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Abstract

Computer software is developed throughsoftware engineering. At its most precise, soft-

ware engineering involves mathematical rigour asformal methods. High integrity soft-

ware is associated with safety critical and security critical applications, where failure

would bring significant costs. The development of high integrity software is subject to

stringent standards, prescribing best practises to increase quality. Typically, these stan-

dards will strongly encourage or enforce the application offormal methods.

The application of formal methods can entail a significant amount of mathematical

reasoning. Thus, the development of automated techniques is an active area of research.

The trend is to deliver increased automation through two complementary approaches.

Firstly, lightweight formal methodsare adopted, sacrificing expressive power, breadth of

coverage, or both in favour of tractability. Secondly,integratedsolutions are sought,

exploiting the strengths of different technologies to increase automation.

The objective of this thesis is to support the production of high integrity software by

automating an aspect of formal methods. To develop tractable techniques we focus on

the niche activity of verifyingexception freedom. To increase effectiveness, we integrate

the complementary technologies ofproof planningandprogram analysis. Our approach

is investigated by enhancing the SPARK Approach, as developed by Altran Praxis Lim-

ited. Our approach is implemented and evaluated as the SPADEase system. The key

contributions of the thesis are summarised below:

• Configurable and Sound- Present a configurable and justifiably sound approach

to software verification.

• Cooperative Integration - Demonstrate that more targeted and effective automa-

tion can be achieved through the cooperative integration ofdistinct technologies.

• Proof Discovery - Present proof plans that support the verification of exception

freedom.

• Invariant Discovery - Present invariant discovery heuristics that support the veri-

fication of exception freedom.

• Implementation as SPADEase- Implement our approach as SPADEase.

• Industrial Evaluation - Evaluate SPADEase against both textbook and industrial

subprograms.
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Chapter 1

Introduction

1.1 Motivation and Overview

Computer software is increasingly prevalent in our modern society. This software can be

roughly classified intolow integrity software, where failure is irritating, andhigh integrity

software, where failure brings significant costs. High integrity software may be found

in safety-critical, security-critical and mission-critical contexts. Unfortunately, high in-

tegrity software failures do occur. Following seven billion dollars in development, a soft-

ware error led to the destruction of Ariane 5 [Eur96]. A software error in the radiation

therapy machine Therac-25 led to deaths from massive overdoses of radiation [LT93].

The Risks Digest [For] is updated frequently, describing recent vulnerabilities identified

in computer systems and the risks they pose to the public.

Computer software is difficult to get right because it is inherently complex [Bro87,

Ame01]. Software engineering[Som04] seeks to improve the quality of software by

managing the processes under which it is developed. Software engineering may take

many forms. At its most precise, software engineering is conducted with mathematical

rigour asformal methods[CW96].

The advantage of formal methods is the additional leverage that mathematical rigour

provides. Without any formality, software must be validated throughtesting. This in-

volves checking that the software behaves correctly on a subset of the possible inputs. It

is rarely practical to test all inputs, and thus testing can only offer a partial assurance that

the software is correct [LS93]. With formality, software may be validated throughverifi-

cation. This involves formally verifying that the software meets its specification. Where

applied in full, verification can give a complete assurance that the software is correct.

The development of high integrity software is subject to many standards [Int96,

Min91, Rad93, Com98]. The standards aim to increase the quality of high integrity

software by encouraging or enforcing best practises. In particular, for the most critical

software, the Ministry of Defence Standard 00-55 [Min91] effectively mandates the use

of formal methods [Tie92]. For these reasons, formal methods are commonly associated

with the development of high integrity software. For example, in this context, there have
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been several successful applications of formal methods in industry [BH97, CW96].

Despite the advantages offered by formal methods, their adoption remains marginal.

Many of the criticisms directed at formal methods are based on flawed perceptions [Hal90,

BH95a, BH95b, BH06]. Such misunderstandings may have arisen due to overly ambitious

claims being made for formal methods [LG97]. Nevertheless,there are genuine obstacles

in adopting formal methods. To facilitate migration to formal methods they should nat-

urally extend existing software practises. However, advances in formal methods tend to

occur as a new language or toolset with little emphasis on theengineering processes in-

volved [FKV94]. Further, much of the tool support for formalmethods has an academic

background, and is not suited to industrial applications. Finally, The adoption of formal

methods can require a significant learning process [WW93].

Recently, there has been interest inlightweight formal methods[JW96, AL98], ac-

cepting practical compromises to minimise the obstacles inadopting formal methods.

The lightweight approach sacrifices expressive power, breadth of coverage, or both in

favour of tractability. The strategy has been particularlysuccessful by pursingintegrated

solutions, exploiting the strengths of various automated reasoning systems.

The objective of this thesis is to enhance the delivery of high integrity software by

increasing automation in an area of formal methods. The aim is to develop tractable

techniques by continuing the trend of lightweight formal methods. We investigate our

approach within the context of the SPARK Approach [Bar03], as developed by Altran

Praxis Limited. The SPARK Approach has been successfully applied in a wide range

of high integrity software projects, including railway signalling, smartcard security and

avionics systems [Cha00, BCJ+06]. We focus on the niche activity of verifyingexcep-

tion freedom. The SPARK Approach supports the verification of exception freedom

[AC02] in the Floyd/Hoare assertional reasoning style [Flo67, Hoa69]. In this context,

verifying exception freedom essentially involves verifying the absence of run-time errors

[Ger78, GOC93]. Freedom from run-time errors is a key property desired of high integrity

software. For example, a run-time error led to the loss of Ariane 5 [Eur96], and buffer

overflows at run-time are the most common form of security vulnerability [CWP+00].

In verifying exception freedom there are two areas that may require manual interac-

tion. Firstly, mathematical conjectures may need to be proved. Secondly, the specification

of the program may need to be strengthened. Our approach aimsto increase automation

in both of these areas. The proof planning paradigm [Bun88] builds on mathematical in-

tuitions to support automated deduction. It provides a flexible platform to develop proof

automation strategies. Program analysis [NNH99] is a diverse field, enabling the auto-

mated extraction of information from programs. It providesa framework for automat-

ically strengthening a program specification. We integrateproof planning and program

analysis to create an automated program verification environment. In particular, we ad-

vocate a cooperative integration, with each component working together to more effec-

tively deliver the required automation. Such an environment is tailored to offer increased
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automation in verifying exception freedom in the SPARK Approach. Our approach is

realised as the SPADEase system. This system is evaluated against industrial examples,

with encouraging results.

1.2 Contributions

This thesis contains six main contributions in the field of automated program verification.

The contributions are separated into three categories as listed below. The first category of

contributions relate to the wider impact of our work:

• Configurable and Sound- Present a configurable and justifiably sound approach

to software verification.

• Cooperative Integration - Demonstrate that more targeted and effective automa-

tion can be achieved through the cooperative integration ofdistinct technologies.

The second category of contributions relate to the specific processes developed in this

work:

• Proof Discovery - Present proof plans that support the verification of exception

freedom.

• Invariant Discovery - Present invariant discovery heuristics that support the veri-

fication of exception freedom.

Finally, the third category of contributions relate to the implementation of our work:

• Implementation as SPADEase- Implement our approach as SPADEase.

• Industrial Evaluation - Evaluate SPADEase against both textbook and industrial

subprograms.

1.3 Publications

Aspects of this thesis have previously been presented in various different publications.

For reference, each of these publications are listed below,highlighting their central con-

tributions:

• Workshop ([IER02]) - We presented a one page position statement. We highlighted

our intention to automate the verification of high integritysoftware by building upon

the proof planning paradigm.

• Conference([EI03]) - We presented a high level overview of our approach. At this

stage, the essential ingredients of our approach were in place. We had focused on

the niche activity of verifying exception freedom. Further, we tackled both proof
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automation and specification strengthening through a proofplanner and a program

analyser respectively.

• Conference([EI04]) - We presented key technical details of our approach. The

form of our proof plans and program analysis heuristics are discussed. We observed

the value of a collaborative integration in delivering automation. Further, we noted

that our architecture enabled us to simultaneously accommodate both soundness

and flexibility.

• Conference([IEI04]) - We presented an offshoot from our primary work. The more

general problem of verifying partial correctness is investigated. Similar to our ex-

ception freedom work, we address the challenge through a collaborative integration

of proof planning and program analysis. Here, program analysis discovers contex-

tual information asinvariant patternsthat are used to guide proof search. The ideas

are illustrated through a worked example.

• Journal ([IEC+06]) - We presented substantial technical detail of our approach.

Further, we described the favourable evaluation of our approach against a collection

of industrial examples.

• Workshop ([JES07]) - We presented another offshoot from our primary work. We

compare the capabilities of four automated reasoning toolsin verifying exception

freedom. The experimentation was supported through information and tools devel-

oped as part of this thesis.

1.4 Thesis Organisation

This introductory chapter provides a motivation for the research, highlighting its main

contributions. Relevant background information is provided in Chapter 2. Greater detail

on proof planning and the SPARK Approach is given in Chapter 3and Chapter 4 respec-

tively. A high level overview of SPADEase, as an enhancementof the SPARK Approach,

is in Chapter 5. Details of the proof planner and its proof plans are presented in Chap-

ter 6. Details of the program analyser and its program analysis heuristics are presented

in Chapter 7. In Chapter 8 the evaluation of SPADEase on both industrial and textbook

subprograms is reported. Finally, conclusions are made in Chapter 9.
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Chapter 2

Background

2.1 Introduction

This chapter summarises the essential background for this thesis. Program verification is

introduced in §2.2, focusing on automated approaches with immediate industrial applica-

bility. Two fields closely associated with program verification are automated deduction,

considered in §2.3, and program analysis, considered in §2.4. In §2.5, relevant program

verification systems are described. Finally, a critical analysis of the background is made

in §2.6, motivating the content of this thesis.

2.2 Program Verification

Program verification involves formally proving that a program conforms to its specifica-

tion. There are several approaches that support program verification, includingaxiomatic

assertional reasoning[Flo67, Hoa69],operational assertional reasoning [Moo06,

MMRV06], abstract interpretation[CC77], program refinement[Bac78, Mor94],pro-

gram generation[WH99a] andprogram synthesis[Bal85, Bie85, Gol86]. Here, we focus

on approaches that readily admit automation and have already had an industrial impact.

2.2.1 Axiomatic Assertional Reasoning

Assertional reasoning was investigated by the early pioneers of electronic computing.

Goldstine and von Neumann [GvN47] employed ‘assertion boxes’ to reason about the

correctness of a program. Turing employed assertions in checking the correctness of an

algorithm [Tur49]. These studies were exceptional and did not stimulate further research.

However, they show that the value of program verification wasquickly identified and

suggest that assertional reasoning is an intuitive way to approach the task.

In assertional reasoning the semantics of the programing language and a complemen-

tary assertion language are formally defined. The program isannotated with assertions,

specifying required properties at specific program points.Then, building on the formal
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definitions, a reasoning process is undertaken to prove thatthe assertions always hold.

The first significant contributions to assertional reasoning were made independently

by Floyd [Flo67] and Naur [Nau66]. Floyd introduced aninductive assertion method,

demonstrating the feasibility of reasoning about computerprograms. The method was

not intended for practical use, being both involved and lacking scalability. However, the

accessibility of the method stimulated further research inthe area. The seminal paper

by Hoare [Hoa69] extended the ideas of Floyd as anaxiomatic approachto program

verification.

The axiomatic approach introduced a simpler mechanism for reasoning about the be-

haviour of programs. Further, the approach is decompositional, being individually applied

to each component of a program rather than the entire program. These features addressed

scalability concerns, making the approach more tractable.

Hoare introduced what would become known asHoare-triples, taking the form:

{P} S {Q}

Here,S is the statements of a component.P is a precondition andQ is a postcondition,

specifying the required behaviour of the component. The triple is interpreted as a con-

jecture statingpartial correctness. That is, if preconditionP holds and the statementsS

terminate then the postconditionQ will hold.

Axioms support the decomposition of Hoare-triples, producing mathematical conjec-

tures asproof obligationsor verification conditions(VCs) in the process. The axiom for

loops is particularly important and takes the form:

⊢ {I ∧G} S {I}
⊢ {I} while G do S {I ∧ ¬G}

HereI is a loop invariant, a property that remains true for every iteration of the loop, and

G is the loop guard. Significantly, a loop invariant must be provided for each loop to apply

the axiom. Program analysis techniques may be able to automate the discovery of loop

invariants. With loop invariants in place, the generation of VCs is entirely automatic.

Proving the generated VCs proves the partial correctness ofthe program. Automated

deduction techniques may be able to automatically discharge many of these VCs.

The axiomatic approach became the focus of a significant amount of further research

[Apt81]. Various efforts were made to extend the axiomatic approach to accommodate

additional programming language constructs. Further, thesoundness and completeness

of the approach was extensively investigated. In particular, Diskrta [Dij75] extended the

approach through apredicate transformer semantics. This enabled proof oftotal cor-

rectness, showing that if the precondition holds then the program will terminate and the

postcondition will hold.
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2.2.2 Abstract Interpertation

Abstract interpretation [CC77] was introduced as a generalframework for constructing

program analysis systems. The program under analysis issymbolically executed, replac-

ing concrete values withabstract valuesand concrete operations withabstract operators.

The symbolic execution is iterative, strengthening and weakening the abstract values un-

til a stablefixed pointis reached. Termination is guaranteed, as the abstract values may

always be approximated. The resultingabstract modelmay then be investigated accord-

ingly.

The abstract values and abstract operators are customised to generate an abstract

model of interest. The abstract model may be queried to report discovered properties

[CH78]. Alternatively, the abstract model may be queried tohighlight those properties

that violate some given specification. Every genuine violation of the specification will

be reported. However, as the technique is approximate, spurious violations may also be

reported. Thus, each reported violation needs to be manually investigated to determine its

validity. However, if all reported property violations canbe dismissed as being spurious,

then the analysis can be regarded as verifying that the specification holds.

The analysis is not decompositional, reporting on the characteristics of the entire sys-

tem, rather than individual components. For example, a component may violate a specifi-

cation when invoked with a certain combination of values. However, if the system never

exercises this combination of values, then the component may still be reported as meet-

ing the specification. Significantly, this lack of decomposition means that any change to

the system invalidates all previous results. Further, as ananalysis involves inspecting the

entire system, efficiency is often a key issue.

Analysing a more complete system tends to increase the knownconstraints and im-

prove the precision of the analysis. For this reason, abstract interpretation is typically

applied retrospectively to completed systems. Further, tofully exploit system constraints,

industrial grade applications of abstract interpretationare often specialised for the target

system [SD07].

2.2.3 Program Refinement

Program refinement involves transforming a specification through a series of refinements

until the specification becomes an executable program. By proving that each refinement

is correct, the executable program must reflect the behaviour of the original specification.

Program refinement is supported through arefinement calculus[Bac88, MV94, Mor94,

Mor87]. The refinement calculus extends a programming language to include constructs

that support the expression of specifications. A program refinement method will comple-

ment the refinement calculus with a supporting toolset. Toolsupport is required to ensure

the correct application of refinement rules, maintain the details of each refinement step

and discharge proof obligations. The potential for increased automation is recognised
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[CR91, Nic93] and some progress has been made [Req08, BM99, BD96]. However, as

the refinement process is inherently creative [KS04], a significant level of interaction is

typically required.

2.2.4 Program Generation

Program generation involves automatically generating source code from a specification.

Program generation supports two alternative approaches toprogram verification, as elab-

orated in [WH99a]. Firstly, program verification may be achieved by proving the cor-

rectness of the program generation system. For richer specifications, this can amount to

a significant verification task. Consequently, this approach is typically associated with

program generation systems that operate on low level specifications, such as compilers

[Ste93]. Secondly, program verification may be achieved by conductingtranslation val-

idation, proving that each generated program is correct [PSS98]. Ingeneral, it is much

more tractable to verify the correctness of a generated program than the program gener-

ator itself. The richness of the specification language and the behaviour of the program

generator may be configured to minimise the complexity of generated programs. Signifi-

cantly, the source code produced by a generation system tends to exhibit a small collection

of recurring patterns, making it particularly amenable to automated verification. Conse-

quently, significant or completely automated translation validation is often feasible.

2.3 Automated Deduction

The automation of mathematical reasoning is known asautomated deduction. Unsur-

prisingly, given the richness of mathematics and the wide range of potential applications,

their are various different approaches to automated deduction. Following the classifica-

tion of [Ker98], the approaches are considered according totheir fundamental purpose in

the sections below.

2.3.1 Proof Assistants

Proof assistants [Geu09] are geared toward assisting a mathematician in interactively

completing a proof. The proof assistant behaves as aproof checker, verifying the cor-

rectness of each reasoning step, giving the mathematician confidence that their proof is

correct. The proof assistant may also automatically discharge relatively trivial subgoals,

allowing the mathematician to focus on the core proof problem.

The first proof assistant was Automath [NGdV94]. Automath employed an elegant

type theoreticalrepresentation of mathematics, but acted as strict proof checker. Further

type theoretical proof assistants were developed, such as Coq [Coq98] and LEGO [LP92],

increasing the sophistication of the user interface and thelevel of proof automation. A

key development was the introduction oftactics[GMW79]. A tactic is a subprogram that

8



manipulates the current goal. Various tactics may be introduced, providing the user with

proof automation facilities. Several tactic based proof assistants have emerged, including

Isabelle [Pau94], HOL [Gor88a], PVS [SORSC99] and Nuprl [C+86].

Despite some notable exceptions [Lov00], it is uncommon formathematical proofs to

be developed inside a proof assistant. One explanation for this is that there remains sig-

nificant overheads in expression when comparing proof assistants with traditional mathe-

matical texts.

2.3.2 Machine-Oriented Theorem Provers

Machine-oriented theorem provers adopt notations and algorithms that are particularly

suited for mechanical processing. Typically, the internalbehaviour of these provers are far

removed from the mathematics they consider. Thus, the provers tend to be fully automatic,

taking as input a conjecture and reporting a result as output.

There are two main challenges in developing machine-oriented theorem provers.

Firstly, due to fundamental properties of computation [Koz97], it is not possible to con-

struct automatic reasoning algorithms for all theories. Thus, a theory must be carefully

selected which is expressive enough to be of practical use, yet simplistic enough to yield

to automated analysis. Secondly, automatic reasoning algorithms are prone to suffer from

a combinatorial explosion[Bun99], a rapid rise in computational overhead as conjecture

complexity increases. Thus, extremely efficient data structures and algorithms are typi-

cally required.

One class of machine-oriented theorem provers aredecision procedures[Koz97]. De-

cision procedures are restricted to expressively limited theories, equivalent to proposi-

tional logic. However, inside these theories, a decision procedure is able, in finite time,

to determine the truth of a conjecture. There are many varieties of decision procedures,

each targeting a carefully selected theory. For example, the Davis-Putnum procedure

[DP60, DLL62] considers propositional calculus, Presburger arithmetic [Sta84] considers

the natural numbers with addition and excluding multiplication, Ordered Binary Decision

Diagrams (OBDDs) [Bry86] consider Boolean functions and finite-state automata have

been used to consider the Weak Second-order Theory of one andtwo Successors (WS1S

and WS2S) [Kla97]. Decision procedures have been extensively applied in hardware veri-

fication. However, due to the limited expressiveness of their theories, decision procedures

have had a limited impact on program verification.

Another class of machine-oriented theorem provers aresemi-decision procedures.

Semi-decision procedures may operate in relatively expressive theories, equivalent to first

order logic. However, inside these theories, a semi-decision procedure is only able to de-

termine the truth of a conjecture in finite time if the conjecture is true. Initially, Herbrands

theorem [Her30] demonstrated the feasibility of a semi-decision procedure for first order

logic. Robinson made key efficiency savings to Herbrands theorem, as the resolution

method [Rob65]. Several extremely efficient resolution based theorem provers have been
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developed, such as Otter [McC94] and Vampire [RV02]. Famously, EQP proved a long

standing mathematical conjecture that Robbins Algebras are Boolean algebras [McC97].

However, their often lengthy execution times, unfavourable semi-decidability, and wealth

of configurable optimisations means they are less suited to the batch processing of numer-

ous conjectures, as sought in program verification.

Some analysis tools may be regarded as specialised machine-oriented theorem

provers. Constraint solversreceive as input a collection of constraints in a given the-

ory, and seek to discover a satisfiable solution. For example, an integer constraint solver,

when presented with:

(X > 1)∧ (X < 5)∧ (Y> 2)∧ (Y< 10)∧ (X+ Y= Z)

might discover the satisfiable solution:

X = 2 Y= 3 Z = 5

The first constraint solvers emerged fromConstraint Logic Programming(CLP) [JL87].

These have subsequently been generalised asConstraint Programming[Bar99], and em-

ployed in several niche applications [Wal96].Interval arithmetic[Moo66, Hay03] is a

mathematical technique that determines guaranteed boundsfor a calculation. The tech-

nique may be used to reason about the precision of floating-point algorithms. Model

checkers[CGP99] receive as input a model and properties that the model should meet.

The model checker exhaustively explores the model state space, searching for a case

where the properties do not hold. Model checkers are most commonly associated with

hardware verification, as it has favourable state space characteristics. However, model

checkers are increasingly used to complement software analyses.Computer algebra sys-

tems(CAS) support the automated manipulation of mathematical expressions. Theorem

provers have been enhanced through an effective integration of such systems [KKS98].

A hybrid class of machine-oriented theorem provers areSMT-solvers(Satisfiability

Modulo Theories) [BSST09, PBG05]. Such solvers exploit a combination of decision

procedures alongside a collection of theories, such as arithmetic and arrays. By accepting

richer theories, SMT-solvers are not decidable. However, in practice, the systems report

conjectures as being provable, unprovable, or unknown in a timely fashion. Nelson and

Oppen first introduced an architecture for combining decision procedures, as realised in

their influential Simplify system [NO79]. Variations on this architecture have been inves-

tigated, increasing the sophistication of the integrationbetween the decision procedures

and the theories [FJOS03]. Richer theories, coupled with timely performance, means that

SMT-solvers are particularly well suited to program verification. For this reason, SMT-

solvers are an extremely active area of research. Notable systems include Yices [DdM06],

CVC3 [BT07], and Z3 [dMB08].
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2.3.3 Human-Oriented Theorem Provers

Human-oriented theorem provers adopt notations that are particularly suited for human

understanding. The provers tend to be built from a large collection of mathematical

heuristics, rather than a core reasoning algorithm. Significantly, where these heuristics

fail, a mathematician should be able to comprehend the situation. They may be able to

interactively complete the proof or even refine the heuristics such that a proof is found

automatically.

An influential human-oriented theorem prover was Nqthm [BM88], also known as the

Boyer-Moore theorem prover. The prover operated on a rich logic, syntactically expressed

as Lisp [McC78]. Over decades, the prover was gradually enhanced with increasingly

sophisticated heuristics. Many significant theorems have been successfully proved via

Nqthm [BKM95]. However, to effectively use the prover, it is necessary to gain a strong

understanding of its internal heuristics [BM90].

Bundy proposed an alternative paradigm for human-orientedtheorem provers asproof

planning[Bun88]. The paradigm makes a clear distinction between searching for a proof

and checking the correctness of a proof. These two concerns are addressed in a consistent

manner viaproof plans, which are composed fromproof methodsand their supporting

proof critics. Each proof method describes an intuitive reasoning step while its proof

critics describe how to progress should this step fail. A keyadvantage of the paradigm

is that proof plans expose the detail of controlling heuristics, supporting their scientific

investigation [Bun91]. Several successful proof plans have emerged fromrationally re-

constructingthe heuristics seen in the Nqthm prover. In particular,rippling [BBHI05]

emerged from Nqthm heuristics for proof by induction. Threesignificant proof planning

systems have been developed as the Clam provers [BvHHS90, RSG98], Omega [BCF+97]

and IsaPlanner [DF03]. For further details on proof planning, see Chapter 3.

2.4 Program Analysis

The automated analysis of computer programs is known asprogram analysis[NNH99].

Two distinct classes of program analysis are considered in the sections below.

2.4.1 Static Analysis

Static analysers adopt a relatively closed architecture. The analysis is typically performed

by a single, well-defined, algorithm. While the analysers always report results, the analy-

sis undertaken may be relatively limited or approximative in general.

One of the first static analysers was Lint [Joh77], which sought to highlight potential

ambiguities in C programs. Furtherlint-like static analysers were developed, each con-

sidering relatively low-level characteristics of the source code. Common analyses include

data use analysis, control flow analysis, interface analysis, information flow analysisand
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path analysis. The analyses tend to be computationally tractable, even onvery large

programs [ABC+07]. Further, the analysers often accept partial programs,as would be

encountered during software development. The analysers operate by generating a report

of their findings. The reports can be lengthy and may contain spurious errors.

Some static analysers operate by comparing their results against a specification of

expected behaviour, and only report discrepancies. For example, Splint compares its

analysis against provided assertions [LE01, EL02]. Further, the SPARK Approach com-

pares calculated information flow against a provided assertion of expected information

flow [Bar03, BC85]. While this style imposes an annotation burden, the analyser will

only report genuine errors.

2.4.2 Invariant Discovery

A popular topic for program analysis research is developingapproaches that offer effective

invariant discovery. These approaches are classified into three strategies, as discussed in

the sections below.

Guided by Additional Information

Invariant discovery may be assisted through additional information. Providing the ad-

ditional information imposes a burden on the engineer. However, the burden may be

significantly less than manually discovering invariants.

Dynamic analysersoperate on the source code plus its associated test data. Thesource

code is automatically instrumented to trace program valuesduring execution. The pro-

gram is subsequently executed on the test data, collecting the information trace. Through

analysing the information trace, it is possible to discoverprogram invariants. A key ad-

vantage of this approach is that many systems will already have a significant corpus of test

data. However, the correctness of the invariants discovered are significantly dependent on

the coverage offered by the test data. Further, as the analysis is one step removed from

the code, those invariants discovered may not be directly relevant. An influential dynamic

analyser was Daikon [EPG+07]. Daikon employs machine learning to discover proba-

ble program invariants. Daikon deduces abstract types present in the analysed program,

supporting the filtering of less relevant properties [GPME06].

Predicate abstractionbased program analysers operate on the source code of the pro-

gram plus a collection of relevant program predicates. These predicates may be auto-

matically calculated by other program analysis techniquesor manually supplied by an

engineer. Predicate abstraction [GS97] is a specialised form of abstract interpretation.

Symbolic execution is replaced with the calculation ofstrongest postconditions. Conse-

quently, the identification of a fixed point becomes the search for a loop invariant. In

general, this may entail an infinite search, as loop invariants may be composed from an

infinite number of potential predicates. Thus, to ensure termination, only the finite set
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of provided predicates are explored. Significantly, it is thought to be easier to discover

relevant predicates than to discover the loop invariants which are constructed from them.

The technique has been successfully applied to reduce the invariant annotation burden in

preforming program analysis [FQ02].

Heuristically Target Common Structures

Certain loop patterns occur more frequently in practice. Asthese patterns are identified,

corresponding invariant discovery heuristics can be developed. On this basis, an exten-

sive collection of invariant discovery heuristics have been proposed [EGLW72, KM73,

Weg73, Weg74, GW75, Cap75, DM78, BBM97, Kov08]. From these studies, two gen-

eral approaches have been identified.Top-downapproaches begin by analysing the loop

context, then working downwards toward the loop itself.Bottom-upapproaches begin

by analysing the loop itself, then working upwards towards the loop context. Typically,

especially for rich invariant discovery, a combination of these approaches is necessary.

While there is significant diversity in the invariant discovery heuristics proposed, a few

broad techniques have emerged, as highlighted below.

A bottom-up heuristic, introduced in [EGLW72], involves solving difference equa-

tionsor, more generally,recursion relations. A recurrence relation defines thenth value

of a sequence in terms of earlier values in the sequence. For example, consider the recur-

rence relation:

a(n) = 2 ∗ a(n−1) + 1 (2.1)

This describes that thenth value ofa is equal to twice the (n− 1)th value ofa plus one. A

solved recurrence relationdefines thenth value of a sequence strictly in terms ofn. For

example, the recurrence relation above may be solved as:

a(n) = 2n ∗ a(0) + 2n − 1 (2.2)

Where an initial value is known, the general solution may be specialised. For example, if

a(0) = 0, the solution above may be specialised as:

a(n) = 2n − 1 (2.3)

Significantly, recurrence relations may be used to express the value that a program vari-

able will take on thenth iteration of a loop. The solutions to such recurrence relations can

be readily transformed into loop invariants. In general, the technique is relatively lim-

ited [Cap75]. However, for specific cases, in collaborationwith further heuristics, useful

invariants may be discovered [GW75, KM76, Kov08].

A top-down heuristic, introduced by Suzuki and Ishihata [SI77], is the induction-

iteration method. Starting with a postcondition, the method works backwardsthrough the
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source code, seeking to calculateweakest liberal preconditions, the minimum constraints

required to demonstrate partial correctness. Where encountering loops, an initial invariant

is generated by calculating the weakest liberal precondition from the loop exit to the in-

variant cut-point. Typically, the initial invariant is flawed, not simultaneously supporting

the verification of entering, iterating around and exiting the loop. A candidate refinement

of the initial invariant is determined, by calculating the weakest liberal precondition from

the initial invariant back to itself. The process may be repeated until a suitable invariant

is generated. The technique may not terminate and may produce unnaturally verbose in-

variants. In [BLS96] the number of refinements is reduced throughrefined strengthening,

minimising the verbosity of discovery invariants.

Proof Failure Analysis

Invariant discovery is typically undertaken to support program verification. Thus, the suit-

ability of discovered invariants may be evaluated by their ability to support automated pro-

gram verification. Where the verification effort fails, it may be subjected toproof-failure

analysisto determine improvements to the discovered invariants. In[Ger78] invariant

discovery is required in verifying the absence of run-time errors. Heuristics are employed

to discover a candidate invariant, and the verification is attempted via a machine-oriented

theorem prover. Where the verification fails, the invariantis strengthened to include those

conclusions that could not be proved. Similarly, in [SI98],invariant discovery is required

in verifying partial correctness. The postcondition is taken as an initial approximation for

the invariant, and verification is attempted via a proof planner. The planner exploits the

critics mechanism to introspect on any proof failures, suggesting invariant refinements.

Through multiple iterations, the invariant may be refined toa stage such that the plan-

ner successfully completes the proof. Proof failure analysis tends to be involved, as it

requires an effective integration of both invariant discovery heuristicsand automated the-

orem proving. However, by considering the overall objective of program verification, the

approach tends to produce relevant invariants.

2.5 Program Verification Systems

Over decades, several program verification systems have been developed. Three genera-

tions of systems are identified, and discussed in the sections below.

2.5.1 Batch Verification

The first generation of program verification systems sought to achieve an ambitiousbatch

verification. In this style, once a program has been written, its verification is performed

as a final step. These early program verification systems adopted the intuitive assertional

reasoning approach.
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The first system to demonstrate the feasibility of program verification was devel-

oped by King [Kin69]. The system targeted a simple programming language. Auto-

mated reasoning strategies were developed to assist in proving generated VCs. Further

program verification systems were developed, targeting richer programming languages

[Deu73, GLB75]. In these cases, VCs were manually proved inside a proof assistant.

The Stanford Pascal Verifier [LGvH+79] was the first program verification system for a

mainstream programming language. The SMT-solver Simplify[NO79] was employed to

discharge VCs. Where Simplify was unsuccessful, a manual proof could be conducted

inside a proof assistant.

2.5.2 Collaborative Verification

The batch verification systems demonstrated the feasibility of the assertional reasoning

approach to program verification. However, these systems did not scale up to larger pro-

grams. Many argued that scalability could be achieved by performing acollaborative

verification [Bac86, Dij76, Gor88b, Gri81, Kal90]. In this style, programs and their

verification are developed simultaneously. By consideringverification concerns during

development, programs are more readily verifiable.

Recognising the need for a collaborative verification, further program verification sys-

tems were developed. Significant systems to emerge includedthe Gypsy Verification

Environment (GVE) [AGB+77], AFFIRM [GMT+80] and the Hierarchical Development

Methodology (HDM) [LNR80]. These systems took a broader view of program verifica-

tion, enabling verification concerns to be developed duringsoftware development. The

approach improved scalability, supporting the completionof a few significant verifica-

tion efforts, primarily in the area of security related systems [SSDG81, Dev81, GSS82,

KWAHT82, BKYH85, WLG+78, For80].

The Ada programming language [Ame83, Int95, Int07] was designed to replace the

numerous programming languages being used at the United States Department of De-

fence. Ada has well defined semantics, making it particularly suited to program ver-

ification. Consequently, Ada based verification systems emerged, including Penelope

[GMP90] and ANNA [LvHKBO87]. While these systems enjoyed academic success,

they had little industrial impact. The SPARK Approach [Bar03] operates on a selected

subset of Ada. SPARK has been successfully applied in niche areas of critical software

development [Cha00]. For further details on the SPARK Approach, see Chapter 4.

Following advances in the assertional reasoning based approach to program verifica-

tion, program refinement systems were investigated. Program refinement offers a nat-

urally collaborative approach to verification, as the program literally emerges from the

verification effort. Significant contributions include CIP [BBB+85, BEH+87], PROSPEC-

TRA [HKB93] and B [Abr96]. The approach has had industrial successes employing B

in the development of critical transport systems [GH90, HG93, BBFM99, BA05].
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2.5.3 Lightweight Verification

The collaborative verification approach demonstrated verification of realistic software

systems. However, its effective application required significant training and extensive tool

support. To address these concerns there is a trend towardlightweight verification. In this

style, expressive power, breadth of coverage or both is sacrificed to increase tractability.

Several verification systems have been developed in this style, targeting different classes

of verification.

Target critical specification

For a given system, certain areas of its specification may be particularly critical to its

safe or secure operation. By targeting these critical areasthe value of the verification

effort is maximised. The trend is toward seamlessly extending mainstream programming

languages with support for targeted verification.

Verification systems have been developed for the Java programming language. The

LOOP system [vdBJ01] supports the verification of sequential, or non-threaded, Java

programs. LOOP generates VCs by importing the code and specification into either the

PVS or Isabelle proof assistant. The KeY tool [ABB+05] supports verification throughout

the entire lifecycle of software development. Design and specification takes place in

UML while implementation is in JavaCard. Verification facilities are integrated into a

UML based computer aided software engineering tool (CASE).VCs are generated from

the code and specification, and may be discharged automatically or interactively inside a

theorem prover. These tools focus on providing an architecture that supports verification,

allowing an engineer to concentrate on the genuine verification tasks of proof discovery

and invariant discovery.

An obstacle to the adoption of program verification is that VCs are not intuitive to

some software engineers. Thus, there is a trend toward isolating engineers from VCs,

either through proof automation or alternative interfaces. Jive [MPH00] supports the ver-

ification of a subset of sequential Java. The program is reasoned about directly, through

the interactive application of Hoare axioms, with any strictly logical conjectures being

interactively discharged inside the PVS proof assistant. JACK [BRL03] supports the ver-

ification of Java applets. The code and specification are translated into the B system

[Abr96], through the Atelier B [Cle] tool. Atelier generates VCs, and offers both auto-

mated and interactive proof. To ease interpretation of VCs,JACK automatically relates

VCs to their corresponding code and specification. Krakatoa[MPMU04] supports the ver-

ification of sequential Java or JavaCard. The code and specification are exported into the

Why verification tool [Fil03], supporting the generation ofVCs. Similar to JACK, each

VC is automatically related to the code and specification. Further, Why dispatches VCs

to several automated theorem provers, automatically correlating their results. If desired,

verification may be completed interactively.

The Microsoft .NET Framework supports the development of Microsoft Windows ap-
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plications through various programming languages, including C#. To support program

verification, the C# language was extended as Spec#, and the Spec# programming system

[BLS05] was developed. Exploiting the technologies associated with the .NET Frame-

work, the Boogie tool transforms Spec# code and specification into VCs. Abstract inter-

pretation is employed to automatically discover program properties, including invariants.

Further, VCs are dispatched to an automated theorem prover.The verification effort is

presented strictly in terms of the source code and its specification [LMS05]. Thus, an en-

gineer indirectly advances a proof by modifying the code or specification. An extension

integrates Boogie with the HOL proof assistant [BLW08]. Theextension enables VCs to

be directly investigated and interactively proved.

Target critical behaviours

Classes of software systems may be particularly dependent on some critical behaviours.

As these behaviours are generally applicable, the specification of their conformance may

be automatically calculated. Further, by reasoning about specific behaviours, significant

automation is often feasible. To maximise tractability, the trend is toward identifying

behaviour violations, rather than proving their absence.

Model checking supports the identification of behaviour violations. Typically, be-

haviours of concurrent systems are investigated, such as deadlocks. The source code and

the behaviours of interest are expressed as a model. Throughmodel checking, behaviour

violations are reported as counter-examples. The principle challenge is finding a compro-

mise between accuracy and tractability. Java PathFinder [HP98] employs model checking

to identify behaviour violations in Java bytecode. Scalability is tackled through heuristics

that suggest effective model simplifications. The expectation is that the heuristics will be

customised to suit a particular application or level of analysis. Bandera [HD01] applies

model checking to identify behaviour violations in a large subset of Java. Bandera in-

cludes an integration of several program analysis components, which may be customised

to effectively analyse a given system.

An alternative paradigm for targeted behaviour verification iscounter-example guided

refinement[CGJ+03]. The process begins by generating a sparse model of the program

and its targeted behaviours, omitting details to increase tractability. The model is inves-

tigated via a model-checker to identify behaviour violations as counter-examples. The

counter-examples are investigated, typically via a theorem-prover, to determine their va-

lidity. Where the counter-examples are valid, they are reported as behaviour violations.

Otherwise, guided by the invalid counter-examples, the model is enriched to more accu-

rately reflect the program behaviour, and the process is repeated. In principle, the analysis

should terminate when no invalid counter-examples remain.In practice, due to tractabil-

ity concessions and limitations of automated theorem proving, invalid counter-examples

may remain. Systems based on this approach include SLAM [BBC+06] and BLAST

[BHJM07]. These systems check that application program interfaces (APIs) are invoked
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in a behavioural compliant manner.

Target absence of run-time errors

Run-time errors represent a common and critical defect in software. For a given language,

the conditions under which run-time errors will occur are well defined. Thus, a specifi-

cation for the absence of run-time errors can be automatically calculated. Further, given

the relatively restricted nature of the problem, significant automation is often possible in

verifying the absence of run-time errors.

Abstract interpretation systems can verify the absence of run-time errors. The Ex-

ception Analyser [WH99b] and PolySpace [Deu03] identify potential run-time errors in

C, C++ or Ada code. The ASTŔEE Analyser aims to verify the absence of run-time er-

rors of control software written in C that omit dynamic memory allocation and recursion.

Most notably, ASTŔEE was specialised by its developers to verify that the primary flight

control software of the Airbus A340 is free from run-time errors [BCC+03].

Assertional reasoning systems can verify the absence of run-time errors. The pioneer-

ing Runcheck system [Ger78] extended the Stanford Pascal Verifier to verify the absence

of run-time errors in Pascal programs. Runcheck complemented the verification con-

dition generator with a static analysis technique to reasonabout uninitialised variables

[Ger81]. Further, Runcheck employed heuristics to discover invariants and discharged

VCs with the SMT-solver, Simplify. The SPARK Approach [Bar03] supports the veri-

fication ofexception freedom[AC02]. For the SPARK subset of Ada, this is essentially

equivalent to verifying the absence of run-time errors. Similar to Runcheck, the verifi-

cation condition generator performs static analysis to reason about uninitialised variables

[BC85]. Limited type-based invariants are automatically inserted, and VCs are proved via

the human-oriented theorem prover, the SPADE Simplifier. Caveat [ABC+94, RSB+99]

was developed to verify the absence of run-time errors in control systems written in C

that omit dynamic memory allocation. Caveat employs heuristics to discover invariants,

and discharges VCs via a simplification tool. While all thesesystems offer automation,

in practice, a realistic verification will likely require both manual proof discovery and

invariant discovery.

The program generation system AUTOFILTER [WS04] transforms a high level de-

scription of a state estimation task into a C or C++ program. AUTOFILTER was cus-

tomised to support translation validation, proving that the generated code met critical

safety properties [DFS04]. In particular, these safety properties include proving that

array-bound accesses will not lead to a run-time error. The generated program is submit-

ted to an assertional reasoning system, generating VCs, which are proved in the theorem

prover E-Setheo [MIL+97]. Constrained by code generation patterns and the safetyprop-

erties of interest, invariant discovery is particularly tractable. Consequently, in practice,

the verification effort is significantly automated.

Debugging tools have also been developed that highlight likely run-time errors. Sig-

18



nificantly, to increase both performance and automation, completeness and soundness

are not strictly observed. Splint [LE01, EL02] identifies common programming errors

in C programs. In particular, the approach identifies a common run-time error as buffer

overflow vulnerabilities [Pet00]. Splint combines data flowanalysis with a set constraint

solver to perform its analysis. The Extended Static Checkerfor Java (ESC/Java) [FLL+02]

identifies likely run-time errors in Java programs. For increased tractability, ESC/Java de-

liberately adopts unsound assertional reasoning, generating VCs and discharging these in

an automated theorem prover. Interface changes have been proposed to ease interpretation

of this imperfect analysis [KMD06]. Houdini supports an application of ESC/Java by au-

tomatically discovering numerous candidate invariants [FL01]. The candidate invariants

are filtered by invoking ESC/Java and removing those that do not appear to be correct or

relevant.

2.6 Critical Analysis

Here, the content of this thesis is motivated through a critical analysis of its related back-

ground. The fundamental positioning of the thesis is considered in §2.6.1 while its de-

tailed directions are considered in §2.6.2.

2.6.1 Fundamental Positioning

Our motivation for this thesis is to enhance the developmentof high integrity software in

industry. As discussed in §1.1, high integrity software development is subject to various

standards. Many of these standards encourage the use of formal methods, including the

application of program verification. We direct our attention at improving an aspect of

program verification that is particularly relevant to high integrity software development.

As described in §2.5.3, there is a trend toward lightweight verification, placing greater

emphasis on tractability than expressive power or breadth of coverage. A common feature

of this approach is using a collaborative integration of existing technologies to deliver

the required automation. Further, to support immediate applicability, the tendency is to

enhance existing software processes. The trend has been successful, with systems such

as ESC/Java and SLAM being routinely used in software development.Recognising its

value to industry, we continue the trend of lightweight verification.

As explored in §2.2 and §2.5, several program verification approaches have been ap-

plied in industry. The axiomatic assertional reasoning approach is both intuitive and flex-

ible. For these reasons, the approach is typically adopted where verification capabilities

are retrospectively introduced into existing programminglanguages. The abstract inter-

pretation approach is most effective when analysing completed systems. However, as

highlighted in §2.5.2, verification is more readily achieved when considered throughout

software development. Program refinement naturally supports the progression of verifica-

tion during software development. However, the approach lacks flexibility, requiring the
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adoption of a specific development process and supporting toolset. Program generation

offers significant potential for automating both software development and its verifica-

tion. However, the automation is achieved by focusing on a specific application domain.

Seeking immediate industrial applicability, we favour a verification approach that com-

plements existing software development processes. Further, to increase effectiveness, we

favour an approach that allows verification concerns to be considered during develop-

ment. For these reasons, we chose to investigate program verification based on axiomatic

assertional reasoning.

As observed in §2.5.3, verification in the SPARK Approach is achieved through ax-

iomatic assertional reasoning. The SPARK Approach has beensuccessfully applied in

developing high integrity software, providing a fitting framework for investigating our

research. Further, the SPARK Approach supports the targeted verification of exception

freedom. Such a constrained verification activity closely aligns with our objective of in-

vestigating lightweight verification.

2.6.2 Detailed Directions

In the SPARK Approach, verifying exception freedom is essentially equivalent to verify-

ing the absence of run-time errors. As observed in §2.5.3, a number of systems support

verifying the absence of run-time errors. The configurationoffered by these systems

is limited. As observed in §2.2.2, the success of abstract interpretation can depend on

application specific specialisations. Making such specialisations requires considerable

technical skill, customising the underlying abstract model and verifying its correctness.

However, this demonstrates the potential value of configuration. On this basis, we pursue

an architecture that offers tractable configuration while simultaneously preserving sound-

ness.

Verifying the absence of run-time errors requires both proof discovery and invariant

discovery. The Runcheck, Caveat and ESC/Java systems consider these related tasks

as separate activities. As discussed in §2.4.2, proof failure analysis supports effective

invariant discovery in verifying partial correctness. Thus, we investigate the use of proof

failure analysis to guide invariant discovery for the constrained task of verifying exception

freedom.

Although a number of systems verify the absence of run-time errors, few report re-

sults for high integrity software. By investigating our techniques within an existing high

integrity software development process, there is the potential for industrial evaluation.

Thus, we aim to evaluate our approach against both textbook and industrial subprograms.
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Chapter 3

Proof Planning

3.1 Introduction

This chapter describes the proof planning paradigm. The motivations behind proof plan-

ning and its supporting architecture are presented in §3.2.Significant features of proof

planning are discussed in §3.3.

3.2 Proof Planning

The aim of ascience of reasoning[Bun91] is to understand and document the processes

involved in reasoning. While a science of reasoning appliesto all forms of reasoning, em-

phasis is typically placed on mathematical reasoning. Proof planning [Bun88] describes

an architecture which supports the automated and scientificinvestigation of mathematical

reasoning. Proof planning builds on fundamental observations about mathematical rea-

soning. Thus, it is beneficial to consider mathematical reasoning before describing the

architecture of proof planning.

3.2.1 Mathematical Reasoning

The discovery of mathematical results is achieved through mathematical reasoning. De-

spite limited research in this area, a few broad observations about mathematical reasoning

may be made.

Proof Discovery

According to Polya [Pol54], the process of mathematical reasoning is performed as two

different tasks, as summarised below:

• Plausible reasoning- Mathematicians approach a new problem with plausible rea-

soning. Relying on their intuitions the mathematician sketches out a plausible

proof. While the proof is plausible, it may be flawed in practice.
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• Demonstrative reasoning- Guided by a plausible proof, mathematicians employ

demonstrative reasoning. The plausible proof is rigorously investigated to generate

a demonstrative proof of correctness.

Proof Families

Plausible reasoning is achieved through mathematical intuitions. Such intuitions arise due

toproof families, similar problems that are susceptible to similar proofs. Many proof fami-

lies have been documented in mathematics. Common patterns have been identified in limit

theorems [BBH72], finding fixed-point combinators [WM88] and compass constructions

[Pol65]. Rippling [BBHI05] exploits a structural pattern to guide a proof by induction.

The general mechanism of rippling has also been applied to summing series [WNB92],

conjectures with multiple induction hypotheses [YBG+94], logical frameworks [NY96]

and general equational reasoning [Hut97].

Proof Languages

Polya [Pol65], and later Bundy [Bun91], observe that plausible reasoning and demonstra-

tive reasoning are undertaken in two contrasting languages:

• High level explanation language- Plausible reasoning is described in an informal

explanation language, suitable for describing the story ofa proof.

• Logical language- Demonstrative reasoning is described in a formal logic, provid-

ing an unambiguous and exhaustive description of a proof.

Proof Understanding

Robinson [Rob97] argues that plausible reasoning providesanexplanationwhile demon-

strative reasoning provides aguarantee. Significantly, the two products are regarded as

being distinct. It is possible to have correct intuitions about how a proof will proceed,

without appreciating the step by step details of a logical proof. Conversely, it is possi-

ble to have a detailed logical proof without appreciating the fundamental principles being

employed. Consequently, to fully understand a proof, both the explanation and guarantee

are required:

Proof= Guarantee+ Explanation

3.2.2 Proof Planning Architecture

Since its inception in [Bun88], various extensions and refinements of proof planning have

been proposed. A consequence of these modifications is that there is not a uniform def-

inition of proof planning [Den05]. In this thesis we focus onthe original description of

proof planning in [Bun88], extended to accommodate critics[Ire92], as implemented in
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Clam [BvHHS90]. A detailed discussion of alternative perspectives on proof planning

can be found in [DJP06].

Figure 3.1: Proof planning architecture

The proof planning architecture is shown in Figure 3.1. Reflecting mathematical rea-

soning, proof discovery is separated into the two tasks of plausible reasoning and demon-

strative reasoning. Appropriate proof languages are employed for these tasks as described

below:

• Meta-level theory - The meta-level theory supports the expression of plausible

reasoning. The language is captured as a flexiblemethod-language. The method-

language is heuristic by nature, being extended and refined as proof plans are de-

veloped.

• Object-level theory - The object-level theory supports the expression of demon-

strative reasoning. The language is captured astactics[GMW79]. The tactics are

subprograms that perform logical transformations.

Plausible reasoning is achieved by aproof planner. The proof planner is provided with

a goal, theoremsandproof plans. The theorems describe properties and definitions that

are valid for the goal. The proof plans capture mathematicalintuitions behind a family of

proofs, as described below. The proof planner searches for aproof of the goal in the meta-

level theory, guided by the proof plans and appealing to theorems as necessary. The proof

planner explores the search space via a proof tree. Common search strategies include

depth-first, breath-first and iterative deepening. The proof plans may also influence the

search strategy.
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Demonstrative reasoning is achieved by aproof checker. Where successful, the proof

planner will discover aninstantiated proof plan. While proof plans describe a family of

proofs, an instantiated proof plan describes the proof of a particular goal in a particular

context. Acompound tacticis extracted from the instantiated proof plan. The compound

tactic is a sequence of tactic applications describing a logical proof of the goal. The

compound tactic is submitted to a proof checker, alongside the original goal and theorems.

The proof checker is a sound tactic based theorem prover. Driven by the compound tactic,

the proof checker checks the validity of the discovered proof. The proof is valid if the

proof checker discharges the goal.

Proof Plans

Proof plans are at the core of proof planning. A proof plan captures the mathematical

intuitions behind a family of proofs. To encourage this ideal, favourable and measurable

criteria of proof plans have been explicitly identified, as described in [Bun91]. Proof plans

are expressed asproof methodsandproof critics. Typically, a proof plan is composed from

several methods and critics.

Proof methods aim to advance the proof of a goal. The applicability of a method is

constrained through preconditions expressed in the method-language. The effect of the

method is described in both the meta-level theory and the object-level theory through

the method-language and tactics respectively. Two different types of methods may be

identified. A non-terminating method transforms the goal into one or more subgoals. A

terminating method eliminates a trivial goal.

Each proof critic is associated with a proof method. The critic seeks to recognise and

patch common patterns of method failure. A critic is triggered when its corresponding

method has a particular pattern of precondition failure. Like methods, the applicability

of a critic is constrained through preconditions expressedin the method-language. The

effect of the critic is only described in the meta-level theory.A critic may have any effect,

ranging from local changes to a single goal through to globalchanges to the entire proof.

3.3 Features of Proof Planning

By mirroring mathematical reasoning, proof planning has many valuable features, as dis-

cussed in the sections below.

3.3.1 Extensibility through Deep Understanding

Unlike many other automated reasoning paradigms, proof planning places an emphasis on

proof understanding over proof automation. This shift in emphasis affects the properties

of the resulting automated reasoning system. Where focusing on proof automation, there

is initially rapid progress. Heuristics are introduced in reaction to unproven conjectures.
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As the number of heuristics increase, they will inevitability start to clash. Eventually

these clashes hinder further development. Where focusing on proof understanding, there

is initially slow progress. Heuristics are only introducedas genuine reasoning patterns are

discovered. As each heuristic captures a coherent portion of reasoning, they are naturally

cooperative. Thus heuristics may continue to be introducedwithout hindering further de-

velopment. While this is a comparison of two extremes, the general trend is valid. Proof

planning leads to a more extendable reasoning system through deeper proof understand-

ing. The cost is that such a rigorous approach requires greater effort to develop.

3.3.2 Facilitates Sharing and Reuse

Proof plans are expressed through external components in a uniform style. Presenting

proof plans in this manner means that they are readily accessible by the automated rea-

soning community. Further, proof plans make a clear distinction between proof search and

proof checking. Thus, it is relatively straight forward to reuse the proof search portion of

proof plans in different logical domains. For example, in [IS00], proof plans developed

for mathematical induction are reused in automating the discovery of loop invariants.

3.3.3 Constrained Search and Incompleteness

A proof planner conducts its search in the meta-level theory. The meta-level theory offers

a higher level of abstraction than the object-level theory.A proof step at the meta-level, for

examplesimplify, might correspond to a number of proof steps at the object-level. Thus,

by searching in the meta-level theory, a smaller search space is explored. A consequence

of searching at the meta-level theory is losing completeness. The proof steps of the meta-

level theory may omit valid proof steps in the object-level theory. This weakness can be

minimised by developing principled proof plans. In this case, any loss of completeness

corresponds to a missing proof plan.

3.3.4 Flexibility through Separation of Concerns

Proof planning makes a clear distinction between proof search and proof checking. Proof

search is performed in a proof planner while proof checking is performed in a proof

checker. Significantly, soundness depends solely on the proof checker. Any reasoning

error introduced at proof search will be detected and rejected during proof checking. The

architecture frees proof search from the burden of demonstrating soundness, supporting

the flexible development of sophisticated heuristics. Two general techniques that exploit

this flexibility are detailed below.
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Contextual Information

The description of a goal may be supplemented through contextual information. The

information is typically meta-logical, being relevant to the goal yet not directly express-

ible as part of the goal. Heuristics can exploit such information to offer a more targeted

proof search [DJP06]. For example, program verification is considered in [IEI04]. VCs

are supplemented with contextual information that revealsproprieties of the correspond-

ing program. The domain knowledge is exploited to constrainproof search. Contextual

information is often embedded into a goal through annotations. For example, rippling

[BBHI05] is controlled through expression annotations, and a general formalism of anno-

tations has been developed [HK97].

Middle-Out Reasoning

In general, the proof of a goal is advanced by applying a favourable transformation. In

many instances the goal and its preceding context provides little guidance in selecting

the next transformation. Resolving such blocking points require a creativeeurekastep.

Typically, the merit of a eureka step only becomes apparent later in the proof.

A successful strategy for discovering eureka steps ismiddle-out reasoning[BSH90],

which builds on ideas originally developed in GPS [EN69]. The strategy exploits the

observation that the merit of a eureka steps often becomes apparent later in a proof. Thus,

where a eureka step is required, its choice is delayed and theproof is continued. The

intention is that the structure of the continued proof will introduce additional constraints,

revealing the shape of the eureka step. Essentially, the strategy develops the middle of a

proof to gain deeper insights into an earlier stage of the proof.

Middle-out reasoning requires a mechanism to delay the selection of a eureka step.

This is achieved by replacing a eureka step with a meta-variable. Meta-variables range

over all valid expressions, thus they simultaneously represent every possible transforma-

tion. With the meta-variable in place, the proof may continue. As the proof progresses,

the meta-variable will be incrementally instantiated. Where the meta-variable becomes

fully instantiated it will reveal the form of the eureka step.

Middle-out reasoning has significant implications for proof search. The search is rad-

ically reduced by simultaneously considering all possibletransformations through the in-

troduction of a meta-variable. However, the presence of a meta-variable will significantly

increase the applicability of proof steps. For this reason,middle-out reasoning is typically

only practical where strong expectations about the proof are known. These expectations

can be exploited to constrain the search, selecting a few promising proof steps from the

numerous applicable proof steps.
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Chapter 4

The SPARK Approach

4.1 Introduction

This chapter describes the SPARK Approach. In §4.2 the features of the approach are

summarised. The SPARK programming language and the SPARK toolset are described

in §4.3 and §4.4 respectfully.

4.2 SPARK Approach

The SPARK Approach addresses the specific challenge of developing high integrity soft-

ware. Here, the background of the approach is presented, summarising its history and

significant industrial applications. Following this, an overview of the approach is given,

describing its key attributes.

4.2.1 Historical Perspective

The origins of the SPARK Approach may be traced back over twenty five years, to pro-

gram analysis research undertaken at Southampton University. Key products of this re-

search included the mathematical foundations of a form of information and data flow

analysis [BC85] and development of the SPADE (Southampton Program Analysis and

Development Environment) toolset [O’N87, CCDO86]. The SPADE toolset supports the

analysis of Assembly language programs for the 68020 and Z8002 processors, the 8096

Intel microcontroller and programs written in a subset of Pascal. Program Validation Lim-

ited (PVL) was established to support the commercialisation of this research. At PVL, the

SPARK (SPADE Ada Kernel) programming language was defined asa formal subset of

Ada [CG90, Mar94, O’N94]. Building upon the SPADE toolset, tools were developed to

support the analysis of SPARK programs. Further, the possibility of proving that SPARK

programs were free from run-time exceptions was investigated [GOC93]. Following these

achievements, PVL was acquired by Praxis Critical Systems Limited (Praxis-CS). The

larger infrastructure at Praxis-CS enabled the techniquesdeveloped at PVL to be applied
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on large scale high integrity software projects. In tackling larger projects the techniques

were refined and strengthened accordingly. The verificationof exception freedom was

transformed from a theoretical possibility to a practical reality [AC02]. Further, support

for concurrent applications was introduced as RavenSPARK [AD03]. Learning through

experience, these larger projects inspired guidelines forthe application of SPARK. These

guidelines, together with the SPARK language and supporting toolset, formed the basis of

a complete approach for developing high integrity software. The maturity of the approach

was signalled with the publication of the SPARK Approach book [Bar03]. Praxis-CS

merged with High Integrity Systems Limited (HIS) to become Praxis High Integrity Sys-

tems Limited (Praxis-HIS). The profile of SPARK was increased through a technical and

marketing partnership with AdaCore. In particular, SPARK is now licensed under the

GNU General Public License (version 3) [GNU]. Following a merger with SC2, Praxis-

HIS become Altran Praxis Limited.

4.2.2 Industrial Application

The SPARK Approach has been successfully applied in severalhigh integrity software

projects. To illustrate the industrial applicability of the approach, a collection of these

projects are summarised below.

• C130J MC - The Mission Computer (MC) is a critical avionics system at the core

of the Lockheed C130J, a military and commercial transport aircraft. The dual

application of the aircraft means that the MC is subject to a number of standards,

including DO178B [Rad93]. The MC had already been specified following the

CoRE technique [FFK94]. Working from this specification, a standard compliant

MC was successfully implemented following the SPARK Approach [CS95, Cha00].

• MULTOS CA - The Certification Authority (CA) is a security critical component

of the Multi-Application Operating System (MULTOS) intended for use on smart-

cards. To attain the security confidence demanded, the CA component needed to

meet the highest level (E6) of the Information Technology Security Evaluation Cri-

teria (ITSEC) [Com98]. The SPARK Approach was successfullyemployed in de-

signing and implementing the CA to the security level required [HC02, Cha00].

• SHOLIS - The Ship Helicopter Operational Limits Instrumentation System (SHO-

LIS) resides on a ship to provide information about the safe use of helicopters in

various situations. Given the nature of the system, it was subject to Defence Stan-

dard 00-55 for safety critical software [Min91]. The SPARK Approach was suc-

cessfully employed in specifying, designing and implementing SHOLIS [Cha00].

The resulting system was the first to meet every requirement in the stringent De-

fence Standard 00-55 for safety critical software.
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• Tokeneer - The Tokeneer ID Station (TIS) [Tok] was developed by the National

Security Agency (NSA) to investigate access control and biometrics. In this in-

stance, the TIS served as a demonstrative system as part of a controlled experiment

to evaluate the overall effectiveness of the SPARK Approach. The system had to

meet Evaluation Assurance Level 5 (EAL5) of the InformationTechnology Secu-

rity Evaluation Criteria [Com98]. The SPARK Approach was employed in specify-

ing, designing and implementing the TIS system. The SPARK Approach success-

fully developed the system to the desired assurance level ina cost effective manner.

In practice, due to the inherent rigour of the SPARK Approach, some assurances

could be made beyond EAL5. Following the experiment, it was speculated that the

SPARK Approach would also be able to effectively deliver at EAL7, the highest

assurance available under the Common Criteria [BCJ+06].

More generally, the merits of the SPARK Approach have been recognised by inde-

pendent organisations that are concerned with the development of high integrity soft-

ware. Following the successful Tokeneer project, the US National Cyber Security Part-

nership highlighted the SPARK Approach as one of only three development processes

able to deliver sufficient assurance for security critical systems [Nat04]. TheUS National

Academies [JTM07] advocates the use of simple, well defined,and safe programming

languages, especially where developing critical applications. In this context the SPARK

Approach is referenced, highlighting its industrial successes. The US Defence Techni-

cal Information Centre [GWM+07] references the SPARK Approach, in the context of

applying formal methods to develop secure software systems.

4.2.3 Overview

The SPARK Approach has matured into a complete discipline for developing high in-

tegrity software. The guiding philosophy of the approach isCorrectness by Construction

(CbyC) [Ame06, HC02, Ame01, Bar03]. Essentially, the central premise of CbyC is to

build software right to begin with, rather than embark on a lengthy and costly process of

identifying and eliminating errors. While it is accepted that defects will inevitably occur

during development, significant progress can be made bystriving for zero defects and

selecting notations and tools accordingly.

To meet the objectives of CbyC it is essential that the philosophy is pursued throughout

the entire lifecycle of software development. To this end, the SPARK Approach offers

guidance at each key stage of the lifecycle as summarised below.

• Requirements and Specification- The requirements and specification is elicited

through REVEAL [Pra01]. The REVEAL method provides guidance on effectively

addressing the various concerns seen in requirements engineering. A key concern

identified in REVEAL is the selection of notations to ensure unambiguous require-
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ments. Where following the REVEAL method it is not uncommon for formal nota-

tions, such as Z [Spi92], to be adopted.

• Design- Design is guided through the Informed method (INformationFlow Ori-

ented MEthod of Design) [Ame99, Bar03]. Informed reinforces the merits oflow

couplingandstrong cohesion. In particular, it argues that these favourable proper-

ties can be attained by positioning state to minimise information flow.

• Implementation - Implementation is achieved through the SPARK programming

language and the SPARK toolset. The SPARK programming language is a formal

subset of Ada, as described in §4.3. The SPARK toolset supports various analyses

of SPARK programs, as described in §4.4.

4.3 The SPARK Programming Language

The SPARK programming language is at the centre of the SPARK Approach. Significant

features of the language are discussed below, including therelationship between SPARK

and Ada. Finally, for illustration, a small example is presented.

4.3.1 Significant Language Features

At its inception, key requirements for the SPARK programming language were estab-

lished. The design of the SPARK language continues to be guided by these requirements:

• Logical soundness- It must be possible to reason precisely about the semanticsof

the programming language. Thus the language must be logically sound.

• Simplicity of language definition - A simple programming language is easier to

understand than a complex one. Improved understanding decreases the likelihood

of errors being made. Thus, simplicity is sought in the language definition.

• Expressive power- A practical programming language must have sufficient expres-

sive power to support the development of realistic applications. Thus, simplicity

must always be balanced against expressiveness.

• Security - Language insecurity occurs when a program breaks the rulesof the lan-

guage at run-time. Thus, it must be possible to statically demonstrate that a program

is secure.

• Verifiability - The programming language must be amenable to program verifica-

tion.

• Correspondence with Ada- Costly compiler development can be avoided by ex-

pressing the language as a pure subset of Ada. Significantly,Ada is sufficiently
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formal such that this compiler reuse does not overly compromise other language

requirements.

• Verifiability of compiled code - It must be possible to demonstrate that a compiled

program faithfully reflects the semantics of its source code. The language should

favour constructs that generate more readily verifiable object code.

• Bounded space and time- It must be possible to show that a program operates

within fixed space and time requirements. The language should exclude constructs

that hinder calculating maximum memory usage and worst-case execution times.

• Complexity of run-time system - Run-time libraries may need to be subjected to

the same level of certification as the application program. Thus, to ease certification,

the language must be able to operate with little, or zero, run-time library support.

The SPARK language has emerged from a careful balancing of the above requirements.

Significant features of the language are highlighted below:

• Contracts - The required behaviour of subprograms may be specified through ex-

plicit and verifiable contracts.

• Structured control flow graph - Various language restrictions are imposed to en-

sure that the program has a well-structured, and thus readily analysable, control

flow graph.

• No pointers - The language excludes pointers to retain feasible verifiability.

• No aliasing- At every point in the program each variable has a unique name.

• No side effects- Function subprograms are pure mathematical functions.

• No dynamic memory allocation or recursion- The language excludes dynamic

memory allocation and recursion. Consequently, it is relatively straight forward to

calculate the maximum memory usage of a program.

• Single threaded- The language is single threaded, avoiding the various complexi-

ties associated with concurrent programs. Note that an extension to SPARK, called

RavenSPARK, supports multiple program threads.

4.3.2 Relationship to Ada

The SPARK programming language is expressed as a subset of Ada. This is simply a prac-

tical manoeuvre to avoid implementing and maintaining a SPARK compiler on numerous

architectures. Thus, SPARK should be regarded as a separateprogramming language,

that just happens to be expressed as a subset of Ada. Nevertheless, this relationship re-

stricts the application of the SPARK Approach to architectures that have an Ada compiler.
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In practice, this is not a concern, as architectures associated with high integrity software

typically have robust Ada compiler support.

The SPARK language is divided into a common kernel and annotations, as illustrated

in Figure 4.1. The common kernel is expressed through a subset of Ada. The annotations

are embedded inside Ada comments and expressed through notations specific to SPARK.

As the annotations are inside Ada comments they remain legalAda syntax. There are

three different Ada standards as Ada 83 [Ame83], Ada 95 [Int95] and Ada 2005 [Int07].

Associated with each Ada standard is a corresponding subsetof SPARK. The differences

between these SPARK subsets is very marginal. Throughout this thesis we focus on the

SPARK subset that corresponds to Ada 95.

Figure 4.1: SPARK and Ada

4.3.3 Example

Consider the FilterInteger subprogram shown in Figure 4.2.The subprogram sums all of

the elements in an array that lie between 0 and 100. The subprogram is contained within

a package called FilterIntegerPackage. The package is split into apackage specification

(ADS) file and apackage body(ADB) file. The specification serves as a contract, de-

scribingwhat functionality is provided. The body implements the contract, describing

how the functionality is achieved. The specification of the subprogram includes a de-

pendency relation, introduced through derives annotation(--# derives). This specifies

the information flow of the subprogram, as explained in §4.4.3. The body of the subpro-

gram includes an invariant, introduced through the assert annotation (--# assert). This

specifies a property that remains true within the loop, as explained in §4.4.4.

4.4 The SPARK toolset

The SPARK toolset supports the analysis of programs writtenin SPARK. Each of the

tools are briefly summarised below:

• SPARK Examiner (henceforth Examiner) - A static analysis tool, supportingvari-

ous analyses of SPARK programs.

• SPADE Simplifier (henceforth Simplifier) - A human-oriented automated theorem

prover and simplifier, applied during program verification.
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Package Specification (ADS)
package FilterInteger_Package is

subtype AR_T is Integer range 0..9;

type A_T is array (AR_T) of Integer;

procedure FilterInteger(A: in A_T; R: out Integer);

--# derives R from A;

end FilterInteger_Package;

Package Body (ADB)
package body FilterInteger_Package is

procedure FilterInteger(A: in A_T; R: out Integer)

is

begin

R:=0;

for I in AR_T loop

--# assert R>=0 and R<=I*100;

if A(I)>=0 and A(I)<=100 then

R:=R+A(I);

end if;

end loop;

end FilterInteger;

end FilterInteger_Package;

Figure 4.2: FilterInteger subprogram

• SPADE Proof Checker(henceforth Checker) - An interactive proof assistant, ap-

plied during program verification.

• Proof Obligation Summary Tool (henceforth POGS) - A report generator, describ-

ing the current status of a program verification.

The interaction of these tools is illustrated in Figure 4.3.The main activities supported by

the SPARK toolset are described in the sections below.

4.4.1 Conformance to SPARK

The Examiner checks that submitted source code conforms to the SPARK language. The

check is mandatory, as all of the favourable properties of the SPARK Approach depend on

reasoning about well-formed SPARK programs. Any conformance errors are highlighted

in theExaminer report(REP) file.

4.4.2 Data Flow Analysis

The Examiner supports automated data flow analysis. The analysis is mandatory as a

data flow error could undermine the security of a SPARK program. The data flow anal-

ysis checks that the parameters and global variables accessed in a subprogram are used

according to their declared modes. Further, it is checked that all variables are written to

before being read. Finally, any structurally inaccessiblecode is identified. Any data flow

errors are highlighted in theExaminer report(REP) file.
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Figure 4.3: The SPARK toolset
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4.4.3 Information Flow Analysis

The Examiner supports automated information flow analysis.Although information flow

analysis is optional, it is applied in many projects. Information flow analysis compares

specified information flow against actual information flow. Any discrepancies are high-

lighted in theExaminer report(REP) file. The analysis is effective in detecting both

common and surprising program errors. The specification is provided in the form ofde-

pendency relationsthroughderives annotations. A dependency relation lists, for each

output from a subprogram, every input value that the outputmaydepend on.

For example, consider the Switch subprogram shown in Figure4.4. This simple sub-

program swaps the values of two input parameters. The derives annotation attached to the

specification of the subprogram is:

--# derives X from Y &

--# Y from X;

This indicates that the output value of variablex will depend solely on the input value of

variabley and that the output value of variabley will depend solely on the input value

of variablex. In swapping the contents of variablex and y the subprogram correctly

implements this specification.

package Switch_Package

is

procedure Switch(X, Y: in out Integer);

--# derives X from Y &

--# Y from X;

end Switch_Package;

package body Switch_Package is

procedure Switch(X, Y: in out Integer)

is

T: Integer;

begin

T:=X; X:=Y; Y:=T;

end Switch;

end Switch_Package;

Figure 4.4: Switch subprogram

4.4.4 Program Verification

The SPARK Approach supports program verification through axiomatic assertional rea-

soning. Although program verification is optional, it is typically applied to some extent in

high integrity software development. The two properties that may be verified of SPARK

programs arepartial correctnessandexception freedom. The specific details of verify-

ing these properties is described in §4.4.5 and §4.4.6. The general process of program

verification is described below.
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In the SPARK Approach, program verification is decompositional. The whole pro-

gram is verified by separately verifying each subprogram. Subprogram specifications are

conveyed through annotations asproof assertions. The specification of each subprogram

is described through apreconditionand apostcondition. Properties that hold within loops

are described through aninvariant. These annotations may be expressed in terms of de-

claredproof functions. Definitions and proprieties may be provided in externaluser rule

(RLU) files. Further, target specific constraints, such as the size of base types, may be

specified through atarget configuration(CFG) file.

The Examiner operates as a verification condition generator, receiving a SPARK pro-

gram and generating VCs for each subprogram. Unless explicitly specified, every sub-

program is assigned a default precondition and postcondition of true. Similarly, unless

already present, each loop is assigned a default invariant.Every invariant is strengthened

to assert that imported parameter variables are within their type and that the precondition

was true on entry to the subprogram. The VCs associated with each subprogram are ex-

pressed through three files. Firstly, afunctional description language(FDL) file describes

the entities and types that are relevant to the subprogram. Secondly, asubprogram rules

file (RLS) contains a collection of rules that are specific to the entities and types in the

subprogram. Thirdly, averification condition(VCG) file contains the actual VCs. The

VCs are described in first order logic with equality.

Once generated, VCs are presented to the Simplifier, seekingautomated proof or sim-

plification. The Simplifier generates additional files to describe its analysis. All remaining

VCs are stored in asimplified verification condition(SIV) file. Further, the actions taken

by the Simplifier are recorded in aSimplifier proof log(SLG) file. The user may inter-

actively prove remaining VCs via the Checker. To facilitatereasoning, the Checker is

supplied with a collection of general definitions and proprieties in externalstandard rule

(RUL) files. Each Checker session is stored in aproof command(CMD) file, providing

an audit trail and allowing for a proof effort to be automatically repeated. The progress of

an interactive proof is recorded in aChecker proof log(PLG) file.

The status of a program verification is found by combining thestatus of every sub-

program verification. Each subprogram verification dependson the VCG files generated

by the Examiner, the SIV and SLG files generated by the Simplifier and the PLG file

generated by the Checker. POGS collates these information sources, generating aproof

summary(SUM) file.

Aside from user rules, the soundness of a program verification depends entirely on the

soundness of the SPARK Approach. In particular, the soundness of a program verification

depends on the soundness of the Examiner, Simplifier and Checker.

4.4.5 Partial Correctness

Partial correctness verifies, for each subprogram, that where its precondition holds and

the subprogram terminates, its postcondition will hold. The effort required in verifying
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partial correctness depends on the richness of the subprogram specification. In general,

as the specification becomes stronger, increased manual proof and invariant discovery is

required. Consequently, verification of partial correctness is typically targeted at critical

specifications and critical areas of functionality. For example, the safety critical core of

the SHOLIS system was subjected to a targeted proof of partial correctness [Cha00].

As described in §4.4.4, program verification involves generating and proving VCs

for each subprogram. Each proof assertion represents acut-point in the subprogram.

Proving every transition between cut-points proves that the overall subprogram is correct.

A VC is generated for each path between cut-points. In verifying partial correctness, the

relationship between cut-points and VCs is illustrated in Figure 4.5.

--# pre A;

...

loop

...

--# assert B;

exit when ...;

...

end loop;

...

--# post C;

Subprogram Cut-point transitions

On the left, a generic subprogram containing a single loop isshow, associat-
ing labels with each cut-point. On the right, cut-point transitions correspond-
ing to the subprogram are shown. Each bold arrow represents every potential
path between cut-points. A VC is generated for each of these paths.

Figure 4.5: Generating partial correctness VCs

For illustration, a small example is considered, showing the main artifacts of verifying

partial correctness in the SPARK Approach. Consider the PolishFlag subprogram shown

in Figure 4.6. The subprogram sorts an array of coloured elements. The subprogram

has been specified through a precondition (--# pre) and a postcondition (--# post).

The precondition specifies that the array contains only white and red elements. The post-

condition states that the array contains a reordering of theinput elements, with the first

portion of the array containing white elements and the second portion containing red el-

ements1. An invariant (--# assert) describes the partially sorted array. The package

specification declarespermutationas a user proof function (--# function). The proof

function is used to specify that the output array is a reordering of the input array. The

function is defined in a user rule file as shown in Figure 4.7. The logical interpretation

of such rule files is described in §6.6.1. Target specific constraints are described through

1Thus depicting the vertical display of the Polish flag as specified in the “Coat of Arms, Colors and

Anthem of the Republic of Poland, and State Seals Act” of 1980.
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package PolishFlag_Package is

subtype FlagIndex is Integer range 1..10;

type Colour is (White, Red);

type FlagArray is array (FlagIndex) of Colour;

--# function Permutation(A: FlagArray ; B: FlagArray) return Boolean;

procedure PolishFlag(Flag: in out FlagArray);

--# derives Flag from Flag;

--# pre (for all I in FlagIndex =>

--# (Flag(I)=White or Flag(I)=Red));

--# post

--# (for some P in Integer range (Flag’First)..(Flag’Last+1) =>

--# ((for all Q in Integer range Flag’First..(P-1) =>

--# (Flag(Q)=White)) and

--# (for all R in Integer range P..Flag’Last =>

--# (Flag(R)=Red)))) and

--# Permutation(Flag, Flag˜);

end PolishFlag_Package;

package body PolishFlag_Package is

procedure PolishFlag(Flag: in out FlagArray)

is

subtype FlagIndexPlus is Integer range Flag’First..Flag’Last+1;

I: FlagIndexPlus;

J: FlagIndexPlus;

T: Colour;

begin

I:=FlagIndexPlus’First;

J:=FlagIndexPlus’Last;

loop

--# assert

--# (for all Q in Integer range Flag’First..(I-1) =>

--# (Flag(Q)=White)) and

--# (for all R in Integer range J..Flag’Last =>

--# (Flag(R)=Red)) and

--# I in FlagIndexPlus and

--# J in FlagIndexPlus and

--# Permutation(Flag, Flag˜);

exit when not (I<J);

if Flag(I)=White then

I:=I+1;

else

J:=J-1;

T:=Flag(I);

Flag(I):=Flag(J);

Flag(J):=T;

end if;

end loop;

end PolishFlag;

end PolishFlag_Package;

Figure 4.6: PolishFlag subprogram (partial correctness)
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a configuration file, as shown in Figure 4.8. The configurationfile describes the range of

integer types on a standard 32-bit architecture. Note that,unless stated otherwise, every

non-industrial example in this thesis adopts this configuration file.

rule_family permutation:

permutation(X, Y) requires [X: any, Y: any].

permutation(1): permutation(A, A) may_be_deduced.

permutation(2): permutation(A, B) may_be_replaced_by permutation(B, A).

permutation(3): permutation(update(update(A, [I], X), [J], Y), B)

may_be_replaced_by

permutation(update(update(A, [J], X), [I], Y), B).

Figure 4.7: Definition of Permutation (RLU)

package Standard is

type Short_Short_Integer is range -2**7 .. 2**7-1;

type Short_Integer is range -2**15 .. 2**15-1;

type Integer is range -2**31 .. 2**31-1;

type Long_Integer is range -2**31 .. 2**31-1;

type Long_Long_Integer is range -2**63 .. 2**63-1;

end Standard;

Figure 4.8: Target Configuration (CFG)

As described in §4.4.4, the VCs corresponding to a subprogram are expressed through

three files. The FDL file, shown in Figure 4.9, declares those entities and types that are

relevant to the subprogram. The RLS file, shown in Figure 4.10, contains rules directly

related to the entities seen in the subprogram. Both the FDL and RLS files are omitted in

all subsequent examples, as they can be intuitively inferred from the subprogram source

code. The VCG file is split across Figure 4.11 and Figure 4.12.A traceability line is

shown for every pair of traversable cut-points. Each traceability line is followed by its

corresponding VCs, one for each path between these cut-points. Four partial correctness

VCs are present. One VC is generated from the precondition tothe invariant. Two VCs are

generated from the invariant to the invariant, covering both paths through the if-statement.

Finally, one VC is generated from the invariant to the postcondition.

The initial VCs are presented to the Simplifier, generating aSIV file as shown in Fig-

ure 4.13. In general, the Simplifier offers limited automation in proving partial correctness

VCs. In this case, only simple inequality conclusions are automatically proved.

The remaining VCs may be proved in an interactive Checker session. A CMD file that

proves every remaining VC is shown in Appendix A. Typically,creating such files is a

non-trivial task. The interactive application of the Checker lies beyond the focus of this

thesis. Full details of the Checker and its proof commands are available in [Prab].
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title procedure polishflag;

function round__(real) : integer;

type colour = (white, red);

type flagarray = array [integer] of colour;

const flagindexplus__last : integer = pending;

const flagindexplus__first : integer = pending;

const colour__last : colour = pending;

const colour__first : colour = pending;

const flagindex__last : integer = pending;

const flagindex__first : integer = pending;

const integer__last : integer = pending;

const integer__first : integer = pending;

var j : integer;

var i : integer;

var flag : flagarray;

function permutation(flagarray, flagarray) : boolean;

end;

Figure 4.9: PolishFlag subprogram declarations (FDL)
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rule_family polishflag_rules:

X requires [X:any] &

X <= Y requires [X:ire, Y:ire] &

X >= Y requires [X:ire, Y:ire].

polishflag_rules(1): character__pos(X) may_be_replaced_by X.

polishflag_rules(2): character__val(X) may_be_replaced_by X.

polishflag_rules(3): integer__first may_be_replaced_by -2147483648.

polishflag_rules(4): integer__last may_be_replaced_by 2147483647.

polishflag_rules(5): integer__base__first may_be_replaced_by -2147483648.

polishflag_rules(6): integer__base__last may_be_replaced_by 2147483647.

polishflag_rules(7): flagindex__first may_be_replaced_by 1.

polishflag_rules(8): flagindex__last may_be_replaced_by 10.

polishflag_rules(9): flagindex__base__first may_be_replaced_by -2147483648.

polishflag_rules(10): flagindex__base__last may_be_replaced_by 2147483647.

polishflag_rules(11): colour__first may_be_replaced_by white.

polishflag_rules(12): colour__last may_be_replaced_by red.

polishflag_rules(13): colour__base__first may_be_replaced_by white.

polishflag_rules(14): colour__base__last may_be_replaced_by red.

polishflag_rules(15): colour__pos(colour__first) may_be_replaced_by 0.

polishflag_rules(16): colour__pos(white) may_be_replaced_by 0.

polishflag_rules(17): colour__val(0) may_be_replaced_by white.

polishflag_rules(18): colour__pos(red) may_be_replaced_by 1.

polishflag_rules(19): colour__val(1) may_be_replaced_by red.

polishflag_rules(20): colour__pos(colour__last) may_be_replaced_by 1.

polishflag_rules(21): colour__pos(succ(X)) may_be_replaced_by

colour__pos(X) + 1

if [X <=red, X <> red].

polishflag_rules(22): colour__pos(pred(X)) may_be_replaced_by

colour__pos(X) - 1

if [X >=white, X <> white].

polishflag_rules(23): colour__pos(X) >= 0 may_be_deduced_from

[white <= X, X <= red].

polishflag_rules(24): colour__pos(X) <= 1 may_be_deduced_from

[white <= X, X <= red].

polishflag_rules(25): colour__val(X) >= white may_be_deduced_from

[0 <= X, X <= 1].

polishflag_rules(26): colour__val(X) <= red may_be_deduced_from

[0 <= X, X <= 1].

polishflag_rules(27): succ(colour__val(X)) may_be_replaced_by

colour__val(X+1)

if [0 <= X, X < 1].

polishflag_rules(28): pred(colour__val(X)) may_be_replaced_by

colour__val(X-1)

if [0 < X, X <= 1].

polishflag_rules(29): colour__pos(colour__val(X)) may_be_replaced_by X

if [0 <= X, X <= 1].

polishflag_rules(30): colour__val(colour__pos(X)) may_be_replaced_by X

if [white <= X, X <= red].

polishflag_rules(31): colour__pos(X) <= colour__pos(Y) & X <= Y are_interchangeable

if [white <= X, X <= red, white <= Y, Y <= red].

polishflag_rules(32): colour__val(X) <= colour__val(Y) & X <= Y are_interchangeable

if [0 <= X, X <= 1, 0 <= Y, Y <= 1].

polishflag_rules(33): flagindexplus__first may_be_replaced_by 1.

polishflag_rules(34): flagindexplus__last may_be_replaced_by 11.

polishflag_rules(35): flagindexplus__base__first may_be_replaced_by -2147483648.

polishflag_rules(36): flagindexplus__base__last may_be_replaced_by 2147483647.

Figure 4.10: PolishFlag subprogram rules (RLS)
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For path(s) from start to assertion of line 13:

procedure_polishflag_1.

H1: for_all(i_: integer, ((i_ >= flagindex__first) and (

i_ <= flagindex__last)) -> ((element(flag, [i_]) =

white) or (element(flag, [i_]) = red))) .

H2: for_all(i___1: integer, ((i___1 >= flagindex__first) and (

i___1 <= flagindex__last)) -> ((element(flag, [

i___1]) >= colour__first) and (element(flag, [

i___1]) <= colour__last))) .

->

C1: for_all(q_: integer, ((q_ >= flagindex__first) and (

q_ <= flagindexplus__first - 1)) -> (element(

flag, [q_]) = white)) .

C2: for_all(r_: integer, ((r_ >= flagindexplus__last) and (

r_ <= flagindex__last)) -> (element(flag, [r_]) =

red)) .

C3: flagindexplus__first >= flagindexplus__first .

C4: flagindexplus__first <= flagindexplus__last .

C5: flagindexplus__last >= flagindexplus__first .

C6: flagindexplus__last <= flagindexplus__last .

C7: permutation(flag, flag) .

For path(s) from assertion of line 13 to assertion of line 13:

procedure_polishflag_2.

H1: for_all(q_: integer, ((q_ >= flagindex__first) and (

q_ <= i - 1)) -> (element(flag, [q_]) = white)) .

H2: for_all(r_: integer, ((r_ >= j) and (r_ <=

flagindex__last)) -> (element(flag, [r_]) = red)) .

H3: i >= flagindexplus__first .

H4: i <= flagindexplus__last .

H5: j >= flagindexplus__first .

H6: j <= flagindexplus__last .

H7: permutation(flag, flag˜) .

H8: not (not (i < j)) .

H9: element(flag, [i]) = white .

->

C1: for_all(q_: integer, ((q_ >= flagindex__first) and (

q_ <= i + 1 - 1)) -> (element(flag, [q_]) =

white)) .

C2: for_all(r_: integer, ((r_ >= j) and (r_ <=

flagindex__last)) -> (element(flag, [r_]) = red)) .

C3: i + 1 >= flagindexplus__first .

C4: i + 1 <= flagindexplus__last .

C5: j >= flagindexplus__first .

C6: j <= flagindexplus__last .

C7: permutation(flag, flag˜) .

Figure 4.11: PolishFlag subprogram VCs (VCG) [1 of 2]
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procedure_polishflag_3.

H1: for_all(q_: integer, ((q_ >= flagindex__first) and (

q_ <= i - 1)) -> (element(flag, [q_]) = white)) .

H2: for_all(r_: integer, ((r_ >= j) and (r_ <=

flagindex__last)) -> (element(flag, [r_]) = red)) .

H3: i >= flagindexplus__first .

H4: i <= flagindexplus__last .

H5: j >= flagindexplus__first .

H6: j <= flagindexplus__last .

H7: permutation(flag, flag˜) .

H8: not (not (i < j)) .

H9: not (element(flag, [i]) = white) .

->

C1: for_all(q_: integer, ((q_ >= flagindex__first) and (

q_ <= i - 1)) -> (element(update(update(flag, [i], element(

flag, [j - 1])), [j - 1], element(flag, [i])), [

q_]) = white)) .

C2: for_all(r_: integer, ((r_ >= j - 1) and (r_ <=

flagindex__last)) -> (element(update(update(flag, [

i], element(flag, [j - 1])), [j - 1], element(

flag, [i])), [r_]) = red)) .

C3: i >= flagindexplus__first .

C4: i <= flagindexplus__last .

C5: j - 1 >= flagindexplus__first .

C6: j - 1 <= flagindexplus__last .

C7: permutation(update(update(flag, [i], element(flag, [

j - 1])), [j - 1], element(flag, [i])), flag˜) .

For path(s) from assertion of line 13 to finish:

procedure_polishflag_4.

H1: for_all(q_: integer, ((q_ >= flagindex__first) and (

q_ <= i - 1)) -> (element(flag, [q_]) = white)) .

H2: for_all(r_: integer, ((r_ >= j) and (r_ <=

flagindex__last)) -> (element(flag, [r_]) = red)) .

H3: i >= flagindexplus__first .

H4: i <= flagindexplus__last .

H5: j >= flagindexplus__first .

H6: j <= flagindexplus__last .

H7: permutation(flag, flag˜) .

H8: not (i < j) .

->

C1: for_some(p_: integer, ((p_ >= flagindex__first) and (

p_ <= flagindex__last + 1)) and (( for_all(q_:

integer, ((q_ >= flagindex__first) and (q_ <= p_ - 1)) -> (element(

flag, [q_]) = white))) and ( for_all(r_:

integer, ((r_ >= p_) and (r_ <= flagindex__last)) -> (element(

flag, [r_]) = red))))) .

C2: permutation(flag, flag˜) .

Figure 4.12: PolishFlag subprogram VCs (VCG) [2 of 2]
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For path(s) from start to assertion of line 13:

procedure_polishflag_1.

H1: for_all(i_ : integer, 1 <= i_ and i_ <= 10 -> element(flag, [i_]) =

white or element(flag, [i_]) = red) .

H2: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 10 -> white <= element(

flag, [i___1]) and element(flag, [i___1]) <= red) .

->

C1: for_all(q_ : integer, 1 <= q_ and q_ <= 0 -> element(flag, [q_]) = white) .

C2: for_all(r_ : integer, 11 <= r_ and r_ <= 10 -> element(flag, [r_]) = red) .

C7: permutation(flag, flag) .

For path(s) from assertion of line 13 to assertion of line 13:

procedure_polishflag_2.

H1: for_all(q_ : integer, 1 <= q_ and q_ <= i - 1 -> element(flag, [q_]) =

white) .

H2: for_all(r_ : integer, j <= r_ and r_ <= 10 -> element(flag, [r_]) = red) .

H3: i >= 1 .

H4: j <= 11 .

H5: permutation(flag, flag˜) .

H6: i < j .

H7: element(flag, [i]) = white .

->

C1: for_all(q_ : integer, 1 <= q_ and q_ <= i -> element(flag, [q_]) = white) .

procedure_polishflag_3.

H1: for_all(q_ : integer, 1 <= q_ and q_ <= i - 1 -> element(flag, [q_]) =

white) .

H2: for_all(r_ : integer, j <= r_ and r_ <= 10 -> element(flag, [r_]) = red) .

H3: i >= 1 .

H4: j <= 11 .

H5: permutation(flag, flag˜) .

H6: i < j .

H7: element(flag, [i]) <> white .

->

C1: for_all(q_ : integer, 1 <= q_ and q_ <= i - 1 -> element(update(update(

flag, [i], element(flag, [j - 1])), [j - 1], element(flag, [i])), [q_]

) = white) .

C2: for_all(r_ : integer, j - 1 <= r_ and r_ <= 10 -> element(update(update(

flag, [i], element(flag, [j - 1])), [j - 1], element(flag, [i])), [r_]

) = red) .

C7: permutation(update(update(flag, [i], element(flag, [j - 1])), [j - 1],

element(flag, [i])), flag˜) .

For path(s) from assertion of line 13 to finish:

procedure_polishflag_4.

H1: for_all(q_ : integer, 1 <= q_ and q_ <= i - 1 -> element(flag, [q_]) =

white) .

H2: for_all(r_ : integer, j <= r_ and r_ <= 10 -> element(flag, [r_]) = red) .

H3: i >= 1 .

H4: i <= 11 .

H5: j >= 1 .

H6: j <= 11 .

H7: permutation(flag, flag˜) .

H8: j <= i .

->

C1: for_some(p_ : integer, p_ >= 1 and p_ <= 11 and (for_all(q_ : integer, 1

<= q_ and q_ <= p_ - 1 -> element(flag, [q_]) = white) and for_all(r_

: integer, p_ <= r_ and r_ <= 10 -> element(flag, [r_]) = red))) .

Figure 4.13: PolishFlag subprogram simplified VCs (SIV)
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4.4.6 Exception Freedom

Exception freedom verifies, for each subprogram, that whereits precondition is met and

the subprogram terminates, its postcondition will hold andthe subprogram will not raise

an exception. As SPARK is a subset of Ada, it must be verified that no Ada exceptions

can occur. The predefined Ada 95 exceptions [Int95] (11.1(4)) are considered below,

describing how their absence is verified in SPARK:

• Tasking Error - Exceptions of this category are raised where errors are detected

during intertask communication. As SPARK is single threaded, tasking errors can

never occur.

• StorageError - Exceptions of this category are raised where there is not sufficient

memory to perform an operation. Such errors may occur in SPARK. However,

due to the language requirements of SPARK, it is relatively straight forward to

calculate the maximum memory usage of a program. By ensuringthat this memory

is available at run-time, storage errors can never occur.

• Program Error - Exceptions of this category are raised for various programde-

fects that can arise during execution. These defects eitherfall outside the SPARK

subset or are detected automatically during static analysis. Thus, for well-formed

SPARK, program errors can never occur.

• Constraint Error - Exceptions of this category are raised where declared or ar-

chitecture constraints are violated. Many of these defectsfall outside the SPARK

subset, and thus can never occur. However, four of the exceptions in this cate-

gory can arise in SPARK. The absence of the following exceptions is demonstrated

through program verification:

– Index Check - Checks that an array access occurs within the declared bounds

of the array.

– RangeCheck - Checks that values remain within the declared bounds of their

types.

– Division Check - Checks that the denominator of a division, remainder, or

modulus operation is not zero.

– Overflow Check - Checks that a numeric operation does not overflow the

working memory space.

Verifying exception freedom involves verifying that expressions remain within certain

constraints. Sufficient constraints are often available by adopting a strong type model.

Further, given the targeted verification task, significant proof automation is often achiev-

able. Consequently, the verification of exception freedom is often undertaken for com-

plete high integrity software systems. For example, the entire SHOLIS system was sub-

jected to a proof of exception freedom [Cha00].
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The process of verifying exception freedom is an extension of that seen where prov-

ing partial correctness, as illustrated in Figure 4.5. Additional run-checkcut-points are

automatically introduced, reflecting the exceptions that can occur in SPARK. In veri-

fying exception freedom, the relationship between cut-points and VCs is illustrated in

Figure 4.14.

--# pre A;

code-block X

loop

--# assert B;

exit when ...;

code-block Y

end loop;

code-block Z

--# post C;

Subprogram Cut-point transitions

On the left, a generic subprogram containing a single loop isshow, associat-
ing labels with each cut-point and each code-block. On the right, the cut-point
transitions corresponding to the subprogram are shown. Each bold arrow rep-
resents every potential path between cut-points. A VC is generated for each
of these paths. Each dotted arrow represents every potential path from a cut-
point to a statement that may raise an exception. A VC is generated for each
of these paths.

Figure 4.14: Generating exception freedom VCs

For illustration, consider again the PolishFlag subprogram. The specification of the

subprogram is weakened to verify only exception freedom, asshown in Figure 4.15. Note

that, purely for clarity, an explicit invariant (--# assert true;) is retained.

In verifying exception freedom, twelve VCs are generated. Four of these VCs corre-

spond to verifying partial correctness of the default specification. A VC is generated for

lines 9 and 15 to prove that the value assigned toi is within type. A VC is generated for

lines 10 and 17 to prove that the value assigned toj is within type. A VC is generated for

line 14 to prove thati is a legal index of arrayflag. A VC is generated for line 18 to prove

both thati is a legal index of arrayflag and that the value assigned tot is within type. A

VC is generated for line 19 to prove both that variablesi andj are legal indices of array

flag and that the value assigned to thei th element of arrayflag is within type. Finally,

a VC is generated for line 20 to prove both thatj is a legal index of arrayflag and that

the value assigned to thej th element of arrayflag is within type. For illustration, the VC

corresponding to line 19 is shown in Figure 4.16. The Simplifier proves all of these VCs

automatically, verifying that the subprogram is free from exceptions.

46



package PolishFlag_Package is

subtype FlagIndex is Integer range 1..10;

type Colour is (White, Red);

type FlagArray is array (FlagIndex) of Colour;

procedure PolishFlag(Flag: in out FlagArray);

--# derives Flag from Flag;

end PolishFlag_Package;

1 package body PolishFlag_Package is

2 procedure PolishFlag(Flag: in out FlagArray)

3 is

4 subtype FlagIndexPlus is Integer range Flag’First..Flag’Last+1;

5 I: FlagIndexPlus;

6 J: FlagIndexPlus;

7 T: Colour;

8 begin

9 I:=FlagIndexPlus’First;

10 J:=FlagIndexPlus’Last;

11 loop

12 --# assert true;

13 exit when not (I<J);

14 if Flag(I)=White then

15 I:=I+1;

16 else

17 J:=J-1;

18 T:=Flag(I);

19 Flag(I):=Flag(J);

20 Flag(J):=T;

21 end if;

22 end loop;

23 end PolishFlag;

24 end PolishFlag_Package;

Figure 4.15: PolishFlag subprogram (exception freedom)
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For path(s) from assertion of line 12 to run-time check associated with

statement of line 19:

procedure_polishflag_10.

H1: true .

H2: for_all(i___1: integer, ((i___1 >= flagindex__first) and (

i___1 <= flagindex__last)) -> ((element(flag, [

i___1]) >= colour__first) and (element(flag, [

i___1]) <= colour__last))) .

H3: i >= flagindexplus__first .

H4: i <= flagindexplus__last .

H5: j >= flagindexplus__first .

H6: j <= flagindexplus__last .

H7: not (not (i < j)) .

H8: i >= flagindexplus__first .

H9: i <= flagindexplus__last .

H10: i >= flagindex__first .

H11: i <= flagindex__last .

H12: not (element(flag, [i]) = white) .

H13: j >= flagindexplus__first .

H14: j <= flagindexplus__last .

H15: j - 1 >= flagindexplus__first .

H16: j - 1 <= flagindexplus__last .

H17: i >= flagindexplus__first .

H18: i <= flagindexplus__last .

H19: element(flag, [i]) >= colour__first .

H20: element(flag, [i]) <= colour__last .

H21: i >= flagindex__first .

H22: i <= flagindex__last .

H23: j - 1 >= flagindexplus__first .

H24: j - 1 <= flagindexplus__last .

->

C1: element(flag, [j - 1]) >= colour__first .

C2: element(flag, [j - 1]) <= colour__last .

C3: j - 1 >= flagindex__first .

C4: j - 1 <= flagindex__last .

C5: i >= flagindex__first .

C6: i <= flagindex__last .

Figure 4.16: PolishFlag exception freedom VC (line 19 of ADBin §4.15)
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4.5 Configuring the SPARK toolset

Changes to the SPARK toolset have the potential to influence the low level detail of our

approach. For this reason, we use a particular version of each component of the toolset.

Further, the application of our approach requires featuresnot readily supported by the

standard toolset. The required features are introduced by modifying the toolset accord-

ingly. Each component of the toolset is listed below, notingthe version we use and any

additional features that were introduced:

• Examiner - We use Examiner version 7.1d01 (January 2004). This is an internal

version, not associated with a particular toolset release.For reference, this ver-

sion lies between toolset release 7.0 (July 2003) and toolset release 7.2 (December

2004). A very minor change has been made to this Examiner so that its output is

easier to process, as described in §B.2.

• Simplifier - We use Simplifier version 2.18 (March 2005). This is an internal ver-

sion, not associated with a particular toolset release. Forreference, version 2.17

was included in toolset release 7.2 (December 2004) and version 2.22 was included

in toolset release 7.3 (April 2006). The actual Simplifier weuse has been slightly

modified to support the automated comparison of initial and remaining VCs, as

described in §B.3.

• Checker - We use Checker version 2.03, included in toolset release 7.2 (December

2004). The actual Checker we use has been modified to support the automated proof

of VCs, as detailed in §B.4. Note that the Checker is used to check the soundness of

discovered proof plans. Thus, in a critical environment, these modifications would

be subject to rigorous verification and validation. The implications of this concern

are explored in §9.2.2.
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Chapter 5

Enhancing the SPARK Approach with

SPADEase

This chapter describes the practicalities of verifying exception freedom in the SPARK

Approach. The process is described in §5.1, highlighting the main challenges in §5.2.

We enhance this process through SPADEase, as described in §5.3, addressing the main

challenges as described in §5.4.

5.1 Verifying Exception Freedom

The process of verifying exception freedom in the SPARK Approach is illustrated in Fig-

ure 5.1. The verification effort is decompositional, verifying the whole program by sepa-

rately verifying each subprogram. Further, the verification effort is iterative, incrementally

resolving defects until the verification is complete.

Each iteration beings with the Examiner generating initialVCs for each subprogram.

The Simplifier attempts to automatically prove the initial VCs, storing those it fails to

prove as remaining VCs. Where there are no remaining VCs, theverification is complete.

Otherwise, an engineer must manually intervene to resolve the remaining VCs. The three

classes of interactions that may be required are listed below:

• Fix fault - The VC is not provable as there is an inconsistency between the subpro-

gram and its specification. The engineer must identify the source of the fault and

fix the subprogram, its specification, or both.

• Perform proof - The VC is provable, but is not automatically proved by the Sim-

plifier. The engineer must prove the VC inside the Checker1.

• Strengthen specification- The VC is not provable as information necessary for

1The SPARK Approach also supports the creation of aproof review(PRV) file. Such files justify the

correctness of a VC through an alternative process, such as independent review of an informal proof. In this

thesis, we focus on mechanically checkable formal verification.
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Figure 5.1: Verifying exception freedom

proof is missing from the specification. The engineer must strengthen the specifi-

cation to introduce the missing information.

Where a subprogram or specification is modified they are no longer synchronised with the

initial VCs. Thus, a further iteration of the verification process is required.

5.2 Verification Challenges

Industrial strength evidence [AC02] shows that the Simplifier can automatically prove

around 90% of exception freedom VCs. More recent studies, with a later version of the

Simplifier, suggest that this figure is now closer to 97% for engineered SPARK programs

[JES07]. Despite these impressive results, verifying exception freedom can still require

significant manual effort. The key challenges are listed below:

1. Many remaining VCs - A typical high integrity system will generate thousands of

VCs. Thus, while the Simplifier may prove all but a small percentage of the initial

VCs, the remaining VCs can still number in the hundreds.

2. Complex remaining VCs- The complexity of VCs is dependent on the complexity

of the code constructs they reason about. Unsurprisingly, the Simplifier tends to be

more effective at proving less complex VCs. Thus, the remaining VCs often reflect

the more complex proof problems.
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3. Weak default invariants - The automatically inserted default invariants are rel-

atively weak. While the information is valuable, it is typically only sufficient to

support the proof of simple loops.

4. Lack of configuration - The verification of a particular system may involve recur-

ring patterns of both invariant discovery and proof discovery. However, the SPARK

Approach can not be configured with appropriate strategies for these patterns. In-

stead, engineers must manually associate these patterns with their corresponding

strategies and must manually perform these strategies.

5. Brittle proofs - The Checker is controlled through very specific proof commands.

As a result, Checker proofs are tightly coupled to a particular VC and hence a

particular instance of its corresponding subprogram. If the subprogram is modified

it is very likely that the proof will need to be modified also.

5.3 Verifying Exception Freedom with SPADEase

The SPARK Approach is enhanced through SPADEase. The architecture of SPADEase is

described in §5.3.1, while its application is described in §5.3.2.

5.3.1 Architecture of SPADEase

The process of verifying exception freedom in the enhanced SPARK Approach is illus-

trated in Figure 5.2. SPADEase strictly operates within theSPARK Approach, automating

activities previously preformed manually by an engineer. Consequently, the soundness

of the verification effort remains solely dependent on the soundness of the SPARK Ap-

proach.

The architecture of SPADEase is illustrated in Figure 5.3. The verification of excep-

tion freedom requires both proof discovery and invariant discovery. These distinct tasks

are addressed through separate components. Proof discovery is achieved through a proof

planner, while invariant discovery is achieved through a program analyser.

An objective for SPADEase is to deliver both tractable and sound configuration. Key

features of proof planning naturally support this objective. Proof planning is controlled

through external proof plans that reflect mathematical intuitions. Thus, the development

of proof plans is relatively tractable. Further, proof planning makes a clear distinction

between proof search and proof checking. Thus, any errors inproof plans will be de-

tected during proof checking, and not undermine soundness.Recognising the value of

these features, our program analyser is similarly configured. Program analysis is con-

trolled through external program analysis heuristics. Further, the program analyser only

discoverscandidateinvariants. Any errors in these invariants will be detectedduring the

wider verification effort, and not undermine soundness.
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Figure 5.2: Verifying exception freedom with SPADEase

Figure 5.3: Architecture of SPADEase
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A further objective for SPADEase is to deliver targeted invariant discovery through

effective proof failure analysis. Proof planning directly supports proof failure analysis

through its critics mechanism. However, a proof planner is not suited to performing pro-

gram analysis. Thus, the critics mechanism is extended to communicate with a program

analyser throughabstract predicates. Similarly, the program analyser is not suited to

reasoning about program properties. Thus, the program analyser communicates with the

proof planner through aqueryandanswerinterface.

5.3.2 SPADEase Enhanced Verification Process

The verification process begins in exactly the same manner asthe standard SPARK Ap-

proach, as described in §5.1. The verification effort is both decompositional and iterative.

Each iteration begins with the Examiner generating initialVCs for each subprogram. The

Simplifier attempts to prove the initial VCs, storing those that are not proved as remaining

VCs. At this stage, each subprogram with remaining VCs is automatically investigated

by SPADEase.

To begin, SPADEase investigates each remaining VC for a subprogram via the proof

planner. Four scenarios may occur as detailed below:

• Perform proof - The proof planner successfully discovers a proof plan. Theproof

plan is extracted as proof commands and verified by the Checker.

• Suggest specification strengthening- The proof planner fails to discover a proof

plan. However, failure analysis successfully identifies that missing information

caused the failure. Specification strengthening is suggested, communicating the

form of the missing information to the program analyser as anabstract predicate.

• Suggest targeted interaction- The proof planner fails to discover a proof plan.

However, failure analysis successfully identifies the defect causing the failure.

SPADEase is unable to automatically resolve the class of defect. Instead, the exact

nature of the defect is communicated to an engineer, suggesting targeted interaction.

• Fail - Where none of the above scenarios occur, SPADEase is unableto advance the

proof of the VC. However, analysis of other remaining VCs associated with the sub-

program may suggest specification strengthening or targeted interaction. Resolving

these related defects may indirectly advance the proof of this VC.

Once every remaining VC has been investigated, three scenarios may occur as detailed

below:

• Success- Every remaining VC has been proved. SPADEase terminates success-

fully.
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• Strengthen specification- If at least one abstract predicate was generated, the sub-

program is subjected to program analysis. The program analyser attempts to dis-

cover invariants for the subprogram. During analysis, the proof planner is exploited

to solve general reasoning queries. The program analyser does not verify the cor-

rectness of its discovered invariants. To reflect this, its discovered invariants are

treated ascandidate invariants. Those candidate invariants that satisfy the abstract

predicates, and are not already present as a subprogram invariant, are selected to au-

tomatically strengthen the program specification. The correctness of every selected

candidate invariant will be demonstrated during program verification.

• Terminate, suggesting targeted interaction- Where any targeted interaction is

suggested, the application of SPADEase will terminate. Theengineer must manu-

ally intervene, guided by the suggested interaction.

• Terminate, in failure - There are unproven remaining VCs, yet neither speci-

fication strengthening nor targeted interaction was suggested. In this situation,

SPADEase terminates in failure. The engineer may choose to resolve the failure

directly through the SPARK Approach. Alternatively, the engineer may choose to

extend the heuristics of SPADEase such that the failure, andothers of a similar

pattern, will be automatically resolved in future.

Where the specification is modified, it is no longer synchronised with the initial VCs.

Thus, a further iteration of the verification process is required. This may, in turn, trigger

a subsequent application of SPADEase.

In general, the iterative process will terminate if SPADEase only suggests changes that

advance the verification effort. Through a cooperative integration of the proof plannerand

program analyser, SPADEase operates in a strongly goal directed manner. Specification

strengthening only introduces new invariants that addressidentified weaknesses in the

VCs. Thus, SPADEase naturally makes genuine progress toward proof, and the iterative

process is strongly expected to terminate.

5.4 Addressing Verification Challenges

The key challenges in verifying exception freedom in the SPARK Approach are listed in

§5.2. SPADEase provides an effective infrastructure for addressing these challenges, as

detailed below:

1. Many remaining VCs - SPADEase offers an additional layer of proof automation,

potentially reducing the number of remaining VCs.

2. Complex remaining VCs - SPADEase performs automated proof discovery in a

proof planner. As described in §3.3.1 and §3.3.4 proof planning delivers both ex-
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tensibility and flexibility. Thus, SPADEase may be extendedwith sophisticated

heuristics to address complex remaining VCs.

3. Weak default invariants - SPADEase performs automated invariant discovery in

a program analyser. Appropriate heuristics may be developed to discover stronger

invariants. Further, as invariants are introduced in reaction to proof failure, they are

only introduced where necessary.

4. Lack of configuration - SPADEase makes a clear distinction between its infras-

tructure and its controlling heuristics. Further, by strictly automating the actions of

an engineer, the SPARK Approach remains solely responsiblefor ensuring sound-

ness. Thus, SPADEase is readily configurable without introducing any soundness

concerns.

5. Brittle proofs - Rather than develop a specific proof inside the Checker, an engi-

neer may choose to extend SPADEase with an appropriate heuristic. The heuristic

should be expressed at a higher level of abstraction, and thus would not be tightly

coupled to a particular VC. Further, the heuristic may be reused for all proofs that

are susceptible to the same pattern. The development of general heuristics rather

than specific proofs may not always be feasible. However, by actively adopting this

technique where possible, the number of specific proofs developed in the Checker

would be reduced.
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Chapter 6

Proof Planner

6.1 Introduction

Following the proof planning paradigm, a proof planner is developed. The proof planner

is tailored for an effective integration with the SPARK Approach. This chapter describes

the details of our proof planner.

6.2 Proof Planner Architecture

The architecture of our proof planner is shown in Figure 6.1.The proof planner receives

three distinct categories of input. The form of thegoal, theoremsandproof plansare

discussed in §6.5, §6.6 and §6.7 respectively. These inputsare processed by theproof

planner, as discussed in §6.8. The planner generates either aninstantiated proof planor

a failure critique. Where an instantiated proof plan is generated, acompound tacticis

extracted and checked within the Checker. Following this, an overallresult is reported, as

described in §6.9.

The architecture of our proof planner closely corresponds to the original proof plan-

ning architecture, as introduced in §3.2.2. The sole difference is that our proof planner

may return a failure critique as the result. The mechanism isintroduced to allow proof

plans to critique on the wider verification effort.

6.3 Proof Planner Configuration

The proof planner is configured to support the verification ofexception freedom in the

SPARK Approach. A method-language is developed to support the expression of proof

plans, as summarised in §6.10. The proof plans developed aresummarised in §6.11.
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Figure 6.1: Proof planner architecture

6.4 Illustrative Example

The details of the proof planner are illustrated through a common example. Consider the

SumOnAirTeletextPages subprogram shown in Figure 6.2. Theenclosing package intro-

duces data structures based on a Teletext system1. The subprogram totals the number of

Teletext pages that are currently being broadcast. To support the verification of exception

freedom, the for-loop has an invariant, constraining the total to be between zero and the

number of pages inspected so far.

6.5 Goal

The proof planner operates in the same logic as the SPARK Approach, first order logic

with equality. Mirroring the SPARK Approach, the description of a goal is retrieved in

two distinct parts. Firstly, the entities and types relevant to goal are retrieved, as described

in §6.5.1 and §6.5.2. Secondly, the structure of the goal itself is retrieved as described in

§6.5.3.

1A ‘Teletext’ enabled television contains a decoder that converts data embedded into a television signal

into pages of text and graphics. The Teletext system described here relates to the “Broadcast Teletext

Specification, September 1976”, which later formed the basis of the World System Teletext (WST) standard.
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package SumOnAirTeletextPages_Package is

--A teletext page is indexed: [MagazineDigit][PageDigitOne][PageDigitTwo]

--For example: 888 (typically a subtitles page)

subtype MagazineDigit is Integer range 1..8;

subtype PageDigitOne is Integer range 0..9;

subtype PageDigitTwo is Integer range 0..9;

FirstPage: constant Integer:=

((MagazineDigit’First*100)+(PageDigitOne’First*10))+PageDigitTwo’First;

LastPage: constant Integer:=

((MagazineDigit’Last*100)+(PageDigitOne’Last*10))+PageDigitTwo’Last;

subtype PagesIndex is Integer range FirstPage..LastPage;

--Performance diminishes as more pages are broadcast.

--Thus, typically, only a subset of the indexable pages are on-air.

type PageStatus is (OnAir, OffAir);

--A teletext page is made up from 24x40 blocks.

subtype Rows is Integer range 0..23;

subtype Columns is Integer range 0..39;

type OneColumn is array (Columns) of Short_Short_Integer;

type OneScreen is array (Rows) of OneColumn;

type TeletextPage is record

Status : PageStatus;

Content : OneScreen;

end record;

type TeletextPages is array (PagesIndex) of TeletextPage;

subtype Total is Integer range 0..((PagesIndex’Last-PagesIndex’First)+1);

procedure SumOnAirTeletextPages(TP: in TeletextPages;

R: out Total);

--# derives R from TP;

end SumOnAirTeletextPages_Package;

1 package body SumOnAirTeletextPages_Package is

2 procedure SumOnAirTeletextPages(TP: in TeletextPages;

3 R: out Total)

4 is

5 begin

6 R:=0;

7 for I in PagesIndex loop

8 --# assert R>=0 and R<=(I-PagesIndex’First);

9 if (TP(I).Status=OnAir) then

10 R:=R+1;

11 end if;

12 end loop;

13 end SumOnAirTeletextPages;

14 end SumOnAirTeletextPages_Package;

Figure 6.2: SumOnAirTeletextPages subprogram
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6.5.1 Declarations

All of the entities and types relevant to a goal are retrievedand stored for access during

proof planning. Most of these entities and types are explicitly declared in the FDL file.

However, some entities and types relevant to a goal are implicitly declared. For clarity,

the proof planner does not have any implicit declarations. Note that, while the definitions

described below are sufficient to express every VC considered in the thesis, they do not

cover every VC of the SPARK Approach.

Scalar Types

A scalar type is not expressed in terms of any other type. Eachscalar type describes an

ordered set of values. The structure for holding scalar types is shown in Figure 6.3, and

the types it holds are described below. For illustration, the corresponding structures for

the SumOnAirTeletextPages subprogram are shown in Figure 6.4.

• Real Numbers- Mathematical real numbers of the setR.

• Integer Numbers - Mathematical integer numbers of the setZ.

• Boolean Values- Either the truth valuetrueor false.

• Enumerated Values- Each enumerated type has a declared nameEnumRefand a

corresponding ordered list of identifiers<EnumIdList>.

Note that the SPARK Approach approximates fixed and floating point arithmetic using

mathematical real numbers. The approximation ignores the rounding errors that occur

for these machine types. Correctly and accurately reasoning about the impact of cumula-

tive rounding errors is a challenging task, and an active area of research [Bar89, BF07].

Consequently, when reasoning about these types, particular care needs to be taken in in-

terpreting verification results. To avoid such complexity,our techniques focus on discrete

types.

<Declaration>F scalarType(<Type>) |
scalarEnumeratedType(EnumRef, <EnumIdList>)

<Type>F real | integer| boolean
<EnumIdList>F [] | [EnumId| <EnumIdList>]

Figure 6.3: Scalar types

60



Declarations from FDL
type pagestatus = (onair, offair);

Proof planner structures
scalarType(real)
scalarType(integer)
scalarType(boolean)
scalarEnumeratedType(pagestatus, [onair, offair])

Figure 6.4: SumOnAirTeletextPages scalar types

Composite Types

A composite type is expressed in terms of other types. A composite type may be com-

posed from scalar types or other composite types. The structure for holding composite

types is shown in Figure 6.5, and the types it holds are described below. For illustration,

the corresponding structures for the SumOnAirTeletextPages subprogram are shown in

Figure 6.6.

• Arrays - Each array type has a declared nameTypeRef. An array contains a list

of values, called elements, all of the same type asElementTypeRef. These ele-

ments are indexed by a non-empty list of values, described through the type list

<IndexTypeRefList>. Each index type must have the same scalar type. Typically,

the index list will contain one value, describing a single dimensional array. How-

ever, index lists withn values, describingn-dimensional arrays, may also occur.

• Records - Each record type has a declared nameTypeRef. A record groups to-

gether a fixed collection of fields. Each field holds a single value referenced through

FieldRefof some typeFieldTypeRef.

<Declaration>F compositeType(TypeRef, <Composite>)
<Composite>F array(<IndexTypeRefList>,ElementTypeRef) |

record(<FieldList>)
<IndexTypeRefList>F [] | [IndexTypeRef| <IndexTypeRefList>]
<FieldList>F [] | [field(FieldRef,FieldTypeRef) | <FieldList>]

Figure 6.5: Composite types
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Declarations from FDL
type onecolumn = array [integer] of integer;

type onescreen = array [integer] of onecolumn;

type teletextpage = record

status : pagestatus;

content : onescreen

end;

type teletextpages = array [integer] of teletextpage;

Proof planner structures
compositeType(onecolumn, array([integer], integer))
compositeType(onescreen, array([integer], onecolumn))
compositeType(teletextpage, record([field(status, pagestatus), field(content, onescreen)]))
compositeType(teletextpages, array([integer], teletextpage))

Figure 6.6: SumOnAirTeletextPages composite types

Constants

A constant is an identifier with a static value. Constants canbe created for all types. In

particular, the end points of numeric type ranges are expressed as constants. The struc-

ture for storing constants is shown in Figure 6.7. Each constant has a declared name

ConstantRefand is of typeTypeRef. For illustration, the corresponding structures for

the SumOnAirTeletextPages subprogram are shown in Figure 6.8. Note that the constant

value itself is not recorded. This echos the SPARK Approach,where constant values are

provided indirectly through a subprogram rules (RLS) file. This style is advantageous, as

it separates the declaration of entities from the declaration of expressions.

<Declaration>F constant(ConstantRef,TypeRef)

Figure 6.7: Constants

Variables

A variable is an identifier that can take different values during the execution of a program.

Variables can be created for all types. The structure for holding variables is shown in

Figure 6.9. Each variable has a declared nameVariableRefand is of typeTypeRef. Each

variable is associated with a category<VariableCategory> as described below:

• Subprogram variables- Subprogram variables have categorysubprogram. These

correspond to the program variables that are visible withina subprogram.

• Auxiliary variables - Auxiliary variables may be introduced, alongside any rele-

vant contextual information, through the categoryauxiliary(<ContextList>). Aux-

iliary variables are introduced to support program analysis.

62



Declarations from FDL
const total__last : integer = pending;

const total__first : integer = pending;

const columns__last : integer = pending;

const columns__first : integer = pending;

const rows__last : integer = pending;

const rows__first : integer = pending;

const pagestatus__last : pagestatus = pending;

const pagestatus__first : pagestatus = pending;

const pagesindex__last : integer = pending;

const pagesindex__first : integer = pending;

const short_short_integer__last : integer = pending;

const short_short_integer__first : integer = pending;

const integer__last : integer = pending;

const integer__first : integer = pending;

Proof planner structures
constant(firstpage, integer)
constant(total last, integer)
constant(total first, integer)
constant(columns last, integer)
constant(columns first, integer)
constant(rows last, integer)
constant(rows first, integer)
constant(pagestatuslast, pagestatus)
constant(pagestatusfirst, pagestatus)
constant(pagesindexlast, integer)
constant(pagesindexfirst, integer)
constant(short short integer last, integer)
constant(short short integer first, integer)
constant(integer last, integer)
constant(integer first, integer)

constant(total base last, integer)
constant(total base first, integer)
constant(columns base last, integer)
constant(columns base first, integer)
constant(rows base last, integer)
constant(rows base first, integer)
constant(pagestatusbase last, pagestatus)
constant(pagestatusbase first, pagestatus)
constant(pagesindexbase last, integer)
constant(pagesindexbase first, integer)
constant(short short integer base last, integer)
constant(short short integer base first, integer)
constant(integer base last, integer)
constant(integer base first, integer)

Figure 6.8: SumOnAirTeletextPages constants
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For illustration, the corresponding structures2 for the SumOnAirTeletextPages subpro-

gram are shown in Figure 6.10.

<Declaration>F variable(<VariableCategory>,VariableRef,TypeRef)
<VariableCategory>F subprogram| auxiliary(<ContextList>)
<ContextList>F [] | [Context| <ContextList>]

Figure 6.9: Variables

Declarations from FDL
var loop__1__i : integer;

var r : integer;

var tp : teletextpages;

Proof planner structures
variable(subprogram, i, integer)
variable(subprogram, r, integer)
variable(subprogram, tp, teletextpages)

Figure 6.10: SumOnAirTeletextPages variables

Functions

Various mathematical functions may be introduced. The structure for holding functions

is shown in Figure 6.11, and the functions it holds are described below.

• Functions - Each function has a declared nameFunctionRef. The function may

have zero or more arguments, described through the type list<ArgTypeRefList>,

and returns a value of typeReturnTypeRef. Each function is associated with a cate-

gory<FunctionCategory> as described below:

– Built-in functions - Functions with categorybuiltin are implicitly declared.

These functions correspond to standard functions, with predefined definitions

and properties. All of the built-in functions required to express the VCs con-

sidered in the thesis are shown in §6.5.2.

– Subprogram functions - As observed in §4.3.1, SPARK function subpro-

grams are pure mathematical functions. Functions with category subprogram

are explicitly declared to support reasoning about these functions. The func-

tions may be defined through a user rule (RLU) file.

2In the SPARK Approach, the for-loop iteratori is referenced asloop <counter> i. This name is

guaranteed to be unique within its enclosing subprogram. For brevity, in the examples shown in this thesis,

every for-loop iterator is uniquely referenced via its program variable name.
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– Auxiliary functions - Auxiliary functions may be introduced through the cat-

egoryauxiliary. Auxiliary functions are introduced to support program anal-

ysis, as described in §7.6.4 and §G.8.

<Declaration>F function(<FunctionCategory>,
FunctionRef, <ArgTypeRefList>,ReturnTypeRef)

<FunctionCategory>F builtin | subprogram| auxiliary
<ArgTypeRefList>F [] | [ArgTypeRef| <ArgTypeRefList>]

Figure 6.11: Functions

6.5.2 Built-in Functions

The built-in functions introduce standard operations thatare required in reasoning about

subprograms. All of the built-in functions relevant to thisthesis are described below. Note

that each function is associated with its actual syntax, as used by the SPARK Approach,

and an alternative syntax for presentation purposes.

Arithmetic Functions

The arithmetic functions support numeric operations, as summarised in Figure 6.12. Ad-

dition, subtraction, multiplication, exponentiation andunary minus are available for inte-

ger and real types with the usual meanings. Real division mayonly be evaluated where

the result is an exact value. Integer division truncates toward zero. Modulus is available

for integer types, and is defined entirely in terms of integerdivision, as show below:

(Y mod Z) = (Y− ((Y div Z) ∗ Z)) (6.1)

Operation Actual Syntax Alternative Syntax
addition Y + Z Y+ Z

subtraction Y - Z Y− Z
multiplication Y * Z Y∗ Z
exponentiation Y ** Z Y ∗∗ Z

minus - Z −Z
integer division Y div Z Y div Z
integer modulus Y mod Z Y mod Z

real division Y / Z Y/Z

Figure 6.12: Arithmetic functions
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Boolean Functions

The Boolean functions support logical operations, as summarised in Figure 6.13. Con-

junction, disjunction, implication, equivalence and negation are available for Boolean

types with the usual meanings.

Operation Actual Syntax Alternative Syntax
conjunction Y and Z Y∧ Z
disjunction Y or Z Y∨ Z
implication Y -> Z Y→ Z
equivalence Y <-> Z Y↔ Z

negation not Z ¬Z

Figure 6.13: Boolean functions

Relational Functions

The relational functions support comparison operations, as summarised in Figure 6.14.

Equality and its negation are available for all types, including Boolean. The inequality

operations less-than, less-than-or-equal, greater-thanand greater-than-or-equal, are avail-

able for all scalar types, except Boolean, with the usual meanings.

Operation Actual Syntax Alternative Syntax
equality Y = Z Y= Z
not equal Y <> Z Y, Z
less-than Y < Z Y< Z

less-than-or-equal-to Y <= Z Y≤ Z
greater-than Y > Z Y> Z

greater-than-or-equal-to Y >= Z Y≥ Z

Figure 6.14: Relational Functions

Array Manipulation Functions

The array manipulation functions support the access and updating of array variables, as

summarised in Figure 6.15. Array access returns the elementof arrayArrayRefat index

IndexList. Array update returns arrayArrayRefwith the value of the element at index

IndexListreplaced withElement.
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Operation Actual Syntax Alternative Syntax
array access element(ArrayRef,

IndexList)

element(ArrayRef,
IndexList)

array update update(ArrayRef,
IndexList,

Element)

update(ArrayRef,
IndexList,
Element)

Figure 6.15: Array Manipulation Functions

Record Manipulation Functions

The record manipulation functions support the access and updating of record variables,

as summarised in Figure 6.16. Record field access returns thevalue of fieldFieldReffor

recordRecordRef. Record field update returns recordRecordRefwith the value of field

FieldRefreplaced withValue. Note that these functions are named after the fields they

access, rather than accepting fields as parameters.

Operation Actual Syntax Alternative Syntax
record field access fld__FieldRef(RecordRef) fld FieldRef(RecordRef)
record field update upf__FieldRef(RecordRef,

Value)

upf FieldRef(RecordRef,
Value)

Figure 6.16: Relational Functions

Quantification Functions

The quantification functions support the description of a collection of properties, as sum-

marised in Figure 6.17. Universal quantification describesa propertyProp that holds for

all values of the quantified variableQVar of typeTypeRef. Existential quantification de-

scribes a propertyProp that holds for at least one value of a quantified variableQVar of

type TypeRef. Note that, in the SPARK Approach, it is very common for the property

to take the form of an implicationGuard→ GuardedProp, whereGuardconstrains the

values of the quantified variableQVar.

Operation Actual Syntax Alternative Syntax
universal quantification for_all(QVar:TypeRef,

Prop)

∀(QVar : TypeRef. Prop)

existential quantification for_some(QVar:TypeRef,
Prop)

∃(QVar : TypeRef. Prop)

Figure 6.17: Quantification Functions
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6.5.3 Goal Structure

The structure for holding goals is shown in Figure 6.18. Eachgoal has a unique identifier

GoalId. In the SPARK Approach the conclusions of a VC are grouped together because

they occur at the same point in a program. Typically, the conclusions of a VC relate to

different proof obligations that are susceptible to different reasoning strategies. For this

reason, it is more appropriate to plan each conclusion of a VCas a separate goal. Thus,

each proof planning goal contains a single conclusionConcand its corresponding hy-

potheses<HypList>. Meta-logical facts are associated with each goal through the global

contextual information<GlobalContextList>. The provenance of each goal is recorded to

facilitate integration with the SPARK Approach:

• sourceSubprogram(SubprogramName) - SubprogramNameis the name of subpro-

gram being verified.

• sourceFile(FileName) - FileNameis the name of the file that contains the VC asso-

ciated with this goal.

• sourceSystem(<FileKind>) - <FileKind> describes whether the VC occurs before

simplification, asvcg, or after simplification assiv.

• sourceVC(VCId) - VCId is the identifier of the VC associated with this goal.

• sourceConc(ConcId) ConcIdis the identifier of the conclusion associated with this

goal.

In selecting a strategy to prove a goal it is beneficial to knowhow the goal relates to the

source code. For this reason, each goal is associated with its traceability information:

• traceInfo(<Trace>) - The traceability information associated with the VC corre-

sponding to the goal is described through<Trace>. The attributes of this structure

are shown in Figure 6.18.

Our techniques target those goals that are not already proved by the SPARK Approach.

For this reason, each goal is associated with its current proof status:

• provedAtSimplifier(Boolean) - Describes whether or not the goal was proved fol-

lowing an application of the Simplifier.

During the planning of a goal, information may be acquired that is applicable to the entire

plan. Such information is also attached to the global contextual information:

• underConstrainedVars(VarList) - During proof planning, it is possible to identify

the variables that contribute to a branch of reasoning. If the branch of reasoning

ends in failure, its contributing variables may be under constrained. Such poten-

tially under constrained variables are recorded, supporting richer failure analysis.
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For illustration, consider the SumOnAirTeletextPages subprogram. Eight VCs must be

proved to verify that this subprogram is free from exceptions. One VC corresponds to

proving that, at line 9,i is a legal index of arraytp. This VC, and the goal corresponding

to its first conclusion, is shown in Figure 6.19. Note that thetrivial goal is recorded as

having been proved by the Simplifier.

<Goal>F goal(GoalId, <GlobalContextList>, <HypList>,Conc)
<HypList>F [] | [Hyp | <HypList>]
<GlobalContextList>F [] | [GlobalContext| <GlobalContextList>]
<GlobalContext>F sourceSubprogram(SubprogramName) |

sourceFile(FileName) |
sourceSystem(<FileKind>) |
sourceVC(VCId) |
sourceConc(ConcId) |
traceInfo(<Trace>) |
provedAtSimplifier(Boolean) |
underConstrainedVars(VarList)

<FileKind>F vcg | siv
<Trace>F betweenPath(<FromCut>, <ToCut>) | refinementIntegrity
<FromCut>F start | assertion(<CutKind>, LineInt)
<ToCut>F finish | assertion(<CutKind>, LineInt) | check(<CheckKind>, LineInt)
<CutKind>F userdefined| sparkdefined
<CheckKind>F userdefined| runtime| precondition

Figure 6.18: Goals
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VC from VCG file (relating to line 9 of Figure 6.2)
For path(s) from assertion of line 8 to run-time check associated with

statement of line 9:

procedure_sumonairteletextpages_5.

H1: r >= 0 .

H2: r <= loop__1__i - pagesindex__first .

H3: for_all(i___3: integer, ((i___3 >= columns__first) and (

i___3 <= columns__last)) -> ( for_all(i___2:

integer, ((i___2 >= rows__first) and (i___2 <=

rows__last)) -> ( for_all(i___1: integer, ((

i___1 >= pagesindex__first) and (i___1 <=

pagesindex__last)) -> ((element(element(fld_content(element(

tp, [i___1])), [i___2]), [i___3]) >=

short_short_integer__first) and

(element(element(fld_content(element(

tp, [i___1])), [i___2]), [i___3]) <=

short_short_integer__last))))))) .

H4: for_all(i___1: integer, ((i___1 >= pagesindex__first) and (

i___1 <= pagesindex__last)) -> ((fld_status(element(

tp, [i___1])) >= pagestatus__first) and (fld_status(element(

tp, [i___1])) <= pagestatus__last))) .

H5: loop__1__i >= pagesindex__first .

H6: loop__1__i <= pagesindex__last .

H7: loop__1__i <= pagesindex__last .

->

C1: loop__1__i >= pagesindex__first .

C2: loop__1__i <= pagesindex__last .

Proof planner structures (corresponding to first conclusion of above VC)
goal(goal(24),

[sourceSubprogram(sumonairteletextpages), sourceFile(sumonairteletextpages.vcg),
sourceSystem(vcg), sourceVC(5),
traceInfo(betweenPath(assertion(userdefined, 8), check(runtime, 9))),
sourceConc(1), provedAtSimplifier(true)],

[r ≥ 0, r ≤ (i − firstpage),
∀(i 3 : integer. i 3 ≥ columnsfirst∧ i 3 ≤ columnslast→

∀(i 2 : integer. i 2 ≥ rows first∧ i 2 ≤ rows last→
∀(i 1 : integer. i 1 ≥ pagesindexfirst ∧

i 1 ≤ pagesindexlast→
element(element(fld content(element(tp, [i 1])), [i 2]), [i 3]) ≥ short short integerfirst ∧
element(element(fld content(element(tp, [i 1])), [i 2]), [i 3]) ≤ short short integer last))),
∀(i 1 : integer. i 1 ≥ pagesindexfirst∧ i 1 ≤ pagesindexlast→

fld status(element(tp, [i 1])) ≥ pagestatusfirst ∧
fld status(element(tp, [i 1])) ≤ pagestatuslast),

i ≥ pagesindexfirst,
i ≤ pagesindexlast,
i ≤ pagesindexlast],

i ≥ pagesindexfirst)

Figure 6.19: SumOnAirTeletextPages selected VC and goal
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6.6 Theorems

Properties and definitions are held in external rule files. These files are retrieved as the-

orems, as described in §6.6.1. Subsequently, these theorems are processed to generate a

collection of rewrite rules for use during proof planning, as described in §6.6.2.

6.6.1 Retrieving Theorems

Three different categories of rules may be available for each subprogram, as considered

below:

• Subprogram rules (RLS) - The subprogram rules are specific to the entities and

types in the subprogram. Every subprogram rule is transformed into a theorem.

• Standard rules (RUL) - The standard rules are available to all subprograms. Some

standard rules cannot be expressed as strictly logical theorems as they contain com-

putational guards. Further, some standard rules are obviously not relevant where

verifying exception freedom. Thus, the strictly logical rules from a core subset of

standard rule files are transformed into theorems. The selected subset comprises

the rule filesarith, fdlfuncs, genineqs, intineqs, logic, modular andnumineqsas

detailed in [Praa].

• User rules (RLU) - The user rules are available to all subprograms. These rules are

created by an engineer to provide additional definitions andproprieties. Every user

rule is transformed into a theorem. Some user rules are introduced to support the

verification of exception freedom, as discussed in §B.4.

The structure for holding theorems is shown in Figure 6.20. Each theorem has a unique

identifierTheoremIdand is presented as the expressionTheoremExp. The theorems are

extracted from rule files in accordance with [Praa], as summarised in Figure 6.21. The

provenance of each theorem is recorded to facilitate integration with the SPARK Ap-

proach. Each theorem is held alongside its source fileFileName, its file kind<FileKind>

and its rule identifierRuleId.

<Theorem>F theorem(TheoremId,TheoremExp,
FileName, <FileKind>,RuleId)

<FileKind>F | rul | rlu | rls

Figure 6.20: Proof planner theorems

Note that rule files may be preceded by a type header. These headers are difficult to

work with and, in general, are not sufficiently strong to convey the type of all rules. Thus,

the type headers are completely ignored. Instead, a few simple heuristics are used to infer

the type of rules. In principle, this weakness might allow the proof planner to discover a
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proof plan which is ultimately rejected by the Checker. In practice, this situation has not

occurred as the type inference heuristics are generally effective.

Rule Theorem expression
X may_be_replaced_by Y ∀(v1 : t1 . . . vi : ti . (true→ (x = y)))
X may_be_replaced_by Yif [CList] ∀(v1 : t1 . . . vi : ti . (c→ (x = y)))
X & Yare_interchangeable ∀(v1 : t1 . . . vi : ti . (true→ (x = y)))
X & Yare_interchangeable if [CList] ∀(v1 : t1 . . . vi : ti . (c→ (x = y)))
X may_be_deduced ∀(v1 : t1 . . . vi : ti . (true→ (true→ x)))
X may_be_deduced if [CList] ∀(v1 : t1 . . . vi : ti . (c→ (true→ x)))
X may_be_deduced_from [YList] ∀(v1 : t1 . . . vi : ti . (true→ (y→ x)))
X may_be_deduced_from [YList] if [CList] ∀(v1 : t1 . . . vi : ti . (c→ (y→ x)))

Lists of conjunctsYListandCListare conjoined to form the expressionsYand
C respectively. Every implicitly quantified variable inX, Y andC is replaced
with explicitly quantified variablesv1 . . . vi of appropriate typet1 . . . ti to give
x, y andc. Note thattrue is inserted such that every theorem takes either the
form (U→ (V =W)) or (U→ (V→W)).

Figure 6.21: Converting from rules to theorems

6.6.2 Converting Theorems to Rewrite Rules

Each theorem is transformed into a pair of rewrite rules. Thestructure for holding rewrite

rules is shown in Figure 6.22. Each rewrite rule has a unique identifierRewriteRuleIdand

is associated with its corresponding theoremSourceTheoremId. Key details of the rewrite

rule are provided through its direction and polarity as described below:

• <Direction> - Records how the theorem was oriented in generating the rewrite

rule. Where the rewrite rule is oriented in the same direction as the theorem, the

direction isnormalandreversedotherwise. Note that this information is required

in extracting a compound tactic from an instantiated proof plan.

• <Polarity> - Describes the logical contexts in which the rewrite rule may be ap-

plied. A conclusion is considered to be ofpositivepolarity and a hypothesis of

negativepolarity. A rule marked aszero polarity may be applied to any subex-

pression, a rule marked aspositivemust be applied to apositivesubexpression

and a rule marked asnegativemust be applied to anegativesubexpression. Note

that, in our proof plans, all polarity concerns are centrally handled by the predicate

sub exp polarity as described in §C.9.17.

The rewrite rule itself is presented with a conditional guard asConditionand rewriting

from expressionLHSExpto expressionRHSExp. Each theorem takes a standard form, as

noted in Figure 6.21, thus the transformation from theoremsto rewrite rules is straight

forward, as described in Figure 6.23. For illustration, Figure 6.24 shows a subset of the
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rules generated for the SumOnAirTeletextPages subprogramalongside their correspond-

ing theorem and rewrite rule structures.

<RewriteRule>F rewriteRule(RewriteRuleId,SourceTheoremId,
<Direction>, <Polarity>,
Condition: LHSExp⇒ RHSExp)

<Direction>F normal | reversed
<Polarity>F zero| positive| negative

Figure 6.22: Proof planner rewrite rules

The universally quantified variables in each theorem are unwrapped and re-
placed with meta-variables. The resulting expressions take the form of an
equality or implication between a left hand side expressionLHSExpand a
right hand side expressionRHSExpguarded by a conditionCondition, as fol-
lows:

Condition→ (LHSExp= RHSExp) (6.2)

Condition→ (LHSExp→ RHSExp) (6.3)

The mapping from these expressions to their corresponding pair of rewrite
rules and associated direction and polarity is shown in the tables below:

Unwrapped theorem expression
Condition→ (LHSExp= RHSExp)

⇓

Rewrite rule Direction Polarity
Condition: LHSExp⇒ RHSExp normal zero
Condition: RHSExp⇒ LHSExp reversed zero

Unwrapped theorem expression
Condition→ (LHSExp→ RHSExp)

⇓

Rewrite rule Direction Polarity
Condition: LHSExp⇒ RHSExp normal negative
Condition: RHSExp⇒ LHSExp reversed positive

Figure 6.23: Converting from theorems to rewrite rules
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Subset of RLS file
sumonairtele_rules(3): integer__first may_be_replaced_by -2147483648.

sumonairtele_rules(4): integer__last may_be_replaced_by 2147483647.

sumonairtele_rules(16): pagestatus__last may_be_replaced_by offair.

sumonairtele_rules(26): pagestatus__pos(pred(X)) may_be_replaced_by pagestatus__pos(X) - 1 if

[X >=onair, X <> onair].

Corresponding subset of theorem structures
theorem(theorem(3), firstpage= 100,

sumonairteletextpages.rls, rls, sumonairtelerules(3))
theorem(theorem(4), integerfirst = −2147483648,

sumonairteletextpages.rls, rls, sumonairtelerules(4))
theorem(theorem(16), pagestatusfirst = onair,

sumonairteletextpages.rls, rls, sumonairtelerules(16))
theorem(theorem(26),∀(x : pagestatus. x ≤ offair ∧ x , offair →

pagestatuspos(succ(x)) = pagestatuspos(x) + 1),
sumonairteletextpages.rls, rls, sumonairtelerules(26))

Corresponding subset of rewrite rule structures
rewriteRule(rr (5), theorem(3), normal, zero, true : firstpage⇒ 100)
rewriteRule(rr (6), theorem(3), reversed, zero, true : 100⇒ firstpage)
rewriteRule(rr (7), theorem(4), normal, zero, true : integerfirst⇒ −2147483648)
rewriteRule(rr (8), theorem(4), reversed, zero, true : −2147483648⇒ integerfirst)
rewriteRule(rr (31), theorem(16), normal, zero, true : pagestatusfirst⇒ onair)
rewriteRule(rr (32), theorem(16), reversed, zero, true : onair => pagestatusfirst)
rewriteRule(rr (51), theorem(26), normal, zero,X ≤ offair ∧ X , offair :

pagestatuspos(succ(X))⇒ pagestatuspos(X) + 1)
rewriteRule(rr (52), theorem(26), reversed, zero,X ≤ offair ∧ X , offair :

pagestatuspos(X) + 1⇒ pagestatuspos(succ(X)))

Figure 6.24: Subset of SumOnAirTeletextPages rules
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6.7 Proof Plans

A proof plan is expressed throughmethodsandcritics, as described in §6.7.1. In our proof

planner, method applications are controlled throughstrategies, as described in §6.7.2.

6.7.1 Methods and Critics

Each method is stored in amethod(MTD) file. The general form of a method is show in

Figure 6.25. The purpose of each method slot is described below:

• Method - The name of the method.

• Tactic - Describes how to perform the actions of the method at the object-level.

The tactic typically contains meta-variables which will become instantiated during

a successful method invocation.

• Goal - The goal inputted to the method. The slot may act as an additional method

precondition by only accepting goals that match a specific pattern.

• Preconditions - Preconditions constrain the application of the method. Where the

preconditions are successful the method is expected to be successful. The precon-

ditions are expressed in the meta-level theory through a method-language.

• Effects- Effects perform the actions of the method. The effects are only performed

if the method preconditions hold. The effects are expressed in the meta-level theory

through a method-language.

• Subgoals- The potentially multiple subgoals outputted by the method. A terminat-

ing method will generate an empty list of subgoals.

Method:
Method
Tactic:
Tactic
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
[Precondition1, . . . ,Preconditionx]
Effects:
[Effect1, . . . ,Effecty]
Subgoals:
[Subgoal1, . . . ,Subgoalz]

Figure 6.25: Method template
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Each method may have a number of corresponding critics. Eachcritic is stored in a

critic (CRI) file. The general form of a critic is show in Figure 6.26.The purpose of each

critic slot is described below:

• Critic - The name of the critic.

• Parent method- The name of the method that the critic is associated with.

• Goal - The goal inputted to the critic. The slot may act as an additional critic

precondition by only accepting goals that match a specific pattern.

• Successful method preconditions- The method preconditions that must have been

successful for the critic to be triggered.

• Failed method precondition - The method precondition that must have failed, or

not been explored, for the critic to be triggered.

• Preconditions - Preconditions constrain the application of the critic. Where the

preconditions are successful the critic is expected to be successful. The precondi-

tions are expressed in the meta-level theory through a method-language.

• Effects- Effects perform the actions of the critic. The effects are only performed

if the critic preconditions hold. The effects are expressed in the meta-level theory

through a method-language.

Critic:
Critic
Parent Method:
ParentMethod
Goal:
LocalContextList: HypList⊢ Conc
Successful method preconditions:
[SuccessfulPrecondition1, . . . ,SuccessfulPreconditionx]
Failed method precondition:
FailedPrecondition
Preconditions:
[Precondition1, . . . ,Preconditiony]
Effects:
[Effect1, . . . ,Effectz]

Figure 6.26: Critic template

6.7.2 Strategies

A proof plan is constructed from a number of methods. Thus, there is a need for a mecha-

nism to control method applications. Various different mechanisms have been considered
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[DJP06]. Modern proof planners, such as IsaPlanner [Dix05], use powerfulmethodicals,

extending the method-language to include method-level operations. For simplicity, our

proof planner controls method applications through a weaker mechanism calledstrate-

gies. These strategies are held in astrategy(STR) file.

The general form of a strategy is show in Figure 6.27. Each strategy contains a set of

waterfalls. A waterfall is a named ordered list ofactions. Each action references a method

to try, and, where that method is successful, the waterfall to invoke on its subgoals. For

generality, the actions associated with a waterfall may be parametrised3.

Waterfall:
WaterfallRef1(Parameters)
Actions:
MethodRef1 7→ SelWaterfallRef(SelParameters)
. . .

MethodRefy 7→ SelWaterfallRef(SelParameters)
. . .

Waterfall:
WaterfallRefx(Parameters)
Actions:
MethodRef1 7→ SelWaterfallRef(SelParameters)
. . .

MethodRefz 7→ SelWaterfallRef(SelParameters)

Figure 6.27: Strategy template

6.8 Proof Planner

The proof planner begins by retrieving the goal, theorems and proof plans. The planner

operates onplans, as described in §6.8.1. The planner conducts an iterative deepening

search, as described in §6.8.2.

6.8.1 Plans

The structure for holding plans is shown in §6.28. A number ofplans may be present,

each having a unique identifierPlanId. Each closed plan is associated with its result

PlanResult. Each open plan has a proof tree and a search control structure. The proof

tree contains the global context informationGlobalContextListand a collection of nodes

of the forms described below:
3The parametrisation of waterfalls supports the presentation of common strategies. In practice, our

proof planner does not support this parametrisation. The same meaning is achieved by creating specific

instantiations of each strategy.
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• goalNode(GoalNodeId, LocalContextList,HypList,Conc) -

Describes a goal. Each goal node has a unique identifierGoalNodeId. The goal is

described through its local context informationLocalContextListand its hypotheses

and conclusion asHypListandConcrespectively.

• methodNode(MethodNodeId,MethodName,Tactic,

ParentGoalNodeId,ChildrenGoalNodeIdList) -
Describes the successful application of a method on a goal. The method nodes

join together goal nodes to form the proof tree structure. Each method node has

a unique identifierMethodNodeId. The corresponding method name and tactic

application are recorded asMethodNameand Tactic respectively. The method

node connects goal nodes by recording the parent goal that the method was ap-

plied to asParentGoalIdand any children subgoals that the method generated as

ChildrenGoalIdList.

Each plan has its own search control, describing every open goal and the current search

band as described below:

• openGoal(GoalNodeId,DepthInt,WaterfallActionList) -

Indicates that the goal with identifierGoalNodeId, known to be at depthDepthInt,

has pending method invocations as described byWaterfallActionList.

• searchBand(FromInt,ToInt) -

Indicates that iterative deepening is currently exploringthose nodes between depth

FromIntand depthToInt.

<Plans>F <PlanList>
<PlanList>F [] | [<Plan> | <PlanList>]
<Plan>F plan(PlanId, <PlanStatus>)
<PlanStatus>F openPlan(<ProofTree>, <SearchControl>) |

closedPlan(PlanResult)
<ProofTree>F proofTree(GlobalContextList, <NodeList>)
<NodeList>F [] | [Node| <NodeList>]
<Node>F goalNode(GoalNodeId, LocalContextList,HypList,Conc) |

methodNode(MethodNodeId,MethodName,Tactic,
ParentGoalNodeId,ChildrenGoalNodeIdList)

<SearchControl>F searchControl(<OpenGoalList>, <SearchBand>)
<OpenGoalList>F [] | [OpenGoal| <OpenGoalList>]
<OpenGoal>F openGoal(GoalNodeId,DepthInt,WaterfallActionList)
<SearchBand>F searchBand(FromInt,ToInt)

Figure 6.28: Plans
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6.8.2 Planner Algorithm

The planner algorithm explores method applications through an iterative deepening search

[Kor85], as described below. Note that this algorithm is similar to the iterative deepening

search available in Clam [DRe06].

• Initialisation - At initialisation, amainplan is created for the input goal. The goal

is added as theroot goal node in the proof tree. Any global context information

associated with the goal is added to the proof tree. The search control is initialised,

indicating that the root goal is open. Unless stated otherwise, the initial strategy is

exception freedom, as described in §E.3.

• Planning - While open plans remain, the selection and application phases described

below are repeatedly performed.

– Selection- A plan, goal and method is selected.

* Select Plan- The first open plan is selected.

* Select Goal- The deepest open goal within the current band of the it-

erative deepening search is selected. Where there are multiple goals at

this depth, the goal that has been unexplored for longest is selected next.

If there are no open goals in the current band then the band is increased

to explore the next 3 depths. If the search band exceeds depth70, then

the plan is closed with the failure critiquemaximumDepthReached. The

search band was kept small, as successful plans often occur at a relatively

shallow depth. The depth limit was established empirically, comfortably

holding all of the plans we have encountered. If no open goalscan be

found then the plan is closed with a suitable failure critique. If under con-

strained variables are associated with the plan then the failure critique will

report these via anabstractPredicatesuggestingtightlyConstrainVars.

Otherwise, the failure critique will reportnoMoreOpenGoals.

* Select Method - The waterfall list associated with the open goal is

queried. The next action is selected and removed from the list. If this

is the last action in the list, then the goal is removed from the list of open

goals.

– Application - The selected method is applied to the selected goal of the se-

lected plan.

* Method Successful- The proof tree is extended to record the method

application and any subgoals that were generated. Where themethod

generates no subgoals it is checked to see if a proof for the root goal has

been found. If this is the case then the plan is closed, with the result as the

discovered instantiated proof plan. Regardless of any pending waterfall

actions, the selected goal is always removed from the list ofopen goals.
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Typically, our methods generate subgoals which are closer to completing

a proof. Thus, once a method has been successfully applied toa goal there

is generally little merit in exploring alternative methodsat the same goal.

If our proof planner supported methodicals, rather than simple strategies,

this efficiency measure could be expressed in the proof plans rather than

being embedded in the planner algorithm.

* Method Failed - Where the method fails, any critics associated with the

method are attempted. If the plan is aborted by the critic, then the rel-

evant failure critique is reported. If the critic is successful, the planner

continues just as if its parent method had been successful. If the critic is

unsuccessful, then the method is dismissed.

• Result - The result associated with the main plan is returned. The result will either

be an instantiated proof plan or a failure critique.

6.9 Plan Result

The proof planner will generate either an instantiated proof plan or a failure critique.

From each result the overall result of the proof planner is determined.

6.9.1 Result from Instantiated Proof Plan

Where an instantiated proof plan is discovered its correctness is demonstrated via the

Checker. A compound tactic is extracted from the instantiated proof plan. The compound

tactic automatically controls the Checker, attempting to prove the relevant goal. Where

the goal is proved inside the Checker, a successful proof is reported. Otherwise, failure is

reported, highlighting that a defect in the proof plans has been detected. Note that, while

the latter case is undesirable, soundness is preserved as the flawed proof is rejected by the

Checker.

Proof planners are typically coupled to tactic based theorem provers, as tactics provide

a powerful mechanism for describing and executing a discovered proof plan. However,

the Checker is not a tactic based theorem prover. To address this mismatch,simulated

tactics and tacticals are introduced, as shown in Figure 6.29. Tactics perform a unit of

reasoning while tacticals supports the composition of tactics. The technique hides the

detail associated with interfacing to the Checker, allowing proof plans to be expressed

at a natural level of abstraction. The translation from simulated tactics and tacticals into

Checker proof commands is detailed in Appendix D.

For illustration, consider the SumOnAirTeletextPages subprogram. Two VCs are gen-

erated from the invariant at line 8 back to the same invariant, covering both paths through

the if-statement. The VC associated with not entering the if-statement is not proved by

the Simplifier. The proof planner discovers an instantiatedproof plan for this VC, via
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<CompoundTactic>F <Tactical>
<Tactical>F then tactical(<Tactic>, <TacticalList>) |

final tactical(<Tactic>)
<TacticalList>F [] | [<Tactical> | <TacticalList>]
<Tactic>F null tactic |

trivial tactic |
trivially true conc tactic(Conc) |
rewrite tactic(RewriteForm,

HypOrConc,WholeExp,Pos,
Condition: LHSExp⇒ RHSExp) |

split conc conj tactic(LeftExp,RightExp) |
case split tactic(FirstExp,SecondExp) |
sequence tactic(<TacticList>)

<TacticList>F [] | [<Tactic> | <TacticList>]

Figure 6.29: Simulated tactics and tacticals

the proof plans detailed in Appendix E. The essential details of the VC, its compound

tactic and proof commands are show in Figure 6.30. As the compound tactic and proof

commands associated with instantiated proof plans are verbose and mechanically derived,

they are omitted in all subsequent examples.

6.9.2 Result from Failure Critique

Where a failure critique is raised it is directly reported asthe planner result. The structure

for every failure critique is shown in Figure 6.31 and described below.

• maximumDepthReached- Raised when the proof planner tries to search beyond

a fixed depth. Care is taken to express proof plans in a form that is expected to

terminate. However, especially during development, a pathological goal may lead

to an infinite search.

• noMoreOpenGoals- Raised when the proof planner has fully explored a proof plan

on a given goal, without making any insights. The proof plan needs to be extended

to prove such goals.

• provedBySimplifier- Raised where the goal has already been proved by the Simpli-

fier. For further details, see §E.7.

• simplifiedGoal- Raised where the goal has been simplified by the Simplifier. For

further details, see §E.8.

• goalNotTargeted- Raised where goal is of a category that is not targeted by the

proof plans. The proof plans will need to be extended to reason about these goals.

For further details, see §E.9.
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Key portion of invariant goal
r ≤ (i − firstpage)
→

r ≤ ((i + 1)− firstpage)

Key portion of compound tactic
. . .

then tactical
rewrite tactic(rule(ruleref(sumonairteletextpages.rls, rls, sumonairtelerules(3), normal)),

hyp, r ≤ (i − firstpage), [2, 2], true : firstpage⇒ 100)
. . .

then tactical
rewrite tactic(rule(ruleref(sumonairteletextpages.rls, rls, sumonairtelerules(3), normal)),

conc, r ≤ (i + 1)− firstpager, [2, 2], true : firstpage⇒ 100)
. . .

then tactical
rewrite tactic(rule(ruleref(. . . /user-rules/minusplus.rul, rlu,minusplus(1), reversed)),

conc, r ≤ (i + 1)− 100, [2], true : (i + 1)− 100⇒ (i − 100)+ 1
then tactical
rewrite tactic(rule(ruleref(. . . /user-rules/minusplus.rul, rlu,miscellaneous(7), reversed)),

conc, r ≤ (i − 100)+ 1, [] , true : r ≤ (i − 100)+ 1⇒ (r ≤ (i − 100))∧ (0 ≤ 1))
then tactical
rewrite tactic(hypothesisFertilise(r ≤ (i − 100))

conc, r ≤ (i − 100)∧ (0 ≤ 1), [1], true : r ≤ (i − 100)⇒ true)
then tactical
rewrite tactic(evaluate(true∧ (0 ≤ 1), true)

conc, true∧ (0 ≤ 1), [] , true : true∧ (0 ≤ 1)⇒ true)
final tactical
trivial tactic

Key portion of proof commands
consult ’sumonairteletextpages.rls’.

consult ’.../user-rules/minusplus.rul’.

consult ’.../user-rules/miscellaneous.rul’.

tame_subgoal_on_conc (2).

...

tame_rewrite (hyp) : (r<=(loop__1__i-pagesindex__first)) : ([2,2]) with

(pagesindex__first) to (100) if (true) using (sumonairtele_rules(3)) in (normal).

tame_rewrite (conc) : (r<=(loop__1__i+1)-pagesindex__first) : ([2,2]) with

(pagesindex__first) to (100) if (true) using (sumonairtele_rules(3)) in (normal).

...

tame_rewrite (conc) : (r<=(loop__1__i+1)-100) : ([2]) with

((loop__1__i+1)-100) to ((loop__1__i-100)+1) if (true) using (minusplus(1)) in (reversed).

tame_rewrite (conc) : (r<=(loop__1__i-100)+1) : ([]) with

(r<=loop__1__i-100+1) to (r<=loop__1__i-100 and 0<=1) if

(true) using (miscellaneous(7)) in (reversed).

tame_rewrite (conc) : (r<=(loop__1__i-100) and 0<=1) : ([1]) where (r<=(loop__1__i-100)).

tame_rewrite (conc) : (true and 0<=1) : ([]) with (true and 0<=1) is (true).

tame_done.

tame_all_done.

tame_done.

tame_finish.

Figure 6.30: SumOnAirTeletextPages invariant VC (line 8 ofFigure 6.2)
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• inRealDomain- Raised when the conclusion contains fixed or floating point types.

The proof planner and proof plans will need to be extended to reason about these

types. For further details, see §E.10.

• abstractPredicate(SubprogramName, coupleWithEntryVars(<VarList>)) -

Raised where a proof plan suggests that properties should beintroduced to relate the

variables in<VarList> with their corresponding loop entry variables in subprogram

SubprogramName. For further details, see §E.14.

• abstractPredicate(SubprogramName, constrainVars(<VarList>)) -

Raised where a proof plan suggests introducing constraintson the variables in

<VarList> in subprogramSubprogramName. For further details, see §E.16.

• abstractPredicate(SubprogramName, tightlyConstrainVars(<VarList>)) -

Raised where a proof plan suggests increasing the constraints on the variables in

<VarList> in subprogramSubprogramName. For further details, see §E.17.

• interactionNeeded(SubprogramName, constrainConsts(<ConstList>)) -

Raised where a proof plan suggests introducing constraintson the constants in

<ConstList> in subprogramSubprogramName. For further details, see §E.15.

<FailureCritique>FmaximumDepthReached|
noMoreOpenGoals|
provedBySimplifier|
simplifiedGoal|
goalNotTargeted|
inRealDomain|
abstractPredicate(SubprogramName, <ProgAnalysisRequest>) |
interactionNeeded(SubprogramName, <EngineerRequest>)

<ProgAnalysisRequest>F coupleWithEntryVars(<VarList>) |
constrainVars(<VarList>) |
tightlyConstrainVars(<VarList>)

<VarList>F [] | [<Var> | <VarList>]
<EngineerRequest>F constrainConsts(<ConstList>)
<ConstList>F [] | [<Const> | <ConstList>]

Figure 6.31: Failure Critique structure

6.10 Method-Language Overview

A method-language is developed to support the verification of exception freedom in the

SPARK Approach. The method-language predicates are grouped into a number of cate-

gories, as summarised below. Full details of the method-language are presented in Ap-

pendix C.
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• Composition (§C.3) - These predicates support the composition of methods. The

predicates are typically available in proof planners.

• Proof Planning (§C.4) - These predicates offer direct control of the planning pro-

cess. As described in §6.7.2, method applications are controlled through a relatively

limited strategy mechanism. By allowing methods to directly control the planning

process, some of these limitations are addressed.

• List Processing(§C.5) - These predicates support list processing. Predicates tend to

operate with lists rather than individual elements to increase generality and support

reuse. Thus, there is a general need for list processing predicates.

• Plan Features(§C.6) - These predicates allow methods to query and modify the

global contextual information associated with each plan.

• Goal Features(§C.7) - These predicates allow methods to query and modify the

local contextual information associated with each goal.

• Goal Patterns (§C.8) - In developing methods for verifying exception freedom, a

number of relevant goal patterns emerged. These predicatessupport the detection

and evaluation of these patterns.

• Analyse Expressions(§C.9) - These predicates support the manipulation of ex-

pressions. Such methods are typically available in proof planners.

• Rewriting (§C.10) - These predicates support term rewriting, a powerful theorem

proving technique. General predicates support rewriting operations. Further, a

few specialised predicates provide efficient access to operations that are achieved

through multiple rewrites.

• Rippling (§C.11) - These predicates support an application of the rippling heuristic.

As described in §2.3.3, the rippling heuristic is directly applicable to the proof of

loop invariant goals.

6.11 Proof Plans Overview

Proof plans are developed to support the verification of exception freedom in the SPARK

Approach. An overview of the plans developed for exception freedom goals and program

analysis queries are given in §6.11.1 and §6.11.2 respectively. Full details of the plans are

presented in Appendix E.

6.11.1 Proof Plans for Exception Freedom Goals

Three proof plan strategies support the verification of exception freedom goals, as sum-

marised below.
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• exception freedom (§E.3) - Given the context of the SPARK Approach, a number

of goals may not be relevant to advancing the verification of exception freedom.

Thus, thetargeted goal method (§E.6) filters out irrelevant goals. The Examiner

tends to generate verbose goals. Thus aninitialisation method (§E.11) is applied

early, transforming the goal into a more readily analysableform. In proving ex-

ception freedom, goals often have general hypotheses and specific conclusions. In

many cases, obvious specialisations of the general hypotheses will contribute to-

ward proof. Thespecialise hyps method (§E.12) performs these obvious speciali-

sations. During proof planning, it is difficult to determine if a false goal has arisen

because the original goal is not provable or because a poor choice of proof step was

made. Thus, prior to any proof exploration, theviable goal method (§E.13) inves-

tigates the provability of the goal. The method searches forpatterns that are com-

monly associated with unprovable goals. This includes the use of a constraint solver

to identify counter examples that demonstrate the goal is not provable. Different

goal categories may be identified depending on how the goal relates to the source

code. Significantly, different goal categories are susceptible to different proof strate-

gies. Two different goal categories are considered. Therun-time checkcategory is

identified by thertc goal method (§E.18) while theinvariant category is identified

by theinv goal method (§E.19).

• run time check (§E.4) - All goals corresponding to the run-time check category

will involve proving that, given various constraints, a particular bound is never vi-

olated. These goals are addressed through a collection of cooperating techniques.

The goal is simplified to identify its essential details, as achieved by thetrue conc

method (§E.20), thefalse conc method (§E.21), theeval conc method (§E.25), the

split conc conj method (§E.26), thefertilize method (§E.27), theclear conc exp

method (§E.28) and theelim var conc method (§E.29). The automated capabilities

of the Checker are exploited to perform the simplification oflinear functions, as

performed by thelinear bounded conc method (§E.22). To more readily exploit

the standard rules supplied with the SPARK Approach, multiplication is normalised

by thecase split method (§E.23) and themult commute method (§E.24). Where

the above techniques are unable to prove a goal, the conclusion is decomposed into

more tractable expressions. The decomposition is achievedthrough an application

of transitivity, as initiated by thetransitivity entry method (§E.30). The process re-

quires a creative eureka step, discovering an intermediateexpression that supports

the application of a transitivity rule. The search is achieved through middle-out

reasoning, as supported by thetransitivity fertilize method (§E.32), thetransitiv-

ity decomp method (§E.31), thetransitivity close method (§E.33) and thetransi-

tivity unblock method (§E.34).

• invariant (§E.5) - All goals corresponding to the invariant category involve prov-

ing that an invariant property is preserved following an iteration of a loop. As
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these goals exhibit the same pattern as proof by induction the rippling heuristic

is directly applicable. Thus, the rippling heuristic is reused, as achieved by the

ripple entry method (§E.35), theripple unblock method (§E.38), theripple wave

method (§E.36) and theripple fertilize method (§E.37). Following a successful

application of rippling it is common for a proof residue to remain. As the invari-

ant properties typically describe invariant bounds, the proof residue often involves

proving that a particular bound is not violated. Thus, the strategy developed for

run-time check goals is applicable and is directly reused.

6.11.2 Proof Plans for Program Analysis Queries

Four proof plan strategies are exploited during program analysis to perform different rea-

soning queries, as summarised below.

• pa exp simplify (§E.40) - Supports the simplification of expressions. Expressions

are eliminated through logical properties, as achieved by theprune conc duplicate

method (§E.44) and theprune conc eq method (§E.45). Two simplification tech-

niques developed for run-time check goals are reused, as theeval conc method

(§E.25) and theclear conc exp method (§E.28). Where no further simplifica-

tions are available, the simplified expression is returned by thereport conc method

(§E.46).

• pa exp constrain (§E.41) - Supports the generalisation of a complex expression

into a weaker, yet simpler, bounded expression. Hypothesisspecialisations can

contribute toward finding constraints, thus thespecialise hyps method (§E.12) is

reused. The resulting constraints are enriched through theservices of a computer

algebra system, via thesolve eq hyp for var method (§E.47). Finally, with a rich

collection of constraints available, the tightest boundedconstraint for the complex

expression is returned through theconstrain conc conj method (§E.48).

• pa spark exp (§E.42) - Transforms an expression into a form which can be di-

rectly expressed in SPARK annotations. Thespecialise hyps method (§E.12) is

reused to introduce additional hypotheses. Simplifications are performed by reusing

theprune conc duplicate method (§E.44), theprune conc eq method (§E.45), the

eval conc method (§E.25), and theclear conc exp method (§E.28). Where appli-

cable, constraints are enriched by reusing thesolve eq hyp for var (§E.47) method.

The elim aux var via eq method (§E.49), theelim prog var exp via eq method

(§E.50) and theelim aux var via int arith method (§E.51) exploit the simplified

and enriched constraints, seeking to eliminate expressions that are not expressible

in SPARK annotations. Where successful, the resulting SPARK expression is re-

turned through theis spark exp method (§E.52).
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• pa disj norm form (§E.43) - Converts an expression into disjunctive normal form.

Thedisj norm form method (§E.53) applies a rewrite rule which brings an expres-

sion closer to disjunctive normal form. Where this method nolonger applies, the

expression is in disjunctive normal form, and is returned bythereport conc method

(§E.46).
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Chapter 7

Program Analyser

7.1 Introduction

A program analyser is developed. The program analyser is tailored to the specific task

of discovering candidate invariant properties for SPARK subprograms. This chapter de-

scribes the details of our program analyser.

7.2 Program Analyser Architecture

The architecture of our program analyser is shown in Figure 7.1. The program analyser

is provided with three forms of input. TheMiniSPARKis the program to be analysed,

as described in §7.4. Theabstract predicatesare generated by our proof planner to re-

quest specification strengthening, as described in §6.9.2.Theprogram analysis heuristics

perform the program analysis, as described in §7.9. Aparsertransforms the MiniSPARK

into package information, as described in §7.5. The package information is simplifiedand

approximated to generatesimplified package information, as described in §7.6. The sim-

plified package information is translated into acontrol flowgraphandstructured blocksas

described in §7.7 and §7.8 respectively. The simplified package information and control

flowgraph are analysed by theprogram analyser algorithm, controlled by the program

analysis heuristics. Guided by the abstract predicates, targetedcandidate invariantsare

generated.

The architecture of our program analyser is strongly influenced by the proof plan-

ning paradigm. In particular, the program analyser maintains a clear separation between

the program analysis framework and the program analysis heuristics. The style means

that the program analysis heuristics are presented in a consistent form, facilitating their

understanding.
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Figure 7.1: Program analysis architecture
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7.3 Program Analyser Configuration

The program analyser is configured to support the verification of exception freedom in the

SPARK Approach. The program analysis heuristics developedare summarised in §7.10.

7.4 MiniSPARK

Although SPARK is a subset of Ada, it is still a significant programming language. Com-

prehensive program analysis of SPARK would amount to a substantial implementation

effort. Instead, we target a core subset of SPARK as MiniSPARK. The essential be-

haviour of most imperative programs can be captured though assignment, conditions and

loops, all of which are present in MiniSPARK. The complete grammar of MiniSPARK is

presented in Appendix F, and is summarised below:

• Package- A single package is analysed. The package specification (ADS) declares

all types and subprograms while the package body (ADB) contains implementations

of the declared subprograms.

• Target configuration - As in the SPARK Approach, target specific constraints are

provided through a target configuration file (CFG).

• Types - Of the scalar types, integer and Boolean are available. Subtypes may be

introduced for integer types. Of the composite types, single dimensional arrays

are available. No further constraints are imposed, thus arrays of arrays may be

constructed.

• Subprograms and statements- Both functions and procedures are available. State

may be modified directly through assignment or indirectly through procedure calls.

Sequencing is supported through if-statements and loops.

• Expressions- The arithmetic operators+, −, ∗, ∗∗ and div are available. The

Boolean operations∧, ∨, and¬ are available. The integer relations=, ,, <, ≤, >

and≥ are available.

7.5 Parser

The parser transforms MiniSPARK into structures that are more amenable to mechanical

processing. Separate structures describe declarations and the program, as described in

§7.5.1 and §7.5.2 respectively.

7.5.1 Declarations

As described in §6.5, our proof planner operates in the same logic as the SPARK Ap-

proach. Unsurprisingly, there is a strong correspondence between the entities and types
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required for program analysis and for program proof. This similarity is exploited by

reusing the proof planner declarations for our program analyser. This reuse eases the in-

tegration of our program analyser and proof planner. Reasoning problems encountered

during program analysis can be directly processed by our proof planner.

7.5.2 Program

The essential semantics of MiniSPARK code is recorded in a collection of structures, as

detailed below.

Scalar and Composite Types

The structure for holding scalar and composite types is shown in Figure 7.2 and described

below:

• Integer types- Each integer type has a declared nameTypeRef. The type is bounded

between the constantsFirstConstantRefandLastConstantRef.

• Integer subtypes- Each integer subtype has a declared nameTypeRef. The parent

type or subtype is referenced asParentTypeRef. The subtype is bounded between

the constantsFirstConstantRefandLastConstantRef.

• One dimensional arrays- Each array has a declared nameTypeRef. The array

is indexed by a scalar typeIndexTypeRefcontaining elements of any other type

ElementTypeRef.

<PackageInfo>F scalarType(TypeRef, <Scalar>) |
compositeType(TypeRef, <Composite>)

<Scalar>F integer(FirstConstantRef, LastConstantRef) |
integerSubtype(ParentTypeRef,FirstConstantRef, LastConstantRef)

<Composite>F array(IndexTypeRef,ElementTypeRef)

Figure 7.2: Scalar and composite types

Constants

The structure for holding constants is shown in Figure 7.3. Each constant has a name

ConstantRefand a typeTypeRef. The corresponding constant expression is recorded as

ConstExp. Note that only scalar constants are encountered in MiniSPARK.

<PackageInfo>F constant(ConstantRef,TypeRef,ConstExp)

Figure 7.3: Constants
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Subprogram

The structure for holding the declaration of each subprogram is shown in Figure 7.4. Each

subprogram has a nameSubprogramRef, and is identified as being either a procedure or a

function. Where the subprogram is a function its return typeis recorded asReturnTypeRef.

<PackageInfo>F subprogram(SubprogramRef, <SubprogramKind>)
<SubprogramKind>F procedure| function(ReturnTypeRef)

Figure 7.4: Subprograms

Subprogram variables

The structure for holding the variables associated with a subprogram is shown in Fig-

ure 7.5 and described below:

• Parameter - A subprogram may have zero or more parameter variables. Thepo-

sition of each parameter variable is relevant in handling subprogram calls, and is

recorded asPositionInt. The variable has nameVarRef, mode<VariableMode> and

typeTypeRef. Three modes are available, describing strictly input parameters (in),

strictly output parameters (out) and input and output parameters (inout).

• Initial parameter variable - Initial parameter variables reference the value of a

variable at the start of a subprogram. An initial parameter variable is available

for each parameter variable whose mode includes output. Thevariable has name

VarRef∼ where its corresponding parameter variable isVarRef.

• Local variable - A subprogram may have zero or more local variables. Each vari-

able has a nameVarRefand a typeTypeRef.

• For-loop variable - Each for-loop variable is only in scope for the duration of the

loop. The restricted scope is expressed through the subprogram code. The variable

has a nameVarRefand a typeTypeRef. As standard, the for-loop variable iterates

from the first value of its type to the last value of its type. A tighter range, which

may potentially be empty, can also be specified, recorded as the initial expression

InitialExp and final expressionFinalExp.

• For-loop entry variable - The initial and final expressions of a for-loop range are

evaluated once, when the loop is entered. To capture these semantics, every variable

in a for-loop range is cloned as a specialentry variable. The expression contain-

ing the entry variable is recorded through<EndPoint>, as eitherinitial or final.

Each entry variable has a nameVarRefand is associated with its source variable

CloneVarRef.
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<PackageInfo>F subprogramVariable(SubprogramRef, <VariableDeclare>)
<VariableDeclare>F parameter(PositionInt,VarRef,

<VariableMode>,TypeRef) |
initParameter(VarRef∼ ,VarRef) |
localVariable(VarRef,TypeRef) |
forLoopVariable(VarRef,TypeRef, <Range>) |
forLoopEntryVariable(<EndPoint>,VarRef,CloneVarRef)

<Range>F overtype| range(InitialExp,FinalExp)
<VariableMode>F in | out | inout
<EndPoint>F initial | final

Figure 7.5: Subprogram variables

Subprogram Code

The subprogram code is first normalised into fundamental operations to ease its analysis.

The normalisation process is trivial, except for loops. Reflecting the behaviour of the

Examiner [Bar03], both while-loops and for-loops are normalised as generic loops as

shown in Figure 7.6. While-loops can be expressed directly in terms of generic loops.

Additional constructs are required to faithfully reflect the semantics of for-loops. Each

for-loop introduces an iterator variable, that is only in scope for the duration of the loop.

Explicit scoping constructs are introduced to express the restricted scope. Further, for-

loop range expressions are only evaluated when the loop is entered. To express this,

variables referenced in for-loop range expressions are cloned as specialentryvariables at

loop entry. Range expressions at loop entry may then be accurately expressed in terms

of these entry variables. All subprogram annotations are ignored. However, the position

of loop invariants are recorded and used during program analysis. The implications of

ignoring annotations are explored in greater detail in §9.2.1.

The structure for holding normalised subprogram code is shown in Figure 7.7 and

described below:

• Enter scope- The variableVarRefis now in scope.

• Exit scope- The variableVarRefis no longer in scope.

• Assignment - The data structure referenced through expressionLValueExpis as-

signed the result of evaluating expressionRValueExp.

• Procedure call - The procedure namedSubprogramRefis called with ordered pa-

rameter listParameterExpList. Note that functions occur within expressions.

• Return - The return statement is only applicable for functions. It identifies the

expression returned by a function asExp.

• If-then - Where the conditional expressionConditionExpevaluates to true the se-

quence of statements<TrueStatementList> are performed.
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Structured loop Normalised loop
while E loop

S;
end loop;

loop

exit when not E;
S;

end loop;

for I in T loop

S;
end loop;

enterScope(I) {I of typeT}
I:=T’First;

loop

S;
exit when I=T’Last;

I:=T’Succ(I);

end loop;

exitScope(I)

for I in T range L .. U loop
S;

end loop;

enterScope(EV1) . . .
enterScope(EVn)
EV1:=V1; {V1 is in L or U} . . .
EVn:=Vn; {Vn is in L or U}
{EL is L substituting Vm with EVm}

{EU is U substituting Vm with EVm}

if EL <= EU then
enterScope(I) {I of typeT in EL .. EU}
I:=EL;
loop

S;
exit when I=EU;
I:=T’Succ(I);

end loop;

exitScope(I)
end if;

exitScope(EVn)
. . .

exitScope(EV1)

Figure 7.6: Structured loops and their normalised form
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• If-then-else - Where the conditional expressionConditionExpevaluates to true

the sequence of statements<TrueStatementList> are performed, otherwise the se-

quence of statements<FalseStatementList> are performed.

• Loop - Begin a repeated sequence of statements as<LoopStatementList>.

• Mark invariant - Marks the point within a loop where an invariant is present.

• If-then-exit - Where the conditional expressionConditionExpevaluates to true the

sequence of statements<TrueStatementList> are performed and the immediately

enclosing loop is exited.

<PackageInfo>F subprogramCode(<StatementList>)
<StatementList>F [] | [<Statement> | <StatementList>]
<LoopStatementList>F [] | [<LoopStatement> | <LoopStatementList>]
<TrueStatementList>F <StatementList>
<FalseStatementList>F <StatementList>
<Statement>F enterScope(VarRef) |

exitScope(VarRef) |
assign(LValueExp,RValueExp) |
procedureCall(SubprogramRef,ParameterExpList) |
return(Exp) |
ifThen(ConditionExp, <TrueStatementList>) |
ifThenElse(ConditionExp,

<TrueStatementList>, <FalseStatementList>) |
loop(<LoopStatementList>)

<LoopStatement>F <Statement> |
markInvariant|
ifThenExit(ConditionExp, <TrueStatementList>)

Figure 7.7: Subprogram code
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7.6 Simplifications and Approximations

Before program analysis is conducted it is convenient to simplify and approximate the

package information. These transformations are separatedfrom the mechanical operation

of the parser as they represent heuristic decisions specificto our analyses.

7.6.1 Replace Named Scalar Constants With Their Values

Constants in the package information may be associated withtheir corresponding con-

stant expression. Every referenced constant is replaced with the evaluation of its constant

expression.

7.6.2 Eliminate Unneeded Casting

Casting must be used to perform arithmetic operations on expressions of different types.

However, for convenience, our program analyser is less strict, allowing arithmetic oper-

ations between expressions of the same fundamental type. Onthis basis, all casting is

eliminated from the package information.

7.6.3 Transform Return to Assignment

It is convenient to model return statements as an assignment. A local variable is declared

asfunrethaving the return type of the function. The return statementis then transformed

as an assignment to this variable.

7.6.4 Subprogram Call Abstractions

Our program analyser does not recursively analyse called subprograms. Instead, each

subprogram call is replaced with an abstraction. An overloaded function is introduced to

support subprogram call abstraction:

bound(TypeRef) (7.1)

The function returns a value, known only to be in typeTypeRef. Each subprogram declares

the mode and type of its parameters. These declarations are exploited to constrain the

effect of a subprogram call, as illustrated in Figure 7.8 and described below:

• Functions - Functions may have a number of input parameters and will return a

single result. Each function is called from within an expression. The function call

is abstracted by replacing the function with the appropriate bound function for its

result type.

• Procedures- Procedures may have a number of input and output parameters. Each

procedure is called as a separate statement. The procedure call is abstracted by
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replacing the procedure with a sequence of assignment statements, assigning each

output parameter the appropriate bound function for its result type.

Function call abstraction
Function declaration:

function FunctionRef(VarRef1 : TypeRef1, . . . ,
VarRefn : TypeRefn ) return ReturnTypeRef;

Function call from within subprogram:
FunctionRef(Exp1, . . . ,Expn)

Abstracted function call:
bound(ReturnTypeRef)

Procedure call abstraction
Procedure declaration:

procedure ProcedureRef(VarRef1 : Mode1TypeRef1, . . . ,
VarRefn : Mode1TypeRefn ) ;

Procedure call from within subprogram:
ProcedureRef(Exp1, . . . ,Expn)

Abstracted procedure call:
assign(Exp1, bound(TypeRef1)) {if Mode1 is outor inout}
. . .

assign(Expn, bound(TypeRefn)) {if Moden is outor inout}

Figure 7.8: Subprogram call abstraction

Verifying exception freedom involves proving that variables lie within certain bounds

at particular points in a program. In high integrity SPARK programs it is common for sub-

program parameters to have tightly constrained types. Thus, where verifying exception

freedom, simply abstracting subprogram calls to their result types can provide sufficient

constraints. Possible strengthenings of this approach areconsidered in §9.2.1.

7.7 Control Flowgraph

The subprogram targeted by the abstract predicates is translated into a control flowgraph.

A flowgraph is a natural structure for analysing the choice points and actions seen in

imperative programing languages. The structure of the flowgraph and its construction

from a subprogram is described in §7.7.1 and §7.7.2 respectively.
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7.7.1 Control Flowgraph Structure

The structure for holding the control flowgraph is shown in Figure 7.9, and described

below:

• Node - Nodes describe the choice points and actions seen in a subprogram. Every

node has an identifierNodeIdand contains an item<NodeItem>.

• Edges- Edges are used to connect nodes together and store properties generated

during program analysis. The edge is directed, connecting from nodeTailNodeId

to nodeHeadNodeId. Associated with each edge is a property store identifier

PropStoreId. Multiple properties may be associated with the store, eachhaving

anAddressand aProperty.

For presentation purposes, a pictorial representation of nodes and edges is introduced in

Figure 7.10.

<FlowGraph>F node(NodeId, <NodeItem>) |
edge(PropStoreId,TailNodeId,HeadNodeId) |
property(PropStoreId,Address,Property)

<NodeItem>F <Boundary> | <Assignment> | <Scope> | <Branch> | <Merge>
<Boundary>F entry | exit
<Assignment>F assign(LValueExp,RValueExp)
<Scope>F enterScope(VarRef) | exitScope(VarRef)
<Branch>F branch(ConditionExp) | loopBranch(ConditionExp, LoopId)
<Merge>Fmerge| loopMerge(LoopId)

Figure 7.9: Control flowgraph framework

node(n1,NodeItem1)
node(n2,NodeItem2)
edge(e1, n1, n2)
property(e1,Address1,Property1)
. . .

property(e1,Addressi ,Propertyi)

Structure Pictorial form

Figure 7.10: Control flowgraph pictorial representation
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7.7.2 Subprogram Code as Control Flowgraph

Each component of the subprogram code is expressed through the control flowgraph as

detailed below.

Subprogram

The entry and exit points of the subprogram are explicitly recorded, as illustrated in Fig-

ure 7.11. Each subprogram has a single entry and exit point.

Figure 7.11: Subprogram entry and exit

Assignment Statements

Assignments modify the value of program variables. Following the simplifications and

approximations of §7.6, all program variable modificationsare expressed in terms of as-

signment. Each assignment has a single entry and exit point,as illustrated in Figure 7.12.

Figure 7.12: Assignment statements
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Scope Changes

Scope affects the visibility of program variables. Each scope changehas a single entry

and exit point. Further, variables entering scope always exit scope on the same path, as

illustrated in Figure 7.13.

Figure 7.13: Scope changes

Conditional Statements

Conditional statements branch to one of two paths, depending on the truth of a Boolean

expression. The two paths will eventually merge, marking the end of the conditional

statement. Conditional statements are expressed through branch and merge nodes, as

illustrated in Figure 7.14. Properties are attached to the edges leaving the branch node,

indicating which path corresponds to which truth value.

Figure 7.14: Conditional statement

Loop Statements

Loop statements continue to repeat a sequence of statements, depending on the truth of

Boolean expressions at loop exit guards. Every path leavingthe loop will eventually
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merge, marking the end of the loop. Loop statements are expressed through branch and

merge nodes, as illustrated in Figure 7.15. Each loop is associated with a unique identifier,

grouping its corresponding branch and merge nodes. Properties are attached to the edges

leaving branch nodes, indicating which path corresponds towhich truth value. Further, a

property is attached to the edge that corresponds to the location of the loop invariant.

Figure 7.15: Loop statement

7.8 Structured Blocks

The program analysis heuristics involve traversing routesthrough the control flowgraph.

It is convenient to express these routes in terms of the main structured blocks encountered.

Each structured block has a single entry and exit point. The block may contain paths,

which are described as a sequence of structured blocks. The structure for holding the

structured blocks is shown in §7.16, and detailed below:

• unit(NodeId) -

The unit block describes a boundary, assignment or scope statement, atNodeId.

• test(BranchNodeId, <TruePath>, <FalsePath>,MergeNodeId) -

The test block describes a conditional statement. The test block is entered at

the branching nodeBranchNodeId. The true and false paths are<TruePath> and

<FalsePath> respectively. The test block is exited where these two pathsmerge at

MergeNodeId.

• loop(LoopMergeNodeId, <Path>,MergeNodeId) -

The loop block describes a loop statement. The loop block is entered at the loop

merge nodeLoopMergeNodeId. The path around the loop is<Path>, which will
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contain at least one loop test block. The loop block is exitedwhere all of the paths

exiting the loop merge atMergeNodeId.

• looptest(BranchNodeId, <TruePath>) -

The loop test block describes a conditional statement which, if true, will lead to

control breaking out of a loop. These blocks can only occur onthe paths around a

loop. The loop test block is entered at the branching nodeBranchNodeId. The false

path is implicitly covered by the enclosing loop, while the true path is<TruePath>.

The loop test block is exited at the end of its true path, just prior to reaching the

loop merge node.

• subprogram(EntryNodeId, <Path>,ExitNodeId) -

The subprogram block describes the entire subprogram. The subprogram block

is entered at the subprogram entry nodeEntryNodeId. The path through the sub-

program is<Path>. The subprogram block is exited at the subprogram exit node

ExitNodeId.

<Block>F unit(NodeId) |
test(BranchNodeId, <TruePath>, <FalsePath>,MergeNodeId) |
loop(LoopMergeNodeId, <Path>,MergeNodeId) |
looptest(BranchNodeId, <TruePath>) |
subprogram(EntryNodeId, <Path>,ExitNodeId)

<BlockList>F [] | [Block | <BlockList>]
<Path>F <BlockList>
<TruePath>F <Path>
<FalsePath>F <Path>

Figure 7.16: Structured blocks

7.9 Program Analyser Algorithm

The program analyser algorithm performs the program analysis. The target subprogram

is described through the simplified package information, control flowgraph and structured

blocks. The analysis of the subprogram is performed by program analysis heuristics. Pro-

gram analysis methods discover relevant program properties, as described in §7.9.1. With

these properties in place, abstract predicate satisfiers suggest targeted invariant strength-

ening, as described in §7.9.2.

7.9.1 Program Analysis Methods

The program analysis is performed by program analysis methods. Eachprogram analysis

method(PAMTD) is expressed through three features, as described below:
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• Property type - The method attempts to discover properties that hold at theedges

of the control flowgraph. Theproperty typedefines the type of these properties.

Each property type declares an address and the structure of the values it holds, as

shown in Figure 7.17.

• Route - The method traverses the flowgraph following aroute. The route need

not visit every node in the flowgraph. Further, the route may be modified during

analysis.

• Property operations - The method propagates properties along its selected route

via property operations. A property operation is defined for every node that may

be encountered on the selected route. Typically, the property operation describes

how the properties arriving at a node are transformed by the node. The property

operation may exploit the simplified package information and properties discovered

by other methods.

The intention is that the program analysis methods will produce correct results. How-

ever, this is not explicitly verified. Thus, the program analyser is regarded as generating

candidate invariants. The correctness of all selected invariants is demonstrated during

program verification.

Address7→ Property
[Item1, . . . Itemn] 7→ <Property>
Definitions
<Property>F Structure

Figure 7.17: Property type

7.9.2 Abstract Predicate Satisfiers

Abstract predicates request targeted invariant strengthening. Each abstract predicate is as-

sociated with anabstract predicate satisfier(APS). The satisfier describes how to exploit

the available properties to generate the invariant strengthening requested.

7.10 Program Analysis Heuristics Overview

Program analysis heuristics are developed to support the verification of exception free-

dom in the SPARK Approach. An overview of the program analysis methods are given

in §7.10.1, and detailed in Appendix G. The abstract predicate satisfiers are defined in

§7.10.2.
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7.10.1 Program Analysis Methods

Each program analysis method discovers a type of program properties. The program

analysis methods are ordered, allowing methods to exploit properties discovered by earlier

methods. The methods are summarised below, in their order ofapplication. The first

methods discover richer information about the subprogram under analysis.

• scope (§G.2) - Discovers which variables are in scope.

• update (§G.3) - Discovers which variables have been fully assignedand where

these assignments may have taken place.

• context (§G.4) - Discovers the structural contexts that exist within the subprogram.

Each structural context corresponds to taking a particularpath through the subpro-

gram.

The next methods discover simple, constraint based, properties. These properties may be

expressed as invariants to support the verification of exception freedom.

• type (§G.5) - Discovers constraints for all variables, based on their declared type.

• transient (§G.6) - Discovers properties that hold for sections of the subprogram.

Following each conditional statement, a property may be introduced indicating that

the statement, or its negation, holds. Further, the property continues to hold while

its variables are not updated and the structural context remains the same.

• loop range (§G.7) - A for-loop variable may have a corresponding range constraint.

These constraints are identified and added as properties.

The final method performs a richer analysis, to discover invariant constraints. These

properties are occasionally needed to support the verification of exception freedom.

• int constraint (§G.8) - Discovers invariant constraints for integer variables within

loops, through the construction and solving of recurrence relations.

7.10.2 Abstract Predicate Satisfiers

The abstract predicate satisfiers describe how to fulfil an abstract predicate by exploiting

properties discovered by the program analysis methods. Each abstract predicate has a

corresponding abstract predicate satisfier as listed below:

• abstractPredicate(SubprogramName, constrainVars(VarList)) -

Candidate invariants are sought that constrain the variablesVarList in subprogram

SubprogramName. Thetype method is queried at invariant points to introduce type

constraints for each variable.
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• abstractPredicate(SubprogramName, tightlyConstrainVars(VarList)) -

Candidate invariants are sought that tightly constrain thevariablesVarList in sub-

programSubprogramName. Theloop range, transient andint constraint methods

are queried to introduce all constraints that reference thetargeted variables. Con-

straints that reference entry variables are omitted, as these are constrained indirectly.

• abstractPredicate(SubprogramName, coupleWithEntryVars(VarList)) -

Candidate invariants are sought that couple variablesVarListwith their correspond-

ing entry variables in subprogramSubprogramName. The transient method is

queried to introduce constraints that relate a targeted variable to its corresponding

entry variable.

Note that a candidate invariant is rejected if it is already present as a program invariant1.

1In practice, as described in §7.5.2, our program analyser only records the location of invariants, not their

expressions. Thus, the rejection of candidate invariants that would duplicate existing program invariants is

preformed manually.
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Chapter 8

Evaluation

8.1 Introduction

In this chapter SPADEase is evaluated. The implementation of SPADEase is described in

§8.2. The evaluation process is described in §8.3. Finally,both textbook and industrial

subprograms are evaluated in §8.4 and §8.5 respectively. Anoverall analysis of these

results is presented in §8.6.

8.2 Implementation of SPADEase

As detailed in Chapter 5, SPADEase contains both a proof planner and a program analyser.

The implementation of these components are considered below.

8.2.1 Implementing the Proof Planner

As observed in §2.3.3, there are number of existing proof planner systems. The critics

enabled version of the Clam proof planner has previously been used to support program

verification. On this basis, the planner was used to support our initial investigations.

Targeted modifications were made such that Clam could importgoals from the SPARK

Approach and export discovered proof plans to the Checker.

While this prototype supported our initial investigations, the implementation had a

number of weaknesses. The integration with the SPARK Approach was limited, requiring

custom configurations in planning each goal. The goal representation did not support

the storage of contextual information. The planner algorithm was recursive, hindering

the development of global analysis critics. Finally, the planner offered little support for

analysing the progress of a proof plan.

The various limitations of Clam were addressed through the development of our own

proof planner. Our proof planner was developed in Sicstus Prolog. The method-language

includes the clp(FD) constraint solver [COC97], as distributed with Sicstus Prolog. Fur-

ther, while direct communication has not been implemented,the method-language is
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supported through the computer algebra system YACAS [YAC].Finally, the method-

language present in Clam was included, primarily to reuse its expression analysis and

rippling predicates.

8.2.2 Implementing the Program Analyser

As detailed in §7.4, developing a program analyser for the entire SPARK language would

represent a significant undertaking. Thus, we restrict our analysis to a core subset of

SPARK as MiniSPARK. To provide an effective integration with our proof planner we de-

veloped our own program analyser, reusing existing technologies where available. Praxis

supplied a complete SPARK grammar and tokeniser. Building on these components,

Stratego [Vis01] was used to translate MiniSPARK programs into analysable structures.

The program analyser itself is implemented in Sicstus Prolog. As observed in §7.5.1, our

program analyser reuses declarations and associated functionality from our proof planner

to offer a more effective integration. While direct communication has not been imple-

mented, a method is supported through the recurrence relation solver PURRS [PUR].

8.3 Evaluation of SPADEase

As described in Chapter 5, SPADEase attempts to enhance the verification of exception

freedom in the SPARK Approach. As observed in §4.4.4, program verification in the

SPARK Approach is decompositional. Reflecting this decomposition, SPADEase is eval-

uated on individual subprograms. As highlighted in §2.2, program verification involves

both proof discovery and invariant discovery. To capture the complete verification pro-

cess, the selected subprograms initially contain only default invariants. As described in

§5.3, the verification of exception freedom in the SPARK Approach, as enhanced with

SPADEase, involves an iterative process. A concise result format is introduced in §8.3.1

to describe each iteration. Supplementary text is added wherever SPADEase requires

manual interaction or leaves unproven goals.

8.3.1 Result Format

The following table is used in describing an application of the SPARK Approach as en-
hanced with SPADEase:

Cyclomatic complexity:s, Max loop vars:t, Max loop arith ops:u

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iterationv: w initial goals,x remaining goals,ys to simplify,zs to plan

abstract predicates

invariants
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The complexity of the subprogram is indicated through threemetrics. Thecyclomatic

complexity[McC76] reports on the path complexity of the subprogram. The maximum

loop variablesreports the maximum number of variables, as defined byprog var exps,

encountered inside a loop. Themaximum loop arithmetic operatorsreports the maximum

number of distinct arithmetic operators encountered inside a loop.

Each iteration begins with an application of the SPARK Approach. The Examiner

analyses the target subprogram, generating the initial goals. The Simplifier attempts to

automatically prove these goals, returning any remaining goals. As the SPARK Approach

is documented elsewhere [AC02, BCJ+06], its details are omitted. Instead, the number of

initial and remaining goals are reported. The simplification time and planning time for

each iteration is reported in seconds, to give an indicationof both complexity and perfor-

mance. Note that the evaluation was performed on an NC10 netbook, with a Atom N270

processor, 1GB of RAM and the Ubuntu 9.10 operating system. The essential behaviour

of SPADEase is described for each remaining goal accepted bythetargeted goal method

as follows:

• Goals- Number of goals with the same characteristics.

• Form - Run-time check (rtc), returning invariant (rinv) or between invariant (binv)

goals.

• Strategy, Critic andProg - Aliases defined in table below:

Strategy

ef exception freedom §E.3

rc run time check §E.4

tr transitivity §E.4

ri ripple §E.5

Critic

cc constrain consts §E.15

ce couple entry vars §E.14

cv constrain vars §E.16

tc tightly constrain vars §E.17

fc false conc §E.21

Prog

(Program

Analysis

Heuristics)

ty type §G.5

lr loop range §G.7

ts transient §G.6

ic int constraint §G.8

The symbol� denotes that a feature was invoked, and succeeded. The symbol � de-

notes that a feature was invoked and failed, however the failure triggered successful

failure analysis. Finally, the symbol⊗ denotes that a feature was invoked and failed

completely.

At the end of each iteration, SPADEase may satisfy abstract predicates through invariant

strengthening. For the non-industrial examples, the form of the abstract predicates and

their corresponding strengthened invariants are shown.

108



8.4 Textbook Subprograms

8.4.1 Subprogram Average

The initially annotated Average subprogram is shown in Figure 8.1. The subprogram

reports the mean average value stored in an array.

package Average_Package

is

subtype AR_T is Integer range 10..100;

subtype AE_T is Integer range 0..10;

subtype SumRange is Integer range AE_T’First*((AR_T’Last-AR_T’First)+1) ..

AE_T’Last*((AR_T’Last-AR_T’First)+1);

type A_T is array (AR_T) of AE_T;

procedure Average(D: in A_T; A: out AE_T);

--# derives A from D;

end Average_Package;

package body Average_Package

is

procedure Average(D: in A_T; A: out AE_T)

is

S: SumRange;

begin

S:=0;

for I in AR_T loop

--# assert true;

S:=S+D(I);

end loop;

A:=S/((AR_T’Last-AR_T’First)+1);

end Average;

end Average_Package;

Figure 8.1: Average subprogram

Cyclomatic complexity: 2, Max loop vars: 3, Max loop arith ops: 1

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 23 initial goals, 1 remaining goals, 1s to simplify, 7s to plan

1 rtc � � �

(prog analysis) tightlyConstrainVars([d, i, s])

(sole loop) (s≥ 0)∧ (s≤ (i − 10)∗ 10)

Iteration 2: 25 initial goals, 2 remaining goals, 2s to simplify, 10s to plan

1 rinv � � �

1 rtc � � �
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8.4.2 Subprogram BubbleSort

The initially annotated BubbleSort subprogram is shown in Figure 8.2. The subprogram

sorts an array using the bubble sort algorithm.

package BubbleSort_Package is

subtype AR_T is Integer range 1..10;

type A_T is array (AR_T) of Integer;

procedure BubbleSort(A: in out A_T);

--# derives A from A;

end BubbleSort_Package;

package body BubbleSort_Package is

procedure BubbleSort(A: in out A_T)

is

Tmp: Integer;

begin

for I in AR_T range AR_T’First..(AR_T’Last-AR_T’First) loop

--# assert true;

for J in AR_T range AR_T’First..(AR_T’Last-I) loop

--# assert true;

if A(J)>A(J+1) then

Tmp:=A(J);

A(J):=A(J+1);

A(J+1):=Tmp;

end if;

end loop;

end loop;

end BubbleSort;

end BubbleSort_Package;

Figure 8.2: BubbleSort subprogram

Cyclomatic complexity: 6, Max loop vars: 4, Max loop arith ops: 2

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 84 initial goals, 1 remaining goals, 3s to simplify, 7s to plan

1 rtc � � �

(prog analysis) coupleWithEntryVars([i])

(inner loop) i = i entry

Iteration 2: 84 initial goals, 0 remaining goals, 2s to simplify, 6s to plan
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8.4.3 Subprogram DualFilter

The initially annotated DualFilter subprogram is shown in Figure 8.3. The subprogram

sums the multiple of all elements from two arrays that lie within constant bounds.

package DualFilter_Package is

subtype AR_T is Integer range 0..9;

subtype AE_T is Integer range -200..1000;

type A_T is array (AR_T) of AE_T;

procedure DualFilter(D1: in A_T; D2: in A_T; P: out Integer);

--# derives P from D1, D2;

end DualFilter_Package;

package body DualFilter_Package is

procedure DualFilter(D1: in A_T; D2: in A_T; P: out Integer)

is

begin

P:=0;

for I in AR_T loop

--# assert true;

if D1(I) >=-100 and D1(I)<=-50 and

D2(I) >=300 and D2(I)<=900 then

P:=P+(D1(I)*D2(I));

end if;

end loop;

end DualFilter;

end DualFilter_Package;

Figure 8.3: DualFilter subprogram

Cyclomatic complexity: 3, Max loop vars: 4, Max loop arith ops: 2

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 40 initial goals, 5 remaining goals, 1s to simplify, 19s to plan

5 rtc � �

(interaction) constrainConsts([system min int, system max int])

Iteration 2: 40 initial goals, 1 remaining goals, 1s to simplify, 11s to plan

1 rtc � �

(prog analysis) tightlyConstrainVars([p, element(d1, [i]), element(d2, [i])])

(sole loop) (p ≥ (i ∗ −90000))∧ (p ≤ 0)

Iteration 3: 43 initial goals, 3 remaining goals, 3s to simplify, 42s to plan

1 rinv � � � �

1 rinv � � �

1 rtc � �

In iteration 2 SPADEase requests an engineer to introduce constraints for undefined

constants. The constants are required to describe the bounds of numeric literals on the

target architecture. They arise in this subprogram due to the presence of constant ex-

pressions in the package body. In response, appropriate constraints are introduced by

manually extending the target configuration file associatedwith the subprogram.
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8.4.4 Subprogram MatrixFilter

The initially annotated MatrixFilter subprogram is shown in Figure 8.4. The subprogram

sums the elements from a two dimensional array that lie within a subtype.

package MatrixFilter_Package is

subtype I_T is Integer range 0 .. 10;

subtype E_T is Integer range 0 .. 500;

subtype F_T is Integer range 100 .. 200;

subtype R_T is Integer range

0..F_T’Last*(((I_T’Last-I_T’First)+1)**2);

type InOne_T is array (I_T) of Integer;

type InTwo_T is array (I_T) of InOne_T;

procedure MatrixFilter(A: in InTwo_T;

R: out R_T);

--# derives R from A;

end MatrixFilter_Package;

package body MatrixFilter_Package is

procedure MatrixFilter(A: in InTwo_T;

R: out R_T)

is

begin

R:=0;

for I in I_T loop

--# assert true;

for J in I_T loop

--# assert true;

if A(I)(J)>=F_T’First and A(I)(J)<=F_T’Last then

R:=R+A(I)(J);

end if;

end loop;

end loop;

end MatrixFilter;

end MatrixFilter_Package;

Figure 8.4: MatrixFilter subprogram
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Cyclomatic complexity: 4, Max loop vars: 4, Max loop arith ops: 1

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 55 initial goals, 1 remaining goals, 1s to simplify, 7s to plan

1 rtc � � �

(prog analysis) tightlyConstrainVars([element(element(a, [i]), [j]), r])

(inner loop) (r ≥ 0)∧ (r ≤ ((i ∗ 2200)+ (j ∗ 200)))

Iteration 2: 58 initial goals, 5 remaining goals, 7s to simplify, 29s to plan

2 binv � � �

2 rinv � � �

1 rinv � � �

(prog analysis) constrainVars([r])

(outer loop) (r ≥ 0)∧ (r ≤ 24200)

(inner loop) (r ≥ 0)∧ (r ≤ ((i ∗ 2200)+ (j ∗ 200)))

Iteration 3: 61 initial goals, 4 remaining goals, 9s to simplify, 27s to plan

1 rtc � � �

2 rinv � � �

1 rinv � � �

(prog analysis) tightlyConstrainVars([r, i])

(outer loop) ((r ≥ 0)∧ (r ≤ 24200))∧ ((r ≥ 0)∧ (r ≤ (i ∗ 2200)))

(inner loop) (r ≥ 0)∧ (r ≤ ((i ∗ 2200)+ (j ∗ 200)))

Iteration 4: 67 initial goals, 5 remaining goals, 32s to simplify, 73s to plan

2 binv � � � � ⊗

2 rinv � � �

1 rtc � � �

In iteration 3, proof failure analysis requests the introduction of tighter constraints

for variablesr and i. Through program analysis, tighter constraints are discovered forr

and are introduced through a strengthened invariant. In iteration 4, with the strengthened

invariant in place, every goal is provable. However, despite this, proof failure analysis

requests the introduction of tighter constraints for the same variablesr andi and also for

variablesa and j. This flawed proof failure analysis occurs as thetransitivity strategy

fails to prove two provable goals. The key problem is that, asthe proof is developed,

multiple occurrences of variablei emerge. Thetransitivity strategy treats each occurrence

independently, leading to the introduction of weaker constraints and the failure of the

proof.

8.4.5 Subprogram MatrixMult

The initially annotated MatrixMult subprogram is shown in Figure 8.5. The subprogram

performs matrix multiplication.
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package MatrixMult_Package is

subtype I_T is Integer range 0 .. 3;

subtype E_T is Integer range -9 .. 9;

subtype R_T is Integer range

((E_T’First*E_T’Last)*((I_T’Last-I_T’First)+1))..

((E_T’Last*E_T’Last)*((I_T’Last-I_T’First)+1));

type InOne_T is array (I_T) of E_T;

type InTwo_T is array (I_T) of InOne_T;

type OutOne_T is array (I_T) of R_T;

type OutTwo_T is array (I_T) of OutOne_T;

procedure InitToZero(R: out OutTwo_T);

--# derives R from ;

procedure MatrixMult(A: in InTwo_T; B: in InTwo_T; R: out OutTwo_T);

--# derives R from A, B;

end MatrixMult_Package;

package body MatrixMult_Package is

procedure InitToZero(R: out OutTwo_T)

is

begin

for I in I_T loop

for J in I_T loop

R(I)(J):=OutTwo_T’First;

end loop;

end loop;

end InitToZero;

procedure MatrixMult(A: in InTwo_T; B: in InTwo_T; R: out OutTwo_T)

is

M: Integer;

begin

InitToZero(R);

for I in I_T loop

--# assert true;

for J in I_T loop

--# assert true;

M:=0;

for K in I_T loop

--# assert true;

M:=M+A(I)(K)*B(K)(J);

end loop;

R(I)(J):=M;

end loop;

end loop;

end MatrixMult;

end MatrixMult_Package;

Figure 8.5: MatrixMult subprogram
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Cyclomatic complexity: 4, Max loop vars: 7, Max loop arith ops: 2

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 102 initial goals, 4 remaining goals, 2s to simplify, 43s to plan

4 rtc � � � � �

(prog analysis) tightlyConstrainVars([m, element(element(a, [i]), [k]),

element(element(b, [k]), [j])])

(inner-most loop) (m≥ (k ∗ −81))∧ (m≤ (k ∗ 81))

Iteration 2: 104 initial goals, 3 remaining goals, 5s to simplify, 121s to plan

1 rinv � � � �

2 rtc � � �
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8.4.6 Subprogram OpenPortScan

The initially annotated OpenPortScan subprogram is shown in Figure 8.6. The subpro-

gram counts the number of open ports within a provided range.The range is expressed

through a starting port and a number of subsequent ports.

package OpenPortScan_Package is

subtype PortRange is Integer range 0..(2**16)-1;

subtype PortTotal is Integer range 0..(PortRange’Last-PortRange’First)+1;

type Ports is array (PortRange) of Boolean;

function PortIsOpen(StatusOfPorts: in Ports;

Port: in PortRange) return Boolean;

procedure OpenPortScan(StatusOfPorts: in Ports;

PStart: in PortRange;

PNum: in PortRange;

TOpen: out PortTotal;

Error: out Boolean);

--#derives TOpen, Error from StatusOfPorts, PStart, PNum;

end OpenPortScan_Package;

package body OpenPortScan_Package is

function PortIsOpen(StatusOfPorts: in Ports;

Port: in PortRange) return Boolean

is

begin

return StatusOfPorts(Port);

end PortIsOpen;

procedure OpenPortScan(StatusOfPorts: in Ports;

PStart: in PortRange;

PNum: in PortRange;

TOpen: out PortTotal;

Error: out Boolean)

is

begin

Error:=False;

TOpen:=0;

if ((PStart+PNum)<=PortRange’Last) then

for I in PortRange range PStart..(PStart+PNum) loop

--# assert true;

if (PortIsOpen(StatusOfPorts, I)) then

TOpen:=TOpen+1;

end if;

end loop;

else

Error:=True;

end if;

end OpenPortScan;

end OpenPortScan_Package;

Figure 8.6: OpenPortScan subprogram
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Cyclomatic complexity: 5, Max loop vars: 5, Max loop arith ops: 1

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 45 initial goals, 3 remaining goals, 1s to simplify, 5s to plan

2 rinv � � �

1 rtc � � �

(prog analysis) coupleWithEntryVars([pstart, pnum])

(sole loop) (pstart= pstart entry) ∧ (pnum= pnumentry

Iteration 2: 48 initial goals, 3 remaining goals, 2s to simplify, 11s to plan

2 rinv � � � � �

2 rtc � � � � �

(prog analysis) tightlyConstrainVars([topen, i, pnum, pstart])

(sole loop) (i ≥ pstart entry) ∧ (i ≤ (pstart entry+ pnumentry)) ∧

((pstart+ pnum) ≤ 65535)∧

(topen≥ 0)∧ (topen≤ (i − pstart entry))

Iteration 3: 63 initial goals, 0 remaining goals, 3s to simplify, 4s to plan
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8.4.7 Subprogram ResetArray

The initially annotated ResetArray subprogram is shown in Figure 8.7. The subprogram

resets all elements of an array to a provided integer value, so long as this value is within

the element type of the array.

package ResetArray_Package

is

subtype AR_T is Integer range 0..100;

subtype AE_T is Integer range 0..10;

type A_T is array (AR_T) of AE_T;

procedure ResetArray(V: in Integer; A: in out A_T);

--# derives A from V, A;

end ResetArray_Package;

package body ResetArray_Package

is

procedure ResetArray(V: in Integer; A: in out A_T)

is

begin

if (V>=AE_T’First and V<=AE_T’Last) then

for I in AR_T loop

--# assert true;

A(I):=V;

end loop;

end if;

end ResetArray;

end ResetArray_Package;

Figure 8.7: ResetArray subprogram

Cyclomatic complexity: 3, Max loop vars: 3, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 45 initial goals, 3 remaining goals, 1s to simplify, 3s to plan

2 rtc � � �

(prog analysis) tightlyConstrainVars([v])

(sole loop) (v ≥ 0)∧ (v ≤ 10)

Iteration 2: 20 initial goals, 0 remaining goals, 1s to simplify, 2s to plan
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8.5 Industrial Subprograms

SPADEase is evaluated against two industrial applications. These applications include the

Ship Helicopter Operating Limits Information System (SHOLIS) [KHCP00]. Each appli-

cation has roughly fifteen thousand lines of code. In verifying exception freedom, each

application leads to roughly seven thousand VCs. The applications have been verified as

being free from exceptions. Further, the design and implementation of the applications

took this verification task into consideration.

Our attention is focused on loop-based code that is not automatically verified by the

SPARK Approach. On this basis, the industrial subprograms were collected via the fol-

lowing procedure:

• Remove all loop invariants- The industrial applications have sufficient invariants

to verify exception freedom. These invariants are removed to reflect the genuine

verification effort.

• Apply the SPARK Approach - The SPARK Approach is applied to generate the

initial and remaining VCs for each subprogram.

• Collect loop-based subprograms with remaining VCs- Each subprogram with at

least one loop and some remaining VCs is investigated. Subprograms entirely writ-

ten in SPARK, and not associated with control loops, are collected for evaluation.

Recall from Chapter 7 that our program analyser operates on arestricted subset of

SPARK as MiniSPARK. For this reason, the program analysis aspect of the industrial

evaluation was achieved by manually simulating the programanalysis heuristics.

8.5.1 Subprogram 1

Cyclomatic complexity: 3, Max loop vars: 3, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 38 initial goals, 2 remaining goals, 3s to simplify, 5s to plan

1 rinv � � �

1 rtc � � �

Iteration 2: 39 initial goals, 2 remaining goals, 2s to simplify, 8s to plan

1 rinv � � �

1 rtc � � �

Iteration 3: 41 initial goals, 1 remaining goals, 2s to simplify, 7s to plan

1 rtc � � �

Iteration 4: 43 initial goals, 0 remaining goals, 2s to simplify, 3s to plan
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8.5.2 Subprogram 2

Cyclomatic complexity: 5, Max loop vars: 5, Max loop arith ops: 1

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 127 initial goals, 11 remaining goals, 19s to simplify, 46s to plan

11 rtc � � �

Iteration 2: 135 initial goals, 0 remaining goals, 17s to simplify, 29s to plan

8.5.3 Subprogram 3

Cyclomatic complexity: 4, Max loop vars: 8, Max loop arith ops: 3

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 69 initial goals, 5 remaining goals, 19s to simplify, 20s to plan

2 rinv � � �

3 rtc � � �

Iteration 2: 75 initial goals, 3 remaining goals, 20s to simplify, 18s to plan

1 rtc � � �

2 rtc � � �

Iteration 3: 87 initial goals, 0 remaining goals, 19s to simplify, 7s to plan

8.5.4 Subprograms 4 and 5

Cyclomatic complexity: 4, Max loop vars: 4, Max loop arith ops: 1

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 86 initial goals, 4 remaining goals, 6s to simplify, 110s to plan

4 rtc � �

Iteration 2: 86 initial goals, 4 remaining goals, 6s to simplify, 89s to plan

2 rtc � � � � �

2 rtc � � �

Iteration 3: 90 initial goals, 6 remaining goals, 12s to simplify, 243s to plan

2 rinv � � � �

4 rtc � � �

Two subprograms of similar functionality produced exactlythe same results. At it-

eration 1, SPADEase requests an engineer to constrain a constant array. In response,

appropriate user rules are manually introduced to constrain the array.
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8.5.5 Subprogram 6

Cyclomatic complexity: 4, Max loop vars: 13, Max loop arith ops: 3

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 182 initial goals, 9 remaining goals, 61s to simplify, 107s to plan

2 rinv � � �

7 rtc � � �

Iteration 2: 185 initial goals, 9 remaining goals, 65s to simplify, 276s to plan

2 rinv � � �

7 rtc � � �

Iteration 3: 191 initial goals, 7 remaining goals, 65s to simplify, 113s to plan

3 rtc � � � � �

2 rtc � � � �

2 rtc ⊗ ⊗ ⊗

Iteration 4: 203 initial goals, 5 remaining goals, 706s to simplify, 198s to plan

1 rinv � � � �

1 rinv � � �

3 rtc � � �

In iteration 3, SPADEase fails to make any progress for two goals. However, for other

goals in the same iteration, proof failure analysis triggers the introduction of stronger

invariants. In iteration 4, with these stronger invariantsin place, the two goals are proved

by the Simplifier.

8.5.6 Subprogram 7

Cyclomatic complexity: 9, Max loop vars: 7, Max loop arith ops: 1

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 626 initial goals, 25 remaining goals, 28s to simplify, 335s to plan

14 rtc � � �

Iteration 2: 626 initial goals, 23 remaining goals, 27s to simplify, 390s to plan

12 rtc � � �

Iteration 3: 644 initial goals, 12 remaining goals, 24s to simplify, 323s to plan

2 rtc � � � � �

Iteration 4: 650 initial goals, 11 remaining goals, 26s to simplify, 343s to plan

2 rtc � � � � �

Iteration 5: 656 initial goals, 11 remaining goals, 29s to simplify, 352s to plan

2 rtc � � � � �

Iteration 6: 662 initial goals, 9 remaining goals, 29s to simplify, 361s to plan

2 rtc � � � � ⊗ ⊗

In iteration 5, proof failure analysis requests the introduction of tighter constraints

for selected variables. Through program analysis, tighterconstraints are discovered and
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introduced through a strengthened invariant. However, in iteration 6, proof failure anal-

ysis requests the introduction of tighter constraints for exactly the same variables. The

program analyser is unable to deliver tighter constraints,causing SPADEase to make no

more progress on these goals. From inspecting the code, a keyequality constraint is not

discovered by the program analyser. Generalisations made in theint constraint method,

to conform to its property type, prevent the equality constraint from being discovered. If

manually introducing the equality constraint, neither theSimplifier nor SPADEase can au-

tomatically prove the goals. The key step in the proof involves exploiting a contradiction

among the hypotheses.

In each iteration, goals are rejected by thetargeted goal method. These goals all

relate to verifying preconditions. While SPADEase does notconsider these goals directly,

invariants introduced to advance the verification of exception freedom lead to the number

of these unconsidered remaining goals, 0 seconds falling from 9 in iteration 1 to 5 in

iteration 6.

8.5.7 Subprogram 8

Cyclomatic complexity: 8, Max loop vars: 10, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 166 initial goals, 4 remaining goals, 6s to simplify, 30s to plan

2 rtc ⊗ ⊗

1 rinv � � �

1 rtc � � �

Iteration 2: 166 initial goals, 4 remaining goals, 6s to simplify, 34s to plan

2 rtc ⊗ ⊗

1 rinv � �

1 rtc � �

Iteration 3: 166 initial goals, 4 remaining goals, 6s to simplify, 44s to plan

3 rtc ⊗ ⊗

1 rinv ⊗ ⊗

In iteration 2 SPADEase requests an engineer to constrain a constant array. In re-

sponse, appropriate user rules are manually introduced to constrain the array.

In iteration 3 SPADEase fails to make any progress for three run-time check goals.

The key step in proving two of these goals is to introduce a rule describing the behaviour

of a called function. The third goal becomes provable following the introduction of con-

straints for a constant array. Nevertheless, neither the Simplifier nor SPADEase proves

the goal. The key steps in its proof involve simplifying an implication conclusion and

exploiting transitive constraints among hypotheses.

In iteration 3 SPADEase fails to make any progress for a returning invariant goal.

The goal is not provable as a variable is under constrained. The program analyser would

be able to discover an appropriate constraint. However, theproof failure occurs during
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rippling, which does not have critics to trigger specification strengthening. Even with the

necessary constraint in place, rippling is unsuccessful. The key step in the proof involves

inequality reasoning. SPADEase adopts a form of rippling that is generally more suited

to equational conjectures, hindering the development of the proof.

8.5.8 Subprogram 9

Cyclomatic complexity: 7, Max loop vars: 5, Max loop arith ops: 1

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 411 initial goals, 2 remaining goals, 8s to simplify, 142s to plan

1 rtc � � �

1 rtc � � � �

Iteration 2: 421 initial goals, 0 remaining goals, 15s to simplify, 119s to plan

8.5.9 Subprogram 10

Cyclomatic complexity: 9, Max loop vars: 6, Max loop arith ops: 2

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 411 initial goals, 2 remaining goals, 3s to simplify, 18s to plan

1 rinv � � �

1 rtc � � �

Iteration 2: 156 initial goals, 1 remaining goals, 3s to simplify, 16s to plan

1 rtc � � �

Iteration 3: 164 initial goals, 0 remaining goals, 3s to simplify, 15s to plan

8.5.10 Subprogram 11

Cyclomatic complexity: 8, Max loop vars: 7, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 151 initial goals, 5 remaining goals, 14s to simplify, 43s to plan

1 rinv � � �

3 rtc � � �

Iteration 2: 178 initial goals, 1 remaining goals, 49s to simplify, 62s to plan

1 rtc � � �

Iteration 3: 180 initial goals, 1 remaining goals, 54s to simplify, 62s to plan

1 rtc � � ⊗

In iteration 2, proof failure analysis requests the introduction of tighter constraints

for selected variables. Through program analysis, tighterconstraints are discovered and

introduced through a strengthened invariant. However, in iteration 3, proof failure anal-

ysis requests the introduction of tighter constraints for exactly the same variables. The

program analyser is unable to deliver tighter constraints,causing SPADEase to make no

more progress on this goal.
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8.5.11 Subprogram 12

Cyclomatic complexity: 4, Max loop vars: 6, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 57 initial goals, 1 remaining goals, 1s to simplify, 4s to plan

1 rinv � � �

Iteration 1: 68 initial goals, 1 remaining goals, 1s to simplify, 6s to plan

1 rtc � � �

Iteration 1: 74 initial goals, 0 remaining goals, 1s to simplify, 5s to plan

8.5.12 Subprogram 13

Cyclomatic complexity: 3, Max loop vars: 5, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 36 initial goals, 1 remaining goals, 1s to simplify, 3s to plan

1 rinv � � �

Iteration 2: 40 initial goals, 0 remaining goals, 1s to simplify, 3s to plan

8.5.13 Subprogram 14

Cyclomatic complexity: 14, Max loop vars: 7, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 265 initial goals, 5 remaining goals, 4s to simplify, 41s to plan

2 binv � � �

3 inv � � �

Iteration 2: 380 initial goals, 2 remaining goals, 7s to simplify, 84s to plan

2 binv � � �

In iteration 1 proof failure analysis requests that variables are coupled with their en-

try variables. Through program analysis, appropriate properties are discovered and in-

troduced through a strengthened invariant. However, due toa known limitation of the

SPARK Approach, these invariants are not interpreted correctly. As a consequence, in

iteration 2, the strengthened invariants are not present inthe remaining goals, 0 seconds.

Consequently, proof failure analysis requests that the same variables are coupled with

their entry variables. SPADEase is unable to offer further constraints, and the verification

fails.
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8.5.14 Subprogram 15

Cyclomatic complexity: 8, Max loop vars: 5, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 128 initial goals, 2 remaining goals, 1s to simplify, 11s to plan

2 rinv � � �

Iteration 2: 144 initial goals, 0 remaining goals, 2s to simplify, 12s to plan

8.5.15 Subprogram 16

Cyclomatic complexity: 3, Max loop vars: 5, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 48 initial goals, 5 remaining goals, 1s to simplify, 4s to plan

1 rinv � � �

Iteration 2: 58 initial goals, 5 remaining goals, 1s to simplify, 6s to plan

1 rtc � � �

Iteration 2: 60 initial goals, 4 remaining goals, 1s to simplify, 4s to plan

In each iteration, goals are rejected by thetargeted goal method. Two goals relate to

proving preconditions while two goals involve real arithmetic.

8.5.16 Subprogram 17

Cyclomatic complexity: 3, Max loop vars: 5, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 37 initial goals, 6 remaining goals, 1s to simplify, 3s to plan

1 rinv � � �

Iteration 2: 58 initial goals, 5 remaining goals, 1s to simplify, 4s to plan

1 rtc � � �

Iteration 2: 60 initial goals, 4 remaining goals, 1s to simplify, 3s to plan

In each iteration, goals are rejected by thetargeted goal method. Three goals relate

to proving preconditions while two goals involve real arithmetic.

8.5.17 Subprogram 18

Cyclomatic complexity: 3, Max loop vars: 5, Max loop arith ops: 0

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 39 initial goals, 6 remaining goals, 1s to simplify, 3s to plan

1 rinv � � �

Iteration 2: 49 initial goals, 6 remaining goals, 1s to simplify, 4s to plan

1 rtc � � �

Iteration 2: 60 initial goals, 4 remaining goals, 1s to simplify, 3s to plan
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In each iteration, goals are rejected by thetargeted goal method. Three goals relate

to proving preconditions while two goals involve real arithmetic.

8.5.18 Subprogram 19

Cyclomatic complexity: 3, Max loop vars: 4, Max loop arith ops: 1

Goals Form
Strategy Critic Prog

ef rc tr ri cc ce cv tc fc ty lr ts ic

Iteration 1: 34 initial goals, 1 remaining goals, 1s to simplify, 6s to plan

1 rtc � � �

Iteration 1: 38 initial goals, 0 remaining goals, 1s to simplify, 2s to plan

8.6 Overall Analysis

An overall analysis of the evaluation is performed. The relationship between subprogram

complexity and proof effort is considered in §8.6.1. The relationship between subprogram

complexity and the number of verification iterations is considered in §8.6.2.

8.6.1 Comparing Complexity and Proof Effort

SPADEase is an enhancement of the SPARK Approach, typicallyoperating over a number

of verification iterations. The effort involved in proving that a subprogram is free from

exceptions is calculated as the total simplification and planning time across all iterations.

Note that, since the program analysis heuristics were manually simulated for the industrial

subprograms, their execution times are not available and soare not considered.

There is no definitive method for measuring subprogram complexity. Thus, a com-

plexity measure was incrementally developed as discussed below.

• First complexity measure- Cyclomatic complexity reports on the path complexity

of a subprogram. This metric is used in calculating the first complexity measure as

follows:

first complexity= cyclomatic complexity (8.1)

The first complexity measure is compared against proof effort in Figure 8.8. The

spread of results suggest that additional factors are influencing proof effort.

• Second complexity measure- The maximum number of variables inside a loop is

determined. The metric is used in calculating the second complexity measure as

follows:

second complexity= cyclomatic complexity∗ (max loop vars+ 1) (8.2)
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The second complexity measure is compared against proof effort in Figure 8.9.

Through considering the role of variables, there is a closerrelationship between

complexity and proof effort. However, it still appears that additional factors are

influencing proof effort.

• Third complexity measure - The maximum number of distinct arithmetic opera-

tors inside a loop is determined. The metric is used in calculating the third com-

plexity measure as follows:

third complexity= cyclomatic complexity∗ (max loop vars+ 1) ∗

(max loop arith ops+ 1)
(8.3)

The third complexity measure is compared against proof effort in Figure 8.10.

Through considering the role of arithmetic operators, the relationship between com-

plexity and proof effort is clearer. Two particularly outlying values, corresponding

to Subprogram 3andSubprogram 10, have both high complexity and low proof ef-

fort. In both cases, the Simplifier is particularly efficient and the proof plans quickly

identify the need for invariant discovery. It is speculatedthat a richer consideration

of term complexity would deliver a stronger relationship tooverall proof effort.
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Figure 8.8: First complexity measure against proof effort
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Figure 8.9: Second complexity measure against proof effort
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Figure 8.10: Third complexity measure against proof effort
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8.6.2 Comparing Complexity and Iterations

The third complexity measure is compared against the numberof verification iterations

Figure 8.11. As complexity falls, there is a trend for fewer iterations.
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Figure 8.11: Third complexity measure against iterations
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Chapter 9

Conclusions

In this concluding chapter the specific contributions and wider implications of the thesis

are considered. The main contributions of our approach are considered in §9.1, highlight-

ing related work. In §9.2 limitations and future work are considered. Finally, a closing

summary is made in §9.3.

9.1 Contributions

In §1.2 the six main contributions of this thesis were outlined. Below, these contributions

are repeated, highlighting how each has been achieved and describing related work.

Configurable and Sound

Present a configurable and justifiably sound approach to software verifica-

tion.

Proof planning [Bun88] makes a clear distinction between its supporting infrastruc-

ture and its controlling heuristics. Our approach maintains this distinction for the task of

program verification. Proof discovery techniques are captured as proof plans while in-

variant discovery techniques are captured as program analysis heuristics. Consequently,

the approach may be readily configured by modifying its heuristics accordingly.

Where verification tools may be subject to configuration, thesoundness of these con-

figurations becomes a key concern. Proof planning addressesthis concern by making a

clear separation between plausible and demonstrative reasoning. Our approach maintains

this distinction by strictly operating within a sound program verification environment.

All discovered proofs are checked inside a proof checker, and all discovered invariants

are checked indirectly through program verification. The selective positioning of sound-

ness concerns is also seen in program generation [WH99a]. Itis typically impractical

to verify the correctness of a program generation system. Instead, translation validation

is performed, verifying the correctness of each generated program. Thus, the approach

positions soundness concerns in a more tractable location.
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Cooperative Integration

Demonstrate that more targeted and effective automation can be achieved

through the cooperative integration of distinct technologies.

Program verification involves both proof discovery and invariant discovery. Our ap-

proach tackles these related tasks through a cooperative integration. Where proof discov-

ery is unsuccessful, proof failure analysis attempts to determine the cause of the failure.

Where the failure is traced to a weakness in the specification, targeted invariant discovery

is triggered. The collaborative style means that our approach focuses on addressing the

genuine verification challenge. A related approach is employed by Houdini [FL01] to

support invariant discovery in ESC/Java [FLL+02]. Houdini initially discovers candidate

invariants without considering the verification problem. As a consequence, the candidate

invariants may not be relevant. To address this concern, thecandidate invariants are in-

troduced and program verification is performed. Those invariants that are incorrect or

irrelevant are removed. Thus, Houdini exploits the genuineverification challenge to filter

its discovered invariants. Nevertheless, the collaboration is limited and retrospective. Our

approach works towards the verification challenge, addressing specific weaknesses in the

specification through targeted invariant discovery. Consequently, our approach naturally

delivers pertinent invariants, without requiring a filtering phase.

Proof Discovery

Present proof plans that support the verification of exception freedom.

Proof plans are presented that support the automated verification of exception free-

dom. Separate plans are developed for VCs corresponding to run-time checks and in-

variants. The proof plans are expressed at a high-level in anexplicit method-language,

facilitating their understanding and reuse. The feasibility of this reuse is exploited in our

proof plans. Rippling [BBHI05] was originally developed tosupport proof by induction.

It is reused in our approach, to prove loop invariant VCs.

Invariant Discovery

Present invariant discovery heuristics that support the verification of excep-

tion freedom.

Program analysis heuristics are presented that automatically discover invariant prop-

erties suitable for advancing a proof of exception freedom.The heuristics are expressed

in a consistent form as program analysis methods, facilitating their understanding and

reuse. A key technique employed is the generation and solving of recurrence relations to

generate invariant properties. The Runcheck system [Ger81] adopted a similar approach.

Transformations made to program variable were collected aschange vectors, essentially
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the same as recurrence relations. Our approach extends the technique by considering pro-

gram context, nested loops, and generating bounded constraints. Further, our approach

exploits a powerful recurrence relation solver.

Implementation as SPADEase

Implement our approach as SPADEase.

Our approach has been implemented as an extension to the SPARK Approach as

SPADEase. The primary components of SPADEase are a proof planner and a program

analyser. These systems have been developed to directly support our approach. Where

appropriate, SPADEase has reused existing components. These include the Clam method-

language [BvHHS90], the clp(FD) constraint solver [COC97], the YACAS computer al-

gebra system [YAC], a SPARK grammar, a SPARK tokeniser, the Stratego program trans-

formation system [Vis01], and the PURRS recurrence relation solver [PUR].

Evaluation

Evaluate SPADEase against both textbook and industrial subprograms.

Our approach is evaluated against industrial subprograms.As our program analyser

only supports a subset of SPARK, the program analysis aspectis simulated. Of the 20

subprograms considered, our approach completes the verification of exception freedom

for 12. In 3 cases, our approach completes the verification ofall considered exception

freedom goals, however there are residual goals related to real arithmetic or verifying

preconditions which are not considered by our approach. In 1case, verification was not

possible due to a limitation of the SPARK Approach. In the remaining 3 cases, our ap-

proach advances the verification of exception freedom, but not to completion.

9.2 Limitations and Future Work

Limitations of our approach are considered in the sections below, indicating how these

may be addressed through future work.

9.2.1 Support Preconditions and Postconditions

Preconditions and postconditions may provide valuable constraints in analysing a sub-

program. However, SPADEase currently ignores these. The limitation may be addressed

through the introduction of program analysis heuristics that exploit these constraints. Sim-

ilarly, SPADEase only considers specification strengthening through invariant discovery.

Both precondition and postcondition discovery may be appropriate to advance a verifica-

tion effort. The limitation might be addressed through the adoptionof more sophisticated
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abstract predicate satisfies. As modifications to preconditions and postconditions change

the specification, each suggested change would need to be checked by an engineer.

9.2.2 Adopt Tactic Based Theorem Prover

SPADEase delivers both configurability and soundness by relying on the soundness of the

SPARK Approach. However, as detailed in §B.4, significant modifications were made

to the Checker. The changes were required to achieve an effective integration, as the

Checker is not suited to automated control. Such modifications have the potential to un-

dermine soundness and thus would require rigorous verification and validation. The need

for modifications and certification may be avoided by selecting a tactic based theorem

prover as a proof checker. Such a prover would be suited to automated control without

any modifications.

9.2.3 Automated Lemma Discovery

As described in §B.4.4, a small collection of theorems were introduced to support the ap-

plication of SPADEase. In general, the discovery and proof of such intermediate lemmas

can hinder a verification effort. This limitation may be addressed by extending SPADEase

to support automated lemma discovery. Proof failure analysis might identify the structure

of a missing lemma, triggering targeted lemma discovery. Inparticular, the automated

discovery of lemmas to advance rippling has previously beeninvestigated [IB96].

9.3 Summary

Our approach provides an effective environment for automated program verification. The

approach strictly enhances an existing program verification environment. By doing so,

the approach is simultaneously configurable and sound. Our approach addresses the en-

tire verification challenge, including both proof discovery and invariant discovery. Proof

discovery is achieved via a proof planner and invariant discovery is achieved via a pro-

gram analyser. Significantly, the two components are cooperatively integrated such that

they work together in addressing genuine verification problems. The approach is tailored

to automate the verification of exception freedom in the SPARK Approach. The approach

is realised as SPADEase and has been favourably evaluated against both industrial and

textbook subprograms.
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Appendix A

PolishFlag Interactive Proof

A.1 Introduction

The partial correctness of the PolishFlag subprogram is considered in §4.4.5. The Sim-

plifier is able to prove a few conclusions, with the remainingVCs being stored in an SIV

file, as shown in Figure 4.13. The remaining VCs have been interactively proved inside

the Checker. The corresponding CMD file is split across Figure A.1 and Figure A.2.

1.

consult ’permutation.rul’.

consult ’polishflag.rls’.

unwrap c#1.

prove c#1 by implication.

infer false using inference(2).

prove c#1 by contradiction.

done.

unwrap c#2.

prove c#1 by implication.

infer false using inference(2).

prove c#1 by contradiction.

done.

infer c#7 using permutation(1).

2.

unwrap c#1.

prove c#1 by implication.

unwrap h#1.

inst int_q__1.

prove c#1 by cases on int_q__1=i or int_q__1<i.

replace c#1: int_q__1 by i using eq(1).

yes.

no.

done.

infer int_q__1 <= i - 1 using inequals(74).

yes.

yes.

standardise c#1.

yes.

done.

forwardchain h#10.

done.

3.

unwrap c#1.

prove c#1 by implication.

infer int_q__1 < i using transitivity(19).

infer i <= j - 1 using inequals(74).

Figure A.1: PolishFlag subprogram interactive proof (CMD)[1 of 2]
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yes.

yes.

stand c#1.

yes.

done.

infer int_q__1 < i using transitivity(19).

infer int_q__1 < j - 1 using inequals(31).

infer int_q__1 <> j - 1 using inequals(33).

replace c#1: element(update(update(flag, [i], element(flag, [j - 1])),

[j - 1], element(flag, [i])), [int_q__1]) by

element(update(flag, [i], element(flag, [j - 1])),

[int_q__1]) using array(3).

yes.

no.

infer int_q__1 <> i using transitivity(30).

replace c#1: element(update(flag, [i], element(flag, [j - 1])),

[int_q__1]) by element(flag, [int_q__1]) using array(3).

yes.

no.

unwrap h#1.

inst int_q__1.

forwardchain h#16.

done.

unwrap c#2.

prove c#1 by implication.

infer (element(flag, [i]) = red) using enum(16).

infer j-1 <= int_r__1 using inequals(15).

prove c#1 by cases on j-1 = int_r__1 or j-1 < int_r__1.

done.

infer j<= int_r__1 using inequals(102).

infer i < int_r__1 using transitivity(20).

infer i <> int_r__1 using transitivity(30).

replace c#1: element(update(flag, [i], element(flag, [j - 1])),

[int_r__1]) by element(flag, [int_r__1]) using array(3).

yes.

no.

unwrap h#2.

inst int_r__1.

forwardchain h#18.

done.

replace c#7: permutation(update(update(flag, [i], element(flag, [j - 1])),

[j - 1], element(flag, [i])), flag__OLD) by

permutation(update(update(flag, [j - 1], element(flag, [j - 1])),

[i], element(flag, [i])), flag__OLD) using permutation(3).

yes.

no.

replace c#7: update(flag, [j-1], element(flag, [j - 1])) by flag using array(2).

yes.

no.

replace c#7: update(flag, [i], element(flag, [i])) by flag using array(2).

yes.

no.

done.

4.

unwrap c#1.

inst i.

done.

unwrap c#4.

unwrap h#2.

inst int_r__1.

prove c#1 by implication.

infer j <= int_r__1 using transitivity(1).

forw h#9.

done.

exit.

Figure A.2: PolishFlag subprogram interactive proof (CMD)[2 of 2]
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Appendix B

Modifying the SPARK Toolset

B.1 Introduction

This chapter describes modifications made to the SPARK toolset to support integration

with SPADEase.

B.2 Modifications to the Examiner

The Examiner describes quantified expressions in VCs through the following expressions:

for_all (Variable : Type, Expression)

for_some (Variable : Type, Expression)

The white space between the quantifier and its arguments creates complications in parsing

these expressions. Thus, the Examiner was modified to prevent the generation of this

white space.

B.3 Modifications to the Simplifier

The Simplifier receives the initial VCs, performs simplification, and generates corre-

sponding remaining VCs. In generating the remaining VCs, the Simplifier renumbers

the conclusions of each VC. This feature makes it difficult to automatically associate sim-

plified conclusions in the remaining VCs with their originalform in the initial VCs. To

resolve this, the Simplifier was modified to include an additional switch/norenum. The

switch suppresses the renumbering of conclusions when generating the remaining VCs.

B.4 Modifications to the Checker

The Checker is used by SPADEase to check the correctness of discovered proof plans.

To make this process both feasible and practical, various modifications are made to the

Checker as detailed below.
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B.4.1 Principled Proof Checking Interface

The Checker operates as an automated proof checker by receiving proof commands from a

file rather than interactively from an engineer. The successor otherwise of the proof effort

is stored as part of the Checker proof log. To integrate more effectively with SPADEase

a more principled proof checking interface was introduced.The Checker was modified to

include an additional switch/tame as described below:

• /tame VCGFile VCId ConcId ProofCommandFile ResultFile

– VCGFile- Targeted VCG file.

– VCId - Targeted VC.

– ConcId- Targeted conclusion.

– ProofCommandFile- Proof command file to be checked.

– ResultFile- Location to store the result of the proof checking. The provided

proof command file is executed to try and discharge the targeted conclusion

of the targeted VC of the targeted VCG file. Where successful,the result file

will contain ‘true.’, otherwise ‘false.’.

B.4.2 Improve Predictability

During a proof session the Checker is proactive, automatically proving conclusions that

are within its capabilities. Consequently, it is difficult to predict exactly how the Checker

will behave following a proof command. For SPADEase to correctly translate discovered

proof plans into Checker proof command files it is essential that the Checker behaves in

a predictable manner. To achieve this, where the/tame switch is supplied, the Checker

was modified to deactivate all proactive proof automation.

B.4.3 Richer Proof Commands

Typically, a proof planner is coupled to a tactic based theorem prover, as tactics provide a

powerful mechanism for executing a discovered proof plan. However, the Checker is not

a tactic based theorem prover. This mismatch created complications in the technical task

of translating discovered proof plans into Checker proof command files. In particular, a

single intuitive proof step might be translated as an involved nesting of multiple proof

commands. Consequently, the resulting proof command files are both difficult to generate

and to comprehend. To avoid these complications, the Checker was extended to support

additional proof commands where the/tame switch is present. The following minor

proof commands were added:

• tame_subgoal_on_exp BoolExp- Generate a subgoal containing the hypotheses

of the current goal and the single conclusion as the Boolean expressionBoolExp.
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• tame_subgoal_on_conc ConcId- Generate a subgoal containing the hypotheses

of the current goal and the single conclusion associated with the identifierConcId.

• tame_done - Appeal to the automated capabilities of the Checker to prove any

conclusion in the current goal.

• tame_all_done - The current goal is closed if it does not contain any conclusions.

• tame_finish - Exit the Checker, and store the success of the proof in the result

file.

Further, a powerful rewrite command, with four alternativemodes of operation, was in-

troduced:

• tame_rewrite HypOrConc:WholeExp: Poswith LHSExpto RHSExp

if Conditionusing RewriteRuleIdin Direction -
Rewrite using a previously loaded rewrite rule.

• tame_rewrite HypOrConc:WholeExp: Poswith LHSExpto RHSExp

if Conditionfrom HypExpin Direction -
Rewrite using a hypothesis as a rewrite rule.

• tame_rewrite HypOrConc:WholeExp: Poswhere HypExp-

Rewrite using a hypothesis as an alternative expression fortrue.

• tame_rewrite HypOrConc:WholeExp: Poswith EvalExpis Value-

Rewrite an expression to its evaluated value.

Where the meaning of each argument is as detailed below:

• HypOrConc- denotes whether a hypothesis or conclusion is being rewritten ashyp

or concrespectively.

• WholeExp- The whole expression of the selected hypothesis or conclusion.

• Pos- The position of the subexpression within the whole expression that is to be

rewritten. The position is expressed as a list of integers, describing a path through

the expression structure.

• LHSExp- The expression being rewritten from. This must match the subexpression

at positionPosof WholeExp.

• RHSExp- The expression being rewritten to.

• Condition- A condition associated with a rewrite rule. For the rule to be applied,

the condition must be eithertrueor match with a hypothesis.

• RewriteRuleId- The unique identifier of a rule. The corresponding rule, adjusted

for Direction, must match withLHSExp, RHSExpandCondition.
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• Direction - Is eithernormalor reversedto denote the direction that a rewrite rule is

to be applied.

• HypExp- The expression of a selected hypothesis.

• EvalExp- The evaluatable expression being rewritten from. This must match the

subexpression at positionPosof WholeExp.

• Value- The result of evaluating an expression. This must match theresult of evalu-

atingEvalExp.

The rewrite command may be applied to hypotheses or conclusions. To minimise polarity

concerns, only the whole expression or a top level conjunct may be rewritten. Signifi-

cantly, this restriction excludes the rewriting of quantified expressions.

B.4.4 Adding Theorems Through User Rules

As discussed in §6.6, properties and definitions are held in external rule files. A large

number of standard rules are available. These rules are extracted as theorems and used

to support the vast majority of our proof plans. However, a few desired theorems are not

available as part of the standard rules. To resolve this, appropriate theorems are introduced

through user rules, as detailed in the sections below.

Alternative Views

The select alt view rule predicate draws upon the available rewrite rules to exploreal-

ternative views of an expression. To support this predicate, theorems are introduced that

describe the preservation of an expression and the rotationof inequality expressions:

∀(y : . (true→ (y = y))) (B.1)

∀(y, z : integer. (true→ ((y > z) = (z< y)))) (B.2)

∀(y, z : integer. (true→ ((y ≥ z) = (z≤ y)))) (B.3)

Decompose Conjuncts

In the Checker, conjuncts are decomposed through simplification strategies. Such strate-

gies are unpredictable and thus not appropriate for proof checking. Instead, specific the-

orems are introduced to support the decomposition of conjuncts:

∀(y, z : boolean. (true→ ((y∧ z)→ y))) (B.4)

∀(y, z : boolean. (true→ ((y∧ z)→ z))) (B.5)
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Transitivity Decomposition

In progressing a transitivity step, rewrite rules are required that decompose inequality

expressions. To support this process, the following theorems are introduced:

∀(x, y, z : integer. (true→ ((x ≥ y) ∧ (0 ≥ z))→ (x ≥ (y+ z)))) (B.6)

∀(x, y, z : integer. (true→ ((x ≤ y) ∧ (0 ≤ z))→ (x ≤ (y+ z)))) (B.7)

Transitivity Unblock

In unblocking a transitivity step, rewrite rules are required that ground partially instanti-

ated inequality expressions. To support this, the following theorems are introduced:

∀(x : integer. (true→ (true→ (x ≥ x)))) (B.8)

∀(x : integer. (true→ (true→ (x ≤ x)))) (B.9)

Rippling

For rippling, structurally preserving rewrite rules are required. However, some key stan-

dard rules are not expressed in a structurally preserving form. To resolve this, the follow-

ing theorems are introduced:

∀(x, y, z : integer. (true→ (((x+ y) + z) = ((x+ z) + y)))) (B.10)

∀(x, y, z : integer. (true→ (((x− y) + z) = (x+ z) − y))) (B.11)

∀(x, y, z : integer. (true→ (((x+ y) ∗ z) = ((x ∗ z) + (y ∗ z))))) (B.12)

Disjunctive Normal Form

Thedisj norm form method draws upon the following theorems to transform an expres-

sion into disjunctive normal form:

∀(y, z : boolean. (true→ ((y→ z) = ((¬y∨ z))))) (B.13)

∀(y, z : boolean. (true→ ((y↔ z) = ((y→ z) ∧ (z→ y))))) (B.14)

∀(z : boolean. (true→ ((¬(¬(z))) = z))) (B.15)

∀(y, z : boolean. (true→ ((¬(y∧ z)) = ((¬(y) ∨ ¬(z)))))) (B.16)

∀(y, z : boolean. (true→ ((¬(y∨ z)) = (¬(y) ∧ ¬(z))))) (B.17)

∀(x, y, z : boolean. (true→ (((x∨ y) ∧ z) = ((x∧ z) ∨ (y∧ z))))) (B.18)

∀(x, y, z : boolean. (true→ ((x∧ (y∨ z)) = ((x∧ y) ∨ (x∧ z))))) (B.19)
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Appendix C

Method-Language

C.1 Introduction

The method-language supports the expression of proof plans. The method-language is

composed from a number ofpredicates. The general form of these predicates is shown in

§C.2, while the predicates themselves are detailed in the remainder of this appendix.

C.2 Method-Language Predicates

Each method-language predicate takes the following general form:

predicate(Mode1 Arg1, . . . ,Moden Argn) Provenance

Wherepredicate is the name of the predicate,Argi are its arguments andModen describes

the mode of each argument as below:

Mode Description

+ An input value.

− An output value.

? Either an input value or an output value.

Provenanceidentifies those predicates that have been reused from elsewhere. The symbol

PO indicates that the predicate originated from Prolog, whilethe symbolCO indicates that

the predicate originated from Clam.

Method-language predicates occur in a list of the general form:

[Predicate1, . . . ,Predicatez] (C.1)

Each predicate may have multiple solutions, which are explored throughbacktracking.

To begin, the predicates are considered in order, from 1 toz, accepting the first solutions

found. Then, backtracking is performed, considering the predicates in reverse order, from

z to 1, seeking the first predicatey that has an alternative solution. Where found, the

alternative solution is explored by reconsidering its subsequent predicates in order, from

y+ 1 to z. Backtracking is repeated until all alternative solutionshave been explored.

141



C.3 Composition

C.3.1 cut

cut PO

By default, every successful predicate is explored throughbacktracking. This predi-

cate instructs the caller to dismiss all alternative solutions that exist prior to the cut. The

predicate is valuable where many potential solutions are possible, but only a single solu-

tion is sought.

C.3.2 not

not(+Predicate) PO

The predicate is successful wherePredicateis unsuccessful.

C.4 Proof Planning

C.4.1 abort plan

abort plan(+FailureCritique)

This predicate aborts the current plan, reporting failure critiqueFailureCritique.

C.4.2 plan lemmas

plan lemmas(+HypList,+LemmaList,+Strategy,+ProvedList,−Tactic)

This predicate plans each lemma inLemmaListas a separate goal1. Each lemma forms

the conclusion of the goal, while its hypotheses areHypList. The initial strategy for plan-

ning each lemma isStrategy. The proved lemmas are returned asProvedListalongside a

supporting tacticTacticthat introduces the lemmas as hypotheses at the object-level.

C.4.3 write line

write line(+Text) PO

This predicate sendsTextto the standard output.

1The predicate involves nested proof planning during methodapplication, which is not supported by

our proof planner. Instead, nested planning is simulated through two communicating methods. The first

method queues the lemmas to be planned, while the second method collects the results. While inelegant,

the technique retains the essential behaviour of this predicate.
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C.5 List Processing

C.5.1 append

append(?FirstList, ?SecondList, ?CombinedList) PO

This predicate is successful were appendingSecondListto the end ofFirstList gener-

atesCombinedList. The predicate may be used to append two lists together or to backtrack

over every pair of lists that, when appended, produce a particular list.

C.5.2 filter duplicates

filter duplicates(+ItemList,−DuplItemList,−UniqItemList)

This predicate filters duplicate items. Every item that appears more than once in

ItemListis reported once inDuplItemList. Every item that appears inItemListis reported

once inUniqItemList.

C.5.3 select

select(?Item, ?ItemList, ?RemItemList) PO

This predicate is successful whereItem is in ItemList, and the remaining items are

RemItemList. The predicate may be used to check that an item is in a list, toremove an

item from a list or to backtrack over all of the items in a list.

C.6 Plan Features

C.6.1 add under constrained vars

add under constrained vars(+SubprogramName,+UnderConstrainedVarList)

This predicate extends the global contextual information associated with a plan. It

adds the under constrained variablesUnderConstrainedVarListalongside the name of the

subprogram corresponding to the goal asSubprogramName.

C.6.2 get goal category

get goal category(−GoalCat)

This predicate reports the category of the goal asGoalCat. As detailed in §6.5.3, the

global contextual information associated with the plan includes traceability information

that describes how the goal relates to the source code. The goal categories are derived

from the traceability information as shown in Figure C.1 anddescribed below:

• rtc - A transition from any cut-point to a run-time check.

• rinv - A transition from an invariant returning to the same invariant.
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• binv - A transition between different invariants.

• other- All other transitions.

<GoalCat>Frtc {where<Trace> =
betweenPath( , check(runtime, ))} |

rinv {where<Trace> =
betweenPath(assertion( , LineInt), assertion( , LineInt))} |

binv {where<Trace> =
betweenPath(assertion( ,FromLineInt), assertion( ,ToLineInt)) ∧
(FromLineInt, ToLineInt)} |

other

Figure C.1: Goal Categories

C.6.3 match global context

match global context(?MatchExp)

This predicate is successful where the expressionMatchExpmatches an item in the

global contextual information associated with the plan.

C.7 Goal Features

C.7.1 add constraining vars

add constraining vars(+LocalContextList,+VarList,−ExtendedLocalContextList)

This predicate extends the local context informationLocalContextListto record the

constraining variablesVarListasExtendedLocalContextList.

C.7.2 get constraining vars

get constraining vars(+LocalContextList,−VarList)

This predicate reports all constraining variables recorded in the local context informa-

tion LocalContextListasVarList.

C.8 Goal Patterns

C.8.1 aux vars

aux vars(+Exp,−AuxlVarList,−TotalInt)
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As detailed in §6.5.1, auxiliary variables are introduced to support program analysis.

This predicate searches expressionExp for auxiliary variables, returning those found as

AuxlVarListalongside the total number found asTotalInt.

C.8.2 unconstrained consts vars

unconstrained consts vars(+Goal,−UnconstrainedConstList,
−UnconstrainedVarList)

This predicate inspectsGoal to identify every integer constant and variable that lacks

an explicit upper or lower bound asUnconstrainedConstListandUnconstrainedVarList

respectively. Note that an exception is made for entry variables, as these are often con-

strained indirectly, by being related to their corresponding standard variable.

C.8.3 uncoupled entry vars

uncoupled entry vars(+Goal,−UncoupledVarList)

This predicate inspectsGoal to identify all uncoupled variables asUncoupledVarList.

Such variables have a corresponding entry variable yet there is no hypothesis describing

the relationship between the two variables. For further details on entry variables, see the

viable goal method in §E.13.

C.8.4 under constrained vars

under constrained vars(+Goal,−UnderConstrainedVarList)

This predicate inspectsGoal via a constraint solver, identifying under constrained

variables asUnderConstrainedVarList. For further details on the integration of a con-

straint solver see theviable goal method in §E.13.

C.9 Analyse Expressions

C.9.1 binary explode

binary explode(+Exp,−Op,−LeftExp,−RightExp)

This predicate is successful where expressionExp is a binary operation. In this case,

the predicate returns the binary operator asOp, and the left and right expressions as

LeftExpandRightExprespectively.

C.9.2 conjunct at

conjunct at(+Exp,−Pos,−ConjExp)
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This predicate returns every distinct conjunct withinExp as ConjExpalongside its

positionPos. For example, given the expressionX∧ (Y∧ Z), the conjuncts returned will

beX, YandZ.

C.9.3 elim bounded var

elim bounded var(+HypList,+Var,+Exp,−NewExp)

This predicate eliminates an occurrence ofVar in Exp returning the new expression

as NewExp. The elimination is supported through interval reasoning.The hypotheses

HypListare explored to identify a unique upper and lower bound forVar. Then, depending

on the structure ofExp, Var in Exp is replaced with these bounds, generatingNewExp.

C.9.4 eval exp

eval exp(+EvalExp,−Value)

This predicate is successful where the expressionEvalExpcan be evaluated, reporting

the result of its evaluation asValue. Both integer and Boolean evaluation is considered,

as shown in Figure C.2.

<EvalExp>F <BoolEval>
<BoolEval>F <BoolEval> ∧ <BoolEval> | <BoolEval> ∨ <BoolEval> |

<BoolEval>→ <BoolEval> | <BoolEval>↔ <BoolEval> |
¬<BoolEval> | <EqEval> | <boolean>

<EqEval>F <ExpEval> = <ExpEval> | <ExpEval> , <ExpEval> |
<ExpEval> < <ExpEval> | <ExpEval> ≤ <ExpEval> |
<ExpEval> > <ExpEval> | <ExpEval> ≥ <ExpEval>

<ExpEval>F <ExpEval> ∗ <ExpEval> | <ExpEval> ∗∗ <ExpEval> |
<ExpEval> div <ExpEval> | <ExpEval> mod<ExpEval> |
<ExpEval> + <ExpEval> | <ExpEval> − <ExpEval> |
−<ExpEval> | <integer>

Figure C.2: Evaluatable expressions

C.9.5 exp at

exp at(+Exp,−Pos,−SubExp) CO

This predicate returns every subexpression in expressionExpasSubExpalongside its

positionPos.

C.9.6 exp explode

exp explode(+Exp,+Op,−ExpList)
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This predicate recursively splits expressionExp between occurrences ofOp. The

resulting expressions are returned asExpList.

C.9.7 find replace

find replace(+Exp,+FindExp,+ReplaceExp,−ModifiedExp)

This predicate replaces every occurrence ofFindExpin Expwith ReplaceExpgener-

ating the modified expressionModifiedExp.

C.9.8 ground

ground(+Exp) PO

This predicate succeeds where expressionExpdoes not contain any meta-variables.

C.9.9 int bound var

int bound var(+HypList,+Exp,−LowerInt,−UpperInt)

This predicate searches the hypothesesHypList to discover tight lower and upper nu-

meric bounds for the integer expressionExpasLowerIntandUpperIntrespectively. The

predicate is only successful where both an upper and lower bound can be found. The

mechanism for finding numeric bounds is described in Figure C.3.

To find the lower bound, each hypothesis is matched as below, to discover a
collection of candidate bounds. The largest candidate bound is selected as the
tightest lower bound.

Hypothesis match Candidate bound
ExpInt≥ BoundInt BoundInt
BoundInt≤ ExpInt BoundInt
ExpInt> BoundInt BoundInt+ 1
BoundInt< ExpInt BoundInt+ 1

To find the upper bound, each hypothesis is matched as below, to discover a
collection of candidate bounds. The smallest candidate bound is selected as
the tightest upper bound.

Hypothesis match Candidate bound
ExpInt≤ BoundInt BoundInt
BoundInt≥ ExpInt BoundInt
ExpInt< BoundInt BoundInt− 1
BoundInt> ExpInt BoundInt− 1

Figure C.3: Discover tight numeric bounds
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C.9.10 is inequality op

is inequality op(+Op)

This predicate is successful where operatorOp is the inequality<, ≤, ≥ or >.

C.9.11 is int

is int(+Exp) PO

This predicate is successful if expressionExp is an integer.

C.9.12 prog var exps

prog var exps(+Exp,−ProgVarExpList,−TotalInt)

This predicate searches expressionExp for program variable expressions. These ex-

pressions are returned asProgVarExpListalongside the total number found asTotalInt.

The program variable expressions considered are listed below:

• Variable - VarRef

• Element of an array - element(ArrayRef, IndexList)

• Field of a record - fld FieldRef(RecordRef)

C.9.13 remove real exps

remove real exps(+InExpList,−OutDiscreteExpList)

This predicate removes those expressions inInExpList that involve real arithmetic,

returning the remaining expressions asOutDiscreteExpList.

C.9.14 replace at

replace at(+Exp,+Pos,+ReplaceExp,−ModifiedExp) CO

This predicate replaces the subexpression at positionPos of Exp with ReplaceExp

generating the modified expressionModifiedExp.

C.9.15 simple linear exp var

simple linear exp var(+Exp,−ProgVarExp)

This predicate is successful whereExp is a simple linear expression, as described

in Figure C.4. Where successful, the single program variable expression is returned as

ProgVarExp.
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<SimpleLinearExp>F <MultPart>
<MultPart>F <TerminalPart> ∗ <SumPart> |

<Sum> ∗ <TerminalPart> |
<SumPart>

<SumPart>F <TerminalPart> + <TerminalPart> |
<TerminalPart> − <TerminalPart> |
<TerminalPart>

<TerminalPart>F <integer> |
<program variable expression> {mustoccuronce.
Expression defined byprog var exps.}

Figure C.4: Simple linear expression

C.9.16 solve for var

solve for var(+Eq,+Var,−SolvedEq)

This predicate is successful where the equalityEqcan be transformed into an equality

for Var, returning the resulting equality asSolvedEq. The predicate is supported through

a computer algebra system. For further details on the integration of a computer algebra

system see thesolve eq hyp for var method in §E.47.

C.9.17 sub exp polarity

sub exp polarity(+Exp,+ExpPolarity,+Pos,−SubExpPolarity)

This predicate calculates the polarity of a subexpression.An expressionExp is sup-

plied alongside its known polarity asExpPolarity. A subexpression withinExp is indi-

cated via the positionPos. Given this information, the predicate calculates the polarity of

the subexpression asSubExpPolarity.

To minimise implementation effort, polarity is only reported for two tightly con-

strained situations. Firstly, where the subexpression is the entire input expression, the

polarity of the subexpression is reported as being the same as the input expression. Sec-

ondly, where the subexpression is a top level conjunct of theinput expression, the polarity

of the subexpression is reported as being the same as the input expression. In all other

cases the polarity is reported as being unknown.

The limited calculation of polarity has the potential to prevent proof. If the polarity of

a subexpression is reported as being unknown then polarity dependent rewrite rules may

not be applied. In practice, this limitation has not prevented proof, as our proof plans tend

to decompose the structure of conclusions such that polarity will eventually be reported.

Note that this predicate is responsible for all polarity calculations. Thus, if the limited

calculation of polarity became a concern, the proof plans may be enhanced by extending

this predicate accordingly.
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C.9.18 total functions

total functions(+Exp,+OpList,−TotalInt)

This predicate reports the total number of operatorsOpList in expressionExp as

TotalInt. Operators inside program variable expressions, as definedby prog var exps,

are not counted.

C.9.19 unconstrained var

unconstrained var(+Exp)

This predicate is successful if expressionExp is an unconstrained variable, as de-

scribed in §G.8.

C.10 Rewriting

C.10.1 constants to value

constants to value(+Polarity,+InExpList,−OutExpList,−Tactic)

This predicate rewrites scalar constants with their known values. The expressions

to be rewritten are supplied asInExpListalongside their consistent polarity asPolarity.

Following constant replacements, the rewritten expressions are returned asOutExpList

alongside a supporting tacticTacticthat performs the rewrites at the object-level.

C.10.2 constrain const arrays

constrain const arrays(−ConstraintList,−Tactic)

This predicate retrieves constraints for constant arrays that are associated with the

plan. The constraints are returned asConstraintListalongside a supporting tacticTactic

that introduces the constraints as hypotheses at the object-level.

C.10.3 constrain exps

constrain exps(+HypList,+ExpList,
−SpecialisedHypList,−Tactic,−ConditionList)

This predicate specialises hypothesesHypList to constrain expressions of interest

ExpList. In particular, for an expressionX, the predicate attempts to introduce hypotheses

of the formX ≥ Y andX ≤ Z, whereY andZ are ground expressions. The specialised hy-

potheses are returned asSpecialisedHypListalongside a tacticTacticthat introduces these

hypotheses at the object-level. The predicate also returnsa list of conditionsConditionList

whose absence prevented the introduction of specialised hypotheses. These conditions

correspond to an implicationCondition→ PropertywherePropertyoffers a pertinent

constraint, yetConditionis not known.
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C.10.4 eliminate duplicate vars

eliminate duplicate vars(+MaxSeqInt,+Var,+Polarity,+Exp,
−Tactic,−NewExp)

This predicate is successful where a sequence of rewrites isdiscovered that eliminates

all duplicate occurrences of variableVar in expressionExp of known polarityPolarity.

The maximum sequence of rewrites to explore is constrained by MaxSeqInt. Where suc-

cessful, the transformed expression is returned asNewExpalongside a tacticTactic that

performs the rewrites at the object-level. In applying rewrite rules, the following restric-

tions are imposed:

• Ground - The rewrite rule must not introduce meta-variables, as these would sig-

nificantly increase the search space.

• Non-preserving - The rewrite rule must not entirely preserve the original expres-

sion. Such rewrites always increase expression structure,hindering the elimination

of variables. For example, the following rewrite is rejected, as the left hand side

expression is entirely preserved in the right hand side expression:

Z⇒ Z+ 0 (C.2)

C.10.5 select alt view rule

select alt view rule(+Polarity,
−RewriteForm,
?Condition:?LHSExp⇒?RHSExp)

This predicate offers alternative views of an expression by exploring three types of

rewrite rule. The expression is supplied through a partially instantiated rewrite rule, whose

left hand side has known polarityPolarity. Where found, each rewrite rule is described

throughRewriteForm. The three types of rewrite rule sought are listed below:

• Equal - Do not modify the expression. For example:Z⇒ Z.

• Commute - Commute a binary expression. For example:Y+ Z⇒ Z+ Y.

• Rotate - Rotate a binary expression. For example:Y< Z⇒ Z > Y.
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C.10.6 select rewrite rule

select rewrite rule(+Polarity,
−RewriteForm,
?Condition:?LHSExp⇒?RHSExp)

This predicate offers alternative rewrites of an expression by exploring the available

rewrite rules. The expression is supplied through a partially instantiated rewrite rule,

whose left hand side has known polarityPolarity. Where found, each rewrite rule is

described throughRewriteForm.

C.10.7 select transitivity rule

select transitivity rule(+Polarity,
−RewriteForm,
?Condition:?LHSExp⇒?RHSExp)

This predicate offers alternative transitive rewrites of an expression. The expression

is supplied through a partially instantiated rewrite rule,whose left hand side has known

polarityPolarity. Where found, each rewrite rule is described throughRewriteForm. The

transitive rewrites are restricted to those of the following form:

Condition: (X RelOp Y)⇒ (X RelOp Z) ∧ (Z RelOp Y) (C.3)

WhereX andY are expressions,RelOpis an inequality relation, andZ is an introduced

meta-variable.

C.11 Rippling

C.11.1 ripple annotate

ripple annotate(+IndHyp,+IndConc,−AnnIndConc) CO

This predicate is successful where induction conclusionIndConcannotated with re-

spect to its induction hypothesesIndHyp leads to the annotated induction conclusion

AnnIndConc.

C.11.2 ripple complete

ripple complete(+AnnIndConc,−IndHyp,−IndConc,−IndHypPos) CO

This predicate is successful where the annotated inductionconclusionAnnIndConcis

fully rippled. In this case, the unannotated induction hypothesis and induction conclusion

is reported asIndHyp and IndConcrespectively. Further, the position of the induction

hypothesis within the induction conclusion is reported asIndHypPos.
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C.11.3 ripple erasure

ripple erasure(+AnnExp,−Exp) CO

This predicate erases annotations from annotated expression AnnExpreturning the

result asExp.

C.11.4 ripple exp at

ripple exp at(+Exp,−Pos,−SubExp) CO

This predicate returns every well-annotated subexpression ofExpasSubExpalongside

its positionPos.

C.11.5 ripple unblock strategies

ripple unblock strategies(+AnnIndConc,−UnblockedAnnIndConc,−Tactic) CO

This predicate attempts to unblock a ripple proof step by transforming the annotated

induction conclusionAnnIndConc. Where successful, the modified induction conclusion

is returned asUnblockedAnnIndConcalongside a tacticTacticthat performs the transfor-

mation at the object-level. For further details on the unblocking strategies considered, see

theripple unblock method in §E.38.

C.11.6 select wave rule

select wave rule(+Polarity,
−RewriteForm,
?Condition:?LHSExp⇒?RHSExp)

CO

This predicate offers alternative rewrites of an expression via the availablewave-rules.

The expression is supplied through a partially instantiated rewrite rule, whose left hand

side has known polarityPolarity. Where found, each rewrite rule is described through

RewriteForm.
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Appendix D

Tacticals and Tactics

D.1 Introduction

Proof planners typically check the correctness of discovered proof plans in a tactic based

theorem prover. To integrate with the SPARK Approach, our proof plans are checked

in the Checker, which is not a tactic based theorem prover. Toaddress the mismatch, a

collection of simulated tactics and tacticals are introduced. Each of the simulated tactics

and tacticals, including their translation into Checker commands, are listed in this chapter.

Note that the translation is supported though richer proof commands introduced through

modifications made to the Checker, as detailed in §B.4.3.

D.2 Tactics

D.2.1 null tactic

null tactic

This tactic does nothing, making zero changes to the object-level goal. For Checker

translation, the tactic is simply ignored.

D.2.2 trivial tactic

trivial tactic

This tactic appeals to the automated reasoning capabilities of the Checker to discharge

a goal.

Checker Translation

tame_done.
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D.2.3 trivially true conc tactic

trivially true conc tactic(Conc)

This tactic appeals to the automated reasoning capabilities of the Checker to replace

conclusionConcwith true.

Checker Translation

tame_subgoal_on_exp (Conc).

tame_done.

tame_all_done.

tame_rewrite conc : Conc : [] where Conc.

D.2.4 rewrite tactic

rewrite tactic(RewriteForm,
<HypOrConc>,WholeExp,Pos,
Condition: LHSExp⇒ RHSExp)

This tactic rewrites an expression in the goal. The tactic receives a collection of struc-

tured arguments, as shown in Figure D.1. The form of the rewrite is described through

RewriteFormas summarised below:

• rule(FileName, <FileKind>,RuleId, <Direction>) - Rewrite an expression by ap-

plying an external rewrite rule. The rewrite rule is referenced through its file

FileName, file kind <FileKind> and rule identifierRuleId. The rule is applied in

direction<Direction>.

• hypothesisRewrite(HypRewriteExp, <Direction>) - Rewrite an expression by treat-

ing hypothesisHypRewriteExpas a rewrite rule, in direction<Direction>.

• hypothesisFertilise(HypFertiliseExp) - Rewrite an expression astrue via matching

hypothesisHypFertiliseExp.

• evaluate(EvaluatableExp,Value) - Rewrite an expressionEvaluatableExpto the re-

sult of its evaluationValue.

The application of the rewrite is described through a combination of items, as summarised

below:

• <HypOrConc> - Indicates whether a hypothesis or conclusion is to be rewritten as

hypor concrespectively.

• WholeExp- The whole expression of the hypothesis or conclusion to be rewritten.

• Pos- Selects the position within the hypothesis or conclusion that is to be rewritten.

• Condition : LHSExp⇒ RHSExp- Some rewrite rules admit the introduction of

new structure through meta-variables. The new structure isselected by specifying

the concrete form of the rewrite rule.
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<RewriteForm>F rule(FileName, <FileKind>,RuleId, <Direction>) |
hypothesisRewrite(HypRewriteExp, <Direction>) |
hypothesisFertilise(HypFertiliseExp) |
evaluate(EvaluatableExp,Value)

<Direction>F normal | reversed
<FileKind>F | rul | rlu | rls
<HypOrConc>F hyp | conc

Figure D.1: Arguments forrewrite tactic

Checker Translation for: rule(FileName, <FileKind>,RuleId, <Direction>)

If <FileKind> is rlu or rls the rule is not available by default. Such rule files must

be explicitly loaded before they are used.

consult FileName.

tame_rewrite HypOrConc:WholeExp: Poswith LHSExpto RHSExp

if Conditionusing RuleIdin <Direction>.

Checker Translation for: hypothesisRewrite(HypRewriteExp, <Direction>)

tame_rewrite HypOrConc:WholeExp: Poswith LHSExpto RHSExp

if Conditionfrom HypRewriteExpin <Direction>.

Checker Translation for: hypothesisFertilise(HypFertiliseExp)

tame_rewrite HypOrConc:WholeExp: Poswhere HypFertiliseExp.

Checker Translation for: evaluate(EvaluatableExp,Value)

tame_rewrite HypOrConc:WholeExp: Poswith EvaluatableExpis Value.

D.2.5 split conc conj tactic

split conc conj tactic(LeftExp,RightExp)

This tactic splits a goal with a conjoined conclusionLeftExp∧RightExpinto subgoals

with conclusionsLeftExpandRightExp.

Checker Translation

tame_subgoal_on_exp (LeftExp).

Execute the tactics targeted at the first (left) subgoal.

tame_all_done.

tame_subgoal_on_exp (RightExp).

Execute the tactics targeted at the second (right) subgoal.

tame_all_done.

tame_done.
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D.2.6 case split tactic

case split tactic(FirstExp,SecondExp)

This tactic performs a case split based on a disjoined property FirstExp∨ SecondExp.

Each case is considered as a separate subgoal, extended to include either the additional

hypothesisFirstExpor SecondExp.

Checker Translation

prove c#1 by cases on (FirstExp or SecondExp).

Execute the tactics targeted at the first case.

tame_all_done.

Execute the tactics targeted at the second case.

tame_all_done.

tame_done.

D.2.7 sequence tactic

sequence tactic(TacticList)

This tactic executes a list of tactics in sequence, providedasTacticList. For Checker

translation, each tactic ofTacticListis translated in sequence.

D.3 Tacticals

D.3.1 then tactical

then tactical(Tactic,TacticalList)

This tactical applies tacticTactic to the goal, generatingn subgoals. Following this,

the i th tactical in the listTacticalListis applied to thei th subgoal. For Checker translation,

first Tacticis translated, followed by an ordered translation of the tacticals inTacticalList.

D.3.2 final tactical

final tactical(Tactic)

This tactical applies tacticTactic to the goal. The expectation is that the tactic will

discharge the goal, leaving no subgoals. For Checker translationTactic is translated.
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Appendix E

Proof Plans

E.1 Introduction

As described in §6.7, our proof plans are expressed through methods and critics and the

application of methods is controlled through strategies. Each of these components are

detailed in this chapter. Proof plans for exception freedomgoals are introduced in §E.2

while proof plans for program analysis queries are introduced in §E.39. The method-

language supporting the expression of methods and critics is detailed in Appendix C.

E.2 Proof Plans for Exception Freedom Goals

Proof plans are developed for exception freedom goals that arise in the SPARK Approach,

as detailed in the following sections.
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E.3 Strategy: exception freedom

Theexception freedom strategy is shown in Figure E.1 and described below.

Waterfall:
exception freedom
Actions:
targeted goal 7→ exception freedom1

Waterfall:
exception freedom1
Actions:
initialisation 7→ exception freedom2

Waterfall:
exception freedom2
Actions:
specialise hyps 7→ exception freedom3

Waterfall:
exception freedom3
Actions:
viable goal 7→ exception freedom4

Waterfall:
exception freedom4
Actions:
rtc goal 7→ run time check
inv goal 7→ invariant

Figure E.1:exception freedom strategy

E.3.1 Behaviour

This is the entry strategy for proving exception freedom goals. The strategy targets those

goals that have not been proved by the Simplifier. Further, the strategy targets the initial

form of goals, rather than their simplified form. The targeted goals are refined through

an initialisation process. Prior to attempting proof, eachgoal is investigated to determine

its viability. Those goals that appear to be provable are explored further. Different strate-

gies are selected for run-time check goals and invariant goals, appealing to their different

characteristics.
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E.4 Strategy: run time check

Therun time check strategy is shown in Figure E.2 and described below.

Waterfall:
run time check
Actions:
true conc 7→ ∅

false conc 7→ run time check
linear bounded conc 7→ run time check
case split 7→ run time check
mult commute 7→ run time check
eval conc 7→ run time check
split conc conj 7→ run time check
fertilize 7→ run time check
clear conc exp 7→ run time check
elim var conc 7→ run time check
transitivity entry 7→ transitivity(run time check)

Waterfall:
transitivity(ContinuationStrategy)
Actions:
transitivity fertilize 7→ transitivity
transitivity decomp 7→ transitivity
transitivity close 7→ ContinuationStrategy
transitivity unblock 7→ transitivity

Figure E.2:run time check strategy

E.4.1 Behaviour

This strategy proves run-time check goals. The strategy is also used to prove lemmas

and subgoals that emerge in proving invariant goals. The strategy considers increasingly

sophisticated methods to advance proof. In particular, as alast resort, the strategy seeks

to decompose a conclusion by introducing a transitivity step.
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E.5 Strategy: invariant

The invariant strategy is shown in Figure E.3 and described below.

Waterfall:
invariant
Actions:
ripple entry 7→ ripple(run time check)

Waterfall:
ripple(ContinuationStrategy)
Actions:
ripple unblock 7→ ripple
ripple wave 7→ ripple
ripple fertilize 7→ ContinuationStrategy

Figure E.3:invariant strategy

E.5.1 Behaviour

This strategy proves invariant goals. The strategy immediately attempts to introduce a

ripple step.
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E.6 Method: targeted goal

The targeted goal method is shown in Figure E.4 and described below. The four crit-

ics associated with this method areproved at simplifier, simplified goal, other goal and

in real domain as described in §E.7, §E.8, §E.9 and §E.10 respectively.

Method:
targeted goal
Tactic:
null tactic
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Not proved by Simplifier.
match global context(provedAtSimplifier(false))
Not a simplified goal.
match global context(sourceSystem(vcg))
Goal is of a targeted category.
not(get goal category(other)),
No real arithmetic in the conclusion.
remove real exps([Conc], [Conc])
Effects:
∅

Subgoals:
[LocalContextList: HypList⊢ Conc]

Figure E.4:targeted goal method

E.6.1 Behaviour

This method is successful where the goal is targeted by our proof plans. Four separate

checks are performed as listed below:

• Not already proved - The goal has not been proved by the Simplifier.

• Not a simplified goal- Each goal not proved by the Simplifier will be encountered

in both its initial and simplified form. The simplified goals are subject to significant

and variable structural changes, making it difficult to identify proof families. In

particular, the structural changes can prevent the introduction of a ripple step. Thus,

the initial form of goals are targeted.

• Is a targeted goal- Exception freedom goals and their related invariant goalsare

targeted. It is unlikely that progress will be made for othergoal categories, so they

are not considered.

• Conclusion not in the real domain- As discussed in §6.5.1, our proof plans target

discrete types. The check is only performed on the conclusion, supporting the in-

vestigation of goals that have discrete conclusions with some hypotheses in the real

domain.
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E.7 Critic: proved at simplifier

Theproved at simplifier critic is shown in Figure E.5 and described below. The criticis

associated with thetargeted goal method, as described in §E.6.

Critic:
proved at simplifier
Parent method:
targeted goal
Goal:

Successful method preconditions:
∅

Failed method precondition:
match global context(provedAtSimplifier(false))
Preconditions:
∅

Effects:
write line(‘Goal already proved by the Simplifier.’)
abort plan(provedBySimplifier)

Figure E.5:proved at simplifier critic

E.7.1 Behaviour

Where the goal has been proved by the Simplifier thetargeted goal method will fail, lead-

ing to an invocation of this critic. The critic displays a message to describe the situation

and aborts the plan with an appropriate failure critique.
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E.8 Critic: simplified goal

Thesimplified goal critic is shown in Figure E.6 and described below. The criticis asso-

ciated with thetargeted goal method, as described in §E.6.

Critic:
simplified goal
Parent method:
targeted goal
Goal:

Successful method preconditions:
match global context(provedAtSimplifier(false))
Failed method precondition:
match global context(sourceSystem(vcg))
Preconditions:
∅

Effects:
write line(‘Is a simplified goal.’)
abort plan(simplifiedGoal)

Figure E.6:simplified goal critic

E.8.1 Behaviour

Where the structure of the goal has been subject to simplification the targeted goal

method will fail, leading to an invocation of this critic. The critic displays a message

to describe the situation and aborts the plan with an appropriate failure critique.
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E.9 Critic: other goal

Theother goal critic is shown in Figure E.7 and described below. This critic is associated

with the targeted goal method, as discussed in §E.6.

Critic:
other goal
Parent method:
targeted goal
Goal:

Successful method preconditions:
match global context(provedAtSimplifier(false))
match global context(sourceSystem(vcg))
Failed method precondition:
not(get goal category(other))
Preconditions:
∅

Effects:
write line(‘Is not a targeted goal.’)
abort plan(goalNotTargeted)

Figure E.7:other goal critic

E.9.1 Behaviour

Where the goal category is not targeted by the proof plans, the targeted goal method will

fail, leading to an invocation of this critic. The critic displays a message to describe the

situation and aborts the plan with an appropriate failure critique.
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E.10 Critic: in real domain

The in real domain critic is shown in Figure E.8 and described below. This critic is

associated with thetargeted goal method, as discussed in §E.6.

Critic:
in real domain
Parent method:
targeted goal
Goal:

Successful method preconditions:
match global context(provedAtSimplifier(false))
match global context(sourceSystem(vcg))
not(get goal category(other))
Failed method precondition:
remove real exps([Conc], [Conc])
Preconditions:
∅

Effects:
write line(‘Conclusion in real domain.’)
abort plan(inRealDomain)

Figure E.8:in real domain critic

E.10.1 Behaviour

Where the goal has a conclusion with expressions in the real domain, thetargeted goal

method will fail, leading to an invocation of this critic. The critic displays a message to

describe the situation and aborts the plan with an appropriate failure critique.
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E.11 Method: initialisation

The initialisation method is shown in Figure E.9 and described below.

Method:
initialisation
Tactic:
sequence tactic([ConstraintTactic,HypTactic,ConcTactic])
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
∅

Effects:
Find constraints for constant arrays.
constrain const arrays(ConstraintList,ConstraintTactic)
Add the constraints as hypotheses.
append(HypList,ConstraintList,ExtendedHypList)
Remove duplicate hypotheses.
filter duplicates(ExtendedHypList, ,UniqHypList)
Remove real hypotheses.
remove real exps(UniqHypList,DiscreteHypList)
Replace named scalar constants for all hypotheses.
constants to value(negative,DiscreteHypList,NewHypList,HypTactic)
Replace named scalar constants for the conclusion.
constants to value(positive, [Conc], [NewConc],ConcTactic)
Subgoals:
[LocalContextList: NewHypList⊢ NewConc]

Figure E.9:initialisation method

E.11.1 Behaviour

The Examiner is a strictly mechanical verification condition generator. Consequently,

the goals encountered tend to be relatively verbose. This method performs four separate

initialisations, streamlining goals to ease proof.

E.11.2 Introduce External Constraints

The Examiner does not generate subprogram rules associating constant arrays with their

corresponding constant expressions. This behaviour is selected as the generation of large

constant arrays could adversely affect the performance of the toolset. Instead, an engineer

may introduce user rules to suitability constrain constantarrays. Where present, these

rules are directly relevant to the goal. This method identifies such rules and introduces

them as hypotheses.

Note that recent versions of the Examiner can generate subprogram rules associating

constant arrays with their corresponding constant expressions. To address performance

concerns, the generation of these rules is configurable.
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E.11.3 Remove Duplicate Hypotheses

The goal may contain duplicate hypotheses. Such hypothesesoften arise from the same

variable being used in different contexts, generating duplicate occurrences of its type con-

straints. This method identifies and removes duplicate hypotheses. The removal of dupli-

cate hypotheses has no effect on proof as each remaining hypothesis can be used wherever

its duplicates may have been used. Consequently, the removeof duplicate hypotheses at

the meta-level need not be performed at the object-level.

E.11.4 Remove Real Hypotheses

Thetargeted goal method ensures that the conclusion is not in the real domain.However,

there may be hypotheses in the real domain. As our plans target the discrete domain, it is

unlikely that these hypotheses will be required. Thus, thismethod identifies and removes

any hypotheses in the real domain. The presence of unused hypotheses has no effect

on proof. Consequently, the removal of real hypotheses at the meta-level need not be

performed at the object-level.

E.11.5 Replace Named Scalar Constants With Their Values

The Examiner generates subprogram rules, associating scalar constants with their corre-

sponding constant expressions. Two alternative techniques were considered for exploiting

these rules:

• Unconstrained- Replace every named scalar constant with its corresponding value.

This is a trivial operation that can be performed in a single method. However, in-

evitability, unnecessary constant replacements will occur, resulting in a less suc-

cinct proof.

• Constrained - Only replace named scalar constants with their corresponding value

if this replacement is necessary to complete a proof. Middle-out reasoning might

be used to discover how the proof will progress and identify targeted constant re-

placements. Such an approach would be non-trivial, requiring appropriate commu-

nication between methods. However, the resulting proofs will be more succinct.

Replacing named scalar constants with their correspondingvalues is regarded as an ob-

vious simplification, rather than a key step of proof development. On this basis, uncon-

strained replacement was adopted.

A ripple step is dependent on finding structural matches between a hypothesis and

conclusion. Changes to the syntax of a goal has the potentialto disrupt a ripple proof.

Here, each occurrence of a named constant will be universally replaced with the same

value. Thus, the number of structural matches will not reduce. However, the number

of structural matches might increase, if previously distinct named constants are replaced
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with the same value. In principle, this might create additional search in developing a

ripple step. However, in practise, the situation has not been encountered.

E.12 Method: specialise hyps

Thespecialise hyps method is shown in Figure E.10 and described below.

Method:
specialise hyps
Tactic:
sequence tactic([LemmaTactic,AdditionalTactic])
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
∅

Effects:
Collect program variable expressions in the conclusion.
prog var exps(Conc,ProgVarExpList)
Identify supplementary lemmas for extending hypotheses.
constrain exps(HypList,ProgVarExpList, , , LemmaList)
Try to prove each supplementary lemma.
plan lemmas(HypList, LemmaList, run time check, LemmaProvedList, LemmaTactic)
Extend hypotheses to include the lemmas.
append(HypList, LemmaProvedList,ExtendedHypList)
Identify additional hypotheses.
constrain exps(ExtendedHypList,ProgVarExpList,

AdditionalHypList,AdditionalTactic, )
Get extended hypotheses.
append(ExtendedHypList,AdditionalHypList,NewHypList)
Subgoals:
[LocalContextList: NewHypList⊢ Conc]

Figure E.10:specialise hyps method

E.12.1 Behaviour

Typically, hypotheses offer general constraints while a conclusion requires demonstrating

a specific constraint. For example, a hypothesis may constrain every element of an ar-

ray to be within its type while a conclusion may require demonstrating that a particular

element of this array is within its type. In such cases, proofoften involves specialising

general hypothesis constraints to target the specific conclusion constraints. Two alterna-

tive techniques were considered for achieving this hypothesis specialisation:

• Unconstrained - Preemptively specialise hypotheses to target the specificform of

the conclusion. In general, it is difficult to predict the structure of a proof and hence

difficult to determine which specialised hypotheses will be required. However, in

verifying exception freedom, the structure of the conclusion can offer strong guid-

ance in selecting relevant hypothesis specialisations.
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• Constrained - Only specialise hypotheses where this is strictly necessary to com-

plete proof. Middle-out reasoning might be used to discoverhow the proof will

progress and identify targeted hypothesis specialisations. The approach would nat-

urally support the discovery and introduction of hypothesis specialisations that are

not intuitively suggested by the conclusion. However, several methods would be af-

fected by this approach as access to relevant hypotheses is acommon requirement.

The constrained technique offers a powerful and targeted mechanism for hypothesis spe-

cialisation. However, the unconstrained technique is significantly simpler and, in veri-

fying exception freedom, sufficiently effective. On this basis, unconstrained hypothesis

specialisation was adopted. Note that, if extending these plans further, the unconstrained

technique might be complemented through the introduction of the constrained technique.

This might be expressed as a critic, offering insightful hypothesis specialisations to patch

otherwise failing subgoals.

E.12.2 Plan Lemmas Separately

The specialisation of hypotheses may require proving supplementary lemmas. For ex-

ample, to specialise a hypothesis constraining every element of an array to a hypothesis

constraining a particular element of an array it must be shown that the particular element

lies within the range of the array. As described in §6.8.2, our proof planner supports

the simultaneous development of multiple plans. This mechanism is exploited to plan

lemmas separately. The style is advantages as it supports the reuse of existing strategies.

Typically, each lemma requires proving that a particular expression lies inside a general

range. There is a strong correspondence between this task and proving run-time check

goals. Thus, therun time check strategy is reused in planning lemmas.
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E.13 Method: viable goal

The viable goal method is shown in Figure E.11 and described below. The four critics

associated with this method arecouple entry vars, constrain consts, constrain vars and

tightly constrain vars as described in §E.14, §E.15, §E.16 and §E.17 respectively.

Method:
viable goal
Tactic:
null tactic
Goal:
Goal
Preconditions:
∅

Effects:
No uncoupled entry variables.
uncoupled entry vars(Goal,UncoupledVarList)
UncoupledVarList= []
Check no unconstrained constants or variables.
unconstrained consts vars(Goal,UnconstrainedConstList,UnconstrainedVarList)
UnconstrainedConstList= []
UnconstrainedVarList= []
No under constrained variables.
under constrained vars(Goal,UnderConstrainedVarList)
UnderConstrainedVarList= []
Subgoals:
[Goal]

Figure E.11:viable goal method

E.13.1 Behaviour

This method searches for goal patterns associated with unprovable goals. The method

is only successful where none of these patterns occur. As such, the method effectively

expresses preconditions for an entire strategy. Three difficult patterns of unprovable goal

are considered, as described in the sections below.

E.13.2 No Uncoupled Entry Variables

A SPARK for-loop terminates when its iterator variable reaches an end-point value. The

end-point value is calculated by evaluating the end-point expression as the loop isentered.

Typically, a for-loop will iterate over a subtype. In this case the end-point value is simply

the last value of this subtype. However, a for-loop may have amore complex end-point

expression, referencing program variables. Significantly, these variables may be modified

within the loop. Thus, the evaluation of the end-point expression at loop entry may differ

from its evaluation on subsequent iterations. To capture these semantics in program ver-

ification, every variable in an end-point expression is cloned as a specialentryvariable.
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Each entry variable takes the value of its corresponding variable at the point the loop is

entered. Thus, the evaluation of an end-point expression, in terms of the entry variables,

is the same on every loop iteration. This transformed end-point expression is used to

describe the end-point value of the for-loop.

The entry variable mechanism faithfully represents the semantics of for-loops. How-

ever, where present, entry variables typically become an obstacle to proof. It is nearly

always necessary to introduce an invariant that describes the relationship between each

entry variable and its corresponding program variable. Thus, this method rejects goals

that are missing such missing invariants.

package WriteToArrayPartition_Package is

subtype I_Type is Integer range 0 .. 100;

type D_Type is array (I_Type) of Integer;

procedure WriteToArrayPartition(Left: in I_Type;

Right: in I_Type;

Value: in Integer;

Destination: in out D_Type);

--# derives Destination from Left, Right, Value, Destination;

end WriteToArrayPartition_Package;

package body WriteToArrayPartition_Package is

procedure WriteToArrayPartition(Left: in I_Type;

Right: in I_Type;

Value: in Integer;

Destination: in out D_Type)

is

begin

for I in I_Type range Left .. Right loop

--# assert true;

Destination(I):=Value;

end loop;

end WriteToArrayPartition;

end WriteToArrayPartition_Package;

Figure E.12: WriteToArrayPartition subprogram

For example, consider the WriteToArrayPartition subprogram shown in Figure E.12.

The subprogram writes a given value to a bounded portion of anarray. The subprogram

contains a for-loop that terminates when the loop iteratori reaches the value of variable

right at loop entry. The essential goal1 for verifying thati does not exceed its upper bound

1In the SPARK Approach, the entry variable forright is referenced asright entry loop <counter>.

This verbose name is guaranteed to be unique within its enclosing subprogram. For brevity, in the examples

shown in this thesis, every entry variable is uniquely referenced via its program variable name, appended

with entry.
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within the for-loop, following theinitialisation method, is shown below:

(i ≤ 100)∧ (right ≤ 100)∧ (i ≤ right entry) ∧ (¬(i = right entry))

→

(i + 1) ≤ 100

(E.1)

The goal is unprovable as there is no hypothesis relating theentry variableright entry

to the program variableright. As variableright is not modified within the for-loop an

invariant could be introduced equatingright entrywith right. With such an invariant in

place, it would become possible to prove the goal.

Recent versions of the Examiner are more selective in the introduction of entry vari-

ables. All import variables of modein cannot be modified within a subprogram. Thus,

the entry value of these variables will always equal their corresponding program variable.

On this basis, for such variables, the Examiner omits the introduction of entry variables.

E.13.3 No Unconstrained Constants or Variables

Following theinitialisation method, every available constant constraint, in either thesub-

program or user rules, will have been introduced. As standard, every variable in the

goal should be constrained to be within its type. Thus, any unconstrained constants or

variables strongly indicate that the goal needs strengthening. Consequently, this method

rejects goals where unconstrained constants or variables can be identified. Note that an

exception is made for entry variables, as these are often constrained indirectly, by being

related to their corresponding program variable.

E.13.4 No Under Constrained Constants or Variables

A constraint solver is exploited to search for a counter-example to the goal. The counter-

example identifies a collection of constants and variables whose constraints are likely to

need strengthening in order to prove the goal. The techniqueis detailed in the sections

below, and illustrated through the FilterShortInteger subprogram shown in Figure E.13.

The subprogram sums the values of an array that lie between 0 and 100.

Constraint Solver

Constraint solving can be a computationally intensive task. To make this task tractable,

most constraint solvers operate in restricted domains. We focus on the clp(FD) (Constraint

Logic Programming Finite Domain) constraint solver [COC97], which is distributed with

Sicstus Prolog [Swe05]. The clp(FD) constraint solver operates with integers that lie

between−(225) and (225) − 1. Further, the default configuration of the clp(FD) constraint

solver supports a relatively limited number of functions, as shown by its grammar in
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package FilterShortInteger_Package is

subtype AR_T is Short_Integer range 0..9;

type A_T is array (AR_T) of Short_Integer;

procedure FilterShortInteger(A: in A_T; R: out Short_Integer);

--# derives R from A;

end FilterShortInteger_Package;

package body FilterShortInteger_Package is

procedure FilterShortInteger(A: in A_T; R: out Short_Integer)

is

begin

R:=0;

for I in AR_T loop

--# assert true;

if A(I)>=0 and A(I)<=100 then

R:=R+A(I);

end if;

end loop;

end FilterShortInteger;

end FilterShortInteger_Package;

Figure E.13: FilterShortInteger subprogram

Figure E.14. Nevertheless, within this restricted domain,the constraint solver is capable

of performing sophisticated reasoning in a timely fashion.

<Constraint>F <Constraint> ∧ <Constraint> |
<Constraint> ∨ <Constraint> |
¬<Constraint> |
<Eq> |
<boolean-variable>

<Eq>F <IntExp> = <IntExp> | <IntExp> , <IntExp> |
<IntExp> < <IntExp> | <IntExp> ≤ <IntExp> |
<IntExp> > <IntExp> | <IntExp> ≥ <IntExp>

<IntExp>F <IntExp> ∗ <IntExp> |
<IntExp> div <IntExp> | <IntExp> mod<IntExp> |
<IntExp> + <IntExp> | <IntExp> − <IntExp> | −<IntExp> |
<integer-variable> |
<integer> {in range:−(225) . . . (225) − 1}

Figure E.14: clp(FD) input grammar

Reject Goals Outside Integer Domain

When the constraint solver encounters integers that lie beyond its legal range an overflow

error is raised and the constraint solving request is abandoned. The situation will occur

if the input constraint problem contains integers outside the legal range. Further, the

situation will occur if, during constraint solving, calculations are performed that generate

integers outside the legal range.

174



To guard against overflows, constraint solving is only attempted where every con-

stant lies well within the legal range accepted by the constraint solver. In practice, it is

checked that every constant lies between the bounds−(220) and (220) − 1. While this

restriction is simplistic, it offers a reasonable assurance that an overflow will not occur

during constraint solving. For example, in the FilterShortInteger subprogram, every value

is represented as a short integer. As specified in the target configuration file of §4.4.5,

these integers are bound between−(215) and (215) − 1. Significantly, these bounds lie

inside the range considered by this method.

Negate Goal to Search for Counter-Example

The aim is to identify situations where the goal is false. This is achieved by searching for

solutions that satisfy the negation of the goal. In general,each input goal takes the form:

∀vars. ((Hyp1 ∧ · · · ∧ Hypn)→ Conc)

Negating and simplifying this goal leads to:

∃vars. ((Hyp1 ∧ · · · ∧ Hypn) ∧ (¬Conc))

Significantly, in negating the goal, each variable is transformed from being implicitly

universally quantified to implicitly existentially quantified. For example, consider the

FilterShortInteger subprogram. In verifying exception freedom, it must be shown that

the assignmentR:=R+A(I) always assigns a value tor that is within its upper bound.

The corresponding goal and its negation, following theinitialisation method, is shown in

Figure E.15.

Overflow goal
∀(i 1 : short integer. i 1 ≥ 0∧ i 1 ≤ 9→

element(a, [i 1]) ≥ −32768∧ element(a, [i 1]) ≤ 32767)∧
(i ≥ 0)∧ (i ≤ 9)∧ (r ≥ −32768)∧ (r ≤ 32767)∧
(element(a, [i]) ≥ 0)∧ (element(a, [i]) ≤ 100)
→

r + element(a, [i]) ≤ 32767

Negated overflow goal
∀(i 1 : short integer. i 1 ≥ 0∧ i 1 ≤ 9→

element(a, [i 1]) ≥ −32768∧ element(a, [i 1]) ≤ 32767)∧
(i ≥ 0)∧ (i ≤ 9)∧ (r ≥ −32768)∧ (r ≤ 32767)∧
(element(a, [i]) ≥ 0)∧ (element(a, [i]) ≤ 100)∧
¬(r + element(a, [i]) ≤ 32767)

Figure E.15: Overflow goal and its negation
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Partition Goal to Meet Input Grammar

It is unlikely the negated goal will reside entirely within the constraint solver grammar.

To address this, the goal is partitioned into three separateconjunct lists as summarised

below:

• within - Conjuncts within the constraint solver grammar.

• Beyond- Conjuncts beyond the constraint solver grammar.

• equalities- Conjuncts equating integer expressions to integer variables.

Each conjunct of the negated goal is partitioned through thefollowing operations, consid-

ered in order:

• Add to within - The conjunct can be directly expressed in the constraint solver

grammar. The conjunct is added towithin.

• Eliminate integer expression and repeat- The conjunct contains a blocking inte-

ger expression that can not be directly expressed in the constraint solver grammar.

Theequalitiesare extended, introducing an equality between the blockingexpres-

sion and a new integer variable. The blocking expression is then eliminated by

being replaced with its corresponding integer variable. For consistency, the elimi-

nation is preformed throughout the negated goal and the emerging partitioned goal

in within and beyond. With the blocking expression eliminated, the partitioning

process is repeated.

• Add to beyond - Neither of the above cases are applicable. The conjunct is added to

beyond. Where the negated conclusion can not be presented to the constraint solver

it is likely that flawed counter-examples will be discovered. Thus, in this case, the

constraint solving attempt is abandoned.

For example, consider the negated goal shown in Figure E.15.Partitioning this goal for

constraint solving generates the vales ofwithin, beyondandequalitiesas shown in Fig-

ure E.16. Note that, during partitioning, the integer variable iv is introduced to eliminate

the integer expressionelement(a, [i]).

Solve Goal as Constraint Problem

After partitioning, the negated goal is expressed throughwithin, beyond, andequalities.

The conjuncts inwithin are sent to the constraint solver. Where successful, the constraint

solver will discover at least one satisfying solution assolution. For example, consider the

within partition show in Figure E.16. The first satisfiable solutiondiscovered is:

(i = 0)∧ (r = 32668)∧ (iv = 100) (E.2)
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within
(i ≥ 0)∧ (i ≤ 9)∧ (r ≥ −32768)∧ (r ≤ 32767)∧ (iv ≥ 0)∧ (iv ≤ 100)∧
¬(r + iv ≤ 32767)

beyond
∀(i 1 : short integer. i 1 ≥ 0∧ i 1 ≤ 9→

element(a, [i 1]) ≥ −32768∧ element(a, [i 1]) ≤ 32767)

equalities
element(a, [i]) = iv

Figure E.16: Partitioned negated goal

Assemble Candidate Solution

Eachsolutionrepresents a candidate instantiation of existentially quantified variables in

the negated goal. On this basis, the negated goal is reassembled for analysis. Thewithin

conjuncts are replaced bysolution, and theequalitiesare eliminated by replacing all in-

teger variables with their corresponding expressions. Forexample, reassembling the par-

titioned negated goal of Figure E.16, exploiting solution (E.2), leads to the candidate

solution shown in Figure E.17.

(i = 0)∧ (r = 32668)∧ (element(a, [i]) = 100)∧
∀(i 1 : short integer. i 1 ≥ 0∧ i 1 ≤ 9→

element(a, [i 1]) ≥ −32768∧ element(a, [i 1]) ≤ 32767)

Figure E.17: Candidate solution

Identify Under Constrained Variables

This method assumes that the first candidate solution is valid. Such an assumption is

unsound, as only a portion of the goal is submitted to the constraint solver. In principle,

this may result in the method falsely reporting under constrained variables. In practice,

where verifying exception freedom, this is thought unlikely. Many of the expressions

related to exception freedom goals can be expressed in the constraint solver grammar.

In particular, constraint solving is only attempted where the negated conclusion can be

submitted to the constraint solver. Thus, typically, a significant portion of the goal is

submitted to the constraint solver, giving generally strong results.

The method might be strengthened to consider each candidatesolution, and attempt

to prove that the goal is satisfiable. As the constraint solver may report many solutions,

domain knowledge might be exploited to target more promising solutions. For example,

in verifying exception freedom, the extreme upper and lowerlimits of variables are more

likely to correspond to genuine counter-examples.
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Where a candidate solution is discovered, the method rejects the goal and the variables

in solutionare reported as being under constrained. Entry variables are omitted, as these

are constrained indirectly. For example, based on solution(E.2), the for-loop variablei,

integer variabler and arraya are reported as being under constrained.

E.14 Critic: couple entry vars

Thecouple entry vars critic is shown in Figure E.18 and described below. This critic is

associated with theviable goal method, as discussed in §E.13.

Critic:
couple entry vars
Parent method:
viable goal
Goal:
Goal
Successful method preconditions:
uncoupled entry vars(Goal,UncoupledVarList)
Failed method precondition:
UncoupledVarList= []
Preconditions:
∅

Effects:
match global context(sourceSubprogram(SubprogramName))
write line(‘Uncoupled entry variable(s) detected.’)
abort plan(abstractPredicate(SubprogramName,

coupleWithEntryVars(UncoupledVarList)))

Figure E.18:couple entry vars critic

E.14.1 Behaviour

Where the goal does not contain a hypothesis relating an entry variable to its correspond-

ing program variable theviable goal method will fail, leading to an invocation of this

critic. The critic displays a message to describe the situation and aborts the plan with an

appropriate failure critique, ultimately triggering program analysis.

178



E.15 Critic: constrain consts

Theconstrain consts critic is shown in Figure E.19 and described below. This critic is

associated with theviable goal method, as discussed in §E.13.

Critic:
constrain consts
Parent method:
viable goal
Goal:
Goal
Successful method preconditions:
uncoupled entry vars(Goal,UncoupledVarList)
UncoupledVarList= []
unconstrained consts vars(Goal,UnconstrainedConstList,UnconstrainedVarList)
Failed method precondition:
UnconstrainedConstList= []
Preconditions:
∅

Effects:
match global context(sourceSubprogram(SubprogramName))
write line(‘Under constrained constant(s) detected.’)
abort plan(interactionNeeded(SubprogramName,

constrainConsts(UnconstrainedConstList)))

Figure E.19:constrain consts critic

E.15.1 Behaviour

Where the goal contains unconstrained constants theviable goal method will fail, leading

to an invocation of this critic. The critic displays a message to describe the situation and

aborts the plan with an appropriate failure critique. The expectation is that an engineer

will manually constrain the identified constants through the introduction of user rules. The

engineer is responsible for ensuring the soundness of user rules. As SPADEase makes no

soundness claims, it would be unsound for SPADEase to automate this task.
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E.16 Critic: constrain vars

The constrain vars critic is shown in Figure E.20 and described below. This critic is

associated with theviable goal method, as discussed in §E.13.

Critic:
constrain vars
Parent method:
viable goal
Goal:
Goal
Successful method preconditions:
uncoupled entry vars(Goal,UncoupledVarList)
UncoupledVarList= []
unconstrained consts vars(Goal,UnconstrainedConstList,UnconstrainedVarList)
UnconstrainedConstList= []
Failed method precondition:
UnconstrainedVarList= []
Preconditions:
∅

Effects:
match global context(sourceSubprogram(SubprogramName))
write line(‘Unconstrained variable(s) detected.’)
abort plan(abstractPredicate(SubprogramName,

constrainVars(UnconstrainedVarList)))

Figure E.20:constrain vars critic

E.16.1 Behaviour

Where the goal contains unconstrained variables theviable goal method will fail, leading

to an invocation of this critic. The critic displays a message to describe the situation and

aborts the plan with an appropriate failure critique, ultimately triggering program analysis.
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E.17 Critic: tightly constrain vars

Thetightly constrain vars critic is shown in Figure E.21 and described below. This critic

is associated with theviable goal method, as discussed in §E.13.

Critic:
tightly constrain vars
Parent method:
viable goal
Goal:
Goal
Successful method preconditions:
uncoupled entry vars(Goal,UncoupledVarList)
UncoupledVarList= []
unconstrained consts vars(Goal,UnconstrainedConstList,UnconstrainedVarList)
UnconstrainedConstList= []
UnconstrainedVarList= []
under constrained vars(Goal,UnderConstrainedVarList)
Failed method precondition:
UnderConstrainedVarList= []
Preconditions:
∅

Effects:
match global context(sourceSubprogram(SubprogramName))
write line(‘Under constrained variable(s) detected.’)
abort plan(abstractPredicate(SubprogramName,

tightlyConstrainVars(UnderConstrainedVarList)))

Figure E.21:tightly constrain vars critic

E.17.1 Behaviour

Where under constrained variables are identified theviable goal method will fail, leading

to an invocation of this critic. The critic displays a message to describe the situation and

aborts the plan with an appropriate failure critique, ultimately triggering program analysis.
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E.18 Method: rtc goal

Thertc goal method is shown in Figure E.22 and described below.

Method:
rtc goal
Tactic:
null tactic
Goal:
Goal
Preconditions:
Goal is run-time check or between different invariants.
get goal category(GoalCat)
select(GoalCat, [rtc, binv], )
Effects:
∅

Subgoals:
[Goal]

Figure E.22:rtc goal method

E.18.1 Behaviour

This method is successful where the goal corresponds to either a run-time check or a

transition between different invariants.

E.19 Method: inv goal

The inv goal method is shown in Figure E.23 and described below.

Method:
inv goal
Tactic:
null tactic
Goal:
Goal
Preconditions:
Goal is returning to same invariant.
get goal category(rinv)
Effects:
∅

Subgoals:
[Goal]

Figure E.23:inv goal method
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E.19.1 Behaviour

This method is successful where the goal corresponds to a transition from an invariant

returning to the same invariant.

E.20 Method: true conc

The true conc method is shown in Figure E.24 and described below.

Method:
true conc
Tactic:
trivial tactic
Goal:

: ⊢ true
Preconditions:
∅

Effects:
∅

Subgoals:
[]

Figure E.24:true conc method

E.20.1 Behaviour

This method identifies a goal that is immediately true. The trivial goal is discharged,

leaving no subgoals.
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E.21 Method: false conc

The false conc method is shown in Figure E.25 and described below.

Method:
false conc
Tactic:
trivial tactic
Goal:
LocalContextList: ⊢ false
Preconditions:
Retrieve recorded referenced variables.
get constraining vars(LocalContextList,VarList)
Check some variables have been referenced.
not(VarList= []),
Mark these variables as being potentially under constrained.
match global context(sourceSubprogram(SubprogramName))
add under constrained vars(SubprogramName,VarList)
Never succeed.
f ail
Effects:
∅

Subgoals:
[]

Figure E.25:false conc method

E.21.1 Behaviour

This method identifies a goal that is immediately false. Suchgoals may arise on a branch

of the proof tree, where the proof planner explores an unsuccessful chain of reasoning.

Significantly, other unexplored branches may successfullylead to proof. To address this,

in encountering a false goal, the plan is not aborted. Instead, those variables that con-

tributed to the false goal are retrieved and recorded in the global context information

associated with the plan. As described in §6.8.2, if the planning effort fails, a failure

critique is raised, identifying all variables contributing to false goals as being potentially

under constrained. This will ultimately trigger program analysis.
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E.22 Method: linear bounded conc

The linear bounded conc method is shown in Figure E.26 and described below.

Method:
linear bounded conc
Tactic:
trivially true conc tactic(Conc)
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Check that this is an inequality relation.
binary explode(Conc,Op, , )
is inequality op(Op)
Explore alternative conjunct forms.
sub exp polarity(Conc, positive, [] ,Polarity)
select alt view rule(Polarity, ,

true : Conc⇒ ModifiedConc)
Check the relation involves a simple linear expression and an integer.
binary explode(ModifiedConc, , Left,Right)
simple linear exp var(Left,VarInt)
is int(Right)
Find bounds for the integer variable in the simple linear expression.
int bound var(HypList,VarInt, LowerInt,UpperInt)
Effects:
Substitute and evaluate to find extreme points.
find replace(ModifiedConc,VarInt, LowerInt, Lowest)
find replace(ModifiedConc,VarInt,UpperInt,Highest)
Determine if extreme points hold.
eval exp((Lowest∧Highest),ResultBool)
Record the relevant variable.
add constraining vars(LocalContextList, [VarInt],NewLocalContextList)
Subgoals:
[NewLocalContextList: HypList⊢ ResultBool]

Figure E.26:linear bounded conc method

E.22.1 Behaviour

This method applies a specific form of linear reasoning. The linear reasoning matches

the automated reasoning capabilities of the Checker. This correspondence means that the

tactic associated with the method simply instructs the Checker to automatically discharge

the conclusion. While specific, the linear reasoning considered is frequently applicable

where verifying exception freedom. In particular, thetransitivity strategy may generate

subgoals that are discharged by this method.

The method targets conclusions of the form:

linexp(VarInt) RelOp BoundInt (E.3)

Wherelinexp is a simple linear expression parametrised by the integer variable VarInt,
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RelOpis an inequality relation andBoundIntis an integer. The hypotheses are searched

to discover tight constraints forVarInt such that:

(VarInt ≥ LowerInt) ∧ (VarInt ≤ UpperInt) (E.4)

As linexp is linear, its extreme bounds coincide with the extreme values ofVarInt. By

substituting the bounds discovered forVarInt, the corresponding bounds oflinexp can

be determined. The conclusion is a relation comparinglinexp with BoundInt. Thus the

method reports the truth of the conclusion as the evaluationof the following expression:

(linexp(LowerInt) RelOp BoundInt) ∧

(linexp(UpperInt) RelOp BoundInt)
(E.5)

The truth of the conclusion depends on the quality of the constraints discovered forVarInt.

This dependency is explicitly recorded in the local contextinformation. Should the branch

of reasoning fail, thefalse conc method will suggest strengthening the constraints of

VarInt.
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E.23 Method: case split

Thecase split method is shown in Figure E.27 and described below.

Method:
case split
Tactic:
case split tactic(FirstCase,SecondCase)
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Find multiplication of variable expressions.
exp at(Conc,Pos, (LeftVarInt∗ RightVarInt))
prog var exps(LeftVarInt, [LeftVarInt], )
prog var exps(RightVarInt, [RightVarInt], )
Check neither parameter is exclusively negative or positive.
int bound var(HypList, LeftVarInt, LeftLowerInt, LeftUpperInt)
(LeftLowerInt∗ LeftUpperInt) < 0
int bound var(HypList,RightVarInt,RightLowerInt,RightUpperInt)
(RightLowerInt∗ RightUpperInt) < 0
Effects:
Establish case split for right variable.
FirstCase= (RightVarInt< 0)
SecondCase= (RightVarInt≥ 0)
Construct subgoals.
append(HypList, [FirstCase],FirstCaseHypList)
append(HypList, [SecondCase],SecondCaseHypList)
Subgoals:
[LocalContextList: FirstCaseHypList⊢ Conc,
LocalContextList: SecondCaseHypList⊢ Conc]

Figure E.27:case split method

E.23.1 Behaviour

This method introduces a case split to ease the proof effort. Where reasoning about the

multiplication of variables it is convenient if one of the variables is strictly negative or

positive. For example, as part of the standard rules, the following rewrite rule is available:

((X ∗ Z) ≥ (Y∗ Z))⇒ (X ≤ Y) ∧ (Z ≤ 0) (E.6)

Such a rewrite rule enables an inequality to be decomposed into separate conjuncts. How-

ever, this is only useful if it can be shown thatZ is either zero or negative.

The method targets conclusions involving the multiplication of two variables:

LeftVarInt∗ RightVarInt (E.7)

Further, the hypotheses must not constrain either of these variables to be strictly negative
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or positive. In this situation, the following case split is introduced:

(RightVarInt< 0)∨ (RightVarInt≥ 0) (E.8)

In each case,RightVarInt is either strictly negative or positive, easing the proof effort.

Note that the variable on the right is targeted as several standard rules expect a strictly

negative or positive variable on this side.

E.24 Method: mult commute

Themult commute method is shown in Figure E.28 and described below.

Method:
mult commute
Tactic:
rewrite tactic(CommuteRewriteForm,

conc,Conc,Pos,
true : (LeftExp∗ RightExp)⇒ (RightExp∗ LeftExp))

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Find multiplication of expressions.
exp at(Conc,Pos, (LeftExp∗ RightExp))
Check left expression is integer and right expression is not.
is int(LeftExp)
not(is int(RightExp))
Effects:
Find rule to commute multiplication of expressions.
sub exp polarity(Conc, positive,Pos,Polarity)
select alt view rule(Polarity,CommuteRewriteForm,

true : (LeftExp∗ RightExp)⇒ (RightExp∗ LeftExp))
Generate subgoal.
replace at(Conc,Pos, (RightExp∗ LeftExp),NewConc)
Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.28:mult commute method

E.24.1 Behaviour

This method normalises the multiplication of an expressionand an integer so that the

integer appears on the right hand side. This supports the application of standard rules that

expect an integer on the right hand side of a multiplication.
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E.25 Method: eval conc

Theeval conc method is shown in Figure E.29 and described below.

Method:
eval conc
Tactic:
rewrite tactic(evaluate(SubExp,Value),

conc,Conc,Pos,
true : SubExp⇒ Value)

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Consider all conclusion subexpressions.
exp at(Conc,Pos,SubExp)
Try to evaluate this subexpression.
eval exp(SubExp,Value)
Check evaluated result is different.
not(SubExp= Value)
Succeed at most once.
cut
Effects:
Generate subgoal.
replace at(Conc,Pos,Value,NewConc)
Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.29:eval conc method

E.25.1 Behaviour

This method simplifies the conclusion by replacing an evaluable expression with the result

of its evaluation. A cut is employed, preventing the exploration of alternative orderings

of expression evaluations. The evaluation of both integer and boolean expressions is con-

sidered. An expression may be unchanged following its evaluation, for example the result

of evaluating 10 remains 10. Thus, to ensure termination, the method is only successful

where the evaluated expression is different to the result of its evaluation.
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E.26 Method: split conc conj

Thesplit conc conj method is shown in Figure E.30 and described below.

Method:
split conc conj
Tactic:
split conc conj tactic(LeftConc,RightConc)
Goal:
LocalContextList: HypList⊢ (LeftConc∧ RightConc)
Preconditions:
∅

Effects:
∅

Subgoals:
[LocalContextList: HypList⊢ LeftConc,
LocalContextList: HypList⊢ RightConc]

Figure E.30:split conc conj method

E.26.1 Behaviour

This method simplifies a conjoined conclusion by introducing a separate subgoal for each

conjunct.

E.27 Method: fertilize

The fertilize method is shown in Figure E.31 and described below.

Method:
fertilize
Tactic:
rewrite tactic(hypothesisFertilise(Conc),

conc,Conc, [] ,
true : Conc⇒ true)

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Ensure conclusion is not already true.
not(Conc= true)
Search for match with hypothesis.
select(Conc,HypList, )
Effects:
∅

Subgoals:
[LocalContextList: HypList⊢ true]

Figure E.31:fertilize method
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E.27.1 Behaviour

This method transforms a conclusion totrue where it matches, orfertilises, against a

hypothesis.

E.28 Method: clear conc exp

Theclear conc exp method is shown in Figure E.32 and described below.

Method:
clear conc exp
Tactic:
rewrite tactic(ClearRewriteForm,

conc,Conc,Pos,
true : SubExp⇒ NewSubExp)

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Consider all expressions.
exp at(Conc,Pos,SubExp)
Search to rewrite the expression.
sub exp polarity(SubExp, positive,Pos,Polarity)
select rewrite rule(Polarity,ClearRewriteForm,

true : SubExp⇒ NewSubExp)
Check modified expression remains ground.
ground(NewSubExp)
Check modified expression is subexpression of original expression.
exp at(SubExp,SubPos,NewSubExp)
not(SubPos= [])
Succeed at most once.
cut
Effects:
Perform the rewrite.
replace at(Conc,Pos,NewSubExp,NewConc)
Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.32:clear conc exp method

E.28.1 Behaviour

This method simplifies a conclusion by applying a rewrite rule that strictly eliminates

expression structure. A cut is employed, preventing the exploration of alternative order-

ings of expression elimination. For example, a conclusion may be encountered of the

following form:

(1 ∗ x) = (0 ∗ y) + z (E.9)
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The following two rewrite rules are available:

1 ∗ A⇒ A (E.10)

0 ∗ A⇒ 0 (E.11)

These rewrite rules eliminate expression structure, as theright hand side is a subset of

the left hand side. Thus, successive applications of this method will simplify the above

conclusion to:

x = z (E.12)

E.29 Method: elim var conc

Theelim var conc method is shown in Figure E.33 and described below.

Method:
elim var conc
Tactic:
Tactic
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Identify duplicate variables in conclusion.
prog var exps(Conc,VarList, )
filter duplicates(VarList,DuplVarList, )
Consider a duplicate variable.
select(DuplVar,DuplVarList, )
Seek to cancel out the duplicate variables.
eliminate duplicate vars(2,DuplVar, positive,Conc,

Tactic,NewConc)
Effects:
∅

Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.33:elim var conc method

E.29.1 Behaviour

In developing these proof plans, there was an occasional need for expression simplifica-

tions. Three alternative strategies were considered:

• Measure reducing simplification - A measure of expression simplicity is estab-

lished, based on the number and type of arithmetic operators. The available rewrite

rules are then explored, applying those that make the conclusion measurably sim-

pler. The strategy is relatively simple, and effective in many cases. However, in
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general, it is difficult to predict how the strategy will behave. The fundamental

problem is that the strategy is not motivated by strong mathematical intuitions.

• Annotation guided cancellation- The cancellation of expressions is a mathemat-

ically intuitive simplification strategy. Similar to rippling, annotations may be in-

troduced to guide the strategy. The conclusion may be annotated to identify pairs

of expression structures that are candidates for cancellation. Further, rewrite rules

may be annotated to identify those that move these expressions closer together. A

search of the relevant rewrite rules is performed, until either the expressions are

cancelled or the process terminates. The resulting strategy consistently performs

valuable simplifications. However, sophisticated annotations would be required to

discover all cancellations, particularly those that involve first moving expressions

further apart. Also, an annotation guided strategy is a considerably complex mech-

anism for achieving a relatively trivial portion of mathematical reasoning.

• Depth constrained cancellation- Focusing on the cancellation of variables is a

mathematically intuitive simplification strategy. Duplicate variables can be iden-

tified and manipulated without supporting annotations. Further, relevant rewrite

rules can be identified as those manipulating the duplicate variables. To ensure ter-

mination, a depth constrained search of the relevant rewrite rules is performed. The

resulting strategy is straightforward, and consistently performs valuable simplifica-

tions.

Depth constrained cancellation offers an effective balance between predictability, perfor-

mance and reasoning capability. In particular, the elimination of duplicate variables can

ease an application of thetransitivity strategy.
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E.30 Method: transitivity entry

The transitivity entry method is shown in Figure E.34 and described below.

Method:
transitivity entry
Tactic:
sequence tactic([ModifyTactic,TransTactic])
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Explore conclusion inequalities in both directions.
sub exp polarity(Conc, positive, [] ,Polarity)
select alt view rule(Polarity,ModifyRewriteForm,

true : Conc⇒ ModifiedConc)
binary explode(ModifiedConc,Op, LeftExp,RightExp)
is inequality op(Op)
Check the left side contains the most program variables.
prog var exps(LeftExp, , LeftTotal)
prog var exps(RightExp, ,RightTotal)
LeftTotal≥ RightTotal
Check the left side has targeted operators.
total functions(LeftExp, [+,−, ∗, div], LeftCountInt)
LeftCountInt> 0
Search for applicable transitivity rewrite rule.
select transitivity rule(Polarity,TransRewriteForm,

true : ModifiedConc⇒ NewConc)
Effects:
ModifyTactic= rewrite tactic(ModifyRewriteForm,

conc,Conc, [] ,
true : Conc⇒ ModifiedConc)

TransTactic= rewrite tactic(TransRewriteForm,
conc,ModifiedConc, [] ,
true : ModifiedConc⇒ NewConc)

Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.34:transitivity entry method

E.30.1 Behaviour

This method introduces a transitivity step. The method is applicable where the conclusion

is of the form:

Exp1 RelOp1 Exp2 (E.13)

WhereExpi are expressions andRelOpj are inequality relations. Conclusions of this gen-

eral form frequently occur where verifying exception freedom. Directly proving such

conclusions can be difficult where the expressions involve numeric operations. However,

the conclusion can often be made more tractable by decomposing the inequality into less
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complex inequalities. The method achieves such a decomposition through the application

of a transitive rewrite rule.

The method orients the conclusion inequality to target decomposition at its more com-

plex side. The left hand side of the conclusion inequality must contain at least the same

number of variables as the right hand side. Further, the lefthand side must contain some

numeric operations. A transitive rewrite rule is sought that transforms the conclusion as

follows:

Exp1 RelOp1 Exp2⇒ (Exp1 RelOp1 Z1) ∧ (Z1 RelOp2 Exp2) (E.14)

The rewrite leads to the introduction of a meta-variableZ1. The instantiation of this meta-

variable requires a creativeeurekastep, as its form is not obvious from the surrounding

structure. Using middle-out reasoning, the choice of the meta-variable is delayed, to be

incrementally instantiated from future proof efforts.

For example, consider the SumArray subprogram shown in Figure E.35. This subpro-

gram sums the values of an array. In verifying exception freedom, two goals are gener-

ated to verify that the assignmentR:=R+A(I) always assigns a value tor that is within its

lower and upper bound. The essential components of the upperbound goal, following the

initialisation method, are shown below:

(element(a, [i]) ≤ 10)∧ (r ≤ i ∗ 10)∧ (i ≤ 9)

→

(r + element(a, [i])) ≤ 100

(E.15)

Note that the conclusion matches the general conclusion of (E.13). Further, the conclu-

sion contains a numeric operation that is hindering its immediate proof and there exists a

transitive rewrite rule of the form:

A ≤ B⇒ (A ≤ C) ∧ (C ≤ B) (E.16)

Together, these features support an application of this method, transforming the conclu-

sion of (E.15) to:

(r + element(a, [i]) ≤ C) ∧ (C ≤ 100) (E.17)
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package SumArray_Package is

subtype I_T is Integer range 0..9;

subtype AE_T is Integer range 0..10;

type A_T is array (I_T) of AE_T;

subtype R_T is Integer range

AE_T’First*((I_T’Last-I_T’First)+1)..

AE_T’Last*((I_T’Last-I_T’First)+1);

procedure SumArray(A: in A_T;

R: out R_T);

--# derives R from A;

end SumArray_Package;

package body SumArray_Package is

procedure SumArray(A: in A_T;

R: out R_T)

is

begin

R:=0;

for I in I_T loop

--# assert R>=0 and R<=I*10;

R:=R+A(I);

end loop;

end SumArray;

end SumArray_Package;

Figure E.35: SumArray subprogram
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E.31 Method: transitivity decomp

The transitivity decomp method is shown in Figure E.36 and described below.

Method:
transitivity decomp
Tactic:
rewrite tactic(DecompRewriteForm,

conc,Conc,Pos,
true : ConcConj⇒ LeftConj∧ RightConj)

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Select a conjunct for decomposition, excluding the right most conjunct.
conjunct at(Conc,Pos,ConcConj)
not(Pos= [2])
Check the conjunct contains meta-variables.
not(ground(ConcConj))
Only decompose those conjuncts that contain targeted operators.
total functions(ConcConj, [+,−, ∗, div],BeforeCountInt)
BeforeCountInt> 0
Search to rewrite the conjunct.
sub exp polarity(Conc, positive,Pos,Polarity)
select rewrite rule(Polarity,DecompRewriteForm,

true : ConcConj⇒ LeftConj∧ RightConj)
Aim to exploit structure in hypothesis, so must not be ground.
not(ground(LeftConj∧ RightConj)
Only accept decompositions that reduce targeted operators.
total functions(LeftConj∧ RightConj, [+,−, ∗, div],AfterCountInt)
BeforeCountInt> AfterCountInt
Effects:
Perform the decomposition rewrite.
replace at(Conc,Pos, LeftConj∧ RightConj,NewConc)
Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.36:transitivity decomp method

E.31.1 Behaviour

This method develops a transitivity step. Following an application of thetransitivity entry

method, the conclusion will take the following general form:

(Exp1 RelOp1 Z1) ∧ (Z1 RelOp2 Exp2) (E.18)

WhereExpi are expressions,RelOpj are inequality relations andZk are meta-variables.

This method decomposes inequality conjuncts. The method considers each conjunct,

excluding the right most conjunct, that contains some numeric operations. A rewrite rule
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is sought that performs a decomposition of the form:

(Exp1 RelOp1 Z1)⇒ (Exp3 RelOp3 Z2) ∧ (Exp4 RelOp4 Z3) (E.19)

Which has the side effect of instantiating the meta-variableZ1 as follows:

Z1 = (Z2 Fl Z3) (E.20)

WhereFl are arithmetic functions. The number of numeric operationsmust decrease as

a consequence of the decomposition. Note that, in some cases, meta-variables may be

instantiated with expressions during decomposition.

Depending on the complexity of the initial conclusion, multiple invocations of de-

composition may be required in completing the transitivitystep. Following a complete

decomposition, the conclusion will take the following general form:

(Expn RelOpn Zn) ∧ · · · ∧ (Exp2 RelOp2 Z1)

(Z1 F1 . . . Fn−1 Zn) RelOp1 Exp1

(E.21)

For example, return to the SumArray subprogram introduced at the transitivity entry

method. Following an application oftransitivity entry the conclusion of the upper bound

goal is transformed to:

(r + element(a, [i]) ≤ C) ∧ (C ≤ 100) (E.22)

As the left most conjunct contains a numeric operator, it is acandidate for decompo-

sition. A rewrite rule is available of the form:

((D + E) ≤ (F +G))⇒ ((D ≤ F) ∧ (E ≤ G)) (E.23)

The rewrite rule supports decomposing the left most conjunct, transforming the conclu-

sion into:

((r ≤ F) ∧ (element(a, [i]) ≤ G)) ∧ (F +G ≤ 100) (E.24)

Note that, as a consequence of the rewrite, meta-variableC has been instantiated toF+G.

Thus, through middle-out reasoning, the structure ofC is emerging.
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E.32 Method: transitivity fertilize

The transitivity fertilize method is shown in Figure E.37 and described below.

Method:
transitivity fertilize
Tactic:
rewrite tactic(hypothesisFertilise(ConcConj),

conc,Conc,Pos,
true : ConcConj⇒ true)

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Select a conjunct for fertilisation, excluding the right most conjunct.
conjunct at(Conc,Pos,ConcConj)
not(Pos= [2])
Check the conjunct contains meta-variables.
not(ground(ConcConj))
Check for and retrieve single variable access.
prog var exps(ConcConj, [VarAccess], 1)
Search for match with hypothesis.
select(ConcConj,HypList, )
Effects:
Record variable reference.
add constraining vars(LocalContextList, [VarAccess],NewLocalContextList)
Replace fertilised conjunct with true.
replace at(Conc,Pos, true,NewConc)
Subgoals:
[NewLocalContextList: HypList⊢ NewConc]

Figure E.37:transitivity fertilize method

E.32.1 Behaviour

This method continues the development of a transitivity step. The method instantiates

meta-variables by matching inequality conjuncts against hypotheses. After potentially

multiple applications of thetransitivity decomp method the conclusion will take the fol-

lowing general form:

(Expn RelOpn Zn) ∧ · · · ∧ (Exp2 RelOp2 Z1)

(Z1 F1 . . . Fn−1 Zn) RelOp1 Exp1

(E.25)

WhereExpi are expressions,RelOpi are inequality relations,Zi are meta-variables and

Fi are arithmetic functions. The method considers each conjunct, excluding the right

most conjunct, that contains a single variable. A hypothesis is sought that constrains the

bounds of this variable. Where available, the conjunct isfertilisedagainst the hypothesis

and is trivially eliminated. Note that, through backtracking, all applicable hypotheses

will be considered. As a consequence of fertilisation, the meta-variables in the conjunct
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will be instantiated with the constraints on the variable. Significantly, the proof of the

remaining conclusion now depends on the quality of these constraints. The dependency is

recorded by storing the name of the variable that contributed these constraints in the local

context information. Should the overall proof fail, thefalse conc method will suggest

strengthening the constraints on these referenced variables.

For example, return to the SumArray subprogram introduced at the transitivity entry

method. Following an application oftransitivity decomp the essential upper bound goal

will take the following form:

(element(a, [i]) ≤ 10)∧ (r ≤ i ∗ 10)∧ (i ≤ 9)

→

((r ≤ F) ∧ (element(a, [i]) ≤ G)) ∧ (F +G ≤ 100)

(E.26)

Note that the first and second conjuncts may be fertilised against hypotheses. Following

two applications of thetransitivity fertilize method, the conclusion of the goal is trans-

formed into the following:

(true∧ true) ∧ ((i ∗ 10)+ 10≤ 100) (E.27)
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E.33 Method: transitivity close

The transitivity close method is shown in Figure E.38 and described below.

Method:
transitivity close
Tactic:
null tactic
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Check the conclusion contains no meta-variables.
ground(Conc))
Effects:
∅

Subgoals:
[LocalContextList: HypList⊢ Conc]

Figure E.38:transitivity close method

E.33.1 Behaviour

This method closes a transitivity step. Once every meta-variable has become instantiated

then middle-out reasoning is complete and the transitivitystep is successful.

For example, return to the SumArray subprogram introduced at the transitivity entry

method. Following applications oftransitivity fertilize the essential upper bound goal will

take the following form:

(element(a, [i]) ≤ 10)∧ (r ≤ i ∗ 10)∧ (i ≤ 9)

→

(true∧ true) ∧ ((i ∗ 10)+ 10≤ 100)

(E.28)

The conclusion contains zero meta-variables, thus the transitivity step is complete. Note

that theproof residuein the third conjunct will be proved via thelinear bounded conc

method.
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E.34 Method: transitivity unblock

The transitivity unblock method is shown in Figure E.39 and described below.

Method:
transitivity unblock
Tactic:
rewrite tactic(UnblockRewriteForm,

conc,Conc,Pos,
true : ConcConj⇒ true)

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Select a conjunct, excluding the right most conjunct.
conjunct at(Conc,Pos,ConcConj)
not(Pos= [2])
Check this conjunct has a meta-variable.
not(ground(ConcConj))
Check for zero variable accesses.
prog var exps(ConcConj, [] , 0)
Check for zero numeric operations.
total functions(LeftExp, [+,−, ∗, div], 0)
Search for rewrite rule that eliminates and grounds the conjunct.
sub exp polarity(Conc, positive,Pos,Polarity)
select rewrite rule(Polarity,UnblockRewriteForm,

true : ConcConj⇒ true)
ground(ConcConj)
Effects:
Replace the conjunct with true.
replace at(Conc,Pos, true,NewConc)
Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.39:transitivity unblock method

E.34.1 Behaviour

This method supports the development of a transitivity step. During the transitivity step,

conjuncts may be encountered of the general form:

(Const RelOp Z) (E.29)

WhereConst is an constant,RelOp is an inequality relation andZ is a meta-variable.

Neither transitivity decomp nor transitivity fertilize applies, thus the transitivity step is

blocked. This method allows the transitivity step to continue by applying rewrite rules

that trivially discharge such conjuncts. For example, where blocked by the conjunct:

(255≤ A) (E.30)
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The following rewrite rule might be applied:

(A ≤ A)⇒ true (E.31)

Supporting the elimination of the conjunct, and instantiating the meta-variableA as 255.

E.35 Method: ripple entry

Theripple entry method is shown in Figure E.40 and described below.

Method:
ripple entry
Tactic:
null tactic
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Search for induction hypothesis.
select(Hyp,HypList, )
Attempt to annotate conclusion with respect to hypothesis.
ripple annotate(Hyp,Conc,AnnConc)
Effects:
∅

Subgoals:
[LocalContextList: HypList⊢ AnnConc]

Figure E.40:ripple entry method

E.35.1 Behaviour

This method introduces a ripple step into the proof. Rippling is supported through ex-

pression annotations. Where applicable, the method annotates the conclusion to begin

an application of rippling. As the method does not modify theobject-level goal, it is

associated with thenull tactic.

As detailed in [BBHI05], rippling may employ several annotations to cater for differ-

ent proof strategies. In our proof plans, only a core subset of annotations are employed.

Nevertheless, these annotations are often sufficient to prove the relatively simple loop

invariants that occur in verifying exception freedom.

Terms are annotated by placing markers around subterms. Awave-frontis used to

identify the boundaries of a particular subterm. The wave-front is illustrated by placing

the subterm in a shaded box:

f(t1, . . . , tn) (E.32)

Every wave-front must contain at least onewave-hole. Each wave-hole identifies the
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boundaries of a subterm that lies inside the wave-front. Each wave-hole is indicated by

unshading the subterm within the wave-front:

f( t1 , . . . , tn) (E.33)

The shaded syntax is described as beingin the wave-frontwhile the unshaded syntax is

described as beingin the wave-hole. An expression may be annotated with a number of

wave-fronts:

f1( t11 , . . . , t
1
n) ∧ · · · ∧ fi( ti1 , . . . , t

i
n) (E.34)

Where an expression is annotated, theskeletonrefers to the expression that remains when

removing all subexpressions that are in the wave-front:

t11 ∧ · · · ∧ ti1 (E.35)

The rippling annotations are used to describe the differences between an induction

conclusion and its corresponding induction hypothesis. Consider the induction step case

below:

f(i)→ f(s(i)) (E.36)

The induction conclusion may be annotated so that its skeleton matches the induction

hypothesis:

f(i)→ f( s( i ) ) (E.37)

The annotations reveal that proof may be completed by eliminatings(. . . ), the differing

syntax in the wave-front.

For example, consider the SumMultTwinArray subprogram shown in Figure E.41.

This subprogram sums the multiplication of elements at the same index in two arrays.

Note that an invariant has been introduced to support the verification of exception free-

dom. The essential components of the lower bound invariant goal, following theinitiali-

sation method, are shown below:

(element(a1, [i]) ≥ −10)∧ (element(a1, [i]) ≤ 10)∧

(element(a2, [i]) ≥ −10)∧ (element(a2, [i]) ≤ 10)∧

(r ≥ i ∗ (−100))

→

r + (element(a1, [i]) ∗ element(a2, [i])) ≥ (i + 1) ∗ (−100)

(E.38)

The induction conclusion may be annotated against the induction hypothesis as follows,
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supporting an application of rippling:

r + element(a1, [i]) ∗ element(a2, [i]) ≥ ( i + 1 ) ∗ (−100) (E.39)

package SumMultTwinArray_Package is

subtype I_T is Integer range 0 .. 5;

subtype AE_T is Integer range -10 .. 10;

type A_T is array (I_T) of AE_T;

subtype R_T is Integer range

(AE_T’First*AE_T’Last)*((I_T’Last-I_T’First)+1)..

(AE_T’Last*AE_T’Last)*((I_T’Last-I_T’First)+1);

procedure SumMultTwinArray(A1: in A_T; A2: in A_T; R: out R_T);

--# derives R from A1, A2;

end SumMultTwinArray_Package;

package body SumMultTwinArray_Package is

procedure SumMultTwinArray(A1: in A_T; A2: in A_T; R: out R_T)

is

begin

R:=0;

for I in I_T loop

--# assert R>=I*(-100) and R<=I*100;

R:=R+(A1(I)*A2(I));

end loop;

end SumMultTwinArray;

end SumMultTwinArray_Package;

Figure E.41: SumMultTwinArray subprogram
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E.36 Method: ripple wave

Theripple wave method is shown in Figure E.42 and described below.

Method:
ripple wave
Tactic:
rewrite tactic(WaveRewriteForm,

conc,EraseConc,Pos,
true : EraseSubExp⇒ EraseNewSubExp)

Goal:
LocalContextList: HypList⊢ AnnConc
Preconditions:
Consider all well annotated subterms in the conclusion.
ripple exp at(AnnConc,Pos,AnnSubExp)
Apply wave rule to the subterm.
ripple erasure(AnnConc,EraseConc)
sub exp polarity(EraseConc, positive,Pos,Polarity)
select wave rule(Polarity,WaveRewriteForm,

true : AnnSubExp⇒ NewAnnSubExp)
Effects:
Perform the rewrite.
replace at(AnnConc,Pos,NewAnnSubExp,NewAnnConc)
Generate erased forms for proof checking.
ripple erasure(AnnSubExp,EraseSubExp)
ripple erasure(NewAnnSubExp,EraseNewSubExp)
Subgoals:
[LocalContextList: HypList⊢ NewAnnConc]

Figure E.42:ripple wave method

E.36.1 Behaviour

This method continues the development of a ripple step. Following an application of the

ripple entry method the induction conclusion will be annotated, identifying its differences

against an induction hypothesis. This method rewrites the conclusion such that these

differences are moved outwards.

The available rewrite rules are restricted towave-rules. A wave-rule is an annotated

rewrite rule, which may only be applied where both the expression structure and annota-

tions match. The wave-rules are automatically generated from the available rewrite rules.

Significantly, the annotations are configured so that wave-rules simultaneously preserve

similarities andripples the differences outwards. The application of wave-rules involves

a tightly constrained search and is guaranteed to terminate. For illustration consider the

rewrite rule:

f(s(X))⇒ f(X) ∧ g(X) (E.40)
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Which may be annotated as the wave-rule:

f( s( X ) )⇒ f(X) ∧ g(X) (E.41)

This wave-rule preserves similarities as the skeletonf(X), yet moves differences outwards

asg(X). Consider the annotated induction goal below:

f(i)→ f( s( i ) ) (E.42)

The wave-rule (E.41) matches with the induction conclusionrewriting the goal to:

f(i)→ f(i) ∧ g(i) (E.43)

The differences are now fully ripped outwards, with the induction conclusion containing

an embedding of the induction hypothesis. In general, multiple wave-rule rewrites may

be required to ripple all differences outwards.

For example, return to the SumMultTwinArray subprogram introduced at therip-

ple entry method. Following an application ofripple entry the induction conclusion of

the lower bound invariant goal is annotated as follows:

r + element(a1, [i]) ∗ element(a2, [i]) ≥ ( i + 1 ) ∗ (−100) (E.44)

The following two wave-rules are available:

( A + B ) ∗ C⇒ (A ∗ C) + (B ∗ C) (E.45)

( A + C) ≥ ( B + D) ⇒ (A ≥ B) ∧ (C ≥ D) (E.46)

Applying wave-rule (E.45) to the right hand side of the induction conclusion gives:

r + element(a1, [i]) ∗ element(a2, [i]) ≥ ( (i ∗ (−100)) + (1 ∗ (−100)) ) (E.47)

Applying (E.46) to the transformed conclusion gives:

r ≥ (i ∗ (−100)) ∧ element(a1, [i]) ∗ element(a2, [i]) ≥ (1 ∗ (−100)) (E.48)

Resulting in the differences being fully ripped outwards.
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E.37 Method: ripple fertilize

Theripple fertilize method is shown in Figure E.43 and described below.

Method:
ripple fertilize
Tactic:
rewrite tactic(hypothesisFertilise(IndHyp),

conc,Conc, IndHypPos,
true : IndHyp⇒ true)

Goal:
LocalContextList: HypList⊢ AnnConc
Preconditions:
Check the conclusion is rippled fully outwards.
ripple complete(AnnConc, IndHyp,Conc, IndHypPos)
Effects:
Replace fertilised induction hypothesis with true.
replace at(Conc, IndHypPos, true,NewConc)
∅

Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.43:ripple fertilize method

E.37.1 Behaviour

This method completes a ripple step. Following applications of theripple wave method,

the induction conclusion may become fully rippled. This method eliminates the embedded

induction hypothesis, leaving the rippled out differences as a proof residue.

For illustration consider the fully rippled induction goalbelow:

f(i)→ f(i) ∧ g(i) (E.49)

The embedded induction hypothesis in the induction conclusion may befertilisedagainst

the actual induction hypothesis and trivially eliminated.As this completes the ripple step,

all remaining annotations are cleared. Following fertilisation the goal above becomes:

f(i)→ true∧ g(i) (E.50)

For example, return to the SumMultTwinArray subprogram introduced at therip-

ple entry method. Following applications ofripple wave the essential components of
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the lower bound invariant goal are as follows:

(element(a1, [i]) ≥ −10)∧ (element(a1, [i]) ≤ 10)∧

(element(a2, [i]) ≥ −10)∧ (element(a2, [i]) ≤ 10)∧

(r ≥ i ∗ (−100))

→

r ≥ (i ∗ (−100)) ∧ element(a1, [i]) ∗ element(a2, [i]) ≥ (1 ∗ (−100))

(E.51)

The induction conclusion contains an embedding of the induction hypothesis. Fertilisa-

tion may be performed, completing the ripple step and rewriting the conclusion as follows:

true∧ element(a1, [i]) ∗ element(a2, [i]) ≥ (1 ∗ (−100)) (E.52)

The proof residue is discharged through therun time check strategy.

E.38 Method: ripple unblock

Theripple unblock method is shown in Figure E.44 and described below.

Method:
ripple unblock
Tactic:
Tactic
Goal:
LocalContextList: HypList⊢ AnnConc
Preconditions:
Explore unblocking strategies.
ripple unblock strategies(AnnConc,UnblockedAnnConc,Tactic)
Effects:
∅

Subgoals:
[LocalContextList: HypList⊢ UnblockedAnnConc]

Figure E.44:ripple unblock method

E.38.1 Behaviour

This method supports the development of a ripple step. Rippling becomes blocked where

no wave-rules are applicable to the annotated conclusion. However, internally transform-

ing the conclusion or its annotations may enable the ripple step to continue. The following

two unblocking strategies are attempted:

• Simplify annotations - The simplification of annotations can increase the appli-

cability of wave-rules. In particular a wave-front may be nested entirely inside a
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wave-hole as show below:

f( t1 , t2, . . . , tn) (E.53)

Such annotations are simplified by removing the nested wave-front:

f( t1 , t2, . . . , tn) (E.54)

• Move wave-hole outwards- Moving the location of a wave-hole outwards can

increase the applicability of wave-rules. For illustration, consider the annotated

expression below:

( t1 + t2) + t3 (E.55)

To manipulate this expression, the left hand side of wave-rules must take the fol-

lowing form:

( A + B) + C (E.56)

By exploiting commutativity of plus, the wave-hole of (E.55) may be moved out-

wards as follows:

A + (B+ C) (E.57)

Significantly, to manipulate the transformed expression, the left hand side of wave-

rules may now take the more general form:

A + B (E.58)

E.39 Proof Plans for Program Analysis Queries

Proof plans are developed to answer program analysis queries, as detailed in the following

sections. As described in Chapter 5, the program analyser does not verify the correctness

of its discovered invariants. Thus, proof plans specific to program analysis are not checked

at the object-level, and are not associated with corresponding tactics.
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E.40 Strategy:pa exp simplify

Thepa exp simplify strategy is shown in Figure E.45 and described below.

Waterfall:
pa exp simplify
Actions:
prune conc duplicate 7→ pa exp simplify
prune conc eq 7→ pa exp simplify
eval conc 7→ pa exp simplify
clear conc exp 7→ pa exp simplify
report conc 7→ ∅

Figure E.45:pa exp simplify strategy

E.40.1 Behaviour

This strategy simplifies expressions. The strategy expectscontextual information to be

presented as hypotheses and the target expression to be presented as a conclusion.

E.41 Strategy:pa exp constrain

Thepa exp constrain strategy is shown in Figure E.46 and described below.

Waterfall:
pa exp constrain
Actions:
specialise hyps 7→ pa exp constrain1

Waterfall:
pa exp constrain1
Actions:
solve eq hyp for var 7→ pa exp constrain1
constrain conc conj 7→ ∅

Figure E.46:pa exp constrain strategy

E.41.1 Behaviour

This strategy discovers bounds for numeric expressions. The strategy expects contex-

tual information to be presented as hypotheses and the target numeric expression to be

presented as a conclusion.
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E.42 Strategy:pa spark exp

Thepa spark exp strategy is shown in Figure E.47 and described below.

Waterfall:
pa spark exp
Actions:
specialise hyps 7→ pa spark exp1

Waterfall:
pa spark exp1
Actions:
prune conc duplicate 7→ pa spark exp1
prune conc eq 7→ pa spark exp1
eval conc 7→ pa spark exp1
clear conc exp 7→ pa spark exp1
solve eq hyp for var 7→ pa spark exp1
elim aux var via eq 7→ pa spark exp1
elim prog var exp via eq 7→ pa spark exp1
elim aux var via int arith 7→ pa spark exp1
is spark exp 7→ ∅

Figure E.47:pa spark exp strategy

E.42.1 Behaviour

This strategy transforms an expression into a form which canbe directly expressed in

SPARK annotations. The strategy expects contextual information to be presented as hy-

potheses and the target expression to be presented as a conclusion.

E.43 Strategy:pa disj norm form

Thepa disj norm form strategy is shown in Figure E.48 and described below.

Waterfall:
pa disj norm form
Actions:
disj norm form 7→ pa disj norm form
report conc 7→ ∅

Figure E.48:pa disj norm form strategy

E.43.1 Behaviour

This strategy transforms an expression into disjunctive normal form. The strategy ignores

any hypotheses and expects the target expression to be presented as a conclusion.
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E.44 Method: prune conc duplicate

Theprune conc duplicate method is shown in Figure E.49 and described below.

Method:
prune conc duplicate
Tactic:
∅

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Remove duplicate conjuncts.
exp explode(Conc,∧,ConcList)
filter duplicates(ConcList, ,NoDupConjList)
exp explode(NoDupConj,∧,NoDupConjList)
Remove duplicate disjuncts.
exp explode(NoDupConj,∨,NoDupConjList)
filter duplicates(NoDupConjList, ,NoDupConjDisjList)
exp explode(NoDupConjDisj,∨,NoDupConjDisjList)
Check that some duplicates were removed.
not(NoDupConjDisj= Conc)
Effects:
∅

Subgoals:
[LocalContextList: HypList⊢ NoDupConjDisj]

Figure E.49:prune conc duplicate method

E.44.1 Behaviour

The method removes all duplicate conjuncts and disjuncts from a conclusion. Such dupli-

cation occurs frequently during program analysis, as properties are combined at program

merge points.
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E.45 Method: prune conc eq

Theprune conc eq method is shown in Figure E.50 and described below.

Method:
prune conc eq
Tactic:
∅

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Search for equality conjuncts in both directions.
conjunct at(Conc,Pos,ConcConj)
sub exp polarity(Conc, positive,Pos,Polarity)
select alt view rule(Polarity, ,

true : ConcConj⇒ (LeftExp= RightExp))
Check is unconstrained variable equality.
unconstrained var(LeftExp)
Succeed at most once.
cut
Effects:
Replace equality conjunct with true.
replace at(Conc,Pos, true, InterConc)
Replace the unconstrained variable with its expression.
find replace(InterConc, LeftExp,RightExp,NewConc)
Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.50:prune conc eq method

E.45.1 Behaviour

This method identifies conjuncts that relate an unconstrained variable to an expression.

Such conjuncts occur frequently during program analysis, as unconstrained variables are

introduced to ease the transformation of expressions. Where found, the conjunct is re-

placed with true, and all occurrences of the unconstrained variable are replaced with its

corresponding expression.
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E.46 Method: report conc

Thereport conc method is shown in Figure E.51 and described below.

Method:
report conc
Tactic:
Conc
Goal:

: ⊢ Conc
Preconditions:
∅

Effects:
∅

Subgoals:
[]

Figure E.51:report conc method

E.46.1 Behaviour

This method is always successful, returning the conclusionof the goal through the tactic

slot. The method leaves no subgoals.
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E.47 Method: solve eq hyp for var

Thesolve eq hyp for var method is shown in Figure E.52 and described below.

Method:
solve eq hyp for var
Tactic:
∅

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Consider each equality hypothesis.
select(Hyp,HypList, )
select(Hyp= ( = )
Solve for variables referenced in the hypothesis.
prog var exps(Hyp,ProgVarExpList, )
aux vars(Hyp,AuxVarList, )
append(ProgVarExpList,AuxVarList,VarList)
select(Var,VarList, )
solve for var(Hyp,Var,SolvedEq)
Check the solved equality is not already present.
not(select(SolvedEq,HypList, ))
Succeed at most once.
cut
Effects:
∅

Subgoals:
[LocalContextList: [SolvedEq|HypList] ⊢ Conc]

Figure E.52:solve eq hyp for var method

E.47.1 Behaviour

This method introduces additional hypotheses by solving existing equality hypotheses for

their referenced variables. The method exploits the computer algebra system YACAS

[YAC] to perform the equation solving. In particular, the default capabilities of theSolve

function are used2. For example, a hypothesis of the following form may be encountered:

a = (b+ c) + d (E.59)

To solve forc the following query may be sent to YACAS:

Solve(a = (b+ c) + d, c) (E.60)

2In practice, to minimise implementation effort, this method does not communicate directly with YA-

CAS. Instead, a look-up table is maintained, describing thecapabilities of YACAS for each equality

encountered.
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YACAS is successful, presenting the result:

c = a− (b+ d) (E.61)

Note that it would be difficult to generate a tactic that describes the actions of YACASat

the object-level. However, as this method is only applied during program analysis, such a

tactic is not required.

E.48 Method: constrain conc conj

Theconstrain conc conj method is shown in Figure E.53 and described below.

Method:
constrain conc conj
Tactic:
(Conc≥ LowerInt) ∧ (Conc≤ UpperInt)
Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Find bounds for the integer exp conclusion.
int bound var(HypList,Conc, LowerInt,UpperInt)
Effects:
∅

Subgoals:
[]

Figure E.53:constrain conc conj method

E.48.1 Behaviour

This method discovers bounds for the conclusion expression, returning these through the

tactic slot. The method leaves no subgoals.
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E.49 Method: elim aux var via eq

Theelim aux var via eq method is shown in Figure E.54 and described below.

Method:
elim aux var via eq
Tactic:
∅

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Consider each equality hypothesis.
select(Hyp,HypList,RemHypList)
Hyp= ( = )
Explore equality hypothesis in both directions.
sub exp polarity(Hyp, negative, [] ,Polarity)
select alt view rule(Polarity, ,

true : Hyp⇒ (LeftExp= RightExp))
Check that the left expression is an auxiliary variable.
aux vars(LeftExp, [LeftExp], 1)
Check that the right expression contains no auxiliary variables.
aux vars(RightExp, [] , 0)
Succeed at most once.
cut
Effects:
Remove equality hypothesis.
find replace((RemHypList,Conc),

LeftExp,
RightExp,
(NewHypList,NewConc))

Subgoals:
[LocalContextList: NewHypList⊢ NewConc]

Figure E.54:elim aux var via eq method

E.49.1 Behaviour

This method eliminates auxiliary variables in the goal. Themethod identifies a hypothesis

equality between an auxiliary variable and an expression that has no auxiliary variables.

Where found, the hypothesis equality is eliminated and all occurrences of the auxiliary

variable are replaced with its equivalent expression.
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E.50 Method: elim prog var exp via eq

Theelim prog var exp via eq method is shown in Figure E.55 and described below.

Method:
elim prog var exp via eq
Tactic:
∅

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Consider each equality hypothesis.
select(Hyp,HypList,RemHypList)
Hyp= ( = )
Explore equality hypothesis in both directions.
sub exp polarity(Hyp, negative, [] ,Polarity)
select alt view rule(Polarity, ,

true : Hyp⇒ (LeftExp= RightExp))
Check that the left expression is a program variable.
prog var exps(LeftExp, [LeftExp], 1)
Check that the right expression contains no variables.
prog var exps(RightExp, [] , 0)
aux vars(RightExp, [] , 0)
Succeed at most once.
cut
Effects:
Eliminate program variable expression.
find replace((RemHypList,Conc),

LeftExp,
RightExp,
(NewHypList,NewConc))

Subgoals:
[LocalContextList: NewHypList⊢ NewConc]

Figure E.55:elim prog var exp via eq method

E.50.1 Behaviour

This method simplifies the goal by eliminating program variables. The method identifies

a hypothesis equality between a program variable and an expression that has no variables.

Where found, the hypothesis equality is eliminated and all occurrences of the program

variable are replaced with its equivalent expression.
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E.51 Method: elim aux var via int arith

Theelim aux var via int arith method is shown in Figure E.56 and described below.

Method:
elim aux var via int arith
Tactic:
∅

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Select a conclusion conjunct.
conjunct at(Conc,Pos,ConcConj)
Select an auxiliary variables in the conjunct.
aux vars(ConcConj,AuxVarList, )
select(AuxVar,AuxVarList, )
Eliminate the auxiliary variable through interval reasoning.
elim bounded var(HypList,AuxVar,ConcConj,NewConcConj)
Succeed at most once.
cut
Effects:
Adopt conjunct with auxiliary variable eliminated.
replace at(Conc,Pos,NewConcConj,NewConc)
Subgoals:
[LocalContextList: NewHypList⊢ NewConc]

Figure E.56:elim aux var via int arith method

E.51.1 Behaviour

This method eliminates auxiliary variables in the goal. Themethod applies a restricted

form of interval reasoning to replace the auxiliary variable with its known bounds.

220



E.52 Method: is spark exp

The is spark exp method is shown in Figure E.57 and described below.

Method:
is spark exp
Tactic:
Conc
Goal:

: ⊢ Conc
Preconditions:
Check that the conclusion contains no auxiliary variables.
aux vars(Conc, [] , 0)
Effects:
∅

Subgoals:
[]

Figure E.57:is spark exp method

E.52.1 Behaviour

This method is successful where the conclusion can be directly expressed in SPARK

annotations. In this case, the conclusion is returned through the tactic slot. The method

leaves no subgoals.
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E.53 Method: disj norm form

Thedisj norm form method is shown in Figure E.58 and described below.

Method:
disj norm form
Tactic:
∅

Goal:
LocalContextList: HypList⊢ Conc
Preconditions:
Consider all expressions.
exp at(Conc,Pos,SubExp)
Find rewrite that moves toward disjunctive normal form.
sub exp polarity(Conc, positive,Pos,Polarity)
select rewrite rule(Polarity,RewriteForm,

true : SubExp⇒ NewSubExp)
RewriteForm= rule( , rlu, dnf( ), normal)
Succeed at most once.
cut
Effects:
Perform disjunctive normal form rewrite.
replace at(Conc,Pos,NewSubExp,NewConc)
Subgoals:
[LocalContextList: HypList⊢ NewConc]

Figure E.58:disj norm form method

E.53.1 Behaviour

This method is successful where the conclusion can be brought closer to disjunctive nor-

mal form. The method applies rewrite rules that move an expression toward disjunctive

normal form, as detailed in §B.4.4.
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Appendix F

MiniSPARK Grammar

F.1 Introduction

As discussed in §7.2, program analysis is performed on a subset of SPARK as MiniS-

PARK. The complete grammar of MiniSPARK is listed below. Note that the tokenizer

suppresses the content of SPARK annotations, leading to a smaller grammar.

F.2 Grammar

<CompilationUnit> ::= <PackageDeclaration> |
<PackageDeclaration> <PackageDeclaration> |
<PackageBody>

<PackageDeclaration> ::= rwpackage<DottedSimpleName>
rwis <VisiblePartRep>
rwend<DottedSimpleName>
semicolon

<VisiblePartRep> ::= <VisiblePartRep> <RestrictedBasicDeclaration> |
<VisiblePartRep> <SubprogramDeclaration> |
null

<RestrictedBasicDeclaration> ::= <ConstantDeclaration> |
<SubtypeDeclaration> |
<FullTypeDeclaration>

<ConstantDeclaration> ::= Identifier colon<Rwconstant>
becomes<Expression>
semicolon

<SubtypeDeclaration> ::= rwsubtype Identifier
rwis <TypeMark>
rwrange<Arange>
semicolon

<FullTypeDeclaration> ::= rwtype Identifier
rwis <TypeDefinition>
semicolon
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<TypeDefinition> ::= <ConstrainedArrayDefinition> |
<IntegerTypeDefinition>

<ConstrainedArrayDefinition> ::= rwarray leftparen
<TypeMark>
rightparen rwof<TypeMark>

<IntegerTypeDefinition> ::= <RangeConstraint>

<RangeConstraint> ::= rwrange<SimpleExpression>
doubledot<SimpleExpression>

<Arange> ::= <SimpleExpression> doubledot<SimpleExpression>

<SubprogramDeclaration> ::= <ProcedureSpecification>
semicolon<ProcedureAnnotation> |
<FunctionSpecification>
semicolon<FunctionAnnotation>

<ProcedureAnnotation> ::= <ProcedureConstraint> |
<DependencyRelation> <ProcedureConstraint>

<FunctionAnnotation> ::= <FunctionConstraint>

<ProcedureConstraint> ::= <Precondition> <Postcondition> |
<Precondition> |
<Postcondition> |
null

<FunctionConstraint> ::= <Precondition> <ReturnExpression> |
<Precondition> |
<ReturnExpression> |
null

<ProcedureSpecification> ::= rwprocedure
Identifier<FormalPart> |
rwprocedure Identifier

<FunctionSpecification> ::= rwfunction Identifier
<FormalPart> rwreturn
<TypeMark> |
rwfunction Identifier
rwreturn<TypeMark>

<FormalPart> ::= leftparen<FormalPartRep>
rightparen

<FormalPartRep> ::= <FormalPartRep> semicolon
<ParameterSpecification> |
<ParameterSpecification>

<ParameterSpecification> ::= Identifier colon<Mode>
<TypeMark>
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<Mode> ::= rwin |
rwin rwout |
rwout |
null

<PackageBody> ::= rwpackage rwbody
Identifier rwis<LaterDeclarativeItemRep>
rwend Identifier semicolon

<LaterDeclarativeItemRep> ::= <LaterDeclarativeItemRep>
<SubprogramBody> |
<SubprogramBody>

<SubprogramBody> ::= <ProcedureSpecification>
rwis <SubprogramImplementation> |
<FunctionSpecification> rwis
<SubprogramImplementation>

<SubprogramImplementation> ::= <InitialDeclarativeItemRep>
rwbegin<SequenceOfStatements>
rwend Identifier
semicolon|
rwbegin<SequenceOfStatements>
rwend Identifier
semicolon

<InitialDeclarativeItemRep> ::= <InitialDeclarativeItemRep>
<VariableDeclaration> |
<VariableDeclaration>

<VariableDeclaration> ::= Identifier colon<TypeMark>
semicolon

<SequenceOfStatements> ::= <SequenceOfStatements> <Statement> |
<Statement>

<Statement> ::= <SimpleStatement> |
<CompoundStatement> |
<ProofStatement>

<SimpleStatement> ::= <AssignmentStatement> |
<ProcedureCallStatement> |
<ExitStatement> |
<ReturnStatement>

<CompoundStatement> ::= <IfStatement> |
<LoopStatement>

<ProofStatement> ::= <AssertStatement>

<AssignmentStatement> ::= <Name> becomes<Expression>
semicolon

<ProcedureCallStatement> ::= <Name> semicolon

<ExitStatement> ::= rwexit semicolon

<ReturnStatement> ::= rwreturn<Expression>
semicolon

225



<IfStatement> ::= rwif <Condition> rwthen
<SequenceOfStatements> <ElsePart>
rwend rwif semicolon

<ElsePart> ::= rwelse<SequenceOfStatements> |
null

<LoopStatement> ::= <LoopStatementOpt> rwloop
<SequenceOfStatements> rwend
rwloop semicolon

<LoopStatementOpt> ::= <IterationScheme> |
null

<IterationScheme> ::= rwwhile<Condition> |
rwfor <LoopParameterSpecification>

<LoopParameterSpecification> ::= Identifier rwin
<TypeMark>
rwrange<Arange> |
Identifier rwin<TypeMark>

<Condition> ::= <Expression>

<Expression> ::= <Relation> |
<Relation> rwand<ExpressionRep1> |
<Relation> rwor <ExpressionRep3>

<ExpressionRep1> ::= <ExpressionRep1> rwand<Relation> |
<Relation>

<ExpressionRep3> ::= <ExpressionRep3> rwor <Relation> |
<Relation>

<Relation> ::= <SimpleExpression> |
<SimpleExpression> <RelationalOperator>
<SimpleExpression>

<RelationalOperator> ::= equals|
notequal|
lessthan|
lessorequal|
greaterthan|
greaterorequal

<SimpleExpression> ::= <SimpleExpression> <BinaryAddingOperator>
<Term> |
<SimpleExpressionOpt>

<BinaryAddingOperator> ::= plus |
minus

<SimpleExpressionOpt> ::= <UnaryAddingOperator> <Term> |
<Term>

<UnaryAddingOperator> ::= plus |
minus
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<Term> ::= <Term> <MultiplyingOperator> <Factor> |
<Factor>

<MultiplyingOperator> ::= multiply |
divide

<Factor> ::= <Primary> |
<Primary> doublestar<Primary> |
rwnot<Primary>

<Primary> ::= Integernumber|
<Name> |
leftparen<Expression>
rightparen|
<Name> Attributeident

<TypeMark> ::= Identifier

<DottedSimpleName> ::= Identifier

<SimpleName> ::= Identifier

<Name> ::= <SimpleName> |
<Name> leftparen<PositionalArgumentAssociation>
rightparen

<PositionalArgumentAssociation> ::= <PositionalArgumentAssociation>
comma<Expression> |
<Expression>

<DependencyRelation> ::= annotationstart rwderives
annotationend

<AssertStatement> ::= proofcontext rwassert
annotationend

<Precondition> ::= annotationstart rwpre
annotationend

<Postcondition> ::= annotationstart rwpost
annotationend

<ReturnExpression> ::= annotationstart rwreturn
annotationend
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Appendix G

Program Analysis Methods

G.1 Introduction

As described in Chapter 7, our program analysis heuristics are expressed through program

analysis methods and abstract predicate satisfiers. Each ofthe program analysis methods

are detailed in this chapter.

G.2 Method: scope

This method discovers those variables that are in scope at each edge of the control flow-

graph.

G.2.1 Property Type

The property type for this method is shown in Figure G.1. Those variables in scope are

associated with the valueinscope.

Address7→ Property
[scope, <Var>] 7→ inscope
Definitions
<Var>F <subprogram variable>

Figure G.1: Property type forscope

G.2.2 Route

The structured block corresponding to the entire subprogram is retrieved, and followed in

sequence. Thus, with the exception of loop merge nodes, a node is visited after all of its

leading nodes have been visited.
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G.2.3 Property Operations

Entry

entry

[scope, <Var>] 7→ <Scope>out

Each variable has either static or dynamic scope. Variableswith static scope are al-

ways in scope. These correspond to subprogram parameters orlocal declarations. The

simplified package information is queried to identify each variable with static scope as

StaticVar, setting their output properties as:

[scope,StaticVar] 7→ inscope (G.1)

Variables with dynamic scope are sometimes in scope. At subprogram entry, dynamically

scoped variables are never in scope.

Assignment

[scope, <Var>] 7→ <Scope>in

assign(. . . )

[scope, <Var>] 7→ <Scope>out

Assignment does not affect the scope of variables. The input properties are copied as

the output properties.

EnterScope

[scope, <Var>] 7→ <Scope>in

enterScope(VarRef)

[scope, <Var>] 7→ <Scope>out

Entering scope brings variableVarRefinto scope. The input properties are copied as

the output properties. Further, a property is introduced for the additional variable in scope

as:

[scope,VarRef] 7→ inscope (G.2)
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ExitScope

[scope, <Var>] 7→ <Scope>in

exitScope(VarRef)

[scope, <Var>] 7→ <Scope>out

Exiting scope puts variableVarRefout of scope. The input properties are copied as

the output properties, excluding the property associated with VarRef.

Branch or Loop Branch

[scope, <Var>] 7→ <Scope>in

branch(. . . ) ∨ loopBranch(. . . )

[scope, <Var>] 7→ <Scope>true
out [scope, <Var>] 7→ <Scope>false

out

A branch does not affect the scope of variables. The input properties are copied as the

output properties for both the true and false edges.

Merge

[scope, <Var>] 7→ <Scope>1
in . . . [scope, <Var>] 7→ <Scope>n

in

merge

[scope, <Var>] 7→ <Scope>out

A merge does not affect the scope of variables. Variables entering scope must exit

scope on the same path, thus the input properties on each edgemust be the same. The

consistent input properties are copied as the output properties.

Loop Merge

[scope, <Var>] 7→ <Scope>entry
in [scope, <Var>] 7→ <Scope>return

in

loopMerge(. . . )

[scope, <Var>] 7→ <Scope>out

A loop merge does not affect the scope of variables. When encountering the loop

merge, there will be no properties associated with the return edge. The input properties

on the entry edge are copied as the output properties.
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G.3 Method: update

This method discovers two related properties of variables.Firstly, the method identifies

subprogram edges where variables have been fully assigned.Secondly, the method iden-

tifies the assignment nodes that may have contributed to the currently assigned value.

G.3.1 Property Type

The property type for this method is shown in Figure G.2. Eachvariable is associated with

its assigned and modified status. The statusassignedindicates that the variable has been

fully assigned, whileunassignedindicates that the variable has not been fully assigned.

The statusambiguousindicates that the assignment status can not be stated categorically.

The modified status lists every node which may have contributed to the assigned status.

Address7→ Property
[update, <Var>] 7→ <Update>
Definitions
<Var>F <subprogram variable>
<Update>F (<Assigned>, <Modified>)
<Assigned>F assigned| unassigned| ambiguous
<Modified>F <NodeIdList>
<NodeIdList>F [] | [NodeId| <NodeIdList>]

Figure G.2: Property type forupdate

G.3.2 Route

The structured block corresponding to the entire subprogram is retrieved, and followed in

sequence. Where a loop block is encountered, the path aroundthe loop is followed twice1.

Consequently, at least once, every node will be visited after all of its leading nodes have

been visited.

G.3.3 Property Operations

Entry

EntryNodeId: entry

[update, <Var>] 7→ <Update>out

1In practice, this is achieved by naively duplicating the path around each loop block, regardless of its

nesting. Thus, loops nested at depthd are actually itterated 2d times. While this is clearly inefficient, it does

not affect the result of the method.

231



Thescope method and the simplified package information are queried toidentify the

assigned status of every variable in scope. All input parameter variablesInVarRefmust

have an assigned value. Their output properties are set as follows:

[update, InVarRef] 7→ (assigned, [EntryNodeId]) (G.3)

All other variablesNotInVarRefare unassigned, with no modification history. Their output

properties are set as:

[update,NotInVarRef] 7→ (unassigned, []) (G.4)

Assignment

[update, <Var>] 7→ <Update>in

AssigmentNodeId: assign(LValueExp,RValueExp)

[update, <Var>] 7→ <Update>out

The variable modified byLValueExpis extracted asVarRef. The input properties are

copied as the output properties, excluding the property associated withVarRef. The input

property forVarRefwill take the following general form:

[update,VarRef] 7→ (<Assigned>in, <Modified>in) (G.5)

WhereLValueExpis a whole variable, thenVarRefis fully assigned at this node. Its output

property is set as:

[update,VarRef] 7→ (assigned, [AssigmentNodeId]) (G.6)

WhereLValueExpis an index of an array, then only a portion ofVarRefis assigned at this

node. Its output property is set as follows:

[update,VarRef] 7→ (<Assigned>in, [AssigmentNode| <Modified>in]) (G.7)

Note that the complete assignment of an array, through cumulative updates, is not de-

tected.

EnterScope

[update, <Var>] 7→ <Update>in

enterScope(VarRef)

[update, <Var>] 7→ <Update>out
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Entering scope brings an additional variableVarRefinto scope. The input properties

are copied as the output properties and a property is introduced for the additional variable.

As VarRefhas just entered scope it is unassigned, with no modificationhistory. Its output

property is set as follows:

[update,VarRef] 7→ (unassigned, []) (G.8)

ExitScope

[update, <Var>] 7→ <Update>in

exitScope(VarRef)

[update, <Var>] 7→ <Update>out

Exiting scope removes the variableVarReffrom scope. The input properties are copied

as the output properties, excluding the property associated with VarRef.

Branch or Loop Branch

[update, <Var>] 7→ <Update>in

branch(. . . ) ∨ loopBranch(. . . )

[update, <Var>] 7→ <Update>true
out [update, <Var>] 7→ <Update>false

out

A branch does not update any variables. The input propertiesare copied as the output

properties for both the true and false edges.

Merge

[update, <Var>] 7→ <Update>1
in . . . [update, <Var>] 7→ <Update>n

in

merge

[update, <Var>] 7→ <Update>out

The input properties associated with each variable are merged to generate the output

property for the variable. If every input property has the same assigned status, then this

consistent status is retained. Otherwise, the assigned status is set asambiguous. The mod-

ification lists are appended, deleting duplicates, indicating that any of the input branches

may have been traversed.
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Loop Merge

[update, <Var>] 7→ <Update>entry
in [update, <Var>] 7→ <Update>return

in

loopMerge(. . . )

[update, <Var>] 7→ <Update>out

The input properties associated with each variable are merged to generate the output

property for the variable. As loops are itterated twice, theloop merge will be visited on

more than one occasion. Where encountered the first time, no properties will be available

on the return edge. In this case, the input properties on the entry edge are copied as the

output properties. Where the loop merge is encountered again, properties will now be

available on the return edge. In this case input properties are merged in exactly the same

manner as the merge node above. Note that the properties always stabilise following the

second iteration.

G.3.4 Example

An example is given to illustrate the behaviour of this method. Consider the CheckSum

subprogram shown in Figure G.3. The subprogram sums the firstto eighth elements of

an array and stores the result in the zeroth element of the array. For program analysis, the

subprogram is translated into a control flowgraph as shown inFigure G.4.

package CheckSum_Package is

subtype AE_T is Integer range 0..100;

subtype AR1_T is Integer range 0..8;

subtype AR2_T is Integer range 1..AR1_T’Last;

type A_T is array (AR1_T) of AE_T;

procedure CheckSum(A: in out A_T);

--# derives A from A;

end CheckSum_Package;

package body CheckSum_Package is

procedure CheckSum(A: in out A_T)

is

C: Integer;

begin

C:=0;

for I in AR2_T loop

--# assert true;

C:=C+A(I);

end loop;

A(0):=C;

end CheckSum;

end CheckSum_Package;

Figure G.3: CheckSum subprogram
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 n1:  ent ry  

 n2: assign(c,0) 

  e1: [...]

 n3: enterScope(loop__1__i) 

  e2: [...]

 n4: assign(loop__1__i,1) 

  e3: [...]

 n5: loopMerge(1) 

  e4: [...]

 n6: assign(c,c+element(a,[ loop__1__i])) 

  e5: [ [ invariant]->true,. . . ]

 n7: loopBranch(loop__1__i=8,1) 

  e6: [...]

 n8: assign(loop__1__i,loop__1__i+1) 

  e8: [[cross]->false,...]

 n9:  merge 

  e7: [ [cross]->true,.. . ]

  e9: [...]

 n10: exitScope(loop__1__i) 

  e10: [...]

 n11: assign(element(a,[0]),c) 

  e11: [...]

 n12: exi t  

  e12: [...]

Figure G.4: CheckSum control flowgraph
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The route visits every subprogram node in sequence, iterating each loop twice. The

route is retrieved as:

[n1, n2, n3, n4,n5, n6, n7, n8,

n5, n6, n7, n8, n9, n10, n11, n12]
(G.9)

To begin, update properties are distributed to the start of the loop, as shown in Figure G.5.

The route starts at the subprogram entry node (n1). The array variablea is a parameter

of modeinout, thus it is initially assigned. Variablec is a local variable that is initially

unassigned. Next, assignment node (n2) assigns toc. The next node (n3) brings variable

i into scope, which is initially unassigned. Next, assignment node (n4) assigns toi.

Noden1 entry
Edgee1 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (unassigned, [])
Noden2 assign(c, 0)
Edgee2 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n2])
Noden3 enterScope(i)
Edgee3 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n2]),

[update, i] 7→ (unassigned, [])
Noden4 assign(i, 0)
Edgee4 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n2]),

[update, i] 7→ (assigned, [n4])

The table format above is used throughout this chapter to describe the trans-
formations seen to properties on traversing a path through acontrol flow-
graph. The table lists every node and edge encountered on thepath. The
first column identifies the node or edge being described. Where describing
a node, the operation of the node is shown. Where describing an edge, the
relevant properties held at the edge are shown. Every node ispreceded by its
input edges and followed by its output edges. To highlight these transitions,
the node descriptions are shaded.

Figure G.5:update on CheckSum: Reaching loop

At this stage, update properties are distributed around theloop for the first time, as

shown in Figure G.6. As the loop merge node (n5) is reached for the first time, no update

properties exist on the edge returning from the loop. Thus, following the loop merge

node, the update properties for all variables are unchanged. Next, the assignment node

(n6) assigns toc. Next, a loop branch node (n7) is encountered. As branches do not affect

update properties, the properties are unchanged on the boththe true and false edges. The

loop iteration is completed with the assignment node (n8) which assigns toi.

At this stage, update properties are distributed around theloop for the second time,

as shown in Figure G.7. At the loop merge node, update properties now exist on the

edge returning from the loop. Update properties on the edge arriving at and returning

from the loop are merged. Update properties for variablesc andi now list every potential

assignment point. These properties are then distributed inthe same manner as the first

236



Edgee4 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n2]),
[update, i] 7→ (assigned, [n4])

Edgee9 ∅

Noden5 loopMerge(1)
Edgee5 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n2]),

[update, i] 7→ (assigned, [n4])
Noden6 assign(c, c+ element(a, [i]))
Edgee6 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n4])
Noden7 loopBranch(i = 8, 1)
Edgee7 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n4])
Edgee8 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n4])
Noden8 assign(i, i + 1)
Edgee9 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n8])

Figure G.6:update on CheckSum: First loop iteration

loop iteration. Note that the update properties on the edge returning from the loop match

those from the first iteration. Such stabilisation always occurs, thus additional iterations

are not required.

Edgee4 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n2]),
[update, i] 7→ (assigned, [n4])

Edgee9 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),
[update, i] 7→ (assigned, [n8])

Noden5 loopMerge(1)
Edgee5 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n2, n6]),

[update, i] 7→ (assigned, [n4, n8])
Noden6 assign(c, c+ element(a, [i]))
Edgee6 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n4, n8])
Noden7 loopBranch(i = 8, 1)
Edgee7 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n4, n8])
Edgee8 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n4, n8])
Noden8 assign(i, i + 1)
Edgee9 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n8])

Figure G.7:update on CheckSum: Second loop iteration

Next, update properties are distributed from the edge leaving the loop to the end of the

subprogram, as shown in Figure G.8. The merge node (n9) contains a single input edge,

thus update properties following the merge are unchanged. The following node (n10) puts

variablei out of scope. Finally, the assignment node (n11) assigns to the zeroth element of

arraya. This partial assignment leads to the list of potential modifications being extended.

The route is now complete, marking the completion of the method.
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Edgee7 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),
[update, i] 7→ (assigned, [n4, n8])

Noden9 merge
Edgee10 [update, a] 7→ (assigned, [n1]), [update, c] 7→ (assigned, [n6]),

[update, i] 7→ (assigned, [n4, n8])
Noden8 exitScope(i)
Edgee11 [update, a] 7→ (assigned, [n1])[update, c] 7→ (assigned, [n6])
Noden11 assign(element(a, [0]), c)
Edgee12 [update, a] 7→ (assigned, [n1, n11]), [update, c] 7→ (assigned, [n6])

Figure G.8:update on CheckSum: Leaving loop
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G.4 Method: context

This method discovers different structural contexts that exist within the subprogram.

G.4.1 Property Type

The property type for this method is shown in Figure G.9. A single property is held at

each edge, describing its context through a list of tags. Thecontext at edgee1also holds

at edgee2 if all of the tags ate1are also ate2.

Address7→ Property
[context] 7→ <TagList>
Definitions
<TagList>F [] | [Tag | <TagList>]

Figure G.9: Property type for methodcontext

G.4.2 Route

The structured block corresponding to the entire subprogram is retrieved, and followed in

sequence. Thus, with the exception of loop merge nodes, a node is visited after all of its

leading nodes have been visited.

G.4.3 Property Operations

Entry

entry

[context] 7→ <TagList>out

A unique tag is created to describe the context of the subprogram asSubprogramTag,

setting the output property as:

[context] 7→ [SubprogramTag] (G.10)

Assignment, EnterScope and ExitScope

[context] 7→ <TagList>in

assignment(. . . ) ∨ enterScope(. . . ) ∨ exitScope(. . . )

[context] 7→ <TagList>out
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Assignment and entering and exiting scope do not affect context. Thus, the input

property is copied as the output property.

Branch or Loop Branch

[context] 7→ <TagList>in

branch(. . . ) ∨ loopBranch(. . . )

[context] 7→ <TagList>true
out [context] 7→ <TagList>false

out

Following a branch, the context is extended. A unique tag is created to describe the

context of the true and false edges asTrueTagand FalseTagrespectively. The output

property for the true edge is set as:

[context] 7→ [TrueTag| <TagList>in] (G.11)

While the output property for the false edge is set as:

[context] 7→ [FalseTag| <TagList>in] (G.12)

Merge

[context] 7→ <TagList>1
in . . . [context] 7→ <TagList>n

in

merge

[context] 7→ <TagList>out

Following a merge, the context is contracted. The output property is the intersection

of the tags at every input property:

[context] 7→ <TagList>1
in ∩ . . . <TagList>n

in (G.13)

Loop Merge

[context] 7→ <TagList>entry
in [context] 7→ <TagList>return

in

loopMerge(. . . )

[context] 7→ <TagList>out

Only one loop iteration is considered. Thus, on encountering the loop merge node,

there will be no context property associated with the returnbranch. The single input

property is copied as its output property.
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G.4.4 Example

An example is given to illustrate the behaviour of this method. Consider the FindIndex

subprogram shown in Figure G.10. The subprogram searches through an array to find the

first occurrence of a requested element. Where the element isfound its index is returned,

otherwise zero is returned. For program analysis, the subprogram is translated into a

control flowgraph as shown in Figure G.11.

package FindIndex_Package is

subtype AR_T is Integer range 1..10;

subtype EAR_T is Integer range 0..10;

type A_T is array (AR_T) of Integer;

procedure FindIndex(A: in A_T; S: in Integer;

R: out EAR_T);

--# derives R from A,S;

end FindIndex_Package;

package body FindIndex_Package is

procedure FindIndex(A: in A_T; S: in Integer;

R: out EAR_T)

is

begin

R:=0;

for I in AR_T loop

--# assert true;

if A(I)=S then

R:=I;

exit;

end if;

end loop;

end FindIndex;

end FindIndex_Package;

Figure G.10: FindIndex subprogram
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 n1:  ent ry  

 n2: assign(r,0) 

  e1: [...]

 n3: enterScope(loop__1__i) 

  e2: [...]

 n4: assign(loop__1__i,1) 

  e3: [...]

 n5: loopMerge(1) 

  e4: [...]

 n6: loopBranch(element(a,[ loop__1__i])=s,1) 

  e5: [ [ invariant]->true,. . . ]

 n7: assign(r,loop__1__i) 

  e6: [ [cross]->true,.. . ]

 n8: loopBranch(loop__1__i=10,1) 

  e8: [[cross]->false,...]

 n10:  merge 

  e7: [...]

 n9: assign(loop__1__i,loop__1__i+1) 

  e10: [[cross]->false,...]  e9: [ [cross]->true,.. . ]

  e11: [...]

 n11: exitScope(loop__1__i) 

  e12: [...]

 n12: exi t  

  e13: [...]

Figure G.11: FindIndex control flowgraph
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The route visits every subprogram node in sequence. The route is retrieved as:

[n1, n2, n3, n4, n5, n6, n8, n9, n7, n10, n11, n12] (G.14)

To begin, context properties are distributed to the start ofthe loop, as shown in Fig-

ure G.12. The route starts at the subprogram entry node (n1). The initial context is

indicated via the tage. The next three nodes encountered are an assignment node (n2), an

enter scope node (n3) and another assignment node (n4). These nodes do not modify the

initial context property.

Noden1 entry
Edgee1 [context] 7→ [e]
Noden2 assign(r, 0)
Edgee2 [context] 7→ [e]
Noden3 enterScope(i)
Edgee3 [context] 7→ [e]
Noden4 assign(i, 1)
Edgee4 [context] 7→ [e]

Figure G.12:context on FindIndex: Reaching loop

At this stage, context properties are distributed around the loop, as shown in Fig-

ure G.13. The loop merge node (n5) does not modify context properties. At the first loop

branch node (n6) the context properties associated with the true and false edges are ex-

tended with the tagsb1t andb1f respectively. Similarly, at the second loop branch node

(n8) the context properties associated with the true and false edges are extended with the

tagsb2t andb2f respectively. The loop iteration is completed at assignment node (n9),

which does not modify context properties.

Edgee4 [context] 7→ [e]
Edgee11 ∅

Noden5 loopMerge(1)
Edgee5 [context] 7→ [e]
Noden6 loopBranch(element(a, [i]) = s, 1)
Edgee6 [context] 7→ [e, b1t]
Edgee8 [context] 7→ [e, b1f]
Noden8 loopBranch(i = 10, 1)
Edgee9 [context] 7→ [e, b1f, b2t]
Edgee10 [context] 7→ [e, b1f, b2f]
Noden9 assign(i, i + 1)
Edgee11 [context] 7→ [e, b1f, b2f]

Figure G.13:context on FindIndex: Loop iteration

Next, context properties are distributed from the edges leaving the loop to the end

of the subprogram, as shown in Figure G.14. Leaving the loop via the first branch node

(n6), the assignment node (n7) is encountered, which does not modify context properties.

There are no nodes to consider on the path leaving the second branch node (n8). The
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merge node (n10) contracts context properties. Only the subprogram tage is common to

the merged context properties. Finally, the exit scope node(n11) is reached, making no

modifications to context properties. The route is now complete, marking the completion

of the method.

Edgee6 [context] 7→ [e, b1t]
Noden7 assign(r, i)
Edgee7 [context] 7→ [e, b1t]
Edgee9 [context] 7→ [e, b1f, b2t]
Noden10 merge
Edgee12 [context] 7→ [e]
Noden11 exitScope(i)
Edgee13 [context] 7→ [e]

Figure G.14:context on FindIndex: Leaving loop
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G.5 Method: type

This method introduces properties stating that assigned variables are within their type.

G.5.1 Property Type

The property type for this method is shown in Figure G.15. Each variable is associated

with its corresponding type constraint.

Address7→ Property
[type, <Var>] 7→ <TypeConstraint>
Definitions
<Var>F <subprogram variable>

Figure G.15: Property type for methodtype

G.5.2 Route

The structured block corresponding to the entire subprogram is retrieved. Every subpro-

gram node is visited, in any order.

G.5.3 Property Operations

Every Node

[type, <Var>] 7→ <TypeConstraint>1
in . . . [type, <Var>] 7→ <TypeConstraint>n

in

. . .

[type, <Var>] 7→ <TypeConstraint>1
out . . . [type, <Var>] 7→ <TypeConstraint>m

out

The same property operation is applied for every node. The input edges are always

ignored. Theupdate method and the simplified package information are queried toasso-

ciate every assigned variable on the output edges with its corresponding type constraint.
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G.6 Method: transient

This method discovers transient properties that are preserved for sections of the subpro-

gram. The preservation of the transient properties are calculated from the assignment

status of variables and the structural contexts that exist in the subprogram.

G.6.1 Property Type

The property type for this method is shown in Figure G.16. Multiple properties may be

held at each edge. Each property contains a constraint alongside two conditions which,

if preserved, mean that the constraint continues to hold. The first condition specifies

required update properties for selected variables. The second condition specifies the re-

quired structural context.

Address7→ Property
[transient] 7→ <Transient>
Definitions
<Transient>F (Constraint, <UpdateList>, <TagList>)
<UpdateList>F [] | [(<Var>, <Update>) | <UpdateList>]
<Var>F <subprogram variable>
<TagList>F defined in property type forcontext method
<Update>F defined in property type forupdate method

Figure G.16: Property type for methodtransient

G.6.2 Route

The structured block corresponding to the entire subprogram is retrieved, and followed in

sequence. Thus, with the exception of loop merge nodes, a node is visited after all of its

leading nodes have been visited.

G.6.3 Property Operations

Every Node

[transient] 7→ <Transient>1
in . . . [transient] 7→ <Transient>n

in

. . .

[transient] 7→ <Transient>1
out . . . [transient] 7→ <Transient>m

out

This property operation is applied at every node to distribute previously introduced

transient properties. Each transient property on an input edge is investigated individually.

The property is copied to an output edge if its two conditionsare satisfied. Firstly, the
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recorded update properties for selected variables must match those on the output edge.

Secondly, the recorded context must be available on the output edge.

Assignment

[transient] 7→ <Transient>in

assign(LValueExp,RValueExp)

[transient] 7→ <Transient>out

Following assignment, a transient property may be introduced on the output edge.

Where the variable modified throughLValueExpis not referenced in the assigned ex-

pressionRValueExpthen the assignment can be trivially expressed as an equality. This

observation is exploited to introduce the following transient property:

[transient] 7→ (LValueExp= RValueExp, <UpdateList>, <TagList>) (G.15)

Theupdate method is queried, pairing each variable inLValueExpandRValueExpwith

its update property as<UpdateList>. Further, thecontext method is queried to determine

the context property following the assignment as<TagList>.

Branch or Loop Branch

[transient] 7→ <Transient>in

branch(ConditionExp) ∨ loopBranch(ConditionExp, . . . )

[transient] 7→ <Transient>true
out [transient] 7→ <Transient>false

out

Following a branch, a transient property is introduced on the true edge as:

[transient] 7→ (ConditionExp, <UpdateList>, <TagList>) (G.16)

While a transient property is introduced on the false edge as:

[transient] 7→ (¬ConditionExp, <UpdateList>, <TagList>) (G.17)

Theupdate method is queried to pair each variable referenced inConditionExpwith its

corresponding update property as<UpdateList>. Further, thecontext method is queried

to determine the context property on the output edge as<TagList>.
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G.6.4 Example

An example is given to illustrate the behaviour of this method. Consider the IndexIni-

tArray subprogram shown in Figure G.17. The subprogram initialises an array such that

the element at each index equals this index. For program analysis, the subprogram is

translated into a control flowgraph as shown in Figure G.18.

package IndexInitArray_Package is

subtype AR_T is Integer range 0..1000;

type A_T is array (AR_T) of AR_T;

procedure IndexInitArray(A: in out A_T);

--# derives A from A;

end IndexInitArray_Package;

package body IndexInitArray_Package is

procedure IndexInitArray(A: in out A_T)

is

begin

for I in AR_T loop

A(I):=I;

end loop;

end IndexInitArray;

end IndexInitArray_Package;

Figure G.17: IndexInitArray subprogram
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 n1:  ent ry  

 n2: enterScope(loop__1__i) 

  e1: [...]

 n3: assign(loop__1__i,0) 

  e2: [...]

 n4: loopMerge(1) 

  e3: [...]

 n5: assign(element(a,[loop__1__i]),loop__1__i) 

  e4: [...]

 n6: loopBranch(loop__1__i=1000,1) 

  e5: [...]

 n7: assign(loop__1__i,loop__1__i+1) 

  e7: [[cross]->false,...]

 n8:  merge 

  e6: [ [cross]->true,.. . ]

  e8: [...]

 n9: exitScope(loop__1__i) 

  e9: [...]

 n10: exi t  

  e10: [...]

Figure G.18: IndexInitArray control flowgraph
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The route visits every subprogram node in sequence. The route is retrieved as:

[n1, n2, n3, n4, n5, n6, n7, n8, n9, n10] (G.18)

The distribution of transient properties on reaching and iterating around the loop are

shown in Figure G.19. The subprogram entry node (n1) and the enter scope node (n2)

do not affect transient properties. The assignment node (n3), leads to the introduction of

a transient property. Following the loop merge node (n4) the update property for variable

i changes, reflecting the assignment seen on loop iterations.Consequently, the conditions

associated with the transient property introduced at (n3) no longer hold and the transient

property is removed. The following assignment node (n5) leads to the introduction of

another transient property. Next, a branch node (n6) is encountered, introducing transient

properties for each departing edge. The subsequent assignment node (n7) does not lead

to the introduction of a transient property, as the modified variablei is also referenced in

the assigned expression. Following this assignment node the update property for variable

i changes. Consequently, the conditions associated with thetransient properties intro-

duced at (n5) and the false edge of (n6) no longer hold and these transient properties are

removed.

Noden1 entry
Edgee1 [update, a] 7→ (assigned, [n1]), [context] 7→ [e]
Noden2 enterScope(i)
Edgee2 [update, a] 7→ (assigned, [n1]), [update, i] 7→ (unassigned, []) , [context] 7→ [e]
Noden3 assign(i, 0)
Edgee3 [update, a] 7→ (assigned, [n1]), [update, i] 7→ (assigned, [n3]), [context] 7→ [e]

[transient] 7→ (i = 0, [(i, (assigned, [n3]))] , [e])
Noden4 loopMerge(1)
Edgee4 [update, a] 7→ (assigned, [n1, n5]), [update, i] 7→ (assigned, [n3, n7]), [context] 7→ [e]
Noden5 assign(element(a, [i]), i)
Edgee5 [update, a] 7→ (assigned, [n1, n5]), [update, i] 7→ (assigned, [n3, n7]), [context] 7→ [e]

[transient] 7→ (element(a, [i]) = i, [(a, (assigned, [n1, n5])), (i, (assigned, [n3, n7]))] , [e])
Noden6 loopBranch(i = 1000, 1)
Edgee6 [update, a] 7→ (assigned, [n1, n5]), [update, i] 7→ (assigned, [n3, n7]), [context] 7→ [e, b1t]

[transient] 7→ (element(a, [i]) = i, [(a, (assigned, [n1, n5])), (i, (assigned, [n3, n7]))] , [e])
[transient] 7→ (i = 1000, [(i, (assigned, [n3, n7]))] , [e, b1t])

Edgee7 [update, a] 7→ (assigned, [n1, n5]), [update, i] 7→ (assigned, [n3, n7]), [context] 7→ [e, b1f]
[transient] 7→ (element(a, [i]) = i, [(a, (assigned, [n1, n5])), (i, (assigned, [n3, n7]))] , [e])
[transient] 7→ (¬(i = 1000), [(i, (assigned, [n3, n7]))] , [e, b1f])

Noden7 assign(i, i + 1)
Edgee8 [update, a] 7→ (assigned, [n1, n5]), [update, i] 7→ (assigned, [n7]), [context] 7→ [e, b1f]

Figure G.19:transient on IndexInitArray: Reaching loop

The distribution of transient properties on leaving the loop to the end of the subpro-

gram are shown in Figure G.20. As the loop has a single exit path, the merge node (n8)

does not restrict context, allowing transient properties to be distributed. Finally, the exit

scope node (n9) removesi from scope, changing its update property and leading to all dis-

tributed properties being removed. The route is now complete, marking the completion
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of the method.

Edgee6 [update, a] 7→ (assigned, [n1, n5]), [update, i] 7→ (assigned, [n3, n7]), [context] 7→ [e, b1t]
[transient] 7→ (element(a, [i]) = i, [(a, (assigned, [n1, n5])), (i, (assigned, [n3, n7]))] , [e])
[transient] 7→ (i = 1000, [(i, (assigned, [n3, n7]))] , [e, b1f])

Noden8 merge
Edgee6 [update, a] 7→ (assigned, [n1, n5]), [update, i] 7→ (assigned, [n3, n7]), [context] 7→ [e, b1t]

[transient] 7→ (element(a, [i]) = i, [(a, (assigned, [n1, n5])), (i, (assigned, [n3, n7]))] , [e])
[transient] 7→ (i = 1000, [(i, (assigned, [n3, n7]))] , [e, b1f])

Noden9 exitScope(i)
Edgee10 [update, a] 7→ (assigned, [n1, n5]), [context] 7→ [e, b1t]

Figure G.20:transient on IndexInitArray: Leaving loop
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G.7 Method: loop range

This method introduces properties stating that for-loop variables are within any declared

range.

G.7.1 Property Type

The property type for this method is shown in Figure G.21. For-loop variables that are

known to iterate between range expressions are associated with these constraints.

Address7→ Property
[looprange, <Var>] 7→ <RangeConstraint>
Definitions
<Var>F <subprogram variable>

Figure G.21: Property type for methodloop range

G.7.2 Route

The structured block corresponding to the entire subprogram is retrieved. Every subpro-

gram node is visited, in any order.

G.7.3 Property Operations

Every Node

[looprange, <Var>] 7→ <RangeConstraint>1
in . . .

[looprange, <Var>] 7→ <RangeConstraint>n
in

. . .

[looprange, <Var>] 7→ <RangeConstraint>1
out . . .

[looprange, <Var>] 7→ <RangeConstraint>m
out

The same property operation is applied for every node. The input edges are always

ignored. Each output edge is considered separately. Thescope method and the simpli-

fied package information are queried to identify every for-loop variable in scope that has

an explicit range constraint. In some situations, the rangeconstraints can not be directly

expressed as SPARK assertions. For example, the constraints may reference loop entry

variables. To resolve this, a suitable goal is constructed and sent to thepa spark exp

strategy. Thetype and transient properties on the output edge describe the context as

hypotheses, while the range constraint forms the conclusion. Where the strategy is suc-

cessful, the resulting constraint is stored on the output edge.
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G.8 Method: int constraint

This method discovers constraints for integer variables. In particular, invariant constraints

are discovered for loops through the generation and solvingof recurrence relations.

G.8.1 Property Type

Address7→ Property
[intconst, <Var>, <Class>] 7→ <Constraint>
Definitions
<Var>F <subprogram variable>
<Class>F circulate(SelLoopId) | solution| propagate| normalise
<Constraint>F undef|

<Eq> ∧ <Eq> | <Eq> ∨ <Eq> | ¬<Eq> | <boolean>
<Eq>F <Exp> = <Exp> | <Exp> , <Exp> |

<Exp> < <Exp> | <Exp> ≤ <Exp> |
<Exp> > <Exp> | <Exp> ≥ <Exp>

<Exp>F <Exp> ∗ ∗<Exp> | <Exp> ∗ <Exp> |
<Exp> + <Exp> | <Exp> − <Exp> |
−<Exp> |
<integer> |
<subprogram variable∼ > |
<Circulate>(SelLoopId) {where<Class> = circulate(SelLoopId)}
<Propagate> {where<Class> ∈ {solution, propagate}}
<Normalise> {where<Class> = normalise}

<Circulate>(SelLoopId)F uvi {i ≥ 0} |
itt(<subprogram variable>, 0) |
itt(<Var>, lSelLoopId) |
itt(<Var>, lSelLoopId− 1) |
l i {where i, SelLoopId}

<Propagate>F uvi {i ≥ 0} |
itt(<subprogram variable>, 0) |
l i {i ≥ 1} |
<Var>

<Normalise>F <subprogram variable>

Figure G.22: Property type for methodint constraint

The property type for this method is shown in Figure G.22. Each integer variable

is associated with an integer constraint. A relatively limited constraint grammar is em-

ployed to minimise complexity and remain within the capabilities of a recurrence relation

solver. Nevertheless, the constraint grammar is sufficient for reasoning about many com-

mon programing constructs. The grammar references additional variables and functions,

as described below:

• Unconstrained variables- Unconstrained variables support the elimination of ex-

pressions, as described in §G.8.2. The variables are denoted uvi, and are introduced
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for increasing values ofi as required.

• Loop iteration variables - Loop iteration variables support the expression of in-

variant properties discovered through solving recurrencerelations. The variables

are denotedl i, wherei matches the unique number associated with a loop. These

variables are implicitly zero on entry to the loop, and are implicitly increased by

one at the end of each iteration.

• Loop iteration function - A loop iteration function is introduced to support the

expression of recurrence relations. The functionitt(v, l i) describes the value of vari-

ablev in loop i on thel thi iteration. For simplicity, only the first, current and previous

iterations are referenced as 0,l i andl i − 1 respectively.

The grammar supports four different property classes, as described below:

• circulate(SelLoopId) - Describes the potential assignments made to an integer vari-

able within loopSelLoopIdthrough recurrence relations. Circulate properties are

distributed throughout their corresponding loop. Note, however, that their corre-

sponding loop may contain nested loops.

• solution- Describes invariant constraints on integer variables through solved recur-

rence relations. Solution properties are only associated with the edge leaving a loop

merge node.

• propagate- Describes constraints on integer variables, including invariant con-

straints within loops. Propagate properties are distributed throughout the subpro-

gram.

• normalise- Describes invariant properties strictly in terms of SPARKconstructs.

Normalise properties are only associated with edges corresponding to a loop invari-

ant.

G.8.2 Eliminate Expressions via Unconstrained Variables

This method often requires properties to be expressed independent to other variables. For

example, assume that the following two properties are known:

(a ≥ 0)∧ (a ≤ 10) (G.19)

b = 2 ∗ a (G.20)

Via mathematical reasoning, given (G.19), (G.20) can be expressed independently toa as:

(b ≥ 0)∧ (b ≤ 20) (G.21)
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In general, such reasoning is difficult to automate. Instead, variables may be eliminated

from properties through the introduction of unconstrainedvariables. Firstly, a constraint

must be discovered for the variable to be eliminated. For example, if seeking to eliminate

a from (G.20), then the following constraint may be found:

(a ≥ 0)∧ (a ≤ 10) (G.22)

While the discovery of constraints requires mathematical reasoning, the process is typi-

cally tractable. Secondly, the discovered constraint is conjoined with the original property.

For example, conjoining (G.20) with (G.22) gives:

(b = 2 ∗ a) ∧ ((a ≥ 0)∧ (a ≤ 10)) (G.23)

Finally, the variable to be eliminated is consistently replaced with an unconstrained vari-

able. For example, replacinga with uv1 in (G.23) gives:

(b = 2 ∗ uv1) ∧ ((uv1 ≥ 0)∧ (uv1 ≤ 10)) (G.24)

Thus, the property (G.20) is now expressed independently toa.

G.8.3 Route

Every structured block corresponding to a loop is retrieved. Sequential loops are selected

from top to bottom and nested loops are selected from the innermost to the outermost.

Each loop is individually analysed. The path departing fromand returning to the loop

merge node is iteratively followed until all variables are solved or no new solutions are

discovered. Once all loops have been explored, the structured block corresponding to the

entire subprogram is retrieved and followed in sequence.

G.8.4 Property Operations

Entry

entry

[intconst, <Var>, propagate] 7→ <Constraint>out

As the subprogram entry node is encountered after all loops have been visited, all

properties must belong to thepropagateclass. Theupdate method and the simplified

package information are queried to identify the assigned status of every integer program

variable in scope. Assigned variablesAssignedIntVarare associated with an assigned

valueAssignedValue. For strictly input parameter variables the assigned valueis the pro-

gram variable. Otherwise the assigned value is the initial parameter variable correspond-
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ing to the program variable:

[intconst, <Var>, propagate] 7→ AssignedIntVar= AssignedValue (G.25)

Unassigned variablesUnassignedIntVarare associated withundef:

[intconst, <Var>, propagate] 7→ UnassignedIntVar= undef (G.26)

Assignment

[intconst, <Var>, <Class>] 7→ <Constraint>in

assign(LValueExp,RValueExp)

[intconst, <Var>, <Class>] 7→ <Constraint>out

The variable modified byLValueExpis extracted asVarRef. The input properties are

copied as the output properties, excluding any property associated withVarRef. Where

there is an input property forVarRefit is queried to form the initial output property as

follows:

[intconst, <Var>, <Class>] 7→ VarRef= RValueExp (G.27)

The expressionRValueExpmay contain subexpressions outside the property type gram-

mar. Some of these incompatibilities are resolved through recursively applying the fol-

lowing transformations:

• Array element access- An array element accesselement(Array, [Index]) may not

be referenced in the constraint grammar. The array element access is eliminated as

described in §G.8.2. The constraint for the array element access is discovered by

sending a suitable goal to thepa exp constrain strategy. Thetype and transient

properties on the output edge describe the context as hypotheses while the array

element access forms the conclusion.

• Program variable access- A program variable may only be referenced in the con-

straint grammar in certain situations. Outside these situations, the program variable

access is eliminated as described in §G.8.2. The input properties are queried to find

a constraint for the program variable.

• Bound function - The constraint grammar does not include thebound(TypeRef)

function, as introduced in §7.6.4. The bound function is eliminated as described

in §G.8.2. The constraint bound function is found by adopting its declared type

constraint.

WhereRValueExpis transformed into the property type grammar, it is subsequently sim-

plified via thepa exp simplify strategy. Where unsuccessful,RValueExpis set asundef.
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EnterScope

[intconst, <Var>, <Class>] 7→ <Constraint>in

enterScope(VarRef)

[intconst, <Var>, <Class>] 7→ <Constraint>out

Entering a scope does not modify any variables. Thus, the input properties are copied

as the output properties. As scope changes are never encountered inside loops, the prop-

erties must belong to thepropagateclass. WhereVarRefis an integer program variable

the following output property is introduced:

[intconst,VarRef, propagate] 7→ VarRef= undef (G.28)

ExitScope

[Class,Var] 7→ <Constraint>in

exitScope(VarRef)

[Class,Var] 7→ <Constraint>out

Exiting scope removes the variableVarReffrom scope. The input properties are copied

as the output properties, excluding any property associated withVarRef. As scope changes

are never encountered inside loops, the properties must belong to thepropagateclass.

WhereVarRefis an integer program variable its output property is set as:

[intconst,VarRef, propagate] 7→ VarRef= undef (G.29)

Branch

[intconst, <Var>, <Class>] 7→ <Constraint>in

branch(. . . )

[intconst, <Var>, <Class>] 7→ <Constraint>true
out

[intconst, <Var>, <Class>] 7→ <Constraint>false
out

A branch does not update any variables. The input propertiesare copied as the output

properties on both the true and false edges.
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Loop Branch

[intconst, <Var>, <Class>] 7→ <Constraint>in

loopBranch(ConditionExp, LoopId)

[intconst, <Var>, <Class>] 7→ <Constraint>true
out

[intconst, <Var>, <Class>] 7→ <Constraint>false
out

Different operations occur at the true and false edges, as detailed below:

• True Edge - Circulate properties are not distributed outside their corresponding

loop. Where an input property has the following form:

[intconst,VarRef, circulate(LoopId)] 7→ <Constraint>in (G.30)

Then its output property is set as:

[intconst,VarRef, propagate] 7→ VarRef= undef (G.31)

In all other cases, each input property is copied as the output property, following a

transformation. In exiting loopLoopId, all references to the loop iteration variable

lLoopId must be removed. The loop iteration variable is eliminated as described in

§G.8.2. The constraint for the loop iteration variable is discovered by sending a

suitable goal to thepa spark exp strategy. The propagate input properties, exclud-

ing the variable under consideration, plus thetype andtransient properties on the

output edge describe the context as hypotheses. The loop iteration variable forms

the conclusion.

• False Edge- The false edge remains within the loop. Each input propertyis copied

as an output property.

Merge

[intconst, <Var>, <Class>] 7→ <Constraint>1
in . . .

[intconst, <Var>, <Class>] 7→ <Constraint>n
in

merge

[intconst, <Var>, <Class>] 7→ <Constraint>out

The input properties associated with each variable are merged to generate the output

property for the variable. Where every input property associated with a variable has a

defined property then these properties are disjoined. The resulting constraint is simplified
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through thepa exp simplify strategy, and taken as the output property. Otherwise, the

output property is set asundef.

Loop Merge (Recurrence Relation Solving)

[intconst, <Var>, <Class>] 7→ <Constraint>entry
in

[intconst, <Var>, <Class>] 7→ <Constraint>return
in

loopMerge(LoopId)

[intconst, <Var>, <Class>] 7→ <Constraint>out

The input properties associated with the returning edge areinspected. Those variables

of classcirculate(LoopId), describe an iteration of this loop. For each such variablesolved

properties are sought that describe a general iteration. The stages of this process are

detailed below:

• Reject if no reference to previous iteration- Where the circulate property isundef

then no solution can be found. Further, where a property makes no reference to the

previous iteration, no solution can be found. This situation arises where a variable

is assigned a distinct value on each iteration. For example,a temporary variable

might be present within a loop, but be overwritten with unrelated values on each

iteration.

• Complete the iteration- The circulate property resides on the edge returning to the

loop merge node. As initialisation took place on the edge leaving the loop merge

node, the property does not yet describe a full iteration. Itis necessary to carry the

constraint across the loop junction to complete the iteration. No program variables

are modified as the loop junction is traversed. However, the loop iteration variable

lLoopId is implicitly incremented. Thus, to retain the same meaning, every occurrence

of lLoopId in the known constraint is decremented.

• Disjunctive normal form - The circulate property will be expressed through a

nested conjunction and disjunction of expressions. To easeanalysis, the property is

converted into disjunctive normal form via thepa disj norm form strategy.

• Extract extreme recurrence relations- Each disjunct is processed individually,

generating a number ofextreme recurrence relations. These recurrence relations

seek to describe the extreme edges of a constraint. Extreme recurrence relations

are trivially generated by considering every combination of the lower and upper

constraints of every bounded expression. The simplistic approach is only accurate

where constraints are linear. Nevertheless, the techniqueis effective and supports

the analysis of many realistic problems.
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• Solve extreme recurrence relations- Every extreme recurrence relation is solved2

via the recurrence relation solver PURRS [PUR]. The property type for this method

is directly supported by the PURRS grammar.

• Bounding extreme recurrence relations- Each solved extreme recurrence relation

describes a potential constraint. A lowermost and uppermost recurrence relation is

sought that bounds the values of every other constraint. This is achieved by sorting

the solved extreme recurrence relations through numericalanalysis. A parameter

set is generated, associating each parameter with a random value. Using this pa-

rameter set, each recurrence relation is evaluated and associated with its numerical

solution. Based on this solution, the recurrence relationsare sorted to identify the

extreme bounding solutions. The process is repeated several times and must con-

sistently produce the same result. The simplistic approachis only accurate where

the constraints are linear. Nevertheless, the technique provides an effective analysis

with no reasoning overhead.

Where successful, the result is associated with thesolvedclass and taken as the output

property.

Loop Merge (Iteration)

[intconst, <Var>, <Class>] 7→ <Constraint>entry
in

[intconst, <Var>, <Class>] 7→ <Constraint>return
in

loopMerge(LoopId)

[intconst, <Var>, <Class>] 7→ <Constraint>out

The update method and the simplified package information are queried toidentify

every assigned integer program variable. The input properties and output property are

inspected in determining the output property for each variable as below:

• Solution present - A solution for this variable is present on the output property.

The solution is copied as the output property for the variable. Where the variable

has classcirculate(LoopId), this loop is under investigation. In this case the variable

is now solved, and thepropagateclass is adopted. Otherwise, an outer context is

under investigation. In this case, the class associated with the variable is preserved.

Further, any initial values referenced in the solution are replaced with the property

associated with the variable on the entry edge.

2In practice, to minimise implementation effort, this method does not communicate directly with

PURRS. Instead a look-up table is maintained, describing the capabilities of PURRS for each recurrence

relation encountered.
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• No solution present- A solution for this variable is not present on the output prop-

erty. Where the variable has classcirculate(LoopId), this loop is under investiga-

tion. In this case, the variable is initialised to its value on the previous iteration

as:

[intconst, <Var>, <circulate>(LoopId)] 7→

itt(<Var>, lLoopId) = <itt>(Var, lLoopId− 1)
(G.32)

Otherwise, the outer context is under investigation. The class associated with

this variable is preserved. As no solution is present, the output propertyundefis

adopted.

Every Node

[intconst, <Var>, <Class>] 7→ <Constraint>1
in . . .

[intconst, <Var>, <Class>] 7→ <Constraint>n
in

. . .

[intconst, <Var>, <Class>] 7→ <Constraint>1
out . . .

[intconst, <Var>, <Class>] 7→ <Constraint>m
out

This property operation is applied for every node. The inputedges are always ignored.

Each output edge is considered separately. Where the outputedge corresponds to an

invariant, each variable associated with thepropagateclass is translated as a property of

the normaliseclass. The normalised property is discovered by sending a suitable goal

to thepa spark exp strategy. The propagate output properties, excluding the variable

under consideration, plus thetype and transient properties on the output edge describe

the context as hypotheses. Thepropagateproperty associated with the variable forms the

conclusion.

G.8.5 Example

An example is given to illustrate the behaviour of this method. Consider the FilterInteger

subprogram shown in Figure G.23. The subprogram sums all of the elements in an array

that lie between 0 and 100. For program analysis, the subprogram is translated into a

control flowgraph as shown in Figure G.24.
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package FilterInteger_Package is

subtype AR_T is Integer range 0..9;

type A_T is array (AR_T) of Integer;

procedure FilterInteger(A: in A_T; R: out Integer);

--# derives R from A;

end FilterInteger_Package;

package body FilterInteger_Package is

procedure FilterInteger(A: in A_T; R: out Integer)

is

begin

R:=0;

for I in AR_T loop

--# assert true;

if A(I)>=0 and A(I)<=100 then

R:=R+A(I);

end if;

end loop;

end FilterInteger;

end FilterInteger_Package;

Figure G.23: FilterInteger subprogram
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 n1:  ent ry  

 n2: assign(r,0) 

  e1: [...]

 n3: enterScope(loop__1__i) 

  e2: [...]

 n4: assign(loop__1__i,0) 

  e3: [...]

 n5: loopMerge(1) 

  e4: [...]

 n6: branch(element(a,[ loop__1__i])>=0 and element(a,[ loop__1__i])<=100) 

  e5: [ [ invariant]->true,. . . ]

 n7: assign(r,r+element(a,[ loop__1__i])) 

  e6: [ [cross]->true,.. . ]

 n8:  merge 

  e8: [[cross]->false,...]

  e7: [...]

 n9: loopBranch(loop__1__i=9,1) 

  e9: [...]

 n10: assign(loop__1__i,loop__1__i+1) 

  e11: [[cross]->false,...]

 n11:  merge 

  e10: [ [cross]->true,. . . ]

  e12: [...]

 n12: exitScope(loop__1__i) 

  e13: [...]

 n13: exi t  

  e14: [...]

Figure G.24: FilterInteger control flowgraph
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The route begins by iterating around the innermost loop. Theroute is retrieved as:

[n5, n6, n7, n8, n9, n10] (G.33)

The circulation of integer constraint properties around the loop is shown in Figure G.25.

At the loop merge node (n5) no properties of classsolutionare present on the output

edge, thus each variable is initialised as having its value on the previous iteration. The

output edge corresponds to the invariant. However, as no properties of classpropagate

are present, the normalisation of properties is not performed. Next, a branch node (n6) is

encountered, making no change to properties. Following thetrue branch, the assignment

node (n7) assigns to variabler. The property associated with variabler is modified to

reflect the assignment. The assigned expression is generalised to conform to the property

type, introducing the unconstrained variableuv1, replacing an array element access with

its bounds. At the merge node (n9) two alternative properties forr are disjoined. Next, a

loop branch node (n10) is encountered. As only circulate properties are available, every

variable on the true edge has propertyundef. No property changes takes place on the

false edge. Next, the assignment node (n11) is encountered, assigning to variablei. The

property associated withi is modified to reflect the assignment.

Following the circulation of integer constraint properties, both variablesr and i are

candidates for recurrence relation solving. The constraint discovered forr is shown below:

(itt(r, l1) = itt(r, l1 − 1)) ∨

(itt(r, l1) = (itt(r, l1 − 1)+ uv1)) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 100)
(G.34)

The constraint leads to the following three extreme recurrence relations:

itt(r, l1) = itt(r, l1 − 1) (G.35)

itt(r, l1) = (itt(r, l1 − 1)+ 0) (G.36)

itt(r, l1) = (itt(r, l1 − 1)+ 100) (G.37)

These extreme recurrence relations are solved, and bounded, to produce the solution:

(r ≥ itt(r, 0))∧ (r ≤ (itt(r, 0)+ l1 ∗ 100)) (G.38)

The constraint discovered fori is shown below:

itt(i, l1) = (itt(i, l1 − 1)+ 1) (G.39)

This constraint leads to a single extreme recurrence relation of exactly the same form.

The extreme recurrence relation is solved, producing the solution:

i = (itt(i, 0)+ l1) (G.40)
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Edgee4 ∅

Edgee12 ∅

Noden5 loopMerge(1)
Edgee5 [intconst, r, circulate(1)] 7→ itt(r, l1) = itt(r, l1 − 1),

[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)
Noden6 branch((element(a, [i]) ≥ 0)∧ (element(a, [i]) ≤ 100))
Edgee6 [intconst, r, circulate(1)] 7→ itt(r, l1) = itt(r, l1 − 1),

[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)
Edgee8 [intconst, r, circulate(1)] 7→ itt(r, l1) = itt(r, l1 − 1),

[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)
Reaching branch in loop

Edgee6 [intconst, r, circulate(1)] 7→ itt(r, l1) = itt(r, l1 − 1),
[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)

Noden7 assign(r, r + element(a, [i]))
Edgee7 [intconst, r, circulate(1)] 7→ (itt(r, l1) = (itt(r, l1 − 1)+ uv1) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 100),

[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)
Following true branch

Edgee8 [intconst, r, circulate(1)] 7→ itt(r, l1) = itt(r, l1 − 1),
[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)

Edgee7 [intconst, r, circulate(1)] 7→ (itt(r, l1) = (itt(r, l1 − 1)+ uv1) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 100),
[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)

Noden8 merge
Edgee9 [intconst, r, circulate(1)] 7→(itt(r, (l1) = itt(r, l1 − 1)) ∨

(itt(r, l1) = (itt(r, l1 − 1)+ uv1)) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 100),
[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)

Noden10 loopBranch(i = 9, 1)
Edgee10 [intconst, r, circulate(1)] 7→ undef,

[intconst, i, circulate(1)] 7→ undef
Edgee11 [intconst, r, circulate(1)] 7→(itt(r, (l1) = itt(r, l1 − 1)) ∨

(itt(r, l1) = (itt(r, l1 − 1)+ uv1)) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 100),
[intconst, i, circulate(1)] 7→ itt(i, l1) = itt(i, l1 − 1)

Noden10 assign(i, i + 1)
Edgee12 [intconst, r, circulate(1)] 7→(itt(r, (l1) = itt(r, l1 − 1)) ∨

(itt(r, l1) = (itt(r, l1 − 1)+ uv1)) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 100),
[intconst, i, circulate(1)] 7→ itt(i, l1) = (itt(i, l1 − 1)+ 1)

Return to loop merge

Figure G.25:int constraint on FilterInteger: Circulate around loop

At this stage, a solution has been found for every variable inthe innermost loop. As

every loop has been considered, the route now traverses the entire subprogram. The route

is retrieved as:

[n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12] (G.41)

The propagation of integer constraint properties up to the loop is shown in Figure G.26.

The route starts at the subprogram entry node (n1). The only integer variable in scope is

r, which is associated with propertyundefas it is unassigned. The following assignment

node (n2) assigns tor, modifying its property accordingly. Next, the enter scopenode

(n3) brings variablei into scope. Variablei has propertyundefas it is unassigned. The
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following assignment node (n4) assigns toi, modifying its property accordingly.

Noden1 entry
Edgee5 [intconst, r, propagate] 7→ r = undef
Noden2 assign(r, 0)
Edgee2 [intconst, r, propagate] 7→ r = 0
Noden3 enterScope(i)
Edgee3 [intconst, r, propagate] 7→ r = 0,

[intconst, i, propagate] 7→ i = undef
Noden4 assign(i, 0)
Edgee4 [intconst, r, propagate] 7→ r = 0,

[intconst, i, propagate] 7→ i = 0

Figure G.26:int constraint on FilterInteger: Propagate to loop

The propagation of integer constraint properties around the loop is shown in Fig-

ure G.27. At the loop merge node (n5) solutions are present for each integer variable.

Each variable is associated with its solution, substituting the initial value with the prop-

erties known on the entry edge. The output edge corresponds to the invariant. As prop-

erties of classpropagateare present normalisation takes place, discovering a property for

variabler. Next, a branch node (n6) is encountered, making no change to properties.

Following the true branch, the assignment node (n7) assigns to variabler. The property

associated with variabler is modified to reflect the assignment, generalising an array el-

ement access to its bounds. At the merge node (n8) two alternative properties forr are

disjoined. Next, a loop branch node (n9) is encountered. The propagate properties are

copied to the true edge, and occurrences of the loop iteration variable are eliminated. No

property changes takes place on the false edge. Next, the assignment node (n10) is en-

countered, assigning to variablei. The property associated withi is modified to reflect the

assignment.

Finally, the propagation of integer constraint propertiesleaving the loop to the end of

the subprogram is shown in Figure G.28. The merge node (n11) contains a single input

edge, thus properties are unchanged. Finally, the exit scope node (n12) is reached, putting

variablei out of scope, and changing its property toundef.
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Edgee4 [intconst, r, propagate] 7→ r = 0,
[intconst, i, propagate] 7→ i = 0

Edgee12 ∅

Noden5 loopMerge(1)
Edgee5 [intconst, r, solution] 7→ (r ≥ itt(r, 0))∧ (r ≤ (itt(r, 0)+ (l1 ∗ 100))),

[intconst, i, solution] 7→ i = (itt(i, 0)+ l1),
[intconst, r, propagate] 7→ (r ≥ 0)∧ (r ≤ (l1 ∗ 100)),
[intconst, i, propagate] 7→ i = l1,
[intconst, r, normalise] 7→ (r ≥ 0)∧ (r ≤ (i ∗ 100))

Noden6 branch((element(a, [i]) ≥ 0)∧ (element(a, [i]) ≤ 100))
Edgee6 [intconst, r, propagate] 7→ (r ≥ 0)∧ (r ≤ (l1 ∗ 100)),

[intconst, i, propagate] 7→ i = l1
Edgee8 [intconst, r, propagate] 7→ (r ≥ 0)∧ (r ≤ (l1 ∗ 100)),

[intconst, i, propagate] 7→ i = l1
Reaching branch in loop

Edgee6 [intconst, r, propagate] 7→ (r ≥ 0)∧ (r ≤ (l1 ∗ 100)),
[intconst, i, propagate] 7→ i = l1

Noden7 assign(r, r + element(a, [i]))
Edgee7 [intconst, r, propagate] 7→(r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ (l1 ∗ 100))∧

(uv2 ≥ 0)∧ (uv2 ≤ 100),
[intconst, i, propagate] 7→ i = l1

Following true branch

Edgee8 [intconst, r, propagate] 7→ (r ≥ 0)∧ (r ≤ (l1 ∗ 100)),
[intconst, i, propagate] 7→ i = l1

Edgee7 [intconst, r, propagate] 7→(r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ (l1 ∗ 100))∧
(uv2 ≥ 0)∧ (uv2 ≤ 100),

[intconst, i, propagate] 7→ i = l1
Noden8 merge
Edgee9 [intconst, r, propagate] 7→(r ≥ 0)∧ (r ≤ (l1 ∗ 100))∨

((r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ (l1 ∗ 100))∧
(uv2 ≥ 0)∧ (uv2 ≤ 100)),

[intconst, i, propagate] 7→ i = l1
Noden9 loopBranch(i = 9, 1)
Edgee10 [intconst, r, propagate] 7→(r ≥ 0)∧ (r ≤ 900)∨

((r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 900)∧
(uv2 ≥ 0)∧ (uv2 ≤ 100)),

[intconst, i, propagate] 7→ i = 9
Edgee11 [intconst, r, propagate] 7→(r ≥ 0)∧ (r ≤ (l1 ∗ 100))∨

((r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ (l1 ∗ 100))∧
(uv2 ≥ 0)∧ (uv2 ≤ 100)),

[intconst, i, propagate] 7→ i = l1
Noden10 assign(i, i + 1)
Edgee12 [intconst, r, propagate] 7→(r ≥ 0)∧ (r ≤ (l1 ∗ 100))∨

((r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ (l1 ∗ 100))∧
(uv2 ≥ 0)∧ (uv2 ≤ 100)),

[intconst, i, propagate] 7→ i = l1 + 1
Return to loop merge

Figure G.27:int constraint on FilterInteger: Propagate around loop
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Edgee10 [intconst, r, propagate] 7→(r ≥ 0)∧ (r ≤ 900)∨
((r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 900)∧
(uv2 ≥ 0)∧ (uv2 ≤ 100)),

[intconst, i, propagate] 7→ i = 9
Noden11 merge
Edgee13 [intconst, r, propagate] 7→(r ≥ 0)∧ (r ≤ 900)∨

((r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 900)∧
(uv2 ≥ 0)∧ (uv2 ≤ 100)),

[intconst, i, propagate] 7→ i = 9
Noden2 exitScope(i)
Edgee14 [intconst, r, propagate] 7→(r ≥ 0)∧ (r ≤ 900)∨

((r = uv1 + uv2) ∧ (uv1 ≥ 0)∧ (uv1 ≤ 900)∧
(uv2 ≥ 0)∧ (uv2 ≤ 100)),

[intconst, i, propagate] 7→ i = undef

Figure G.28:int constraint on FilterInteger: Leaving loop
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B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and
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ing point programs. In Peter Kornerup and Jean-Michel Muller, editors,

Proceedings of the18th IEEE Symposium on Computer Arithmetic, pages

187–194. IEEE Computer Society Press, 2007.

[BH95a] Jonathan P. Bowen and Michael G. Hinchey. Seven moremyths of formal

methods.IEEE Software, 12(4):34–41, 1995.

[BH95b] Jonathan P. Bowen and Michael G. Hinchey. Ten commandments of for-

mal methods.IEEE Computer, 28(4):56–63, 1995.

[BH97] Jonathan P. Bowen and Michael G. Hinchey. The use of industrial-strength

formal methods. InConference on Software Technology and Applications

(COMPSAC), pages 332–337. IEEE Computer Society, 1997.

[BH06] Jonathan P. Bowen and Michael G. Hinchey. Ten commandments of for-

mal methods . . . ten years later.IEEE Computer, 39(1):40–48, 2006.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, andRupak Majumdar.

The software model checker BLAST.International Journal on Software

Tools for Technology Transfer (STTT), 9(5–6):505–525, 2007.

[Bie85] Alan W. Biermann. Automatic programming: A tutorial on formal

methodologies.Journal of Symbolic Computation, 1(2):119–142, 1985.

272



[BKM95] Robert S. Boyer, Matt Kaufmann, and J Strother Moore. The Boyer-Moore

theorem prover and its interactive enhancement.Computers and Mathe-

matics with Applications, 29(2):27–62, 1995.

[BKYH85] W.E. Boebert, R.Y. Kaln, W.D. Young, and S.A. Hansohn. Secure Ada

target: Issues, system design, and verification. InSymposium on Security

and Privacy (SSP-1985), pages 176–183. IEEE Computer Society Press,

1985.

[BLS96] Saddek Bensalem, Yassine Lakhnech, and Hassen Saı̈di. Powerful tech-

niques for the automatic generation of invariants. In Rajeev Alur and

Thomas A. Henzinger, editors,The8th International Conference on Com-

puter Aided Verification (CAV-1996), volume 1102 ofLecture Notes in

Computer Science, pages 323–335. Springer-Verlag Ltd., 1996.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# pro-

gramming system: An overview. In Gilles Barthe, Lilian Burdy, Marieke

Huisman, Jean-Louis Lanet, and Traian Muntean, editors,Construction

and Analysis of Safe, Secure, and Interoperable Smart devices (CASSIS-

2004), volume 3362 ofLecture Notes in Computer Science (LNCS), pages

49–69. Springer-Verlag Ltd., 2005.
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[FJOS03] Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James B. Saxe. Theo-

rem proving using lazy proof explication. In Warren A. Hunt Jr. and Fabio

Somenzi, editors,The15th International Conference on Computer Aided

Verification (CAV-2003), volume 2725 ofLecture Notes in Computer Sci-

ence (LNCS), pages 355–367. Springer-Verlag Ltd., 2003.

[FKV94] Martin D. Fraser, Kuldeep Kumar, and Vijay K. Vaishnavi. Strategies for

incorporating formal specifications in software development. Communi-

cations of the ACM, 37(10):74–86, 1994.

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation as-

sistant for ESC/Java.Lecture Notes in Computer Science, 2021:500–517,

2001.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,

James B. Saxe, and Raymie Stata. Extended static checking for Java. In

SIGPLAN 2002 Conference on Programming Language Design andIm-

plementation (PLDI-2002), pages 234–245. ACM Press, 2002.

278



[Flo67] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, edi-

tor, Mathematical Aspects of Computer Science, volume 19 ofSymposia

in Applied Mathematics, pages 19–32. American Mathematical Society,

1967.

[For] Forum on risks to the public in computer systems. ACM Committee on

Computers and Public Policy. Moderated by P. G. Neumann.

[For80] Ford Aerospace and Communications Corporation.Provably Secure Op-

erating System (PSOS) Final Report, 1980. Contract MDA 904-80-C-

0470.

[FQ02] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software

verification. InThe29th Annual ACM Symposium on Principles of Pro-

gramming Languages (POPL-2002), pages 191–202. ACM Press, 2002.

[Ger78] Steven M. German. Automating proofs of the absence of common run-

time errors. InThe5th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL-1978), pages 105–118. ACM Press,

1978.

[Ger81] Steven M. German.Verifying the Absence of Common Runtime Errors in

Computer Programs. PhD thesis, Stanford University, 1981.

[Geu09] H. Geuvers. Proof assistants: History, ideas and future.Sadhana, 34(1):3–

25, 2009.

[GH90] Gérard Guiho and Claude Hennebert. SACEM software validation. In 12th

International Conference on Software Engineering (ICSE-1990), pages

186–191. IEEE Computer Society Press, 1990.

[GLB75] Donald I. Good, Ralph L. London, and W. W. Bledsoe. Aninteractive

program verification system.IEEE Transactions on Software Engineering,

1(1):59–67, 1975.

[GMP90] David Guaspari, Carla Marceau, and Wolfgang Polak.Formal verifi-

cation of Ada programs.IEEE Transactions on Software Engineering,

16(9):1058–1075, 1990.

[GMT+80] Susan L. Gerhart, David R. Musser, David H. Thompson, D. A. Baker,

R. L. Bates, Roddy W. Erickson, R. L. London, D. G. Taylor, andDavid S.

Wile. An overview of AFFIRM: A specification and verificationsystem.

In Simon H. Lavington, editor,IFIP Congress 80, Information Processing

80, pages 343–347. North-Holland, 1980.

279



[GMW79] Michael J. C. Gordon, Robin Milner, and ChristopherP. Wadsworth.Ed-

inburgh LCF: A Mechanised Logic of Computation, volume 78 ofLecture

Notes in Computer Science (LNCS). Springer-Verlag Ltd., 1979.

[GNU] GNU general public license (version 3). Free SoftwareFoundation,

http://www.gnu.org/licenses/gpl-3.0.html.

[GOC93] Jon Garnsworthy, Ian O’Neill, and Barnard Carré. Automatic proof of the
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