-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by ROS: The Research Output Service. Heriot-Watt University Edinburgh

An Integrated Approach to High Integrity
Software Verification

by
William James Ellis

Submitted for the Degree of
Doctor of Philosophy
at Heriot-Watt University
on Completion of Research in the
School of Mathematical and Computer Sciences
June 2010

The copyright in this thesis is owned by the author. Any qgtiotafrom the thesis or use of any
of the information contained in it must acknowledge thisstheas the source of the quotation or
information.

https://core.ac.uk/display/77035019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Computer software is developed througgftware engineeringAt its most precise, soft-
ware engineering involves mathematical rigouf@snal methods High integrity soft-
ware is associated with safety critical and security @ltigpplications, where failure
would bring significant costs. The development of high intggsoftware is subject to
stringent standards, prescribing best practises to isergaality. Typically, these stan-
dards will strongly encourage or enforce the applicatiofoohal methods.

The application of formal methods can entail a significanbant of mathematical
reasoning. Thus, the development of automated techniguss active area of research.
The trend is to deliver increased automation through twopiementary approaches.
Firstly, lightweight formal methodare adopted, sacrificing expressive power, breadth of
coverage, or both in favour of tractability. Secondiytegratedsolutions are sought,
exploiting the strengths of flerent technologies to increase automation.

The objective of this thesis is to support the productionighhntegrity software by
automating an aspect of formal methods. To develop traetaahniques we focus on
the niche activity of verifyingexception freedomilo increase fectiveness, we integrate
the complementary technologiesmbof planningandprogram analysis Our approach
is investigated by enhancing the SPARK Approach, as deeelby Altran Praxis Lim-
ited. Our approach is implemented and evaluated as the SBedEystem. The key
contributions of the thesis are summarised below:

e Configurable and Sound- Present a configurable and justifiably sound approach
to software verification.

e Cooperative Integration - Demonstrate that more targeted arti&etive automa-
tion can be achieved through the cooperative integratiahspinct technologies.

e Proof Discovery - Present proof plans that support the verification of exoapt
freedom.

¢ Invariant Discovery - Present invariant discovery heuristics that support grée v
fication of exception freedom.

e Implementation as SPADEase Implement our approach as SPADEase.

¢ Industrial Evaluation - Evaluate SPADEase against both textbook and industrial
subprograms.

Acknowledgements

First and foremost, thanks to my supervisor, Andrew IreJamdo somehow managed
to steer my erratic and plodding endeavours into somettiagwarranted publication.
Thanks are also due to my examiners, Greg Michaelson andentitcGettrick, for
their balanced and constructive feedback.

Thanks go to Altran Praxis, in particular Peter Amey and Rbdgnan of SPARK
Team, for their technical and moral support. Similarly,nks are due to the Depend-
able Systems Group at Heriot-Watt University and the Matitézal Reasoning Group at
Edinburgh University, for sharing their insights in an o engaging manner.

Finally, gratitude is given to Christine Nichol and my parsenThrough both infinite
support and eternal nagging, they helped me get this finished

This research was supported by EPSRC grantd|RGR081 and GR'11289, and is a
collaboration with Altran Praxis Limited.

HERIOT

ACADEMIC REGISTRY
Research Thesis Submission

% UNIVERSITY

Name: William James Ellis
School/PGl: MACS
Version: (e. First, Final Degree Sought PhD, Computer Science
Resubmission, Final) (Award and
Subject area)

Declaration

In accordance with the appropriate regulations | hereby submit my thesis and | declare that:

1) the thesis embodies the results of my own work and has been composed by myself

2) where appropriate, | have made acknowledgement of the work of others and have made reference to
work carried out in collaboration with other persons

3) the thesis is the correct version of the thesis for submission and is the same version as any electronic
versions submitted*.

4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made
available for loan or photocopying and be available via the Institutional Repository, subject to such
conditions as the Librarian may require

5) Il understand that as a student of the University | am required to abide by the Regulations of the
University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis
is submitted.

Signature of Date:
Candidate:

Submission

Submitted By (name in capitals):

Signature of Individual Submitting:

Date Submitted:

For Completion in Academic Registry

Received in the Academic
Registry by (name in capitals):

Method of Submission

(Handed in to Academic Registry; posted
through internal/external mail):

E-thesis Submitted (mandatory
for final theses from January
2009)

Signature: Date:

Please note this form should bound into the submitted thesis.

Updated February 2008, November 2008, February 2009

Contents

1

Introduction 1
1.1 Motivationand Overview L o 1
1.2 Contributions 3
1.3 Publications 3
1.4 ThesisOrganisation i 4
Background S
2.1 Introduction 5
2.2 Program Verification 5
2.2.1 Axiomatic Assertional Reasoning 5
2.2.2 Abstract Interpertationo 7
2.2.3 Program Refinement 7
2.2.4 Program Generation 8
2.3 Automated Deduction 8
2.3.1 Proof Assistants 8
2.3.2 Machine-Oriented Theorem Provers 9
2.3.3 Human-Oriented TheoremProvers 11
2.4 Program Analysis 11
2.4.1 StaticAnalysis 11
2.4.2 InvariantDiscoveryo 12
2.5 Program Verification Systems. L 0o 14
2.5.1 Batch Verification. oo 14
2.5.2 Collaborative Verification 51
2.5.3 Lightweight Verification 16
2.6 Critical Analysis e 19
2.6.1 Fundamental Positioning 19
2.6.2 Detailed Directions 20
Proof Planning 21
3.1 Introduction 21
3.2 ProofPlanning 21
3.2.1 MathematicalReasoning 21

3.2.2 Proof Planning Architecture 22

3.3 Featuresof ProofPlanning 24
3.3.1 Extensibility through Deep Understanding 24
3.3.2 Facilitates SharingandReuse 5
3.3.3 Constrained Search and Incompleteness25
3.3.4 Flexibility through Separation of Concerns 25

The SPARK Approach 27

4.1 Introduction
4.2 SPARKApproach
4.2.1 Historical Perspective
4.2.2 Industrial Application oL,
423 OVEIVIEBW o e e

4.3 The SPARK Programming Language 0 3
4.3.1 Significant Language Features 0 3

4.3.2 RelationshiptoAda
4.3.3 Example
44 The SPARKtoolset
441 Conformanceto SPARK
44,2 DataFlowAnalysis.
4.4.3 Information Flow Analysis
4.4.4 Program Verification o
4.45 PartialCorrectness
446 ExceptionFreedom

4.5 Configuring the SPARKtoolset 49
Enhancing the SPARK Approach with SPADEase 50
5.1 \Verifying ExceptionFreedom 50
5.2 \Verification Challenges 51
5.3 \Verifying Exception Freedom with SPADEase b2
5.3.1 Architectureof SPADEase
5.3.2 SPADEase Enhanced Verification Process 54
5.4 Addressing VerificationChallenges 55
Proof Planner 57
6.1 Introduction
6.2 Proof Planner Architecture 57
6.3 Proof Planner Configuration 57
6.4 lllustrative Example 58
6.5 Goal

6.5.1 Declarations

6.5.2 Built-in Functions 65

6.5.3 Goal Structure 68
6.6 Theorems e 71
6.6.1 RetrievingTheorems, 71
6.6.2 Converting Theoremsto Rewrite Rules 72
6.7 ProofPlans 75
6.7.1 Methodsand Critics 75
6.7.2 Strategies 76
6.8 ProofPlanner 77
6.8.1 Plans 77
6.8.2 Planner Algorithm 79
6.9 PlanResult 80
6.9.1 Result from Instantiated ProofPlan 80
6.9.2 Result from Failure Critique 18
6.10 Method-Language Overview 83
6.11 Proof PlansOverview 4 8

6.11.1 Proof Plans for Exception Freedom Goals 84
6.11.2 Proof Plans for Program Analysis Queries 86

Program Analyser 88
7.1 Introduction 88
7.2 Program Analyser Architecture e 88
7.3 Program Analyser Configuration 90
7.4 MIiniISPARK 90
7.5 Parsero e e 90
7.5.1 Declarations e 90
7.5.2 Program. e 91
7.6 Simplifications and Approximations 96
7.6.1 Replace Named Scalar Constants With Their Values 96
7.6.2 Eliminate UnneededCasting 96
7.6.3 Transform Returnto Assignment. 6 9
7.6.4 Subprogram Call Abstractions 6 9
7.7 Control Flowgraph 97
7.7.1 Control Flowgraph Structure 8 9
7.7.2 Subprogram Code as Control Flowgraph 9 9
7.8 StructuredBlocks 110
7.9 Program Analyser Algorithm oL 102
7.9.1 Program AnalysisMethods 102
7.9.2 Abstract Predicate Satisfiers 103
7.10 Program Analysis HeuristicsOverview 103
7.10.1 Program Analysis Methods 410

7.10.2 Abstract Predicate Satisfiers 104

8 Evaluation 106

8.1 Introduction 106

8.2 Implementation of SPADEase 061
8.2.1 Implementing the Proof Planner 061
8.2.2 Implementing the Program Analyser 107

8.3 EvaluationofSPADEase0110
8.3.1 ResultFormat. 107

8.4 Textbook Subprograms oL 910
8.4.1 SubprogramAverage e e 109
8.4.2 Subprogram BubbleSort 110
8.4.3 Subprogram DualFilter 111
8.4.4 Subprogram MatrixFilter 0oL 211
8.4.5 Subprogram MatrixMult L. 113
8.4.6 Subprogram OpenPortScan. 116
8.4.7 SubprogramResetArrayo 118

8.5 Industrial Subprograms L Lo 119
8.5.1 Subprograml. 119
8.5.2 Subprogram?2. 120
85.3 Subprogram3. 120
8.5.4 Subprograms4and5 120
855 Subprogram6. 121
8.5.6 Subprogram 7. 121
8.5.7 Subprogram8. 122
8.5.8 Subprogram 9. 123
8.5.9 Subprogram10 123
8.5.10 Subprogram 11 123
8.5.11 Subprogram12 124
8.5.12 Subprogram 13 124
8.5.13 Subprogram 14 124
8.5.14 Subprogram 15 125
8.5.15 Subprogram 16 125
8.5.16 Subprogram 17 125
8.5.17 Subprogram 18 125
8.5.18 Subprogram19 126

8.6 Overall Analysis 126
8.6.1 Comparing Complexity and Prooft&rt 126
8.6.2 Comparing Complexity and Iterations 129

9 Conclusions 130

9.1 Contributions 130
9.2 Limitationsand Future Work 132
9.2.1 Support Preconditions and Postconditions 132
9.2.2 Adopt Tactic Based Theorem Prover 331
9.2.3 Automated LemmaDiscovery 133
9.3 Summary e 133
A PolishFlag Interactive Proof 134
A.l Introduction 134
B Modifying the SPARK Toolset 136
B.1 Introduction 136
B.2 Modifications to the Examiner 136
B.3 Modifications to the Simplifier 136
B.4 Modificationstothe Checker 136
B.4.1 Principled Proof Checking Interface 137
B.4.2 Improve Predictability 7n3
B.4.3 Richer ProofCommands 137
B.4.4 Adding Theorems ThroughUserRules 913
C Method-Language 141
C.1 Introduction 141
C.2 Method-Language Predicates 141
C.3 Composition. 142
C.3.1 cut . .. e 142
C.3.2 not e e 142
C.4 ProofPlanning 142
C.4.1 abortplan 142
C4.2 plandemmas e 142
C.4.3 writelline e 142
C.5 ListProcessing i 143
C5.1 append e 143
C.5.2 filterduplicates. 143
Cb53 select e 143
C.6 PlanFeatures e 143
C.6.1 add.underconstrainedvars. 143
C.6.2 getgoalcategory 143
C.6.3 match_global.context 144
C.7 GoalFeatures 144
C.7.1 add_constrainingvars e 144

C.8

C.9

C.7.2 get_constraining_vars . .
Goal Patterns
C8.1 auxwvars
C.8.2 unconstrained_consts_vars
C.8.3 uncoupled_entry_vars . .
C.8.4 under_constrained_vars .
Analyse Expressions
C.9.1 binary_explode
C.9.2 conjunctat
C.9.3 elim_bounded.var
C94 evalexp
C95 expat...........
C.9.6 expexplode
C.9.7 find_replace.
C98 ground
C.9.9 intboundwvar
C.9.10is.inequalityop
CO91lisint
C.9.12 prog.varexps
C.9.13 remove_real exps
C.9.14replaceat.
C.9.15 simple_linear_exp_var . .
C.9.16 solve_forvar
C.9.17 sub_exp_polarity
C.9.18 total_functions
C.9.19 unconstrained_var

C.10 Rewriting

C.10.1 constants_to_value
C.10.2 constrain_const_arrays . .
C.10.3 constrain.exps
C.10.4 eliminate_duplicate_vars .
C.10.5 select_alt_view_rule
C.10.6 select_rewrite_rule
C.10.7 select_transitivity_rule . .

Cl1Rippling

C.11.1ripple_annotate
C.11.2 ripple_.complete
C.11.3ripple_erasure
C.11.4rippleexpat
C.11.5 ripple_unblock_strategies

Vi

C.11.6selecttwave_rule 153

D Tacticals and Tactics 154
D.1 Introduction e 154
D.2 Tactics e e 154

D.2.1 nulltactic 154
D.2.2 ftrivialtactic e 154
D.2.3 trivially_true_conctactic 155
D.2.4 rewritetactic 155
D.2.5 split.concconjtactic., 156
D.2.6 casesplittactic 157
D.2.7 sequencetactic 157
D.3 Tacticals e 157
D.3.1 thentactical 157
D.3.2 finaltactical 157

E Proof Plans 158
E.1 Introduction 158
E.2 Proof Plans for Exception Freedom Goals 158
E.3 Strategyexceptionfreedom 159

E.3.1 Behaviour. 159
E.4 Strategyrun_timecheck Lo 160
E.41 Behaviour. 160
E.5 Strategyinvariant e 161
E.5.1 Behaviour. 161
E.6 Methoditargetedgoal 162
E.6.1 Behaviour. 162
E.7 Critic: proved_at.simplifier 163
E.7.1 Behaviour.o 163
E.8 Critic:simplifiedgoal 164
E.8.1 Behaviour. 164
E.9 Criticcothergoal 165
E.9Q.1 Behaviour. 165
E.10 Criticiinreal.domain 166
E.10.1 Behaviour 166
E.11 Methodinitialisation 167
E.11.1 Behaviour e 167
E.11.2 Introduce External Constraints 167
E.11.3 Remove Duplicate Hypotheses 68 1
E.11.4 Remove Real Hypotheses 168

E.11.5 Replace Named Scalar Constants With Their Values 168

Vil

E.12 Method:specialise hyps, 169

E.12.1 Behaviour 169
E.12.2 PlanLemmas Separately 170
E.13 Methodviable goal 171
E.13.1 Behaviour 171
E.13.2 No Uncoupled Entry Variables 711

E.13.3 No Unconstrained Constants or Variables 173
E.13.4 No Under Constrained Constants or Variables 173

E.14 Critic:couple_entryvars e 178
E.14.1 Behaviour 178
E.15 Critic:constrain.consts e 179
E.15.1 Behaviour 179
E.16 Critic:constrainvars e e 180
E.16.1 Behaviour 180
E.17 Critic:tightly_constrainvars 181
E.17.1 Behaviour 181
E.18 Methodrtcgoal 182
E.18.1 Behaviour 182
E.19 Methodinv.goal 182
E.19.1 Behaviour 183
E.20 Methoditrueconco 183
E.20.1 Behaviour 183
E.21 Methodfalsecconc 184
E.21.1 Behaviour 184
E.22 Methodlinearboundedconc 185
E.22.1 Behaviour 185
E.23 Methodccase split 187
E.23.1 Behaviour 187
E.24 Methodmult.commute, 188
E.24.1 Behaviour 188
E.25 Methodeval.conc 189
E.25.1 Behaviour 189
E.26 Method:ssplit.concconj 190
E.26.1 Behaviour 190
E.27 Methodfertilize 190
E.27.1 Behaviour 191
E.28 Methodclearconcexp 191
E.28.1 Behaviour 191
E.29 Methodelimwvarconc 192
E.29.1 Behaviour 192

viii

E.30

E.31

E.32

E.33

E.34

E.35

E.36

E.37

E.38

E.39
E.40

E.41

E.42

E.43

E.44

E.45

E.46

E.47

E.48

E.49

E.50

Methodtransitivity entry 194
E.30.1 Behaviour 194
Methodtransitivity decomp 197
E.31.1 Behaviour 197
Methodtransitivity fertilize 199
E.32.1 Behaviour 199
Methodtransitivity close 201
E.33.1 Behaviour 201
Methodtransitivity_.unblock 202
E.34.1 Behaviour 202
Methodrippleentry 203
E.35.1 Behaviour L 203
Methodripplewave 206
E.36.1 Behaviour 206
Methodripple fertilize 208
E.37.1 Behaviour 208
Methodrippleunblock L 209
E.38.1 Behaviour 209
Proof Plans for Program Analysis Queries 210
Strategypa_exp_simplify oo 211
E.40.1 Behaviour 211
Strategypa_exp_constrain 211
E.41.1 Behaviour 211
Strategypa_spark-exp 212
E.42.1 Behaviour 212
Strategypa_disjnormform 212
E.43.1 Behaviour 212
Methodprune_conc_duplicate 213
E.44.1 Behaviour 213
Methodpruneconceq 214
E.45.1 Behaviour 214
Methodreportconc 215
E.46.1 Behaviour 215
Methodssolve eq_hyp forvar 216
E.47.1 Behaviour 216
Method:.constrain.concconj 217
E.48.1 Behaviour 217
Methodelimauxvarviaeq. 218
E.49.1 Behaviour 218
Methodelim_progvarexpviaeq. v .. 219

E.50.1 Behaviour 219

E.51 Methodelim_aux_var.via.intarith 220
E.51.1 Behaviour 220
E.52 Methodis spark exp 221
E.52.1 Behaviour 221
E.53 Methoddisj.norm_form 222
E.53.1 Behaviour 222
MiniSPARK Grammar 223
F.1 Introduction 223
F.2 Grammar e e 223
Program Analysis Methods 228
G.1 Introduction 228
G.2 Method:scope 228
G.2.1 PropertyType e e 228
G.2.2 Route 228
G.2.3 PropertyOperations 229
G.3 Methodiupdate 231
G.3.1 PropertyType e 231
G.3.2 Route e 231
G.3.3 PropertyOperations, 231
G.3.4 Example 234
G.4 Method:context 239
G.4.1 Property Type o 239
G.4.2 Route e 239
G.4.3 PropertyOperations, 239
G.4.4 Example 241
G.5 Methoditype 245
G.5.1 PropertyType e e 245
G.5.2 Route e 245
G.5.3 PropertyOperations 245
G.6 Method:itransient 246
G.6.1 PropertyType e e 246
G.6.2 Route e 246
G.6.3 PropertyOperations 246
G.6.4 Example 248
G.7 Methodlooprange 252
G.7.1 PropertyType e e e 252
G.7.2 Route e 252
G.7.3 PropertyOperations, 252

G.8 Method:int_constraint e 253

G.8.1
G.8.2
G.8.3
G.8.4
G.85

Property Type e 253
Eliminate Expressions via Unconstrained Variables. 254

Route 255
Property Operations 255
Example 261

Xi

Chapter 1

Introduction

1.1 Motivation and Overview

Computer software is increasingly prevalent in our moderiety. This software can be
roughly classified intéow integrity softwarewhere failure is irritating, antigh integrity
software where failure brings significant costs. High integrity t®afre may be found
in safety-critical, security-critical and mission-cciil contexts. Unfortunately, high in-
tegrity software failures do occur. Following seven biflidollars in development, a soft-
ware error led to the destruction of Ariane 5 [Eur96]. A safte error in the radiation
therapy machine Therac-25 led to deaths from massive osesdof radiation [LT93].
The Risks Digest [For] is updated frequently, describingerg vulnerabilities identified
in computer systems and the risks they pose to the public.

Computer software is flicult to get right because it is inherently complex [Bro87,
Ame01]. Software engineerinSom04] seeks to improve the quality of software by
managing the processes under which it is developed. Saftemagineering may take
many forms. At its most precise, software engineering idacted with mathematical
rigour asformal method$CwW96].

The advantage of formal methods is the additional leveragenmathematical rigour
provides. Without any formality, software must be validateroughtesting This in-
volves checking that the software behaves correctly on aefuds the possible inputs. It
is rarely practical to test all inputs, and thus testing caly offer a partial assurance that
the software is correct [LS93]. With formality, software yrze validated throughkerifi-
cation This involves formally verifying that the software medtsspecification. Where
applied in full, verification can give a complete assuraiee the software is correct.

The development of high integrity software is subject to ynatandards [Int96,
Min91, Rad93, Com98]. The standards aim to increase thatgudl high integrity
software by encouraging or enforcing best practises. Itiqudar, for the most critical
software, the Ministry of Defence Standard 00-55 [Min9ftketively mandates the use
of formal methods [Tie92]. For these reasons, formal mettesd commonly associated
with the development of high integrity software. For exaeph this context, there have

been several successful applications of formal methodsinstry [BH97, CW96].

Despite the advantageffered by formal methods, their adoption remains marginal.
Many of the criticisms directed at formal methods are baseithaved perceptions [Hal90,
BH95a, BH95h, BHO6]. Such misunderstandings may haveradse to overly ambitious
claims being made for formal methods [LG97]. Nevertheldsse are genuine obstacles
in adopting formal methods. To facilitate migration to f@ahmethods they should nat-
urally extend existing software practises. However, adeann formal methods tend to
occur as a new language or toolset with little emphasis ortiggneering processes in-
volved [FKV94]. Further, much of the tool support for fornmakthods has an academic
background, and is not suited to industrial applicationsaly, The adoption of formal
methods can require a significant learning process [WW93].

Recently, there has been interestightweight formal methodgIW96, AL98], ac-
cepting practical compromises to minimise the obstacleadiopting formal methods.
The lightweight approach sacrifices expressive power,dbheaf coverage, or both in
favour of tractability. The strategy has been particuladgcessful by pursingtegrated
solutions, exploiting the strengths of various automagasgoning systems.

The objective of this thesis is to enhance the delivery ohhigegrity software by
increasing automation in an area of formal methods. The aito idevelop tractable
technigues by continuing the trend of lightweight formalthoels. We investigate our
approach within the context of the SPARK Approach [Bar03]daveloped by Altran
Praxis Limited. The SPARK Approach has been successfulpfieghin a wide range
of high integrity software projects, including railway sgjling, smartcard security and
avionics systems [Cha00, B@b]. We focus on the niche activity of verifyingxcep-
tion freedom The SPARK Approach supports the verification of exceptimedom
[ACO02] in the FloygdHoare assertional reasoning style [Flo67, Hoa69]. In tbistext,
verifying exception freedom essentially involves vernifyithe absence of run-time errors
[Ger78, GOC93]. Freedom from run-time errors is a key priypadesired of high integrity
software. For example, a run-time error led to the loss oaAe¢i 5 [Eur96], and Hier
overflows at run-time are the most common form of securityecdbility [CWP 00].

In verifying exception freedom there are two areas that neayire manual interac-
tion. Firstly, mathematical conjectures may need to beguioBecondly, the specification
of the program may need to be strengthened. Our approach@imsrease automation
in both of these areas. The proof planning paradigm [Bun88{is on mathematical in-
tuitions to support automated deduction. It provides alfllexplatform to develop proof
automation strategies. Program analysis [NNH99] is a devdield, enabling the auto-
mated extraction of information from programs. It providgefamework for automat-
ically strengthening a program specification. We integpateof planning and program
analysis to create an automated program verification emviemt. In particular, we ad-
vocate a cooperative integration, with each component wgrtogether to moreféec-
tively deliver the required automation. Such an environnetailored to dfer increased

automation in verifying exception freedom in the SPARK Aggeh. Our approach is
realised as the SPADEase system. This system is evaluaa@tshodustrial examples,
with encouraging results.

1.2 Contributions

This thesis contains six main contributions in the field dbawated program verification.
The contributions are separated into three categoriestasl Ibelow. The first category of
contributions relate to the wider impact of our work:

e Configurable and Sound- Present a configurable and justifiably sound approach
to software verification.

e Cooperative Integration - Demonstrate that more targeted arti&etive automa-
tion can be achieved through the cooperative integratiatistinct technologies.

The second category of contributions relate to the specibcgsses developed in this
work:

e Proof Discovery - Present proof plans that support the verification of exoapt
freedom.

¢ Invariant Discovery - Present invariant discovery heuristics that support grée v
fication of exception freedom.

Finally, the third category of contributions relate to thgpiementation of our work:
e Implementation as SPADEase Implement our approach as SPADEase.

¢ Industrial Evaluation - Evaluate SPADEase against both textbook and industrial
subprograms.

1.3 Publications

Aspects of this thesis have previously been presented inusdiferent publications.
For reference, each of these publications are listed bélgljighting their central con-
tributions:

e Workshop ([IER02]) - We presented a one page position statement. gvdighted
our intention to automate the verification of high integsoftware by building upon
the proof planning paradigm.

e Conference([EIO3]) - We presented a high level overview of our approaktthis
stage, the essential ingredients of our approach were ge pM/e had focused on
the niche activity of verifying exception freedom. Furthee tackled both proof

3

automation and specification strengthening through a plaoiner and a program
analyser respectively.

e Conference([EIO4]) - We presented key technical details of our apphoathe
form of our proof plans and program analysis heuristics aeudsed. We observed
the value of a collaborative integration in delivering antgion. Further, we noted
that our architecture enabled us to simultaneously accamatedboth soundness
and flexibility.

e Conference([IEIO4]) - We presented anffshoot from our primary work. The more
general problem of verifying partial correctness is iniggged. Similar to our ex-
ception freedom work, we address the challenge throughabahtive integration
of proof planning and program analysis. Here, program amaljiscovers contex-
tual information asnvariant patternghat are used to guide proof search. The ideas
are illustrated through a worked example.

e Journal ([IEC*06]) - We presented substantial technical detail of our aagin.
Further, we described the favourable evaluation of our@ggr against a collection
of industrial examples.

e Workshop ([JESO07]) - We presented anothdfshoot from our primary work. We
compare the capabilities of four automated reasoning ioolerifying exception
freedom. The experimentation was supported through irdtion and tools devel-
oped as part of this thesis.

1.4 Thesis Organisation

This introductory chapter provides a motivation for theegggh, highlighting its main
contributions. Relevant background information is preddn Chapter 2. Greater detail
on proof planning and the SPARK Approach is given in Chaptan® Chapter 4 respec-
tively. A high level overview of SPADEase, as an enhanceroétite SPARK Approach,
is in Chapter 5. Details of the proof planner and its proohplare presented in Chap-
ter 6. Details of the program analyser and its program aisaheuristics are presented
in Chapter 7. In Chapter 8 the evaluation of SPADEase on lmathstrial and textbook
subprograms is reported. Finally, conclusions are madénap(r 9.

Chapter 2

Background

2.1 Introduction

This chapter summarises the essential background forhtesss. Program verification is
introduced in 82.2, focusing on automated approaches mithadiate industrial applica-
bility. Two fields closely associated with program verifioatare automated deduction,
considered in 82.3, and program analysis, considered #h 82.82.5, relevant program
verification systems are described. Finally, a criticallgsia of the background is made
in 82.6, motivating the content of this thesis.

2.2 Program Verification

Program verification involves formally proving that a pragr conforms to its specifica-
tion. There are several approaches that support prograficagon, includingaxiomatic
assertional reasoningFlo67, Hoa69],operational assertional reasoning [Mo006,
MMRVO06], abstract interpretatiofCC77], program refinemenfBac78, Mor94], pro-
gram generatiofWH99a] andprogram synthesiBal85, Bie85, Gol86]. Here, we focus
on approaches that readily admit automation and have gltezdian industrial impact.

2.2.1 Axiomatic Assertional Reasoning

Assertional reasoning was investigated by the early pi@negtelectronic computing.
Goldstine and von Neumann [GVN47] employed ‘assertion bot@reason about the
correctness of a program. Turing employed assertions iokohg the correctness of an
algorithm [Tur49]. These studies were exceptional and dicstimulate further research.
However, they show that the value of program verification waikly identified and
suggest that assertional reasoning is an intuitive way pocegeh the task.

In assertional reasoning the semantics of the programiguige and a complemen-
tary assertion language are formally defined. The prograanm®tated with assertions,
specifying required properties at specific program poiiisen, building on the formal

definitions, a reasoning process is undertaken to provettbatssertions always hold.

The first significant contributions to assertional reasgniere made independently
by Floyd [FIo67] and Naur [Nau66]. Floyd introduced endluctive assertion method
demonstrating the feasibility of reasoning about compptegrams. The method was
not intended for practical use, being both involved andilagiscalability. However, the
accessibility of the method stimulated further researcthenarea. The seminal paper
by Hoare [Hoa69] extended the ideas of Floyd asa&iomatic approacho program
verification.

The axiomatic approach introduced a simpler mechanisnefsaning about the be-
haviour of programs. Further, the approach is decompasitjbeing individually applied
to each component of a program rather than the entire prograese features addressed
scalability concerns, making the approach more tractable.

Hoare introduced what would become knowrtHamre-triples taking the form:

{P} S{Q}

Here,S is the statements of a componeRtis a precondition an@ is a postcondition,
specifying the required behaviour of the component. Thmeris interpreted as a con-
jecture statingpartial correctness That is, if preconditiorP holds and the statemerfss
terminate then the postconditighwill hold.

Axioms support the decomposition of Hoare-triples, pradgenathematical conjec-
tures agoroof obligationsor verification conditiongVCs) in the process. The axiom for
loops is particularly important and takes the form:

F{l AG} S{l}
F {l} while G do S{l A =G}

Herel is a loop invariant, a property that remains true for evesyaition of the loop, and
Gis the loop guard. Significantly, a loop invariant must bevided for each loop to apply
the axiom. Program analysis techniques may be able to atedima discovery of loop
invariants. With loop invariants in place, the generatidr’’/€s is entirely automatic.
Proving the generated VCs proves the partial correctnesseoprogram. Automated
deduction techniques may be able to automatically disehexany of these VCs.

The axiomatic approach became the focus of a significant abaddurther research
[Apt81]. Various dforts were made to extend the axiomatic approach to accontmoda
additional programming language constructs. Furthersthendness and completeness
of the approach was extensively investigated. In particlllsskrta [Dij75] extended the
approach through predicate transformer semantic his enabled proof ofotal cor-
rectnessshowing that if the precondition holds then the progrant igiiminate and the
postcondition will hold.

2.2.2 Abstract Interpertation

Abstract interpretation [CC77] was introduced as a gernfeaahework for constructing
program analysis systems. The program under analysigndolically executedeplac-
ing concrete values withbstract valuesnd concrete operations widibstract operators
The symbolic execution is iterative, strengthening andikerang the abstract values un-
til a stablefixed pointis reached. Termination is guaranteed, as the abstracs/atay
always be approximated. The resultialgstract modeimay then be investigated accord-
ingly.

The abstract values and abstract operators are custonusgeinterate an abstract
model of interest. The abstract model may be queried to tepscovered properties
[CH78]. Alternatively, the abstract model may be queriedhighlight those properties
that violate some given specification. Every genuine viotabf the specification will
be reported. However, as the technique is approximatejcgfguviolations may also be
reported. Thus, each reported violation needs to be manoa#stigated to determine its
validity. However, if all reported property violations che dismissed as being spurious,
then the analysis can be regarded as verifying that thefgaimn holds.

The analysis is not decompositional, reporting on the attarstics of the entire sys-
tem, rather than individual components. For example, a corapt may violate a specifi-
cation when invoked with a certain combination of valueswieer, if the system never
exercises this combination of values, then the componewtstiabe reported as meet-
ing the specification. Significantly, this lack of decompiosi means that any change to
the system invalidates all previous results. Further, aanatysis involves inspecting the
entire system,féiciency is often a key issue.

Analysing a more complete system tends to increase the kigowstraints and im-
prove the precision of the analysis. For this reason, atisinéerpretation is typically
applied retrospectively to completed systems. Furthdullpexploit system constraints,
industrial grade applications of abstract interpretatiom often specialised for the target
system [SDO7].

2.2.3 Program Refinement

Program refinement involves transforming a specificatioouph a series of refinements
until the specification becomes an executable program. Byipg that each refinement
is correct, the executable program must reflect the behawidtie original specification.
Program refinement is supported througifeinement calculufBac88, MV94, Mor94,
Mor87]. The refinement calculus extends a programming lagguo include constructs
that support the expression of specifications. A programegefent method will comple-
ment the refinement calculus with a supporting toolset. $apport is required to ensure
the correct application of refinement rules, maintain thiteeof each refinement step
and discharge proof obligations. The potential for inceglagutomation is recognised

[CR91, Nic93] and some progress has been made [Req08, BM396B However, as
the refinement process is inherently creative [KS04], aiagmt level of interaction is
typically required.

2.2.4 Program Generation

Program generation involves automatically generatingceaoode from a specification.
Program generation supports two alternative approach@®tgyam verification, as elab-
orated in [WH99a]. Firstly, program verification may be astad by proving the cor-
rectness of the program generation system. For richerfggmns, this can amount to
a significant verification task. Consequently, this appinoactypically associated with
program generation systems that operate on low level spa&iiifins, such as compilers
[Ste93]. Secondly, program verification may be achieveddndactingtranslation val-
idation, proving that each generated program is correct [PSS98jemeral, it is much
more tractable to verify the correctness of a generatedranoghan the program gener-
ator itself. The richness of the specification language aedehaviour of the program
generator may be configured to minimise the complexity okgated programs. Signifi-
cantly, the source code produced by a generation systers teeshibit a small collection
of recurring patterns, making it particularly amenable wtoanated verification. Conse-
guently, significant or completely automated translatialidation is often feasible.

2.3 Automated Deduction

The automation of mathematical reasoning is knowra@®mated deductionUnsur-
prisingly, given the richness of mathematics and the widgeaof potential applications,
their are various dierent approaches to automated deduction. Following trssibiza-
tion of [Ker98], the approaches are considered accorditigeio fundamental purpose in
the sections below.

2.3.1 Proof Assistants

Proof assistants [Geu09] are geared toward assisting aematfctian in interactively
completing a proof. The proof assistant behaves psoaf checker verifying the cor-
rectness of each reasoning step, giving the mathematiciafdence that their proof is
correct. The proof assistant may also automatically diggheelatively trivial subgoals,
allowing the mathematician to focus on the core proof pnoble

The first proof assistant was Automath [NGdV94]. Automathpkayed an elegant
type theoreticatepresentation of mathematics, but acted as strict praafkar. Further
type theoretical proof assistants were developed, suclog$Enq98] and LEGO [LP92],
increasing the sophistication of the user interface andawe of proof automation. A
key development was the introductiontatticsf GMW?79]. A tactic is a subprogram that

manipulates the current goal. Various tactics may be inited, providing the user with
proof automation facilities. Several tactic based prosfstants have emerged, including
Isabelle [Pau94], HOL [Gor88a], PVS [SORSC99] and Nuprgg].

Despite some notable exceptions [Lov00], it is uncommomfathematical proofs to
be developed inside a proof assistant. One explanatiomi®id that there remains sig-
nificant overheads in expression when comparing prooft@asggswith traditional mathe-
matical texts.

2.3.2 Machine-Oriented Theorem Provers

Machine-oriented theorem provers adopt notations andi#liges that are particularly
suited for mechanical processing. Typically, the intebedlaviour of these provers are far
removed from the mathematics they consider. Thus, the ppo&rd to be fully automatic,
taking as input a conjecture and reporting a result as output

There are two main challenges in developing machine-atetheorem provers.
Firstly, due to fundamental properties of computation [§0fz it is not possible to con-
struct automatic reasoning algorithms for all theoriesusta theory must be carefully
selected which is expressive enough to be of practical utesimplistic enough to yield
to automated analysis. Secondly, automatic reasoningitdges are prone to ster from
acombinatorial explosiofBun99], a rapid rise in computational overhead as conjectu
complexity increases. Thus, extremeRi@ent data structures and algorithms are typi-
cally required.

One class of machine-oriented theorem proverslacgsion procedurelioz97]. De-
cision procedures are restricted to expressively limitezbties, equivalent to proposi-
tional logic. However, inside these theories, a decisimtedure is able, in finite time,
to determine the truth of a conjecture. There are many vesief decision procedures,
each targeting a carefully selected theory. For exampke ,Dévis-Putnum procedure
[DP60, DLL62] considers propositional calculus, Preskuayithmetic [Sta84] considers
the natural numbers with addition and excluding multigima, Ordered Binary Decision
Diagrams (OBDDs) [Bry86] consider Boolean functions anddhstate automata have
been used to consider the Weak Second-order Theory of onevarfsluccessors (WS1S
and WS2S) [Kla97]. Decision procedures have been extdgsipplied in hardware veri-
fication. However, due to the limited expressiveness of theiories, decision procedures
have had a limited impact on program verification.

Another class of machine-oriented theorem proverssami-decision procedures
Semi-decision procedures may operate in relatively espresheories, equivalent to first
order logic. However, inside these theories, a semi-datigiocedure is only able to de-
termine the truth of a conjecture in finite time if the conjeetis true. Initially, Herbrands
theorem [Her30] demonstrated the feasibility of a semigien procedure for first order
logic. Robinson made keyfliciency savings to Herbrands theorem, as the resolution
method [Rob65]. Several extremelffieient resolution based theorem provers have been

developed, such as Otter [McC94] and Vampire [RV02]. Farlyo&QP proved a long
standing mathematical conjecture that Robbins Algebmagaplean algebras [McC97].
However, their often lengthy execution times, unfavouga@mi-decidability, and wealth
of configurable optimisations means they are less suitdtetbatch processing of numer-
ous conjectures, as sought in program verification.

Some analysis tools may be regarded as specialised mautemted theorem
provers. Constraint solvergeceive as input a collection of constraints in a given the-
ory, and seek to discover a satisfiable solution. For examaplénteger constraint solver,
when presented with:

X>DAX<BDAN>2A(Y<I0OAX+Y=2)
might discover the satisfiable solution:

The first constraint solvers emerged fr@onstraint Logic Programmin{CLP) [JL87].
These have subsequently been generalis€bastraint ProgrammingBar99], and em-
ployed in several niche applications [Wal9@hterval arithmetic[Mo066, Hay03] is a
mathematical technique that determines guaranteed bdandscalculation. The tech-
nique may be used to reason about the precision of floating-ptgorithms. Model
checkerdCGP99] receive as input a model and properties that the hsbaeild meet.
The model checker exhaustively explores the model stateessearching for a case
where the properties do not hold. Model checkers are mostrummty associated with
hardware verification, as it has favourable state spacectaistics. However, model
checkers are increasingly used to complement softwargsesm{Computer algebra sys-
tems(CAS) support the automated manipulation of mathematixalessions. Theorem
provers have been enhanced throughféecéive integration of such systems [KKS98].

A hybrid class of machine-oriented theorem provers S&T-solvergq Satisfiability
Modulo Theories) [BSST09, PBGO05]. Such solvers exploit enlsmation of decision
procedures alongside a collection of theories, such dmaetic and arrays. By accepting
richer theories, SMT-solvers are not decidable. Howewepyractice, the systems report
conjectures as being provable, unprovable, or unknown imely fashion. Nelson and
Oppen first introduced an architecture for combining deaigirocedures, as realised in
their influential Simplify system [NO79]. Variations on gharchitecture have been inves-
tigated, increasing the sophistication of the integrabetween the decision procedures
and the theories [FJOSO03]. Richer theories, coupled witklif performance, means that
SMT-solvers are particularly well suited to program veafion. For this reason, SMT-
solvers are an extremely active area of research. Notablerag include Yices [DdMO06],
CVC3 [BT07], and Z3 [dMBO03].

10

2.3.3 Human-Oriented Theorem Provers

Human-oriented theorem provers adopt notations that atearly suited for human
understanding. The provers tend to be built from a largeecttin of mathematical
heuristics, rather than a core reasoning algorithm. Saamtly, where these heuristics
fail, a mathematician should be able to comprehend thetgtuaThey may be able to
interactively complete the proof or even refine the hewsssuch that a proof is found
automatically.

An influential human-oriented theorem prover was Ngthm [B}&lso known as the
Boyer-Moore theorem prover. The prover operated on a rigic)Jsyntactically expressed
as Lisp [McC78]. Over decades, the prover was gradually medgth with increasingly
sophisticated heuristics. Many significant theorems haenltsuccessfully proved via
Ngthm [BKM95]. However, to &ectively use the prover, it is necessary to gain a strong
understanding of its internal heuristics [BM90].

Bundy proposed an alternative paradigm for human-orietiteorem provers gaoof
planning[Bun88]. The paradigm makes a clear distinction betweercheay for a proof
and checking the correctness of a proof. These two concegrasldressed in a consistent
manner viaproof plans which are composed fromproof methodsnd their supporting
proof critics Each proof method describes an intuitive reasoning stafewbk proof
critics describe how to progress should this step fail. A &dyantage of the paradigm
is that proof plans expose the detail of controlling hetlgsstsupporting their scientific
investigation [Bun91]. Several successful proof plansshewerged frommationally re-
constructingthe heuristics seen in the Ngthm prover. In particulgapling [BBHIO5]
emerged from Nqthm heuristics for proof by induction. Thsegnificant proof planning
systems have been developed as the Clam provers [BVHHS@D&H SOmega [BCFI7]
and IsaPlanner [DF03]. For further details on proof plagnsee Chapter 3.

2.4 Program Analysis

The automated analysis of computer programs is knowpr@gram analysigNNH99].
Two distinct classes of program analysis are considerdukiséctions below.

2.4.1 Static Analysis

Static analysers adopt a relatively closed architectune.analysis is typically performed
by a single, well-defined, algorithm. While the analyseveagis report results, the analy-
sis undertaken may be relatively limited or approximativgeneral.

One of the first static analysers was Lint [Joh77], which $wag highlight potential
ambiguities in C programs. Furthint-like static analysers were developed, each con-
sidering relatively low-level characteristics of the steicode. Common analyses include
data use analysjsontrol flow analysisinterface analysisinformation flow analysiand

11

path analysis The analyses tend to be computationally tractable, eveneoy large
programs [ABCO07]. Further, the analysers often accept partial prograssyould be
encountered during software development. The analyserategpby generating a report
of their findings. The reports can be lengthy and may confaumisus errors.

Some static analysers operate by comparing their resudimstga specification of
expected behaviour, and only report discrepancies. Fampbea Splint compares its
analysis against provided assertions [LEO1, EL02]. Furtihe SPARK Approach com-
pares calculated information flow against a provided assedf expected information
flow [Bar03, BC85]. While this style imposes an annotatiomdam, the analyser will
only report genuine errors.

2.4.2 Invariant Discovery

A popular topic for program analysis research is developpgroaches thatier efective
invariant discovery. These approaches are classifiedlinée tstrategies, as discussed in
the sections below.

Guided by Additional Information

Invariant discovery may be assisted through additionairm&tion. Providing the ad-
ditional information imposes a burden on the engineer. Hewethe burden may be
significantly less than manually discovering invariants.

Dynamic analysersperate on the source code plus its associated test dataotifee
code is automatically instrumented to trace program vatluesg execution. The pro-
gram is subsequently executed on the test data, colle¢teniptormation trace. Through
analysing the information trace, it is possible to discgua&gram invariants. A key ad-
vantage of this approach is that many systems will alreadg haignificant corpus of test
data. However, the correctness of the invariants discoharesignificantly dependent on
the coverage féered by the test data. Further, as the analysis is one stepveehnfrom
the code, those invariants discovered may not be direddyaat. An influential dynamic
analyser was Daikon [EP®7]. Daikon employs machine learning to discover proba-
ble program invariants. Daikon deduces abstract typeeptas the analysed program,
supporting the filtering of less relevant properties [GPMEEO

Predicate abstractiobased program analysers operate on the source code of the pro
gram plus a collection of relevant program predicates. @&lm@sdicates may be auto-
matically calculated by other program analysis techniquesianually supplied by an
engineer. Predicate abstraction [GS97] is a specialised & abstract interpretation.
Symbolic execution is replaced with the calculatiorsttbngest postconditiongonse-
guently, the identification of a fixed point becomes the dedoc a loop invariant. In
general, this may entail an infinite search, as loop invésiamy be composed from an
infinite number of potential predicates. Thus, to ensurmitestion, only the finite set

12

of provided predicates are explored. Significantly, it isught to be easier to discover
relevant predicates than to discover the loop invariantishvare constructed from them.
The technique has been successfully applied to reducewtagant annotation burden in
preforming program analysis [FQO02].

Heuristically Target Common Structures

Certain loop patterns occur more frequently in practice these patterns are identified,
corresponding invariant discovery heuristics can be dgezl. On this basis, an exten-
sive collection of invariant discovery heuristics have rbgeoposed [EGLW72, KM73,
Weg73, Weg74, GW75, Cap75, DM78, BBM97, Kov08]. From theseliss, two gen-
eral approaches have been identifi@dp-downapproaches begin by analysing the loop
context, then working downwards toward the loop itsé¥ottom-upapproaches begin
by analysing the loop itself, then working upwards towatds [bop context. Typically,
especially for rich invariant discovery, a combination lbése approaches is necessary.
While there is significant diversity in the invariant diseoy heuristics proposed, a few
broad techniques have emerged, as highlighted below.

A bottom-up heuristic, introduced in [EGLW72], involveshdag difference equa-
tions or, more generallytecursion relations A recurrence relation defines th# value
of a sequence in terms of earlier values in the sequence xBor@e, consider the recur-
rence relation:

am =2%ap-1)+1 (2.1)

This describes that th@" value ofa is equal to twice ther(— 1) value ofa plus one. A
solved recurrence relatiodefines then" value of a sequence strictly in termsraf For
example, the recurrence relation above may be solved as:

dn) = 2" x o) + 2"-1 (22)

Where an initial value is known, the general solution maypexglised. For example, if
a) = 0, the solution above may be specialised as:

an=2"-1 (2.3)

Significantly, recurrence relations may be used to explessdlue that a program vari-
able will take on the™" iteration of a loop. The solutions to such recurrence retetican
be readily transformed into loop invariants. In generag tichnique is relatively lim-
ited [Cap75]. However, for specific cases, in collaboratiati further heuristics, useful
invariants may be discovered [GW75, KM76, Kov03].

A top-down heuristic, introduced by Suzuki and Ishihata7[@) is theinduction-
iteration method Starting with a postcondition, the method works backwéndsugh the

13

source code, seeking to calculateakest liberal preconditionghe minimum constraints
required to demonstrate partial correctness. Where eteong loops, an initial invariant
is generated by calculating the weakest liberal precamitiom the loop exit to the in-
variant cut-point. Typically, the initial invariant is flag, not simultaneously supporting
the verification of entering, iterating around and exitihg toop. A candidate refinement
of the initial invariant is determined, by calculating theakest liberal precondition from
the initial invariant back to itself. The process may be eg¢pé until a suitable invariant
is generated. The technique may not terminate and may peagutaturally verbose in-
variants. In [BLS96] the number of refinements is reducedughrefined strengthening
minimising the verbosity of discovery invariants.

Proof Failure Analysis

Invariant discovery is typically undertaken to supportgyeon verification. Thus, the suit-
ability of discovered invariants may be evaluated by thiilitt to support automated pro-
gram verification. Where the verificatiofffert fails, it may be subjected faroof-failure
analysisto determine improvements to the discovered invariants|Gkr78] invariant
discovery is required in verifying the absence of run-timess. Heuristics are employed
to discover a candidate invariant, and the verificationtsmapted via a machine-oriented
theorem prover. Where the verification fails, the invariarstrengthened to include those
conclusions that could not be proved. Similarly, in [SI9B8Yariant discovery is required
in verifying partial correctness. The postcondition isetalas an initial approximation for
the invariant, and verification is attempted via a proof pkm The planner exploits the
critics mechanism to introspect on any proof failures, ®sjgg invariant refinements.
Through multiple iterations, the invariant may be refinedtstage such that the plan-
ner successfully completes the proof. Proof failure ansliends to be involved, as it
requires an fective integration of both invariant discovery heurisacgl automated the-
orem proving. However, by considering the overall objextiv program verification, the
approach tends to produce relevant invariants.

2.5 Program Verification Systems

Over decades, several program verification systems havedsseloped. Three genera-
tions of systems are identified, and discussed in the secdbielow.

2.5.1 Batch Verification

The first generation of program verification systems soumghthieve an ambitiousatch
verification In this style, once a program has been written, its veriboais performed
as a final step. These early program verification systemstaddipe intuitive assertional
reasoning approach.

14

The first system to demonstrate the feasibility of programification was devel-
oped by King [Kin69]. The system targeted a simple prograngranguage. Auto-
mated reasoning strategies were developed to assist ithgrgenerated VCs. Further
program verification systems were developed, targetingeriprogramming languages
[Deu73, GLB75]. In these cases, VCs were manually provediena proof assistant.
The Stanford Pascal Verifier [LGVH9] was the first program verification system for a
mainstream programming language. The SMT-solver SImf\f979] was employed to
discharge VCs. Where Simplify was unsuccessful, a manwalffmould be conducted
inside a proof assistant.

2.5.2 Collaborative Verification

The batch verification systems demonstrated the feagilofithe assertional reasoning
approach to program verification. However, these systethaali scale up to larger pro-
grams. Many argued that scalability could be achieved bjopming acollaborative
verification [Bac86, Dij76, Gor88b, Gri81, Kal90]. In this style, progra and their
verification are developed simultaneously. By considexiadfication concerns during
development, programs are more readily verifiable.

Recognising the need for a collaborative verification Hartprogram verification sys-
tems were developed. Significant systems to emerge incltrdedypsy Verification
Environment (GVE) [AGB77], AFFIRM [GMT*80] and the Hierarchical Development
Methodology (HDM) [LNR80]. These systems took a broadewwvid program verifica-
tion, enabling verification concerns to be developed dusofjware development. The
approach improved scalability, supporting the completbma few significant verifica-
tion efforts, primarily in the area of security related systems [68D, Dev81, GSS82,
KWAHT82, BKYH85, WLG*78, For80].

The Ada programming language [Ame83, Int95, Int07] wasglesil to replace the
numerous programming languages being used at the UnitéesSiepartment of De-
fence. Ada has well defined semantics, making it particyladited to program ver-
ification. Consequently, Ada based verification systemsrgeak including Penelope
[GMP90] and ANNA [LvHKBOS87]. While these systems enjoyechdemic success,
they had little industrial impact. The SPARK Approach [Baf@perates on a selected
subset of Ada. SPARK has been successfully applied in nickesaof critical software
development [Cha00]. For further details on the SPARK Apphy see Chapter 4.

Following advances in the assertional reasoning baseaagpto program verifica-
tion, program refinement systems were investigated. Pnogedinement fiers a nat-
urally collaborative approach to verification, as the paogiiterally emerges from the
verification éfort. Significant contributions include CIP [BBB5, BEH 87], PROSPEC-
TRA [HKB93] and B [Abr96]. The approach has had industriatsesses employing B
in the development of critical transport systems [GH90, B@BFM99, BAO5].

15

2.5.3 Lightweight Verification

The collaborative verification approach demonstratedfigation of realistic software
systems. However, itdiective application required significant training and esteatool
support. To address these concerns there is a trend tdiglataeight verification In this
style, expressive power, breadth of coverage or both isfieact to increase tractability.
Several verification systems have been developed in this, $ygeting diterent classes
of verification.

Target critical specification

For a given system, certain areas of its specification mayabtcplarly critical to its
safe or secure operation. By targeting these critical atfeawvalue of the verification
effort is maximised. The trend is toward seamlessly extendiagstream programming
languages with support for targeted verification.

Verification systems have been developed for the Java proghag language. The
LOOP system [vdBJO1] supports the verification of sequentianon-threaded, Java
programs. LOOP generates VCs by importing the code andfgjaitin into either the
PVS or Isabelle proof assistant. The KeY tool [ABB] supports verification throughout
the entire lifecycle of software development. Design anecgation takes place in
UML while implementation is in JavaCard. Verification fatés are integrated into a
UML based computer aided software engineering tool (CASEs are generated from
the code and specification, and may be discharged autothabcanteractively inside a
theorem prover. These tools focus on providing an architedhat supports verification,
allowing an engineer to concentrate on the genuine veiidicadsks of proof discovery
and invariant discovery.

An obstacle to the adoption of program verification is thats\ée not intuitive to
some software engineers. Thus, there is a trend towardirsgplangineers from VCs,
either through proof automation or alternative interfadage [MPHOO] supports the ver-
ification of a subset of sequential Java. The program is ressabout directly, through
the interactive application of Hoare axioms, with any slyitogical conjectures being
interactively discharged inside the PVS proof assistak@KI[BRLO03] supports the ver-
ification of Java applets. The code and specification areshated into the B system
[Abr96], through the Atelier B [Cle] tool. Atelier generat®&/Cs, and fers both auto-
mated and interactive proof. To ease interpretation of \MBEK automatically relates
VCs to their corresponding code and specification. KraktsMUO04] supports the ver-
ification of sequential Java or JavaCard. The code and spaaifin are exported into the
Why verification tool [FilO3], supporting the generation\¥€s. Similar to JACK, each
VC is automatically related to the code and specificatiorrtiem, Why dispatches VCs
to several automated theorem provers, automatically lebimg their results. If desired,
verification may be completed interactively.

The Microsoft .NET Framework supports the development afrbBoft Windows ap-

16

plications through various programming languages, inagC#. To support program
verification, the C# language was extended as Spec#, angdu# programming system
[BLSO5] was developed. Exploiting the technologies asged with the .NET Frame-
work, the Boogie tool transforms Spec# code and specificatiito VCs. Abstract inter-
pretation is employed to automatically discover prograopprties, including invariants.
Further, VCs are dispatched to an automated theorem prdver.verification &ort is
presented strictly in terms of the source code and its spatioh [LMS05]. Thus, an en-
gineer indirectly advances a proof by modifying the codepac#ication. An extension
integrates Boogie with the HOL proof assistant [BLWO08]. Extension enables VCs to
be directly investigated and interactively proved.

Target critical behaviours

Classes of software systems may be particularly dependesdme critical behaviours.
As these behaviours are generally applicable, the speadaiicaf their conformance may
be automatically calculated. Further, by reasoning abpetific behaviours, significant
automation is often feasible. To maximise tractabilityg thend is toward identifying
behaviour violations, rather than proving their absence.

Model checking supports the identification of behaviourations. Typically, be-
haviours of concurrent systems are investigated, sucha#aks. The source code and
the behaviours of interest are expressed as a model. Throadhkl checking, behaviour
violations are reported as counter-examples. The priaciphllenge is finding a compro-
mise between accuracy and tractability. Java PathFinde®@8Hemploys model checking
to identify behaviour violations in Java bytecode. Scaighis tackled through heuristics
that suggestféective model simplifications. The expectation is that thertstics will be
customised to suit a particular application or level of ga@l. Bandera [HDO1] applies
model checking to identify behaviour violations in a largdset of Java. Bandera in-
cludes an integration of several program analysis comgsnemich may be customised
to effectively analyse a given system.

An alternative paradigm for targeted behaviour verifiagatgcounter-example guided
refinemen{CGJ"'03]. The process begins by generating a sparse model of tigegon
and its targeted behaviours, omitting details to increesaadbility. The model is inves-
tigated via a model-checker to identify behaviour violaias counter-examples. The
counter-examples are investigated, typically via a theepeover, to determine their va-
lidity. Where the counter-examples are valid, they are rigpoas behaviour violations.
Otherwise, guided by the invalid counter-examples, theehmdenriched to more accu-
rately reflect the program behaviour, and the process istegeln principle, the analysis
should terminate when no invalid counter-examples renlaipractice, due to tractabil-
ity concessions and limitations of automated theorem pigpvinvalid counter-examples
may remain. Systems based on this approach include SLAM {BBCand BLAST
[BHIMOQ7]. These systems check that application prograeriates (APIs) are invoked

17

in a behavioural compliant manner.

Target absence of run-time errors

Run-time errors represent a common and critical defectfivaoe. For a given language,
the conditions under which run-time errors will occur ardlwefined. Thus, a specifi-
cation for the absence of run-time errors can be autombticalculated. Further, given
the relatively restricted nature of the problem, significantomation is often possible in
verifying the absence of run-time errors.

Abstract interpretation systems can verify the absenceioftime errors. The Ex-
ception Analyser [WH99b] and PolySpace [Deu03] identifyguial run-time errors in
C, C++ or Ada code. The ASTRE Analyser aims to verify the absence of run-time er-
rors of control software written in C that omit dynamic memalocation and recursion.
Most notably, ASTREE was specialised by its developers to verify that the pryrflght
control software of the Airbus A340 is free from run-timeas [BCC'03].

Assertional reasoning systems can verify the absence dfmeerrors. The pioneer-
ing Runcheck system [Ger78] extended the Stanford Pascifieydo verify the absence
of run-time errors in Pascal programs. Runcheck complesdetite verification con-
dition generator with a static analysis technique to readmwut uninitialised variables
[Ger81]. Further, Runcheck employed heuristics to discaweariants and discharged
VCs with the SMT-solver, Simplify. The SPARK Approach [B8tGupports the veri-
fication of exception freedorfAC02]. For the SPARK subset of Ada, this is essentially
equivalent to verifying the absence of run-time errors. iBino Runcheck, the verifi-
cation condition generator performs static analysis tsaeabout uninitialised variables
[BC85]. Limited type-based invariants are automaticailyarted, and VCs are proved via
the human-oriented theorem prover, the SPADE Simplifieve@a[ABC'94, RSB 99]
was developed to verify the absence of run-time errors irirobsystems written in C
that omit dynamic memory allocation. Caveat employs hé&asigo discover invariants,
and discharges VCs via a simplification tool. While all thegstems fier automation,
in practice, a realistic verification will likely require tomanual proof discovery and
invariant discovery.

The program generation system AUTOFILTER [WSO04] trans®arhigh level de-
scription of a state estimation task into a C ofprogram. AUTOFILTER was cus-
tomised to support translation validation, proving tha tenerated code met critical
safety properties [DFS04]. In particular, these safetypprbes include proving that
array-bound accesses will not lead to a run-time error. Hmegated program is submit-
ted to an assertional reasoning system, generating VCshwainé proved in the theorem
prover E-Setheo [MIE97]. Constrained by code generation patterns and the gafepy
erties of interest, invariant discovery is particularlgdrable. Consequently, in practice,
the verification &ort is significantly automated.

Debugging tools have also been developed that highligabfikun-time errors. Sig-

18

nificantly, to increase both performance and automatiompeteness and soundness
are not strictly observed. Splint [LEOL, ELO2] identifiesnamon programming errors
in C programs. In particular, the approach identifies a commo-time error as kter
overflow vulnerabilities [Pet00]. Splint combines data flamalysis with a set constraint
solver to perform its analysis. The Extended Static Chefckelava (ES@ava) [FLL 02]
identifies likely run-time errors in Java programs. For @aged tractability, ESCava de-
liberately adopts unsound assertional reasoning, gengMCs and discharging these in
an automated theorem prover. Interface changes have beosgd to ease interpretation
of this imperfect analysis [KMDO06]. Houdini supports an Aggtion of ESQJava by au-
tomatically discovering numerous candidate invariantO[H. The candidate invariants
are filtered by invoking ESQava and removing those that do not appear to be correct or
relevant.

2.6 Critical Analysis

Here, the content of this thesis is motivated through acaiitinalysis of its related back-
ground. The fundamental positioning of the thesis is carsid in §2.6.1 while its de-
tailed directions are considered in §2.6.2.

2.6.1 Fundamental Positioning

Our motivation for this thesis is to enhance the developroghigh integrity software in
industry. As discussed in 81.1, high integrity softwareedegment is subject to various
standards. Many of these standards encourage the use d@lforathods, including the
application of program verification. We direct our attentiat improving an aspect of
program verification that is particularly relevant to higlegrity software development.

As described in 82.5.3, there is a trend toward lightweighification, placing greater
emphasis on tractability than expressive power or breddtbwerage. A common feature
of this approach is using a collaborative integration ok8rg technologies to deliver
the required automation. Further, to support immediatdiegdplity, the tendency is to
enhance existing software processes. The trend has beegsstid, with systems such
as ES@Java and SLAM being routinely used in software developmBeicognising its
value to industry, we continue the trend of lightweight fieation.

As explored in 82.2 and 82.5, several program verificatiqggr@gches have been ap-
plied in industry. The axiomatic assertional reasoningapgh is both intuitive and flex-
ible. For these reasons, the approach is typically adoptestewerification capabilities
are retrospectively introduced into existing programmergguages. The abstract inter-
pretation approach is mostfective when analysing completed systems. However, as
highlighted in 82.5.2, verification is more readily achiéwehen considered throughout
software development. Program refinement naturally suppioe progression of verifica-
tion during software development. However, the approackslflexibility, requiring the

19

adoption of a specific development process and supportwigeb Program generation
offers significant potential for automating both software dtgwement and its verifica-
tion. However, the automation is achieved by focusing onezi§ip application domain.
Seeking immediate industrial applicability, we favour aifieation approach that com-
plements existing software development processes. Futth@crease fectiveness, we
favour an approach that allows verification concerns to besidered during develop-
ment. For these reasons, we chose to investigate prograicaton based on axiomatic
assertional reasoning.

As observed in 82.5.3, verification in the SPARK Approachdkieved through ax-
lomatic assertional reasoning. The SPARK Approach has baecessfully applied in
developing high integrity software, providing a fitting rinework for investigating our
research. Further, the SPARK Approach supports the tatgetefication of exception
freedom. Such a constrained verification activity closdiyres with our objective of in-
vestigating lightweight verification.

2.6.2 Detailed Directions

In the SPARK Approach, verifying exception freedom is etisdlyg equivalent to verify-
ing the absence of run-time errors. As observed in 82.5.8naber of systems support
verifying the absence of run-time errors. The configurabfiered by these systems
is limited. As observed in 82.2.2, the success of abstrdetpretation can depend on
application specific specialisations. Making such sp&a#bns requires considerable
technical skill, customising the underlying abstract madel verifying its correctness.
However, this demonstrates the potential value of configamaOn this basis, we pursue
an architecture thatfters tractable configuration while simultaneously presgygound-
ness.

Verifying the absence of run-time errors requires both pdiscovery and invariant
discovery. The Runcheck, Caveat and EB@a systems consider these related tasks
as separate activities. As discussed in §2.4.2, proofré&aiunalysis supportstective
invariant discovery in verifying partial correctness. hwe investigate the use of proof
failure analysis to guide invariant discovery for the coaisted task of verifying exception
freedom.

Although a number of systems verify the absence of run-timarg, few report re-
sults for high integrity software. By investigating our @egques within an existing high
integrity software development process, there is the pialeior industrial evaluation.
Thus, we aim to evaluate our approach against both textbodkaustrial subprograms.

20

Chapter 3

Proof Planning

3.1 Introduction

This chapter describes the proof planning paradigm. Thevatains behind proof plan-
ning and its supporting architecture are presented in 83i@nificant features of proof
planning are discussed in 83.3.

3.2 Proof Planning

The aim of ascience of reasonin@un91] is to understand and document the processes
involved in reasoning. While a science of reasoning appdiedl forms of reasoning, em-
phasis is typically placed on mathematical reasoning. Rytamning [Bun88] describes

an architecture which supports the automated and scieintigstigation of mathematical
reasoning. Proof planning builds on fundamental obseymatabout mathematical rea-
soning. Thus, it is beneficial to consider mathematicaloe&sg before describing the
architecture of proof planning.

3.2.1 Mathematical Reasoning

The discovery of mathematical results is achieved througthematical reasoning. De-
spite limited research in this area, a few broad observaout mathematical reasoning
may be made.

Proof Discovery

According to Polya [Pol54], the process of mathematicasoeang is performed as two
different tasks, as summarised below:

¢ Plausible reasoning Mathematicians approach a new problem with plausible rea-
soning. Relying on their intuitions the mathematician sket out a plausible
proof. While the proof is plausible, it may be flawed in preeti

21

e Demonstrative reasoning- Guided by a plausible proof, mathematicians employ
demonstrative reasoning. The plausible proof is rigonpumsiestigated to generate
a demonstrative proof of correctness.

Proof Families

Plausible reasoning is achieved through mathematicatims. Such intuitions arise due
to proof families similar problems that are susceptible to similar proofsnylproof fami-
lies have been documented in mathematics. Common pat@vadken identified in limit
theorems [BBH72], finding fixed-point combinators [WM88Jdatompass constructions
[Pol65]. Rippling [BBHIO5] exploits a structural pattera guide a proof by induction.
The general mechanism of rippling has also been appliedrtorsaog series [WNB92],
conjectures with multiple induction hypotheses [YB3], logical frameworks [NY96]
and general equational reasoning [Hut97].

Proof Languages

Polya [Pol65], and later Bundy [Bun91], observe that plbalgsieasoning and demonstra-
tive reasoning are undertaken in two contrasting languages

¢ High level explanation language Plausible reasoning is described in an informal
explanation language, suitable for describing the story foof.

¢ Logical language- Demonstrative reasoning is described in a formal logioyigl-
ing an unambiguous and exhaustive description of a proof.

Proof Understanding

Robinson [Rob97] argues that plausible reasoning pro\adesplanationvhile demon-
strative reasoning providesgaarantee Significantly, the two products are regarded as
being distinct. It is possible to have correct intuition®abhow a proof will proceed,
without appreciating the step by step details of a logicabpr Conversely, it is possi-
ble to have a detailed logical proof without appreciatingfimdamental principles being
employed. Consequently, to fully understand a proof, blogheixplanation and guarantee
are required:

Proof = Guarantee+ Explanation

3.2.2 Proof Planning Architecture

Since its inception in [Bun88], various extensions and esfients of proof planning have
been proposed. A consequence of these modifications ishia is not a uniform def-
inition of proof planning [Den05]. In this thesis we focus the original description of
proof planning in [Bun88], extended to accommodate criic=92], as implemented in

22

Clam [BVHHS90]. A detailed discussion of alternative pexsjves on proof planning
can be found in [DJPO06].

C Goal) (Proof Plans) (Theorems)
y

[Proof Planner |

Plausible reasoning in
meta-level theory as
method language

Instantiated
Proof Plan

Extract I
Compound

Tactic Demonstrative reasoning in

object-level theory as

[Proof Checker | tactic language

Figure 3.1: Proof planning architecture

The proof planning architecture is shown in Figure 3.1. Réflg mathematical rea-
soning, proof discovery is separated into the two tasksaigible reasoning and demon-
strative reasoning. Appropriate proof languages are eyspléor these tasks as described
below:

e Meta-level theory - The meta-level theory supports the expression of plagsibl
reasoning. The language is captured as a flexié¢hod-languageThe method-
language is heuristic by nature, being extended and refinguiamf plans are de-
veloped.

e Object-level theory - The object-level theory supports the expression of demon-
strative reasoning. The language is capturetheascs[GMW79]. The tactics are
subprograms that perform logical transformations.

Plausible reasoning is achieved bgraof planner The proof planner is provided with
a goal, theoremsandproof plans The theorems describe properties and definitions that
are valid for the goal. The proof plans capture mathemaitaitions behind a family of
proofs, as described below. The proof planner searchegiadd of the goal in the meta-
level theory, guided by the proof plans and appealing toréras as necessary. The proof
planner explores the search space via a proof tree. Comnasohsstrategies include
depth-first, breath-first and iterative deepening. The fpptens may also influence the
search strategy.

23

Demonstrative reasoning is achieved qyraof checker Where successful, the proof
planner will discover amnstantiated proof planWhile proof plans describe a family of
proofs, an instantiated proof plan describes the proof ddréiqular goal in a particular
context. Acompound tactiés extracted from the instantiated proof plan. The compound
tactic is a sequence of tactic applications describing &cébgroof of the goal. The
compound tactic is submitted to a proof checker, along$idetiginal goal and theorems.
The proof checker is a sound tactic based theorem provare®hy the compound tactic,
the proof checker checks the validity of the discovered prdde proof is valid if the
proof checker discharges the goal.

Proof Plans

Proof plans are at the core of proof planning. A proof planteags the mathematical
intuitions behind a family of proofs. To encourage this igdéaourable and measurable
criteria of proof plans have been explicitly identified, @scribed in [Bun91]. Proof plans
are expressed @soof methodandproof critics Typically, a proof plan is composed from
several methods and critics.

Proof methods aim to advance the proof of a goal. The appligabf a method is
constrained through preconditions expressed in the mdtdmgliage. Thefeect of the
method is described in both the meta-level theory and thecolgvel theory through
the method-language and tactics respectively. Twieint types of methods may be
identified. A non-terminating method transforms the go#d ione or more subgoals. A
terminating method eliminates a trivial goal.

Each proof critic is associated with a proof method. Theasieeks to recognise and
patch common patterns of method failure. A critic is trigggewvhen its corresponding
method has a particular pattern of precondition failurekelinethods, the applicability
of a critic is constrained through preconditions expresadtie method-language. The
effect of the critic is only described in the meta-level the@ygritic may have any fect,
ranging from local changes to a single goal through to glahahges to the entire proof.

3.3 Features of Proof Planning

By mirroring mathematical reasoning, proof planning hasiynaluable features, as dis-
cussed in the sections below.

3.3.1 Extensibility through Deep Understanding

Unlike many other automated reasoning paradigms, proahghg places an emphasis on
proof understanding over proof automation. This shift inpbasis &ects the properties
of the resulting automated reasoning system. Where fogusirproof automation, there
is initially rapid progress. Heuristics are introduced@action to unproven conjectures.

24

As the number of heuristics increase, they will inevitapibtart to clash. Eventually
these clashes hinder further development. Where focusirganf understanding, there
is initially slow progress. Heuristics are only introdu@sigenuine reasoning patterns are
discovered. As each heuristic captures a coherent portiggrasoning, they are naturally
cooperative. Thus heuristics may continue to be introdwa#dtbut hindering further de-
velopment. While this is a comparison of two extremes, theega trend is valid. Proof
planning leads to a more extendable reasoning system thiegper proof understand-
ing. The cost is that such a rigorous approach requiresegrefért to develop.

3.3.2 Facilitates Sharing and Reuse

Proof plans are expressed through external components mif@m style. Presenting
proof plans in this manner means that they are readily aittedsy the automated rea-
soning community. Further, proof plans make a clear disbndetween proof search and
proof checking. Thus, it is relatively straight forward guse the proof search portion of
proof plans in diterent logical domains. For example, in [ISO0], proof plaesedoped
for mathematical induction are reused in automating theodhsry of loop invariants.

3.3.3 Constrained Search and Incompleteness

A proof planner conducts its search in the meta-level theling meta-level theoryfters

a higher level of abstraction than the object-level theArgroof step at the meta-level, for
examplesimplify, might correspond to a number of proof steps at the objeet-1& hus,
by searching in the meta-level theory, a smaller searchesigaxplored. A consequence
of searching at the meta-level theory is losing completengise proof steps of the meta-
level theory may omit valid proof steps in the object-leveddry. This weakness can be
minimised by developing principled proof plans. In thiseaany loss of completeness
corresponds to a missing proof plan.

3.3.4 Flexibility through Separation of Concerns

Proof planning makes a clear distinction between proofcdeand proof checking. Proof
search is performed in a proof planner while proof checkmgerformed in a proof

checker. Significantly, soundness depends solely on thaf pteecker. Any reasoning

error introduced at proof search will be detected and regeduring proof checking. The

architecture frees proof search from the burden of demainsgy soundness, supporting
the flexible development of sophisticated heuristics. Twoeagal techniques that exploit
this flexibility are detailed below.

25

Contextual Information

The description of a goal may be supplemented through ctugkexnformation. The
information is typically meta-logical, being relevant teetgoal yet not directly express-
ible as part of the goal. Heuristics can exploit such infarorato offer a more targeted
proof search [DJP06]. For example, program verificatioroisstdered in [IEIO4]. VCs
are supplemented with contextual information that revpedgrieties of the correspond-
ing program. The domain knowledge is exploited to constpagof search. Contextual
information is often embedded into a goal through annatatioFor example, rippling
[BBHIO5] is controlled through expression annotationg] argeneral formalism of anno-
tations has been developed [HK97].

Middle-Out Reasoning

In general, the proof of a goal is advanced by applying a fealdle transformation. In
many instances the goal and its preceding context provitteessduidance in selecting
the next transformation. Resolving such blocking pointpine a creativeeurekastep.
Typically, the merit of a eureka step only becomes appagtet in the proof.

A successful strategy for discovering eureka stepsiddle-out reasoningBSH90],
which builds on ideas originally developed in GPS [EN69]. eTtrategy exploits the
observation that the merit of a eureka steps often beconpeseqt later in a proof. Thus,
where a eureka step is required, its choice is delayed angdrtddd is continued. The
intention is that the structure of the continued proof wittoduce additional constraints,
revealing the shape of the eureka step. Essentially, tagegir develops the middle of a
proof to gain deeper insights into an earlier stage of thefpro

Middle-out reasoning requires a mechanism to delay theteteof a eureka step.
This is achieved by replacing a eureka step with a metahlaridvieta-variables range
over all valid expressions, thus they simultaneously regmeevery possible transforma-
tion. With the meta-variable in place, the proof may cornginiAs the proof progresses,
the meta-variable will be incrementally instantiated. \Whthe meta-variable becomes
fully instantiated it will reveal the form of the eureka step

Middle-out reasoning has significant implications for dreearch. The search is rad-
ically reduced by simultaneously considering all possitdasformations through the in-
troduction of a meta-variable. However, the presence oftaiwvariable will significantly
increase the applicability of proof steps. For this reasuddle-out reasoning is typically
only practical where strong expectations about the prookaown. These expectations
can be exploited to constrain the search, selecting a femignog proof steps from the
numerous applicable proof steps.

26

Chapter 4

The SPARK Approach

4.1 Introduction

This chapter describes the SPARK Approach. In 84.2 the featof the approach are
summarised. The SPARK programming language and the SPABIKetoare described
in 84.3 and 84.4 respectfully.

4.2 SPARK Approach

The SPARK Approach addresses the specific challenge of@zwel high integrity soft-

ware. Here, the background of the approach is presentednatiging its history and
significant industrial applications. Following this, aneoview of the approach is given,
describing its key attributes.

4.2.1 Historical Perspective

The origins of the SPARK Approach may be traced back over tyvive years, to pro-
gram analysis research undertaken at Southampton Unwekay products of this re-
search included the mathematical foundations of a form fafrimation and data flow
analysis [BC85] and development of the SPADE (Southamptogr@m Analysis and
Development Environment) toolset [O’'N87, CCDO86]. The BIFAtoolset supports the
analysis of Assembly language programs for the 68020 an@Zg€ocessors, the 8096
Intel microcontroller and programs written in a subset (fd@h Program Validation Lim-
ited (PVL) was established to support the commercialisaiidhis research. At PVL, the
SPARK (SPADE Ada Kernel) programming language was definea fasmal subset of
Ada [CG90, Mar94, O’'N94]. Building upon the SPADE toolseiis were developed to
support the analysis of SPARK programs. Further, the piisgibf proving that SPARK
programs were free from run-time exceptions was invesa)pOC93]. Following these
achievements, PVL was acquired by Praxis Critical Systemstéd (Praxis-CS). The
larger infrastructure at Praxis-CS enabled the technideesloped at PVL to be applied

27

on large scale high integrity software projects. In tagkliarger projects the techniques
were refined and strengthened accordingly. The verificatfoexception freedom was
transformed from a theoretical possibility to a practielity [AC02]. Further, support
for concurrent applications was introduced as RavenSPARBOB]. Learning through
experience, these larger projects inspired guidelineth®mapplication of SPARK. These
guidelines, together with the SPARK language and supgpttiolset, formed the basis of
a complete approach for developing high integrity softwaiee maturity of the approach
was signalled with the publication of the SPARK Approach b@Bar03]. Praxis-CS
merged with High Integrity Systems Limited (HIS) to beconrex#s High Integrity Sys-
tems Limited (Praxis-HIS). The profile of SPARK was increhiough a technical and
marketing partnership with AdaCore. In particular, SPARKnbw licensed under the
GNU General Public License (version 3) [GNU]. Following amyer with SC2, Praxis-
HIS become Altran Praxis Limited.

4.2.2 Industrial Application

The SPARK Approach has been successfully applied in setayhlintegrity software
projects. To illustrate the industrial applicability ofettapproach, a collection of these
projects are summarised below.

e C130J MC - The Mission Computer (MC) is a critical avionics systemhed tore
of the Lockheed C130J, a military and commercial transpocraft. The dual
application of the aircraft means that the MC is subject tamliner of standards,
including DO178B [Rad93]. The MC had already been specif@lbwing the
CoRE technique [FFK94]. Working from this specification,targlard compliant
MC was successfully implemented following the SPARK ApmtofCS95, Cha00].

e MULTOS CA - The Certification Authority (CA) is a security critical cgonent
of the Multi-Application Operating System (MULTOS) intesdi for use on smart-
cards. To attain the security confidence demanded, the CAvaonent needed to
meet the highest level (E6) of the Information Technologgusiey Evaluation Cri-
teria (ITSEC) [Com98]. The SPARK Approach was successfthployed in de-
signing and implementing the CA to the security level regdifHC02, Cha00].

e SHOLIS - The Ship Helicopter Operational Limits Instrumentatigis®m (SHO-
LIS) resides on a ship to provide information about the safe af helicopters in
various situations. Given the nature of the system, it wagestito Defence Stan-
dard 00-55 for safety critical software [Min91]. The SPARKproach was suc-
cessfully employed in specifying, designing and implermenSHOLIS [Cha00].
The resulting system was the first to meet every requirenmetite stringent De-
fence Standard 00-55 for safety critical software.

28

e Tokeneer - The Tokeneer ID Station (TIS) [Tok] was developed by theidisl
Security Agency (NSA) to investigate access control ananeivics. In this in-
stance, the TIS served as a demonstrative system as parvofralted experiment
to evaluate the overallfiectiveness of the SPARK Approach. The system had to
meet Evaluation Assurance Level 5 (EAL5) of the Informati@ehnology Secu-
rity Evaluation Criteria [Com98]. The SPARK Approach waspoayed in specify-
ing, designing and implementing the TIS system. The SPARIgrAach success-
fully developed the system to the desired assurance leeetast &ective manner.
In practice, due to the inherent rigour of the SPARK Apprgadme assurances
could be made beyond EALS5. Following the experiment, it waecsllated that the
SPARK Approach would also be able tffextively deliver at EAL7, the highest
assurance available under the Common Criteria [BG]]

More generally, the merits of the SPARK Approach have beeongeised by inde-
pendent organisations that are concerned with the deveopof high integrity soft-
ware. Following the successful Tokeneer project, the USdNat Cyber Security Part-
nership highlighted the SPARK Approach as one of only threeetbpment processes
able to deliver stiicient assurance for security critical systems [Nat04]. UBeNational
Academies [JTMO7] advocates the use of simple, well defiaed, safe programming
languages, especially where developing critical appboat In this context the SPARK
Approach is referenced, highlighting its industrial sugsms. The US Defence Techni-
cal Information Centre [GWNO7] references the SPARK Approach, in the context of
applying formal methods to develop secure software systems

4.2.3 Overview

The SPARK Approach has matured into a complete disciplimel&veloping high in-
tegrity software. The guiding philosophy of the approacGasrectness by Construction
(CbyC) [Ame06, HC02, Ame01, Bar03]. Essentially, the cainpremise of CbyC is to
build software right to begin with, rather than embark onregtey and costly process of
identifying and eliminating errors. While it is accepteatiefects will inevitably occur
during development, significant progress can be madstiying for zero defects and
selecting notations and tools accordingly.

To meet the objectives of CbyC itis essential that the pbjpby is pursued throughout
the entire lifecycle of software development. To this eid SPARK Approach féers
guidance at each key stage of the lifecycle as summarisedbel

¢ Requirements and Specification The requirements and specification is elicited
through REVEAL [Pra01l]. The REVEAL method provides guidaon dfectively
addressing the various concerns seen in requirementsesmgig. A key concern
identified in REVEAL is the selection of notations to ensun@mbiguous require-

29

ments. Where following the REVEAL method it is not uncommonfbrmal nota-
tions, such as Z [Spi92], to be adopted.

Design- Design is guided through the Informed method (INformatiow Ori-
ented MEthod of Design) [Ame99, Bar03]. Informed reinfar¢ke merits ofow
couplingandstrong cohesionlin particular, it argues that these favourable proper-
ties can be attained by positioning state to minimise infrom flow.

Implementation - Implementation is achieved through the SPARK programming
language and the SPARK toolset. The SPARK programming kgejis a formal
subset of Ada, as described in 84.3. The SPARK toolset stpparious analyses
of SPARK programs, as described in §4.4.

4.3 The SPARK Programming Language

The SPARK programming language is at the centre of the SPARprdach. Significant
features of the language are discussed below, includingetaBonship between SPARK

and Ada. Finally, for illustration, a small example is presel.

4.3.1 Significant Language Features

At its inception, key requirements for the SPARK programgnianguage were estab-
lished. The design of the SPARK language continues to beeduigt these requirements:

¢ Logical soundness It must be possible to reason precisely about the semaoftics
the programming language. Thus the language must be lggsmalind.

Simplicity of language definition - A simple programming language is easier to
understand than a complex one. Improved understandingatses the likelihood
of errors being made. Thus, simplicity is sought in the laggudefinition.

Expressive power- A practical programming language must havéisient expres-
sive power to support the development of realistic appboat Thus, simplicity
must always be balanced against expressiveness.

Security - Language insecurity occurs when a program breaks the ofitbe lan-
guage at run-time. Thus, it must be possible to staticalyalestrate that a program
is secure.

Verifiability - The programming language must be amenable to programceerifi
tion.

Correspondence with Ada- Costly compiler development can be avoided by ex-
pressing the language as a pure subset of Ada. Significaudby,is suficiently

30

formal such that this compiler reuse does not overly comjserather language
requirements.

Verifiability of compiled code - It must be possible to demonstrate that a compiled
program faithfully reflects the semantics of its source cotlee language should
favour constructs that generate more readily verifiableagjode.

Bounded space and time It must be possible to show that a program operates
within fixed space and time requirements. The language drexdlude constructs
that hinder calculating maximum memory usage and wors-e&scution times.

Complexity of run-time system- Run-time libraries may need to be subjected to
the same level of certification as the application prograhusT to ease certification,
the language must be able to operate with little, or zerotime library support.

The SPARK language has emerged from a careful balancingeddtbve requirements.
Significant features of the language are highlighted below:

Contracts - The required behaviour of subprograms may be specifiedigirex-
plicit and verifiable contracts.

Structured control flow graph - Various language restrictions are imposed to en-
sure that the program has a well-structured, and thus yeadadlysable, control
flow graph.

No pointers - The language excludes pointers to retain feasible vetifyab
No aliasing- At every point in the program each variable has a unique name
No side dfects- Function subprograms are pure mathematical functions.

No dynamic memory allocation or recursion- The language excludes dynamic
memory allocation and recursion. Consequently, it is neht straight forward to
calculate the maximum memory usage of a program.

Single threaded- The language is single threaded, avoiding the various t&mp
ties associated with concurrent programs. Note that amsixte to SPARK, called
RavenSPARK, supports multiple program threads.

4.3.2 Relationship to Ada

The SPARK programming language is expressed as a subseaoffAds is simply a prac-
tical manoeuvre to avoid implementing and maintaining aBIRAompiler on numerous
architectures. Thus, SPARK should be regarded as a segamgemming language,
that just happens to be expressed as a subset of Ada. Ndegssthihis relationship re-
stricts the application of the SPARK Approach to architessithat have an Ada compiler.

31

In practice, this is not a concern, as architectures adsacvaith high integrity software
typically have robust Ada compiler support.

The SPARK language is divided into a common kernel and atinosg as illustrated
in Figure 4.1. The common kernel is expressed through a sabsela. The annotations
are embedded inside Ada comments and expressed througionstpecific to SPARK.
As the annotations are inside Ada comments they remain kgalsyntax. There are
three diferent Ada standards as Ada 83 [Ame83], Ada 95 [Int95] and Ai52Int07].
Associated with each Ada standard is a corresponding sabSEARK. The diferences
between these SPARK subsets is very marginal. Through@mutitésis we focus on the
SPARK subset that corresponds to Ada 95.

Common
Kernel

SPARK Ada

Annotations Rest of Ada

Figure 4.1: SPARK and Ada

4.3.3 Example

Consider the Filterinteger subprogram shown in Figure %tz subprogram sums all of
the elements in an array that lie between 0 and 100. The sgigprois contained within

a package called FilterInteg®ackage. The package is split intpackage specification
(ADS) file and apackage bodyfADB) file. The specification serves as a contract, de-
scribingwhat functionality is provided. The body implements the contraescribing
how the functionality is achieved. The specification of the sogpam includes a de-
pendency relation, introduced through derives annotgtie#A derives). This specifies
the information flow of the subprogram, as explained in 81.Zhe body of the subpro-
gram includes an invariant, introduced through the asseidtation (-# assert). This
specifies a property that remains true within the loop, ataéxed in 84.4.4.

4.4 The SPARK toolset

The SPARK toolset supports the analysis of programs writteBPARK. Each of the
tools are briefly summarised below:

e SPARK Examiner (henceforth Examiner) - A static analysis tool, supporiiag-
ous analyses of SPARK programs.

e SPADE Simplifier (henceforth Simplifier) - A human-oriented automated teeor
prover and simplifier, applied during program verification.

32

Package Specification (ADS)
package FilterInteger_Package is
subtype AR_T is Integer range 0..9;
type A_T is array (AR_T) of Integer;
procedure FilterInteger(A: in A_T; R: out Integer);
--# derives R from A;
end FilterInteger_Package;

Package Body (ADB)

package body FilterInteger_Package is
procedure FilterInteger(A: in A_T; R: out Integer)
is
begin
R:=0;
for I in AR_T loop
--# assert R>=0 and R<=I*100;
if AC(I)>=0 and A(I)<=100 then
R:=R+A(I);
end if;
end loop;
end FilterInteger;
end FilterInteger_Package;

Figure 4.2: FilterInteger subprogram

e SPADE Proof Checker(henceforth Checker) - An interactive proof assistant, ap-
plied during program verification.

e Proof Obligation Summary Tool (henceforth POGS) - A report generator, describ-
ing the current status of a program verification.

The interaction of these tools is illustrated in Figure 4.Be main activities supported by
the SPARK toolset are described in the sections below.

4.4.1 Conformance to SPARK

The Examiner checks that submitted source code confornmetSRPARK language. The
check is mandatory, as all of the favourable properties@BRARK Approach depend on
reasoning about well-formed SPARK programs. Any conforoeagrrors are highlighted
in the Examiner repor{REP) file.

4.4.2 Data Flow Analysis

The Examiner supports automated data flow analysis. The/sisat mandatory as a
data flow error could undermine the security of a SPARK prograhe data flow anal-
ysis checks that the parameters and global variables &ct@ss subprogram are used
according to their declared modes. Further, it is checkatldh variables are written to
before being read. Finally, any structurally inaccesstiolde is identified. Any data flow
errors are highlighted in thExaminer repor{REP) file.

33

Engineer

(SPARK (ADS,ADB))

C Target configuration (CFG))

\ i

A

Examiner

Examiner report (REP))

Y

Initial VCs
(FDL,RLS,VCG))

h

A

[

implifier
N | Simplifier Simp
User rules B proof log (SLG)
(RLU) Rema'ining y \/ Proof
> POGS summary
Proof VCs (SIV)) (SUM)
commands ' o
CMD - ecker
() Chfjfker proof log (PLG)
CStandard rules (RUL))

Figure 4.3: The SPARK toolset

34

4.4.3 Information Flow Analysis

The Examiner supports automated information flow analydithiough information flow
analysis is optional, it is applied in many projects. Infation flow analysis compares
specified information flow against actual information flownyAdiscrepancies are high-
lighted in theExaminer report(REP) file. The analysis isfiective in detecting both
common and surprising program errors. The specificationagiged in the form ofde-
pendency relationghroughderives annotations A dependency relation lists, for each
output from a subprogram, every input value that the outpaydepend on.

For example, consider the Switch subprogram shown in FigueThis simple sub-
program swaps the values of two input parameters. The desiiveotation attached to the
specification of the subprogram is:

--# derives X from Y &
--# Y from X;

This indicates that the output value of variaklill depend solely on the input value of
variabley and that the output value of variabyewill depend solely on the input value
of variablex. In swapping the contents of varialsteandy the subprogram correctly
implements this specification.

package Switch_Package

is
procedure Switch(X, Y: in out Integer);
--# derives X from Y &
--# Y from X;

end Switch_Package;

package body Switch_Package is
procedure Switch(X, Y: in out Integer)
is
T: Integer;
begin
T:=X; X:=Y; Y:=T;
end Switch;
end Switch_Package;

Figure 4.4: Switch subprogram

4.4.4 Program Verification

The SPARK Approach supports program verification througbraatic assertional rea-
soning. Although program verification is optional, it is iyglly applied to some extent in
high integrity software development. The two properties thay be verified of SPARK
programs argartial correctnessandexception freedomThe specific details of verify-
ing these properties is described in 84.4.5 and 84.4.6. €hergl process of program
verification is described below.

35

In the SPARK Approach, program verification is decomposdio The whole pro-
gram is verified by separately verifying each subprogranbpBagram specifications are
conveyed through annotations@®of assertionsThe specification of each subprogram
is described throughareconditionand apostcondition Properties that hold within loops
are described through amvariant These annotations may be expressed in terms of de-
claredproof functions Definitions and proprieties may be provided in extewrssr rule
(RLU) files. Further, target specific constraints, such assilze of base types, may be
specified through target configuratio(CFG) file.

The Examiner operates as a verification condition genenaoeiving a SPARK pro-
gram and generating VCs for each subprogram. Unless etkplpecified, every sub-
program is assigned a default precondition and postcamddf true. Similarly, unless
already present, each loop is assigned a default invaiaety invariant is strengthened
to assert that imported parameter variables are withim tiyeé and that the precondition
was true on entry to the subprogram. The VCs associated aih gubprogram are ex-
pressed through three files. Firstlyfumctional description languag&DL) file describes
the entities and types that are relevant to the subprogracorly, asubprogram rules
file (RLS) contains a collection of rules that are specifiche éntities and types in the
subprogram. Thirdly, aerification condition(VCG) file contains the actual VCs. The
VCs are described in first order logic with equality.

Once generated, VCs are presented to the Simplifier, seakbognated proof or sim-
plification. The Simplifier generates additional files todése its analysis. All remaining
VCs are stored in aimplified verification conditio(SIV) file. Further, the actions taken
by the Simplifier are recorded in@implifier proof log(SLG) file. The user may inter-
actively prove remaining VCs via the Checker. To faciliteeasoning, the Checker is
supplied with a collection of general definitions and prepes in externastandard rule
(RUL) files. Each Checker session is stored ipraof commandCMD) file, providing
an audit trail and allowing for a prooftert to be automatically repeated. The progress of
an interactive proof is recorded inGhecker proof logPLG) file.

The status of a program verification is found by combiningdtatus of every sub-
program verification. Each subprogram verification depemdthe VCG files generated
by the Examiner, the SIV and SLG files generated by the Sireplé&nd the PLG file
generated by the Checker. POGS collates these informatimeess, generating @roof
summary(SUM) file.

Aside from user rules, the soundness of a program verificaigpends entirely on the
soundness of the SPARK Approach. In particular, the sowsgloka program verification
depends on the soundness of the Examiner, Simplifier andk€hec

4.4.5 Partial Correctness

Partial correctness verifies, for each subprogram, thatevite precondition holds and
the subprogram terminates, its postcondition will hold.e Hiort required in verifying

36

partial correctness depends on the richness of the sulgpnogpecification. In general,
as the specification becomes stronger, increased manusdlgnrd invariant discovery is
required. Consequently, verification of partial corresmes typically targeted at critical
specifications and critical areas of functionality. Forrexde, the safety critical core of
the SHOLIS system was subjected to a targeted proof of padieectness [Cha00].

As described in 84.4.4, program verification involves gatieg and proving VCs
for each subprogram. Each proof assertion representg-pointin the subprogram.
Proving every transition between cut-points proves thabtrerall subprogram is correct.
A VC is generated for each path between cut-points. In viagfypartial correctness, the
relationship between cut-points and VCs is illustratedigufe 4.5.

--# pre A;
(Pre A)
loop

s B y Vv

--# assert B; .

exit when ...; Invariant B)
end loop; v
Post C
--# post C;

Subprogram Cut-point transitions

On the left, a generic subprogram containing a single loghdsv, associat-
ing labels with each cut-point. On the right, cut-point Biilons correspond-
ing to the subprogram are shown. Each bold arrow represeatyg potential
path between cut-points. A VC is generated for each of thatiesp

Figure 4.5: Generating partial correctness VCs

For illustration, a small example is considered, showirgttain artifacts of verifying
partial correctness in the SPARK Approach. Consider thesPBlag subprogram shown
in Figure 4.6. The subprogram sorts an array of coloured ehsn The subprogram
has been specified through a preconditier#(pre) and a postcondition-(# post).
The precondition specifies that the array contains onlyenéuitd red elements. The post-
condition states that the array contains a reordering ofripet elements, with the first
portion of the array containing white elements and the seéqamtion containing red el-
ements. An invariant (-# assert) describes the partially sorted array. The package
specification declargsermutationas a user proof function-¢# function). The proof
function is used to specify that the output array is a reangeof the input array. The
function is defined in a user rule file as shown in Figure 4.7e Tdyical interpretation
of such rule files is described in 86.6.1. Target specific airgs are described through

Thus depicting the vertical display of the Polish flag as #jgetin the “Coat of Arms, Colors and
Anthem of the Republic of Poland, and State Seals Act” of 1980

37

package PolishFlag_Package is
subtype FlagIndex is Integer range 1..10;
type Colour is (White, Red);
type FlagArray is array (FlagIndex) of Colour;
--# function Permutation(A: FlagArray ; B: FlagArray) return Boolean;
procedure PolishFlag(Flag: in out FlagArray);
--# derives Flag from Flag;
--# pre (for all I in FlagIndex =>

-—# (Flag(I)=White or Flag(I)=Red));

--# post

--# (for some P in Integer range (Flag’First)..(Flag’Last+1) =>

--# ((for all Q in Integer range Flag’First..(P-1) =>
——# (Flag(Q)=White)) and

--# (for all R in Integer range P..Flag’Last =>

-—# (Flag(R)=Red)))) and

--# Permutation(Flag, Flag™);
end PolishFlag_Package;

package body PolishFlag_Package is
procedure PolishFlag(Flag: in out FlagArray)
is
subtype FlagIndexPlus is Integer range Flag’First..Flag’Last+1;
I: FlagIndexPlus;
J: FlagIndexPlus;
T: Colour;
begin
I:=FlagIndexPlus’First;
J:=FlagIndexPlus’Last;
loop
--# assert
--# (for all Q in Integer range Flag’First..(I-1) =>
——# (Flag(Q)=White)) and
--# (for all R in Integer range J..Flag’Last =>
-—# (Flag(R)=Red)) and
--# I in FlagIndexPlus and
--# J in FlagIndexPlus and
--# Permutation(Flag, Flag™);
exit when not (I<J);
if Flag(I)=White then
I:=I+1;
else
J:=]-1;
T:=Flag(I);
Flag(I):=Flag(J);
Flag(J):=T;
end if;
end loop;
end PolishFlag;
end PolishFlag_Package;

Figure 4.6: PolishFlag subprogram (partial correctness)

38

a configuration file, as shown in Figure 4.8. The configuratiedescribes the range of
integer types on a standard 32-bit architecture. Note thd¢ss stated otherwise, every
non-industrial example in this thesis adopts this configomile.

rule_family permutation:
permutation(X, Y) requires [X: any, Y: any].

permutation(l): permutation(A, A) may_be_deduced.
permutation(2): permutation(A, B) may_be_replaced_by permutation(B, A).
permutation(3): permutation(update(update(A, [I], XD, [J], Y), B)

may_be_replaced_by
permutation(update(updateCA, [J], X), [I], Y), B).

Figure 4.7: Definition of Permutation (RLU)

package Standard is
type Short_Short_Integer is range -2%*7 .. 2%*7-1;
type Short_Integer is range -2**15 .. 2%**15-1;
type Integer is range -2*%*31 .. 2%*31-1;
type Long_Integer is range -2**31 .. 2%%*31-1;
type Long_Long_Integer is range -2*%*63 .. 2*%63-1;
end Standard;

Figure 4.8: Target Configuration (CFG)

As described in 84.4.4, the VCs corresponding to a subpnogra expressed through
three files. The FDL file, shown in Figure 4.9, declares thadties and types that are
relevant to the subprogram. The RLS file, shown in Figure Actb@tains rules directly
related to the entities seen in the subprogram. Both the FOLRLS files are omitted in
all subsequent examples, as they can be intuitively infiein@m the subprogram source
code. The VCG file is split across Figure 4.11 and Figure 4AZraceability lineis
shown for every pair of traversable cut-points. Each trbitéaline is followed by its
corresponding VCs, one for each path between these cutspéiaur partial correctness
VCs are present. One VC is generated from the preconditithretmvariant. Two VCs are
generated from the invariant to the invariant, coverindnlpaiths through the if-statement.
Finally, one VC is generated from the invariant to the pastiiton.

The initial VCs are presented to the Simplifier, generatiigi\afile as shown in Fig-
ure 4.13. In general, the Simplifieffers limited automation in proving partial correctness
VCs. In this case, only simple inequality conclusions arteratically proved.

The remaining VCs may be proved in an interactive CheckaigesA CMD file that
proves every remaining VC is shown in Appendix A. Typicallygating such files is a
non-trivial task. The interactive application of the Chexckes beyond the focus of this
thesis. Full details of the Checker and its proof commanesweailable in [Prab].

39

title procedure polishflag;

function round__(real) : integer;

type colour = (white, red);

type flagarray = array [integer] of colour;
const flagindexplus__last : integer = pending;
const flagindexplus__first : integer = pending;
const colour__last : colour = pending;

const colour__first : colour = pending;

const flagindex__last : integer = pending;
const flagindex__first : integer = pending;
const integer__last : integer = pending;

const integer__first : integer = pending;

var j : integer;

var i : integer;

var flag : flagarray;

function permutation(flagarray, flagarray) : boolean;

end;

Figure 4.9: PolishFlag subprogram declarations (FDL)

40

rule_family polishflag_rules:

X requires
X <= Y requires
X >= Y requires

polishflag_rules(1l):
polishflag_rules(2):
polishflag_rules(3):
polishflag_rules(4):
polishflag_rules(5):
polishflag_rules(6):
polishflag_rules(7):
polishflag_rules(8):
polishflag_rules(9):

polishflag_rules(10):
polishflag_rules(11):
polishflag_rules(12):
polishflag_rules(13):
polishflag_rules(14):
polishflag_rules(15):
polishflag_rules(16):
polishflag_rules(17):
polishflag_rules(18):
polishflag_rules(19):
polishflag_rules(20):
polishflag_rules(21):

[X:any] &
[X:ire, Y:ire] &
[X:ire, Y:ire].

character__pos(X) may_be_replaced_by X.
character__val(X) may_be_replaced_by X.
integer__first may_be_replaced_by -2147483648.
integer__last may_be_replaced_by 2147483647.
integer__base__first may_be_replaced_by -2147483648.
integer__base__last may_be_replaced_by 2147483647.
flagindex__first may_be_replaced_by 1.
flagindex__last may_be_replaced_by 10.
flagindex__base__first may_be_replaced_by -2147483648.
flagindex__base__last may_be_replaced_by 2147483647.
colour__first may_be_replaced_by white.
colour__last may_be_replaced_by red.
colour__base__first may_be_replaced_by white.
colour__base__last may_be_replaced_by red.
colour__pos(colour__first) may_be_replaced_by 0.
colour__pos(white) may_be_replaced_by 0.
colour__val(0®) may_be_replaced_by white.
colour__pos(red) may_be_replaced_by 1.
colour__val(l) may_be_replaced_by red.
colour__pos(colour__last) may_be_replaced_by 1.
colour__pos(succ(X)) may_be_replaced_by

colour__pos(X) + 1
if [X <=red, X <> red].

polishflag_rules(22)

: colour__pos(pred(X)) may_be_replaced_by

colour__pos(X) - 1
if [X >=white, X <> white].

polishflag_rules(23): colour__pos(X) >= 0 may_be_deduced_from
[white <= X, X <= red].
polishflag_rules(24): colour__pos(X) <= 1 may_be_deduced_from
[white <= X, X <= red].
polishflag_rules(25): colour__val(X) >= white may_be_deduced_from
[0 <= X, X <= 1].
polishflag_rules(26): colour__val(X) <= red may_be_deduced_from
[0 <= X, X <= 1].
polishflag_rules(27): succ(colour__val(X)) may_be_replaced_by
colour__val(X+1)
if [0 <= X, X < 1].
polishflag_rules(28): pred(colour__val(X)) may_be_replaced_by
colour__val(X-1)
if [0 < X, X <= 1].
polishflag_rules(29): colour__pos(colour__val(X)) may_be_replaced_by X
if [0 <= X, X <= 1].
polishflag_rules(30): colour__val(colour__pos(X)) may_be_replaced_by X
if [white <= X, X <= red].
polishflag_rules(31): colour__pos(X) <= colour__pos(Y) & X <=
if [white <= X, X <= red, white <= Y, Y <= red].
polishflag_rules(32): colour__val(X) <= colour__val(Y) & X <=
if[0<=X,X<=1, 0<=Y, Y <= 1].
polishflag_rules(33): flagindexplus__first may_be_replaced_by 1.
polishflag_rules(34): flagindexplus__last may_be_replaced_by 11.
polishflag_rules(35): flagindexplus__base__first may_be_replaced_by -2147483648.
polishflag_rules(36): flagindexplus__base__last may_be_replaced_by 2147483647.

Y are_interchangeable

Y are_interchangeable

Figure 4.10: PolishFlag subprogram rules (RLS)

41

For path(s) from start to assertion of line 13:

procedure_polishflag_1.

H1: for_all(i_: integer, ((i_ >= flagindex__first) and (
i_ <= flagindex__last)) -> ((element(flag, [i_]) =
white) or (element(flag, [i_]) = red)))

H2: for_all(i___1: integer, ((i___1 >= flagindex__first) and (

i___1 <= flagindex__last)) -> ((element(flag, [
i___1]) >= colour__first) and (element(flag, [
i___1]) <= colour__last))) .
->
Cl: for_all(q_: integer, ((gq_ >= flagindex__first) and (

q_ <= flagindexplus__first - 1)) -> (element(
flag, [q_1) = white))

C2: for_all(r_: integer, ((r_ >= flagindexplus__last) and (
r_ <= flagindex__last)) -> (element(flag, [r_]) =
red))

C3: flagindexplus__first >= flagindexplus__first .

C4: flagindexplus__first <= flagindexplus__last .

C5: flagindexplus__last >= flagindexplus__first .

C6: flagindexplus__last <= flagindexplus__last

C7: permutation(flag, flag)

For path(s) from assertion of line 13 to assertion of line 13:

procedure_polishflag_2.

H1: for_all(q_: integer, ((gq_ >= flagindex__first) and (
g_ <=1 - 1)) -> (element(flag, [g_]) = white)) .

H2: for_all(r_: integer, ((r_ >= j) and (r_ <=
flagindex__last)) -> (element(flag, [r_]) = red))

H3: i >= flagindexplus__first .

H4: i <= flagindexplus__last

H5: j >= flagindexplus__first .

H6: j <= flagindexplus__last

H7: permutation(flag, flag™) .

H8: not (not (i < j)) .

H9: element(flag, [i]) = white .

->

Cl: for_all(q_: integer, ((gq_ >= flagindex__first) and (
g_ <=1+ 1- 1)) -> (element(flag, [q_]) =
white))

C2: for_all(r_: integer, ((r_ >= j) and (r_ <=
flagindex__last)) -> (element(flag, [r_]) = red))

C3: i + 1 >= flagindexplus__first .

C4: i + 1 <= flagindexplus__last .

C5: j >= flagindexplus__first .

C6: j <= flagindexplus__last

C7: permutation(flag, flag™) .

Figure 4.11: PolishFlag subprogram VCs (VCG) [1 of 2]

42

procedure_polishflag_3.

H1: for_all(q_: integer, ((gq_ >= flagindex__first) and (
g_ <=1 - 1)) -> (element(flag, [g_]) = white)) .
H2: for_all(r_: integer, ((r_ >= j) and (r_ <=

flagindex__last)) -> (element(flag, [r_]) = red))

H3: i >= flagindexplus__first .
H4: i <= flagindexplus__last
H5: j >= flagindexplus__first .
H6: j <= flagindexplus__last
H7: permutation(flag, flag™) .
HS8: not (not (i < j)) .
H9: not (element(flag, [i]) = white)
->
Cl: for_all(q_: integer, ((gq_ >= flagindex__first) and (

g_ <=1 - 1)) -> (element(update(update(flag, [i], element(
flag, [j - 11D), [j - 11, element(flag, [i1)), [
q_1) = white))

C2: for_all(r_: integer, ((r_ >= j - 1) and (r_ <=
flagindex__last)) -> (element(update(update(flag, [
i], element(flag, [j - 11)), [j - 1], element(
flag, [i1)), [r_1) = red))

C3: i >= flagindexplus__first .

C4: i <= flagindexplus__last

C5: j - 1 >= flagindexplus__first .

C6: j - 1 <= flagindexplus__last .

C7: permutation(update(update(flag, [i], element(flag, [

j - 11)), [j - 11, element(flag, [i])), flag™)

For path(s) from assertion of line 13 to finish:

procedure_polishflag_4.

H1: for_all(q_: integer, ((g_ >= flagindex__first) and (
g_ <=1 - 1)) -> (element(flag, [q_]1) = white)) .
H2: for_all(r_: integer, ((r_ >= j) and (r_ <=

flagindex__last)) -> (element(flag, [r_]) = red))

H3: i >= flagindexplus__first .
H4: i <= flagindexplus__last
H5: j >= flagindexplus__first .
H6: j <= flagindexplus__last
H7: permutation(flag, flag™) .
HS8: not (i < j)
->
Cl: for_some(p_: integer, ((p_ >= flagindex__first) and (
p_ <= flagindex__last + 1)) and ((for_all(q_:
integer, ((q_ >= flagindex__first) and (q_ <= p_ - 1)) -> (element(
flag, [q_]) = white))) and (for_all(r_:
integer, ((r_ >= p_) and (r_ <= flagindex__last)) -> (element(
flag, [r_]) = red))))) .
C2: permutation(flag, flag™) .

Figure 4.12: PolishFlag subprogram VCs (VCG) [2 of 2]

43

For path(s) from start to assertion of line 13:

procedure_polishflag_1.

H1: for_all(i_ : integer, 1 <= i_ and i_ <= 10 -> element(flag, [i_]) =
white or element(flag, [i_]) = red) .
H2: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 10 -> white <= element(
flag, [i___1]) and element(flag, [i___1]) <= red)
->
Cl: for_all(q_ : integer, 1 <= q_ and gq_ <= 0 -> element(flag, [q_]) = white)
C2: for_all(r_ : integer, 11 <= r_ and r_ <= 10 -> element(flag, [r_]) = red)
C7: permutation(flag, flag)
For path(s) from assertion of line 13 to assertion of line 13:
procedure_polishflag_2.
H1: for_all(q_ : integer, 1 <= gq_ and gq_ <= i - 1 -> element(flag, [q_]) =
white)
H2: for_all(r_ : integer, j <= r_ and r_ <= 10 -> element(flag, [r_]) = red) .
H3: i>=1.
H4: j <= 11 .
H5: permutation(flag, flag™) .
H6: i<j
H7: element(flag, [i]) = white .
->
Cl: for_all(q_ : integer, 1 <= q_ and gq_ <= i -> element(flag, [q_]) = white)
procedure_polishflag_3.
H1: for_all(q_ : integer, 1 <= q_ and gq_ <= 1i - 1 -> element(flag, [q_]) =
white)
H2: for_all(r_ : integer, j <= r_ and r_ <= 10 -> element(flag, [r_]) = red) .
H3: i>=1.
H4: j <= 11 .
H5: permutation(flag, flag™) .
H6: i<
H7: element(flag, [i]) <> white .
->
Cl: for_all(q_ : integer, 1 <= q_ and g_ <= i - 1 -> element(update(update(
flag, [i], element(flag, [j - 11)), [j - 1], element(flag, [i])), [a_]
) = white)
C2: for_all(r_ : integer, j - 1 <= r_ and r_ <= 10 -> element (update (update(
flag, [i], element(flag, [j - 11)), [j - 11, element(flag, [i])), [r_]
) = red)
C7: permutation(update(update(flag, [i], element(flag, [j - 11)), [j - 11,
element(flag, [i])), flag™)
For path(s) from assertion of line 13 to finish:
procedure_polishflag_4.
H1: for_all(q_ : integer, 1 <= gq_ and gq_ <= 1i - 1 -> element(flag, [q_]) =
white)
H2: for_all(r_ : integer, j <= r_ and r_ <= 10 -> element(flag, [r_]) = red) .
H3: i>=1.
H4: i<=11.
H5: j>=1.
H6: j <= 11 .
H7: permutation(flag, flag™) .
H8: jo<=1 .
->
Cl: for_some(p_ : integer, p_ >= 1 and p_ <= 11 and (for_all(q_ : integer, 1
<= g_ and q_ <= p_ - 1 -> element(flag, [q_]) = white) and for_all(r_
: integer, p_ <= r_ and r_ <= 10 -> element(flag, [r_]) = red))) .

Figure 4.13: PolishFlag subprogram simplified VCs (SIV)

44

4.4.6 Exception Freedom

Exception freedom verifies, for each subprogram, that whengrecondition is met and
the subprogram terminates, its postcondition will hold #resubprogram will not raise
an exception. As SPARK is a subset of Ada, it must be verifiedl hlo Ada exceptions
can occur. The predefined Ada 95 exceptions [Int95] (11)1449 considered below,
describing how their absence is verified in SPARK:

e Tasking_Error - Exceptions of this category are raised where errors aectbzt
during intertask communication. As SPARK is single threhdasking errors can
never occur.

e StorageError - Exceptions of this category are raised where there is rfitsnt
memory to perform an operation. Such errors may occur in JEARowever,
due to the language requirements of SPARK, it is relativédgight forward to
calculate the maximum memory usage of a program. By ensthatghis memory
is available at run-time, storage errors can never occur.

e Program_Error - Exceptions of this category are raised for various progdam
fects that can arise during execution. These defects daheyutside the SPARK
subset or are detected automatically during static arglydus, for well-formed
SPARK, program errors can never occur.

e Constraint_Error - Exceptions of this category are raised where declared-or ar
chitecture constraints are violated. Many of these deftit®utside the SPARK
subset, and thus can never occur. However, four of the ewcepin this cate-
gory can arise in SPARK. The absence of the following exosgtis demonstrated
through program verification:

— Index_Check- Checks that an array access occurs within the declaredilisoun
of the array.

— RangeCheck- Checks that values remain within the declared bounds af the
types.

— Division_Check - Checks that the denominator of a division, remainder, or
modulus operation is not zero.

— Overflow_Check - Checks that a numeric operation does not overflow the
working memory space.

Verifying exception freedom involves verifying that expsegons remain within certain
constraints. Sflicient constraints are often available by adopting a strgpg model.
Further, given the targeted verification task, significanpp automation is often achiev-
able. Consequently, the verification of exception freedsrafien undertaken for com-
plete high integrity software systems. For example, theee@HOLIS system was sub-
jected to a proof of exception freedom [Cha00].

45

The process of verifying exception freedom is an extensfdhat seen where prov-
ing partial correctness, as illustrated in Figure 4.5. Addal run-checkcut-points are
automatically introduced, reflecting the exceptions that occur in SPARK. In veri-
fying exception freedom, the relationship between cutigoand VCs is illustrated in
Figure 4.14.

--# pre A;
code-block X (Pre A) """ Code-block X

loop
--# assert B; A

L /
exit when ...; Gnvar'ant B)-- Code-block Y

code-block Y

end loop; e Code-block Z
code-block Z
--# post C; (POSt C)

Subprogram Cut-point transitions

On the left, a generic subprogram containing a single loghdsv, associat-
ing labels with each cut-point and each code-block. On tt# rthe cut-point
transitions corresponding to the subprogram are showrh Beald arrow rep-
resents every potential path between cut-points. A VC iegerd for each
of these paths. Each dotted arrow represents every pdteatiafrom a cut-
point to a statement that may raise an exception. A VC is geéeeifor each
of these paths.

Figure 4.14: Generating exception freedom VCs

For illustration, consider again the PolishFlag subprogrd he specification of the
subprogram is weakened to verify only exception freedorshasvn in Figure 4.15. Note
that, purely for clarity, an explicit invariant (# assert true;) is retained.

In verifying exception freedom, twelve VCs are generatealirfof these VCs corre-
spond to verifying partial correctness of the default sfpeation. A VC is generated for
lines 9 and 15 to prove that the value assignedisowithin type. A VC is generated for
lines 10 and 17 to prove that the value assigngdgavithin type. A VC is generated for
line 14 to prove thatis a legal index of arraflag. A VC is generated for line 18 to prove
both thati is a legal index of arrajlag and that the value assignedtts within type. A
VC is generated for line 19 to prove both that variablesdj are legal indices of array
flag and that the value assigned to fiffeelement of arraylag is within type. Finally,
a VC is generated for line 20 to prove both thas a legal index of arrajlag and that
the value assigned to t§i& element of arraflag is within type. For illustration, the VC
corresponding to line 19 is shown in Figure 4.16. The Singlifiroves all of these VCs
automatically, verifying that the subprogram is free fraxeseptions.

46

package PolishFlag_Package is
subtype FlagIndex is Integer range 1..10;
type Colour is (White, Red);
type FlagArray is array (FlagIndex) of Colour;
procedure PolishFlag(Flag: in out FlagArray);
--# derives Flag from Flag;

end PolishFlag_Package;

1 package body PolishFlag_Package is
2 procedure PolishFlag(Flag: in out FlagArray)
3 is

4 subtype FlagIndexPlus is Integer range Flag’First..Flag’Last+1;
5 I: FlagIndexPlus;

6 J: FlagIndexPlus;

7 T: Colour;

8 begin

9 I:=FlagIndexPlus’First;

10 J:=FlagIndexPlus’Last;

1 loop

12 --# assert true;

13 exit when not (I<J]);

14 if Flag(I)=White then

15 I:=I+1;

16 else

17 J:=J-1;

18 T:=Flag(I);

19 Flag(I):=Flag());

20 Flag(d):=T;

21 end if;

22 end loop;

23 end PolishFlag;
24 end PolishFlag_Package;

Figure 4.15: PolishFlag subprogram (exception freedom)

47

For path(s) from assertion of line 12 to run-time check associated with
statement of line 19:

procedure_polishflag_10.

H1: true .

H2: for_all(i___1: integer, ((i___1 >= flagindex__first) and (
i___1 <= flagindex__last)) -> ((element(flag, [
i___1]) >= colour__first) and (element(flag, [
i___1]) <= colour__last))) .

H3: i >= flagindexplus__first .
H4: i <= flagindexplus__last
H5: j >= flagindexplus__first .
H6: j <= flagindexplus__last
H7: not (not (i < j)) .

H8: i >= flagindexplus__first .
H9: i <= flagindexplus__last

H10: i >= flagindex__first .
H11: i <= flagindex__last .
H12: not (element(flag, [i]) = white)

H13: j >= flagindexplus__first .
H14: j <= flagindexplus__last

H15: j - 1 >= flagindexplus__first .
H16: j - 1 <= flagindexplus__last .
H17: i >= flagindexplus__first .
H18: i <= flagindexplus__last

H19: element(flag, [i]) >= colour__first .
H20: element(flag, [i]) <= colour__last .
H21: i >= flagindex__first .

H22: i <= flagindex__last .

H23: j - 1 >= flagindexplus__first .

H24: j - 1 <= flagindexplus__last .

->
Cl: element(flag, [j - 11) >= colour__first .
C2: element(flag, [j - 1]) <= colour__last .
C3: j - 1 >= flagindex__first .

C4: j - 1 <= flagindex__last .

C5: i >= flagindex__first .

C6: i <= flagindex__last .

Figure 4.16: PolishFlag exception freedom VC (line 19 of ADE4.15)

48

4.5 Configuring the SPARK toolset

Changes to the SPARK toolset have the potential to influemedoiv level detail of our
approach. For this reason, we use a particular version ¢f eamponent of the toolset.
Further, the application of our approach requires featosreadily supported by the
standard toolset. The required features are introduceddwifying the toolset accord-
ingly. Each component of the toolset is listed below, notimg version we use and any
additional features that were introduced:

e Examiner - We use Examiner version 7.1d01 (January 2004). This is t@nnal
version, not associated with a particular toolset reledsa. reference, this ver-
sion lies between toolset release 7.0 (July 2003) and to@ksse 7.2 (December
2004). A very minor change has been made to this Examineratatshoutput is
easier to process, as described in §B.2.

e Simplifier - We use Simplifier version 2.18 (March 2005). This is an imé&wrer-
sion, not associated with a particular toolset release. réference, version 2.17
was included in toolset release 7.2 (December 2004) antbwne222 was included
in toolset release 7.3 (April 2006). The actual Simplifier wge has been slightly
modified to support the automated comparison of initial amaining VCs, as
described in 8B.3.

e Checker- We use Checker version 2.03, included in toolset reledgséDecember
2004). The actual Checker we use has been modified to supp@titomated proof
of VCs, as detailed in 8B.4. Note that the Checker is usedeolcthe soundness of
discovered proof plans. Thus, in a critical environmergsthmodifications would
be subject to rigorous verification and validation. The ilcgtions of this concern
are explored in 89.2.2.

49

Chapter 5

Enhancing the SPARK Approach with
SPADEase

This chapter describes the practicalities of verifyingepton freedom in the SPARK
Approach. The process is described in 85.1, highlightiregrttain challenges in 85.2.
We enhance this process through SPADEase, as described3inagliressing the main
challenges as described in §5.4.

5.1 Verifying Exception Freedom

The process of verifying exception freedom in the SPARK Aygeh is illustrated in Fig-
ure 5.1. The verificationféort is decompositional, verifying the whole program by sepa
rately verifying each subprogram. Further, the verifiaagfort is iterative, incrementally
resolving defects until the verification is complete.

Each iteration beings with the Examiner generating inii@ks for each subprogram.
The Simplifier attempts to automatically prove the initiaC¥, storing those it fails to
prove as remaining VCs. Where there are no remaining VCgsghfication is complete.
Otherwise, an engineer must manually intervene to resblvegmaining VCs. The three
classes of interactions that may be required are listedhbelo

e Fix fault - The VC is not provable as there is an inconsistency betweeaubpro-
gram and its specification. The engineer must identify thecoof the fault and
fix the subprogram, its specification, or both.

e Perform proof - The VC is provable, but is not automatically proved by theSi
plifier. The engineer must prove the VC inside the Chetker

e Strengthen specification- The VC is not provable as information necessary for

1The SPARK Approach also supports the creation pfaof review(PRV) file. Such files justify the
correctness of a VC through an alternative process, suctdapéndent review of an informal proof. In this
thesis, we focus on mechanically checkable formal verificat

50

L il SPARK
(CFG, ADS, ADB)
Strengthen

spec1f1cat10n
........................... v

Exammer I

Imtlal VCs

Engineer (FDL, RLS VCG)

Slmphfler I

............................. Remalnlng VCs
.......................... (FDL RLS SIV)

Proof command
C (CMD))—»l Che;:ker I
Rules
(RUL, RLU)

Figure 5.1: Verifying exception freedom

proof is missing from the specification. The engineer musingfthen the specifi-
cation to introduce the missing information.

Where a subprogram or specification is modified they are ngeosynchronised with the
initial VCs. Thus, a further iteration of the verificationgoess is required.

5.2 \Verification Challenges

Industrial strength evidence [AC02] shows that the Simgliian automatically prove
around 90% of exception freedom VCs. More recent studieth, avlater version of the
Simplifier, suggest that this figure is now closer to 97% fagieaered SPARK programs
[JESO7]. Despite these impressive results, verifying ptica freedom can still require
significant manualfort. The key challenges are listed below:

1. Many remaining VCs - A typical high integrity system will generate thousands of
VCs. Thus, while the Simplifier may prove all but a small petege of the initial
VCs, the remaining VCs can still number in the hundreds.

2. Complex remaining VCs- The complexity of VCs is dependent on the complexity
of the code constructs they reason about. UnsurprisirtggyStmplifier tends to be
more dfective at proving less complex VCs. Thus, the remaining Vidaaeflect
the more complex proof problems.

51

3. Weak default invariants - The automatically inserted default invariants are rel-
atively weak. While the information is valuable, it is typlty only suficient to
support the proof of simple loops.

4. Lack of configuration - The verification of a particular system may involve recur-
ring patterns of both invariant discovery and proof disegvelowever, the SPARK
Approach can not be configured with appropriate strategiethese patterns. In-
stead, engineers must manually associate these patteimsheir corresponding
strategies and must manually perform these strategies.

5. Brittle proofs - The Checker is controlled through very specific proof comdsa
As a result, Checker proofs are tightly coupled to a paricMC and hence a
particular instance of its corresponding subprogram.dfghbprogram is modified
itis very likely that the proof will need to be modified also.

5.3 \Verifying Exception Freedom with SPADEase

The SPARK Approach is enhanced through SPADEase. The ecthie of SPADEase is
described in 85.3.1, while its application is described5r88.

5.3.1 Architecture of SPADEase

The process of verifying exception freedom in the enhand@®RK Approach is illus-
trated in Figure 5.2. SPADEase strictly operates withirSRARK Approach, automating
activities previously preformed manually by an engineeonszquently, the soundness
of the verification &ort remains solely dependent on the soundness of the SPARK Ap
proach.

The architecture of SPADEase is illustrated in Figure 5.8e Verification of excep-
tion freedom requires both proof discovery and invariastdvery. These distinct tasks
are addressed through separate components. Proof digéeamhieved through a proof
planner, while invariant discovery is achieved throughagpam analyser.

An objective for SPADEase is to deliver both tractable anghsioconfiguration. Key
features of proof planning naturally support this objextiroof planning is controlled
through external proof plans that reflect mathematicalioius. Thus, the development
of proof plans is relatively tractable. Further, proof plarg makes a clear distinction
between proof search and proof checking. Thus, any erropsaaf plans will be de-
tected during proof checking, and not undermine soundn@ssognising the value of
these features, our program analyser is similarly confdyuf@érogram analysis is con-
trolled through external program analysis heuristics.tiiar the program analyser only
discoverscandidateinvariants. Any errors in these invariants will be detededng the
wider verification €ort, and not undermine soundness.

52

: specification i
(Engineer) | SPADEase

—>- Perform proof :

............ ARl

SPARK

.. Fix fault
(CFG, ADS, ADB)
i Strengthen :

——]

\
Examlner I

Imtlal VCs
(FDL, RLS VCQG)

I Slmphfler I

Remaining VCs

C(FDL, RLS, SIV)

v
Proof commands
C (CMD))—»l Che;:ker I

Rules
(RUL, RLU)

()

Figure 5.2: Verifying exception freedom with SPADEase

Goal

Proof Plans Theorems
(FDL, VCG SIV) (MTD, CRI, STR) (RLS, RUL RLU)

Y VY

Proof

I Proof Planner

commands

A

(CMD)

Abstract

Predicates

y
CQuery) CAnswer)
A

Candidate

| Program Analyser

Invariants

{
.

SPADEase

SPARK
(CFG, ADS ADB)

Program Analy51s
Heuristics

Figure 5.3: Architecture of SPADEase

53

A further objective for SPADEase is to deliver targeted masat discovery through
effective proof failure analysis. Proof planning directly pogs proof failure analysis
through its critics mechanism. However, a proof planneoissuited to performing pro-
gram analysis. Thus, the critics mechanism is extendedrtoramicate with a program
analyser througlabstract predicates Similarly, the program analyser is not suited to
reasoning about program properties. Thus, the progranyseratommunicates with the
proof planner through gueryandanswerinterface.

5.3.2 SPADEase Enhanced Verification Process

The verification process begins in exactly the same mannireastandard SPARK Ap-
proach, as described in 85.1. The verificatiioe is both decompositional and iterative.
Each iteration begins with the Examiner generating inii@k for each subprogram. The
Simplifier attempts to prove the initial VCs, storing thoksattare not proved as remaining
VCs. At this stage, each subprogram with remaining VCs israatically investigated
by SPADEase.

To begin, SPADEase investigates each remaining VC for arsgbgm via the proof
planner. Four scenarios may occur as detailed below:

e Perform proof - The proof planner successfully discovers a proof plan. groef
plan is extracted as proof commands and verified by the Checke

e Suggest specification strengthening The proof planner fails to discover a proof
plan. However, failure analysis successfully identifieat tmissing information
caused the failure. Specification strengthening is sugdestommunicating the
form of the missing information to the program analyser aalastract predicate

e Suggest targeted interaction- The proof planner fails to discover a proof plan.
However, failure analysis successfully identifies the defsausing the failure.
SPADEase is unable to automatically resolve the class efctlelinstead, the exact
nature of the defect is communicated to an engineer, suggeatgeted interaction.

¢ Fail - Where none of the above scenarios occur, SPADEase is unadddeance the
proof of the VC. However, analysis of other remaining VCassted with the sub-
program may suggest specification strengthening or tatgeteraction. Resolving
these related defects may indirectly advance the proofieM@.

Once every remaining VC has been investigated, three dosrmaray occur as detailed
below:

e Success Every remaining VC has been proved. SPADEase terminateess-
fully.

54

e Strengthen specification If at least one abstract predicate was generated, the sub-
program is subjected to program analysis. The program seabttempts to dis-
cover invariants for the subprogram. During analysis, tle®fplanner is exploited
to solve general reasoning queries. The program analyssr miat verify the cor-
rectness of its discovered invariants. To reflect this, issalered invariants are
treated agandidate invariantsThose candidate invariants that satisfy the abstract
predicates, and are not already present as a subprogramaityare selected to au-
tomatically strengthen the program specification. Theaminess of every selected
candidate invariant will be demonstrated during progranfication.

e Terminate, suggesting targeted interaction- Where any targeted interaction is
suggested, the application of SPADEase will terminate. driggneer must manu-
ally intervene, guided by the suggested interaction.

e Terminate, in failure - There are unproven remaining VCs, yet neither speci-
fication strengthening nor targeted interaction was sugdesin this situation,
SPADEase terminates in failure. The engineer may choosestve the failure
directly through the SPARK Approach. Alternatively, thegereer may choose to
extend the heuristics of SPADEase such that the failure,atinelrs of a similar
pattern, will be automatically resolved in future.

Where the specification is modified, it is no longer synchsediwith the initial VCs.
Thus, a further iteration of the verification process is regpi This may, in turn, trigger
a subsequent application of SPADEase.

In general, the iterative process will terminate if SPAD&asly suggests changes that
advance the verificatiorfiert. Through a cooperative integration of the proof plararet
program analyser, SPADEase operates in a strongly goaitédenanner. Specification
strengthening only introduces new invariants that addidesstified weaknesses in the
VCs. Thus, SPADEase naturally makes genuine progressdqwaof, and the iterative
process is strongly expected to terminate.

5.4 Addressing Verification Challenges

The key challenges in verifying exception freedom in the BRAApproach are listed in
85.2. SPADEase provides affextive infrastructure for addressing these challenges, as
detailed below:

1. Many remaining VCs - SPADEase fiers an additional layer of proof automation,
potentially reducing the number of remaining VCs.

2. Complex remaining VCs - SPADEase performs automated proof discovery in a
proof planner. As described in §3.3.1 and 83.3.4 proof pfapdelivers both ex-

55

tensibility and flexibility. Thus, SPADEase may be extendéth sophisticated
heuristics to address complex remaining VCs.

. Weak default invariants - SPADEase performs automated invariant discovery in
a program analyser. Appropriate heuristics may be devdlapéiscover stronger
invariants. Further, as invariants are introduced in feadb proof failure, they are
only introduced where necessary.

. Lack of configuration - SPADEase makes a clear distinction between its infras-
tructure and its controlling heuristics. Further, by styi@automating the actions of
an engineer, the SPARK Approach remains solely responf@blensuring sound-
ness. Thus, SPADEase is readily configurable without intcody any soundness
concerns.

. Brittle proofs - Rather than develop a specific proof inside the Checkerngi e
neer may choose to extend SPADEase with an appropriatestieuiihe heuristic
should be expressed at a higher level of abstraction, argviould not be tightly
coupled to a particular VC. Further, the heuristic may beeeuor all proofs that
are susceptible to the same pattern. The development ofajdreuristics rather
than specific proofs may not always be feasible. Howeverchyedy adopting this
technique where possible, the number of specific proofsidped in the Checker
would be reduced.

56

Chapter 6

Proof Planner

6.1 Introduction

Following the proof planning paradigm, a proof planner isedeped. The proof planner
is tailored for an fective integration with the SPARK Approach. This chaptesalibes
the details of our proof planner.

6.2 Proof Planner Architecture

The architecture of our proof planner is shown in Figure e proof planner receives
three distinct categories of input. The form of theal, theoremsand proof plansare
discussed in 86.5, 86.6 and 86.7 respectively. These irgratprocessed by thgoof
planner, as discussed in 86.8. The planner generates eith@stantiated proof plaror

a failure critique Where an instantiated proof plan is generatedpmpound tactigs
extracted and checked within the Checker. Following tmxywerallresultis reported, as
described in 86.9.

The architecture of our proof planner closely correspoondsé original proof plan-
ning architecture, as introduced in 83.2.2. The softeknce is that our proof planner
may return a failure critique as the result. The mechanismtisduced to allow proof
plans to critique on the wider verificatiofffert.

6.3 Proof Planner Configuration

The proof planner is configured to support the verificatiorxteption freedom in the
SPARK Approach. A method-language is developed to supperekpression of proof
plans, as summarised in 86.10. The proof plans developesiliarmarised in 86.11.

57

Goal Proof plans Theorems
(FDL, VCG, SIV) (MTD, CRI, STR) (RLS, RUL, RLU)

Proof
Planner

Instantiated
proof plan

[Extract tactic |

Compound
tactic

Checker |

Failure
critique

Figure 6.1: Proof planner architecture

6.4 lllustrative Example

The details of the proof planner are illustrated throughrammn example. Consider the
SumOnAirTeletextPages subprogram shown in Figure 6.2.eflosing package intro-
duces data structures based on a Teletext syst€he subprogram totals the number of
Teletext pages that are currently being broadcast. To stiffpoverification of exception
freedom, the for-loop has an invariant, constraining thaltm be between zero and the
number of pages inspected so far.

6.5 Goal

The proof planner operates in the same logic as the SPARKd®gapr;, first order logic
with equality. Mirroring the SPARK Approach, the descrgtiof a goal is retrieved in
two distinct parts. Firstly, the entities and types relévamgoal are retrieved, as described
in 86.5.1 and 86.5.2. Secondly, the structure of the goalfiis retrieved as described in
86.5.3.

1A ‘Teletext’ enabled television contains a decoder thawveois data embedded into a television signal
into pages of text and graphics. The Teletext system dexttitere relates to the “Broadcast Teletext
Specification, September 1976”, which later formed thedaighe World System Teletext (WST) standard.

58

package SumOnAirTeletextPages_Package is

--A teletext page is indexed: [MagazineDigit][PageDigitOne][PageDigitTwo]

--For example: 888 (typically a subtitles page)

subtype MagazineDigit is Integer range 1..8;

subtype PageDigitOne is Integer range 0..9;

subtype PageDigitTwo is Integer range 0..9;

FirstPage: constant Integer:=
((MagazineDigit’First*100)+(PageDigitOne’First*10))+PageDigitTwo ’First;

LastPage: constant Integer:=
((MagazineDigit’Last*100)+(PageDigitOne’Last*10))+PageDigitTwo’Last;

subtype PagesIndex is Integer range FirstPage..LastPage;

--Performance diminishes as more pages are broadcast.
--Thus, typically, only a subset of the indexable pages are on-air.
type PageStatus is (OnAir, OffAir);

--A teletext page is made up from 24x40 blocks.
subtype Rows is Integer range 0..23;
subtype Columns is Integer range 0..39;
type OneColumn is array (Columns) of Short_Short_Integer;
type OneScreen is array (Rows) of OneColumn;
type TeletextPage is record
Status : PageStatus;
Content : OneScreen;
end record;
type TeletextPages is array (PagesIndex) of TeletextPage;

subtype Total is Integer range 0..((PagesIndex’Last-PagesIndex’First)+1);

procedure SumOnAirTeletextPages(TP: in TeletextPages;
R: out Total);
--# derives R from TP;
end SumOnAirTeletextPages_Package;

1 package body SumOnAirTeletextPages_Package is

2 procedure SumOnAirTeletextPages(TP: in TeletextPages;
3 R: out Total)

4 is

5 begin

6 R:=0;

7 for I in PagesIndex loop

8 --# assert R>=0 and R<=(I-PagesIndex’First);
9 if (TP(I).Status=0nAir) then

10 R:=R+1;

1 end if;

12 end loop;

[N
w

end SumOnAirTeletextPages;
end SumOnAirTeletextPages_Package;

[N
o

Figure 6.2: SumOnAirTeletextPages subprogram

59

6.5.1 Declarations

All of the entities and types relevant to a goal are retriexed stored for access during
proof planning. Most of these entities and types are explideclared in the FDL file.
However, some entities and types relevant to a goal are ¢gitipldeclared. For clarity,
the proof planner does not have any implicit declaratioreNhat, while the definitions
described below are fiicient to express every VC considered in the thesis, they ¢o no
cover every VC of the SPARK Approach.

Scalar Types

A scalar type is not expressed in terms of any other type. Bealar type describes an
ordered set of values. The structure for holding scalargypshown in Figure 6.3, and
the types it holds are described below. For illustratioe, ¢brresponding structures for
the SumOnAirTeletextPages subprogram are shown in Figdre 6

o Real Numbers- Mathematical real numbers of the &et
¢ Integer Numbers - Mathematical integer numbers of the et
e Boolean Values Either the truth valu¢rue or false

e Enumerated Values- Each enumerated type has a declared neEmenRetnd a
corresponding ordered list of identifiec&EnumldList.

Note that the SPARK Approach approximates fixed and floatmigtparithmetic using
mathematical real numbers. The approximation ignoresdbading errors that occur
for these machine types. Correctly and accurately reagabout the impact of cumula-
tive rounding errors is a challenging task, and an activa afgesearch [Bar89, BF0O7].
Consequently, when reasoning about these types, partcara needs to be taken in in-
terpreting verification results. To avoid such complexaty; techniques focus on discrete
types.

<Declaration> := scalarTypé<Type>) |

scalarEnumerated TypenumRef<EnumldList)
<Type> == real | integer| boolean
<EnumldList == [] | [EnumId| <EnumlIdList]

Figure 6.3: Scalar types

60

Declarations from FDL
type pagestatus = (onair, offair);

Proof planner structures

scalarTypéreal)

scalarTypéintege)

scalarTypéboolean
scalarEnumeratedTyfgagestatug onair, offair])

Figure 6.4: SumOnAirTeletextPages scalar types

Composite Types

A composite type is expressed in terms of other types. A caitgptype may be com-

posed from scalar types or other composite types. The ateuédr holding composite

types is shown in Figure 6.5, and the types it holds are de=ttielow. For illustration,

the corresponding structures for the SumOnAirTeletex¢Bayibprogram are shown in
Figure 6.6.

e Arrays - Each array type has a declared nafiypeRef An array contains a list
of values, called elements, all of the same typeEbmmentTypeRefThese ele-
ments are indexed by a non-empty list of values, describexligiin the type list
<IndexTypeRefList Each index type must have the same scalar type. Typically,
the index list will contain one value, describing a singlménsional array. How-
ever, index lists witm values, describing-dimensional arrays, may also occur.

e Records- Each record type has a declared nafgpeRef A record groups to-
gether a fixed collection of fields. Each field holds a singleeaeferenced through
FieldRefof some typd-ieldTypeRef

<Declaration- ::= composite Tyg@ypeRef<Composite)

<Composite := array(<IndexTypeRefList ElementTypeREgf
record <FieldList>)

<IndexTypeRefList:=[] | [IndexTypeRdf<IndexTypeRefLis{

<FieldList> == [] | [field(FieldRef FieldTypeR#&f| <FieldList>]

Figure 6.5: Composite types

61

Declarations from FDL

type onecolumn = array [integer] of integer;

type onescreen = array [integer] of onecolumn;

type teletextpage = record

status : pagestatus;

content : onescreen

end;

type teletextpages = array [integer] of teletextpage;

Proof planner structures
compositeTygenecolumnarray([integeti, intege)
compositeTygenescreeyarray([integeil, onecolumj)
composite Tydéeletextpaggecord([field(status pagestatuks field(contentonescree)i))
composite Tyféeletextpagearray([integel, teletextpagp

Figure 6.6: SumOnAirTeletextPages composite types

Constants

A constant is an identifier with a static value. Constantslmacreated for all types. In
particular, the end points of numeric type ranges are espteas constants. The struc-
ture for storing constants is shown in Figure 6.7. Each eomdtas a declared name
ConstantRefind is of typeTypeRef For illustration, the corresponding structures for
the SumOnAirTeletextPages subprogram are shown in Fig8reNbte that the constant
value itself is not recorded. This echos the SPARK Approadiere constant values are
provided indirectly through a subprogram rules (RLS) filaisIstyle is advantageous, as
it separates the declaration of entities from the declamadf expressions.

<Declaration> := constantConstantRefTypeRef

Figure 6.7: Constants

Variables

A variable is an identifier that can takel@irent values during the execution of a program.
Variables can be created for all types. The structure fodihglvariables is shown in
Figure 6.9. Each variable has a declared nafmableRefand is of typelypeRef Each
variable is associated with a categeryariableCategory as described below:

e Subprogram variables- Subprogram variables have categenpprogram These
correspond to the program variables that are visible wigrsnbprogram.

e Auxiliary variables - Auxiliary variables may be introduced, alongside any+ele
vant contextual information, through the categaukiliary(<ContextList). Aux-
iliary variables are introduced to support program analysi

62

Declarations from FDL

const total__last :
const total__first :
const columns__last :
const columns__first :
const rows__last :
const rows__first :
const pagestatus__last :
const pagestatus__first :
const pagesindex__last :
const pagesindex__first :
const short_short_integer__last :
const short_short_integer__first :
const integer__last :
const integer__first :

integer = pending;

integer = pending;
integer = pending;
integer = pending;
integer = pending;

integer = pending;
pagestatus = pending;
pagestatus = pending;
integer =
integer = pending;
integer = pending;
integer = pending;
integer = pending;

integer = pending;

pending;

Proof planner structures

constanffirstpageintegel)
constanftotal__last, integel)
constanftotal_first, integel)
constanfcolumns_last, intege)
constanfcolumns_first, integei)
constanfrows _last, intege)
constanfrows first, intege)
constanfpagestatuslast, pagestatus
constanfpagestatusfirst, pagestatus
constanfpagesindexlast, integei
constanfpagesindexfirst, intege
constanfshortshortinteger _last integei)
constanfshortshortinteger first, intege)
constanfinteger _last, integei)
constanfinteger first, integel)

constanftotal__base _last, integel)
constanftotal__base first, integel)
constanfcolumns_base_last, intege)
constanfcolumns_base first, intege)
constanfrows _base_last, intege)
constanfrows _base first, intege)
constanfpagestatusbase last, pagestatus
constanfpagestatusbase first, pagestatus
constanfpagesindexbase_last, intege)
constanfpagesindexbase_first, integel)
constanfshortshortinteger_base_last intege)
constan{shortshortinteger _base_first, integei)
constanfinteger _base _last, integel)
constanfinteger _base first, integel)

Figure 6.8: SumOnAirTeletextPages constants

63

For illustration, the corresponding structiider the SumOnNAirTeletextPages subpro-
gram are shown in Figure 6.10.

<Declaration> ::= variable(<VariableCategory, VariableRefTypeRef
<VariableCategory ::= subprogram auxiliary(<ContextList)
<ContextList == [] | [Context] <ContextList]

Figure 6.9: Variables

Declarations from FDL

var loop__1__i : integer;

var r : integer;
var tp : teletextpages;

Proof planner structures

variablg(subprogrami, intege)
variablg(subprogramr, integes
variablg(subprogramtp, teletextpagés

Figure 6.10: SumOnAirTeletextPages variables

Functions

Various mathematical functions may be introduced. Thecsire for holding functions
Is shown in Figure 6.11, and the functions it holds are dbsdrbelow.

e Functions - Each function has a declared nafenctionRef The function may
have zero or more arguments, described through the typeAgjTypeRefList,
and returns a value of tygeeturnTypeReEach function is associated with a cate-
gory <FunctionCategory as described below:

— Built-in functions - Functions with categoripuiltin are implicitly declared.
These functions correspond to standard functions, wittgdneed definitions
and properties. All of the built-in functions required topegss the VCs con-
sidered in the thesis are shown in §6.5.2.

— Subprogram functions - As observed in 84.3.1, SPARK function subpro-
grams are pure mathematical functions. Functions withgoayesubprogram
are explicitly declared to support reasoning about thesetions. The func-
tions may be defined through a user rule (RLU) file.

2In the SPARK Approach, the for-loop iteratoiis referenced akop__<counter_i. This name is
guaranteed to be unique within its enclosing subprogrambfevity, in the examples shown in this thesis,
every for-loop iterator is uniquely referenced via its piag variable name.

64

— Auxiliary functions - Auxiliary functions may be introduced through the cat-
egoryauxiliary. Auxiliary functions are introduced to support programlana
ysis, as described in 87.6.4 and 8G.8.

<Declaration> ::= function<FunctionCategory,
FunctionRef<ArgTypeRefList, ReturnTypeR&f

<FunctionCategory := builtin | subprogranj auxiliary

<ArgTypeRefList =[] | [ArgTypeRef <ArgTypeRefList]

Figure 6.11: Functions

6.5.2 Built-in Functions

The built-in functions introduce standard operations #ratrequired in reasoning about
subprograms. All of the built-in functions relevant to tthiesis are described below. Note
that each function is associated with its actual syntaxsasl by the SPARK Approach,
and an alternative syntax for presentation purposes.

Arithmetic Functions

The arithmetic functions support numeric operations, asrsarised in Figure 6.12. Ad-
dition, subtraction, multiplication, exponentiation amgary minus are available for inte-
ger and real types with the usual meanings. Real division omdy be evaluated where
the result is an exact value. Integer division truncatesatdwero. Modulus is available
for integer types, and is defined entirely in terms of intedjeision, as show below:

(Y mod Z = (Y - ((Y div 2 = 2)) (6.1)
Operation Actual Syntax | Alternative Syntax
addition Y + Z Y+Z
subtraction Y -Z Y-Z
multiplication Y * Z YxZ
exponentiation Y ** Z Y #x Z
minus -Z -Z
integer division Y div Z Y divZ
integer modulus Y mod Z Y mod Z
real division Y/ Z Y/Z

Figure 6.12: Arithmetic functions

65

Boolean Functions

The Boolean functions support logical operations, as sunsetin Figure 6.13. Con-
junction, disjunction, implication, equivalence and négaare available for Boolean
types with the usual meanings.

Operation | Actual Syntax | Alternative Syntax
conjunction Y and Z YANZ
disjunction Y or Z YVZ
implication Y > 2Z Y- Z
equivalencg Y <-> Z Yo Z
negation not Z -Z

Figure 6.13: Boolean functions

Relational Functions

The relational functions support comparison operatioassuanmarised in Figure 6.14.
Equality and its negation are available for all types, idatg Boolean. The inequality
operations less-than, less-than-or-equal, greaterghdrmgreater-than-or-equal, are avail-
able for all scalar types, except Boolean, with the usualnimeg.

Operation Actual Syntax | Alternative Syntax
equality Y=12 Y=Z
not equal Y < Z Y+Z
less-than Y<Z Y<Z
less-than-or-equal-to Y <=2 Y<Z
greater-than Y>Z Y>Z
greater-than-or-equal-tp Y >= Z Y>Z

Figure 6.14: Relational Functions

Array Manipulation Functions

The array manipulation functions support the access andtunqdof array variables, as
summarised in Figure 6.15. Array access returns the eleaiemtay ArrayRefat index
IndexList Array update returns arrafrrayRefwith the value of the element at index
IndexListreplaced withElement

66

Operation Actual Syntax Alternative Syntax

array access element (ArrayRef, elemenfArrayRef
IndexList) IndexLis)

array update update(ArrayRef, updatéArrayRef
IndexList, IndexList
Element) Elemen}

Figure 6.15: Array Manipulation Functions

Record Manipulation Functions

The record manipulation functions support the access addtunqy of record variables,

as summarised in Figure 6.16. Record field access returnathe of fieldFieldReffor
recordRecordRef Record field update returns recdRécordRefvith the value of field
FieldRefreplaced withValue Note that these functions are named after the fields they
access, rather than accepting fields as parameters.

Operation Actual Syntax Alternative Syntax
record field access £f1d__FieldRef(RecordRef) | fld_FieldRe{RecordRef
record field update upf__FieldRef(RecordRef, | upfFieldRe{RecordRef
Value) Valug

Figure 6.16: Relational Functions

Quantification Functions

The quantification functions support the description of kection of properties, as sum-
marised in Figure 6.17. Universal quantification descriéesopertyProp that holds for
all values of the quantified variab@Var of type TypeRef Existential quantification de-
scribes a properti?rop that holds for at least one value of a quantified varigp\é@r of
type TypeRef Note that, in the SPARK Approach, it is very common for thepgarty
to take the form of an implicatio®uard — GuardedProp whereGuard constrains the
values of the quantified variab@Var.

Operation Actual Syntax Alternative Syntax
universal quantification| for_all(QVar:TypeRef, | VY(QVar: TypeRefProp)
Prop)
existential quantification for_some (QVar:TypeRef, | I(QVar: TypeRefProp)
Prop)

Figure 6.17: Quantification Functions

67

6.5.3 Goal Structure

The structure for holding goals is shown in Figure 6.18. Egadl has a unique identifier
Goalld. In the SPARK Approach the conclusions of a VC are groupedttaay because
they occur at the same point in a program. Typically, the kmions of a VC relate to
different proof obligations that are susceptible tfiestent reasoning strategies. For this
reason, it is more appropriate to plan each conclusion of a¥@ separate goal. Thus,
each proof planning goal contains a single conclusiamc and its corresponding hy-
pothesescHypList>-. Meta-logical facts are associated with each goal throbglgtobal
contextual informatiorcGlobalContextList. The provenance of each goal is recorded to
facilitate integration with the SPARK Approach:

e sourceSubprogra(BubprogramName SubprogramName the name of subpro-
gram being verified.

e sourceFil€FileNamg - FileNameis the name of the file that contains the VC asso-
ciated with this goal.

e sourceSystefrFileKind>) - <FileKind> describes whether the VC occurs before
simplification, as/cg, or after simplification asiv.

e sourceVQEVCId) - VCldis the identifier of the VC associated with this goal.

e sourceConfConcld Concldis the identifier of the conclusion associated with this
goal.

In selecting a strategy to prove a goal it is beneficial to kinow the goal relates to the
source code. For this reason, each goal is associated sttiadgeability information:

e tracelnfd<Trace>) - The traceability information associated with the VC earr
sponding to the goal is described througfrace-. The attributes of this structure
are shown in Figure 6.18.

Our techniques target those goals that are not already gtowehe SPARK Approach.
For this reason, each goal is associated with its curremif gtatus:

o provedAtSimplifigBoolear) - Describes whether or not the goal was proved fol-
lowing an application of the Simplifier.

During the planning of a goal, information may be acquireat th applicable to the entire
plan. Such information is also attached to the global caoshnformation:

e underConstrainedVa(¥arList) - During proof planning, it is possible to identify
the variables that contribute to a branch of reasoning. dftifanch of reasoning
ends in failure, its contributing variables may be underst@ned. Such poten-
tially under constrained variables are recorded, supmppricher failure analysis.

68

For illustration, consider the SumOnAirTeletextPagespsoggram. Eight VCs must be
proved to verify that this subprogram is free from exce@io®ne VC corresponds to
proving that, at line 9i is a legal index of arragyp. This VC, and the goal corresponding
to its first conclusion, is shown in Figure 6.19. Note thatftilngal goal is recorded as

having been proved by the Simplifier.

<Goab> := goalGoalld, <GlobalContextList, <HypList>, Cong
<HypList> == [] | [Hyp| <HypList>]
<GlobalContextList :=[] | [GlobalContext <GlobalContextList]
<GlobalContext := sourceSubprogra(BubprogramNamn)e
sourceFilg¢FileNama |
sourceSyste(FileKind>) |
sourceVQVCId) |
sourceCon(Concld |
tracelnfd<Trace>) |
provedAtSimplifi§Boolear) |
underConstrainedVa(¥arList)
<FileKind> := vcg| siv
<Trace> := betweenPatfxFromCut-, <ToCut>) | refinementintegrity
<FromCut- := start| assertiofj<CutKind>, Linelnf)
<ToCut> := finish| assertiotf<CutKind>, Linelnt) | check<CheckKind-, Linelnt)
<CutKind> := userdefined sparkdefined
<CheckKind- := userdefined runtime| precondition

Figure 6.18: Goals

69

VC from VCG file (relating to line 9 of Figure 6.2)

For path(s) from assertion of line 8 to run-time check associated with
statement of line 9:

procedure_sumonairteletextpages_5.

H1: r>=0.
H2: r <= loop__1__i - pagesindex__first .
H3: for_all(i___3: integer, ((i___3 >= columns__first) and (

i___3 <= columns__last)) -> (for_all(i___2:
integer, ((i___2 >= rows__first) and (i___2 <=
rows__last)) -> (for_all(i___1: integer, ((
i___1 >= pagesindex__first) and (i___1 <=
pagesindex__last)) -> ((element(element(fld_content(element
tp, [i___11)), [i___2]), [i___3]) >=
short_short_integer__first) and
(element (element (f1d_content (element (
tp, [i___11)), [i___21), [i__3]) <=
short_short_integer__last))))))) .

H4: for_all(i___1: integer, ((i___1 >= pagesindex__first) and (
i___1 <= pagesindex__last)) -> ((fld_status(element(
tp, [i___1])) >= pagestatus__first) and (fld_status(element(
tp, [i___1])) <= pagestatus__last))) .

H5: loop__1__i >= pagesindex__first

H6: loop__1__i <= pagesindex__last .

H7: loop__1__i <= pagesindex__last .
->

Cl: loop__1__i >= pagesindex__first

C2: loop__1__i <= pagesindex__last .

Proof planner structures (corresponding to first conclusicabove VC)

goalgoal24),
[sourceSubprografaumonairteletextpaggsourceFilésumonairteletextpages.vycg
sourceSystefucg), sourceV@s),
tracelnfdbetweenPatfassertiorfuserdefined), checkruntime 9))),
sourceCongl), provedAtSimplifigtrue)],
[r>=0,r < (i —firstpags,
¥(i-3: integer i_3 > columnsfirst A i_3 < columnslast —
¥(i-2 : integer i_2 > rowsfirst A i_2 < rows last —»
¥(i_1: integer i_1 > pagesindexirst A
i_1 < pagesindexast —
elementelemen(fld_contenfelementtp, [i_1])), [i_2]),[i_3]) > shortshortintegerfirst A
elementelemen(fld_contenfelementtp, [i_1])), [i_2]),[i_3]) < shortshortintegerlast))),
V(i-1: integer i_1 > pagesindeXirst A i_1 < pagesindedast —
fld_statugelemen(tp, [i_1])) > pagestatudirst A
fld_statugelemenftp, [i-1])) < pagestatudast),
i > pagesindexirst,
i < pagesindexast,
i < pagesindexdast],
i > pagesindexirst)

Figure 6.19: SumOnAirTeletextPages selected VC and goal

70

6.6 Theorems

Properties and definitions are held in external rule fileseserfiles are retrieved as the-
orems, as described in 86.6.1. Subsequently, these the@menprocessed to generate a
collection of rewrite rules for use during proof planning,described in 86.6.2.

6.6.1 Retrieving Theorems

Three diferent categories of rules may be available for each subgmogas considered
below:

e Subprogram rules (RLS) - The subprogram rules are specific to the entities and
types in the subprogram. Every subprogram rule is transgdrimto a theorem.

e Standard rules (RUL) - The standard rules are available to all subprograms. Some
standard rules cannot be expressed as strictly logicateheoas they contain com-
putational guards. Further, some standard rules are oflyiowt relevant where
verifying exception freedom. Thus, the strictly logicalesifrom a core subset of
standard rule files are transformed into theorems. Theteelesubset comprises
the rule filesarith, fdlfuncs geninegsintinegs logic, modular and numinegsas
detailed in [Praa].

e User rules (RLU) - The user rules are available to all subprograms. Thess anée
created by an engineer to provide additional definitions@ogrieties. Every user
rule is transformed into a theorem. Some user rules aredated to support the
verification of exception freedom, as discussed in 8B.4.

The structure for holding theorems is shown in Figure 6.28chB&heorem has a unique
identifier Theoremldand is presented as the expressidreoremExp The theorems are
extracted from rule files in accordance with [Praa], as suns®d in Figure 6.21. The
provenance of each theorem is recorded to facilitate iategr with the SPARK Ap-
proach. Each theorem is held alongside its sourcé-ficdName its file kind <FileKind>
and its rule identifieRuleld

<Theoren» := theorenfTheoremidTheoremExp
FileName <FileKind>, Ruleld
<FileKind> == |rul | rlu | rls

Figure 6.20: Proof planner theorems

Note that rule files may be preceded by a type header. Theselseare diicult to
work with and, in general, are notféigiently strong to convey the type of all rules. Thus,
the type headers are completely ignored. Instead, a fewlsingoiristics are used to infer
the type of rules. In principle, this weakness might alloe gnoof planner to discover a

71

proof plan which is ultimately rejected by the Checker. lagtice, this situation has not
occurred as the type inference heuristics are generéifigteve.

Rule Theorem expression
Xmay_be_replaced_byY V(vyitr...v it (true —» (x=y)))
Xmay_be_replaced_by Y if [CLisf] Yiviiti...vi:ti. (c—> (xX=V)))
X&Yare_interchangeable Y(vyitr...v it (true —» (x=Y)))

X &Y are_interchangeable if [CLisf] Y(viity...viiti. (C—> (X=Y)))
Xmay_be_deduced Y(vy:ity...v . (true — (true — X))
Xmay_be_deduced if [CLisf] Y(vi:ity...Vvi . (c — (true — X))
Xmay_be_deduced_from[YLisf Y(vi:ity...v :t. (true — (y — X))
Xmay_be_deduced_from[YLis{ if [CLisf] | V(vy:t1...Vv; : ti. (C — (Y — X))

Lists of conjunctsrListandCListare conjoined to form the expressionand

C respectively. Every implicitly quantified variable ¥y Y andC is replaced
with explicitly quantified variables; . .. v; of appropriate typé; ...t to give

X, y andc. Note thattrueis inserted such that every theorem takes either the
form U - (V=W))or (U — (V- W)).

Figure 6.21: Converting from rules to theorems

6.6.2 Converting Theorems to Rewrite Rules

Each theorem is transformed into a pair of rewrite rules. Sthecture for holding rewrite
rules is shown in Figure 6.22. Each rewrite rule has a unidertifierRewriteRuleldand
is associated with its corresponding theor@aurceTheoremlKey details of the rewrite
rule are provided through its direction and polarity as dbsd below:

e <Direction> - Records how the theorem was oriented in generating theteswr
rule. Where the rewrite rule is oriented in the same directis the theorem, the
direction isnormalandreversedotherwise. Note that this information is required
in extracting a compound tactic from an instantiated pradaihp

e <Polarity> - Describes the logical contexts in which the rewrite ruleyrba ap-
plied. A conclusion is considered to be pdsitive polarity and a hypothesis of
negativepolarity. A rule marked agero polarity may be applied to any subex-
pression, a rule marked gmsitive must be applied to @ositive subexpression
and a rule marked asegativemust be applied to aegativesubexpression. Note
that, in our proof plans, all polarity concerns are cengralindled by the predicate
sub_exp_polarity as described in §C.9.17.

The rewrite rule itself is presented with a conditional guasConditionand rewriting
from expressiol HSExpto expressiofRHSEXxp Each theorem takes a standard form, as
noted in Figure 6.21, thus the transformation from theortan®write rules is straight
forward, as described in Figure 6.23. For illustration,Ufeg6.24 shows a subset of the

72

rules generated for the SumOnAirTeletextPages subproglamngside their correspond-
ing theorem and rewrite rule structures.

<RewriteRule := rewriteRuléRewriteRuleldSourceTheorem|d
<Direction>, <Polarity>,
Condition: LHSExp= RHSEXp

<Direction> ::= normal| reversed

<Polarity> = zero| positive| negative

Figure 6.22: Proof planner rewrite rules

The universally quantified variables in each theorem arerapped and re-
placed with meta-variables. The resulting expressions thk form of an
equality or implication between a left hand side expressiBiSExpand a
right hand side expressid®HSExmuarded by a conditioBondition as fol-

lows:

Condition— (LHSExp= RHSExp (6.2)
Condition— (LHSExp— RHSEXxp (6.3)

The mapping from these expressions to their correspondairgop rewrite
rules and associated direction and polarity is shown indgbies below:

Unwrapped theorem expression
Condition— (LHSExp= RHSEXx}
U
Rewrite rule Direction | Polarity
Condition: LHSExp= RHSExp| normal zero
Condition: RHSExp= LHSExp| reversed| zero

Unwrapped theorem expression
Condition— (LHSExp— RHSEXxp
U
Rewrite rule Direction | Polarity
Condition: LHSExp= RHSExp| normal | negative
Condition: RHSExp= LHSExp| reversed| positive

Figure 6.23: Converting from theorems to rewrite rules

73

Subset of RLS file

sumonairtele_rules(3): integer__first may_be_replaced_by -2147483648.

sumonairtele_rules(4): integer__last may_be_replaced_by 2147483647.

sumonairtele_rules(16): pagestatus__last may_be_replaced_by offair.

sumonairtele_rules(26): pagestatus__pos(pred(X)) may_be_replaced_by pagestatus__pos(X) - 1 if
[X >=onair, X <> onair].

Corresponding subset of theorem structures

theorenftheoreng3), firstpage= 100,
sumonairteletextpages.stts, sumonairteleruleq3))
theorenftheoreng4), integerfirst = —2147483648
sumonairteletextpages.rtés, sumonairteleruleg4))
theorenftheorenf16), pagestatudirst = onair,
sumonairteletextpages.sits, sumonairteleruleq16))
theorenftheorenf26), V(X : pagestatusx < offair A X # offair —
pagestatupogsucdx)) = pagestatupogx) + 1),
sumonairteletextpages.riks, sumonairteleruleg26))

Corresponding subset of rewrite rule structures

rewriteRulérr (5), theoren{3), normal zera true : firstpage= 100)
rewriteRulérr (6), theoren(3), reversedzera true : 100= firstpage
rewriteRulérr (7), theoren{4), normal zera true : integecfirst = —2147483648)
rewriteRulérr (8), theorenfd), reversedzerq true : —2147483648= integerfirst)
rewriteRulrr (31), theoren(16), normal zerq true : pagestatudirst = onair)
rewriteRulérr (32), theoren{16), reversedzerq true : onair => pagestatusirst)
rewriteRulérr (51), theoren(26), normal zeraX < offair A X # offair :

pagestatupogsucdX)) = pagestatupogX) + 1)
rewriteRuldrr (52), theoren(26), reversedzergX < offair A X # offair :

pagestatupogX) + 1 = pagestatupoqsucgX)))

Figure 6.24: Subset of SumOnNAirTeletextPages rules

74

6.7 Proof Plans

A proof plan is expressed throughethodsndcritics, as described in 86.7.1. In our proof
planner, method applications are controlled throstyategiesas described in §6.7.2.

6.7.1 Methods and Critics

Each method is stored inaethod(MTD) file. The general form of a method is show in
Figure 6.25. The purpose of each method slot is describeavbel

e Method - The name of the method.

e Tactic - Describes how to perform the actions of the method at theovthgvel.
The tactic typically contains meta-variables which wilcbene instantiated during
a successful method invocation.

e Goal - The goal inputted to the method. The slot may act as an additmethod
precondition by only accepting goals that match a specifiepa

e Preconditions- Preconditions constrain the application of the method eW&tihe
preconditions are successful the method is expected todoessful. The precon-
ditions are expressed in the meta-level theory through &adetanguage.

e Effects- Effects perform the actions of the method. Tlteets are only performed
if the method preconditions hold. Thé&ects are expressed in the meta-level theory
through a method-language.

e Subgoals- The potentially multiple subgoals outputted by the methdterminat-
ing method will generate an empty list of subgoals.

Method:

Method

Tactic:

Tactic

Goal:

LocalContextList HypList+ Conc
Preconditions:

[Precondition, . .., Precondition]
Effects:

[Effect, ..., Effect]

Subgoals:

[Subgoa), ..., Subgoa]|

Figure 6.25: Method template

75

Each method may have a number of corresponding critics. Etohis stored in a
critic (CRI) file. The general form of a critic is show in Figure 6.J&e purpose of each
critic slot is described below:

e Critic - The name of the critic.
o Parent method- The name of the method that the critic is associated with.

e Goal - The goal inputted to the critic. The slot may act as an aololi critic
precondition by only accepting goals that match a specifiepa

e Successful method preconditions The method preconditions that must have been
successful for the critic to be triggered.

¢ Failed method precondition- The method precondition that must have failed, or
not been explored, for the critic to be triggered.

e Preconditions - Preconditions constrain the application of the critic. &hthe
preconditions are successful the critic is expected to beessful. The precondi-
tions are expressed in the meta-level theory through a rdddrguage.

o Effects- Effects perform the actions of the critic. Thexts are only performed
if the critic preconditions hold. Theflects are expressed in the meta-level theory
through a method-language.

Critic:

Critic

Parent Method:

ParentMethod

Goal:

LocalContextList HypListr Conc
Successful method preconditions:
[SuccessfulPreconditign . ., SuccessfulPreconditigh
Failed method precondition:
FailedPrecondition

Preconditions:

[Precondition, ..., Preconditio)]
Effects:

[Effect, ..., Effect]
Figure 6.26: Critic template

6.7.2 Strategies

A proof plan is constructed from a number of methods. Thiesgtis a need for a mecha-
nism to control method applications. Varioustdrent mechanisms have been considered

76

[DJP06]. Modern proof planners, such as IsaPlanner [Dix@¢ powerfumethodicals
extending the method-language to include method-leveladipes. For simplicity, our
proof planner controls method applications through a weakechanism calledtrate-
gies These strategies are held istaategy(STR) file.

The general form of a strategy is show in Figure 6.27. Eacliegiy contains a set of
waterfalls A waterfall is a named ordered listattions Each action references a method
to try, and, where that method is successful, the watedalioke on its subgoals. For
generality, the actions associated with a waterfall mayarametrised|

Waterfall:

WaterfallRef(Parametery

Actions:

MethodRef— SelWaterfallRéSelParametes

MethodRef— SelWaterfallR¢EelParameteds

Waterfall:

WaterfallRef(Parametery

Actions:

MethodRef— SelWaterfallRéSelParameteis

MethodRef— SelWaterfallRg¢SelParameteps

Figure 6.27: Strategy template

6.8 Proof Planner

The proof planner begins by retrieving the goal, theorents@nof plans. The planner
operates ormplans as described in 86.8.1. The planner conducts an iteradepehing
search, as described in §6.8.2.

6.8.1 Plans

The structure for holding plans is shown in 86.28. A numbeplahs may be present,
each having a unique identifi€lanld. Each closed plan is associated with its result
PlanResult Each open plan has a proof tree and a search control sieuctine proof
tree contains the global context informatiGfobalContextLisand a collection of nodes
of the forms described below:

3The parametrisation of waterfalls supports the presemtaif common strategies. In practice, our
proof planner does not support this parametrisation. Theesaeaning is achieved by creating specific
instantiations of each strategy.

77

¢ goalNod€GoalNodeldLocalContextListHypList Cong -
Describes a goal. Each goal node has a unique ider@batNodeld The goal is
described through its local context informatioocalContextLisand its hypotheses
and conclusion aslypListandConcrespectively.

¢ methodNod@ethodNodelgMethodNamegTactic

ParentGoalNodeldChildrenGoalNodeldLigt-
Describes the successful application of a method on a golaé riethod nodes

join together goal nodes to form the proof tree structurechBaethod node has

a unique identifieMethodNodeld The corresponding method name and tactic
application are recorded adethodNameand Tactic respectively. The method
node connects goal nodes by recording the parent goal than#dthod was ap-
plied to asParentGoalldand any children subgoals that the method generated as
ChildrenGoalldList

Each plan has its own search control, describing every opahand the current search
band as described below:

e openGoalGoalNodeldDepthint WaterfallActionLisy -
Indicates that the goal with identifi&@oalNodeld known to be at deptBepthint
has pending method invocations as describeiterfallActionList

e searchBan¢Fromint, Tolnt) -
Indicates that iterative deepening is currently explotimgse nodes between depth
FromiIntand depthloint

<Plans> := <PlanList>
<PlanList> :=[] | [<Plan> | <PlanList>]
<Plan> := plan(Planld, <PlanStatus)
<PlanStatus := openPlaii<ProofTree-, <SearchControt) |
closedPlafPlanResulk
<ProofTree- := proofTre¢GlobalContextList<NodeList)
<NodeList :=[] | [Node| <NodeList]
<Node> := goalNodéGoalNodeldLocalContextListHypList Cong |
methodNod@ethodNodeldMethodNamgTactic
ParentGoalNodeldChildrenGoalNodeldLigt
<SearchContrat ::= searchContrdlOpenGoallList, <SearchBansd)
<OpenGoallList == [] | [OpenGoal <OpenGoalList]
<OpenGoat = openGoalGoalNodeldDepthint WaterfallActionLisy
<SearchBand ::= searchBan(Fromint, Tolnf)

Figure 6.28: Plans

78

6.8.2 Planner Algorithm

The planner algorithm explores method applications thinaugiterative deepening search
[Kor85], as described below. Note that this algorithm isiknto the iterative deepening
search available in Clam [DRe06].

¢ Initialisation - At initialisation, amainplan is created for the input goal. The goal
is added as theoot goal node in the proof tree. Any global context information
associated with the goal is added to the proof tree. Thelseartrol is initialised,
indicating that the root goal is open. Unless stated othemyihe initial strategy is
exception_freedom, as described in S8E.3.

¢ Planning - While open plans remain, the selection and applicatiosghdescribed
below are repeatedly performed.

— Selection- A plan, goal and method is selected.

» Select Plan- The first open plan is selected.

*» Select Goal- The deepest open goal within the current band of the it-
erative deepening search is selected. Where there areptalgbals at
this depth, the goal that has been unexplored for longestested next.
If there are no open goals in the current band then the bamtisased
to explore the next 3 depths. If the search band exceeds @pthen
the plan is closed with the failure critiqueaximumDepthReachedhe
search band was kept small, as successful plans often davelatively
shallow depth. The depth limit was established empiricaliynfortably
holding all of the plans we have encountered. If no open gcasbe
found then the plan is closed with a suitable failure criéigli under con-
strained variables are associated with the plan then thedairitique will
report these via ambstractPredicatesuggestingtightlyConstrainVars
Otherwise, the failure critique will repontoMoreOpenGoals

» Select Method - The waterfall list associated with the open goal is
gueried. The next action is selected and removed from the Ifighis
is the last action in the list, then the goal is removed fromligt of open
goals.

— Application - The selected method is applied to the selected goal of the se
lected plan.

» Method Successful- The proof tree is extended to record the method
application and any subgoals that were generated. Wherenétleod
generates no subgoals it is checked to see if a proof for thteyaal has
been found. If this is the case then the plan is closed, wéhldbult as the
discovered instantiated proof plan. Regardless of anyipgnaaterfall
actions, the selected goal is always removed from the lispeh goals.

79

Typically, our methods generate subgoals which are clesesmpleting
a proof. Thus, once a method has been successfully appléegidal there
is generally little merit in exploring alternative methaatshe same goal.
If our proof planner supported methodicals, rather tharpiratrategies,
this eficiency measure could be expressed in the proof plans rdtaer t
being embedded in the planner algorithm.

* Method Failed - Where the method fails, any critics associated with the
method are attempted. If the plan is aborted by the critientthe rel-
evant failure critique is reported. If the critic is sucdegsthe planner
continues just as if its parent method had been successtuk tritic is
unsuccessful, then the method is dismissed.

e Result- The result associated with the main plan is returned. Theltrevill either
be an instantiated proof plan or a failure critique.

6.9 Plan Result

The proof planner will generate either an instantiated ppdan or a failure critique.
From each result the overall result of the proof planner temeined.

6.9.1 Result from Instantiated Proof Plan

Where an instantiated proof plan is discovered its coressrs demonstrated via the
Checker. A compound tactic is extracted from the instaeti@iroof plan. The compound
tactic automatically controls the Checker, attemptingravp the relevant goal. Where
the goal is proved inside the Checker, a successful proepigrted. Otherwise, failure is
reported, highlighting that a defect in the proof plans hearbdetected. Note that, while
the latter case is undesirable, soundness is preservee #avied proof is rejected by the
Checker.

Proof planners are typically coupled to tactic based thagnevers, as tactics provide
a powerful mechanism for describing and executing a diseavproof plan. However,
the Checker is not a tactic based theorem prover. To addnesstsmatchsimulated
tactics and tacticals are introduced, as shown in Figur@. 6TAactics perform a unit of
reasoning while tacticals supports the composition oficactThe technique hides the
detail associated with interfacing to the Checker, allgymoof plans to be expressed
at a natural level of abstraction. The translation from dataed tactics and tacticals into
Checker proof commands is detailed in Appendix D.

For illustration, consider the SumOnAirTeletextPagegpsofpram. Two VCs are gen-
erated from the invariant at line 8 back to the same invar@ering both paths through
the if-statement. The VC associated with not entering thetatement is not proved by
the Simplifier. The proof planner discovers an instantigiexbf plan for this VC, via

80

<CompoundTactie := <Tacticab
<Tacticab := then tactical(<Tactic>, <TacticalList>) |
final_tactical(<Tactic>)
<TacticalList> == [] | [<Tacticab | <TacticalList>]
<Tactic> == null_tactic |
trivial_tactic |
trivially_true_conc_tactic(Cong |
rewrite_tactic(RewriteForm
HypOrCon¢WholeExpPos
Condition: LHSExp= RHSEX} |
split_conc_conj_tactic(LeftExp RightEXy) |
case_split_tactic(FirstExp SecondEXp|
sequence_tactic(<TacticList>)
<TacticList- :=[] | [<Tactic> | <TacticList>]

Figure 6.29: Simulated tactics and tacticals

the proof plans detailed in Appendix E. The essential detilthe VC, its compound

tactic and proof commands are show in Figure 6.30. As the oomg tactic and proof
commands associated with instantiated proof plans ar@serdnd mechanically derived,
they are omitted in all subsequent examples.

6.9.2 Result from Failure Critique

Where a failure critique is raised it is directly reportedtasplanner result. The structure

for every failure critique is shown in Figure 6.31 and desed below.

maximumDepthReachedRaised when the proof planner tries to search beyond
a fixed depth. Care is taken to express proof plans in a formighexpected to
terminate. However, especially during development, aglagical goal may lead

to an infinite search.

noMoreOpenGoalsRaised when the proof planner has fully explored a proat pla
on a given goal, without making any insights. The proof plaeds to be extended
to prove such goals.

provedBySimplifier Raised where the goal has already been proved by the Simpli-
fier. For further details, see 8E.7.

simplifiedGoal Raised where the goal has been simplified by the Simplifier. F
further details, see §E.8.

goalNotTargeted Raised where goal is of a category that is not targeted by the
proof plans. The proof plans will need to be extended to reabmut these goals.
For further details, see 8E.9.

81

Key portion of invariant goal

r < (i —firstpagg

r < ((i +1)—firstpage

Key portion of compound tactic

then_tactical
rewrite_tactic(rule(ruleref(sumonairteletextpages.rits, sumonairteleruleg3), normal),

hypr < (i —firstpagé, [2, 2], true: firstpage= 100)

then_tactical
rewrite_tactic(rule(ruleref(sumonairteletextpages.rits, sumonairteleruleg3), normal),

congr < (i + 1) — firstpager[2, 2], true: firstpage= 100)

then_tactical
rewrite_tactic(rule(ruleref{(. . ./user-rulegminusplus.rulrlu, minusplugl), reversed),

concr < (i +1)-10Q[2],true: (i + 1)- 100= (i — 100)+ 1

then_tactical
rewrite_tactic(rule(ruleref{(. . ./user-rulegminusplus.rulrlu, miscellaneoug), reversed),

congr < (i —100)+ 1,[],true:r < (i—100)+ 1= (r < (i —100))A (0< 1))

then_tactical
rewrite_tactic(hypothesisFertilisg < (i — 100))

congr < (i —100)A (0 < 1),[1], true: r < (i — 100)= true)

then_tactical
rewrite_tactic(evaluatétrue A (0 < 1), true)

conctrueA (0 < 1),[],true: trueA (0 < 1) = true)

final_tactical
trivial_tactic

Key portion of proof commands

consult ’sumonairteletextpages.rls’.

consult
consult

.../user-rules/minusplus.rul’.
.../user-rules/miscellaneous.rul’.

tame_subgoal_on_conc (2).

tame_rewrite Chyp) : (r<=(loop__1__i-pagesindex__first)) : ([2,2]) with
(pagesindex__first) to (100) if (true) using (sumonairtele_rules(3)) in (normal).

tame_rewrite (conc) : (r<=(loop__1__i+1)-pagesindex__first) : ([2,2]) with
(pagesindex__first) to (100) if (true) using (sumonairtele_rules(3)) in (normal).

tame_rewrite (conc) : (r<=(loop__1__i+1)-100) : ([2]) with

((loop__1__i+1)-100) to ((loop__1__i-100)+1) if (true) using (minusplus(l)) in (reversed).
tame_rewrite (conc) : (r<=(loop__1__i-100)+1) : ([]) with

(r<=loop__1__i-100+1) to (r<=loop__1__i-100 and 0<=1) if

(true) using (miscellaneous(7)) in (reversed).

tame_rewrite (conc) : (r<=(loop__1__i-100) and 0<=1) : ([1]) where (r<=(loop__1__i-100)).
tame_rewrite (conc) : (true and 0<=1) : ([]) with (true and 0<=1) is (true).
tame_done.

tame_all_done.
tame_done.
tame_finish.

Figure 6.30: SumOnAirTeletextPages invariant VC (line &igfure 6.2)

82

¢ inRealDomain Raised when the conclusion contains fixed or floating peies.
The proof planner and proof plans will need to be extende@ason about these
types. For further details, see S8E.10.

¢ abstractPredicatéSubprogramNameoupleWithEntryVarsVarList>)) -
Raised where a proof plan suggests that properties shourittbduced to relate the
variables in<VarList> with their corresponding loop entry variables in subprogra
SubprogramNaméd-or further details, see SE.14.

¢ abstractPredicatéSubprogramNameonstrainVarg<VarList>)) -
Raised where a proof plan suggests introducing constraimtthe variables in
<VarList> in subprogranSubprogramNamed-or further details, see §E.16.

e abstractPredicatéSubprogramNaméghtlyConstrainVaréVarList>)) -
Raised where a proof plan suggests increasing the cortsti@inthe variables in
<VarList> in subprogranSubprogramNamed-or further details, see §E.17.

¢ interactionNeedg@ubprogramNameonstrainCons{sConstList)) -
Raised where a proof plan suggests introducing constraimthe constants in
<ConstList in subprogranSubprogramNamé~or further details, see S8E.15.

<FailureCritique> == maximumDepthReaché¢d
noMoreOpenGoals
provedBySimplifief
simplifiedGoal
goalNotTargeted
inRealDomain
abstractPredicatgSubprogramName:ProgAnalysisReques} |
interactionNeedg@ubprogramNameEngineerReques)
<ProgAnalysisRequest:= coupleWithEntryVais:VarList>) |
constrainVargé<VarList>) |
tightlyConstrainVaré<VarList>)
<VarList> == [] | [<Var> | <VarList>]
<EngineerRequest:= constrainCons{sConstList)
<ConstList =[] | [<Const- | <ConstList]

Figure 6.31: Failure Critique structure

6.10 Method-Language Overview

A method-language is developed to support the verificaticexoeption freedom in the
SPARK Approach. The method-language predicates are gdanpza number of cate-
gories, as summarised below. Full details of the methodtlage are presented in Ap-
pendix C.

83

Composition (8C.3) - These predicates support the composition of mathdte
predicates are typically available in proof planners.

Proof Planning (8C.4) - These predicatester direct control of the planning pro-
cess. As described in 86.7.2, method applications areatedithrough a relatively

limited strategy mechanism. By allowing methods to disectintrol the planning

process, some of these limitations are addressed.

List Processing(8C.5) - These predicates support list processing. Presgicand to
operate with lists rather than individual elements to iaseegenerality and support
reuse. Thus, there is a general need for list processingcpted.

Plan Features(8C.6) - These predicates allow methods to query and moléy t
global contextual information associated with each plan.

Goal Features(8C.7) - These predicates allow methods to query and moldy t
local contextual information associated with each goal.

Goal Patterns (8C.8) - In developing methods for verifying exception fiem, a
number of relevant goal patterns emerged. These predisapgmrt the detection
and evaluation of these patterns.

Analyse Expressions(8C.9) - These predicates support the manipulation of ex-
pressions. Such methods are typically available in proarfipérs.

Rewriting (8C.10) - These predicates support term rewriting, a pavéineorem
proving technique. General predicates support rewritipgrations. Further, a
few specialised predicates providfi@ent access to operations that are achieved
through multiple rewrites.

Rippling (8C.11) - These predicates support an application of thpdinig heuristic.
As described in 82.3.3, the rippling heuristic is directpphcable to the proof of
loop invariant goals.

6.11 Proof Plans Overview

Proof plans are developed to support the verification of gixae freedom in the SPARK
Approach. An overview of the plans developed for exceptreedom goals and program
analysis queries are givenin 86.11.1 and 86.11.2 respéctivull details of the plans are

presented in Appendix E.

6.11.1 Proof Plans for Exception Freedom Goals

Three proof plan strategies support the verification of pkoa freedom goals, as sum-
marised below.

84

e exception_freedom (8E.3) - Given the context of the SPARK Approach, a number
of goals may not be relevant to advancing the verificationxaeption freedom.
Thus, thetargeted_goal method (8E.6) filters out irrelevant goals. The Examiner
tends to generate verbose goals. Thusnéialisation method (8E.11) is applied
early, transforming the goal into a more readily analysdbfen. In proving ex-
ception freedom, goals often have general hypotheses &utfisgconclusions. In
many cases, obvious specialisations of the general hypeshsill contribute to-
ward proof. Thespecialise_hyps method (8E.12) performs these obvious speciali-
sations. During proof planning, it isfiiicult to determine if a false goal has arisen
because the original goal is not provable or because a poarechf proof step was
made. Thus, prior to any proof exploration, thable_goal method (8E.13) inves-
tigates the provability of the goal. The method searchepdtterns that are com-
monly associated with unprovable goals. This includes seeafia constraint solver
to identify counter examples that demonstrate the goal igpravable. Diterent
goal categories may be identified depending on how the gtsieeeto the source
code. Significantly, dierent goal categories are susceptible fedent proof strate-
gies. Two diferent goal categories are considered. fiuretime checlcategory is
identified by thertc_goal method (8E.18) while theavariant category is identified
by theinv_goal method (8E.19).

e run_time_check (8E.4) - All goals corresponding to the run-time check catgg
will involve proving that, given various constraints, a fg@arlar bound is never vi-
olated. These goals are addressed through a collectionopkcating techniques.
The goal is simplified to identify its essential details, ekiaved by therue_conc
method (8E.20), thialse_conc method (8E.21), theval_conc method (§8E.25), the
split.conc_conj method (8E.26), théertilize method (8E.27), thelear_conc_exp
method (8E.28) and thelim_var_conc method (8E.29). The automated capabilities
of the Checker are exploited to perform the simplificatiordinéar functions, as
performed by thedinear_ bounded_conc method (8E.22). To more readily exploit
the standard rules supplied with the SPARK Approach, miidagion is normalised
by thecase_split method (8E.23) and th@ult_commute method (8E.24). Where
the above techniques are unable to prove a goal, the conelissiiecomposed into
more tractable expressions. The decomposition is achiewedgh an application
of transitivity, as initiated by theansitivity_entry method (§8E.30). The process re-
quires a creative eureka step, discovering an intermeedigieession that supports
the application of a transitivity rule. The search is acht¥hrough middle-out
reasoning, as supported by thiansitivity_fertilize method (8E.32), théransitiv-
ity_decomp method (8E.31), th&ansitivity_close method (8E.33) and theansi-
tivity_unblock method (8E.34).

e invariant (8E.5) - All goals corresponding to the invariant categamyoive prov-
ing that an invariant property is preserved following amat®mn of a loop. As

85

these goals exhibit the same pattern as proof by inductierrigpling heuristic
is directly applicable. Thus, the rippling heuristic is sed, as achieved by the
ripple_entry method (8E.35), thepple_unblock method (8E.38), theipple_wave
method (8E.36) and thepple_fertilize method (8E.37). Following a successful
application of rippling it is common for a proof residue ton@n. As the invari-
ant properties typically describe invariant bounds, treopresidue often involves
proving that a particular bound is not violated. Thus, thratsgy developed for
run-time check goals is applicable and is directly reused.

6.11.2 Proof Plans for Program Analysis Queries

Four proof plan strategies are exploited during prograntyaigto perform diferent rea-
soning queries, as summarised below.

e pa_exp_simplify (8E.40) - Supports the simplification of expressions. Egpiens
are eliminated through logical properties, as achievedbpitune_conc_duplicate
method (8E.44) and therune_conc_eq method (8E.45). Two simplification tech-
niques developed for run-time check goals are reused, asvtieonc method
(8E.25) and theclear_conc_exp method (8E.28). Where no further simplifica-
tions are available, the simplified expression is returnethbreport_conc method
(8E.46).

e pa_exp_constrain (8E.41) - Supports the generalisation of a complex expwassi
into a weaker, yet simpler, bounded expression. Hypotlgsesialisations can
contribute toward finding constraints, thus #pecialise_hyps method (8E.12) is
reused. The resulting constraints are enriched througkehaces of a computer
algebra system, via theplve_eq_hyp_for_var method (8E.47). Finally, with a rich
collection of constraints available, the tightest boundewstraint for the complex
expression is returned through ttanstrain_conc_conj method (8E.48).

e pa_spark_exp (8E.42) - Transforms an expression into a form which can be di
rectly expressed in SPARK annotations. Tpecialise_hyps method (8E.12) is
reused to introduce additional hypotheses. Simplificatame performed by reusing
theprune_conc_duplicate method (8E.44), thprune_conc_eq method (8E.45), the
eval_conc method (8E.25), and theear_conc_exp method (8E.28). Where appli-
cable, constraints are enriched by reusingsthiee_eq_hyp_for_var (8E.47) method.
The elim_aux_var_via_eq method (8E.49), thelim_prog_var_exp_via_eq method
(8E.50) and theelim_aux_var_via_int_arith method (8E.51) exploit the simplified
and enriched constraints, seeking to eliminate expresslat are not expressible
in SPARK annotations. Where successful, the resulting 3€ARpression is re-
turned through thés_spark_exp method (8E.52).

86

e pa_disj_-norm_form (8E.43) - Converts an expression into disjunctive normahfo
Thedisj_norm_form method (8E.53) applies a rewrite rule which brings an expres
sion closer to disjunctive normal form. Where this methodarmer applies, the
expression is in disjunctive normal form, and is returnethigyeport_conc method
(8E.46).

87

Chapter 7

Program Analyser

7.1 Introduction

A program analyser is developed. The program analyserl@édito the specific task
of discovering candidate invariant properties for SPARKmograms. This chapter de-
scribes the details of our program analyser.

7.2 Program Analyser Architecture

The architecture of our program analyser is shown in Figute The program analyser
is provided with three forms of input. THdiniSPARKIs the program to be analysed,
as described in 87.4. Thabstract predicatesre generated by our proof planner to re-
quest specification strengthening, as described in 86T@&program analysis heuristics
perform the program analysis, as described in 87.parsertransforms the MiniSPARK
into package informatiopas described in §7.5. The package information is simplé#redi
approximated to generasgmplified package informatig@as described in 87.6. The sim-
plified package information is translated into@ntrol flowgraphandstructured blockgs
described in 87.7 and 87.8 respectively. The simplified pgeknformation and control
flowgraph are analysed by thprogram analyser algorithmcontrolled by the program
analysis heuristics. Guided by the abstract predicategetiedcandidate invariantare
generated.

The architecture of our program analyser is strongly infbeehby the proof plan-
ning paradigm. In particular, the program analyser manmstai clear separation between
the program analysis framework and the program analysigdties. The style means
that the program analysis heuristics are presented in astensform, facilitating their
understanding.

88

MiniSPARK Abstract
(ADS, ADB, CFG) Predicate

)

Parser

Package Info

i
Simplify

y
(Simplified Package Info)

Control flowgraph
and structured blocks

Y +

\

y

rogram Analysis
Heuristics
(PAMTD, APS)

I Program Analyser Algorithm

Candidate
Invariants

Figure 7.1: Program analysis architecture

89

7.3 Program Analyser Configuration

The program analyser is configured to support the verifinaif@xception freedom in the
SPARK Approach. The program analysis heuristics develapedummarised in 87.10.

7.4 MiniSPARK

Although SPARK is a subset of Ada, it is still a significant gramming language. Com-
prehensive program analysis of SPARK would amount to a anbat implementation
effort. Instead, we target a core subset of SPARK as MiniSPARKe @ssential be-
haviour of most imperative programs can be captured thosgigament, conditions and
loops, all of which are present in MiniSPARK. The completargmar of MiniSPARK is
presented in Appendix F, and is summarised below:

e Package- A single package is analysed. The package specificatiorsjAleclares
all types and subprograms while the package body (ADB) cositenplementations
of the declared subprograms.

e Target configuration - As in the SPARK Approach, target specific constraints are
provided through a target configuration file (CFG).

e Types- Of the scalar types, integer and Boolean are availabletypab may be
introduced for integer types. Of the composite types, sirdiimensional arrays
are available. No further constraints are imposed, thusyarof arrays may be
constructed.

e Subprograms and statements Both functions and procedures are available. State
may be modified directly through assignment or indirecthptiyh procedure calls.
Sequencing is supported through if-statements and loops.

e Expressions- The arithmetic operators, —, =, =« and div are available. The
Boolean operations, v, and- are available. The integer relatioas #, <, <, >
and> are available.

7.5 Parser

The parser transforms MiniSPARK into structures that areenamenable to mechanical
processing. Separate structures describe declaratiahtharprogram, as described in
87.5.1 and 8§7.5.2 respectively.

7.5.1 Declarations

As described in 86.5, our proof planner operates in the sagie bs the SPARK Ap-
proach. Unsurprisingly, there is a strong correspondeptsden the entities and types

90

required for program analysis and for program proof. Thmsilgirity is exploited by
reusing the proof planner declarations for our programyeseal This reuse eases the in-
tegration of our program analyser and proof planner. Reaggmroblems encountered
during program analysis can be directly processed by owfmlanner.

7.5.2 Program

The essential semantics of MiniSPARK code is recorded inllaatmn of structures, as
detailed below.

Scalar and Composite Types

The structure for holding scalar and composite types is showigure 7.2 and described
below:

¢ Integer types- Each integer type has a declared ndiyyeeRef The type is bounded
between the constansrstConstantRedndLastConstantRef

¢ Integer subtypes- Each integer subtype has a declared ndgpeRef The parent
type or subtype is referenced BarentTypeRefThe subtype is bounded between
the constantfirstConstantRefindLastConstantRef

e One dimensional arrays- Each array has a declared namgpeRef The array
is indexed by a scalar typedexTypeRetontaining elements of any other type
ElementTypeRef

<Packagelnfe := scalarTypéTypeRef<Scalar>) |
compositeTyg@ypeRef<Composite)
<Scalar- := intege(FirstConstantRetLastConstantRgf
integerSubtyp@arentTypeReFirstConstantRetastConstantRgf
<Composite := array(IndexTypeReElementTypeREf

Figure 7.2: Scalar and composite types

Constants

The structure for holding constants is shown in Figure 7.acheconstant has a name
ConstantRe&nd a typeTypeRef The corresponding constant expression is recorded as
ConstExp Note that only scalar constants are encountered in MinFBEA

<Packagelnfe := constantConstantRefTypeRefConstExp

Figure 7.3: Constants

91

Subprogram

The structure for holding the declaration of each subpmgssshown in Figure 7.4. Each
subprogram has a nanseibprogramRefnd is identified as being either a procedure or a
function. Where the subprogram is a function its return igpecorded aReturnTypeRef

<Packagelnfe := subprograniSubprogramRe&SubprogramKing)
<SubprogramKing ::= procedurd functionReturnTypeRgf

Figure 7.4: Subprograms

Subprogram variables

The structure for holding the variables associated withl@psagram is shown in Fig-
ure 7.5 and described below:

e Parameter - A subprogram may have zero or more parameter variables.pdhe
sition of each parameter variable is relevant in handlingpsogram calls, and is
recorded afositionint The variable has naméarRef mode<VariableMode- and
type TypeRef Three modes are available, describing strictly input metars (),
strictly output parameter®(f) and input and output parametensqurt).

¢ Initial parameter variable - Initial parameter variables reference the value of a
variable at the start of a subprogram. An initial parametaiable is available
for each parameter variable whose mode includes output.va@hable has name
VarRek where its corresponding parameter variableéasRef

e Local variable - A subprogram may have zero or more local variables. Eadh var
able has a nam¥arRefand a typelypeRef

e For-loop variable - Each for-loop variable is only in scope for the durationlod t
loop. The restricted scope is expressed through the sulgmmogpde. The variable
has a nam&arRefand a typelypeRef As standard, the for-loop variable iterates
from the first value of its type to the last value of its type. ighter range, which
may potentially be empty, can also be specified, recordeteasitial expression
InitialExp and final expressioRinalExp.

e For-loop entry variable - The initial and final expressions of a for-loop range are
evaluated once, when the loop is entered. To capture thesnses, every variable
in a for-loop range is cloned as a speaalry variable. The expression contain-
ing the entry variable is recorded througlEndPoint-, as eitherinitial or final.
Each entry variable has a narwarRefand is associated with its source variable
CloneVarRef

92

<Packagelnfe ::= subprogramVariablgSubprogramRekVariableDeclare-)
<VariableDeclare- := paramete(PositionInt VarRef
<VariableMode-, TypeRéf|
initParamete(VarRek , VarRej |
localVariablgVarRef TypeReéf|
forLoopVariabl¢VarRef TypeRef<Range>) |
forLoopEntryVariablé<EndPoint-, VarRef CloneVarRef
<Range- := overtypd ranggInitialExp, FinalExp
<VariableMode- == in | out| inout
<EndPoint :=initial | final

Figure 7.5: Subprogram variables

Subprogram Code

The subprogram code is first normalised into fundamentaiabipes to ease its analysis.
The normalisation process is trivial, except for loops. &ufhg the behaviour of the
Examiner [Bar03], both while-loops and for-loops are ndiseal as generic loops as
shown in Figure 7.6. While-loops can be expressed direntigims of generic loops.
Additional constructs are required to faithfully refleceteemantics of for-loops. Each
for-loop introduces an iterator variable, that is only imge for the duration of the loop.
Explicit scoping constructs are introduced to express ¢iséricted scope. Further, for-
loop range expressions are only evaluated when the loopt&sesh To express this,
variables referenced in for-loop range expressions areedas speciantryvariables at
loop entry. Range expressions at loop entry may then be @etyrexpressed in terms
of these entry variables. All subprogram annotations amengd. However, the position
of loop invariants are recorded and used during progranysaisal The implications of
ignoring annotations are explored in greater detail in 9.2

The structure for holding normalised subprogram code isvehion Figure 7.7 and
described below:

e Enter scope- The variablévarRefis now in scope.
e EXxit scope- The variablevarRefis no longer in scope.

e Assignment- The data structure referenced through expresk\@iueExpis as-
signed the result of evaluating expresskivalueExp

e Procedure call- The procedure name8ubprogramRes called with ordered pa-
rameter listParameterExpListNote that functions occur within expressions.

e Return - The return statement is only applicable for functions. diritifies the
expression returned by a functionBsp.

¢ If-then - Where the conditional expressi@onditionExpevaluates to true the se-
guence of statementsTrueStatementListare performed.

93

Structured loop

Normalised loop

while E loop loop
S; exit when not E;
end loop; S;
end loop;
for I in T loop enterScop@) {I of typeT}
S; I:=T’First;
end loop; loop
S;
exit when I=T’Last;
I:=T’Succ(I);
end loop;
exitScopér)
for I in T rangel ..U loop | enterScop&\) ...
S; enterScop@&E\")

end loop;

EVL:=VE; (VlisinLor Uy ...
EV':=V"; (VMisin L or U}

{EL is L substituting W with EV"}
{EU is U substituting ¥ with EV"}
if EL<=EU then

enterScop@) {I of typeTinEL ..

I:=EL;
loop
S;
exit when I=EU;
I:=T’Succ(I);
end loop;
exitScopér)
end if;
exitScopeEV")

exitScopeEVL)

EU}

Figure 7.6: Structured loops and their normalised form

94

If-then-else - Where the conditional expressid@@onditionExpevaluates to true
the sequence of statemenrtSrueStatementListare performed, otherwise the se-
guence of statementd-alseStatementListare performed.

Loop - Begin a repeated sequence of statementd appStatementList
Mark invariant - Marks the point within a loop where an invariant is present.

If-then-exit - Where the conditional expressi@onditionExpevaluates to true the
sequence of statement§rueStatementListare performed and the immediately
enclosing loop is exited.

<Packagelnfe := subprogramCode:StatementList)
<StatementList := [] | [<Statement | <StatementList]
<LoopStatementList:= [] | [<LoopStatement| <LoopStatementLis
<TrueStatementList:= <StatementList
<FalseStatementList:= <StatementList
<Statement := enterScop@/arRej |
exitScop@varRej |
assigrfLValueExpRValueExp|
procedureCallSubprogramReParameterExpList|
return(Exp) |
ifThenConditionExp<TrueStatementLis) |
ifThenElséConditionExp
<TrueStatementList <FalseStatementLis) |
loop(<LoopStatementLis)
<LoopStatement::= <Statement |
marklnvariant|
ifThenExi{ConditionExp<TrueStatementLis)

Figure 7.7: Subprogram code

95

7.6 Simplifications and Approximations

Before program analysis is conducted it is convenient tgBfynand approximate the
package information. These transformations are sepdaira@dthe mechanical operation
of the parser as they represent heuristic decisions spe&cifigr analyses.

7.6.1 Replace Named Scalar Constants With Their Values

Constants in the package information may be associatedtigih corresponding con-
stant expression. Every referenced constant is repladédiva evaluation of its constant
expression.

7.6.2 Eliminate Unneeded Casting

Casting must be used to perform arithmetic operations oresspns of dterent types.
However, for convenience, our program analyser is lesstsailowing arithmetic oper-
ations between expressions of the same fundamental typehi®basis, all casting is
eliminated from the package information.

7.6.3 Transform Return to Assignment

It is convenient to model return statements as an assigndactal variable is declared
asfunrethaving the return type of the function. The return statensetiten transformed
as an assignment to this variable.

7.6.4 Subprogram Call Abstractions

Our program analyser does not recursively analyse callbgregrams. Instead, each
subprogram call is replaced with an abstraction. An oveldoafunction is introduced to
support subprogram call abstraction:

boundTypeRef (7.1)

The function returns a value, known only to be in tyjgpeRefEach subprogram declares
the mode and type of its parameters. These declarationsxpl@ted to constrain the
effect of a subprogram call, as illustrated in Figure 7.8 andrilesd below:

e Functions - Functions may have a number of input parameters and wilkmea
single result. Each function is called from within an exgies. The function call
is abstracted by replacing the function with the appropriaiund function for its
result type.

e Procedures- Procedures may have a number of input and output paramE&izch
procedure is called as a separate statement. The procealurs abstracted by

96

replacing the procedure with a sequence of assignmenistats, assigning each
output parameter the appropriate bound function for itsltégpe.

Function call abstraction

Function declaration:
function FunctionRef(VarRetf : TypeRef .. .,
VarRel : TypeRe€f) return ReturnTypeRef

Function call from within subprogram:
FunctionRetExp', ..., Exgh)

Abstracted function call:
boundReturnTypeRgf

Procedure call abstraction

Procedure declaration:
procedure ProcedureRetVarRet : Mode TypeReéf,,
VarRef : Mode' TypeReY) ;

Procedure call from within subprogram:
ProcedureRefEXp', . .., Exgh)

Abstracted procedure call:
assigfExpt, boundTypeRéeY) {if Modé€" is outor inout)

assigiExp', boundTypeRé€b) {if Mod€' is outor inout}

Figure 7.8: Subprogram call abstraction

Verifying exception freedom involves proving that varieblie within certain bounds
at particular points in a program. In high integrity SPARK@rams itis common for sub-
program parameters to have tightly constrained types. ,Mabsre verifying exception
freedom, simply abstracting subprogram calls to theirlteagpes can provide dticient
constraints. Possible strengthenings of this approacbarsidered in §9.2.1.

7.7 Control Flowgraph

The subprogram targeted by the abstract predicates igdtadsnto a control flowgraph.
A flowgraph is a natural structure for analysing the choicafgoand actions seen in
imperative programing languages. The structure of the flaplg and its construction
from a subprogram is described in §7.7.1 and 87.7.2 respécti

97

7.7.1 Control Flowgraph Structure

The structure for holding the control flowgraph is shown igufe 7.9, and described
below:

¢ Node- Nodes describe the choice points and actions seen in acyriapn. Every
node has an identifidModeldand contains an itemaNodelteny.

e Edges- Edges are used to connect nodes together and store pespgemerated
during program analysis. The edge is directed, connectmg hodeTailNodeld
to nodeHeadNodeld Associated with each edge is a property store identifier
PropStoreld Multiple properties may be associated with the store, dahng
anAddressand aProperty.

For presentation purposes, a pictorial representatiomdés and edges is introduced in
Figure 7.10.

<FlowGraph> := nodédNodeld <Nodelteny) |
edgdPropStoreldTailNodeld HeadNodeldl|
property(PropStoreldAddressProperty)
<Nodelten» := <Boundary | <Assignment | <Scope | <Branch> | <Merge>
<Boundary := entry| exit
<Assignment := assigrfLValueExpRValueExp
<Scope := enterScop@/arRej | exitScopévarRej
<Branch> ::= brancHConditionExp | loopBranct{ConditionExpLoopld
<Merge> = merge| loopMergéLoopld

Figure 7.9: Control flowgraph framework

nodént, Nodeltem]). n':Nodeltem]
nod€n?, Nodeltem

edgdet, nt, n?)

property(e!, Address, Property)

e':Address'— Property'

e':Address'+— Property'

Y
n*:Nodeltem?2

propertye', Address Property)

Structure Pictorial form

Figure 7.10: Control flowgraph pictorial representation

98

7.7.2 Subprogram Code as Control Flowgraph

Each component of the subprogram code is expressed thrbagtontrol flowgraph as
detailed below.

Subprogram

The entry and exit points of the subprogram are explicitborded, as illustrated in Fig-
ure 7.11. Each subprogram has a single entry and exit point.

n':entry

'
¢

n':exit

Figure 7.11: Subprogram entry and exit

Assignment Statements

Assignments modify the value of program variables. Follapihe simplifications and
approximations of §87.6, all program variable modificatians expressed in terms of as-
signment. Each assignment has a single entry and exit paititystrated in Figure 7.12.

n':assign(LValueExp,RValueExp)

'

Figure 7.12: Assignment statements

99

Scope Changes

Scope #ects the visibility of program variables. Each scope chamggea single entry
and exit point. Further, variables entering scope alwaytsseope on the same path, as
illustrated in Figure 7.13.

n':enterScope(V)

'
'

n':exitScope(V)

'

Figure 7.13: Scope changes

Conditional Statements

Conditional statements branch to one of two paths, depgrafirthe truth of a Boolean
expression. The two paths will eventually merge, marking ¢nd of the conditional
statement. Conditional statements are expressed throwagiclband merge nodes, as
illustrated in Figure 7.14. Properties are attached to tlyee leaving the branch node,
indicating which path corresponds to which truth value.

n':branch(ConditionExp)

e [cross]l—>true'/\e:: [cross]—false

'

n’:merge

'

Figure 7.14: Conditional statement

Loop Statements

Loop statements continue to repeat a sequence of staterdepending on the truth of
Boolean expressions at loop exit guards. Every path leatiegoop will eventually

100

merge, marking the end of the loop. Loop statements are ss@dethrough branch and
merge nodes, as illustrated in Figure 7.15. Each loop iased with a unique identifier,
grouping its corresponding branch and merge nodes. Prepare attached to the edges
leaving branch nodes, indicating which path corresponaeghioh truth value. Further, a
property is attached to the edge that corresponds to thedaaaf the loop invariant.

n':loopMerge(Id) |
e [invariant]l—)truel

n’:loopBranch(ConditionExp, Id)

e’:[cross] l—)tr% e”:[cross]—false

* l
k.
n“:merge

'

Figure 7.15: Loop statement

7.8 Structured Blocks

The program analysis heuristics involve traversing rothesugh the control flowgraph.
Itis convenient to express these routes in terms of the niaiatared blocks encountered.
Each structured block has a single entry and exit point. Thekbmay contain paths,
which are described as a sequence of structured blocks. tiieduse for holding the
structured blocks is shown in §7.16, and detailed below:

¢ unit(Nodeld -
The unit block describes a boundary, assignment or scofmstat, alNodeld

¢ tes(BranchNodeld<TruePath-, <FalsePath-, MergeNodeldl -
The test block describes a conditional statement. The teskhs entered at
the branching nodBranchNodeld The true and false paths at8ruePath- and
<FalsePath respectively. The test block is exited where these two patige at
MergeNodeld

¢ loop(LoopMergeNodelgkPath>, MergeNodeljl -
The loop block describes a loop statement. The loop blocktisred at the loop
merge nodd.oopMergeNodeld The path around the loop isPath>, which will

101

contain at least one loop test block. The loop block is exitadre all of the paths
exiting the loop merge dflergeNodeld

¢ |looptes(BranchNodeld<TruePath>) -
The loop test block describes a conditional statement whidihue, will lead to
control breaking out of a loop. These blocks can only occuthenpaths around a
loop. The loop test block is entered at the branching ierdachNodeld The false
path is implicitly covered by the enclosing loop, while thee path is<TruePath-.
The loop test block is exited at the end of its true path, justrgo reaching the
loop merge node.

¢ subprogranfEntryNodeld<Path>, ExitNodeld -
The subprogram block describes the entire subprogram. Uheregram block
is entered at the subprogram entry ndttgryNodeld The path through the sub-
program is<Path>. The subprogram block is exited at the subprogram exit node
ExitNodeld

<Block> := unit(Nodeld |
tes{BranchNodeld<TruePath-, <FalsePathk-, MergeNodeljl|
loop(LoopMergeNodelgkPath>, MergeNodeld |
looptestBranchNodeld<TruePath>) |
subprograniEntryNodeld<Path>, ExitNodeld

<BlockList- == [] | [Block| <BlockList>]

<Path> := <BlockList>

<TruePath> := <Path>

<FalsePath = <Path>

Figure 7.16: Structured blocks

7.9 Program Analyser Algorithm

The program analyser algorithm performs the program arsalyi$e target subprogram

is described through the simplified package informationfrab flowgraph and structured

blocks. The analysis of the subprogram is performed by jprogrnalysis heuristics. Pro-
gram analysis methods discover relevant program progedsedescribed in 87.9.1. With
these properties in place, abstract predicate satisfigigestitargeted invariant strength-
ening, as described in 87.9.2.

7.9.1 Program Analysis Methods

The program analysis is performed by program analysis ndstigachprogram analysis
method(PAMTD) is expressed through three features, as descriéleavb

102

e Property type - The method attempts to discover properties that hold a¢dges
of the control flowgraph. Theroperty typedefines the type of these properties.
Each property type declares an address and the structune oftues it holds, as
shown in Figure 7.17.

¢ Route - The method traverses the flowgraph followingoaite The route need
not visit every node in the flowgraph. Further, the route mayrodified during
analysis.

e Property operations - The method propagates properties along its selected route
via property operations A property operation is defined for every node that may
be encountered on the selected route. Typically, the ptpogeration describes
how the properties arriving at a node are transformed by tuen The property
operation may exploit the simplified package informatiod properties discovered
by other methods.

The intention is that the program analysis methods will poedcorrect results. How-
ever, this is not explicitly verified. Thus, the program asar is regarded as generating
candidate invariants The correctness of all selected invariants is demonst@teing
program verification.

Address— Property

[Itemy, ... ltemy] — <Property>
Definitions

<Property> := Structure

Figure 7.17: Property type

7.9.2 Abstract Predicate Satisfiers

Abstract predicates request targeted invariant strengtgeEach abstract predicate is as-
sociated with ambstract predicate satisfi€APS). The satisfier describes how to exploit
the available properties to generate the invariant sthemghg requested.

7.10 Program Analysis Heuristics Overview

Program analysis heuristics are developed to support thigcaéion of exception free-

dom in the SPARK Approach. An overview of the program analysethods are given
in 87.10.1, and detailed in Appendix G. The abstract predisatisfiers are defined in
§7.10.2.

103

7.10.1 Program Analysis Methods

Each program analysis method discovers a type of programepies. The program
analysis methods are ordered, allowing methods to expioigrties discovered by earlier
methods. The methods are summarised below, in their ordapplication. The first

methods discover richer information about the subprogradeuanalysis.

e scope (8G.2) - Discovers which variables are in scope.

e update (8G.3) - Discovers which variables have been fully assigaed where
these assignments may have taken place.

e context (8G.4) - Discovers the structural contexts that exist withie subprogram.
Each structural context corresponds to taking a partiqud#n through the subpro-
gram.

The next methods discover simple, constraint based, piepeil hese properties may be
expressed as invariants to support the verification of ei@mefreedom.

e type (8G.5) - Discovers constraints for all variables, basedeir declared type.

e transient (8G.6) - Discovers properties that hold for sections of thiepsogram.
Following each conditional statement, a property may h@cthiced indicating that
the statement, or its negation, holds. Further, the prgpemntinues to hold while
its variables are not updated and the structural contexdiresithe same.

e loop_range (8G.7) - A for-loop variable may have a corresponding rarayestraint.
These constraints are identified and added as properties.

The final method performs a richer analysis, to discoverriawh constraints. These
properties are occasionally needed to support the verdicaf exception freedom.

e int_constraint (8G.8) - Discovers invariant constraints for integer Vialeéa within
loops, through the construction and solving of recurreetations.

7.10.2 Abstract Predicate Satisfiers

The abstract predicate satisfiers describe how to fulfil atratt predicate by exploiting
properties discovered by the program analysis methodsh Bbstract predicate has a
corresponding abstract predicate satisfier as listed below

e abstractPredicatéSubprogramNameonstrainVargévarList)) -
Candidate invariants are sought that constrain the vasafalrListin subprogram
SubprogramNameT hetype method is queried at invariant points to introduce type
constraints for each variable.

104

e abstractPredicat(SubprogramNaméightlyConstrainVarévarList)) -
Candidate invariants are sought that tightly constrainviréablesVarListin sub-
programSubprogramNameT heloop_range, transient andint_constraint methods
are queried to introduce all constraints that referencdatyeted variables. Con-
straints that reference entry variables are omitted, agthee constrained indirectly.

e abstractPredicat(SubprogramNameoupleWithEntryVai&/arList)) -
Candidate invariants are sought that couple variatfekistwith their correspond-
ing entry variables in subprogra®ubprogramName The transient method is
queried to introduce constraints that relate a targeteidbarto its corresponding
entry variable.

Note that a candidate invariant is rejected if it is alreaBspnt as a program invariant

In practice, as described in §7.5.2, our program analydgrecords the location of invariants, not their
expressions. Thus, the rejection of candidate invaridwaswould duplicate existing program invariants is
preformed manually.

105

Chapter 8

Evaluation

8.1 Introduction

In this chapter SPADEase is evaluated. The implementafi®@PADEase is described in
88.2. The evaluation process is described in §8.3. Finladi{h textbook and industrial
subprograms are evaluated in §88.4 and 88.5 respectivelyovarall analysis of these
results is presented in §8.6.

8.2 Implementation of SPADEase

As detailed in Chapter 5, SPADEase contains both a proohplaand a program analyser.
The implementation of these components are consideredbelo

8.2.1 Implementing the Proof Planner

As observed in §82.3.3, there are number of existing proain®a systems. The critics
enabled version of the Clam proof planner has previousiy lused to support program
verification. On this basis, the planner was used to suppartrotial investigations.
Targeted modifications were made such that Clam could inguats from the SPARK
Approach and export discovered proof plans to the Checker.

While this prototype supported our initial investigatiotise implementation had a
number of weaknesses. The integration with the SPARK Apgireas limited, requiring
custom configurations in planning each goal. The goal reptason did not support
the storage of contextual information. The planner algamitvas recursive, hindering
the development of global analysis critics. Finally, thanpler dfered little support for
analysing the progress of a proof plan.

The various limitations of Clam were addressed through gweldpment of our own
proof planner. Our proof planner was developed in Sicsta®Br The method-language
includes the clp(FD) constraint solver [COC97], as distidol with Sicstus Prolog. Fur-
ther, while direct communication has not been implementled, method-language is

106

supported through the computer algebra system YACAS [YAEally, the method-
language present in Clam was included, primarily to reusexpression analysis and
rippling predicates.

8.2.2 Implementing the Program Analyser

As detailed in 87.4, developing a program analyser for thigeeB8PARK language would
represent a significant undertaking. Thus, we restrict oatysis to a core subset of
SPARK as MiniSPARK. To provide arffective integration with our proof planner we de-
veloped our own program analyser, reusing existing teduies where available. Praxis
supplied a complete SPARK grammar and tokeniser. Buildingh@se components,
Stratego [Vis01] was used to translate MiniSPARK prograntg analysable structures.
The program analyser itself is implemented in Sicstus Brofs observed in 87.5.1, our
program analyser reuses declarations and associateébfuaddy from our proof planner
to offer a more #ective integration. While direct communication has notrbaeple-
mented, a method is supported through the recurrenceaelstiver PURRS [PUR].

8.3 Evaluation of SPADEase

As described in Chapter 5, SPADEase attempts to enhancesttiieation of exception
freedom in the SPARK Approach. As observed in 84.4.4, progvarification in the
SPARK Approach is decompositional. Reflecting this decositpm, SPADEase is eval-
uated on individual subprograms. As highlighted in §2.2gpam verification involves
both proof discovery and invariant discovery. To captuee ¢bmplete verification pro-
cess, the selected subprograms initially contain onlyuefavariants. As described in
85.3, the verification of exception freedom in the SPARK Aggmh, as enhanced with
SPADEase, involves an iterative process. A concise resutidt is introduced in 88.3.1
to describe each iteration. Supplementary text is addedevbe SPADEase requires
manual interaction or leaves unproven goals.

8.3.1 Result Format

The following table is used in describing an applicationled SPARK Approach as en-
hanced with SPADEase:

‘ Cyclomatic complexitys, Max loop varst, Max loop arith opsu ‘

Strategy Critic Prog

Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc

Iterationv: w initial goals,x remaining goalsys to simplify,zs to plan

abstract predicates
invariants

107

The complexity of the subprogram is indicated through tine¢rics. Thecyclomatic
complexity[McC76] reports on the path complexity of the subprograme irtaximum
loop variablesreports the maximum number of variables, as definegrbyg var_exps,
encountered inside a loop. Theximum loop arithmetic operatorgports the maximum
number of distinct arithmetic operators encountered aaitbop.

Each iteration begins with an application of the SPARK Agmtm The Examiner
analyses the target subprogram, generating the initidsgdde Simplifier attempts to
automatically prove these goals, returning any remainoaigy As the SPARK Approach
is documented elsewhere [AC02, BO8§], its details are omitted. Instead, the number of
initial and remaining goals are reported. The simplificatione and planning time for
each iteration is reported in seconds, to give an indicaifdyoth complexity and perfor-
mance. Note that the evaluation was performed on an NC1@oletlvith a Atom N270
processor, 1GB of RAM and the Ubuntul® operating system. The essential behaviour
of SPADEase is described for each remaining goal acceptételgrgeted_goal method
as follows:

e Goals- Number of goals with the same characteristics.

e Form - Run-time checkrc), returning invariantrjnv) or between invariantjnv)
goals.

e Strategy, Critic andProg - Aliases defined in table below:

ef | exception_freedom 8E.3
rc | run_time_check 8E.4

Strategy —
tr | transitivity 8E.4
ri | ripple 8E.5
cC | constrain_consts 8E.15
ce | couple_entry_vars 8E.14
Critic cv | constrain_vars 8E.16
tc | tightly_constrain_vars | 8E.17
fc | false_conc 8E.21
Prog ty | type 8G.5
(Program | Ir | loop_range 8G.7
Analysis ts | transient 8G.6
Heuristics) | ic | int_constraint 8G.8

The symbol® denotes that a feature was invoked, and succeeded. The kygrdbeo
notes that a feature was invoked and failed, however therésitiggered successful
failure analysis. Finally, the symbeldenotes that a feature was invoked and failed
completely.

At the end of each iteration, SPADEase may satisfy abstracligates through invariant
strengthening. For the non-industrial examples, the fofith® abstract predicates and
their corresponding strengthened invariants are shown.

108

8.4 Textbook Subprograms

8.4.1 Subprogram Average

The initially annotated Average subprogram is shown in Feg8Ll. The subprogram
reports the mean average value stored in an array.

package Average_Package
is
subtype AR_T is Integer range 10..100;
subtype AE_T is Integer range 0..10;
subtype SumRange is Integer range AE_T’First*((AR_T’Last-AR_T’First)+1) ..
AE_T’Last*((AR_T’Last-AR_T’First)+1);
type A_T is array (AR_T) of AE_T;
procedure Average(D: in A_T; A: out AE_T);
--# derives A from D;
end Average_Package;

package body Average_Package
is
procedure Average(D: in A_T; A: out AE_T)
is
S: SumRange;
begin
S:=0;
for I in AR_T 1loop
--# assert true;
S:=S+D(I);
end loop;
A:=S/((AR_T’Last-AR_T’First)+1);
end Average;
end Average_Package;

Figure 8.1: Average subprogram

Cyclomatic complexity: 2, Max loop vars: 3, Max loop arithsofd ‘

Strategy Critic Prog

Goals | Form ef [rc [tr [ri[lec|celev|tc|fc|ty|Ir]ts]ic

Iteration 1: 23 initial goals, 1 remaining goals, 1s to siifypl’s to plan
1t Jefol | [[| [Jef [[| [e
(prog analysis) tightlyConstrainVarfd, i, g])
(sole loop) 6>0)A(s<(i—10)=10)
Iteration 2: 25 initial goals, 2 remaining goals, 2s to siifiyplLOs to plan
1 rinv [N [
1 rtc e o | o

109

8.4.2 Subprogram BubbleSort

The initially annotated BubbleSort subprogram is shownigufe 8.2. The subprogram
sorts an array using the bubble sort algorithm.

package BubbleSort_Package is
subtype AR_T is Integer range 1..10;
type A_T is array (AR_T) of Integer;
procedure BubbleSort(A: in out A_T);
--# derives A from A;

end BubbleSort_Package;

package body BubbleSort_Package is
procedure BubbleSort(A: in out A_T)
is
Tmp: Integer;
begin
for I in AR_T range AR_T’First..(AR_T’Last-AR_T’First) loop
--# assert true;
for J in AR_T range AR_T’First..(AR_T’Last-I) loop
--# assert true;
if A(J)>A(J+1) then

Tmp:=A(J);
A(D):=AJ+1);
A(J+1) :=Tmp;
end if;
end loop;
end loop;

end BubbleSort;
end BubbleSort_Package;

Figure 8.2: BubbleSort subprogram

Cyclomatic complexity: 6, Max loop vars: 4, Max loop arithsof2 ‘

Strategy Critic Prog

Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc

Iteration 1: 84 initial goals, 1 remaining goals, 3s to siifypl’'s to plan

t [neflof [| [[ef [|] | Jo]
(prog analysis) coupleWithEntryVaii])
(innerloop) i=i_entry

‘ Iteration 2: 84 initial goals, O remaining goals, 2s to siifypbs to plan ‘

110

8.4.3 Subprogram DualFilter

The initially annotated DualFilter subprogram is shown igufe 8.3. The subprogram
sums the multiple of all elements from two arrays that lienimitconstant bounds.

package DualFilter_Package is
subtype AR_T is Integer range 0..9;
subtype AE_T is Integer range -200..1000;
type A_T is array (AR_T) of AE_T;
procedure DualFilter(D1l: in A_T; D2: in A_T; P: out Integer);
--# derives P from D1, D2;
end DualFilter_Package;

package body DualFilter_Package is
procedure DualFilter(D1l: in A_T; D2: in A_T; P: out Integer)
is
begin
P:=0;
for I in AR_T loop
--# assert true;
if D1(I) >=-100 and D1(I)<=-50 and
D2(I) >=300 and D2(I)<=900 then
P:=P+(D1(I)*D2(I));
end if;
end loop;
end DualFilter;
end DualFilter_Package;

Figure 8.3: DualFilter subprogram

Cyclomatic complexity: 3, Max loop vars: 4, Max loop arithsof2 ‘

Strategy Critic Prog
ef‘rc‘tr‘ri cc‘ce‘cv‘tc‘fc ty‘lr ‘ts‘ic

Goals | Form

Iteration 1: 40 initial goals, 5 remaining goals, 1s to siifiyplL9s to plan
5 | e ol [| flef [| | [| [|
(interaction) constrainCons{$system min.int, system max.int])

Iteration 2: 40 initial goals, 1 remaining goals, 1s to siifyplL1s to plan
t e ol [[[[I | Jeff [[|
(prog analysis) tightlyConstrainVarfp, elementdl, [i]), elemenfd2 [i])])
(sole loop) p > (i * —90000))A (p < 0)
Iteration 3: 43 initial goals, 3 remaining goals, 3s to siiiyp#2s to plan

1 rinv [A A)
1 rinv [) [
1 rtc [] (]

In iteration 2 SPADEase requests an engineer to introducsti@nts for undefined
constants. The constants are required to describe the baintumeric literals on the
target architecture. They arise in this subprogram due égotlesence of constant ex-
pressions in the package body. In response, appropriatdraons are introduced by
manually extending the target configuration file associati¢l the subprogram.

111

8.4.4 Subprogram MatrixFilter

The initially annotated MatrixFilter subprogram is showrFigure 8.4. The subprogram
sums the elements from a two dimensional array that lie wiarsubtype.

package MatrixFilter_Package is
subtype I_T is Integer range 0 .. 10;
subtype E_T is Integer range 0 .. 500;
subtype F_T is Integer range 100 .. 200;
subtype R_T is Integer range

0..F_T’Last*(((I_T’Last-I_T’First)+1)**2);
type InOne_T is array (I_T) of Integer;
type InTwo_T is array (I_T) of InOne_T;
procedure MatrixFilter(A: in InTwo_T;
R: out R_T);

--# derives R from A;

end MatrixFilter_Package;

package body MatrixFilter_Package is
procedure MatrixFilter(A: in InTwo_T;
R: out R_T)
is
begin
R:=0;
for I in I_T loop
--# assert true;
for J in I_T loop
--# assert true;
if A(I)(J)>=F_T’First and A(I)(J)<=F_T’Last then
R:=R+A(I) (1);
end if;
end loop;
end loop;
end MatrixFilter;
end MatrixFilter_Package;

Figure 8.4: MatrixFilter subprogram

112

Cyclomatic complexity: 4, Max loop vars: 4, Max loop arithsofd ‘

Strategy Critic Prog

Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc

Iteration 1: 55 initial goals, 1 remaining goals, 1s to siifypl’s to plan

1t e flof [| [[] [Jeff [| |e
(prog analysis) tightlyConstrainVar§ elementelementa, [i]), [j]),r])

(inner loop) €= 0)A (r < ((i =2200)+ (j = 200)))
Iteration 2: 58 initial goals, 5 remaining goals, 7s to siiiypR9s to plan

2 binv O) ()
2 rinv [) [
1 rinv | I)

(prog analysis) constrainVargr])
(outer loop) ¢ > 0) A (r <24200)
(inner loop) € > 0)A (r < ((i =2200)+ (j = 200)))

Iteration 3: 61 initial goals, 4 remaining goals, 9s to siifiypP7s to plan

1 rtc @) () [
2 rinv e 0 ()
1 rinv [I BN

(prog analysis) tightlyConstrainVarfr, i])
(outer loop) (€ =0)A (r <24200)A ((r = 0) A (r < (i = 2200)))
(inner loop) ¢ >0)A (r <((i *2200)+ (j = 200)))

Iteration 4: 67 initial goals, 5 remaining goals, 32s to difgp73s to plan

2 binv Ol O | O ® ®
2 rinv [) [
1 rtc e o | o

In iteration 3, proof failure analysis requests the intrctthin of tighter constraints
for variablesr andi. Through program analysis, tighter constraints are disey forr
and are introduced through a strengthened invariant. iatit 4, with the strengthened
invariant in place, every goal is provable. However, desthis, proof failure analysis
requests the introduction of tighter constraints for theesaariables andi and also for
variablesa andj. This flawed proof failure analysis occurs as trensitivity strategy
fails to prove two provable goals. The key problem is thatthesproof is developed,
multiple occurrences of variablemerge. Theransitivity strategy treats each occurrence
independently, leading to the introduction of weaker ca@ists and the failure of the
proof.

8.4.5 Subprogram MatrixMult

The initially annotated MatrixMult subprogram is shown iilglre 8.5. The subprogram
performs matrix multiplication.

113

package MatrixMult_Package is
subtype I_T is Integer range 0 .. 3;
subtype E_T is Integer range -9 .. 9;
subtype R_T is Integer range
((E_T’First*E_T’Last)*((I_T’Last-I_T’First)+1))..
((E_T’Last*E_T’Last)*((I_T’Last-I_T’First)+1));
type InOne_T is array (I_T) of E_T;
type InTwo_T is array (I_T) of InOne_T;
type OutOne_T is array (I_T) of R_T;
type OutTwo_T is array (I_T) of OutOne_T;
procedure InitToZero(R: out OutTwo_T);
--# derives R from ;
procedure MatrixMult(A: in InTwo_T; B: in InTwo_T; R: out OutTwo_T);
--# derives R from A, B;
end MatrixMult_Package;

package body MatrixMult_Package is
procedure InitToZero(R: out OutTwo_T)
is
begin
for I in I_T loop
for J in I_T loop
R(I)(J):=0utTwo_T’First;
end loop;
end loop;
end InitToZero;
procedure MatrixMult(A: in InTwo_T; B: in InTwo_T; R: out OutTwo_T)
is
M: Integer;
begin
InitToZero(R);
for I in I_T loop
--# assert true;
for J in I_T loop
--# assert true;
M:=0;
for K in I_T loop
--# assert true;
M:=M+A(I) (K)*BK)(1);
end loop;
R(I) (1) :=M;
end loop;
end loop;
end MatrixMult;
end MatrixMult_Package;

Figure 8.5: MatrixMult subprogram

114

Cyclomatic complexity: 4, Max loop vars: 7, Max loop arithsof2

Strate Critic Pro
Goals | Form %y 9

ef‘rc‘tr‘ri cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘ic

Iteration 1: 102 initial goals, 4 remaining goals, 2s to difgp43s to plan

4 | e JoJolo| [| [| [ef | |

(prog analysis) tightlyConstrainVar§m, elementelemen(a, [i]), [K]),
elementelementp, [K]), [j1)])

(inner-mostloop) 1> (kx—-81))A (m< (k= 81))

Iteration 2: 104 initial goals, 3 remaining goals, 5s to difgpl21s to plan

1 rinv [B B I)

2 rtc [I BN)

115

8.4.6 Subprogram OpenPortScan

The initially annotated OpenPortScan subprogram is showkigure 8.6. The subpro-
gram counts the number of open ports within a provided rafige range is expressed
through a starting port and a number of subsequent ports.

package OpenPortScan_Package is
subtype PortRange is Integer range 0..(2%*16)-1;
subtype PortTotal is Integer range 0..(PortRange’Last-PortRange’First)+1;
type Ports is array (PortRange) of Boolean;
function PortIsOpen(StatusOfPorts: in Ports;

Port: in PortRange) return Boolean;
procedure OpenPortScan(StatusOfPorts: in Ports;
PStart: in PortRange;
PNum: in PortRange;
TOpen: out PortTotal;
Error: out Boolean);

--#derives TOpen, Error from StatusOfPorts, PStart, PNum;
end OpenPortScan_Package;

package body OpenPortScan_Package is
function PortIsOpen(StatusOfPorts: in Ports;
Port: in PortRange) return Boolean
is
begin
return StatusOfPorts(Port);
end PortIsOpen;
procedure OpenPortScan(StatusOfPorts: in Ports;

PStart: in PortRange;
PNum: in PortRange;
TOpen: out PortTotal;
Error: out Boolean)
is
begin
Error:=False;
TOpen:=0;

if ((PStart+PNum)<=PortRange’Last) then
for I in PortRange range PStart..(PStart+PNum) loop
--# assert true;
if (PortIsOpen(StatusOfPorts, I)) then
TOpen:=TOpen+1;
end if;
end loop;
else
Error:=True;
end if;
end OpenPortScan;
end OpenPortScan_Package;

Figure 8.6: OpenPortScan subprogram

116

Cyclomatic complexity: 5, Max loop vars: 5, Max loop arithsofd

Strategy Critic Prog
Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc
Iteration 1: 45 initial goals, 3 remaining goals, 1s to siifypbs to plan
2 rinv @) ° ®
1 rtc ¢}))
(prog analysis) coupleWithEntryVar§pstart pnunj)
(sole loop) pstart= pstartentry) A (pnum= pnumentry
Iteration 2: 48 initial goals, 3 remaining goals, 2s to siifiyplL1s to plan
2 rinv @) () e o |0
2 rtc 0) e o | o

(prog analysis) tightlyConstrainVarftopeni, pnum pstarf)

(sole loop)

(= pstartentry) A (i < (pstartentry+ pnumentry)) A
((pstart+ pnum) < 65535)A

(topen=> 0) A (topen< (i — pstartentry))

‘ Iteration 3: 63 initial goals, 0 remaining goals, 3s to siifyp¥s to plan

117

8.4.7 Subprogram ResetArray

The initially annotated ResetArray subprogram is shownigufe 8.7. The subprogram
resets all elements of an array to a provided integer vatulrgy as this value is within
the element type of the array.

package ResetArray_Package
is
subtype AR_T is Integer range 0..100;
subtype AE_T is Integer range 0..10;
type A_T is array (AR_T) of AE_T;
procedure ResetArray(V: in Integer; A: in out A_T);
--# derives A from V, A;
end ResetArray_Package;

package body ResetArray_Package
is
procedure ResetArray(V: in Integer; A: in out A_T)
is
begin
if (V>=AE_T’First and V<=AE_T’Last) then
for I in AR_T loop
--# assert true;
A(I):=V;
end loop;
end if;
end ResetArray;
end ResetArray_Package;

Figure 8.7: ResetArray subprogram

Cyclomatic complexity: 3, Max loop vars: 3, Max loop aritho® ‘

Strategy Critic Prog

Goals | Form ef [rc [tr [ri[lec|celev|tc|fc|ty|Ir]ts]ic

Iteration 1: 45 initial goals, 3 remaining goals, 1s to siifiypBs to plan

2 [nc ool | | [[[[[[[e]
(prog analysis) tightlyConstrainVargv])

(sole loop) v=0)A(v< 10)

‘ Iteration 2: 20 initial goals, 0 remaining goals, 1s to siifypPs to plan ‘

118

8.5

SPADEase is evaluated against two industrial applicatibhese applications include the
Ship Helicopter Operating Limits Information System (SHS)L[KHCPO0O]. Each appli-
cation has roughly fifteen thousand lines of code. In venifyexception freedom, each
application leads to roughly seven thousand VCs. The agpics have been verified as
being free from exceptions. Further, the design and impieate®n of the applications

Industrial Subprograms

took this verification task into consideration.

Our attention is focused on loop-based code that is not aattoatly verified by the
SPARK Approach. On this basis, the industrial subprogramsewollected via the fol-

lowing procedure:

e Remove all loop invariants- The industrial applications havefSgient invariants
to verify exception freedom. These invariants are remoweectfiect the genuine

verification dfort.

e Apply the SPARK Approach - The SPARK Approach is applied to generate the

initial and remaining VCs for each subprogram.

e Collect loop-based subprograms with remaining VCs Each subprogram with at
least one loop and some remaining VCs is investigated. $gbgms entirely writ-
ten in SPARK, and not associated with control loops, areectdld for evaluation.

Recall from Chapter 7 that our program analyser operates restected subset of
SPARK as MiniSPARK. For this reason, the program analygieetsof the industrial
evaluation was achieved by manually simulating the progaasalysis heuristics.

8.5.1 Subprogram 1

‘ Cyclomatic complexity: 3, Max loop vars: 3, Max loop arithsof®

Strategy Critic Prog
Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc
Iteration 1: 38 initial goals, 2 remaining goals, 3s to siifypbs to plan
1 rinv @) o]
1 rtc ¢}) °
Iteration 2: 39 initial goals, 2 remaining goals, 2s to siifiypBs to plan
1 rinv @) o [
1 rtc ¢}) o

Iteration 3: 41 initial goals, 1 remaining goals, 2s to siifypl’s to plan

1

| ric

[o]

‘ Iteration 4: 43 initial goals, 0 remaining goals, 2s to siifiypBs to plan

119

8.5.2 Subprogram 2

8.5.3

8.5.4

Two subprograms of similar functionality produced exattlg same results. At it-
eration 1, SPADEase requests an engineer to constrain éaobmsgray. In response,

Cyclomatic complexity: 5, Max loop vars: 5, Max loop arithsofd

Goals

Form

Strategy

Critic

Prog

ef‘rc‘tr‘ri

CC‘CG‘CV‘tC

‘fc

ty‘lr‘ts‘ic

Iteration 1: 127 initial goals, 11 remaining goals, 19s toify, 46s to plan

11 [e o] | |

Iteration 2: 135 initial goals, 0 remaining goals, 17s toglifiy, 29s to plan

Subprogram 3

Cyclomatic complexity: 4, Max loop vars: 8, Max loop aritho(3

Goals | Form Strategy . Critic Prog .
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc
Iteration 1: 69 initial goals, 5 remaining goals, 19s to difgp20s to plan
2 rinv e)))
3 rtc @) [) ®
Iteration 2: 75 initial goals, 3 remaining goals, 20s to difgpl8s to plan
1 rtc @) [[
2 rtc @)) [
‘ Iteration 3: 87 initial goals, O remaining goals, 19s to difgp7s to plan
Subprograms 4 and 5
‘ Cyclomatic complexity: 4, Max loop vars: 4, Max loop arithsofd
Strategy Critic Prog

Goals

Form

ef‘rc‘tr‘ri

CC‘CE‘CV‘IC

| fc

ty‘lr‘ts‘ic

Iteration 1: 86 initial goals, 4 remaining goals, 6s to siifyplL10s to plan

4 e JJof | [flef [| [[[|
Iteration 2: 86 initial goals, 4 remaining goals, 6s to siiiypB9s to plan

2 rtc o|lo|o °

2 rtc e o o
Iteration 3: 90 initial goals, 6 remaining goals, 12s to difgp243s to plan

2 rinv L I B R

4 rtc o o o

appropriate user rules are manually introduced to comsting array.

120

8.5.5 Subprogram 6

‘ Cyclomatic complexity: 4, Max loop vars: 13, Max loop arithso 3 ‘

Strategy Critic Prog

Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc

Iteration 1: 182 initial goals, 9 remaining goals, 61s toifig, 107s to plan
2 rinv @) ®)
7 rtc @) () [

Iteration 2: 185 initial goals, 9 remaining goals, 65s toifig, 276s to plan
2 rinv @) () [)
7 rtc O (] (]

Iteration 3: 191 initial goals, 7 remaining goals, 65s toglify, 113s to plan

3 rtc O]l O |0) ()
2 rtc O | O () [
2 rtc ® | ® | ®

Iteration 4: 203 initial goals, 5 remaining goals, 706s toify, 198s to plan

1 rinv [A B)
1 rinv [) [
3 rtc [I)

In iteration 3, SPADEase fails to make any progress for twalgydHowever, for other
goals in the same iteration, proof failure analysis triggere introduction of stronger
invariants. In iteration 4, with these stronger invariantplace, the two goals are proved
by the Simplifier.

8.5.6 Subprogram 7

‘ Cyclomatic complexity: 9, Max loop vars: 7, Max loop arithsofd ‘

Strategy Critic Prog
ef‘rc‘tr‘ri cc‘ce‘cv‘tc‘fc ty‘lr ‘ts‘ic

Goals | Form

Iteration 1: 626 initial goals, 25 remaining goals, 28s toify, 335s to plan
4 | e ol [| [Jef | [[[[e]
Iteration 2: 626 initial goals, 23 remaining goals, 27s toify, 390s to plan
2 [e flof | [[| [ef | [ef | |
Iteration 3: 644 initial goals, 12 remaining goals, 24s toify, 323s to plan
2 [e JoJoJof [[| | [ef | | [e

Iteration 4: 650 initial goals, 11 remaining goals, 26s toify, 343s to plan
2 | e Jojojof [[| | [ef [e] |

Iteration 5: 656 initial goals, 11 remaining goals, 29s togdify, 352s to plan
2 | e JojoJol [| [| [ef [| [e

Iteration 6: 662 initial goals, 9 remaining goals, 29s toifig, 361s to plan
2 | e JJoJoJol [| [| [ef [|efs

In iteration 5, proof failure analysis requests the intrctthin of tighter constraints
for selected variables. Through program analysis, tigtdestraints are discovered and

121

introduced through a strengthened invariant. Howevetgiraiion 6, proof failure anal-
ysis requests the introduction of tighter constraints faatly the same variables. The
program analyser is unable to deliver tighter constrardssing SPADEase to make no
more progress on these goals. From inspecting the code, @gkmlity constraint is not
discovered by the program analyser. Generalisations nmatie2int_constraint method,
to conform to its property type, prevent the equality caanstrfrom being discovered. If
manually introducing the equality constraint, neitherSmaplifier nor SPADEase can au-
tomatically prove the goals. The key step in the proof ineslexploiting a contradiction
among the hypotheses.

In each iteration, goals are rejected by thegeted_goal method. These goals all
relate to verifying preconditions. While SPADEase doescooisider these goals directly,
invariants introduced to advance the verification of exoepreedom lead to the number
of these unconsidered remaining goals, 0 seconds fallom ® in iteration 1 to 5 in
iteration 6.

8.5.7 Subprogram 8

‘ Cyclomatic complexity: 8, Max loop vars: 10, Max loop arithso 0 ‘

Strategy Critic Prog
ef‘rc‘tr‘ri cc‘ce‘cv‘tc‘fc ty‘lr ‘ts‘ic

Goals | Form

Iteration 1: 166 initial goals, 4 remaining goals, 6s to difgp30s to plan

2 rtc ® | ®
1 rinv O () ()
1 rtc O ®)

Iteration 2: 166 initial goals, 4 remaining goals, 6s to difgp34s to plan

2 rtc ® | ®
1 rinv O ()
1 rtc @) (]

Iteration 3: 166 initial goals, 4 remaining goals, 6s to difgp44s to plan
3 rtc ® | ®
1 rinv ® ®

In iteration 2 SPADEase requests an engineer to constraomstant array. In re-
sponse, appropriate user rules are manually introduceohsti@in the array.

In iteration 3 SPADEase fails to make any progress for thoeetime check goals.
The key step in proving two of these goals is to introduce a daiscribing the behaviour
of a called function. The third goal becomes provable foltaythe introduction of con-
straints for a constant array. Nevertheless, neither thel8ier nor SPADEase proves
the goal. The key steps in its proof involve simplifying anpimation conclusion and
exploiting transitive constraints among hypotheses.

In iteration 3 SPADEase fails to make any progress for a matgrinvariant goal.
The goal is not provable as a variable is under constrainbd.pfogram analyser would
be able to discover an appropriate constraint. Howeverptbef failure occurs during

122

rippling, which does not have critics to trigger specifioatstrengthening. Even with the
necessary constraint in place, rippling is unsuccesstug. Key step in the proof involves
inequality reasoning. SPADEase adopts a form of ripplired it generally more suited
to equational conjectures, hindering the developmenteptioof.

8.5.8 Subprogram 9

‘ Cyclomatic complexity: 7, Max loop vars: 5, Max loop arithsofd ‘

Strategy Critic Prog

Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc

Iteration 1: 411 initial goals, 2 remaining goals, 8s to difgpl42s to plan
1 rtc @) [[
1 rtc o| o °)

Iteration 2: 421 initial goals, 0 remaining goals, 15s toglify, 119s to plan ‘

8.5.9 Subprogram 10

Cyclomatic complexity: 9, Max loop vars: 6, Max loop arithsof2 ‘

Strategy Critic Prog

Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc

Iteration 1: 411 initial goals, 2 remaining goals, 3s to difgpl8s to plan
1 rinv e)))
1 rtc @) [[

Iteration 2: 156 initial goals, 1 remaining goals, 3s to difgpl6s to plan
1t Jre ol | | [| [e] [[ef | |
Iteration 3: 164 initial goals, O remaining goals, 3s to difgpl5s to plan ‘

8.5.10 Subprogram 11

‘ Cyclomatic complexity: 8, Max loop vars: 7, Max loop arithso® ‘

Strategy Critic Prog

Goals | Form ef‘rc‘tr‘ri cc‘ce‘CV‘tC‘fC ty‘lr‘ts‘ic

Iteration 1: 151 initial goals, 5 remaining goals, 14s toglifiy, 43s to plan
1 rinv e)))
3 rtc @) [®

Iteration 2: 178 initial goals, 1 remaining goals, 49s toifly, 62s to plan
t e ol [[[[[Jef | | | [e
Iteration 3: 180 initial goals, 1 remaining goals, 54s toglifiy, 62s to plan
t fnefof [[[[[Jeof | | | [e

In iteration 2, proof failure analysis requests the intrctthin of tighter constraints
for selected variables. Through program analysis, tigtbesstraints are discovered and
introduced through a strengthened invariant. Howevetteiraiion 3, proof failure anal-
ysis requests the introduction of tighter constraints faatly the same variables. The
program analyser is unable to deliver tighter constrardassing SPADEase to make no
more progress on this goal.

123

8.5.11 Subprogram 12

Cyclomatic complexity: 4, Max loop vars: 6, Max loop arithsof®

Goals

Form

Strategy

Critic

Prog

ef‘rc‘tr‘ri

cc‘ce‘cv‘tc‘fc

ty‘lr‘ts‘ic

Iteration 1: 57 initial goals, 1 remaining goals, 1s to siifyp¥s to plan

1

‘ rinv H O‘

Iteration 1: 68 initial goals, 1 remaining goals, 1s to siifiypbs to plan

1

| e || o]

Iteration 1: 74 initial goals, 0 remaining goals, 1s to siifiypbs to plan

8.5.12

Subprogram 13

Cyclomatic complexity: 3, Max loop vars: 5, Max loop arithsof®

Goals

Form

Strategy

Critic

Prog

ef‘rc‘tr‘ri

cc‘ce‘cv‘tc‘fc

ty‘lr‘ts‘ic

Iteration 1: 36 initial goals, 1 remaining goals, 1s to siifiypBs to plan

1 [vflof [| [[e] [| [| | [e]
‘ Iteration 2: 40 initial goals, 0 remaining goals, 1s to siifiypBs to plan
8.5.13 Subprogram 14
‘ Cyclomatic complexity: 14, Max loop vars: 7, Max loop arithso 0
Strategy Critic Prog
Goals | Form - -
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘lc
Iteration 1: 265 initial goals, 5 remaining goals, 4s to difgp41s to plan
2 binv || o))
3 inv @) o]
Iteration 2: 380 initial goals, 2 remaining goals, 7s to difgp84s to plan
2 Jboinvfol | [[[e] | [| [[o]

In iteration 1 proof failure analysis requests that vaesaldre coupled with their en-
try variables. Through program analysis, appropriate @gs are discovered and in-
troduced through a strengthened invariant. However, duwekoown limitation of the
SPARK Approach, these invariants are not interpreted ctiyreAs a consequence, in
iteration 2, the strengthened invariants are not presetieimemaining goals, 0 seconds.
Consequently, proof failure analysis requests that thees@amiables are coupled with
their entry variables. SPADEase is unable fi@ofurther constraints, and the verification
fails.

124

8.5.14 Subprogram 15

‘ Cyclomatic complexity: 8, Max loop vars: 5, Max loop arithso®

Goals

Form

Strategy

Critic

Prog

ef‘rc‘tr‘ri cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘ic

Iteration 1: 128 initial goals, 2 remaining goals, 1s to difgplls to plan

2 v [of | | |

(o [| [| [e]
‘ Iteration 2: 144 initial goals, 0 remaining goals, 2s to difgpl2s to plan ‘
8.5.15 Subprogram 16
‘ Cyclomatic complexity: 3, Max loop vars: 5, Max loop aritho® ‘
Goals | Form Strategy _ Critic Prog _
ef‘rc‘tr‘rl cc‘ce‘cv‘tc‘fc ty‘lr ‘tS‘IC

Iteration 1: 48 initial goals, 5 remaining goals, 1s to siifyp#s to plan

1 v ol [[| [ef [[| |

Iteration 2: 58 initial goals, 5 remaining goals, 1s to siifypbs to plan

1 [e Jof [[| [[ef | [[of |

‘ Iteration 2: 60 initial goals, 4 remaining goals, 1s to siifyp¥s to plan

In each iteration, goals are rejected by thyeted_goal method. Two goals relate to

proving preconditions while two goals involve real arithiioe

8.5.16 Subprogram 17

‘ Cyclomatic complexity: 3, Max loop vars: 5, Max loop arithso®

Goals

Form

Strategy

Critic

Prog

ef‘rc‘tr‘ri cc‘ce‘cv‘tc‘fc ty‘lr‘ts‘ic

Iteration 1: 37 initial goals, 6 remaining goals, 1s to siifypBs to plan

L v e | | || [ef | | [|

Iteration 2: 58 initial goals, 5 remaining goals, 1s to siifiyp4s to plan

L [Jeof | | | [[ef | [e] |

‘ Iteration 2: 60 initial goals, 4 remaining goals, 1s to siifiypBs to plan

In each iteration, goals are rejected by theyeted_goal method. Three goals relate

to proving preconditions while two goals involve real amtic.

8.5.17 Subprogram 18

‘ Cyclomatic complexity: 3, Max loop vars: 5, Max loop arithso®

Strategy Critic

Goals | Form

Prog

ef‘rc‘tr‘ri cc‘ce‘cv‘tc‘fc

ty‘lr‘ts‘ic

Iteration 1: 39 initial goals, 6 remaining goals, 1s to siifiypBs to plan

1 v ol | [|| [ef [[| |

Iteration 2: 49 initial goals, 6 remaining goals, 1s to siifiyp4s to plan

1 e Jof | [|| | [ef | [[ef |

‘ Iteration 2: 60 initial goals, 4 remaining goals, 1s to siifiypBs to plan

125

In each iteration, goals are rejected by theyeted _goal method. Three goals relate
to proving preconditions while two goals involve real amtic.

8.5.18 Subprogram 19

‘ Cyclomatic complexity: 3, Max loop vars: 4, Max loop arithsofd ‘

Strategy Critic Prog
ef‘rc‘tr‘ri cc‘ce‘cv‘tc‘fc ty‘lr ‘ts‘ic

Goals | Form

Iteration 1: 34 initial goals, 1 remaining goals, 1s to siifypbs to plan
1 (e flof [| [[| [ef [| [| |e

‘ Iteration 1: 38 initial goals, O remaining goals, 1s to siifypPs to plan ‘

8.6 Overall Analysis

An overall analysis of the evaluation is performed. Thetrefeship between subprogram
complexity and prooffort is considered in 88.6.1. The relationship between sadypm
complexity and the number of verification iterations is ddased in 88.6.2.

8.6.1 Comparing Complexity and Proof Bfort

SPADEase is an enhancement of the SPARK Approach, typigpdyating over a number
of verification iterations. ThefBort involved in proving that a subprogram is free from
exceptions is calculated as the total simplification andmlag time across all iterations.
Note that, since the program analysis heuristics were nilgrsilulated for the industrial
subprograms, their execution times are not available arlesnot considered.

There is no definitive method for measuring subprogram cerigl Thus, a com-
plexity measure was incrementally developed as discussed/b

e First complexity measure- Cyclomatic complexity reports on the path complexity
of a subprogram. This metric is used in calculating the fioshplexity measure as
follows:

first complexity= cyclomatic complexity (8.1)

The first complexity measure is compared against préfoftein Figure 8.8. The
spread of results suggest that additional factors are imfing proof éfort.

e Second complexity measure The maximum number of variables inside a loop is
determined. The metric is used in calculating the secondptexity measure as
follows:

second complexity cyclomatic complexity (max loop vars+ 1) (8.2)

126

The second complexity measure is compared against piftmtt én Figure 8.9.
Through considering the role of variables, there is a closktionship between
complexity and proof £ort. However, it still appears that additional factors are
influencing proof &ort.

Third complexity measure - The maximum number of distinct arithmetic opera-
tors inside a loop is determined. The metric is used in catog the third com-
plexity measure as follows:

third complexity= cyclomatic complexity (max loop vars+ 1) ©.3)
(max loop arith ops- 1) '

The third complexity measure is compared against prdiartein Figure 8.10.
Through considering the role of arithmetic operators, éh@tionship between com-
plexity and proof &ort is clearer. Two particularly outlying values, corresgimg
to Subprogram Z&andSubprogram 10have both high complexity and low proof ef-
fort. In both cases, the Simplifier is particularlfieient and the proof plans quickly
identify the need for invariant discovery. It is speculatiegt a richer consideration
of term complexity would deliver a stronger relationshipterall proof g€fort.

2500 T T T T T

2000 i

1500 1

Proof Effort

1000 1

500 —

° .
: ° ® L]
0 ‘ ® °] ° ° 1 1
2 4 6 8 10 12 14
Complexity 1

Figure 8.8: First complexity measure against pratdre

127

2500

2000 .
[]
1500 y
S
=
Ll
g
&
1000 y
500 |- N .
[] []
[') []
L] [
0 e 8 : ol X] 1 () 1 °® 1 1
0 20 40 60 80 100 120
Complexity 2
Figure 8.9: Second complexity measure against priofte
2500 T T T T
[]
2000]
[]
1500 b
S
=
L
s
&
1000 b
500 | o .
L[] []
L] . . o o ° . .
0 S o []} [] [} 1 1 1
0 50 100 150 200 250

Complexity 3

Figure 8.10: Third complexity measure against pratéme

128

8.6.2 Comparing Complexity and Iterations

The third complexity measure is compared against the numibegrification iterations
Figure 8.11. As complexity falls, there is a trend for fewterations.

55 —

45 —

Iterations
SN
T
[)
[]
[)
[]
1

35 1

25 1

ol
0 50 100 150 200 250
Complexity 3

Figure 8.11: Third complexity measure against iterations

129

Chapter 9
Conclusions

In this concluding chapter the specific contributions andewvimplications of the thesis
are considered. The main contributions of our approachanrsidered in §9.1, highlight-
ing related work. In 89.2 limitations and future work are siiered. Finally, a closing
summary is made in §9.3.

9.1 Contributions

In 81.2 the six main contributions of this thesis were o@ftinBelow, these contributions
are repeated, highlighting how each has been achieved acdluag related work.

Configurable and Sound

Present a configurable and justifiably sound approach towsa verifica-
tion.

Proof planning [Bun88] makes a clear distinction betwesrsitpporting infrastruc-
ture and its controlling heuristics. Our approach mairgdims distinction for the task of
program verification. Proof discovery techniques are aaptas proof plans while in-
variant discovery techniques are captured as program sisdlguristics. Consequently,
the approach may be readily configured by modifying its reties accordingly.

Where verification tools may be subject to configuration gbendness of these con-
figurations becomes a key concern. Proof planning addréisisesoncern by making a
clear separation between plausible and demonstrativengegs Our approach maintains
this distinction by strictly operating within a sound pragr verification environment.
All discovered proofs are checked inside a proof checket, ahdiscovered invariants
are checked indirectly through program verification. Thes@/e positioning of sound-
ness concerns is also seen in program generation [WH9943. typically impractical
to verify the correctness of a program generation systesteda, translation validation
is performed, verifying the correctness of each generategram. Thus, the approach
positions soundness concerns in a more tractable location.

130

Cooperative Integration

Demonstrate that more targeted anflegtive automation can be achieved
through the cooperative integration of distinct technaésy

Program verification involves both proof discovery and maat discovery. Our ap-
proach tackles these related tasks through a cooperategration. Where proof discov-
ery is unsuccessful, proof failure analysis attempts tert@ne the cause of the failure.
Where the failure is traced to a weakness in the specificatogeted invariant discovery
is triggered. The collaborative style means that our apgrdacuses on addressing the
genuine verification challenge. A related approach is eyguldoy Houdini [FLO1] to
support invariant discovery in E3fava [FLL*02]. Houdini initially discovers candidate
invariants without considering the verification problens &consequence, the candidate
invariants may not be relevant. To address this concerngdhdidate invariants are in-
troduced and program verification is performed. Those iawés that are incorrect or
irrelevant are removed. Thus, Houdini exploits the genugrdication challenge to filter
its discovered invariants. Nevertheless, the collabonat limited and retrospective. Our
approach works towards the verification challenge, adargspecific weaknesses in the
specification through targeted invariant discovery. Cquosetly, our approach naturally
delivers pertinent invariants, without requiring a filtegiphase.

Proof Discovery

Present proof plans that support the verification of exaeptreedom.

Proof plans are presented that support the automated aginficof exception free-
dom. Separate plans are developed for VCs correspondingntime checks and in-
variants. The proof plans are expressed at a high-level iexaticit method-language,
facilitating their understanding and reuse. The feasybdf this reuse is exploited in our
proof plans. Rippling [BBHIO5] was originally developedgsapport proof by induction.
Itis reused in our approach, to prove loop invariant VCs.

Invariant Discovery

Present invariant discovery heuristics that support thefieation of excep-
tion freedom.

Program analysis heuristics are presented that autortatitscover invariant prop-
erties suitable for advancing a proof of exception freed®ime heuristics are expressed
in a consistent form as program analysis methods, fadilgatheir understanding and
reuse. A key technique employed is the generation and gpbfinecurrence relations to
generate invariant properties. The Runcheck system [Gaipted a similar approach.
Transformations made to program variable were collectezthasge vectorsessentially

131

the same as recurrence relations. Our approach extendastiveque by considering pro-
gram context, nested loops, and generating bounded constr&urther, our approach
exploits a powerful recurrence relation solver.

Implementation as SPADEase

Implement our approach as SPADEase.

Our approach has been implemented as an extension to theKSRARroach as
SPADEase. The primary components of SPADEase are a prowfigrlaand a program
analyser. These systems have been developed to directhpidiqur approach. Where
appropriate, SPADEase has reused existing componentse Ti@ude the Clam method-
language [BVHHS90], the clp(FD) constraint solver [COCAfig YACAS computer al-
gebra system [YAC], a SPARK grammar, a SPARK tokeniser, theg&jo program trans-
formation system [Vis01], and the PURRS recurrence reiaaver [PUR].

Evaluation

Evaluate SPADEase against both textbook and industrighsagrams.

Our approach is evaluated against industrial subprogr&ssur program analyser
only supports a subset of SPARK, the program analysis aspsahulated. Of the 20
subprograms considered, our approach completes the aédficof exception freedom
for 12. In 3 cases, our approach completes the verificaticall afonsidered exception
freedom goals, however there are residual goals relatedaioarithmetic or verifying
preconditions which are not considered by our approach. dasg, verification was not
possible due to a limitation of the SPARK Approach. In the aening 3 cases, our ap-
proach advances the verification of exception freedom, butancompletion.

9.2 Limitations and Future Work

Limitations of our approach are considered in the sectigevly indicating how these
may be addressed through future work.

9.2.1 Support Preconditions and Postconditions

Preconditions and postconditions may provide valuablesitaimts in analysing a sub-
program. However, SPADEase currently ignores these. Tigalion may be addressed
through the introduction of program analysis heuristies &xploit these constraints. Sim-
ilarly, SPADEase only considers specification strengthgtihrough invariant discovery.
Both precondition and postcondition discovery may be appate to advance a verifica-
tion efort. The limitation might be addressed through the adoptfanore sophisticated

132

abstract predicate satisfies. As modifications to precmmditand postconditions change
the specification, each suggested change would need to bkechiey an engineer.

9.2.2 Adopt Tactic Based Theorem Prover

SPADEase delivers both configurability and soundness liyniggbn the soundness of the
SPARK Approach. However, as detailed in 8B.4, significantifications were made

to the Checker. The changes were required to achievetaatige integration, as the
Checker is not suited to automated control. Such modifinati@mve the potential to un-
dermine soundness and thus would require rigorous verditand validation. The need
for modifications and certification may be avoided by setect tactic based theorem
prover as a proof checker. Such a prover would be suited taaited control without

any modifications.

9.2.3 Automated Lemma Discovery

As described in 8B.4.4, a small collection of theorems wete@duced to support the ap-
plication of SPADEase. In general, the discovery and préstich intermediate lemmas
can hinder a verificationffort. This limitation may be addressed by extending SPADEase
to support automated lemma discovery. Proof failure amaipgyht identify the structure

of a missing lemma, triggering targeted lemma discoverypdrticular, the automated
discovery of lemmas to advance rippling has previously beesstigated [IB96].

9.3 Summary

Our approach provides afffective environment for automated program verification. The
approach strictly enhances an existing program verifinagiavironment. By doing so,
the approach is simultaneously configurable and sound. Eamoach addresses the en-
tire verification challenge, including both proof discoyand invariant discovery. Proof
discovery is achieved via a proof planner and invariantaliscy is achieved via a pro-
gram analyser. Significantly, the two components are c@pety integrated such that
they work together in addressing genuine verification mots. The approach is tailored
to automate the verification of exception freedom in the SRARproach. The approach

is realised as SPADEase and has been favourably evaluaetstloth industrial and
textbook subprograms.

133

Appendix A

PolishFlag Interactive Proof

A.1 Introduction

The partial correctness of the PolishFlag subprogram isidered in 84.4.5. The Sim-
plifier is able to prove a few conclusions, with the remaini@s being stored in an SIV
file, as shown in Figure 4.13. The remaining VCs have beemaati®ely proved inside
the Checker. The corresponding CMD file is split across Fdud and Figure A.2.

1.

consult ’permutation.rul’.

consult ’'polishflag.rls’.

unwrap c#l.

prove c#l by implication.

infer false using inference(2).

prove c#l by contradiction.

done.

unwrap c#2.

prove c#l by implication.

infer false using inference(2).

prove c#l by contradiction.

done.

infer c#7 using permutation(l).

2.

unwrap c#l.

prove c#l by implication.

unwrap h#1.

inst int_q__1.

prove c#l1 by cases on int_g__1=i or int_qg__1<i.
replace c#1: int_gq__1 by i using eq(l).
yes.

no.

done.

infer int_q__1 <= i - 1 using inequals(74).
yes.

yes.

standardise c#1.

yes.

done.

forwardchain h#10.

done.

3.

unwrap c#l.

prove c#l by implication.

infer int_g__1 < i using transitivity(19).
infer i <= j - 1 using inequals(74).

Figure A.1: PolishFlag subprogram interactive proof (CMDYf 2]

134

yes.

yes.

stand c#1.

yes.

done.

infer int_g__1 < i using transitivity(19).

infer int_q__1 < j - 1 using inequals(31).

infer int_q__1 <> j - 1 using inequals(33).

replace c#l: element(update(update(flag, [i], element(flag, [j - 11)),
[j - 11, element(flag, [i])), [int_q__1]) by
element (update(flag, [i], element(flag, [j - 11)),
[int_q__1]) using array(3).

yes.

no.

infer int_q__1 <> i using transitivity(30).

replace c#l: element(update(flag, [i], element(flag, [j - 11)),
[int_qg__1]) by element(flag, [int_qg__1]) using array(3).

yes.

no.

unwrap h#1.

inst int_q__1.

forwardchain h#16.

done.

unwrap c#2.

prove c#l by implication.

infer (element(flag, [i]) = red) using enum(16).

infer j-1 <= int_r__1 using inequals(15).

prove c#l by cases on j-1 = int_r__1 or j-1 < int_r__1.

done.

infer j<= int_r__1 using inequals(102).

infer i < int_r__1 using transitivity(20).

infer i <> int_r__1 using transitivity(30).

replace c#l: element(update(flag, [i], element(flag, [j - 11)),
[int_r__1]) by element(flag, [int_r__1]) using array(3).

yes.

no.

unwrap h#2.

inst int_r__1.

forwardchain h#18.

done.

replace c#7: permutation(update(update(flag, [i], element(flag, [j - 11)),
[j - 11, element(flag, [i])), flag__OLD) by
permutation(update(update(flag, [j - 1], element(flag, [j - 11)),
[i], element(flag, [i])), flag__OLD) using permutation(3).

yes.

no.

replace c#7: update(flag, [j-1], element(flag, [j - 1]1)) by flag using array(2).

yes.

no.

replace c#7: update(flag, [i], element(flag, [i])) by flag using array(2).

yes.

no.

done.

4.

unwrap c#l.

inst i.

done.

unwrap c#4.

unwrap h#2.

inst int_r__1.

prove c#l by implication.

infer j <= int_r__1 using transitivity(l).

forw h#9.

done.

exit.

Figure A.2: PolishFlag subprogram interactive proof (CMBDdf 2]

135

Appendix B

Modifying the SPARK Toolset

B.1 Introduction

This chapter describes modifications made to the SPARK @btdssupport integration
with SPADEase.

B.2 Modifications to the Examiner

The Examiner describes quantified expressions in VCs thrthegfollowing expressions:

for_all (Variable : Type, Expression)

for_some (Variable : Type, Expression)

The white space between the quantifier and its argument®esreamplications in parsing
these expressions. Thus, the Examiner was modified to grévergeneration of this
white space.

B.3 Modifications to the Simplifier

The Simplifier receives the initial VCs, performs simplitioam, and generates corre-
sponding remaining VCs. In generating the remaining VCs, Simplifier renumbers
the conclusions of each VC. This feature makesfiidilt to automatically associate sim-
plified conclusions in the remaining VCs with their origidaim in the initial VCs. To
resolve this, the Simplifier was modified to include an addil switch/norenum. The
switch suppresses the renumbering of conclusions whenraergethe remaining VCs.

B.4 Modifications to the Checker

The Checker is used by SPADEase to check the correctnessauivéred proof plans.
To make this process both feasible and practical, varioudifilnations are made to the
Checker as detailed below.

136

B.4.1 Principled Proof Checking Interface

The Checker operates as an automated proof checker byiregproof commands from a
file rather than interactively from an engineer. The sucoessherwise of the proofftort

is stored as part of the Checker proof log. To integrate mfiexively with SPADEase

a more principled proof checking interface was introduddte Checker was modified to
include an additional switcjitame as described below:

e /tame VCGFile VCId Concld ProofCommandFile ResultFile

— VCGFile- Targeted VCG file.

— VCId- Targeted VC.

— Concld- Targeted conclusion.

— ProofCommandFile Proof command file to be checked.

— ResultFile- Location to store the result of the proof checking. The pited
proof command file is executed to try and discharge the tadgednclusion
of the targeted VC of the targeted VCG file. Where succestfalresult file
will contain ‘true.’, otherwise false.’.

B.4.2 Improve Predictability

During a proof session the Checker is proactive, autombtipeoving conclusions that

are within its capabilities. Consequently, it igfdiult to predict exactly how the Checker
will behave following a proof command. For SPADEase to adiiyetranslate discovered
proof plans into Checker proof command files it is essential the Checker behaves in
a predictable manner. To achieve this, wherethame switch is supplied, the Checker
was modified to deactivate all proactive proof automation.

B.4.3 Richer Proof Commands

Typically, a proof planner is coupled to a tactic based teeoprover, as tactics provide a
powerful mechanism for executing a discovered proof planweéler, the Checker is not
a tactic based theorem prover. This mismatch created coatioins in the technical task
of translating discovered proof plans into Checker proghowand files. In particular, a
single intuitive proof step might be translated as an inedlmesting of multiple proof
commands. Consequently, the resulting proof command fikebath dificult to generate
and to comprehend. To avoid these complications, the Chedke extended to support
additional proof commands where thi@ame switch is present. The following minor
proof commands were added:

e tame_subgoal_on_exp BoolExp- Generate a subgoal containing the hypotheses
of the current goal and the single conclusion as the BoolgpressiorBoolExp

137

tame_subgoal_on_conc Concld- Generate a subgoal containing the hypotheses
of the current goal and the single conclusion associatdutiv identifiertConcld

tame_done - Appeal to the automated capabilities of the Checker to erawvy
conclusion in the current goal.

tame_all_done - The current goal is closed if it does not contain any conchs

tame_finish - Exit the Checker, and store the success of the proof in thdtre
file.

Further, a powerful rewrite command, with four alternatimedes of operation, was in-
troduced:

e tame_rewrite HypOrConc: WholeExp: Poswith LHSExpto RHSEXxp

if Conditionusing RewriteRuleldin Direction -
Rewrite using a previously loaded rewrite rule.

tame_rewrite HypOrConc: WholeExp: Poswith LHSExpto RHSEXxp

if Conditionfrom HypExpin Direction -
Rewrite using a hypothesis as a rewrite rule.

tame_rewrite HypOrConc: WholeExp: Poswhere HypEXxp-
Rewrite using a hypothesis as an alternative expressianuer

tame_rewrite HypOrConc: WholeExp: Poswith EvalExpis Value-
Rewrite an expression to its evaluated value.

Where the meaning of each argument is as detailed below:

HypOrConc- denotes whether a hypothesis or conclusion is being renréshyp
or concrespectively.

WholeExp The whole expression of the selected hypothesis or coioclus

Pos- The position of the subexpression within the whole expogsthat is to be
rewritten. The position is expressed as a list of integerscdbing a path through
the expression structure.

LHSEXxp- The expression being rewritten from. This must match tiespression
at positionPosof WholeExp

RHSEXxp The expression being rewritten to.

Condition- A condition associated with a rewrite rule. For the rule éodpplied,
the condition must be eithérue or match with a hypothesis.

RewriteRuleld The unique identifier of a rule. The corresponding rulepatd
for Direction, must match withHSExp RHSExpandCondition

138

e Direction- Is eithernormalor reversedo denote the direction that a rewrite rule is
to be applied.

e HypExp- The expression of a selected hypothesis.

e EvalExp- The evaluatable expression being rewritten from. Thistrmetch the
subexpression at positidtosof WholeExp

e Value- The result of evaluating an expression. This must matchebalt of evalu-
atingEvalExp

The rewrite command may be applied to hypotheses or conclsisTo minimise polarity
concerns, only the whole expression or a top level conjurest be rewritten. Signifi-
cantly, this restriction excludes the rewriting of quasetifiexpressions.

B.4.4 Adding Theorems Through User Rules

As discussed in 86.6, properties and definitions are helctereal rule files. A large
number of standard rules are available. These rules aractatr as theorems and used
to support the vast majority of our proof plans. However\a @iesired theorems are not
available as part of the standard rules. To resolve thigogpiate theorems are introduced
through user rules, as detailed in the sections below.

Alternative Views

The select_alt_view_rule predicate draws upon the available rewrite rules to exphbre
ternative views of an expression. To support this predjcasorems are introduced that
describe the preservation of an expression and the rotatimequality expressions:

Yy : - (true— (y =))) (B.1)
Y(y, z: integer (true — ((y > 2) = (z<)))) (B.2)
Y(y,z: integer (true — ((y>2) = (z<Y)))) (B.3)

Decompose Conjuncts

In the Checker, conjuncts are decomposed through simpidicatrategies. Such strate-
gies are unpredictable and thus not appropriate for proe¢kihg. Instead, specific the-
orems are introduced to support the decomposition of catgun

Y(y,z: boolean (true — ((y A 2) - V))) (B.4)
Y(y, z: boolean (true — ((y A 2) — 2))) (B.5)

139

Transitivity Decomposition

In progressing a transitivity step, rewrite rules are reggiithat decompose inequality
expressions. To support this process, the following thaerare introduced:

Y(x,y,z: integer (true - (X>y) A (0> 2) - (x> (Y +2))) (B.6)
Y(x,y,z: integer (true —» (X<y) A (0<2) - (X< (Y+2))) (B.7)
Transitivity Unblock

In unblocking a transitivity step, rewrite rules are reqdithat ground partially instanti-
ated inequality expressions. To support this, the follgnhreorems are introduced:

Y(x : integer (true — (true — (X > X)))) (B.8)
Y(x : integer (true — (true — (X < X)))) (B.9)

Rippling

For rippling, structurally preserving rewrite rules arguaed. However, some key stan-
dard rules are not expressed in a structurally preservimg.fdo resolve this, the follow-
ing theorems are introduced:

Y(X,y,z: integet (true — (X+Yy) +2) = ((X+ 2 +V)))) (B.10)
Y(X,y,z: integer (true —» ((X—-Yy) +2) = (X+2) —Y))) (B.11)
Y(X,y,z: integer (true = (X +Y) *2) = ((X* 2) + (Y * 2))))) (B.12)

Disjunctive Normal Form

Thedisj_norm_form method draws upon the following theorems to transform ames«<p
sion into disjunctive normal form:

Y(y, z: boolean (true — ((y — 2) = ((=y V 2))))) (B.13)
Y(y,z: boolean(true—» (Y~ 2=(y—> 2 A (z—-V)))) (B.14)
¥(z: boolean (true — ((—=(=(2)) = 2)) (B.15)
V(y,z: boolean (true — ((=(y A 2) = ((=(y) v ~(2))))) (B.16)
Y(y, z: boolean (true — ((=(y Vv 2) = (=(y) A =(2)))) (B.17)
Y(x,y,z: boolean (true = (kVY)A2) = (XA 2 V(YA 2)))) (B.18)
Y(x,Y,z: boolean (true —» (XA (YV 2) = ((XAY) V(XA 2)))) (B.19)

140

Appendix C

Method-Language

C.1 Introduction

The method-language supports the expression of proof plahe method-language is
composed from a number pfedicates The general form of these predicates is shown in
8C.2, while the predicates themselves are detailed in thaireler of this appendix.

C.2 Method-Language Predicates

Each method-language predicate takes the following gefogra:
predicate(Mode Arg,, ..., Mods, Arg,) Provenance
Wherepredicate is the name of the predicat&rg; are its arguments aridode, describes

the mode of each argument as below:

Mode | Description
- An input value.

- An output value.

? Either an input value or an output value.

Provenanceadentifies those predicates that have been reused fromlesewThe symbol
® indicates that the predicate originated from Prolog, wtiikesymbol© indicates that
the predicate originated from Clam.

Method-language predicates occur in a list of the generai:fo

[Predicate, ..., Predicatg] (C.1)

Each predicate may have multiple solutions, which are erplohroughbacktracking

To begin, the predicates are considered in order, fromzl docepting the first solutions
found. Then, backtracking is performed, considering tleeljmates in reverse order, from
z to 1, seeking the first predicatethat has an alternative solution. Where found, the
alternative solution is explored by reconsidering its ggfoent predicates in order, from
y + 1 toz Backtracking is repeated until all alternative solutibase been explored.

141

C.3 Composition

C.3.1 cut

cut ®

By default, every successful predicate is explored thrdeagktracking. This predi-
cate instructs the caller to dismiss all alternative sohsithat exist prior to the cut. The
predicate is valuable where many potential solutions assipte, but only a single solu-
tion is sought.

C.3.2 not

not(+Predicate ®

The predicate is successful whétedicateis unsuccessful.

C.4 Proof Planning

C.4.1 abort plan

abort_plan(+FailureCritique)

This predicate aborts the current plan, reporting failuittgeie FailureCritique

C.4.2 plan_lemmas

plan_lemmas(+HypList +LemmalList+Strategy+ProvedList—Tactic)

This predicate plans each lemmad.i@ammalisas a separate gdaEach lemma forms
the conclusion of the goal, while its hypothesestypList The initial strategy for plan-
ning each lemma iStrategy The proved lemmas are returnedRasvedListalongside a
supporting tactidacticthat introduces the lemmas as hypotheses at the objedt-leve

C.4.3 write _line

write_line(+Tex) ®

This predicate sendgextto the standard output.

1The predicate involves nested proof planning during methgulication, which is not supported by
our proof planner. Instead, nested planning is simulateslitth two communicating methods. The first
method queues the lemmas to be planned, while the seconddnethiects the results. While inelegant,
the technique retains the essential behaviour of this pageli

142

C.5 List Processing

C.5.1 append

append(?FirstList, ?SecondList?CombinedList ®

This predicate is successful were appenddegondListo the end oFirstList gener-
atesCombinedListThe predicate may be used to append two lists together actdtack
over every pair of lists that, when appended, produce acodatti list.

C.5.2 filter _duplicates

filter_duplicates(+ItemList —DuplltemList —UnigltemLis})

This predicate filters duplicate items. Every item that @ppanore than once in
ItemListis reported once iDuplitemList Every item that appears ItemListis reported
once inUnigltemList

C.5.3 select

select(?tem AtemList ZRemitemLigt ®

This predicate is successful whdtem s in ItemList and the remaining items are
RemltemList The predicate may be used to check that an item is in a lisgnmve an
item from a list or to backtrack over all of the items in a list.

C.6 Plan Features

C.6.1 add_under _constrained _vars

add_under_constrained_vars(+SubprogramName-UnderConstrainedVarLijt

This predicate extends the global contextual informatissoaiated with a plan. It
adds the under constrained variadlbslerConstrainedVarLisalongside the name of the
subprogram corresponding to the goaBagprogramName

C.6.2 get_goal category

get_goal_category(—GoalCa)

This predicate reports the category of the goaGaalCat As detailed in §86.5.3, the
global contextual information associated with the plariudes traceability information
that describes how the goal relates to the source code. Tdlecgtegories are derived
from the traceability information as shown in Figure C.1 dedcribed below:

e rtc - A transition from any cut-point to a run-time check.

e rinv - A transition from an invariant returning to the same inaati

143

e binv- A transition between dierent invariants.

e other- All other transitions.

<GoalCat> :=rtc {where<Trace> =
betweenPatf, checkruntime _))} |
rinv {where<Trace> =
betweenPatfassertiori_, Linelnt), assertion_, Linelnt))} |
binv{where<Trace> =
betweenPattassertionf_, FromLineln), assertioii_, ToLineln)) A
(FromLinelnt# ToLinelnd} |
other

Figure C.1: Goal Categories

C.6.3 match _global _context

match_global_context(?MatchEXxp

This predicate is successful where the expresMatchExpmatches an item in the
global contextual information associated with the plan.

C.7 Goal Features

C.7.1 add_constraining _vars

add_constraining_vars(+LocalContextList+VarList —ExtendedLocalContextLjst

This predicate extends the local context informatimtalContextListo record the
constraining variable¥arListasExtendedLocalContextList

C.7.2 get_constraining _vars

get_constraining_vars(+LocalContextList—VarList)

This predicate reports all constraining variables recdidehe local context informa-
tion LocalContextLisasVarList

C.8 Goal Patterns

C.8.1 aux_vars

aux_vars(+Exp —AuxIVarList —Totallnt)

144

As detailed in 86.5.1, auxiliary variables are introduaedupport program analysis.
This predicate searches expressiodp for auxiliary variables, returning those found as
AuxIVarListalongside the total number found &stalint

C.8.2 unconstrained _consts _vars

unconstrained_consts_vars(+Goal, —UnconstrainedConstList
—UnconstrainedVarLigt

This predicate inspectSoal to identify every integer constant and variable that lacks
an explicit upper or lower bound d$nconstrainedConstLisind UnconstrainedVarList
respectively. Note that an exception is made for entry s as these are often con-
strained indirectly, by being related to their correspogdstandard variable.

C.8.3 uncoupled _entry _vars

uncoupled_entry_vars(+Goal, —UncoupledVarList

This predicate inspectSoalto identify all uncoupled variables &mncoupledVarList
Such variables have a corresponding entry variable ye¢ tlsaro hypothesis describing
the relationship between the two variables. For furtheaitiebn entry variables, see the
viable_goal method in §E.13.

C.8.4 under _constrained _vars

under_constrained_vars(+Goal, —UnderConstrainedVarLi¥t

This predicate inspectSoal via a constraint solver, identifying under constrained
variables adJnderConstrainedVarList For further details on the integration of a con-
straint solver see thaable_goal method in 8E.13.

C.9 Analyse Expressions

C.9.1 binary _explode

binary_explode(+Exp, —Op, —LeftExp —RightEXxp

This predicate is successful where expres&®gpis a binary operation. In this case,
the predicate returns the binary operatorys and the left and right expressions as
LeftExpandRightExprespectively.

C.9.2 conjunct _at

conjunct_at(+Exp, —Pos —ConjExp

145

This predicate returns every distinct conjunct witlirp as ConjExpalongside its
positionPos For example, given the expressigm (Y A Z), the conjuncts returned will
beX, YandZ.

C.9.3 elim _bounded _var

elim_bounded_var(+HypList +Var, +Exp, —NewEXp

This predicate eliminates an occurrencevaf in Exp returning the new expression
asNewExp The elimination is supported through interval reasoniiitpe hypotheses
HypListare explored to identify a unique upper and lower boundé&sr Then, depending
on the structure oExp, Var in Expis replaced with these bounds, generatieyvExp

C.9.4 eval exp

eval_exp(+EvalExp —Valug

This predicate is successful where the expresBvalExpcan be evaluated, reporting
the result of its evaluation aégalue Both integer and Boolean evaluation is considered,
as shown in Figure C.2.

<EvalExp> := <BoolEvab
<BoolEval := <BoolEvab A <BoolEval- | <BoolEval v <BoolEvab |
<BoolEvab — <BoolEval | <BoolEvab < <BoolEvab |
-<BoolEval | <EqEvab | <boolean-
<EgEvab := <ExpEvab = <ExpEvalb | <ExpEvab # <ExpEval |
<ExpEval < <ExpEvab | <ExpEvab < <ExpEvab |
<ExpEval > <ExpEvab | <ExpEval > <ExpEvab
<ExpEvalb := <ExpEvab x <ExpEval | <ExpEvab s+ <ExpEval |
<ExpEval div <ExpEval | <ExpEval mod<ExpEval |
<ExpEval + <ExpEvab | <ExpEval — <ExpEval |
—<ExpEval | <integer-

Figure C.2: Evaluatable expressions

C.9.5 exp_at

exp_at(+Exp —Pos —SubExp ©

This predicate returns every subexpression in expregsipasSubExpalongside its
positionPos

C.9.6 exp_explode

exp_explode(+Exp, +Op, —ExpLis)

146

This predicate recursively splits expressiBrp between occurrences @p. The
resulting expressions are returnedeagpList

C.9.7 find _replace

find_replace(+Exp +FindExp +ReplaceExp-ModifiedExp

This predicate replaces every occurrenc&iolExpin Expwith ReplaceExmener-
ating the modified expressidviodifiedExp

C.9.8 ground

ground(+Exp) ®

This predicate succeeds where expres&pdoes not contain any meta-variables.

C.9.9 int_bound _var

int_bound_var(+HypList +Exp —LowerInt —Upperini

This predicate searches the hypothdsgsListto discover tight lower and upper nu-
meric bounds for the integer expressiexp asLowerintandUpperintrespectively. The
predicate is only successful where both an upper and lowendacan be found. The
mechanism for finding numeric bounds is described in Figug C

To find the lower bound, each hypothesis is matched as bedadvstover a
collection of candidate bounds. The largest candidate th@selected as the
tightest lower bound.

Hypothesis match

Candidate bound

ExpInt> BoundInt Boundint
BoundInt< Explnt BoundInt
Expint> Boundint Boundint+ 1
Boundint< Explnt Boundint+ 1

To find the upper bound, each hypothesis is matched as belaisdover a
collection of candidate bounds. The smallest candidatedh@iselected as

the tightest upper bound.
Hypothesis match | Candidate bound
ExpInt< BoundInt Boundint
BoundInt> Expint Boundint
Expint< Boundint Boundint- 1
BoundInt> Expint Boundint- 1

Figure C.3: Discover tight numeric bounds

147

C.9.10 is_inequality _op

is_inequality_op(+Op)

This predicate is successful where oper&gris the inequalityk, <, > or >.

C.9.11 is.int

is_int(+Exp) ®

This predicate is successful if expresskExpis an integer.

C.9.12 prog _var _exps

prog_var_exps(+Exp —ProgVarExpList—Totallnt)

This predicate searches expresditxp for program variable expressions. These ex-
pressions are returned BsogVarExpListalongside the total number found &stallnt
The program variable expressions considered are listesvbel

e Variable - VarRef
e Element of an array - elementArrayRefIndexLis)

¢ Field of arecord - fld__FieldRe{RecordRe&f

C.9.13 remove _real _exps

remove_real_exps(+InExpList —OutDiscreteExpLi3t

This predicate removes those expressionmiExpListthat involve real arithmetic,
returning the remaining expressions@stDiscreteExpList

C.9.14 replace _at

replace_at(+Exp +Pos +ReplaceExp-ModifiedExp ©

This predicate replaces the subexpression at posihasof Exp with ReplaceExp
generating the modified expressistodifiedExp

C.9.15 simple _linear _exp var

simple_linear_exp_var(+Exp, —ProgVarExp

This predicate is successful whelfgp is a simple linear expression, as described
in Figure C.4. Where successful, the single program vagiakpression is returned as
ProgVarExp

148

<SimpleLinearExp = <MultPart>
<MultPart> = <TerminalPart- «+ <SumPart |
<Sum x <TerminalPart- |
<SumPar¢
<SumPart = <TerminalPart- + <TerminalPart- |
<TerminalPart- — <TerminalPart> |
<TerminalPart-
<TerminalPart- := <integer> |
<program variable expression{mustoccuronce
Expression defined byrog_var_exps.}

Figure C.4: Simple linear expression

C.9.16 solve _for var

solve_for_var(+Eq, +Var, —SolvedEY

This predicate is successful where the equa&iycan be transformed into an equality
for Var, returning the resulting equality &olvedEq The predicate is supported through
a computer algebra system. For further details on the iategr of a computer algebra
system see thsolve_eq_hyp_for_var method in 8E.47.

C.9.17 sub _exp _polarity

sub_exp_polarity(+Exp +ExpPolarity +Pos —SubExpPolarity

This predicate calculates the polarity of a subexpressfamexpressiorExpis sup-
plied alongside its known polarity d&xpPolarity A subexpression withilExpis indi-
cated via the positioRos Given this information, the predicate calculates the fitylaf
the subexpression &ibExpPolarity

To minimise implementationfeort, polarity is only reported for two tightly con-
strained situations. Firstly, where the subexpressiohasentire input expression, the
polarity of the subexpression is reported as being the santgeanput expression. Sec-
ondly, where the subexpression is a top level conjunct oiripet expression, the polarity
of the subexpression is reported as being the same as theexymession. In all other
cases the polarity is reported as being unknown.

The limited calculation of polarity has the potential toyeet proof. If the polarity of
a subexpression is reported as being unknown then polaggritient rewrite rules may
not be applied. In practice, this limitation has not preeeroof, as our proof plans tend
to decompose the structure of conclusions such that pplaiiiteventually be reported.
Note that this predicate is responsible for all polaritycoddtions. Thus, if the limited
calculation of polarity became a concern, the proof plang beaenhanced by extending
this predicate accordingly.

149

C.9.18 total _functions

total_functions(+Exp, +OpList —Totallnt)

This predicate reports the total number of operaOpist in expressionExp as
Totallnt Operators inside program variable expressions, as defipgulog var_exps,
are not counted.

C.9.19 unconstrained _var

unconstrained_var(+EXxp)

This predicate is successful if expressi@rp is an unconstrained variable, as de-
scribed in §G.8.

C.10 Rewriting

C.10.1 constants _to_value

constants_to_value(+Polarity, +InExpList —OutExpList—Tactic)

This predicate rewrites scalar constants with their knoalues. The expressions
to be rewritten are supplied &sExpListalongside their consistent polarity Bslarity.
Following constant replacements, the rewritten expressare returned a®utExpList
alongside a supporting tacfiacticthat performs the rewrites at the object-level.

C.10.2 constrain _const _arrays

constrain_const_arrays(—ConstraintLisf—Tactic)

This predicate retrieves constraints for constant arrags are associated with the
plan. The constraints are returned@anstraintListalongside a supporting tacti@actic
that introduces the constraints as hypotheses at the dbjeait

C.10.3 constrain _exps

constrain_exps(+HypList +ExpList
—SpecialisedHypListTactic —ConditionLis}

This predicate specialises hypotheséglist to constrain expressions of interest
ExpList In particular, for an expressiofy the predicate attempts to introduce hypotheses
of the formX > Y andX < Z, whereY andZ are ground expressions. The specialised hy-
potheses are returned pecialisedHypLisilongside a tacti¢acticthat introduces these
hypotheses at the object-level. The predicate also retuissof conditionsConditionList
whose absence prevented the introduction of specialispdthgses. These conditions
correspond to an implicatioGondition — Property where Property offers a pertinent
constraint, yeConditionis not known.

150

C.10.4 eliminate _duplicate _vars

eliminate_duplicate_vars(+MaxSeqInt+Var, +Polarity, +Exp
—Tactic —NewEXxp

This predicate is successful where a sequence of rewritksdgvered that eliminates
all duplicate occurrences of variabl@ar in expressiorExp of known polarityPolarity.
The maximum sequence of rewrites to explore is constraigeddxSeqint Where suc-
cessful, the transformed expression is returnedl@sExpalongside a tactidactic that
performs the rewrites at the object-level. In applying iigswules, the following restric-
tions are imposed:

e Ground - The rewrite rule must not introduce meta-variables, asdtvwould sig-
nificantly increase the search space.

e Non-preserving - The rewrite rule must not entirely preserve the originglres-
sion. Such rewrites always increase expression strudtur@ering the elimination
of variables. For example, the following rewrite is rejettas the left hand side
expression is entirely preserved in the right hand sideesgion:

Z=272+0 (C.2)

C.10.5 select _alt_view _rule

select_alt_view_rule(+Polarity,
—RewriteForm
?2Condition: 2LHSExp=?RHSEXp

This predicate fiers alternative views of an expression by exploring threesyof
rewrite rule. The expression is supplied through a paytiaBtantiated rewrite rule, whose
left hand side has known polariBolarity. Where found, each rewrite rule is described
throughRewriteForm The three types of rewrite rule sought are listed below:

e Equal - Do not modify the expression. For example= Z.
e Commute - Commute a binary expression. For exampe: Z = Z+ .

¢ Rotate - Rotate a binary expression. Forexample: Z= Z > .

151

C.10.6 select _rewrite _rule

select_rewrite_rule(+Polarity,
—RewriteForm
?2Condition: 2LHSExp=7RHSEX}p

This predicate fiers alternative rewrites of an expression by exploring treglable
rewrite rules. The expression is supplied through a pértiaktantiated rewrite rule,
whose left hand side has known polarPglarity. Where found, each rewrite rule is
described througRewriteForm

C.10.7 select _transitivity _rule

select_transitivity_rule(+Polarity,
—RewriteForm
2Condition: 2LHSExp=?RHSEX}

This predicate fiers alternative transitive rewrites of an expression. Tpession
is supplied through a partially instantiated rewrite ruidose left hand side has known
polarity Polarity. Where found, each rewrite rule is described throRglwriteForm The
transitive rewrites are restricted to those of the follogviarm:

Condition: (X RelOp Y= (X RelOp Z A (Z RelOp Y (C.3)

WhereX andY are expressionfelOpis an inequality relation, and is an introduced
meta-variable.

C.11 Rippling

C.11.1 ripple _annotate

ripple_annotate(+IndHyp, +IndCon¢ —AnnindCong ©

This predicate is successful where induction conclusm€oncannotated with re-
spect to its induction hypothesésdHyp leads to the annotated induction conclusion
AnnindConc

C.11.2 ripple _complete

ripple_complete(+AnnindCon¢—-IndHyp —IndCong —IndHypPo3 ©

This predicate is successful where the annotated inductinolusionAnnindConas
fully rippled. In this case, the unannotated induction Hiesis and induction conclusion
is reported asndHyp and IndConcrespectively. Further, the position of the induction
hypothesis within the induction conclusion is reportediraidypPos

152

C.11.3 ripple _erasure

ripple_erasure(+AnnExp —EXxp) ©

This predicate erases annotations from annotated expne&snExpreturning the
result aExp.

C.11.4 ripple _exp _at

ripple_exp_at(+Exp —Pos —SubEXxp ©

This predicate returns every well-annotated subexpresgiéxpasSubExplongside
its positionPos

C.11.5 ripple _unblock _strategies

ripple_unblock_strategies(+AnnindCon¢c—UnblockedAnnindCone-Tactic) ©

This predicate attempts to unblock a ripple proof step bydi@ming the annotated
induction conclusionnindConc Where successful, the modified induction conclusion
is returned a&JnblockedAnnindConalongside a tacti§acticthat performs the transfor-
mation at the object-level. For further details on the unbing strategies considered, see
theripple_unblock method in 8E.38.

C.11.6 select wave _rule

select_wave_rule(+Polarity, ©
—RewriteForm
?2Condition:2LHSExp=?RHSEXp

This predicate fiers alternative rewrites of an expression via the availablee-rules.
The expression is supplied through a partially instandiaésvrite rule, whose left hand
side has known polaritfPolarity. Where found, each rewrite rule is described through
RewriteForm

153

Appendix D

Tacticals and Tactics

D.1 Introduction

Proof planners typically check the correctness of dis@y@roof plans in a tactic based
theorem prover. To integrate with the SPARK Approach, owopplans are checked

in the Checker, which is not a tactic based theorem proveradiivess the mismatch, a
collection of simulated tactics and tacticals are intratlicEach of the simulated tactics
and tacticals, including their translation into Checkenooands, are listed in this chapter.
Note that the translation is supported though richer proofimands introduced through
modifications made to the Checker, as detailed in §B.4.3.

D.2 Tactics

D.2.1 null _tactic

null_tactic

This tactic does nothing, making zero changes to the olgset-goal. For Checker
translation, the tactic is simply ignored.

D.2.2 trivial _tactic

trivial_tactic

This tactic appeals to the automated reasoning capabitifithe Checker to discharge
a goal.

Checker Translation

tame_done.

154

D.2.3 trivially _true _conc _tactic

trivially_true_conc_tactic(Cong

This tactic appeals to the automated reasoning capabibfithe Checker to replace
conclusionConcwith true.

Checker Translation

tame_subgoal_on_exp (Cong.
tame_done.

tame_all_done.

tame_rewrite conc : Conc : [] where Conc.

D.2.4 rewrite _tactic

rewrite_tactic(RewriteForm
<HypOrConc-, WholeExpPos
Condition: LHSExp= RHSEXxp
This tactic rewrites an expression in the goal. The tactieikes a collection of struc-
tured arguments, as shown in Figure D.1. The form of the tevisidescribed through

RewriteFormas summarised below:

¢ rule(FileName <FileKind>, Ruleld <Direction>) - Rewrite an expression by ap-
plying an external rewrite rule. The rewrite rule is refered through its file
FileName file kind <FileKind> and rule identifieRuleld The rule is applied in
direction<Direction>.

¢ hypothesisRewri{elypRewriteExp<Direction>) - Rewrite an expression by treat-
ing hypothesisHypRewriteEx@s a rewrite rule, in directiorDirection>.

¢ hypothesisFertilisglypFertiliseExp - Rewrite an expression d@sie via matching
hypothesidHypFertiliseExp

e evaluatéEvaluatableExpVvalug - Rewrite an expressidavaluatableExpo the re-
sult of its evaluationValue

The application of the rewrite is described through a comtbom of items, as summarised
below:

e <HypOrConc - Indicates whether a hypothesis or conclusion is to be tevras
hypor concrespectively.

e WholeExp The whole expression of the hypothesis or conclusion tebeitten.
e Pos- Selects the position within the hypothesis or conclusiat ts to be rewritten.

e Condition: LHSExp= RHSExp- Some rewrite rules admit the introduction of
new structure through meta-variables. The new structuselexted by specifying
the concrete form of the rewrite rule.

155

<RewriteForm» ::= rule(FileName <FileKind>, Ruleld <Direction>) |
hypothesisRewritelypRewriteExp<Direction>) |
hypothesisFertilisglypFertiliseExp |
evaluatéEvaluatableExpVvalue

<Direction> == normal| reversed

<FileKind> == | rul | rlu | rls

<HypOrConc == hyp| conc

Figure D.1: Arguments forewrite_tactic

Checker Translation for: rule(FileName <FileKind>, Ruleld <Direction>)

If <FileKind> is rlu or rls the rule is not available by default. Such rul@fimust
be explicitly loaded before they are used.
consult FileName.
tame_rewrite HypOrConc: WholeExp: Poswith LHSExpto RHSEXxp
if Conditionusing Ruleldin <Direction>.

Checker Translation for: hypothesisRewritelypRewriteExp<Directiorn>)
tame_rewrite HypOrConc: WholeExp: Poswith LHSExpto RHSEXp
if Conditionfrom HypRewriteExpn <Direction>.

Checker Translation for: hypothesisFertilisglypFertiliseExp

tame_rewrite HypOrConc: WholeExp: Poswhere HypFertiliseExp

Checker Translation for: evaluatéEvaluatableExpValug
tame_rewrite HypOrConc: WholeExp: Poswith EvaluatableExp s Value.

D.2.5 split conc _conj tactic

split_conc_conj_tactic(LeftExp RightExp

This tactic splits a goal with a conjoined concluslaftExpA RightExpinto subgoals
with conclusiond.eftExpandRightExp

Checker Translation

tame_subgoal_on_exp (LeftExp .

Execute the tactics targeted at the first (left) subgoal.
tame_all_done.

tame_subgoal_on_exp (RightEXp .

Execute the tactics targeted at the second (right) subgoal.

tame_all_done.

tame_done.

156

D.2.6 case _split _tactic

case_split_tactic(FirstExp SecondExp

This tactic performs a case split based on a disjoined ptppéestExpv SecondExp
Each case is considered as a separate subgoal, extendetutteirither the additional
hypothesid=irstExpor SecondExp

Checker Translation
prove c#l by cases on (FirstExp or SecondExp.
Execute the tactics targeted at the first case.

tame_all_done.
Execute the tactics targeted at the second case.

tame_all_done.

tame_done.

D.2.7 sequence _tactic

sequence_tactic(TacticLis)

This tactic executes a list of tactics in sequence, provaselhcticList For Checker
translation, each tactic dlcticListis translated in sequence.

D.3 Tacticals

D.3.1 then _tactical

then_tactical(Tactic TacticalLis)

This tactical applies tacti¢acticto the goal, generating subgoals. Following this,
thei'" tactical in the lisfTacticalListis applied to thé" subgoal. For Checker translation,
first Tacticis translated, followed by an ordered translation of thédats inTacticalList

D.3.2 final _tactical

final_tactical(Tactic

This tactical applies tacti€actic to the goal. The expectation is that the tactic will
discharge the goal, leaving no subgoals. For Checker aosiTacticis translated.

157

Appendix E

Proof Plans

E.1 Introduction

As described in 86.7, our proof plans are expressed throwghads and critics and the
application of methods is controlled through strategieactEof these components are
detailed in this chapter. Proof plans for exception freedmals are introduced in §E.2

while proof plans for program analysis queries are intreduim 8E.39. The method-

language supporting the expression of methods and critidstailed in Appendix C.

E.2 Proof Plans for Exception Freedom Goals

Proof plans are developed for exception freedom goals tisst im the SPARK Approach,
as detailed in the following sections.

158

E.3 Strategy: exception _freedom

Theexception_freedom strategy is shown in Figure E.1 and described below.

Waterfall: Waterfall:
exception_freedom exception_freedom1
Actions: Actions:
targeted_goal — exception_freedoml initialisation — exception_freedom?2
Waterfall: Waterfall:
exception_freedom?2 exception_freedom3
Actions: Actions:
specialise_hyps +— exception_freedom3 viable_goal — exception_freedom4
Waterfall:
exception_freedom4
Actions:

rtc_goal — run_time_check
inv_goal — invariant

Figure E.1:exception_freedom strategy

E.3.1 Behaviour

This is the entry strategy for proving exception freedomigjo@he strategy targets those
goals that have not been proved by the Simplifier. Furthersthategy targets the initial
form of goals, rather than their simplified form. The targetmals are refined through
an initialisation process. Prior to attempting proof, egohl is investigated to determine
its viability. Those goals that appear to be provable aréoegg further. Diferent strate-
gies are selected for run-time check goals and invariarisgappealing to their dierent
characteristics.

159

E.4 Strategy:run _time check

Therun_time_check strategy is shown in Figure E.2 and described below.

Waterfall:

run_time_check

Actions:

true_conc -0

false_conc + run_time_check

linear_bounded_conc — run_time_check

case_split — run_time_check

mult_.commute — run_time_check

eval_conc + run_time_check

split_conc_conj run_time_check

fertilize + run_time_check

clear_conc_exp — run_time_check

elim_var_conc — run_time_check

transitivity_entry > transitivity(run_time_check)
Waterfall:
transitivity(ContinuationStrategy
Actions:

transitivity_fertilize — transitivity
transitivity_decomp — transitivity
transitivity_close +— ContinuationStrategy
transitivity_unblock — transitivity

Figure E.2:run_time_check strategy

E.4.1 Behaviour

This strategy proves run-time check goals. The strategys @sed to prove lemmas
and subgoals that emerge in proving invariant goals. Tlaegly considers increasingly
sophisticated methods to advance proof. In particular,lastaesort, the strategy seeks
to decompose a conclusion by introducing a transitivitp ste

160

E.5 Strategy:invariant

Theinvariant strategy is shown in Figure E.3 and described below.

Waterfall:

invariant

Actions:

ripple_entry ripple(run_time_check)

Waterfall:
ripple(ContinuationStrategy
Actions:

ripple_unblock + ripple
ripple.wave > ripple
ripple_fertilize +— ContinuationStrategy

Figure E.3:invariant strategy

E.5.1 Behaviour

This strategy proves invariant goals. The strategy imntelyiattempts to introduce a

ripple step.

161

E.6 Method: targeted _goal

The targeted_goal method is shown in Figure E.4 and described below. The fat cr
ics associated with this method gneved_at_simplifier, simplified_goal, other_goal and
in_real_domain as described in 8E.7, 8E.8, 8E.9 and 8E.10 respectively.

Method:

targeted_goal

Tactic:

null_tactic

Goal:

LocalContextList HypList+ Conc
Preconditions:

Not proved by Simplifier.
match_global_context(provedAtSimplifigfalse)
Not a simplified goal.
match_global_context(sourceSystefucg))
Goal is of a targeted category.
not(get_goal_category(other)),

No real arithmetic in the conclusion.
remove_real_exps([Cond, [Cong)
Effects:

0

Subgoals:

[LocalContextList HypList- Cond

Figure E.4:targeted_goal method

E.6.1 Behaviour

This method is successful where the goal is targeted by aofgians. Four separate
checks are performed as listed below:

¢ Not already proved - The goal has not been proved by the Simplifier.

¢ Not a simplified goal- Each goal not proved by the Simplifier will be encountered
in both its initial and simplified form. The simplified goalseasubject to significant
and variable structural changes, making ffidult to identify proof families. In
particular, the structural changes can prevent the inttoaiu of a ripple step. Thus,
the initial form of goals are targeted.

e Is a targeted goal- Exception freedom goals and their related invariant gasds
targeted. It is unlikely that progress will be made for otgeal categories, so they
are not considered.

e Conclusion not in the real domain- As discussed in 86.5.1, our proof plans target
discrete types. The check is only performed on the conatysiopporting the in-
vestigation of goals that have discrete conclusions withesbhypotheses in the real
domain.

162

E.7 Ciritic: proved _at_simplifier

The proved_at_simplifier critic is shown in Figure E.5 and described below. The cigtic
associated with theargeted_goal method, as described in S8E.6.

Critic:
proved_at_simplifier
Parent method:
targeted_goal
Goal:

Successful method preconditions:

0

Failed method precondition:
match_global_context(provedAtSimplifi€false)
Preconditions:

0

Effects:

write_line(‘Goal already proved by the Simplifier.
abort_plan(provedBySimplifigr

Figure E.5:proved_at_simplifier critic

E.7.1 Behaviour

Where the goal has been proved by the Simplifietdhgeted_goal method will fail, lead-
ing to an invocation of this critic. The critic displays a reage to describe the situation
and aborts the plan with an appropriate failure critique.

163

E.8 Ciritic: simplified _goal

Thesimplified_goal critic is shown in Figure E.6 and described below. The cr#iasso-
ciated with theargeted_goal method, as described in 8E.6.

Critic:
simplified_goal
Parent method:
targeted_goal
Goal:

Successful method preconditions:
match_global_context(provedAtSimplifigfalse)
Failed method precondition:
match_global_context(sourceSystefwcg))
Preconditions:

0

Effects:

write_line(‘ls a simplified goal.”)
abort_plan(simplifiedGoa)

Figure E.6:simplified_goal critic

E.8.1 Behaviour

Where the structure of the goal has been subject to simpiditdhe targeted_goal
method will fail, leading to an invocation of this critic. €kcritic displays a message
to describe the situation and aborts the plan with an apategdiailure critique.

164

E.9 Critic: other _goal

Theother_goal critic is shown in Figure E.7 and described below. Thiscigiassociated
with thetargeted_goal method, as discussed in S8E.6.

Critic:
other_goal
Parent method:
targeted_goal
Goal:

Successful method preconditions:
match_global_context(provedAtSimplifigfalse)
match_global_context(sourceSystefucg))
Failed method precondition:
not(get_goal_category(other))

Preconditions:

0

Effects:

write_line(‘lIs not a targeted goal.’)
abort_plan(goalNotTargetegd

Figure E.7:other_goal critic

E.9.1 Behaviour

Where the goal category is not targeted by the proof plaesatheted_goal method will
fail, leading to an invocation of this critic. The critic gigys a message to describe the
situation and aborts the plan with an appropriate failuit&jcre.

165

E.10 Critic: in_real_domain

The in_real_domain critic is shown in Figure E.8 and described below. This cri
associated with theargeted_goal method, as discussed in SE.6.

Critic:
in_real_domain
Parent method:
targeted_goal
Goal:

Successful method preconditions:
match_global_context(provedAtSimplifigfalse)
match_global_context(sourceSystefucg))
not(get_goal_category(other))

Failed method precondition:
remove_real_exps([Cond, [Cong)
Preconditions:

0

Effects:

write_line(‘Conclusion in real domain.’)
abort_plan(inRealDomaii

Figure E.8:in_real_domain critic

E.10.1 Behaviour

Where the goal has a conclusion with expressions in the mrahah, thetargeted_goal
method will fail, leading to an invocation of this critic. €tcritic displays a message to
describe the situation and aborts the plan with an apprepiadure critique.

166

E.11 Method: initialisation

Theinitialisation method is shown in Figure E.9 and described below.

Method:

initialisation

Tactic:

sequence_tactic([ConstraintTacticHypTactic ConcTactig)
Goal:

LocalContextList HypList+ Conc

Preconditions:

0

Effects:

Find constraints for constant arrays.
constrain_const_arrays(ConstraintList ConstraintTacti
Add the constraints as hypotheses.

append(HypList ConstraintListExtendedHypLi$t
Remove duplicate hypotheses.
filter_duplicates(ExtendedHypList, UniqHypLis)
Remove real hypotheses.
remove_real_exps(UniqHypList DiscreteHypList
Replace named scalar constants for all hypotheses.
constants_to_value(negativeDiscreteHypListNewHypListHypTactiQ
Replace named scalar constants for the conclusion.
constants_to_value(positive [Cond, [NewCon¢, ConcTacti}
Subgoals:

[LocalContextList NewHypList- NewCon¢

Figure E.9:initialisation method

E.11.1 Behaviour

The Examiner is a strictly mechanical verification conditgenerator. Consequently,
the goals encountered tend to be relatively verbose. Thikadeerforms four separate
initialisations, streamlining goals to ease proof.

E.11.2 Introduce External Constraints

The Examiner does not generate subprogram rules assgctatinstant arrays with their
corresponding constant expressions. This behaviouresteel as the generation of large
constant arrays could adverselfext the performance of the toolset. Instead, an engineer
may introduce user rules to suitability constrain constarays. Where present, these
rules are directly relevant to the goal. This method idesgiBuch rules and introduces
them as hypotheses.

Note that recent versions of the Examiner can generate agkgm rules associating
constant arrays with their corresponding constant exymess To address performance
concerns, the generation of these rules is configurable.

167

E.11.3 Remove Duplicate Hypotheses

The goal may contain duplicate hypotheses. Such hypotldsssarise from the same
variable being used in fierent contexts, generating duplicate occurrences ofpts ¢pn-
straints. This method identifies and removes duplicate thgses. The removal of dupli-
cate hypotheses has nidext on proof as each remaining hypothesis can be used whereve
its duplicates may have been used. Consequently, the reofi@kglicate hypotheses at
the meta-level need not be performed at the object-level.

E.11.4 Remove Real Hypotheses

Thetargeted_goal method ensures that the conclusion is not in the real dorklnwever,
there may be hypotheses in the real domain. As our plang téwgeliscrete domain, it is
unlikely that these hypotheses will be required. Thus,ieshod identifies and removes
any hypotheses in the real domain. The presence of unusemtheges has noffect
on proof. Consequently, the removal of real hypothesesetrteta-level need not be
performed at the object-level.

E.11.5 Replace Named Scalar Constants With Their Values

The Examiner generates subprogram rules, associatingr saistants with their corre-
sponding constant expressions. Two alternative techsigyeee considered for exploiting
these rules:

e Unconstrained- Replace every named scalar constant with its correspgndine.
This is a trivial operation that can be performed in a singkthud. However, in-
evitability, unnecessary constant replacements will gcasulting in a less suc-
cinct proof.

e Constrained - Only replace named scalar constants with their correspgnalue
if this replacement is necessary to complete a proof. Middiereasoning might
be used to discover how the proof will progress and idenéfgéted constant re-
placements. Such an approach would be non-trivial, reggiappropriate commu-
nication between methods. However, the resulting proolida@imore succinct.

Replacing named scalar constants with their correspondihgs is regarded as an ob-
vious simplification, rather than a key step of proof develept. On this basis, uncon-
strained replacement was adopted.

A ripple step is dependent on finding structural matches éetwa hypothesis and
conclusion. Changes to the syntax of a goal has the poteatdikrupt a ripple proof.
Here, each occurrence of a named constant will be univgrsgtlaced with the same
value. Thus, the number of structural matches will not reduowever, the number
of structural matches might increase, if previously digtimamed constants are replaced

168

with the same value. In principle, this might create addgiosearch in developing a
ripple step. However, in practise, the situation has nohlegeountered.

E.12 Method: specialise _hyps

Thespecialise_hyps method is shown in Figure E.10 and described below.

Method:

specialise_hyps

Tactic:

sequence_tactic([LemmaTacticAdditionalTactig)

Goal:

LocalContextList HypList+ Conc

Preconditions:

0

Effects:

Collect program variable expressions in the conclusion.

prog-var_exps(Cong ProgVarExpList)

Identify supplementary lemmas for extending hypotheses.

constrain_exps(HypList ProgVarExpList_, _, LemmalList

Try to prove each supplementary lemma.

plan_lemmas(HypList LemmalListrun_time_check, LemmaProvedListemmaTactie

Extend hypotheses to include the lemmas.

append(HypList LemmaProvedLisExtendedHypLi3t

Identify additional hypotheses.

constrain_exps(ExtendedHypLisProgVarExpList
AdditionalHypListAdditionalTactic_)

Get extended hypotheses.

append(ExtendedHypLisAdditionalHypListNewHypLis}

Subgoals:

[LocalContextList NewHypList- Cond

Figure E.10:specialise_hyps method

E.12.1 Behaviour

Typically, hypothesesfter general constraints while a conclusion requires dematimsg

a specific constraint. For example, a hypothesis may conseery element of an ar-
ray to be within its type while a conclusion may require destmting that a particular
element of this array is within its type. In such cases, paftén involves specialising
general hypothesis constraints to target the specific asiwi constraints. Two alterna-
tive techniques were considered for achieving this hymshepecialisation:

e Unconstrained- Preemptively specialise hypotheses to target the spéarfic of
the conclusion. In general, it isfticult to predict the structure of a proof and hence
difficult to determine which specialised hypotheses will be iregu However, in
verifying exception freedom, the structure of the condustan dfer strong guid-
ance in selecting relevant hypothesis specialisations.

169

e Constrained - Only specialise hypotheses where this is strictly necgdsacom-
plete proof. Middle-out reasoning might be used to discdwew the proof will
progress and identify targeted hypothesis specialisatidhe approach would nat-
urally support the discovery and introduction of hypotkesiecialisations that are
not intuitively suggested by the conclusion. However, sgvaethods would be af-
fected by this approach as access to relevant hypothesesmraon requirement.

The constrained techniquéfers a powerful and targeted mechanism for hypothesis spe-
cialisation. However, the unconstrained technique isiS@amtly simpler and, in veri-
fying exception freedom, diiciently gfective. On this basis, unconstrained hypothesis
specialisation was adopted. Note that, if extending th&sgsgdurther, the unconstrained
technigue might be complemented through the introductidheoconstrained technique.
This might be expressed as a crititteving insightful hypothesis specialisations to patch
otherwise failing subgoals.

E.12.2 Plan Lemmas Separately

The specialisation of hypotheses may require proving supehtary lemmas. For ex-
ample, to specialise a hypothesis constraining every eleofean array to a hypothesis
constraining a particular element of an array it must be shibwat the particular element
lies within the range of the array. As described in §86.8.2, moof planner supports
the simultaneous development of multiple plans. This meisina is exploited to plan

lemmas separately. The style is advantages as it supperteuke of existing strategies.
Typically, each lemma requires proving that a particulgregsion lies inside a general
range. There is a strong correspondence between this tdsfiraving run-time check

goals. Thus, theun_time_check strategy is reused in planning lemmas.

170

E.13 Method: viable _goal

The viable_goal method is shown in Figure E.11 and described below. The fotics
associated with this method areuple_entry_vars, constrain_consts, constrain_vars and
tightly_constrain_vars as described in 8E.14, 8E.15, 8E.16 and 8E.17 respectively.

Method:

viable_goal

Tactic:

null_tactic

Goal:

Goal

Preconditions:

0

Effects:

No uncoupled entry variables.
uncoupled_entry_vars(Goal UncoupledVarList
UncoupledVarList []

Check no unconstrained constants or variables.
unconstrained_consts_vars(Goal UnconstrainedConstList/nconstrainedVarLigt
UnconstrainedConstList []
UnconstrainedVarList []

No under constrained variables.
under_constrained_vars(Goal UnderConstrainedVarLi$t
UnderConstrainedVarList []

Subgoals:

[Goall

Figure E.11viable_goal method

E.13.1 Behaviour

This method searches for goal patterns associated witltoualple goals. The method
is only successful where none of these patterns occur. As, $hhe method @ectively
expresses preconditions for an entire strategy. Thi@eult patterns of unprovable goal
are considered, as described in the sections below.

E.13.2 No Uncoupled Entry Variables

A SPARK for-loop terminates when its iterator variable teax an end-point value. The
end-point value is calculated by evaluating the end-poipt&ssion as the loop entered
Typically, a for-loop will iterate over a subtype. In thisseathe end-point value is simply
the last value of this subtype. However, a for-loop may hawsoae complex end-point
expression, referencing program variables. Significatitse variables may be modified
within the loop. Thus, the evaluation of the end-point espien at loop entry may fier
from its evaluation on subsequent iterations. To captugsdtsemantics in program ver-
ification, every variable in an end-point expression is etbas a speciantry variable.

171

Each entry variable takes the value of its correspondin@bke at the point the loop is
entered. Thus, the evaluation of an end-point expressiaieyims of the entry variables,
is the same on every loop iteration. This transformed endtpgxpression is used to
describe the end-point value of the for-loop.

The entry variable mechanism faithfully represents theas#ios of for-loops. How-
ever, where present, entry variables typically become atagke to proof. It is nearly
always necessary to introduce an invariant that descrhmeseiationship between each
entry variable and its corresponding program variable. sTllis method rejects goals
that are missing such missing invariants.

package WriteToArrayPartition_Package is
subtype I_Type is Integer range 0 .. 100;
type D_Type is array (I_Type) of Integer;
procedure WriteToArrayPartition(Left: in I_Type;
Right: in I_Type;
Value: in Integer;
Destination: in out D_Type);
--# derives Destination from Left, Right, Value, Destination;
end WriteToArrayPartition_Package;

package body WriteToArrayPartition_Package is
procedure WriteToArrayPartition(Left: in I_Type;
Right: in I_Type;
Value: in Integer;
Destination: in out D_Type)
is
begin
for I in I_Type range Left .. Right loop
--# assert true;
Destination(I):=Value;
end loop;
end WriteToArrayPartition;
end WriteToArrayPartition_Package;

Figure E.12: WriteToArrayPartition subprogram

For example, consider the WriteToArrayPartition subpaogishown in Figure E.12.
The subprogram writes a given value to a bounded portion @freay. The subprogram
contains a for-loop that terminates when the loop iterateaches the value of variable
right at loop entry. The essential gb&br verifying thati does not exceed its upper bound

In the SPARK Approach, the entry variable fdght is referenced asgght__entry_loop__<countets.
This verbose name is guaranteed to be unique within its simgsubprogram. For brevity, in the examples
shown in this thesis, every entry variable is uniquely refieed via its program variable name, appended
with _entry.

172

within the for-loop, following thanitialisation method, is shown below:

(i <100)A (right < 100)A (i < right_entry) A (=(i = right_entry))
. (E.1)
(i+1)<100

The goal is unprovable as there is no hypothesis relatingetigy variableright_entry
to the program variableght. As variableright is not modified within the for-loop an
invariant could be introduced equatinght_entry with right. With such an invariant in
place, it would become possible to prove the goal.

Recent versions of the Examiner are more selective in tmeduottion of entry vari-
ables. All import variables of mod@ cannot be modified within a subprogram. Thus,
the entry value of these variables will always equal theiresponding program variable.
On this basis, for such variables, the Examiner omits thedfuiction of entry variables.

E.13.3 No Unconstrained Constants or Variables

Following theinitialisation method, every available constant constraint, in eithesthe
program or user rules, will have been introduced. As stahdewery variable in the
goal should be constrained to be within its type. Thus, argoostrained constants or
variables strongly indicate that the goal needs strengigerConsequently, this method
rejects goals where unconstrained constants or variable®e identified. Note that an
exception is made for entry variables, as these are oftestizoned indirectly, by being
related to their corresponding program variable.

E.13.4 No Under Constrained Constants or Variables

A constraint solver is exploited to search for a countemgxa to the goal. The counter-
example identifies a collection of constants and variablesse constraints are likely to
need strengthening in order to prove the goal. The techrigjdetailed in the sections
below, and illustrated through the FilterShortintegermolgram shown in Figure E.13.
The subprogram sums the values of an array that lie betweed 0GO.

Constraint Solver

Constraint solving can be a computationally intensive ta&kmake this task tractable,
most constraint solvers operate in restricted domains.odlesfon the clp(FD) (Constraint
Logic Programming Finite Domain) constraint solver [CO;@vhich is distributed with

Sicstus Prolog [Swe05]. The clp(FD) constraint solver afgs with integers that lie
between-(22°) and (2°) - 1. Further, the default configuration of the clp(FD) coristra
solver supports a relatively limited number of functions, slhown by its grammar in

173

package FilterShortInteger_Package is
subtype AR_T is Short_Integer range 0..9;
type A_T is array (AR_T) of Short_Integer;
procedure FilterShortInteger(A: in A_T; R: out Short_Integer);
--# derives R from A;
end FilterShortInteger_Package;

package body FilterShortInteger_Package is
procedure FilterShortInteger(A: in A_T; R: out Short_Integer)
is
begin
R:=0;
for I in AR_T loop
--# assert true;
if AC(I)>=0 and A(I)<=100 then
R:=R+A(I);
end if;
end loop;
end FilterShortInteger;
end FilterShortInteger_Package;

Figure E.13: FilterShortinteger subprogram

Figure E.14. Nevertheless, within this restricted domtia,constraint solver is capable
of performing sophisticated reasoning in a timely fashion.

<Constraint- == <Constraint- A <Constraint- |
<Constraint- v <Constraint- |
—<Constraint |
<Eo> |
<boolean-variable
<EQ> = <IntExp> = <IntExp> | <IntExp> # <IntEXp> |
<IntExp> < <IntExp> | <IntExp> < <IntExp> |
<IntExp> > <IntExp> | <IntExp> > <IntExp>
<INtExp> == <INtExp> * <INtEXp> |
<IntExp> div <IntExp> | <IntExp> mod<IntExp> |
<IntExp> + <IntExp> | <IntExp> — <IntExp> | —<IntEXp> |
<integer-variable- |
<integer> {in range:—(2%)...(2%° - 1)

Figure E.14: clp(FD) input grammar

Reject Goals Outside Integer Domain

When the constraint solver encounters integers that liefits legal range an overflow
error is raised and the constraint solving request is ab@aioThe situation will occur
if the input constraint problem contains integers outshie legal range. Further, the
situation will occur if, during constraint solving, calations are performed that generate
integers outside the legal range.

174

To guard against overflows, constraint solving is only afitsd where every con-
stant lies well within the legal range accepted by the canstisolver. In practice, it is
checked that every constant lies between the bouw@®) and (2°) — 1. While this
restriction is simplistic, it €ers a reasonable assurance that an overflow will not occur
during constraint solving. For example, in the FilterShagger subprogram, every value
is represented as a short integer. As specified in the taoydigaration file of §4.4.5,
these integers are bound betweg2'®) and (2°) — 1. Significantly, these bounds lie
inside the range considered by this method.

Negate Goal to Search for Counter-Example

The aim is to identify situations where the goal is false.slikiachieved by searching for
solutions that satisfy the negation of the goal. In gene@th input goal takes the form:

vvars ((Hyp, A --- A Hyp,) — Cong
Negating and simplifying this goal leads to:
dvars ((Hyp, A --- A Hyp,) A (=ConQg)

Significantly, in negating the goal, each variable is transied from being implicitly
universally quantified to implicitly existentially quafiéd. For example, consider the
FilterShortinteger subprogram. In verifying exceptioaegdom, it must be shown that
the assignmerk:=R+A(I) always assigns a value tothat is within its upper bound.
The corresponding goal and its negation, followingitiialisation method, is shown in
Figure E.15.

Overflow goal
¥(i-1: shortintegeri.1>0Ai.1<9 —
elementa, [i_1]) > —32768A elementa, [i_1]) < 32767)A
(=0)A(<9A(r=>-32768)A (r < 32767)A
(elemena, [i]) > 0) A (elemenga, [i]) < 100)
-

r + elementa, [i]) < 32767

Negated overflow goal
¥Y(i_1: shortintegeri 1>0Ai.1<9—
elemenfa, [i_1]) > —32768A elementa, [i_1]) < 32767)A
(i=0)A(@{ <9 A(r=-32768)A (r < 32767)A
(elemena, [i]) = 0) A (elemenga, [i]) < 100) A
—(r + elemenfa, [i]) < 32767)

Figure E.15: Overflow goal and its negation

175

Partition Goal to Meet Input Grammar

It is unlikely the negated goal will reside entirely withinet constraint solver grammar.
To address this, the goal is partitioned into three sepa@@inct lists as summarised
below:

¢ within - Conjuncts within the constraint solver grammar.
e Beyond Conjuncts beyond the constraint solver grammar.
e equalities- Conjuncts equating integer expressions to integer vimsab

Each conjunct of the negated goal is partitioned througliah@wving operations, consid-
ered in order:

e Add to within - The conjunct can be directly expressed in the constraineso
grammar. The conjunct is addedwithin.

¢ Eliminate integer expression and repeat The conjunct contains a blocking inte-
ger expression that can not be directly expressed in thereamssolver grammar.
The equalitiesare extended, introducing an equality between the blockkpyes-
sion and a new integer variable. The blocking expressiohas &liminated by
being replaced with its corresponding integer variable. demsistency, the elimi-
nation is preformed throughout the negated goal and thegéngepartitioned goal
in within and beyond With the blocking expression eliminated, the partitianin
process is repeated.

e Add to beyond - Neither of the above cases are applicable. The conjundtiedto
beyond Where the negated conclusion can not be presented to ts&aiom solver
it is likely that flawed counter-examples will be discoverdthus, in this case, the
constraint solving attempt is abandoned.

For example, consider the negated goal shown in Figure BRa&Rgitioning this goal for
constraint solving generates the valeswthin, beyondandequalitiesas shown in Fig-
ure E.16. Note that, during partitioning, the integer Valeav is introduced to eliminate
the integer expressiagiementa, [i]).

Solve Goal as Constraint Problem

After partitioning, the negated goal is expressed throwghin, beyond andequalities
The conjuncts irwithin are sent to the constraint solver. Where successful, thetreomt
solver will discover at least one satisfying solutiorsatution For example, consider the
within partition show in Figure E.16. The first satisfiable solutitiscovered is:

(i = 0) A (r = 32668)A (iv = 100) (E.2)

176

within
(1=0)A(1 <9 A(r>=-32768)A (r < 32767)A (iv > 0) A (iv < 100) A
-(r +1iv < 32767)

beyond
¥(i-1: shortintegeri.1>0Ai.1<9 —
elemenga, [i_1]) > —32768A elementa, [i_1]) < 32767)

equalities

elemenfa, [i]) = iv

Figure E.16: Partitioned negated goal

Assemble Candidate Solution

Eachsolutionrepresents a candidate instantiation of existentiallyngfiad variables in
the negated goal. On this basis, the negated goal is reakeskfobanalysis. Thevithin
conjuncts are replaced Bplution and theequalitiesare eliminated by replacing all in-
teger variables with their corresponding expressions.ekample, reassembling the par-
titioned negated goal of Figure E.16, exploiting soluti@?), leads to the candidate
solution shown in Figure E.17.

(i =0)A (r =32668)A (elemenga, [i]) = 100) A
¥(i_1: shortintegeri 1>0Ai.1<9—
elemenga, [i_1]) > —32768A elementa, [i_1]) < 32767)

Figure E.17: Candidate solution

Identify Under Constrained Variables

This method assumes that the first candidate solution igl.vé&uch an assumption is
unsound, as only a portion of the goal is submitted to thetcain$ solver. In principle,
this may result in the method falsely reporting under camséd variables. In practice,
where verifying exception freedom, this is thought unfkeMany of the expressions
related to exception freedom goals can be expressed in tigramt solver grammar.
In particular, constraint solving is only attempted where hegated conclusion can be
submitted to the constraint solver. Thus, typically, a Bigant portion of the goal is
submitted to the constraint solver, giving generally sgroesults.

The method might be strengthened to consider each candidation, and attempt
to prove that the goal is satisfiable. As the constraint sotvay report many solutions,
domain knowledge might be exploited to target more promgisiolutions. For example,
in verifying exception freedom, the extreme upper and loeits of variables are more
likely to correspond to genuine counter-examples.

177

Where a candidate solution is discovered, the method edjeetgoal and the variables
in solutionare reported as being under constrained. Entry variabdesraitted, as these
are constrained indirectly. For example, based on sol&o®), the for-loop variablg,
integer variable and arraya are reported as being under constrained.

E.14 Critic: couple _entry _vars

The couple_entry_vars critic is shown in Figure E.18 and described below. Thiscrg
associated with theiable_goal method, as discussed in S8E.13.

Critic:

couple_entry_vars

Parent method:

viable_goal

Goal:

Goal

Successful method preconditions:

uncoupled_entry_vars(Goal UncoupledVarList

Failed method precondition:

UncoupledVarList []

Preconditions:

0

Effects:

match_global_context(sourceSubprograBubprogramNanmg

write_line(‘Uncoupled entry variable(s) detected.’)

abort_plan(abstractPredicatgSubprogramName
coupleWithEntryVai@&ncoupledVarLig))

Figure E.18:couple_entry_vars critic

E.14.1 Behaviour

Where the goal does not contain a hypothesis relating ay eatiable to its correspond-
ing program variable theiable_goal method will fail, leading to an invocation of this
critic. The critic displays a message to describe the sdnatnd aborts the plan with an
appropriate failure critique, ultimately triggering prag analysis.

178

E.15 Critic: constrain _consts

The constrain_consts critic is shown in Figure E.19 and described below. Thiscig
associated with theiable_goal method, as discussed in S8E.13.

Critic:

constrain_consts

Parent method:

viable_goal

Goal:

Goal

Successful method preconditions:

uncoupled_entry_vars(Goal UncoupledVarList

UncoupledVarList []

unconstrained_consts_vars(Goal UnconstrainedConstList/nconstrainedVarLi3t

Failed method precondition:

UnconstrainedConstList []

Preconditions:

0

Effects:

match_global_context(sourceSubprograBubprogramNamg

write_line(‘Under constrained constant(s) detected.)

abort_plan(interactionNeedg@ubprogramName
constrainCons{&JnconstrainedConstLig)

Figure E.19:constrain_consts critic

E.15.1 Behaviour

Where the goal contains unconstrained constantgsée_goal method will fail, leading
to an invocation of this critic. The critic displays a mess&g describe the situation and
aborts the plan with an appropriate failure critique. Thpestation is that an engineer
will manually constrain the identified constants throughitiiroduction of user rules. The
engineer is responsible for ensuring the soundness of ulest IAs SPADEase makes no
soundness claims, it would be unsound for SPADEase to ataima task.

179

E.16 Critic: constrain _vars

The constrain_vars critic is shown in Figure E.20 and described below. Thisiciig
associated with theiable_goal method, as discussed in S8E.13.

Critic:

constrain_vars

Parent method:

viable_goal

Goal:

Goal

Successful method preconditions:

uncoupled_entry_vars(Goal UncoupledVarList

UncoupledVarList []

unconstrained_consts_vars(Goal UnconstrainedConstList/nconstrainedVarLi3t

UnconstrainedConstList []

Failed method precondition:

UnconstrainedVarList []

Preconditions:

0

Effects:

match_global_context(sourceSubprogra(BubprogramNang

write_line(‘Unconstrained variable(s) detected.)

abort_plan(abstractPredicatéSubprogramName
constrainVargUnconstrainedVarLi3})

Figure E.20:constrain_vars critic

E.16.1 Behaviour

Where the goal contains unconstrained variablesitii#e_goal method will fail, leading
to an invocation of this critic. The critic displays a mess&g describe the situation and
aborts the plan with an appropriate failure critique, u#ttely triggering program analysis.

180

E.17 Critic: tightly _constrain _vars

Thetightly_constrain_vars critic is shown in Figure E.21 and described below. Thigerit
is associated with théable_goal method, as discussed in 8E.13.

Critic:

tightly_constrain_vars

Parent method:

viable_goal

Goal:

Goal

Successful method preconditions:

uncoupled_entry_vars(Goal UncoupledVarList

UncoupledVarList []

unconstrained_consts_vars(Goal UnconstrainedConstList/nconstrainedVarLi3t

UnconstrainedConstList []

UnconstrainedVarList []

under_constrained_vars(Goal UnderConstrainedVarLi¥t

Failed method precondition:

UnderConstrainedVarList []

Preconditions:

0

Effects:

match_global_context(sourceSubprograBubprogramNamg

write_line(‘Under constrained variable(s) detected.’)

abort_plan(abstractPredicatéSubprogramName
tightlyConstrainVar@JUnderConstrainedVarLig))

Figure E.21tightly_constrain_vars critic

E.17.1 Behaviour

Where under constrained variables are identified/ihigle _goal method will fail, leading
to an invocation of this critic. The critic displays a mess#ag describe the situation and
aborts the plan with an appropriate failure critique, u#ttely triggering program analysis.

181

E.18 Method: rtc _goal

Thertc_goal method is shown in Figure E.22 and described below.

null_tactic

Goal is run-time check or betweenff@dirent invariants.
get_goal_category(GoalCa)
select(GoalCat [rtc, bin],)

[Goal

Figure E.22:rtc_goal method

E.18.1 Behaviour

This method is successful where the goal corresponds teredthiun-time check or a
transition between éierent invariants.

E.19 Method:inv _goal

Theinv_goal method is shown in Figure E.23 and described below.

null_tactic

Goal is returning to same invariant
get_goal_category(rinv)

[Goall

Figure E.23:inv_goal method

182

E.19.1 Behaviour

This method is successful where the goal corresponds taaiticn from an invariant
returning to the same invariant.

E.20 Method: true _conc

Thetrue_conc method is shown in Figure E.24 and described below.

Method:
true_conc
Tactic:
trivial_tactic
Goal:

_ _Frtrue
Preconditions:
0

Effects:

0
Subgoals:

I

Figure E.24true_conc method

E.20.1 Behaviour

This method identifies a goal that is immediately true. Tlwaatr goal is discharged,
leaving no subgoals.

183

E.21 Method: false _conc

Thefalse_conc method is shown in Figure E.25 and described below.

Method:

false_conc

Tactic:

trivial _tactic

Goal:

LocalContextList _ + false

Preconditions:

Retrieve recorded referenced variables.
get_constraining_vars(LocalContextListVarList)
Check some variables have been referenced.
not(VarList = []),

Mark these variables as being potentially under constdaine
match_global_context(sourceSubprogra(®@ubprogramNam
add_under_constrained_vars(SubprogramNam#&arLisf)
Never succeed.

fail

Effects:

0

Subgoals:

I

Figure E.25false_conc method

E.21.1 Behaviour

This method identifies a goal that is immediately false. Symdls may arise on a branch
of the proof tree, where the proof planner explores an uresstal chain of reasoning.
Significantly, other unexplored branches may successiedigt to proof. To address this,
in encountering a false goal, the plan is not aborted. Idstdese variables that con-
tributed to the false goal are retrieved and recorded in tbbad context information
associated with the plan. As described in 86.8.2, if the mtem efort fails, a failure
critique is raised, identifying all variables contribugito false goals as being potentially
under constrained. This will ultimately trigger progranab/sis.

184

E.22 Method: linear _-bounded _conc

Thelinear_bounded_conc method is shown in Figure E.26 and described below.

Method:
linear_bounded_conc
Tactic:
trivially_true_conc_tactic(Cong
Goal:
LocalContextList HypList+ Conc
Preconditions:
Check that this is an inequality relation.
binary_explode(Cong Op, _,)
is_inequality_op(Op)
Explore alternative conjunct forms.
sub_exp_polarity(Cong positive [|, Polarity)
select_alt_view_rule(Polarity, _,
true : Conc= ModifiedCong
Check the relation involves a simple linear expression anidizger.
binary_explode(ModifiedConc_, Left Righ)
simple_linear_exp_var(Left Varlnt)
is-int(Righ)
Find bounds for the integer variable in the simple linearezpion.
int_bound_var(HypList Varint, Lowerint Upperin)
Effects:
Substitute and evaluate to find extreme points.
find_replace(ModifiedCong¢Varlnt, Lowerint Lowes}
find_replace(ModifiedConc¢VarInt, Upperint Highes}
Determine if extreme points hold.
eval_exp((LowestA Highes), ResultBodl
Record the relevant variable.
add_constraining_vars(LocalContextLisf Varinf], NewLocalContextLi}t
Subgoals:
[NewLocalContextListHypList+ ResultBod|

Figure E.261inear_bounded_conc method

E.22.1 Behaviour

This method applies a specific form of linear reasoning. Tineal reasoning matches
the automated reasoning capabilities of the Checker. Trespondence means that the
tactic associated with the method simply instructs the &eio automatically discharge
the conclusion. While specific, the linear reasoning cargd is frequently applicable
where verifying exception freedom. In particular, tinensitivity strategy may generate
subgoals that are discharged by this method.

The method targets conclusions of the form:

linexp(Varint) RelOp Boundint (E.3)

Wherelinexpis a simple linear expression parametrised by the integeahla Varint,

185

RelOpis an inequality relation anBoundintis an integer. The hypotheses are searched
to discover tight constraints fafarint such that:

(Varint > LowerIn)) A (Varint < Upperini (E.4)

As linexpis linear, its extreme bounds coincide with the extreme eslofVarint. By
substituting the bounds discovered farint, the corresponding bounds bihexp can
be determined. The conclusion is a relation compalimexp with Boundint Thus the
method reports the truth of the conclusion as the evaluatidime following expression:

(linexp(LowerIn) RelOp BoundIntA
(linexp(Upperin) RelOp Boundint

(E.5)

The truth of the conclusion depends on the quality of the traimgs discovered fovarint.
This dependency is explicitly recorded in the local contefdrmation. Should the branch
of reasoning fail, thdalse_conc method will suggest strengthening the constraints of
Varint.

186

E.23 Method: case _split

Thecase_split method is shown in Figure E.27 and described below.

Method:

case_split

Tactic:

case_split_tactic(FirstCase SecondCage

Goal:

LocalContextList HypList+ Conc

Preconditions:

Find multiplication of variable expressions.

exp-at(Cong Pos (LeftVarint: RightVarin))

prog_var_exps(LeftVarint [LeftVarIn{,)

prog-var_exps(RightVarInt [RightVarint,)

Check neither parameter is exclusively negative or pasitiv

int_bound_var(HypList LeftVarint LeftLowerlnt LeftUpperin)

(LeftLowerlnt« LeftUpperinj < 0

int_bound_var(HypList RightVarint RightLowerIntRightUpperin}

(RightLowerInt« RightUpperint < 0

Effects:

Establish case split for right variable.

FirstCase= (RightVarint< 0)

SecondCase (RightVarint> 0)

Construct subgoals.

append(HypList [FirstCasg, FirstCaseHypList

append(HypList [SecondCadeSecondCaseHypL)st

Subgoals:

[LocalContextList FirstCaseHypList Cong
LocalContextList SecondCaseHypListCond

Figure E.27:case_split method

E.23.1 Behaviour

This method introduces a case split to ease the prfofte Where reasoning about the
multiplication of variables it is convenient if one of theriables is strictly negative or
positive. For example, as part of the standard rules, thedoig rewrite rule is available:

(X+2) = (Y+2) = (X<Y)A(Z<0) (E.6)

Such a rewrite rule enables an inequality to be decomposedéparate conjuncts. How-
ever, this is only useful if it can be shown thais either zero or negative.
The method targets conclusions involving the multiplicatof two variables:

LeftVarint« RightVarint (E.7)

Further, the hypotheses must not constrain either of thasables to be strictly negative

187

or positive. In this situation, the following case splitigroduced:
(RightVarint< 0) v (RightVarint> 0) (E.8)

In each caseRightVarintis either strictly negative or positive, easing the profide.
Note that the variable on the right is targeted as severatatd rules expect a strictly
negative or positive variable on this side.

E.24 Method: mult _commute

Themult_commute method is shown in Figure E.28 and described below.

Method:
mult_.commute
Tactic:
rewrite_tactic(CommuteRewriteForm
cong Cong Pos
true : (LeftExp+ RightExp = (RightExp: LeftExp)

Goal:
LocalContextList HypList+ Conc
Preconditions:
Find multiplication of expressions.
exp-at(Cong Pos (LeftExp+ RightExp)
Check left expression is integer and right expression is not
is-int(LeftExp
not(is-int(RightExp)
Effects:
Find rule to commute multiplication of expressions.
sub_exp_polarity(Cong positive Pos Polarity)
select_alt_view_rule(Polarity, CommuteRewriteForm

true : (LeftExp+ RightExp) = (RightExp: LeftExp)
Generate subgoal.
replace_at(Conc Pos (RightExp: LeftExp, NewCong
Subgoals:
[LocalContextList HypList- NewCong§

Figure E.28:mult_commute method

E.24.1 Behaviour

This method normalises the multiplication of an expressiad an integer so that the
integer appears on the right hand side. This supports tHeappn of standard rules that
expect an integer on the right hand side of a multiplication.

188

E.25 Method: eval_conc

Theeval_conc method is shown in Figure E.29 and described below.

Method:
eval_conc
Tactic:
rewrite_tactic(evaluatéSubExpValue,
cong Cong Pos
true : SubExp= Value
Goal:
LocalContextList HypList+ Conc
Preconditions:

U.

Consider all conclusion subexpressions.
exp_at(Cong Pos SUbEXxp

Try to evaluate this subexpression.
eval_exp(SubExpValug

Check evaluated result isftBrent.
not(SubExp= Valué

Succeed at most once.

cut

Effects:

Generate subgoal.

replace_at(Cong Pos Valug NewCong
Subgoals:

[LocalContextList HypList- NewCon¢

Figure E.29:eval_conc method

E.25.1 Behaviour

This method simplifies the conclusion by replacing an eva@kiaxpression with the result
of its evaluation. A cut is employed, preventing the expioraof alternative orderings
of expression evaluations. The evaluation of both integdrt@olean expressions is con-
sidered. An expression may be unchanged following its ewan, for example the result
of evaluating 10 remains 10. Thus, to ensure terminatianrkthod is only successful
where the evaluated expression ifelient to the result of its evaluation.

189

E.26 Method: split .conc _conj

Thesplit_conc_conj method is shown in Figure E.30 and described below.

Method:

split_conc_conj

Tactic:

split_conc_conj_tactic(LeftCon¢RightCong
Goal:

LocalContextList HypList+ (LeftConca RightCong
Preconditions:

0

Effects:

0

Subgoals:

[LocalContextList HypListr LeftCong
LocalContextList HypList+ RightCong

Figure E.30:split_conc_conj method

E.26.1 Behaviour

This method simplifies a conjoined conclusion by introdgarseparate subgoal for each
conjunct.

E.27 Method: fertilize

Thefertilize method is shown in Figure E.31 and described below.

Method:
fertilize
Tactic:
rewrite_tactic(hypothesisFertilisgCong,
cong Congl],
true: Conc= true)
Goal:

LocalContextList HypList+ Conc
Preconditions:

Ensure conclusion is not already true.
not(Conc= true)

Search for match with hypothesis.
select(Cong HyplList _)

Effects:

0

Subgoals:

[LocalContextList HypListt true]

Figure E.31fertilize method

190

E.27.1 Behaviour

This method transforms a conclusionttoe where it matches, ofertilises against a
hypothesis.

E.28 Method: clear_conc _exp

Theclear_conc_exp method is shown in Figure E.32 and described below.

Method:
clear_conc_exp
Tactic:
rewrite_tactic(ClearRewriteForm
cong Conc Pos
true : SUbExp= NewSubEXxp

Goal:

LocalContextList HypList+ Conc

Preconditions:

Consider all expressions.

exp-at(Cong Pos SUbExp

Search to rewrite the expression.

sub_exp_polarity(SubExppositive Pos Polarity)

select_rewrite_rule(Polarity, ClearRewriteForm
true : SubExp= NewSubExXp

Check modified expression remains ground.

ground(NewSubExp

Check modified expression is subexpression of originalesgon.

exp-at(SubExpSubPosNewSubEXp

not(SubPos-= [])

Succeed at most once.

cut

Effects:

Perform the rewrite.

replace_at(Cong Pos NewSubExiNewCong

Subgoals:

[LocalContextList HypList- NewCong

Figure E.32:xclear_conc_exp method

E.28.1 Behaviour

This method simplifies a conclusion by applying a rewriteertiiat strictly eliminates
expression structure. A cut is employed, preventing théogapon of alternative order-
ings of expression elimination. For example, a conclusi@y iine encountered of the
following form:

Q1+x)=(0xy)+z (E.9)

191

The following two rewrite rules are available:

1A= A (E.10)
0+A=0 (E.11)

These rewrite rules eliminate expression structure, asigie hand side is a subset of
the left hand side. Thus, successive applications of thihadewill simplify the above
conclusion to:

X=2 (E.12)

E.29 Method: elim _var_conc

Theelim_var_conc method is shown in Figure E.33 and described below.

Method:

elim_var_conc

Tactic:

Tactic

Goal:

LocalContextList HypList+ Conc

Preconditions:

Identify duplicate variables in conclusion.

prog_var_exps(Cong VarList,)

filter_duplicates(VarList DuplVarList)

Consider a duplicate variable.

select(DuplVar, DuplVarList .)

Seek to cancel out the duplicate variables.

eliminate_duplicate_vars(2, DuplVar, positive Cong
Tactic NewCong

Effects:

0

Subgoals:

[LocalContextList HypList- NewCon¢

Figure E.33:elim_var_conc method

E.29.1 Behaviour

In developing these proof plans, there was an occasiondl floe@xpression simplifica-
tions. Three alternative strategies were considered:

e Measure reducing simplification- A measure of expression simplicity is estab-
lished, based on the number and type of arithmetic operafbesavailable rewrite
rules are then explored, applying those that make the csiocluneasurably sim-
pler. The strategy is relatively simple, anffeetive in many cases. However, in

192

general, it is dificult to predict how the strategy will behave. The fundamlenta
problem is that the strategy is not motivated by strong nmatteal intuitions.

e Annotation guided cancellation- The cancellation of expressions is a mathemat-
ically intuitive simplification strategy. Similar to ripiplg, annotations may be in-
troduced to guide the strategy. The conclusion may be atatbta identify pairs
of expression structures that are candidates for canicgllaEurther, rewrite rules
may be annotated to identify those that move these expressioser together. A
search of the relevant rewrite rules is performed, unthegitthe expressions are
cancelled or the process terminates. The resulting syrategsistently performs
valuable simplifications. However, sophisticated annotetwould be required to
discover all cancellations, particularly those that imeofirst moving expressions
further apart. Also, an annotation guided strategy is aidenably complex mech-
anism for achieving a relatively trivial portion of mathetnsal reasoning.

e Depth constrained cancellation- Focusing on the cancellation of variables is a
mathematically intuitive simplification strategy. Duglie variables can be iden-
tified and manipulated without supporting annotations. thrm relevant rewrite
rules can be identified as those manipulating the duplicatelies. To ensure ter-
mination, a depth constrained search of the relevant revules is performed. The
resulting strategy is straightforward, and consistengisfgrms valuable simplifica-
tions.

Depth constrained cancellatioiffers an &ective balance between predictability, perfor-
mance and reasoning capability. In particular, the elitndmeof duplicate variables can
ease an application of thensitivity strategy.

193

E.30 Method: transitivity _entry

Thetransitivity_entry method is shown in Figure E.34 and described below.

Method:

transitivity_entry

Tactic:

sequence_tactic([ModifyTactic TransTactif)

Goal:

LocalContextList HypList+ Conc

Preconditions:

Explore conclusion inequalities in both directions.

sub_exp_polarity(Cong positive [], Polarity)

select_alt_view_rule(Polarity, ModifyRewriteForm
true: Conc= ModifiedCong

binary_explode(ModifiedCongOp, LeftExp RightExp

is_inequality_op(Op)

Check the left side contains the most program variables.

prog_var_exps(LeftExp _, LeftTota)

prog_var_exps(RightExp_, RightTota)

LeftTotal> RightTotal

Check the left side has targeted operators.

total_functions(LeftExp [+, —, =, div], LeftCountIn}

LeftCountint> O

Search for applicable transitivity rewrite rule.

select_transitivity_rule(Polarity, TransRewriteForm

true : ModifiedConc= NewCong

Effects:
ModifyTactic= rewrite_tactic(ModifyRewriteForm
cong Congl],
true: Conc= ModifiedCong
TransTactic= rewrite_tactic(TransRewriteForm
conc ModifiedCong[],
true : ModifiedConc= NewCong

Subgoals:
[LocalContextList HypList- NewCong

Figure E.34transitivity_entry method

E.30.1 Behaviour

This method introduces a transitivity step. The method giegble where the conclusion
is of the form:

Exp, RelOp Exp, (E.13)

WhereExp are expressions arRelOp are inequality relations. Conclusions of this gen-
eral form frequently occur where verifying exception freed Directly proving such
conclusions can be filicult where the expressions involve numeric operations. évew
the conclusion can often be made more tractable by decongpt® inequality into less

194

complex inequalities. The method achieves such a decotigrosirough the application
of a transitive rewrite rule.

The method orients the conclusion inequality to target dgmasition at its more com-
plex side. The left hand side of the conclusion inequalityshmontain at least the same
number of variables as the right hand side. Further, thénbaitl side must contain some
numeric operations. A transitive rewrite rule is sought thansforms the conclusion as
follows:

Exp, RelOp Exp, = (Exp, RelOp Z;) A (Z; RelOp Exp,) (E.14)

The rewrite leads to the introduction of a meta-variahleThe instantiation of this meta-
variable requires a creatiaurekastep, as its form is not obvious from the surrounding
structure. Using middle-out reasoning, the choice of theamariable is delayed, to be
incrementally instantiated from future prodf@rts.

For example, consider the SumArray subprogram shown inr€igu5. This subpro-
gram sums the values of an array. In verifying exceptiondoee, two goals are gener-
ated to verify that the assignmeRt=R+A (I) always assigns a value tdahat is within its
lower and upper bound. The essential components of the inoped goal, following the
initialisation method, are shown below:

(elementa, [i]) < 10)A (r <i=10)A (i <9)
. (E.15)
(r + elemenfa, [i])) < 100

Note that the conclusion matches the general conclusiok.@f3]. Further, the conclu-
sion contains a numeric operation that is hindering its imiaite proof and there exists a
transitive rewrite rule of the form:

A<B= (A<C)A(C<B) (E.16)

Together, these features support an application of thif@detransforming the conclu-
sion of (E.15) to:

(r + elemenfa, [i]) < C) A (C < 100) (E.17)

195

package SumArray_Package is
subtype I_T is Integer range 0..9;
subtype AE_T is Integer range 0..10;
type A_T is array (I_T) of AE_T;
subtype R_T is Integer range
AE_T’First*((I_T’Last-I_T’First)+1)..
AE_T’Last*((I_T’Last-I_T’First)+1);
procedure SumArray(A: in A_T;
R: out R_T);
--# derives R from A;
end SumArray_Package;

package body SumArray_Package is
procedure SumArray(A: in A_T;
R: out R_T)
is
begin
R:=0;
for I in I_T loop
--# assert R>=0 and R<=I*10;
R:=R+A(I);
end loop;
end SumArray;
end SumArray_Package;

Figure E.35: SumArray subprogram

196

E.31 Method: transitivity _decomp

Thetransitivity_decomp method is shown in Figure E.36 and described below.

Method:
transitivity_decomp
Tactic:
rewrite_tactic(DecompRewriteForm
cong Cong Pos
true : ConcConj= LeftConjA RightCon)

Goal:
LocalContextList HypList+ Conc
Preconditions:
Select a conjunct for decomposition, excluding the righstrmonjunct.
conjunct_at(Cong Pos ConcCon)
not(Pos= [2])
Check the conjunct contains meta-variables.
not(ground(ConcCony))
Only decompose those conjuncts that contain targeted tmpsra
total_functions(ConcConj[+, —, *, div], BeforeCountlnt
BeforeCountint- 0
Search to rewrite the conjunct.
sub_exp_polarity(Cong positive Pos Polarity)
select_rewrite_rule(Polarity, DecompRewriteForm

true : ConcConj= LeftConjA RightCon)
Aim to exploit structure in hypothesis, so must not be ground
not(ground(LeftConjA RightCon)
Only accept decompositions that reduce targeted operators
total_functions(LeftConjA RightConj[+, —, =, div], AfterCountin}
BeforeCountint- AfterCountint
Effects:
Perform the decomposition rewrite.
replace_at(Cong Pos LeftConjA RightConjNewCong
Subgoals:
[LocalContextList HypListr NewCong

Figure E.36transitivity_decomp method

E.31.1 Behaviour

This method develops a transitivity step. Following an agajion of thetransitivity_entry
method, the conclusion will take the following general form

(Exp, RelOp Z;) A (Z1 RelOp Exp,) (E.18)

WhereExp are expressiondelOp are inequality relations and, are meta-variables.
This method decomposes inequality conjuncts. The methodiders each conjunct,
excluding the right most conjunct, that contains some nicygrerations. A rewrite rule

197

is sought that performs a decomposition of the form:
(Exp, RelOp Z;) = (Exp; RelOp Z) A (Exp, RelOp, Z3) (E.19)
Which has the sideffect of instantiating the meta-varialde as follows:
Z1=(Z F Zs) (E.20)

WhereF, are arithmetic functions. The number of numeric operationst decrease as
a consequence of the decomposition. Note that, in some,casta-variables may be
instantiated with expressions during decomposition.

Depending on the complexity of the initial conclusion, nplé invocations of de-
composition may be required in completing the transitigtyp. Following a complete
decomposition, the conclusion will take the following geaidorm:

(Exp, RelOp, Zy) A - - - A (Exp, RelOp Z;)

(E.21)
(Zy F1 ... Fn1 Zy) RelOp Exp,

For example, return to the SumArray subprogram introduteldearansitivity_entry
method. Following an application afansitivity_entry the conclusion of the upper bound
goal is transformed to:

(r + elemenfa, [i]) < C) A (C < 100) (E.22)

As the left most conjunct contains a numeric operator, itéardidate for decompo-
sition. A rewrite rule is available of the form:

(D+E)<(F+G)= (D<F)A(E<G)) (E.23)

The rewrite rule supports decomposing the left most conjurensforming the conclu-
sion into:

((r <F) A (elemenfa, [i]) < G)) A (F+ G < 100) (E.24)

Note that, as a consequence of the rewrite, meta-var@ahbes been instantiated o+ G.
Thus, through middle-out reasoning, the structur€ af emerging.

198

E.32 Method: transitivity _fertilize

Thetransitivity_fertilize method is shown in Figure E.37 and described below.

Method:
transitivity fertilize
Tactic:
rewrite_tactic(hypothesisFertilisg€oncCon,
cong Cong Pos
true : ConcConj= true)

Goal:

LocalContextList HypList+ Conc

Preconditions:

Select a conjunct for fertilisation, excluding the rightshoonjunct.
conjunct_at(Cong Pos ConcCon)

not(Pos= [2])

Check the conjunct contains meta-variables.
not(ground(ConcConj)

Check for and retrieve single variable access.
prog_var_exps(ConcConj[VarAccesk 1)

Search for match with hypothesis.

select(ConcConjHypList)

Effects:

Record variable reference.
add_constraining_vars(LocalContextLisf VarAccesk NewLocalContextLi¥t
Replace fertilised conjunct with true.

replace_at(Cong Pos true, NewCong

Subgoals:

[NewLocalContextListHypList- NewCong¢

Figure E.37 transitivity_fertilize method

E.32.1 Behaviour

This method continues the development of a transitivitp.st€he method instantiates
meta-variables by matching inequality conjuncts agaiygiotheses. After potentially
multiple applications of thé&ansitivity_decomp method the conclusion will take the fol-
lowing general form:

(Exp, RelOp, Z,) A --- A (Exp, RelOp Z,)

(E.25)
(Z1 F1 ... Fn1 Zy) RelOp Exp,

WhereExp are expressiongRelOp are inequality relations; are meta-variables and
Fi are arithmetic functions. The method considers each cohj@xcluding the right

most conjunct, that contains a single variable. A hypothisssought that constrains the
bounds of this variable. Where available, the conjunéislised against the hypothesis
and is trivially eliminated. Note that, through backtrauki all applicable hypotheses
will be considered. As a consequence of fertilisation, tlegarvariables in the conjunct

199

will be instantiated with the constraints on the variablegn8icantly, the proof of the
remaining conclusion now depends on the quality of thesetcaints. The dependency is
recorded by storing the name of the variable that contribtitese constraints in the local
context information. Should the overall proof fail, tfese_conc method will suggest
strengthening the constraints on these referenced vesiabl

For example, return to the SumArray subprogram introduteldegransitivity_entry
method. Following an application efansitivity_decomp the essential upper bound goal
will take the following form:

(elementa, [i]) < 10)A (r <i=10)A (i <9)
- (E.26)
((r <F) A (elemenfa, [i]) < G)) A (F+ G < 100)

Note that the first and second conjuncts may be fertilisethaghypotheses. Following
two applications of theransitivity_fertilize method, the conclusion of the goal is trans-
formed into the following:

(true A true) A ((i = 10)+ 10< 100) (E.27)

200

E.33 Method: transitivity _close

Thetransitivity_close method is shown in Figure E.38 and described below.

Method:

transitivity_close

Tactic:

null_tactic

Goal:

LocalContextList HypList+ Conc
Preconditions:

Check the conclusion contains no meta-variables.
ground(Cong)

Effects:

0

Subgoals:

[LocalContextList HypList+ Cond

Figure E.38transitivity_close method

E.33.1 Behaviour

This method closes a transitivity step. Once every metebkr has become instantiated
then middle-out reasoning is complete and the transitstigy is successful.

For example, return to the SumArray subprogram introduteldearansitivity_entry
method. Following applications afansitivity_fertilize the essential upper bound goal will
take the following form:

(elemenfa, [i]) < 10)A(r<i=10)A (i <9)
— (E.28)
(true A true) A ((i = 10)+ 10 < 100)

The conclusion contains zero meta-variables, thus theitnaty step is complete. Note
that theproof residuein the third conjunct will be proved via theear_bounded_conc
method.

201

E.34 Method: transitivity _unblock

Thetransitivity_unblock method is shown in Figure E.39 and described below.

Method:
transitivity_unblock
Tactic:
rewrite_tactic(UnblockRewriteForm
cong Conc Pos
true : ConcConj= true)

Goal:

LocalContextList HypList+ Conc

Preconditions:

Select a conjunct, excluding the right most conjunct.

conjunct_at(Cong Pos ConcCon)

not(Pos= [2])

Check this conjunct has a meta-variable.

not(ground(ConcCony})

Check for zero variable accesses.

prog-var_exps(ConcConj[], 0)

Check for zero numeric operations.

total_functions(LeftExp [+, —, =, div], 0)

Search for rewrite rule that eliminates and grounds theurtotj

sub_exp_polarity(Cong positive Pos Polarity)

select_rewrite_rule(Polarity, UnblockRewriteForm
true : ConcConj= true)

ground(ConcConj

Effects:

Replace the conjunct with true.

replace_at(Cong Pos true, NewCong

Subgoals:

[LocalContextList HypListr NewCong¢

Figure E.39transitivity_unblock method

E.34.1 Behaviour

This method supports the development of a transitivity.sByring the transitivity step,
conjuncts may be encountered of the general form:

(Const RelOp ¢ (E.29)

Where Constis an constantRelOpis an inequality relation and is a meta-variable.

Neither transitivity_decomp nor transitivity_fertilize applies, thus the transitivity step is
blocked. This method allows the transitivity step to conéirby applying rewrite rules

that trivially discharge such conjuncts. For example, whH#ocked by the conjunct:

(255< A) (E.30)

202

The following rewrite rule might be applied:
(A<A) = true (E.31)

Supporting the elimination of the conjunct, and instamiathe meta-variablé as 255.

E.35 Method: ripple _entry

Theripple_entry method is shown in Figure E.40 and described below.

Method:

ripple_entry

Tactic:

null_tactic

Goal:

LocalContextList HypList+ Conc
Preconditions:

Search for induction hypothesis.
select(Hyp, HypList _)

Attempt to annotate conclusion with respect to hypothesis.
ripple_annotate(Hyp, Cong AnnCong
Effects:

0

Subgoals:

[LocalContextList HypListr AnnCon¢

Figure E.40ripple_entry method

E.35.1 Behaviour

This method introduces a ripple step into the proof. Rigpls supported through ex-
pression annotations. Where applicable, the method am®sotiae conclusion to begin
an application of rippling. As the method does not modify tigect-level goal, it is
associated with theull_tactic.

As detailed in [BBHIO5], rippling may employ several anraias to cater for dter-
ent proof strategies. In our proof plans, only a core sublkatootations are employed.
Nevertheless, these annotations are ofteficsent to prove the relatively simple loop
invariants that occur in verifying exception freedom.

Terms are annotated by placing markers around subtermsavg-frontis used to
identify the boundaries of a particular subterm. The wawetfis illustrated by placing
the subterm in a shaded box:

f(ty, ..., tn) (E.32)
Every wave-front must contain at least owave-hole Each wave-hole identifies the

203

boundaries of a subterm that lies inside the wave-front.hEeeve-hole is indicated by
unshading the subterm within the wave-front:

f(t1seenst) (E.33)

The shaded syntax is described as bemthe wave-fronwhile the unshaded syntax is
described as beinigp the wave-hole An expression may be annotated with a number of
wave-fronts:

f(t, ..t A A f(E .., 1) (E.34)

Where an expression is annotated, $keletorrefers to the expression that remains when
removing all subexpressions that are in the wave-front:

A At (E.35)

The rippling annotations are used to describe thfedinces between an induction
conclusion and its corresponding induction hypothesisigitter the induction step case
below:

(i) — f(s(i)) (E.36)

The induction conclusion may be annotated so that its skeletatches the induction
hypothesis:

f(i) — f(s(i)) (E.37)

The annotations reveal that proof may be completed by etitimgs(. . .), the difering
syntax in the wave-front.

For example, consider the SumMultTwinArray subprogramwsho Figure E.41.
This subprogram sums the multiplication of elements at #raesindex in two arrays.
Note that an invariant has been introduced to support théocatron of exception free-
dom. The essential components of the lower bound invariaatk, §ollowing theinitiali-
sation method, are shown below:

(elemenfal [i]) > —10) A (elemental, [i]) < 10) A
(elemenfa2 [i]) > —10) A (elementa2 [i]) < 10) A
(r > i *(-100)) (E.38)

r + (elemenfal, [i]) = elemenfa2 [i])) > (i + 1) = (-100)

The induction conclusion may be annotated against the traiubypothesis as follows,

204

supporting an application of rippling:

r + elemenf@al [i]) = elemenfa2 [i]) > (i +1)=(-100)

(E.39)

package SumMultTwinArray_Package is
subtype I_T is Integer range O .. 5;
subtype AE_T is Integer range -10 .. 10;
type A_T is array (I_T) of AE_T;
subtype R_T is Integer range
(AE_T’First*AE_T’Last)*((I_T’Last-I_T’First)+1)..
(AE_T’Last*AE_T’Last)*((I_T’Last-I_T’First)+1);
procedure SumMultTwinArray(Al: in A_T; A2: in A_T; R: out R_T);
--# derives R from Al, A2;
end SumMultTwinArray_Package;

package body SumMultTwinArray_Package is
procedure SumMultTwinArray(Al: in A_T; A2: in A_T; R: out R_T)
is
begin
R:=0;
for I in I_T loop
--# assert R>=I*(-100) and R<=I*100;
R:=R+(A1(I)*A2(I));
end loop;
end SumMultTwinArray;
end SumMultTwinArray_Package;

Figure E.41: SumMultTwinArray subprogram

205

E.36 Method: ripple _.wave

Theripple_wave method is shown in Figure E.42 and described below.

Method:
ripple_wave
Tactic:
rewrite_tactic(WaveRewriteForm
cong EraseCon¢cPos
true : EraseSubExp> EraseNewSubEXp

Goal:
LocalContextList HypListr AnnConc
Preconditions:
Consider all well annotated subterms in the conclusiory.
ripple_exp_at(AnnCon¢Pos AnnSubEXxp
Apply wave rule to the subterm.
ripple_erasure(AnnConc¢EraseCong
sub_exp_polarity(EraseCongpositive Pos Polarity)
select_wave_rule(Polarity, WaveRewriteForm

true : AnNnSubExp=> NewAnnSubE3p

Effects:

Perform the rewrite.

replace_at(AnnConcPos NewAnnSubExpNewAnnCong
Generate erased forms for proof checking.
ripple_erasure(AnnSubExfEraseSubExp
ripple_erasure(NewAnnSubExEraseNewSubEXp
Subgoals:

[LocalContextList HypListr NewAnnConk

Figure E.42ripple_wave method

E.36.1 Behaviour

This method continues the development of a ripple stepoixiilg an application of the
ripple_entry method the induction conclusion will be annotated, idgmid its differences
against an induction hypothesis. This method rewrites trelasion such that these
differences are moved outwards.

The available rewrite rules are restrictedaave-rules A wave-rule is an annotated
rewrite rule, which may only be applied where both the exgiggsstructure and annota-
tions match. The wave-rules are automatically generated the available rewrite rules.
Significantly, the annotations are configured so that walesrsimultaneously preserve
similarities andripplesthe diferences outwards. The application of wave-rules involves
a tightly constrained search and is guaranteed to termitfateillustration consider the
rewrite rule:

f(s(X)) = f(X) A g(X) (E.40)

206

Which may be annotated as the wave-rule:
f(s(X)) = f(X) Ag(X) (E.41)

This wave-rule preserves similarities as the skelé&f¥)) yet moves dterences outwards
asg(X). Consider the annotated induction goal below:

f(i) - f(s(i)) (E.42)
The wave-rule (E.41) matches with the induction conclusewriting the goal to:
f(i) — f(i) A (i) (E.43)

The diferences are now fully ripped outwards, with the inductionatasion containing
an embedding of the induction hypothesis. In general, pleltivave-rule rewrites may
be required to ripple all dierences outwards.

For example, return to the SumMultTwinArray subprogranradticed at theip-
ple_entry method. Following an application eipple_entry the induction conclusion of
the lower bound invariant goal is annotated as follows:

r +elemenfal [i]) xelemen@2[i]) > (i +1)=(-100) (E.44)
The following two wave-rules are available:

(A+B)+xC= (AxC) +(BxC) (E.45)

(A+C) > (B+D) = (A>B) A(C=D) (E.46)
Applying wave-rule (E.45) to the right hand side of the intlmie conclusion gives:
r +elementad [i]) = elementa2 [i]) > ((i = (-100)) + (1= (-100))) (E.47)
Applying (E.46) to the transformed conclusion gives:
r > (i » (~100)) A elemenal [i]) * elementa2 [i]) > (1 * (~100)) (E.48)

Resulting in the dferences being fully ripped outwards.

207

E.37 Method: ripple fertilize

Theripple_fertilize method is shown in Figure E.43 and described below.

Method:

ripple_fertilize

Tactic:

rewrite_tactic(hypothesisFertilisgndHyp),
cong Cong IndHypPos
true : IndHyp= true)

Goal:

LocalContextList HypListr AnnConc
Preconditions:

Check the conclusion is rippled fully outwards.
ripple_.complete(AnnConcindHyp Conc IndHypPo3
Effects:

Replace fertilised induction hypothesis with true.
replace_at(Cong IndHypPostrue, NewCong

0

Subgoals:

[LocalContextList HypList- NewCong

Figure E.43ripple_fertilize method

E.37.1 Behaviour

This method completes a ripple step. Following applicaiohtheripple_ wave method,
the induction conclusion may become fully rippled. This hoeteliminates the embedded
induction hypothesis, leaving the rippled ouffdrences as a proof residue.

For illustration consider the fully rippled induction gdaglow:

f(i) — () A g() (E.49)

The embedded induction hypothesis in the induction commusay befertilised against
the actual induction hypothesis and trivially eliminatéd.this completes the ripple step,
all remaining annotations are cleared. Following ferilisn the goal above becomes:

f(i) — true A g(i) (E.50)

For example, return to the SumMultTwinArray subprogranradticed at theip-
ple_entry method. Following applications aipple_wave the essential components of

208

the lower bound invariant goal are as follows:

(elemenfal, [i]) > —10) A (elemental, [i]) < 10) A
(elemenfa2 [i]) > —10) A (elementa2 [i]) < 10) A
(r =i %(-100)) (E.51)

—

r > (i = (=100)) A elemenal, [i]) = elementa2, [i]) > (1 = (-100))

The induction conclusion contains an embedding of the indadypothesis. Fertilisa-
tion may be performed, completing the ripple step and révgihe conclusion as follows:

true A elemental, [i]) = elemenfa2 [i]) > (1= (—100)) (E.52)

The proof residue is discharged through the_time_check strategy.

E.38 Method: ripple _unblock

Theripple_unblock method is shown in Figure E.44 and described below.

Method:

ripple_unblock

Tactic:

Tactic

Goal:

LocalContextList HypList- AnnConc
Preconditions:

Explore unblocking strategies.
ripple_unblock_strategies(AnnConcUnblockedAnnCondactic)
Effects:

0

Subgoals:

[LocalContextList HypListr UnblockedAnnCorjc

Figure E.44ripple_unblock method

E.38.1 Behaviour

This method supports the development of a ripple step. Rigjplecomes blocked where
no wave-rules are applicable to the annotated conclusioweMer, internally transform-
ing the conclusion or its annotations may enable the rigelet® continue. The following
two unblocking strategies are attempted:

e Simplify annotations - The simplification of annotations can increase the appli-
cability of wave-rules. In particular a wave-front may besteel entirely inside a

209

wave-hole as show below:

f(t1,t, ... t) (E.53)

Such annotations are simplified by removing the nested \irave:-

f(t1,t, ...\ t) (E.54)

e Move wave-hole outwards- Moving the location of a wave-hole outwards can
increase the applicability of wave-rules. For illustraticonsider the annotated
expression below:

(ts +t) +13 (E.55)

To manipulate this expression, the left hand side of wakesrmust take the fol-
lowing form:

(A+B)+C (E.56)

By exploiting commutativity of plus, the wave-hole of (E)5ay be moved out-
wards as follows:

A +(B+C) (E.57)

Significantly, to manipulate the transformed expressioa)¢ft hand side of wave-
rules may now take the more general form:

A +B (E.58)

E.39 Proof Plans for Program Analysis Queries

Proof plans are developed to answer program analysis guas@&letailed in the following
sections. As described in Chapter 5, the program analyssy wiat verify the correctness
of its discovered invariants. Thus, proof plans specifictmpam analysis are not checked
at the object-level, and are not associated with correspgndctics.

210

E.40 Strategy:pa_exp_simplify

Thepa_exp_simplify strategy is shown in Figure E.45 and described below.

Waterfall:

pa_exp_simplify

Actions:

prune_conc_duplicate — pa_exp_simplify
prune_conc_eq — pa_exp_simplify
eval_conc — pa_exp_simplify
clear_conc_exp — pa_exp_simplify
report_conc =0

Figure E.45:pa_exp_simplify strategy

E.40.1 Behaviour

This strategy simplifies expressions. The strategy expmwigextual information to be
presented as hypotheses and the target expression to keateakas a conclusion.

E.41 Strategy:pa_exp_constrain

The pa_exp_constrain strategy is shown in Figure E.46 and described below.

Waterfall: Waterfall .
- pa_exp_constrainl
pa_exp-constrain .
- - Actions:
Actions: i
— - solve_eq_hyp_for_var + pa_exp_constrainl
specialise_hyps — pa_exp_constrainl . .
constrain_conc_conj — 0

Figure E.46:pa_exp_constrain strategy

E.41.1 Behaviour

This strategy discovers bounds for numeric expressions stitategy expects contex-
tual information to be presented as hypotheses and thet taugeeric expression to be
presented as a conclusion.

211

E.42 Strategy:pa_spark _exp

Thepa_spark_exp strategy is shown in Figure E.47 and described below.

Waterfall:

pa_spark_expl

Actions:

prune_conc_duplicate — pa_spark_expl
Waterfall: prune_conc_eq — pa_spark_expl
pa_spark_exp eval_conc — pa_spark_expl
Actions: clear_conc_exp — pa-spark_expl
specialise_hyps — pa_spark_expl solve_eq_hyp_for_var — pa_spark_expl

elim_aux_var_via_eq — pa_spark_expl

elim_prog_var_exp_via_eq +— pa_spark_expl

elim_aux_var_via_int_arith + pa_spark_expl

is_spark_exp =0

Figure E.47:pa_spark_exp strategy

E.42.1 Behaviour

This strategy transforms an expression into a form which lwanlirectly expressed in
SPARK annotations. The strategy expects contextual irdtion to be presented as hy-
potheses and the target expression to be presented as astoncl

E.43 Strategy:pa_disj _norm _form

Thepa_disj_-norm_form strategy is shown in Figure E.48 and described below.

Waterfall:

pa_disj_norm_form

Actions:

disj_norm_form — pa_disj_norm_form
report.conc 0

Figure E.48:pa_disj_norm_form strategy

E.43.1 Behaviour

This strategy transforms an expression into disjunctivexaform. The strategy ignores
any hypotheses and expects the target expression to be@ess a conclusion.

212

E.44 Method: prune _conc _duplicate

Theprune_conc_duplicate method is shown in Figure E.49 and described below.

Method:

prune_conc_duplicate

Tactic:

]

Goal:

LocalContextList HypList+ Conc
Preconditions:

Remove duplicate conjuncts.
exp_explode(Conc A, ConcLis)
filter_duplicates(ConcList _, NoDupConjLis}
exp_explode(NoDupConjA, NoDupConjList
Remove duplicate disjuncts.
exp_explode(NoDupConjVv, NoDupConjList
filter_duplicates(NoDupConijList_, NoDupCon|DisjList
exp_explode(NoDupConjDisjVv, NoDupCon|DisjList
Check that some duplicates were removed.
not(NoDupConjDisj= Cong

Effects:

0

Subgoals:

[LocalContextList HypList- NoDupCon|Disj

Figure E.49:prune_conc_duplicate method

E.44.1 Behaviour

The method removes all duplicate conjuncts and disjunecta & conclusion. Such dupli-
cation occurs frequently during program analysis, as ptegseare combined at program
merge points.

213

E.45 Method: prune _conc _eq

Theprune_conc_eq method is shown in Figure E.50 and described below.

Method:
prune_conc_eq
Tactic:
0
Goal:
LocalContextList HypList+ Conc
Preconditions:
Search for equality conjuncts in both directions.
conjunct_at(Cong Pos ConcConj
sub_exp_polarity(Cong positive Pos Polarity)
select_alt.view_rule(Polarity, -,

true : ConcConj= (LeftExp= RightExp)
Check is unconstrained variable equality.
unconstrained_var(LeftExp
Succeed at most once.
cut
Effects:
Replace equality conjunct with true.
replace_at(Cong Pos true, InterCong
Replace the unconstrained variable with its expression.
find_replace(InterCong LeftExp RightExpNewCong
Subgoals:
[LocalContextList HypList+ NewCong

Figure E.50:prune_conc_eq method

E.45.1 Behaviour

This method identifies conjuncts that relate an unconsdauariable to an expression.
Such conjuncts occur frequently during program analysisjreconstrained variables are
introduced to ease the transformation of expressions. 8wemd, the conjunct is re-

placed with true, and all occurrences of the unconstraireidble are replaced with its

corresponding expression.

214

E.46 Method: report _conc

Thereport_conc method is shown in Figure E.51 and described below.

Method:
report_conc
Tactic:
Conc
Goal:
:+Conc
Preconditions:
0

Effects:

0
Subgoals:

I

Figure E.51report_conc method

E.46.1 Behaviour

This method is always successful, returning the conclugfdahe goal through the tactic
slot. The method leaves no subgoals.

215

E.47 Method: solve _eq_hyp _for var

Thesolve_eq_hyp_for_var method is shown in Figure E.52 and described below.

Method:

solve_eq_hyp_for_var

Tactic:

0

Goal:

LocalContextList HypList+ Conc
Preconditions:

Consider each equality hypothesis.
select(Hyp, HypList _)
select(Hyp=(_=.)

Solve for variables referenced in the hypothesis.
prog-var_exps(Hyp, ProgVarExpList.)
aux-vars(Hyp, AuxVarList)
append(ProgVarExpListAuxVarList VarList)
select(Var, VarList,)

solve_for_var(Hyp, Var, SolvedEy

Check the solved equality is not already present.
not(select(SolvedEgHypList))

Succeed at most once.

cut

Effects:

0

Subgoals:

[LocalContextList [SolvedEfHypLis{ + Cond

Figure E.52:solve_eq_hyp_for_var method

E.47.1 Behaviour

This method introduces additional hypotheses by solvingtiey equality hypotheses for
their referenced variables. The method exploits the coerpaigebra system YACAS
[YAC] to perform the equation solving. In particular, thefaalt capabilities of th&olve
function are used For example, a hypothesis of the following form may be entexed:

a=(b+c)+d (E.59)
To solve forc the following query may be sent to YACAS:

Solvda = (b+c)+d,c) (E.60)

2In practice, to minimise implementatiofffert, this method does not communicate directly with YA-
CAS. Instead, a look-up table is maintained, describingdhpabilities of YACAS for each equality
encountered.

216

YACAS is successful, presenting the result:
c=a-(b+d) (E.61)

Note that it would be dficult to generate a tactic that describes the actions of YAGAS
the object-level. However, as this method is only appliedrduprogram analysis, such a
tactic is not required.

E.48 Method: constrain _conc _conj

Theconstrain_conc_conj method is shown in Figure E.53 and described below.

Method:

constrain_conc_conj

Tactic:

(Conc> Lowerlnd A (Conc< UpperIn)
Goal:

LocalContextList HypListr Conc
Preconditions:

Find bounds for the integer exp conclusion.
int_bound_var(HypList Cong LowerInt Upperin}
Effects:

0

Subgoals:

I

Figure E.53:constrain_conc_conj method

E.48.1 Behaviour

This method discovers bounds for the conclusion expresesturning these through the
tactic slot. The method leaves no subgoals.

217

E.49 Method: elim _aux _var _via _eq

Theelim_aux_var_via_eq method is shown in Figure E.54 and described below.

Method:
elim_aux_var_via_eq
Tactic:
0
Goal:
LocalContextList HypList+ Conc
Preconditions:
Consider each equality hypothesis.
select(Hyp, HypList RemHypList
Hyp= (.=)
Explore equality hypothesis in both directions.
sub_exp_polarity(Hyp, negative[], Polarity)
select_alt.view_rule(Polarity, -,
true: Hyp = (LeftExp= RightEXxp)

Check that the left expression is an auxiliary variable.
aux_vars(LeftExp[LeftExg, 1)
Check that the right expression contains no auxiliary \deis
aux_vars(RightExp[], 0)
Succeed at most once.
cut
Effects:
Remove equality hypothesis.
find_replace((RemHypListCong,

LeftExp

RightExp

(NewHypListNewCony)
Subgoals:
[LocalContextList NewHypList- NewCong§

Figure E.54:elim_aux_var_via_eq method

E.49.1 Behaviour

This method eliminates auxiliary variables in the goal. Tethod identifies a hypothesis
equality between an auxiliary variable and an expressiahhhs no auxiliary variables.
Where found, the hypothesis equality is eliminated and @uarences of the auxiliary
variable are replaced with its equivalent expression.

218

E.50 Method: elim _prog _var_exp _via _eq

Theelim_prog_var_exp_via_eq method is shown in Figure E.55 and described below.

Method:
elim_prog_var_exp_via_eq
Tactic:
0
Goal:
LocalContextList HypList+ Conc
Preconditions:
Consider each equality hypothesis.
select(Hyp, HypList RemHypList
Hyp= (.=)
Explore equality hypothesis in both directions.
sub_exp_polarity(Hyp, negative[], Polarity)
select_alt_view_rule(Polarity, _,
true: Hyp = (LeftExp= RightEXxp)

Check that the left expression is a program variable.
prog_var_exps(LeftExp [LeftExg, 1)
Check that the right expression contains no variables.
prog_var_exps(RightExp[], 0)
aux-vars(RightExp[], 0)
Succeed at most once.
cut
Effects:
Eliminate program variable expression.
find_replace((RemHypListCong,

LeftExp

RightExp

(NewHypListNewCony)
Subgoals:
[LocalContextList NewHypList- NewCong§

Figure E.55:lim_prog_var_exp_via_eq method

E.50.1 Behaviour

This method simplifies the goal by eliminating program MVales. The method identifies
a hypothesis equality between a program variable and argsion that has no variables.
Where found, the hypothesis equality is eliminated and eduorences of the program
variable are replaced with its equivalent expression.

219

E.51 Method: elim _aux_var _via_int _arith

Theelim_aux_var_via_int_arith method is shown in Figure E.56 and described below.

Method:

elim_aux_var_via_int_arith

Tactic:

]

Goal:

LocalContextList HypList+ Conc

Preconditions:

Select a conclusion conjunct.

conjunct_at(Cong Pos ConcCon)

Select an auxiliary variables in the conjunct.
aux_vars(ConcConjAuxVarList)

select(AuxVar AuxVarList _)

Eliminate the auxiliary variable through interval reasani
elim_bounded_var(HypList AuxVar ConcConjNewConcCor)j
Succeed at most once.

cut

Effects:

Adopt conjunct with auxiliary variable eliminated.
replace_at(Cong Pos NewConcConNewCong
Subgoals:

[LocalContextList NewHypList- NewCong

Figure E.56:elim_aux_var_via_int_arith method

E.51.1 Behaviour

This method eliminates auxiliary variables in the goal. Tinethod applies a restricted
form of interval reasoning to replace the auxiliary varebith its known bounds.

220

E.52 Method: is_spark _exp

Theis_spark_exp method is shown in Figure E.57 and described below.

Conc
_:_r Conc

Check that the conclusion contains no auxiliary variables.
aux_vars(Conc], 0)

I

Figure E.57:is_spark_exp method

E.52.1 Behaviour

This method is successful where the conclusion can be biregpressed in SPARK
annotations. In this case, the conclusion is returned girdbe tactic slot. The method
leaves no subgoals.

221

E.53 Method: disj _-norm _form

Thedisj_norm_form method is shown in Figure E.58 and described below.

Method:

disj_norm_form

Tactic:

0

Goal:

LocalContextList HypList+ Conc

Preconditions:

Consider all expressions.
exp_at(Cong Pos SUbExp
Find rewrite that moves toward disjunctive normal for
sub_exp_polarity(Cong positive Pos Polarity)
select_rewrite_rule(Polarity, RewriteForm

true : SUbExp= NewSubEx)p
RewriteForm= rule(., rlu, dnf(_), norma)

Succeed at most once.
cut

Effects:

Perform disjunctive normal form rewrite.
replace_at(Conc Pos NewSubExfNewCong

Subgoals:

[LocalContextList HypListr NewCong¢

Figure E.58disj_-norm_form method

E.53.1 Behaviour

This method is successful where the conclusion can be btalgger to disjunctive nor-

mal form. The method applies rewrite rules that move an esgioa toward disjunctive

normal form, as detailed in §B.4.4.

222

Appendix F

MIinISPARK Grammar

F.1 Introduction

As discussed in 87.2, program analysis is performed on aesa@hsSPARK as MiniS-
PARK. The complete grammar of MiniSPARK is listed below. Bldhat the tokenizer
suppresses the content of SPARK annotations, leading t@besrgrammar.

F.2 Grammar

<CompilationUnit ::= <PackageDeclaration |
<PackageDeclaration <PackageDeclaration |
<PackageBody

<PackageDeclaration ::= rwpackage<DottedSimpleName
rwis <VisiblePartRep
rwend<DottedSimpleName
semicolon

<VisiblePartRep ::= <VisiblePartRep <RestrictedBasicDeclaration|
<VisiblePartRep <SubprogramDeclaratios |
null

<RestrictedBasicDeclaration::= <ConstantDeclaratios |
<SubtypeDeclaratios |
<FullTypeDeclaratio

<ConstantDeclaration ::= ldentifier coloncRwconstant
becomesExpression
semicolon

<SubtypeDeclaration ::= rwsubtype Identifier
rwis <TypeMarks
rwrange<Arange-
semicolon

<FullTypeDeclaratior ::= rwtype Identifier

rwis <TypeDefinitios
semicolon

223

<TypeDefinitiors ::= <ConstrainedArrayDefinitian |
<IntegerTypeDefinition

<ConstrainedArrayDefinition ::= rwarray leftparen
<TypeMarks
rightparen rwof<TypeMarks

<IntegerTypeDefinition ::= <RangeConstraint

<RangeConstraint ::= rwrange<SimpleExpression
doubledotSimpleExpression

<Arange- ::= <SimpleExpressiondoubledok SimpleExpression

<SubprogramDeclaration ::= <ProcedureSpecification
semicolon<ProcedureAnnotatian |
<FunctionSpecification
semicoloncFunctionAnnotation

<ProcedureAnnotation ::= <ProcedureConstraint |
<DependencyRelation<ProcedureConstraint

<FunctionAnnotation ::= <FunctionConstraint

<ProcedureConstraint ::= <Precondition- <Postconditior |
<Precondition |
<Postconditior |
null

<FunctionConstraint ::= <Precondition- <ReturnExpression|
<Precondition |
<ReturnExpression|
null

<ProcedureSpecification::= rwprocedure
Identifier<FormalPart> |
rwprocedure ldentifier

<FunctionSpecification ::= rwfunction Identifier
<FormalPart> rwreturn
<TypeMarks |
rwfunction Identifier
rwreturn <TypeMarks

<FormalPart> ::= leftparen<FormalPartRep
rightparen

<FormalPartRep ::= <FormalPartRep- semicolon
<ParameterSpecification|
<ParameterSpecification

<ParameterSpecification::= Identifier colon<Mode>
<TypeMarks

224

<Mode> ;= rwin |
rwin rwout |
rwout|
null

<PackageBody ::= rwpackage rwbody
Identifier rwis<LaterDeclarativeltemRep
rwend Identifier semicolon

<LaterDeclarativeltemRep::= <LaterDeclarativeltemRep
<SubprogramBody |
<SubprogramBody

<SubprogramBody ::= <ProcedureSpecification
rwis <Subprogramlmplementatiorj
<FunctionSpecification rwis
<Subprogramimplementation

<Subprogramimplementatisn:= <InitialDeclarativeltemRep
rwbegin<SequenceOfStatements
rwend Identifier
semicolon
rwbegin<SequenceOfStatements
rwend Identifier
semicolon

<InitialDeclarativeltemRep ::= <InitialDeclarativeltemRep
<VariableDeclaratior |
<VariableDeclaratior

<VariableDeclaratior ::= Identifier colon<TypeMarks
semicolon

<SequenceOfStatements= <SequenceOfStatementsStatement |
<Statement

<Statement ::= <SimpleStatement]
<CompoundStatement
<ProofStatement
<SimpleStatement:= <AssignmentStatement
<ProcedureCallStatement
<ExitStatement |
<ReturnStatement

<CompoundStatement:= <IfStatement |
<LoopStatement

<ProofStatement ::= <AssertStatement

<AssignmentStatement= <Name- becomesExpression
semicolon

<ProcedureCallStatement:= <Name- semicolon
<ExitStatement ::= rwexit semicolon

<ReturnStatemesnt::= rwreturn <Expression
semicolon

225

<IfStatement ::= rwif <Condition> rwthen
<SequenceOfStatementsElsePart
rwend rwif semicolon

<ElsePart- ::= rwelse<SequenceOfStatements
null

<LoopStatement::= <LoopStatementOptrwloop
<SequenceOfStatementsvend
rwloop semicolon

<LoopStatementOpt::= <IterationScheme |
null

<lIterationScheme ::= rwwhile <Condition> |
rwfor <LoopParameterSpecificatisn

<LoopParameterSpecificatisn:= ldentifier rwin
<TypeMarks
rwrange<Arange> |
Identifier rwin <TypeMarks

<Condition> ::= <Expression

<Expression ::= <Relation> |
<Relation- rwand <ExpressionRepi |
<Relatiorn> rwor <ExpressionRep3

<ExpressionRepi::= <ExpressionRepirwand <Relation> |
<Relation>

<ExpressionRep3::= <ExpressionRep3rwor <Relation- |
<Relation-

<Relatiorn> ::= <SimpleExpression|
<SimpleExpression<RelationalOperatas
<SimpleExpression

<RelationalOperatos ::= equalg
notequal
lessthar
lessorequal
greaterthan
greaterorequal

<SimpleExpression::= <SimpleExpression<BinaryAddingOperator
<Term> |
<SimpleExpressionOpt

<BinaryAddingOperatos ::= plus]|
minus

<SimpleExpressionOpt:= <UnaryAddingOperator <Term> |
<Term-

<UnaryAddingOperatos ::= plus|
minus

226

<Term> ::= <Term> <MultiplyingOperator- <Factor> |
<Factor>

<MultiplyingOperator ::= multiply |
divide

<Factor> ::= <Primary> |
<Primary> doublestar<Primary> |
rwnot <Primary>

<Primary> ::= Integernumbeyf
<Name> |
leftparen<Expression
rightparen|
<Name- Attributeident

<TypeMarks ::= Identifier

<DottedSimpleName::= Identifier

<SimpleName ::= |dentifier

<Name- ::= <SimpleName |
<Name- leftparen<PositionalArgumentAssociation
rightparen

<PositionalArgumentAssociation:= <PositionalArgumentAssociation

comma<Expression |

<Expression

<DependencyRelation::= annotationstart rwderives
annotationend

<AssertStatement::= proofcontext rwassert
annotationend

<Precondition- ::= annotationstart rwpre
annotationend

<Postconditior ::= annotationstart rwpost
annotationend

<ReturnExpression::= annotationstart rwreturn
annotationend

227

Appendix G

Program Analysis Methods

G.1 Introduction

As described in Chapter 7, our program analysis heuristeesxressed through program
analysis methods and abstract predicate satisfiers. Edhk pfogram analysis methods
are detailed in this chapter.

G.2 Method: scope

This method discovers those variables that are in scopechtesige of the control flow-
graph.

G.2.1 Property Type

The property type for this method is shown in Figure G.1. Eheariables in scope are
associated with the valuescope

Address— Property
[scope<Var>] — inscope
Definitions

<Var> := <subprogram variable

Figure G.1: Property type farcope

G.2.2 Route

The structured block corresponding to the entire subprogsaetrieved, and followed in
sequence. Thus, with the exception of loop merge nodes, @isodsited after all of its
leading nodes have been visited.

228

G.2.3 Property Operations

Entry

[scope<Var>] — <Scope oy

Each variable has either static or dynamic scope. Variabitsstatic scope are al-
ways in scope. These correspond to subprogram parametkrsabdeclarations. The
simplified package information is queried to identify eacniable with static scope as
StaticVar setting their output properties as:

[scopeStaticVal — inscope (G.1)

Variables with dynamic scope are sometimes in scope. Atregjp@m entry, dynamically
scoped variables are never in scope.

Assignment

[scope<Var>] — <Scopei,

[scope<Var>] — <Scope oy

Assignment does nofi@ct the scope of variables. The input properties are coged a
the output properties.

EnterScope

[scope<Var>] — <Scopei,
| enterScopg/arRej|

[scope<Var>] — <Scope oy

Entering scope brings variabl@arRefinto scope. The input properties are copied as
the output properties. Further, a property is introducedfe additional variable in scope
as:

[scopeVarRef +— inscope (G.2)

229

ExitScope

[scope<Var>] — <Scopei,
| exitScop@varRej|

[scope<Var>] — <Scope oy

Exiting scope puts variablarRefout of scope. The input properties are copied as
the output properties, excluding the property associaitduVarRef

Branch or Loop Branch

[scope<Var>] — <Scope,

brancH...) v loopBranch. ..) |

false
out

true

[scope<Var>] — <Scope i

[scope<Var>] — <Scope

A branch does notffect the scope of variables. The input properties are coidiaea
output properties for both the true and false edges.

Merge

[scope<Var>] — <Scope, ...[scope<Var>] — <Scope!

[scope<Var>] — <Scope oy

A merge does notffect the scope of variables. Variables entering scope muist ex
scope on the same path, thus the input properties on eachhaggiebe the same. The
consistent input properties are copied as the output plieper

Loop Merge

entry
in

loopMergd. ..)|
[scope<Var>] — <Scope oy

[scope<Var>] — <Scope[eu™

[scope<Var>] — <Scope

A loop merge does notfiect the scope of variables. When encountering the loop
merge, there will be no properties associated with the metdge. The input properties
on the entry edge are copied as the output properties.

230

G.3 Method: update

This method discovers two related properties of variabfesstly, the method identifies
subprogram edges where variables have been fully assig@sedndly, the method iden-
tifies the assignment nodes that may have contributed tauertly assigned value.

G.3.1 Property Type

The property type for this method is shown in Figure G.2. Bastable is associated with
its assigned and modified status. The stassgnedndicates that the variable has been
fully assigned, whileunassignedndicates that the variable has not been fully assigned.
The statusmbiguousndicates that the assignment status can not be statecdatsly.

The modified status lists every node which may have congibtd the assigned status.

Address— Property

[update <Var>] — <Update-
Definitions

<Var> == <subprogram variable
<Update- := (<Assigned, <Modified>)
<Assigned := assigned unassignedlambiguous|
<Modified> := <NodeldList

<NodeldList =[] | [Nodeld] <NodeldList]

Figure G.2: Property type farpdate

G.3.2 Route

The structured block corresponding to the entire subprogsaetrieved, and followed in
sequence. Where a loop block is encountered, the path atbeihabp is followed twicé
Consequently, at least once, every node will be visited afteof its leading nodes have
been visited.

G.3.3 Property Operations

Entry

| EntryNodeld: entry

[update <Var>] — <Update>q

LIn practice, this is achieved by naively duplicating thehpatound each loop block, regardless of its
nesting. Thus, loops nested at degtire actually itterated®imes. While this is clearly inficient, it does
not &fect the result of the method.

231

Thescope method and the simplified package information are queriedeiotify the
assigned status of every variable in scope. All input patamariablednVarRefmust
have an assigned value. Their output properties are seliasso

[updateInVarRef — (assigned EntryNodeld) (G.3)

All other variablesNotInVarRefare unassigned, with no modification history. Their output
properties are set as:

[update NotInVarRef — (unassigned]) (G.4)

Assignment

[update <Var>] — <Update>,

| AssigmentNodeldassigrfLValueExpRValueExp|

[update <Var>] — <Update>q;

The variable modified by ValueExpis extracted a¥arRef The input properties are
copied as the output properties, excluding the propertyaated withVarRef The input
property forVarRefwill take the following general form:

[update VarRef — (<Assigned,, <Modified>j,) (G.5)

WherelLValueExps a whole variable, theviarRefis fully assigned at this node. Its output
property is set as:

[updateVarRef — (assigned[AssigmentNode]dl (G.6)

WherelLValueExps an index of an array, then only a portion\@&rRefis assigned at this
node. Its output property is set as follows:

[updateVarRef — (<Assigned,, [AssigmentNode<Modified>i,]) (G.7)

Note that the complete assignment of an array, through ctimelupdates, is not de-
tected.

EnterScope

[update <Var>] — <Update>,
| enterScop@/arRej|

[update <Var>] — <Update>q

232

Entering scope brings an additional variabRefinto scope. The input properties
are copied as the output properties and a property is intextifor the additional variable.
As VarRefhas just entered scope it is unassigned, with no modifichigtory. Its output
property is set as follows:

[update VarRef — (unassigned]) (G.8)

ExitScope

[update <Var>] — <Update>,
| exitScop@varRej|

[update <Var>] — <Update>q;

Exiting scope removes the variaMarReffrom scope. The input properties are copied
as the output properties, excluding the property assatiaiit VarRef

Branch or Loop Branch

[update <Var>] — <Update>,

brancH(...) v loopBrancH. ..) |

false
out

[update <Var>] — <Update-Iue [update <Var>] — <Update-

out

A branch does not update any variables. The input propexteesopied as the output
properties for both the true and false edges.

Merge

[update <Var>] — <Update-, ... [update <Var>] — <Update-!!

[update <Var>] — <Update>q;

The input properties associated with each variable are edeiggenerate the output
property for the variable. If every input property has thensaassigned status, then this
consistent status is retained. Otherwise, the assigntes stésset aambiguous The mod-
ification lists are appended, deleting duplicates, indhcgthat any of the input branches
may have been traversed.

233

Loop Merge

return

[update<Var>] — <Update>;

[update <Var>] — <Update-"""
loopMergé. ..) |

[update <Var>] — <Update>q;

The input properties associated with each variable are edeiggenerate the output
property for the variable. As loops are itterated twice, ltap merge will be visited on
more than one occasion. Where encountered the first timeopegies will be available
on the return edge. In this case, the input properties onritrg edge are copied as the
output properties. Where the loop merge is encountered ageoperties will now be
available on the return edge. In this case input propertesnerged in exactly the same
manner as the merge node above. Note that the propertiegsastabilise following the
second iteration.

G.3.4 Example

An example is given to illustrate the behaviour of this methGonsider the CheckSum
subprogram shown in Figure G.3. The subprogram sums thddieghth elements of
an array and stores the result in the zeroth element of thg.dfor program analysis, the
subprogram is translated into a control flowgraph as shoviagare G.4.

package CheckSum_Package is
subtype AE_T is Integer range 0..100;
subtype AR1_T is Integer range 0..8;
subtype AR2_T is Integer range 1..AR1_T’Last;
type A_T is array (AR1_T) of AE_T;
procedure CheckSum(A: in out A_T);
--# derives A from A;
end CheckSum_Package;

package body CheckSum_Package is
procedure CheckSum(A: in out A_T)
is
C: Integer;
begin
C:=0;
for I in AR2_T loop
--# assert true;
C:=C+A(D);
end loop;
A(®):=C;
end CheckSum;
end CheckSum_Package;

Figure G.3: CheckSum subprogram

234

nl: entry

lel: [...]

n2: assign(c,0)

lez: [...]

n3: enterScope(loop__1 i)

les: [...]

n4: assign(loop__1__i,1)

1642 [...]

n5: loopMerge(1)

@ [[invariant]->true,...

n6: assign(c,c+element(a,[loop__1__i]))

leG: [...]

n7: loopBranch(loop__1_ _i=8,1)

ﬁ[[cross]»true,...\!\ef: [[cross]->false,..

n9: merge n8: assign(loop__1__i,loop__1__i+1)

lelo: [..]

nl0: exitScope(loop__1_ i)

lell: [...]

nll: assign(element(a,[0]),c)

lelz: [...]

nl2: exit

e9: [...]

Figure G.4: CheckSum control flowgraph

235

The route visits every subprogram node in sequence, igratch loop twice. The
route is retrieved as:

[n1 n2 n3 n4,n5n6,n7,n8

(G.9)
n5,n6,n7,Nn8 n9 n10nllnl2

To begin, update properties are distributed to the stahefdop, as shown in Figure G.5.
The route starts at the subprogram entry nadg. (The array variable is a parameter
of modeinout, thus it is initially assigned. Variableis a local variable that is initially
unassigned. Next, assignment nod2) (@ssigns ta. The next noden3) brings variable

I into scope, which is initially unassigned. Next, assigntmerde (4) assigns ta.

Nodenl entry

Edgeel | [updatea] — (assigned[nl]), [updatec] — (unassigned])
Noden2 assigrfc, 0)

Edgee2 | [updatea] — (assigned[nl]), [updatec] — (assigned[n2])
Noden3 enterScop@)

Edgee3 | [updatea] — (assignednl]), [updatec] — (assigned[n2?]),
[updatei] — (unassigned])

Noden4 assigri, 0)

Edgeed | [updatea] — (assigned[nl]), [updatec] — (assigned[n2]),
[updatei] — (assigned[n4])

The table format above is used throughout this chapter toritesthe trans-
formations seen to properties on traversing a path througbnéol flow-

graph. The table lists every node and edge encountered goathe The
first column identifies the node or edge being described. #Hescribing
a node, the operation of the node is shown. Where descrilniregige, the
relevant properties held at the edge are shown. Every nqueceded by its
input edges and followed by its output edges. To highlighséhtransitions,
the node descriptions are shaded.

Figure G.5:update on CheckSum: Reaching loop

At this stage, update properties are distributed aroundoibye for the first time, as
shown in Figure G.6. As the loop merge nodé)(is reached for the first time, no update
properties exist on the edge returning from the loop. Thokowing the loop merge
node, the update properties for all variables are unchanljedt, the assignment node
(n6) assigns t@. Next, a loop branch nodaT) is encountered. As branches do nfeat
update properties, the properties are unchanged on the¢hmtiue and false edges. The
loop iteration is completed with the assignment nau®) (vhich assigns to.

At this stage, update properties are distributed aroundothye for the second time,
as shown in Figure G.7. At the loop merge node, update priepembw exist on the
edge returning from the loop. Update properties on the edgéng at and returning
from the loop are merged. Update properties for variablsdi now list every potential
assignment point. These properties are then distributéldeirsame manner as the first

236

Edgeed | [updatea] — (assignednl]), [updatec] — (assigned[n2]),
[updatei] — (assigned[n4))

Edgee9 | 0

Noden5 loopMergél)

Edgee5 | [updatea] — (assignednl]), [updatec] — (assigned[n?]),
[updatei] — (assigned[n4])

Noden6 assigrfc, ¢ + elemen(a, [i]))

Edgee6 | [updatea] — (assignednl]), [updatec] — (assigned[nf]),
[updatei] — (assigned[n4))

Noden7 loopBranclii = 8,1)

Edgee? | [updatea] — (assigned[nl]), [updatec] — (assigned[nf]),
[updatei] — (assigned[n4))

Edgee8 | [updatea] — (assignednl]), [updatec] — (assigned[nf]),
[updatei] — (assigned[n4))

Noden8 assigrti, i + 1)

Edgee9 | [updatea] — (assigned[nl]), [updatec] — (assigned[nf]),
[updatei] — (assigned[ng))

Figure G.6:update on CheckSum: First loop iteration

loop iteration. Note that the update properties on the eédfyening from the loop match
those from the first iteration. Such stabilisation alwaysuws, thus additional iterations
are not required.

Edgee4 | [updatea] +— (assigned[n1]), [updatec] — (assignedn2]),
[updatei] — (assigned[n4])

Edgee9 | [updatea] +— (assigned[nl]), [updatec] — (assignedné]),
[updatei] — (assigned[n8])

Noden5 loopMergé1)

Edgee5 | [updatea] +— (assigned[nl]), [updatec] — (assigned[n2 n§]),
[updatei] — (assigned[n4, ng))

Noden6 assigric, ¢ + elemen(z, [i]))

Edgee6 | [updatea] +— (assigned[nl]),[updatec] — (assigned[né]),
[updatei] — (assigned[n4, ng))

Noden7 loopBranclii = 8,1)

Edgee7 | [updatea] +— (assigned[nl]),[updatec] — (assignedné]),
[updatei] — (assigned[n4, ng))

Edgee8 | [updatea] +— (assigned[nl]), [updatec] — (assignedn§]),
[updatei] — (assigned[n4, n8))

Noden8 assigrti, i + 1)

Edgee9 | [updatea] +— (assigned[nl]), [updatec] — (assignedné]),
[updatei] — (assigned[n8g])

Figure G.7:update on CheckSum: Second loop iteration

Next, update properties are distributed from the edgemegihie loop to the end of the
subprogram, as shown in Figure G.8. The merge nofeqontains a single input edge,
thus update properties following the merge are unchangeelfallowing node(10) puts
variablei out of scope. Finally, the assignment nod#&1) assigns to the zeroth element of
arraya. This partial assignment leads to the list of potential rficdiions being extended.
The route is now complete, marking the completion of the imeth

237

Edgee7 | [updatea] — (assigned[nl]),[updatec] — (assigned[n]),
[updatei] — (assigned[n4, ng])

Noden9 merge

Edgeel0 | [updatea] + (assigned[nl]), [updatec] — (assigned[n]),
[updatei] — (assigned[n4, ng])

Noden8 exitScopé)
Edgeell | [updatea] +— (assigned[ni])[updatec] — (assigned[nf])
Nodenll assigrfelemena, [0]), €)

Edgeel2 | [updatea] + (assignednl, n11]), [updatec] — (assigned[nf])

Figure G.8:update on CheckSum: Leaving loop

238

G.4 Method: context

This method discovers filerent structural contexts that exist within the subprogram

G.4.1 Property Type

The property type for this method is shown in Figure G.9. Agkmproperty is held at
each edge, describing its context through a list of tags.cbiméext at edgelalso holds
at edgee2if all of the tags akelare also ae2

Address— Property

[contex} — <TagList>
Definitions

<TagList- == [] | [Tag| <TagList>]

Figure G.9: Property type for metha@dntext

G.4.2 Route

The structured block corresponding to the entire subprogsaetrieved, and followed in
sequence. Thus, with the exception of loop merge nodes, @isadsited after all of its
leading nodes have been visited.

G.4.3 Property Operations

Entry

[context — <TagList>oy

A unique tag is created to describe the context of the subanogsSubprogramTag
setting the output property as:

[contex} — [SubprogramTayg (G.10)

Assignment, EnterScope and ExitScope

[context — <TagList>i,

assignmergt..) v enterScopg..) Vv exitScopé..) ‘

[contex} > <TagList>q

239

Assignment and entering and exiting scope do rftgca context. Thus, the input
property is copied as the output property.

Branch or Loop Branch

[context — <TagList>i,

brancH...) v loopBranch. ..) |

false

[context — <TagList-0ue [contex} > <TagList>oy

out

Following a branch, the context is extended. A unique tagested to describe the
context of the true and false edgesTaseTagand FalseTagrespectively. The output
property for the true edge is set as:

[contex} — [TrueTag| <TagList>] (G.11)
While the output property for the false edge is set as:

[contex} — [FalseTag <TagList>j,] (G.12)

Merge

[contex} — <TagList-}. .. .[contex} — <TagList-],

[contex} — <TagList>qy

Following a merge, the context is contracted. The outpup@rty is the intersection
of the tags at every input property:

[contex} — <TagList-} N ... <TagList-], (G.13)
Loop Merge

[contex} — <TagList-o""
loopMergd. ..)|

[contex} — <TagList>qy

[contex} — <TagList-/e"

in

Only one loop iteration is considered. Thus, on encoungettie loop merge node,
there will be no context property associated with the retananch. The single input
property is copied as its output property.

240

G.4.4 Example

An example is given to illustrate the behaviour of this meth@onsider the Findindex
subprogram shown in Figure G.10. The subprogram searcragthan array to find the
first occurrence of a requested element. Where the eleménind its index is returned,
otherwise zero is returned. For program analysis, the sgjppm is translated into a
control flowgraph as shown in Figure G.11.

package FindIndex_Package is
subtype AR_T is Integer range 1..10;
subtype EAR_T is Integer range 0..10;
type A_T is array (AR_T) of Integer;
procedure FindIndex(A: in A_T; S: in Integer;
R: out EAR_T);
--# derives R from A,S;
end FindIndex_Package;

package body FindIndex_Package is
procedure FindIndex(A: in A_T; S: in Integer;
R: out EAR_T)
is
begin
R:=0;
for I in AR_T loop
--# assert true;
if AC(I)=S then
R:=I;
exit;
end if;
end loop;
end FindIndex;
end FindIndex_Package;

Figure G.10: FindIndex subprogram

241

nl: entry

lel: [...]

n2: assign(r,0)

lez: [-.]

n3: enterScope(loop__1_ i)

leS: [-.]

n4: assign(loop__1__i,1)

le4: [...]

n5: loopMerge(1)

@ [[invariant]->true,...

n6: loopBranch(element(a,[loop__1__i])=s,1)

e6: [[cross]->true,.l] e8: [[cross]->false,...] ell: [...]
n7: assign(r,loop__1 i) n8: loopBranch(loop__1_i=10,1)
K‘ ’mcross] >true,. \elo [[cross]->false,.
nl0: merge n9: assign(loop__1 i,loop__1 i+l)

lelZ: [..]

nll: exitScope(loop__1 i)

lelS: [...]

nl2: exit

Figure G.11: Findindex control flowgraph

242

The route visits every subprogram node in sequence. The uttrieved as:
[nL n2 n3 n4,n5n6,n8n9 n7,nlQnllnl? (G.14)

To begin, context properties are distributed to the starthefloop, as shown in Fig-
ure G.12. The route starts at the subprogram entry nodle (The initial context is
indicated via the tag. The next three nodes encountered are an assignmentmg)dar(
enter scope nod@®) and another assignment nodel). These nodes do not modify the
initial context property.

Nodenl entry
Edgeel | [context — [€]
Noden2 assigrgr, 0)
Edgee2 | [context — [€]
Noden3 | enterScopg)
Edgee3 | [contex} - [€]
Noden4 assigri, 1)
Edgee4 | [contex} — [€]

Figure G.12:context on Findindex: Reaching loop

At this stage, context properties are distributed aroumdldlop, as shown in Fig-
ure G.13. The loop merge nodas] does not modify context properties. At the first loop
branch noder(6) the context properties associated with the true and falgesare ex-
tended with the tagb1tandblfrespectively. Similarly, at the second loop branch node
(n8) the context properties associated with the true and falgesare extended with the
tagsb2t andb2f respectively. The loop iteration is completed at assignimede (9),
which does not modify context properties.

Edgeed | [contex} [€]

Edgeell| 0

Noden5b loopMergé1)
Edgee5 | [context - [€]

Noden6 | loopBranclielemen(a,[i]) = s 1)
Edgee6 | [contex}+— [e bl{
Edgee8 | [contex} — [e b1f
Noden8 loopBranclifi = 10, 1)
Edgee9 | [contex} — [e blf b2{
EdgeelO | [contex} +— [e blf b2f
Noden9 assigrti, i + 1)
Edgeell | [contex} +— [e blf b2f

Figure G.13:context on FindIndex: Loop iteration

Next, context properties are distributed from the edgesgingathe loop to the end
of the subprogram, as shown in Figure G.14. Leaving the loaphe first branch node
(n6), the assignment noda?) is encountered, which does not modify context properties.
There are no nodes to consider on the path leaving the secandhonoderf8). The

243

merge noder(10) contracts context properties. Only the subprogranetasgcommon to
the merged context properties. Finally, the exit scope r{od#) is reached, making no
modifications to context properties. The route is now comeplamarking the completion
of the method.

Edgee6 | [contex}+— [e bl{
Noden? assignr, i)
Edgee7 | [contex}+— [e b1{
Edgee9 | [contex} — [e bilf b2{

Nodenl0 merge
Edgeel2 | [contex} i [€]
Nodenll exitScopé)

Edgeel3 | [contex} i [€]

Figure G.14context on FindIndex: Leaving loop

244

G.5 Method: type

This method introduces properties stating that assignedbtas are within their type.

G.5.1 Property Type

The property type for this method is shown in Figure G.15. Beariable is associated
with its corresponding type constraint.

Address— Property

[type <Var>] — <TypeConstraint
Definitions

<Var> := <subprogram variable

Figure G.15: Property type for methoge

G.5.2 Route

The structured block corresponding to the entire subprogsaetrieved. Every subpro-
gram node is visited, in any order.

G.5.3 Property Operations

Every Node

[type <Var>] — <TypeConstraint;, ... [type <Var>] — <TypeConstrains],
-]

1 m

[type <Var>] — <TypeConstraint,,. .. [type <Var>] — <TypeConstraint,

The same property operation is applied for every node. Tpetiadges are always
ignored. Theupdate method and the simplified package information are querie$o-
ciate every assigned variable on the output edges with itegponding type constraint.

245

G.6 Method: transient

This method discovers transient properties that are preddor sections of the subpro-
gram. The preservation of the transient properties areulzdéd from the assignment
status of variables and the structural contexts that exite subprogram.

G.6.1 Property Type

The property type for this method is shown in Figure G.16. t\dié properties may be
held at each edge. Each property contains a constraintatsgyvo conditions which,
if preserved, mean that the constraint continues to holde firist condition specifies
required update properties for selected variables. Thenskecondition specifies the re-
quired structural context.

Address— Property

[transien} — <Transient

Definitions

<Transient := (Constraint <UpdateList, <TagList>)
<UpdateList :=[] | [(<Var>, <Update>) | <UpdateList]
<Var> := <subprogram variable

<TagList- == defined in property type farontext method
<Update- == defined in property type farpdate method

Figure G.16: Property type for methadnsient

G.6.2 Route

The structured block corresponding to the entire subprogsaetrieved, and followed in
sequence. Thus, with the exception of loop merge nodes, @isodsited after all of its
leading nodes have been visited.

G.6.3 Property Operations

Every Node

[transien} > <Transient], .. .[transien} - <Transient!

L--]

.[transien} — <Transient"

[transien} — <Transiens o

out -

This property operation is applied at every node to disteélareviously introduced
transient properties. Each transient property on an ingge és investigated individually.
The property is copied to an output edge if its two conditiare satisfied. Firstly, the

246

recorded update properties for selected variables musthnthose on the output edge.
Secondly, the recorded context must be available on theibatjge.

Assignment

[transien} — <Transient,

| assigrfLValueExpRValueExp|

[transien} > <Transient

Following assignment, a transient property may be intreduan the output edge.
Where the variable modified throudlValueExpis not referenced in the assigned ex-
pressionRValueExpthen the assignment can be trivially expressed as an egudhis
observation is exploited to introduce the following tramdiproperty:

[transien} — (LValueExp= RValueExp<UpdateList, <TagList>) (G.15)

Theupdate method is queried, pairing each variableLivalueExpand RValueExpwith
its update property asUpdateList. Further, thecontext method is queried to determine
the context property following the assignmentdagList>.

Branch or Loop Branch

[transien} — <Transient,

| brancHConditionEx v loopBranct{ConditionExp. . .) |

[transient — <Transient.e [transient > <Transient2>®
Following a branch, a transient property is introduced @nttbe edge as:
[transien} — (ConditionExp<UpdateList, <TagList>) (G.16)
While a transient property is introduced on the false edge as

[transien} — (—=ConditionExp<UpdateList, <TagList>) (G.17)

The update method is queried to pair each variable reference@anditionExpwith its
corresponding update property @dpdateList. Further, thecontext method is queried
to determine the context property on the output edgeTagjList>.

247

G.6.4 Example

An example is given to illustrate the behaviour of this meth&onsider the IndexIni-

tArray subprogram shown in Figure G.17. The subprogranmsiiges an array such that
the element at each index equals this index. For progranysieathe subprogram is
translated into a control flowgraph as shown in Figure G.18.

package IndexInitArray_Package is
subtype AR_T is Integer range 0..1000;
type A_T is array (AR_T) of AR_T;
procedure IndexInitArray(A: in out A_T);
--# derives A from A;

end IndexInitArray_Package;

package body IndexInitArray_Package is
procedure IndexInitArray(A: in out A_T)
is
begin
for I in AR_T loop
A(D):=TI;
end loop;
end IndexInitArray;
end IndexInitArray_Package;

Figure G.17: IndexInitArray subprogram

248

nl: entry

lel: [...]

n2: enterScope(loop__1 i)

leZ: [-.]

n3: assign(loop__1__i,0)

leS: [...]

n4: loopMerge(1)

ﬁ: [...]

n5: assign(element(a,[loop__1__i]),lcop__1__i)

leS: [-..]

n6: loopBranch(loop__1 i=1000,1)

ﬁ[[cross]»true,...\r\ez: [[cross]->false,..

n8: merge n7: assign(loop__1_ _i,loop__1 _i+1)

leQ: [--]

n9: exitScope(loop__1 i)

l el0: [...]

nl0: exit

e8: [...]

Figure G.18: IndexInitArray control flowgraph

249

The route visits every subprogram node in sequence. The uttrieved as:
[n1, n2 n3,n4,n5n6n7n8 n9 nlQ (G.18)

The distribution of transient properties on reaching aedaiing around the loop are
shown in Figure G.19. The subprogram entry noa® @nd the enter scope node2j
do not dfect transient properties. The assignment noddp (eads to the introduction of
a transient property. Following the loop merge noal® (he update property for variable
i changes, reflecting the assignment seen on loop iterat@mssequently, the conditions
associated with the transient property introduceda} (o longer hold and the transient
property is removed. The following assignment nodB) (eads to the introduction of
another transient property. Next, a branch nau® (s encountered, introducing transient
properties for each departing edge. The subsequent assimode (17) does not lead
to the introduction of a transient property, as the modifi@dablei is also referenced in
the assigned expression. Following this assignment nadegdtate property for variable
I changes. Consequently, the conditions associated witkrdahgient properties intro-
duced at1(5) and the false edge of6) no longer hold and these transient properties are
removed.

Nodenl entry

Edgeel | [updatea] — (assignhednl]),[contex} [€]

Noden2 enterScop@)

Edgee2 | [updatea] — (assigned[nl]), [updatei] — (unassigned]), [contex} — [€]
Noden3 assigri, 0)

Edgee3d | [updatea] — (assigned[nl]), [updatei] — (assignednd]), [contex}t — [€]
[transient — (i = O,[(i, (assigned[n3)))], [€])

Noden4 loopMergg1)
Edgeed | [updatea] — (assignednl n5]), [updatei] — (assignedn3 n7]), [contex} — [€]
Noden5 assigrfelemen(a, [i]), i)

Edgee5 | [updatea] — (assignednl, n5]), [updatei] — (assignedn3 n7]), [contex} — [€]
[transien} — (elemen(a, [i]) =i, [(a, (assigned[nl, ng)), (i, (assigned n3, n7]))], [€])
Noden6 loopBrancifi = 100Q 1)

Edgee6 | [updatea] — (assigned[ni, n5]), [updatei] — (assigned[n3 n7]), [context — [e, bl{
[transient — (elemen(a,[i]) =i, [(a, (assigned[nl, n9))), (i, (assigned[n3,n7]))], [€])
[transient — (i = 100Q [(i, (assigned[n3 n7]))], [e b1{)

Edgee7 | [updatea] — (assigned[nl, n5]), [updatei] + (assignedn3 n7]),[context — [e, blf
[transient — (elemen(a,[i]) =i, [(a, (assigned[nl, n9))), (i, (assigned[n3,n7]))], [€])
[transient — (=(i = 1000) [(i, (assignedn3 n7]))],[e b1f)

Noden?7 assigri,i + 1)

Edgee8 | [updatea] — (assigned[ni, n5]), [updatei] — (assigned[n7]),[context — [e blf

Figure G.19transient on IndexInitArray: Reaching loop

The distribution of transient properties on leaving theploo the end of the subpro-
gram are shown in Figure G.20. As the loop has a single exit, pla¢ merge nodeg)
does not restrict context, allowing transient properteebe distributed. Finally, the exit
scope nodern9) removes from scope, changing its update property and leading tasll d
tributed properties being removed. The route is now corapleiarking the completion

250

of the method.

Edgee6 | [updatea] — (assigned[ni, n5]), [updatei] — (assigned[n3 n7]),[context — [e bl{
[transient — (elemen(a, [i]) =i, [(a, (assigned[nl, ng))), (i, (assigned[n3 n7]))], [€])
[transient — (i = 100Q [(i, (assigned[n3,n7]))], [e b1f)

Noden8 merge

Edgee6 | [updatea] +— (assigned/nl, n5]),[updatei] + (assignedn3, n7]),[context — [e blf
[transien} — (elemen(a, [i]) =i, [(a, (assigned[nl, ng))), (i, (assignedn3, n7]))], [€])
[transient — (i = 100Q [(i, (assigned[n3, n7]))].[e blf)

Noden9 exitScopé)

Edgeel0 | [updatea] +— (assigned/nl, n5]),[context — [e, blf

Figure G.20transient on IndexInitArray: Leaving loop

251

G.7 Method: loop _range
This method introduces properties stating that for-loapeddes are within any declared

range.

G.7.1 Property Type

The property type for this method is shown in Figure G.21.-I6op variables that are
known to iterate between range expressions are associdtethese constraints.

Address— Property

[looprange <Var>] — <RangeConstraint
Definitions

<Var> := <subprogram variable

Figure G.21: Property type for methémbp_range

G.7.2 Route

The structured block corresponding to the entire subprogsaetrieved. Every subpro-
gram node is visited, in any order.

G.7.3 Property Operations

Every Node

[looprange<Var>] — <RangeConstraint, . ..

[looprange<Var>] — <RangeConstraint;,

EEXN
[looprange <Var>] — <RangeConstraint.,. . .

[looprange<Var>] — <RangeConstrain{]),

The same property operation is applied for every node. Tpetiadges are always
ignored. Each output edge is considered separately.sddge method and the simpli-
fied package information are queried to identify every twd variable in scope that has
an explicit range constraint. In some situations, the ranagestraints can not be directly
expressed as SPARK assertions. For example, the constraayt reference loop entry
variables. To resolve this, a suitable goal is constructeti sent to thepa_spark_exp
strategy. Theype andtransient properties on the output edge describe the context as
hypotheses, while the range constraint forms the conaiusighere the strategy is suc-
cessful, the resulting constraint is stored on the outpgéed

252

G.8 Method: int _constraint

This method discovers constraints for integer variablegalticular, invariant constraints
are discovered for loops through the generation and sobimgcurrence relations

G.8.1 Property Type

Address— Property
[intconst <Var>, <Class>] — <Constraint-
Definitions
<Var> := <subprogram variable
<Class> := circulatgSelLoopld | solution| propagate normalise
<Constraint ::= undefj
<Eg> A <Eg> | <Eg> V <EQ> | -<EQ> | <boolean-
<EQ> = <EXp> = <Exp> | <EXp> # <EXp> |
<Exp> < <Exp> | <Exp> < <Exp> |
<Exp> > <Exp> | <Exp> > <Exp>
<Exp> = <Exp> * x<Exp> | <Exp> * <EXp> |
<EXp> + <Exp> | <Exp> — <Exp> |
—<Exp> |
<integer> |
<subprogram variable > |
<Circulate>(SelLoopld {where<Class> = circulatg/SelLooplq}
<Propagate- {where<Class> € {solution propagate}
<Normalise- {where<Class> = normalise
<Circulate>(SelLoopld := uv {i > 0} |
itt(<subprogram variable, 0) |
itt(<Var>, ISelLoopIc) |
itt(<Var>, |SeILoopId_ 1) |
li {where i# SelLoopld
<Propagate- == uv; {i > 0} |
itt(<subprogram variable, O) |
li {i > 1}]
<Var>
<Normalise- ::= <subprogram variable

Figure G.22: Property type for methad_constraint

The property type for this method is shown in Figure G.22. HEiateger variable
is associated with an integer constraint. A relatively tediconstraint grammar is em-
ployed to minimise complexity and remain within the capiéies of a recurrence relation
solver. Nevertheless, the constraint grammar fB@ant for reasoning about many com-
mon programing constructs. The grammar references additi@riables and functions,
as described below:

e Unconstrained variables- Unconstrained variables support the elimination of ex-
pressions, as described in 8G.8.2. The variables are dbmgi@nd are introduced

253

for increasing values afas required.

e Loop iteration variables - Loop iteration variables support the expression of in-
variant properties discovered through solving recurreretations. The variables
are denoted, wherei matches the unique number associated with a loop. These
variables are implicitly zero on entry to the loop, and arglioitly increased by
one at the end of each iteration.

e Loop iteration function - A loop iteration function is introduced to support the
expression of recurrence relations. The functtt(w, |;) describes the value of vari-
ablevin loopi on thel" iteration. For simplicity, only the first, current and preus
iterations are referenced aslOandl; — 1 respectively.

The grammar supports fourftirent property classes, as described below:

e circulatg(SelLoopld - Describes the potential assignments made to an integer va
able within loopSelLoopldthrough recurrence relations. Circulate properties are
distributed throughout their corresponding loop. Noteyéeer, that their corre-
sponding loop may contain nested loops.

¢ solution- Describes invariant constraints on integer variablesugh solved recur-
rence relations. Solution properties are only associattttiae edge leaving a loop
merge node.

e propagate- Describes constraints on integer variables, includingriant con-
straints within loops. Propagate properties are distetbwhroughout the subpro-
gram.

e normalise- Describes invariant properties strictly in terms of SPABRbhstructs.
Normalise properties are only associated with edges quoyrelng to a loop invari-
ant.

G.8.2 Eliminate Expressions via Unconstrained Variables

This method often requires properties to be expressed amtkgmt to other variables. For
example, assume that the following two properties are known

(@=0)A(a<10) (G.19)
b=2xa (G.20)

Via mathematical reasoning, given (G.19), (G.20) can beesged independently &mas:

(b>0) A (b < 20) (G.21)

254

In general, such reasoning idittult to automate. Instead, variables may be eliminated
from properties through the introduction of unconstraimadables. Firstly, a constraint
must be discovered for the variable to be eliminated. Fomge, if seeking to eliminate
afrom (G.20), then the following constraint may be found:

(a>0) A (a< 10) (G.22)

While the discovery of constraints requires mathematieatoning, the process is typi-
cally tractable. Secondly, the discovered constraintigained with the original property.
For example, conjoining (G.20) with (G.22) gives:

(b=2«a)A((a=0)A(a<10)) (G.23)

Finally, the variable to be eliminated is consistently aggld with an unconstrained vari-
able. For example, replacirawith uv; in (G.23) gives:

(b=2xuw) A ((uvy > 0) A (uv; < 10)) (G.24)

Thus, the property (G.20) is now expressed independently to

G.8.3 Route

Every structured block corresponding to a loop is retrie&shuential loops are selected
from top to bottom and nested loops are selected from thenmos to the outermost.
Each loop is individually analysed. The path departing framal returning to the loop
merge node is iteratively followed until all variables amdved or no new solutions are
discovered. Once all loops have been explored, the steathlock corresponding to the
entire subprogram is retrieved and followed in sequence.

G.8.4 Property Operations

Entry

[intconst <Var>, propagat¢ — <Constraint;

As the subprogram entry node is encountered after all loaps been visited, all
properties must belong to th@opagateclass. Theupdate method and the simplified
package information are queried to identify the assignatlistof every integer program
variable in scope. Assigned variablassignedintVamare associated with an assigned
valueAssignedValueFor strictly input parameter variables the assigned visltiee pro-
gram variable. Otherwise the assigned value is the initiehmeter variable correspond-

255

ing to the program variable:
[intconst <Var>, propagaté — AssignedintVae AssignedValue (G.25)
Unassigned variablddnassignedintVaare associated withndef

[intconst <Var>, propagaté — UnassignedIntVae undef (G.26)

Assignment

[intconst <Var>, <Class>] — <Constraint,

| assigr{LValueExpRValueExp|

[intconst <Var>, <Class>] — <Constraintq

The variable modified by ValueExpis extracted a¥arRef The input properties are
copied as the output properties, excluding any propertgaated withVarRef Where
there is an input property fovarRefit is queried to form the initial output property as
follows:

[intconst <Var>, <Class>] + VarRef= RValueExp (G.27)

The expressioRRValueExpmay contain subexpressions outside the property type gram-
mar. Some of these incompatibilities are resolved throeghnsively applying the fol-
lowing transformations:

e Array element access An array element accestemenfArray, [IndeX) may not
be referenced in the constraint grammar. The array elencepsa is eliminated as
described in 8G.8.2. The constraint for the array elemecgsecis discovered by
sending a suitable goal to tlpa_exp_constrain strategy. Theype andtransient
properties on the output edge describe the context as hggeghwhile the array
element access forms the conclusion.

e Program variable access A program variable may only be referenced in the con-
straint grammar in certain situations. Outside these titng, the program variable
access is eliminated as described in 8G.8.2. The input grepare queried to find
a constraint for the program variable.

e Bound function - The constraint grammar does not include bwindTypeRef
function, as introduced in 87.6.4. The bound function isnelated as described
in 8G.8.2. The constraint bound function is found by adapiis declared type
constraint.

WhereRValueExps transformed into the property type grammar, it is subsatjy sim-
plified via thepa_exp_simplify strategy. Where unsuccessfelalueExps set asindef

256

EnterScope

[intconst <Var>, <Class>] — <Constraint,

| enterScop@/arRej|

[intconst <Var>, <Class>] — <Constraintq

Entering a scope does not modify any variables. Thus, thé jpqoperties are copied
as the output properties. As scope changes are never eeoedintside loops, the prop-
erties must belong to theropagateclass. Wheréd/arRefis an integer program variable
the following output property is introduced:

[intconst VarRef propagaté — VarRef= undef (G.28)

ExitScope

[Class Var] — <Constraint,
| exitScop@varRej|

[Class Var] — <Constraint-q

Exiting scope removes the variaarReffrom scope. The input properties are copied
as the output properties, excluding any property assatvaith VarRef As scope changes
are never encountered inside loops, the properties mushdeb thepropagateclass.
WhereVarRefis an integer program variable its output property is set as:

[intconst VarRef propagaté¢ — VarRef= undef (G.29)

Branch

[intconst <Var>, <Class>] — <Constraint,

[intconst <Var>, <Class>] — <Constraint-Iu¢

false

[intconst <Var>, <Class>] — <Constraint-,

A branch does not update any variables. The input propexteesopied as the output
properties on both the true and false edges.

257

Loop Branch

[intconst <Var>, <Class>] — <Constraint,

| loopBrancifConditionExpLoopld) |

[intconst <Var>, <Class>] — <Constraint-Ju¢

[intconst <Var>, <Class-] = <Constraintg,"

Different operations occur at the true and false edges, asediialow:

e True Edge - Circulate properties are not distributed outside theiresponding
loop. Where an input property has the following form:

[intconst VarRef circulatgLoopld)] — <Constraint, (G.30)
Then its output property is set as:
[intconst VarRef propagaté — VarRef= undef (G.31)

In all other cases, each input property is copied as the vptpperty, following a
transformation. In exiting loopoopld all references to the loop iteration variable
lLoopia Must be removed. The loop iteration variable is eliminated@scribed in
8G.8.2. The constraint for the loop iteration variable iscdvered by sending a
suitable goal to thpa_spark_exp strategy. The propagate input properties, exclud-
ing the variable under consideration, plus tiyge andtransient properties on the
output edge describe the context as hypotheses. The lgagiote variable forms
the conclusion.

e False Edge The false edge remains within the loop. Each input propsrtppied

as an output property.

Merge

[intconst <Var>, <Class>] — <Constraint>§1 e

[intconst <Var>, <Class>] — <Constraint-,

[intconst <Var>, <Class>] — <Constrainto

The input properties associated with each variable are edei@generate the output
property for the variable. Where every input property asged with a variable has a
defined property then these properties are disjoined. Thdtineg constraint is simplified

258

through thepa_exp_simplify strategy, and taken as the output property. Otherwise, the
output property is set amdef

Loop Merge (Recurrence Relation Solving)

entry
in

[intconst <Var>, <Class>] — <Constraint

[intconst <Var>, <Class>] — <Constraint-[c“™

loopMergéLoopld) |

[intconst <Var>, <Class>] — <Constrainto

The input properties associated with the returning edgaapected. Those variables
of classcirculatgLoopld), describe an iteration of this loop. For each such variableed
properties are sought that describe a general iteratiore stéges of this process are
detailed below:

e Rejectif no reference to previous iteration- Where the circulate property isidef
then no solution can be found. Further, where a property mmakeeference to the
previous iteration, no solution can be found. This situatdises where a variable
is assigned a distinct value on each iteration. For exangptemporary variable
might be present within a loop, but be overwritten with uatetl values on each
iteration.

e Complete the iteration- The circulate property resides on the edge returning to the
loop merge node. As initialisation took place on the edgeihgathe loop merge
node, the property does not yet describe a full iteratiois iecessary to carry the
constraint across the loop junction to complete the itenatNo program variables
are modified as the loop junction is traversed. However,dbe iteration variable
lLoopia IS iMplicitly incremented. Thus, to retain the same meajgngry occurrence
of I oopia iN the known constraint is decremented.

e Disjunctive normal form - The circulate property will be expressed through a
nested conjunction and disjunction of expressions. To aaalysis, the property is
converted into disjunctive normal form via tpa_disj_norm_form strategy.

e Extract extreme recurrence relations- Each disjunct is processed individually,
generating a number axtreme recurrence relationsThese recurrence relations
seek to describe the extreme edges of a constraint. Extrecoerence relations
are trivially generated by considering every combinatiérthe lower and upper
constraints of every bounded expression. The simplisficagzeh is only accurate
where constraints are linear. Nevertheless, the techngyeféective and supports
the analysis of many realistic problems.

259

¢ Solve extreme recurrence relations Every extreme recurrence relation is solved
via the recurrence relation solver PURRS [PUR]. The propgpe for this method
is directly supported by the PURRS grammar.

e Bounding extreme recurrence relations Each solved extreme recurrence relation
describes a potential constraint. A lowermost and uppernegsirrence relation is
sought that bounds the values of every other constrains iSkachieved by sorting
the solved extreme recurrence relations through numeaitallysis. A parameter
set is generated, associating each parameter with a randlo®. WJsing this pa-
rameter set, each recurrence relation is evaluated andiatgsbwith its numerical
solution. Based on this solution, the recurrence relatavassorted to identify the
extreme bounding solutions. The process is repeated $éwvees and must con-
sistently produce the same result. The simplistic appr@aomly accurate where
the constraints are linear. Nevertheless, the techniquadges an &ective analysis
with no reasoning overhead.

Where successful, the result is associated withstileedclass and taken as the output
property.

Loop Merge (Iteration)

entry
in

[intconst <Var>, <Class>] — <Constraint-

[intconst <Var>, <Class>] — <Constraint-[c“"™

loopMergéLoopld) |

[intconst <Var>, <Class>] — <Constraintq

The update method and the simplified package information are queriedeaotify
every assigned integer program variable. The input progseand output property are
inspected in determining the output property for each wéeias below:

e Solution present- A solution for this variable is present on the output proper
The solution is copied as the output property for the vaeabVhere the variable
has classirculate(Loopld), this loop is under investigation. In this case the vagabl
is now solved, and thpropagateclass is adopted. Otherwise, an outer context is
under investigation. In this case, the class associatddtigtvariable is preserved.
Further, any initial values referenced in the solution a@aced with the property
associated with the variable on the entry edge.

2In practice, to minimise implementatiorffert, this method does not communicate directly with
PURRS. Instead a look-up table is maintained, describieg#pabilities of PURRS for each recurrence
relation encountered.

260

¢ No solution present- A solution for this variable is not present on the outpufpro
erty. Where the variable has classculatgLoopld), this loop is under investiga-
tion. In this case, the variable is initialised to its value the previous iteration

as:

intconst <Var>, <circulate>(Loopld)] —
[(Loopld)] (G.32)

Otherwise, the outer context is under investigation. Tlesslassociated with

this variable is preserved. As no solution is present, thpudpropertyundefis
adopted.

Every Node

[intconst <Var>, <Class>] — <Constraint>§1 e

[intconst <Var>, <Class>] — <Constraint-,

-]
[intconst <Var>, <Class>] + <Constraint?,. ..

[intconst <Var>, <Class>] — <Constraint-j,,,

This property operation is applied for every node. The irgulges are always ignored.
Each output edge is considered separately. Where the oedigégt corresponds to an
invariant, each variable associated with grepagateclass is translated as a property of
the normaliseclass. The normalised property is discovered by sendingtalbde goal
to the pa_spark_exp strategy. The propagate output properties, excluding #rae
under consideration, plus thgpe andtransient properties on the output edge describe
the context as hypotheses. Tpepagateproperty associated with the variable forms the
conclusion.

G.8.5 Example

An example is given to illustrate the behaviour of this methGonsider the Filterinteger
subprogram shown in Figure G.23. The subprogram sums dleoélements in an array
that lie between 0 and 100. For program analysis, the subgmogs translated into a
control flowgraph as shown in Figure G.24.

261

package FilterInteger_Package is
subtype AR_T is Integer range 0..9;
type A_T is array (AR_T) of Integer;
procedure FilterInteger(A: in A_T; R: out Integer);
--# derives R from A;
end FilterInteger_Package;

package body FilterInteger_Package is
procedure FilterInteger(A: in A_T; R: out Integer)
is
begin
R:=0;
for I in AR_T loop
--# assert true;
if AC(I)>=0 and A(I)<=100 then
R:=R+A(I);
end if;
end loop;
end FilterInteger;
end FilterInteger_Package;

Figure G.23: Filterinteger subprogram

262

nl: entry

lel: [-.]

n2: assign(r,0)

lez: [...]

n3: enterScope(loop__1 i)

les: [...]

n4: assign(loop__1__i,0)

le4: [...]

n5: loopMerge(1)

/ [[invariant]->tm

n6: branch(element(a,[loop__1__i])>=0 and element(a,[loop__1__i])<=100)

\ef: [[cross]->true,...]

e8: [[cross]->false,...] n7: assign(r,r+element(a,[loop__1_ i]))

/: [...] el2: [...]

n9: loopBranch(loop__1_ i=9,1)

{elo: [[cross]->m1: [[cross]->fa|se,/]/
A

nll: merge n10: assign(loop__1__i,loop__1__i+1)

lels: [...]

nl2: exitScope(loop__1 i)

le14: [...]

nl3: exit

Figure G.24: Filterinteger control flowgraph

The route begins by iterating around the innermost loop.rohee is retrieved as:
[n5,Nn6,n7,n8 n9, n1((G.33)

The circulation of integer constraint properties arouralltdop is shown in Figure G.25.
At the loop merge nodenf) no properties of classolutionare present on the output
edge, thus each variable is initialised as having its vatu¢éhe previous iteration. The
output edge corresponds to the invariant. However, as npepties of claspropagate
are present, the normalisation of properties is not perornNext, a branch nodeg) is
encountered, making no change to properties. Followingrtreebranch, the assignment
node (7) assigns to variable. The property associated with varialylés modified to
reflect the assignment. The assigned expression is geseztati conform to the property
type, introducing the unconstrained variahlg, replacing an array element access with
its bounds. At the merge noder9) two alternative properties farare disjoined. Next, a
loop branch noden(L0) is encountered. As only circulate properties are avaladlery
variable on the true edge has propeutydef No property changes takes place on the
false edge. Next, the assignment nod#&l] is encountered, assigning to variablél'he
property associated wiihs modified to reflect the assignment.

Following the circulation of integer constraint propestidoth variables andi are
candidates for recurrence relation solving. The constdiscovered for is shown below:

(itt(r, 1) = itt(r, 1, — 1)) v

. . (G.34)
(itt(r, 1y) = (itt(r, 1y — 1) + uwy)) A (uvy = 0) A (uvy < 100)
The constraint leads to the following three extreme recueegelations:
itt(r, 1) = itt(r,1; — 1) (G.35)
itt(r, 1) = (itt(r,1; — 1) + 0) (G.36)
itt(r, 1) = (itt(r,I; — 1) + 100) (G.37)

These extreme recurrence relations are solved, and boutoda@wduce the solution:
(r > itt(r,0)) A (r < (itt(r, 0) + I = 100)) (G.38)
The constraint discovered fors shown below:
itt(i, 11) = (itt(i, 1 — 1)+ 1) (G.39)

This constraint leads to a single extreme recurrence oelatf exactly the same form.
The extreme recurrence relation is solved, producing theisa:

i = (itt(i, 0) + I1) (G.40)

264

Edgee4 | 0

Edgeel2| 0

Noden5 loopMergél)

Edgee5 | [intconstr, circulatg(1)] & itt(r, 1) = itt(r, 1, — 1),

[intconsti, circulatg(1)] — itt(i, 11) = itt(i,1; — 1)

Noden6 | branch(elementa, [i]) > 0) A (elemen(a,[i]) < 100))

Edgee6 | [intconstr,circulatg(1)] & itt(r, 1) = itt(r, 1, — 1),

[intconsti, circulatg(1)] — itt(i, 11) = itt(i,1; — 1)

Edgee8 | [intconstr, circulatg(1)] & itt(r, 1) = itt(r, 1, — 1),

[intconsti, circulatg(1)] — itt(i, 11) = itt(i,1; — 1)
Reaching branch in loop

Edgeeb6 | [intconstr, circulatg(1)] & itt(r, 17) = itt(r, 1, — 1),
[intconsti, circulatg(1)] — itt(i, 11) = itt(i,1; — 1)
Noden7 assigrr, r + elemen(a, [i]))
Edgee7 | [intconstr, circulate(1)] — (itt(r,l1) = (itt(r, 13 — 1) + uwvy) A (uvy > 0) A (uvy < 100)
[intconsti, circulatg(1)] — itt(i, 11) = itt(i,1; — 1)
Following true branch
Edgee8 | [intconstr, circulate(1)] — itt(r, 11) = itt(r,l, — 1),
[intconsti, circulatg(1)] — itt(i, I1) = itt(i, 11 — 1)
Edgee7 | [intconstr,circulatg(1)] +— (itt(r,l1) = (itt(r, 11 — 1) + uwvs) A (uvg > 0) A (uwvy < 100),
[intconsti, circulatg(1)] + itt(i, I1) = itt(i, 1, — 1)
Noden8 merge
Edgee9 | [intconstr, circulate(1)] —(itt(r, (1) = itt(r, 1, = 1)) v
(itt(r, 1) = (itt(r, 11 — 1) + uvy)) A (uvy = 0) A (uvy < 100),
[intconsti, circulatg(1)] — itt(i, I1) = itt(i, 11 — 1)
Nodenl0 loopBranciti = 9, 1)
Edgeel0 | [intconstr, circulatg(1)] — undef
[intconsti, circulatg(1)] +— undef
Edgeell | [intconstr, circulate(1)] —(itt(r, (I1) = itt(r, 1, = 1)) v
(itt(r, 1) = (itt(r, 11 — 1) + uvy)) A (uvy = 0) A (uvy < 100),
[intconsti, circulatg(1)] + itt(i, I1) = itt(i, 1 — 1)
Noden10 assigri,i + 1)
Edgeel?2 | [intconstr, circulate(1)] —(itt(r, (I1) = itt(r,l1 — 1)) v
(itt(r, 1) = (itt(r, 11 — 1) + uvy)) A (uvg = 0) A (uvy < 100),
[intconsti, circulate(1)] — itt(i, [1) = (itt(i, 1, — 1) + 1)

Return to loop merge

Figure G.25int_constraint on FilterInteger: Circulate around loop

At this stage, a solution has been found for every variabtbénnnermost loop. As
every loop has been considered, the route now traversestine fubprogram. The route

is retrieved as:

The propagation of integer constraint properties up to dlo@ lis shown in Figure G.26.
The route starts at the subprogram entry nodg. (The only integer variable in scope is
r, which is associated with properiydefas it is unassigned. The following assignment
node 02) assigns ta, modifying its property accordingly. Next, the enter scoele
(n3) brings variable into scope. Variablé has propertyundefas it is unassigned. The

[N, n2 n3 n4,n5n6,n7,n8n9 nl0nllnl? (G.41)

265

following assignment nodend)) assigns to, modifying its property accordingly.

Nodenl entry

Edgee5 | [intconstr, propagaté — r = undef
Noden2 assigrgr, 0)

Edgee?2 | [intconstr, propagaté — r = 0
Noden3 enterScop@)

Edgee3 | [intconstr, propagaté — r = 0,
[intconsti, propagaté +— i = undef
Noden4 assigri, 0)

Edgee4 | [intconstr, propagaté — r =0,
[intconsti, propagatg — i =0

Figure G.26:nt_constraint on FilterInteger: Propagate to loop

The propagation of integer constraint properties arourdldlop is shown in Fig-
ure G.27. At the loop merge node5) solutions are present for each integer variable.
Each variable is associated with its solution, substigutire initial value with the prop-
erties known on the entry edge. The output edge corresportie invariant. As prop-
erties of claspropagateare present normalisation takes place, discovering a psofoe
variabler. Next, a branch nodenf) is encountered, making no change to properties.
Following the true branch, the assignment nad® @ssigns to variable. The property
associated with variableis modified to reflect the assignment, generalising an array e
ement access to its bounds. At the merge nod@g tivo alternative properties farare
disjoined. Next, a loop branch node9j is encountered. The propagate properties are
copied to the true edge, and occurrences of the loop iteratidable are eliminated. No
property changes takes place on the false edge. Next, tlggassnt noder{10) is en-
countered, assigning to variableThe property associated witlis modified to reflect the
assignment.

Finally, the propagation of integer constraint propert&sving the loop to the end of
the subprogram is shown in Figure G.28. The merge nod#) (contains a single input
edge, thus properties are unchanged. Finally, the exitescoge (12) is reached, putting
variablei out of scope, and changing its propertyutadef

266

Edgee4 | [intconstr, propagaté— r =0,

[intconsti, propagaté — i =0

Edgeel2| 0

Noden5 loopMergél)

Edgee5 | [intconstr, solutior] + (r > itt(r, 0)) A (r < (itt(r, 0) + (11 = 100))),

[intconsti, solution] +— i = (itt(i, 0) + |1),
[intconstr, propagaté — (r > 0) A (r < (I3 = 100))
[intconsti, propagaté +— i = 4,

[intconstr, normalisé — (r > 0) A (r < (i = 100))

Noden6 brancH(elemenga, [i]) > 0) A (elemen(a, [i]) < 100))

Edgee6 | [intconstr, propagaté — (r > 0) A (r < (I = 100)),

[intconsti, propagaté — i = I

Edgee8 | [intconstr, propagaté — (r > 0) A (r < (I = 100)),

[intconsti, propagaté — i = I

Reaching branch in loop

Edgee6 | [intconstr, propagaté — (r > 0) A (r < (I = 100)),
[intconsti, propagaté — i = |1
Noden7 assigrr, r + elemen(a, [i]))
Edgee? | [intconstr, propagaté —(r = uvy + uw) A (uvy = 0) A (uvg < (11 = 100)) A
(uwvz > 0) A (uw, < 100),
[intconsti, propagaté — i = |1
Following true branch
Edgee8 | [intconstr, propagaté — (r > 0) A (r < (I = 100)),
[intconsti, propagaté — i = I
Edgee7 | [intconstr, propagaté —(r = uvy + Uw) A (Uvg > 0) A (uwvy < (I = 100)) A
(uw > 0) A (uw, < 100),
[intconsti, propagaté — i = I
Noden8 merge
Edgee9 | [intconstr, propagaté —(r > 0) A (r < (I3 % 100)) v
((r =uwvs + uw) A (U = 0) A (uwvg < (I1 % 100)) A
(uw, > 0) A (uwe < 100))
[intconsti, propagaté — i = I
Noden9 loopBranciti = 9, 1)
Edgeel0 | [intconstr, propagaté —(r > 0) A (r < 900) v
((r = uvy + uw) A (uvr = 0) A (uwvg < 900) A
(uw, > 0) A (uwe < 100))
[intconsti, propagaté — i =9
Edgeell | [intconstr, propagaté —(r > 0) A (r < (I3 % 100)) v
((r =uwvy + uw) A (U > 0) A (uvg < (11 = 100)) A
(uw, > 0) A (uwe < 100))
[intconsti, propagaté — i = I
Nodenl0 assigri, i + 1)
Edgeel2 | [intconstr, propagaté —(r > 0) A (r < (I3 = 100)) v

((r =uwvy + uw) A (U > 0) A (uvg < (11 = 100)) A
(uw > 0) A (uw, < 100))
[intconsti, propagaté — i =1, +1

Return to loop merge

Figure G.27int_constraint on FilterInteger: Propagate around loop

267

Edgeel0

[intconstr, propagaté —(r > 0) A (r < 900) v
((r =uvy + uw) A (uvr = 0) A (uwvg < 900) A
(uw, > 0) A (uwz < 100)),

[intconsti, propagaté +— i = 9

Nodenll

merge

Edgeel3

[intconstr, propagaté —(r > 0) A (r < 900) Vv
((r =uvy + uw) A (uvg = 0) A (uwvg < 900) A
(uw > 0) A (uwvz < 100))

[intconsti, propagaté — i = 9

Noden2

exitScopé)

Edgeel4d

[intconstr, propagaté —(r > 0) A (r < 900) v
((r =uvy + uw) A (uvg = 0) A (uwvg < 900) A
(uw, > 0) A (uwz < 100)),

[intconsti, propagaté i = undef

Figure G.28:nt_constraint on FilterInteger: Leaving loop

268

Bibliography

[ABB*05]

[ABC*94]

[ABC*07]

[Abro6]

[AC02]

[ADO3]

[AGB*+77]

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, RidiBaubel, Mar-
tin Giese, Reiner Hahnle, Wolfram Menzel, Wojciech Most&iy An-
dreas Roth, Stéen Schlager, and Peter H. Schmitt. The KeY tdsbft-
ware and System Modeling (SoSyki)1):32-54, 2005.

C. Antoine, P. Baudin, J.M. Collard, J. Raguideau, andwtin. Using
formal methods to validate C programs. [fi Biternational Symposium
on Software Reliability Engineeringages 252-258, 1994.

Zachary Anderson, Eric Brewer, Jeremy Condit, Robemdts) David
Gay, Matthew Harren, George C. Necula, and Feng Zhou. Bebagd
finding: Sound program analysis for Linux. In"LUSENIX workshop
on Hot topics in operating systems (HOTOS-20@Ages 1-6. USENIX
Association, 2007.

Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings
Cambridge University Press, 1996.

Peter Amey and Roderick Chapman. Industrial striereytception free-
dom. INACM SIGAda International Conference on Ada: The Engineer-
ing of Correct and Reliable Software for Real-Tigi®istributed Systems
using Ada and Related Technologies (SIGAda-20R8n Letters, pages
1-9. ACM Press, 2002.

Peter Amey and Brian Dobbing. High integrity Raveasdn Jean-Pierre
Rosen and Alfred Strohmeier, editor§} 8da-Europe International Con-
ference on Reliable Software Technologiedume 2655 of_ecture Notes
in Computer Science (LNCS$)ages 68—79. Springer-Verlag Ltd., 2003.

Allen L. Ambler, Donald I. Good, James C. Browne, WilheirBurger,

Richard M. Cohen, Charles G. Hoch, and Robert E. Wells. Gypsy
language for specification and implementation of verifigislggrams. In
ACM Conference on Language Design for Reliable Softwzages 1-10,
1977.

269

[AL98] Sten Agerholm and Peter Gorm Larsen. A lightweighpagach to formal
methods. In Dieter Hutter, Werner Stephan, Paolo Travensd ,Markus
Ullmann, editorsFM-Trends volume 1641 ot _ecture Notes in Computer
Science (LNCS)pages 168—-183. Springer, 1998.

[Ame83] American National Standards Institut®eference Manual for the Ada
Programming Languagel 983. ANSIMIL-STD-1815A 1983.

[Ame99] Peter Amey. The INFORMED design method for SPARK.chigcal
report, Praxis High Integrity Systems Limited, 1999.

[Ame01] Peter Amey. Logic versus magic in critical systenis.Dirk Craeynest
and Alfred Strohmeier, editors"6Ada-Europe International Conference
on Reliable Software Technologje@slume 2043 of.ecture Notes in Com-
puter Science (LNCSpages 49-67. Springer-Verlag Ltd., 2001.

[Ame06] Peter Amey. Correctness by constructiBmild Security In (BS[)2006.

[Apt81] Krzystof R. Apt. Ten years of Hoare’s logic: A survey Part I.
ACM Transactions on Programming Languages and SystemsLASP
3(4):431-483, 1981.

[BAO5] Frédéric Badeau and Arnaud Amelot. Using B as a heylel program-
ming language in an industrial project: Roissy VAL. In HelEreharne,
Steve King, Martin C. Henson, and Steve A. Schneider, eslit#y Inter-
national Conference on Formal Specification and Develognmes and B
(ZB-2005) volume 3455 ol_ecture Notes in Computer Science (LNCS)
pages 334-354. Springer-Verlag Ltd., 2005.

[Bac78] Ralph-Johan BackOn the Correctness of Refinement Steps in Program
DevelopmentPhD thesis, University of Helsinki, 1978.

[Bac86] Roland C. Backhous&rogram Construction and VerificatiorPrentice-
Hall, 1986.

[Bac88] Ralph-Johan Back. A calculus of refinements for paogderivations.
Acta Informatica 25(6):593—-624, 1988.

[Bal85] Robert Balzer. A 15 year perspective on automatagpemming.|[EEE
Transactions on Software Engineerjid (11):1257-1267, 1985.

[Bar89] Gedt Barrett. Formal methods applied to a floating-point numigstesn.
IEEE Transactions on Software Engineerin$(5):611-621, 1989.

[Bar99] Roman Bartak. Constraint programming: In pursidithe holy grail. In
Proceedings of Week of Doctoral Students (WDS-19889ume Part 1V,
pages 555-564. MatFyzPress, 1999.

270

[Bar03]

[BBB*85]

[BBC*06]

[BBEM99]

[BBH72]

John BarnedHigh Integrity Software: The SPARK Approach to Safety and
Security Addison-Wesley, 2003.

F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geissthtinger,

R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Briickner, A. LautMatzner,

B. Moller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, Mrsikig, and

H. WossnerThe Munich Project CIP: Volume I: The Wide Spectrum Lan-
guage CIP-L.volume 183 ol_ecture Notes in Computer Science (LNCS)
Springer-Verlag Ltd., 1985.

Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Leyirakob Licht-
enberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamauci,Adb-
dullah Ustuner. Thorough static analysis of device drivdrs Yolande
Berbers and Willy Zwaenepoel, editoBhe 1%t European Systems Con-
ference (EuroSys-200§)ages 73—85. ACM Press, 2006.

Patrick Behm, Paul Benoit, Alain Faivre, and Jédarc Meynadier.
Météor: A successful application of B in a large project.Jeannette M.
Wing, Jim Woodcock, and Jim Davies, editowprld Congress on For-
mal Methods in the Development of Computing Systems (FN),1981-
ume 1708 ol ecture Notes in Computer Science (LNG#)ges 369—-387.
Springer-Verlag Ltd., 1999.

W. W. Bledsoe, Robert S. Boyer, and William H. Henream Computer
proofs of limit theorems.Journal of Artificial Intelligence 3(1):27-60,
1972.

[BBHIO5] Alan Bundy, David Basin, Dieter Hutter, and Andrdweland. Rippling:

[BBMO7]

[BCS5]

[BCC*03]

Meta-Level Guidance for Mathematical Reasoni@gmbridge University
Press, 2005.

Nikolaj Bjgrner, Anca Browne, and Zohar Manna. Autatic generation
of invariants and intermediate assertioi$ieoretical Computer Science
173(1):49-87, 1997.

Jean-Francois Bergeretti and Bernard A. Carré.ormftion-flow and
data-flow analysis of while-programsACM Transactions on Program-
ming Languages and Systems (TOPLA®)):37-61, 1985.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérémest, Lau-
rent Mauborgne, Antoine Miné, David Monniaux, and XaviavdR A
static analyzer for large safety-critical softwaeCM SIGPLAN Notices
38(5):196-207, 2003.

271

[BCF*97] C.Benzmiller, L. Cheikhrouhou, D. Fehrer, A. Fied}erHuang, M. Ker-
ber, M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. Schaarsdat,
J. Siekmann, and V. SorgeQMEGA: Towards a mathematical assis-
tant. In William McCune, editor, 14 Conference on Automated Deduc-
tion (CADE-1997)volume 1249 ot ecture Notes in Artificial Intelligence
(LNAI), pages 252-255. Springer-Verlag Ltd., 1997.

[BCJ'06] Janet Barnes, Rod Chapman, Randy Johnson, James WidDaied
Cooper, and Bill Everett. Engineering the Tokeneer enclaatection
software. InThe 1%t International Symposium on Secure Software Engi-
neering (ISSSE-2006)EEE Computer Society Press, 2006.

[BD96] David Billington and R. Gefs Dromey. The co-invariant generator: An
aid in deriving loop bodies.Formal Aspects of Computing (FAC-1996)
8(1):108-126, 1996.

[BEH*87] F. L. Bauer, H. Ehler, A. Horsch, B. Moller, H. Partsch, Raukner, and
P. Pepper.The Munich Project CIP: Volume Il: The Transformation Sys-
tem CIP-S volume 292 ofLecture Notes in Computer Science (LNCS)
Springer-Verlag Ltd., 1987.

[BFO7] Sylvie Boldo and Jean-Christophe Filliatre. Formwerification of float-
ing point programs. In Peter Kornerup and Jean-Michel Mu#éditors,
Proceedings of th&8" IEEE Symposium on Computer Arithmepages
187-194. IEEE Computer Society Press, 2007.

[BH95a] Jonathan P. Bowen and Michael G. Hinchey. Seven mytas of formal
methods|EEE Software12(4):34-41, 1995.

[BH95b] Jonathan P. Bowen and Michael G. Hinchey. Ten conumants of for-
mal methodsIEEE Computer28(4):56—63, 1995.

[BH97] Jonathan P. Bowen and Michael G. Hinchey. The usedistrial-strength
formal methods. IlConference on Software Technology and Applications
(COMPSAC) pages 332—-337. IEEE Computer Society, 1997.

[BHO6] Jonathan P. Bowen and Michael G. Hinchey. Ten comnreerds of for-
mal methods ... ten years latédEEE Computer39(1):40-48, 2006.

[BHIMO7] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, ddpak Majumdar.
The software model checker BLASTnternational Journal on Software
Tools for Technology Transfer (STTB)(5-6):505-525, 2007.

[Bie85] Alan W. Biermann. Automatic programming: A tutdrian formal
methodologiesJournal of Symbolic Computatioh(2):119-142, 1985.

272

[BKMO5]

Robert S. Boyer, Matt Kaufmann, and J Strother Modriee Boyer-Moore
theorem prover and its interactive enhanceméamputers and Mathe-
matics with Applications29(2):27-62, 1995.

[BKYH85] W.E. Boebert, R.Y. Kaln, W.D. Young, and S.A. Haiso Secure Ada

[BLS96]

[BLSO5]

[BLWOS]

[BM8S]

[BM9O]

[BM99]

[BRLO3]

target: Issues, system design, and verificationSymposium on Security
and Privacy (SSP-1985pages 176—-183. IEEE Computer Society Press,
1985.

Saddek Bensalem, Yassine Lakhnech, and Hasselin S2owerful tech-
niques for the automatic generation of invariants. In Rajakir and
Thomas A. Henzinger, editor§he8™" International Conference on Com-
puter Aided Verification (CAV-1996yolume 1102 ofLecture Notes in
Computer Scienggages 323—-335. Springer-Verlag Ltd., 1996.

Mike Barnett, K. Rustan M. Leino, and Wolfram SclauliThe Spec# pro-
gramming system: An overview. In Gilles Barthe, Lilian Byr#larieke

Huisman, Jean-Louis Lanet, and Traian Muntean, editdos)struction

and Analysis of Safe, Secure, and Interoperable Smart e@Y{CASSIS-
2004) volume 3362 of_ecture Notes in Computer Science (LN(&ges
49-69. Springer-Verlag Ltd., 2005.

Sascha Bohme, K. Rustan M. Leino, and Burkhart #VoHOL-Boogie
- An interactive prover for the Boogie program-verifier. Inn@ne Ait
Mohamed, César Mufioz, and Sofiene Tahar, editor¥,|@ternational
Conference on Theorem Proving in Higher Order Logics (TPHZDD8)
volume 5170 ofLecture Notes in Computer Science (LNQ#)ges 150—
166. Springer-Verlag Ltd., 2008.

Robert S. Boyer and J Strother Mooke Computational Logic Handbopk
volume 23 ofPerspectives in Computing\cademic Press Ltd., 1988.

Robert S. Boyer and J Strother Moore. A theorem prdeera compu-
tational logic. In Mark E. Stickel, editor, ¥0Conference on Automated
Deduction (CADE-1990)olume 449 ofLecture Notes in Artificial Intel-
ligence (LNAI) pages 1-15. Springer-Verlag Ltd., 1990.

Lilian Burdy and Jean-Marc Meynadier. Automatic refment. IrB Users
Group Meeting - Applying B in an Industrial Context : Toolgsisons and
Techniques (FM-1999pages 3-15. Springer-Verlag Ltd., 1999.

Lilian Burdy, Antoine Requet, and Jean-Louis Langdva applet correct-
ness: A developer-oriented approatkcture Notes in Computer Science
2805:422-439, 2003.

273

[Bro87] Frederick P. Brooks Jr. No silver bullet: Essence accidents of software
engineeringlEEE Computer20(4):10-19, 1987.

[Bry86] Randal E. Bryant. Graph-based algorithms for Baal&unction manipu-
lation. IEEE Transactions on Compute35(8):677—-691, 1986.

[BSH90] Alan Bundy, Alan Smaill, and Jane Hesketh. Turninge&a steps into
calculations in automatic program synthesis. In S. L. Hrik&aeditor,
UK IT 199Q pages 221-226. IEE, 1990.

[BSSTO09] Clark W. Barrett, Roberto Sebastiani, Sanjit Ast8a, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn HeylHans van
Maaren, and Toby Walsh, editotdandbook of Satisfiabilitywolume 185
of Frontiers in Artificial Intelligence and Applicationgpages 825—-885.
IOS Press, 20009.

[BTO7] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damand Holger
Hermanns, editor§he19" International Conference on Computer Aided
Verification (CAV-2007)volume 4590 otecture Notes in Computer Sci-
ence (LNCS)pages 298-302. Springer-Verlag Ltd., 2007.

[Bun88] Alan Bundy. The use of explicit plans to guide induetproofs. In Ew-
ing L. Lusk and Ross A. Overbeek, editor¥, Gonference on Automated
Deduction (CADE-1988)\olume 310 of_ecture Notes in Atrtificial Intel-
ligence (LNAI) pages 111-120. Springer-Verlag Ltd., 1988.

[Bun91] Alan Bundy. A science of reasoning. In Jean-Louisdex and Gordon
Plotkin, editorsComputational Logic: Essays in Honor of Alan Robinson
pages 178-198. MIT Press, 1991.

[Bun99] Alan Bundy. A survey of automated deduction.Artificial Intelligence
Today pages 153-174. Springer-Verlag Ltd., 1999.

[BVHHS90] Alan Bundy, Frank van Harmelen, Christan Horng @&ian Smaill. The
Oyster-Clam system. In Mark E. Stickel, editor,".Gonference on Au-
tomated Deduction (CADE-90yolume 449 ol ecture Notes in Artificial
Intelligence (LNAI) pages 647—-648. Springer-Verlag Ltd., 1990.

[C*86] Robert L. Constable et aliImplementing Mathematics with the NuPrl
Proof Development Systerrentice-Hall, 1986.

[Cap75] Michel Caplain. Finding Invariant assertions fooyng programsACM
SIGPLAN Noticesl0(6):165-171, 1975.

274

[CC77] Patrick Cousot and Radhia Cousot. Abstract integpien: A unified
lattice model for static analysis of programs by constarcior approx-
imation of fixpoints. InThe4" Annual ACM Symposium on Principles
of Programming Languages (POPL-197ppages 238-252. ACM Press,
1977.

[CCDO86] Barnard A. Carré, Denton L. Clutterbuck, ChaiésDebney, and lan M.
O’Neill. SPADE - The Southampton program analysis and dgwelent
environment. IrSoftware Engineering Environmenpages 129-134. Pe-
ter Peregrinus, 1986.

[CG90] Bernard A. Carré and Jonathan Garnsworthy. SPARK adnotated Ada
subset for safety-critical programming. Tni-Ada. ACM Press, 1990.

[CGJ 03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan LuHmhehut
Veith. Counterexample-guided abstraction refinementyforimlic model
checking.Journal of the ACM (JACM)B0(5):752—-794, 2003.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peldddel Check-
ing. The MIT Press, 1999.

[CH78] Patrick Cousot and Nicholas Halbwachs. Automatgcdvery of linear
restraints among variables of a program. Time 5" Annual ACM Sym-
posium on Principles of Programming Languages (POPL-19papes
84-96. ACM Press, 1978.

[Cha00] Roderick Chapman. Industrial experience with SRARCM SIGADA
Ada Letters20(4):64—68, 2000.

[Cle] ClearSy.Atelier B, User and Reference Manuals

[COC97] Mats Carlsson, Greger Ottosson, and Bjorn Carldoropen-ended finite
domain constraint solver. In H. Glaser, P. Hartel, and H.kenc editors,
Programming Languages: Implementations, Logics, and Rmogning
volume 1292 ofLecture Notes in Computer Science (LNQ&)ges 191
206. Springer-Verlag Ltd., 1997.

[Com98] Commission of the European Communiti€&mmon Criteria for Infor-
mation Technology Security Evaluation Criteria (ITSEC998. ISQIEC
Standard 15408, version 2.1.

[Coq98] The Coq Development Team, INRIAhe Coq Proof Assistant Reference
Manual, Version 6.21998.

[CR91] D. A. Carrington and K. A. Robinson. Tool support fbetrefinement
calculus. In E. M. Clarke and R. P. Kurshan, edita@®@mputer Aided

275

Verification '90: Proceedings of a DIMACS Worksheplume 3 ofDis-
crete Mathematics and Theoretical Computer Science (DIB)AQages
381-394. American Mathematical Society, 1991.

[CS95] Martin Croxford and James Sutton. Breaking throdrgh\t and V bottle-
neck. In Marcel Toussaint, editoAhda-Europe volume 1031 ofLecture
Notes in Computer Science (LNCBages 344-354. Springer, 1995.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal mesh&iate of the
art and future directionsACM Computing Survey28(4):626—-643, 1996.

[CWP*00] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattig donathan
Walpole. Bufer overflows: Attacks and defenses for the vulnerability
of the decade. IDARPA Information Survivability Conference and Expo-
sition (DISCEX-200Q)pages 1119-1129. IEEE Computer Society Press,
2000.

[DdMO06] Bruno Dutertre and Leonardo Mendonga de Moura. At fanear-
arithmetic solver for DPLL(T). InThe 18" International Conference on
Computer Aided Verification (CAV-2006)olume 4144 ol ecture Notes
in Computer Science (LNCS)ages 81-94. Springer-Verlag Ltd., 2006.

[Den05] Louise A. Dennis. An architecture for proof plamisystems. In
Leslie Pack Kaelbling and Alessandrofiatti, editors, 19' International
Joint Conference on Atrtificial Intelligence (IJCAI-2005)ages 1558—
1559. Professional Book Center, 2005.

[Deu73] Laurence Peter DeutsciAn Interactive Program Verifier PhD thesis,
University of California, Berkeley, 1973.

[Deu03] Alain Deutsch. Static verification of dynamic projes. Technical Report
ANL-88-10, PolySpace Technologies, 2003.
http;//www.mathworks.conproductgpolyspacg

[Dev81] Benedetto L. Devito. A mechanical verification oétalternating bit pro-
tocol. Technical Report Al81-21, The University of Texaé\astin, 1981.

[DFO3] Lucas Dixon and Jacques D. Fleuriot. IsaPlanner: diqiype proof plan-
ner in Isabelle. In Franz Baader, editor,M@onference on Automated
Deduction (CADE-2003)olume 2741 ot ecture Notes in Computer Sci-
ence (LNCS)pages 279-283. Springer-Verlag Ltd., 2003.

[DFS04] Ewen Denney, Bernd Fischer, and Johann Schumandind@ssurance
to automatically generated code. | &EE International Symposium
on High-Assurance Systems Engineering (HASE-2Q8&ges 297-299.
IEEE Computer Society, 2004.

276

[Dij75]

[Dij76]

[Dix05]

Edsger W. Dijkstra. Guarded commands, nondeteatynand formal
derivation of programs.Communications of the ACML8(8):453-457,
1975.

Edsger W. Dijkstra.A Discipline of ProgrammingPrentice-Hall, 1976.

Lucas Dixon. A Proof Planning Framework for IsabellePhD thesis,
University of Edinburgh, 2005.

[DJPO6] Louise A. Dennis, Mateja Jamnik, and Martin Pollen the comparison

[DLL62]

[DM78]

[dMBOS]

[DP60]

[DRe06]

[EGLW72]

[EI03]

[E104]

of proof planning systems: LambdaClam, Omega and IsaPlarkiec-
tronic Notes in Theoretical Computer Science (ENTAS)L(1):93-110,
2006.

Martin Davis, George Logemann, and Donald W. Lovela A machine
program for theorem-provingCommunications of the ACM(7):394—
397, 1962.

Nachum Dershowitz and Zohar Manna. Inference rutgspfogram an-
notation. In ¥ International Conference on Software Engineering (ICSE-
1978) pages 158-167. IEEE Computer Society Press, 1978.

Leonardo Mendonca de Moura and Nikolaj Bjgrner: A8 efficient SMT
solver. In C. R. Ramakrishnan and Jakob Rehof, edifdre14" Interna-
tional Conference on Tools and Algorithms for the Constarcand Anal-
ysis of Systems (TACAS-2008)lume 4963 of_ecture Notes in Computer
Sciencepages 337-340. Springer-Verlag Ltd., 2008.

Martin Davis and Hilary Putham. A computing procesltor quantifica-
tion theory. Communications of the ACM(3):201-215, 1960.

The DReaM Grouplhe Clam Proof Planner, User Manual and Program-
mer Manual (version 2.8.42006. The manual is distributed with Clam,
which is available at:

http;//dream.dai.ed.ac.ysoftwarégclany.

Bernard Elspas, M. Green, Karl N. Levitt, and Riahd. Waldinger. Re-
search in interactive program proving techniques. Te@imeport, Stan-
ford Research Institute, 1972.

Bill J. Ellis and Andrew Ireland. Automation for exggon freedom
proofs. In 18 IEEE International Conference on Automated Software
Engineering (ASE-2003pages 343-346. IEEE Computer Society, 2003.

Bill J. Ellis and Andrew Ireland. An integration of @gram analysis
and automated theorem proving. In Eerke A. Boiten, JohniGerand

277

[ELO2]

[EN69]

[EPG07]

[Eur96]

[FEK94]

[Fil03]

Graeme Smith, editors™nternational Conference on Integrated Formal
Methods (IFM-04) volume 2999 ofLecture Notes in Computer Science
(LNCS) pages 67—86. Springer-Verlag Ltd., 2004.

David Evans and David Larochelle. Improving sequtsing extensible
lightweight static analysidEEE Software19(1):42-51, 2002.

George W. Ernst and Allen NewelGEPS: A Case Study in Generality and
Problem SolvingAcademic Press Ltd., 1969.

Michael D. Ernst, JEH. Perkins, Philip J. Guo, Stephen McCamant, Car-
los Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daysters
for dynamic detection of likely invariant§cience of Computer Program-
ming, 69(1-3):35-45, 2007.

European Space Agency (ESAAriane 5 - Flight 501 Failure 1996.
Board of Inquiry Report.

Stuart Faulk, Lisa Finneran, and James Kirby, Jr.pdtience applying
the CoRE method to the lockheed C-130J software requirementd"
Annual Conference on Computer Assurance (Compass-,1p8g¢s 3—-8.
National Institute of Standards and Technology, 1994.

Jean-Christophe Filliatre. Why: A multi-languagnulti-prover verifica-
tion tool. Technical Report 1366, Université Paris Sud)20

[FJOS03] Cormac Flanagan, Rajeev Joshi, Xinming Ou, anég@&@nSaxe. Theo-

[FKV94]

[FLO1]

[FLL*02]

rem proving using lazy proof explication. In Warren A. Huntahd Fabio
Somenzi, editorsThe 15" International Conference on Computer Aided
Verification (CAV-2003)volume 2725 otecture Notes in Computer Sci-
ence (LNCS)pages 355-367. Springer-Verlag Ltd., 2003.

Martin D. Fraser, Kuldeep Kumar, and Vijay K. Vaiswn. Strategies for
incorporating formal specifications in software developtmeéCommuni-
cations of the ACM37(10):74—-86, 1994.

Cormac Flanagan and K. Rustan M. Leino. Houdini, ancaation as-
sistant for ES@ava.Lecture Notes in Computer Scien@©21:500-517,
2001.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridgere@ Nelson,

James B. Saxe, and Raymie Stata. Extended static checkidgva. In

SIGPLAN 2002 Conference on Programming Language Designrand
plementation (PLDI-2002)pages 234—-245. ACM Press, 2002.

278

[Flo67] R. W. Floyd. Assigning meaning to programs. In J. €hBartz, edi-
tor, Mathematical Aspects of Computer Sciengdume 19 ofSymposia
in Applied Mathematigspages 19—-32. American Mathematical Society,
1967.

[For] Forum on risks to the public in computer systems. ACMrQ@aittee on
Computers and Public Policy. Moderated by P. G. Neumann.

[For80] Ford Aerospace and Communications Corporatfrvably Secure Op-
erating System (PSOS) Final Repot®80. Contract MDA 904-80-C-
0470.

[FQO2] Cormac Flanagan and Shaz Qadeer. Predicate abmtrémt software
verification. InThe 29" Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL-200Ppages 191-202. ACM Press, 2002.

[Ger78] Steven M. German. Automating proofs of the abseria®mmon run-
time errors. InThe5" ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL-197®pnges 105-118. ACM Press,
1978.

[Ger81] Steven M. GermanVerifying the Absence of Common Runtime Errors in
Computer ProgramsPhD thesis, Stanford University, 1981.

[Geu09] H. Geuvers. Proof assistants: History, ideas andduSadhana34(1):3—
25, 20009.

[GH90] Gérard Guiho and Claude Hennebert. SACEM softwatigation. In 12"
International Conference on Software Engineering (ICSR€), pages
186-191. IEEE Computer Society Press, 1990.

[GLB75] Donald I. Good, Ralph L. London, and W. W. Bledsoe. #ieractive
program verification systenlEEE Transactions on Software Engineering
1(1):59-67, 1975.

[GMP90] David Guaspari, Carla Marceau, and Wolfgang Poldormal verifi-
cation of Ada programs.IEEE Transactions on Software Engineering
16(9):1058-1075, 1990.

[GMT*80] Susan L. Gerhart, David R. Musser, David H. Thompson, DB&ker,
R. L. Bates, Roddy W. Erickson, R. L. London, D. G. Taylor, &alid S.
Wile. An overview of AFFIRM: A specification and verificati®ystem.
In Simon H. Lavington, editoitfFIP Congress 80, Information Processing
80, pages 343-347. North-Holland, 1980.

279

[GMWT79] Michael J. C. Gordon, Robin Milner, and ChristoplfeMadsworth Ed-
inburgh LCF: A Mechanised Logic of Computatjmolume 78 ofLecture
Notes in Computer Science (LNCSpringer-Verlag Ltd., 1979.

[GNU] GNU general public license (version 3). Free Softwaoeindation,
httpy//www.gnu.orglicenseggpl-3.0.html.

[GOC93] Jon Garnsworthy, lan O’Neill, and Barnard Carréitdmatic proof of the
absence of run-time errors. Kda: Towards Maturity - Proceedings of
the 1993 AdaUK conferenckOS Press, 1993.

[Gol86] Allen T. Goldberg. Knowledge-based programmingsukvey of program
design and construction techniquéEEE Transactions on Software En-
gineering 12(7):752—-768, 1986.

[Gor88a] Michael J. C. Gordon. HOL: A proof generating sysfer Higher-Order
Logic. In Graham Birtwistle and P. A. Subramanyam, edit¥isS| Speci-
fication, Verification and Synthesjgages 73-128. Kluwer Academic Pub-
lishers, 1988.

[Gor88b] Michael J. C. GordorRrogramming Language Theory and its Implemen-
tation. International Series in Computer Science. Prentice;H8B8.

[GPMEO6] Philip J. Guo, J8H. Perkins, Stephen McCamant, and Michael D. Ernst.
Dynamic inference of abstract types. In Lori L. Pollock andWb Pezze,
editors ACM/SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA-2006pages 255-265. ACM Press, 2006.

[Gri81] David Gries.The Science of Programmingpringer-Verlag Ltd., 1981.

[GS97] Susanne Graf and Hassen Saidi. Construction afabstate graphs with
PVS. In Orna Grumberg, editéfFhe9" International Conference on Com-
puter Aided Verification (CAV-1997yolume 1254 ofLecture Notes in
Computer Scienggages 72—-83. Springer-Verlag Ltd., 1997.

[GSS82] Donald I. Good, Ann E. Siebert, and Lawrence M. Smitklessage
flow modulator final report. Technical report, The Univeysaf Texas
at Austin, 1982.

[GVN47] Herman H. Goldstine and John von Neumann. Plannimy@ding of
problems for an electronic computing instrument. TecHmggort, Insti-
tute for Advanced Study, 1947. Reprinted in [Tau63, 80-151]

[GWT75] Steven M. German and Ben Wegbreit. A synthesizer dfiative asser-
tions. IEEE Transactions on Software Engineerjigl).68-75, 1975.

280

[GWM*+07]

[Haloo]

[Hay03]

[HCO02]

[HDO1]

[Her30]

[HG93]

[HK97]

[HKB93]

[Hoa69]

[HPOS8]

Karen Mercedes Goertzel, Theodore Winograd, Holly leyiMcKinley,
Lyndon Oh, Michael Colon, Thomas McGibbon, Elaine Fedchakd
Robert Vienneau. Software security assurance: A statbeshrt report
(SOAR). Technical report, Information Assurance Techggldnalysis
Center (IATAC) and Data and Analysis Center for Software (@3 (Joint
endeavor by IATAC with DACS), 2007.

Anthony Hall. Seven myths of formal methodEEE Software7(5):11—
19, 1990.

Brian Hayes. A lucid intervalAmerican Scientis91(6):484—488, 2003.

Anthony Hall and Roderick Chapman. Correctness bstwiction: De-
veloping a commercial secure systdBEE Software19(1):18-25, 2002.

John Hatclif and Matthew B. Dwyer. Using the Bandera tool set to model-
check properties of concurrent Java software. In Kim Guéagt Larsen
and Mogens Nielsen, editors, 1 2nternational Conference on Concur-
rency Theory (CONCUR-2001yolume 2154 ofLecture Notes in Com-
puter Science (LNCSpages 39-58. Springer-Verlag Ltd., 2001.

Jacques Herbrand. Researches in the theory of dgration. In Jean van
Heijenoort, editorFrom Frege to Goedel: A Source Book in Mathematical
Logic, 1879-1931pages 525-581. Harvard University Press, 1930.

Claude Hennebert and Gérard D. Guiho. SACEM: A faolkerant system
for train speed control. In Jean-Claude Laprie, editol R&ernational
Symposium on Fault-Tolerant Computing (FTCS-1993ges 624—628.
IEEE Computer Society Press, 1993.

Dieter Hutter and Michael Kohlhase. A colored versaf theA-Calculus.

In William McCune, editor, 1% Conference on Automated Deduction
(CADE-1997) volume 1249 ofLecture Notes in Atrtificial Intelligence
(LNAI), pages 291-305. Springer-Verlag Ltd., 1997.

Berthold Hdfmann and Bernd Krieg-BriucknerProgram Development
by Specification and Transformation, The PROSPECTRA Melbgyl
Language Family, and Systermolume 680 ofLecture Notes in Computer
Science (LNCS)Springer-Verlag Ltd., 1993.

C. A. R. Hoare. An axiomatic basis for computer pemgming.Commu-
nications of the ACM12(10):576-583, 1969.

Klaus Havelund and Thomas Pressburger. Model chgclava programs
using Java PathFindemternational Journal on Software Tools for Tech-
nology Transfer (STTTR(4):366—381, 1998.

281

[Hut97] Dieter Hutter. Coloring terms to control equatibreasoning.Journal of

[1BY6]

[IEC*06]

[IE104]

[IERO2]

[Int95]

[Int96]

[IntO7]

[Ire92]

[1S00]

Automated Reasoning (JARB(3):399-442, 1997.

Andrew Ireland and Alan Bundy. Productive use of diad in inductive
proof. Journal of Automated Reasoning (JAR®(1-2):79-111, 1996.

Andrew Ireland, Bill J. Ellis, Andrew Cook, Roderick Gdraan, and Janet
Barnes. An integrated approach to high integrity softwaggfication.
Journal of Automated Reasoning (JAR®$(4):379—-410, 2006.

Andrew Ireland, Bill J. Ellis, and Tommy Ingulfseimvariant patterns for
program reasoning. In Raul Monroy, Gustavo Arroyo-Figaetalis En-
rique Sucar, and Juan Humberto Sossa Azuela, edit6tsM8xican
International Conference on Atrtificial Intelligence (MIG84), volume
2972 ofLecture Notes in Artificial Intelligence (LNAIpages 190-201.
Springer-Verlag Ltd., 2004.

Andrew Ireland, Bill J. Ellis, and Julian Richardso An investigation
into proof automation for the SPARK approach to high intggfida. In
Gethin Norman, Marta Kwiatkowska, and Dimitar Guelev, edifAuto-
matic Verification of Critical Systems - AVo(®02.

International Organization for StandardizatioAda 95 Reference Man-
ual.,, 1995. ANSJISO/IEC-8652:1995.

International Electrotechnical Commission (IEEC, Functional Safety:
Safety Related Systei996. IEC 61508.

International Organization for Standardizatiodmendment to the Ada
standard 2007. ISQIEC 8652:199/Amd 1:2007.

Andrew Ireland. The use of planning critics in megizang inductive
proofs. In Andrei Voronkov, editor,"8International Conference on Logic
Programming and Automated Reasoning (LPAR-1992)ume 624 of
Lecture Notes in Computer Science (LNCgges 178-189. Springer-
Verlag Ltd., 1992.

Andrew Ireland and Jamie Stark. Proof planning foatgtgy development.
Annals of Mathematics and Atrtificial Intelligence (AMA2P(1-4):65-97,
2000.

[JESO7] Paul B. Jackson, Bill J. Ellis, and Kathleen Sharpiny SMT solvers to

verify high-integrity programs. IRroceedings of the Second Workshop on
Automated Formal Methods (AFM 200 prges 60—-68. ACM Press, 2007.

282

[JL87] Joxan Jiar and Jean-Louis Lassez. Constraint logic programminghén
14" Annual ACM Symposium on Principles of Programming Langsiage
(POPL-1987)pages 11-119. ACM Press, 1987.

[Joh77] Stephen C. Johnson. Lint, a C program checker. Ctanfgience Tech-
nical Report 65, Bell Laboratories, 1977. updated versiph7B-1273-3.

[JTMO7] Daniel Jackson, Martyn Thomas, and Lynette I. Mi|leditors. Software
for Dependable Systems: fBeient Evidence?Committee on Certifiably
Dependable Software Systems. The National Academies,P@38.

[JW96] Daniel Jackson and Jeanette Wing. Lightweight formethods. IEEE
Computer29(4):22-23, 1996.

[Kal90] Anne Kaldewaij.Programming: The Derivation of Algorithm#&rentice-
Hall, 1990.

[Ker98] Manfred Kerber. Proof planning: A practical appchdo mechanized rea-
soning in mathematics. In Wolfgang Bibel and Peter H. Schrditors,
Automated Deduction: A Basis for Applicatiorchapter Vol. 1, pages
77-95. Kluwer Academic Publishers, 1998.

[KHCPOO] Steve King, Jonathan Hammond, Roderick Chapmaah Aandy Pryor. Is
proof more cost fective than testing?|IEEE Transactions on Software
Engineering 26(8):675-686, 2000.

[Kin69] James Cornelius KingA Program Verifier PhD thesis, Carnegie-Mellon
University, 1969.

[KKS98] Manfred Kerber, Michael Kohlhase, and Volker Sardetegrating com-
puter algebra into proof planningournal of Automated Reasoning (JAR)
21(3):327-355, 1998.

[KIa97] Nils Klarlund. Mona & Fido: The logic-automaton coection in practice.
In Mogens Nielsen and Wolfgang Thomas, editd?spceedings of the
Computer Science Logic (CSL-199¥plume 1414 ofLecture Notes in
Computer Science (LNCS)ages 311-326. Springer-Verlag Ltd., 1997.

[KM73] Shmuel M. Katz and Zohar Manna. A heuristic approaziptogram ver-
ification. In Nils J. Nilsson, editor,'8 International Joint Conference on
Artificial Intelligence (IJCAI-1973)pages 500-512. Kaufmann, William,
1973.

[KM76] Shmuel Katz and Zohar Manna. Logical analysis of pesgs.Communi-
cations of the ACM19(4):188-206, 1976.

283

[KMDO06] Joseph Kiniry, Alan E. Morkan, and Barry Denby. Salimess and com-
pleteness warnings in E&fava2. In 8 International Workshop on Spec-
ification and Verification of Component-Based Systems (BAvZD06)
pages 19-24, 2006.

[Kor85] Richard E. Korf. Depth-first iterative-deepeningn optimal admissible
tree searchAtrtificial Intelligence 27(1):97-109, 1985.

[Kov08] Laura Kovacs. Invariant generation for P-sohalalops with assignments.
In Edward A. Hirsch, Alexander A. Razborov, Alexei L. Semenand
Anatol Slissenko, editors!8BInternational Computer Science Symposium
in Russia (CSR-2008yolume 5010 ofLecture Notes in Computer Sci-
ence pages 349-359. Springer-Verlag Ltd., 2008.

[Koz97] Dexter C. Kozen. Automata and Computability Springer-Verlag Ltd.,
1997.

[KS04] Florian Kammdiller and J8W. Sanders. Heuristics for refinement rela-

tions. InSoftware Engineering and Formal Methods (SEFpBges 292—
299. IEEE Computer Society, 2004.

[KWAHT82] J. Keeton-Williams, S. R. Ames, B. A. Hartman, aRd C. Tyler. Verifi-
cation of the ACCAT-Guard downgrade trusted process. TieehReport
NTR-8463, The Mitre Corporation, 1982.

[LEO1] David Larochelle and David Evans. Statically detegiikely buffer over-

flow vulnerabilities. In 18 USENIX Security Symposiupages 177—-190,
2001.

[LG97] Lugi and Joseph A. Goguen. Formal methods: Promisespaoblems.
|IEEE Software14(1):73-85, 1997.

[LGVH*79] David C. Luckham, Steven M. German, Friedrich W. von Henk
Richard A. Karp, P. W. Milne, Derek C. Oppen, Wolfgang Polakd
William L. Scherlis. Stanford Pascal Verifier User Manugbtanford Uni-
versity, Department of Computer Science, 1979. CS-TRJRB-7

[LMSO05] K. Rustan M. Leino, Todd D. Millstein, and James B.x8a Generat-
ing error traces from verification-condition counterexdesp Science of
Computer Programming (SCIPROG)5(1-3):209-226, 2005.

[LNR80] Karl N. Levitt, Peter Neumann, and Lawrence Robimsdhe SRI hier-
archical development methodology (HDM) and its applicatio the de-
velopment of secure software. Technical report, NationakBu of Stan-
dards, 1980.

284

[Lov0O] Donald W. Loveland. Automated deduction: Achiewents and future
directions.Communications of the ACM3(11es), 2000.

[LP92] Zhaohui Luo and Robert Pollack. LEGO proof developigystem:
User’s manual. Technical report, Laboratory for Foundetiof Computer
Science (LFCS), University of Edinburgh, 1992.

[LS93] Bev Littlewood and Lorenzo Strigini. Validation ofttahigh dependabil-
ity for software-based system€ommunications of the ACN86(11):69—
80, 1993.

[LT93] Nancy G. Leveson and Clark S. Turner. Investigatidrine Therac-25
accidentslEEE Computer26(7):18-41, 1993.

[LvHKBO87] David Luckham, Friedrich W. von Henke, Bernd Kg-Bruckner, and
Olaf Owe. ANNA - A Language for Annotating Ada Programslume
260 ofLecture Notes in Computer Science (LNCSpringer-Verlag Ltd.,
1987.

[Mar94] William Marsh. Formal semantics of SPARK - Staticrssntics. Technical
Report PV/SPARK-DEFNSTATIC/V1.3, Program Validation Ltd, 1994.
Now available from Praxis High Integrity Systems Limited.

[McC76] Thomas J. McCabe. A complexity measuiEEE Transactions on Soft-
ware Engineering2(4):308-320, 1976.

[McC78] John McCarthy. History of LISFACM SIGPLAN Noticed 3(8):217-223,
1978.

[McC94] William W. McCune.OTTER 3.0 Reference Manual and Guidegonne
National LaboratoryiL, USA, 1994. ANL-946.

[McC97] William McCune. Solution of the Robbins probledaurnal of Automated
Reasoning (JARN9(3):263-276, 1997.

[MIL *97] Max Moser, Ortrun lbens, Reinhold Letz, Joachim Stethb& hristoph
Goller, Johann Schumann, and Klaus Mayr. SETHEO and E-SETHE
- The CADE-13 systems. Journal of Automated Reasoning (JAR)
18(2):237-246, 1997.

[Min91] Ministry of Defence (MoD).The Procurement of Safety Critical Software
in Defence Equipment (Part 1: Requirements, Part 2. Guidynt991.
Defence Standard 00-55, Issue 1.

[MJ84] F. L. Morris and C. B. Jones. An early program proof bham Turing.
Annals of the History of Computing(2):139-143, 1984.

285

[MMRVO06] John Matthews, J Strother Moore, Sandip Ray, andoDa/roon. Veri-
fication condition generation via theorem proving. In Mikethann and
Andrei Voronkov, editors, 18 International Conference on Logic Pro-
gramming and Automated Reasoning (LPAR-2006lume 4246 ot ec-
ture Notes in Computer Science (LNCRAges 362—-376. Springer-Verlag
Ltd., 2006.

[Mo0o66] Ramon E. Moorelnterval Analysis Prentice-Hall, 1966.

[Mo006] J Strother Moore. Inductive assertions and openatisemanticsSoftware
Tools for Technology Transfer (STT8)4-5):359-371, 2006.

[Mor87] Joseph M. Morris. A theoretical basis for stepwisBrrement and the pro-
gramming calculus.Science of Computer Programming(3):287-306,
1987.

[Mor94] Carroll Morgan.Programming from SpecificationBrentice Hall Interna-
tional Series in Computer Science, 1994.

[MPHOO] Jorg Meyer and Arnd Poetzsch-fiter. An architecture for interactive
program provers. In Susanne Graf and Michael I. Schwartgbexditors,
6" International Conference on Tools and Algorithms for Camstion
and Analysis of Systems, (TACAS-1998)Jume 1785 ot.ecture Notes in
Computer Science (LNCS$)ages 63—77. Springer-Verlag Ltd., 2000.

[MPMUO04] Claude Marché, Christine Paulin-Mohring, andvia Urbain. The
KRAKATOA tool for certification of JAVA/JAVACARD programs anno-
tated in JML.Journal of Logic and Algebraic Programmin§8(1—2):89—
106, 2004.

[MV94] Carroll Morgan and Trevor Vickers, editor€n the Refinement Calculus
Formal Approaches to Computing and Information Technold&yCIT).
Springer-Verlag Ltd., 1994.

[Nat04] National Cyber Security Partnership (NCSRhproving Security Across
the Software Development Lifecy,ck®04.
http;//www.cyberpartnership.ofg

[Nau66] Peter Naur. Proof of algorithms by general snagssiurdisk tidskrift for
informationsbehandlings(4):310-316, 1966.

[NGdV94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijelifags. Selected
Papers on Automattvolume 133 ofStudies in Logic and the Foundations
of MathematicsNorth-Holland, 1994.

286

[Nic93] Ray Nickson. Tool Support for the Refinement Calculu®hD thesis,
Victoria University of Wellington, 1993.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Kian Principles of
Program Analysis Springer-Verlag Ltd., 1999.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by @afing decision
proceduresACM Transactions on Programming Languages and Systems
(TOPLAS) 1(2):245-257, 1979.

[NY96] Santiago Negrete-YankelevicRroof Planning with Logic Presentations
PhD thesis, University of Edinburgh, 1996.

[O’'N87] lan Mark O’Neill. Logic Programming Tools and Techniques for Impera-
tive Program VerificationPhD thesis, University of Southampton, 1987.

[O'N94] lan O’Neill. Formal semantics of SPARK - Dynamic samntics. Tech-
nical Report PVI.ISPARK-DEFNDYNAMIC /V1.4, Program Validation
Ltd, 1994. Now available from Praxis High Integrity Systebisited.

[Pau94] Lawrence C. Paulsornsabelle: A generic theorem proverolume 828.
Springer-Verlag Ltd., 1994.

[PBGO5] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A sywof recent ad-
vances in SAT-based formal verificatiomternational Journal on Soft-
ware Tools for Technology Transfer (STTT{)2):156-173, 2005.

[Pet00] Richard D. Pethia. Bugs in the programs. In David &dRblum, editor,
88 ACM SIGSOFT International Symposium on the Foundationfif S
ware Engineering (FSE-2000ACM Software Engineering Notes, pages
79—-79. ACM Press, 2000.

[Pol54] G. Polya. Mathematics and Plausible Reasoningrinceton University
Press, 1954. Two volumes.

[Pol65] G. Polya.Mathematical DiscoveryJohn Wiley and Sons Ltd, 1965. Two
volumes.

[Praa] Praxis High Integrity Systems LimitedSPADE Proof Checker: Rules
Manual

[Prab] Praxis High Integrity Systems Limite8PADE Proof Checker: User Man-
ual.

[Pra01] Praxis High Integrity Systems LimiteREVEAL - A Keystone of Modern
Systems Engineering00L1.

287

[PSS98] Amir Pnueli, Michael Siegel, and Eli Singerman. nBtation validation.
In Bernhard Stfen, editor, 4 International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems, (TAC®38B) vol-
ume 1384 oL ecture Notes in Computer Science (LNGsges 151-166.
Springer-Verlag Ltd., 1998.

[PUR] PURRS: The Parma University’s recurrence relatiduaeso
httpy//www.cs.unipr.itpurrg.

[Rad93] Radio Technical Commission for Aeronauti&oftware Considerations
in Airborne Systems and Equipment Certificatid®93. RTCA DO-
178BEUROCAE ED-12B.

[Req08] Antoine Requet. BART: A tool for automatic refinerhdn Egon Borger,
Michael J. Butler, Jonathan P. Bowen, and Paul Boca, editdwes1t In-
ternational Conference on Abstract State Machines, B andBz¢2008)
volume 5238 ofLecture Notes in Computer Science (LNO&ge 345.
Springer-Verlag Ltd., 2008.

[Rob65] Alan J. Robinson. A machine oriented logic basedharésolution prin-
ciple. Journal of the Association for Computing Machingt(1):23-41,
1965.

[Rob97] John Alan Robinson. Informal rigor and mathematiceerstanding. In
Georg Gottlob, Alexander Leitsch, and Daniele Mundicit@di, Compu-
tational Logic and Proof Theorg™ Kurt Godel Colloquiumvolume 1289
of Lecture Notes in Computer Science (LNC$9ges 54—-64. Springer-
Verlag Ltd., 1997.

[RSB*99] Famantanantsoa Randimbivololona, Jean Souyris,cRaaudin, Anne
Pacalet, Jacques Raguideau, and Dominique Schoen. Agdiyimal
proof techniques to avionics software: A pragmatic apgnoan Jean-
nette M. Wing, Jim Woodcock, and Jim Davies, editM&rid Congress
on Formal Methods in the Development of Computing Systeshsn¥ ||,
volume 1709 ofLecture Notes in Computer Sciengeages 1798-1815.
Springer-Verlag Ltd., 1999.

[RSG98] Julian Richardson, Alan Smaill, and lan Green. @&wpsdescription: Proof
planning in higher-order logic with Lambda-Clam. In Claudach-
ner and Héléne Kirchner, editors,""&onference on Automated Deduc-
tion (CADE-1998) volume 1421 ofLecture Notes in Computer Science
(LNCS) pages 129-133. Springer-Verlag Ltd., 1998.

288

[RV02] Alexandre Riazanov and Andrei Voronkov. The desigwl amplemen-
tation of VAMPIRE. Al Communications: Special issue on Computer
algebra in scientific computing (CASQ)5(2):91-110, 2002.

[SDO7] Jean Souyris and David Delmas. Experimental assrgsof Astrée on
safety-critical avionics software. In Francesca Sagkettl Norbert Oster,
editors, 26" International Conference on Computer Safety, Reliabgihd
Security (SAFECOMP-200,A)olume 4680 ot.ecture Notes in Computer
Science (LNCSpages 479-490. Springer-Verlag Ltd., 2007.

[SI77] Norihisa Suzuki and Kiyoshi Ishihata. Implemeratof an array bound
checker. InThe4™ Annual ACM Symposium on Principles of Program-
ming Languages (POPL-197fages 132-143. ACM Press, 1977.

[S198] Jamie Stark and Andrew Ireland. Invariant discowdgyfailed proof at-
tempts. In Pierre Flener, editor"@nternational Workshop on Logic-
Based Program Synthesis and Transformation (LOPSTR-1988)me
1559 of Lecture Notes in Computer Science (LNC@ages 271-288.
Springer-Verlag Ltd., 1998.

[Som04] lan Sommerville.Software Engineering Addison-Wesley, ¥ edition,
2004.

[SORSC99] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. @iri€alvert. PVS
Prover Guide Computer Science Laboratory, SRI International, 1999.

[Spi92] J. Michael Spivey.The Z Notation: A Reference ManudPrentice Hall
International Series in Computer Scienc® &dition, 1992.

[SSDG81] Michael K. Smith, Ann E. Siebert, Benedetto L. Ddyiand Donald I.
Good. A verified encrypted packet interfacBIGSOFT Software Engi-
neering Notes6(3):13-16, 1981.

[Sta84] Ryan Stansifer. Presburger’s article on integghraetic.: Remarks and
translation. Technical Report TR84-639, Department of Gat@r Sci-
ence, Cornell University, 1984.

[Ste93] Susan Stepnekdigh Integrity Compilation: A Case Studi?rentice Hall,
1993.

[Swe05] Swedish Institute of Computer Scienc®icstus Prolog User's Manual
2005.

[Tau63] A. H. Taub, editordJohn von Neumann Collected Workslume V, Design
of Computers, Theory of Automata and Numerical Analysistgeson,
1963.

289

[Tie92] Margaret Tierney. Software engineering standarfise ‘formal meth-
ods debate’ in the UKTechnology Analysis and Strategic Management
4(3):245-278, 1992.

[Tok] Tokeneer Project.
httpy//www.adacore.cophomeproductgsparkprgtokeneet.

[Tur49] Alan M. Turing. Checking a large routine. In Anonyos) editorReport
on a Conference on High Speed Automatic Computaj@ges 67—69.
University Mathematical Laboratory, Cambridge Univeysit949. A cor-
rected version is printed in [MJ84]. The original is repedtn [WCK89,
70-72].

[vdBJO1] Joachim van den Berg and Bart Jacobs. The LOOP denipr Java and
JML. Lecture Notes in Computer Scien@031:299-312, 2001.

[VisO1] Eelco Visser. Stratego: A language for program sfammation based on
rewriting strategies. In Aart Middeldorp, editor,"1thternational Confer-
ence on Rewriting Techniques and Applications (RTA-20@1)me 2051
of Lecture Notes in Computer Science (LNQ&)ges 357-362. Springer-
Verlag Ltd., 2001.

[Wal96] Mark Wallace. Practical applications of consttgamogramming. Con-
straints 1(1/2):139-168, 1996.

[WCK89] Michael R. Williams and Martin Campbell-Kelly, @drs. The Early
British Computer Conferencesolume 14 ofCharles Babbage Institute
Reprint Series for the History of ComputingIT Press, 1989.

[Weg73] Ben Wegbreit. Heuristic methods for mechanicaélyndng inductive as-
sertions. In Nils J. Nilsson, editor/®International Joint Conference on
Artificial Intelligence (IJCAI-1973)pages 524-536. William Kaufmann,
1973.

[Weg74] Ben Wegbreit. The synthesis of loop predicasmmunications of the
ACM, 17(2):102-112, 1974.

[WH99a] Michael W. Whalen and Mats Per Erik Heimdahl. On teguirements
of high-integrity code generation. IM"4EEE International Symposium
on High-Assurance Systems Engineering (HASE-19%8jes 217-224.
IEEE Computer Society Press, 1999.

[WH99b] Liz Whiting and Mike Hill. Safety analysis of hawk ifight monitor.
In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering (PASTE-1998pftware Engineering Notes
(SEN), pages 32—-38. ACM Press, 1999.

290

[WLG*78]

[WM88]

[WNB92]

[WS04]

[WW93]

John H. Wensley, Leslie Lamport, Jack Goldberg, Milton @®feen,
Karl N. Levitt, P. M. Milliar-Smith, Robert E. Shostak, anch&les B.
Weinstock. SIFT: Design and analysis of a fault-tolerannhpater for
aircraft control. INIEEE, volume 66, pages 1240-1255, 1978.

Larry Wos and William McCune. Searching for fixed ppoombinators
by using automated theorem proving: A preliminary reporechinical
Report ANL-88-10, Argonne National Laboratory, 1988.

Toby Walsh, Alex Nunes, and Alan Bundy. The use ofginalans to sum
series. In Deepak Kapur, editor,"1 Conference on Automated Deduction
(CADE-1992)Lecture Notes in Artificial Intelligence (LNAI), pages 325
339. Springer-Verlag Ltd., 1992.

Jon Whittle and Johann Schumann. Automating the empghtation of
kalman filter algorithms.ACM Transactions on Mathematical Software
30(4):434-453, 2004.

Debora Weber-Widl. Selling formal methods to industry. In Jim Wood-
cock and Peter Gorm Larsen, editdrgjustrial-Strength Formal Methods
(FME-1993) volume 670 ofLecture Notes in Computer Science (LNCS)
pages 671—-678. Springer-Verlag Ltd., 1993.

[YAC] YACAS. http://yacas.sourceforge.riet

[YBG*94]

Tetsuya Yoshida, Alan Bundy, lan Green, Toby Walsh, aadi®Basin.
Coloured rippling: An extension of a theorem proving hetigisin A. G.
Cohn, editor, 11 European Conference on Artificial Intelligence (ECAI-
1994) pages 85-89. John Wiley and Sons, 1994.

291

