
Strathprints Institutional Repository

Paul, Greig and Irvine, James (2016) Investigating the security of android

security applications. In: 9th CMI Conference on Smart Living, Cyber

Security and Privacy, 2016-11-24 - 2016-11-25, Aalborg University,

Copenhagen. ,

This version is available at http://strathprints.strath.ac.uk/58817/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/77035034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Investigating the Security of Android Security

Applications

Greig Paul

University of Strathclyde

Department of Electronic

& Electrical Engineering

Glasgow, United Kingdom

greig.paul@strath.ac.uk

James Irvine

University of Strathclyde

Department of Electronic

& Electrical Engineering

Glasgow, United Kingdom

j.m.irvine@strath.ac.uk

Abstract—Encryption is commonly used to provide confi-
dentiality of sensitive or personal information when held on
smartphones. While many Android devices feature inbuilt full-
disk encryption as a precaution against theft of a device, this is
not available on all devices, and doesn’t provide security against
a device which is turned on and in use. For this reason, a
wide variety of applications are available within the Google Play
Store, offering to encrypt user data. Modern, strong encryption
offers strong assurances of confidentiality when used correctly,
although the fundamental cryptographic primitives are complex,
with many opportunities for mistakes to be made.

The security of a number of implementations of Android-
based encryption applications is investigated. Highly popular
applications, including those by Google-endorsed “Top Devel-
opers”, are considered. A number of major weaknesses in the
implementation of encryption within these applications is pre-
sented. This highlights the importance of both well-audited open-
source cryptographic implementations, as well as the underlying
cryptographic algorithms themselves, given the vulnerabilities
identified in these applications. In many cases, there was no
encryption in use by the application, and file headers were
undergoing trivial static obfuscation, such that files would appear
corrupted. In other cases, encryption algorithms were used, but
with significant implementational errors. In these cases, plaintext
recovery was still possible, due to the use of static keys for every
installation of the app, and the re-use of cipher initialisation
vectors.

I. INTRODUCTION

Encryption is a term many internet and mobile users are

familiar with today; it is commonly accepted good practice

to encrypt confidential data, and indeed many organisations’

information security policies mandate the use of encryption

for data security and confidentiality purposes [1]. This paper

explores popular real-world implementations of encryption

within a range of Android applications, and demonstrates that

the mere presence of encryption is insufficient to ensure the

security and confidentiality of user data.

Within the conventional model of security being defined as

confidentiality, integrity and availability, encryption is used to

provide confidentiality. It can also be used in certain modes of

operation to provide integrity, where an cipher incorporating

ciphertext authentication is used. Within the context of this

work, however, applications will only be evaluated from the

perspective of the confidetiality they offer for data. This is

for because none of the applications investigated attempted to

carry out ciphertext authentication.

This work was carried out through black-box analysis of

a selection of Android applications, available on the Play

Store, investigating the efficacy of various applications through

analysis of the ciphertext outputs. All tests were initially

carried out on a Moto G 2014 Android handset, with the

Android Debug Bridge (ADB) interface used to gain access

to the device’s shared storage. It should be noted that third

party applications can access any files stored here, through the

widely-used READ_EXTERNAL_STORAGE permission, and

could therefore exploit these weaknesses. Findings were then

reproduced on a Nexus 5X handset, in order to verify that they

applied across different devices. Wherever possible, all work

was carried out with devices disconnected from the internet,

to ensure that no external factors or automatic updates would

affect the methodology used. The latest available version of

each application was used when the work was carried out, and

was downloaded from the Google Play Store. Unless otherwise

stated, no modifications or root access was required on the

device in order to carry out the procedures used.

Schneier’s law dates back to 1998 [2], with his statement on

the matter that anyone may design a security they themselves

cannot break. This itself has roots in the work of Babbage

in 1864 [3], where he stated “One of the most singular

characteristics of the art of deciphering is the strong conviction

possessed by every person, even moderately acquainted with

it, that he is able to construct a cipher which nobody else

can decipher.” Despite this, much of today’s widely-available

cryptographic software continues to be built according to

this premise, whereby it remains breakable. By considering

widely-used encryption software on the Android platform,

it will be demonstrated that users remain at risk due to

fundamental misunderstandings of the use of encryption, or

even what may be classed as encryption.

II. PREVIOUS WORKS

While a wide range of security and encryption applications

are available on the Android platform, there appears to be little

previous works considering their practical security. Previous

work considering the usability of security systems has consid-

ered PGP [4], and highlighted the risks to security posed by

complex or otherwise confusing systems. In contrast, all of the

encryption apps considered within this work were relatively

user friendly. The security of networked Android applications

has been widely considered, with various work exploring TLS

implementations and validation of server certificates [5], [6],

[7].

Egle et al. carried out a study of misuse of cryptographic

constructs within Android applications in 2013 [8], which

highlighted that 88% of applications they reviewed made

errors in their use of cryptography APIs in Android. As part

of this work, a number of rules were proposed, surrounding

correct uses of cryptography within applications, including

avoiding use of ECB mode, avoiding use of non-random IVs

for CBC encryption, etc.

III. APPLICATIONS INVESTIGATED

The applications listed in Table I were investigated. Note

that “(TD)” denotes an application by a Google Play Top

Developer.

Each application was installed on a test device, as detailed

in Section I. For applications claiming to encrypt images, three

JPG images were used for the test. The same set images were

used for each application. For applications claiming to encrypt

videos, a set of three MP4 videos were used. Methdology for

the password manager considered is discussed in the relevant

section.

IV. HIDE PHOTO & VIDEO VAULT (VLOCKER)

The Vlocker application used package name

com.simpleapp.vlocker [9], and version 1.0.1

was investigated, which was the latest version available,

released on 20th January 2016. At the time of writing, it had

between half a million and one million downloads from the

Play Store, and 4574 reviews with an average score of 4.2/5

stars.

A. Developer Claims

The developer of the software claimed to use encryption

within the application — “Vlocker is the Super Video Hider.

Lightning encryption and password recovery feature allow

your privacy more secure”. More specifically, the develop-

ers claimed “Encryption - your videos are encrypted using

advanced 128 bit AES encryption”, although somewhat in-

triguingly also claim they allow for email-based recovery of a

user’s PIN within the application [9].

B. Operation of Application

The application was used to encrypt a short MPEG-4

video, recorded using the test handset. The original video was

downloaded to the computer, prior to the encryption of the

video. The application was then used to encrypt the video.

The file was no longer available at the path it was previously

available. A hidden directory .vlocker was noted to have

been added to the /sdcard shared storage area of the device.

Fig. 1. Comparison of original file and vlocker-protected file

Within this folder was the layout of the vault shown by the

application. A new file was found, with the same name as

previously, with the suffix .vlocker appended to it. This

file was retrieved to the computer using ADB.

An initial inspection of the so-called encrypted file indicated

that it had not been encrypted with AES-128, as claimed by

the developers. Indeed, after the first 8192 bytes of the file,

the remainder was byte-for-byte identical with the original file,

indicating that only the MPEG4 header had been tampered.

Figure 1 shows a comparison of the original file with the

file after processing by vlocker. Cursory inspection highlights

that this header has not been encrypted by AES, as the output

distribution is nonuniform. Indeed, where a byte of 0x00

would be expected in the original video, a byte of 0xFF was

seen in the vlocker-protected file.

Therefore, Equation 1a was formed, to determine the output

of the encryption process. It can be reversed by re-arranging

for decryption, as seen in Equation 1b.

ciphertext[i] = 255− plaintext[i] (1a)

plaintext[i] = 255− ciphertext[i] (1b)

Carrying out this process across the first 8192 bytes of the

header revealed the original file, and this was confirmed by

both per-byte comparison of the file, as well as the original

and decoded files having the same cryptographic hash.

C. Security Conclusions

Therefore, it can be concluded that, contrary to the claims

of the developers, vlocker did not make use of AES-128

encryption. Indeed, it made no use of encryption at all —

the protection applied to files is merely that from hiding them

in a folder whose name begins with a “.” character, which

typically hides them from view, and by inverting the bytes of

the MPEG-4 header.

V. HIDE PICTURES & VIDEOS - FOTOX

FotoX, available on the Play Store using package name

com.smsrobot.photox, claimed that “all your private

data will be secured, encrypted and invisible to other Gallery

apps” [10]. The developers, SMSROBOT Ltd, are listed as

being “Top Developers” on the Google Play Store, and FotoX

App Name Package Name Current User Count Version Investigated

Hide Photo & Video Vault com.simpleapp.vlocker [9] 0.5 to 1 million 1.0.1

Hide Pictures & Videos - FotoX com.smsrobot.photox [10] 1 to 5 million (TD) 1.9

Vault - Hide Photos/App Lock com.smsrobot.vault [11] 0.5 to 1 million (TD) 1.9

Photo Locker com.handyapps.photoLocker [12] 10 to 50 million (TD) 1.2.1

Video Locker com.handyapps.videolocker [13] 5 to 10 million (TD) 1.2.1

Password Locker - Data Vault com.handyapps.passwordlocker [14] 0.1 to 0.5 million (TD) 1.0.2

Video Locker net.newsoftwares.videolockeradvanced [15] 10,000 to 50,000 1.0.3

Gallery Vault com.thinkyeah.galleryvault [16] 10 to 50 million 2.6.5

Encrypt File Free com.acr.encryptfilefree [17] 50,000 to 100,000 1.0.8

TABLE I
DETAILS OF APPLICATIONS INVESTIGATED.

Fig. 2. Comparison of original file (upper) against FotoX-protected file
(lower)

has between one and five million installs, with 21,131 reviews

giving an average of 4.3/5 stars. Version 1.9 of the application

was investigated, released in October 2015, the most recent

available at the time of investigation.

A. Operation of Application

FotoX was used to protect a JPG image which was stored on

the Android device’s shared storage. Following the use of the

encryption process, the file was no longer visible within the

original directory. Like with vlocker, a hidden folder whose

name began with dot was used to hide the folder from FotoX.

Within the directory .FotoX was the filesystem layout of

the so-called vault, and these folders contained the protected

files. The encrypted file had the suffix .quickcrypt ap-

pended to its name. It was extracted using ADB, and compared

to the original file. This comparison indicated that only the

very first few bytes of the file differed. Figure 2 shows a

comparison of this region of the header of the file.

Specifically, FotoX had only swapped a pair of bytes — the

first two bytes of the file, containing the JPEG magic bytes

of FF D8 had been swapped with the 11th and 12th bytes,

which were 00 00. This was the only difference between the

two files, and reversal was trivial, by swapping the bytes back

to their original locations, to obtain the original file. The file

was again confirmed identical with the original by comparison

of the file’s cryptographic hash.

B. Security Conclusions

It was clear that FotoX does not employ encryption in

its handling of images, as was claimed in its description.

The swapping of 2 bytes in the header with another 2 bytes

was sufficient to ensure the image would not open in image

viewers, but this does not offer any level of security as one

would expect from software claiming to implement encryption.

C. Similar Applications

Another application from the same developer was also in-

vestigated — “Vault - Hide Photos/App Lock”, using package

name com.smsrobot.vault, had 500,000 to one million

downloads on the Play Store, and an average of 4.1/5 stars

from 7249 reviews.

Like with FotoX, Vault claims that “Once in the Vault, all

your private data will be secured, encrypted and invisible to

other Gallery apps”. Investigation revealed that Vault used the

same process as described in this section to protect images,

swapping bytes from the header. There was no encryption,

despite this being claimed within the description of the appli-

cation.

VI. HANDYAPPS (VARIOUS APPLICATIONS)

Video Locker is an application by the Google Play Store

“Top Developer” Handy Apps. It had an average rating of

4.3/5 stars from 144,343 reviews, and had between 5 and

10 million installs. Version 1.2.1 was investigated, the latest

available at the time, as of January 2016. Photo Locker is a

similar application by the same developers, with an average

rating of 4.2/5 stars, after 151,636 reviews. Photo Locker has

between 10 and 50 million installs. Version 1.2.1 was again

investigated.

A. Developer Claims

The developers of Video Locker claimed it is “the ultimate

secret gallery app”, and that a key feature is its encryption:

Encryption - hidden videos are not only moved to a

secret location on your phone but are also encrypted

using advanced 128 bit AES encryption. This means

that even if someone manage to steal your SD card

and copy the hidden video files, they will still be

unable to view the locked videos [13]

Identically worded claims were made for Photo Locker [12],

including the assertion of 128-bit AES encryption. Since the

operation of the two applications were found to be near

identical, the operation of the two shall be considered together

— only minor differences exist between the applications,

specifically around the types of file accepted by each applica-

tion.

B. Operation of Application

Upon encrypting a video with Video Locker, it was removed

from its original location. A new folder within the shared stor-

age, named .VL was identified, containing the vault contents.

Fig. 3. Comparison of original file (upper) against Video Locker-protected
file (lower)

Fig. 4. Comparison of two different Video Locker-protected files

Each file had .vl appended to its name. Photo Locker created

a similar directory named .PL.

For videos, only the first 8192 bytes differed from the

original file, indicating that only the file header had been

encrypted. Likwise for images, only the first 2048 bytes had

been modified. It was noticed that the header contents appeared

to be more uniformly distributed than the previous applications

investigated. This indicated that a regular encryption algorithm

may have been used.

Figure 3 shows a comparison of the first 144 bytes of an

original video file, against the protected file, indicating the

apparently-encrypted data.

To verify if encryption was being properly applied, the

Video Locker application had its data fully erased from the

device, including the vault. This meant that the application had

lost any of its state data. Therefore, it believed it was a new

install, and a new setup process was completed, with a new

PIN used within the app. Another (different) video was then

encrypted by Video Locker, and the encrypted video extracted.

The header of the two encrypted files were now compared

— if these two ciphertexts held similarities, there would

therefore be a correlation between the ciphertexts, indicating

that similar plaintexts revealed similar ciphertexts. As shown

in Figure 4, the two headers were similar for the vast majority

of bytes, indicating that this was likely use of a statically

initialised cipher. Indeed, the offsets of the bytes differing in

the ciphertext were the same offsets as the bytes differing in

the plaintexts. For example, at offset 0x1a of Figure 4, two

bytes differ between the ciphertexts.

Figure 5 shows that these same bytes in the plaintext

Fig. 5. Comparison of the original video files

differed. For ease of comparison, those bytes are highlighted

with arrows.

Therefore, it was clear that, given the correlation between

the two ciphertexts, the same key and initialisation parameters

were being used, even though a different PIN was being

used in the application for the encryption of the second

file. This was confirmed by using the XOR function across

differing bytes of both plaintext and ciphertext. For example,

from Figure 3, bytes 0x31 - 0x33 were [03, 20, 8A] in

VID 3, and [00, E7, D9] in VID 4. Within the corresponding

ciphertexts in Figure 4, these bytes were [10, BD, 03] and

[13, 7A, 50] respectively.

By carrying out the XOR function across the plaintexts,

the result was [00 ⊕ 03, 20 ⊕ E7, 8A ⊕ D9] = [03, C7, 53].
Across the ciphertexts, the result of XOR was [10⊕13, BD⊕

7A, 03 ⊕ 50] = [03, C7, 53], showing that the XOR of the

two ciphertexts revealed the XOR of the two plaintexts,

thus proving the same key and cipher parameters are used

on different files, thus leaking information between different

ciphertexts.

Since the same key was used for all data encrypted by the

app, and this was static between different installations of the

app, this makes the ciphertext vulnerable to a simple known-

plaintext attack. By encrypting a large file, and recording

both the plaintext and ciphertext of that file, any arbitrary file

may be decrypted with the XOR function, since an unknown

ciphertext was able to be XOR’d with the ciphertext whose

corresponding plaintext is known, and the result XOR’d with

the known plaintext to reveal the unknown plaintext.

C. Decryption of Video Locker & Photo Locker Data

While the above information indicated that that files could

be decrypted by an attacker, the process used to protect

user files remained somewhat unclear and convoluted. It was

identified firstly that using a different PIN and recovery

email address for the application did not affect the encryption

procedure — the same ciphertext was generated in each case.

This also confirmed the static nature of the IV and key, and

confirmed the above findings carried across different PINs and

recovery email addresses.

A file named .config was located within the root di-

rectory of both apps’ vaults. This file contained two base64-

encoded strings, which themselves decoded to scrambled data.

By analysing the operation of the application, it emerged that

this information was held to allow a user to transfer their data

to a new Android device. This file contained a protected copy

of the user’s PIN and recovery email address. Neither was

padded, allowing for trivial identification of the length of each

— following decoding from base64, the number of bytes was

the same as the length of each string.

Since the recovery process could be initiated on a new

device, it was clear this data must be able to be accessed by

the application itself, and it was clear the user PIN was not

hashed, given its length. It was determined that a static key was

used to decrypt this data, using AES-128 in CTR mode, with a

static (fixed) IV. Analysis of the strings within the application

binary revealed that the key and IV were constant, static values

which were stored within the application.

D. Password Locker

Password Locker is an application by Handy Apps, the same

developer as Video Locker and Photo Locker. It has between

100,000 and 500,000 users, and an average rating of 3.9/5

from 1,179 reviews. Password Locker, as the name suggests,

is designed for the secure storage of passwords by users, and

makes a large number of security claims.

For example, the developers stated that Password Locker

“stores your sensitive information offline and passwords safe,

secure and organised”, and that it has “many optional con-

venient features for it to be the best password manager

ever designed specifically for Android” [14]. Specific details

were also given as to the encryption supposedly used — the

developers stated:

Secure

Lock up your data in Password Locker with ex-

tremely tough and strong 256-bit AES encryption

- military level encryption (takes trillions of years

to decrypt) [14]

Password Locker stores its password database within the ap-

plication’s private storage, meaning that root access is required

to retrieve the database. Note, however, that it also offers a paid

feature to enable cloud synchronisation of passwords with a

user’s Dropbox or Google Drive account, which may expose

this database to third party services. Nonetheless, given the

ease with which Android devices may be rooted with exploits

such as CVE-2014-3153 (TowelRoot) and CVE-2015-3636

(Ping Sockets root), we consider it viable that a malicious

party may easily gain access to the database. Nonetheless, if

the claims made by the developers are accurate, users would

have nothing to fear, as their data would be appropriately

encrypted.

The database was found to hold base64-encoded fields, in

the structure of the records, as shown in Figure 6. From this, it

was immediately possible to identify the use of weak, poten-

tially broken cryptography, by the observation of a common

prefix between the two ciphertexts for bank_label and

acc_name. Since this was simply the default record created

by the application, it was possible to verify the hypothesis

that they shared a prefix of 3 characters (given the 4 base64-

encoded characters in common). Indeed, this suspicion was

found correct — the bank account label was “Sam Sample”

and the account name was “Sample Checking Acct”. Once

again, there was no padding present in the ciphertexts, and

Fig. 6. Password Locker Database Structure

lengths of plaintexts could be identified directly from cipher-

text lengths, due to a lack of padding.

The presence of prefixes also indicated that the cipher

in use was not being initialised with unique parameters for

each operation. Therefore, to demonstrate the ability for key

recovery, the following process was carried out, where kc is

a known ciphertext, kp is the corresponding known plaintext,

and uc is an unknown ciphertext, with the length of uc < kc:

key = kc⊕ kp (2a)

up = key ⊕ uc (2b)

By XOR’ing a known plaintext and ciphertext together per

Equation 2a, the AES block key is obtained. By then XOR’ing

this block key against an unknown ciphertext, for the length

of the unknown ciphertext, discarding any remaining block

key material, the unknown plaintext up was recovered, per

Equation 2b.

This was confirmed across 2 Android devices, with different

PINs and security parameters set on each, to prove that the

key used is static, and not derived from the user’s password.

Therefore, the data is merely obfuscated. Anyone carrying

out the above may decrypt any other user’s Password Locker

database trivially, using Equation 2b, since key is constant

across all installations. This is of particular concern if users

were to use the export functionality to store their passwords

within cloud services, as any third party may determine their

passwords using this technique.

E. Security Conclusions

This highlighted that while Video Locker does indeed use

the AES cipher, it only encrypted the header of the MPEG-4

file, rather than its contents. It used static parameters for this

encryption, for all files, irrespective of PIN used, leaking infor-

mation between files. These static parameters were hard-coded

into the application and therefore offer no security to users.

Indeed, the use of CTR encryption with fixed initialisation vec-

tor also leaked other information, although the use of a static

encryption key and IV meant that anyone with access to this

widely-used software, or knowledge of how it operates, may

decrypt files by any other user. More concerningly, Password

Locker, another app from Handy Apps, uses similarly broken

encryption to protect users passwords, while offering cloud

backup facilities. The key for Password Locker is static across

all devices, meaning that anyone may trivially decrypt anyone

else’s passwords and secret information. We demonstrate that

this attack was possible, and note it did not take “trillions of

years” to decrypt, as the developers asserted [14]. This is of

particular concern for an application claiming to protect user

passwords, especially given the off-device backup facility.

Fig. 7. Comparison of original file against Video Locker-protected file

VII. VIDEO LOCKER (NEWSOFTWARES.NET)

Video Locker Advanced is an application by the developer

NewSoftwares.net. To avoid ambiguity with the other appli-

cation named Video Locker, investigated previously, we shall

refer to this application as Video Locker Advanced, in-keeping

with its package name. It had an average rating of 4.2/5

stars from 192 reviews, and had between 10,000 and 50,000

installs. Version 1.0.3 of the application was investigated,

which was released in January 2016, and the latest available.

The developers claimed to use “Encryption - The app locks

your personal videos, prevents video hack.”, and that it protects

private videos “using fast encryption techniques” [15].

A. Operation of Application

Video Locker Advanced was used to encrypt a video

captured from the camera on the test phone. The video was

retrieved from the device prior to its encryption to provide a

comparison.

After encryption, and in-keeping with the other apps inves-

tigated so far, the file was no longer visible in its original

location. A new directory (which was not hidden) was located

within the root folder of the device share storage, titled

Video Locker Advanced Encrypted Data. Within

this directory was a vault structure, and the encrypted file was

located, with the original file extension separator dot replaced

with the # symbol. Therefore a file named VID_1.mp4

became VID_1#mp4.

Comparison of the original file with the protected file

indicated that only the header of the video had been modified,

with the first 100 bytes of the header flipped. Therefore, the

fourth byte became the 96th byte, as shown in Figure 7 —

the fourth byte 0x18 is seen at address 0x61. The ASCII

representation makes this reversal of the bytes clearer, as

shown in the right column of Figure 7.

B. Security Conclusions

From the above, it was clear that Video Locker Advanced

did not use the advanced encryption techniques which it

claimed — this amounted to reversing the bytes of the file

header. Concerningly, the application features Dropbox backup

support [15], which may lead users to believe that they

are uploading only encrypted data to Dropbox, when they

are in fact uploading plaintext user files with merely minor

obfuscation of the file headers.

Fig. 8. Schema of the GalleryVault database file table

VIII. GALLERY VAULT

Gallery Vault is an application by ThinkYeah Mobile, with

between 10 and 50 million reported users on the Play Store.

It has an average rating of 4.4/5, based on 223,160 reviews.

Version 2.6.5 was investigated, which was the latest version

available as of January 2016.

The developers state that “The hidden file are all encrypted”,

and that “GalleryVault is a fantastic privacy protection app to

easily hide and encrypt your photos, videos and any other files

that you do not want others to see” [16].

A. Operation of Application

Like the other applications investigated, Gallery Vault cre-

ated its own vault area on the shared storage, under the di-

rectory name .galleryvault_DoNotDelete_X, where

X was the Unix epoch time in seconds of the creation of the

vault.

Encrypted files were stored within a directory named

file, and named after the epoch time of their encryp-

tion. While this appeared initially to hide the filenames, a

folder named backup was located adjacent to the vault,

containing a backup of the application’s internal database,

galleryvault.db. Note that this database was contained

within the device shared storage, and is therefore accessible

to any software on the phone, and to anyone with access to

the device.

This database contained a tablet named file, which stored

an unencrypted mapping between protected and unprotected

files. The field org_name and org_path contained the

original name and path of the file respectively, with the path

also including the original filename. The database schema is

shown in Figure 8.

A JPEG photograph was encrypted using GalleryVault.

After extracting the encrypted file from the vault, it was

compared to the original file. Figure 9 shows the results this

comparison — only the first ten bytes of the file were found

to differ, and had simply been set to have byte values of zero.

While recovering from this would be straightforward, only

requiring identification of the correct header values, based

upon the image dimensions, it was found that this was not

Fig. 9. Comparison of original file (upper) against GalleryVault-protected file
(lower)

Fig. 10. GalleryVault database leaking original file header

necessary, on account of the leakage of the original header

information within the GalleryVault database file.

Within the file table, the field org_file_header_blob

contained the plaintext original file header, as shown in

Figure 10. Therefore, with access to only the GalleryVault-

protected file, and the backup database held in an adjacent

directory, within the globally accessible shared storage, it was

possible to immediately recover the file header, which can be

compared against Figure 9 to be identical to the original file’s

header which was removed.

B. Security Conclusions

From the above, it is clear that GalleryVault did not carry

out encryption of user image files. The first ten bytes of the

file header were zeroed out, although the header was backed

up, in plaintext, within an SQLite3 database that was held

adjacent to the protected file. Therefore, anyone with access

to the device can trivially restore these ten bytes, and have

restored the original file.

IX. ENCRYPT FILE FREE

Encrypt File Free, by MobilDev, was the second application

listed in the Play Store search for the query “encrypt”. It had

50,000 to 100,000 installs, and an average rating of 3.5/5

from 278 reviews. Version 1.0.8 of the application, from

November 2014, was the latest version available, and the

version investigated.

A. Developer Claims

The developer of Encrypt File Free states “Encrypt File

Free can encrypt and protect photos, videos, audios, pictures,

doc, ppt, xls, pdf and other files using a password”, and

that “The encrypted file can only be opened with the correct

password” [17]. They also state users should “Encrypt your

files and not just hide them. This solution is better and safer

than simply hiding files”.

B. Operation of Application

Since this tool was designed to encrypt files of any type,

rather than specifically videos or images, a test file was

created, as a first test of the algorithm. The test file consisted of

the sequence of 16 increasing bytes, 00, 11, 22... FF,

followed by 16 bytes set to FF, 48 zero bytes, and a further

32 bytes set to FF. The intention of using this test file was to

ascertain if the output of the cipher was strong and uniform,

Fig. 11. Plaintext selected for testing of Encrypt File Free

Fig. 12. Ciphertext output from Encrypt File Free for above test file

or weak and potentially breakable. The plaintext data is shown

in Figure 11.

Upon encrypting this file, which contained a total of 112

bytes, a ciphertext of 1168 bytes was returned. Examination of

this file highlighted that this file could likely be split into three

chunks — an ASCII representation of a 16 bytes hex string,

perhaps a hash like MD5, some unknown data, and finally

data which appeared to be the encrypted content of the file.

Figure 12 shows the resulting ciphertext output from Encrypt

File Free, with some of the 1024-byte header truncated for

readability.

The first 32 bytes were found to contain an ASCII repre-

sentation of the plain, unsalted, MD5 hash of the user’s PIN

for the application. For the example shown in Figure 12, the

PIN used was “111111” (as ASCII characters), and the MD5

hash shown in the first 32 bytes is an ASCII representation

of md5(111111). Therefore, the PIN was trivially exposed to

anyone with access to a ciphertext produced by the application,

on account of the ease of brute-forcing MD5 hashes. This

may be a risk where users unintentionally expose their device

or other PINs, as a result of the re-use of that PIN within

this application. Also of interest was that if the original data

and hash lengths (112 + 32) were subtracted from the overall

ciphertext length (1168), this indicated the middle section

of the data occupied exactly 1024 bytes, perhaps suggesting

padding or some form of fixed-length lookup table.

Indeed, by altering the PIN hash located at the header of

the file, the same file could be decrypted by another device,

which had never been in contact with the plaintext file, thus

showing that the file was not being encrypted with the user

PIN, and that its presence was merely for checking validity

of the entered PIN. Therefore, the process was no better than

storing the file in plaintext. In contrast to the other applications

investigated however, Encrypt File Free did actually modify

the body of the file, rather than merely the headers, although

it does not offer any effective security.

C. Cryptanalysis of the Output

The output of the cipher was found to be very weak, and

appeared to represent that of a monoalphabetic substitution

cipher. Specifically, the pattern of blocks of data was visible

in the output, with 16 differing values, then 16 values (say A),

then 48 different values (say B), then a further 32 bytes of A.

This pattern indicated that the structure of the input plaintext

was remaining constant through to the ciphertext. This can

be seen at the lower part of Figure 12, where the pattern of

repeated bytes has been exposed from the plaintext through to

the ciphertext.

By focusing on the 1024-byte block of unknown header

data, it was observed that different byte values appeared

with slightly different frequencies. An entropy estimation by

the Unix ent utility indicated that the header entropy was

approximately 7.47 bits per byte, although with the arithmetic

mean of data bytes significantly lower than expected, at around

80. Were the data uniformly distibuted, this would be expected

to be nearer 127.5. The auto-correlation coefficient across the

header was also somewhat elevated, at around 0.3, rather than

0, which would be expected for random and unpredictable

data.

An inconsistency within the distribution of the data within

the 1024-byte header was also noticed, since each byte value

from 0x00 to 0xFF was found to exist exactly once within

the first 256 bytes. This therefore appeared to be a form of

one-to-one look-up table, given the lack of duplicates, and

presence of each value.

By using a crib from a known plaintext and ciphertext

mapping, and that a form of monoalphabetic substitution was

taking place, it is possible to consider that the plaintext byte

0x00 from the first byte of the plaintext from Figure 11

was mapped to a ciphertext byte of 0x74, per Figure 12.

By observing that the byte 0x74 appears at offset 0x80 of

this 256-byte header, it appears that the plaintext is obtained

by subtracting the value 0x80. This was verified for other

byte values — the ciphertext byte 0x98 corresponded to

plaintext 0x33, and the ciphertext byte appeared at offset

0xb3. Subtracting 0x80 from this resulted in the plaintext

byte 0x33 as expected.

Therefore, it is possible to decode any arbitrary file pro-

tected by this application, simply through cryptanalysis of the

ciphertext, and knowledge of a single plaintext created with

the application. While the header varied between uses of the

program, this process can be used to decode any file created

by the application.

D. Security Conclusions

It has been shown that Encrypt File Free utilises weak ob-

fuscation, which does not require knowledge of a key to access

their so-called “encrypted” files. The cipher is effectively a

monoalphabetic substitution cipher, and offers no protection

from frequency analysis, with the mapping from plaintext to

ciphertext being one-to-one. The process of identifying this

and carrying out the attack was demonstrated, and shown to

be able to be identified merely by analysing ciphertext output

against a single known plaintext.

A written review from a user in September 2015 entitles

“Unbreakable” states “Encryption still holds, after 2 months.

(I hope) LoL” [17]. This does not appear to be the case, and

the ciphertexts were not able to stand up to basic analysis, with

a security level commensurate with that of a monoalphabetic

substitution cipher. The application also leaked the unsalted,

plain MD5 hash of the user’s PIN in the header of each file,

potentially exposing a user’s PIN to other applications, which

may be damaging if this were to be re-used in other scenarios,

such as on a lock-screen or a bank card.

X. DISCUSSION

With all of the encryption apps considered within this work

being relatively user friendly and user-focused, this gives rise

to consideration as to the trade-offs between security and

usability. Many of the applications considered here featured

password reset functionality, allowing users to reset their

encryption password if they forgot it. This naturally raises

questions as to the level of security offered, if it is possible for

the password to be easily reset by the user receiving an email.

There does however raise a more general question, around

whether or not it is ethical or appropriate to advertise software

as being secure, when it is heavily vulnerable to attacks such

as those demonstrated here. Were users to depend on this

software for confidentiality, then suffer as a result of their data

being accessed, despite being encrypted, there is a question

around whether or not such descriptions were misleading or

inaccurate. Given that the applications considered here were

often not implementing any kind of encryption, their claims

are clearly questionable at best.

The United States’ FTC issues advice for app developers,

encouraging them to consider security at the start of making

an application [18], although much of this advice focuses

more on privacy and data protection, rather than on proper

implementation of cryptography. App developers have pre-

viously been found guilty of misleading practices, although

these have typically focused on non-transparent fees to use

applications, such as by sending premium rate SMS messages

without making users aware [19].

It does appear to remain an open question, however, as to

whether or not there is a legal case for claims of false or

misleading advertising against mobile application developers,

especially where an application is made available for free.

While legislation exists to protect consumers from digital

content sales [20], the rise in alternative business models,

whereby the user does not pay directly for the application,

but the developer receives money as a result of advertisments

shown within the application to users, raises questions as

to whether there is any recourse available for users against

misleading claims made by developers.

XI. CONCLUSIONS

An analysis was conducted of a range of Android ap-

plications claiming to implement encryption to protect user

files from unauthorised access. This selection of applications

included highly popular apps, and those by “Top Developers”

on the Google Play Store. Every application here claimed

to encrypt files for privacy or security, but most merely

obfuscated files or removed their headers. Very few used

actual encryption algorithms, despite their claims, and did

those which did use encryption were using it with a static key,

that was the same for every installation of the application. This

was verified by repeating the experiment on a second device

and ensuring “encrypted” files were able to be opened on both

device. In that case, the use of an uninitialised counter-mode

cipher with a static key, it was possible to recover all data

encrypted by the application. Cryptanalysis of a non-standard

algorithm for a monoalphabetic substitution cipher, based upon

a mapping table held in plaintext in the header of the file, was

carried out. This showed that basic analysis could be used to

decode the data, without any requirement to understand the

workings of the application.

These findings are of significant concern, as they show the

security implications for users relying on software such as that

which has been investigated here. Combined, the applications

investigated here have potentially up to 117 million users,

as reported by the rounded (and range-binned) figures within

Google Play. These applications all claimed to use encryption,

and a viable attack has been found to recover plaintext from

each of them. In all cases, it was possible to recover the

plaintext from the ciphertext without knowledge of any key

or other security credential; these techniques serve merely

as obfuscation, and do not offer the properties of properly

implemented encryption, even where ciphers are named or

indeed used, due to serious implementational flaws. Weak-

nesses such as these put sensitive or confidential data at risk

of compromise, due to their false statements of security, and

improper implementations. This highlights the need for open-

source, audited security applications, and shows that users

cannot necessarily trust app ratings, user counts, or developer

claims, when considering security.

ACKNOWLEDGMENT

This work was funded by EPSRC Doctoral Training Grant

EP/K503174/1 and MaidSafe.Net.

REFERENCES

[1] SANS Institute. (2014, June) Acceptable encryp-
tion policy. [Online]. Available: https://www.sans.org/security-
resources/policies/general/pdf/acceptable-encryption-policy

[2] B. Schneier. (2011, April) Schneier’s law. [Online]. Available:
https://www.schneier.com/blog/archives/2011/04/schneiers law.html

[3] B. Charles, “Passages from the life of a philosopher,” 1864.
[4] A. Whitten and J. D. Tygar, “Why johnny can’t encrypt: A usability

evaluation of pgp 5.0.” in Usenix Security, vol. 1999, 1999.
[5] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and

M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in) security,” in Proceedings of the 2012 ACM conference on

Computer and communications security. ACM, 2012, pp. 50–61.
[6] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and

V. Shmatikov, “The most dangerous code in the world: validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM

conference on Computer and communications security. ACM, 2012,
pp. 38–49.

[7] G. Paul and J. Irvine, “Google’s Android setup process security,” in
Proceedings of Wireless World Research Forum Meeting 33, September
2014.

[8] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications

security. ACM, 2013, pp. 73–84.
[9] simple app 2016. (2016, January)

Vlocker-hide videos. [Online]. Available:
https://play.google.com/store/apps/details?id=com.simpleapp.vlocker

[10] SMSROBOT Ltd. (2015, October) Hide pic-
tures & videos - fotox. [Online]. Available:
https://play.google.com/store/apps/details?id=com.smsrobot.photox

[11] ——. (2015, October) Vault - hide photos/app lock. [Online]. Available:
https://play.google.com/store/apps/details?id=com.smsrobot.vault

[12] Handy Apps. (2015, December) Hide pho-
tos in photo locker. [Online]. Available:
https://play.google.com/store/apps/details?id=com.handyapps.photoLocker

[13] ——. (2015, December) Video locker - hide videos. [Online]. Available:
https://play.google.com/store/apps/details?id=com.handyapps.videolocker

[14] ——. (2015, December) Password locker
- encrypt data. [Online]. Available:
https://play.google.com/store/apps/details?id=com.handyapps.passwordlocker

[15] NewSoftwares.net. (2016, January) Video
locker - hide videos. [Online]. Available:
https://play.google.com/store/apps/details?id=net.newsoftwares.videolockeradvanced

[16] ThinkYeah Mobile. (2015, December) Gallery
vault-hide video&photo. [Online]. Available:
https://play.google.com/store/apps/details?id=com.thinkyeah.galleryvault

[17] MobilDev. (2014, November) Encrypt file free. [Online]. Available:
https://play.google.com/store/apps/details?id=com.acr.encryptfilefree

[18] FTC. (2013, February) Mobile app developers: Start with
security. [Online]. Available: https://www.ftc.gov/tips-advice/business-
center/guidance/mobile-app-developers-start-security

[19] C. Donnelly. (2012, September) Android app maker
fined 50,000 for misleading consumers. [Online]. Avail-
able: http://www.itpro.co.uk/642616/android-app-maker-fined-50000-
for-misleading-consumers

[20] Department for Busienss, Innovation & Skills. (2015, October)
New rights for consumers when buying digital content.
[Online]. Available: https://www.gov.uk/government/news/new-rights-
for-consumers-when-buying-digital-content

