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Abstract

We construct a graph expansion from a semigroup with a given generating set,

thereby generalizing the graph expansion for groups introduced by Margolis and

Meakin. We then describe structural properties of this expansion. The semigroup

graph expansion is itself a semigroup and there is a map onto the original semigroup.

This construction preserves many features of the original semigroup including the

presence of idempotent/periodic elements, maximal group images (if the initial semi-

group is E-dense), finiteness, and finite subgroup structure. We provide necessary

and sufficient graphical criteria to determine if elements are idempotent, regular, pe-

riodic, or related by Green’s relations. We also examine the relationship between

the semigroup graph expansion and other expansions, namely the Birget and Rhodes

right prefix expansion and the monoid graph expansion.

If S is a Σ-generated semigroup, its graph expansion is generally not Σ-generated.

For this reason, we introduce a second construction, the path expansion of a semi-

group. We show that it is a Σ-generated subsemigroup of the semigroup graph expan-

sion. The semigroup path expansion possesses most of the properties of the semigroup

graph expansion. Additionally, we show that the path expansion construction plays

an analogous role with respect to the right prefix expansion of semigroups that the

group graph expansion plays with respect to the right prefix expansion of groups.
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Chapter 1

Introduction

The study of expansions has enriched the general theory of semigroups over the last

thirty years. Birget and Rhodes introduced the concept of a semigroup expansion in

[1] as a functor from one category of semigroups to a larger category. Informally, they

describe an expansion as follows:

An expansion is, informally speaking, a systematic way of writing semi-

groups S as homomorphic images of other semigroups S that have nicer

properties; moreover the homomorphism S � S should be such that

some important properties of S are preserved in S.[2]

In [1], Birget and Rhodes introduce many different semigroup expansions including

the free expansion, the Rhodes expansion (they call it the machine expansion), the

Henckell expansion, the prefix expansion, and the prefix expansion cut down to gen-

erators. Their goal is to use techniques from finite semigroup theory to study infinite

semigroups. Birget and Rhodes further develop these constructions in [2]. In particu-

lar, they show that if starting with a group that has an interesting Burnside problem,

performing the expansion produces a semigroup which also has interesting properties.

The Rhodes expansion has been useful in proving various structural results about

semigroups. In particular, it has been used frequently in the proofs of decomposition

theorems. Given a semigroup S, the main idea of a decomposition theorem is to find

1



a special product, for example a wreath product, that is a cover of S. It is key that

the component semigroups of the product are related to S and have “nicer” properties

than S. Tilson uses the Rhodes expansion in [22] to prove the Ideal Theorem. His

result bounds how complex the decomposition of a semigroup S can be using the

complexities of an ideal of S and its quotient. Henckell, Lazarus, and Rhodes employ

the Rhodes expansion in [10] to prove the Holonomy Theorem. The main ingredient

of the Holonomy Theorem is a monoid S with a special length function (in [10], this

length function bounds the length of J -chains in S). It turns out that the Rhodes

expansion of S (with identity added) is isomorphic to the special product obtained in

the Holonomy decomposition. They show that it has an interesting action on certain

infinite rooted trees. In [20], Rhodes gives an alternative proof of the Holonomy

Theorem using the Rhodes expansion.

On a different note, Le Saec, Pin, and Weil use the Rhodes expansion in [16]

to construct an automaton which is then used to form a new semigroup expansion.

Their purpose is to show that every finite semigroup is the image of a semigroup in

which the right stabilizers are idempotent.

The prefix expansion has been a useful tool for investigating various classes of

semigroups and how they relate to each other, in particular semigroups that are not

regular. For example in [11] and [12], Hollings classifies all semigroups whose prefix

expansions are left ample monoids or left restriction monoids. The prefix expansion

has also motivated new expansions. Szendrei observes in [21] that for a group, there

is a simpler construction for the prefix expansion than that given by Rhodes. This

led to a new expansion, called the Szendrei expansion, which differs from the prefix

expansion for arbitrary semigroups. Fountain and Gomes determine when a monoid

has a Szendrei expansion that is a left ample monoid or a left restriction monoid [4].

Graph expansions constitute another major branch of semigroup expansion liter-

ature and this thesis belongs to this branch. Margolis and Meakin introduced the first

graph expansion, that of a group, in [17]. Starting with a group G generated by a set

Σ, they use marked pieces of the group’s Cayley graph as the building blocks to form
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a new semigroup. We will refer to this construction as the group graph expansion.

The results of Margolis and Meakin for group graph expansions are of three different

types. First, they describe its structural properties: the group graph expansion is

an E-unitary inverse monoid with maximal group image G; it is Σ-generated as an

inverse monoid; its Green’s classes can be described using graph isomorphisms; it also

has many finiteness properties, including having a finite subgroup structure identical

to that of G. Second, they look at the categorical role of the group graph expan-

sion. They establish that it is an initial object in the category of Σ-generated inverse

monoids with maximal group image G. Third, they give a succinct inverse monoid

presentation for the group graph expansion.

The group graph expansion construction has been generalized to monoids, inverse

semigroups, and ordered groupoids. In all of these settings, pieces of the Cayley

graph are used as building blocks for elements. However, each setting also has its

own unique flavor that influences the graph expansion’s structural properties and

determines whether nice categorical or presentation properties can be deduced.

In terms of the recipe for constructing elements, the group graph expansion gen-

eralizes most easily to monoids. This being said, little attention has actually been

given to monoid graph expansions. Instead, stronger results have been obtained by

restricting to special types of monoids. Gould considers the monoid graph expansions

of right cancellative monoids in [7]. She determines both structural and categorical

properties. If S is a Σ-generated right cancellative monoid, then its monoid graph

expansion is a proper left ample monoid; it is Σ-generated in the category of proper

left ample monoids; its maximal right cancellative monoid image is S. Her categorical

result is that the monoid graph expansion of a right cancellative monoid is an initial

object in the category of Σ-generated proper left ample monoids.

In a later paper, Gomes and Gould investigate monoid graph expansions of unipo-

tent monoids [6]. Their findings follow a similar pattern to the right cancellative case.

They show that if S is a Σ-generated unipotent monoid, then its monoid graph ex-

pansion is a proper weakly left ample monoid. Their categorical result is that the
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unipotent monoid graph expansion is an initial object in the category of Σ-generated

proper weakly left ample monoids.

In general the monoid graph expansion does not have the nice generating set

properties that the group graph expansion has: namely, if T is a nontrivial monoid

generated by a set Λ, then the monoid graph expansion is not Λ-generated. In [3],

Elston introduces a subsemigroup of the monoid graph expansion, which she refers to

as the monoid Cayley expansion, which is Λ-generated. However Elston’s actual focus

is how various semigroup expansions can be described using the language of derived

categories. Elston considers the derived category of the homomorphism from a monoid

expansion to the original monoid. She shows that the monoid Cayley expansion is

the largest monoid expansion in which the local monoids of the derived category are

semilattices. She also notes that this construction can be modified for semigroups to

yield an expansion that maintains the generating set.

Lawson, Margolis, and Steinberg provide a description of an inverse semigroup

graph expansion in [15]. They use subgraphs of Schützenberger graphs as building

blocks for elements. Because of the additional properties of the Schützenberger graphs,

they are able to obtain categorical and presentation results for the inverse semigroup

graph expansion, in addition to structural results. With regards to structure, they

show that if S is a Σ-generated inverse semigroup, then its inverse semigroup graph

expansion is also a Σ-generated inverse semigroup. As in the group case, the R- and

L-relations can be characterized using graph isomorphisms. Their categorical result

is that the inverse semigroup graph expansion is the initial object in the category of

Σ-generated inverse semigroups with idempotent pure maps to S. With respect to

presentability, the inverse semigroup graph expansion can be presented succinctly in

a way that generalizes the group situation.

Gilbert and Miller construct a graph expansion for Σ-generated ordered groupoids

in [5]. Their approach generalizes both the group and inverse semigroup constructions.

In order to form elements of the expansion, they introduce a version of the Cayley

graph of an ordered groupoid that is in fact an analogue of the Schützenberger graph
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of an inverse semigroup. Gilbert and Miller’s work focuses on the structural properties

of the ordered groupoid graph expansions. For example, they show that the graph

expansion of a Σ-generated ordered groupoid is again a Σ-generated ordered groupoid;

they prove that the ordered groupoid graph expansion has the same finite subgroup

structure as the original groupoid. They also generalize Margolis and Meakin’s maxi-

mal group image result: Gilbert and Miller show that a Σ-generated ordered groupoid

and its graph expansion share the same level groupoid. (Level groupoids are to or-

dered groupoids what maximal group images are to inverse semigroups.)

In light of the previous work on graph expansions for groups, monoids, inverse

semigroups, and ordered groupoids, the aim of this thesis is to describe a graph

expansion for semigroups. We wish to investigate its properties and show how it

relates to the other graph expansions.

We will start in Chapter 2 by providing the necessary terminology and notation.

In particular, we introduce the term semigroup system to refer to a semigroup S, a

set Σ which generates S, and a map Σ+ → S. Similarly, we define group and monoid

systems. These will be the input for the graph expansion constructions.

In the first section of Chapter 3, we describe the group and monoid graph ex-

pansions, since the semigroup graph expansion construction is most closely related to

these. We give the basic properties of the group and monoid expansions. Following

this, we also include the major findings of Gould for right-cancellative monoids and

of Gomes and Gould for unipotent monoids.

Having laid this foundation, we modify the graph expansion construction so that

it can be used for semigroup systems. This gives the semigroup graph expansion. As

we did for groups and monoids, we describe its basic properties. We establish that the

semigroup graph expansion is a functor from the category of Σ-generated semigroups

to the category of semigroups with generating sets. We also justify our use of the

term “expansion” to describe the graph expansion.

In general, the semigroup graph expansion of a Σ-generated semigroup is not

Σ-generated. This differentiates the semigroup graph expansion from most of the
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expansions discussed thus far, which have the special property that they are functors

from Σ-generated objects to Σ-generated objects. This motivates us to define a new

expansion, which we call the semigroup path expansion, that preserves the generat-

ing set Σ. We prove that the semigroup path expansion is a subsemigroup of the

semigroup graph expansion. Moreover, as the results in subsequent chapters indicate,

semigroup path expansions share many properties of the group graph expansions that

the semigroup graph expansion lacks.

In Chapter 4 we investigate the properties of semigroup graph expansions for

different types of semigroups. These examples are intended to familiarize the reader

with the construction, to illuminate some of the differences between the semigroup

graph expansion and other graph expansions, and to provide motivation for many of

the general results which we will give in Chapter 5. We start by looking at graph

expansions of free semigroups. We can obtain some very specific structural results for

this case. For example, we give an alternative presentation for the graph expansion

of a free monogenic semigroup, i.e. one that is can be generated with a single gener-

ator, with single-element generating set. We also show that path expansions of free

semigroups are free semigroups. We move on to looking at many different types of

semigroups: semigroup systems of groups, left-zero and right-zero semigroups, direct

products with one factor that is a left-zero semigroup, in particular rectangular bands,

and semilattices. For each of these settings we try to provide a specific description

of idempotent and regular elements, to determine whether the subset of idempotents

is a subsemigroup or not, and to show local properties, if any. The implications of

the direct product case are particularly interesting: it provides an example of distinct

semigroups with semigroup systems that have isomorphic semigroup graph expan-

sions. Throughout this section, we comment about how the results can be extended

to path expansions.

Bolstered by the examples, we focus in Chapter 5 on properties applying to all

semigroup graph expansions. We start by looking at how properties of elements of a

semigroup influence the properties of elements of the graph expansion. For example
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we show that if a semigroup S contains a periodic element, then we can find periodic

elements in any graph expansion of S. This fact enables us to prove one of the major

results about semigroup graph expansions: for E-dense semigroups, the semigroup

and its graph expansion have the same maximal group image.

Following this, we cover a number of finiteness properties: in Section 5.3 we

show that the semigroup graph expansion is always residually finite, in Section 5.4

we give conditions for it to be finitely generated, and in Section 5.5 we prove that a

semigroup graph expansion has the same finite subgroup structure as the semigroup

being expanded. In the last part of Chapter 5, we focus on mapping properties of

the semigroup graph expansion. We look at subsemigroups and show that if T is a

subsemigroup of S, we can construct a map from any graph expansion for T to any

graph expansion for S.

We devote Chapter 6 to describing Green’s R-, L-, H-, D-, and J -relations

for semigroup graph expansions. For each relation we give necessary and sufficient

graphical criteria that determine when elements are related. We also prove properties

about the relations including that, for the semigroup graph expansions, D = J . At

the end of the chapter we construct eggbox diagrams for two examples of semigroup

graph expansions.

In Chapter 7, we explore the maps between semigroup graph expansions, semi-

group path expansions, and other expansions. We start by introducing Birget and

Rhodes’ right prefix expansion, in particular its cut-down-to-generators version. The

main result of this section is that the semigroup path expansion plays the same role

with respect to the semigroup prefix expansion as the group graph expansion plays

for the group prefix expansion. In Section 7.2, we investigate monoid and semigroup

graph expansions by looking at the homomorphisms between them. We show that

the relationship between a semigroup and a monoid system determines what types of

maps exist between their respective graph expansions.

7



Chapter 2

Preliminaries

In this chapter, we review the mathematical concepts and terminology that we will

need to describe the various graph expansions. We will start by reviewing the nuances

between group, monoid, and semigroup systems because these are the main ingredients

of the graph expansions. Following upon this, we give a brief overview of semigroup

concepts. This is particularly relevant to Chapter 4, where we describe the semigroup

graph expansions of particular types of semigroups, and in Chapters 5 and 6, where

we give a detailed account of the general structural properties of semigroup graph

expansions. We then cover the generalizations of Green’s R-relation to monoids.

This is needed to understand Gomes and Gould’s monoid graph expansion results.

Following this, we describe concepts related to labeled digraphs. In particular, we

describe group, monoid, and semigroup Cayley digraphs and review their properties.

Finally, we cover terminology from category theory that will be useful for graph

expansions.

2.1 Systems

A semigroup is a set S with an associative, binary operation. A monoid T is a

semigroup which contains an identity element, often denoted by 1. For every x ∈ T ,

1x = x1 = x. A group G is a monoid in which every element has an inverse; i.e., if

8



x ∈ G, then there exists some y ∈ G such that xy = yx = 1. An inverse semigroup S

is a semigroup with the property that for each x ∈ S, there exists a unique element

y ∈ S such that xyx = x and yxy = y. Similarly, an inverse monoid T is a monoid

with the property that for each x ∈ S, there exists a unique element y ∈ S such that

xyx = x and yxy = y.

A subset X of a semigroup S is said to generate S as a semigroup if all elements

of S can be expressed as products of elements of X. A subset X of a monoid T is

said to generate T as a monoid if all non-identity elements of T can be expressed as

products of elements of X. If X is a subset of a group, we denote by X−1 the set of

the inverses of the elements in X. We say that X generates G as a group if every

non-identity element of G can be written as a product of elements from X ∪X−1. In

the same way, if X is a subset of an inverse semigroup S, we say that X generates S

as an inverse semigroup if all elements of S can be expressed as products of elements

of X ∪X−1. If X is a subset of an inverse monoid T , we say that X generates T as

an inverse monoid if all non-identity elements of T can be expressed as products of

elements of X ∪X−1.

Let Σ be a non-empty set. A finite string of symbols from Σ is a word. The

word which contains no symbols is the empty word and is denoted by ε. We use the

notation Σ+ for the set of all nonempty, finite words and let Σ∗ = Σ+ ∪ ε. Under the

operation of concatenation, Σ+ is the free semigroup on Σ and Σ∗ is the free monoid

on Σ.

It will be useful to treat generating sets as independent from the objects they

generate. A semigroup system is a triple sgp(S, Σ, fS), where S is a semigroup, Σ

a non-empty set, and fS a semigroup homomorphism from Σ+ to S, such that ΣfS

generates S as a semigroup. When it is clear which semigroup is referred to, we will

write f instead of fS; similarly, if it is obvious that a semigroup system is intended,

we will drop the “sgp” prefix and just write (S, Σ, f).

For any set Ω, we define Ω−1 to be a set of formal inverses for Ω. A group

system is a triple gp(G, Ω, fG), where G is a group, Ω is a set, and fG is a monoid
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homomorphism from (Ω ∪ Ω−1)∗ to G such that ΩfG generates G as a group. A

monoid system is a triple mon(T, Λ, fT ), where T is a monoid, Λ is a set, and fT is a

monoid homomorphism from Λ∗ to T such that ΛfT generates T as a monoid.

A semigroup homomorphism is a function f : S → T between semigroups S and

T satisfying the property (xf)(yf) = (xy)f for all x, y ∈ S. Group and monoid

homomorphisms must satisfy the same condition and map the identity in S to the

identity in T . We denote the identity homomorphism on semigroup, monoid, or group

X by idX . If there is no confusion, we refer to it as id. In addition to these, we will

also need semigroup, group, and monoid system homomorphisms.

Let (S1, Σ1, f1) and (S2, Σ2, f2) be two semigroup systems. A semigroup system

homomorphism consists of two semigroup homomorphisms,

α : S1 → S2 and β : Σ+
1 → Σ+

2 , satisfying f1 ◦α = β ◦f2. This relationship is depicted

in Figure 2.1 on page 10. We use the notation α, β : (S1, Σ1, f1) → (S2, Σ2, f2) to

denote a semigroup system homomorphism. If Σ1 = Σ2 and the map β is the identity

map, we say that α is Σ1-preserving and often omit β when referring to the semigroup

system homomorphism. If α and β are both surjective, then we say that the semigroup

system homomorphism α, β is surjective.

Figure 2.1: The maps α, β constitute a semigroup system homomorphism.

Given a set X, an equivalence relation R on X is a subset of X ×X that satisfies

the following properties:
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1. (x, x) ∈ R for all x ∈ X;

2. (x, y) ∈ R if and only if (y, x) ∈ R;

3. if (x, y), (y, z) ∈ R, then (x, z) ∈ R.

Suppose there is a binary operation on X. We call an equivalence relation that

preserves this operation a congruence relation; i.e. R is a congruence relation if and

only if for all (x, y), (w, z) ∈ R, we have that (xw, yz) ∈ R. Congruences are naturally

ordered by inclusion, and we shall use certain congruences that are minimal in the set

of congruences that posses some special property. For example, a congruence relation

over X is called a minimal group congruence if it is the smallest congruence on X

such that the congruence classes form a group.

A semigroup system (S, Σ, fS) induces a congruence relation RS on Σ+ defined

by RS = {(u, v)|ufS = vfS}. A semigroup presentation of S with respect to the

generating set Σ is a pair 〈Σ |R〉 such that R ⊆ RS and the minimal congruence

relation containing R is RS. A monoid system (T, Λ, fT ) induces a congruence relation

RT on Λ∗ defined by RT = {(u, v)|ufT = vfT}. A monoid presentation mon〈Λ; R〉 of

a monoid T is a pair 〈Λ|R〉 such that R ⊆ RT and the minimal congruence relation

induced by R is RT . The congruence classes of RT correspond to the elements of

T . A group system (G, Ω, fG) induces a congruence relation RG on (Ω ∪ Ω)∗ defined

by RG = {(u, v)|ufG = vfG}. A group presentation gp〈Ω; R〉 of a group G is a pair

〈Ω |R〉 such that R ⊆ RG and the minimal congruence relation containing R is RG.

The congruence classes of RG correspond to the elements of G.

A subset X of a semigroup S is a subsemigroup of S if it forms a semigroup under

the operation inherited from S. We use the notation X ≤ S to denote a subsemigroup.

If the subsemigroup is a monoid, we call it a submonoid. If the subsemigroup is a

group, we call it a subgroup. If S is a semigroup that is also a monoid, we note that

its submonoids need not have the same identity as S. A subsemigroup (submonoid,

subgroup) X of S is called a retract if there is an endomorphism of S that maps

surjectively to X and is the identity when restricted to X.

11



2.2 Semigroup Terminology

Let S be a semigroup and c, d ∈ S. The element c is regular if there exists some x ∈ S

such that cxc = c. The subset of regular elements is denoted Reg(S). We say that S

is regular if S = Reg(S). The elements c and d are inverses if cdc = c and dcd = d.

The element c is said to be an idempotent if c2 = c. The subset of idempotents is

denoted E(S). (Although “E” is also used to convey the edge set of a graph, the

intended meaning should be clear from the context.) Idempotents can be used to give

an alternative characterization of inverse semigroups: a regular semigroup S is inverse

if and only if all elements of E(S) commute.

Periodic elements generalize idempotents. The element c is periodic (or in some

texts torsion) if there exists some m,n ∈ N such that cm = cm+n. If the numbers m

and n are the smallest numbers with this property, we call them the index and period

of the element c. A periodic element is called aperiodic if the period is 1.

An element x ∈ S is indecomposable if there exist no a, b ∈ S\{1} such that

x = ab. As the etymology indicates, decomposable elements are those that are not

indecomposable. If an element z ∈ S has the property that for all c ∈ S, we have

zc = c, then z is a left identity of S. If z ∈ S has the property that for all c ∈ S,

zc = z, we call z a left zero of S. Right identities and right zeroes are dually defined.

An element z is the identity of S if it is both a right and left identity; it is the zero of

S if it is both a right and left zero. The identity and the zero, should they exist, are

unique. If S is not a monoid, we use the notation S1 to show that we have adjoined

an identity to S. In the case where S is a monoid to begin with, we will use the

convention that S = S1. We say that S is residually finite if for every x, y ∈ S, there

exists some semigroup T and a map α : S → T such that xα 6= yα.

A left-zero semigroup L is a semigroup comprised entirely of left zeros; similarly, a

right-zero semigroup R contains only right zeros. A rectangular band S is a semigroup

that can be written as a direct product L×R, where L and R are left- and right-zero

semigroups respectively. A semilattice is a commutative semigroup in which every

element is idempotent.
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A non-empty subset T of a semigroup S is called unitary in S if for all elements

c ∈ S and t ∈ T , ct ∈ T implies c ∈ T and tc ∈ T implies c ∈ T . A semigroup S

is called E-unitary if the set E(S) is unitary. A semigroup S is E-dense if for every

x ∈ S, there exists some y ∈ S such that xy is an idempotent. Some authors use the

term E-inversive instead of E-dense.

We say that a semigroup S is locally inverse if for every idempotent e ∈ E(S),

the subsemigroup eSe is an inverse semigroup. We can use the adjective local in other

contexts as well: given a property P , we say that S is locally P if for every idempotent

e ∈ E(S), the subsemigroup eSe has property P .

Green’s relations, R, L, H, J , and D are equivalence relations on semigroups.

They have been well studied and the theory about them is very rich. The most

commonly used Green’s relations are the right and left relations, R and L. If x, y ∈ S,

we say that xRy if xS1 = yS1. Alternatively, if x 6= y, then xRy if and only if there

exist some a, b ∈ S such that xa = y and yb = x. The left relation is defined

dually. The notation Rx and Lx stands for the R- and L-classes of x. The H- and

D-relations are defined using the R-and L-classes: H = L ∩R and D = LR = RL.

The remaining relation is the J -relation: xJ y if and only if S1xS1 = S1yS1.

We will also need terminology about semigroups interacting with other algebraic

objects. If S is a semigroup and X a set, we say that S acts on X on the left if there

is a map from S × X → X (denoted by (a, b) 7→ a · b) with the following property:

for all s, t ∈ S and x ∈ X, (st) · x = s · (t · x).

Given a semigroup S, a group G is called a universal group of S if there is

a homomorphism σ : S → G, such that for every group H and homomorphism

α : S → H, there exists a unique homomorphism β making the diagram below

commute.
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The group G is unique up to isomorphism. If the homomorphism σ is surjective, then

we call such a group the maximal group image of S. If it exists, it can be obtained as

the quotient of the minimal group congruence on S. The following are examples of

maximal group images: if a semigroup S is in fact a group, then it is its own maximal

group image; if S is an inverse semigroup, then its maximal group image is the group

isomorphic to the quotient of S by the congruence relation induced by the set

{(a, b)| there exists some e ∈ E(S) such that ea = eb}.

The following result about E-dense semigroups will be particularly useful:

Lemma 2.2.1. Let S be an E-dense semigroup. Then S possesses a maximal group

image.

Proof: See Hall and Munn for an existence proof [9]. See Mitsch for an explicit

construction of the group using the minimal group congruence [19]. �

2.3 Monoid Terminology

Gomes and Gould investigate graph expansions of specific types of monoids in [7] and

[6]. In this section we wish to supply the terminology necessary to understand their

results.

A monoid T is right cancellative if for all a, b, c ∈ T , ac = bc implies a = b.

We say that T is unipotent if it contains a single idempotent. Just as a minimal

group congruence exists on certain semigroups, there is a minimal right cancellative

congruence and a minimal unipotent congruence on certain monoids. All of these

congruences are denoted by σ.

When studying the graph expansions of right cancellative and unipotent monoids,

Gomes and Gould use generalizations of Green’s R-relation. We describe these rela-

tions and the monoids they characterize. The right star relation, R∗, is defined by

cR∗d if and only if for all x, y ∈ T , xc = yc if and only if xd = yd. The right tilde
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relation, R̃, is defined by cR̃d if and only if c and d have the same idempotent left

identities, i.e.

{x |xc = c and x2 = x} = {y |yd = d and y2 = y}.

We note these relations are contained in each other: R ⊆ R∗ ⊆ R̃. We can use the

R∗- and R̃-relations to describe different types of monoids. We say that T is left

adequate if E(T ) is a semilattice and every R∗-class contains an idempotent. In this

case, the idempotent of each R∗-class is unique. For a ∈ T , we denote the idempotent

of R∗
a by a+. The monoid T is left ample if it is left adequate and for all a ∈ T

and e ∈ E(T ), we have that ae = (ae)+a. Let σ be the minimal right-cancellative

congruence on T . We call T proper left ample if R∗ ∩ σ is the identity congruence.

We say that T is weakly left adequate if R̃ is a left congruence, E(T ) is a semi-

lattice, and every R̃-class contains an idempotent. In this case, there is a unique

idempotent in each R̃-class: we denote the idempotent of R̃a by a+. Furthermore, T

is weakly left ample if it is weakly left adequate and for all a ∈ T and e ∈ E(T ), we

have that ae = (ae)+a. Let σ be the minimal unipotent congruence on T . We call T

proper weakly left ample if R̃ ∩ σ is the identity congruence.

2.4 Labeled Digraphs, in Particular Cayley Digraphs

A labeled directed graph Γ consists of three sets and three maps:

• a non-empty set of vertices, V (Γ);

• a set of edges, E(Γ);

• a set of edge labels, Σ(Γ);

• an initial map ι : E(Γ)→ V (Γ);

• a terminal map τ : E(Γ)→ V (Γ);

• a surjective label-assigning map λ : E(Γ)→ Σ(Γ).
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We will also not allow a labeled digraph to contain multiple edges with the same initial

vertex, same terminal vertex, and same label. If edges e and f are such that eι = fι,

eτ = fτ , and eλ = fλ, then e = f . We will use the abbreviation “digraph” for

directed graph. In general, we will drop the word “labeled”, since all of the digraphs

with which we will work are labeled. A digraph is finite if the sets E(Γ) and V (Γ)

are finite.

A digraph P is a subdigraph of a digraph Γ, which we denote by P ⊆ Γ, if

V (P ) ⊆ V (Γ), E(P ) ⊆ E(Γ), Σ(P ) ⊆ Σ(Γ) and the maps for P are the same as those

for Γ, when restricted to P . We denote the set of all the subdigraphs of Γ by P(Γ).

This set forms a semilattice with the operation union.

We say that a digraph Γ is deterministic if for any c ∈ V (Γ) and r ∈ Σ(Γ), there

is at most one edge e such that eι = c and eλ = r. The digraph Γ is complete if for

any c ∈ V (Γ) and r ∈ Σ(Γ), there is at most one edge e such that eι = c and eλ = r.If

a digraph Γ is complete and deterministic, then we can describe an edge e uniquely

by the pair (eι, eλ). In diagrams, we will also use the notation •
eι

eλ→ •
eτ

to represent

the edge e.

If a and b are two vertices of Γ, a path from a to b is a finite sequence of edges,

e1, e2, . . . , en such that

•
a=e1ι

−→ •
e1τ=e2ι

−→ . . . −→ •
en−1τ=enι

−→ •
enτ=b

.

This path is labeled by the word (e1λ)(e2λ) . . . (enλ). We allow a path to pass through

the same vertex or edge multiple times. The empty path at a vertex a is a path

consisting of no edges. A minimal path is a path which does not pass through any

vertex more than once. We will regard empty paths as minimal paths. A cycle is a

path which has the same start and end vertex. We will denote a path that starts at

vertex a, ends at vertex b, and is labeled by a word w by a
w−→ b. Given any path,

its underlying digraph is the minimal subdigraph that contains the path. We will use

the notation ba w−→ bc to refer to the underlying digraph of the path a
w−→ b.
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If a, b ∈ V (Γ), we say that b is accessible from a if there is an a −→ b path in

Γ. A digraph Γ is rooted at a if every vertex in Γ is accessible from a, in which case

we refer to a as a root of Γ. We say that a digraph Γ is strongly connected if each of

its vertices is a root. Let P ⊆ Γ and c ∈ V (P ). The subdigraph of P accessible from

c, denoted P ↑
c , is the maximal subdigraph of P that is rooted at c. The subdigraph

of P potentially accessible from c, denoted P ↑↑
c , is the intersection of P and Γ↑c with

any isolated vertices not equal to c removed. We illustrate accessability and potential

accessibility in Figure 2.2.

Figure 2.2: The digraph P is a subdigraph of Γ and P contains the vertex a. We
show P ↑

a , the digraph accessible from a, and P ↑↑
a , the digraph potentially accessible

from a.

If P and Q are two subdigraphs of a digraph Γ, we say that P and Q are disjoint

if V (P ) ∩ V (Q) = ∅. For the next definition, we will assume that the digraph Γ is

deterministic, so that we can describe its edges with the notation (v, r). We say that

the digraph P is weakly connected if for all vertices a, b ∈ V (P ) there exist vertices

a = v1, v2, . . . , vm = b ∈ V (P ) and edges e1, e2, . . . , em−1 ∈ E(Γ) such that for
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1 ≤ i ≤ m−1, either eiι = vi and eiτ = vi+1 or eiι = vi+1 and eiτ = vi. A subdigraph

P ⊆ Γ is called a component of Γ if P is a maximal weakly connected subdigraph. If

P and Q are distinct components, then they are disjoint.

A digraph is a labeled graph if for any edge e there exists an edge f ∈ E(Γ)

such that eι = fτ ; and eτ = fι. As we did for digraphs, we will drop the adjective

“labeled” for graphs, since all of the graphs with which we will work are labeled.

Also for graphs, being weakly connected is equivalent to being strongly connected.

Thus we will use the phrase “connected” in this case. A digraph P is a subgraph of a

digraph Γ if P is both a subdigraph and a graph.

Some of the graphs with which we will work also have the property that we

can partition their edge label sets Σ(Γ) = Σ(Γ)+ ∪ Σ(Γ)− and then find a bijection

α : Σ(Γ)+ → Σ(Γ)− such that for any edge e there exists an edge f ∈ E(Γ) with the

following properties:

• eι = fτ ;

• eτ = fι;

• if eλ ∈ Σ(Γ)+, then eλ ◦ α = fλ;

if eλ ∈ Σ(Γ)−, then eλ ◦ α−1 = fλ.

Recalling that there is exactly one edge with a given start vertex, terminal vertex,

and edge label, we see that for each edge e, there is exactly one f as described above.

We say e and f are inverse edges and we can denote f by e−1. Note that e = (e−1)−1.

We call a graph with this property an inverse graph.

Assume Γ is a graph with respect to the partition Σ(Γ)+∪Σ(Γ)− and the bijection

α : Σ(Γ)+ → Σ(Γ)−. If P is a subdigraph of Γ, the graph completion of P , denoted

by P , is the minimal subgraph of Γ containing P . We can also describe P outright;

it consists of the sets:

• V (P ) = V (P );

• E(P ) = {e| e ∈ E(P ) or e−1 ∈ E(P )};
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• Σ(P ) = {r | r = eλ and e ∈ E(P )};

and the maps inherited from Γ. If P is already a subgraph, then P = P .

A digraph morphism from a digraph Γ to a digraph Γ′ is a morphism θ comprised

of three maps:

θV : V (Γ)→ V (Γ′), θE : E(Γ)→ E(Γ′), and θΣ : Σ(Γ)→ Σ(Γ′)

with the property that for any e ∈ E(Γ),

eι ◦ θV = eθE ◦ ι′, eτ ◦ θV = eθE ◦ τ ′, eλ ◦ θΣ = eθΣ ◦ λ′.

Two digraphs Γ and Γ′ are isomorphic if each of the three maps is a bijection. We

say that the map θ is label-preserving if the map θΣ is the identity map.

We shall also consider left semigroup actions on digraphs. We will assume that

the digraph Γ is deterministic, so that we can describe its edges with the notation

(v, r). We say that S acts on the digraph Γ on the left if S acts on V (Γ) on the left

and for each s ∈ S and (v, r) ∈ E(Γ), we have that s ·
(
(v, r)τ

)
= (s · v, r)τ . If s ∈ S

and P ⊆ Γ, then s · P is the graph comprised of the following sets:

• V (s · P ) = s · V (P );

• E(s · P ) = {(s · v, r)|(v, r) ∈ E(P )};

• Σ(s · P ) = Σ(P ).

In this thesis, we are primarily concerned with Cayley digraphs and their sub-

digraphs. Semigroup, monoid, and group systems can be interpreted graphically

using Cayley digraphs. The Cayley digraph of a semigroup system (S, Σ, fS), denoted

Cay(S; Σ), is the digraph comprised of the following:

• Vertex set = S;

• Edge set = {(x, s)|x ∈ S and s ∈ Σ};

• Edge Label set = Σ;
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• Maps: (x, s)ι = x, (x, s)τ = x(sfS), (x, s)λ = s.

The Cayley digraph of a monoid system is defined similarly. For a group presentation

(G, Ω, fG), we modify the edge and edge label sets as follows:

• Edge set = {(x, s) : x ∈ G and s ∈ Ω ∪ Ω−1};

• Edge Label set = Ω ∪ Ω−1;

and extend the function fG to Ω−1 as described in Section 2.1.

Cayley digraphs have a number of useful properties which will be important to

us. First, all Cayley digraphs, regardless of the type, are deterministic. In the Cayley

digraphs of group systems, there is also exactly one edge of each label entering each

vertex. Cayley digraphs of group systems are graphs; Cayley digraphs of monoid

or semigroup systems of groups are strongly connected. Cayley digraphs of monoid

systems are rooted at 1. Cayley digraphs of semigroups may have disjoint components.

Since the vertices of the Cayley digraph Cay(S; Σ) are the elements of S, there

is a left action of S on V
(
Cay(S; Σ)

)
. This induces a left action of S on the edge

set, E
(
Cay(S; Σ)

)
defined by x · (v, r) 7→ (xv, r). We will refer to these actions as left

multiplication or left translation by S and write xc instead of x · c, x(d, r) instead of

x · (d, r). Moreover, since

x ·
(
(d, r)τ

)
= x ·

(
d(rf)

)
= (x · d, r)τ,

we see that this leads to a left semigroup action of S on Cay(S; Σ). If P ⊆ Cay(S; Σ),

then x · P denotes the digraph obtained by acting on P by x, i.e. translating all

vertices and edges of P by x. We usually write xP instead of x · P . We note that

both groups and monoids have corresponding left actions for their respective Cayley

digraphs.
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2.5 Semigroup Expansions

A category C consists of two collections: a collection of objects O and a collection of

arrows A. Each arrow f ∈ A has a unique source object and a unique target object,

denoted by source(f) and target(f) respectively. There is also a partially defined

binary operation on arrows: if f, g ∈ A are such that target(f) = source(g), then

f ◦ g is an arrow in A with (f ◦ g) = source(f) and target(f ◦ g) = target(g). The

collections A and O must satisfy two axioms:

1. for every object o ∈ O, there is an arrow ido ∈ A such that if

f and g are arrows with source(f) = o and target(g) = o,

then ido ◦ f = f and g ◦ ido = g;

2. if f, g, h ∈ A are such that f ◦ g and g ◦ h are defined, then

(f ◦ g) ◦ h = f ◦ (g ◦ h).

The categories relevant to graph expansions are:

GRP groups with group homomorphisms;

MON monoids with monoid homomorphisms;

SGP semigroups with semigroup homomorphisms;

INV inverse semigroups with semigroup homomorphisms;

INV-MON inverse monoids with monoid homomorphisms;

SGP-SYS semigroup systems and semigroup system homomorphisms;

GRPΩ Ω-generated group systems and Ω-preserving group system ho-

momorphisms;

MONΛ Λ-generated monoid systems and Λ-preserving monoid system

homomorphisms;

SGPΣ Σ-generated semigroup systems and Σ-preserving semigroup

system homomorphisms;
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INVΣ Σ-generated inverse semigroup systems and Σ-preserving inverse

semigroup system homomorphisms.

INV-MONΛ Σ-generated inverse monoids and Σ-preserving inverse monoid

system homomorphisms.

If B and C are categories, a functor F : B → C is a map between B and C that

satisfies the following: F assigns each object in B to an object in C and each arrow

in B to an arrow in C such that F (ido) = idF (o) and F (f ◦ g) = F (f) ◦ F (g).

Suppose we have two functors: F : B → C and G : B → C. A natural trans-

formation τ : F → G is a function which assigns to each object o ∈ B an arrow

τo : F (o) → G(o) of C which makes the diagram shown in Figure 2.3 commute

(in the diagram, we assume that f is any arrow of B, that source(f) = x and

target(f) = y):

Figure 2.3: A natural transformation between the functors F, G : B→ C

We say that a functor F from SGP, SGP-SYS, or one of their subcategories (denote

the domain by A), to SGP, SGP-SYS, or one of their subcategories (denote the

codomain by B) is a semigroup expansion if F satisfies these two properties:

1. there is a natural transformation ε : F → id where id is the

identity functor on the objects of A;

2. if S ∈ A, then the map εS : F (S)→ S is surjective.
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Chapter 3

Graph Expansions

In this chapter, we will describe the group, monoid, and semigroup, graph expansions.

This description serves two purposes: first, it is insightful to see how the semigroup

construction evolves from the monoid construction, which in turn evolved from the

group construction. Second, having a clear descriptions of these graph expansions will

allow us in Section 7 to show how they are related as subsemigroups and/or images

of each other.

We will give the basic structural properties of each graph expansion: what type

of algebraic object it is, if it is E-unitary, a description of its inverses, idempotents,

and/or regular elements, information about how it is generated, any special congru-

ence properties, and each graph expansion’s domain and codomain as a functor. We

note that we have left out some categorical and presentation related results for the

group graph expansion, as well as for the special cases of the monoid graph expansion.

This is because there are no nice analogs for the semigroup graph expansion.

At the end of the chapter, we introduce the semigroup and monoid path expan-

sions. These are subsemigroups of the respective graph expansions. In addition to

possessing most of the properties of the graph expansions, they are “nicely” gener-

ated in same way that the group graph expansion is. For this reason, we will often be

able to draw stronger comparisons between the path expansions and the group graph

expansion in later chapters.
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3.1 The Group and Monoid Graph Expansions

Margolis and Meakin define the graph expansion of a group system (G, Ω, f), denoted

Mgp(G; Ω), as a set of pairs:

{(P, c)|P is a finite, connected subgraph of Cay(G; Ω), and 1, c ∈ V (P )}

with multiplication defined as: (P, c)(Q, d) = (P ∪ cQ, cd). Note that the subgraph

P ∪cQ is finite, connected, and contains both the vertices 1 and cd, which ensures that

the set is closed under the operation. The following properties of the graph expansion

of a group are due to Margolis and Meakin [17]:

Theorem 3.1.1. Let (G, Ω, f) be a group system. Then Mgp(G; Ω)

(a) is a monoid with identity element (•
1
, 1);

(b) is an inverse monoid; the inverse of (P, c) is (c−1P, c−1);

(c) is E-unitary; an element (P, c) is idempotent if and only if c = 1;

(d) is generated as an inverse monoid by the set {(•
1

g−→ •
gf

, gf)| g ∈ Ω};

(e) has minimal group congruence (P, c) ∼ (Q, d) if and only if c = d and thus

has maximal group image G;

(f) Mgp( ; Ω) is a functor from the category GRPΩ to the category INV-MONΩ.

The minimal group congruence on Mgp(G; Ω) determines a homomorphism from Mgp(G; Ω)

to G. We denote this homomorphism by σG.

The construction for groups easily generalizes to monoids. The graph expansion

of a monoid system (T, Λ, f), denoted Mmon(T ; Λ), is the set:

{(P, c)|P is a finite subdigraph of Cay(T ; Λ), P is rooted at 1, and c ∈ V (P )}

with the multiplication of elements defined in the same manner as for the graph

expansion of groups. In contrast to the group situation, we can say less about the

general monoid case. The monoid analog to Theorem 3.1.1 is:
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Theorem 3.1.2. Let (T, Λ, f) be a monoid system. Then Mmon(T ; Λ) is a monoid

with identity element (•
1
, 1).

Gould was able to develop further results by restricting to graph expansions of right

cancellative monoids (see [7]). She obtained the following:

Theorem 3.1.3. Let (T, Λ, f) be a monoid system of a right cancellative monoid T .

Then Mmon(T ; Λ)

(a) is a proper left ample monoid with identity element (•
1
, 1);

(b) is E-unitary; an element (P, g) is idempotent if and only if g = 1;

(c) is generated as a proper left ample monoid by the set {(•
1

g−→ •
gf

, gf)| g ∈ Λ};

(d) has maximal right cancellative monoid image T .

Gomes and Gould realized that a similar generalization applies to unipotent monoids

(see [6]).

Theorem 3.1.4. Let (T, Λ, f) be a monoid system of a unipotent monoid T . Then

Mmon(T ; Λ)

(a) is a proper weakly left ample monoid with identity element (•
1
, 1);

(b) is E-unitary; an element (P, g) is idempotent if and only if g = 1;

(c) is generated as a proper weakly left ample monoid by the set

{(•
1

g−→ •
gf

, g)| g ∈ Λ};

(d) has maximal unipotent monoid image T .

Additionally, they were able to show the converse of Theorem 3.1.4(a):

Theorem 3.1.5. Let (T, Λ, f) be a monoid system. If Mmon(T ; Λ) is weakly left

ample, then T is unipotent.
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3.2 The Semigroup Graph Expansion

Since Cayley digraphs of semigroups are constructed in the same manner as Cayley

graphs of groups and monoids, it is natural to consider generalizing these graph ex-

pansions to semigroups. However, this involves defining elements and a multiplication

rule without relying on an identity.

As we have seen, when generalizing from groups to monoids, graphs are replaced

by 1-rooted digraphs. To move from monoids to semigroups, we will replace 1-rooted

digraphs with other rooted digraphs. However, simply requiring “rootedness” is not

enough. To see this, suppose P and Q are the subdigraphs •
c
, •

d
⊆ Cay(S; Σ) and that

c 6= cd. The digraphs P and Q are trivially rooted, but P ∪ cQ is not rooted, since

there is no edge between •
c

and •
d
. In order to ensure that products are rooted, we will

need to modify the operation. We introduce some new notation: if P ⊆ Cay(S; Σ) is

a finite subdigraph and r ∈ Σ, we denote by P 1
r the subdigraph of Cay(S1; Σ) that is

the union of P and the edge (1, r). If S is already a monoid and (1, r) ∈ E(P ), then

P = P 1
r .

To illustrate this notation, consider the Cayley digraph of a three-element right-

zero semigroup system (S, {r, s, t}, id). This Cayley digraph is shown in Figure 3.1. In

Figure 3.2, we show two subdigraphs, P which is rf -rooted and Q which is sf -rooted.

Then we show the digraphs P 1
r , and Q1

s.

Figure 3.1: The Cayley digraph of the right-zero semigroup system {S, {r, s, t}, id}.

If S is not a monoid, then P 1
r 6⊆ Cay(S; Σ). However for any c ∈ S, the translation
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Figure 3.2: The digraphs P 1
r and Q1

s are constructed from P and Q by adding the
edges (1, r) and (1, s) respectively. Note that P is r-rooted and Q is s-rooted.

c(P 1
r ) = cP ∪ {(c, r)} lies within Cay(S; Σ). In the case when S is a monoid, we have

that P 1
r ⊆ Cay(S; Σ).

Using this notation, we now define the graph expansion of a semigroup system

(S, Σ, f), denotedM(S; Σ), to be the set of triples:

{(r, P, c)|r ∈ Σ, P ⊆ Cay(S; Σ) is finite and rooted at rf , and c ∈ V (P )}

with multiplication defined by: (r, P, c)(s, Q, d) = (r, P ∪ cQ1
s, cd). This operation can

be visualized as shown in Figure 3.3.

Figure 3.3: Multiplication in the graph expansion of semigroups.

Before describing some basic properties of the semigroup graph expansion, we

wish to give a few example of the operation. A very simple case is the system
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(S; {x, y}, id), where S is a free semigroup on two generators. The Cayley digraph

Cay(S; {x, y}) is shown in Figure 3.4. We illustrate various products in M(S; Σ) in

Figures 3.5 and 3.6. We note that in these figures, as well as in some later ones,

we indicate the third entry (i.e., the chosen vertex) not only by stating it (as the

third entry), but also by circling the corresponding vertex in the digraph (i.e., the

second entry). The information is redundant, but we include it anyway since it makes

locating the chosen vertex in the digraph faster.

Figure 3.4: The Cayley digraph Cay(S; {x, y}) of the free semigroup S which is gen-
erated by x and y.

Figure 3.5 illustrates how an edge is added (namely the edge (x2y, y)) when

forming the product. The presence of this edge is necessary for the digraph to be

rooted.

Figure 3.5: An example in which an edge is added to form the product inM(S; {x, y}).
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In Figure 3.6, we show a product in which no edge is added, since it is already present

in the digraph. The edge that did not need to be added is (x2, y). In fact, since the

digraph in the left factor contains the translation of the digraph from the right factor,

we keep the digraph from the left factor in the product. The chosen vertex is the only

thing that changes.

Figure 3.6: (An example where no edge is added when forming the product in
M(S; {x, y}).

We can see in the above examples how the multiplication rule affects each co-

ordinate of the triple differently. The operation on the first coordinate is left-zero

multiplication. The operation on the second coordinate is a modified version of set

union. The operation on the third coordinate corresponds to multiplication in S.

We now note basic properties ofM(S; Σ):

Theorem 3.2.1. Let (S, Σ, f) be a semigroup system and let (r, P, c), (s, Q, d) ∈

M(S; Σ). Then:

(a) M(S; Σ) is a semigroup;

(b) (r, P, c) is idempotent if and only if c2 = c and cP 1
r ⊆ P ;

(c) (r, P, c) is regular if and only if there exists some x ∈ V (P ) for which there is

a non-empty path c −→ x in P , xc = c, and xP 1
r ⊆ P ;

(d) if (r, P, c)(s, Q, d) = (s, Q, d)(r, P, c), then r = s;

(e) the map εS :M(S; Σ) → S defined by (r, P, c) 7→ c is a surjective semigroup

homomorphism;
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Proof: For part (a), observe that (r, P, c)(s, Q, d) = (r, P ∪cQ1
s, cd). Clearly P ∪cQ1

s

is finite since both P and Q are. The subdigraph P ∪ cQ1
s is rooted at rf since P

is rooted at rf , c ∈ V (P ), and cQ1
s is rooted at c. Since d ∈ V (Q), we have that

cd ∈ V (cQ) and it follows that cd ∈ V (P ∪ cQ1
s). Hence (r, P, c)(s, Q, d) ∈ M(S; Σ).

Showing that the operation is associative is a simple calculation and we omit it.

As the proof of (b) is similar, if slightly simpler, than the proof of (c), we proceed

immediately to (c). Suppose (r, P, c) is regular. Then there exists some element

(s, Q, d) such that

(r, P, c) = (r, P, c)(s, Q, d)(r, P, c) = (r, P ∪ cQ1
s ∪ cdP 1

r , cdc). (3.2.1)

Let x = cd. From Equation 3.2.1 we see that (cd)c = c and (cd)P 1
r ⊆ P . Finally,

since the subdigraph Q1
s contains a 1 −→ d path, the translated digraph cQ1

s ⊆ P

contains a c −→ cd path.

Conversely, suppose there is some x ∈ V (P ), such that x is accessible from c in

P , xc = c, and xP 1
r ⊆ P . There is a word w ∈ Σ+ which labels a c −→ x path in

P . Write w as w = sv where s ∈ Σ and v ∈ Σ∗. Let Q be the digraph bsf v−→ wfc.

Note that wf ∈ V (Q), c(wf) = x, and cQ1
s ⊆ P . These facts imply the following:

(r, P, c)(s, Q, wf)(r, P, c) = (r, P ∪ cQ1
s ∪ c(wf)P 1

r , c(wf)c)

= (r, P ∪ xP 1
r , xc)

= (r, P, c).

Easy calculations show that (r, P, c) and (s, Q, wf)(r, P, c)(s, Q, wf) are inverses.

We now proceed to part (d). If (r, P, c) and (s, Q, d) commute, we see immediately
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that r = s:

(r, P ∪ cQ1
s, cd) = (r, P, c)(s, Q, d)

= (s, Q, d)(r, P, c)

= (s, Q ∪ dP 1
r , dc).

Turning to part (e), observe that

(
(r, P, c)(s, Q, d)

)
εS =

(
(r, P ∪ cQ1

s, cd)
)
εS

= cd

= (r, P, c)εS(s, Q, d)εS.

To see that the map εS is surjective, let c ∈ S. There exists some word w ∈ Σ+

such that wf = c. Rewrite w as w = rv where r ∈ Σ and v ∈ Σ∗. Then

(r, brf v−→ cc, c) ∈M(S; Σ) and (r, brf v−→ cc, c)εS = c. �

Our next goal in this section is to show that the semigroup graph expansion

is a functor from SGPΣ to SGP-SYS and that this construction merits the title

“expansion”. The first thing we must do is construct a semigroup system for the

semigroup graph expansion. In order to do so, we identify its decomposable and

indecomposable elements

Lemma 3.2.2. Let (S, Σ, f) be a semigroup system and let (r, P, c) ∈M(S; Σ). Then:

(a) (r, P, c) is decomposable if and only if P contains an edge that terminates at c;

(b) (r, P, c) is indecomposable if and only if rf = c and there is no cycle in P passing

through rf .

Proof: Looking at (a), suppose (r, P, c) is decomposable. If c 6= rf , then clearly

there is an edge in P ending in c. Thus consider the case c = rf . There exist elements
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(r, A, x) and (s, B, y) such that

(r, P, rf) = (r, A, x)(s, B, y) = (r, A ∪ xB1
s , xy).

If rf 6= x, then rf lies on a cycle which passes through x. If rf = x, then there is a

cycle at rf . In both cases there is an edge entering rf .

For the converse, suppose there is an edge entering c. Thus, there exists some

d ∈ V (P ) and s ∈ Σ, such that d(sf) = c and (d, s) ∈ E(P ). Since (r, P, d)(s, •
sf

, sf) =

(r, P, c), we have that (r, P, c) is decomposable. Part (b) follows immediately from

part (a). �

We denote the set of indecomposable elements of M(S; Σ) by IndM(S;Σ). If the

it is clear which graph expansion is referred to, we will abbreviate this notation to

IndM. Similarly, we will often abbreviate the identity function idM(S;Σ) as idM. Since

a semigroup is generated by its indecomposable elements, we obtain the following:

Proposition 3.2.3. Let (S, Σ, f) be a semigroup system. Then
(
M(S; Σ), IndM, idM

)
is a semigroup system.

Next, we describe a semigroup system homomorphism from
(
M(S; Σ), IndM, idM

)
to (S, Σ, f). In order to do so, we need a function between the respective generating

sets. Using the fact from Lemma 3.2.2(b) that all elements of IndM have the form

(r, P, rf), we define the function εΣ : Ind+
M → Σ+ to be that induced by the map

(r, P, rf) 7→ r.

Proposition 3.2.4. Let (S, Σ, f) be a semigroup system. Then εS, εΣ is a surjective

semigroup system homomorphism from
(
M(S; Σ), IndM, idM

)
to (S, Σ, f).

Proof: We wish to show that idM ◦ εS = εΣ ◦ f . Thus, consider an element
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(r1, P1, r1f)(r2, P2, r2f) . . . (rn, Pn, rnf) ∈ Ind+
M. Then:

(r1, P1, r1f)(r2, P2, r2f) . . . (rn, Pn, rnf)(idM ◦ εS)

=
(
r1, P1 ∪ (r1f)P2 . . .

(
(r1r2 . . . rn−1)f

)
Pn, (r1r2 . . . rn)f

)
εS

= (r1r2 . . . rn)f

=
(
(r1, P1, r1f)εΣ(r2, P2, r2f)εΣ . . . (rn, Pn, rnf)εΣ

)
f

= (r1, P1, r1f)(r2, P2, r2f) . . . (rn, Pn, rnf)(εΣ ◦ f).

Since both εS and εΣ are surjective, the pair εS, εΣ is a surjective semigroup system

homomorphism. �

In order to show that the semigroup graph expansion construction is a functor,

we must establish that it sends a semigroup system homomorphism such as

ϕ, idΣ : (S, Σ, fS) → (Y, Σ, fY ) to a semigroup system homomorphism between the

respective graph expansions. We start by showing that the homomorphism ϕ, idΣ

induces a map between Cayley digraphs:

ϕ̂ : Cay(S; Σ)→ Cay(Y ; Σ) Vertices: ϕ : S → Y ;

Edges: (x, r) to (xϕ, r).

Recall that P
(
Cay(S; Σ)

)
is the set of subdigraphs of the Cayley graph Cay(S; Σ).

Under the operation of union, it constitutes a semigroup. By restricting to subdi-

graphs, the map ϕ̂ above induces a map between P
(
Cay(S; Σ)

)
and P

(
Cay(Y ; Σ)

)
.

We denote this second map by ϕ̂ as well. Using ϕ̂, we obtain a map between graph

expansions:

ϕ̆ :M(S; Σ)→M(Y ; Σ) (r, P, c) 7→ (r, P ϕ̂, cϕ).

We also need a map between the generating sets of M(S; Σ) and M(Y ; Σ). Recall

that this is a map from the set (IndM(S;Σ))
+ to the set (IndM(Y ;Σ))

+. For each element
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(s, Q, d) ∈ M(Y ; Σ), fix a factoring (s, Q, d) = (s1, Q1, d1) . . . (sn, Qn, dn) where each

(si, Qi, di) ∈ IndM(Y ;Σ). We define the map β̆S : (IndM(S;Σ))
+ → (IndM(Y ;Σ))

+ to be

the map induced as follows: let (r, P, c) ∈ IndM(S;Σ). Then β̆S maps (r, P, c) to the

chosen factoring of (r, P ϕ̆, cϕ), i.e. to

(
r1, (Pϕ̆)1, (cϕ)1

)
. . .

(
rn, (Pϕ̆)n, (cϕ)n

)
.

In the following lemma, we show that ϕ̂, ϕ̆, and β̆S have the desired homomorphism

properties.

Lemma 3.2.5. Let (S, Σ, fS) and (Y, Σ, fY ) be semigroup systems and let

ϕ : S → Y be a Σ-preserving semigroup system homomorphism. Then

(a) ϕ̂ : P
(
Cay(S; Σ)

)
→ P

(
Cay(Y ; Σ)

)
is a semigroup homomorphism;

(b) ϕ̂ preserves the left action of S on Cay(S; Σ) (i.e., if c ∈ S,

and A ∈ P
(
Cay(S; Σ)

)
, then (cA)ϕ̂ = (cϕ)(Aϕ̂).)

(c) ϕ̆ :M(S; Σ)→M(Y ; Σ) is a surjective semigroup homomorphism;

(d) ϕ̆, β̆S :
(
M(S; Σ), IndM(S;Σ), idM(S;Σ)

)
→

(
M(Y ; Σ), IndM(Y ;Σ), idM(Y ;Σ)

)
is a

surjective semigroup system homomorphism.

Proof: We start by proving (a). Let P, Q ∈ P
(
Cay(S; Σ)

)
. We wish to show

that (P ∪ Q)ϕ̂ = Pϕ̂ ∪ Qϕ̂. First we consider vertices. Let x ∈ V (Pϕ̂ ∪ Qϕ̂).

There exists some yx in V (P ) or in V (Q) such that {•
yx

}ϕ̂ = {•
x
}. It follows that

yx ∈ V (P ∪ Q) and hence x ∈ V
(
(P ∪ Q)ϕ̂

)
. Thus V (Pϕ̂ ∪ Qϕ̂) ⊆ V

(
(P ∪ Q)ϕ̂

)
.

These steps can be reversed to show V
(
(P ∪ Q)ϕ̂

)
⊆ V (Pϕ̂ ∪ Qϕ̂). We conclude

that V (Pϕ̂ ∪ Qϕ̂) = V
(
(P ∪ Q)ϕ̂

)
. Since Cayley digraphs are deterministic and ϕ̂

is label-preserving, a similar argument shows that the respective edge sets are equal.

Thus ϕ̂ : P
(
Cay(S; Σ)

)
→ P

(
Cay(Y ; Σ)

)
is a homomorphism.

Proceeding to (b), we want to show (cA)ϕ̂ = (cϕ)(Aϕ̂). Again, we will look at

vertex and edge sets. Let x ∈ V
(
(cA)ϕ̂

)
. There exists some yx ∈ V (A) such that

(c{•
yx

})ϕ̂ = {•
x
}. Since the function ϕ̂, when restricted to vertices, corresponds with
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ϕ and ϕ is a homomorphism, we have that:

(c{•
yx

})ϕ̂ = { •
cyx

}ϕ̂

= { •
(cyx)ϕ

}

= { •
(cϕ)(yxϕ)

}

= (cϕ){ •
yxϕ
}

= (cϕ)
(
{•

yx

}ϕ̂
)

∈ V
(
(cϕ)(Aϕ̂)

)
.

Thus V
(
(cA)ϕ̂

)
⊆ V

(
(cϕ)(Aϕ̂)

)
. The reverse inclusion can be obtained by reversing

the order of steps, which then gives V
(
(cA)ϕ̂

)
= V

(
(cϕ)(Aϕ̂)

)
. Again, the determin-

ism of the Cayley graph and the fact that ϕ̂ is label-preserving ensure that edge sets

are equal. Thus (cA)ϕ̂ = (cϕ)(Aϕ̂).

We are ready to show (c). Using the results from parts (a) and (b),

(
(r, P, c)(s, Q, d)

)
ϕ̆ =

(
(r, P ∪ cQ1

s, cd)
)
ϕ̆

=
(
r, (P ∪ cQ1

s)ϕ̂, (cd)ϕ
)

=
(
r,

(
P ∪ cQ ∪ {(c, s)}

)
ϕ̂, (cd)ϕ

)
=

(
r, P ϕ̂ ∪ (cϕ)(Qϕ̂) ∪ {(c, s)}ϕ̂, (cϕ)(dϕ)

)
=

(
r, P ϕ̂ ∪ (cϕ)(Qϕ̂) ∪ {(cϕ, s)}, (cϕ)(dϕ)

)
= (r, P ϕ̂, cϕ)(s, Qϕ̂, dϕ)

= (r, P, c)ϕ̆(s, Q, d)ϕ̆.

Thus, ϕ̆ :M(S; Σ)→M(Y ; Σ) is a semigroup homomorphism.

To see that it is surjective, let (r, P, c) ∈ M(Y ; Σ). If P contains no edges, then
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rfy = c and P = {•
c
}, whereupon we have that

(r, •
rfS

, rfS)ϕ̆ = (r, •
(rfS)ϕ

, (rfS)ϕ)

= (r, •
rfY

, rfY )

= (r, P, c).

If P contains edges, then it contains no isolated vertices. For each edge (xi, s) ∈ E(P ),

we choose a word wi ∈ Σ∗ such that (rwi)fY = xi and the path rfY
wi−→ xi lies within

P . Thus P is the underlying digraph of the following:

P =
⌊ ⋃

(xi,s)∈E(P )

rfY
wis−→ xi(sfY )

⌋
.

Let P ′ ⊆ Cay(S; Σ) be the digraph:

P ′ =
⌊ ⋃

(xi,s)∈E(P )

rfS
wis−→ (rwis)fS

⌋
.

From its construction, P ′ϕ̂ = P . We now wish to show that there is a preimage

of c (under ϕ) in P ′. If c = rfY , then rfS ∈ V (P ′) and (rfS)ϕ = rfY = c. If

c 6= rfY , then there is an edge (xi, s) ∈ E(P ) such that (xi, s) terminates in c. The

path rfY
wis−→ xi(sfY ) also terminates in c. Let c′ be the vertex (rwis)fS. We see

that (rwis)fS ◦ ϕ = (rwis)fY = c. Thus, (r, P ′, c′)ϕ̆ = (r, P, c). We conclude that ϕ̆

is surjective.

In order to prove (d), we must establish that idM(S;Σ)◦ϕ̆ = β̆S◦idM(Y ;Σ). We show

that it holds for a generator (r, P, rf) ∈ IndM(S;Σ) and note that it can be extended

to all (IndM(S;Σ))
+. Since β̆S agrees with ϕ̆ on IndM(S;Σ), we have that:

(r, P, rf)(idM(S;Σ) ◦ ϕ̆) = (r, P, rf)ϕ̆

= (r, P, rf)β̆S

= (r, P, rf)β̆S ◦ idM(Y ;Σ).
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This shows that ϕ̆, β̆S is a semigroup system homomorphism. Since ϕ̆ is surjective,

this implies that β̆S is also surjective. We conclude that ϕ̆, β̆S is a surjective semigroup

system homomorphism. �

We wish to show that our construction is a functor from Σ-generated semigroup

systems to semigroup systems with generating sets. We will denote the map (between

semigroup systems and semigroup system homomorphisms) byM( ; Σ).

Theorem 3.2.6. The map M( ; Σ) is a functor from SGPΣ to SGP-SYS.

Moreover, M( ; Σ) is a semigroup expansion.

Proof: The map M( ; Σ) sends a semigroup system (S, Σ, f) to the semigroup

system
(
M(S; Σ), IndM(S;Σ), idM(S;Σ)

)
. Moreover it maps a Σ-preserving semigroup

system homomorphism ϕ, idΣ : (S, Σ, fS) → (Y, Σ, fY ) to a surjective semigroup sys-

tem homomorphism ϕ̆, β̆S. We must check that M( ; Σ) satisfies the appropriate

functorial properties. To this end, let (S, Σ, fS), (Y, Σ, fY ), and (Z, Σ, fZ) be semi-

group systems and let ϕ : S → Y and δ : Y → Z be Σ-preserving semigroup system

homomorphisms. Lemma 3.2.5(c) establishes that ϕ and δ induce the following sur-

jective semigroup system homomorphisms:

ϕ̆, β̆S :
(
M(S; Σ), IndM(S;Σ), idM(S;Σ)

)
→

(
M(Y ; Σ), IndM(Y ;Σ), idM(Y ;Σ)

)
and

δ̆, β̆Y :
(
M(Y ; Σ), IndM(Y ;Σ), idM(Y ;Σ)

)
→

(
M(Z; Σ), IndM(Z;Σ), idM(Z;Σ)

)
.

Given Proposition 3.2.1(e), we know that εS : (r, P, c)→ c mapsM(S; Σ) to S. Using

these results, it is a trivial check that the diagrams below commute.

We conclude that M( ; Σ) is a functor from SGPΣ to SGP-SYS. It remains to

show that M( ; Σ) is a semigroup expansion. To this end, consider a semigroup

system (S, Σ, f) and the system for its graph expansion
(
M(S; Σ), IndM, idM

)
. We
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Figure 3.7: Diagrams showing that the graph expansion of semigroups satisfies the
properties to be a functor.

showed in Proposition 3.2.4 that the maps εS, εΣ form a surjective semigroup sys-

tem homomorphism from
(
M(S; Σ), IndM, idM

)
to (S, Σ, f). Moreover the function

ε , εΣ makes the diagrams shown in Figure 3.8 commute. Thus ε , εΣ is a natural

transformation between the functorM( ; Σ) and the identity functor on Σ-generated

semigroup systems. This then implies thatM( ; Σ) is a semigroup expansion. �

Figure 3.8: Diagram showing the natural transformation from the semigroup graph
expansion functor to the semigroup system identity functor.
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3.3 The Monoid and Semigroup Path Expansions

Monoid and semigroup graph expansions capture many aspects of the group graph

expansion in their use of rooted, finite graphs with chosen vertices, and by their similar

multiplication. However, they fail to incorporate two related aspects of the group

construction: first if (P, c) ∈ Mgp(G; Ω), then there exists a word w ∈ (Ω∪Ω−1)∗ that

labels a path from 1 to c that traverses all edges of the digraph P ; second, Mgp(G; Ω)

is generated (as an inverse monoid) by Ω. Motivated by this, we will introduce two

expansions, the monoid path expansion and the semigroup path expansion, that have

analogous properties.

The path expansion of a monoid system (T, Λ, f), denoted Pathmon(T ; Λ), is de-

fined:

Pathmon(T ; Λ) =

(P, c)

∣∣∣∣∣∣∣∣∣
there exists a word w ∈ Λ∗, such that wf = c

and the path 1
w−→ c is contained in P

and traverses every edge of P


with multiplication defined as for the monoid graph expansion. The basic results

about Pathmon(T ; Λ) are:

Proposition 3.3.1. Let (T, Λ, f) be a monoid system.

1. then Pathmon(T ; Λ) is a submonoid of Mmon(T ; Λ);

2. T is the image of Path(T ; Λ) under εT ;

3. Pathmon(T ; Λ) is a Λ-generated monoid; it is generated by the set

{(•
1

s→ •
sf

, sf)|s ∈ Σ}.

Proof: Starting with (a), observe that the identity (•
1
, 1) ∈ Pathmon(T ; Λ). Next,

suppose (P, c), (Q, d) ∈ Pathmon(T ; Λ). There exist words v, w ∈ Λ∗ such that 1
v−→ c

is a path in P traversing every edge of P and 1
w−→ d is a path in Q traversing

every edge of Q. The later path implies the existence of a path c
w−→ cd in cQ

traversing every edge of cQ. Thus the path 1
vw−→ cd is in P ∪ cQ and traverses every
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edge of P ∪ cQ. Hence (P, c)(Q, d) ∈ Pathmon(T ; Λ), whereupon Pathmon(T ; Λ) is a

submonoid.

Proceeding to (b), let c ∈ T . There exists some word w ∈ Λ+ such that wf = c.

Since (b1 w−→ cc, c) ∈ Pathmon(T ; Λ) and (b1 w−→ cc, c)εT = c, we obtain that

Pathmon(T ; Λ)εT = T .

Finally, for part (c), we let (P, c) ∈ Path(S; Σ). Then there exists a word w ∈ Σ∗

that labels an 1 −→ c path that traverses every edge of P . We write the word w as

w = w1w2 . . . wn where each wi ∈ Σ. Thus

(P, c) = (•
1

w1→ •
w1f

, w1f)(•
1

w2→ •
w2f

, w2f) . . . (•
1

wn→ •
wnf

, wnf).

We conclude that {(•
1

s→ •
sf

, sf) | s ∈ Σ} generates Path(S; Σ). �

The monoid path expansion was previously introduced under the name “Cayley

expansion” by Elston in [3]. She defines the monoid Cayley expansion of a monoid

system (T, Λ, f), denoted CayExpmon(T ; Λ), as the submonoid of Mmon(T ; Λ) that is

generated by the set {(•
1

sf→ •
sf

, sf)|s ∈ Λ}. From Proposition 3.3.1 (3), it is clear that

Pathmon(T ; Λ) = CayExpmon(T ; Λ).

For Elston, the monoid path expansion is an example of a more general approach

to constructing expansions using derived categories. Thus, she does not study the

construction in depth. She does provide an alternative characterization of the monoid

path expansion. To state Elston’s result, we need the following definitions: given a

surjective semigroup homomorphism ϕ : S → T , the derived category Dϕ is the

category whose objects are the elements of T and whose arrows are triples of the form

[t1, s, t2] where t1, t2 ∈ T and s ∈ S satisfy the equation t1(sϕ) = t2. Two arrows

[t1, s, t2] and [t′1, s
′, t′2] are considered equal if t1 = t′1, t2 = t′2, and for every s0 ∈ t1ϕ

−1,

we have s0s = s0s
′. Multiplication of arrows [t1, s, t2] and [t3, s

′, t4] is defined if t2 = t3,

in which case the product is [t1, ss
′, t4]. For each t ∈ T , the local semigroup of the

derived category at t is the subset of the form
{
[t, s, t]

∣∣ [t, s, t] ∈ Dϕ

}
. If S is a monoid,

then all local semigroups are local monoids.
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Theorem 3.3.2. [Elston, [3]] Let (T, Λ, f) be a monoid system. The monoid path

expansion Pathmon(T ; Λ) is the largest monoid expansion in which the local monoids

of the derived category of the homomorphism from the expansion to T are semilattices.

Elston then uses the monoid Cayley expansion to create a semigroup version: the

semigroup Cayley expansion of a semigroup system (S, Σ, f), denoted CayExpsgp(S; Σ),

is the subsemigroup of CayExpmon(S1; Σ) generated by {(•
1

sf→ •
sf

, sf)|s ∈ Σ}. It also

can be characterized using derived categories:

Theorem 3.3.3. [Elston, [3]] Let (S, Σ, f) be a semigroup system. The semigroup

Cayley expansion is the largest semigroup expansion in which the local semigroups of

the derived category of the homomorphism from the expansion to S are semilattices.

In contrast to the case for monoids, Elston’s semigroup Cayley expansion is not a

subsemigroup of the semigroup graph expansion. Thus we now present a construction

that resides inside the semigroup graph expansion: the path expansion of a semigroup

system (S, Σ, f), denoted by Path(S; Σ), is the set of triples:

Path(S; Σ) =

(r, P, c)

∣∣∣∣∣∣∣∣∣
there exists a word w ∈ Σ∗, such that (rw)f = c

and the path rf
w−→ c is contained in P

and traverses every edge of P


with multiplication defined as for the semigroup graph expansion. In Figure 3.9,

we show two elements of M(S; {r, s, t}) where (S, {r, s, t}, id) is the right zero semi-

group system introduced at the start of Section 3.2 (and shown in Figure 3.1). The

element (s, Q, s) is not in Path(S; {r, s, t}); in contrast, the element (s, Q, r) is in

Path(S; {r, s, t}) since s
sr−→ r traverses all the edges of Q.

The semigroup path expansion and Elston’s semigroup Cayley expansion are not

equivalent constructions. We demonstrate this through an example.

Example: Consider the semigroup system (S, {x}, id) for the semigroup presented

S = 〈 x | x = x3 〉. This semigroup has an identity, the element x2. Thus S1 = S.
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Figure 3.9: The element (s, Q, r) is in Path(S; {r, s, t}), but (s, Q, s) is not.

Noting that x2 = 1, the semigroup Cayley expansion CayExpsgp(S; {x}) consists of

three elements:

,

whereas the semigroup path expansion Path(S; {x}) contains four elements:

.

Additionally, there are elements of the local monoids of the derived category of

εS : PathS → S that are not idempotents. For example, from the equation

,

we see that [x, (x, •
x2

x← •
x
, x2), x] is in the local monoid at x. However, it does not

equal its square and thus is not idempotent:

.

Hence we see that the local monoids of the derived category of the semigroup path

expansion are not always semilattices. �

We now establish some basic results about Path(S; Σ):

Proposition 3.3.4. Let (S, Σ, f) be a semigroup system. Then
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(a) Path(S; Σ) is a subsemigroup of M(S; Σ);

(b) IndPath(S;Σ) = {(s, •
sf

, sf)|s ∈ Σ};

(c) the image of Path(S; Σ) under εS is S;

(d)
(
Path(S; Σ), Σ, g

)
where g is given by r 7→ (r, •

rf
, rf) is a semigroup system;

the functions εS, idΣ form a surjective semigroup system homomorphism from(
Path(S; Σ), Σ, g

)
to (S, Σ, f).

Proof: In order to show (a), suppose (r, P, c), (s, Q, d) ∈ Path(S; Σ). There exist

words v, w ∈ Σ∗ such that rf
v−→ c is a path in P traversing every edge of P and

sf
w−→ d is a path in Q traversing every edge of Q. The later path implies the existence

of a path c
sw−→ cd in cQ1

s traversing every edge of cQ1
s. Thus the path rf

vsw−→ cd is

in P ∪ cQ1
s and traverses every edge of P ∪ cQ1

s. Hence (r, P, c)(s, Q, d) ∈ Path(S; Σ),

whereupon Path(S; Σ) is a subsemigroup.

Part (b) follows from the description of indecomposable elements given in Lemma

3.2.2(b) and the fact that if (r, P, c) ∈ Path(S; Σ), then there is an edge in P entering

c except when (r, P, c) = (r, •
rf

, rf).

Moving on to a proof of (c), let c ∈ S. There exists some w ∈ Σ+ such that

wf = c. Write w = rv, where r ∈ Σ, v ∈ Σ∗. Since (r, brf v−→ cc, c) ∈ Path(S; Σ)

and (r, brf v−→ cc, c)εS = c, we see that
(
Path(S; Σ)

)
εS = S.

We now show (d). Since the indecomposable elements of a semigroup generate

the semigroup, it follows from part (b) that
(
Path(S; Σ), Σ, g

)
is a semigroup system.

Now we wish to show that the maps εS, idΣ form a semigroup system homomorphism

from
(
Path(S; Σ), Σ, g

)
to (S, Σ, f). First we must show that g ◦ εS = idΣ ◦ f . Let

r ∈ Σ. Then we have:

r(g ◦ εS) = (r, •
rf

, rf)εS

= rf

= r(idΣ ◦ f)
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We conclude that the maps εS, idΣ together constitute a semigroup system homomor-

phism. Having shown in part (c) that the image of εS is S and noting that the identity

map idΣ is clearly surjective on Σ+, we know that εS, idΣ is a surjective semigroup

system homomorphism. �

We conclude this section by proving that the semigroup path expansion is a

functor, which we denote by Path( ; Σ), from the category SGPΣ to itself. We will

also show that Path(S; Σ) is an expansion. The following lemma will be useful:

Lemma 3.3.5. Let (S, Σ, fS) and (Y, Σ, fY ) be semigroup systems and let

ϕ : S → Y be a Σ-preserving semigroup system homomorphism. Then ϕ̆ restricted to

Path(S; Σ) is a Σ-preserving semigroup system homomorphism with image Path(Y ; Σ).

Proof: The path expansion sends the semigroup systems (S, Σ, fS) and (Y, Σ, fY ) to(
Path(S; Σ), Σ, gS

)
and

(
Path(Y ; Σ), Σ, gY

)
respectively. We showed in Lemma 3.2.5

(c) that ϕ̆ is a semigroup system homomorphism between M(S; Σ) and M(Y ; Σ).

Hence the restriction of ϕ̆ to Path(S; Σ) is also a homomorphism. To see that its

image is Path(Y ; Σ), suppose that (s, Q, d) ∈ Path(Y ; Σ). Then there exists a word

w ∈ Σ+ such that bsfY
w−→ dc = Q. The element

(
s, bsfS

w−→ (sw)fSc, (sw)fS

)
is in

Path(S; Σ). Moreover we have that
(
s, bsfS

w−→ (sw)fSc, (sw)fS

)
ϕ̆ = (s, Q, d). Thus

Path(S; Σ)ϕ̆ = Path(Y ; Σ). Next we prove that the restriction of ϕ̆ is Σ-preserving.

To do so, we must show that gS ◦ ϕ̆ = gY . Let t ∈ Σ. Then it follows

t(gS ◦ ϕ̆) = (t, •
tfS

, tfS)ϕ̆

= (t, •
tfS

ϕ̂, tfS ◦ ϕ)

= (t, •
tfS◦ϕ

, tfY )

= (t, •
tfY

, tfY )

= tgY .

We see that gS ◦ ϕ̆ = gY . We conclude that ϕ̆ is Σ-preserving. �

44



Figure 3.10: Diagram showing that the path expansion of semigroups is a functor.

Theorem 3.3.6. The map Path( ; Σ) is a functor from SGPΣ to itself. Moreover,

Path( ; Σ) is a semigroup expansion.

Proof: The map Path( ; Σ) sends a Σ-generated semigroup system (S, Σ, f) to the

Σ-generated semigroup system
(
Path(S; Σ), Σ, g

)
. Moreover it maps a Σ-preserving

semigroup system homomorphism ϕ, idΣ : (S, Σ, fS)→ (Y, Σ, fY ) to a surjective semi-

group system homomorphism ϕ̆, idΣ. We must check that Path( ; Σ) satisfies the ap-

propriate functorial properties. To this end, let (S, Σ, fS), (Y, Σ, fY ), and (Z, Σ, fZ)

be semigroup systems and ϕ : S → Y and δ : Y → Z be Σ-preserving semigroup

system homomorphisms. It is straightforward to check that the diagrams in Figure

3.10 commute. Thus Path( ; Σ) is a functor from SGPΣ to itself.

We will also show that Path( ; Σ) is a semigroup expansion. Given a semigroup sys-

tem (S, Σ, f) and its path expansion
(
Path(S; Σ), Σ, id

)
. We showed in Proposition

3.3.4(d) that the maps εS, idΣ form a surjective semigroup system homomorphism

from
(
Path(S; Σ), Σ, id

)
to (S, Σ, f). Moreover the function εS, idΣ makes the dia-

grams shown in Figure 3.11 on page 46 commute. Thus εS, idΣ is a natural trans-
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Figure 3.11: Diagram showing the natural transformation from the semigroup path
expansion functor to the semigroup system identity functor.

formation between the functor Path( ; Σ) and the identity functor on Σ-generated

semigroup systems. This then implies that Path( ; Σ) is a semigroup expansion. �

Similarly, the monoid path expansion is a functor from MONΛ to itself. We

denote this functor by Pathmon( ; Λ).
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Chapter 4

Examples and Example-Specific

Properties

We devote this section to looking at the properties of M(S; Σ) for various cases of

semigroups: namely free semigroups, groups presented as semigroups, left-zero and

right-zero semigroups, direct products with one factor that is a left-zero semigroup

(in particular rectangular bands), and semilattices. These examples suggest the range

of characteristics that graph expansions of semigroups can have.

4.1 Free Semigroups

We would like to describe graph expansions of semigroup systems of free semigroups.

For simplicity, we will restrict ourselves to free semigroups generated in a very straight-

forward manner. Namely, we look at semigroup systems of the form (S, Σ, id). Note

that for this case, S ∼= Σ+. This restriction ensures that in the Cayley digraph

Cay(S; Σ), there is exactly one edge entering each vertex. We now characterize the

elements of the graph expansion:

Proposition 4.1.1. Let (S; Σ, id) be a semigroup system of a free semigroup S. If

(r, P, c) ∈M(S; Σ), then P is an rf -rooted tree containing the vertex c.
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Proof: The definition of the semigroup graph expansion implies that P is rf -rooted

and contains c. Since the Cayley digraph Cay(S; Σ) is comprised of |Σ| trees and P

is a rooted subdigraph, P is also a tree. �

In Section 3.2, we used examples of elements from the graph expansion of a free

semigroup, namely (S, {x, y}, id), where S is a free semigroup, to illustrate the graph

expansion operation. There are found in Figures 3.5 and 3.6 on page 28. We now turn

to look at the free monogenic semigroup, the free semigroup which can be generated

by one element. For this case, we will show that the graph expansion can be embedded

into a semidirect product whose structure is very easy to understand. To this end, let

(S, {x}, id) be the semigroup system of a free monogenic semigroup S. The associated

Cayley digraph Cay(S; {x}) is:

•
xf

x−→ •
x2f

x−→ •
x3f

x−→ •
x4f

. . .

Figure 4.1: The Cayley digraph Cay(S; {x}) for a free monogenic semigroup S.

Take N = {1, 2, 3, . . .} and let N be the semigroup (N, max). We define an action of

(N, +) on N by n � p = n + p. This is a semigroup action since

m � n � p = m � (n + p) = m + n + p = (m + n) � p.

Moreover each n ∈ N also acts on N :

n � max(p, q) = n + max(p, q) = max(n + p, n + q) = max(n � p, n � q).

This structure enables us to form the semidirect product N o N with the binary
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operation:

(p, m)(q, n) = (max(p, m � q), m + n) = (max(p, m + q), m + n).

The aim of the next proposition is to show that the graph expansion of a free mono-

genic semigroup is isomorphic to a subsemigroup of N o N. Put another way, since

(N, +) is isomorphic to the free monogenic semigroup x∗, what we are doing is showing

thatM(x∗, {x}) embeds in N o x∗.

Proposition 4.1.2. Consider the semigroup system (S, {x}, id) for the free mono-

genic semigroup S. ThenM(S; {x}) embeds in NoN as the subsemigroup {(p, m) |p ≥

m}.

Proof: All elements ofM(S; {x}) have the form (x, bx p−1−→ xpc, xc) where c ≤ p. Let

α : M(S; {x}) → {(p, m) |p ≥ m} be the map given by (x, bx p−1−→ xpc, xc) 7→ (p, c).

Further, let (x, bx p−1−→ xpc, xc), (x, bx q−1−→ xqc, xd) ∈M(S; {x}). We show that α is a

homomorphism:(
(x, bx p−1−→ xpc, xc)(x, bx q−1−→ xqc, xd)

)
α

= (x, bx m−1−→ xmc, xc+d)α where m = max{p, c + q}

= (m, c + d)

= (p, c)(q, d)

= (x, bx p−1−→ xpc, xc)α(x, b1 q−1−→ xqc, xd)α.

Thus the map α is a homomorphism. It is easy to check that it is bijective. This estab-

lishes the isomorphism betweenM(S; {x}) and the subsemigroup {(p, m) |p ≥ m}. �

The Path Expansion for Free Semigroups

Looking at the diagram like shown in Figure 4.1 on page 48, it is a straightforward

observation that if S is a free monogenic semigroup and |Σ| = 1, then Path(S; Σ) is

isomorphic to S. This result can be extended to describe all path expansions of free
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semigroups. Moreover, it can be further extended to all path expansions of semigroups

whose Cayley digraphs do not contain any cycles. A semigroup S will have a Cayley

digraph that does not contain cycles precisely when for all x ∈ S, we have x /∈ xS.

The following fact about such semigroups will be useful:

Lemma 4.1.3. Let (S, Σ, f) be a semigroup system of a semigroup S with the property

that for all x ∈ S, we have that x /∈ xS. If x
v−→ y and x

w−→ y are paths in Cay(S; Σ)

such that bx v−→ yc = bx w−→ yc, then v = w.

Proof: Assume the semigroup S has the property that for all x ∈ S, we have that

x /∈ xS. Let x
v−→ y and x

w−→ y be paths in Cay(S; Σ) such that

bx v−→ yc = bx w−→ yc. Write v = v1v2 . . . vm and w = w1w2 . . . wn where each

vi, wi ∈ Σ. By way of contradiction, assume there is a value k such that vk 6= wk.

However, as the underlying edge sets are the same, the path x
v−→ y passes through

the edge
(
x(v1v2 . . . vk−1)f, wk

)
and thus there must be some prefix v′ of v distinct

from v1v2 . . . vk−1 such that x(v′f) = x(v1v2 . . . vk−1)f . Write v′ = v1v2 . . . vj, again

with each vi ∈ Σ. Note that k − 1 6= j.

If j < k− 1, then x(v1 . . . vj)f = x(v1 . . . vj)f(vj+1 . . . vk−1)f . On the other hand,

if j > k − 1, then (v1 . . . vk−1)f = (v1 . . . vk−1)f(vk . . . vj)f . In both situations, there

is an element x for which x ∈ xS. As we assumed that there is no such element with

this property, we conclude that v = w. �

We can now give the main result. Recall that Σ+ is isomorphic to any free

semigroup on |Σ| generators.

Proposition 4.1.4. Let (S, Σ, f) be a semigroup system of a semigroup S with the

property that for all x ∈ S, we have that x /∈ xS. Then Path(S; Σ) ∼= Σ+.

Proof:

Define a map α : Σ+ → Path(S; Σ) by

w 7→ (w, •
wf

, wf) if w ∈ Σ;

w 7→ (r, brf v−→ wfc, wf) if w = rv with r ∈ Σ and v ∈ Σ+.
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To see that α is a homomorphism, let w1, w2 ∈ Σ+. There are four cases, depending

upon whether v and w are of length one or greater. We show the case w1, w2 ∈ Σ,

and note that the others are similar:

(w1w2)α = (w1, bw1f
w2−→ (w1w2)fc, (w1w2)f)

= (w1, •
w1f

, w1f)(w2, •
w2f

, w2f)

= (w1α)(w2α).

In order to see that α is injective, consider w1, w2 ∈ Σ+ such that w1α = w2α. We

rewrite the words as w1 = r1v1 and w2 = r2v2 where r1, r2 ∈ Σ and v1, v2 ∈ Σ∗. This

is the same as (r1, br1f
v1−→ w1fc, w1f) = (r2, br2f

v2−→ w2fc, w2f), from which it

follows that r1 = r2. Moreover, Lemma 4.1.3 guarantees that v1 = v2. This shows

that α is injective.

To show that α is surjective, let (r, brf v−→ (rv)fc, (rv)f) ∈ Path(S; Σ). Then

(rv)α = (r, brf v−→ (rv)fc, (rv)f). Thus Path(S; Σ) ∼= Σ+. �

Free semigroups are examples of semigroups which have the property that x /∈ xS

and thus Proposition 4.1.4 describes their path expansion structure.

4.2 Semigroup Systems of Groups

We now investigate groups generated as semigroups. For this section, we assume

(S, Σ, f) is a semigroup system of a group S. Though we do not know if Cay(S; Σ)

is a graph (this depends on the system), we do know that it is strongly connected

and that for all r ∈ Σ and c ∈ S, there is exactly one r-labeled edge terminating

at c. These facts will aid us in showing that the graph expansion M(S; Σ) has the

following characteristics.

Proposition 4.2.1. Let (S, Σ, f) be a semigroup system of a group S. The following

are true about M(S; Σ):
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(a) an element (r, P, c) is idempotent if and only if c = 1 and P = P 1
r (note that

P = P 1
r is equivalent to (1, r) ∈ E(P ));

(b) E
(
M(S; Σ)

)
is a subsemigroup;

(c) let (r, P, 1), (s, Q, 1) ∈ E
(
M(S; Σ)

)
; then (r, P, 1) and (s, Q, 1) commute if

and only if r = s;

(d) fix r ∈ Σ; the set {(r, P, 1)|(r, P, 1) is idempotent} is a semilattice;

(e) an element (r, P, c) is regular if and only if P = P 1
r and P contains a path

c −→ 1;

(f) if (r, P, c) is regular, then (s, Q, d) is an inverse if and only if d = c−1,

Q = c−1P , and there exists a path c −→ 1 in P which has (c, s) as its first

edge;

(g) Reg
(
M(S; Σ)

)
is a subsemigroup; if |Σ| = 1, then Reg

(
M(S; Σ)

) ∼= S; if

|Σ| ≥ 2, then Reg
(
M(S; Σ)

)
is not an inverse semigroup, but is locally an

inverse monoid.

Proof: Result (a) follows from Theorem 3.2.1(b) and the fact that 1 is the only

idempotent in a group. To prove part (b), let (r, P, 1), (s, Q, 1) ∈ E
(
M(S; Σ)

)
. From

(a), P = P 1
r , whereupon

P ∪ cQ1
s = P 1

r ∪ cQ1
s

= (P ∪ cQ1
s)

1
r.

Appealing to (a) again, the product (r, P, 1)(s, Q, 1) = (r, P ∪ cQ1
s, 1) is idempotent.

This gives the result (b).

Moving on to part (c), if idempotents (r, P, 1) and (s, Q, 1) commute, then The-

orem 3.2.1(d) says that r = s. Conversely, suppose r = s. From (a), P = P 1
r and

Q = Q1
r, whereupon P ∪ 1Q1

r = Q ∪ 1P 1
r . Thus,

(r, P, 1)(r, Q, 1) = (r, P ∪ 1Q1
r, 1) = (r, Q ∪ 1P 1

r , 1) = (r, Q, 1)(r, P, 1).
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Part (d) follows from (c).

We now wish to prove part (e). Suppose (r, P, c) is a regular element. From

Theorem 3.2.1(c), there exists some x ∈ V (P ) such that there is a c −→ x path in P ,

xc = c, and xP 1
r ⊆ P . In the group setting, the only candidate is x = 1, whereupon we

know that P = P 1
r and P contains a c −→ 1 path. The converse is a straightforward

consequence of Theorem 3.2.1(c).

In order to show part (f), assume (r, P, c) is regular and has inverse (s, Q, d).

Examining the third coordinate, we have that cdc = c. However, as multiplication for

the third coordinate is in a group setting, this is possible only if d = c−1. Thus we

have

(r, P, c)(s, Q, c−1)(r, P, c) = (r, P ∪ cQ1
s ∪ P 1

r , c) = (r, P, c). (4.2.1)

Similarly,

(s, Q, c−1)(r, P, c)(s, Q, c−1) = (s, Q ∪ c−1P 1
r ∪Q1

s, c
−1) = (s, Q, c−1). (4.2.2)

From Equation 4.2.1, cQ1
s ⊆ P , whereupon Q1

s ⊆ c−1P . Similarly, from Equation

4.2.2 we have that c−1P 1
r ⊆ Q ⊆ Q1

s. Thus Q = Q1
s = c−1P . Since Q is rooted at s,

there is a 1 −→ c−1 path with first edge (1, s) in Q1
s. Translating both this path and

Q1
s by c shows that there is a c −→ 1 path with first edge (c, s) in P = cQ1

s.

For the converse, let (r, P, c) be regular and s ∈ Σ be the label of the first edge

of a c −→ 1 path in P . We want to show that the element (s, c−1P, c−1) is an inverse

of (r, P, c). Using the fact that P = P 1
r and (c, s) ∈ E(P ), we have that

(r, P, c)(s, c−1P, c−1)(r, P, c) = (r, P ∪ c(c−1P )1
s ∪ cc−1P 1

r , cc−1c)

= (r, P ∪ cc−1P ∪ {(c, s)} ∪ P 1
r , c)

= (r, P, c).
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The equation

(s, c−1P, c−1)(r, P, c)(s, c−1P, c−1) = (s, c−1P, c−1)

can be shown to hold for similar reasons.

Finally, we wish to prove part (g). Let (r, P, c) and (s, Q, d) be regular elements

and consider the product (r, P, c)(s, Q, d) = (r, P ∪ cQ1
s, cd). From (e), we know that

P = P 1
r , which then implies that

P ∪ cQ1
s = P 1

r ∪ cQ1
s = (P ∪ cQ1

s)
1
r.

Again using the characterization from (e), P contains a c −→ 1 path and Q contains

a d −→ 1 path. Hence cQ1
s contains a cd −→ c path. Combining this information,

P ∪ cQ1
s contains a cd −→ 1 path, whereupon, again by (e), (r, P, c)(s, Q, d) is regular

and we conclude that Reg
(
M(S; Σ)

)
is a subsemigroup. Figure 4.2 illustrates the

product of regular elements.

Figure 4.2: The diagram on the left shows a subdigraph that must be contained in
P in order for an element (r, P, c) to be regular. It indicates that P must contain
rf −→ c and c −→ rf paths. In the diagraph on the right, we show a subdigraph
that the product of regular elements will contain.

Suppose |Σ| = {r}. Then S is a finite cyclic group, since this is the only type
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of group that can be generated as a semigroup by one element. Moreover, any

path from rf to 1 passes through all edges of Cay(S; Σ) except possibly (1, r). If

(r, P, c) ∈ Reg
(
M(S; Σ)

)
, then from (e), P = P 1

r and P contains the path c −→ 1.

Together these imply that P = Cay(S; Σ). Thus there is exactly one regular element

corresponding to each vertex c ∈ S. The map σS, when restricted to Reg
(
M(S; Σ)

)
,

is an isomorphism between Reg
(
M(S; Σ)

)
and S.

Suppose |Σ| ≥ 2. We will construct two idempotents that do not commute.

Let r and s be distinct elements of Σ. We can find words u, w ∈ Σ+ such that

(rf)−1 = uf and (sf)−1 = wf . Then from (a), the elements (r, brf ur−→ rfc, 1)

and (s, bsf ws−→ sfc, 1) are idempotent. However from c, they do not commute and

therefore Reg
(
M(S; Σ)

)
is not an inverse semigroup.

Finally we show that Reg
(
M(S; Σ)

)
is locally inverse. We will use the charac-

terization of inverse semigroups that a regular semigroup is inverse if and only if its

subset of idempotents commutes. Let (r, P, 1) ∈ E
(
M(S; Σ)

)
. We consider the sub-

set (r, P, 1)Reg
(
M(S; Σ)

)
(r, P, 1). Since it inherits closure from Reg

(
M(S; Σ)

)
, it is

certainly a subsemigroup.

Let (s, Q, d) ∈ Reg
(
M(S; Σ)

)
. We claim that (r, P, 1)(s, Q, d)(r, P, 1) has an in-

verse in (r, P, 1)Reg
(
M(S; Σ)

)
(r, P, 1). Since (s, Q, d) is regular, by (f) we know that

it has an inverse in M(S; Σ) of the form (t, d−1Q, d−1) where Q contains the edge

(d, t). Consider the product:(
(r, P, 1)(s, Q, d)(r, P, 1)

)(
(r, P, 1)(t, d−1Q, d−1)(r, P, 1)

)(
(r, P, 1)(s, Q, d)(r, P, 1)

)
= (r, P, 1)(s, Q, d)(r, P, 1)(t, d−1Q, d−1)(r, P, 1)(s, Q, d)(r, P, 1)

= (r, P, 1)(s, Q ∪ dP 1
r ∪ d(d−1Q)1

t ∪ P 1
r ∪Q1

s, d)(r, P, 1)

= (r, P, 1)(s, Q ∪ dP 1
r ∪ {(d, t)} ∪ P 1

r , d)(r, P, 1)

= (r, P, 1)(s, Q, d)(r, P, 1).
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Similarly, we could show that

(
(r, P, 1)(t, d−1Q, d−1)(r, P, 1)

)(
(r, P, 1)(s,Q, d)(r, P, 1)

)(
(r, P, 1)(t, d−1Q, d−1)(r, P, 1)

)
=

(
(r, P, 1)(t, d−1Q, d−1)(r, P, 1)

)
.

Thus we see that every element of (r, P, 1)Reg
(
M(S; Σ)

)
(r, P, 1) has an inverse. Since

all the elements of this subsemigroup have the same root, its idempotents must com-

mute by (c). Moreover (r, P, 1)Reg
(
M(S; Σ)

)
(r, P, 1) has identity element (r, P, 1).

Therefore it follows that (r, P, 1)Reg
(
M(S; Σ)

)
(r, P, 1) is an inverse submonoid, which

implies that Reg
(
M(S; Σ)

)
is locally an inverse monoid. �

The following example illustrates the properties described in Proposition 4.2.1.

Example: We investigate the graph expansion of the free group S = gp〈x |∅〉. We

generate S as a semigroup by the set {a, b} with map f : {a, b} → S defined by

a 7→ x, b 7→ x−1. This yields the semigroup system (S, {a, b}, f). The Cayley digraph

Cay(S; {a, b}) is shown in Figure 4.3. We describe the idempotent, regular, inverse,

and indecomposable elements ofM(S; {a, b}) in Table 4.1 on page 57.

The Path Expansion for Semigroup Systems of Groups

The next result is the analog of Proposition 4.2.1 for semigroup path expansions.

When there is no difference between the result or proof for the path expansion and

the corresponding result or proof for the graph expansion, we indicate this in the

Figure 4.3: The Cayley digraph Caysgp(S; {a, b}) of the semigroup system
(S, {a, b}, a 7→ x, b 7→ x−1), where S is a free monogenic group.
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Special Description Example
elements

Idempotents Have form (r, P, 1) where P =
P 1

r ; i.e. (1, r) ∈ E(P ).

Regular elements
Have form (r, P, xn) where
n ∈ Z, P = P 1

r and the
xn −→ 1 path is in P .

Inverses

Let (r, P, xn) be regular.
Its inverse(s) have the
form (s, x−nP, x−n) where
s ∈ {a, b}, (xn, s) ∈ E(P ),
and bxn(sf) −→ 1c ⊆ P .

(a,A, x2) shown above and

Indecomposable
elements

Have form (a, P, x) with
(1, a), (x2, b) /∈ E(P ) or
have form (b, P, x−1) with
(1, b), (x−2, a) /∈ E(P ).

Table 4.1: Descriptions and examples of special elements of the graph expansion
M(S; {a, b}) where S is a free group.

�
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proposition with the comment “no change” and omit the proof.

Proposition 4.2.2. Let (S, Σ, f) be a semigroup system of a group S. The following

are true about Path(S; Σ):

(a ′) an element (r, P, c) is idempotent if and only if c = 1 and P = P 1
r (no change);

(b ′) E
(
Path(S; Σ)

)
is a subsemigroup;

(c ′) let (r, P, 1), (s, Q, 1) ∈ E
(
Path(S; Σ)

)
; then (r, P, 1) and (s, Q, 1) commute if

and only if r = s (no change);

(d ′) fix r ∈ Σ; the set {(r, P, 1)|(r, P, 1) ∈ E
(
Path(S; Σ)

)
} is a semilattice;

(e ′) an element (r, P, c) is a regular element of Path(S; Σ) if and only if P = P 1
r

and P is strongly connected;

(f ′) if (r, P, c) is regular, then (s, Q, d) is an inverse if and only if d = c−1,

Q = c−1P , and (c, s) ∈ E(P );

(g ′) Reg
(
Path(S; Σ)

)
is a subsemigroup; if |Σ| = 1, then

Reg
(
Path(S; Σ)

) ∼= Reg
(
M(S; Σ)

) ∼= S; if |Σ| ≥ 2, then Reg
(
Path(S; Σ)

)
is not an inverse semigroup, but is locally an inverse monoid.

Proof: We start by showing (b ′). Let (r, P, 1), (s, Q, 1) ∈ E
(
Path(S; Σ)

)
. Consider

the product (r, P, 1)(s, Q, 1). From Proposition 3.3.4(a), it is an element of Path(S; Σ)

and from Proposition 4.2.1(a), it is also idempotent. Thus (r, P, 1)(s, Q, 1) ∈ E
(
Path(S; Σ)

)
,

whereupon E
(
Path(S; Σ)

)
is a subsemigroup.

Part (d ′) follows from (c ′). Turning to (e ′), let (r, P, c) ∈ Path(S; Σ). Suppose

(r, P, c) is regular and let x, y ∈ V (P ). Proposition 4.2.1(e), says that P = P 1
r and

that there is a c −→ 1 path in P . As P is 1-rooted, we know there exist 1 −→ x

and 1 −→ y paths. From the definition of path expansion, there also exist x −→ c

and y −→ c paths. Using these, we can create paths from x to y and vice-versa.

Thus P is strongly connected. Conversely, if P = P 1
r and P is strongly connected,

then 1 ∈ V (P ) and there is a c −→ 1 path in P . Hence by Proposition 4.2.1(e), the

element (r, P, c) is regular.
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Next we turn to prove (f ′). We assume that (r, P, c) is regular. If (s, Q, d) is an

inverse of (r, P, c) in Path(S; Σ), then it is in M(S; Σ) as well. Proposition 4.2.1(f)

says that d = c−1, Q = c−1P , and (c, s) ∈ E(P ). Conversely, assume (r, P, c) is

regular and suppose d = c−1, Q = c−1P , and (c, s) ∈ E(P ). Proposition 4.2.1(f)

says that (s, Q, d) is an inverse of (r, P, c) in M(S, Σ). From (d′), we know that P

is strongly connected. Thus Q is also strongly connected, from which it follows that

(s, Q, d) ∈ Path(S, Σ).

Lastly, we wish to show (g ′). Suppose (r, P, c), (s, Q, d) ∈Reg
(
Path(S; Σ)

)
. Then

from (e ′), we know that 1 ∈ V (Q) and that P and Q are strongly connected. Hence,

P ∪cQ1
s is also strongly connected. Since P = P 1

r , it follows that P ∪cQ1
s = (P ∪cQ1

s)
1
r.

Appealing again to (e ′), we have that (r, P, c)(s, Q, d) is a regular element ofM(S; Σ).

Since Path(S, Σ) is closed under the operation, (r, P, c)(s, Q, d) is also in Path(S; Σ)

and hence in Reg
(
Path(S; Σ)

)
. We conclude that Reg

(
Path(S; Σ)

)
is a subsemigroup

For the case when |Σ| = 1, the same type of argument as given in Proposition

4.2.1(g) shows that Reg
(
Path(S; Σ)

)
} ∼=Reg

(
Path(S; Σ)

)
} ∼= S. For the case when

Σ ≥ 2, the argument from Proposition 4.2.1(g) also applies, with a few slight modifi-

cations. Namely, we use E
(
Path(S; Σ)

)
and Reg

(
Path(S; Σ)

)
instead of E

(
M(S; Σ)

)
and Reg

(
M(S; Σ)

)
and thus make use of the result that Reg

(
Path(S; Σ)

)
is a sub-

semigroup. �

Example: We return to the example of the free group S = gp〈x |∅〉 with the semi-

group system (S, {a, b}, a 7→ x, b 7→ x−1). This is the same semigroup system used in

the example at the end of Section 4.2. For the path expansion, we can provide further

description of idempotent, regular, and indecomposable elements. Namely, in light of

Proposition 4.2.2(e ′), all idempotent and regular elements in the path expansion have

strongly connected subdigraphs. In the free group with one generator, the strongly

connected digraphs are all graphs. This information is incorporated into Table 4.2.�
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Special Description Example
elements

Idempotents Have form (r, P, 1) where P is a
graph.

Regular elements Have form (r, P, xn) where n ∈ Z,
1 ∈ V (P ), and P is a graph.

Indecomposable ele-
ments

There are two: (a, •
a
, x) and

(b, •
b
, x−1).

Table 4.2: Descriptions and examples of special elements of the path expansion
Path(S; {a, b}) where S is a free group.

4.3 Left-Zero Semigroups

Let (L, Σ, f) be a semigroup system of a left-zero semigroup L. The Cayley digraph

Cay(L; Σ) has |L| components and each component contains one vertex with |Σ| loops,

each loop labeled by a different element of Σ. For example, the left-zero semigroup

L = 〈x, y |xy = x, yx = y〉 generated by Σ = {r, s, t} under the map r 7→ x, s 7→ x,

and t 7→ y is shown in Figure 4.4.

As we see in Figure 4.4, the structure of the left-zero semigroup forces all elements of

M(L; Σ) to have the form (r, P, rf). Additionally, all rooted digraphs are determined

by their sets of edge labels. Thus if we know P is a rooted digraph and we are given

the edge label set Σ(P ) and its root c, it is easy to reconstruct P . This enables us to

give an alternative description of graph expansions of left-zero semigroups:
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Figure 4.4: The Cayley digraph of a left-zero semigroup of order two generated by a
3 element set.

Lemma 4.3.1. Let (L, Σ, f) be a semigroup system of a left-zero semigroup L. Then

M(L; Σ) is isomorphic to the semigroup with elements from Σ × P(Σ) and binary

operation:

(a, A)(b, B) = (a, A ∪B ∪ {b}).

Proof: Use the map M(L; Σ) → L × P(Σ) given by (r, P, rf) 7→
(
r, Σ(P )

)
. It is

easy to check that this map is an injective and surjective homomorphism, and thus

an isomorphism. �

Using this alternative description, it is clear that the order of Σ, not the order

of L, most influences the structure of M(L; Σ). We now state many of the basic

properties ofM(L; Σ), giving elements in the form
(
r, Σ(P )

)
.

Proposition 4.3.2. Let (L, Σ, f) be a semigroup system of a left-zero semigroup L.

The following are true about M(L; Σ):

(a) an element
(
r, Σ(P )

)
is idempotent if and only if r ∈ Σ(P );

(b) E
(
M(L; Σ)

)
is a subsemigroup;

(c) elements
(
r, Σ(P )

)
and

(
s, Σ(Q)

)
commute if and only if r = s;

(d) an element
(
r, Σ(P )

)
is regular if and only if it is idempotent;

(e) if
(
r, Σ(P )

)
and

(
s, Σ(Q)

)
are regular, then they are inverses of each other if

and only if Σ(P ) = Σ(Q);

(f) if |Σ| = 1, then E
(
M(L; Σ)

)
is the trivial group; if |Σ| > 1, then E

(
M(L; Σ)

)
is not commutative;
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(g) M(L; Σ) is locally a semilattice; the local subsemigroup obtained with idem-

potent
(
r, Σ(P )

)
is {(r, T )|Σ(P ) ⊆ T}; it is isomorphic to the semigroup of

all subsets of Σ containing Σ(P ) with the operation union.

Proof: Properties (a) through (e) are easily obtained using the description of

multiplication given in Lemma 4.3.1. For (f), if |Σ| = 1, then E
(
M(L; Σ)

)
contains

precisely one idempotent and is by default trivial. If |Σ| > 1, then we can use (a) and

(c) to find two idempotents that do not commute.

We wish to show that M(L; Σ) is locally a semilattice. Let
(
r, Σ(P )

)
be an

idempotent and let
(
s, Σ(Q)

)
∈ M(L; Σ). By (a), we know r ∈ Σ(P ) and hence the

product

(
r, Σ(P )

)(
s, Σ(Q)

)(
r, Σ(P )

)
= (r, Σ(P ) ∪ Σ(Q) ∪ {s}) (4.3.1)

is also idempotent. By (c), all idempotents with first entry r commute. Thus the

local subsemigroup at
(
r, Σ(P )

)
is a semilattice. The map (r, T ) 7→ T sends this

local subsemigroup to the semigroup of all subsets of Σ containing Σ(P ). It is clearly

injective, surjective, and preserves the operation, and is thus an isomorphism. �

The Path Expansion for Left-Zero Semigroups

Since all rooted digraphs in Cay(L; Σ) can be traversed by paths, we have the following

result:

Proposition 4.3.3. Let (L, Σ, f) be a semigroup system of a left-zero semigroup L.

Then Path(L; Σ) ∼=M(L; Σ).

4.4 Right-Zero Semigroups

In the previous chapter we gave an example of the Cayley digraph of a right-zero

semigroup with three elements generated by a three element set (see Figure 3.1 on
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page 26). As indicated in Figure 3.1, the Cayley digraph of a right-zero semigroup

system (R, Σ, f) has the following form: for every element a ∈ R and every r ∈ Σ, the

digraph Cay(R; Σ) contains an r-labeled edge from a to rf . The Cayley digraph also

has the useful property that the left action of S on Cay(R; Σ) (corresponding to left

translation by elements of S) is trivial. In other words, if c ∈ S and P ⊆ Cay(R; Σ),

then cP = P . This enables us to simplify the product for graph expansion elements.

Lemma 4.4.1. Let (R, Σ, f) be a semigroup system of a right-zero semigroup R.

Then (r, P, c)(s, Q, d) = (r, P ∪Q ∪ {(c, s)}, d).

Proof: We derive that:

(r, P, c)(s, Q, d) = (r, P ∪ c(Q1
s), cd)

= (r, P ∪ cQ ∪ {c(1, s)}, d)

= (r, P ∪Q ∪ {(c, s)}, d). �

This simplification will be useful as we describe many of the properties of right-zero

semigroup graph expansions.

Proposition 4.4.2. Let (R, Σ, f) be a semigroup system of a right-zero semigroup R.

The following are true about M(R; Σ):

(a) an element (r, P, c) is idempotent if and only if (c, r) ∈ E(P );

(b) E
(
M(R; Σ)

)
is a subsemigroup if and only if |R| = 1;

(c) elements (r, P, c) and (s, Q, d) commute if and only if s = r and c = d;

(d) an element (r, P, c) is regular if and only if there is a non-empty c −→ rf

path in P ;

(e) Reg
(
M(R; Σ)

)
is a subsemigroup if and only if |R| = 1; moreover, if |R| = 1,

then Reg
(
M(R; Σ)

)
= E

(
M(R; Σ)

)
;
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(f) if (r, P, c) is regular, then (s, Q, d) is an inverse if and only if P = Q and

(c, s), (d, r) ∈ E(P );

(g) M(R; Σ) is locally a semilattice.

Proof: To prove part (a), suppose (r, P, c) is idempotent. Then from Theorem

3.2.1 (b), cP 1
r ∈ P , which gives that (c, r) ∈ E(P ). Conversely, if (c, r) ∈ E(P ),

then cP 1
r = cP ∪ {(c, r)} = P . Again appealing to Theorem 3.2.1 (b), (r, P, c) is

idempotent.

Moving on to part (b), suppose E
(
M(R; Σ)

)
is a subsemigroup. Let r, s ∈ Σ.

We wish to show that rf = sf . Let P be the digraph consisting of the r-labeled loop

at rf . Similarly, let Q be the digraph consisting of the s-labeled loop at sf . By part

(a), both (r, P, rf) and (s, Q, sf) are idempotent elements ofM(R; Σ). Moreover, the

element (r, P, rf)(s, Q, sf), which we show below, is idempotent.

Thus from part (a), the digraph P∪(rf)Q1
s contains the edge (sf, r). This implies that

rf = sf . Hence |R| = 1. For the converse, assume |R| = 1. Let (r, P, c) and (s, Q, c)

be idempotents. From (a), we know that (c, r) ∈ E(P ). Hence (c, r) ∈ E(P ∪ Q),

whereupon we see that the product is idempotent.

In order to show (c), suppose elements (r, P, c) and (s, Q, d) commute. Then

(r, P ∪ cQ1
s, d) = (s, Q ∪ dP 1

r , c). Immediately we see that r = s and c = d. To

prove the converse, assume that r = s and c = d. Let (r, P, c), (r, Q, c) ∈ M(R; Σ).

Recall that left-translation corresponds to the identity map for subdigraphs, i.e. that
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cP = P and cQ = Q. Therefore,

(r, P, c)(r, Q, c) = (r, P ∪ cQ1
r, c)

= (r, cP ∪Q ∪ {(c, r)}, c)

= (r, Q ∪ cP 1
r , c)

= (r, Q, c)(r, P, c).

We now wish to prove (d). Suppose (r, P, c) is regular. Let (s, Q, d) be an inverse.

Then it follows that

(r, P, c) = (r, P, c)(s, Q, d)(r, P, c) =
(
r, P ∪Q ∪ {(c, s), (d, r)}, c

)
.

The subdigraph Q, by virtue of being sf -rooted, contains an sf −→ d path. Affixing

the edges (c, s) and (d, r) to this path produces the desired non-empty c −→ rf path

in P . For the converse, suppose that (r, P, c) is such that P contains a non-empty

c −→ rf path. Thus, there exists some vertex x ∈ V (P ) such that (x, r) ∈ E(P ).

From the properties of right zero semigroups, xc = c and xP 1
r = P . Moreover, if we

combine the c −→ rf path with a rf −→ x path, we obtain a c −→ x path in P .

Using Theorem 3.2.1(c), we conclude that (r, P, c) is regular.

We turn to proving (e). The same argument as used in part (b) shows that

if Reg
(
M(R; Σ)

)
is a subsemigroup, then |R| = 1. Conversely, if |R| = 1, then

(a) and (d) imply that all regular elements are idempotent, i.e. we obtain that

Reg
(
M(R; Σ)

)
= E

(
M(R; Σ)

)
. Thus (b) implies that Reg

(
M(R; Σ)

)
is a subsemi-

group.

In order to show (f), suppose that (r, P, c) and (s, Q, d) are inverses. Then

(r, P, c) = (r, P, c)(s, Q, d)(r, P, c) = (r, P ∪Q ∪ {(c, s), (d, r)}, c).

We see immediately that Q ⊆ P and (c, s), (d, r) ∈ E(P ). The corresponding equation
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with (s, Q, d) on the left hand side shows that P ⊆ Q. Hence P = Q. On the other

hand, if we assume that P = Q and (c, s), (d, r) ∈ E(P ), then the converse is evident

upon examining the relevant products.

Finally, we turn to the proof of (g). Assume (r, P, c) is idempotent and let

(s, Q, d) ∈M(S; Σ). Consider the element

(r, P, c)(s, Q, d)(r, P, c) =
(
r, P ∪Q ∪ {(c, s), (d, r)}, c

)
.

Since (c, r) ∈ E(P ) ⊆ E
(
P ∪ Q ∪ {(c, s), (d, r)}

)
, we know by (a) that the element

(r, P, c)(s, Q, d)(r, P, c) is idempotent. Appealing to (c), all elements of

(r, P, c)M(S; Σ)(r, P, c) commute. ThusM(S; Σ) is locally a semilattice. �

The Path Expansion for Right-Zero Semigroups

The properties of the graph expansion of right-zero semigroup systems carry over to

the path expansion. We give these results in Proposition 4.4.3. As before, when there

is no difference between the result or proof for the path expansion with that for the

graph expansion in Proposition 4.4.2, we indicate this with the comment “no change”

and omit the proof.

Proposition 4.4.3. Let (R, Σ, f) be a semigroup system of a right-zero semigroup R.

The following are true about Path(R; Σ):

(a ′) an element (r, P, c) is idempotent if and only if (c, r) ∈ E(P ) (no change);

(b ′) E
(
Path(R; Σ)

)
is a subsemigroup if and only if |R| = 1;

(c ′) elements (r, P, c) and (s, Q, d) commute if and only if s = r and c = d

(no change);

(d ′) an element (r, P, c) is regular if and only if P is strongly connected;

(e ′) Reg
(
Path(R; Σ)

)
is a subsemigroup if and only if |R| = 1; moreover, if

|R| = 1, then Reg
(
Path(R; Σ)

)
= E

(
Path(R; Σ)

)
;
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(f ′) if (r, P, c) ∈ Path(S; Σ) is regular, then (s, Q, d) is an inverse if and only if

P = Q and (c, s), (d, r) ∈ E(P );

(g ′) Path(R; Σ) is locally a semilattice.

Proof: We start with a proof of (b ′). If E
(
Path(R; Σ)

)
is a subsemigroup, then the

same argument as given for Proposition 4.4.2(b) shows that |R| = 1. Conversely, if

|R| = 1, then R is also a left zero semigroup and by Proposition 4.3.3, we know that

Path(R; Σ) =M(R; Σ). From Proposition 4.3.2(b), we have that E
(
Path(R; Σ)

)
is a

subsemigroup.

In order to show (d ′), we suppose (r, P, c) is regular. Let x, y ∈ V (P ). Due to

the properties of the path expansion, the digraph P contains the following paths:

rf −→ x, rf −→ y, x −→ c, and y −→ c. Moreover, from the regularity of (r, P, c),

we know there is an element (s, Q, d) such that

(r, P, c) = (r, P, c)(s, Q, d)(r, P, c) =
(
r, P ∪Q ∪ {(c, s), (d, r)}, c

)
.

The digraph Q contains a path sf −→ d. If we attach the edges (c, s) and (d, r) to

this path, we see that P contains a c −→ rf path. Combining this path with the

earlier paths, we have paths from x to y and vice versa. Thus P is strongly connected.

We now wish to prove (e ′). If Reg
(
Path(R; Σ)

)
is a subsemigroup, then we can

again rely on the argument used to prove Proposition 4.4.2(b) to show that |R| = 1.

If |R| = 1, then as we noted before, R is a left zero semigroup and hence we have that

Path(R; Σ) =M(R; Σ). Thus applying Proposition 4.3.2(d) yields that

E
(
Path(R; Σ)

)
=Reg

(
Path(R; Σ)

)
. Then (b ′) implies that Reg

(
Path(R; Σ)

)
is a

subsemigroup.

One direction of (f ′) follows from Proposition 4.4.2(f). For the converse, assume

that (r, P, c) is regular and that (c, s), (d, r) ∈ E(P ). From Proposition 4.4.2(f), we

know that (s, P, d) is an inverse of (r, P, c) inM(S; Σ). We wish to show that (s, P, d)

is in the path expansion. Since (r, P, c) ∈ Path(S; Σ), there is a path rf −→ c in P

that traverses every edge of P . Similarly, as (s, P, d) ∈M(S; Σ) there is a sf −→ d in
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P . Combining these two paths via the edge (c, s), which we assumed to be in E(P ), we

obtain a path sf −→ d which traverses every edge of P . Thus (s, P, d) ∈ Path(S; Σ),

as desired.

Finally, if we replace E
(
M(R; Σ)

)
by E

(
Path(R; Σ)

)
in the proof of Proposition

4.4.2(g), we obtain a proof of (g ′). �

4.5 Semigroup Direct Products with Left-Zero

Factor, in Particular Rectangular Bands

In this section we investigate semigroup direct products of the form L × S, where

L is a left-zero semigroup and S is any semigroup. The direct product is equipped

with homomorphisms onto its factors, which we denote by πL and πS respectively.

Consider a system (L × S, Σ, f). We can use this system to form a system for S,

namely (S, Σ, f ◦πS). (We can just as easily form one for L, but it will not be needed

here.) Note that the map πS : L × S → S is a Σ-preserving semigroup system ho-

momorphism. The map πS induces two additional maps, one between subdigraphs of

Cayley digraphs and one between graph expansions.

π̂S : P
(
Cay(L× S; Σ)

)
→ P

(
Cay(S; Σ)

)
the maps between subdigraphs are determined by:

Vertices: πS : L× S → S;

Edges: (x, r) to (xπS, r);

π̆S :M(L× S; Σ)→M(S; Σ) (r, P, c) 7→ (r, P π̂S, cπS).

For intuition about π̂S, consider that the Cayley digraph Cay(L × S; Σ) consists of

|L| disjoint copies of Cay(S; Σ), each copy indexed by an element of L and isomor-

phic, as a Σ-labeled graph, to Cay(S; Σ). The map π̂S projects the copies onto their

corresponding parts in Cay(S; Σ). When restricted to single components, this map is
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injective. This leads to the following Lemma.

Lemma 4.5.1. Let (L× S, Σ, f) be a semigroup system where L is a left-zero semi-

group and S is any semigroup. If r ∈ Σ and P is an rf = (`r, xr)-rooted digraph,

then every vertex in P has first coordinate `r.

In light of Lemma 4.5.1, we will express all elements in the form
(
r, P, (`r, c)

)
.

From this lemma, we see that π̂S embeds rooted-digraphs of Cay(L×S; Σ) in Cay(S; Σ).

We are thus able to show the following:

Proposition 4.5.2. Let (L × S, Σ, f) be a semigroup system where L is a left-zero

semigroup and S is any semigroup. If we form the semigroup system (S, Σ, f ◦ πS),

then it follows that M(L × S; Σ) ∼= M(S; Σ) with an isomorphism given by π̆S as

defined above.

Proof: We wish to show that π̆S :M(L× S; Σ)→M(S; Σ) is a bijective homomor-

phism. In Lemma 3.2.5(c), we showed that π̆S is a semigroup homomorphism. We fo-

cus on showing that it is injective. Suppose
(
r, P, (`r, c)

)
,
(
s, Q, (`s, d)

)
∈M(L×S; Σ)

are such that
(
r, P, (`r, c)

)
π̆S =

(
s, Q, (`s, d)

)
π̆S. This implies that

(r, P π̂S, c) = (s, Qπ̂S, d), from which we see that r = s, Pπ̂S = Qπ̂S, and c = d. We

now prove that P = Q. If E(P ) = ∅, then we have E(Q) = ∅, since E(Qπ̂S) =

E(Pπ̂S) = ∅. In this case, P and Q both consist of the vertex at rf and are equal.

If E(P ) 6= ∅, then the rootedness of P and Q means that we can show that P = Q

by showing E(P ) = E(Q). Let
(
(`r, y), t

)
∈ E(P ). Then (y, t) ∈ E(Pπ̂S) = E(Qπ̂S).

This implies that there exists some
(
(`k, y), t

)
∈ E(Q). Since (`k, y) is a vertex in a

graph rooted at rf = (`r, xr), by Lemma 4.5.1, `k = `r. Hence
(
(`r, y), t

)
∈ E(Q),

whereupon E(P ) ⊆ E(Q). The reverse inclusion can be shown similarly. We conclude

that E(P ) = E(Q) and thus P = Q. This shows that the map π̆S is injective.

Suppose (r, P, c) ∈ M(S; Σ). Let P ′ be the copy of P rooted at (`r, xr) and

let (`r, c
′) be the vertex corresponding to c. Then

(
r, P ′, (`r, c

′)
)
π̆S = (r, P, c). We

conclude that π̆S is surjective and hence a bijection. �

69



If we re-examine left-zero semigroup systems in light of Proposition 4.5.2, this

result implies that the graph expansion of a Σ-generated left-zero semigroup system

is isomorphic to the graph expansion of the Σ-generated trivial group. By using

Proposition 4.5.2, we can derive much of Proposition 4.3.2 from Proposition 4.2.1:

namely 4.2.1(a) → 4.3.2(a), 4.2.1(b) → 4.3.2(b), 4.2.1(c) → 4.3.2(c), 4.2.1(e) and

4.3.2(a) → 4.3.2(d), 4.2.1(f) → 4.3.2(e), 4.2.1(g) and 4.3.2(f) → 4.3.2(f).

Proposition 4.5.2 also indicates an important way in which the semigroup graph

expansion differs from other graph expansions. Consider the group case: if we know

an inverse semigroup is a graph expansion of some group system, then we know that

the group involved is the maximal group image of the semigroup (see [17]). Similar

relationships hold for right cancellative monoid, unipotent, and inverse semigroup

graph expansions (see [7],[6], and [15]). In the semigroup case, knowing a semigroup

is a graph expansion of some semigroup system does not allow us to determine the

original semigroup. Thinking in terms of functors, Proposition 4.5.2 has the following

implication:

Corollary 4.5.3. The functorM( ; ) from the category SGPΣ to the category SGP

is not injective.

We give an example of two non-isomorphic semigroups whose graph expansions

are isomorphic:

Example: Let L be the left-zero semigroup with three elements,

L = 〈x1, x2, x3 |xixj = xi for i, j = 1, 2, 3〉

and S be the trivial group,

S = 〈y |y2 = y〉.

Choose Σ = {a, b, c} and use the map f : Σ→ L× S, given by

a 7→ (x1, y)

b 7→ (x2, y)

c 7→ (x3, y)
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The Cayley graphs Cay(L× S; Σ) and Cay(S; Σ) are shown below:

The graph expansionsM(L×S; Σ) andM(S; Σ) have 24 elements. They are isomor-

phic to the set {a, b, c}×P({a, b, c}) with the operation (r, A)(s, B) = (r, A∪B∪{s}).

Let P ⊆ Cay(L×S; Σ) be the subdigraph rooted at (x1, y) containing exactly the

b-labeled edge. Let P ′ ⊆ Cay(S; Σ) be the subdigraph rooted at y containing exactly

the b-labeled edge. Then the isomorphism referred to in Proposition 4.5.2, matches

the element (a, P, (x1, y)) ∈M(L× S; Σ) with (a, P ′, y) ∈M(S; Σ). �

Combining Proposition 4.4.2 (about right-zero semigroups) and Proposition 4.5.2

(about direct products with left-zero factor) enables us to describe many properties

of the graph expansion of a rectangular band. Note that of the results below, (f) is

the only one which differs, albeit in a minor way, from the corresponding result in

Proposition 4.4.2.

Corollary 4.5.4. Let (L×R, Σ, f) be a semigroup system of a rectangular band L×R.

Then the following are true about the semigroup graph expansion M(L×R; Σ):

(a) an element (r, P, c) is idempotent if and only if (c, r) ∈ E(P );

(b) E
(
M(L×R; Σ)

)
is a subsemigroup if and only if |R| = 1;

(c) elements (r, P, c) and (s, Q, d) commute if and only if s = r, c = d;

(d) an element (r, P, c) is regular if and only if there is a c −→ rf path in P ;

(e) Reg
(
M(R; Σ)

)
is a subsemigroup if and only if |R| = 1; moreover, if |R| = 1,

then Reg
(
M(R; Σ)

)
= E

(
M(R; Σ)

)
;

(f) if (r, P, c) is regular, then (s, Q, d) is an inverse if and only if Pπ̂R = Qπ̂R

and (cπR, s), (dπR, r) ∈ E(Pπ̂R);
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(g) M(L×R; Σ) is locally a semilattice.

Similar results can be shown for the graph expansions of direct products of left-

zero semigroups and groups, left-zero semigroups, semilattices, and so on.

The Path Expansion for Direct Products with Left-Zero Factor

We can replace the graph expansion by the path expansion in Proposition 4.5.2 and

Corollary 4.5.3. Aside from replacing M(L× S; Σ) by Path(L× S; Σ) and M(S; Σ)

by Path(S; Σ), the proofs remain unchanged.

Proposition 4.5.5. Let (L × S, Σ, f) be a semigroup system where L is a left-zero

semigroup and S is any semigroup. If we form the semigroup system (S, Σ, f ◦ πS),

then it follows that Path(L× S; Σ) ∼= Path(S; Σ).

Corollary 4.5.6. The functor Path( ; ) from the category SGPΣ to itself is not

injective.

We can also describe the properties of a path expansion of a rectangular band.

These results follow from Proposition 4.4.3 and 4.5.5.

Corollary 4.5.7. Let (L×R, Σ, f) be a semigroup system of a rectangular band L×R.

Then the following are true about the semigroup graph expansion Path(L×R; Σ):

(a ′) an element (r, P, c) is idempotent if and only if (c, r) ∈ E(P ) (no change);

(b ′) E
(
Path(L×R; Σ)

)
is a subsemigroup if and only if |R| = 1;

(c ′) elements (r, P, c) and (s, Q, d) commute if and only if s = r, c = d;

(d ′) an element (r, P, c) is regular if and only if P is strongly connected;

(e ′) Reg
(
Path(R; Σ)

)
is a subsemigroup if and only if |R| = 1; moreover, if

|R| = 1, then Reg
(
Path(R; Σ)

)
= E

(
Path(R; Σ)

)
;
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(f ′) if (r, P, c) is regular, then (s, Q, d) is an inverse if and only if Pπ̂R = Qπ̂R

and (cπR, s), (dπR, r) ∈ E(Pπ̂R);

(g ′) Path(L×R; Σ) is locally a semilattice.

4.6 Semilattices

We now explore graph expansions of semilattices. In contrast to groups and right-zero

semigroups, in the Cayley digraphs of semilattices there are no cycles passing through

two or more vertices. In other words, if (S, Σ, f) is a semigroup system of a semilattice

S, and a and b are distinct elements of S, then exactly one of the following holds:

1. there is a path from a to b but no path from b to a;

2. there is a path from b to a but no path from a to b;

3. there is no path from a to b nor from b to a.

Cayley digraphs of semilattice systems also contain many loops. For example, for

every r-labeled edge that lies on a path ending at the vertex a, there is an r-labeled

edge at a. An example of a Cayley digraph of a free semilattice with three generators

is shown in Figure 4.5.

Figure 4.5: A free semilattice with three distinct generators.
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In this section, the natural order for inverse semigroups will be useful: if S is an

inverse semigroup and a, b ∈ S, then a ≤ b if and only if there exists some c ∈ E(S)

such that a = bc. We note that for semilattices, S = E(S). Also, in the following

proposition we use the subdigraph P ↑↑
c . Recall that if P ⊂ Γ and c ∈ V (P ), then

P ↑↑
c is the maximal subdigraph of P which is accessible from c along paths in Γ, with

isolated vertices removed.

Proposition 4.6.1. Let (S, Σ, f) be a semigroup system of a semilattice S. The

following are true about M(S; Σ):

(a) (r, P, c) is an idempotent if and only if cP 1
r ⊆ P ;

(b) E
(
M(S; Σ)

)
is a subsemigroup if and only if |S| = 1;

(c) if elements (r, P, c) and (s, Q, d) commute, then r = s and the following are

true about P and Q

1. if c /∈ V (Q), then c < d and d ∈ V (P );

2. if d /∈ V (P ), then d < c and c ∈ V (Q);

3. if c ∈ V (Q), then Q\Q↑↑
c ⊆ P ;

4. if d ∈ V (P ), then P\P ↑↑
d ⊆ Q;

(d) an element (r, P, c) is regular if and only if it is idempotent;

(e) if (r, P, c) and (s, Q, d) are regular, then (r, P, c) has (s, Q, d) as an inverse if

and only if c = d and P ↑
c = Q↑

c.

Proof: The description of idempotents given in part (a) is the same as for the

general case in Theorem 3.2.1(b). We thus start by showing (b). Suppose |S| = 1.

Then S is the trivial group and part (b) follows from Proposition 4.2.1(b). We show

the converse with a contrapositive approach. Suppose |S| > 1. Then we can choose

some (r, P, rf), (s, Q, sf) with rf 6= sf as shown below:
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The product (r, P, rf)(s, Q, sf) = (r, P ∪ (rf)Q1
s, (rs)f) is not idempotent, because

it does not contain an r-labeled loop at vertex (rs)f . Hence for |S| > 1, E
(
M(S; Σ)

)
is not a subsemigroup.

Turning to (c), suppose that the elements (r, P, c) and (r, Q, d) commute, i.e. that

(r, P ∪ cQ1
s, cd) = (s, Q ∪ dP 1

r , cd). We see immediately that r = s (we could also

have used Theorem 3.2.1 (d)). We thus replace s by r for the remainder of the proof.

We now show 1., noting that 2. can be similarly shown. Suppose c /∈ V (Q). Thus

c 6= d. Then, as c ∈ V (P ) ⊆ V (P ∪ cQ1
s) = V (Q∪ dP 1

r ), we have that c ∈ V (dP 1
r ). It

follows that c < d, whereupon d /∈ V (cQ1
s). However, as d ∈ V (Q) ⊆ V (Q ∪ dP 1

r ) =

V (P ∪ cQ1
s), we see that d ∈ V (P ).

Next we show 3., again noting that 4. can be similarly shown. Suppose c ∈ V (Q).

Then Q↑↑
c is defined. Note that (Q\Q↑↑

c ) ∩ cQ1
s = ∅ since every vertex in cQ1

s is

accessible from c and every vertex in Q\Q↑↑
c is not accessible from c. However as

Q\Q↑↑
c ⊆ Q ⊆ Q ∪ dP 1

r = P ∪ cQ1
s,

it follows that Q\Q↑↑
c ⊆ P .

We now proceed to (d). Assume an element (r, P, c) is regular. Then it has an

inverse (s, Q, d) satisfying the equation

(r, P, c) = (r, P ∪ cQ1
s ∪ cdP 1

r , cd). (4.6.1)

We observe that c = cd. Hence, cP 1
r ⊆ P , whereupon from part (a), (r, P, c) is

idempotent. Since idempotent elements are always regular, this proves (d).
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Finally, in order to establish part (e), suppose (r, P, c) and (s, Q, d) are regular

and that (s, Q, d) is an inverse for (r, P, c). Then (r, P, c) = (r, P ∪ cQ1
s ∪ cdP 1

r , cd),

whereupon c = cd. We could similarly show that d = dc. Since S is a semilattice,

cd = dc and we have that c = d. From (d) we know that (s, Q, c) is idempotent.

Thus from (a), cQ1
s ⊆ Q. This implies that Q↑

c = cQ1
s. By Equation 4.6.1, cQ1

s ⊆ P .

However, since Q↑
c is rooted at c, Q↑

c ⊆ P ↑
c . We can derive the reverse containment

from the equation (s, Q, d) = (s, Q, d)(r, P, c)(s, Q, d). Thus P ↑
c = Q↑

c .

Conversely, suppose (r, P, c) and (s, Q, c) are regular and that P ↑
c = Q↑

c . Because

(s, Q, c) is idempotent, we know that cQ1
s ⊆ Q and hence that cQ1

s ⊆ Q↑
c = P ↑

c ⊆ P .

Since (r, P, c) is regular, by (d) and (a) we have that cP 1
r ⊆ P . This yields Equation

4.6.1. By the same means we could show that (s, Q, c) = (s, Q, c)(r, P, c)(s, Q, c).

Thus (r, P, c) and (s, Q, c) are inverses of each other. �

The Path Expansion for Semilattices

As we did for previous examples, we now turn to the path expansion of a semilattice

and describe its properties. When the results and proofs are the same as in Proposition

4.6.1, we make note of this.

Proposition 4.6.2. Let (S, Σ, f) be a semigroup system of a semilattice S. The

following are true about M(S; Σ):

(a ′) (r, P, c) is an idempotent if and only if for any edge (a, s) ∈ E(P 1
r ), we have

that (c, s) ∈ E(P );

(b ′) E
(
Path(S; Σ)

)
is a subsemigroup if and only if |S| = 1;

(c ′) if elements (r, P, c) and (s, Q, d) commute, then r = s and the following are

true about P and Q

1. if c /∈ V (Q), then c < d and d ∈ V (P ) (no change);

2. if d /∈ V (P ), then d < c and c ∈ V (Q) (no change);

3. if d ∈ V (P ), then P\P ↑
d ⊆ Q;
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4. if c ∈ V (Q), then Q\Q↑
c ⊆ P ;

(d ′) an element (r, P, c) is regular if and only if it is idempotent (no change);

(e ′) if (r, P, c) and (s, Q, d) are regular elements of Path(S; Σ), then (r, P, c) has

(s, Q, d) as an inverse if and only if c = d and for any t ∈ Σ, we have

(c, t) ∈ E(P ) if and only if (c, t) ∈ E(Q).

Proof: We first prove part (a ′). Let (r, P, c) ∈ Path(S; Σ) be idempotent and let

(a, s) ∈ E(P 1
r ). From the definition of elements in the path expansion, there is an

a −→ c path in P . Thus c ≤ a, whereupon ca = c. From Proposition 4.6.1(a), we have

that cP 1
r ⊆ P . Combining these two facts yields, (c, s) = c(a, s) ∈ E(cP 1

r ) ⊆ E(P ).

Conversely, suppose (r, P, c) is an element with the property that if (a, s) ∈ E(P 1
r ),

then (c, s) ∈ E(P ). Let (x, t) ∈ E(cP 1
r ). This implies that x ≤ c. Note that as we

are in the path expansion, x can not be strictly less than c, since there must be

a path from x to c. Thus x = c. From the original assumption, we know that

(x, t) = (c, t) ∈ E(P ). We see that cP 1
r ⊆ P , whereupon, from Proposition 4.6.1(a),

the element (r, P, c) is idempotent.

The argument used for Proposition 4.6.1(b) applies equally well to (b ′). We now

show (c ′)3., noting that 4. can be shown in the same way. Let (r, P, c) ∈ Path(S; Σ).

If x ∈ V (P ) is such that x is accessible from c in Cay(S; Σ), then x = c. Hence

P ↑
c = P ↑↑

c . The desired result than follows from Proposition 4.6.1(c)3..

Finally we look at (e ′). In a semilattice, if digraphs P and Q are traversed by

paths rf −→ c and sf −→ c respectively, then the property that P ↑
c = Q↑

c is equiv-

alent to the property that (c, t) ∈ E(P ) if and only if (c, t) ∈ E(Q) for any t ∈ Σ.

Thus (e ′) follows from Proposition 4.6.1(e). �
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Chapter 5

Properties of M(S; Σ) and

Properties of S

In this chapter we study how the properties of a semigroup system are reflected in

its graph expansion. In Section 5.1 we will consider the connection between special

elements, in particular periodic elements. This study of periodic elements can imme-

diately be put to use in Section 5.2, where our goal is to show that if a semigroup S

is E-dense, then S andM(S; Σ) share the same maximal group image.

In Sections 5.3 - 5.5 we discuss different properties of the semigroup graph expan-

sion related to finiteness. First, we show in Section 5.3 that graph expansions preserve

residual finiteness. Then in Section 5.4 we show thatM(S, Σ, f) is finitely generated

if and only if S and Σ are both finite. This contrasts with the path expansion, which

we showed to be Σ-generated in Proposition 3.3.4(c). Next in Section 5.5, we show

that the semigroup graph expansion has the same finite subgroup structure as the

semigroup being expanded.

In the final section 5.6, we examine what happens to a subsemigroup T of semi-

group S if we expand a system for S. Choosing any generating set, we prove that

the graph expansion of a semigroup system for T maps to a graph expansion for any

semigroup system of S.
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5.1 Periodic, Idempotent, Regular, and

Zero Elements

We are interested here in the relationship between the properties of elements of S and

those of elements ofM(S; Σ). One direction of this relationship is obvious: if (r, P, c)

is periodic, idempotent, or a zero, then c is as well. Thus our focus here is on how

knowing something about c ∈ S provides information about (r, P, c) ∈ M(S; Σ). We

first prove a general result about periodic elements, and then apply it to special cases

like idempotent elements, regular elements, and zeros.

Proposition 5.1.1. Suppose (r, P, c) ∈M(S; Σ) and there exist some m,n ∈ N such

that cm = cm+n. Then (r, P, c)m+n = (r, P, c)m+2n.

Proof: Observe that cm is the chosen vertex of both (r, P, c)m and (r, P, c)m+n.

Thus, right multiplying both these elements by (r, P, c)n will add the same edges and

vertices to their respective subdigraphs. Obviously, these edges and vertices are con-

tained in the subdigraph of (r, P, c)m+n. Thus, (r, P, c)m+n = (r, P, c)m+2n. �

Recall that an element c ∈ S is aperiodic if there is a k ∈ N such that ck = ck+1.

Using the value n = 1 in Proposition 5.1.1 yields the following corollary:

Corollary 5.1.2. Suppose (r, P, c) ∈M(S; Σ) and that c is aperiodic. Then (r, P, c)

is aperiodic.

The following result about idempotents is also a consequence of Proposition 5.1.1.

However, we include an alternative proof to illustrate algebraically how the subdi-

graphs are being absorbed.

Corollary 5.1.3. Suppose (r, P, c) ∈ M(S; Σ) and that c is an idempotent. Then

(r, P, c)2 is an idempotent of M(S; Σ).

Proof: Let c be an idempotent of S.
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(
(r, P, c)2

)2
= (r, P ∪ cP 1

r ∪ cP 1
r ∪ cP 1

r , c)

= (r, P ∪ cP 1
r , c)

= (r, P, c)2. �

Proposition 5.1.1 can also be used as a tool to construct regular elements in

M(S; Σ) from regular elements in S.

Corollary 5.1.4. Suppose that (r, P, c), (s, Q, d) ∈M(S; Σ), that c is regular element

of S, and that d is an inverse of c. Then (r, P, c)(s, Q, d)(r, P, c) is regular.

Proof: Assume the hypotheses. We use the symbol X to denote the product:

(
(r, P, c)(s, Q, d)(r, P, c)

)
(s, Q, d)

(
(r, P, c)(s, Q, d)(r, P, c)

)
.

We want to show that X equals (r, P, c)(s, Q, d)(r, P, c). Our assumptions imply that

dc is idempotent. Thus, we can use Proposition 5.1.1 to simplify X.

X = (r, P, c)
(
(s, Q, d)(r, P, c)

)3

= (r, P, c)
(
(s, Q, d)(r, P, c)

)2

= (r, P ∪ cQ1
s ∪ cdP 1

r ∪ cdcQ1
s ∪ cdcdP 1

r , cdcdc)

= (r, P ∪ cQ1
s ∪ cdP 1

r , c)

= (r, P, c)(s, Q, d)(r, P, c). �

In the next Proposition, we show how the presence of a zero in S influences

M(S; Σ).
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Proposition 5.1.5. Let (S, Σ, f) be a semigroup system of a semigroup S with zero,

denoted 0. The following are true about M(S; Σ):

(a) Assume |Σ| <∞. An element (r, P, c) is a left-zero ofM(S; Σ) if and only if

c = 0 and for every t ∈ Σ, (0, t) ∈ E(P );

(b) M(S; Σ) has no left-zeros if Σ is infinite;

(c) the following are equivalent:

i. M(S; Σ) has a right-zero;

ii. M(S; Σ) has a zero;

iii. |Σ| = 1.

Proof: For part (a), suppose (r, P, c) is a left-zero. Let t ∈ Σ. Then

(r, P, c) = (r, P, c)(t, •
t
, tf) = (r, P ∪ {(c, t)}, c). (5.1.1)

There is some word t1 . . . tn ∈ Σ+ (with each ti ∈ Σ) such that (t1 . . . tn)f = 0.

Since c(tf) = c for all t ∈ Σ, c = c(t1 . . . tn)f = c(0) = 0. We also see from

Equation 5.1.1 that (0, t) ∈ E(P ) for every t ∈ Σ. For the converse, suppose that

the digraph P in (r, P, 0) has the property that for all t ∈ Σ, (0, t) ∈ E(P ). Then

(r, P, 0)(t, •
t
, tf) = (r, P ∪ {(0, t)}, 0) = (r, P, 0). We see immediately that (r, P, 0) is

a left-zero ofM(S; Σ).

Moving on to (b), we suppose Σ is infinite. Then there is no finite subdigraph of

P that contains every edge of the form (0, t) for all t ∈ Σ. Hence M(S; Σ) does not

contain any left-zeros.

For (c), the implication ii. ⇒ i. is clear. We now show i. ⇒ iii. Suppose (r, P, c)

is a right-zero and let (s, Q, d) ∈M(S; Σ). Then

(r, P, c) = (s, Q, d)(r, P, c) = (s, Q ∪ dP 1
r , dc).

From this we see that r = s. Thus, |Σ| = 1.
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We conclude by showing iii. ⇒ ii. Assume Σ = {r}. Since S contains a zero,

there is some n ∈ N such that (rf)n = 0. This means that S is finite and hence

its Cayley graph is as well. Let P = Cay(S; {r}). We claim that the element

(r, P, 0) is the zero of M(S; {r}). From (a), we know that it is a left-zero. Let

(r, Q, d) ∈ M(S; {r}). Since there is exactly one generator, Q ∪ dP 1
r = P . Thus,

(r, Q, d)(r, P, 0) = (r, Q∪dP 1
r , 0) = (r, P, 0). Since (r, P, 0) is a right-zero, we conclude

that it is a zero. �

5.2 A Shared Maximal Group Image

One of the special properties of the group graph expansion is that it is an E-unitary

inverse semigroup. In contrast, we will start this section by proving that the semigroup

graph expansion is never E-unitary. This should not come as a surprise, since none

of the examples given in Chapter 4 was E-unitary. This established, our second goal

will be to consider how the E-unitary property can be replaced in a way that applies

to semigroup graph expansion. This will lead us to show that for E-dense semigroups,

the semigroup graph expansion has the same maximal group image as the original

semigroup.

Proposition 5.2.1. Let (S, Σ, f) be a semigroup system. Then M(S; Σ) is not

E-unitary.

Proof: In our definition of E-unitary, we exclude all semigroups that do not have

idempotents. Thus, when showing that M(S; Σ) is not E-unitary, we only need to

consider the case when E
(
M(S; Σ)

)
6= ∅. Let (r, P, c) ∈ E

(
M(S; Σ)

)
. From Theorem

3.2.1 (b), cP 1
r ⊆ P , whereupon (c, r) ∈ E(P ). We wish to construct an element which

is a right identity of (r, P, c), but which is not idempotent. Let Q be the digraph

Q = (P\{(c, r)})↑rf . Note that c ∈ V (Q), whereupon (r, Q, c) ∈ M(S; Σ). However,

we have that cQ1
r 6⊂ Q, from which we know that (r, Q, c) is not idempotent. But,
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cQ1
r ⊆ cP 1

r ⊆ P , from which we have:

(r, P, c)(r, Q, c) = (r, P ∪ cQ1
r, c) = (r, P, c).

ThusM(S; Σ) is not E-unitary. �

A semigroup S is E-dense if for every x ∈ S, there exists a y ∈ S such that

xy is an idempotent. Many familiar semigroups are E-dense including all groups,

inverse semigroups, periodic semigroups, and finite semigroups. Moreover, E-dense

semigroups have maximal group images just like E-unitary inverse semigroups do.

This result was shown by Hall and Munn in [9]. In this thesis, we included it as

Lemma 2.2.1. We can use our previous results about the idempotents ofM(S; Σ) to

show that the graph expansion construction preserves and reflects E-density.

Proposition 5.2.2. Let (S, Σ, f) be a semigroup system of a semigroup S. Then

M(S; Σ) is E-dense if and only if S is E-dense.

Proof: Suppose S is E-dense. Let (r, P, c) ∈ M(S; Σ). Since S is E-dense, there

exists some d ∈ S such that cd is idempotent. Let (s, Q, d) ∈ M(S; Σ). From Corol-

lary 5.1.3, (r, P, c)
(
(s, Q, d)(r, P, c)(s, Q, d)

)
=

(
(r, P, c)(s, Q, d)

)2
is idempotent. Con-

versely, suppose M(S; Σ) is E-dense. Since S is a homomorphic image of M(S; Σ),

S is E-dense. �

Applying Hall and Munn’s result in Lemma 2.2.1 to Proposition 5.2.2 shows that

if S is E-dense, then the graph expansionM(S; Σ) is E-dense and thus has a maximal

group image as well. We wish to show that this is the same maximal group image as

that of S. In order to do so, we will use the following Lemma:

Lemma 5.2.3. Let (S, Σ, f) be a semigroup system of an E-dense semigroup S. Let

(r, P, c), (s, Q, c) ∈ M(S; Σ). If H is a group and there exists a homomorphism

α :M(S; Σ)→ H, then (r, P, c)α = (s, Q, c)α.

83



Proof: Let (r, P, c)α = h and (s, Q, c)α = h′. Because S is E-dense, there exists

some d ∈ S such that cd is an idempotent. Let (x, T, d) be any element with d as the

chosen vertex. Define (x, A, dcd) to be the product:

(x, T, d)(r, P, c)(x, T, d)(s, Q, c)(x, T, d).

Let (x, A, dcd)α = k. We claim that the product (r, P, c)(x, A, dcd) is idempotent. To

see this, note that

(r, P, c)(x, A, dcd) = (r, P ∪ cT 1
x ∪ cdP 1

r ∪ cdcT 1
x ∪ cdQ1

s, cd).

Since cd is idempotent and

cd(P ∪ cT 1
x ∪ cdP 1

r ∪ cdcT 1
x ∪ cdQ1

s) = cdcT 1
x ∪ cdP 1

r ∪ cdQ1
s,

by Theorem 3.2.1 (b), we know that the product (r, P, c)(x, A, dcd) is idempotent.

Using a similar argument, (s, Q, c)(x, A, dcd) is idempotent too.

Every group homomorphism sends idempotents to the identity. Thus,

(
(r, P, c)(x, A, dcd)

)
α =

(
(s, Q, c)(x, A, dcd)

)
α = 1,

whereupon we have that hk = 1 and h′k = 1. This implies that h = h′, as desired. �

Lemma 5.2.3 implies that if S is an E-dense semigroup, then any homomorphism

from M(S; Σ) to a group H factors uniquely through S. This gives us the desired

result:

Theorem 5.2.4. Let (S, Σ, f) be a semigroup system of an E-dense semigroup S.

Then S and M(S; Σ) have the same maximal group image.

Proof: Since S is E-dense, it follows from Proposition 5.2.2 that M(S; Σ) is E-

dense. Thus both S and M(S; Σ) possess maximal groups, G and G′ respectively.
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Let α : M(S; Σ) → G′ be the homomorphism corresponding to the minimal group

congruence on M(S; Σ). Lemma 5.2.3 implies that α factors through S and hence

through G. This implies that G and G′ are isomorphic. �

It is quite helpful to use a diagram to see what is happening when we multiply

(r, P, c) by the element (x, A, dcd). We give such a diagram in Figure 5.1. The diagram

reflects how the different parts of the graph constructed to prove Lemma 5.2.3 are put

together. The diagram also graphically suggests why (r, P, c)(x, A, dcd) is idempotent:

when the digraph shown is translated by cd, it wraps back around itself.

Figure 5.1: The digraph of the product (r, P, c)(x, A, dcd) =
(
(r, P, c)(Tx, d)

)2
(s, Q, c)(Tx, d).

In Figure 5.2, we depict the relationship between a semigroup graph expansion

M(S; Σ), the semigroup S, and G, the maximal group image of S.

Figure 5.2: G is the maximal group image of S andM(S; Σ).
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In the diagram, H represents any group for which there is a homomorphism α :

M(S; Σ) → H. Lemma 5.2.3 guarantees the existence of β satisfying α = εS ◦ β.

Since εS is surjective, β is necessarily unique.

5.3 Residual Finiteness

We wish to show that the semigroup graph expansion preserves residual finiteness.

Recall, a semigroup S is residually finite if for every x, y ∈ S, there exists some

semigroup T and a map α : S → T such that xα 6= yα. To aid in the proof, we define

the set of factors of an element x ∈ S to be the following subset of S:

Fact(x) = { a| there exist some b, c,∈ S1 such that bac = x }.

We will use the following result:

Lemma 5.3.1. Let S be a semigroup. If Fact(x) is finite for every x ∈ S, then S is

residually finite.

Proof: Let x and y be distinct elements of S. The set I = S\{Fact(x) ∪ Fact(y)}

is an ideal of S. Thus we form the Rees quotient,M(S; Σ)/I, which is equal as a set

toM(S; Σ)\I ∪ {0}. If b and c are elements ofM(S; Σ)/I, their product is defined:

bc =

 bc if bc /∈ I

0 otherwise.

Note that the images of x and y are distinct. Thus S is residually finite. �

Lemma 5.3.2. Let (S, Σ, f) be a semigroup system. If S is residually finite, then

M(S; Σ) is residually finite.

Proof: Suppose S is residually finite. Let (r, P, c) ∈ M(S; Σ). We wish to show

that Fact(r, P, c) is finite. First, let ΓP ⊆ Cay(S; Σ) be the maximal digraph with

V (ΓP ) =
⋃

v∈V (P )

Fact(v) and Σ(ΓP ) ⊆ Σ(P )∪{r}. The finiteness of each of the factor
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sets Fact(v) and the edge color set Σ(P ) imply that ΓP is finite. By construction, if

A ⊆ Cay(S; Σ) and v ∈ P is such that subdigraph such that vA ⊆ P , then A ⊆ ΓP .

Suppose (s, Q, d) ∈ Fact(r, P, c). It follows that s ∈ ΣP ∪ {r}, Q ⊆ ΓP , and

d ∈ Fact(c). Since ΣP ∪ {r} and Fact(c) are finite sets and ΓP is a finite digraph,

there are only finitely many such (s, Q, d). Thus Fact(r, P, c) is finite, whereupon

Lemma 5.3.1 gives thatM(S; Σ) is residually finite. �

5.4 Generating Sets

Clearly if S is finite, thenM(S; Σ) is finite, and vice versa. In this section, we will give

criteria on S for M(S; Σ) to be finitely generated. We will be using the description

of indecomposable elements given in Lemma 3.2.2.

Theorem 5.4.1. M(S; Σ) is finitely generated if and only if S and Σ are finite.

Proof: Clearly if S and Σ are finite, then M(S; Σ) is finite and hence finitely gen-

erated. Conversely, suppose M(S; Σ) is finitely generated. By Lemma 3.2.2(b), all

elements in the set {(s, •
sf

, sf)|s ∈ Σ} are indecomposable and hence in any generat-

ing set for M(S; Σ). Thus, Σ must be finite. Assume, by way of contradiction, that

S is infinite. Then for any number n ∈ N, there exists an element of S whose minimal

length when expressed as a word in Σ+ is greater than or equal to n. Thus we can

find a set of minimal length representatives {w1, w2, . . .} for elements of S such that

2 ≤ |w1| < |w2| < |w3| < ...

We express each wi as rivi where ri ∈ Σ, vi ∈ Σ+. Because each wi is a minimal length

representative, there are no words si ∈ Σ+ and ti ∈ Σ∗, with wi = risiti, such that

ri = risi. Consequently brif
vi−→ wifc contains no cycles passing through rif . Hence,

appealing to Lemma 3.2.2(b), the element (ri, brif
vi−→ wifc, rif) is indecomposable.

Therefore the set {(ri, brif
vi−→ wifc, rif)|i ∈ N} contains an infinite number of in-

decomposable elements, contradicting the fact thatM(S; Σ) is finitely generated. We
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conclude that S is finite. �

This results distinguish the semigroup graph expansion from the group graph ex-

pansion Mgp(G; Ω) which is generated as an inverse semigroup by {(•
1
−→ •

g
, gf)|g ∈ Ω}.

With respect to generation, Path(S; Σ), which we showed in Proposition 3.3.4(c)to be

generated by {(s, •
s
, sf)|s ∈ Σ}, is a closer analogue of the group graph expansion.

5.5 Subgroups of M(S; Σ) and S

We investigate the close relationship between the subgroups ofM(S; Σ) and the finite

subgroups of S.

Theorem 5.5.1. Let (S, Σ, f) be a semigroup system of a semigroup S and let W be

a subgroup of M(S; Σ). Then the following are true:

(a) if (r, P, c), (s, Q, d) ∈ W , then r = s and P = Q;

(b) W is finite;

(c) the homomorphism εS is injective when restricted to W ;

(d) if T is a finite subgroup of S, there exists a subgroup W ′ ≤M(S; Σ) such that

W ′εS = T .

Proof: We start by proving part (a). Let W be a subgroup ofM(S; Σ) containing

elements (r, P, c) and (s, Q, d). Suppose W has identity (a, A, e). Then

(r, P, c) = (a, A, e)(r, P, c) = (a, A ∪ eP 1
r , ec) (5.5.1)

It is clear from Equation 5.5.1 that r = a. Similarly we could show that s = a,

whereupon r = s. Let (r, T, b) be the inverse of (r, P, c) in W . Then

(a, A, e) = (r, P, c)(r, T, b) = (r, P ∪ cT 1
r , cb). (5.5.2)
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From Equation 5.5.1 we see that A ⊆ P ; from Equation 5.5.2 we see that P ⊆ A.

Combining this information produces A = P . Similarly, we could show Q = A,

whereupon P = Q.

Applying the result (a) to (b), we see that |W | ≤ |V (P )|. The digraph P is by

definition finite. Thus W is a finite subgroup.

Now we consider part (c). It is clear that the homomorphism εS, when restricted

to W , is injective, because the elements of W are distinguished by their chosen vertices,

and thus will be sent by εS to distinct elements of S.

For part (d), our approach will be to construct W ′. Let e ∈ T denote the identity

element in T . Choose a finite subset Υ ⊆ Σ+ which contains a word w for which

wf = e and which generates T (i.e., Υf generates T as a semigroup). Write w as

w = rv, where r ∈ Σ and v ∈ Σ∗. We construct a subdigraph P by taking the union

of the following:

1. Include the digraph brf v−→ ec;

2. For each c ∈ T and u ∈ Υ, include bc u−→ c(uf)c. Note that c(uf) ∈ T , since

uf ∈ T .

Due to its construction, P has the following properties:

• P is a finite subdigraph;

• P is rooted at rf ;

• T ⊆ V (P );

• for any c ∈ T , cP 1
r ⊆ P .

To see the last property, we will show that E(cP 1
r ) ⊆ E(P ). First consider the

edge (c, r). This is clearly in E(P ), because E(P ) contains the path c
rv−→ c

(
(rv)f

)
.

Next, consider any edge (x, s) ∈ E(cP ). We can rewrite x as cx′. There is a vertex

d ∈ V (P ) and a word u ∈ Υ such that the edge (x′, s) lies on the path d
u−→ d(uf).

Since c, d ∈ T and T is a subgroup, cd ∈ T , which implies that P contains the path
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cd
u−→ cd(uf). The edge c · (x′, s) = (cx′, s) = (x, s) lies on this path and is thus in

E(P ).

For P and r as specified, define W ′ = {(r, P, c)|c ∈ T}. We would like to show

that W ′ is a subgroup ofM(S; Σ). First, let (r, P, c), (r, P, d) ∈ W ′. Then

(r, P, c)(r, P, d) = (r, P ∪ cP 1
r , cd) = (r, P, cd).

As mentioned before, since T is a subgroup, cd ∈ T . Thus we have (r, P, cd) ∈ W ′.

The element (r, P, e) is the identity of W ′; an element (r, P, c) has inverse (r, P, c−1),

where c and c−1 are inverses in T . We conclude that W ′ is a subgroup of M(S; Σ).

Clearly it projects onto T . �

We provide an example of this construction.

Example: Consider the dihedral group D6 = gp〈x, y |x6 = y2 = (xy)2 = 1〉. Let

Σ = {a, b, c} and define the map f : Σ → S by af = x2, bf = x3, and cf = y. From

this we form the graph expansion M(D6, Σ). Let T < S be the subgroup generated

by {x}. Observe that T is isomorphic to the cyclic group C6 = {z |z6 = 1}. Choose

Υ = {c2, a2b}. Note that Υf generates T since (a2b)f = x7 = x. Similarly Υ contains

a word corresponding to the identity of T , namely (c2)f = y2 = 1. Using Υ, we form

the subdigraph P of Cay(S; Σ), shown below:

For this example, W ′ = {(c, P, xi)|0 ≤ i ≤ 5}. �
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5.6 Subsemigroups of S and M(S; Σ)

In this section, we consider how subsemigroups are preserved by the semigroup graph

expansion. We start with a subsemigroup T of a semigroup S. Let (T, Ψ, g) and

(S, Σ, f) be respective semigroup systems. Our goal will be to describe the relationship

betweenM(T ; Ψ) andM(S; Σ). For the moment, we will not assume any relationship

between Ψ and Σ. However, since T embeds in S, we can find a function β : Ψ+ → Σ+

for which g = β ◦ f . (In fact, if f sends multiple words in Σ+ to the same element in

T , there may be many possibilities for β.) The following notation will help us work

with elements: if w ∈ Ψ, we will denote wβ by ŵ. Additionally, we will sometimes

write each ŵ as r̂v̂, where r̂ ∈ Σ and v̂ ∈ Σ∗. The maps T ↪→ S and β : Ψ+ → Σ+

form a semigroup system homomorphism between (T, Ψ, g) and (S, Σ, f).

We want to define a homomorphism from M(T ; Ψ) to M(S; Σ). In order to do

so, we must first determine how to map rooted subdigraphs of Cay(T ; Ψ) to rooted

subdigraphs of Cay(S; Σ). Recall that P
(
Cay(T ; Ψ)

)
is the set of subdigraphs of

Cay(T ; Ψ) and it is a semigroup with the operation of union. We can thus define a

function β̂ : P
(
Cay(T ; Ψ)

)
→ P

(
Cay(S; Σ)

)
by P 7→ P ′ where V (P ′) = V (P ) and

E(P ′) =

(x, s)

∣∣∣∣∣∣ where there exists some (c, w) ∈ E(P )

and (x, s) lies on the path c
ŵ−→ c(wf)}


The idea behind the map β̂ : P → P ′ is that the edge (x, w) ∈ E(P ) is mapped to

the underlying graph of the path bx ŵ−→ x(wf)c ∈ P ′. We give properties of β̂ in the

next lemma.

Lemma 5.6.1. Let T be a subsemigroup of a semigroup S and let (T, Ψ, g) and

(S, Σ, f) be semigroup systems, and let β̂ : P
(
Cay(T ; Ψ)

)
→ P

(
Cay(S; Σ)

)
be as

described above. Then:

1. β̂ is a semigroup homomorphism;

2. β̂ preserves the left action of elements of T on digraphs, i.e. for c ∈ T and

P ⊆ Cay(T ; Ψ), we have (cP )β̂ = c(Pβ̂).
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Proof: For (a), we show that if P, Q ⊆ Cay(T ; Ψ), then (P ∪ Q)β̂ = Pβ̂ ∪ Qβ̂.

From the definition of β̂,

V
(
(P ∪Q)β̂

)
= V (P ∪Q) = V (P ) ∪ V (Q) = V (P β̂) ∪ V (Qβ̂).

Let (x, s) ∈ E
(
(P∪Q)β̂

)
. Then there exists some (y, w) ∈ E(P∪Q) such that the edge

(x, s) lies on the path y
wβ−→ y(wf). If (y, w) ∈ E(P ), then (x, s) ∈ E(P β̂). Similarly,

if (y, w) ∈ E(Q), then (x, s) ∈ E(Qβ̂). Thus we have (x, s) ∈ E(Pβ̂)∪E(Qβ̂), which

implies that E
(
(P ∪Q)β̂

)
⊆ E(P β̂)∪E(Qβ̂). The reverse inclusion can be shown by

reversing the steps. We conclude that E
(
(P ∪ Q)β̂

)
= E(P β̂) ∪ E(Qβ̂), whereupon

(P ∪Q)β̂ = P β̂ ∪Qβ̂.

Proceeding to (b), let c ∈ T and P ⊆ Cay(T ; Ψ). Clearly,

V
(
(cP )β̂

)
= V (cP ) = cV (P ) = cV (P β̂) = V

(
c(Pβ̂)

)
.

Next, let (x, s) ∈ E
(
(cP )β̂

)
. Then there exists some (y, w) ∈ E(cP ) such that the

edge (x, s) lies on the path y
wβ−→ y(wf). Further there exists a z ∈ V (P ) such that

y = cz and (z, w) ∈ E(P ). The map β̂ sends (z, w) to bz w−→ z(wf)c. Thus,

by wβ−→ y(wf)c = bcz w−→ cz(wf)c

= c(bz w−→ z(wf)c)

= c(z, w)β̂

⊆ c(Pβ̂).

Since the digraph by wβ−→ y(wf)c is contained in c(Pβ̂), it follows that the edge

(x, s) ∈ E
(
c(P β̂)

)
. Thus E

(
(cP )β̂

)
⊆ E

(
c(P β̂)

)
. The reverse inclusion can be

shown by reversing the steps. We conclude that E
(
(cP )β̂

)
= E

(
c(Pβ̂)

)
, whereupon

(cP )β̂ = c(P β̂). �
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Again, it will be convenient to factor the image ŵ of an element w ∈ Ψ as

ŵ = r̂wv̂w where r̂w ∈ Σ and v̂w ∈ Σ∗. We now use the maps β : Ψ+ → Σ+ and

β̂ : P
(
Cay(T ; Ψ)

)
→ P

(
Cay(S; Σ)

)
to define a map, denoted by κ, between the

graph expansions:

κ : M(T ; Ψ) → M(S; Σ)

(w, P, c) 7→ (r̂w, br̂wf
cvw−→ wgc ∪ Pβ̂, c).

Theorem 5.6.2. Let (S, Σ, f) and (T, Ψ, g) be semigroup systems of a semigroup S

which has subsemigroup T . Further let the maps β, β̂, and κ be as described above.

Then κ is a homomorphism for which the diagram below commutes.

Proof: We first show that κ is a homomorphism. To this end, let

(x, P, c), (y, Q, d) ∈M(T ; Ψ).

(x, P, c)κ(y, Q, d)κ = (r̂x, br̂xf
cvx−→ xgc ∪ P β̂, c)(r̂y, br̂yf

cvy−→ ygc ∪ Qβ̂, d)

= (r̂x, br̂xf
cvx−→ xgc ∪ P β̂ ∪ (c, r̂y) ∪ cbr̂yf

cvy−→ ygc ∪ c(Qβ̂), cd)

= (r̂x, br̂xf
cvx−→ xgc ∪ P β̂ ∪ bc yβ−→ ygc ∪ c(Qβ̂), cd)

= (r̂x, br̂xf
cvx−→ xgc ∪ P β̂ ∪ c

(
(1, y)β̂

)
∪ c(Qβ̂), cd).

From Lemma 5.6.1, we can replace Pβ̂ ∪ c
(
(1, y)β̂

)
∪ c(Qβ̂) by (P ∪ cQ1

y)β̂. Thus

we continue:

(x, P, c)κ(y, Q, d)κ = (r̂x, br̂xf
cvx−→ xgc ∪ (P ∪ cQ1

y)β̂, cd)

= (x, P ∪ cQ1
y, cd)κ

= (x, P, c)(y, Q, d)κ.
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We conclude κ is a homomorphism. Since κ is the identity map on the third coordi-

nate, the diagram clearly commutes. �

Theorem 5.6.2 sheds light on the relationship between the semigroup graph ex-

pansions of two different semigroup systems of the same semigroup.

Corollary 5.6.3. Let (S, Ψ, g) and (S, Σ, f) be semigroup systems of a semigroup S

and let id : S → S, β : Ψ+ → Σ+ be a semigroup system homomorphism between

them. Further, let κ :M(S, Ψ)→M(S; Σ) be as described above. Then κ is surjective

if and only if β is surjective.

Proof: Suppose κ is surjective. Let r ∈ Σ. There exists an element

(w, P, c) ∈M(T ; Ψ) such that

(w, P, c)κ = (rw, br̂wf
vw−→ wgc ∪ Pβ̂, c) = (r, •

r
, rf).

We see that r̂w = r and vw = ε. Hence r = r̂w = wβ. We conclude that Σ ⊆ Ψβ,

whereupon we have that β is surjective.

Conversely, suppose that β is surjective. Let (r, P, c) ∈M(S, Σ). We decompose

the digraph P into the union of a finite number of rf -rooted paths rf
wi−→ (rwi)f

with i ∈ Φ where Φ is an index set.Since β is surjective, for each r ∈ Σ we can find

a preimage r′ ∈ Ψ such that r′β = r. This implies that r′g = r′β ◦ f . Let w′
i denote

the word formed by the concatenation of the preimages of the letters in w. From the

definition of κ, br′g
w′

i−→ (r′w′
i)gcκ = brf wi−→ (rwi)fc. Thus we have that

(
⋃
i∈Φ

b •
r′g

w′
i→ •

(r′w′
i)g
c)κ =

⋃
i∈Φ

b•
rf

wi→ •
(rwi)f

c = (r, P, c). �
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Chapter 6

Green’s Relations

In this chapter, we investigate Green’s relations for the graph expansions of semi-

groups. Our approach is to look at each relation and describe the structure of ele-

ments that belong to the same class. These results generalize Margolis and Meakin’s

findings about the R-, L-, H-, J -, and D-classes for group graph expansions. In con-

trast to the group setting where these results can be deduced from straightforward

observations, the semigroup versions often require involved proofs. For comparison,

we state Margolis and Meakin’s results here:

Lemma 6.0.4 (Lemma 3.2 of [17]). For (P, c), (Q, d) ∈ Mgp(G; Ω) we have the

following:

(a) (P, c)R(Q, d) if and only if P = Q;

(b) (P, c)L(Q, d) if and only if c−1P = d−1Q;

(c) The maximal subgroup H(P,1) of Mgp(G; Ω) is equal to the label-preserving

automorphism group of the graph P and is also isomorphic to

stab(P ) = {h ∈ G |h · P = P};

(d) (P, c)J (Q, d) if and only if P and Q are isomorphic as labeled graphs;

(e) Every J -class of Mgp(G; Ω) is finite;

(f) D = J .
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The structure of this chapter is as follows: we will start by characterizing the R-

classes. These are very simple to describe using a few straightforward observations.

We then proceed to the L-classes. Their description, compared to the R-classes, is

much more involved. Thus, upon providing a general description, we look at how the

L-class description can be simplified for specific types of semigroups. Next, we use the

techniques developed for the L- and R-classes to characterize the H- and D-classes.

We discuss how the structure of the H-class of an element (r, P, c) is related to the

automorphism group of the subdigraph P ↑
c . In the last section, we prove that D = J

for semigroup graph expansions. At the end of the section, we consider when the

graph expansion is finite-J -above, to be defined below in Section 6.5.

Throughout this section we assume that (S, Σ, f) is a semigroup system and that

(r, P, c), (s, Q, d) ∈M(S; Σ). We also will be working frequently with maps between

Cayley graphs. Trying not to add additional layers of notation, if P, Q ⊆ Cay(S, X),

θ : P → Q, and v ∈ V (P ), we use the notation vθ to indicate the label of the image

of the vertex •
v

under θ. We now prove a very useful result about label-preserving

mappings of subdigraphs of Cayley digraphs.

Lemma 6.0.5. Let (S, Σ, f) be a semigroup system. Let P ⊆ Cay(S; Σ) be an x-rooted

subdigraph of Cay(S; Σ) and let a, y ∈ S be such that y = ax. If θ : P → Cay(S; Σ)

is a label-preserving graph map which sends x to y, then the map θ is the same as the

map corresponding to translation by a.

Proof: Let v ∈ V (P ). Since P is x-rooted, there exists a word w ∈ Σ∗ labeling a

x −→ w path in P . Note that v = x(wf). As θ is a label-preserving map, the path

x
w−→ v is mapped by θ to the path y

w−→ y(wf). Thus vθ = y(wf) = ax(wf) = av.

Let (v, r) ∈ E(P ). Having assumed that θ is label-preserving and since translation is

also label-preserving, we know that (v, r)θ = (vθ, r) = (av, r) = a(v, r). We conclude

that the map θ is the same as the map given by translation by a. �
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6.1 R-Classes

We describe the R-classes:

Theorem 6.1.1. Assume (r, P, c) 6= (s, Q, d). Then (r, P, c)R(s, Q, d) if and only

if r = s, P = Q, and there is a cycle in P containing c and d. It follows that if

(r, P, c)R(s, Q, d), then c R d in S.

Proof: Suppose (r, P, c)R(s, Q, d) with (r, P, c) 6= (s, Q, d). Then there exist some

(x, A, a), (y, B, b) such that

(r, P, c)(x, A, a) = (r, P ∪ cA1
x, ca) = (s, Q, d); (6.1.1)

(s, Q, d)(y, B, b) = (s, Q ∪ dB1
y , db) = (r, P, c). (6.1.2)

From Equation 6.1.1 we see that r = s, P ⊆ Q, and d is accessible from c. Similarly

from Equation 6.1.2, we have that Q ⊆ P and c is accessible from d. The accessibility

results imply that there is cycle in P containing both c and d.

Conversely, assume that r = s, P = Q, and there is a cycle in P containing

both c and d. We can find a word w ∈ Σ+ that labels a c −→ d path in P . Write

the word as w = xv, where x ∈ Σ and v ∈ Σ∗. By its construction, we have

that (r, P, c)(x, bxf
v−→ wfc, wf) = (s, Q, d). We could in a similar manner con-

struct an element by which we could right multiply (s, Q, d) to obtain (r, P, c). Thus

(r, P, c)R(s, Q, d).

Finally, note that if (r, P, c)R(s, Q, d), the assumption that c and d lie on a cycle

in P also implies that c R d in S. �

Since P is a finite subdigraph, we have the following.

Corollary 6.1.2. The R-classes of M(S; Σ) are finite.

Corollary 6.1.2 provides an alternative proof of Theorem 5.5.1(b), since all subgroups
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are contained in R-classes.

6.2 L-Classes

L-classes have a more complicated description than R-classes, because of the different

effects of multiplying on the right versus multiplying on the left. When (r, P, c) is

multiplied by an element on the right, the root rf is fixed and P is contained in the

new subdigraph. In contrast, when (r, P, c) is multiplied by an element on the left,

the product can have a different root, an r-labeled edge is possibly added, and the

subdigraph P is translated. Moreover, upon translation, the vertices and edges of P

may collapse. As a consequence, L-equivalent elements may have different roots and

non-isomorphic subdigraphs; still, their digraph structures are related. Describing

this relationship, and thereby characterizing the L-classes, is the goal of Theorem

6.2.2. In order to prove this theorem, we need a few definitions and results about

digraphs.

We will utilize the right semigroup action of Σ∗ on S, and hence on the vertices

and edges of the Cayley digraph Cay(S; Σ). We review the notation for this action.

If c ∈ S and w ∈ Σ∗, then

c · w =

 c if w = ε

c(wf) if w 6= ε

In the Cayley digraph, the vertex obtained when c is acted upon by w is the vertex

which is reached by starting at c and reading the word w. Similarly, if the edge

(c, r) ∈ E
(
Cay(S; Σ)

)
, then (c, r) ·w = (c ·w, r) = (c(wf), r). We will show that this

action is preserved by label-preserving digraph morphisms.

Lemma 6.2.1. Let (S, Σ, f) be a semigroup system, v ∈ S, and let θ : Cay(S; Σ)↑v →

Cay(S; Σ) be a label-preserving digraph morphism. Furthermore, let c ∈ V
(
Cay(S; Σ)↑v

)
and w ∈ Σ∗. Then
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(a) (c · w)θ = cθ · w;

(b) if (c · w, r) ∈ E
(
Cay(S; Σ)↑v

)
, then (c · w, r)θ = (cθ · w, r);

(c) if P ⊆ Cay(S, Σ) is a rooted digraph, then (cP )θ = (cθ)P .

Proof: If w = ε, then (c · w)θ = cθ = cθ · w. For |w| ≥ 1, we use induction on the

length of w. If |w| = 1, then (c, w) ∈ E
(
Cay(S; Σ)

)
. Since θ is a label-preserving

digraph morphism and there is exactly one w-labeled edge leaving the vertex cθ, we

know that (c, w)θ = (cθ, w). Thus
(
c(wf)

)
θ = cθ(wf), which can be rewritten using

action notation as (c · w)θ = cθ · w.

Now, suppose |w| = n for some n ∈ N. Assume for all v ∈ Σ∗ with |v| < n that

(c · v)θ = cθ · v. We write w as w = us, where u ∈ Σ∗ and s ∈ Σ. Thus, since |u| < n

and |s| = 1,

(c · w)θ =
(
(c · u) · s

)
θ

= (c · u)θ · s

= (cθ · u) · s

= cθ · w.

Part (b) is a consequence of (a) and the fact that θ preserves edge labels. Turning to

part (c), suppose P consists solely of the vertex •
d
. There exists some w ∈ Λ+ such
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that wf = d. Thus using the result from (a),

(cP )θ = (c{•
d
})θ

= ({•
cd
})θ

= ({ •
c·w
})θ

= { •
(cθ)·w
}

= { •
(cθ)d
}

= (cθ){•
d
}

= (cθ)P.

On the other hand, if P contains any edges, it cannot contain isolated vertices.

Thus it is sufficient in this case to show that E
(
(cP )θ

)
= E

(
(cθ)P

)
. To this end,

let (x, r) ∈ E
(
(cP )θ

)
. Then there exists some (x′, r) ∈ E(cP ) such that x′θ = x.

Furthermore, there exists some (x′′, r) ∈ E(P ) such that cx′′ = x′. Let w ∈ Σ∗ be

such that wf = x′′. Hence from part (a), we have

(x, r) = (x′θ, r)

=
(
(cx′′)θ, r

)
=

(
(c(wf)θ, r

)
=

(
(c · w)θ, r

)
=

(
(cθ) · w, r

)
=

(
(cθ)(wf), r

)
=

(
(cθ)x′′, r

)
= (cθ)(x′′, r).

100



This implies that (x, r) ∈ E
(
(cθ)P

)
. The reverse inclusion can be proved by reversing

the order of the steps. �

We can now describe the L-classes.

Theorem 6.2.2. Assume (r, P, c) 6= (s, Q, d). Then (r, P, c)L(s, Q, d) if and only if

there exist elements a, b ∈ S that satisfy the following:

(a) ac = c and bd = d;

(b) aP 1
r ⊆ P and bQ1

s ⊆ Q;

(c) aP 1
r and bQ1

s are isomorphic as labeled subdigraphs and there exists a labeled

digraph isomorphism aP 1
r → bQ1

s that maps c to d.

Proof: Suppose (r, P, c)L(s, Q, d). Then there exist some (r, A, x) and (s, B, y) such

that:

(r, P, c) = (r, A, x)(s, Q, d) = (r, A ∪ xQ1
s, xd) (6.2.1)

(s, Q, d) = (s, B, y)(r, P, c) = (s, B ∪ yP 1
r , yc). (6.2.2)

The above equations show that xQ1
s ⊆ P and yP 1

r ⊆ Q. Combining these containment

relationships, we have that

x(yP 1
r ) ⊆ xQ ⊆ xQ1

s ⊆ P.

Using the same strategy,

xy(xQ1
s) ⊆ xyP ⊆ xyP 1

r ⊆ P.
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Repeating this, we find that for all i ∈ N the following are true:

(xy)iP 1
r ⊆ P (6.2.3)

x(yx)iQ1
s ⊆ P (6.2.4)

(yx)iQ1
s ⊆ Q (6.2.5)

y(xy)iP 1
r ⊆ Q. (6.2.6)

Since the digraph P is finite, the element xy is periodic. Assume k,m ∈ N are

the smallest values such that (xy)k = (xy)k+m. Note that this implies the equation

(yx)k+1 = (yx)k+m+1. We claim that (xy)k and (yx)k+1 satisfy the requirements of a

and b in conditions (a), (b), and (c). First, observe from Equations 6.2.1 and 6.2.2

that c = xd and d = yc. By substituting each of these equations into the other, we

obtain c = xyc and d = yxd; i.e. xy and yx are left identities for c and d respectively.

Hence (xy)k and (yx)k+1 are also respective left identities. Second, Equations 6.2.3

and 6.2.5 indicate that part (b) is satisfied. It remains to find an isomorphism between

(xy)kP 1
r and (yx)k+1Q1

s. To this end, we show that if we translate (xy)kP 1
r by y, the

graph obtained is (yx)k+1Q1
s. First,

(yx)k+1Q1
s = y(xy)kxQ1

s

⊆ y(xy)kP

⊆ y(xy)kP 1
r .
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Now, using the periodicity of xy and Equation 6.2.6,

y(xy)kP 1
r = y(xy)k+mP 1

r

= (yx)k+1y(xy)m−1P 1
r

⊆ (yx)k+1Q

⊆ (yx)k+1Q1
s.

Thus y(xy)kP 1
r = (yx)k+1Q1

s. Similarly, we could show that translating (yx)k+1Q1
s

by x produces (xy)kP 1
r . Because the digraphs (xy)kP 1

r and (yx)k+1Q1
s are both finite, if

translation by y collapsed any edges or vertices of (xy)kP 1
r , then the digraph (yx)k+1Q1

s

would have fewer edges and vertices than (xy)kP 1
r and thus could not have (xy)kP 1

r

as an image (under translation by x). Thus translation by y corresponds to a label-

preserving digraph isomorphism, which we denote by θ : (xy)kP 1
r → (yx)k+1Q1

s.

Notice that cθ = yc = d. Thus we have satisfied the requirements of (c).

We now prove the converse. Suppose there exist some a, b ∈ S that satisfy

the three conditions. Moreover, let θ : aP 1
r → bQ1

s be the label-preserving digraph

isomorphism guaranteed by (c). Let w ∈ Σ∗ be a word such that wf = c. First we

note using Lemma 6.2.1(a) that,

(aθ)c = aθ(wf) = (aθ) · w = (a · w)θ = (a(wf))θ = (ac)θ = cθ = d. (6.2.7)

Also, from conditions (b) and (c) of Lemma 6.2.1,

(aθ)P 1
r = (aP 1

r )θ = bQ1
s ⊆ Q. (6.2.8)

Since (s, Q, d) ∈ M(S, Σ), the digraph Q is sf -rooted. Moreover, Equation 6.2.8

implies that aθ ∈ Q. Then (s, Q, aθ) ∈ M(S, Σ). Combining the information in
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Equations 6.2.8 and 6.2.7, we have that:

(s, Q, aθ)(r, P, c) = (s, Q ∪ (aθ)P 1
r , (aθ)c)

= (s, Q, d).

Since θ is an isomorphism, θ−1 exists, it can be easily shown that (r, P, bθ−1), and

(r, P, bθ−1)(s, Q, d) = (r, P, c). We conclude that (r, P, c)L(s, Q, d). �

6.3 Descriptions of L-Classes for Specific

Classes of Semigroups

The structure of L-related elements described in Theorem 6.2.2 can often be refined

if we know more information about the semigroup.

Semigroup Systems of Groups

First we consider the L-classes of graph expansions of semigroup systems of groups.

We will show that L-related elements have almost the same description as in the group

graph expansion case. To this end, we will strengthen Lemma 6.0.5 by restricting to

groups.

Corollary 6.3.1. Let (S, Σ, f) be a semigroup system of a group S. Let P ⊆

Cay(S; Σ) be a rooted subdigraph of Cay(S; Σ) and let c ∈ V (P ), d ∈ S. If θ :

P → Cay(S; Σ) is a label-preserving digraph map which sends c to d, then the map

θ is the same as the map corresponding to translation by dc−1. Moreover, θ is the

unique label-preserving digraph map sending c to d.

Proof: We shall construct a larger semigroup system for S to which Lemma 6.0.5

applies. To this end, let Σ be a set of formal inverses for Σ. Consider the set

∆ = Σ ∪ Σ. We extend f to ∆ by mapping elements of the form r̄ to (rf)−1.
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Let Q ⊆ Cay(S; ∆) be the digraph defined by the following: V (Q) = V (P ) and

E(Q) = E(P ) ∪ {(x, r̄)|(x(rf)−1, r) ∈ E(P )}. In words, we obtain Q from P by

inserting an inverse edge for every edge in P . Since P is a rooted subdigraph of

Cay(S; Σ), Q is a strongly connected subdigraph of Cay(S; ∆). In particular, c is a

root of Q.

We extend θ to a map from Q as follows: let θ : Q → Cay(S; ∆) send edges of

the form (x, r̄) to (xθ, r̄). The map θ inherits the label-preserving property from θ.

Clearly cθ = d. Because S is a group, we have (dc−1)c = d. Thus Lemma 6.0.5 indi-

cates that θ is the same as the map corresponding to translation by dc−1. Moreover,

as dc−1 is the unique element with which to left multiply c and obtain d, this implies

that θ is the unique label-preserving digraph map sending c to d. Finally, restricting

to P , we see that θ is given by the map corresponding to translation by dc−1 and that

θ is the unique label-preserving digraph map sending c to d. �

We now characterize the L-classes of graph expansions for the group case.

Corollary 6.3.2. Let (S, Σ, f) be a semigroup system of a group S. Suppose (r, P, c) 6=

(s, Q, d). Then (r, P, c)L(s, Q, d) if and only if the following hold:

(a′) P 1
r = P and Q1

s = Q;

(b′) c−1P = d−1Q.

Proof: Assume (r, P, c)L(s, Q, d). From Theorem 6.2.2(a), there exists some a ∈ S

such that ac = c. Since S is a group, a = 1, where 1 is the group identity of S. Thus

for all s ∈ S, we have that 1s = s, from which it follows that 1P 1
r = P 1

r . Appealing

to Theorem 6.2.2(b) gives 1P 1
r ⊆ P . Noting that P ⊆ P 1

r is always true, we conclude

P 1
r = P . Similarly Q1

s = Q.

From Theorem 6.2.2(c), there exists a label-preserving graph isomorphism θ from

P 1
r to Q1

s that maps c to d. From Corollary 6.3.1, the map θ corresponds to translation

by dc−1. Thus,

dc−1P = dc−1P 1
r = (P 1

r )θ = Q1
s = Q.
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Multiplying both sides by d−1 yields c−1P = d−1Q.

Conversely, suppose (a′) and (b′). We will show that conditions (a), (b), and (c)

of Theorem 6.2.2 hold for the values a = b = 1, where 1 is the group identity of S.

Clearly 1c = c and 1d = d. Also, as observed above, 1P 1
r ⊆ P and 1Q1

s ⊆ Q. Finally,

let θ : P 1
r → Cay(S; Σ) be the graph map that corresponds to translation by dc−1.

From (b′),

(P 1
r )θ = dc−1(P 1

r ) = dd−1Q1
s = Q1

s.

Moreover, cθ = dc−1c = d. Thus condition (c) is satisfied. By Theorem 6.2.2, we

conclude that (r, P, c)L(s, Q, d). �

Left-zero Semigroups

We turn to left-zero semigroups. It will be useful to use the alternative description

of the graph expansion given by Lemma 4.3.1: we replace the notation (r, P, c) by(
r, Σ(P )

)
, because, for left-zero semigroups, rf = c and P is determined by its edge-

label set Σ(P ).

Proposition 6.3.3. Let (S, Σ, f) be a semigroup system of a left-zero semigroup S.

Suppose
(
r, Σ(P )

)
6=

(
s, Σ(Q)

)
. Then

(
r, Σ(P )

)
L

(
s, Σ(Q)

)
if and only if the following

hold:

(a′) r, s ∈ Σ(P );

(b′) Σ(P ) = Σ(Q).

Proof: Suppose
(
r, Σ(P )

)
L

(
s, Σ(Q)

)
. Then there exists an element

(
a, Σ(A)

)
such

that
(
a, Σ(A)

)(
r, Σ(P )

)
=

(
s, Σ(Q)

)
. Expanding the left side, we see that

(a, Σ(A)∪Σ(P )∪{r}) =
(
s, Σ(Q)

)
. Thus Σ(P ) ⊆ Σ(Q) and r ∈ Σ(Q). Similarly, we

could show that Σ(Q) ⊆ Σ(P ) and s ∈ Σ(P ). Thus r, s ∈ Σ(P ) and Σ(P ) = Σ(Q).

106



Conversely, suppose (a′) and (b′) hold. It is easy to see that

(
r, Σ(P )

)(
s, Σ(Q)

)
=

(
r, Σ(P ) ∪ Σ(Q) ∪ {s}

)
=

(
r, Σ(P )

)
.

Similarly
(
s, Σ(Q)

)(
r, Σ(P )

)
=

(
s, Σ(Q)

)
. Thus

(
r, Σ(P )

)
L

(
s, Σ(Q)

)
. �

Right-zero Semigroups

The next case concerns right-zero semigroups.

Corollary 6.3.4. Let (S, Σ, f) be a semigroup system of a right-zero semigroup S.

Suppose (r, P, c) 6= (s, Q, d). Then (r, P, c)L(s, Q, d) if and only if the following hold:

(a′) c = d;

(b′) P = Q;

(c′) P contains both an r-labeled and an s-labeled edge.

Proof: One observations about Cay(S; Σ) will be very useful. For every t ∈ Σ, if

c = tf , then c is the only vertex with edges labeled by t entering it. This implies that

if P ⊆ Cay(S; Σ) is a digraph such that every vertex of P has an edge entering it,

then the only label-preserving digraph morphism P → Cay(S; Σ) is the identity map.

Suppose (r, P, c)L(s, Q, d). From Theorem 6.2.2(b), there exist some a, b ∈ S such

that aP 1
r ⊆ P and bQ1

s ⊆ Q. However, since S is a right-zero semigroup, P ⊆ aP 1
r

and Q ⊆ bQ1
s. Thus P = aP 1

r and Q = bQ1
s. From Theorem 6.2.2(c), P = aP 1

r and

Q = bQ1
s are isomorphic as labeled graphs. Noting that since (a, r) ∈ E(P ), every

vertex of P has an edge entering it. Thus from our earlier observation, the only label-

preserving isomorphism possible between P and Q is the identity map. Thus P = Q.

Moreover, c = d. Finally, since (a, r), (b, s) ∈ E(P ), it is clear that P contains both

an r-labeled and an s-labeled edge.

Conversely, suppose conditions (a′), (b′), and (c′). By (c′), we are guaranteed

that there are elements a, b ∈ S, such that (a, r), (b, s) ∈ E(P ). Since S is a right-zero
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semigroup, this implies that conditions (a) and (b) of Theorem 6.2.2 hold for a and b.

Moreover, the identity map from P to itself satisfies conditions (c). Thus, applying

Theorem 6.2.2 shows that (r, P, c)L(s, Q, d). �

Semilattices

Semilattices are the fourth case that we will look at.

Corollary 6.3.5. Let (S, Σ, f) be a semigroup system of a semilattice S. Suppose

(r, P, c) 6= (s, Q, d). Then (r, P, c)L(s, Q, d) if and only if the following hold:

(a′) c = d;

(b′) there exists an element a ∈ S, with c ≤ a, such that (r, P, a) and (s, Q, a) are

idempotents and aP 1
r = aQ1

s.

Proof: Suppose (r, P, c)L(s, Q, d). This implies that cLd in S. However, as S is a

semilattice, it follows that c = d. From Theorem 6.2.2(a), there exist some a, b ∈ S

such that ac = c, bc = c. We wish to show that a = b. Choose u ∈ Σ∗ such that

rf
u−→ a is a path in P . It follows that a = (ru)f . Write u as u = u1 . . . un where

each ui ∈ Σ. We note that a ≤ rf and a ≤ uif for each letter ui. Thus, the digraph

aP 1
r contains a loop at a labeled by r, and a loop at a labeled by ui for each ui. From

Theorem 6.2.2(c), we know that aP 1
r and bQ1

s are isomorphic as labeled digraphs. We

observe that a rooted subdigraph of the Cayley digraph of a semilattice has a unique

root. Thus, this isomorphism must map the root of aP 1
r to the root of bQ1

s, i.e. a to

b. This then implies that the digraph bQ1
s contains a loop at b labeled by r, and a

loop at b labeled by ui for each ui. Thus b ≤ (ru)f = a. Similarly we could show that

a ≤ b. We conclude that a = b.

In the Cayley digraph of a semilattice, isomorphic subdigraphs with the same

root must be the same subdigraph. Combining the fact that a = b with Theorem

6.2.2(c), we know that aP 1
r = bQ1

s. From Theorem 6.2.2(b), we know that aP 1
r ⊆ P

108



and Q1
s ⊆ Q. Thus by Proposition 4.6.1(a), we have that (r, P, a) and (s, Q, a) are

idempotents.

Conversely, suppose conditions (a′) and (b′). Simple observation shows that these

imply conditions (a), (b), and (c) of Theorem 6.2.2. Thus by Theorem 6.2.2, we con-

clude that (r, P, c)L(s, Q, d). �

Once we have covered the remaining Green’s relations, we will describe the egg-

box diagram for a semilattice with two generators, using Corollary 6.3.5 to determine

the L-classes.

6.4 H-Classes

We obtain a characterization of H-classes by combining the requirements of R-classes

with slightly modified L-class requirements:

Theorem 6.4.1. Assume (r, P, c) 6= (s, Q, d). Then (r, P, c)H(s, Q, d) if and only if

the following hold:

(a) r = s, P = Q, and c and d are on a cycle in P ;

(b) there exist some a, b ∈ S such that ac = c, bd = d, aP 1
r , bP 1

r ⊆ P , and there

exists a label-preserving digraph isomorphism aP 1
r → bP 1

r that maps c to d.

Proof: Let (r, P, c)H(s, Q, d). Then we know (r, P, c)R(s, Q, d) and by Theorem

6.1.1 we are guaranteed condition (a). We also know that (r, P, c)L(s, Q, d). Since

P = Q, Theorem 6.2.2 gives condition (b).

Conversely, if we assume the conditions (a) and (b), then we can use Theorems

6.1.1 and 6.2.2 to determine that (r, P, c) and (s, Q, d) are R- and L-related. Thus

they are H-related. �
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Given the number of conditions, the typical element of a semigroup graph ex-

pansion is H-related only to itself. However, if an element (r, P, c) is H-related to a

different element, then Theorem 6.4.1 guarantees the existence of a subdigraph of P

with nice structure. We describe this in the following Lemma.

Lemma 6.4.2. Suppose (r, P, c)H(r, P, d). Then it follows that P ↑
c = P ↑

d . Addition-

ally, there exists a label-preserving digraph automorphism P ↑
c → P ↑

c that sends c to d.

Proof: Since (r, P, c) and (r, P, d) are H-related, from Theorem 6.4.1 (a) we know

there is a cycle in P containing c and d. It follows that P ↑
c = P ↑

d .

From Theorem 6.4.1 (b), there exist some a, b ∈ S such that ac = c, bd = d, and

there exists a label-preserving digraph isomorphism θ : aP 1
r → bP 1

r that maps c to d.

We wish to show that by restricting θ to P ↑
c , we obtain the desired automorphism.

Because aP ↑
c ⊆ aP 1

r , we can clearly restrict θ to aP ↑
c . However, since a is a left

identity for c, it is also a left identity for the graph accessible from c, i.e. aP ↑
c = P ↑

c .

Moreover, since cθ = d and P ↑
c is by definition c-rooted, P ↑

c θ ⊆ P ↑
d = P ↑

c . However, as

θ is an isomorphism and P ↑
c is finite, this is only possible if P ↑

c θ = P ↑
c . We conclude

that θ is the desired label-preserving automorphism of P ↑
c . �

Even more can be said about the structure of an element (r, P, c) if H(r,P,c) is

a subgroup of M(S; Σ). Before stating the result, we review some notation. To

every labeled graph Γ we can associate a label-preserving automorphism group, which

we denote by Aut(Γ). Suppose Γ ⊆ Cay(S; Σ) is an x-rooted subdigraph and θ ∈

Aut(Γ). There exists some a ∈ S such that ax = xθ. By Lemma 6.0.5, the map θ

is uniquely given by translation by a. Thus, we will write θa for the automorphism

that corresponds to translation by a. Moreover, since translation by a followed by

translation by b is the same as translation by ab, we have that θaθb = θab.

Theorem 6.4.3. If H(r,P,c) is a subgroup of M(S; Σ), then H(r,P,c) is isomorphic to

the (label-preserving) automorphism group of P ↑
c .

Proof: Since H(r,P,c) is a subgroup, there is an element (r, P, e) which is the identity
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of the subgroup. The following fact about e will be useful: left translation of P ↑
e by

e fixes P ↑
e . To see why, let d ∈ V (P ↑

e ). From the definition of P ↑
e , there exists some

word w ∈ Σ∗ labeling an e −→ d path in P and therefore e(wf) = d. Since e2 = e,

it follows that ed = d. Thus, as left multiplication by e fixes vertices, we have that

eP ↑
e = P ↑

e .

Let (r, P, x) ∈ H(r,P,c). Lemma 6.4.2 ensures that θx is an automorphism of P ↑
c .

Therefore we can define the following map:

β : H(r,P,c) → Aut(P ↑
c ) by (r, P, x) 7→ θx.

We show that β is a homomorphism. Suppose (r, P, a), (r, P, b) ∈ H(r,P,c). Observe

that, as (r, P, e) is the identity, (r, P ∪ aP 1
r , ae) = (r, P, a)(r, P, e) = (r, P, a), where-

upon we see that aP 1
r ⊆ P . Using this we have:

(r, P, a)β(r, P, b)β = θa ◦ θb

= θab

= (r, P, ab)β

= (r, P ∪ aP 1
r , ab)β

=
(
(r, P, a)(r, P, b)

)
β.

Suppose (r, P, a)β = (r, P, b)β. Then θa = θb, whereupon it follows from Lemma

6.3.1 that a = b. We conclude that β is injective.

We now show that it is surjective. Let θx ∈ Aut(P ↑
c ). Then

x = xe ∈ xP ↑
c = P ↑

c θx = P ↑
c ⊆ P. (6.4.1)

Thus (r, P, x) ∈ M(S; X). We want to show that (r, P, x) ∈ H(r,P,c). Our strategy

will be to show that (r, P, x)H(r, P, e). From Equation 6.4.1, we see that x ∈ P ↑
c .

Combining this with Lemma 6.4.2 implies that x ∈ P ↑
e . By its definition, every vertex
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of P ↑
e is accessible from e. This implies that every vertex of P ↑

e is also accessible from

eθx = xe = x. We conclude that e and x are on a cycle in P . Thus we have Theorem

6.4.1(a).

We now want to show that e satisfies the role of both a, b referred to in Theorem

6.4.1 (b). Being the local identity, e2 = e and ex = x. Since (r, P, e) is idempotent,

we have that (r, P, e) = (r, P, e)(r, P, e) = (r, P ∪ eP 1
r , e), from which it follows that

eP 1
r ⊆ P . Moreover, this shows that

P ↑
e = eP ↑

e ⊆ eP 1
r ⊆ P ↑

e .

Thus eP 1
r = P ↑

e , whereupon θx is a label-preserving automorphism of eP 1
r that sends

e to x. By Theorem 6.4.1, (r, P, e)H(r, P, x). Furthermore (r, P, x)β = θx, showing

that β is surjective. We conclude that β is a group isomorphism. �

We give an example of two H-classes, one that is a subgroup and one that is not.

Example: Let S be the direct product of the cyclic group C4 = {e, c, c2, c3} (we

denote the identity by e) and the trivial group with zero Y = {1, 0}. Let x = (c, 1)

and y = (e, 0). Since these two elements generate S as a semigroup, we can form the

semigroup system (S, {x, y}, id). Let P and Q be the subdigraphs shown below.
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We consider two H-classes: H(x,P,x2y) and H(x,Q,x2y).

• H(x,P,x2y) contains two elements, (x, P, x2y) and (x, P, y). (If we insert the value

x4 for a and b in Theorem 6.4.1, it is easy to see that (x, P, y) H (x, P, x2y).

With a bit more work, any other H-related elements can be ruled out.) It is not

a subgroup, because neither of its elements is idempotent.

• H(x,Q,x2y) also contains two elements, (x, Q, x2y) and (x, Q, y). (Again, this can

be obtained by using the values x4 or y for a and b in Theorem 6.4.1. As

before, any other H-related elements can be ruled out.) The class H(x,Q,x2y) is

a subgroup. Its identity is (x, Q, y). It is isomorphic to C2, which is clearly the

automorphism group of Q↑
y.

�

6.5 D- and J -Classes

We would like to end our investigation of Green’s relations with a description of the

D- and J -classes. Recall that for a semigroup S, xDy if and only if we can find some

c ∈ S, such that xRc and yLc, and xJ y if and only if S1xS1 = S1yS1. Our first task

will be to characterize the D-classes as we did for the R-, L-, and H-classes.

Theorem 6.5.1. Assume (r, P, c) 6= (s, Q, d). Then (r, P, c)D(s, Q, d) if and only if

there exist elements a, b ∈ S that obey the following:

(a) ac = c and bd = d;

(b) aP 1
r ⊆ P and bQ1

s ⊆ Q;

(c) aP 1
r and bQ1

s are isomorphic as labeled digraphs and there exists a label-

preserving isomorphism θ : aP 1
r → bQ1

s such that subdigraph bQ1
s contains

a cycle connecting cθ and d.

Proof: Suppose (r, P, c)D(s, Q, d) and assume (r, P, c) 6= (s, Q, d). We wish to

show parts (a) and (b). There exists an element (t, A, x) ∈ M(S, Σ) such that
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(r, P, c)R(t, A, x) and (t, A, x)L(s, Q, d). From Proposition 6.1.1, we know t = r

and A = P , and thus we replace t by r and A by P for the rest of this proof. Since

(r, P, x)L(s, Q, d), by Proposition 6.2.2(a)and (b) there exists an a, b ∈ S such that

ax = x, bd = d, aP 1
r ⊆ P , and bQ1

s ⊆ Q. Because xRc, there exists a y ∈ S such that

xy = c. Thus ac = axy = xy = c. Thus we have (a) and (b).

Finally we prove (c). Since left multiplication by a fixes x, it also fixes every vertex

accessible from x. By Proposition 6.1.1, we know there is a cycle C in P containing

x and c. Combining this with the previous fact, the cycle C is contained in aP 1
r .

Proposition 6.2.2(c) states that aP 1
r and bQ1

s are isomorphic as labeled subdigraphs

and there exists a labeled digraph isomorphism θ : aP 1
r → bQ1

s that maps x to d. The

function θ also maps the cycle C to a cycle in bQ1
s; the latter contains the vertices

xθ = d and cθ. Thus we have obtained (c).

Conversely, let (r, P, c), (s, Q, d) ∈M and a, b ∈ S satisfy (a), (b), and (c). From

(c), we know there is a cycle in bQ1
s containing x and cθ. Thus we can find words

v, w ∈ Σ∗ such that Q contains the paths cθ
v−→ x and x

w−→ cθ. Since θ is and

isomorphism mapping aP 1
r to bQ1

s, the existence of a cycle cθ
vw−→ cθ in bQ1

s implies

that there exists a cycle c
vw−→ c in aP 1

r and hence in P . This cycle contains the

vertices c and c · v. Thus appealing to Proposition 6.1.1, we have (r, P, c)R(r, P, c · v).

Moreover, using condition (a), we see that a(c·v) = (ac)·v = c·v. Combining this

with the second half of (a), we satisfy Proposition 6.2.2 (a). Proposition 6.2.2 (b) fol-

lows from (b). Finally, from Lemma 6.2.1(a), we have that (c ·v)θ = (cθ) ·v = x. Thus

we obtain Proposition 6.2.2(c) as well, whereupon we have that (r, P, c · v)L(s, Q, d).

We conclude that (r, P, c)D(s, Q, d). �

We now wish to show that D = J for semigroup graph expansions. Our approach

will be constructive and rely on the structure of graph expansion elements.

Theorem 6.5.2. Let (S, Σ, f) be a semigroup system. Then in M(S; Σ), D = J .

Proof: It is a basic result of semigroup theory that D ⊆ J . We wish to show the

reverse containment. Suppose for some (r, P, c) 6= (s, Q, d) that (r, P, c)J (s, Q, d).
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Then there exist elements (r, P, x), (s, Q, y), (t, C, w), and (u, D, z) such that:

(r, P, c) = (r, P, x)(s, Q, d)(t, C, w) (6.5.1)

(s, Q, d) = (s, Q, y)(r, P, c)(u, D, z). (6.5.2)

By continually inserting these equations into each other, we obtain the following for

any i ∈ N:

(r, P, c) =
(
(r, P, x)(s, Q, y)

)i
(r, P, c)

(
(u, D, z)(t, C, w)

)i
(6.5.3)

(s, Q, d) = (s, Q, y)
(
(r, P, x)(s, Q, y)

)i
(r, P, c)

(
(u, D, z)(t, C, w)

)i
(u, D, z). (6.5.4)

Inspection of Equation 6.5.3 indicates that for all i ∈ N, we have (xy)i ∈ V (P ).

(Alternatively, we could justify this observation using the same arguments as used in

the proof for L-classes.) Since P is a finite digraph, xy is periodic. Let k and m be

the smallest natural numbers such that (xy)k = (xy)k+m. From Lemma 5.1.1,

(
(r, P, x)(s, Q, y)

)k+m
=

(
(r, P, x)(s, Q, y)

)k+2m
. (6.5.5)

We wish to show that (r, P, c)(u, D, z)R(r, P, c). First, using Equations 6.5.3 and

6.5.5 we have that:

(r, P, c) =
(
(r, P, x)(s, Q, y)

)k+2m
(r, P, c)

(
(u, D, z)(t, C, w)

)k+2m

=
(
(r, P, x)(s, Q, y)

)k+m
(r, P, c)

(
(u, D, z)(t, C, w)

)k+2m

= (r, P, c)
(
(u, D, z)(t, C, w)

)m

=
(
(r, P, c)(u, d, z)

)(
(t, C, w)

(
(u, D, z)(t, C, w)

)m−1)
.

and obviously we can obtain (r, P, c)(u, D, z) from (r, P, c) by multiplying the latter

on the right by (u, D, z). Thus (r, P, c)(u, D, z)R(r, P, c).
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Now we wish to show that (r, P, c)(u, D, z)L(s, Q, d). In this case, we use Equa-

tions 6.5.2, 6.5.3, 6.5.4 and 6.5.5:

(r, P, c)(u, D, z) =
(
(r, P, x)(s, Q, y)

)k+m
(r, P, c)

(
(u, D, z)(t, C, w)

)k+m
(u, D, z)

=
(
(r, P, x)(s, Q, y)

)k+2m
(r, P, c)

(
(u, D, z)(t, C, w)

)k+m
(u, D, z)

=
(
(r, P, x)(s, Q, y)

)m−1
(r, P, x)(s, Q, y)

(
(r, P, x)(s, Q, y)

)k+m
(r, P, c)(

(u, D, z)(t, C, w)
)k+m

(u, D, z)

=
((

(r, P, x)(s, Q, y)
)m−1

(r, P, x)
)
(s, Q, d).

Combining this result with Equation 6.5.2 shows that (r, P, c)(u, D, z)L(s, Q, d).

We conclude that (r, P, c)D(s, Q, d). �

We now consider certain finiteness properties of J -classes. Like the L-classes,

J -classes can be finite or infinite. We will soon give an example of a semigroup graph

expansion that contains both types. Before doing that, we investigate the finite-J -

above property. Given two elements x, y ∈ S, we say that x is J -above y (x ≥J y) if

S1yS1 ⊆ S1xS1. This is equivalent to the existence of some a, b ∈ S such that y = axb.

A semigroup is called finite-J -above, if for each y ∈ S, the set {x ∈ S |x ≥J y} is

finite. In the following proposition we show that if a semigroup is finite-J -above, then

its graph expansion (for any system) is as well. We note that Elston proves the same

result for the semigroup Cayley expansion, but uses properties of derived categories

to obtain it [3].

Proposition 6.5.3. Let (S, Σ, f) be a semigroup system. If S is finite-J -above and

Σ is finite, then M(S; Σ) is finite-J -above.

Proof: Suppose S is finite-J -above. Let (r, P, c) ∈M(S; Σ). Consider the set

X = {(s, Q, d)|(s, Q, d) ≥J (r, P, c)}.
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If X is finite, we are done. By way of contradiction, suppose X is infinite. We make

two observations:

1. There are a finite number of elements of S that are chosen vertices for elements

of X. This is because all these elements are J -above c and we assumed that

S is finite-J -above.

2. All roots of elements of X come from a finite subset of Σ. This is because

P is finite and if (s, Q, d) ∈ X with (s, Q, d) 6= (r, P, c), then P contains an

s-labeled edge.

Combining these two observations with our assumption that X is infinite, we know

there exists some s ∈ Σ and d ∈ S for which there are an infinite number of graphs

Qi such that (s, Qi, d) ∈ X, i ∈ N. We note that for each of these elements, there

exists some (r, Ai, ai), (ti, Bi, bi) such that

(r, P, c) = (r, Ai, ai)(s, Qi, d)(ti, Bi, bi).

Note that for each i, we know that ai ∈ V (P ). Since P is finite, there is some

a ∈ V (P ) for which there are an infinite number of ai with ai = a. We thus specify a

new subset:

Xa = {(s, Qi, d)|a = ai}.

Note that if (s, Qi, d) ∈ Xa, then a(Qi)
1
s ⊆ P . Construct the graph

Γ =
⋃

(s,Qi,d)∈Xa

Qi.

We claim that V (Γ) is infinite. To see this, observe that Γ is the union of an infinite

number of distinct graphs. However, the edge label set of Γ is finite because it is

contained in the edge label set of P . Moreover, since Γ is a subset of the Cayley

digraph, each vertex has at most one edge of each label emerging from it. Thus V (Γ)

must be infinite. On the other hand, aΓ1
s ⊆ P . For each vertex v ∈ V (P ), we form
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the set Yv = {y ∈ V (Γ)|ay = v}. Since P is finite, there exists some v for which Yv is

infinite. However every y ∈ Yv is J -above v since ay1 = v. This contradicts the fact

that every element of S is finite-J -above. Thus, the assumption that X is infinite is

incorrect. We conclude thatM(S; Σ) is finite-J -above. �

Not all graph expansions are finite-J -above. Example 6.6 in the next section has

two infinite J -classes.

6.6 Examples with Eggbox Diagrams

We give two examples in this section. The first is a free semilattice on two generators.

The second provides an example of a semigroup whose graph expansion has infinite

L- and J -classes (and hence infinite D-classes as well).

Example: Let S be the free semilattice on two generators,

S = sgp〈x, y |x = x2, y = y2, xy = yx〉.

From this we form the related system, (S, {x, y}, id). The Cayley digraph is shown

below:

Figure 6.1: The Cayley digraph of the semigroup system (S, {x, y}, id).

The graph expansionM(S; {x, y}) contains 36 elements. To see how this number

is derived, first note that the number of elements with x as the root is the same as the

118



number with y as the root. Thus, we need only count those of form (x, P, c). Using

the table below, the total number is 2× (16 + 2) = 36.

Case Possible edges, possible chosen vertices Number of Elements

(x, y) /∈ E(P ) (x, x) may be in E(P ); chosen vertex is x 2

(x, y) ∈ E(P )
(x, x), (xy, x), (xy, y) may be in E(P );

24 = 16

chosen vertex: x or xy

Upon examining the Cayley digraph Cay(S; {x, y}), we see that there are no non-

trivial cycles. Thus from Theorem 6.1.1, it follows that each of the 36 elements is in a

one-element R-class. There are 32 L-classes with exactly one element and one L-class

with four elements. There are two reasons that the majority of elements are in single

element L-classes. First, any element of the form (x, P, x) is L-related only to itself.

To see why, suppose (x, P, x)L(t, Q, d). By Corollary 6.3.5(a′), d = x. Since x is only

accessible from itself, t = x. Moreover, the only idempotent greater than or equal to

x is itself. Thus by Corollary 6.3.5(b′) (x, P, x) and (x, Q, x) are idempotents. Hence

P = xP 1
x and Q = xQ1

x. Again using the corollary P = xP 1
x = xQ1

x = Q.

The second reason is that any element of the form (x, P, xy) where P does not

contain both the edges (xy, x) and (xy, y) is also L-related only to itself. For this

case, the reasons for this lie with Corollary 6.3.5(b′). This condition tells us that

there exists some a such that (x, P, a) is idempotent. If a = x and we suppose that

(x, P, x)L(t, Q, d), then using the exact same reasoning as in the previous paragraph,

it is easy to show that t = x, P = Q, and d = x. If a = xy, then Corollary 6.3.5(b′)

says that (x, P, xy) is idempotent. From Proposition 4.6.1(a), we have that xyP 1
r ⊆ P ,

whereupon (xy, x), (xy, y) ∈ E(P ), a contradiction.

There are four elements with chosen vertex xy and digraphs containing the loops

(xy, x) and (xy, y). They are shown in Figure 6.2. They constitute the one nontrivial

L-class.

From Theorem 6.5.2 and this analysis of the R- and L-relations, it follows that
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Figure 6.2: The four elements ofM(S; Σ) that are in the same L-class.

R = H and L = D = J . The H-classes that are groups are those that consist of one

idempotent. A partial eggbox diagram forM(S; Σ) is shown in Figure 6.3.

�
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Figure 6.3: The eggbox diagram for M(S; Σ) where S is the semilattice generated
by two elements is shown. There are twenty R = H-classes shown. All contain one
element (eighteen of the form (x,−,−) and two of the form (y,−,−).) There arrows
between boxes indicate how elements are related under the R relation. The element
at the arrow’s tail is greater under the R relation than the element at the head. The
bold outline around a box indicates that it is an idempotent and hence the H-class
containing it is isomorphic to the (trivial) group. There are sixteen single element
L = D = J -classes and one at the bottom with four elements. Each of these elements
is in its own R = H-class.
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We give an example of a semigroup graph expansion with infinite L-classes and

hence also infinite D = J -classes.

Example: Let S = sgp〈x, y |x = x3, xy = x〉. We use the semigroup system

(S, {x, y}, id). The Cayley digraph Cay(S; Σ) is shown in Figure 6.4.

Figure 6.4: The Cayley digraph of the semigroup S = sgp〈x, y |x = x3, xy = x〉.

Inspecting the Cayley digraph in Figure 6.4, we see that an R-class R(r,P,c) will

contain two elements if there is a cycle of length two in P passing through c. Otherwise

it will contain one element.

We can use Theorem 6.2.2 to describe the L-classes ofM(S, Σ, f). A few obser-

vations about S will help. First, note that all elements of S take one of the following

normal forms: {x, x2, yi, yix, yix2}, where i ∈ N. We can then determine the left

identities of the normal forms:

Left identity Elements

x2 x, x2

−− yi

yix2 yix, yix2

Suppose an element (x, P, x) is L-related to another element. We can use Theorem

6.2.2 (a) and (b) to deduce information about the digraph P . First, the digraph P

contains the left identity of x, namely x2. Thus (x, x) is an edge of P . Moreover, the
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subdigraph containment x2P 1
x ⊆ P implies that the edge (x2, x) is also in P . If P

contains no y-labeled loops, then P has the form

and (x, P, x) is not L-related to any element of the form (y, Q, d). The element (x, P, x)

is L-related to one other element, (x, P, x2). This L-class is also an R-,H-, J -, and

D-class.

We now describe what we know about the classes of (x, P, x) if P contains the

y-labeled loop at x, but not the y-labeled loop at x2; i.e. P has the form:

By Theorem 6.1.1, (x, P, x)R(x, P, x2). However, (x, P, x) is not L-related to (x, P, x2),

because we can not satisfy Theorem 6.2.2(a) and (c); i.e. x2 is the only possible value

for a and b of Theorem 6.2.2 (a), but their is no digraph isomorphism from x2P 1
x = P

to itself that sends x to x2. Similarly, we could show that (x, P, x) is not L-related to

any other elements. Thus, (x, P, x) is a single element in an L-,H- J -, and D-class.

Using similar deductions, we can determine the structure of the remaining classes.

For example there are an infinite number of single element L-classes, there is exactly

one two-element L-class (which we described above), and there are three infinite L-

classes. Of these infinite L-classes, two are characterized by “one loop” and are in

the same D-class. They are shown in Figure 6.6. There is also an infinite L-class

characterized by two loops. It is shown in Figure 6.7. It constitutes a D = J -class as

well. We give a partial eggbox diagramM(S, {x, y}, id) in Figure 6.5.

�
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Figure 6.5: The eggbox diagram for M(S; Σ), which has infinite L- and D = J -
classes. All D = J -classes for elements of the form (x,−,−) are shown, but none
of the form (y,−,−). There arrows between boxes indicate how elements are related
under the R relation. The element at the arrow’s tail is greater under the R relation
than the element at the head. In the lower left, there is an R-class with two elements
that is also an L-class. In the middle right, there is an R-class with two elements that
is not a L-class. The H-classes which are groups are indicated by the bold boxes.
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Figure 6.6: Eggbox diagram for the “One Loop” D-class. The infinite D-class for
elements with one y-labeled loop is shown. This D-class breaks down into two infinite
L-classes and an infinite number of two-element R-classes. Its H-classes all contain
a single element. The H-classes that are groups are indicated by the bold outline
around their respective boxes.
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Figure 6.7: Eggbox diagram for the “Two Loops” D-class. The infinite D-class for
elements with two y-labeled loops is shown. This D-class is also an L-class. Each row
is a R = H-class that is a group.
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Chapter 7

Relationships Among Expansions

In this chapter we wish to compare the semigroup graph expansion with other ex-

pansions. We are interested in when homomorphisms between different types of ex-

pansions exist. To start, we will examine the connections between semigroup graph

expansions and the Birget-Rhodes (semigroup) prefix expansion. Our main result in

this section is that the semigroup path expansion plays a similar role with respect

to the semigroup prefix expansion as the group graph expansion plays to the group

prefix expansion.

In the second part of Chapter 7, we will consider the relationship between semi-

group and monoid graph expansions with related inputs. We will show that the

properties of the maps between them depend upon how the monoid and semigroup

systems are related.

Throughout this chapter, identity elements will arise often. To avoid confusion,

we will denote the identity of a group G by 1G and of a monoid T by 1T . If we add

an identity to a semigroup graph expansion to form M(S; Σ)1, we will denote this

identity by 1M.
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7.1 The Birget-Rhodes Prefix Expansion

Many expansions of groups and semigroups, with and without generating sets, are

due to Birget and Rhodes (see [1] and [2]; Grillet also gives a clear description of

many Rhodes’ expansions in [8].) Of the various expansions, the right-prefix expan-

sion and its cut-down-to-generators version are the most closely related to the graph

expansions. In order to lay the framework for later generalizations, it is useful to see

the right-prefix expansion and the right-prefix expansion cut-down-to-generators as

subsemigroups of a larger expansion, which we will refer to as the subset expansion.

If S is a semigroup, then the semigroup subset expansion, denoted S̃⊂, is the set:

{(X, x)|X is a finite subset of S1 and x ∈ X}

with multiplication defined by (X, x)(Y, y) = (X ∪ xY, xy) where xY = {xa |a ∈ Y }.

Brief reflection reveals that the subset expansion is a semigroup.

We will call an expansion of S a set-based expansion if it is a subsemigroup of

the subset expansion S̃⊂. The right-prefix expansion of a semigroup S, denoted S̃R,

is the following set-based expansion: (X, x)

∣∣∣∣∣∣ there is a factorization x = x1x2 . . . xn with xi ∈ S such that

X = {1, x1, x1x2, . . . , x1x2 . . . xn}

 .

Birget and Rhodes show that S̃R is a semigroup, that it can be generated by the set

{({1, s}, s)|s ∈ S}, and that S is a homomorphic image of S̃R via the projection

(X, x) 7→ x.

The right-prefix expansion can also be performed for groups by substituting a

group G in the place of the semigroup S in the definition. This produces a monoid,

denoted G̃R. Szendrei showed in [21] that the description of G̃R can be expressed

more simply:

G̃R = {(X, x)|1, x ∈ X}.
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We now look at set-based expansion whose input is a semigroup system, (S, Σ, f).

The semigroup right-prefix expansion cut-down-to-generators, denoted S̃R
Σ , is this sub-

semigroup of S̃R: (X, x) ∈ S̃R

∣∣∣∣∣∣∣∣∣
there is a word s1s2 . . . sn with si ∈ Σ such that

{1, s1f, (s1s2)f, . . . , (s1s2 . . . sn)f} = X and

(s1s2 . . . sn)f = x

 .

If we wish to determine the group analog, we will need to adjust for the fact

that groups are generated differently than semigroups. If grp(G, Ω, f) is a group

system, the group right-prefix expansion cut-down-to-generators, denoted G̃R
Ω , is the

subsemigroup:

 (X, x) ∈ G̃R

∣∣∣∣∣∣∣∣∣
there is a word s1s2 . . . sn with si ∈ Ω ∪ Ω−1 such that

{1, s1f, (s1s2)f, . . . , (s1s2 . . . sn)f} = X and

(s1s2 . . . sn)f = x

 .

It is easy to construct a map from Mgp(G; Ω) to G̃R
Ω . Suppose (P, c) ∈ Mgp(G; Ω).

There is a word w = s1s2 . . . sn (with si ∈ Ω ∪ Ω−1) which labels a 1 −→ c path

that traverses every edge of P . Thus we know that (V (P ), c) ∈ G̃R
Ω . The map

(P, c) 7→ (V (P ), c) is the desired map. Margolis and Meakin note in [17] that this

map is a surjective homomorphism and that it is an isomorphism if and only if G is

free on Ω.

In the next theorem, we show that the semigroup path expansion plays an anal-

ogous role with respect to the right-prefix expansion cut-down-to generators as the

group graph expansion does to the right-prefix expansion. We will use the following

definition: a semigroup system is (S, Σ, f) is left-cancellative on generators if for any

r, s ∈ Σ and x ∈ S, the equation x(rf) = x(sf) implies r = s. We observe that if

(S, Σ, f) is left-cancellative on generators, then the map f : Σ→ S is injective.
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Theorem 7.1.1. Let (S, Σ, f) be a semigroup system of a semigroup S. Then the

map η : Path(S; Σ)1 → S̃R
Σ defined by

η : (r, P, c) 7→ ({1} ∪ V (P ), c)

1M 7→ ({1}, 1)

is a surjective homomorphism. It is injective if and only if the system (S, Σ, f) is

left-cancellative on generators and for all x ∈ S, we have that x /∈ xS.

Proof: We first prove that η is a surjective homomorphism. Let (r, P, c), (s, Q, d) ∈

Path(S; Σ). Then

(r, P, c)η(s, Q, d)η =
(
{1} ∪ V (P ), c

)(
{1} ∪ V (Q), d

)
=

(
{1} ∪ V (P ) ∪ {c} ∪ cV (Q), cd

)
=

(
{1} ∪ V (P ∪ cQ1

s), cd
)

=
(
r, P ∪ cQ1

s, cd
)
η

=
(
(r, P, c)(s, Q, d)

)
η.

We now show that η is surjective. Let (X, c) ∈ S̃R
Σ . Then there exists a word

w ∈ Σ+ with wf = c such that X = {yf |y is a prefix of w}. Write w as sv where

s ∈ Σ and v ∈ Σ∗. Since (s, bsf v−→ cc, c)η = (X, c), we see that η is surjective.

Suppose η is injective. Let x ∈ S. We will first show that x /∈ xS. By way

of contradiction, we suppose the set Y = {x |x ∈ xS} is non-empty. Next, let

Υ = {w |wf = y for some y ∈ Y }. By the well ordering principle, we can find a

wy ∈ Υ corresponding to some y ∈ Y such that |wy| ≤ |w| for any w ∈ Υ. We rewrite

wy as wy = ryvy where ry ∈ Σ and vy ∈ Σ∗. Since y ∈ Y , there also exists a word

u ∈ Λ+ that labels a cycle based at the vertex y. We can choose u so that the path

y
u−→ y intersects itself only at y. The paths ry

vy−→ y and y
u−→ y have no edges in

common, because if they did, we could find an element b ∈ Y and a word wb ∈ Υ for
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which wb < wy.

We rewrite u as u = zt where z ∈ Σ∗ and t ∈ Σ. Consider the digraphs:

P = bry
vyz−→ y(zf)c and Q = bry

vyu−→ y(zf)c. They are different, since Q contains

the edge (y(zf), t), but P does not. However, as their vertex sets are the same,(
ry, P, y(zf)

)
η =

(
ry, Q, y(zf)

)
η, contradicting the fact that η is injective. We con-

clude that x /∈ xS for all x ∈ S.

We now wish to show that (S, Σ, f) is left-cancellative on generators. To this end,

let s, t ∈ Σ and x ∈ S be such that x(sf) = x(tf). Choose a word w ∈ Σ+ such that

wf = x. As usual, rewrite w as w = rv where r ∈ Σ and v ∈ Σ∗. Using the result

that x /∈ xS for all x ∈ S, we know there is no prefix w′ of w such that w′f = x.

Thus the path rf
v−→ x does not contain the edges (x, s) or (x, t). However, we have

that
(
r, brf vs−→ x(sf)c, x(sf)

)
η =

(
r, brf vt−→ x(sf)c, x(sf)

)
η. Since η is injective,

brf vs−→ x(sf)c = brf vt−→ x(sf)c, from which it follows that s = t.

Conversely, assume that for all x ∈ S we have that x /∈ xS and that the system

(S, Σ, f) is left-cancellative on generators. Suppose (r, P, c), (s, Q, d) ∈ Path(S; Σ)

are such that (V (P ), c) = (r, P, c)η = (s, Q, d)η = (V (Q), d). Consider the case

when |V (P )| = 1. Since V (P ) = V (Q), we have that rf = sf . It follows from

this that (rf)(rf) = (rf)(sf), from which we see that r = s. Moreover, neither P

nor Q can contain edges, since there are no elements y such that (rf)y = rf . Thus

(r, P, c) = (s, Q, d).

Now consider the case when |V (P )| ≥ 2. There are words v1v2 . . . vm, w1w2 . . . wn

with each vi, wj ∈ Σ such that P = brf v1v2...vm−→ cc and Q = bsf w1w2...wn−→ cc. Since

there are no cycles, the paths rf
v1v2...vm−→ c and sf

w1w2...wn−→ c pass though vertices

only once and they visit these vertices in the same order. This implies that rf = sf ,

whereupon r = s. Moreover, (rf)(v1) = (rf)(w1), from which it follows that v1 = w1.

An inductive argument then shows that vi = wi for 1 ≤ i ≤ m and that m = n.

Therefore we have that (r, P, c) = (s, Q, d) in this case as well, whereupon we con-

clude that η is injective. �
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In contrast, except for the instances whenM(S; Σ) = Path(S; Σ), we can not use

this method to construct a surjective homomorphism betweenM(S; Σ) and S̃R
Σ . This

motivates us to define a new set-based expansion that for which we can generalize

this method. Define the right-factor expansion cut-down-to-generators, denoted S̃F
Σ ,

to be the following subsemigroup of S̃⊂:

 (X, x)

∣∣∣∣∣∣∣∣∣
there exists an r ∈ Σ such that rf ∈ X and for every v ∈ X,

there is a word v1v2 . . . vn ∈ Σ∗ such that v = (rv1v2 . . . vn)f and

{(rv1)f, (rv1v2)f, . . . (rv1v2 . . . vn−1)f} ⊆ X

 .

Note that if (X, x) ∈ S̃F
Σ , then the set X is finite since S̃F

Σ ⊆ S̃⊂. It is easy to see

from the definition that S̃R
Σ is a subsemigroup S̃F

Σ . Moreover, we can extend the map

η : Path(S; Σ)1 → S̃R
Σ toM(S; Σ)1 and show that its image is S̃F

Σ .

Proposition 7.1.2. Let (S, Σ, f) be a semigroup system. Then the map

η :M(S; Σ)1 → S̃F defined by:

η : (r, P, c) 7→ ({1} ∪ V (P ), c)

1 7→ ({1}, 1)

is a surjective homomorphism.

Proof: The proof that η is a homomorphism is the same as in Proposition 7.1.1 and

we omit it. We now show that η is surjective. Let (X, x) ∈ S̃F
Σ . Then there exists

some r ∈ Σ such that to every element y ∈ X, there corresponds a word rwy such

that (rwy)f = y and if v is a prefix of rwy, then vf ∈ X. We construct the following

subdigraph of Cay(S; Σ):

P =
⋃
y∈X

brf wy−→ yc.

Note that P is a finite subdigraph, since it is the union of a finite number of finite
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paths. It is rooted at rf and contains the vertex x. Thus, (r, P, x) ∈ M(S; Σ) and

(r, P, x)η = (X, x). �

We summarize the connections between the expansions in Theorems 7.1.1 and

7.1.2 in the following diagram.

7.2 Monoid and Semigroup Graph Expansions

In order to explore the relationship between monoid and semigroup graph expansions,

we will start by forming semigroup systems from monoid systems and then investi-

gate the maps from the respective semigroup graph expansions to the monoid graph

expansions. The properties of these maps depend on how we construct the systems.

We discuss three different scenarios: first, forgetting the identity in the semigroup

system; second, adding an identity to the semigroup graph expansion; third, adding

a generator to the semigroup system to ensure that the identity is generated.

Proposition 7.2.1. Consider a monoid system mon(T, Λ, f) and form a semigroup

system sgp(S, Λ, f) where S is the subsemigroup of T that is generated (as a semi-

group) by Λ. Let γ : M(S; Λ) → Mmon(T ; Λ) be the map defined by (r, P, c) 7→

(P 1
r , c). Then:

(a) γ is a homomorphism;

(b) γ is not surjective;

(c) γ is injective if and only if S 6= T .
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Proof: Starting with part (a), let (r, P, c), (s, Q, d) ∈M(T ; Λ). Then

(
(r, P, c)(s, Q, d)

)
γ = (r, P ∪ cQ1

s, cd)γ

=
(
(P ∪ cQ1

s)
1
r, cd

)
= (P 1

r ∪ cQ1
s, cd)

= (P 1
r , c)(Q1

s, d)

= (r, P, c)γ(s, Q, d)γ.

We conclude that γ is a homomorphism.

To see why (b) is true, observe that all elements inM(S; Λ) are mapped by γ to

elements that have digraphs with edges. Thus no element maps to ( •
1T

, 1T ).

We now wish to show (c). Suppose γ is injective. By way of contradiction, assume

S = T . Then there exists some minimal length word w ∈ Σ+ such that wf = 1T .

Rewrite w as rv where r ∈ Σ and v ∈ Σ∗. Let P = brf v−→ 1T c. Note that P does not

contain the edge (1T , r) because we assumed that w had minimal length. Construct

a new graph P ′ with V (P ′) = V (P ) and E(P ′) = E(P ) ∪ {(1T , r)}. Both P and P ′

are rf−rooted digraphs of Caysgp(S; Λ). Moreover, (r, P, 1T )γ = (r, P ′, 1T )γ. This

contradicts the assumption that γ is injective. We conclude that S 6= T .

Suppose S 6= T . This implies that 1T /∈ S. Let (r, P, c)γ = (s, Q, d)γ. Thus

P 1
r = Q1

s and c = d. Since 1T /∈ S, we know that 1T /∈ V (P ), V (Q). It follows that

(1T , s) = (1T , r), whereupon we have that r = s and P = Q. We conclude that γ is

injective. �
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Proposition 7.2.2. Consider a monoid system mon(T, Λ, f) and form a semigroup

system sgp(S, Λ, f) where S is a subsemigroup of T generated (as a semigroup) by

Λ. Let γ : M(S; Λ)1 → Mmon(T ; Λ) be the map defined by 1M 7→ ( •
1T

, 1T ) and

(r, P, c) 7→ (P 1
r , c). Then:

(a) γ is a homomorphism;

(b) γ is surjective if and only if T is the trivial group;

(c) γ is injective if and only if S 6= T .

Proof:

Proving part (a) and (c) requires extending the proofs in Proposition 7.2.1(a) and

(c) to also apply to the element 1M. These are easy calculations and we omit them.

In order to show (b), we first assume that T is the trivial group. Let (P, 1T ) ∈

Mmon(T ; Λ). If (P, 1T ) = ( •
1T

, 1T ), then 1Mγ = (P, 1T ). If (P, 1T ) 6= ( •
1T

, 1T ), then

there is some r ∈ Σ such that (1T , r) ∈ E(P ). Because T is the trivial group, we have

that rf = 1T . Thus (r, P, 1T )γ = (P, 1T ). We see that γ is surjective.

For the converse, suppose γ is surjective. By way of contradiction, assume T is

not trivial. Then there exists some r ∈ Λ such that rf 6= 1T . Consider the element

( •
1T

−→ •
rf

, 1T ) ∈ Mmon(T ; Λ). Suppose (s, P, 1T )γ = ( •
1T

−→ •
rf

, 1T ). If sf = 1, P 1
s

contains an sf -labeled loop at 1T . If sf 6= 1, there exists some sf −→ 1T path in P .

These are both contradictions. We conclude that T is trivial. �

For this next scenario, we need two techniques, loop deletion and loop addition.

Let Γ be a deterministic digraph and let t ∈ Σ(Γ) be such that Γ contains a t-

labeled loop at each vertex. Furthermore, let P ⊆ Γ. Then the digraph P after

t-deletion, denoted P ṫ, is the maximal subdigraph of P containing no t-labeled loops.

The digraph P after t-addition, denoted by P
+
t , is the digraph obtained from P by

including all t-labeled loops at vertices in P .
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Lemma 7.2.3. Let sgp(S, Σ, f) be a semigroup system. If P , Q ⊆ Caysgp(S, Σ),

c ∈ S, and t ∈ Σ ∪ Σ−1 is such that tf is a right identity of S, then we have the

following:

(a) (P ∪Q)ṫ = P ṫ ∪Qṫ;

(b) (cP )ṫ = c(P ṫ);

(c) (P ∪Q)
+
t = P

+
t ∪Q

+
t ;

(d) (cP )
+
t = c(P

+
t ).

Proof: Parts (a) and (c) follow from the fact that V (P ∪ Q) = V (P ) ∪ v(Q). We

obtain (b) from the fact that deleting t-labeled loops does not affect edges with labels

other than t. Similarly, adding t-labeled loops does not affect the other edges and

thus part (d) follows. �

We will also use the concept of retracts. Recall that a retract of a semigroup S

is subsemigroup X for which there is an endomorphism from S onto X that is the

identity map when restricted to X.

Proposition 7.2.4. Consider a monoid system mon(T, Λ, f) and create a semigroup

system sgp(T, Λ ∪ {e}, g) where the map g agrees with f on Λ and eg = 1T . Let

γ :M(T, Λ∪{e}) → Mmon(T ; Λ) be the map defined by (r, P, c) 7→ ((P 1
r )ė, c). Then:

(a) γ is a homomorphism;

(b) γ is surjective;

(c) Mmon(T ; Λ) is isomorphic to a retract of M(T, Λ ∪ {e}).

Proof: Beginning with part (a), let (r, P, c), (s, Q, d) ∈ M(T, Λ ∪ {e}). Using
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Lemma 7.2.3, we have that:

(
(r, P, c)(s, Q, d)

)
γ = (r, P ∪ cQ1

s, cd)γ

=

((
(P ∪ cQ1

s)
1
r

)ė
, cd

)
=

((
P 1

r ∪ cQ1
s

)ė
, cd

)
=

(
(P 1

r )ė ∪ c
(
(Q1

s)
ė
)
, cd

)
=

(
(P 1

r )ė, c
)(

(Q1
s)

ė, d
)

= (r, P, c)γ(s, Q, d)γ.

Thus γ is a homomorphism.

Moving on to part (b), we consider an element (P, c) ∈ Mmon(T ; Λ). Note that

since 1 = ef , the digraph P is ef -rooted, but contains no e-labeled loops, since it is

a subdigraph of the monoid Cayley digraph. By adding and then removing the loop

(1T , e), it follows that (P 1
e )ė = P . Thus (e, P, c)γ = ((P 1

e )ė, c) = (P, c), whereupon γ

is surjective.

Finally, we wish to show part (c). Consider the following subset ofM(T, Λ∪{e}):

X = {(e, P, c)| if v ∈ V (P ), then (v, e) ∈ E(P )}

It is easy to see that X is a submonoid of M(T, Λ ∪ {e}) with identity element

(e, A, 1T ), where A is the digraph consisting of the vertex 1T and the e-labeled loop

at 1T . It is not difficult to see that γ is injective on X and has image Mmon(T ; Λ).

Let β :M(T, Λ∪{e})→M(T, Λ∪{e}) be the map given by (r, P, c) 7→ (r, P
+
e , c).

Calculations similar to those used in part (a) show that β is a homomorphism. More-

over, it has image X and is injective when restricted to X. Thus X is a retract of

M(T, Λ∪{e}), whereupon Mmon(T ; Λ) is isomorphic to a retract ofM(T, Λ∪{e}).�
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Monoid Graph Expansions and Semigroup Path Expansions

Propositions 7.2.1, 7.2.2, and 7.2.4 all hold if we replace the graph expansionM(S; Σ)

by Pathsgp(S; Σ) and Mmon(T ; Λ) by Pathmon(T ; Λ). Additionally, we obtain a new

Corollary to Proposition 7.2.2:

Corollary 7.2.5. Consider a monoid system mon(T, Λ, f) and form a semigroup

system sgp(S, Λ, f) where S is a subsemigroup of T generated (as a semigroup) by Λ.

If S 6= T , then
(
Pathsgp(S; Λ)

)1 ∼= Pathmon(T ; Λ).

Proof: Suppose S 6= T . We use the function γ described in Proposition 7.2.2 and

restrict it to
(
Pathsgp(S; Λ)

)1
. From Proposition 7.2.2(a) and (c), γ is an injective

homomorphism. We now show that it is surjective. Let (P, c) ∈ Pathmon(T ; Λ). If

(P, c) = ( •
1T

, 1T ), then 1Mγ = (P, c). If (P, c) 6= ( •
1T

, 1T ), there exists some word

w ∈ Λ+ such that w labels a path 1
w−→ c. Rewrite w as w = rv where r ∈ Λ

and v ∈ Λ∗. Then (r, brf v−→ cc, c) ∈ Pathsgp(S; Λ) and (r, brf v−→ cc, c)γ = (P, c),

whereupon we have that γ is surjective. We conclude that γ is an isomorphism and

hence
(
Pathsgp(S; Λ)

)1 ∼= Pathmon(T ; Λ). �
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Chapter 8

Remaining Questions

In this final section, we would like to mention some unanswered questions about the

semigroup graph and path expansions. We will also include our observations relating

to these questions.

First, we would like to know more about the basic structure of the semigroup

graph expansion. For example, it would be interesting to see if it embeds in a semi-

group which is a direct or semidirect product of simpler semigroups. We have looked

at the semigroup Σ×
(
P

(
Caymon(S1; Σ)

)
o S

)
where the operation on Σ is left-zero

multiplication, the operation on P
(
Caymon(S1; Σ)

)
is set union, S keeps its original

operation, and the action of each c ∈ S on each P ∈ P
(
Caymon(S1; Σ)

)
is given by

cP . This did yield a partial result:

Proposition 8.0.6. Let (S, Σ, f) be a semigroup system of a semigroup that is not a

monoid. Then M(S; Σ) embeds in Σ ×
(
P

(
Caymon(S1; Σ)

)
o S

)
via the homomor-

phism γ :M(S; Σ)→ Σ×
(
P

(
Caymon(S1; Σ)

)
oS

)
defined by (r, P, c) 7→

(
r, (P 1

r , c)
)
.

Proof: We first show that γ is a homomorphism. Let (r, P, c), (s, Q, d) ∈M(S; Σ).
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Then we have:

(r, P, c)γ(s, Q, d)γ =
(
r, (P 1

r , c)
)(

s, (Q1
s, d)

)
=

(
r, (P 1

r ∪ cQ1
s, cd)

)
γ

= (r, P ∪ cQ1
s, cd)γ

=
(
(r, P, c)(s, Q, d)

)
.

Moreover if (r, P, c)γ = (s, Q, d)γ, then P 1
r = Q1

s and c = d. Since S is not a monoid,

neither P nor Q contain the edge (1, r). Thus we have that (1, r) = (1, s), whereupon

r = s. We conclude that γ is injective and hence an embedding. �

We tried to modify this idea to see if we could embedM(S; Σ) in the semigroup

Σ ×
(
(P

(
Caymon(S1; Σ)

)
o S

)
, but we were unable to do so. The difficulty occurs

for elements (r, P, c), where P contains a brf −→ 1c path, since the image of (r, P, c)

and (r, P 1
r , c) under γ are the same. Alternatively, we tried to embed M(S; Σ) in

Σ×
(
P

(
Cay(S; Σ)

)
oS

)
, but we were not able to capture the edge insertion that occurs

in the product (r, P, c)(s, Q, d) = (r, P ∪ cQ1
s, cd) (by edge insertion we are referring

to the inclusion of the edge (c, s)). Thus, finding a decomposition of the semigroup

graph expansion remains an open problem. Similarly, the structural decomposition

of the semigroup path expansion is also unknown.

A second remaining question is whether we can characterize the semigroup graph

and path expansions as specific objects in appropriate categories. This has been done

for the other graph expansions: for example Margolis and Meakin show that the group

graph expansion Mgp(G; Ω) is the initial object in the category of Ω-generated inverse

semigroups with maximal group image G (see [17]) and Elston determines that the

semigroup Cayley expansion CayExp(S; Σ) is the largest expansion for which the local

semigroups of the derived category are semilattices (see [3]). Finding an analogous

characterization for the semigroup graph and path expansions remains.
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