0.713 -0.023 -0.166 0.912 0.138 -0.067
(6) 0.820 0.189 -0.216 0.702 -0.017 -0.173 0.897 0.152 -0.082
(7) 0.806 0.193 -0.221 0.690 -0.020 -0.178 0.883 0.168 -0.097
(8) 0.795 0.194 -0.226 0.681 -0.024 -0.190 0.873 0.179 -0.102
(9) 0.783 0.196 -0.229 0.668 -0.026 -0.192 0.863 0.183 -0.105
(10) 0.769 0.198 -0.231 0.656 -0.025 -0.185 0.850 0.187 -0.117
(11) 0.756 0.198 -0.232 0.642 -0.024 -0.177 0.839 0.185 -0.132
(12) 0.740 0.197 -0.235 0.626 -0.023 -0.181 0.827 0.182 -0.137

RPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) 0.043 0.432 -0.093 0.143 -0.011 -0.402 0.000 1.000 0.000
(1) 0.072 0.372 -0.032 0.152 -0.030 -0.357 0.043 0.864 0.008
(2) 0.095 0.306 0.013 0.156 -0.045 -0.312 0.078 0.720 0.006
(3) 0.117 0.250 0.059 0.171 -0.071 -0.272 0.097 0.637 0.008
(4) 0.137 0.203 0.103 0.186 -0.101 -0.225 0.116 0.578 -0.001
(5) 0.152 0.152 0.129 0.188 -0.134 -0.183 0.140 0.498 -0.012
(6) 0.162 0.119 0.139 0.189 -0.153 -0.157 0.155 0.446 -0.009
(7) 0.172 0.099 0.148 0.192 -0.151 -0.122 0.169 0.396 -0.010
(8) 0.181 0.064 0.148 0.192 -0.157 -0.075 0.182 0.326 -0.053
(9) 0.190 0.032 0.116 0.197 -0.167 -0.078 0.190 0.289 -0.092
(10) 0.199 0.002 0.088 0.203 -0.183 -0.101 0.197 0.268 -0.104
(11) 0.211 -0.029 0.059 0.211 -0.201 -0.095 0.209 0.242 -0.127
(12) 0.222 -0.054 0.042 0.221 -0.210 -0.077 0.216 0.209 -0.160

RPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

(0) 0.051 0.156 0.117 0.084 0.264 -0.473 0.000 0.000 1.000
(1) 0.041 0.185 0.035 0.079 0.272 -0.401 -0.011 0.061 0.857
(2) 0.028 0.221 -0.032 0.079 0.277 -0.387 -0.033 0.159 0.756
(3) 0.025 0.260 -0.088 0.081 0.296 -0.393 -0.037 0.232 0.697
(4) 0.020 0.287 -0.142 0.077 0.313 -0.378 -0.038 0.271 0.618
(5) 0.020 0.306 -0.171 0.075 0.322 -0.371 -0.033 0.298 0.580
(6) 0.027 0.325 -0.173 0.088 0.323 -0.345 -0.029 0.336 0.530
(7) 0.027 0.337 -0.152 0.101 0.315 -0.320 -0.043 0.385 0.485
(8) 0.030 0.337 -0.129 0.110 0.297 -0.308 -0.045 0.416 0.468
(9) 0.028 0.333 -0.131 0.111 0.287 -0.295 -0.050 0.428 0.446
(10) 0.019 0.329 -0.124 0.108 0.286 -0.253 -0.066 0.439 0.402
(11) 0.008 0.338 -0.116 0.111 0.292 -0.229 -0.090 0.478 0.355
(12) 0.010 0.329 -0.102 0.125 0.283 -0.207 -0.104 0.499 0.321
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5.3.3 Fitting AR(1) Models to the Monthly PCs

Once we examine the correlations between the PCs of the yield curves we get an

intuition for a possible vector autoregressive model for the series. Initially we start

with a vector autoregressive model for each PC but after eliminating the insignificant

variables we find that the AR(1) process is the most appropriate model for each PC.

Before introducing the models we describe how we obtain the PCs of the yield

curves as time series in formulas.

Let XM be the matrix of monthly yield curve data for the period 1985-2009 where:

XMN
: Nominal spot rates (300 × 50)

XMI
: Implied inflation spot rates (300 × 46)

XMR
: Real spot rates (300 × 46)

As described in Chapter 3, the first three PCs can be obtained by decomposing

the covariance (or correlation) matrix into the eigenvectors and eigenvalues. This

decomposition can be shown for the nominal spot rates as below:

U t
NCNUN = LN (5.1)

where

CN : covariance matrix of the nominal spot rates (50 × 50)

UN : matrix of eigenvector of CN (50 × 3)

LN : eigenvalues of CN (3 × 3) (diagonal matrix)

The eigenvectors extracted using Equation 5.1 are called the loadings of the PCs.

Using the first three loadings which explain more than 99% of the variability in the

data and the nominal yield curve data we obtain the first three PCs for the nominal

rates.

MN = XMN
UN (5.2)

where
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MN : principal components of the monthly nominal spot rates (300 × 3)

Let M be the matrix of the monthly PCs where:

MNL
: level component of the nominal spot rates (300 × 1)

MNS
: slope component of the nominal spot rates (300 × 1)

MNC
: curvature component of the nominal spot rates (300 × 1)

MIL
: level component of the implied inflation spot rates (300 × 1)

MIS
: slope component of the implied inflation spot rates (300 × 1)

MIC
: curvature component of the implied inflation spot rates (300 × 1)

MRL
: level component of the real spot rates (300 × 1)

MRS
: slope component of the real spot rates (300 × 1)

MRC
: curvature component of the real spot rates (300 × 1)

The structure of the ‘yield-only’ model is as below:

M [t] − µM = A (M [t − 1] − µM ) + ǫM [t] (5.3)

where:

µM is the matrix of long run mean of the variables, A is the coefficient matrix for the

first lag of the explanatory variables and ǫM [t] ∼ (0, ΣM), i.e. the residuals with zero

mean and ΣM variance-covariance matrix. The autoregressive coefficients in matrix A

are very close to 1 which indicates that the models are close to RW models. However,

when we examine the standard errors of the parameters presented in Appendix A we

see that except for the nominal slope and real level factors, all the coefficients are

significantly different from 1, i.e. they are at least two standard errors far from 1.

168



M =





MNL

MNS

MNC

MIL

MIS

MIC

MRL

MRS

MRC





(5.4)

µ̂t
M =

[
0 0 0 0 0 0 0 0 0

]
(5.5)

Â =





0.992 0 0 0 0 0 0 0 0

0 0.98 0 0 0 0 0 0 0

0 0 0.88 0 0 0 0 0 0

0 0 0 0.98 0 0 0 0 0

0 0 0 0 0.95 0 0 0 0

0 0 0 0 0 0.83 0 0 0

0 0 0 0 0 0 0.993 0 0

0 0 0 0 0 0 0 0.88 0

0 0 0 0 0 0 0 0 0.86





(5.6)
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Σ̂M =





3.28

−0.41 0.59

0.38 −0.04 0.14

1.99 −0.07 0.22 2.49

0.42 −0.33 0.08 0.46 0.44

−0.09 −0.07 −0.04 −0.04 0.02 0.12

1.04 −0.22 0.16 −0.43 −0.12 −0.04 1.30

−0.09 0.16 −0.03 0.41 0.24 0.03 −0.44 0.53

0.05 −0.01 0.02 −0.01 0.01 0.04 0.05 0.00 0.06





(5.7)

We display the correlation matrix, ρ̂M , for the residuals below. As explained in

the previous section, we assume that the coefficients which are greater or less than

three standard errors (0.17) are significant. Therefore, we see several significant corre-

lations between the residuals in the matrix ρ̂M . These significant correlations may be

caused by various reasons. One reason is that we exclude the simultaneous explanatory

variables in the modelling work. As we observe in Tables 5.5, 5.6 and 5.7, there are

very strong simultaneous correlations particularly between the corresponding PCs of

the three yield curves. The high correlations between the residuals for the level and

slope factor models may be due to these strong simultaneous correlations between the

level and slope components. Another correlation that requires explanation is the one

between the residuals of level and curvature models of the nominal rates. Although

the PCs themselves are independent within each yield curve, there is a strong negative

correlation (0.58) between the residuals. This might be some statistical artifact which

does not really indicate a correlation between those two set of residuals.
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ρ̂M =





1.00

-0.29 1.00

0.58 −0.14 1.00

0.72 −0.06 0.38 1.00

0.32 -0.57 0.29 0.41 1.00

−0.14 -0.25 -0.34 −0.08 0.07 1.00

0.49 -0.23 0.36 -0.24 −0.14 −0.09 1.00

−0.08 0.30 −0.11 0.41 0.50 0.14 -0.58 1.00

0.14 −0.04 0.19 −0.02 0.04 0.47 0.21 −0.03 1.00





(5.8)

We present each AR(1) model in Appendix A with the standard errors of the

parameters and the explained variabilities (R2
adj).
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5.3.4 Residual Analysis

Once we fit the AR(1) models we obtain the residuals using the estimated parameters

and apply some statistical tests on the residuals. To begin with, we inspect whether

the residuals are independent and whether there is an ARCH effect. We calculate the

auto-correlation coefficients up to lag 36 (i.e. three years) and examine if there is any

significant correlations or pattern in the auto-correlation functions. An indication of

ARCH is that the residuals will be uncorrelated but the squared residuals will show

auto-correlation.

Figure 5.5 shows the auto-correlation plots for the residuals of the nominal princi-

pal components. Although some of the correlation coefficients are slightly significant

considering both the residuals and the squared residuals, they are not large. Therefore

we can conclude that the residuals can be assumed to be independent and there is no

ARCH effect in the data, noting that we use data at monthly intervals; there might be

short term, e.g. daily, ARCH effect which we cannot observe.

Figure 5.6 shows the auto-correlation plots for the residuals of the implied inflation

principal components. Some of the auto-correlation coefficients of the residuals are

significant but not large. On the other hand, the auto-correlation coefficients of the

squared residuals for the level factor display some high and significant correlations

particularly for the first three lags. When we analyse the partial auto-correlation

coefficients for this model, we see that for the level factor we could try to fit an ARCH

model with order one. This might be a further study.

Figure 5.7 shows the auto-correlation plots for the residuals of the real principal

components. The residuals seem independent although there are some significant auto-

correlation coefficients as we have for the nominal and implied inflation residuals. The

auto-correlation coefficients for the squared residuals of the level and slope components

indicate some ARCH effects. The autocorrelation coefficient for the first lag of the

slope component is quite high (0.752). The partial auto-correlation function of this

component also shows two significant and high correlations. As for the other two

components, the partial auto-correlation functions indicate some significant but low

correlations which might be ignored.
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Figure 5.5: Auto-correlation Functions for the Nominal Spot Rates Residuals

Table 5.8 shows the descriptive statistics such as mean, standard deviation, skew-

ness and excess kurtosis for each set of residuals. All the means are either zero or

very close to zero while the standard deviations vary. The skewness of the slope fac-

tors residuals for the nominal and implied inflation models are relatively high. Except

for the nominal level factor residuals all the kurtosis of the residuals are quite high.

This might indicate a violation of the normality assumption. Since the kurtosis co-

efficients are high the normal distribution is not suitable to fit these residuals. The

Jarque-Bera test results also show that the residuals except for the nominal level factor

model are not distributed normally. According to the statistics presented in Table 5.8,

we need a symmetric distribution like a normal distribution with a higher kurtosis

for the residuals. We consider two distributions which might be appropriate for the
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Figure 5.6: Auto-correlation Functions for the Implied Inflation Spot Rates Residuals

monthly residuals. One distribution is the Student′s t distribution and the other is

the logistic distribution. The Kolmogorov-Smirnov goodness of fit test2 indicates that

the logistic distribution fits each set of residuals with very close location (close to 0)

and scale (close to 0.5) parameters at given levels in the Table.

2The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with a specific
distribution.
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Figure 5.7: Auto-correlation Functions for the Real Spot Rates Residuals

Table 5.8: Residual Analysis of the Yield-Macro Model-I

Residuals Standardised Residuals
Mean Standard

Deviation
Skewness Excess

Kurtosis
Logistic

Distribution
(µ = 0, σ = 0.5)
KS-test p-value

Level 0.0000 1.8048 0.2032 1.7668 0.9763
Nominal Slope 0.0167 0.7742 1.6398 11.5738 0.1663

Curvature -0.0039 0.3710 -0.1266 3.6505 0.5868
Level -0.0832 1.5847 -0.6137 4.3705 0.0992

Implied Slope 0.0025 0.6590 1.3838 11.0622 0.0503
Inflation Curvature -0.0089 0.3564 0.7801 5.6449 0.2090

Level 0.0000 1.1416 -0.6069 5.1429 0.8143
Real Slope 0.0198 0.7325 0.7886 13.9309 0.0396

Curvature 0.0021 0.2395 -0.1957 5.8755 0.0672
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5.4 Forecasting

After modelling the PCs of the yield curves, we test these models by forecasting one-

month ahead spot rates using the estimated parameters. In order to compare our

forecasts with the fitted spot rates we have fitted the models to the data recursively;

starting with the first 24 months and ending with 299 months. As we increase the

data period, we apply the PCA, re-fit the model and estimate the parameters for

that period. Afterwards, we use the parameters for each period to forecast the next

month’s level, slope and curvature factors of the spot rates. As a final step, we convert

the forecasts for PCs into the spot rates, i.e. we obtain the fitted spot rates by using

these three PCs. As we discuss in Chapter 3, since we use only the first three PCs to

obtain the fitted spot rates there will be some error between the fitted spot rates and

the converted spot rates. We obtain the fitted yield curve back as below.

X̂MN
= MNU t

N (5.9)

where

X̂MN
: forecast for the fitted nominal spot rates (i × 3)

MN : principal components of the monthly nominal spot rates (i × 3)

UN : eigenvectors of the covariance of the nominal spot rates (50 × 3)

i = 25, 26, ..., 300

We apply the PCA on the data recursively and use only the available information

up to specific time to forecast the next month’s rate. It would be interesting to look

at n-month ahead forecasts where n > 1 since the models are designed for actuarial

applications. However, due to data constraints the forecasting period needs to be

modest.

We also calculate the variance for forecasts for the nominal spot rates for each

maturity of each observation as below:
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V ar(X̂MN
) = V ar(MNU t

N) (5.10)

= UNV ar(MN)U t
N

= UNΣiU
t
N

where

Σi: the variance-covariance matrix of the residuals for the fitted nominal spot rates

(3 × 3)

We calculate the variance-covariance matrix of the residuals for each set of recursive

estimates to construct the confidence intervals for the forecasts.

This sort of ‘in-sample forecasting’ enables us to compare how far our forecasts are

from the fitted spot rates. Furthermore, we also calculate the 95% confidence intervals

for these forecasts by assuming the residuals have a logistic distribution with the spec-

ified parameters discussed in Section 5.4 (we use ∓1.83 as the quantiles of the logistic

distribution for the 95% confidence intervals). Figure 5.8, Figure 5.9 and Figure 5.10

show one-month ahead forecasts with 95% confidence bands for the nominal, implied

inflation and the real spot rates respectively. The one-month ahead forecasts seem

quite close to the fitted spot rates for all three yield curves. It is not surprising that

the forecasts seem like ‘random walk’ forecasts since the AR(1) coefficients are very

close to 1. The confidence intervals shrink as the data period extends. Due to having

more information by fitting the models on to longer data sets the residuals and thus the

variance of the residuals get smaller. This leads to smaller confidence interval bands.

We can examine the performance of our forecasts by calculating the percentage of the

fitted spot rates out of the confidence bands for each maturity and each yield curve.

Since we construct the 95% confidence intervals we expect about 5% of the fitted values

are out of the bands. Table 5.9 shows the number and ratio of the spot rates which

are not within the upper and lower confidence bands for different maturities for the
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nominal, implied inflation and the real spot rates. The number of the spot rates out

of the interval increase as the maturity gets longer for the nominal and real spot rates.

This also increases the percentage of the observations out of the bands. The overall

averages for the nominal, implied inflation and the real yield curves are 5.1%, 4.1%

and 6.8% respectively. Since these percentages are not far from 5% we can conclude

that our forecasts are good enough.

178



0
5

10
15

Monthly Observations (1985−2009)

N
om

in
al

 R
at

es
 0

.5
 y

ea
rs

1985 1990 1995 2000 2005 2010

2
4

6
8

10
12

14

Monthly Observations (1985−2009)

N
om

in
al

 R
at

es
 2

.5
 y

ea
rs

1985 1990 1995 2000 2005 2010

Fitted Values
Forecasts 2

4
6

8
10

12
14

Monthly Observations (1985−2009)

N
om

in
al

 R
at

es
 5

 y
ea

rs

1985 1990 1995 2000 2005 2010

2
4

6
8

10
12

Monthly Observations (1985−2009)

N
om

in
al

 R
at

es
 1

0 
ye

ar
s

1985 1990 1995 2000 2005 2010

4
6

8
10

Monthly Observations (1985−2009)

N
om

in
al

 R
at

es
 2

0 
ye

ar
s

1985 1990 1995 2000 2005 2010

3
4

5
6

7
8

9
10

Monthly Observations (1985−2009)

N
om

in
al

 R
at

es
 2

5 
ye

ar
s

1985 1990 1995 2000 2005 2010

Figure 5.8: 1-Month Ahead Forecasts with Upper and Lower Confidence Limits for Nominal Spot Rates (%)
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Figure 5.9: 1-Month Ahead Forecasts with Upper and Lower Confidence Limits for Implied Inflation Spot Rates (%)
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Figure 5.10: 1-Month Ahead Forecasts with Upper and Lower Confidence Limits for Real Spot Rates (%)
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Table 5.9: Number and the Ratio of the Observations Outside of the 95% Confidence
Bounds for the 1-Month Ahead Forecasts

Maturity Nominal Implied Inflation Real
Number Ratio Number Ratio Number Ratio

0.5 8 0.029
1 10 0.036

1.5 10 0.036
2 9 0.033

2.5 9 0.033 16 0.058 16 0.058
3 12 0.044 11 0.040 13 0.047

3.5 13 0.047 10 0.036 13 0.047
4 10 0.036 12 0.044 14 0.051

4.5 10 0.036 12 0.044 13 0.047
5 10 0.036 13 0.047 14 0.051

5.5 9 0.033 13 0.047 14 0.051
6 9 0.033 12 0.044 14 0.051

6.5 9 0.033 12 0.044 14 0.051
7 10 0.036 13 0.047 14 0.051

7.5 10 0.036 11 0.040 14 0.051
8 9 0.033 11 0.040 15 0.055

8.5 10 0.036 11 0.040 15 0.055
9 11 0.040 11 0.040 14 0.051

9.5 11 0.040 12 0.044 15 0.055
10 11 0.040 12 0.044 13 0.047

10.5 11 0.040 11 0.040 12 0.044
11 12 0.044 12 0.044 13 0.047

11.5 14 0.051 11 0.040 13 0.047
12 14 0.051 12 0.044 13 0.047

12.5 13 0.047 13 0.047 15 0.055
13 14 0.051 13 0.047 18 0.065

13.5 14 0.051 14 0.051 20 0.073
14 14 0.051 14 0.051 21 0.076

14.5 14 0.051 15 0.055 21 0.076
15 14 0.051 15 0.055 23 0.084

15.5 14 0.051 14 0.051 23 0.084
16 13 0.047 14 0.051 25 0.091

16.5 14 0.051 12 0.044 24 0.087
17 13 0.047 11 0.040 21 0.076

17.5 13 0.047 11 0.040 20 0.073
18 13 0.047 11 0.040 20 0.073

18.5 13 0.047 9 0.033 21 0.076
19 15 0.055 9 0.033 20 0.073

19.5 16 0.058 9 0.033 20 0.073
20 17 0.062 10 0.036 19 0.069

20.5 19 0.069 10 0.036 20 0.073
21 20 0.073 9 0.033 21 0.076

21.5 20 0.073 8 0.029 25 0.091
22 21 0.076 7 0.025 25 0.091

22.5 23 0.084 8 0.029 25 0.091
23 24 0.087 7 0.025 27 0.098

23.5 25 0.091 9 0.033 28 0.102
24 26 0.095 10 0.036 28 0.102

24.5 26 0.095 10 0.036 27 0.098
25 26 0.095 10 0.036 27 0.098

Average 0.051 0.041 0.068
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5.5 Fisher Relation Check

As mentioned throughout the previous chapters nominal interest rates embody the

real interest rates plus a compensation for the erosion of the purchasing power of this

investment by inflation. The Bank of England uses this decomposition, which is also

known as the Fisher relation and nominal and real yield curves to calculate the implied

inflation rate factored into nominal interest rates. Since we model these three yield

curves separately, we can check whether our one-month ahead forecasts satisfy the

Fisher relation. This enables us to test both the consistency of the forecasts with the

economic theory used in extracting the implied inflation yield curve and to eliminate

one of the yield curves and derive it by only modelling the other two yield curves. To

decide which one to eliminate we check for which yield curve the Fisher relation holds

better. Figure 5.11, Figure 5.13 and Figure 5.15 show the fitted spot rates (black solid

lines), forecasts (red solid lines) and the forecasts obtained using Fisher relation (blue

solid lines) for different maturities for the nominal, implied inflation and the real yield

curves separately.

We see that the fitted values and the forecasts derived by using the Fisher relation

show significant differences in particular for very short and very long maturities for the

three yield curves. However, the nominal yield curve forecasts seem better than the

other two considering the two ends of the term structures. Since there is a significant

decrease in the spot rates over the period examined (1985-2009) we have to draw the

graphs on a large scale in order to display the whole period. Therefore, the overlapping

solid lines in Figure 5.11, Figure 5.13 and Figure 5.15 do not tell much. Taking this

drawback into account, we calculate and present the errors between the fitted yield

curves and the one-month ahead forecasts and the fitted yield curves and the forecasts

derived by the Fisher relation for the three term structures. Figure 5.12, Figure 5.14

and Figure 5.16 show these errors. According to Figure 5.12, the differences between

the fitted nominal spot rates and forecasts (both obtained by modelling the nominal

PCs and the ones derived from the Fisher relation) decrease as the maturity increases.

This might be explained by the higher volatility in the short rates due to being used as
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a monetary policy instrument. Since the changes in the economy are reflected into the

short term interest rates first the short rates are more volatile than the long rates. This

feature of the short rates make it relatively difficult to obtain a good fit in terms of

modelling. Regardless of maturity, the error graphs indicate that the forecasts obtained

by modelling the nominal rates produce closer values than the forecasts obtained by

modelling the implied inflation and real rates to derive the nominal spot rates. Fig-

ure 5.14 shows the errors for different maturities for the implied inflation spot rates.

Similar to the nominal rates, the errors get smaller as the maturity increases. Different

from the other maturities, the forecasts obtained from the Fisher relation (the differ-

ence between the nominal and real spot rate forecasts) are closer to the fitted implied

inflation rates than the forecasts obtained from modelling the implied inflation rates

themselves for the very short maturity. The model forecasts are better than the Fisher

relation forecasts for the other maturities. Finally, Figure 5.16 shows that the forecasts

obtained from modelling the PCs of the real rates produce a better fit than the Fisher

relation even for the very short rates. Thus, we can conclude that the implied inflation

model does not fit the short end very well. The Fisher relation can be useful to derive

maybe not all but some part of the term structures.
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Figure 5.11: Fisher Relation Check for the 1-Month Ahead Nominal Spot Rate Forecasts (%)
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Figure 5.12: Errors for the Fisher Relation Check for the 1-Month Ahead Nominal Spot Rate Forecasts (%)
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Figure 5.13: Fisher Relation Check for the 1-Month Ahead Implied Inflation Spot Rate Forecasts (%)
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Figure 5.14: Errors for the Fisher Relation Check for the 1-Month Ahead Implied Inflation Spot Rate Forecasts (%)
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Figure 5.15: Fisher Relation Check for the 1-Month Ahead Real Spot Rate Forecasts (%)
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Figure 5.16: Errors for the Fisher Relation Check for the 1-Month Ahead Real Spot Rate Forecasts (%)
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5.6 Interim Conclusion: The Yield-Only Model

In this chapter we have presented the ‘yield-only’ model which we construct by using

the monthly UK nominal, implied inflation and real spot rates. First we apply the

PCA on the three term structures and obtain the three most important components

to derive the yield curves. Then we examine the relation within and between these

components by analysing the auto- and cross-correlation functions. Once we try to fit

vector autoregressive models to each component we see that the AR(1) model fits each

variable quite well. Although the auto-correlation coefficients in the models are very

high and close to 1 we find it economically reasonable to fit AR processes rather than

some random walk models to the interest rates. To test our models we examine the

residuals which we obtain by using the estimated parameters for each PC. The zero

mean and high kurtosis of the residuals show that a distribution which is symmetric like

the normal distribution but has a higher kurtosis, such as a logistic distribution, fits

the residuals well. We have also found some evidence of an ARCH effect particularly

in the level and slope factors of the implied inflation and the real spot rates. As a next

step to test our models we have calculated the one-month ahead forecasts with the

95% confidence limits. Our analysis shows that the fitted spot rates are well within

the confidence limits for all three yield curves which indicate a good forecast. As a

final analysis, we check whether our forecasts satisfy the Fisher relation which might

enable us to derive one of the yield curves by using the other two. We have discovered

that not for all maturities but for specific ones, such as short term implied inflation,

the Fisher relation can be used to forecast the spot rates.
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Chapter 6

Modelling the UK Term Structures:

The Yield-Macro Models

6.1 Introduction

In this chapter we present two ‘yield-macro’ models using the three yield curves (nom-

inal, implied inflation and real spot rates) and two macroeconomic variables (annual

realised inflation and output gap) at different frequencies. The first part of the chapter

discusses the quarterly yield macro model by introducing the PCs obtained from the

yield curve data. We examine the correlations between the variables and fit a VAR

model. Once we estimate the parameters, we obtain the residuals to analyse their

distributions. Furthermore, we compare the VAR model with the random walk and

AR(1) process, calculate the one-quarter ahead forecasts and check whether the Fisher

relation holds for the forecasts. Besides, we use output gap first estimate and annual

GDP growth data instead of output gap latest estimate to see whether there is a sig-

nificant change in the models. As for the yearly data, we can only use level factors

of the yield curves and realised inflation as a macroeconomic variable due to having a

very short period of data (i.e. 25 years). We examine the yearly model using the same

methodology as we use for the quarterly model.
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6.2 Yield-Macro Model-I

6.2.1 Data

To construct the yield-macro model-I, we use quarterly UK nominal government spot

rates, real spot rates and implied inflation spot rates published on the Bank of Eng-

land’s web page. As for the macroeconomic variables we use annual realised inflation

obtained from Retail Price Index and output gap provided by the OECD Economic

Outlook publications. Due to the revision process, the latest available estimate for

output gap is the end of 2007. Therefore we use the quarterly data for the period

1995-2007 for the yield-macro model-I.

In Table 6.1, we present the summary statistics for the nominal and real interest

rates and implied inflation rates at representative maturities (in years). The means of

the yield curves for different maturities are quite close to each other. Considering the

standard deviations, although they do not change significantly, there is an increase in

the volatility as the maturities get longer. One possible reason is that the instruments

from which long term interest rates are obtained are not available for some periods.

This causes a gap and the values before and after this gap differ significantly. This

leads to an increase in the volatility. On the other hand, the autocorrelation functions

indicate significant correlations for the first and fourth lags of the three yield curves.

6.2.2 PCA for the Yield-Macro Model-I

We apply PCA on quarterly values of nominal interest rates, real interest rates and

implied inflation rates to obtain the three most important components of these yield

curves.

Tables 6.2, 6.3 and 6.4 show the results of the principal component analysis based

on the mean adjusted fitted yield curves. It is seen that the first five principal compo-

nents explain all the variability in the data. The first factor, level, accounts for 95%,

94% and 94% of the variance for the nominal, implied inflation and real spot rates

respectively. Slope factors account for 5%, and curvatures account for less than 1% for

all yield curves. Thus, the first three principal components explain about 99.9% of the
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Table 6.1: Descriptive Statistics for the Fitted Quarterly Yield Curves

Nominal Spot Rates (%)

Maturity Mean Std.
Dev.

Med Min Max Skewness Kurtosis ρ(1) ρ(4) ρ(12)

0.5 5.20 1.05 5.21 3.31 7.34 0.11 -0.93 0.92 0.44 0.08

2.5 5.37 1.13 5.10 3.48 7.94 0.36 -0.96 0.85 0.50 0.14

5 5.44 1.19 5.05 3.83 8.38 0.78 -0.47 0.87 0.52 0.09

10 5.45 1.28 4.96 4.06 8.42 1.18 -0.04 0.90 0.56 0.01

15 5.38 1.36 4.77 4.01 8.41 1.28 0.02 0.92 0.58 -0.04

20 5.30 1.40 4.64 3.96 8.42 1.29 0.00 0.93 0.58 -0.07

25 5.22 1.43 4.55 3.92 8.36 1.28 -0.02 0.93 0.59 -0.09

Implied Inflation Spot Rates (%)

Maturity Mean Std.
Dev.

Med Min Max Skewness Kurtosis ρ(1) ρ(4) ρ(12)

2.5 2.81 0.59 2.86 1.71 4.38 0.35 0.04 0.74 0.35 -0.12

5 2.98 0.62 2.87 1.99 4.60 0.82 0.23 0.78 0.33 0.03

10 3.06 0.66 2.89 2.16 4.69 1.05 0.21 0.87 0.50 0.01

15 3.07 0.68 2.81 2.18 4.68 1.19 0.24 0.90 0.61 -0.07

20 3.04 0.68 2.85 2.13 4.62 1.11 0.05 0.91 0.63 -0.11

25 3.00 0.64 2.84 2.00 4.48 1.03 0.09 0.89 0.59 -0.13

Real Spot Rates (%)

Maturity Mean Std.
Dev.

Med Min Max Skewness Kurtosis ρ(1) ρ(6) ρ(12)

2.5 2.56 0.85 2.77 0.84 3.86 -0.24 -1.30 0.90 0.72 0.21

5 2.47 0.72 2.37 1.29 3.79 0.24 -1.26 0.89 0.66 0.19

10 2.38 0.74 2.19 1.35 3.86 0.62 -0.97 0.90 0.69 0.08

15 2.32 0.80 2.05 1.14 3.86 0.62 -0.86 0.91 0.72 0.07

20 2.26 0.86 2.06 0.96 3.86 0.60 -0.85 0.92 0.73 0.06

25 2.19 0.92 2.03 0.83 3.87 0.61 -0.88 0.93 0.73 0.03

variability in the term structures.

6.2.3 Loadings for the Yield-Macro Model-I

Figure 6.1 shows the loadings of the first three principal components for the quarterly

yield curves. Except for the short end of the loadings of the slope factor and the

long end of the curvature factor of the implied inflation, the loadings seem similar to

each other. Changing the frequency of the data has not changed the structure of the
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Table 6.2: Importance of the PCs for the Fitted Quarterly Nominal Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 8.976 2.0124 0.70487 0.18575 0.08495
Proportion of variance 0.946 0.0476 0.00584 0.00041 0.00008
Cumulative proportion 0.946 0.9937 0.99951 0.99992 1.00000

Table 6.3: Importance of the PCs for the Fitted Quarterly Implied Inflation Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 4.309 1.0255 0.40812 0.15057 0.05238
Proportion of variance 0.937 0.0531 0.00841 0.00114 0.00014
Cumulative proportion 0.937 0.9903 0.99872 0.99986 1.00000

Table 6.4: Importance of the PCs for the Fitted Quarterly Real Spot Rates

PC1 PC2 PC3 PC4 PC5

Standard deviation 5.283 1.2171 0.43586 0.10470 0.02768
Proportion of variance 0.943 0.0501 0.00642 0.00037 0.00003
Cumulative proportion 0.943 0.9932 0.99960 0.99997 1.00000
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Figure 6.1: Loadings of the PCs for the Fitted Quarterly Yield Curves

loadings of the PCs significantly. Furthermore, they are still close to each other which

might indicate the existence of the common PCs as we have mentioned in Chapter 5.

Figure 6.2, Figure 6.3 and Figure 6.4 present the time series graphs of the first

three PCs of the quarterly yield curves for the nominal, implied inflation and real spot

rates on the same scale. Similar to the monthly PCs, the graphs indicate that the

levels of the nominal, implied inflation and real spot rates have decreased since 1995.

However, the implied inflation level factor is relatively stable after 1998. As mentioned
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Figure 6.2: PCs of the Fitted Quarterly Nominal Spot Rates
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Figure 6.3: PCs of the Fitted Quarterly Implied Inflation Spot Rates
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Figure 6.4: PCs of the Fitted Quarterly Real Spot Rates

in Chapter 5, the inflation targeting policy along with the independence of the Bank

of England in 1997 might be the reasons for the stable implied inflation after this year.
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6.2.4 Correlations Between the Quarterly Yield Factors

Table 6.5, Table 6.6 and Table 6.7 show the lagged correlations between the PCs of the

three yield curves and the macroeconomic variables, annual realised inflation, output

gap and annual GDP growth. The lag k value in the tables is the correlation between

x[t] and y[t − k] where x[t] is the variable whose autocorrelation function has been

displayed by red colour and y[t − k] represents all the other variables. We assume

that all the variables are stationary. Although we try to explain what the correlations

between the variables mean economically, it is important to emphasise that the short

period of available data might prevent us to make some clear interpretation about the

relations between the yield curves and macro variables.

Since we use quarterly data to construct the model, we have 52 observations and

the standard error of the coefficients is equal to 1/
√

52 = 0.14. We assume that the

coefficients which are greater or less than three standard errors (i.e. 3 × 0.14 = 0.42)

are significant.

The level component of the nominal interest rates as a first variable in the tables

shows a very high autocorrelation which decreases exponentionally. Thus, the level of

the nominal interest rates highly depends on the value of the previous quarters. It has

very high simultaneous and lagged correlations with the levels of the implied inflation

and the real interest rates too. Since the nominal interest rates can be decomposed

into two parts containing the expected future inflation (we use implied inflation as an

estimate for the expected future inflation in this work) and real interest rates, the high

inflation expectations or high real interest rates lead to high nominal interest rates.

Although we would expect a significant lagged correlation between the levels of the

nominal interest rates and the realised inflation because the level of the nominal yields

is supposed to embody the inflation expectations, we could not find any correlations

among these two variables. Both the frequency and the short period of data along with

the relatively stable inflation rates might be the reasons for this. When we look at the

correlation between the level of the nominal rates and output gap, we see negative

simultaneous and lagged correlations. These correlations can be explained considering

the links between the goods market and the financial markets. Equilibrium in the
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goods market implies that an increase in the interest rate leads to a decrease in output

(IS relation)1. On the other hand, equilibrium in the financial markets implies that

an increase in output leads to an increase in the interest rate (LM relation). Goods

market determines the output and the financial markets determine the interest rates.

Considering the relation between the investment, interest rate and the goods market

we can explain the negative correlation between the level factors of the yield curves

and the output gap. An increase in the interest rates lowers the investment and thus

reduces the output. The reduction in the actual output may lead a negative output gap

(output gap is defined as the difference between the actual output and the potential

output divided by the potential output) and thus justifies the negative correlations.

Previous studies explained the positive correlations between the short term interest

rates and output gap with the Taylor rule which says that an increase in the output

gap increases the short term nominal rates. Although we discuss negative correlations

between the level factors and output gap rather than the short term interest rates,

looking at the correlations between different maturities (short, medium and long) for

the nominal rates and the output gap, we can conclude that the spot rates themselves

also have negative correlations with the output gap. Therefore, not only the PCs we

use in this study but also the original data themselves have negative correlations with

the output gap. The positive correlation between the short term interest rates and the

output gap on which the Taylor rule is based can be explained considering the relation

between the money demand, aggregate output (income) and the financial markets.

Accordingly, changes in output (income), which takes place in the goods market, shift

1IS relation follows from the condition that the supply of goods must be equal to the demand for
goods. It tells us how the interest rate affects output. The LM relation follows from the condition
that the supply of money must be equal to the demand for money. It tells us how output, in turn,
affects the interest rate. By putting the IS and LM relations together: at any time, the supply of
goods must be equal to the demand for goods, and the supply of money must be equal to the demand
for money. Both the IS and LM relations must hold. Together, they determine both output and the
interest rate:

IS relation : Y = C + I + G

LM relation : M = $Y L(i)

In the IS relation, Y is the output, C is the consumption of the households, G is the government
spending. In the LM relation, M is the money supply, $Y is the nominal income and L(i) is a
function which depends on the interest rate i (Blanchard, 2006).

198



the money demand (LM) curve and cause changes in the interest rates. Hence, when

there is an increase in output (which might lead to a positive output gap), the money

demand increases. Since the money supply does not change, the equilibrium can be

satisfied at a higher interest rate. Since the short term interest rates are used as a

monetary policy instrument, the effect of the change in the output would be observed

on the short rates firstly.

The slope factor of the nominal spot rates has positive simultaneous and lagged cor-

relations with the slope factor of the real spot rates. Although there is a simultaneous

correlation between the slope factors of the nominal rates and implied inflation it is not

as strong as the correlation between the nominal and real slope factors. The previous

studies mostly connect the slope factor of the nominal rates with the GDP growth or

output gap. The negative correlation between the slope of the nominal rates and the

GDP growth indicates that the increase in the GDP growth increases the short term

interest rates by much larger amounts than the long term interest rates, so that the

yield curve becomes less steep and its slope decreases. This also explains the stronger

correlation between the GDP growth and the slope factor than the output gap and the

slope factor. Since the output gap data is the latest estimate obtained after 3 years

revision since it was published, it is reasonable to see its effect on the level factors

which represent the long term maturities. On the other hand, the GDP growth (or

the output gap first estimate which we have examined but not displayed here) has a

strong but short lived influence on the slope factor due to affecting short rates in the

short run.

Furthermore, the series can be modelled by using AR processes because of the

exponentially decreasing auto-correlation functions they have. Realised inflation does

not have any significant simultaneous or lagged correlations with any of the variables

except the nominal curvature factor. An increase in the nominal curvature factor which

means that the medium term interest rates increased more than the short and long ends

causes a decrease in realised inflation.

Finally, the curvature factor of the real spot rates have significant negative simul-

taneous and lagged correlations with the annual GDP growth.
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Table 6.5: Lagged Correlations between the Quarterly Yield Factors and Macro Vari-
ables - I

NPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 1.00 0.00 0.00 0.90 -0.05 0.03 0.93 0.02 0.08 0.09 -0.66 0.20
(1) 0.91 0.02 -0.20 0.77 0.06 0.09 0.89 0.02 0.03 0.08 -0.64 0.13
(2) 0.83 0.04 -0.35 0.65 0.17 0.14 0.85 0.01 -0.05 0.08 -0.61 0.16
(3) 0.75 0.02 -0.42 0.54 0.16 0.10 0.81 0.01 -0.12 0.02 -0.63 0.19
(4) 0.69 -0.02 -0.42 0.45 0.09 0.08 0.77 0.01 -0.19 -0.04 -0.61 0.25
(5) 0.59 -0.09 -0.46 0.32 0.01 0.06 0.71 -0.01 -0.28 -0.08 -0.57 0.27
(6) 0.49 -0.19 -0.47 0.23 -0.12 0.04 0.62 -0.04 -0.40 -0.09 -0.50 0.31
(7) 0.41 -0.31 -0.41 0.14 -0.26 0.04 0.55 -0.10 -0.47 -0.09 -0.41 0.43
(8) 0.33 -0.38 -0.37 0.06 -0.31 0.09 0.48 -0.19 -0.52 -0.08 -0.32 0.51

NPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.00 1.00 0.00 0.08 0.57 -0.09 -0.02 0.85 0.24 -0.19 -0.25 -0.64
(1) 0.07 0.86 0.14 0.17 0.31 -0.27 0.01 0.86 0.19 -0.26 -0.33 -0.54
(2) 0.11 0.66 0.20 0.23 0.07 -0.46 0.04 0.80 0.20 -0.21 -0.32 -0.40
(3) 0.11 0.44 0.09 0.24 -0.01 -0.55 0.02 0.65 0.21 -0.03 -0.24 -0.21
(4) 0.08 0.28 -0.13 0.20 0.04 -0.57 -0.02 0.48 0.20 0.25 -0.18 -0.09
(5) 0.05 0.16 -0.31 0.18 0.09 -0.57 -0.07 0.36 0.18 0.49 -0.16 0.01
(6) 0.00 0.13 -0.46 0.12 0.18 -0.51 -0.10 0.28 0.18 0.61 -0.17 0.03
(7) -0.04 0.08 -0.57 0.08 0.23 -0.45 -0.14 0.20 0.12 0.64 -0.20 -0.01
(8) -0.07 0.04 -0.60 0.06 0.26 -0.34 -0.17 0.13 0.06 0.55 -0.22 -0.03

NPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.00 0.00 1.00 0.11 -0.50 0.18 -0.08 0.03 0.05 -0.50 0.27 -0.06
(1) 0.03 0.00 0.76 0.12 -0.33 0.12 -0.05 -0.01 0.16 -0.29 0.32 -0.11
(2) 0.03 0.06 0.44 0.10 -0.06 0.10 -0.03 -0.01 0.21 -0.03 0.34 -0.12
(3) 0.03 0.22 0.21 0.04 0.18 0.03 0.02 0.08 0.31 0.13 0.28 -0.13
(4) 0.05 0.36 0.07 0.05 0.36 -0.07 0.07 0.18 0.43 0.17 0.18 -0.21
(5) 0.05 0.47 -0.08 0.00 0.49 -0.22 0.11 0.28 0.51 0.10 0.08 -0.34
(6) 0.04 0.54 -0.19 -0.02 0.51 -0.34 0.10 0.41 0.48 -0.03 0.01 -0.44
(7) 0.04 0.56 -0.16 -0.01 0.46 -0.39 0.10 0.47 0.45 -0.15 -0.05 -0.46
(8) 0.05 0.54 -0.09 0.01 0.38 -0.44 0.10 0.48 0.42 -0.20 -0.16 -0.48

IPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.90 0.08 0.11 1.00 0.00 0.00 0.68 0.09 0.18 0.22 -0.66 0.08
(1) 0.85 0.06 -0.09 0.88 0.11 0.08 0.70 0.03 0.16 0.22 -0.64 0.05
(2) 0.80 0.04 -0.28 0.77 0.23 0.10 0.70 -0.03 0.11 0.25 -0.62 0.09
(3) 0.74 0.02 -0.42 0.66 0.29 0.06 0.70 -0.05 0.08 0.25 -0.64 0.12
(4) 0.69 0.00 -0.49 0.57 0.27 0.02 0.68 -0.05 0.02 0.20 -0.65 0.16
(5) 0.61 -0.08 -0.55 0.44 0.21 -0.02 0.66 -0.09 -0.04 0.15 -0.60 0.18
(6) 0.53 -0.19 -0.56 0.34 0.06 -0.08 0.60 -0.10 -0.14 0.10 -0.53 0.18
(7) 0.45 -0.29 -0.53 0.23 -0.05 -0.08 0.55 -0.17 -0.21 0.06 -0.53 0.29
(8) 0.38 -0.36 -0.51 0.14 -0.09 -0.00 0.49 -0.24 -0.31 0.03 -0.46 0.38
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Table 6.6: Lagged Correlations between the Quarterly Yield Factors and Macro Vari-
ables - II

IPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) -0.05 0.57 -0.50 0.00 1.00 0.00 -0.06 0.15 0.54 0.24 -0.21 -0.57
(1) 0.00 0.56 -0.27 0.05 0.69 -0.17 -0.02 0.33 0.43 0.04 -0.37 -0.56
(2) 0.05 0.48 -0.07 0.11 0.37 -0.30 0.01 0.41 0.35 -0.12 -0.44 -0.53
(3) 0.07 0.29 0.02 0.14 0.11 -0.35 0.01 0.35 0.24 -0.15 -0.43 -0.43
(4) 0.05 0.12 -0.06 0.10 -0.01 -0.39 0.01 0.25 0.12 0.02 -0.33 -0.22
(5) 0.04 -0.01 -0.12 0.12 -0.12 -0.39 -0.03 0.19 0.02 0.22 -0.26 0.04
(6) 0.01 -0.02 -0.20 0.09 -0.06 -0.26 -0.06 0.13 -0.02 0.41 -0.19 0.20
(7) -0.01 -0.08 -0.29 0.07 -0.05 -0.22 -0.08 0.08 -0.09 0.53 -0.14 0.27
(8) -0.02 -0.10 -0.37 0.06 -0.05 -0.14 -0.09 0.06 -0.17 0.56 -0.06 0.29

IPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.03 -0.09 0.18 0.00 0.00 1.00 0.05 -0.34 -0.49 -0.28 0.08 0.13
(1) 0.11 -0.13 0.38 0.05 -0.21 0.67 0.15 -0.24 -0.41 -0.39 0.03 0.16
(2) 0.16 -0.21 0.47 0.10 -0.36 0.43 0.19 -0.23 -0.29 -0.43 0.07 0.18
(3) 0.19 -0.30 0.44 0.08 -0.36 0.29 0.24 -0.30 -0.12 -0.40 0.17 0.23
(4) 0.17 -0.34 0.28 -0.01 -0.22 0.12 0.29 -0.38 0.07 -0.24 0.27 0.22
(5) 0.14 -0.29 0.08 -0.07 -0.09 -0.04 0.28 -0.33 0.17 -0.09 0.31 0.20
(6) 0.08 -0.10 -0.07 -0.17 0.17 0.01 0.27 -0.26 0.27 -0.04 0.27 0.08
(7) 0.04 0.08 -0.14 -0.24 0.28 0.00 0.26 -0.10 0.25 -0.08 0.21 -0.09
(8) 0.01 0.22 -0.14 -0.26 0.27 -0.07 0.23 0.09 0.18 -0.17 0.12 -0.26

RPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.93 -0.02 -0.08 0.68 -0.06 0.05 1.00 0.00 0.00 -0.05 -0.56 0.24
(1) 0.83 0.02 -0.25 0.58 0.02 0.07 0.91 0.05 -0.08 -0.07 -0.54 0.16
(2) 0.73 0.06 -0.35 0.47 0.09 0.13 0.84 0.07 -0.18 -0.09 -0.53 0.18
(3) 0.65 0.04 -0.35 0.37 0.03 0.10 0.79 0.08 -0.25 -0.16 -0.54 0.21
(4) 0.58 -0.01 -0.31 0.29 -0.06 0.09 0.73 0.08 -0.32 -0.21 -0.49 0.27
(5) 0.47 -0.07 -0.34 0.18 -0.15 0.09 0.64 0.07 -0.42 -0.23 -0.43 0.31
(6) 0.38 -0.15 -0.34 0.11 -0.24 0.11 0.54 0.04 -0.54 -0.21 -0.34 0.37
(7) 0.31 -0.26 -0.27 0.04 -0.38 0.10 0.47 -0.02 -0.60 -0.18 -0.26 0.47
(8) 0.24 -0.34 -0.22 -0.02 -0.43 0.12 0.39 -0.10 -0.61 -0.15 -0.17 0.53

RPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.02 0.85 0.03 0.09 0.15 -0.34 0.00 1.00 0.00 -0.19 -0.25 -0.41
(1) 0.05 0.68 0.08 0.15 0.03 -0.36 -0.01 0.87 -0.03 -0.16 -0.25 -0.26
(2) 0.07 0.47 0.07 0.17 -0.09 -0.46 0.00 0.72 0.01 -0.05 -0.20 -0.11
(3) 0.05 0.31 -0.06 0.17 -0.06 -0.50 -0.05 0.56 0.04 0.13 -0.12 0.04
(4) 0.02 0.19 -0.21 0.17 0.00 -0.45 -0.11 0.41 0.04 0.33 -0.09 0.07
(5) -0.01 0.11 -0.32 0.16 0.08 -0.38 -0.14 0.26 0.06 0.47 -0.10 0.04
(6) -0.03 0.02 -0.38 0.13 0.11 -0.36 -0.16 0.15 0.07 0.51 -0.14 0.00
(7) -0.06 -0.04 -0.46 0.10 0.17 -0.29 -0.18 0.05 0.06 0.49 -0.32 -0.06
(8) -0.09 -0.08 -0.45 0.07 0.21 -0.18 -0.22 -0.05 0.05 0.38 -0.30 -0.06

201



Table 6.7: Lagged Correlations between the Quarterly Yield Factors and Macro Vari-
ables - III

RPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.08 0.24 0.05 0.18 0.54 -0.49 0.00 0.00 1.00 0.27 -0.03 -0.50
(1) 0.05 0.39 -0.17 0.15 0.66 -0.41 -0.02 0.14 0.86 0.29 -0.12 -0.63
(2) 0.04 0.53 -0.28 0.12 0.73 -0.32 -0.02 0.29 0.67 0.26 -0.27 -0.68
(3) 0.05 0.61 -0.23 0.13 0.59 -0.30 -0.00 0.46 0.48 0.16 -0.42 -0.66
(4) 0.07 0.59 -0.17 0.16 0.42 -0.33 0.01 0.54 0.32 0.10 -0.50 -0.53
(5) 0.09 0.49 -0.13 0.19 0.23 -0.35 0.01 0.56 0.17 0.07 -0.51 -0.37
(6) 0.08 0.38 -0.15 0.20 0.07 -0.35 -0.02 0.55 0.02 0.12 -0.42 -0.12
(7) 0.10 0.22 -0.16 0.24 -0.05 -0.33 -0.03 0.43 -0.08 0.24 -0.33 0.10
(8) 0.10 0.09 -0.19 0.24 -0.11 -0.28 -0.02 0.32 -0.13 0.39 -0.25 0.24

Realised
Inflation

[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.09 -0.19 -0.50 0.22 0.24 -0.28 -0.05 -0.19 0.27 1.00 -0.11 0.16
(1) 0.08 -0.08 -0.55 0.19 0.35 -0.17 -0.04 -0.14 0.24 0.83 -0.15 0.07
(2) 0.10 -0.00 -0.47 0.21 0.39 -0.04 -0.02 -0.11 0.19 0.54 -0.17 0.00
(3) 0.13 0.01 -0.31 0.24 0.30 0.04 0.01 -0.11 0.12 0.21 -0.21 -0.06
(4) 0.17 -0.03 -0.10 0.27 0.14 0.13 0.05 -0.11 0.03 -0.08 -0.23 -0.06
(5) 0.20 -0.11 0.05 0.29 -0.03 0.18 0.09 -0.14 -0.07 -0.21 -0.28 -0.01
(6) 0.22 -0.20 0.13 0.29 -0.15 0.23 0.11 -0.21 -0.15 -0.17 -0.30 -0.03
(7) 0.21 -0.29 0.12 0.25 -0.22 0.21 0.14 -0.26 -0.17 -0.06 -0.32 0.06
(8) 0.19 -0.32 0.01 0.20 -0.17 0.20 0.14 -0.30 -0.17 0.11 -0.29 0.14

Output
Gap [t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) -0.61 -0.56 0.02 -0.64 -0.17 0.17 -0.53 -0.60 -0.08 0.04 1.00 0.14
(1) -0.58 -0.44 0.08 -0.62 -0.08 0.15 -0.49 -0.55 0.02 0.01 0.90 -0.02
(2) -0.57 -0.30 0.13 -0.61 -0.02 0.16 -0.46 -0.44 0.07 -0.12 0.78 -0.21
(3) -0.53 -0.15 0.23 -0.57 -0.02 0.16 -0.42 -0.29 0.08 -0.25 0.64 -0.39
(4) -0.50 -0.00 0.31 -0.51 0.01 0.14 -0.40 -0.14 0.11 -0.38 0.49 -0.54
(5) -0.44 0.14 0.45 -0.43 0.03 0.17 -0.37 -0.03 0.13 -0.47 0.37 -0.55
(6) -0.38 0.24 0.55 -0.35 0.04 0.12 -0.33 0.07 0.20 -0.48 0.25 -0.54
(7) -0.32 0.35 0.58 -0.25 0.06 0.09 -0.31 0.19 0.23 -0.43 0.16 -0.53
(8) -0.27 0.41 0.58 -0.17 0.07 0.02 -0.28 0.29 0.26 -0.31 0.11 -0.54

Annual
GDP

Growth
[t]

Lag, k NPC1
[t-k]

NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]

Output
Gap
[t-k]

Annual
GDP

Growth
[t-k]

(0) 0.20 -0.64 -0.06 0.08 -0.57 0.13 0.24 -0.41 -0.50 0.16 0.14 1.00
(1) 0.17 -0.64 -0.12 0.06 -0.45 0.22 0.21 -0.49 -0.42 0.22 0.24 0.78
(2) 0.13 -0.56 -0.15 0.00 -0.29 0.34 0.19 -0.52 -0.38 0.18 0.30 0.58
(3) 0.10 -0.47 -0.10 -0.06 -0.17 0.44 0.20 -0.52 -0.31 0.01 0.27 0.37
(4) 0.12 -0.37 0.03 -0.04 -0.11 0.52 0.21 -0.50 -0.26 -0.19 0.22 0.15
(5) 0.10 -0.27 0.15 -0.06 -0.10 0.49 0.21 -0.42 -0.21 -0.44 0.13 0.04
(6) 0.08 -0.20 0.26 -0.05 -0.13 0.46 0.18 -0.33 -0.20 -0.60 0.06 -0.02
(7) 0.08 -0.22 0.36 -0.05 -0.24 0.38 0.18 -0.29 -0.18 -0.67 0.04 -0.04
(8) 0.07 -0.17 0.37 -0.09 -0.24 0.30 0.19 -0.22 -0.14 -0.62 0.02 -0.01
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6.2.5 Fitting a VAR Model to the Quarterly PCs and the

Macroeconomic Variables

After examining the correlations between the yield curves and macro variables we

construct a vector autoregressive model for the series. We start with including the first

two lags of each variable and eliminate the insignificant ones to obtain the best model.

Furthermore, we avoid including simultaneous explanatory variables in to the models

because in forecasting we do not want to deal with additional uncertainty rooted by

the simultaneous correlations. Appendix B introduces the models for each variable and

presents the coefficients of determination.

To construct the ‘yield-macro’ model, we use quarterly nominal spot rates, implied

inflation spot rates, real spot rates, annual realised inflation and output gap over the

period 1995 to 2007 2.

Let XQ be the matrix of quarterly yield curve data where

XQN
: Nominal spot rates (52 × 50)

XQI
: Implied inflation spot rates (52 × 46)

XQR
: Real spot rates (52 × 46)

Let Q be the matrix of quarterly PCs and macroeconomic variables where:

QNL
: level component of the nominal spot rates (52 × 1)

QNS
: slope component of the nominal spot rates (52 × 1)

QNC
: curvature component of the nominal spot rates (52 × 1)

QIL
: level component of the implied inflation spot rates (52 × 1)

QIS
: slope component of the implied inflation spot rates (52 × 1)

QIC
: curvature component of the implied inflation spot rates (52 × 1)

QRL
: level component of the real spot rates (52 × 1)

QRS
: slope component of the real spot rates (52 × 1)

QRC
: curvature component of the real spot rates (52 × 1)

2Since the output gap data are subject to continuous revision which may take three years to get
the latest estimate, the data period in this modelling work is restricted with 2007.
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QRI : realised inflation (52 × 1)

QOG: output gap (52 × 1)

The VAR structure of the quarterly model is:

Q [t] − µQ = B1 (Q [t − 1] − µQ) + B2 (Q [t − 2] − µQ) + ǫQ [t]

where:

µQ is the vector of long run mean of the variables, B1 and B2 are the coefficient

matrices for the first and second lags of the explanatory variables respectively and

ǫQ [t] ∼ N (0, ΣQ), i.e. normally distributed residuals with zero mean and ΣQ variance-

covariance matrix.

Q =





QNL

QNS

QNC

QIL

QIS

QIC

QRL

QRS

QRC

QRI

QOG





µ̂t
Q =

[
−6.76 0 0 −1.47 0 0 −6.99 0 0 2.88 0

]
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B̂1 =





0.92 0 0 0 0 0 0 0 0 0 0

0 0.78 0 0 0 0 0 0 0 0 0

0 0 0.96 0 0 0 0 0 0 −0.15 0

0 0 0 0.89 0 0 0 0 0 0 0

0 0 0 0 0.56 0 0 0 0 0 0

0 0 0 0 0 0.62 0 0 0 0 0

0 0 0 0 0 0 0.95 0 0 0 0

0 0.27 0 0 0 0 0 0.49 0 0 0

0 0 0 0 0 0 0 0 0.86 0 0

0 0 0 0 0 0 0 0 0 0.92 0

0 −0.04 0 0 0 0 0 0 0 0 0.89





B̂2 =





0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1.21 0 −0.41

0 0 −0.34 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −0.32 0 0 0 1.38 0 0

0 0 0 0 0 0 0 −0.09 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0.34 0 0 0 0 0 0 0 −0.20

0 0 0 0 0 0 0 0 0 0 0




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Σ̂Q =





4.54

−0.62 0.76

−0.50 0.07 0.14

2.51 −0.22 −0.30 2.28

−0.17 0.25 0.07 −0.18 0.27

0.09 −0.11 0.01 0.07 −0.05 0.08

1.88 −0.30 −0.19 0.20 0.05 0.00 1.61

−0.53 0.30 0.05 −0.10 −0.02 0.02 −0.40 0.29

−0.20 0.06 0.03 −0.02 −0.02 −0.02 −0.17 0.05 0.05

0.07 0.10 −0.05 0.07 0.03 −0.01 0.02 0.02 −0.01 0.17

−0.03 0.03 0.01 0.04 0.01 0.01 −0.06 0.02 0.01 0.02 0.06





The negative long run means for the level factors of the yield curves displayed in µQ

show that these factors have been decreasing since 1995 as seen in Figure 6.2, Figure 6.3

and Figure 6.4. It should be emphasized that the series we model are not the levels of

the yield curves but the factors which affect the levels of the yield curves. Thus, it is

not surprising that we obtain negative values for the long run mean of these factors.

On the other hand, the long run mean for the realised inflation is about 3%.

When we look at the matrix B̂1, although there are some off-diagonal values, the

diagonal structure of the matrix shows how strong the AR(1) effect is in the models.

Similarly, few number of values in B̂2 shows that the second lags are mostly insignifi-

cant.

We display the estimated correlation matrix, ρ̂Q for the residuals below. As stated

previously, we assume that the coefficients which are greater or less than three standard

errors (0.42) are significant. As in the ‘yield-only’ model, we see several significant cor-

relations between the residuals in matrix ρ̂Q. Again one reason is that we exclude the

simultaneous explanatory variables in the modelling work. As we observe in Table 6.5,

Table 6.6 and Table 6.7, there are very strong simultaneous correlations particularly

between the corresponding PCs of the three yield curves. The high correlations be-

tween the residuals for the level and slope factor models may be due to these strong
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simultaneous correlations between the level and slope PCs. Although the PCs them-

selves are independent within each yield curve, there is a strong negative correlation

between the level and the slope factors residuals of the nominal spot rates. This might

be some statistical artifact which does not really indicate a correlation between those

two set of residuals.

ρ̂Q =





1

−0.34 1

-0.63 0.21 1

0.80 −0.17 -0.54 1

−0.15 0.57 0.38 −0.23 1

0.15 -0.50 0.03 0.20 −0.41 1

0.68 −0.28 −0.40 0.10 0.09 −0.06 1

-0.49 0.64 0.24 −0.13 −0.07 0.07 -0.61 1

−0.40 0.32 0.33 −0.06 −0.15 −0.30 -0.58 0.48 1

0.07 0.28 −0.28 0.11 0.12 −0.12 0.03 0.07 −0.07 1

−0.13 0.14 0.07 0.10 0.11 0.07 −0.20 0.12 0.14 0.16 1





6.2.6 Residual Analysis

After fitting the models and estimating the parameters we obtain the residuals for each

PC and the macro variables. Table 6.8 shows the descriptive statistics such as mean,

standard deviation, skewness and excess kurtosis for each set of residuals. Except for

the implied inflation level factor, Jarque-Bera test p-value indicates that all residuals

are normally distributed with at least 13% significance level. As for the implied inflation

level factor, the residuals are distributed normally with a 2% significance level. On the

other hand, although not presented here, the auto-correlation functions show that the

residuals are independent too.
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Table 6.8: Residual Analysis of the Yield-Macro Model-I

Residuals
Mean Standard

Deviation
Skewness Excess

Kurtosis
Jarque-Bera

p-value
Level 0.0000 2.1251 0.1232 0.3058 0.7607

Nominal Slope 0.0323 0.8658 0.1079 -1.0285 0.3730
Curvature -0.0385 0.3736 0.4240 0.9223 0.1326

Level 0.0001 1.5058 -0.6653 1.1571 0.0210
Implied Slope 0.0716 0.5177 0.3523 0.3307 0.4595
Inflation Curvature 0.0162 0.2754 0.5622 -0.0509 0.2455

Level 0.0000 1.2672 -0.1597 -0.3772 0.8243
Real Slope -0.0035 0.5419 0.4712 -0.2771 0.3567

Curvature -0.0029 0.2220 -0.5470 -0.4608 0.2263
Realised Inflation 0.0005 0.4124 -0.1117 -0.1002 0.9459

Output Gap 0.0261 0.2375 0.3764 0.5331 0.3249

6.2.7 Model Comparisons

In order to examine the goodness of fit of our models we calculate the adjusted coeffi-

cient of determination, R2
adj

3 which is given in Appendix B for each model.

Using the adjusted coefficient of determination we discuss the performance of our

models with respect to random walk (RW) and autoregressive order one (AR(1)) pro-

cess. Therefore, to compare our models with the RW and AR(1) we calculate the

following ratios.

3

R2 =
SSreg

SStot

R2
adj = 1 − (1 − R2)

n − 1

n − p − 1

= 1 − SSE

SST

dft

dfe

In our comparisons we use adjusted coefficient of determination, R2
adj rather than coefficient of

determination, R2 to take the number of explanatory variables in the models into account. It is
adjusted for the number of independent variables in the regression model. Unlike the coefficient of
determination, R2

adj may decrease if variables are entered in the model that do not add significantly
to the model fit.
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R2
RW ∗ = 1 − SSmodel

SSRW

dfRW

dfmodel

or

R2
AR(1)∗ = 1 − SSmodel

SSAR(1)

dfAR(1)

dfmodel

where

SSmodel is the sum of squares of the residuals obtained from the yield-macro model

SSRW is the sum of squares of the residuals obtained from the random walk model

SSAR(1) is the sum of squares of the residuals obtained from the AR(1) model

As we mentioned earlier, the output gap data have been published by the OECD

Economic Outlook and due to some revision process the latest available data end by

the last quarter of 2007. OECD also publishes the output gap first estimate before any

revision process. To see whether the output gap data provided make any difference in

terms of correlations between the variables and the VAR model we examine the output

gap first estimate as a macro variable too. Moreover, we also examine annual GDP

growth as a replacement of output gap data.

The use of exogenous variables such as output gap and the GDP growth might be

criticised in asset models. The main argument against their use is that, while they may

have a significant effect on the modelled variables in the short term, in the long term

they merely constitute another noise term (Thomson, 1996). However, considering the

yield-macro model-I, the output gap has an autoregressive term which carries its effect

on the realised inflation and the nominal slope factor many years ahead into the future.

Table 6.9 shows the increase in the explained variability in the models compared to

RW and AR(1) process. Zeros in the table indicate that the fitted models are already

AR(1). When we have a general look at the table we see non-negative values which

indicate that our models are superior to the RW and AR(1) process. However, the
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improvements in the explained variability are not always significant as we see in the

curvature factor of the real spot rates. Nominal spot rate models explain significant

amount of variability comparing with the RW and AR(1) models. Implied inflation

slope model improves the explained variability for about 51% and 43% comparing with

the RW and AR(1) respectively. Real slope model shows a significant improvement too

while real level and curvature do not. Realised inflation model performs better than

the RW and AR(1) when it includes the nominal curvature and output gap lagged

values as explanatory variables. Output gap model performs slightly better than the

RW and AR(1) with the help of nominal slope factor as an explanatory variable.

When we use output gap first estimate and the annual GDP growth instead of the

output gap latest estimate, we see that slope factor of nominal spot rates, realised

inflation and output gap models are affected from the data change. However, these

changes are mostly insignificant. When we use output gap first estimate data we see

that output gap is not significant in the realised inflation model anymore. Output gap

model remains the same in terms of the explanatory variables it includes. Moreover,

the performance gets slightly better (explained variability with respect to RW and

AR(1) models increase to 19% and 11% from 14% and 8% respectively). As for the

slope factor of the nominal spot rates, output gap first estimate is not significant while

output gap latest estimate was significant. The other models have not changed at all

with the replacement of the latest estimate with the first estimate.

When we use annual GDP growth instead of the output gap latest estimate, we see

that it is not significant in the realised inflation model anymore. Annual GDP growth

includes nominal level and real curvature factors beside its lagged value as explanatory

variables. There is no significant improvement in the explained variability with respect

to modelling the output gap latest estimate. When we examine the slope factor of

the nominal rates we see that the annual GDP growth is not a significant explanatory

variable while output gap latest estimate was. On the other hand, although the slope

factors of the three yield curves have significant simultaneous and lagged correlations

with the annual GDP growth, we see that it is not significant anymore when we take

the auto-correlations into account in the modelling work. The other models have not
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changed when we use annual GDP growth instead of the output gap latest estimate.

Table 6.9: Model Comparisons with the RW and AR(1) process

Using OG latest estimate Using OG first estimate Using annual GDP growth

R2
RW∗ R2

AR(1)∗
R2

RW∗ R2
AR(1)∗

R2
RW∗ R2

AR(1)∗

Nominal Spot
Rates

Level 0.16 0.00 0.16 0.00 0.16 0.00

Slope 0.31 0.26 0.28 0.22 0.27 0.21

Curvature 0.30 0.20 0.30 0.20 0.30 0.20

Implied Inflation
Spot Rates

Level 0.13 0.00 0.13 0.00 0.13 0.00

Slope 0.51 0.43 0.51 0.43 0.51 0.43

Curvature 0.23 0.10 0.23 0.10 0.23 0.10

Real Spot Rates

Level 0.10 0.00 0.10 0.00 0.10 0.00

Slope 0.26 0.21 0.26 0.21 0.26 0.21

Curvature 0.07 0.00 0.07 0.00 0.07 0.00

Realised Inflation 0.26 0.21 0.25 0.19 0.20 0.14

Output Gap/ GDP
growth

0.14 0.08 0.19 0.11 0.17 0.06

6.2.8 Forecasting

After modelling the PCs along with the macroeconomic variables, we test these models

by forecasting one-quarter ahead spot rates, realised inflation and the output gap using

the estimated parameters. In order to compare our forecasts with the fitted spot rates

and the macroeconomic variables we have fitted the models to the data recursively;

starting with first 32 quarters and ending with 51 quarters. As we increase the data

period, we apply the PCA, re-fit the model and estimate the parameters for that period.

Afterwards, we use the parameters for each period to forecast the next quarter’s level,

slope and curvature factors of the spot rates. As a final step, we convert the forecasts

for PCs into the spot rates, i.e. we obtain the fitted spot rates by using these three PCs.

Furthermore, we calculate the variance-covariance matrix of the residuals for each set

of recursive estimates to construct the 95% confidence intervals for the forecasts under

the normally distributed residuals assumption.

Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 display the 1-quarter ahead fore-

casts and the 95% confidence intervals for the three yield curves in different maturities
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and the macroeconomic variables. Although the forecasts seem like a RW model fore-

casts, the models are better than RW in terms of explained variability in the data

as we have examined previously. Since almost all of the observations are within the

confidence bands we can conclude that the confidence intervals are too wide.
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Figure 6.5: 1-Quarter Ahead Forecasts with Upper and Lower Confidence Limits for Nominal Spot Rates (%)
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Figure 6.6: 1-Quarter Ahead Forecasts with Upper and Lower Confidence Limits for Implied Inflation Spot Rates (%)
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Figure 6.7: 1-Quarter Ahead Forecasts with Upper and Lower Confidence Limits for Real Spot Rates (%)
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6.2.9 Fisher Relation

As we have done for the yield-only model, we check whether the Fisher relation holds for

our yield-macro model 1-quarter ahead forecasts too. Figures 6.9, 6.10, 6.11, 6.12, 6.13

and 6.14 present the graphs of the forecasts and the forecast errors for both the yield

curves and the ones obtained by using the Fisher relation as explained in Chapter 5.

Although the forecast graphs show that the yield curve forecast for each yield curve

and the yield curves derived by the Fisher relation seem quite close, the error graphs

show that they are significantly different particularly for the long ends of the yield

curves.
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Figure 6.9: Fisher Relation Check for the 1-Quarter Ahead Nominal Spot Rate Forecasts (%)
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Figure 6.10: Errors for the Fisher Relation Check for the 1-Quarter Ahead Nominal Spot Rate Forecasts (%)
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Figure 6.11: Fisher Relation Check for the 1-Quarter Ahead Implied Inflation Spot Rate Forecasts (%)
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Figure 6.12: Errors for the Fisher Relation Check for the 1-Quarter Ahead Implied Inflation Spot Rate Forecasts (%)
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Figure 6.13: Fisher Relation Check for the 1-Quarter Ahead Real Spot Rate Forecasts (%)
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Figure 6.14: Errors for the Fisher Relation Check for the 1-Quarter Ahead Real Spot Rate Forecasts (%)
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6.3 Yield-Macro Model-II

Considering previous studies on yield-macro models which we have discussed in Chap-

ter 4, we expect that realised inflation would be involved in some of the PC models

as an explanatory variable. However, our findings show that although there are some

significant simultaneous and lagged correlations between the realised inflation and the

yield curve factors, realised inflation has not been found significant in the models ex-

cept for the curvature factor of the nominal rates. Although the macroeconomic theory

suggests that the annual realised inflation should be connected with the level of the

nominal spot rates, the data period and the frequency might affect this relation. There-

fore we model the yield curves using yearly data to see whether we will discover such

a relation between the yield curves and the annual realised inflation.

When we model yearly data we have only 25 observations for each month (from

1985 to 2009). We apply PCA on monthly data. Then we use June PCs for the yearly

models and once we find the best model for each PC we apply that model to the

other months and estimate the parameters. Therefore, we obtain 12 different set of

parameters for the level factors at yearly frequency. Since we have very few data we

only model the level factors of the yield curves. We try to fit some models to slope

factors as well but the models have changed significantly when we change the month

and most importantly the coefficients of determination are very low which indicate a

poor fit. The curvature factors are some sort of white noise and we do not model them

either. Therefore, we use only first PCs to derive the nominal, implied inflation and

the real yield curves. Since we model the yearly level factors for each month, we obtain

monthly yield curve data using 12 different yearly level factor models.

6.3.1 Correlations Between the Yearly Yield Factors and Re-

alised Inflation

Table 6.10 and Table 6.11 show the simultaneous and the lagged correlations between

the PCs and the annual realised inflation for the yearly data. The level factors have

significant auto- and cross-correlations. They have high correlations with the realised
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inflation too. Since the realised inflation at time t has been defined as the difference

between the logarithm of the RPI at time t and t− 1 it is reasonable that the inflation

at time t has an effect on the levels of the term structures. Accordingly, the high

inflation in the previous year leads an increase in the level of the interest rates in

the following year. Furthermore, there is a negative correlation between the slope

factor of the implied inflation and the realised inflation. When the inflation is high the

slope factor of the nominal spot rates in the following year decreases because the high

inflation is followed by an increase in the short term interest rates while the long term

interest rates are relatively stable. This produces a flatter slope factor which means

that the slope factor decreases. Finally, none of the curvature factors have significant

correlations.
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Table 6.10: Lagged Correlations between the Yearly Yield Curve Factors (June Data)
- I

NPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) 1.000 0.045 0.038 0.957 0.006 0.217 0.932 -0.064 -0.009 0.668
(1) 0.847 0.207 -0.136 0.776 0.085 0.036 0.850 0.071 -0.126 0.402
(2) 0.748 0.232 -0.016 0.646 -0.033 -0.067 0.817 0.145 -0.124 0.319
(3) 0.676 0.191 0.092 0.563 -0.072 0.168 0.760 0.045 -0.329 0.276

NPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) 0.045 1.000 0.189 0.027 0.721 -0.127 0.154 0.421 0.107 -0.573
(1) 0.151 0.477 0.163 0.045 0.183 -0.162 0.304 0.144 0.252 -0.162
(2) 0.123 0.147 -0.187 0.051 0.092 0.135 0.195 -0.051 -0.123 0.038
(3) 0.083 -0.115 0.051 0.025 -0.052 0.360 0.121 -0.290 -0.279 0.087

NPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) 0.038 0.189 1.000 0.100 -0.013 0.430 0.001 0.061 0.016 -0.167
(1) 0.093 0.078 -0.049 0.085 0.084 0.091 0.079 -0.044 0.151 0.056
(2) 0.108 0.317 -0.233 0.080 0.302 -0.190 0.150 0.134 0.208 -0.046
(3) 0.067 0.054 -0.132 -0.004 -0.151 -0.031 0.164 0.161 -0.069 0.008

IPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) 0.957 0.027 0.100 1.000 0.056 0.271 0.792 0.033 -0.010 0.683
(1) 0.858 0.198 -0.101 0.833 0.133 0.046 0.803 0.103 -0.070 0.436
(2) 0.825 0.213 -0.092 0.745 -0.005 -0.141 0.853 0.172 -0.027 0.414
(3) 0.753 0.226 0.070 0.666 -0.025 0.112 0.803 0.119 -0.298 0.328

IPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) 0.006 0.721 -0.013 0.056 1.000 -0.006 -0.034 -0.109 0.247 -0.391
(1) 0.049 0.556 0.169 0.010 0.482 -0.208 0.127 0.052 0.383 -0.347
(2) 0.049 0.284 -0.009 0.031 0.137 -0.060 0.089 0.172 0.078 -0.193
(3) 0.096 -0.019 0.152 0.096 -0.060 0.270 0.088 -0.017 -0.234 -0.010
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Table 6.11: Lagged Correlations between the Yearly Yield Curve Factors (June Data)-
II

IPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) 0.217 -0.127 0.430 0.271 -0.006 1.000 0.107 -0.285 -0.604 0.185
(1) 0.216 -0.223 -0.099 0.116 -0.059 0.067 0.259 -0.468 0.186 0.187
(2) 0.090 0.137 -0.349 0.011 0.001 -0.397 0.190 0.171 0.222 -0.133
(3) -0.025 0.090 0.125 -0.034 -0.209 -0.173 0.038 0.386 -0.091 -0.183

RPC1[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) 0.932 0.154 0.001 0.792 -0.034 0.107 1.000 -0.073 -0.022 0.511
(1) 0.754 0.208 -0.140 0.627 -0.008 0.018 0.839 0.047 -0.171 0.332
(2) 0.593 0.222 0.038 0.468 -0.054 0.055 0.704 0.069 -0.246 0.207
(3) 0.516 0.122 0.102 0.379 -0.108 0.243 0.636 -0.088 -0.343 0.199

RPC2[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) -0.064 0.421 0.061 0.033 -0.109 -0.285 -0.073 1.000 -0.113 -0.240
(1) 0.152 -0.085 0.136 0.178 -0.303 0.011 0.124 0.289 -0.045 0.294
(2) 0.273 -0.324 -0.339 0.274 -0.085 0.193 0.189 -0.261 -0.143 0.579
(3) 0.192 -0.080 -0.128 0.200 0.187 0.073 0.127 -0.294 -0.012 0.302

RPC3[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) -0.009 0.107 0.016 -0.010 0.247 -0.604 -0.022 -0.113 1.000 -0.018
(1) -0.103 0.403 -0.153 0.040 0.390 -0.145 -0.219 0.508 0.073 -0.254
(2) -0.020 0.071 0.222 0.088 0.057 0.011 -0.125 0.233 0.064 0.025
(3) 0.179 -0.286 -0.199 0.215 -0.139 0.198 0.075 -0.118 -0.114 0.351

Realised
Inflation

[t]
Lag, k NPC1

[t-k]
NPC2
[t-k]

NPC3
[t-k]

IPC1
[t-k]

IPC2
[t-k]

IPC3
[t-k]

RPC1
[t-k]

RPC2
[t-k]

RPC3
[t-k]

Realised
Inflation

[t-k]
(0) 0.668 -0.573 -0.167 0.683 -0.391 0.185 0.511 -0.240 -0.018 1.000
(1) 0.478 -0.066 -0.243 0.513 0.151 0.128 0.358 -0.121 -0.197 0.370
(2) 0.406 0.119 -0.058 0.376 0.090 -0.274 0.407 0.038 0.098 0.164
(3) 0.383 0.299 0.065 0.355 0.139 -0.123 0.408 0.175 -0.057 0.045
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6.3.2 Modelling the Yearly PCs

By using the yearly data we model 12 different sets of yield curve data from January

to December. As we have mentioned earlier, once we decide the best model for each

PC we apply the same model to different months and estimate the parameters. Due to

the few number of observations at yearly intervals we could find significant correlations

for level factors only and thus we model these factors.

Let XY be the matrix of yearly yield curve data for June from 1985 to 2009 where:

XYN
: Nominal spot rates (25 × 50)

XYI
: Implied inflation spot rates (25 × 46)

XYR
: Real spot rates (25 × 46)

Let Y be the matrix of the yearly PCs where:

YNL
: level component of the nominal spot rates (25 × 1)

YIL
: level component of the implied inflation spot rates (25 × 1)

YRL
: level component of the real spot rates (25 × 1)

and

YRI : annual realised inflation (25 × 1)

The structure of the yearly yield-macro model is:

Y [t] − µY = C1 (Y [t − 1] − µY ) + C2 YRI [t] + ǫY [t] (6.1)

where:

µY is the vector of long run mean of the variables, C1 is the coefficient matrix for

the first lag of the explanatory variables, C2 is the coefficient matrix of the realised

inflation and ǫY [t] ∼ N (0, ΣY ), i.e. normally distributed residuals with zero mean and

ΣY variance-covariance matrix. In this model, since we could not find a good model for
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the realised inflation using the level factors due to short period of data, we use realised

inflation as an exogenous variable.

Y =





YNL

YIL

YRL




(6.2)

µ̂t
Y =

[
−44.18 −17.22 −28.05

]
(6.3)

Ĉ1 =





0.82 0 0

0 0.75 0

0 0 0.91




(6.4)

Ĉ2 =





1.86 0 0

0 1.03 0

0 0 0.55




(6.5)

Σ̂Y =





12.82

5.38 6.30

6.99 −0.53 7.34




(6.6)

We display the correlation matrix, ρ̂Y , for the residuals below. As explained in the

previous section, we assume that the coefficients which are greater or less than three

standard errors (0.60) are significant. Therefore, the residuals of the level factors are

significantly positively correlated which can be explained by excluding the simultaneous

correlations in the modelling work.
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ρ̂Y =





1.00

0.60 1.00

0.71 −0.08 1.00




(6.7)

6.3.3 Parameter Estimates for Different Months

Since we use 12 different sets of yearly data to model the level factors of the yield curves,

we estimate the parameters for each model. Table 6.12 displays these parameters for

each model and each month. It should be emphasised that all three parameters (long

term mean, the coefficients of the first lag of the level factors and realised inflation)

are significantly different from zero for each month. This is one of the reasons that

we cannot model the slope components of the yield curves. We cannot find a common

model for every month which fits the data well enough.

Table 6.12 shows that the autoregressive parameter of the nominal level factor

changes between 0.76 and 0.84. Considering the standard error of the estimation which

we present in Appendix C, the differences between the parameter value for month June

with the parameter values for some other months in Table 6.12 are not high but just

above three standard errors. Therefore, we might think that although the change in

the parameter value is not big it might be significant. When we look at the other

autoregressive parameters for the implied and the real level factors we reach a similar

conclusion: the changes in the parameter values are small but significant. Therefore

we need to use different parameters for different months in our further analysis.

We do not present a model for annual realised inflation in this chapter because

we already have a model for the realised inflation at yearly frequency discussed in

Chapter 1, i.e. the Wilkie model of price inflation.

6.3.4 Model Comparisons

We also compare our models with the RW and AR(1) processes to see how much

the realised inflation contributes to the explained variability in the data. Table 6.13
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Table 6.12: Parameter Estimates for the Yearly Models

Month Nominal Level Implied Level Real Level
µYNL

YNL

(t − 1)
YRI(t) µYIL

YIL

(t − 1)
YRI(t) µYRL

YRL

(t − 1)
YRI(t)

January -37.96 0.78 1.85 -16.45 0.73 0.99 -28.05 0.89 0.68
February -39.41 0.81 1.59 -15.44 0.70 1.06 -28.05 0.91 0.58
March -39.78 0.78 2.02 -15.30 0.60 1.54 -28.05 0.89 0.66
April -38.24 0.76 2.27 -15.53 0.61 1.57 -28.05 0.91 0.57
May -40.18 0.80 1.85 -15.46 0.73 1.00 -28.05 0.90 0.60
June -44.18 0.82 1.86 -17.22 0.75 1.03 -28.05 0.91 0.55
July -45.70 0.84 1.63 -18.01 0.81 0.77 -28.05 0.90 0.60

August -45.15 0.82 1.94 -18.83 0.75 1.12 -28.05 0.90 0.60
September -44.18 0.84 1.54 -16.96 0.78 0.86 -28.06 0.91 0.50
October -44.18 0.84 1.50 -13.91 0.78 0.64 -28.05 0.87 0.82

November -44.18 0.84 1.49 -13.38 0.75 0.68 -24.50 0.84 0.91
December -39.84 0.79 1.89 -16.85 0.67 1.32 -28.05 0.90 0.57

shows the increased percentage in the explained variability for the level factors of the

yield curves. Accordingly, our models perform much better than particularly the RW

models increasing the explained variability up to 50% for some months. The nominal

level factor model is significantly superior to both RW and AR(1) process for every

months. Implied inflation level factor model performs much better than the RW model

while real level factor is still better but not by as much as the implied inflation or

nominal level factor models. Therefore, as the previous studies indicate there is a

significant correlation between the level factors of the yield curves and this helps to

improve the yield curve modelling.

6.3.5 Residual Analysis

Table 6.14 and Table 6.15 show some descriptive statistics such as mean, standard

deviation, skewness and excess kurtosis along with the Jarque-Bera test results of the

residuals for each level factors for each month. All mean values are zero, while skewness

and excess kurtosis values are either negative or positive for different set of residuals.

Jarque-Bera test p-values are quite high indicating normally distributed residuals apart

from the nominal level factor for October and December.
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Table 6.13: Model Comparisons for the Yearly Level Factors

Month Nominal Level Implied Level Real Level
R2

RW∗ R2
AR(1)∗ R2

RW∗ R2
AR(1)∗ R2

RW∗ R2
AR(1)∗

January 0.30 0.19 0.30 0.12 0.16 0.10
February 0.32 0.18 0.35 0.15 0.12 0.08
March 0.33 0.23 0.35 0.20 0.14 0.08
April 0.45 0.37 0.42 0.29 0.18 0.13
May 0.46 0.37 0.36 0.21 0.20 0.13
June 0.57 0.49 0.48 0.36 0.18 0.11
July 0.49 0.40 0.36 0.23 0.16 0.11

August 0.43 0.35 0.43 0.34 0.14 0.08
September 0.31 0.22 0.25 0.13 0.21 0.12
October 0.34 0.24 0.18 0.04 0.29 0.23

November 0.27 0.15 0.13 0.00 0.24 0.18
December 0.30 0.19 0.29 0.17 0.15 0.06
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Table 6.14: Residual Analysis of the Yearly Yield Curve Models-II

January
Nom Level Imp Level Real Level

Mean 0.0000 0.0000 0.0000
SD 5.5686 3.6069 2.9532

Skewness -0.5702 -0.1551 -0.3223
Kurtosis 0.5906 -0.5350 0.2557

JB p-value 0.3159 0.9007 0.6807
February

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 4.8364 3.5561 2.8643

Skewness -0.6652 -0.3947 0.0510
Kurtosis 0.4341 -0.6374 -0.8256

JB p-value 0.2784 0.6405 0.8139
March

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 5.4153 4.3605 3.1737

Skewness 0.1263 -0.1128 0.3793
Kurtosis -0.3498 -0.3517 -1.0924

JB p-value 0.9581 0.9650 0.4710
April

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 5.1137 4.0898 2.5343

Skewness 0.2188 -0.3222 0.3447
Kurtosis -0.2457 -0.4462 -0.8144

JB p-value 0.8969 0.7711 0.6299
May

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 4.2938 3.2743 2.6232

Skewness 0.2561 -0.2298 0.3135
Kurtosis -0.9562 -0.4958 -0.7762

JB p-value 0.6383 0.8544 0.6766
June

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 3.5658 2.5012 2.7511

Skewness -0.0912 -0.0199 0.4997
Kurtosis -0.5373 -0.6600 -0.2442

JB p-value 0.9327 0.9020 0.5670
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Table 6.15: Residual Analysis of the Yearly Yield Curve Models-II

July
Nom Level Imp Level Real Level

Mean 0.0000 0.0000 0.0000
SD 3.6478 2.3898 3.0049

Skewness -0.4022 0.7771 0.1182
Kurtosis -0.1806 -0.2771 -0.4791

JB p-value 0.6908 0.2534 0.9377
August

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 4.7098 2.6768 3.3036

Skewness -0.3433 0.0285 0.6269
Kurtosis 0.5626 0.3962 0.0011

JB p-value 0.5198 0.7824 0.3950
September

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 5.1341 3.5724 2.3200

Skewness -0.4518 0.0412 -0.5572
Kurtosis 0.5391 -0.4383 0.6116

JB p-value 0.4369 0.9743 0.3197
October

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 4.5535 3.7032 2.8311

Skewness -1.0146 0.0657 -0.1133
Kurtosis 1.5436 -1.1645 0.6731

JB p-value 0.0145 0.5997 0.5894
November

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 4.9912 4.5728 3.4243

Skewness -0.5489 0.1121 0.1035
Kurtosis 0.8782 0.3788 1.5977

JB p-value 0.2388 0.7718 0.1304
December

Nom Level Imp Level Real Level
Mean 0.0000 0.0000 0.0000
SD 5.5863 3.8353 2.9668

Skewness -0.9415 -0.3008 -0.7189
Kurtosis 1.9310 -0.9199 1.0099

JB p-value 0.0081 0.6214 0.1215
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6.3.6 Forecasting

Similar to the monthly and quarterly yield-curve analysis we forecast one-year ahead

spot rates using the level factor models for each yield-curve. We also calculate the 95%

confidence intervals based on normally distributed residuals.

Figure 6.15, Figure 6.16 and Figure 6.17 show one-year ahead forecasts with 95%

confidence bands for the nominal, implied inflation and the real spot rates respectively.

Although the one-year ahead forecasts seem like RW forecasts we show that the models

explain significantly more variability in the data with the help of realised inflation. The

forecast graphs also show that the short and long end of the yield curves indicate poor

forecasts relative to the medium term.

Table 6.16 shows the number and the ratio of the spot rates which are not within

the upper and lower confidence bands for different maturities for the nominal, implied

inflation and the real spot rates. The number of the spot rates out of the interval are

high at both end of the nominal yield curve while it has been mostly decreasing for the

real and implied inflation yield curves. Since we use yearly data with a few number

of observations and we use only level factor to derive the yield curves back, we do not

expect that the forecasts are as good as the ones we obtain using the monthly (yield-

only) or quarterly (yield-macro-I) models. Furthermore, excluding two factors for each

yield curve changes the variances and thus affects the width of the confidence intervals

for different maturities. Therefore, the relatively poor forecasts for the nominal spot

rates and implied inflation (12% and 8% of the data are out of the confidence bands

for the nominal and implied inflation yield curves respectively) can be explained by

these facts.
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Figure 6.16: 1-Year Ahead Forecasts with Upper and Lower Confidence Limits for Implied Inflation Spot Rates (%)
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Figure 6.17: 1-Year Ahead Forecasts with Upper and Lower Confidence Limits for Real Spot Rates (%)
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Table 6.16: Number and the Ratio of the Observations Outside of the 95% Confidence
Bounds for the 1-Year Ahead Forecasts

Maturity Nominal Implied Inflation Real
Number Ratio Number Ratio Number Ratio

0.5 96 0.333
1 87 0.302

1.5 78 0.271
2 71 0.247

2.5 68 0.236 53 0.184 49 0.170
3 66 0.229 53 0.184 37 0.128

3.5 60 0.208 43 0.149 24 0.083
4 53 0.184 43 0.149 20 0.069

4.5 48 0.167 42 0.146 18 0.063
5 43 0.149 38 0.132 15 0.052

5.5 38 0.132 39 0.135 15 0.052
6 36 0.125 38 0.132 14 0.049

6.5 31 0.108 37 0.128 14 0.049
7 30 0.104 36 0.125 12 0.042

7.5 31 0.108 37 0.128 11 0.038
8 28 0.097 37 0.128 11 0.038

8.5 27 0.094 34 0.118 12 0.042
9 27 0.094 31 0.108 12 0.042

9.5 26 0.090 27 0.094 11 0.038
10 26 0.090 23 0.080 11 0.038

10.5 25 0.087 22 0.076 12 0.042
11 25 0.087 20 0.069 12 0.042

11.5 23 0.080 18 0.062 12 0.042
12 23 0.080 16 0.056 13 0.045

12.5 21 0.073 14 0.049 14 0.049
13 19 0.066 13 0.045 14 0.049

13.5 20 0.069 12 0.042 15 0.052
14 20 0.069 12 0.042 14 0.049

14.5 19 0.066 12 0.042 14 0.049
15 19 0.066 11 0.038 14 0.049

15.5 19 0.066 12 0.042 14 0.049
16 19 0.066 12 0.042 14 0.049

16.5 20 0.069 12 0.042 14 0.049
17 21 0.073 13 0.045 14 0.049

17.5 22 0.076 15 0.052 14 0.049
18 23 0.080 13 0.045 14 0.049

18.5 23 0.080 14 0.049 14 0.049
19 24 0.083 15 0.052 14 0.049

19.5 26 0.090 14 0.049 14 0.049
20 27 0.094 15 0.052 14 0.049

20.5 28 0.097 15 0.052 16 0.056
21 28 0.097 17 0.059 17 0.059

21.5 28 0.097 18 0.062 17 0.059
22 29 0.101 18 0.062 17 0.059

22.5 31 0.108 18 0.062 17 0.059
23 31 0.108 20 0.069 18 0.063

23.5 33 0.115 22 0.076 19 0.066
24 36 0.125 24 0.083 20 0.069

24.5 39 0.135 25 0.087 20 0.069
25 41 0.142 25 0.087 21 0.073

Average 0.120 0.083 0.056
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6.3.7 Fisher Relation

Figure 6.18, Figure 6.19 and Figure 6.20 show the fitted spot rates (black solid lines),

one-year ahead forecasts (red solid lines) and the forecasts obtained using Fisher rela-

tion (blue solid line) for different maturities for the nominal, implied inflation and the

real yield curves separately. Different from the monthly and quarterly models, Fisher

relation does not hold for the one-year ahead forecasts. Possible reasons are the poor

forecasts due to few data and using only first principal component to derive the yield

curves.
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Figure 6.18: Fisher Relation Check for the 1-Year Ahead Nominal Spot Rate Forecasts (%)
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Figure 6.19: Fisher Relation Check for the 1-Year Ahead Implied Inflation Spot Rate Forecasts (%)
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Figure 6.20: Fisher Relation Check for the 1-Year Ahead Real Spot Rate Forecasts (%)
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6.4 Interim Conclusion: The Yield-Macro Models

In this chapter we have presented two ‘yield-macro’ models using quarterly and annual

yield curve and macroeconomic variables. First we have discussed the quarterly yield

macro model. According to our analysis, the macro variables and the yield curve factors

are significantly correlated. Although the level factors of the yield curves are modelled

as AR(1) processes, the macro variables have been significant in slope and curvature

factor models. Moreover, the yield curve factors also improve the models for realised

inflation and output gap. Thus, we have found a bi-directional relation between the

yield curves and the macroeconomic variables. When we consider the yearly model

proposed in the second half of the chapter, we see that the annual realised inflation

has been found significant in the level factor models. Accordingly, the increase in the

inflation leads to an increase in the level factors of the yield curves. Due to having

short period of data we could not model the other factors of the yield curves at yearly

intervals and this affects the forecasting performance of the models. On the other hand,

although the forecasts seem close to random walk forecasts, our models perform better

than the random walk and AR(1) process in terms of the explained variability in the

data.

244



Chapter 7

Comparison of the Wilkie Model

and the Yield-Macro Model

7.1 Introduction

In this chapter we compare the Wilkie model with the quarterly yield-macro model

in two ways. First we compare these two models in a philosophical way. We discuss

the structures of the models by considering the economic series they cover, the period

examined and the nature of the relation between these economic series. Secondly, we

compare the models in a variety of empirical ways. We start with the comparison of the

simulated series using the models. For this analysis we only use the common economic

series such as inflation, bank base rates, consols yields and nominal spot rates. We

compare the total nominal and real returns obtained from 1000 simulations for each

model. Finally, we consider a hypothetical pension scheme and compare the real asset

values along with the annuity payoffs for different investment scenarios.

Section 7.2 discusses the structural comparison and Section 7.3 and Section 7.4

present the empirical analysis. Finally, Section 7.5 concludes the chapter.
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7.2 Structural Comparison of the Models

The frequency of the data used in the models is an important feature which distin-

guishes the models. The Wilkie model has been constructed on yearly data while the

yield-macro model is based on quarterly data. The reason for using quarterly data for

our yield-macro model is that the output gap is available on a quarterly frequency. Al-

though we develop different models based on the monthly and the yearly intervals, we

would like to compare the Wilkie model with our quarterly yield-macro model because

it includes all the variables we intend to model.

The historical data for the series used in the Wilkie model have been available

since the 1900s while the term structures of the interest rates and implied inflation

and output gap data are available since the 1980s. Using different periods of data for

the two models affects the parameters estimated due to different economic conditions

experienced in those periods. This also affects the simulations produced for the future

years. In order to make the two models exactly comparable, we will introduce ‘neutral’

initial conditions and ‘neutralised’ parameters for the models and we will use the same

initial values for our state variables to simulate the future in the next sections.

Another distinguishing feature is the output variables the models produce. Fig-

ure 7.1 and Figure 7.2 display the structures of the Wilkie model and the yield-macro

model respectively. When we look at Figure 7.1 we see that the Wilkie model has a

cascade structure and that price inflation is the driving force as has been discussed

in Chapter 1. It includes wage inflation, share dividend yields, share dividends, share

prices, long term and short term interest rates and index-linked yields. On the other

hand, the yield macro model in Figure 7.2 is composed of the term structures of nom-

inal, implied inflation and real spot rates along with the realised inflation and the

output gap as macroeconomic variables. Thus, while we exclude the share dividends,

dividend yields and share prices and also wage inflation we incorporate two new vari-

ables namely implied inflation and the output gap. Additionally, we model the entire

term structures rather than just the two ends of the yield curves.

Incorporating new variables has also changed the structure of the model. The price
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inflation is not the driving force of the yield-macro model because the output gap and

the nominal spot rates have influences on it. Thus, we can see that the use of different

variables not only changes the structure of the models but also changes the nature of

the relations between the model variables. One of the main features of the yield curve

models proposed in this work is the bi-directional relations between the yield-curve

factors and the macroeconomic variables.

Share Dividend Yield 

Price Inflation 

Share Dividends 
Long-Term Interest 

Rates Share Prices 

Short-Term 
Interest Rates 

Wages Index 

Index-Linked 
Yields 

Figure 7.1: Structure of the Wilkie model
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Figure 7.2: Structure of the Yield-Macro model
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When we consider the similarities between these two models, besides indicating

some common factors such as price inflation, nominal and index-linked yields we might

go further and associate particular variables with the factors used in the yield-macro

model. To begin with, both models include the nominal interest rates. The consols

yield in the Wilkie model can be considered as an equivalent of the ‘level’ and the

‘log spread’, BD(t) = ln C(t) − ln B(t), as the equivalent of the ‘slope’ of the nominal

yield curve in the yield-macro model. However, we additionally include the ‘curvature’

factor of the nominal spot rates in our model.

It is possible to discuss the model formulae too. While the nominal slope factor

BD(t) has been modelled as an AR(1) process in the Wilkie model, the real curvature

factor and output gap have been found significant in the nominal slope model as a part

of the yield-macro model. Including two more explanatory variables we see that our

model performs significantly better than the AR(1) model of Wilkie.

Wilkie’s index-linked yield model might be compared with the ‘real level factor’

model of the yield-macro model. Wilkie (1995) models the index-linked yields includ-

ing the residuals obtained from the consols yield model. This is consistent with the

significant correlation between the residuals of the level factors of the nominal and real

spot rates which has been presented in Chapter 6 and Appendix B.

7.3 Empirical Comparisons of the Models

7.3.1 Simulated Economic Series

In this section we compare the Wilkie model and the yield-macro model considering the

inflation models, long-term and short-term interest rates and nominal spot rates. To

begin with, we simulate the inflation index for 1000 years to study the long run auto-

correlation functions of the stationary components of the models. Figure 7.3 shows the

auto- and partial auto-correlation functions of the historical data and the simulated

values for the two models over 1000 years in future. The auto-correlation functions

decay at different speeds for each model. The auto- and partial auto-correlation func-

tions of the historical data and the simulated values using Wilkie model look similar

248



while the yield-macro model differs showing the first and third lags significant in the

partial auto-correlation function. Besides, the auto-correlation function for the yield-

macro model decays much slower than the auto-correlation functions of the other two

data sets. Since the price inflation model of Wilkie is a strict AR(1) process it has a

continuously decreasing auto-correlation function and only the first lag is significant

in the partial auto-correlation function. On the other hand, the price inflation part of

the yield-macro model incorporates some other factors namely the nominal curvature

factor and the output gap as well as depending on its previous value. The nominal

curvature factor is an AR(2) process including the price inflation as an explanatory

variable as well. Thus relatively complex structure of the yield-macro model produces

an auto-correlation function decreasing first, then increasing a little bit and then de-

creasing again. The significant partial auto-correlation values for the first and the third

lags are caused by the structure of the model.

Although we forecast the values in Figure 7.3 by simulation, it is also possible to

calculate them theoretically. The calculations are straight forward for the Wilkie model

whereas many matrix multiplications are required for the yield-only model.

Since the two models are constructed based on different periods the estimated

parameters are quite different from each other due to having been affected by the

economic conditions of those periods. For example the long-run mean of the Wilkie

price inflation model, QMU , is about 4.3% while it is equal to 2.88% for the yield-macro

model. All the other means and the standard deviations are different as well. Thus,

if we use the model parameters, particularly the means, as they are it is unavoidable

that we would find very different economic scnearios for the two models.

All time series models need some initial conditions, that is values of the state space

at time t = 0. Except in some special cases, the choice of initial conditions affects

the short-term properties of the simulations. It is convenient therefore to start with

‘unbiased’ initial conditions. These unbiased initial conditions are what Wilkie (1995)

and Lee and Wilkie (2000) call ‘neutral’ initial conditions. For a linear model, these
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Figure 7.3: Autocorrelation functions for the historical and simulated price inflation
rates

neutral conditions might be the means and for non-linear models these might be long-

run expected values, or alternatively, long-run medians. It may also be interesting to

see the effect of biased initial conditions, or market condition on a particular date but

we do not do this here.

In order to make the two models, the Wilkie model and the yield-macro model,

exactly comparable we introduce some ‘neutral’ initial conditions and ‘neutralised’

parameters (Lee and Wilkie, 2000). To begin with, we use ‘neutral’ initial conditions
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for the yield-macro model by setting the starting values at their long-run means. We

obtain these long-run means by setting the standard deviations at zero. By using the

neutral initial conditions for the yield-macro model we derive the zero coupon yield

curves. Converting the initial zero-coupon yield curve into the par yield curve gives

us the initial values for the long-term and short-term bond yields of the Wilkie model.

Thus we use the same initial conditions for both models. However, while those initial

conditions are neutral starting values for the yield-macro model, they are not neutral

for the Wilkie model. Therefore, we adjust (or ‘neutralise’ (Lee and Wilkie, 2000)) the

mean parameters of the Wilkie model according to the initial conditions so that those

initial conditions would be neutral for the parameter-adjusted Wilkie model.

For the inflation model the initial value for the yield-macro model is the long-run

mean and we use that value as the initial condition for Wilkie’s inflation model. When

we set the standard deviation of the Wilkie model to zero, we see that the initial

condition becomes the long-run mean of the Wilkie inflation model as well. Therefore,

for the inflation models, both the initial conditions and the mean parameters are the

same and equal to 2.88%. We have done the same for the yield curves too. Note that

we start with the same initial conditions for the two models and we adjust only the

mean parameters of the Wilkie model based on these initial conditions.

After all these adjustments we can now compare these two models empirically. The

economic series have been simulated for the next 35 years in this application.

Once we derive the RPI values after simulating the inflation values for both models

we plot the empirical cumulative distribution functions (ECDF) for specific years to

compare the distributions of the simulated values in Figure 7.4. Since the Wilkie

inflation model has a higher standard deviation which has been caused by the data

period including some extreme values, the distribution of the RPI values are more

dispersed than the values obtained from the yield-macro model.
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Figure 7.4: Empirical Cumulative Distribution Functions for the Simulated RPI Values
over 35 Years

7.3.2 Simulated Zero-Coupon Yields

We can also compare the zero-coupon bond yields for different maturities and different

forecast years obtained from the two models. In order to do such a comparison: First

we simulate the short and long-term interest rates of the Wilkie model. Using these

simulated values we construct the par yield curve for each year using Equation 7.1 in

Lee and Wilkie (2000) and Wilkie et al. (2003).

Y (t, n) = C(t) + (B(t) − C(t)) exp(−βn) (7.1)

where Y (t, n) is the par yield at time t for term n, B(t) is the base rate, C(t) is the

consols yield from the Wilkie model and β is a constant whose value will be given later.

We then derive the zero-coupon rates, at annual intervals, recursively, as follows:

Let v(t, n) be the value at time t of a zero-coupon bond of term n.

Then the value of a coupon bond of term n, currently priced at par, with coupon
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equal to the par yield Y (t, n), and redeemable at par, means that we have, for each n,

1 = Y (t, n)
n∑

m=1

v(t,m) + v(t, n). (7.2)

Given the values of Y (t, n), we can use Equation 7.2 to derive the v(t, n) recursively.

Starting with n = 1, we have

1 = Y (t, 1)
1∑

m=1

v(t,m) + v(t, 1)

whence v(t, 1) = 1/(Y (t, 1) + 1).

We continue year by year:

1 = Y (t, n)
n−1∑

m=1

v(t,m) + (1 + Y (t, n))v(t, n)

whence v(t, n) =
(
1 − Y (t, n)

∑n−1
m=1 v(t,m)

)
/(1 + Y (t, n)).

From the values of v(t, n) we can derive a zero-coupon yield curve:

Z(t, n) =
1

v(t, n)1/n
− 1 (7.3)

Wilkie et al. (2003) indicate a problem about this approach which we have encoun-

tered in our calculations too. When calculating the zero-coupon discount factor v(t, n),

the sum of the values of the coupons from years one to n − 1, Y (t, n)
∑n−1

m=1 v(t,m),

might exceed unity, so that the calculated value of the zero-coupon discount factor

v(t, n) is negative. This unsatisfactory condition happens when, for longer maturities,

the par yield is still rising noticeably, and this happens when, with Equation 7.1, the

value of β is too low for the particular values of B(t) and C(t). Therefore we have

to choose a value of β that is large enough to prevent this anomaly from happening,

at least within the first 35 years (the period for investing in zero-coupon bonds in

this application). We find that a value of β = 0.55 is large enough considering the

initial values and the simulations for our calculations. Indeed, Wilkie et al. (2003) use

β = 0.39 and Yang (2001) uses a value of β of 0.5. Although we start with the value of

0.1 for β, we have had to increase it up to 0.55 to avoid negative or zero discount factors
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for the zero-coupon bonds. Using a high value of β produces a very flat yield curve,

rather little different from using a constant interest rate of C(t). However, β = 0.55 is

the lowest value that does not give us inconsistencies.
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Figure 7.5: Empirical Cumulative Distribution Functions for the Simulated Zero-
Coupon Bond Yields

Figure 7.5 displays the ECDFs of the zero-coupon yield curves based on 1000 simu-

lations for different maturities and different years from the two models. The ECDFs for

the zero-coupon yields for the first forecast year, t = 1, seem rather similar for the two

models although the simulations obtained from the Wilkie model have a wider spread.

At time t = 1, as the maturity increases the ECDFs get closer. On the other hand, as

we simulate the yield curves for further years the standard deviations decrease for both

models while the means remain almost the same. There are some high zero-coupon
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bond yields for the forecast years t = 15 and t = 35 in the simulated values using the

Wilkie model. Figure 7.5 indicates that the distributions of the zero-coupon yields ob-

tained from the two models become different as the maturity and the forecasting years

increase. The calibration periods and the structures of the models might explain the

differences observed in Figure 7.5. The parameters of the yield-macro model have been

calculated based on a much more stable period. Therefore it is not surprising that the

distributions of the ZC bond yields or any other simulated variables are less skewed or

humped than the simulated Wilkie model variables. Furthermore, the structural dif-

ferences between these two models also affect the simulation results. One of the main

advantages of the yield-macro model over the Wilkie model is that the yield-macro

model forecasts the entire yield curves. When we try to construct the ZC yield curve

using the Wilkie model we see that there are some high ZC bond yields for reasons

which have been discussed previously.

7.3.3 Nominal and Real Returns

After we simulate the zero-coupon yield curves for each model for the next 35 years we

compare the investment returns based on these yield curves.

Tables 7.1, 7.2, 7.3 and 7.4 show numerical results from the Wilkie model and the

yield-macro model on the same lines as shown in Tables 11.1 and 11.2 of Wilkie (1995)

and Tables 3.1a to 3.7a of Lee and Wilkie (2000). However, we use zero-coupon bonds

rather than par bonds for this application. We follow the notation of Wilkie (1995).

Consider any variable X(t), such as a price index or a total return index. Wilkie (1995)

defines nominal returns as:

FX(t) = X(t)/X(0)

GX(t) = 100(FX(t)1/t − 1)

and real returns (relative to price inflation, FQ) as:
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HX(t) = FX(t)/FQ(t)

JX(t) = 100(HX(t)1/t − 1)

Thus FX(t) is the return over t years from an investment of 1 at time 0, and GX(t)

is the equivalent compound annual rate of return, expressed as a percentage; HX(t)

and JX(t) are defined similarly, but based on real returns relative to the retail price

index. We then denote the various series using below notation:

Q: retail price index

LR: long-term bond total return index

SR: “cash” or short-term bond total return index

Since for the two models the full yield curves are available now, we consider a

rolling investment strategy and assume investment in 25-year zero-coupon bond which

the following year has become a 24-year bond; it is then sold and reinvested in a

new 25-year zero-coupon bond. For the short-term bond returns, we have followed the

same approach, but using as a short-term rate, a 1-year zero-coupon bond compounded

annually.

In Table 7.1 and Table 7.3 we show values measured in nominal terms and in Ta-

ble 7.2 and Table 7.4 values measured in real terms (since the real return on price

inflation is zero it is omitted). We show means, standard deviations (sd), skewnesses

(skew), excess kurtosises (kurt) and correlation coefficients (cor) based on 1000 simu-

lations.

According to Table 7.1, the mean for the inflation has not changed significantly

while the standard deviation has reduced with t. The skewness and the excess kurtosis

seem low and stable over the 35 years. As for the nominal returns on long-term bonds,

we see almost 1% decrease in the mean over the next year but it has increased gradually

since then. The standard deviation has come down significantly while the skewness and

excess kurtosis vary over time displaying some high values particularly after t = 10.
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Long-term bond returns are negatively correlated with inflation but the correlation

has been decreasing slowly over time. The mean and the standard deviation of the

short-term nominal returns have been increasing with t. The correlation coefficients

for the inflation and the short-term nominal returns have been increasing up to 0.382

while they are negative for the first 25 years and become positive afterwards when we

look at the coefficients between the long-term and short-term nominal returns.

Although the means and the standard deviations of the real returns present similar

patterns to nominal returns, the correlation coefficients have changed both in terms of

sign and magnitude as seen in Table 7.2.

Table 7.3 and Table 7.4 display the results for the nominal and real returns for the

yield-macro model. The means and the standard deviations have similar trends as with

their akins in the Wilkie model. However, they are generally lower than the values in

Table 7.1 and Table 7.2. The low values of the skewness and excess kurtosis coefficients

obtained from the returns for the yield-macro model are also noticeable. The nominal

short-term returns are positively correlated with the inflation which has reached up to

0.913 at year 35.

We could calculate the continuously compounded rates by taking the logarithms

rather than calculating the annual compounded rates of the variables in Tables 7.1,

7.2, 7.3 and 7.4. The high values of the skewness and excess kurtosis coefficients

might indicate some log-normally distributed returns. When we take logarithms we

expect to have approximately normally distributed returns which might produce lower

values for the skewness and kurtosis coefficients.
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Table 7.1: Wilkie Model: Results for Nominal Returns from 1000 Simulations

Mean rate of inflation, GQ

Term 1 5 10 15 20 25 30 35

mean(GQ) 2.949 3.137 2.973 2.958 2.945 2.954 2.969 2.987

sd(GQ) 4.013 3.437 2.720 2.321 2.105 1.930 1.794 1.663

skew(GQ) 0.102 0.170 0.297 0.281 0.232 0.190 0.136 0.124

kurt(GQ) -0.082 0.103 0.185 0.204 0.120 0.026 -0.014 0.126

Mean rate of growth of nominal total return on long bonds, GLR

Term 1 5 10 15 20 25 30 35

mean(GLR) 5.917 4.952 5.142 5.463 5.714 5.786 5.969 5.903

sd(GLR) 19.544 7.778 4.613 3.353 2.455 2.309 1.881 1.904

skew(GLR) -0.076 -0.790 -1.420 -1.351 -1.103 -1.239 -0.662 -0.746

kurt(GLR) -0.191 0.944 5.072 3.331 2.451 3.925 2.946 3.534

cor(GQ,GLR) -0.211 -0.384 -0.367 -0.371 -0.344 -0.222 -0.158 -0.033

Mean rate of growth of nominal total return on cash, GSR

Term 1 5 10 15 20 25 30 35

mean(GSR) 5.855 5.986 6.174 6.265 6.303 6.341 6.370 6.397

sd(GSR) 0.000 1.832 2.163 2.227 2.239 2.201 2.151 2.087

skew(GSR) 0.000 1.091 1.084 1.299 1.299 1.328 1.181 1.048

kurt(GSR) 0.000 1.548 1.654 3.883 5.583 3.822 2.697 1.859

cor(GQ,GSR) 0.000 0.150 0.200 0.242 0.262 0.301 0.350 0.382

cor(GLR,GSR) 0.000 -0.383 -0.320 -0.287 -0.154 -0.030 0.141 0.236

Table 7.2: Wilkie Model: Results for Real Returns from 1000 Simulations

Mean rate of growth of real total return on long bonds, JLR

Term 1 5 10 15 20 25 30 35

mean(JLR) 3.197 1.969 2.221 2.511 2.749 2.796 2.949 2.859

sd(JLR) 20.366 9.421 6.014 4.630 3.669 3.262 2.755 2.531

skew(JLR) 0.104 -0.228 -0.493 -0.469 -0.365 -0.362 -0.108 -0.059

kurt(JLR) -0.026 0.168 1.383 0.843 0.306 0.572 0.449 1.191

cor(GQ,JLR) -0.396 -0.667 -0.717 -0.756 -0.792 -0.741 -0.755 -0.680

Mean rate of growth of real total return on cash, JSR

Term 1 5 10 15 20 25 30 35

mean(JSR) 2.979 2.867 3.169 3.252 3.293 3.314 3.321 3.325

sd(JSR) 4.015 3.607 3.084 2.761 2.599 2.411 2.228 2.073

skew(JSR) 0.121 0.137 0.391 0.588 0.825 0.944 0.925 0.860

kurt(JSR) -0.068 0.166 0.750 2.258 3.119 2.993 2.671 1.950

cor(GQ,JSR) -0.999 -0.873 -0.743 -0.650 -0.590 -0.534 -0.479 -0.431

cor(JLR,JSR) 0.399 0.455 0.407 0.382 0.431 0.417 0.485 0.472
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Table 7.3: Yield-Macro Model: Results for Nominal Returns from 1000 Simulations

Mean rate of inflation, GQ

Term 1 5 10 15 20 25 30 35

mean(GQ) 2.988 2.964 2.943 2.918 2.927 2.927 2.935 2.937

sd(GQ) 1.066 0.687 0.691 0.715 0.732 0.723 0.712 0.697

skew(GQ) 0.074 0.013 -0.005 -0.033 -0.089 -0.119 -0.098 -0.086

kurt(GQ) -0.183 -0.087 -0.167 0.026 -0.055 -0.099 -0.148 -0.131

Mean rate of growth of nominal total return on long bonds, GLR

Term 1 5 10 15 20 25 30 35

mean(GLR) 7.370 6.141 6.012 5.973 5.991 6.001 5.951 5.918

sd(GLR) 16.654 4.971 2.605 1.845 1.381 1.179 1.029 0.877

skew(GLR) 0.583 0.023 0.098 -0.015 0.132 -0.025 0.068 -0.029

kurt(GLR) 0.809 -0.198 -0.211 0.186 -0.073 -0.207 -0.187 -0.131

cor(GQ,GLR) -0.182 -0.101 -0.035 -0.038 -0.194 -0.190 -0.273 -0.282

Mean rate of growth of nominal total return on cash, GSR

Term 1 5 10 15 20 25 30 35

mean(GSR) 5.888 5.860 5.831 5.836 5.847 5.851 5.854 5.852

sd(GSR) 0.644 0.779 0.883 0.910 0.906 0.895 0.870 0.838

skew(GSR) 0.061 -0.051 -0.092 -0.075 -0.103 -0.071 -0.060 -0.080

kurt(GSR) 0.207 -0.135 -0.239 -0.263 -0.261 -0.221 -0.192 -0.134

cor(GQ,GSR) -0.150 0.359 0.681 0.794 0.850 0.884 0.901 0.913

cor(GLR,GSR) 0.166 0.129 0.070 0.038 -0.111 -0.127 -0.207 -0.224

Table 7.4: Yield-Macro Model: Results for Real Returns from 1000 Simulations

Mean rate of growth of real total return on long bonds, JLR

Term 1 5 10 15 20 25 30 35

mean(JLR) 4.2967 3.093 2.987 2.973 2.983 2.993 2.936 2.902

sd(JLR) 16.424 4.944 2.648 1.956 1.649 1.467 1.379 1.243

skew(JLR) 0.604 0.0151 0.140 0.004 0.086 0.0457 0.178 0.009

kurt(JLR) 0.907 -0.156 -0.150 0.107 -0.158 0.035 0.011 0.054

cor(GQ,JLR) -0.244 -0.238 -0.294 -0.401 -0.602 -0.642 -0.716 -0.754

Mean rate of growth of real total return on cash, JSR

Term 1 5 10 15 20 25 30 35

mean(JSR) 2.829 2.815 2.806 2.835 2.837 2.841 2.835 2.831

sd(JSR) 1.313 0.819 0.637 0.538 0.464 0.410 0.370 0.336

skew(JSR) 0.056 -0.023 -0.099 -0.041 -0.066 -0.077 -0.046 -0.012

kurt(JSR) 0.110 -0.102 -0.023 -0.110 -0.037 0.052 0.001 0.035

cor(GQ,JSR) -0.882 -0.506 -0.166 -0.022 0.037 0.112 0.135 0.142

cor(JLR,JSR) 0.280 0.269 0.169 0.112 0.061 -0.005 -0.031 -0.051
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7.4 Asset Values and Annuity Payoffs

Another way to compare the Wilkie model and the yield-macro model is to examine the

asset values and the annuity payoffs under a hypothetical pension scheme. Although

a more realistic application would include mortality, we ignore it during both the

investment and the retirement periods for simplicity in this analysis.

We assume an employee at age 30, with an arbitrary initial salary, S. The salary

increases according to the simulated RPI index for the next 35 years and the employee

retires at age 65. She contributes a constant fraction of her salary, f to a pension fund

which is invested into a portfolio of nominal bonds for different maturities. We ignore

mortality during both the investment and the retirement period, which is taken as a

fixed 25 years, and we analyse the variations in the assets and annuity payoffs.

Let v(t, n) be the price of an n-year zero-coupon bond at time t.

v(t, n) =
1

(1 + Z(t, n))n
(7.4)

where

Z(t, n) is the n-year spot rate at time t.

Salary rises in line with RPI(t) and contributions are a constant fraction, f , of

salary. Thus the yearly contribution Ct is,

Ct = S × f × RPI(t)

RPI(0)

where

S = 10000 units

f = 10%

RPI(t) values are simulated using the stochastic models.

Thus, the asset value just before the contribution at time t, At, can be calculated as:
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At = (At−1 + Ct−1)
v(t, n − 1)

v(t − 1, n)︸ ︷︷ ︸
1+R(t)

(7.5)

where A0 = 0 and R(t) is the return at time t. Equation 7.5 assumes investment in a

rolling n-year zero-coupon bond fund.

Once we calculate the asset values over time, we can find the annuity payoffs for

the 25 years retirement period using the zero-coupon yield curves at age 65, i.e. the

simulated yield curve at year 35. We assume that the annuity is paid yearly in advance.

Let ap be the annuity payoff. Then,

A35 = ap × ä(35, N) (7.6)

where ä(35, N) is the annuity price for 1 unit,

ä(35, N) =
N−1∑

m=0

(1 + Z(35,m))−m =
N−1∑

m=0

v(35,m)

N = 25 and Z(35, N) is the zero-coupon yield curve at t = 35.

We calculate the asset values under different investment strategies for both models.

We assume rolling investments in zero-coupon bonds for specific maturities such as

5-year (F1), 10-year (F2), 15-year (F3), 20-year (F4) and 25-year (F5) ZC bonds as

described in the previous section. We consider two more scenarios which we invest

on decreasing maturity for some years of the investment period. First, we invest in

25-year ZC bonds for the first 10 years, then for the last 25 years instead of a rolling

investment we use the zero-coupon yield curve to calculate the returns on decreasing

maurities (D1). Second, we again invest in 25-year ZC bonds but for a longer period,

25 years, then for the last 10 years we invest in decreasing maturity bonds (D2). While

in D1 the maturity of the assets at time t = 35 corresponds to the retirement date,

in D2 the maturity of the assets is 15 years at the retirement date. With D2 we try

to hedge the risk in the annuity price, ä(35, N). On the other hand, a more realistic

strategy might be to assume deterministic mortality and an investment policy which

aims to match the expected annuity payoffs more exactly by buying small fraction of
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bonds of different maturities.

Table 7.5 shows some descriptive statistics for the real asset values calculated using

the first ‘decreasing maturity’ investment strategy (D1) for both models over the next

35 years. Although the mean of the real asset values obtained from the Wilkie model

grows faster than the values of the yield macro model, the medians for different years

are quite close to each other. The higher standard deviations, skewness and excess

kurtosis coefficients indicate that Wilkie model tends to produce some extreme values

relative to the yield-macro model. The minimum and maximum values displayed over

the years also support this conclusion.

Table 7.5: Real Asset Values, At, on a Decreasing Maturity (D1) Investment

Wilkie Model Real Asset Values

Year Mean Sd Median Min Max Skewness Kurtosis

1 219.69 8.56 219.63 192.83 247.82 0.10 -0.08

5 251.82 42.45 248.45 142.52 427.77 0.59 0.64

10 295.29 81.53 281.32 130.01 642.74 1.08 1.77

20 413.52 182.87 375.90 103.06 1556.13 1.59 4.05

30 586.74 335.57 510.11 121.58 3157.36 1.95 6.78

35 699.74 444.15 593.25 120.31 4632.24 2.42 11.22

Yield-Macro Model Real Asset Values

Year Mean Sd Median Min Max Skewness Kurtosis

1 219.78 2.28 219.75 212.49 227.54 0.07 -0.18

5 247.06 8.25 246.70 220.79 273.45 0.09 -0.09

10 285.79 19.18 285.23 231.86 345.76 0.16 -0.12

20 383.65 54.43 381.28 230.74 565.17 0.30 0.06

30 518.92 107.46 508.83 269.88 961.85 0.47 0.25

35 603.76 142.94 591.03 285.74 1154.34 0.56 0.31

Figure 7.6 shows the real asset values for different investment strategies over the

years. The yield-macro model produces lower mean values than the Wilkie model

after the first year but while the difference is negligible for 5-year (which has not been

displayed in the figure) and 10-year ZC bond investments, the difference increases as the

maturity of the invested bond increases. For the investment on the 25-year ZC bond

the Wilkie model produces very high values. After 15 years investment the Wilkie

model asset values increase sharply which might be related with very low zero-coupon
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discount factors. As we have discussed in the previous section, choosing β = 0.55

prevents negative discount factors but some of them are still very close to zero. These

low values mean that the ZC bond prices are very low for some specific maturities

and years and this causes extreme values in returns considering the rolling investment

strategies. The last two plots in Figure 7.6 show the asset values for the decreasing

maturity investments. Since we invest in 25-year ZC bonds only for 10 years, the real

annuity payoffs of the models are relatively close in D1 while they are quite different

in D2 as a result of much longer investment period on the 25-year ZC bonds.
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Figure 7.6: The Mean Amount of Real Assets for Different Investment Strategies
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Table 7.6: Annuity Payoffs as a % of Final Salary

Wilkie Model

F1 F2 F3 F4 F5 D1 D2

Mean 63.17% 63.03% 66.18% 73.72% 90.02% 64.92% 88.75%

SD 51% 53% 74% 132% 300% 57% 269%

Median 50.18% 49.63% 49.91% 50.95% 52.34% 53.00 52.69%

Minimum 20.63% 17.51% 15.36% 10.80% 6.03% 20.08% 9.77%

Maximum 637.12% 886.90% 1449.79% 2971.28% 7536.14% 1005.49% 6515.18%

Skewness 5.98 7.49 10.74 15.16 19.20 9.42 17.35

Kurtosis 51.73 87.15 165.34 289.00 426.69 127.27 362.61

Yield-Macro Model

F1 F2 F3 F4 F5 D1 D2

Mean 55.11% 55.46% 53.71% 52.11% 51.23% 53.39% 50.61%

SD 13% 15% 16% 16% 17% 13% 12%

Median 53.43% 52.97% 51.55% 49.75% 48.88% 51.77% 48.80%

Minimum 24.94% 23.37% 23.89% 20.73% 17.90% 23.28% 25.89%

Maximum 117.54% 147.68% 155.64% 159.66% 164.92% 106.19% 100.27%

Skewness 0.87 1.14 1.21 1.24 1.29 0.87 0.80

Kurtosis 1.21 2.49 3.02 3.24 3.38 1.06 0.79

Table 7.6 presents some descriptive statistics for the nominal annuity payoffs as a

percentage of final salary for both models. As for the Wilkie model, the mean and the

standard deviation of the ratio have been increasing as we use a longer term bond for

investment. The significant differences between the means and the medians indicate

that there are some extreme values which affect the ratios. The ratios are positively

skewed and the excess kurtosis coefficients are exceptionally high. On the other hand,

the means and the medians for the yield-macro model are not very different from

each other. The standard deviations seem stable and the ratios are slightly positively

skewed. Although the excess kurtosis coefficients are much lower than the ones in

the Wilkie model, they are significantly high for the ratios obtained from some of the

investment strategies.

We might also compare the distributions of these ratios graphically. Figure 7.7

displays the ECDFs of the annuity payoffs as a percentage of final salary for different

investment strategies for the models. Since we know that the annuity payoffs obtained
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from the Wilkie model have some extreme values we exclude the ratios lower than

5% and higher than 200% to draw the ECDFs. Regardless of the portfolio chosen,

the payoff ratios calculated using the Wilkie model are more dispersed than the ratios

obtained from the yield-macro model due to more volatile calibration period and the

structure of the model.
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Figure 7.7: The Empirical Cumulative Distribution Functions of the Annuity Payoffs
as a % of Final Salary

Figure 7.8 and Figure 7.9 show the scatter plots for the asset/salary ratios and

annuity prices (ä(35, N)) on a horizontal log scale for the Wilkie model and the yield-

macro model respectively. We have omitted extremely high values for the Wilkie model

in Figure 7.8 but there are still very high and very low values which increase the spread

of the plots. As the maturity of the invested ZC bond extends the correlation between

the ratios and the annuity price increases in both figures. As for the decreasing maturity

investment strategies, D1 and D2, the correlations seem stronger for D2 at least for
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the Wilkie model. The reason is that having 15-year ZC bonds as assets at retirement

hedges the risk in the annuity price, ä(35, N) better. However, the correlations are

relatively weak for both D1 and D2 suggesting that this type of strategy does not work

all that well, at least looking ahead from time t = 0.

7.5 Interim Conclusion: Comparison of the Models

In this chapter we have compared the Wilkie model and the yield-macro model in

both structural and empirical ways. Due to incorporating different input variables, the

models have different structures and the nature of the relations between these variables

is also different. Since the two models were developed based on different periods of

data we use the neutral initial conditions of the yield-macro model for the Wilkie model

and we adjust the mean parameters of the inflation and interest rates models of Wilkie

according to these initial conditions. Therefore, we have made the two models exactly

comparable. Afterwards, we have simulated the nominal and real total returns based on

a rolling investment strategy and compared the models by examining some descriptive

statistics and the correlations between the outputs. Considering both the nominal and

real total returns, the Wilkie model has produced higher values for the means and the

standard deviations than the yield-macro model. However, the correlation coefficients

between the variables vary for both models, while the yield-macro model gives higher

positive correlation between the inflation and the short-term bond returns.

We have also calculated the asset values and annuity payoffs for the two models

under a hypothetical pension scheme. The results show that the Wilkie model produces

higher asset values (including some extreme values) for different portfolios and the

volatilities have been much higher than the ones obtained from the yield-macro model.

This is due to small values of the zero-coupon discount factors which have caused

extremely high returns for the chosen investment strategy. The distribution of the

ratios are positively skewed with very high kurtosis coefficients while the yield-macro

model produce much more stable ratios. Finally, we have compared the annuity payoffs
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Figure 7.8: Asset/Salary vs Price (25-Year ZC Bond), Wilkie Model
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Figure 7.9: Asset/Salary vs Price (25-Year ZC Bond), Yield-Macro Model

as a percentage of final salary for each model and for each portfolio. When we omit

the extreme values for the Wilkie model, the distribution of the ratios seem similar in

terms of means but the standard deviations of the ratios from the Wilkie model are
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still higher. Furthermore the correlation between the asset/salary ratios at retirement

and the annuity price increases as the maturity of the bond invested increases.
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Chapter 8

Conclusions and Further Research

The purpose of this chapter is to provide an overview of the main findings of this thesis

as well as some suggestions for further research.

8.1 Conclusions

The main contribution of this thesis is the construction of a stochastic investment

model incorporating the term structures of the nominal, implied inflation and the real

spot rates simultaneously along with the realised inflation and output gap for the UK.

The work is original as it provides a model for the term structure of implied inflation

for the first time. While any of the three term structures on the base data can be

derived from the other two, after applying PCA the three sets of simulated values are

not additive. Thus we investigate which pairs give the plausible values for the other

set, checking whether the Fisher relation holds for the simulated values.

In Chapter 1 we have discussed the first comprehensive stochastic investment model,

the Wilkie model, in detail. The estimated parameters based on the updated data have

not changed significantly for most of the models while the recursive estimates and the

confidence intervals for these estimates show that the parameters might change over

time. Therefore, we have concluded that the parameters have not been stable except

for the wages, dividend yields and short-term interest rates models.

Since the purpose of this study has been to propose a stochastic investment model
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which incorporates the term structures we have used the yield curve data provided by

the Bank of England. However, the data include many missing values which prevents

us from using all 50 (or 46) maturities available. In Chapter 2 we have fitted the Cairns

model (Cairns, 1998) to the yield curve data in order to fill the gaps in the data. This

has enabled us to make two contributions. First, instead of using some given fixed

exponential rates in the descriptive parametric model of Cairns we have found a set

of optimal parameters for each yield curve and two of the three sets have given better

results than the other fixed parameter sets. Second, by replacing the missing values

we could use the information from 50 (or 46) different maturities for our yield curve

models rather than using only a small number of maturities which have been the case

in other studies.

After replacing the missing values in the yield curves we have applied the PCA

to the fitted values to decrease the dimension of the data by extracting some uncor-

related variables. The first three components have explained almost all the observed

variability for each term structure. We have also discussed the robustness of the PCA

relative to the choice of the exponential parameter sets and concluded that the analysis

produces consistent results for different sets of parameters. Then, we have modelled

these components in Chapter 5 on a monthly frequency. An AR(1) process has been

found good enough to model all nine factors of the three yield curves. The distribu-

tion of the residuals follow the logistic distribution due to having zero mean and high

kurtosis coefficients. We have also noticed that there is some evidence of ARCH effects

for the implied inflation and real spot rates. One-month ahead forecasts have been

satisfactory, while the Fisher relation held for some of the maturities.

Chapter 6 presents the main contributions of this work by including the vector

autoregressive stochastic investment models which consist of the term structures and

the macroeconomic variables. As for the quarterly yield-macro model, our analysis has

shown that the yield curve factors and the macroeconomic variables are significantly

correlated. The level factors of the yield curves have been modelled as AR(1) processes.

The nominal slope and curvature factors are the ones which are connected with the

macroeconomic variables in a bi-directional way. The yield curve factors also have been
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found significantly correlated for some of the models as expected.

On the other hand, the yearly yield-macro model presents a relation between the

‘level’ factors of the yield curves and the realised inflation. However, this is a one way

relation and the realised inflation has been found to have a significant impact on the

levels of the yield curves.

Furthermore, we have tried to explain the auto- and cross-correlations between

the term structures and the macroeconomic variables. The nature of the correlations

have been changed as we have used data on different frequencies. While we observe

significant positive correlations between the level factors of the yield curves and the

realised inflation on yearly data, there is no such correlation between these variables on

monthly or quarterly frequencies. Besides, there is a negative correlation between the

level factors of the spot rates and the output gap. The economic theory states that an

increase in interest rates decreases the actual output. Since the output gap is defined

as the difference between the actual output and the potential output divided by the

potential output, when the actual output decreases the output gap decreases too.

We have compared our stochastic investment models with the random walk and

the AR(1) process in terms of the explained variability in the data. The results have

shown that including the bi-directional relation between the yield curves and the macro

variables improves the performance of the models significantly. We have also concluded

that the Fisher relation holds for some maturities when we examined one-period ahead

forecasts for both yield-macro models.

In the final chapter we have compared our quarterly yield-macro model with the

Wilkie model. The structures of the two models are quite different due to different

variables included and the frequency of the data used. The distributions of the nominal

and real returns produced by the Wilkie model have been found more skewed and

humped relative to the yield-macro model. Besides, the real asset values and the

annuity payoffs have been higher for the Wilkie model with high uncertainty. Our

analyses have showed that the extreme values for the asset returns simulated from

the Wilkie model have been caused by the low zero coupon bond prices. This has

happened because of the neutralised parameters and the initial conditions we have
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chosen to make the two models comparable. The main advantage of the yield-macro

model is to forecast the entire term structures rather than just the two ends of the

curves as in the Wilkie model. Incorporating the three term structures provides a

broader application field to the yield-macro model which consists of the interest rates

forecasting. However, in Chapter 7 we have restricted ourselves with the common

applications of the models due to comparison purposes.

8.2 Suggestions for Further Research

There are possible ways to carry the analyses in this thesis further.

To begin with, instead of the PCA analysis one could apply the common principal

component analysis (CPCA) (Flury (1988)) to the yield curve data. The CPCA is

a generalization of the PCA to several groups. The basic assumption is that the PC

transformation (the eigenvectors or the loadings) is identical in all k groups considered,

while the variances associated with the components (eigenvalues) may vary between

groups. In other words, the level, slope and curvature factors are assumed to be the

same for the nominal, implied inflation and real term structures. There are some

studies which have investigated comovements or common features observed on several

domestic bond markets by applying the CPCA (Moraux et al. (2002), Fengler et al.

(2004), Perignon et al. (2007)). As the loading graphs in Chapter 5 and Chapter 6

indicate, there might be some common factors affecting the nominal, implied inflation

and the real yield curves which is worth investigating.

According to our preliminary analysis on this method, we might encounter two

problems while applying the CPCA on the three term structures. The first one is that

since the successive maturities are highly correlated for the yield curves, the covariance

matrices are almost positive-semi definite while the CPCA can be applicable for the

positive-definite covariance matrices. Actually we have a very high dimensional data

which requires a very large number of samples to avoid singular covariance matrices and

zero eigenvalues. Flury’s (1988) method depends on calculating a maximum likelihood

value that is made up of the product of the eigenvalues. Thus, having a zero eigenvalue
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breaks the method. Since we do not have a large number of observations we can pick

every nth maturity (n=5 or higher) to eliminate the highly correlated maturities before

applying the CPCA. A second and more challenging issue is that the CPCA requires

independent groups. However, the term structures of the nominal, implied inflation

and the real spot rates are highly correlated. It is still possible to apply the analysis

on our data but the tests for the existence of common factors hypothesis should be

adjusted for the dependent groups which might not be easy.

Another future research might be to model the time dependent b parameters dis-

cussed in Chapter 2 as an alternative to the fitted curves themselves. Diebold and

Li (2006) have modelled the time varying parameters obtained by fitting a modified

version of the Nelson-Siegel curve which produces uncorrelated factors. They interpret

those time varying parameters as factors corresponding to level, slope and curvature.

Since the b parameters are highly correlated it is possible to apply the PCA first to ob-

tain uncorrelated variables and then to model these new variables. However, it should

be noted that the PCs obtained from the b parameters cannot be named ‘level’, ‘slope’

and ‘curvature’.

As we have briefly discussed in Chapter 5 there might be some ARCH effects on

the factors of the term structures which is also worth investigating.

Another interesting piece of research would be to assume an inflation premium and

model the term structures accordingly.

Finally, the application of the models can be extended. First, the Wilkie model

and the yield-macro model could be used together in a coherent way with the inflation

model and the term structures being adopted from the quarterly yield-macro model

and the share dividends and dividend yields being adopted from the Wilkie model

using the future inflation rates generated by the yield-macro model. Second, the yield-

only model and the yield-macro models could be used for different applications. It

would be interesting to focus only on the term structures and examine the annuity

prices obtained from the nominal and the real yield curves, even including the implied

inflation through the Fisher relation and discuss the variation in these prices.
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Appendix A

Yield-Only Model

The below representation is suitable when each model has been considered separately.

It should be noted that the Z noises are correlated as expressed in Equation 5.3 in

Chapter 5.

Nominal Level Factor

MNL
(t) = −20.68︸ ︷︷ ︸

13.35

+ 0.992︸ ︷︷ ︸
0.002

(MNL
(t − 1) + 20.68) + 1.81 ZNL

(t)

where ZNL
(t) ∼ N(0, 1)

R2
adj = 0.9875

Nominal Slope Factor

MNS
(t) = 0.98︸︷︷︸

0.013

MNS
(t − 1) + 0.77 ZNS

(t)

where ZNS
(t) ∼ N(0, 1)

R2
adj = 0.95
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Nominal Curvature Factor

MNC
(t) = 0.88︸︷︷︸

0.03

MNC
(t − 1) + 0.37 ZNC

(t)

where ZNC
(t) ∼ N(0, 1)

R2
adj = 0.79

Implied Inflation Level Factor

MIL
(t) = 0.978︸ ︷︷ ︸

0.009

MIL
(t − 1) + 1.58 ZIL

(t)

where ZIL
(t) ∼ N(0, 1)

R2
adj = 0.97

Implied Inflation Slope Factor

MIS
(t) = 0.952︸ ︷︷ ︸

0.018

MIS
(t − 1) + 0.66 ZIS

(t)

where ZIS
(t) ∼ N(0, 1)

R2
adj = 0.90
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Implied Inflation Curvature Factor

MIC
(t) = 0.826︸ ︷︷ ︸

0.03

MIC
(t − 1) + 0.35 ZIC

(t)

where ZIC
(t) ∼ N(0, 1)

R2
adj = 0.71

Real Level Factor

MRL
(t) = 0.993︸ ︷︷ ︸

0.006

MRL
(t − 1) + 1.14 ZRL

(t)

where ZRL
(t) ∼ N(0, 1)

R2
adj = 0.97

Real Slope Factor

MRS
(t) = 0.88︸︷︷︸

0.027

MRS
(t − 1) + 0.73 ZRS

(t)

where ZRS
(t) ∼ N(0, 1)

R2
adj = 0.85

Real Curvature Factor

MRC
(t) = 0.864︸ ︷︷ ︸

0.03

MRC
(t − 1) + 0.24 ZRC

(t)

where ZRC
(t) ∼ N(0, 1)

R2
adj = 0.80
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Appendix B

Yield-Macro Model - I

Nominal Level Factor

QNL
(t) = − 6.76︸︷︷︸

3.93

+ 0.92︸︷︷︸
0.03

(QNL
(t − 1) + 6.76) + 2.13 ZNL

(t)

where ZNL
(t) ∼ N(0, 1)

R2
adj = 0.94

Nominal Slope Factor

QNS
(t) = 0.78︸︷︷︸

0.06

QNS
(t − 1) − 1.21︸︷︷︸

0.29

QRC
(t − 2) − 0.41︸︷︷︸

0.19

QOG(t − 2) + 0.87 ZNS
(t)

where ZNS
(t) ∼ N(0, 1)

R2
adj = 0.81
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Nominal Curvature Factor

QNC
(t) = 0.96︸︷︷︸

0.08

QNC
(t − 1) − 0.34︸︷︷︸

0.08

QNC
(t − 2) − 0.15︸︷︷︸

0.06

(QRI(t − 1) − 2.88)

+0.38 ZNC
(t)

where ZNC
(t) ∼ N(0, 1)

R2
adj = 0.69

Implied Inflation Level Factor

QIL
(t) = − 1.47︸︷︷︸

1.84

+ 0.89︸︷︷︸
0.05

(QIL
(t − 1) + 1.47) + 1.51 ZIL

(t)

where ZIL
(t) ∼ N(0, 1)

R2
adj = 0.87

Implied Inflation Slope Factor

QIS
(t) = 0.56︸︷︷︸

0.08

QIS
(t − 1) − 0.32︸︷︷︸

0.07

QIS
(t − 2) + 1.38︸︷︷︸

0.17

QRC
(t − 2) + 0.52 ZIS

(t)

where ZIS
(t) ∼ N(0, 1)

R2
adj = 0.66
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Implied Inflation Curvature Factor

QIC
(t) = 0.62︸︷︷︸

0.10

QIC
(t − 1) − 0.09︸︷︷︸

0.03

QRS
(t − 2) + 0.28 ZIC

(t)

where ZIC
(t) ∼ N(0, 1)

R2
adj = 0.53

Real Level Factor

QRL
(t) = − 6.99︸︷︷︸

3.67

+ 0.95︸︷︷︸
0.02

(QRL
(t − 1) + 6.99) + 1.27 ZRL

(t)

where ZRL
(t) ∼ N(0, 1)

R2
adj = 0.94

Real Slope Factor

QRS
(t) = 0.49︸︷︷︸

0.06

QRS
(t − 1) + 0.27︸︷︷︸

0.04

QNS
(t − 1) + 0.54 ZNS

(t)

where ZNS
(t) ∼ N(0, 1)

R2
adj = 0.80

Real Curvature Factor

QRC
(t) = 0.86︸︷︷︸

0.07

QRC
(t − 1) + 0.22 ZRC

(t)

where ZRC
(t) ∼ N(0, 1)

R2
adj = 0.74
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Realised Inflation

QRI(t) = 2.88︸︷︷︸
0.71

+ 0.92︸︷︷︸
0.07

(QRI(t−1)−2.88)+0.34︸︷︷︸
0.08

QNC
(t−2)−0.20︸︷︷︸

0.09

QOG(t−2)+0.41 ZRI(t)

where ZRI(t) ∼ N(0, 1)

R2
adj = 0.77

Output Gap

QOG(t) = 0.89︸︷︷︸
0.053

QOG(t − 1) − 0.04︸︷︷︸
0.017

QNS
(t − 1) + 0.24 ZOG(t)

where ZOG(t) ∼ N(0, 1)

R2
adj = 0.85
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Appendix C

Yield-Macro Model - II

Nominal Level Factor

YNL
(t) = − 44.18︸ ︷︷ ︸

4.09

+ 0.82︸︷︷︸
0.015

(YNL
(t − 1) + 44.18) + 1.86︸︷︷︸

0.18

YRI(t) + 3.58 ZNL
(t)

where ZNL
(t) ∼ N(0, 1)

R2
adj = 0.94

Implied Inflation Level Factor

YIL
(t) = − 17.22︸ ︷︷ ︸

2.15

+ 0.75︸︷︷︸
0.03

(YIL
(t − 1) + 17.22) + 1.03︸︷︷︸

0.14

YRI(t) + 2.51 ZIL
(t)

where ZIL
(t) ∼ N(0, 1)

R2
adj = 0.90

Real Level Factor

YRL
(t) = − 28.05︸ ︷︷ ︸

6.29

+ 0.91︸︷︷︸
0.02

(YRL
(t − 1) + 28.05) + 0.55︸︷︷︸

0.15

YRI(t) + 2.71 ZRL
(t)

where ZRL
(t) ∼ N(0, 1)

R2
adj = 0.86
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