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Abstract

This research presents a new method, the decoupled overlapping grids method,

for the numerical modelling of transient pressure and rate properties of oil wells.

The method is implemented in two stages: a global stage solved in the entire

domain with a point or line source well approximation, and a local (post-process)

stage solved in the near-well region with the well modelled explicitly and boundary

data interpolated from the global stage results. We have carried out simulation

studies in two- and three- dimensions to investigate the accuracy of the method.

For homogeneous case studies in 2D, we have demonstrated the convergence

rate of the maximum error in the quantities of interest of the global and local stage

computations by numerical and theoretical means. We also proposed a guideline

for the selection of the relative mesh sizes of the local and global simulations

based on error trends. Comparison to other methods in the literature showed

better performance of the decoupled overlapping grids method in all cases.

We carried out further investigations for heterogeneous case studies in 2D and

partially-penetrating wells in 3D which show that the error trends observed for the

2D homogeneous case deteriorate only slightly, and that a high level of accuracy

is achieved. Overall the results in this thesis demonstrate the potential of the

method of decoupled overlapping grids to accurately model transient wellbore

properties for arbitrary well configurations and reservoir heterogeneity, and the

gain in computational efficiency achieved from the method.
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Nomenclature

The base quantities for the units are: F = force, L = length, M = mass,

T = time

Greek Letters

δ Dirac delta function 1/L3

η diffusivity coefficient L2/T

µ fluid viscosity FT/L2

φ porosity -

Roman Letters

ct total compressibility L2/F

H domain height (2D simulations) L

k absolute permeability L2

p pressure drawdown F/L2

q production/injection rate L3/T

ql production/injection rate per unit well length L2/T

Subscripts

ana analytic solution

bm benchmark computed in Comsol

dg solution from decoupled overlapping grids

fw finite radius well

ls line source

num numerical solution

ps point source

iv





Chapter 1

Introduction

1.1 Background and motivation

This research investigates a new method, the decoupled overlapping grids

method, for application to the problem of modelling the transient wellbore pres-

sure of oil wells. The important characteristic of this problem is that dynamic

information is desired at or near features which are of a significantly smaller spa-

tial scale compared to the computational domain. We will consider this problem

within the framework of well test analysis of oil and gas reservoirs, but note here

that similar problems arise in groundwater flow.

The ultimate goal of reservoir simulation is to forecast well flow-rates and/or

bottom-hole pressures accurately, and to estimate the pressure and saturation

distributions [45]. This involves the numerical solution of a set of coupled equa-

tions for multi-phase, multi-component flow in a heterogeneous porous medium.

The properties of the porous medium and the dynamic properties of the reservoir

fluid can be estimated by the well testing technique.

Well test analysis is a reservoir assessment technique usually applied to reser-

voirs whose geology and geometry have been largely determined by other means

(e.g. seismic surveys) and refines that information [40]. The process involves

measuring the pressure response of a reservoir to changing production or injec-

tion rates. Since this response is more or less characteristic of the reservoir, it can

be used to estimate the properties of the reservoir. By specifying the measured

flow rate history as an input to a mathematical model, it is inferred that the

reservoir properties predicted by the mathematical model are the same as those
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1.1 Background and motivation

of the physical reservoir if the pressure output of the model matches the measured

pressure response. This parameter fitting process is typical of inverse problems

and several model evaluations are required to obtain best-fit estimates.

The design and interpretation of a well test is dependent on its objectives.

These objectives fall into three categories [61]: reservoir evaluation, management

and description. The aim of well testing in reservoir evaluation is to determine

whether the reservoir is viable for production and if so decide the best way to

produce it. To this end the properties of interest include the initial pressure of the

reservoir, its conductivity (permeability-thickness product), and its boundaries.

In reservoir management the aim of well testing is to monitor overall reservoir

performance and well condition so as to adjust forecasts of future production.

Here knowledge of changes in average reservoir pressure is required. The goal

of well testing in reservoir description is to characterise geological features of

the reservoir that affect pressure transient behaviour to a measurable extent. In

general the objectives of a well test can be summarized as follows [19]:

� To evaluate well condition and reservoir characterisation.

� To obtain reservoir parameters for reservoir description.

� To determine whether all the drilled length of the oil well is also a producing

zone.

� To estimate the drilling and completion damage to an oil well, based on

which a decision about well stimulation can be made.

Well tests can be carried out with a single well (single-well test) or multiple

wells (multi-well tests) [96]. Single-well tests are carried out on exploration or

production wells with different objectives in mind. An exploration well is typ-

ically completed in a formation whose properties are unknown prior to testing.

Consequently a major objective of the well test is to determine what type of fluid

the well will produce and at what rate. On the other hand a production well is

a permanent completion in a formation whose properties are known within cer-

tain limits. Hence the main objective of the well test is to determine reservoir

transmissibility, flowing well efficiency, and the static pressure within the well

drainage area. For multi-well tests, rate measurements are made at a produc-

ing well and pressure measurements are made at surrounding shut-in observation

wells. Multi-well tests are carried out to determine directional permeability or

2



1.1 Background and motivation

heterogeneity trends. Further classification of well tests into build-up, drawdown,

injection, fallout, interference and pulse tests is described in the literature. For

more information on well test analysis standard texts can be consulted, for ex-

ample [15, 19, 42, 61, 88, 96].

As stated previously well test analysis involves matching measured well rate

and pressure data to predicted well rate and pressure variation from a mathe-

matical model. Usually measured pressure data and its derivative are matched to

analytical or numerical models. The pressure derivative has a set of characteristic

slopes that are indicative of different flow regimes like radial flow or the effects of

boundaries. The presence of these flow regimes is used to determine reservoir pa-

rameters such as permeability or reservoir size [8]. The difficulty in well modelling

arises from the difference in scale between the size of the reservoir (hundreds of

metres) compared to the well diameter (approximately 10 cm). Pressure gradients

are largest in the region closest to the wellbore, which is typically smaller than the

spatial size of grid blocks used in the numerical simulation. The steep pressure

gradients near the well can be accurately captured by using local grid refinement

to resolve the wellbore. However as several model evaluations are required in

well test analysis for the parameter fitting process, local grid refinement increases

computational cost significantly, especially for 3D field-scale models with a large

number of wells. On the other hand, established well testing techniques rely

heavily on analytic solutions for specialised reservoir properties and geometry.

These analytic solutions are characterised by simplifying assumptions about the

reservoir and therefore cannot account for the complexity of realistic reservoirs.

Overlapping grids offer an attractive alternative to local grid refinement and

analytic solutions for well testing applications. With overlapping grids, one can

independently fit a local mesh to the wellbore and superimpose this on a much

coarser mesh generated on the entire computational domain. This offers accurate

solutions in the wellbore vicinity, and local properties such as wellbore radius or

local mesh size can be changed without the need to regenerate the the mesh for

the entire domain.

There has been much work on the use of overlapping grids for solving steady

and time-dependent problems in complex geometric configurations (see for in-

stance [26, 27, 30, 40, 59, 60, 74, 81]). Overlapping grids offer the advantage of

using grids best fitted to each sub-domain. The component grids overlap where
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1.1 Background and motivation

they meet, and grid functions defined on each sub-domain are matched by inter-

polation at the overlapping boundaries. The ability to use component structured

grids even for very complex geometries permits accurate and efficient solution

algorithms. Overlapping grid techniques were applied by Duncan and Qiu [40]

to solve the pressure equation within the framework of well test analysis. They

proved stability and convergence for a one-dimensional problem solved on over-

lapping grids, and demonstrated that convergence in two-dimensions appears to

behave in a similar manner as the one-dimensional problem.

The method of decoupled overlapping grids studied in this work differs from

the traditional composite overlapping grid methods described above. For those

methods, the equations are solved simultaneously on a grid system consisting

of distinct component meshes that overlap in some regions, with information

in the overlapping regions merged via interpolation. In this work the problem

is decoupled by solving in two stages on separate meshes which overlap (see

schematic representation in Figure 1.1). In the first stage the problem is solved

in the entire reservoir on a coarse grid, with the feature of interest, in this case a

well, approximated by a simpler quantity, such as a point source in two dimensions

or a line source in three dimensions. The first stage can be solved using standard

reservoir simulators as this is the typical approximation used in these simulators.

The second stage is a post-process stage. Here the problem is solved in a smaller

region surrounding the wellbore. The boundary data for this stage is interpolated

from the solution obtained in the first stage. The mesh used in the second stage

can be adapted to the well geometry to improve the accuracy of the computed

wellbore pressure.

Figure 1.1: Schematic representation of decoupled overlapping grids method. L-R:
Original problem. → First (global) stage; solution measured along dotted lines by
interpolation. → Second (post-process/local) stage; measured data from previous stage
is the boundary condition for local stage computation.
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1.1 Background and motivation

A key feature of the decoupled overlapping grids method is that the boundary

condition of the post-process stage is obtained from a simulation where the well

is represented by an approximate quantity (such as a line or point source). This

is done based on the fact that in general the error due to this approximation

decreases as distance from the well increases. Therefore by measuring the solution

at a sufficient distance from the wellbore, the error in the boundary condition of

the post-process stage can be kept within acceptable bounds. This modelling

error is discussed in Chapter 3.

Post-processing reservoir simulation results to compute wellbore pressure is

accepted practice in reservoir simulation, and is typically implemented through

a well index. The seminal work by Peaceman [82, 83] introduced the widely

accepted well index for computing steady-state well pressure from coarse grid

simulation results. However the Peaceman well index was originally developed for

fully penetrating vertical wells which are isolated, that is the wells are not close to

the domain boundary or any other well, and centred in a wellblock on rectangular

finite difference grids. As a result much work has been done in extending this

concept to other well configurations such as slanted wells [1, 20, 21] and horizontal

wells [11, 50], other grid configurations such as unstructured grids [24, 80, 105],

and to compute transient wellbore pressure [9, 14]. For each of these problems an

analytic solution is required to compute a well index. This presents a drawback for

the well index method since analytic solutions can only be computed for simplified

well and reservoir properties. In contrast the method in this thesis is much more

robust. Complex reservoir features can be incorporated into the computations in

a fast and efficient manner by solving the first stage in already existing reservoir

simulators developed for this purpose, while locally varying well properties which

are of a smaller scale than can be captured by these reservoir simulators are

incorporated into the post-process stage. The method is applicable irrespective

of the well location and geometry, and the mesh for the post-process stage can be

adapted to the well shape for accurate and efficient computation of solutions. The

method yields accurate wellbore pressure from the initial transient state through

to steady-state, as the work in this thesis will show. Furthermore the method can

be implemented as an add-on to already existing reservoir simulators to improve

results in the near-well region.
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1.2 Thesis overview

1.2 Thesis overview

The objective of this thesis is to investigate a new method for computing tran-

sient wellbore pressure and rate for application to well test analysis. We have

done this by carrying out a detailed study of the numerical and modelling errors

in the method in a two-dimensional homogeneous domain, providing theoretical

support for observed error trends. We have also deduced a guideline for the choice

of the relative mesh sizes of the global and local stages based on error trends. Fur-

thermore we have demonstrated the accuracy of the method for two-dimensional

heterogeneous and three-dimensional case studies. Therefore this work provides

fundamental insight into the accuracy and computational efficiency of the de-

coupled overlapping grids method for computing transient wellbore pressure and

demonstrates its potential to model different types of well configurations and

reservoir heterogeneity.

In Chapter 2 a detailed review of well modelling techniques in the petroleum

engineering literature is presented. Models for computing both steady- and

unsteady-state well pressures are discussed. This review highlights the main

ideas on well modelling in the literature. We also briefly discuss the equations

for single-phase flow of a slightly compressible fluid, which is the flow model

implemented in this thesis.

In Chapter 3 we investigate the performance of the decoupled overlapping

grids method applied to modelling a fully-penetrating vertical well in a homo-

geneous medium. We deduce convergence trends of the errors in the method

numerically, and prove these theoretically. We also show a relationship between

these errors and the relative mesh sizes of the first and second stage simulations,

and based on this propose a guideline for choosing the second stage mesh size

from the first stage mesh size. A comparison of the method to other methods in

the literature for calculating wellbore pressure is carried out, showing in all cases

better performance of the decoupled overlapping grids method.

In Chapter 4 we apply the method to compute the wellbore pressure of fully-

penetrating vertical wells in heterogeneous domains. The numerical results show

a high level of accuracy in the computed wellbore pressure from initial transient

to steady-state, and these results are obtained for significantly less computational

effort when compared to a benchmark solution. The numerical results also verify
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1.2 Thesis overview

the validity of the guideline proposed in Chapter 3 for choosing the second stage

mesh size.

In Chapter 5 an application of the method to compute the average pressure

of a strip/crack producing at a uniform rate is presented. This problem can be

seen as a simplified model of a fractured vertical well. Numerical results show a

high level of accuracy relative to benchmark solutions, achieved for significantly

less computational effort.

In Chapter 6 we apply the method to compute initial-transient to steady-state

pressure of partially penetrating horizontal wells. Numerical results are validated

by comparison with semi-analytic solutions. An application to slanted wells is

presented.

Chapter 7 contains recommendations for future studies.
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Chapter 2

Literature Review

In this chapter a review of the mathematical modelling of wells in petroleum

engineering literature is presented. There is a considerable amount of literature

on well modelling, hence a selected sample is reviewed here to demonstrate the

main ideas. The models can be grouped under the following broad categories:

� Steady- and unsteady-state well models.

� Analytic, semi-analytic and purely numerical well models.

� Vertical, horizontal and non-conventional well models.

This review is presented under the grouping of steady- and unsteady-state well

models. We start the discussion by presenting the equations for single-phase flow

in porous media. These equations are the subject of investigation in the majority

of publications on well modelling.

2.1 Equations for single-phase flow in porous

media

The equations solved in numerical reservoir simulation model multi-phase flow

and transport in a heterogeneous porous medium. The equation that governs flow

is of interest in well test analysis, and it is derived from conservation of mass,

Darcy’s law, and equations of state. Below the equation for single-phase flow is

presented.
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2.1 Equations for single-phase flow in porous media

Mass conservation is described by the continuity equation:

∂(φρ)

∂t
= −∇ · (ρu) + qm, (2.1)

where φ is the porosity of the medium, ρ is the density of the fluid per unit

volume, u is the superficial velocity1, and qm is the mass source term2 which

accounts for external sources or sinks. Here the density ρ and mass source term

qm are given at reservoir conditions3. (2.1) can also be written in terms of the

formation volume factor [25]:

ρ =
ρs
B
, (2.2)

∂

∂t

(
φ

B

)
= −∇ ·

(u

B

)
+
qm
ρs
. (2.3)

The formation volume factor B is defined as the ratio of volume of a fluid mea-

sured at reservoir conditions to the volume of the same fluid measured at standard

conditions. ρs represents the fluid density at standard conditions4.

Laminar flow through porous media is governed by Darcy’s law, which gives

a relationship between fluid velocity and pressure head gradient:

u = −k

µ
(∇p− ρgH êz), (2.4)

where k is the absolute permeability tensor of the porous medium, µ is the fluid

viscosity, p is pressure, g is the magnitude of gravitational acceleration and H is

the depth (êz is the unit vector in the vertical downward direction). Substituting

(2.4) in (2.1) yields

∂(φρ)

∂t
= ∇ ·

(
ρk

µ
(∇p− ρgH êz)

)
+ qm. (2.5)

1volumetric flow rate divided by cross-sectional area.
2mass of fluid produced/injected per unit time.
3temperature and pressure in the reservoir.
4standard reference temperature and pressure at the surface.
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2.2 Steady-state well modelling

The equation of state is written in terms of fluid compressibility:

cF = − 1

V

∂V

∂p

∣∣∣∣
T

=
1

ρ

∂ρ

∂p

∣∣∣∣
T

, (2.6)

and describes the fractional change in the volume of reservoir fluid resulting from

a unit pressure change at fixed temperature T . Here V represents the volume

occupied by the fluid at reservoir conditions. In addition, rock compressibility is

defined as the fractional change in bulk volume of the reservoir per unit pressure

change:

cR =
1

φ

∂φ

∂p

∣∣∣∣
T

. (2.7)

Under conditions of slightly compressible fluid and rock (that is, the com-

pressibility assumed constant over certain range of pressures) substituting (2.6)

and (2.7) into (2.5) gives

φρct
∂p

∂t
= ∇ ·

(
ρk

µ
(∇p− ρgH êz)

)
+ qm, (2.8)

where ct = cF + cR is the total compressibility. This parabolic pressure equation

appears in most well modelling studies in the literature.

A similar set of equations can be written for multi-phase flow, where the sat-

uration and relative permeability of each phase must be taken into consideration.

2.2 Steady-state well modelling

Reservoir simulators are typically used to compute long term well productivity

under pseudo-steady state conditions. Hence many well models targeted at reser-

voir simulators focus on steady-state behaviour. Pseudo-steady state behaviour

is observed after the pressure disturbance created by a producing (or injecting)

well has been felt at the boundaries of the reservoir. At this point the pressure

throughout the reservoir changes at the same constant rate.

In this section steady-state well models on rectangular grids and flexible grids,

and near-well flow models for steady-state flow, are discussed.
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2.2 Steady-state well modelling

2.2.1 Rectangular finite difference grids

Cartesian grids are often used in reservoir simulation together with finite

difference or finite volume discretisation methods. A well index is typically used

on these grids to approximate the wellbore pressure from the pressure of the grid

block containing the well. The conventional well index model implicitly assumes

that the well coincides with the computation node, and so must be modified for

other well configurations such as off-centre vertical wells and slanted wells. The

conventional well index, and modelling techniques for off-centre and slanted wells,

are discussed below.

Conventional well index

The well index relates well pressure and flow rate to reservoir grid block

quantities. Grid blocks used in reservoir simulation are typically several orders of

magnitude larger than the well diameter. As a result wells are seldom modelled

explicitly; instead the well contribution is introduced as a source or sink term

for the host grid block. However due to steep pressure gradients in the well

vicinity, the wellbore pressure differs significantly from the pressure of the grid

block it intersects (well block), and the relationship between these two quantities

is expressed using a well index, defined as follows for single-phase flow:

qw,i =
WIi
µi

(pi − pw,i). (2.9)

Here qw,i and pw,i are the well flow rate and wellbore pressure in well block i

respectively, pi and µi are the local well block pressure and fluid viscosity, and

WIi is the well index.

One of the earliest models for the well index is by van Poollen et al. [101], where

the numerically computed well block pressure on a finite difference grid is equated

to the average pressure in a circle of area equal to the well block. However the

well index model proposed by Peaceman [82, 83] is the widely accepted industry

standard. Here, under steady-state conditions, the well block pressure calculated

using the finite difference discretisation method is assumed to be equal to the

steady-state flowing pressure measured at an equivalent radius req related to grid

dimensions. For square grid blocks with the computation nodes located at the

centre of each grid block, Peaceman [82] showed that req ≈ 0.2∆x using three
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2.2 Steady-state well modelling

methods:

1. Numerically solving the steady-state pressure equation in a repeated five-

spot pattern and extrapolating the plot of pi − p0 against radius r to

pi − p0 = 0. Here pi = pressure in grid block i, p0 = well block pressure,

and r =
√

(xi − x0)2 + (yi − y0)2.

2. Combining the finite difference discretisation for the well block and sym-

metry assumption for the adjacent blocks with the assumption that the

pressure in these adjacent blocks exactly satisfy the solution for steady-

state radial flow to analytically derive the equivalent radius.

3. Comparing the analytic solution by Muskat [72] for the pressure drop be-

tween production and injection wells in a repeated five-spot problem with

the numerical solution on a finite difference grid.

So from the analytic solution for pressure in the well block at steady-state (under

homogeneous conditions):

p0 = pw +
qµ

2πkH
ln
req

rw
, (2.10)

the well index takes the form:

WI =
2πkh

ln
req

rw

, (2.11)

where h is the grid block thickness and rw is the well radius.

Peaceman [83] also extended the definition of the equivalent radius to non-

square grid blocks and anisotropic permeability:

req = 0.28

[(
ky
kx

) 1
2

∆x2 +
(
kx
ky

) 1
2

∆y2

] 1
2

(
ky
kx

) 1
4

+
(
kx
ky

) 1
4

, (2.12)
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where the well index now takes the form:

WI =
2πH

√
kxky

ln
req

rw

. (2.13)

In (2.12) and (2.13) kx and ky are the permeability components in the x and

y directions. The well index and equivalent radius definitions given above are

appropriate for a homogeneous reservoir with an isolated vertical well fully pene-

trating and centred in the well block. A well was assumed to be isolated if it was

at least 5 grid blocks away from the boundary and 10 grid blocks away from any

other well block. Furthermore the grid was assumed to be uniform in x and y.

Peaceman [84] classifies methods for computing the equivalent radius under

the analytical and the numerical approach. In the analytical approach nodes

surrounding the well block are assumed to satisfy the exact solution for steady-

state radial flow:

p− pw =
qµ

2πρkH
ln

r

rw
, (2.14)

and the pressure at these nodes are substituted into the finite difference equa-

tion for the well block to determine the equivalent radius. Peaceman warned

against using the analytical approach having shown that the radial flow assump-

tion in blocks adjacent to the well block is only valid within the aspect ratio

0.5 < ∆y/∆x < 2 for finite difference discretisation. In the numerical approach,

a numerical solution is obtained for a problem with known analytic solution, and

these two solutions are compared to compute the equivalent well radius.

Off-centre wells

The conventional well index discussed above was derived within the framework

of the cell-centred finite difference method which implicitly assumes that the well

is at the centre of the well block, and so does not correctly account for off-centre

wells. Abou-Kassem and Aziz [2] developed analytic equivalent radius formulae

for centred and non-centred wells within the aspect ratio 0.5 < ∆y/∆x < 2 using

the analytic approach. However Peaceman [84] argued that the analytic approach

for off-centre wells gave erroneous results. He proposed equivalent radius formu-

lae for off-centre and multiple wells within an isolated well block based on the

13
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numerical approach using the analytic solution by Muskat [72] for multiple wells

in a closed reservoir. He concluded that the equivalent well block radius was in-

dependent of the location of the well within the well block. The drawback of this

model is that the block pressures are assumed to be insensitive to the well posi-

tion. Su [97] accounted for the effect for off-centre wells on grid block pressures

by resolving well production to the four neighbouring blocks. In this formulation

there is no need for a well index. He showed that for an isolated well this method

gave similar results for wellbore pressure but better predicted the well block pres-

sure when compared to the conventional well index. Ding et al. [37] on the other

hand implemented modified transmissibility factors that take into consideration

the angle formed by the well block faces with the off-centre well. This method

has the advantage of easy application to conventional reservoir simulators.

Examples of the equivalent radius concept adapted to horizontal wells can

be be seen in the work of Babu and co-workers [11, 12] and Goode and Kuchuk

[50]. Babu and Odeh [11] derived an analytic wellbore pressure relation for a

partially penetrating horizontal well in a box-shaped reservoir at pseudo-steady

state, based on assumptions of uniform flux along the well length and the well

positioned parallel to a box face. A simplified formula was given for the equivalent

radius in the case of wells at the centre of the drainage area. Babu et al. [12]

also derived equivalent radius formulae valid for horizontal and vertical wells

at any location, for simulations on uniform grids in a rectangular homogeneous

reservoir. The equations were derived by combining an exact closed-form analytic

solution for discrete finite difference equations in the domain (which relates well

block pressure to average pressure in drainage volume) with analytic formulae

relating wellbore pressure with average reservoir pressure. Goode and Kuchuk

[50] proposed an analytic wellbore pressure relation defined for a horizontal well

anywhere in a drainage volume and of any length. An equivalent radius formula

was proposed under the simplifying assumption that the well is sufficiently short

(compared with the dimensions of the drainage volume) and is placed within

the reservoir such that radial flow will develop before the influence of the lateral

boundaries.
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Slanted wells

Lee and Milliken [67] addressed well index computations for an inclined well

in a layered finite difference grid using slender body theory and method of im-

ages. Using slender body theory the well was approximated by a distribution

of point sources with density described by a function which depends on a slen-

derness ratio (ratio of well radius to its length). The steady-state potential in

the vicinity of the well was then calculated by integrating this function along

the wellbore surface. The method of images was used to account for layering of

the domain. The analytic solution from slender body theory is compared to a

numerical solution on a finite difference grid to determine the well index. A nu-

merical correlation was applied to estimate the equivalent radius for large aspect

ratios. For a two-dimensional isolated well, the authors reported good agreement

of their method when compared with results using the conventional well index.

In three-dimensions the analytical pressure calculated using slender body theory

is used directly in a seven-point discretisation scheme.

Chen et al. [20, 21] studied partially and fully penetrating slanted wells in

an infinite slab and a parallelepiped. They modelled slanted wells by applying

a pseudo-skin factor. Skin factors are actually used to account for changes in

the properties of the porous medium close to the wellbore, for instance due to

damage during drilling or well stimulation. It is a dimensionless number and

is determined by comparing actual conditions with ideal conditions. Various

authors have adapted their use to model other situations. In the work by Chen

et al. [20, 21] a pseudo-skin factor was applied to base solutions for vertically

fully-penetrating wells to model the effect of well deviation angle and partial

penetration. The pseudo-skin factors were then used in a simulator for prediction

studies. The base solutions were analytic line source uniform flux and uniform

pressure solutions. A similar method had also been used by Besson [13], who

studied the performance of horizontal and slanted wells through the definition of

a geometric pseudo-skin factor calculated by comparing horizontal and slanted

well solutions from a semi-analytical simulator to analytic solutions for a vertical

well in a homogeneous infinite reservoir.

Aavatsmark and Klausen [1] defined a semi-numerical technique for comput-

ing the well index of slanted wells. An analytic solution was first obtained by

solving the steady-state pressure equation with a linear infinite well in an in-
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finite reservoir. The numerical solution was then computed in a local domain

surrounding the well using the analytic solution as the Dirichlet boundary data.

Following this the well index in each grid block i that the well penetrates was

calculated from (2.9) where the well block pressure is from numerical solution

and the wellbore pressure and flow rate are from the analytic solution.

Jasti et al. [64] applied analytic solutions for arbitrary well configurations

in three-dimensions to determine well index factors. The analytic solution was

obtained by integrating the Green’s function solution along the surface of the

wellbore. The well pressure and flow rate in (2.9) were computed from this an-

alytic solution. For uniform grids, the well block pressure was calculated from

a closed form analytic solution of the discretised finite difference equations. For

non-uniform grids, the well block pressure was calculated from numerical simu-

lation. Their investigations showed that the method had a significant impact on

simulator accuracy for three-dimensional flow cases and highly deviated wells.

The models in [1, 20, 21, 64, 67] are variations of the idea of computing the well

index for complex well configurations by combining numerical simulations with

known analytic solutions for the same problem or a similar problem. In [1, 20, 21]

the well index is calculated directly without first computing an equivalent radius.

2.2.2 Flexible grids

Flexible grids such as triangular grids, Voronoi grids, and hybrid grids, are

increasingly used in reservoir simulation. They offer the ability to model complex

geological features such as wells more accurately, especially for multi-phase fluid

flow. However as the grid size decreases rapidly in the near-well region, some

approximation may be required to connect well pressure to the surrounding grid

blocks.

Palagi and Aziz [80] studied the treatment of wells in Voronoi grids. They

developed an exact well index model by comparing numerical and analytic so-

lutions for the model problem of steady-state single-phase flow from a group of

wells producing at constant rates in a closed rectangular reservoir. They also

proposed a simplified model by assuming that the blocks adjacent to the well

block satisfy the steady-state radial flow equation, and substituting this analytic

pressure into the discretisation equations. This falls under Peaceman’s analytic

approach. The simplified model suffers from the limitation that it can only be
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Figure 2.1: Pedrosa and Aziz [85] hybrid grid.

applied within a specific aspect ratio and only to isolated wells. On the other

hand their exact well index is limited to the flow configuration (position and rate

of neighbouring wells) for which it is calculated. They suggested adapting the

exact model to other flow configurations by using a numerical skin factor.

Hybrid grids that combine a radial grid in the well vicinity with a different

global grid, have been investigated for example by Pedrosa and Aziz [85] and

Wolfsteiner and Durlofsky [105]. Pedrosa and Aziz [85] used a rectangular mesh

in the reservoir region (see Figure 2.1). Special treatment was needed in the

discretisation of the boundary blocks between the cylindrical and rectangular

meshes. The time-dependent solutions were obtained in two stages at each time-

step. Firstly the numerical solution was calculated on a rectangular grid in the

entire domain using Peaceman’s well index to relate well block and wellbore

pressures. Then the solution was calculated on the radial grid in the well region

using the solution from the first stage as boundary condition. The model was

used to study two-phase flow in three dimensions. Wolfsteiner and Durlofsky

[105] developed a hole-well model analogous to the conventional well index for use

with multi-block grids. Multi-block grids are globally unstructured and locally

structured (see Figure 2.2(a)). The local radial grid was constructed up to a

concentric hole surrounding the well to avoid the excessively small grid sizes

required to resolve the well boundary (see Figure 2.2(b)). Assuming steady-state

radial flow, the hole-well model relates the wellbore pressure pw to the pressure ph

at the hole boundary and the pressure pb in the blocks surrounding the hole using
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(a) Multi-block grid. (b) Hole well model.

Figure 2.2: Wolfsteiner and Durlofsky [105] hybrid grid

the steady-state radial flow solution in (2.14). For cases of near-well heterogeneity

a local upscaling technique was applied to obtain the coarse scale transmissibility.

Chen and Zhang [24] considered well models for finite element grids. They de-

rived specific equivalent radius formulae based on the grid mesh properties using

Peaceman’s analytic approach, that is, node points surrounding the wellbore sat-

isfy the analytic radial flow equation. These formulae were derived for standard,

control volume, and mixed finite element methods.

Wolfsteiner et al. [107] described a model for computing the well index of non-

conventional wells (arbitrary direction and/or multiple branches) on arbitrary

grids. This was done by matching the analytic reference solution for single-phase

slightly compressible fluid flow calculated by integrating Green’s functions along

the line source well to numerical solutions for the same problem at steady-state

flow. The well index for well block i was calculated from the relation in (2.9),

where qi and pw,i are the well flow rate and wellbore pressure from the analytic

solution, and pi is well block pressure from the numerical solution.

Ding and Jeannin [35] applied control-volume schemes to model vertical wells

on triangular and Voronoi grids. They applied a change to polar-type coordinates

in order to transform near-well singular flow into linear flow, thereby also trans-

forming the original unstructured mesh to a curved mesh. The multi-point and

two-point numerical schemes were then used to obtain the numerical solutions.

The multi-point scheme is more accurate whereas the approximate two-point

scheme is easier to implement in reservoir simulators. There was no need for a
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well index in this model as the well was implemented as an internal boundary.

Ding et al. [37] also applied modified transmissibility factors to improve near-well

flow on flexible grids. This is discussed in more detail below.

2.2.3 Near-well flow modelling

Palagi and Aziz [80] remarked on the discrepancy between grid block pressures

in the well vicinity calculated numerically on Cartesian grids and from analytic

solutions due to the use of geometric grid connection factors derived from linear

flow even in areas of predominantly radial flow. This problem was addressed in

detail by Ding et al. [36, 37] who proposed a well model to improve flux calculation

in the well vicinity using appropriate transmissibility factors. The transmissibility

appears in the discretised equation and relates the flux across grid blocks to the

pressure difference. It depends on permeability and grid geometry. Ding et al.

[36, 37] used a logarithmic distance to compute the transmissibility factors near

the well instead of the linear distance used in the rest of the reservoir (see Figure

2.3). They defined a transmissibility modification region where these new factors

were applied. The conventional well index was still used to relate well block and

wellbore pressure. This model was generalised to three dimensions [38], and here

the near-well flux and well pressure were calculated from an analytic steady-state

solution obtained using the boundary integral method. These quantities were

then used to compute the transmissibility and numerical well index respectively.

The method of images was applied for wells near reservoir boundaries. Ding and

Jeannin [34] proposed another method for near-well flow modelling where a change

of coordinates was applied to the discretised domain. This transformed Cartesian

grids to curved grids, and the near-well singularity to a linear variation. Two-

point and multi-point discretisation schemes were applied, and a numerical well

index was used to relate well block and wellbore pressures. This model was also

extended to flexible grids [35], where for example a triangular mesh defined on the

original domain becomes a curved mesh in the transformed domain. Therefore

there is the added complexity of discretisation on curved grids.

Several authors have also addressed near-well permeability heterogeneity through

upscaling techniques. Durlofsky [41] characterised the reservoir with a single

global effective permeability and defined an effective skin surrounding each well

to capture local heterogeneity. The simple form of this model makes it easy
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Original x-transmissibilities: Tx = kh
∆y0

∆x± 1
2

Modified x-transmissibilities: Tx = kh
∆y0

Leq,x

where Leq,x = ∆y0

ln

(
∆x± 1

2

r0

)
θ[1,3]

.

Figure 2.3: Transmissibility modification [36, 37].

to use in conjunction with existing analytic or numerical flow solutions. Chen

and Wu [22] proposed a flow-based upscaling technique and an approximate well

model based on arithmetic averaging for computing an upscaled well index that

captured the effects of fine-scale heterogeneity in near-well regions. Ding [32]

calculated equivalent transmissibilities and numerical well index of coarse well

blocks using fine grid simulation results in the vicinity of the well. These meth-

ods allow detailed geostatistical data on fine-scale models to be incorporated into

coarse scale models while respecting the singular nature of the flow pattern in the

well vicinity. Multi-scale finite element [23] and multi-scale finite volume [108]

methods have also been applied to well modelling in heterogeneous reservoirs.

Here special basis functions were introduced to locally resolve well singularities.

Peaceman-type relations were used in the fine-scale model to link wellbore and

well block pressures.

2.3 Unsteady-state well modelling

Mathematical models that can accurately reproduce dynamic early-time pres-

sure behaviour are important in well test analysis. Ideally the model should in-

clude both local wellbore and global reservoir flow effects. However the difference

in the spatial scale of a wellbore compared to the reservoir domain makes this a

difficult problem. The use of very fine grids to model wells is undesirable within

the framework of well test analysis due to computational cost, especially for field

scale reservoir models with several wells, as many iterations may be required for
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the parameter fitting process. Other approximations that avoid the use of fine

grids have been proposed in the literature such as the use of a transient well index,

analytic models developed for simplified reservoir properties, and the coupling of

analytic solutions for near-wellbore effects to full scale reservoir models. These

approaches to unsteady-state well modelling are reviewed below.

2.3.1 Analytic and semi-analytic models

Classical techniques such as integrating instantaneous point source solutions

in time and space, Green’s functions, and integral transforms have been much

applied to modelling transient well behaviour. When these methods are applied

to more complex wells such as partially penetrating wells or multilateral wells

in three dimensions, the solution is in the form of an integral which must be

evaluated numerically. Solutions obtained in this manner are often referred to as

semi-analytic in the literature. Early development on modelling partially pene-

trating (horizontal and vertical) wells concentrated on analytic and semi-analytic

well models.

Gringarten et al. [52, 53, 55] were some of the first to apply instantaneous

Green’s functions and Newman’s product method to model line source wells.

Newman’s product means that for certain types of initial and boundary con-

ditions, the solution of a 3D diffusion equation is equal to the product of the

solutions of three 1D diffusion problems [52]. They derived a collection of instan-

taneous source functions for different simple configurations from corresponding

Green’s functions in an infinite reservoir. Newman’s product was used to com-

bine one-dimensional solutions to yield solutions in higher dimensions, and the

method of images was used to compensate for boundaries. A similar method was

applied by Carslaw and Jaeger [18] for heat conduction problems.

There are several other examples of the application of Green’s function meth-

ods and instantaneous point source solutions in the development of analytic so-

lutions for unsteady-state well modelling. Ouyang and Aziz [75] applied this

method to model multilateral wells of arbitrary configurations within a reservoir.

Approximating a well as a line source/sink, the pressure along the well was ob-

tained by integrating the instantaneous point source solution along the well path.

The influence of wall friction, acceleration and gravity on wellbore flow was also

accounted for. Wolfsteiner et al. [106] and Valvante et al. [100] combined this
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model with the model by Durlofsky [41] for near-well heterogeneity in their study

of the productivity of horizontal and multilateral wells in heterogeneous reser-

voirs. Azar-Nejad et al. [10] used these solutions in their development of discrete

flux element methods for horizontal well modelling. Economides et al. [44] used

instantaneous point source solutions to formulate generalised solutions for wells

of arbitrary configurations, which were then applied to derive shape factors and

calculate well performance. Penmatcha and Aziz [86] used these solutions in their

study of infinite-conductivity and finite-conductivity horizontal wells. Ogunsanya

et al. [73] applied these solutions in their study of transient pressure behaviour of

horizontal wells, where the well was modelled as a solid bar in three-dimensions

instead of a line source. Other examples can be found in [29, 78, 87].

In addition to Green’s function methods, integral transform methods have

been employed in analytic well modelling. Goode and Thambynayagam [51] de-

veloped solutions for horizontal wells in anisotropic three-dimensional reservoirs

by application of Laplace and Fourier transforms. Closed reservoir boundaries

and uniform flux along the wellbore were assumed. The analytic solution was

initially obtained with the well modelled by a thin rectangular strip, and then

expressed in terms of an effective wellbore radius related to the length of the

strip. Using this model the authors identified four distinct flow regimes for the

horizontal well, giving approximate formulae for the pressure drop-down and flow

time periods for each regime. Ozkan and Raghavan [76, 77] also applied Laplace

transform method to obtain analytic pressure distributions for a wide variety

of well configurations (for instance partially penetrating vertical wells, horizon-

tal wells and fractured wells) in homogeneous and naturally fractured reservoirs.

Point source solutions were derived in the Laplace domain, and a library of so-

lutions in the Laplace domain was generated from the point source solution by

integration and the method of images. Computational aspects of these solutions

were discussed, and numerical Laplace inversion techniques are needed to obtain

solutions in the time domain. Bourgeois and Couillens [16] proposed Laplace

transform solutions for well productivity in terms of rate-normalised pressure

drop, cumulative flow-rate, and dynamic productivity index kernel functions.

Fokker and Verga [47] modelled wells in two- and three-dimensional reservoirs

by combining fundamental solutions for wells in an infinite reservoir with auxiliary

sources outside the reservoir (see Figure 2.4). The positions and strengths of
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Figure 2.4: Schematic of model by Fokker and Verga [47]

these auxiliary sources were adjusted to approximate the boundary conditions of

the reservoir. The common conditions on the external boundary of a reservoir

are the no-flow condition (for example when bounded by an impermeable rock)

and the constant pressure condition (for example when bounded by an aquifer).

Solutions were computed in Laplace space and transformed to the time domain

with the Stehfest algorithm. A least-squares method was used to optimise the

free parameters in the solutions and near-well heterogeneity was accounted for

using the model by Durlofsky [41]. The method was validated against solutions

from numerical simulations and well test interpretation software.

2.3.2 Transient well index models

The conventional well index derived by Peaceman through the evaluation of

an appropriate equivalent radius (see (2.12)–(2.13)) is only valid for steady-state

flow. Transient well index models extend this idea to modelling early transient

pressure behaviour at the wellbore. The analytic solution for a line source well

producing at a constant rate q in an infinite homogeneous reservoir appears in the

discussions below for the transient well index. This solution is the exponential

integral function:

p(r, t) =
qµ

2πkH

[
−1

2
Ei

(
−φctµr

2

4kt

)]
. (2.15)
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Peaceman [82] proposed a time-dependent equivalent radius derived from the

asymptotic expansion of the exponential integral function as the argument tends

to zero. This corresponds to large dimensionless time (when time is scaled by the

radius at which pressure is measured), hence this approximation is valid only at

pseudo-steady state. The equivalent radius he proposed is:

req = ∆x
[
4tD exp(−γ − 4πpDb)

] 1
2 , (2.16)

where

tD =
kt

φctµ∆x2
, pDb =

kH

qµ
(pi − pb),

γ = 0.5772 is Euler’s constant, pi is the initial reservoir pressure and pb is the

well block pressure.

Blanc et al. [14] replaced the steady-state logarithmic solution in (2.11) with

the time-dependent exponential integral solution to obtain a transient well index:

WI =
4πkH

Ei
(
− r2eq

4kt

)
− Ei

(
− r2w

4kt

) . (2.17)

For greater accuracy they proposed the calculation of req from the time-dependent

exponential integral solution. They also proposed corrected transmissibility and

accumulation terms to account for early time well block storage effects. They

concluded that the transient well index improved early time pressure results while

correcting the transmissibility and accumulation terms were less effective for early

time results compared to the transient well index but more effective for late time

results. (2.17) was applied by Al-Mohannadi et al. [7] to study grid and time-

step requirements for horizontal wells. They concluded that using the transient

well index with coarse grid blocks gave a better match between numerical and

analytic results for early times, but had an adverse effect on the accuracy of

numerical results when used with fine grids. Aguilar et al. [3] also applied (2.17) to

investigate early time pressure transient characteristics of single and dual lateral

wells, and reported a good match with analytic results.

Archer and Yildiz [9] defined the transient well index as in (2.9) but both

well block and wellbore pressures were calculated from the analytic exponential

integral function. The well block pressure was computed by taking the average

of the exponential integral solution over the well block and simulation time-step.

24



2.3 Unsteady-state well modelling

This method does not require an equivalent radius to determine the well index.

Comparison of simulation results from the transient well index and conventional

well index method to analytic solutions showed a better performance from the

transient well index.

2.3.3 Coupling models

We define coupling models as models that attempt to achieve near-well accu-

racy in a full scale reservoir model by combining an analytic well model with a

global numerical reservoir model. This method has been widely applied to model

horizontal and non-conventional wells. Some examples are discussed below.

Kurtoglu et al. [66] presented a model that couples an analytic solution related

to the boundary element method in the near-well region with finite difference sim-

ulation in the rest of the reservoir. Their analytic method differs from standard

boundary element methods in its use of the Green’s function for a bounded do-

main instead of free space Green’s functions. A near-well flow convergence region

was defined around the wellbore (which is modelled as an internal boundary) and

the pressure in this region was written as an integral along its external bound-

aries and the wellbore (see Figure 2.5). The coupling with the finite difference

simulation was achieved by computing the flux on the boundary of the near-well

region from coarse grid finite difference simulation and then using this data for

analytic computations in the near-well convergence region.

Figure 2.5: Schematic of model by Kurtoglu et al. [66]. B represents the near-well
flow convergence region.
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In the works of Archer and Horne [8], González-Requena and Guevara-Jordan

[49] and Hales [57], an analytic solution for the near-well singularity was sub-

tracted from the model for the flow problem. The resulting set of equations,

which was solved numerically, has no singularity within the domain; rather it

has a modified boundary condition to compensate for the effect. Hales [57] stud-

ied a two-dimensional problem where the analytic singular solution was the line

source exponential integral solution and finite difference methods were applied to

solve the modified reservoir equations. Archer and Horne [8] defined the singular

solution by the exponential integral function and solved the resulting reservoir

equations using Green’s element method. In both cases better transient stage

results were reported when compared to modelling with a conventional well in-

dex. González-Requena and Guevara-Jordan [49] obtained the analytic solution

of a line source of arbitrary geometry using free space Green’s functions, and the

modified reservoir equations were solved by the finite element method.

2.3.4 Numerical models

Local grid refinement has been applied to unsteady-state well modelling [31,

48, 56, 69, 102, 103] despite the need for very fine grids at the well region. In

these models the well is represented as an internal boundary, and the interac-

tions between the wellbore and the reservoir are modelled explicitly. Göktas and

Ertekin [48] approximated the well geometry by fine rectangular grids, whereas in

[31, 56, 102] the hybrid grids by Pedrosa and Aziz [85], which combine cylindrical

grids in the near-well region with rectangular grids in the rest of the reservoir,

were used.

Krogstad and Durlofsky [65] developed a mixed multi-scale finite element

model for reservoir flow that incorporated a drift/flux model for flow within the

wellbore. The well path was fully resolved on the fine-scale using flexible grids

which are close to radial around the well and rectangular away from the well.

Fine-scale effects were captured through basis functions determined from numer-

ical solutions on the underlying fine-scale geological grid.

Ding [33], Ding et al. [39] and Farina et al. [46] applied the boundary integral

formulation to well modelling. The Galerkin method was applied to discretise

the integral equations in [33, 39] while collocation method was applied in [46].

Non-linear wellbore flow was accounted for in [33, 46]. While the boundary
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integral method is suitable for homogeneous domains, it is much more difficult to

determine appropriate density functions for heterogeneous domains.

2.4 Summary

Several techniques for modelling well productivity have been reviewed in this

chapter. For steady-state flow, the well index is the most widely applied model

and is easily implemented in existing numerical simulators. Although originally

developed for isolated, fully-penetrating vertical wells centred in uniform rectan-

gular finite difference grids, this model has been extended to other configurations

such as off-centre wells, partially-penetrating wells, horizontal and slanted wells,

and flexible grids.

Analytic, semi-analytic and numerical models that capture well productivity

during unsteady-state flow have also been reviewed. Analytic and semi-analytic

methods are accurate for homogeneous reservoirs, but may be unable to deal

with complex reservoir heterogeneity. Numerical models on the other hand have

the capacity to handle complex well configurations and reservoir heterogeneity,

but are limited by the need for excessively small grids in the well vicinity when

coupled to a full scale reservoir grid. The method presented in this thesis is

capable of providing high accuracy in the well vicinity by decoupling the fine-

scale simulation in the well region from the global reservoir simulation. In this

way both global and local effects are handled efficiently.

The method of decoupled overlapping grids bears some similarity to the works

of Pedrosa and Aziz [85], Aavatsmark and Klausen [1] and Kurtoglu et al. [66]. In

the hybrid grid model by Pedrosa and Aziz [85], the actual implementation was

carried out by solving first on rectangular grids in the entire domain with the well

implemented as a point source and then solving in the well region using pressure

and saturation from the global solution for the boundary of the well regions.

However in their implementation this process was carried out at each time-step,

whereas in this work the simulation in the global domain is completed for the

entire simulation time period before commencing local near-wellbore simulations.

Also in [85] the production rates in the first step are allocated according to the

transmissibilities on the basis of the well region solution from the previous time-

step. Hence the global and local solutions are inter-dependent. In this work the
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2.4 Summary

local solutions depend on the global solutions but not vice versa.

The similarity of the method studied in this thesis to the work by Aavatsmark

and Klausen [1] lies in the fact that a global solution is calculated and data

from that solution used as the Dirichlet boundary condition for a local solution.

However in [1], the global solution is an analytic solution for steady-state flow in

an infinite reservoir, and the local solution sought is a well index. In this work the

global solution is calculated numerically in the reservoir domain, and the local

solution is the time-dependent pressure profile in the near-well region.

In the work by Kurtoglu et al. [66], the flux distribution at the boundary of

a near-well region is calculated from finite difference simulation in the reservoir

domain, and the near-well solution is calculated by semi-analytic methods. In

this work, solution in the near-well region is handled numerically which is more

versatile compared to semi-analytic methods.
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Chapter 3

Vertical Well in a Homogeneous

Domain

3.1 Introduction

In this chapter the method of decoupled overlapping grids is applied to model

the transient pressure of fully-penetrating vertical wells. The method is imple-

mented in two stages (see Figure 3.1): the first stage solved in the entire domain

and the second stage solved in a local near-well domain. The well is modelled

as a point source or sink in the first stage, and at the end of the simulation the

time-dependent solution is recorded at the external boundary of the local near-

well domain. This recorded data is the Dirichlet boundary data for the second

stage where the well in modelled as an internal boundary.

reRecord pressure at
rwwellbore of radius

r
e

Second stage withFirst stage with point source

Figure 3.1: Schematic representation.
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3.1 Introduction

The quantity of interest in the calculations is the spatially averaged wellbore

pressure. Wells are assumed to be of circular cross section and so this is simply

an average in the angle variable in standard 2D polar coordinates with origin at

the well centre. When the reservoir is isotropic and homogeneous and the sec-

ond stage domain is the annular region as shown in Figure 3.1, then the angular

averaging can be applied to the whole second stage model to give an equivalent

one-dimensional model problem in the radial variable only. The second stage

outer Dirichlet boundary condition is the average of the first stage solution round

the outer boundary circle. When this is valid, it clearly reduces the cost and com-

plexity of solving the second stage problem considerably and we use it wherever

possible in this work.

The total error in computing the quantity of interest by the method outlined

above is from two sources:

1. Modelling error : from approximating the external boundary data in the

second stage from the solution generated by a point source well.

2. Numerical error : from the numerical methods that are implemented.

The modelling error and numerical error are investigated in this chapter by con-

sidering a two-dimensional homogeneous model. The modelling error is demon-

strated by comparing exact analytic solutions for the point source and finite radius

well problems in finite and infinite domains. The numerical error is investigated

by comparing numerical solutions for the first and second stage computations to

analytic solutions. A theoretical error analysis is carried out to prove the validity

of observed trends in the numerical solutions. Finally a comparison of results

obtained from the method to results on locally refined meshes, where the well is

modelled as an internal boundary, is discussed.
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3.2 Model equations

3.2 Model equations

The equations of interest, which model the flow of a slightly-compressible

fluid, were stated in (2.8). Ignoring gravity effects and density change, the global

(first stage) equations are:

φct
∂pps

∂t
(x, t) = ∇ ·

(
k

µ
∇pps(x, t)

)
+ q(t)δ(x− x0), in Ω× (0, T ], (3.1a)

n ·
(
k

µ
∇pps(x, t)

)
= 0, in ∂Ω× (0, T ], (3.1b)

pps(x, 0) = 0, in Ω. (3.1c)

Here Ω is the entire computational domain, pps represents the pressure drawdown

p0 − p(x, t) where p0 is a constant initial pressure, q(t) is the volumetric source

strength, x0 is the point source location, and n is the normal pointing out of ∂Ω.

The local (second stage) equations in the near-well region are:

φct
∂pfw

∂t
(x, t) = ∇ ·

(
k

µ
∇pfw(x, t)

)
, in Γ× (0, T ], (3.2a)

n ·
(

k

µ
∇pfw(x, t)

)
= − q(t)

2πrwH
, in ∂Γw × (0, T ], (3.2b)

pfw(x, t) = pps(x, t), in ∂Γo × (0, T ], (3.2c)

pfw(x, 0) = 0, in Γ. (3.2d)

Here Γ is the post-process domain, ∂Γw and ∂Γo are the internal (well) and ex-

ternal domain boundaries respectively, pfw is the pressure drawdown p0 − p(x, t),
n is the normal pointing out of the well, and q(t) is the well flow rate, H is the

height of the domain, and rw is the well radius.

As noted in Section 3.1, the quantity we want to compute is the spatial average

of the pressure round the wellbore. If the post-process domain has the right

shape, and the reservoir is isotopic and homogeneous, this allows a reduction of

the second stage problem to an equivalent problem in only one space dimension.
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3.3 Analytic solutions

3.3 Analytic solutions

In this section modelling error is investigated by comparing analytic solutions

for a point source well and a finite radius well. The domain is assumed to be

homogeneous and isotropic. For a homogeneous anisotropic domain, a linear

transformation of the coordinates

x′ =
x√
kx
, y′ =

y√
ky
, (3.3)

reduces the equations to an isotropic form.

3.3.1 Infinite domain

A vertical well completed in the entire thickness of an infinite, homogeneous,

isotropic domain, and producing at a constant rate, will induce radially symmetric

flow described by the diffusion equation:

1

η

∂p

∂t
=
∂2p

∂r2
+

1

r

∂p

∂r
, (3.4a)

p(r, 0) = 0, (3.4b)

p(r →∞, t) = 0, (3.4c)

together with an additional condition for the well source term. Here η = k/(φctµ)

is the diffusivity coefficient. Analytic solutions for a point source and finite radius

well are given below. Note that pps and pfw below are pressure drawdowns.

Point source well

Here the additional condition is

lim
r→0

(
r
∂pps

∂r

)
= −Q, (3.5)

where Q = qµ/(2πkH), H is the height of the domain. The solution to (3.4) with

(3.5) is the well known exponential integral function (see derivation in Appendix
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3.3 Analytic solutions

A.1):

pps(r, t) = −Q
2

Ei

(
− r2

4ηt

)
. (3.6)

Finite radius well

Here the additional condition is

r
∂pfw

∂r

∣∣∣∣
r=rw

= −Q. (3.7)

A closed form solution for (3.4) with (3.7) can be found [96]:

pfw = QP (rD, tD), (3.8)

P (rD, tD) =
2

π

∫ ∞
0

(
1− e−a2tD

) [J1(a)Y0(arD)− Y1(a)J0(arD)]

a2[J2
1 (a) + Y 2

1 (a)]
da, (3.9)

where rD = r/rw, tD = ηt/r2
w, a is the variable of integration, J0(x), J1(x) are

Bessel functions of the first kind and Y0(x), Y1(x) are Bessel functions of the

second kind. (3.9) is not numerically tractable due to the high oscillatory nature

of the numerator in the integrand for large values of a. Alternatively a solution

can be obtained by use of Laplace transform methods (see derivation in Appendix

A.2):

p̂fw(r, s) =
Q
√
ηK0

(
r
√
s/η
)

rw(
√
s)3K1(rw

√
s/η)

, (3.10)

where p̂fw(r, s) is the solution in Laplace space, s is the Laplace transform variable,

and K0, K1 are modified Bessel functions of the second kind. The inversion of

(3.10) to the real time domain is carried out numerically using the Iseger algorithm

[63].
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3.3 Analytic solutions

Iseger algorithm

Although the Stehfest algorithm [95] is commonly used for numerical Laplace

inversion in petroleum engineering, it suffers from some limitations such as in-

ability to handle singularities and discontinuities [6], and inability to handle func-

tions with an oscillatory response (such as sine and wave functions) and et type

functions [58]. The Iseger algorithm [63] is more robust: it is able to compute

the inverse Laplace transforms of functions with discontinuities and singularities,

even if the points of discontinuity and singularity are not known a priori, and

can also deal with locally non-smooth and unbounded functions. The algorithm

is a Fourier series method, and utilises the well-known Poisson summation for-

mula to relate an infinite sum of Laplace transform values to the z-transform of

the function values. The infinite sum is approximated with a finite sum using a

Gaussian quadrature rule, and the function values are calculated using the FFT

algorithm. The results from this algorithm were shown by Iseger [63] to be near

machine precision.

The algorithm used in this section to compute function values of f(l), l =

0, 1, . . . ,M − 1 from its Laplace transform f̂(s), is stated in Table 3.1. The

values at f(l∆) can be obtained be applying the algorithm to the scaled Laplace

transform

L[f(l∆)] =
1

∆
f̂
( s

∆

)
. (3.11)

Here ∆ = t/(M − 1), where t is the period for the inversions, and M is the

number of points at which the Laplace transform is computed. In Table 3.1, n

represents the number of quadrature nodes used in the algorithm and so controls

the accuracy. n = 16 is recommended in [63] to give machine precision accuracy

for all smooth functions. Simulation results for the numerical inversion of (3.10)

using n = 16 and 32 did not show significant difference, hence n = 16 is used

here in all computations. The quadrature nodes λj and weights βj are given in

[63] for n = 16, 32, 48.
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3.3 Analytic solutions

Input f̂ ,∆,M where M is a power of 2

Output f(l∆), l = 0, 1, . . . ,M − 1.

Parameters M2 = 8M,a =
44

M2

, n = 16

Steps 1. For k = 0, 1, . . . ,M2 and j = 1, 2, . . . , n/2, compute

f̂jk = Re

f̂
a+ iλj +

2πik

M2

∆




f̂k =
2

∆

n/2∑
j=1

βj f̂jk ; f̂0 =
1

∆

n/2∑
j=1

βj(f̂j0 + f̂jM2)

2. For l = 0, 1, . . . ,M2 − 1, compute

fl =
1

M2

M2−1∑
k=0

f̂k cos

(
2πlk

M2

)
using the inverse FFT algorithm.

3. Set f(l∆) = ealfl for l = 0, 1, . . . ,M − 1

Table 3.1: Iseger algorithm

Comparison of analytic point source well and finite radius well solutions

Figure 3.2 shows the absolute error in dimensionless pressure drawdown plot-

ted against dimensionless time. The dimensionless pressure drawdown is given

by
p(r, 0)− p(r, t)

−Q
, where Q =

qµ

2πkH
, (3.12)

and p(r, 0) = 0. The dimensionless time is tD = ηt/r2.

The time domain is divided into subintervals within which the numerical in-

version of (3.10) is performed. M is kept constant for each subinterval, and since

the Iseger algorithm computes function values for t = 0 . . . (M−1)∆, larger values

of ∆ are required for larger subintervals. This introduces some additional error

for late times as shown in Figure 3.2(a). By also computing the point source
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3.3 Analytic solutions

10
−2

10
0

10
2

10
4

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

4t
D

| 
p

p
s
−

p
fw

 |

 

 

(a) pps from (3.6)

10
−2

10
0

10
2

10
4

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

4t
D

| 
p

p
s
−

p
fw

 |

 

 

1

5

10

50

100

200

300

r/r
w

(b) pps from inverting (3.13)

Figure 3.2: Absolute error in dimensionless pressure drawdown versus dimensionless
time in an infinite domain.

solution pps from its Laplace transform

p̂ps(r, s) =
Q

s
K0(r

√
s/η) (3.13)

using the Iseger algorithm, the error introduced by the algorithm for large ∆

cancels out in |pps − pfw| to give expected results shown in Figure 3.2(b).

The nature of the modelling error is seen in Figure 3.2(b). The absolute errors

|pps − pfw| for all rD = r/rw rise to a peak value at early time, and then decrease

with time. Also the peak error decreases as rD increases. According to [96], the

ratio rD ceases to be influential for large dimensionless time, and from 4tD > 200

the point source solution approximates the finite well solution with an error not

exceeding 1%. This can be seen in Figure 3.2(b).
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3.3 Analytic solutions

3.3.2 Finite domain

The finite domain equations are given in (3.14) and (3.15) below.

Point source well

φct
∂pps

∂t
(x, t) =

k

µ
∇2pps(x, t) + qδ(x− x0), in Ω× (0, T ], (3.14a)

n · k
µ
∇pps(x, t) = 0, in ∂Ωo, (3.14b)

pps(x, 0) = 0, in Ω. (3.14c)

Finite radius well

φct
∂pfw

∂t
(x, t) =

k

µ
∇2pfw(x, t), in Ω× (0, T ], (3.15a)

n · k
µ
∇pfw(x, t) = 0, in ∂Ωo × (0, T ], (3.15b)

n · ∇pfw(x, t) = −Q, in ∂Ωw × (0, T ], (3.15c)

pfw(x, 0) = 0, in Ω. (3.15d)

Here Ω is a rectangle of dimensions xe × ye with no-flow Neumann boundary

conditions prescribed at the outer domain boundary ∂Ωo, ∂Ωw is the surface

of the wellbore, and n is the normal vector pointing out of the domain. The

parameters (q, k, µ,H, ct, φ) are set to 1.

The results in this section are obtained by the method of images using the

infinite domain analytic solutions derived in the previous section. This problem

satisfies the conditions outlined in Section 3.1 for the reduction of the second

stage, near-well calculation to a problem in one (radial) space dimension only.

Using the centre of the well as the origin, the quantities of interest are the pressure

values averaged around circles of radius r. The contribution of each image i to

the average pressure at radius r is computed by first evaluating its contribution

37



3.3 Analytic solutions
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Figure 3.3: Construction of pα(r, t) in (3.16). Each point θk, k = 1, . . . , 8 on the circle
makes an angle θk with the x–axis.

at discrete points θk on the circle and then taking the average in θ:

pα(r, t) =
∑
i

pα(Ri, t), α = ps or fw, (3.16)

Ri(θk) =
√

(xw + r cos θk − xi)2 + (yw + r sin θk − yi)2, (3.17)

where p represents the average pressure in θ, and (xw, yw) is the location of the

centre of the well (see Figure 3.3). For a rectangle of dimensions xe × ye, with n
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3.3 Analytic solutions

the image counter in the x-direction and m the image counter in the y-direction,

xi = 2nxe ± xw, yi = 2mye ± yw. (3.18)

In the simulations carried out in this section, n,m = −Nimg . . . Nimg, and the

series is truncated at Ri ≤ Nimg.

The method of images solution in (3.16)–(3.18) converges rapidly for short

time and slowly for long time. An equivalent form can be derived for the point

source problem, either from Poisson’s summation formula [18, chap. 10] or from

solving the point source equations in (3.14) by Fourier decomposition, to give:

pps(x, y, t) =
4

xeye

{
t

4
+

1

2

∞∑
n=1

x2
e

n2π2

[
1− exp

(
−n

2π2

x2
e

t

)]
cos

nπxw
xe

cos
nπx

xe
+

1

2

∞∑
k=1

y2
e

k2π2

[
1− exp

(
−k

2π2

y2
e

t

)]
cos

kπyw
ye

cos
kπy

ye
+

∞∑
n=1

∞∑
k=1

x2
ey

2
e

π2(n2y2
e + k2x2

e)

[
1− exp

(
−
[
n2π2

x2
e

+
k2π2

y2
e

]
t

)]
cos

nπxw
xe

cos
kπyw
ye

cos
nπx

xe
cos

kπy

ye

}
,

(3.19)

for a rectangle of dimensions xe × ye, with parameters (q, k, µ, h, ct, φ) set to 1

and (xw, yw) the point source location. This Fourier series form complements the

method of images form, converging slowly for short time and rapidly for long

time. The average pressure at radius r is found by integrating (3.19):

pps(r, t) =
1

2π

∫ 2π

0

pps(xw + r cos θ, yw + r sin θ, t) dθ (3.20)
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3.3 Analytic solutions

to get (see Appendix A.3)

pps(r, t) =
4

xeye

{
t

4
+

1

2

∞∑
n=1

x2e
n2π2

[
1− exp

(
−n

2π2

x2e
t

)]
cos2

nπxw
xe

J0(nπr/xe)+

1

2

∞∑
m=1

y2e
m2π2

[
1− exp

(
−m

2π2

y2e
t

)]
cos2

mπyw
ye

J0(mπr/ye)+

∞∑
n=1

∞∑
m=1

x2ey
2
e

π2(n2y2e +m2x2e)

[
1− exp

(
−
[
n2π2

x2e
+
m2π2

y2e

]
t

)]
cos2

nπxw
xe

cos2
mπyw
ye

J0

(
πr

√
n2

x2e
+
m2

y2e

)}
.

(3.21)

J0 is the Bessel function of the first kind.

To reduce computation time for the analytic point source solution, the method

of images is used at early time and the Fourier series solution is used at late time.

The difference in the two solutions for some r is plotted in Figure 3.4. Here

xe = 1, ye = 1, (xw.yw) = (0.5, 0.5), and rw = 0.001. Based on this a switch

between the two methods is made at 4tD = 100, for Nimg = 32 and NFourier = 500

terms. For the finite radius well solution, Nimg = 128 was found to give accurate

solutions in the desired time interval 4tD ∈ [10−2, 104].

We note that an analytic upper bound on the error in the point source image

solution truncated at Ri ≤ Nimg can be derived. For an image sum truncated

at radius Ri from the point source, the contribution E of the remainder of the

images satisfies:

E ≤ 2πQ

∫ ∞
R′i

−1

2
Ei

(
− r2

4ηt

)
r dr ; R′i < Ri (3.22)

= 2πQ

[
−r

2

4
Ei

(
− r2

4ηt

)
− ηt exp

(
− r2

4ηt

)]∞
R′i

(3.23)

= 2πQ

[
ηt exp

(
−R

′2
i

4ηt

)
− R′2i

4

{
−Ei

(
−R

′2
i

4ηt

)}]
. (3.24)

The analytic error bound (3.24) is plotted in Figure 3.4 for R′i = 30.
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computed by method of images (32 images) and Fourier series (500 terms). Lines:
analytic error bound E from (3.24) at corresponding rD for Ri = 30. rD = r/rw.

The modelling error in both infinite and finite domains is plotted in Figure

3.5(a). It shows that both errors are the same initially, but boundary effects cause

the errors in a finite domain to settle to a near-constant value at later time. Figure

3.5(b) clearly shows the image contribution (and hence the boundary effects) to

the infinite domain solution leading to a flattening of the error values for late

time.

Figure 3.6 shows the absolute error in dimensionless pressure drawdown com-

puted for two well radii: 0.001 and 0.01. It demonstrates that the errors initially

depend only on the ratio rD = r/rw. However since given the same rD the mea-

surement radius r is larger for larger rw, the effects of the boundary are felt at an

earlier time for larger rw. Therefore as shown in Figure 3.6 the error for rw = 0.01

gets to steady-state at an earlier time compared to that for rw = 0.001.

We conclude that for radial measurements taken at a sufficient distance from

the domain boundary, the maximum modelling error occurs during an initial

transient phase, and is determined by the difference in the point source and

finite radius well solutions in an infinite domain. This initial transient phase is

absent for measurements made close to the domain boundary, and in this case

the maximum modelling error is determined by the pseudo-steady state error.

We draw attention to the fact that these results have been presented in terms of
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3.3 Analytic solutions

a dimensionless time scaled by the measurement radius, so results for the larger

(dimensionless) radii represent measurements taken at a later time compared to

results for smaller radii.
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3.3 Analytic solutions

It is interesting to note the relationship between the maximum error in di-

mensionless absolute pressure max(|pps − pfw|), and the dimensionless radius rD,

shown in Figure 3.7. A closed-form expression for this relationship is derived in

Appendix A.4:

max(|pps − pfw|) ≈
Q exp(−1)(1 + 2 ln(rD)− 2γ)

2r2
D

as rD →∞. (3.25)

This estimate is also plotted in Figure 3.7.

It is seen in Figure 3.7 that the estimate (3.25) gives excellent predictions of

the error over much of the range of rD. However, the estimate is not valid as rD

gets smaller, and the results deviate from the prediction when rD is big enough

that measurement points are on or close to the outer boundary of the original,

physical domain, for example the outliers at rD = 300 for rw = 0.001, and at

rD = 50 for rw = 0.01.
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Figure 3.7: Maximum error in Figure 3.6, and estimate from (3.25), plotted against
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3.4 Numerical solutions

In this section numerical error is investigated by comparing numerical solu-

tions to the analytic solutions derived in the previous section. The equations for

the global and local problems that are solved with a point source well and a finite

radius well were stated in (3.1) and (3.2) respectively. They are stated again

below:

Global equations (point source well)

φct
∂pps

∂t
(x, t) =

k

µ
∇2pps(x, t) + qδ(x− x0), in Ω× (0, T ], (3.26a)

n · k
µ
∇pps(x, t) = 0, in ∂Ωo, (3.26b)

pps(x, 0) = 0, in Ω. (3.26c)

Local equations (finite radius well)

φct
∂pfw

∂t
(x, t) =

k

µ
∇2pfw(x, t), in Γ× (0, T ], (3.27a)

pfw(x, t) = pps(x, t), in ∂Γo × (0, T ], (3.27b)

n · ∇pfw(x, t) = − qµ

2πrwkH
, in ∂Γw × (0, T ], (3.27c)

pfw(x, 0) = 0, in Γ. (3.27d)

Here Ω is the global domain with external boundary represented by ∂Ωo, and

Γ is the local post-process domain with internal (well) and external boundaries

represented by ∂Γw and ∂Γo respectively. The parameters (q, k, µ,H, ct, φ) are

the same as in Section 3.3.2. Other simulation parameters are listed in Table 3.2.
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3.4 Numerical solutions

Parameter Value

xe, ye 1,1
(xw, yw) (0.5,0.5)
rw 10−3

re 0.1, 0.2, 0.3

Table 3.2: Simulation parameters. (xw, yw) = well location, rw = well radius, re =
radius of post-process domain.

3.4.1 Error in first stage (point source well solution)

The global equations are semi-discretised on a finite element mesh generated

in Matlab [70]. Time integration is performed using ode15s, a Matlab variable

order initial-value ODE stiff solver. The equations are stiff because there is a

rapid dynamic change of the solution near the wellbore compared to the rest of

the reservoir which introduces different time scales for the problem. The location

of the point source is not constrained to a vertex, rather the vertices of the

triangle enclosing the point source are assigned weights depending its location.

The solution at radius re is obtained by interpolating the global solution from

the background grid to Nθ points on re and then taking the average. We start by

discussing the contributions to the numerical error in the average measurements

taken at re before presenting the error convergence results for this section.

The contributions to the numerical error in the average pressure at re come

from the finite element approximation, and interpolation from the finite element

mesh to Nθ points on re. We investigate the contributions from these two sources

of error by comparing the absolute error in the average pressure at re interpolated

from the finite element solution to that interpolated from the analytic solution,

where both solutions are evaluated at the same vertices for the interpolation.

Triangle-based linear interpolation is used in both cases. The different mesh

refinements considered are shown in Figure 3.8 and Figure 3.10 for re = 0.1 and

0.2 respectively. Case 1 is the base case. Case 2 is obtained by regular refinement

of Case 1 (that is, each triangle in Case 1 is divided into four triangles of the same

shape resulting in a mesh size that is half of the original). Case 3 is obtained

by locally refining Case 1 at the point source location, and Case 4 is obtained

by locally refining Case 1 at the radius re. The corresponding absolute errors in

the average pressure at re interpolated from the mesh configurations in Figure
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3.4 Numerical solutions

3.8 and Figure 3.10 are shown in Figure 3.9 and Figure 3.11 respectively. Here

the absolute errors are with respect to the analytic solutions at re calculated in

Section 3.3.2.

The error in the finite element approximation and linear interpolation both

contribute to the final error in the average pressure interpolated from the finite

element solution. On the other hand only the error in the linear interpolation

contributes to the final error in the average pressure interpolated from the analytic

solution. However Figure 3.9 and Figure 3.11 show that only in Case 4 is the

error in the average pressure interpolated from the analytic solution less than

or equal to that interpolated from the finite element solution for all simulation

time. For Case 1 and Case 2 in Figure 3.9, and Case 1 to Case 3 in Figure 3.11,

there appears to be some cancellation of the error contributions from the finite

element approximation and the linear interpolation, resulting in a lower error in

the average pressure at re interpolated from the finite element solution compared

to the error in the average pressure at re interpolated from the analytic solution.

Figure 3.9 and Figure 3.11 also show that refining the base case (Case 1)

locally at the point source (Case 3) and at radius re (Case 4) leads to an increase

in the error at steady-state for the average pressure at re interpolated from the

finite element solution, while refining uniformly in the entire domain (Case 2)

results in a lower error profile for the entire simulation time (initial transient to

steady-state). This suggests that mesh refinement for the global problem should

be carried out in the entire domain rather than locally.

It should be kept in mind that the most likely practical use for the decoupled

overlapping grid method is as a post-processing step using data derived from a

standard reservoir simulator. In that case there is likely to be little control over

the mesh refinement. However if detailed mesh control is available, future work

should also include an investigation of goal adaptive refinement [5, Chap. 8] to

evaluate the pressure at radius re from the point source.
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Figure 3.8: Different refinements of the global mesh showing vertices used in the
interpolation to radius re = 0.1.
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Figure 3.9: Absolute error in the average pressure at re = 0.1, interpolated linearly
from finite element approximation and analytic solution at the vertices shown in Figure
3.8.
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Figure 3.10: Different refinements of the global mesh showing vertices used in the
interpolation to radius re = 0.2.
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Figure 3.11: Absolute error in the average pressure at re = 0.2, interpolated linearly
from finite element approximation and analytic solution at the vertices shown in Figure
3.10.
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Figure 3.12 shows a comparison of the absolute error in the average pressure

at re interpolated from the finite element solution by triangle-based linear and

cubic interpolation. It is seen that the maximum absolute error for the result from

cubic interpolation is higher than that from linear interpolation for all the plots.

This is because triangle-based cubic interpolation assumes an extra smoothness

of the underlying global solution (which is not the case here since the underlying

global solution is calculated on a finite element mesh using piecewise linear La-

grange elements). The triangle-based linear interpolation is more accurate since

linear interpolation is carried out on a piecewise-linear function. Therefore lin-

ear interpolation will be used in the rest of this work to compute the external

boundary data of the local problem from the global problem.
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(a) re = 0.1, mesh for Case 1 and Case 2 shown in Figure 3.8.
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Figure 3.12: Comparison of linear and cubic interpolation of the finite element solu-
tion from the global mesh to re.
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Figure 3.13 shows the absolute maximum error in average dimensionless pres-

sure at fixed radii rD = re/rw taken over the dimensionless time interval 4tD ∈
[10−2, 104], plotted against the degrees of freedom (d.o.f) of the different levels of

refinement. Each refinement level is obtained by regular mesh refinement of the

previous level. pps,ana and pfw,ana denote the analytic solutions for a point source

and a finite radius well respectively, which were computed in Section 3.3.2. pps is

the numerical solution of (3.26). The solid lines represent the maximum numer-

ical error in the average dimensionless pressure at re given by max(|pps(re, t) −
pps,ana(re, t)|), while the broken lines represent the maximum of the sum of the

numerical and modelling error given by max(|pps(re, t)− pfw,ana(re, t)|). It is seen

that the modelling error at these re is noticeable only for significantly fine mesh

sizes.
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Figure 3.13: Maximum absolute error in average dimensionless pressure at rD, mea-
sured over time interval 4tD ∈ [10−2, 104]. Solid lines: max(|pps(re, t)− pps,ana(re, t)|).
Broken lines: max(|pps(re, t)− pfw,ana(re, t)|).

Also shown in Figure 3.13 is a line of slope −1, which by comparison to the

absolute maximum error plots indicates an O(h2) convergence, where h denotes

the mesh size. This convergence rate will be proved theoretically in Section 3.5.

Figure 3.14 shows the time profile of the absolute error measured at the dif-

ferent re. It is seen that the maximum error occurs during an initial transient

phase before the error settles to a steady-state value, similar to the absolute error

in the analytic solutions plotted in Figure 3.5.

50



3.4 Numerical solutions

10
−2

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

4t
D

| 
p

fw
,a

n
a
 −

 p
n
u
m

 |
 r

=
0
.1

10
−2

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

4t
D

| 
p

fw
,a

n
a
 −

 p
n
u
m

 |
 r

=
0
.2

10
−2

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

4t
D

| 
p

fw
,a

n
a
 −

 p
n
u
m

 |
 r

=
0
.3

 

 

0

1

2

3

refn. level

Figure 3.14: Absolute error in dimensionless boundary pressure. From left to right:
re = 0.1, 0.2, 0.3.

We note that for late times (4tD > 105), there is a loss in the accuracy of the

finite element solution to the point source well problem. This is due to a lack in

mass conservation as a result of rounding errors in Matlab. However it can easily

be rectified for this case study. A detailed discussion is presented in Appendix

A.5.

3.4.2 Error in second stage (finite radius well solution)

The local solution is computed in a radial domain using data measured from

the previous section as the external boundary data. This problem satisfies the

conditions stated in Section 3.1 which allow the finite radius well equations in

(3.27) to be solved independently of θ. The coordinate transformation

r → ln r
def
= R

is applied to the equations to get a refined grid near the wellbore. This transform

converts the near-well logarithmic behaviour to a linear variation. Hence we have
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the following equations:

∂pfw

∂t
= e−2R ∂

2pfw

∂R2
, Rw < R < Re, t > 0, (3.28a)

∂pfw

∂R
= −Q, R = Rw, t > 0, (3.28b)

pfw(Re, t) = pps(Re, t), R = Re, t > 0, (3.28c)

pfw(R, 0) = 0, Rw < R < Re, (3.28d)

where pps(Re, t) is the average pressure at radius Re measured from the global

solution. Space discretisation is performed using the vertex-centred finite volume

method and time integration of the semi-discrete equations is by carried out using

the ode15s routine in Matlab.

Figure 3.15 shows the absolute error in average dimensionless wellbore pres-

sure for different refinements of the local mesh. The refinement level of the un-

derlying FEM mesh on which the external boundary data is measured increases

in each row from left to right, as indicated by Nt (number of triangles) in the

plots. In each graph the maximum radial grid size ∆rmax is refined by a factor

of 4 from the initial value ∆rmax = h, where h is the average triangle size of the

underlying FEM mesh calculated from

h =

√
domain area

number of triangles
× 4√

3
. (3.29)

With ∆rmax specified, the number of radial grid points Nr used for the simulation

is calculated from

Nr = ceil

[
ln(re/rw)

ln(re/[re −∆rmax])

]
. (3.30)

From Figure 3.15 we deduce that setting ∆rmax = h results in maximum

wellbore pressure and boundary pressure errors that are roughly within the same

range. Also for ∆rmax = h/4 the maximum error in the wellbore pressure is

less than the maximum error in the boundary pressure, while further refinement

improves the accuracy of the wellbore simulation results only for very early time

but does not lead to a noticeable reduction in the maximum error.
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(b) re = 0.2
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Figure 3.15: Absolute error in dimensionless wellbore pressure as radial grid is refined.
The horizontal lines in each plot indicate the maximum error in the boundary data.
Nt = number of triangles in underlying FEM mesh. Legend = Nr (number of radial
grid points).
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Figure 3.16 shows the absolute maximum error in dimensionless wellbore pres-

sure plotted against number of radial grid points for ∆rmax = h, h/2, h/4. While

there is a marked decrease in absolute error in refining from h to h/2, there is

little gain in accuracy in refining further to ∆rmax = h/4. Comparison of the

plots with the slope = −2 line indicates that the error has an O(h2) convergence

behaviour as the grid is refined. This will be proved theoretically in Section 3.5.

In Figure 3.17 the absolute maximum wellbore pressure error is plotted to-

gether with the absolute maximum boundary pressure error against the degrees

of freedom (d.o.f) of the underlying FEM mesh. It can be seen that for ∆rmax

at least h/2, the error in the wellbore pressure is bounded above by the error

in the boundary condition. Therefore as a guideline we propose that ∆rmax, the

maximum radial grid spacing in the near-well simulation, should be set to h/2.
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Figure 3.16: Absolute maximum error in dimensionless average wellbore pressure over
time interval 4tD ∈ [10−2, 104].
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Figure 3.17: Broken lines: Maximum error in dimensionless wellbore pressure. Solid
lines: Maximum error in dimensionless boundary pressure. The maximum error is
measured over time interval 4tD ∈ [10−2, 104].
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3.5 Theoretical error analysis

The numerical results in Figure 3.13 and Figure 3.16 indicate anO(h2) conver-

gence of the maximum absolute error in the average pressure measured at a fixed

radius from the point source in the first stage simulations and at the wellbore in

the second stage simulations respectively. In this section, theoretical error bounds

for the maximum error in the first and second stage computations that support

the observed convergence behaviour in the simulations are derived. In addition

we show, by the strong maximum principle for parabolic problems, that the max-

imum error for the second stage computations occurs at the external boundary

radius, and therefore the maximum error in average wellbore pressure is bounded

above by the maximum error in average pressure at the external boundary radius.

3.5.1 Finite element error in first stage

The global solution in a homogeneous domain is obtained by solving the fol-

lowing equations:

∂

∂t
p(x, t)−∇2p(x, t) = qδ(x− x0), x ∈ Ω, t > 0, (3.31a)

∇p(x, t) · n = 0, x ∈ ∂Ω, t > 0, (3.31b)

p(x, 0) = 0, x ∈ Ω, (3.31c)

where Ω is a bounded domain in R2. Let Srh denote a space of C0 piecewise

polynomial functions of degree r − 1 ≥ 1 on globally quasi-uniform partitions of

Ω of mesh size h that fit the boundary exactly. The semi-discrete finite element

approximation to (3.31) is:

Find ph(t) : C1(0,∞)→ Srh which satisfies

(ph,t, χ) + (∇ph,∇χ) = χ(x0) ∀χ ∈ Srh, t > 0, (3.32a)

with ph(0) = 0 ∈ Srh, (3.32b)

where (·, ·) represents the L2(Ω) inner product.

We wish to find error estimates |(p − ph)(x∗, t∗)| at a fixed point away from
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the point of singularity x0. Maximum norm error estimates for parabolic initial

boundary value problems with Neumann boundary conditions have been studied

by Schatz et al. [90] and Leykekhman [68]. However their results do not directly

apply here, as will be explained subsequently. We will derive localised error

estimates for (3.31) at a fixed distance from the point source by applying theorems

by Schatz and Wahlbin [89] and Solo [93]. For a general reference see [99].

The studies by Schatz et al. [90] and Leykekhman [68] assume certain tech-

nical properties of the finite element space. Suffice it to say that Srh, the space

of continuous piecewise polynomial functions defined earlier, satisfies these prop-

erties. The almost-best approximation in the maximum norm (that is, the best

approximation in the maximum norm up to the constants C and Clh,r) was shown

by Schatz et al. [90] to be:

‖p− ph‖L∞(QT ) ≤ C‖p0 − p0h‖L∞(Ω) + Clh,r min
χ∈C([0,T ],Srh)

‖p− χ‖L∞(QT ), (3.33)

where QT = Ω × [0, T ], lh,r = | lnh| if r = 2, otherwise lh,r = 1, p0 is a non-zero

initial condition, and p0h = Php0, the L2 projection onto Srh, which is defined by

(Phv, χ) = (v, χ),∀χ ∈ Srh. Leykekhman [68] extended this result to the error at

an arbitrary but fixed point (x∗, T ),x∗ ∈ Ω, T > 0:

|(p− ph)(x∗, T )| ≤ C(T )lh,s min
χ∈C([0,T ],Srh)

‖p− χ‖L∞(QT ),σ,s, (3.34)

given the initial data p0h. In (3.34), C(T ) is a constant independent of p, ph, h

and x∗, lh,s = 1 if s < r − 2, lh,s = | lnh| if s = r − 2 (where 0 ≤ s ≤ r − 2,

r ≥ 2), and ‖ · ‖L∞(QT ),σ,s is a weighted norm. For r = 2 (such as in (3.31)), this

weighted norm is the same as ‖ · ‖L∞(QT ).

The problem in applying (3.34) to obtain localised error estimates for (3.31)

arises from the presence of a point source, symbolised by the delta function in

(3.31a). From the approximation properties of the space Srh there exists a function

χ ∈ Srh such that [17, p. 108]:

‖p− χ‖L∞(Ω) ≤ Ch2|p|W 2
∞(Ω). (3.35)
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| · |W 2
∞(Ω) in (3.35) denotes the Sobolev space seminorm

|f |W 2
∞(Ω) = max

|α|=2
‖∂αf‖L∞(Ω), (3.36)

where α = (α1, α2, . . . , αn), αj ∈ N is a multi-index, |α| = α1 +α2 + · · ·+αn, and

∂αf are all weak partial derivatives of f . Substituting (3.35) into (3.34) gives:

|(p− ph)(x∗, T )| ≤ C(T )h2| lnh||p|W 2
∞(QT ). (3.37)

However, p /∈ W 2
∞(QT ) from (3.31a), therefore (3.34) is not suitable for defining

localised error bounds for (3.31).

To obtain localised error estimates for (3.31) at a fixed point away from the

point of singularity, we rewrite p as the sum of a smooth function U and a Green’s

function Gx0 , p = U +Gx0 , where U and Gx0 satisfy the following equations:

∂

∂t
U(x, t) = ∇2U(x, t), x ∈ Ω, t > 0, (3.38a)

∇U(x, t) · n = 0, x ∈ ∂Ω, t > 0, (3.38b)

U(x, 0) = −Gx0(x), x,x0 ∈ Ω, (3.38c)

and

−∇2Gx0(x) = qδ(x− x0), x,x0 ∈ Ω, (3.39a)

∇Gx0(x) · n = 0, x ∈ ∂Ω,x0 ∈ Ω. (3.39b)

The semi-discrete finite element approximation to p is ph(t) = Uh(t) +Gx0
h where

(Uh,t, χ) + (∇Uh,∇χ) = 0 ∀χ ∈ Srh(Ω), t > 0, (3.40a)

Uh(0) = −Gx0
h , (3.40b)

and (∇Gx0
h ,∇χ) = χ(x0) ∀χ ∈ Srh(Ω). (3.41)
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So

|(p− ph)(x∗, t∗)| = |(U − Uh)(x∗, t∗) + (Gx0 −Gx0
h )(x∗)|,

≤ |(U − Uh)(x∗, t∗)|+ |(Gx0 −Gx0
h )(x∗)| .

(3.42)

We consider |(U − Uh)(x∗, t∗)| and |(Gx0 −Gx0
h )(x∗)| independently by applying

theorems by Solo [93] and Schatz and Wahlbin [89] respectively. These theorems

are concisely stated below for completeness.

Localised interior estimate for parabolic problems [93]

Let Ω be a bounded domain in RN , Q = Ω × [0, T ], and ∂Q = ∂Ω × [0, T ].

Given the problem

∂u

∂t
−∇2u = 0 in Q, (3.43a)

n · ∇u = g on ∂Q, (3.43b)

u(t = 0) = u0 in Ω, (3.43c)

where both g and u0 in general have low regularity (u0 ∈ W−s
q (Ω), g ∈ W−k,−l

q (∂Q)

for arbitrary s, k, l, and q), and its semi-discrete finite element approximation:

Find uh(t) ∈ C0([0, T ], Srh) such that

(uh,t, χ)Ω + (∇uh,∇χ)Ω = 〈g, χ〉∂Ω ∀χ ∈ Srh and a.e in [0, T ], (3.44a)

uh(0) = Phu0, (3.44b)

where Phf is the L2 projection onto Srh, and 〈·, ·〉 denotes the pairing of a linear

space with its dual, then the following theorem holds.

Theorem 3.1. Assume Srh satisfies the required technical properties of the finite

element space stated in [93] and that the triangulations fit the boundary exactly.

Then for u and uh defined above, if x∗ ∈ Ω, dist(x∗, ∂Ω)> d and t∗ > d2 for

d > ch, the following estimate holds for any l and k = 0, 1:

|(u− uh)(x∗, t∗)| ≤ Cl,dh
r−k(‖u0‖W−k1 (Ω) + ‖g‖W−k−l1 (∂Q)

)
(3.45)
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where Cl,d = log(1/d)d−N−r−2l.

Pointwise interior error estimates for the Green’s function near the

singularity [89]

Let Ω be a bounded domain in RN with smooth boundary ∂Ω, and A a bilinear

form of type

A(u, v) =

∫
Ω

(
N∑

i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

N∑
i=1

bi(x)
∂u

∂xi
v + d(x)uv

)
dx, (3.46)

where A is coercive over H1, that is, there exists a constant c > 0 such that

c‖u‖2
H1(Ω) ≤ A(u, u) ∀u ∈ H1(Ω). (3.47)

Let Sh(Ω) be a one-parameter family of subspaces of W 1
∞(Ω) that satisfy

inf
χ∈Sh(Ω)

‖u− χ‖H1(Ω) ≤ Chl−1‖u‖Hl(Ω) for 1 ≤ l ≤ r. (3.48)

Furthermore assume that Sh satisfies the required technical properties of the finite

element space as stated in [89].

Let x0 ∈ Ω, and Gx0(x), Gx0
h (x) be the Green’s function and approximate

Green’s function respectively which satisfy:

A(Gx0 , u) = u(x0) ∀u ∈ W 1
∞(Ω), (3.49)

and A(Gx0
h , χ) = χ(x0) ∀χ ∈ Sh(Ω). (3.50)

Then the following theorem holds.
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Theorem 3.2. Given the assumptions above, let Ω1 ⊂⊂ Ω2 ⊂⊂ Ω. There there

exist constants C and C2 so that if h is sufficiently small, then for x0 ∈ Ω1 and

x ∈ Ω2

If |x− x0| ≥ C2h, |(Gx0 −Gx0h )(x)| ≤ Chr

|x− x0|N+r−2

(
ln
|x− x0|

h

)α
(3.51)

If 0 ≤ |x− x0| ≤ C2h, |(Gx0 −Gx0h )(x)| ≤ C

ln 1
|x−x0| + 1 for N = 2

ln 1
|x−x0|N−2 for N ≥ 2

(3.52)

where r is the optimal order of h, and α = 1 for r = 2, α = 0 for r ≥ 3.

We note here that Srh, the space of continuous piecewise polynomial functions in

(3.32), satisfies the necessary properties required by Theorem 3.1 and Theorem

3.2. (Ω1 ⊂⊂ Ω means that the closure of Ω1 is in the interior of Ω.)

Applying Theorem 3.1 for l = 0, k = 0, r = 2, N = 2, the following error

estimate is obtained for U (see (3.38)):

|(U − Uh)(x∗, t∗)| ≤ log(1/d)d−4h2‖Gx0(x)‖L1(Ω) (3.53)

≤ C1 log(1/d)d−4h2 (3.54)

since the L1 norm of Gx0(x) is bounded.

Applying Theorem 3.2 for N = 2, r = 2, the following error estimate is ob-

tained for Gx0 (see (3.39)):

|(Gx0 −Gx0
h )(x∗)| ≤ C2h

2

(
ln
|x− x0|

h

)
|x− x0|−2 . (3.55)

So from (3.42), (3.54) and (3.55),

|(p− ph)(x∗, t∗)| ≤ h2

[
C1 log(1/d)d−4 + C2

(
ln
|x− x0|

h

)
|x− x0|−2

]
(3.56a)

≤ h2(CU + CGx0 ) . (3.56b)

(3.56) gives the pointwise error estimate for (3.31). It predicts O(h2) be-

haviour subject to CU and CGx0 . The form of the constant CGx0 implies that

the pointwise error is worse when measurements are made close to the point
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source. The form of the constant CU suggests that the pointwise error is worse

for measurements taken close to the domain boundary. Since the pointwise error

is O(h2) at time t∗, the average error at a radius re away from the point source

is also O(h2) at t∗. Furthermore the maximum error of the average pressure at

the radius re over the simulation time is also O(h2). This supports the observed

results in Section 3.4.1.

To further investigate (3.56), simulations were carried out in a square of side

1 with a point source at the centre of the square at (0.5,0.5). Measurements are

taken at fixed points: x−x0 = 0.05, 0.1, 0.2, 0.4, 0.49, and y = 0.5, y = x ((x0, y0)

is the point source location). In addition average measurements are taken at

fixed radii r = 0.1, 0.2, 0.4 from the point source. The absolute maximum error

in these measurements over the entire simulation time and at fixed times t∗ is

plotted in Figure 3.18. Firstly, it can be seen that for (3.31) CU gives a par-

ticularly pessimistic error bound that is not observed in the numerical results

for measurements taken close to the domain boundary. The error bound is pes-

simistic because Theorem 3.1 covers a more general problem with low regularity

Neumann boundary data, whereas the global problem in this section has smooth

Neumann boundary data. On the other hand the error is worse for measurements

closer to the singularity as predicted by CGx0 . Secondly, the plots show that the

maximum absolute error taken over the entire simulation time has a stronger

O(h2) behaviour compared to the error at the fixed point in time t∗. In Figure

3.18 (c)–(f) we see a sharp dip or rise in the maximum absolute error for some

plots. This is most likely a numerical artefact where an unforeseen cancellation

or pollution of the error occurs.

62



3.5 Theoretical error analysis

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d.o.f

m
a
x
im

u
m

 a
b
s
o
lu

te
 e

rr
o
r

 

 

0.05

0.1

0.2

0.4

0.49

slope=−1

(a) Absolute maximum error over time
interval t ∈ [0.25 × 10−6, 25]. y =
0.5.
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(b) Absolute maximum error over time
interval t ∈ [0.25×10−6, 25]. y = x.
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(c) Absolute maximum error at t∗ =
0.0103. y = 0.5.
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(d) Absolute maximum error at t∗ =
0.0103. y = x.
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(e) Absolute maximum error at t∗ =
0.1231. y = 0.5.
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0.1231. y = x.

Figure 3.18: Absolute maximum error at fixed points (solid lines) and fixed radii
(broken lines). Legend represents fixed radius for broken lines or distance in the x-
direction from the point source for solid lines.
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3.5.2 Finite volume error in second stage

The solution in the local post-process domain is obtained by solving (3.28),

which is stated again below:

∂p

∂t
= e−2R ∂2p

∂R2
, Rw < R < Re, t > 0, (3.57a)

∂p

∂R
= −Q, R = Rw, t > 0, (3.57b)

p(Re, t) = pps(Re, t) = pe(t), R = Re, t > 0, (3.57c)

p(R, 0) = 0, Rw < R < Re. (3.57d)

Let ph be the semi-discrete approximation to p on a grid Ωh, and u the restriction

of p to Ωh. Then we have

dph
dt

= Aph + f, (3.58)

du

dt
= Au+ f + σh(t), (3.59)

where σh(t) is the local truncation error. The error in the spatial discretisation

is ε(t) = u(t) − ph(t). We show below that the pointwise error at the wellbore

has O(h2) convergence for the vertex-centred finite volume method implemented

in Section 3.4.2.

Expanding the semi-discrete approximation (3.58) for (3.57) using the vertex-

centred finite volume method, we have, for uniform mesh size h,

e2R1p′h,1(t) =
2

h2

(
−ph,1(t) + ph,2(t)

)
+

2

h

(
−Q
)
, (3.60a)

e2Rkp′h,k(t) =
1

h2

(
ph,k−1(t)− 2ph,k(t) + ph,k+1(t)

)
, 2 ≤ k ≤ m− 2

(3.60b)

e2Rm−1p′h,m−1(t) =
1

h2

(
ph,m−2(t)− 2ph,m−1(t)

)
+

1

h2
pe(t). (3.60c)
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The truncation error σh(t) is O(h2) at all points except at k = 1 where

σh,1(t) =
1

3
huRRR(Rw, t) +O(h2). (3.61)

Despite this O(h2) convergence of the spatial discretisation error ε(t) at all points

can be shown using the theorem by Hundsdorfer and Verwer [62, Theorem 5.2,

p.85] on refined global error estimates. This theorem is stated below.

Theorem 3.3. Consider the linear semi-discrete system

w′(t) = Aw(t) + f(t) (3.62)

where A is an m×m matrix and f(t) ∈ Rm represents a source term and boundary

conditions in the PDE, and assume that the stability condition

‖etA‖ ≤ Keαt for 0 ≤ t ≤ T (3.63)

holds on all grids Ωh, where the constants K ≥ 1 and α ∈ R are both independent

of h. Suppose that for 0 ≤ t ≤ T we can decompose the truncation error σh(t) as

σh(t) = Aξ(t) + η(t) with ‖ξ(t)‖, ‖ξ′(t)‖, ‖η(t)‖ ≤ Chr (3.64)

and suppose that ‖ε(0)‖ ≤ C0h
r, where C,C0 > 0 are constants, and ε(t) is the

spatial discretisation error. Then we have convergence of order r with the error

bounds

‖ε(t)‖ ≤

KC0e
αthr +

(
1 +Keαt + 2K

α
(eαt − 1)

)
Chr if α 6= 0, 0 ≤ t ≤ T

KC0h
r + (1 +K + 2Kt)Chr if α = 0, 0 ≤ t ≤ T

(3.65)

where ‖ · ‖ is the discrete Lp–norm.

To apply Theorem 3.3, we need to show the stability condition (3.63) for the

semi-discrete system (3.60), and that the truncation error for this system satisfies

(3.64). To prove the stability condition in the infinity norm we apply the following

theorem by Hundsdorfer and Verwer [62, Theorem 2.4, p.32].
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Theorem 3.4. Let A ∈ Cm×m and α ∈ R. We have

µ(A) ≤ α ⇐⇒ ‖etA‖ ≤ etα ∀ t ≥ 0 (3.66)

where µ(A) is the logarithmic matrix norm and ‖ · ‖ is the discrete Lp–norm.

The logarithmic matrix infinity norm of A is defined as [62]

µ∞(A) = max
i

(
Re aii +

∑
j 6=i

|aij|

)
. (3.67)

So for (3.60) we have µ∞(A) = 0 which implies, from Theorem 3.4, that ‖etA‖ ≤ 1.

Next we need to write the truncation error in the form σh = Aξ(t) + η(t) (see

(3.64)). Ignoring η(t) which represents the O(h2) terms in the truncation error

and putting σh = Aξ(t) gives, from (3.60) and (3.61),

ξ1 − ξ2 = C1h
3 (3.68a)

ξk−1 − 2ξk + ξk+1 = 0 (3.68b)

ξm−2 − 2ξm−1 = 0 (3.68c)

where C1 = uRRR(Rw, t)/6. Solving (3.68b) with the ansatz ξ = arn gives r = 1

twice so that ξn = a+ bn. Applying the boundary conditions (3.68a) and (3.68c)

gives ξk = C(m − k)h3; therefore ξk ≤ Cmh3 = Ch2 (since h = 1/m). So

‖ξ(t)‖∞, ‖ξ′(t)‖∞, ‖η(t)‖∞ ≤ Ch2. Since ε(0) = 0, we set C0 = 2C so that

Theorem 3.3 gives

‖ε(t)‖∞ ≤ 2(2 + t)Ch2. (3.69)

Therefore

|εk(t)| ≤ ‖ε(t)‖∞ ≤ 2(2 + t)Ch2, (3.70)

and the pointwise error has O(h2) convergence at R = Rw (that is, k = 1). Since

the pointwise error is O(h2) at Rw, the error in the average pressure at Rw is

also O(h2). Furthermore the maximum error in the average pressure at Rw over

the simulation time is also O(h2). This supports the observed results in Section

3.4.2.
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3.5.3 Wellbore error bounded by external boundary error

Define the modelling error β(r, t) = υ(r, t) − pfw(r, t), where pfw(r, t) is the

solution to (3.28) (which has the external boundary condition taken from a point

source well solution), and υ(r, t) is the solution to (3.28) with the external bound-

ary condition due to a finite radius well. Then for (k, µ, h, ct, φ) = 1 this error

satisfies:

∂β

∂t
=

1

r

∂

∂r

(
r
∂β

∂r

)
, rw < r < re, (3.71a)

∂β

∂r
(rw, t) = 0, (3.71b)

β(re, t) = βe(t), (3.71c)

β(r, 0) = 0. (3.71d)

According to the maximum principle, the maximum of the solution β(r, t) can

only occur at rw, re or t = 0. However β(r, 0) = 0, so the maximum cannot

occur here. The strong maximum principle stated below is used to show that the

maximum must occur at re.

Theorem 3.5. (Strong maximum principle for parabolic problems [94, p. 21] )

Let u be a non-constant solution of

Lu− ∂u

∂t
=

N∑
i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

N∑
i=1

bi(x, t)
∂u

∂xi
− ∂u

∂t
≥ 0 in Ω× (0, T )

where Ω is a finite domain in the n-dimensional Euclidean space EN , T < ∞,

and L a uniformly bounded elliptic operator with bounded coefficients aij and bi.

If u attains its maximum M at some point xM of ∂Ω× (0, T ), where ∂Ω has the

interior sphere property, any derivative in an outward direction v from Ω satisfies
∂u

∂v
> 0 at xM .

The interior sphere property at a point xM of ∂Ω states that there must be a

sphere S of some radius r0 > 0 contained in Ω such that S ∩ ∂Ω = {xM}.
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Applying Theorem 3.5, (3.71b) violates the strong maximum principle so the

maximum cannot occur here. Therefore the maximum must occur at re, and

β(t) ≤ max βe(t). (3.72)

As shown in Figure 3.17, the numerical results follow the theoretical prediction

in (3.72) for ∆rmax ≤
h

2
.

3.6 Finite volume discretisation of first stage

In this section the first stage computations are carried out on rectangular

mesh elements using the cell-centred finite volume method. This test is carried out

because rectangular mesh elements together with finite volume or finite difference

discretisation methods are commonly used in commercial reservoir simulators.

Domain parameters are in Table 3.2. An equal number of mesh elements is

defined along the length and width of the square domain so that the discretisation

simplifies to a central-difference approximation in space. For each refinement

level the point source well is exactly at the centre of the control volume. Time

integration as before is performed using the Matlab stiff solver ode15s.

The maximum absolute error results are shown in Figure 3.19, and are simi-

lar to the results in Figure 3.17 obtained for finite element spatial discretisation

in the first stage computations. As before the maximum absolute error in the

dimensionless average wellbore and boundary pressures for the second stage sim-

ulations show O(h2) convergence. In addition the error in the wellbore pressure

is bounded above by the error in the boundary pressure for ∆rmax ≤ h/2, where

h is the length of a mesh element.
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Figure 3.19: Broken lines: Maximum error in dimensionless wellbore pressure. Solid
lines: Maximum error in dimensionless boundary pressure. Maximum taken over time
interval 4tD ∈ [10−2, 104].

In Figure 3.20 and Figure 3.21 the absolute error in dimensionless well pres-

sure calculated from the Peaceman well index is plotted for comparison. The

Peaceman well index was discussed in Section 2.2.1 as a way to relate steady-

state wellblock pressure to wellbore pressure. The well index in this problem is

calculated from:

WI =
2πkH

ln
req

rw

(3.73)

where for steady-state the equivalent radius req is

req = 0.14
√

2 ∆x , ∆x = ∆y. (3.74)

Peaceman [82] also proposed the following transient equivalent radius for unsteady-

state:

req = ∆x

√
4tD

( rw
∆x

)2

exp

(
−γ − 4πkH

qµ
p

)
(3.75)

where tD = ηt/r2
w and ∆x = ∆y.

The Peaceman solutions are calculated from the same global solutions gener-

ated for the decoupled overlapping grids computation. Figure 3.20 clearly shows

that the decoupled overlapping grids method performs significantly better than

the Peaceman well index solutions. The accuracy of the wellbore pressure from

the decoupled overlapping grids method improves with grid refinement, whereas
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3.6 Finite volume discretisation of first stage

this is not the case for the solution using the Peaceman well index. The plots

show that the absolute error reaches its peak during an initial transient phase

before settling at a steady-state value.

The maximum absolute error for the results in Figure 3.20 is plotted in Figure

3.21. It shows more clearly the improvement in accuracy with grid refinement of

the wellbore pressure calculated by decoupled overlapping grids method compared

with those calculated using the Peaceman well index methods.
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Figure 3.20: Comparison of dimensionless absolute error in wellbore pressure from
decoupled grids and using Peaceman well index. re = 0.1.
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Figure 3.21: Comparison of maximum error in wellbore pressure from decoupled
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state well index; 4: Peaceman unsteady-state well index. Maximum taken over time
interval 4tD ∈ [10−2, 104].

3.7 Comparison with solutions on locally refined

mesh

In this section the average wellbore pressure from the decoupled overlapping

grids method is compared to results for a finite radius, interior boundary wellbore

that is fully resolved in the global computational domain by local grid refinement

(LGR).

3.7.1 Locally refined finite element mesh

Here full resolution of the finite radius well is achieved through local refinement

of a finite element mesh. This is implemented using the Comsol Multiphysics[28]

a finite element software.

A comparison of the results from both methods is shown in Figure 3.22. Table

3.3 contains the mesh properties for the simulations. From Figure 3.22 and Table

3.3, it is seen that the method of decoupled overlapping grids gives good results

for less computational effort (fewer degrees of freedom) compared to local grid

refinement for linear Lagrange elements. This is clearly shown by maximum

absolute error plot in Figure 3.22(c). The accuracy of the LGR finite element
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3.7 Comparison with solutions on locally refined mesh

solution can be improved by using quadratic Lagrange elements instead of linear

elements, as shown in Figure 3.22(b). However the use of quadratic Lagrange

elements for a well test study could potentially become highly computationally

intensive. For instance a change in well position will require a regeneration of

the mesh in the entire simulation domain for a wellbore resolved by local grid

refinement. On the other hand for the decoupled overlapping grids method only

the position of the point source need be changed in the global problem, together

with a possible regeneration of the mesh on a significantly smaller local region

surrounding the wellbore for the post-process stage.

Refn. level Nv Nt Nr d.o.f.

Figure 3.22(a)

0 312 566 12 324
1 1189 2264 27 1216
2 4641 9056 56 4697
3 18337 36224 114 18451

Figure 3.22(b)

Lin. elements : 0 919 1762

Nv = d.o.f.
: 1 3600 7048
: 2 14248 28192

Quad. elements 14248 7048

Table 3.3: Mesh properties for Figure 3.22. Nv =number of vertices, Nt =number of
triangles, Nr =number of radial grid points.
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Figure 3.22: Absolute error in dimensionless average wellbore pressure for re = 0.1
(see Table 3.3).
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3.7 Comparison with solutions on locally refined mesh

3.7.2 Hybrid grid

The hybrid grid implemented in this section was proposed by Pedrosa and

Aziz [85], and has been used, for example, in [31, 56, 102]. The hybrid grid is

composed of a polar grid in the near-well region and a rectangular grid away

from the well. The two regions are connected by irregularly shaped blocks. A

schematic of the grid system is shown in Figure 3.23.

Figure 3.23: Schematic of hybrid grid

The irregular blocks are bordered by polar and rectangular grids. To de-

termine the transmissibility at the polar-irregular block interface, an apparent

exterior radius is computed such that the resulting polar block has the same area

as the irregular block, that is,

rapp,j =

√
2Airr,j

∆θj
+ r2

e (3.76)

where re is the external radius of the polar region. This apparent radius is then

used to calculate the radial transmissibility. Likewise at the rectangular-irregular

block interface, an apparent length is computed so that the resulting rectangular

block has the same area as the irregular block, for example,

Lj =
Airr,ij

∆xi
. (3.77)

This apparent length is used then to compute the transmissibility. To determine
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3.7 Comparison with solutions on locally refined mesh

the angular transmissibility of the irregular block, a similar procedure is adopted.

An apparent radius is computed for the 2 adjacent irregular blocks such that the

total area of the 2 apparent radial blocks is equal to the total area of the adjacent

irregular blocks. So (3.76) is used with Airr,j replaced by Airr,j +Airr,j+1 and ∆θj

by ∆θj + ∆θj+1. The angular transmissibility is then computed using the new

radius and the angles of the irregular blocks.

The Jacobian matrix structure for a sample grid is shown in Figure 3.24.

The matrix is constructed starting with the entries for the polar gridblocks (pp),

followed by entries for the irregular gridblocks (ii) and finally entries for the

rectangular gridblocks rr. The entries at the interface of the regions are indicated

in the diagram.

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

rr

pp

pi

ii

ip

ri

ir

Figure 3.24: Jacobian matrix structure for a sample grid showing the entries for
different regions. p=polar, i=irregular, r=rectangular.

Results from the hybrid grid simulation are compared against results from

the decoupled overlapping grids method with the first stage solved on a finite

volume mesh (see Section 3.6). The simulations are carried out in a square of

size 1 with the well at the centre of the square. The cell spacing ∆x and ∆rmax

for the hybrid grid are equal to the values for the first and second stages of the

decoupled overlapping grids simulation respectively. Given the external radius re,

the inset that contains the polar grid in the hybrid implementation is the smallest

square that contains a circle of this radius. The external radius is then adjusted
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3.7 Comparison with solutions on locally refined mesh

so that the shortest perpendicular distance is at most 1
2
∆x from the rectangular

grid. Logarithmic spacing is applied along the r–direction in the polar region of

the hybrid grid to get a refined grid near the wellbore. Table 3.4 shows the mesh

properties of the simulations. The external radius re and well radius rw are 0.1

and 10−3 respectively for the hybrid and decoupled overlapping grid simulations.

Decoupled overlapping grids Hybrid grid

Refn. level Nrbx d.o.f. Nrmp Nr d.o.f. Nrmp Nr

0 17 303 289 14 544 264 13
1 35 1255 1225 30 2260 1144 30
2 71 5105 5041 64 9104 4752 63
3 143 20579 20449 out of memory

Table 3.4: Mesh properties for Figure 3.25. Nrbx =number of rectangular cells along
one side of the square domain, Nr =number of radial mesh points, Nrmp =number of
rectangular mesh points.

We first note that for the decoupled overlapping grids simulation, the first

stage is discretised with cell-centred finite volume method, while the second stage

is discretised with vertex-centred finite volume method (thereby allowing the di-

rect computation of pressure values at the wellbore). For the hybrid grid sim-

ulation, the discretisation in the entire domain is by cell-centred finite-volume

method, and so the wellblock pressure must be extrapolated to the wellbore.

Linear extrapolation in the logarithmic radial distance was used here. Secondly,

while the second stage of the decoupled overlapping grids method can be solved

in one-dimension (as outlined in Section 3.1), a full two-dimensional polar grid

must be implemented in the hybrid case thereby increasing the computational

effort. For the simulations in this section, the computer ran out of memory for

the hybrid grid implementation at the third refinement level.

Simulation results are plotted in Figure 3.25. A mass balance check for the

hybrid grid simulations was conducted to confirm conservation. The abrupt

change in Figure 3.25(b) suggests a pollution of the error behaviour at the polar-

rectangular grid boundary. Prior to this abrupt change, the absolute error for the

two methods are of similar magnitude as shown in Figure 3.25(a) and (b). The

absolute maximum error plot in Figure 3.25(c) clearly show that the decoupled

overlapping grids method gives better performance for fewer degrees of freedom.
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Figure 3.25: Absolute error in dimensionless average wellbore pressure for re = 0.1
(see Table 3.4).
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3.8 Summary

In this chapter we have studied the error in the decoupled overlapping grids

method in a two-dimensional homogeneous domain. Numerical experiments showed

that the maximum absolute error in the local domain external boundary data in-

terpolated from the first-stage simulations, and in the wellbore pressure from the

second-stage simulations, occur during an initial transient stage before the effect

of the boundaries are felt. The exception to this is when the local domain ex-

ternal boundary data is measured close to the global domain boundary, in which

case an initial transient stage is not observed in the absolute error profile, and

the maximum absolute error occurs at steady-state.

The numerical results showed an O(h2) convergence in the maximum absolute

error of the local domain external boundary pressure and the wellbore pressure.

It was also deduced that for ∆rmax ≤ h/2, the maximum absolute error in the

wellbore pressure is bounded above by the maximum absolute error in the in-

terpolated local domain boundary pressure. Theoretical proof was presented to

corroborate these numerical results.

A comparison of decoupled overlapping grids method to some other methods

for computing wellbore pressure in the literature was carried out. In all cases the

numerical results show better performance from the decoupled overlapping grids

method.
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Chapter 4

Vertical Well in a Heterogeneous

Domain

4.1 Introduction

In this chapter, we apply the method of decoupled overlapping grids to model

the transient pressure of a fully-penetrating vertical well in a heterogeneous do-

main. The heterogeneities discussed are radial, angular and random discontinuity

in reservoir permeability and a well near an impermeable boundary. The imper-

meable boundary considered here is the domain boundary. However the same

principle would apply to a well that interacts with other features that intro-

duce heterogeneity within the reservoir, such as sealing faults or fractures. As

in the previous chapter, we focus on equations for single-phase flow of a slightly-

compressible fluid.

4.2 Discontinuous reservoir permeability

In the previous chapter numerical experiments indicated that for a homo-

geneous domain the maximum error in average wellbore pressure was bounded

above by the maximum error in the average external boundary pressure of the

local domain when ∆rmax ≤ h/2, where ∆rmax is the maximum mesh size of

the second-stage (local) simulation and h is the average mesh size of the first-

stage (global) simulation. Here we investigate the validity of this relationship

for three heterogeneous permeability case studies: radial discontinuity, angular
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4.2 Discontinuous reservoir permeability

discontinuity, and random discontinuity.

Simulation results are compared against benchmark solutions calculated by

the finite element method with the wellbore resolved by local grid refinement.

The benchmark simulations are implemented in Comsol Multiphysics. The inves-

tigation in Section 3.7.1 showed that the finite element implementation in Comsol

with quadratic Lagrange elements gave a significantly better level of accuracy

compared to linear Lagrange elements. Therefore quadratic Lagrange elements

are used in the benchmark simulations.

The Comsol bdf ida solver is used for time-stepping in the benchmark sim-

ulations. This is a variable order, variable step-size solver that implements the

backward differentiation formulas (BDF). The linear systems in the simulation

are solved by direct LU factorization of the sparse matrix using the umfpack

solver. On the other hand the time-stepping for the decoupled overlapping grid

equations is carried out in Matlab using ode15s, a variable order solver based on

the numerical differentiation formulas (NDF) [91], which are similar to the BDF.

The linear systems in the simulation are solved directly by LU factorization of

the sparse matrix, also using the umfpack solver. Since both the benchmark and

the decoupled overlapping grids simulations are solved using similar methods, we

will use the number of degrees of freedom in the simulations as an indication of

the amount of work done.

In the subsequent studies the parameters (q, µ,H, ct, φ) are set to 1. Other

simulation parameters are listed in Table 4.1.

Parameter Value

xe, ye 1,1
(xw, yw) (0.5,0.5)
rw 10−3

re 0.1, 0.2, 0.3

Table 4.1: Simulation parameters. (xw, yw) = well position, rw = well radius, re =
radius of post-process domain.
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4.2 Discontinuous reservoir permeability

4.2.1 Radial permeability discontinuity

A circular region extending a distance rsd from the centre of the well is assigned

a constant permeability k, and the region outside this circle is assigned a constant

permeability k2 where k/k2 = 0.1. The global problem in (3.1) is solved on finite

element meshes, some of which are shown in Figure 4.1. Each refinement level is

obtained by uniform refinement of the previous level. The corresponding mesh

properties are in Table 4.2.

0 0.5 1
0

0.5

1
refn level 0

0 0.5 1
0

0.5

1
refn level 1

0 0.5 1
0

0.5

1
refn level 2

Figure 4.1: Mesh and permeability distribution for first stage. rsd = 0.15, k/k2 = 0.1.

R. Level 0 1 2 3

Nt 144 576 2304 9216
Nv (d.o.f) 87 317 1209 4721
h 0.1266 0.0633 0.0317 0.0158

Table 4.2: First stage mesh properties.
R. Level = refinement level, Nt = number
of triangles, Nv =number of vertices.

R. Levels = 0 1 2 3
re ∆rmax Nr (d.o.f)

0.1
h 0* 5 13 27
h/2 5 13 27 56
h/4 13 27 56 115

0.2
h 0+ 0+ 31 64
h/2 0+ 31 64 131
h/4 31 64 131 265

0.3
h 10 24 51 105
h/2 24 51 105 213
h/4 51 105 213 429

*: ∆rmax > re
+: ∆rmax > re − rsd

Table 4.3: Second stage mesh properties.
Nr =number of radial gridpoints.
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4.2 Discontinuous reservoir permeability

In this case study the local problem in (3.2) satisfies the conditions stated

in Section 3.1 which allow it to be solved in one (radial) dimension only. The

local equations are discretised using the finite volume method. In order to get

consistent results, it is necessary for the location of the permeability discontinuity

to coincide with a control volume interface. Hence the computation nodes are

obtained as follows. Let Rl, Rr denote the positions of the nodes on the left and

right sides of the discontinuity respectively (where R = ln r). Given the mesh

size on the log scale, ∆R = ln re − ln(re −∆rmax), we set

Rl = ln rsd −∆R/2, Rr = ln rsd + ∆R/2, (4.1)

and compute the number of nodes on the left and right sides of the discontinuity

respectively from

Nl = ceil

[
Rl − ln rw

∆R

]
, Nr = ceil

[
ln re −Rl

∆R

]
. (4.2)

The mesh properties for the second stage simulations are in Table 4.3.

Figure 4.2 shows the absolute error profile of average wellbore pressure plotted

against dimensionless time tD = kt/(µφctr
2
e), where the reference permeability k

is that of the interior sub-domain. It shows that in general the error in the

wellbore pressure goes through a peak value during the initial transient phase

before settling to a steady-state value (in a similar manner to the absolute error

results for a homogeneous domain discussed in Chapter 3).
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(a) re = 0.1. ∆rmax = h, h/2, h/4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t
D

| 
p

d
g
 −

 p
b
m

 |
 w

b
p

 

 

0

1

2

3

refn. level

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t
D

| 
p

d
g
 −

 p
b
m

 |
 w

b
p

 

 

0

1

2

3

refn. level

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t
D

| 
p

d
g
 −

 p
b
m

 |
 w

b
p

 

 

0

1

2

3

refn. level

(b) re = 0.2. ∆rmax = h, h/2, h/4
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(c) re = 0.3. ∆rmax = h, h/2, h/4

Figure 4.2: Absolute error in dimensionless average wellbore error.
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Figure 4.3: Broken lines: Maximum error in dimensionless average wellbore pressure.
Solid lines: Maximum error in dimensionless average boundary pressure. Maximum
taken over simulation time.

The maximum absolute error in the dimensionless average wellbore pressure

and dimensionless average external boundary pressure (of the local domain) are

plotted in Figure 4.3 against the degrees of freedom of the finite element mesh

used to compute the global solution. It is seen that for ∆rmax ≤ h/2 the error in

the wellbore pressure is bounded above by the error in the boundary condition.

Even for ∆rmax ≈ h, the maximum error in the wellbore and boundary pressure

are of similar magnitude (for refinement levels of the global simulation ≥ 1).

These results are similar to those observed for the homogeneous case study in

Section 3.4.2. We also note that there is only a slight deterioration in the O(h2)

convergence rate that was observed for the homogeneous case.

The degrees of freedom of the mesh used to compute the benchmark solution

in this section is 15336. In comparison, the most expensive computation using

the decoupled overlapping grids method (refinement level 3 for global solution,

re = 0.3 and ∆rmax = h/4 for local solution) required a total degree of freedom of

5150. Figure 4.3 shows that despite this significant difference in computational

effort, the simulation result using the decoupled overlapping grids method comes

within a dimensionless absolute error of O(10−4) with respect to the benchmark

solution (the actual absolute error is also in the same range).
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4.2 Discontinuous reservoir permeability

4.2.2 Angular permeability discontinuity

In this case study the domain is divided into four quadrants. The top right

and bottom left quadrants are assigned a permeability value k, and the top left

and bottom right quadrants a permeability value k2 where k/k2 = 0.1. The finite

element mesh used in the first stage of the computation is shown in Figure 4.4.

Each refinement level is obtained by uniform refinement of the previous level.

The corresponding mesh properties are in Table 4.4.

0 0.5 1
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0.5

1

refn level 0

0 0.5 1
0

0.5

1

refn level 1

0 0.5 1
0

0.5

1

refn level 2

Figure 4.4: Mesh and permeability distribution for first stage. k/k2 = 0.1.

R. Level 0 1 2 3

Nt 142 568 2272 9088
Nv 88 317 1201 4673
h 0.1275 0.0638 0.0319 0.0159

Table 4.4: First stage mesh properties
(R. Level = refinement level).

R. Levels = 0 1 2 3
re ∆rmax d.o.f

0.1
h 0* 337 1345 5537
h/2 108 461 2065 8705
h/4 232 1181 5233 22001

0.2
h 112 485 2193 9281
h/2 256 1309 5809 24585
h/4 1080 4925 21113 85985

0.3
h 176 893 3853 16433
h/2 664 2969 12961 53857

*: ∆rmax > re

Table 4.5: Total degrees of freedom for
simulations (global + local).

A full 2D problem in R–θ is solved in the circular local domain using the

finite volume method. Again it is necessary for the discontinuity to coincide with

control volume interfaces of the local mesh to achieve consistent results. The

two-dimensional polar mesh is constructed such that the mesh sizes in the R–
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4.2 Discontinuous reservoir permeability

θ coordinates are approximately equal. The total degrees of freedom (that is,

global+local) used in the simulations is listed in Table 4.5.
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Figure 4.5: Broken lines: Maximum error in dimensionless average wellbore pressure.
Solid lines: Maximum error in dimensionless average boundary pressure. Maximum
taken over simulation time.

The maximum absolute error in the dimensionless average wellbore pressure

and average external boundary pressure (of the local domain) are plotted in Figure

4.5 against the degrees of freedom of the finite element mesh used to compute

the global solution. The plot for ∆rmax = h shows that the maximum error in

wellbore pressure is above that of the boundary pressure for all refinement levels

of the underlying global simulation simulation. Refining the mesh for the local

problem by setting ∆rmax = h/2 results in maximum errors of similar magnitude,

especially for re = 0.2 and 0.3. Further refinement to ∆rmax = h/4 yields better

results, with the maximum error in wellbore pressure strictly bounded above by

the maximum error in boundary pressure for re = 0.2. An O(h2) convergence

rate is observed for the results.

The degrees of freedom of the mesh used to compute the benchmark solution in

this section is 34040. In comparison Table 4.5 shows the total degrees of freedom

in the simulations using decoupled overlapping grids. Most entries in this table

are less than half the degrees of freedom of the benchmark solution, and for the

highest of these (refinement level 3, re = 0.3, ∆rmax = h), the maximum absolute

dimensionless error in the wellbore pressure is within O(10−4) of the benchmark

solution (the actual absolute error is in the same range). Therefore a high level of

accuracy can be achieved using the decoupled overlapping grids for significantly
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4.2 Discontinuous reservoir permeability

less computational effort.

The absolute error profiles for the exterior and interior (wellbore) boundaries

of the local domain are plotted against dimensionless time in Figure 4.6 and Figure

4.7 respectively (reference permeability = k). Most of the plots for the error

in boundary pressure show the characteristic property of reaching a maximum

during an initial transient phase before settling to a steady-state value, with

exceptions occurring in the coarser simulation cases (see Figure 4.6). On the

other hand, for the wellbore pressure (see Figure 4.7), only the very refined grids

show this property of the absolute error attaining a maximum during an initial

transient phase. This is because the strong heterogeneity present at the wellbore

makes the use of a very fine mesh at the wellbore necessary in order to obtain

this property of the absolute error. Comparison of plots in Figure 4.6 and Figure

4.7 to Figure 4.5 indicates that the maximum absolute error in wellbore pressure

is bounded above (or of a similar magnitude) to the maximum absolute error

in boundary pressure only when this property of the maximum absolute error

occurring during an initial transient phase is satisfied in both the global and

local simulations.
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(b) re = 0.2. ∆rmax = h, h/2, h/4
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(c) re = 0.3. ∆rmax = h, h/2

Figure 4.6: Absolute error in dimensionless boundary error for local domain.
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(a) re = 0.1. ∆rmax = h, h/2, h/4
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(b) re = 0.2. ∆rmax = h, h/2, h/4
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(c) re = 0.3. ∆rmax = h, h/2

Figure 4.7: Absolute error in dimensionless wellbore error.
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4.2.3 Fully heterogeneous permeability distribution

The computational domain in this section is assigned an isotropic, correlated,

log-normal random permeability distribution, which is a closer representation of

a realistic reservoir permeability distribution. The permeability distribution is

generated using the method outlined by Eberhard [43].

To begin with, a random field is generated from

FN(x) := F +

√
2σ2

F

N

N∑
j=1

cos
(
q(j) · x+ α(j)

)
, x ∈ Rd, (4.3)

where F and σ2
F are the mean and variance of the random field respectively.

The vectors q(j) and the phases α(j) are independent random numbers whose

distributions determine the covariance function of the resulting random field FN .

To generate a Gaussian covariance spectrum of the form

C(x− x′) = σ2
F exp

(
−

d∑
i=1

(xi − x′i)2

2l2i

)
(4.4)

with correlation lengths li in the direction xi, i = 1 . . . , d, and variance σ2
F , the

components q
(j)
i are drawn from a Gaussian distribution with vanishing average

and variance 1/l2i , i = 1, . . . , d. The phases α(j) are uniformly distributed in the

interval [0, 2π]. In the limit as N →∞, due to the central limit theorem, FN(x)

is a Gaussian distributed random field characterised by the covariance function

in (4.4) [43].

Given the Gaussian random field FN(x), the lognormal random field f(x) is

then generated from f(x) = exp(FN(x)).

Figure 4.8 shows the mesh permeability distribution for the first stage of

the computations. Each refinement level is obtained by uniform refinement of

the previous level. The original permeability distribution is generated at the

vertices of the coarse mesh (refinement level 0), and extended to new vertices

in subsequent refinement levels by linear interpolation. The parameters used to

generate the coarse permeability distribution are F = 2, σ2
F = 3, li = 0.1(i = 1, 2).

Mesh properties are in Table 4.6.
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4.2 Discontinuous reservoir permeability

Figure 4.8: Mesh for first stage (permeability interpolated from values at triangle
nodes)

R. Level 0 1 2 3

Nt 144 576 2304 216
Nv 87 317 1209 4721
h 0.1266 0.0633 0.0317 0.0158

Table 4.6: First stage mesh properties
(R. Level = refinement level).

R. Levels = 0 1 2 3
re ∆rmax d.o.f

0.1
h 0 337 1417 5585
h/2 107 525 2073 8753
h/4 295 1181 5241 22201

0.2
h 111 485 2201 9401
h/2 255 1309 5889 24785
h/4 1079 4997 21273 87713

0.3
h 175 917 4121 16593
h/2 687 3229 13081 54369

*: ∆rmax > re

Table 4.7: Total degrees of freedom for
simulations.

The local problem is solved in a two-dimensional polar region using the finite

volume method. The permeability distribution for the local problem is inter-

polated linearly from the original coarse permeability distribution on refinement

level 0. The total degrees of freedom (that is, global+local) used in the simula-

tions are listed in Table 4.7.

Figure 4.9 shows the absolute maximum error in dimensionless average well-

bore and average external boundary pressures (of the local domain). It is seen

that with the exception of re = 0.3, the maximum errors are within the same

order of magnitude. The absolute error is plotted against dimensionless time

for the average wellbore and average external boundary pressures in Figure 4.10

and Figure 4.11 respectively (reference permeability k = 1). The graphs show

that although there is an initial transient period followed by a steady-state er-

91



4.2 Discontinuous reservoir permeability

ror, the maximum error hardly ever occurs during the initial transient phase. A

possible reason for this is the fact all permeabilities are interpolated from the

base coarse permeability distribution on refinement level 0, and so are approxi-

mations of the original rather than being exactly equal as in the previous case

studies. Nevertheless, the maxima are not far apart, and Figure 4.9 shows an

O(h2) convergence rate. Also a comparison of the peak errors that occur before

steady-state is reached in Figure 4.10 and Figure 4.11 shows that the initial peak

wellbore error is bounded above by the initial peak error at the boundary.
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Figure 4.9: Broken lines: Maximum error in dimensionless wellbore pressure. Solid
lines: Maximum error in dimensionless boundary pressure. Maximum taken over sim-
ulation time.

The degrees of freedom of the mesh used to compute the benchmark solution in

this section is 43060. In comparison Table 4.7 shows the total degrees of freedom

in global and local computations. Most entries in this table are less than half

the degrees of freedom of the benchmark solution, and for the highest of these

(refinement level 3, re = 0.3, ∆rmax = h), the maximum absolute dimensionless

error in the wellbore pressure is within O(10−4) of the benchmark solution (the

actual absolute error is in the same range). Therefore a high level of accuracy

can be achieved for significantly less computational effort.
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(b) re = 0.2. ∆rmax = h, h/2, h/4
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Figure 4.10: Absolute error in dimensionless wellbore error.
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(b) re = 0.2. ∆rmax = h, h/2, h/4
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(c) re = 0.3. ∆rmax = h, h/2

Figure 4.11: Absolute error in dimensionless boundary error for local domain.
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4.3 Impermeable boundary

4.3 Impermeable boundary

In this study a well is placed close to the impermeable domain boundary so

that the post-process domain intersects the impermeable boundary. This example

illustrates the relative ease with which the method of decoupled overlapping grids

can be applied to compute transient well pressure in complex reservoir geometry.

The principle extends to other similar problems such as a well close to a fault or

a fracture.

We maintain the parameter values in Table 4.1 with the exception of the well

position (xw, yw) which is now (0.85,0.5). Also we consider a homogeneous domain

with parameters (q, µ,H, ct, φ, k) = 1. A representation of the model problem is

shown in Figure 4.12. As before the local post-process domain is defined from

the wellbore to a fixed radial distance away. However in this case the external

boundary of the local domain is intersected by the global impermeable boundary

for some external radii re.

0 0.5 1

0

0.5

1

x

y

well

Figure 4.12: Model problem. Well position:(xw, yw) = (0.85, 0.5). Broken lines show
post-process domain for re = 0.1, 0.2, 0.3.

The local problem is solved in the transformed R–θ coordinate system (R :=

ln r). The solution domain in this coordinate system is rectangular if the local

domain is not intersected by the global domain; otherwise it has a curved edge.

Taking advantage of the symmetry of this case study along y = 0.5, the local

solution is computed only in θ = 0 : π, applying a no-flow boundary condition at

θ = 0 and θ = π. The broken lines in Figure 4.12 show the Dirichlet section of the

local domain external boundary for different external radii re. The data for this

section is interpolated from the solution of the global problem. For re = 0.2, 0.3,
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4.3 Impermeable boundary
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Figure 4.13: Meshes in transformed local domain and approximate solution at end of
the simulation. Global refinement level = 2, ∆rmax = h.

the global boundary intersects the local domain to give the Neumann section of

the local domain external boundary. This section satisfies the no-flow condition

global boundary condition.

We semi-discretize both global and local problems using the finite element

method on a triangular mesh, which is easy to adapt to the irregular shape of the

local computational domain. The curved edge in the transformed local domain

is approximated by a minimum of 6 segments, and when more than 6 segments

are used the number of segments is chosen so as to keep the mesh size in the

transformed local domain fairly uniform. Sample meshes in the transformed

local solution domain, together with the computed solution at the end of the

simulations, are shown in Figure 4.13. The mesh properties for the global and

local simulations are listed in Table 4.8. Here h denotes the maximum mesh size

in the global domain and ∆rmax denotes the maximum mesh size in the original

(untransformed) local domain.
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4.3 Impermeable boundary

R. Levels = 0 1 2 3

Global

d.o.f 87 317 1209 4271
h 0.1266 0.0633 0.0317 0.0158

Local

re ∆rmax d.o.f

0.1
h 0* 36 198 860
h/2 36 198 860 3695

0.2
h 101 245 995 4260
h/2 245 995 4260 17663

0.3
h 135 569 2452 10285
h/2 569 2452 10285 42432

Table 4.8: Mesh properties.

R. Levels = 0 1 2 3
re ∆rmax d.o.f

0.1
h 0* 353 1407 5581
h/2 123 515 2069 8416

0.2
h 188 562 2204 8981
h/2 332 1312 5469 22384

0.3
h 222 886 3661 15006
h/2 656 2769 11494 47153

*: ∆rmax > re

Table 4.9: Total degrees of freedom.

A comparison of the maximum absolute error in the internal (wellbore) and

external boundaries of the local domain is plotted in Figure 4.14 against the

degrees of freedom for the global stage simulation. The error at the external

boundary is computed only for the Dirichlet boundary portion, which has data

interpolated linearly from the underlying global solution. The plots show that

for the irregular domains (re = 0.2, 0.3) the maximum error in the wellbore

pressure is bounded above by the maximum error in the boundary pressure for

∆rmax = h, h/2. For re = 0.1 this property is true for ∆rmax = h/2, while

for ∆rmax = h the errors are within the same order of magnitude. The plots

also show an O(h2) convergence of the error. Therefore the results for a well

near an impermeable boundary agree with those obtained for an isolated well in
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4.4 Summary

Chapter 3.

The degrees of freedom of the mesh used to compute the benchmark solution

in this section is 14334. In comparison Table 4.9 shows the total degrees of

freedom from the global and local computations. Again most entries in Table 4.9

are less than half the degrees of freedom of the benchmark solution, and from

Figure 4.14 it is seen that high level of accuracy can be achieved for significantly

less computational effort.
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Figure 4.14: Broken lines: Maximum error in dimensionless wellbore pressure. Solid
lines: Maximum error in dimensionless boundary pressure. Maximum taken over sim-
ulation time.

4.4 Summary

In this chapter we have presented some examples which show that the decou-

pled overlapping grids method can be used to accurately compute transient well-

bore pressure in the presence of heterogeneities within the reservoir. The simula-

tion results support the guideline suggested in Chapter 3 of setting ∆rmax ≤ h/2

to get the maximum error in average wellbore pressure at least within the same

magnitude as the maximum error in the average boundary pressure of the local

domain.
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Chapter 5

Uniform Flux Strip

In this chapter we discuss an application of the decoupled overlapping grids

method to compute the pressure at a strip or crack producing at a uniform rate.

This problem can be seen as a simplified model for a fully penetrating fractured

vertical well.

5.1 Model description

Figure 5.1: Schematic representation of problem.

A producing strip of length equal to 0.4 and width equal to 0.002 is centred

in a square domain of length 1. A schematic representation of the first and

second (post-process) stages of the problem is shown in Figure 5.1. The first
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5.2 Post-process stage in rectangular domain

stage is solved in the global domain with the producing strip modelled by a

line source. Computations for the post-process stage in elliptic and rectangular

domains are discussed in the sections below. The benchmark solution is calculated

in Comsol Multiphysics using quadratic Lagrange elements. For the simulations

in this chapter the parameters (q, µ,H, ct, k) = 1.

In the first stage simulations the line source is approximated by a collection

of point sources on a triangular finite element mesh. The point sources are not

constrained to vertices of the mesh, rather the vertices of the enclosing triangles

are assigned weights based on the location of the point sources. In Section 5.2

and Section 5.3 below, the post-process stage computations are carried out in a

rectangular domain and an elliptic domain respectively.

5.2 Post-process stage in rectangular domain
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x
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x

y

local stage mesh (zoomed in)

Figure 5.2: Mesh for global and local stage simulations showing the line source and
strip locations respectively. Global mesh d.o.f = 317, local mesh d.o.f = 1250.

Figure 5.2 shows the mesh used in the global and local simulations in this sec-

tion. For the local stage the mesh is non-uniform and graded in the y–direction,

and the uniform flux strip is modelled explicitly as a hole in the mesh. Spatial

discretisation on the local mesh is by the cell-centred finite volume method. Sim-

ulation tests were carried out which showed that the error from this method was

(slightly) better than the error from the vertex-centred finite volume method. The

pressure at the wellbore was obtained by linear extrapolation using the equation
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5.2 Post-process stage in rectangular domain

for the flux at the wellbore:

n ·
(

k

µ
∇pfw(x, t)

)
= −ql(t),

where ql is the flux per unit length of the wellbore.
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(a) Absolute error for fully penetrating ver-
tical well in homogeneous domain where

re = 0.1,∆rmax =
h

2
(see Section 3.4.2).
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Figure 5.3: Absolute error in average pressure at wellbore and local domain boundary
for a fully penetrating vertical well and a fully penetrating crack. The numbers in the
legend of (a) indicate refinement levels. Benchmark solution d.o.f. = 17454.

Absolute error results are plotted in Figure 5.3, alongside absolute error results

obtained in Section 3.4.2 for a fully penetrating vertical well in a homogeneous

reservoir. We note that for the uniform flux strip problem h/4 < ∆rmax < h/2,

where ∆rmax denotes the maximum mesh size in the local domain and h the

average mesh size in the underlying global grid. It is seen that for the uniform

flux strip problem, the maximum error in the average pressure at the wellbore

and local domain boundary occur during an initial transient stage, in a similar

manner to the vertical well problem. In addition the maximum errors in Figure

5.3(b) are within the same range. Also plotted in Figure 5.3(b) is the error in the

pressure at the strip surface interpolated from the global line source simulation. It

is seen that this error is much worse than that of the solution from the decoupled

overlapping grids method.

The degrees of freedom of the mesh used to compute the benchmark solution
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5.3 Post-process stage in elliptic domain

in this section is 17454. In comparison the total degrees of freedom used in

the decoupled overlapping grids computation is 1567. Figure 5.3 shows that

the maximum error in the average pressure at the producing strip comes within

O(10−3) of the benchmark solution. So a high level of accuracy is achieved

from the decoupled overlapping grids method for significantly fewer degrees of

freedom.

5.3 Post-process stage in elliptic domain

Here the equations in (3.2) are written in elliptic coordinates. In order to

get logarithmically spaced ellipses, we use the following definition of Cartesian to

elliptic coordinate system:

x = a cosh eµ cos θ, y = a sinh eµ sin θ, (5.1)

where eµ is a non-negative number, θ ∈ [0, 2π), and −a,+a are the locations of

the foci. So the equations in (3.2) take the form

∂pfw(x, t)

∂t
=

1

a2(sinh2 eµ + sin2 θ)

[
e−µ

∂

∂µ

(
e−µ

∂pfw(x, t)

∂µ

)
+
∂2pfw(x, t)

∂θ2

]
in Γ× (0, T ]

(5.2a)

e−µ
∂pfw(x, t)

∂µ
= a
√

sinh2 eµ + sin2 θ
q

|∂Γw|
in ∂Γw × (0, T ] (5.2b)

pfw(x, t) = pps(x, t) in ∂Γo × (0, T ] (5.2c)

pfw(x, 0) = 0 in Γ (5.2d)

which are discretised in space using the vertex-centred finite volume method.

Figure 5.4 shows the mesh used in the global and local simulations.

Absolute error results are plotted in Figure 5.5, alongside absolute error results

obtained in Section 3.4.2 for a fully penetrating vertical well in a homogeneous

reservoir. We note that in this case h/2 < ∆rmax < h for the uniform flux strip

problem, where ∆rmax denotes the maximum mesh size in the local domain and h

the average mesh size in the underlying global grid. The absolute error results for

an elliptic post-process domain (see Figure 5.5(b)) are similar to those obtained
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5.3 Post-process stage in elliptic domain
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Figure 5.4: Mesh for global and local stage simulations showing the line source and
strip locations respectively. Global mesh d.o.f = 317, local mesh d.o.f = 960.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

time

a
b

s
o

lu
te

 e
rr

o
r

 

 

1:wellbore

3:wellbore

1:boundary

3:boundary

(a) Absolute error for fully penetrating ver-
tical well in homogeneous domain where

re = 0.1,∆rmax =
h

2
(see Section 3.4.2).
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Figure 5.5: Absolute error in average pressure at wellbore and local domain boundary
for fully penetrating vertical well and fully penetrating crack. The numbers in the
legend in (a) indicate refinement levels. Benchmark solution d.o.f. = 17672.

for a rectangular post-process domain (see Figure 5.3(b)). The maximum abso-

lute error in the simulations occur during an initial transient phase, and these

maxima are in the same range. The absolute error in the average pressure at the

strip surface from the decoupled overlapping grids method is much better than

the absolute error in the average pressure calculated by interpolating the global

line source solution to the strip surface. Also since the degrees of freedom for

the benchmark computation is 17672 while the total degrees of freedom of the
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5.4 Summary

decoupled overlapping grids computation is 1277, and the maximum error in the

wellbore pressure is O(10−3), it is clear that high level of accuracy is achieved

from the decoupled overlapping grids method for significantly fewer degrees of

freedom.

5.4 Summary

We have applied the decoupled overlapping grids method to compute the

pressure at a thin strip producing at a uniform rate in a homogeneous domain.

This problem can be seen as a simplified model of a fully penetrating vertically

fractured well. Computations for the post-process stage were carried out in a

rectangular domain and an elliptic domain. In both cases the simulation results

show that a high level of accuracy can be achieved for significantly less compu-

tational effort, when compared to benchmark solutions where the strip is fully

resolved by local refinement and the spatial discretisation method implemented is

the finite element method with quadratic Lagrange elements. Also the absolute

error trends (in average strip and local domain boundary pressure) for this prob-

lem are similar to those for a fully penetrating vertical well in a homogeneous

domain: the maximum error occurs during an initial transient phase, and the

maximum error in the average strip pressure is bounded above or at least within

the same range as the maximum error in the average pressure of the local domain

boundary.
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Chapter 6

Horizontal Well Model

6.1 Introduction

In this chapter the method of decoupled overlapping grids is applied to com-

pute the transient pressure of a horizontal well in a three-dimensional drainage

region. We validate numerical results by comparison with semi-analytic solutions.

An application to wells inclined at an angle to the principal axes (slanted wells)

is also discussed. Two classical boundary conditions of flow into the well, the

uniform flux and uniform pressure conditions, are investigated.

6.2 Background

Although horizontal wells have been studied for some time now, most work

on the computation of the transient wellbore pressure of horizontal wells in a

three-dimensional domain deal with analytic and semi-analytic models (see for

example [4, 11, 20, 21, 39, 46, 49, 51–54, 66, 71, 75–79, 86, 87]).

One of the early analytic models for a horizontal well was by Gringarten and

Ramey [52–54], who applied appropriate source (Green’s) functions together with

Newman’s product to generate analytic models for different simplified reservoir

configurations. Ozkan and Raghavan [76] extended these models by documenting

a library of solutions in the Laplace domain. Goode and Thambynayagam [51]

applied successive integral transforms to solve a model where the horizontal well

was first approximated by a thin strip. Using this method they identified different

flow regimes for early, intermediate and late time flows. These flow regimes are
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6.3 Model equations

useful for estimating reservoir properties, for instance, horizontal permeability

can be estimated from the early-time linear flow [19]. Other methods that have

been applied to horizontal well modelling include the boundary element method

[39, 46], discrete flux element method [10], and Fourier series method [11, 20, 21]

(although this model is strictly only accurate at pseudo-steady state).

For simplified reservoir properties, analytic and semi-analytic models for com-

puting the transient pressure of horizontal wells typically require less computa-

tional resources when compared to a full scale numerical implementation. The

full scale numerical implementation will require a fine mesh of the same size as

the wellbore in the wellbore vicinity, and can easily become computationally pro-

hibitive for 3D simulations, especially when considering well testing applications.

However analytic models have limited application since they are based on simpli-

fied reservoir properties and cannot easily account for the complexity of realistic

reservoirs. On the other hand, the method of decoupled overlapping grids is more

robust; it captures the underlying reservoir heterogeneity and can be applied to

any well configuration.

6.3 Model equations

For a single-phase slightly compressible fluid (ignoring gravity effects and

density change), we have the following global and local equations:

Global problem

φct
∂pls

∂t
(x, t) = ∇ ·

(
k

µ
∇pls(x, t)

)
+

∫
γ
ql(γ, t)δ(x− γ) dγ in Ω× (0, T ] (6.1a)

n ·
(
k

µ
∇pls(x, t)

)
= 0 in ∂Ω× (0, T ] (6.1b)

pls(x, 0) = 0 in Ω (6.1c)
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6.4 Framework for analytic solutions

Local problem

φct
∂pfw

∂t
(x, t) = ∇ ·

(
k

µ
∇pfw(x, t)

)
in Γ× (0, T ] (6.2a)

n ·
(
k

µ
∇pfw(x, t)

)
=
ql(x, t)

2π
in ∂Γw × (0, T ] (6.2b)

pfw(x, t) = pls(x, t) in ∂Γo × (0, T ] (6.2c)

pfw(x, 0) = 0 in Γ (6.2d)

where pls and pfw are the pressure drawdowns for the line source and finite radius

wellbore solutions respectively, γ represents the path of the line source, and ql is

the production/injection rate per unit well length.

6.4 Framework for analytic solutions

In this section we outline a framework for computing an analytic solution

of the line source problem starting from a one-dimensional instantaneous point

source solution. For references see [18, 44, 52].

6.4.1 Instantaneous point source solution

The instantaneous point source problem in an infinite one-dimensional domain

is:

pt = ηpxx, −∞ < x <∞, (6.3a)

p(x, t = 0) = qδ(x− x∗), (6.3b)

p(x→ ±∞, t) = 0, (6.3c)

(η = k/(φctµ)) which has the standard solution:

p(x, t) = qp1(x, t;x∗) =
q√

4πηt
e−(x−x∗)2/(4ηt). (6.4)
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6.4 Framework for analytic solutions

The 3D analogue to (6.4) for an instantaneous point source of strength q at

(x∗, y∗, z∗) is [18, p.256]:

p(x, y, z, t) =
q

8(πηt)
3
2

exp

(
−(x− x∗)2 + (y − y∗)2 + (z − z∗)2

4ηt

)
, (6.5a)

= qp1(x, t;x∗)p1(y, t; y∗)p1(z, t; z∗). (6.5b)

The method of images is used to account for the effects of boundaries. For

x ∈ [0, xe] with a point source of unit strength at x∗ and Neumann boundary

conditions, the instantaneous point source solution is

p1(x, t;x∗) =
1√

4πηt

∞∑
n=−∞

e−(x−x∗+2nxe)2/(4ηt) + e−(x+x∗+2nxe)2/(4ηt). (6.6)

An equivalent Fourier series form of (6.6) can be derived from Poisson’s summa-

tion formula [18, p.275] to get:

p1(x, t;x∗) =
1

xe

[
1 + 2

∞∑
n=1

exp

(
−ηn

2π2

x2
e

t

)
cos

nπx

xe
cos

nπx∗

xe

]
. (6.7)

(6.6) is quicker to converge for short time and (6.7) is quicker to converge for long

time.

Similarly to (6.5), the solution in a box of dimensions xe × ye × ze due to an

instantaneous point source of unit strength at (x∗, y∗, z∗) is then

pinst(x, y, z, t;x
∗, y∗, z∗) = p1(x, t;x∗)p1(y, t; y∗)p1(z, t; z∗), (6.8)

where p1 is given by (6.6) or (6.7).

6.4.2 Time-dependent point source solution

If the source term at x∗ = (x∗, y∗, z∗) is q(t) per unit time at time t, then the

solution at x = (x, y, z) at time t is

pcont(x, t; x
∗) =

∫ t

0

q(τ)pinst(x, t− τ ; x∗) dτ. (6.9)
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6.5 Description of case study

6.4.3 Time-dependent line source solution

If the source term is a line source of strength ql(γ, t) per unit length per unit

time, the solution at (x, y, z) at time t is obtained by integrating in time and

along the path γ:

pls(x, t) =

∫
γ

∫ t

0

ql(γ, τ)pinst(x, t− τ ;γ) dτ dγ. (6.10)

Equation (6.10) gives a closed form analytic solution for the line source prob-

lem (6.1). In some situations this solution can only be approximated numerically

giving rise to a semi-analytic formulation.

6.5 Description of case study

A schematic diagram of the case study is shown in Figure 6.1. The global

domain, shown in Figure 6.1(a), is a homogeneous rectangular domain of dimen-

sions xe, ye, ze. The horizontal well is placed parallel to the x-axis. The local

post-process domain, shown in Figure 6.1(b), is a cylinder which has external

boundary data interpolated from the solution of the global problem, and an in-

ternal boundary representing the wellbore. This cylinder is extended a distance

Lext beyond ends of the wellbore to prevent measuring (interpolating) the bound-

ary data for the local problem at the well surface. The flow rate of the extended

wellbore section is set to zero.
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Figure 6.1: Schematic representation of horizontal well case study.

This case study satisfies the conditions stated in Section 3.1 for the reduc-

tion of the local problem to a 2D problem by taking the average in the angular

direction. Also a coordinate transformation

r → ln r
def
= R

is applied to give a refined grid near the wellbore. Hence we solve the following

equations in the local domain:

φµct
k

∂p

∂t
= e−2R ∂

2p

∂R2
+
∂2p

∂x2
in Γ× (0, T ] (6.11a)

p(Re, x, t) = pE(x, t) along the cylinder body (6.11b)

p(R, xB, t) = pB(R, t) at the bottom cylinder face (6.11c)

p(R, xT , t) = pT (R, t) at the top cylinder face (6.11d)

p(R, 0) = 0 in Γ (6.11e)

together with the equations for the boundary condition at the wellbore. The

parameters (k, µ, ct, φ) are set to 1 for the case study.

We will investigate two classical models for the boundary condition at the

wellbore: the uniform flux condition and the uniform pressure (or infinite con-
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6.6 Uniform flux solution

ductivity) condition. For the uniform flux condition the flow rate per unit well

length is assumed constant. This induces a non-uniform pressure distribution

along the wellbore. For the infinite conductivity model the pressure along the

wellbore is assumed constant thereby inducing a non-uniform flow rate along the

wellbore.

The uniform flux and uniform pressure conditions are simplifications, and

a more realistic representation would incorporate flow within the wellbore, for

example by modelling pressure drop within the wellbore due to frictional and

gravitational effects. Such models are often referred to as finite conductivity

models (see [75, 86, 98, 102]). The same principle for the application of the

decoupled overlapping grids method discussed in this chapter applies to these

models as well.

6.6 Uniform flux solution

For the uniform flux problem the following extra condition is defined for (6.11)

at the wellbore:
∂p

∂R
= − qµ

2πkLw
at ∂Γw × (0, T ] . (6.12)

where Lw is the length of the well. Simulation parameters are listed in Table 6.1.

(xe, ye, ze) (1, 1, 0.3)
Lw 0.4
(yw, zw) (ye/2, ze/2)
rw 10−3

t 10−3 : 102

q 1

Table 6.1: Simulation parameters. rw = well radius, (yw, zw) = well coordinates in
the y–z plane.
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6.6 Uniform flux solution

6.6.1 Computing the semi-analytic solution

Since q = 1, the analytic line source solution for the global problem is (from

(6.10))

pls(x, t) =
1

Lw

∫ t

0

∫
γ

pinst(x, t− τ ;γ) dτ dγ, (6.13)

where pinst given in (6.8) is evaluated using (6.6) for early time and (6.7) for late

time.

Since the line source is parallel to the x-axis, the x-component of pinst can be

analytically integrated along the line source, so that we have

pls(x, t) =
1

Lw

∫ t

0

F1(x, t− τ)p1(y, t− τ, y∗)p1(z, t− τ, z∗) dτ, (6.14)

where for the method of images solution,

F1(x, t) =
1

2

∞∑
n=−∞

[
−erf

x− xb + 2nxe

2
√
t

+ erf
x− xa + 2nxe

2
√
t

]
+

[
erf

x+ xb + 2nxe

2
√
t

− erf
x+ xa + 2nxe

2
√
t

]
, (6.15a)

and for the Fourier series solution,

F1(x, t) =
1

xe

[
xb − xa + 2

∞∑
n=1

xe
nπ

exp

(
−κn

2π2

x2
e

t

)(
sin

nπxb
xe
− sin

nπxa
xe

)
cos

nπx

xe

]
,

(6.15b)

with the line source path γ ∈ [xa, xb].

The simulation time t ∈ [0, T ] is divided into early, intermediate, and late time

intervals ending at t1, t2 and T respectively. For early time 0 ≤ t ≤ t1, pls(x, t) is

calculated from (6.13) with F1(x, t− τ) given by (6.15a). For intermediate time

t1 < t ≤ t2, we have

pls(x, t) = pls(x, t1) +
1

Lw

∫ t

t1

F1(x, t− τ)p1(y, t− τ, y∗)p1(z, t− τ, z∗) dτ, (6.16)

where pls(x, t1) is the early time solution, and F1(x, t − τ) above is given by
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6.6 Uniform flux solution

(6.15b). For late time t2 � max(x2
e, y

2
e , z

2
e), pinst in (6.8) has an effective value of

1/(xeyeze). Therefore we have

pls(x, t) = pls(x, t2) +
(t− t2)

(xeyeze)
, t2 < t ≤ T, (6.17)

where pls(x, t2) is calculated from (6.16), and the last term on the RHS of (6.17)

is from integrating (6.13) with pinst = 1/(xeyeze).

The time integral in (6.14) is computed numerically using an adaptive quadra-

ture code that implements a Gauss-7 Kronod-15 quadrature rule [92]. The sim-

ulation time is divided into sub-intervals and numerical time integration is per-

formed on each subinterval. The results are then added up cumulatively to get

the pressure history.

We determine a suitable time to switch from the method of images solution to

the Fourier series solution and from this to the long time solution by comparing

the results from these methods at the combination of points listed in Table 6.2.

Firstly Figure 6.2(a) shows the convergence of the analytic solution when the

number of images and Fourier terms is doubled from 8 to 16. It shows that the

error in using 8 instead of 16 images is less than 10−10 for times tD up to 1, and

the error in using 8 instead of 16 Fourier terms is less than 10−10 for times tD

from 0.2 onwards. Secondly Figure 6.2(b) shows the absolute difference in the

method of images and Fourier series solutions, and the Fourier series and long

time solution in (6.17) on each time subinterval. Based on Figure 6.2, 8 images

and Fourier series terms are used to compute the semi-analytic solution, and the

switch time from the method of images solution to the Fourier series solution is

chosen at tD = 0.5, and from Fourier series solution to the long time solution is

at tD = 10.

x 0, 0.125, 0.25, 0.375, 0.5
y 0.5
z 0.151, 0.12, 0.28

Table 6.2: Measurement points for Figure 6.2

113
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(a) Convergence of method of images (left) and Fourier series (right) solutions.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−14

10
−10

10
−6

10
−2

10
2

t
D

| i
m

g.
 s

ol
. −

 F
ou

rie
r 

so
l. 

|

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−18

10
−14

10
−10

10
−6

10
−2

10
2

t
D

| F
ou

rie
r.

 s
ol

. −
 lo

ng
 ti

m
e 

so
l. 

|

(b) Switching from method of images to Fourier solution (left) and Fourier to long
time solution (right). Nimg = 8, NFourier = 8.

Figure 6.2: Absolute error in dimensionless pressure on the sub-intervals of time
integration. tD = kt/(φµctL

2
w)

6.6.2 Computing the numerical solution

The vertex-centred finite volume method is used to compute the numerical

solution of the global and local problems. The global mesh is constructed so that

points representing the line source coincide with computation nodes.

Based on the guideline for selecting the local domain mesh size for 2D simula-

tions suggested in Chapter 3, the local mesh is generated such that ∆rmax = h/2,

where h is the average mesh size for the global problem. In addition the mesh

spacing in the R-x directions is kept fairly uniform.
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6.6 Uniform flux solution

6.6.3 Comparison of numerical and semi-analytic solu-

tions

Refn. Level 0 1

d.o.f 3087 21853

h 0.05 0.025

Table 6.3: First stage mesh properties

re Lext

d.o.f for Refn. levels

(∆rmax = h/2) (∆rmax = h/4)
0 1 0

0.05
0.05 102 518 518
0.15 126 630 630

0.1
0.05 289
0.15 357

Table 6.4: Second stage mesh proper-
ties

Mesh properties for the global and local stage simulations are listed in Table

6.3 and Table 6.4.

Figure 6.3 – Figure 6.6 show the absolute difference in the semi-analytic and

numerical solutions. xw represents position along the wellbore length and xE

represents position along the axial boundary of the cylinder, which extends a

length Lext beyond each end of the wellbore. The simulation time for each line is

given by the corresponding value in the legend multiplied by 10−1. The plots show

that the error goes through an initial transient phase before settling to a steady-

state distribution. The errors measured at the cylinder face (third column) are

highest close to the wellbore and decrease with distance away from the wellbore

as expected.

The plots for the error along the wellbore (first column) and the axial bound-

ary of the cylinder (second column) show that the error rises sharply close to the

toe and heel of the wellbore. This is primarily due to the inadequacy of the lin-

ear approximation used in the discrete equations in capturing the steep pressure

gradients at the ends of the wellbore (see Figure 6.7). For the coarse grid simula-

tions shown in Figure 6.3 and Figure 6.4, it is seen that increasing Lext leads to a

noticeable decrease in the error at the toe and heel of the wellbore. However for

the fine grid simulations in Figure 6.5 and Figure 6.6, increasing Lext does not

have a significant effect on the error along the wellbore. Figure 6.7 shows that in

the cases where increasing Lext has more effect, the steep profile at the ends of

the wellbore is crudely approximated.
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6.6 Uniform flux solution

Neglecting the peaks in the error at the ends of the of the wellbore, the max-

imum error along the wellbore length (which occurs halfway along the wellbore

length) is less than, or at least within the same order of magnitude, as the maxi-

mum error along the axial boundary of the local domain. This is consistent with

the observations made in the Chapter 3 for fully penetrating vertical wells in a

homogeneous domain, where the maximum error in the the average wellbore pres-

sure is bounded above by the maximum error in the average external boundary

pressure of the post-process domain for ∆rmax ≤ h/2.

Comparing the base case in Figure 6.3 to the plots in Figure 6.5–Figure 6.6 and

neglecting the peaks in error at the ends, it is seen that the maximum wellbore

error (which occurs at the centre of the wellbore) is improved when the underlying

global grid is refined (Figure 6.5), or when the post-process domain is increased

(Figure 6.4), but not when the local mesh size ∆rmax is reduced from h/2 to

h/4 (Figure 6.6). Of the improved results, Figure 6.4 (coarse underlying global

grid and larger re) requires fewer degrees of freedom compared to Figure 6.6 (fine

underlying global grid and smaller re), as seen in Table 6.3 and Table 6.4.

Overall the simulations show a good agreement between the numerical and

semi-analytic solutions. The relative peak error at the ends of the wellbore is

less than 8% in all the simulations, and the relative maximum error occurring

midway along the well length is less than 3% in all the simulations.
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Figure 6.3: Time profile of absolute error for Refn. Level 0, re = 0.05.
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Figure 6.4: Time profile of absolute error for Refn. Level 0, re = 0.1.
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Figure 6.5: Time profile of absolute error for Refn. Level 1, re = 0.05.
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Figure 6.6: Time profile of absolute error for ∆rmax = h/4, Refn. Level 0, re = 0.05.
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Figure 6.7: Pressure along wellbore. re = 0.05. L→R: Figure 6.3(a), Figure 6.3(b),
Figure 6.6(a). Dotted line: numerical solution, Bold line: analytic solution.

6.7 Uniform pressure solution

For the uniform pressure problem, a second constraint is required in addition

to the uniform pressure constraint for both global and local problems. This

constraint can either be a specified total flow rate at the wellbore or specified

wellbore pressure. We implement the total flow rate condition in this section.

Therefore the following extra conditions are defined at the wellbore:

p(x, t) = pw(t), (6.18a)

q(t) =

∫
γ

ql(γ, t) dγ, (6.18b)

Here γ represents the line source path for the global problem, or the wellbore

surface for the local problem. Simulation parameters are listed in Table 6.5.

(xe, ye, ze) (1, 1, 0.3)
Lw 0.4
(yw, zw) (ye/2, ze/2)
rw 10−3

t 10−4 : 1
q 0.4

Table 6.5: Simulation parameters. rw = well radius, (yw, zw) = well coordinates in
the y–z plane.
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6.7 Uniform pressure solution

6.7.1 Computing the semi-analytic solution

The semi-analytic solution is obtained by solving the following equations:

pls(x, t) =

∫
γ

∫ t

0

ql(γ, τ)pinst(x, t− τ ;γ) dτ dγ, (6.19a)

q(t) =

∫
γ

ql(γ, t) dγ, (6.19b)

where both the pressure pls and well flow rate per unit length ql are unknown.

We implement a technique that is often found in the literature for approximating

(6.19) (see for instance [52, 54, 75, 86, 87]). The well is divided into Nseg equal

length segments, each having uniform flux per unit length equal to ql,wi . The

uniform pressure condition is then enforced by equating the pressure drops at the

midpoints of the segments. This gives Nseg − 1 equations, and the last equation

comes from the total constant rate constraint. Hence the following set of equations

are solved to get ql,wi :

pls(xwi , t) = pls(xwi+1
, t), i = 1 . . . Nseg − 1, (6.20a)

q(t) =

Nseg∑
i=1

ql,wi(t)Lwi , (6.20b)

where pls(xwi , t), the pressure on well segment i, is given by

pls(xwi , t) =

∫ t

0

[
Nseg∑
j=1

ql,wj(τ)Sj(xwi , t− τ)

]
dτ (6.21)

for Sj(xwi , t) =

∫
wj

pinst(xwi , t;γ) dγ, (6.22)

Lwi is the length of well segment i, and pinst is given by (6.8). Once ql,wi has been

computed the pressure at any position x in the domain can be calculated from

(6.21) replacing xwi with x.

The solution of (6.20) involves the sequential computation of the convolution

integral (6.21) at each time level. To eliminate this sequential time computation,

we solve the problem in Laplace space. We implement the parabolic contour

integration of the Bromwich integral proposed by Weideman and Trefethen [104]
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6.7 Uniform pressure solution

to compute the inverse Laplace transform. The basic Iseger algorithm in Table 3.1

is not used here because the nature of the source term S(x, t) in (6.22) enforces

the need for very small time steps to accurately invert the solution at early time.

Taking the Laplace transform of (6.20), we get:

pls(xwi , s) = pls(xwi+1
, s), i = 1 . . . Nseg − 1, (6.23a)

q(s) =

Nseg∑
i=1

ql,wi(s)Lwi , (6.23b)

where

pls(xwi , s) =

Nseg∑
j=1

ql,wj(s)Sj(xwi , s). (6.24)

To simplify the calculation of the Laplace transform of the source term Sj(xwi , s),

the integration in (6.22) is performed using the midpoint rule. Therefore

Sj(xwi , s) = Lwjpinst(xwi , s; xj) (6.25)

for xj the midpoint of line segment j.

The flux distribution is uniform initially, but undergoes a transition period

before reaching a steady-state distribution along the wellbore. Therefore we use

the form of pinst given by the method of images in (6.6), which is more accurate

and quick to converge at early time, to compute the transient flux distribution.

From (6.8) and (6.6)

pinst(x, t; x
∗) = p1(x, t;x∗)p1(y, t; y∗)p1(z, t; z∗), (6.26)

p1(x, t;x∗) =
1√

4πηt

∞∑
n=−∞

e−(x−x∗+2nxe)2/(4ηt) + e−(x+x∗+2nxe)2/(4ηt). (6.27)

Let

X1n = (x− x∗ + 2nxe)
2, X2n = (x+ x∗ + 2nxe)

2, (6.28)
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6.7 Uniform pressure solution

and Y1n, Y2n, Z1n, Z2n be defined similarly. Then

pinst(x, t;x
∗) =

1

(
√

4πηt)3

∞∑
n=−∞

∞∑
m=−∞

∞∑
p=−∞

 2∑
i=1

2∑
j=1

2∑
k=1

exp

(
−
Xin + Yjm + Zkp

4ηt

) ,
(6.29)

and so

pinst(x, s;x
∗) =

1

4πη

∞∑
n=−∞

∞∑
m=−∞

∞∑
p=−∞

[

2∑
i=1

2∑
j=1

2∑
k=1

1√
Xin + Yjm + Zkp

exp

(
−1

η

√
s(Xin + Yjm + Zkp)

) ,
(6.30)

since

L
[

1

t
√
t

exp(−a/t)
]

=

√
π

a
exp(−2

√
as), a > 0 . (6.31)

6.7.2 Computing the numerical solution

The vertex-centred finite volume method is used to compute the numerical

solution of the global and local problems. Discretisation in space yields the fol-

lowing system of differential-algebraic equations:

ṗ = Ap+Bq
l
, (6.32a)

0 = Cp+Dq
l
+ q, (6.32b)

with the vectors

p = [p11 p12 . . . pmn]T , q
l
= [ql1 ql2 . . . qlNw ]T , q = [0 0 . . . q(t)]T .

A is the discretisation matrix for the Laplacian operator, and matrix B accounts

for the location of line source term in (6.1) for the global solution, and finite radius

well source term in (6.2) for the local solution. In the global simulation, the points

representing the line source are constrained to coincide with computation nodes.

The uniform pressure condition in (6.18a) is implemented in the first Nw−1 rows

of the matrices C and D. These matrices ensure that points pwi ∈ p that make
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6.7 Uniform pressure solution

up the source term satisfy

pwi = pwi+1
⇒ ṗwi − ṗwi+1

= 0 ; i = 1 . . . Nw − 1. (6.33)

The Nwth row of C contains zeros, while the Nwth row of D contains the well

segment lengths Lwj so that, from (6.18b),

q(t) =
Nw∑
i=1

qljLwj . (6.34)

6.7.3 Comparison of numerical and semi-analytic solu-

tions

Refn. Level 0 1

d.o.f 1125 7569

h 0.0726 0.0363

Table 6.6: First stage mesh proper-
ties.

re Lext

d.o.f for Refn. Levels

(∆rmax = h/2) (∆rmax = h/4)
0 1 0

0.05
0.05 60 252 252
0.15 82 360 360

0.1
0.05 165
0.15 132

Table 6.7: Second stage mesh proper-
ties.

Mesh properties for the global and local stage simulations are listed in Table

6.6 and Table 6.7. The semi-analytic solution is plotted in Figure 6.8 and the

numerical solutions are shown in Figure 6.9 – Figure 6.12. The simulation time

for each line is given by the corresponding value in the legend multiplied by 10−2.

In Figure 6.8 the semi-analytic solution has been calculated on 32, 64 and 128

equal length segments. It is seen that initially the flux is uniform and then the

curve develops sharp peaks at the ends. As the number of segments used in the

approximation is increased from 32 to 64 to 128, the steepness of the flux at the

ends of the well becomes more pronounced. There is also a noticeable difference

in the pressure values calculated in these cases. We expect that the calculated

pressure values are more accurate as the number of segments is increased.

The pressure results for the decoupled overlapping grids method shown in
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6.7 Uniform pressure solution

Figures 6.9 – 6.12 do not vary much for the different test cases. In addition,

these pressure values are close to those of the analytic solution on 128 segments

shown in Figure 6.8. Significantly less time was needed to compute the numerical

solution compared to the analytic solution on 128 well segments.

By comparing the wellbore flux calculated for Lext = 0.05 and Lext = 0.15 in

Figures 6.9 – 6.12, it is seen that the effect of increasing Lext on the wellbore flux

is noticeable only for the results shown in Figure 6.10, that is, refinement level

0 and re = 0.1. For the rest of the computations, which were carried out with

re = 0.05, increasing Lext does not have a pronounced effect.

Comparing the coarse grid approximations in Figure 6.9 and Figure 6.10, it

is seen that increasing the external radius of the local domain from re = 0.05

to 0.1 leads to a more U-shaped steady-state wellbore flux profile. The fine

grid approximations in Figure 6.11 and Figure 6.12 have the same degrees of

freedom for the local simulation but the boundary conditions are interpolated

from different refinement levels of the underlying global mesh. It is seen that the

shape of the wellbore flux in Figure 6.11, which has boundary data interpolated

from refinement level 1, is closer to the analytic curves in Figure 6.8 compared to

Figure 6.12, which has boundary data interpolated from refinement level 0. So

the more accurate underlying grid solution results in a more accurate wellbore

flux profile, as expected.

Ultimately the accuracy of the flux per unit length from the numerical com-

putations depends on the grid resolution. A finer mesh is better able to capture

the peaks at the ends of the wellbore. Another approach could be to use a

non-uniform grid clustered towards the ends of the wellbore to get a better ap-

proximation of the steep flux variation here. We however note that the wellbore

pressure values for all the test cases do not show a noticeable variation and are

close to the analytic solution computed with 128 segments, suggesting that a

good approximation of the pressure is obtained even on a crude mesh.
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Figure 6.8: Semi-analytic solution. Well flow-rate per unit length (left) and well
pressure (right).
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(b) Lext = 0.15

Figure 6.9: Well flow-rate per unit length (left) and well pressure (right) for Refn.
Level 0, re = 0.05.
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Figure 6.10: Well flow-rate per unit length (left) and well pressure (right) for Refn.
Level 0. re = 0.1.
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Figure 6.11: Well flow-rate per unit length (left) and well pressure (right) for Refn.
Level 1, re = 0.05.
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Figure 6.12: Well flow-rate per unit length (left) and well pressure (right) for Refn.
Level 0, re = 0.05,∆rmax = h/4.
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6.8 Slanted well

6.8 Slanted well

In this section we apply the decoupled overlapping grids method to inves-

tigate effect of rotation and elevation of a horizontal well in a homogeneous

domain on well flow rate and wellbore pressure. The uniform pressure condi-

tion is implemented at the wellbore. The dimensions of the global domain are

(xe, ye, ze) = (0.9, 0.9, 0.5), the radius for the local simulation re = 0.1, the well

length Lw = 0.4359, and the extension beyond the well length in the local domain

is Lext = 0.1. The global simulations are carried out on a 17× 17× 17 grid which

is fairly uniform in the horizontal plane and non-uniform in the vertical plane: it

is constructed to be more refined in the interval containing the line source. The

mesh for the local stage is generated by setting ∆rmax = h/4.

Five different configurations of rotation and elevation are investigated. For

case 1 the well is parallel to the x–axis and its centre is aligned with the centre

of the global domain. With this configuration as the starting point the well is

rotated by angle θ in the horizontal plane or φ in the vertical place to get case

2 – 4 (see Figure 6.13). Case 5 shows results for an off-centre well; it has the

same angles as case 4 but its centre is moved by 0.1 along the x–axis. Simulation

results are plotted in Figure 6.14.
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Figure 6.13: Schematic representation of slanted well problem.
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Comparison of case 1 with case 2 shows no observable change in the wellbore

pressure or flux properties. On the other hand comparing case 1 to cases 3 – 4, a

slight increase in the flux at the ends of the wellbore is observed. This is because

given the length and position of the wellbore relative to the reservoir dimensions,

the rotation in the vertical plane brings the ends of the wellbore closer to the

reservoir boundaries compared with a rotation in the horizontal axis. Case 5

shows the impact of boundary effects on the wellbore flux distribution. At initial

times before the boundary effects are felt, the flux distribution is symmetric along

the length of the wellbore. At later times, the no-flow boundary conditions result

in the top end of the well (which is closer to the boundary) having a larger

pressure drawdown compared to the bottom part. As a result the flow rate at

the top end reduces and the flow rate at the bottom end increases in order to

maintain a uniform pressure along the wellbore.

There is little variation in the wellbore pressure plotted in Figure 6.14 for all

the configurations. This is expected for this study since the reservoir is homoge-

neous.
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(b) case 2: θ = 45◦, φ = 0◦
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(c) case 3: θ = 0◦, φ = 13.263◦
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(d) case 4: θ = 45◦, φ = 13.263◦

Figure 6.14: Well flow-rate per unit length (left) and well pressure (right) for config-
urations obtained by rotating case 1 in the horizontal plane by θ◦ and in the vertical
plane by φ◦.

131



6.9 Summary

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

1.5

x
w

/L
w

q l(x
w

,t)

 

 

0

 0.10

 0.21

 0.43

 0.89

 1.83

100

time  x 10
−2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x
w

/L
w

p(
x w

,t)

 

 

0

 0.10

 0.21

 0.43

 0.89

 1.83

100

time  x 10
−2

(e) case 5 (off-centre): θ = 45◦, φ = 13.263◦, and well midpoint shifted to the right by 0.1.
Note the slight asymmetry in ql.

Figure 6.14: Well flow-rate per unit length (left) and well pressure (right) for config-
urations obtained by rotating case 1 in the horizontal plane by θ◦ and in the vertical
plane by φ◦.

6.9 Summary

By comparing with highly refined semi-analytic solutions, we have shown in

this chapter that the decoupled overlapping grids method is able to produce very

accurate results for the transient wellbore pressure of partially penetrating hori-

zontal wells. For the uniform pressure case study, the method is able to produce

an accurate pressure profile even on coarse grids, whereas a very fine semi-analytic

solution is required to produce the same level of accuracy. The application to a

slanted well shows the ability of the method to reproduce expected trends for a

non-standard well configuration.
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Chapter 7

Recommendations for Future

Work

We make the following recommendations for future work:

Non-conventional wells

Non-conventional wells include horizontal, slanted, multi-lateral and undu-

lating wells. These sorts of wells have become quite common in the oil industry

because they can be drilled to better exploit special geological features within the

reservoir that are not readily accessible with vertical wells, for example fractures

and high permeability regions in the reservoir. To our knowledge the work in

this thesis is the only one in the literature that offers a great deal of flexibility in

modelling the transient wellbore (and near-wellbore) pressure for arbitrary well

configurations down to the scale of the wellbore itself, and at the same time ac-

curately incorporates both global and local reservoir heterogeneity effects. We

have already presented an application of the decoupled overlapping grids method

to computing the transient pressure of horizontal and slanted wells in Chapter

6. Application to other non-conventional well configurations, for example multi-

lateral and undulating well, should be implemented.
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Well conditions

Only constant total well flow rate applications were considered in this thesis.

A natural extension is the application of the method of decoupled overlapping

grids to compute transient well pressure for variable well flow rate conditions. The

implementation outlined in this thesis remains the same for these conditions.

For the three-dimensional study carried out in Chapter 6, we considered two

classical models of flow within the wellbore: the uniform flux and uniform pres-

sure (or infinite conductivity) models. These models are approximations, and a

more realistic model of flow should account for pressure drop within the wellbore

(for instance by including frictional, gravitational and acceleration effects). Such

models, often referred to as finite conductivity models for well flow, have been

treated in the literature but only within the context of semi-analytic solutions for

transient wellbore pressure [71, 75, 86]. We recommend that the finite conductiv-

ity model should be incorporated into the decoupled overlapping grids method.

Other well properties, such as skin, should also be accounted for.

Application to field study

The method should be applied to actual field examples to demonstrate its

effectiveness. In this case the first stage simulation of the field case study can

be carried out in a commercial reservoir simulator, which can easily deal with

reservoir heterogeneities and multi-phase flow.
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Appendix A

Analytic Solutions and

Numerical Considerations

A.1 Analytic solution for point source in infinite

domain

We wish to solve (3.4) with (3.5), which are stated again below:

1

η

∂p

∂t
=
∂2p

∂r2
+

1

r

∂p

∂r
, (A.1)

p(r, 0) = 0, (A.2)

p(r →∞, t) = 0, (A.3)

lim
r→0

(
r
∂pps

∂r

)
= −Q. (A.4)

Applying the similarity transformation

ξ =
r2

ηt
, (A.5)
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A.2 Analytic solution for finite radius well in infinite domain

the equations are reduced to an ODE:

4
d

dξ

(
ξ
dpps

dξ

)
= −ξ dpps

dξ
, (A.6)

lim
ξ→0

(
2ξ
dpps

dξ

)
= −Q, (A.7)

pps(ξ →∞) = 0. (A.8)

Substituting y = ξ
dpps

dξ
in (A.6) gives

dy

dξ
= −y

4
so that y = y0e

− ξ
4 . (A.9)

From (A.7) y0 = −Q
2

, hence

ξ
dpps

dξ
= −Q

2
e−

ξ
4 , and so pps(ξ) = −Q

2

∫ ∞
ξ

e−
ξ
4

ξ
dξ. (A.10)

Substituting x = ξ/4 then gives

pps(r, t) =
Q

2

∫ ∞
r2/(ηt)

e−x

x
dx = −Q

2
Ei

(
− r2

4ηt

)
. (A.11)

A.2 Analytic solution for finite radius well in

infinite domain

We wish to solve (3.4) with (3.7), which are stated again below:

1

η

∂p

∂t
=
∂2p

∂r2
+

1

r

∂p

∂r
, (A.12)

p(r, 0) = 0. (A.13)

p(r →∞, t) = 0, (A.14)

r
∂pfw

∂r

∣∣∣∣
r=rw

= −Q. (A.15)
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A.2 Analytic solution for finite radius well in infinite domain

Applying the Laplace transform

f̂(s) =

∫ ∞
0

e−stf(t) dt

to these equations gives

s

η
p̂fw =

d2p̂fw

dr2
+

1

r

dp̂fw

dr
, (A.16a)

dp̂fw

dr
= − Q

srw
at r = rw, (A.16b)

p̂fw(r →∞, s) = 0. (A.16c)

Substituting z = r
√
s/η into these equations gives the modified Bessel equation:

z2d
2p̂fw

dz2
+ z

dp̂fw

dz
− z2p̂fw = 0, (A.17)

dp̂fw

dz

∣∣∣∣
z=zw

= − Q

zws
, (A.18)

p̂fw(z →∞, s) = 0, (A.19)

(zw = rw
√
s/η), with general solution

p̂fw = AI0(z) +BK0(z). (A.20)

I0 and K0 are modified Bessel functions of the first and second kind respectively.

To ensure that p̂fw → 0 as z → ∞, we need A = 0. Then applying (A.18) to

(A.20) gives

dp̂fw

dz
(zw) = −BK1(zw) = − Q

zws
, (A.21)

B =
Q

zwsK1(zw)
. (A.22)
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So

p̂fw(r, s) =
Q
√
ηK0

(
r
√
s/η
)

rw(
√
s)3K1(rw

√
s/η)

. (A.23)

A.3 Average Fourier series solution at a fixed

radius away from a point source

Given

pps(x, y, t) =
4

xeye

{
t

4
+

1

2

∞∑
n=1

x2
e

n2π2

[
1− exp

(
−n

2π2

x2
e

t

)]
cos

nπxw
xe

cos
nπx

xe
+

1

2

∞∑
k=1

y2
e

k2π2

[
1− exp

(
−k

2π2

y2
e

t

)]
cos

kπyw
ye

cos
kπy

ye
+

∞∑
n=1

∞∑
k=1

x2
ey

2
e

π2(n2y2
e + k2x2

e)

[
1− exp

(
−
[
n2π2

x2
e

+
k2π2

y2
e

]
t

)]
cos

nπxw
xe

cos
kπyw
ye

cos
nπx

xe
cos

kπy

ye

}
(A.24)

from (3.19) we want to compute

pps(r, t) =
1

2π

∫ 2π

0

pps(xw + r cos θ, yw + r sin θ, t) dθ. (A.25)

We proceed to calculate
xeye

4
pps(r, t) by integrating each term in (A.24). The

first term remains as
t

4
. For subsequent terms we need the Bessel function:

J0(x) =
1

2π

∫ 2π

0

cos(x cos θ) dθ =
1

2π

∫ 2π

0

cos(x sin θ) dθ. (A.26)

For the second term:

1

2π

∫ 2π

0
cos

(
nπ

xe
(xw + r cos θ)

)
dθ =

1

2π
cos

(
nπ

xe
xw

)∫ 2π

0
cos

(
nπ

xe
r cos θ

)
dθ

− 1

2π
sin

(
nπ

xe
xw

)∫ 2π

0
sin

(
nπ

xe
r cos θ

)
dθ. (A.27)
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A.3 Average Fourier series solution at a fixed radius away from a point source

The integral of the sine function above is zero in this interval. So we are left

with

1

2π

∫ 2π

0

cos (nπ(xw + r cos θ)/xe) dθ = cos

(
nπxw
xe

)
J0(nπr/xe). (A.28)

Likewise for the third term we have

1

2π

∫ 2π

0

cos (kπ(yw + r sin θ)/ye) dθ = cos

(
kπyw
ye

)
J0(kπr/ye). (A.29)

For the fourth term we want to evaluate

1

2π

∫ 2π

0

cos

(
nπ

xe
(xw + r cos θ)

)
cos

(
kπ

ye
(yw + r sin θ)

)
dθ. (A.30)

Let α1 = nπxw/xe, α2 = kπyw/ye, rx = nπr/xe, ry = kπr/ye. Then we have

1

2π

∫ 2π

0

cos(α1 + rx cos θ) cos(α2 + ry sin θ) dθ =

1

2π
· 1

2

∫ 2π

0

cos [(α1 + α2) + rx cos θ + ry sin θ] dθ+

1

2π
· 1

2

∫ 2π

0

cos [(α1 − α2) + rx cos θ − ry sin θ] dθ. (A.31)

To evaluate the first integral on the RHS of (A.31), let

rx cos θ + ry sin θ = β1 sin(θ + φ1) ≡ β1(sin θ cosφ1 + cos θ sinφ1). (A.32)

Then

rx = β1 sinφ1, ry = β1 cosφ1, (A.33)

so that

β1 =
√
r2
x + r2

y, φ1 = tan−1 rx
ry
, (A.34)
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and

1

2π

∫ 2π

0

cos [(α1 + α2) + rx cos θ + ry sin θ] dθ =

1

2π

∫ 2π

0

cos([(α1 + α2) + β1 sin(θ + φ1)) dθ. (A.35)

Applying the change of variables:

z = θ + φ1 (A.36)

dz = dθ (A.37)

gives

1

2π

∫ φ1+2π

φ1

cos [(α1 + α2) + β1 sin z] dz

= cos(α1 + α2)
1

2π

∫ φ1+2π

φ1

cos(β1 sin z) dz

− sin(α1 + α2)
1

2π

∫ φ1+2π

φ1

sin(β1 sin z) dz, (A.38)

= cos(α1 + α2)J0(β1). (A.39)

For the second integral on the RHS of (A.31):

1

2π
· 1

2

∫ 2π

0

cos [(α1 − α2) + rx cos θ − ry sin θ] dθ,

let

rx cos θ − ry sin θ = β2 cos(θ + φ2) = β2(cos θ cosφ2 − sin θ sinφ2), (A.40)

rx = β2 cosφ2, ry = β2 sinφ2, (A.41)
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so that

β2 =
√
r2
x + r2

y = β1, φ2 = tan−1 ry
rx
. (A.42)

Using the change of variables

z2 = θ + φ2, dz2 = dθ, (A.43)

gives

1

2π

∫ 2π

0
cos [(α1 − α2) + β2 cos(θ + φ2)] dθ

=
1

2π

∫ φ2+2π

φ2

cos [(α1 − α2) + β2 cos(z2)] dz2, (A.44)

= cos(α1 − α2)
1

2π

∫ φ2+2π

φ2

cos(β2 cos z2) dz2

− sin(α1 − α2)
1

2π

∫ φ2+2π

φ2

sin(β2 cos z2) dz2, (A.45)

= cos(α1 − α2)J0(β2). (A.46)

And so (A.30) has the solution

1

2
J0

(
πr

√
n2

x2
e

+
k2

b2

)[
cos

(
nπxw
xe

+
kπyw
ye

)
+ cos

(
nπxw
xe

− kπyw
ye

)]

= J0

(
πr

√
n2

x2
e

+
k2

y2
e

)
cos

nπxw
xe

cos
kπyw
ye

. (A.47)
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Therefore

pps(r, t) =
4

xeye

{
t

4
+

1

2

∞∑
n=1

x2e
n2π2

[
1− exp

(
−n

2π2

x2e
t

)]
cos2

nπxw
xe

J0(nπr/xe)+

1

2

∞∑
k=1

y2e
k2π2

[
1− exp

(
−k

2π2

y2e
t

)]
cos2

kπyw
ye

J0(kπr/ye)+

∞∑
n=1

∞∑
k=1

x2ey
2
e

π2(n2y2e + k2x2e)

[
1− exp

(
−
[
n2π2

x2e
+
k2π2

y2e

]
t

)]
cos2

nπxw
xe

cos2
kπyw
ye

J0

(
πr

√
n2

x2e
+
k2

y2e

)}
.

(A.48)
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A.4 Maximum error in an infinite domain

In this section we derive an analytic relationship between the maximum error

in absolute pressure at fixed radii and the dimensionless radius for an infinite

homogeneous domain (see Figure A.1), which was discussed in Section 3.3.2. The

outliers in Figure A.1 occur at rD = 300 for rw = 0.001, and at rD = 50 for

rw = 0.01, which are closest to the domain boundary. A closed-form expression

for the relationship between max(|pps − pfw|) and rD in an infinite domain is

derived below.

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

r
D

m
a

x
(|

 p
p
s
−

p
fw

 |
)

 

 
r
w
 = 0.001

r
w
 = 0.01

Figure A.1: Maximum error in Figure 3.6 plotted against dimensionless radius rD =
re/rw.

The analytic solutions for a finite radius well and a point source well in Laplace

space are respectively (see (3.10), (3.13)),

p̂fw(r, s) =
QK0(r

√
s)

rw(
√
s)3K1(rw

√
s)
, p̂ps(r, s) =

Q

s
K0(r

√
s), (A.49)

where K0, K1 are modified Bessel functions of the second kind. Define the error

in Laplace space ê1 as

ê1 = p̂fw − p̂ps =
QK0(r

√
s)

s

(
1

rw
√
sK1(rw

√
s)
− 1

)
. (A.50)

Since we are interested in the maximum error at dimensionless time tD, a change

143



A.4 Maximum error in an infinite domain

of variable s1 = s/r2 is applied to (A.50) before taking the asymptotic expansion

as rD → ∞. The result from the asymptotic expansion is then converted back

to s = s1r
2, the Laplace inverse computed, and this result is then expressed in

terms of dimensionless time.

The asymptotic expansion of (A.50) as rD → ∞ is computed in Maple (see

Table A.1). The leading term in this expansion is ê2

ê2 =
Qr2

w

4

[(
2 ln(2)−2 ln(rw)−2γ+1

)
K0(rDrw

√
s)−K0(rDrw

√
s) ln(s)

]
. (A.51)

rr := r[D]*r[w]

rDrw

simplify(subs(s = s/rr^2, e[1]))

BesselK (0,
√
s) rD

2rw
2

(
rD −

√
sBesselK

(
1,

√
s

rD

))
s3/2

(
BesselK

(
1,

√
s

rD

))
convert(series(%, r[D] = infinity, 2), polynom)

−BesselK (0,
√
s) rw

2 (1/2 (ln (1/2
√
s)− ln (rD))

√
s− 1/4

√
s (−2 γ + 1) )√

s

e[2] := simplify(subs(s = s*rr^2, %));

−1/4 BesselK (0, rDrw
√
s) rw

2 (−2 ln (2) + 2 ln (rw) + ln (s) + 2 γ − 1)

Table A.1: Maple code for asymptotic expansion of (A.50) as rD →∞.
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To compute the inverse of (A.51) the differentiation rule of Laplace transforms

is applied. Let

f = −1

2
Ei

(
−(rDrw)2

4t

)
. (A.52)

Then L
(
df(t)

dt

)
= f(0) + sf̂(s) (A.53)

= s
K0(rDrw

√
s)

s
= K0(rDrw

√
s). (A.54)

So L−1
(
K0(rDrw

√
s)
)

= −1

2

d

dt

[
Ei

(
−(rDrw)2

4t

)]
(A.55)

=
1

2t
exp

(
−(rDrw)2

4t

)
. (A.56)

Also from the convolution rule of Laplace transforms,

L−1
(
f̂(s)ĝ(s)

)
=

∫ t

0

f(u)g(t− u) du. (A.57)

So

L−1
(
K0(rDrw

√
s) ln(s)

)
= L−1

([
sK0(rDrw

√
s)
] [ ln(s)

s

])
=

∫ t

0

[
−4u− (rDrw)2

8u3
exp

(
−(rDrw)2

4u

)][
−γ − ln(t− u)

]
du

=
ln(rD) + ln(rw)− ln(2)− ln(t)

t
exp

(
−(rDrw)2

4t

)
.

(A.58)

Substituting (A.56), (A.58) and tD = 4t/r2 into (A.51) gives

e2 =
Q

2
exp

(
− 1

tD

)
1 + 2 ln(rD) + 2 ln(tD)− 2γ

tDr2
D

(A.59)

where γ ≈ 0.5772 is Euler’s constant. Further analysis of (A.59) in Maple did not

yield an explicit solution for the turning point. However Figure A.2 shows that

a good estimate of the turning point is at tD = 1, so that
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A.4 Maximum error in an infinite domain

max(e2) ≈ Q exp(−1)(1 + 2 ln(rD)− 2γ)

2r2
D

as rD →∞ . (A.60)

Figure A.2: Plot of e2 from (A.59) against dimensionless time tD for different rD.

The estimate in (A.60), together with the maximum error for rw = 0.001 and

rw = 0.01 shown in Figure A.1, are plotted in Figure A.3. It shows that (A.60)

closely approximates the maximum error over much of the range of rD. However,

the estimate is not valid as rD gets smaller, and the results deviate from the

prediction when rD is big enough that measurement points are on or close to

the outer boundary of the original, physical domain, for example the outliers at

rD = 300 for rw = 0.001, and at rD = 50 for rw = 0.01.
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Figure A.3: Actual and estimated maximum error.
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A.5 Mass conservation of finite element solu-

tion for global stage problem in 2D homo-

geneous domain

For the point source well problem discussed in Section 3.4.1, we measured the

average pressure at fixed radii re from the global simulation results. Figure A.4

shows a sharp increase of the absolute error in this quantity for late simulation

times. This is due to a lack of mass conservation in the FEM discretisation in

Matlab as a result of rounding errors. We explain this below.
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Figure A.4: Absolute error in average pressure measured at radius re = 0.3. pana =
analytic solution for point source well problem (see Section 3.3.2). pnum = numerical
solution for point source well problem discretised in space using the finite element
method (see Section 3.4.1).

The equations solved for the global point source well problem were given in

(3.26). They are stated again below:

∂pps

∂t
(x, t) = ∇2pps(x, t) + δ(x− x0) in Ω× (0, T ], (A.61a)

n · ∇pps(x, t) = 0 in ∂Ωo, (A.61b)

pps(x, 0) = 0 in Ω, (A.61c)

where (q, k, µ,H, ct, φ) have been set to 1. The total pressure in the system at
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time t is calculated as follows:∫
Ω

∂pps

∂t
(x, t) dΩ =

∫
Ω

∇2pps(x, t) dΩ +

∫
Ω

δ(x− x0) (A.62)

∂

∂t

∫
Ω

pps(x, t) dΩ =
∂pps

∂t
(t) = 1 (A.63)

pps(t) = t. (A.64)

Here we have used the divergence theorem and the boundary condition in (A.61b)

to set the second integral in (A.62) to zero. The absolute difference |pps(t)− t| is
plotted in Figure A.5 together with the absolute error in the average pressure at

re = 0.3 (from Figure A.4). It is clear from this plot that the sharp increase in

the pressure measured at the radius re is due to a loss in the conservation of the

total pressure.
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Figure A.5: Absolute error in pps (from (A.64)) and average pressure at re = 0.3 (see
Figure A.4).

Let the vector p
ps

denote the solution to the semi-discrete approximation of

(A.61):

Mṗ
ps

= Sp
ps

+ f, (A.65)

where the dot represents the time derivative, M and S are the mass and stiffness

matrices respectively, and the vector f contains the contribution from the delta

function. The integration in (A.62) corresponds to applying a quadrature rule to
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the semi-discrete equations in (A.65), that is,

βTMṗ
ps

= βTSp
ps

+ βTf. (A.66)

From the properties of (A.61) it is expected that βTS = 0 (so that βT is the

left null vector of S, which turns out to be βT = (1, 1, 1, . . . , 1)). However due

to the rounding error in assembling S in Matlab, we get instead an approximate

stiffness matrix S̃ that satisfies βT S̃ = O(10−15). The error introduced by S̃ for

late simulation times can be better understood if the solution to (A.61) is split

into 3 parts:

pps(x, t) = v(x, t) + w(x) + ct. (A.67)

Here v(x, t) is the initial transient component, w(x) is the pseudo-steady-state

component, and c is a constant. The initial transient component v(x, t) evolves

to a constant steady-state as t→∞,

v(x, t)→
∫

Ω

v(x, 0) dΩ (A.68)

and it is convenient to pick v so that v(x, t) → 0 as t → ∞. An analogous

splitting to (A.67) applies to p
ps

:

p
ps

(t) = v(t) + w + ctβ, (A.69)

and in this case as well, v(t) is selected such that v(t)→ 0 as t→∞.

Substituting the approximate stiffness matrix S̃ into (A.66) and integrating

with respect to time we get:

βTMṗ
ps

= βT S̃p
ps

+ βTf, (A.70)

βTMp
ps

=

∫
βT S̃p

ps
dt+ tβTf. (A.71)

149



A.5 Mass conservation of finite element solution for global stage problem in 2D
homogeneous domain

The term under the integral sign is not zero. Instead from (A.69) we have:∫
βT S̃p

ps
dt = βT S̃

∫ (
v(t) + w + ctβ

)
dt, (A.72)

= tβT S̃w +
ct2

2
βT S̃β as t→∞. (A.73)

As t→∞, the O(t2) term in (A.73) becomes significant. This is clearly demon-

strated in Figure A.6 where the error in the total pressure has been plotted against

time together with a line of slope 2.
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Figure A.6: Error due to approximate stiffness matrix S̃ (see (A.73)).

A fix that can be implemented for this rounding error problem is to compute

each component of p
ps

in (A.69) separately. By doing this and specifying that

v(t) → 0 as t → ∞, the round off error introduced by the approximate stiffness

matrix dies off with the transient component v(t). Substituting (A.69) into (A.65)

we get:

M(v̇(t) + cβ) = S(v(t) + w + ctβ) + f (A.74)
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which decouples into

Mv̇ = Sv; v(0) = −w; (A.75)

Sw = cMβ − f. (A.76)

As stated earlier, we want v(t)→ 0 as t→∞. Since

v(t)→
∫

Ω

v(0) dΩ ≡ −βTMw as t→∞, (A.77)

we set βTMw = 0. This gives an additional constraint for w. (S is singular

so (A.76) can only be solved up to an arbitrary constant unless an additional

constraint is specified). Also, multiplying both sides of (A.76) by βT gives an

expression for c. Therefore we end up with the following equations for v, w, c:

Mv̇ = Sv; v(0) = −w; (A.78)

Sw = cMβ − f ; βTMw = 0; (A.79)

c =
βTf

βTMβ
. (A.80)

A comparison of the average pressure at re = 0.3 obtained from straight-

forward integration of the semi-discrete equation in (A.65) (unsplit), and from

calculating each component of p
ps

using (A.78)–(A.80) and then assembling using

(A.69) (split), is shown in Figure A.7(a). It is seen that there is no sharp increase

in the absolute error calculated from the split version. Figure A.7(b) clearly shows

that for the split version, the rounding error from the approximate stiffness matrix

does not propagate into the late simulation time.
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(a) Absolute error in average pressure at re =
0.3.
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Figure A.7: Total pressure in domain and average pressure at re = 0.3 for finite
element simulation implemented by (A.78)–(A.80) (split) and by (A.65) (unsplit).
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