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Abstract

The dendritic tree provides the surface area for synaptic connections between the
100 billion neurons in the brain. 90% of excitatory synapses are made onto dendritic
spines which are constantly changing shape and strength. This adaptation is believed
to be an important factor in learning, memory and computations within the dendritic
tree. The environment in which the neuron sits is inherently noisy due to the activity
in nearby neurons and the stochastic nature of synaptic gating. Therefore the effects
of noise is a very important aspect in any realistic model.

This work provides a comprehensive study of two spiny dendrite models driven
by different forms of noise in the spine dynamics or in the membrane voltage. We
investigate the effect of the noise on signal propagation along the dendrite and how
any correlation in the noise may affect this behaviour. We discover a difference in
the results of the two models which suggests that the form of spine connectivity is
important. We also show that both models have the capacity to act as a robust filter

and that a branched structure can perform logic computations.
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Parameter List

This page gives the parameter values used throughout the thesis and their respective

units.

The values are biologically realistic, where appropriate, and the bracketed

values are the non-dimensional values used, for example in the Spike diffuse spike
model Section 2.8 and Chapter 4.

Symbol Name Value Unit

V Cable Voltage - mV

U Spine head Voltage - mV

R, Transmembrane Resistance 2500 (1)  Qem?
R, Intracellular Resistance 70 (1) Qem
Ch, Transmembrane Capacitance 1(1) puFem ™2
C Transmembrane Capacitance of Spine head 1 (1) puFem™2
T Transmemrane Resistance of Spine head 2500 (1)  Qem?

o Strength of additive noise - -

v Strength of multiplicative noise - -

a Dendritic Diameter 0.36 (1)  pm

A =+vaR,4R, Electronic Length Scale (1) -

7= R,Cp, Electonic time constant (1) -

D = )‘—: Diffusion Coefficient (1) -

TR Refractory time - -

L Length of dendrite 1-2 mm
Nepines Number of spines in SDS model 81 or 37 -

Ty Length of time pulse lasts in SDS model - -

h Voltage threshold in spine head for SDS model  0.04 -

m Sodium activation particle - -

h Sodium inactivation particle - -

n Potassium activation particle - -

G Maximum sodium conductance 120 mSem ™2
Gk Maximum potassium conductance 36 mSem 2
Gr Maximum leakage conductance 0.3 mSem ™2
Ve Sodium reversal potential 50 mV

Vi Potassium reversal potential =77 mV

Vi, Leakage reversal potential -54.402 mV

p Spine density - -

d Spine spacing (0.8 or1) um

Mo

Strength of action potential pulse in SDS model
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Chapter 1
Introduction

The neuron, or nerve cell, is the building block of the mammalian nervous system; it
sends, receives and processes information that ultimately controls functions as fun-
damental as our breathing and as complex as human consciousness. The brain is
so densely populated by neurons that it was long believed that the brain was not a
collection of individual cells but one single mass. In the late 19th century Camillo
Golgi discovered a stain that highlighted only certain neurons within a sample of brain
tissue and this allowed the study of the structure of the individual neuron. It was,
however, Ramoén y Cajal that used this stain to carry out extensive studies of the
structure and interconnections of neurons in many parts of the brain. He produced
many detailed and beautiful drawings of neurons, [118], see Figure 1.1 for an example
of his work. Through his studies Ramoén y Cajal discovered the existence of the axon,
dendrite and even dendritic spines. Although there are around 100 billion individual
neurons in the human brain [117], [107], with a variety of morphologies, they share a
basic structure. As shown in Figure 1.2, the neuron consists of the main cell body,
or soma, the axon along which information travels to the synaptic terminals to be
transferred onto several other connecting neurons through their dendritic trees. The
dendritic tree allows a greater surface area for synaptic connections to be made and
around 90% of excitatory synapses in the brain are made onto dendritic spines. Neu-
rons can range in size, anywhere from a couple of millimeters to a meter in length
whereas dendrites are typically 1-2 mm long. The dendritic spines are small bulbous
protrusions along the length of the dendrite and are usually 1-2 pym long. Spiny
dendrites occur in many regions of the brain e.g. CA1l and CA3 pyramidal neurons
in the hippocampus (important in long term memory), basal ganglia (used in motor
control and learning) and spiny stellate neurons in the cerebral cortex (important in
memory, thought and human consciousness) [107], [111], [3]. The density of spines
varies depending on the type of neuron and there can be up to 20 spines to each
10pm of dendrite. The spines are thought to be an important component in signal

propagation and computations along the dendrite and spine motility and morphology,
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Figure 1.1: An example of the diagrams produced by Ramén y Cajal. This figure shows
the structure of several types of neuron. Picture from www.nature.com
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Figure 1.2: Diagram of the basic structure of a neuron, showing the cell body (or soma),
axon and dendritic tree with dendritic spines. Picture from www.training.seer.cancer.gov
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called spine plasticity, is thought to be an important process in learning and memory.
It has been shown that abnormalities in dendritic spines can cause learning difficulties
and mental retardation [53].

Measurement of signal propagation in neurons and axons has been possible for
some time with a voltage clamp technique, developed in the 1940’s, and patch-clamp
technique, 1970’s. The most famous example is perhaps the Hodgkin and Huxley
experiments, [44], which measured voltage changes in the squid giant axon. Due
to the small size of the typical dendrite these techniques were not applicable to the
measurement of dendritic membrane voltage since the intracellular electrodes used in
the measurements are too large, in relation to the dendrite, and damage the sample
before any measurements can be made. The advent of the confocal and two-photon
microscopy used to image the membrane in dendrites led to the measurement of
action potentials in dendrites and proved that action potentials can be generated in
dendrites themselves, see Figure 1.3 for an example of an action potential produced

by the Hodgkin Huxley model. These new microscopy methods use the fluorescence of
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Figure 1.3: Example of an action potential generated by the Hodgkin Huxley equations
developed to describe the voltage changes in the squid giant axon. The voltage starts at
its resting value of —65V and rises rapidly to a peak before falling below the resting value
and eventually settling back at the resting potential. The whole pulse is called an action
potential.

voltage sensitive dyes to highlight activity and the microscope measures these changes
in the fluorescence as the sample neurons are stimulated. These techniques make
it possible to compare experimental, [40], [121], and theoretical results, [115], [95],
that predict how voltage will spread throughout a length of dendrite, or a branched
dendritic structure, also see review [99]. We consider voltage spread throughout a
length of spiny dendrite as a wave propagating from the spines at the distal end,
through the main body of the dendrite to the soma without including the effect of

the soma. This is an interesting problem as much information processing seems to
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happen prior to the action of the soma. We use two dendritic models that describe
voltage evolution in a length of spiny dendrite: the Baer-Rinzel (BR) model, Section
2.7, [6], and the Spike-Diffuse-Spike (SDS) model, Section 2.8, [15], [16]. Both these
models consist of coupled partial and ordinary differential equations describing the
evolution of the voltage in the main cable of the dendrite and the evolution of voltage
in the spine heads.

We consider the effect of random fluctuations, or noise, in the BR and SDS models
of spiny dendritic tissue. There are two types of noise in a neural system, intrinsic and
extrinsic noise, [33], [73]. Intrinsic noise is a source of noise which is always present
in the system and is called thermal noise or Johnson noise. Thermal noise arises from
the thermal agitation of electric charge carriers, which are of course present in neural
systems in the form of electrons and ions. This noise which is present in dendrites
can result in voltage fluctuations which can affect the response of the dendrite to a

given input. Another source of intrinsic noise, which may be considered particularly
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Figure 1.4: Diagram of the basic structure of a synaptic connection, showing the
pre-synaptic vesicles of neurotransmitter and post-synaptic receptors on the spine head.

relevant in spiny dendrites, is the process of synaptic gating, see Figure 1.4. When a
chemical synapse transmits a signal across the synaptic cleft to the receiving dendrite’s
spine, tiny vesicles (of which there is a finite number) in the pre-synaptic terminal
open in response to sufficient voltage changes. The opening of the vesicles releases a
transmitter substance (neurotransmitter) across the synaptic cleft to be absorbed by
the spine, which in turn causes a change in voltage and possibly the generation of an

action potential in the post-synaptic dendrite. The release of the neurotransmitter

4
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is a stochastic or noisy process; the number of molecules of transmitter released may
change from event to event and the arrival of the transmitter at the post-synaptic
terminal depends on its diffusion across the synaptic cleft and so may not follow the
same path each time. Also due to the finite number of these vesicles, if the potential
of the post-synaptic membrane is close to threshold then the opening (or not) of
some of the vesicles causes tiny voltage fluctuations which may (or may not) push
the membrane voltage above threshold. This creates a stochastic membrane voltage.
For more detailed information on synapses see [56], [107]. The second type of noise,
extrinsic, emanates from out with the cell itself and one source is other nearby neurons.
Any electrically charged object emits an electromagnetic field, [38], and as neurons
conduct a current they too emit an electromagnetic field. This field can interfere
with any neighbouring neurons and so cause a random effect. As all neurons are part
of, usually complex, networks they can be affected by the firing of other neurons in
the network that are not necessarily direct neighbours. We include noise into the
dendritic models by the formulation of stochastic differential and stochastic partial
differential equations (SDE and SPDE’s) with different types of noise to describe the
stochastic nature of the voltage in the spines and the voltage fluctuations in the cable
of the dendrite. We consider the effects of spatio-temporal white noise, temporally
correlated noise and spatially correlated noise.

The thesis is structured as follows: first there are two background chapters, Chap-
ter 2 and Chapter 3, which serve as a foundation for the rest of this body of work. It
is in these chapters that we introduce the models that are investigated throughout the
work including the passive cable equation, Hodgkin Huxley model, leaky integrate and
fire model, Baer and Rinzel model and the spike-diffuse-spike model. We include their
mathematical formulation and a brief description of their deterministic behaviour. We
then discuss the concept of 'noise’ and how stochastic behaviour can be mathemati-
cally represented in the form of SDE and SPDE’s. Then we describe how to evaluate
a stochastic integral in the Ito framework and what it means to have a solution to
SDE and SPDE’s. We briefly consider the differences between It6 and Stratonovich
calculus and how to convert between the two interpretations. The construction of a
temporally correlated noise as an Ornstein-Uhlenbeck process is discussed as is the
construction of a short-ranged spatially correlated noise. There is a section outlining
the numerical methods employed throughout the subsequent chapters to solve both
deterministic and stochastic systems. The numerical algorithms are given in a gen-
eral form here and the full algorithm is given in each chapter for the exact equations
being solved. Finally Chapter 3 gives an overview of various stochastic phenomena
observed in neural systems throughout the literature; this includes coherence and
stochastic resonance and synchronised/coupled oscillators.

We consider the numerical solution of the equations related to the spike-diffuse-
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spike model of the dendrite in Chapter 4. Here we consider the effect of different types
of noise, white, temporally and spatially correlated, included in either the equations
governing spine or cable voltage evolution. We measure the effect in two ways, the
speed of a propagating wave and the distance travelled along the length of the cable
as the noise intensity increases. In the case of a correlated noise we also investigate
the effect of the correlation scale of the noise. We show that in general large noise is
destructive to the propagation of a wave but that the system is robust to small levels
of noise, albeit the wave travels with a reduced speed. We treat the Baer and Rinzel
model in the same way in Chapter 5, where we consider the model driven by white,
temporally and spatially correlated noise in the spine heads and in the cable. We also
use a small noise expansion to derive a deterministic equation which is altered by a
term arising from the drift correction that occurs when changing from a Stratonovich
to an Ito interpretation. This new system of deterministic equations describing the
BR model under the influence of small spatially correlated noise, is transformed into
the travelling wave frame to investigate the effect of the noise on the existence of trav-
elling waves in parameter space. This is carried out using the continuation software
AUTO-07P which allows the user to search for bifurcations, limit points and to choose
the system parameters of interest for continuation of existing solutions. Chapter 6
investigates the behaviour of the BR model with a spatially dependent spine density
that can, in the limiting cases, be thought of as the original BR model and the SDS
model with HH dynamics in place of the IF process. Here we consider these two
limiting cases under the influence of noise and also the behaviour of the system as the
parameter, which controls the shape of the spine density, changes from one limit to
the other. We look to this model to reconcile some conflicting results which we obtain
when looking at the behaviour of the SDS and BR model. In order to investigate the
behaviour of the dendrite models when forced by noise then we must simulate the
system a number of times to get a mean behaviour and this can be costly in terms
of computing time so in Chapter 7 we look at a probabilistic representation of the
SDS model in the hope of capturing the behaviour of the system without the time
constraints of simulating the full model. We show that information about the speed
of waves in the SDS model with noise in the spine heads can be captured using a re-
duced simulation of the SDS model. Finally Chapter 8 investigates some of the signal
processing capabilities of the SDS model and its robustness to noisy input signals as
well as its ability to function with intrinsic noise but a clean signal. We consider the
SDS model’s ability to act as a low pass filter and how much noise may be present in
the signal or the system before this capability breaks down. We also briefly show how
the SDS model of a length of spiny dendrite can, with the correctly chosen param-
eter values, act as a high pass filter and how the branched SDS structure described
in Chapter 4 can be used as either an OR or AND logic gate. The BR model with
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spatially dependent spine density also shows the ability to act as a low pass filter.



Chapter 2

Neural Models

2.1 Introduction

This chapter, and the following Chapter 3, serves to provide background informa-
tion required in all subsequent chapters. We outline the basic features of each of the
models we study and give the full set of differential equations in each case. We also
discuss the importance of noise in neural systems and how to mathematically describe
a noisy system. We start in Section 2.2.1 with a general discussion of the difficulties
of modelling a realistic dendritic tree and then outline in detail the simplest descrip-
tion of the dendrite, the passive cable equation, see [33] and [98] for derivations. The
passive cable equation describes the evolution of the membrane potential of the cable
which diffuses, in space and time. Passive refers to the membrane resistance being
independent of the potential in the cable.

In Section 2.3 we consider a model of nerve membrane with active properties, the
Hodgkin Huxley (HH) model. This set of four ordinary differential equations, along
with experimentally derived constants and parameters, introduces the active proper-
ties of a nerve membrane through a series of ionic channels. The production of action
potentials in model neurons, using the basic ionic mechanisms, was made possible by
Hodgkin and Huxley [44] through their observations and measurements during exper-
iments using the squid giant axon.

A much simplified model capturing aspects of the HH model without the need for
empirical data is the leaky integrate and fire model (IF), explained in Section 2.4.
The model is described by one ordinary differential equation and allows the voltage
to increase to a chosen threshold at which point the model neuron is said to fire,
although an action potential is not explicitly described. After this ’firing event’ the
voltage is reset to a chosen start value and a refractory time can be imposed before
the neuron can start to increase the voltage again, through the mechanism of the IF
equation. Both the IF and HH models are employed to describe the voltage dynamics

in the spine heads of the dendrite models we consider throughout this work.
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We then discuss the Baer-Rinzel model, Section 2.7, for a spiny dendrite [6]. This
model combines the passive cable and the HH model to provide a description of a
length of dendrite with active spines. The spines are attached to the cable with a
chosen density, which was taken to be a constant in the original paper by Baer and
Rinzel, [6]. We also outline the Spike-Diffuse-Spike (SDS) model in Section 2.8 ([15],
[16]) which also describes a length of spiny dendrite. The SDS model again uses the
passive cable equation to model the dendrite, but the spines are described by the leaky
Integrate and Fire (IF) model. The IF model captures the basic properties of the HH
equations without the details of the ionic currents. The spine density is no longer
a constant but modelled more realistically by considering spines attached at discrete
points along the cable with spine stems of a chosen resistance. Finally we look at
a combination of the SDS and BR models where we use the full HH dynamics as a

description of the spine head but now have a spine density with spatial dependence.

2.2 Dendritic trees

The structure of individual axons and dendrites is very complex and the membrane
properties are active, meaning that the membrane resistance can be changed by volt-
age sensitive ionic channels to generate action potentials. The dendritic tree as a
whole is even more complex and can display a wide range of morphologies from the
relatively simple structure of the apical dendrites in the pyramidal cell to the intri-
cate and dense branching patterns observed in Purkinjie neurons. As a consequence
of this complex branching patterns, it is very difficult to mathematically model a real
dendritic tree, even with passive properties on the branches. Each branch may have
different biological parameters such as membrane resistance, capacitance and diam-
eter, and the diameter may not be constant on any one branch due to tapering and
varicosities. The structure and properties of each neuron depends on its role in the
central nervous system (CNS) and is determined during development. A lot of work
in mathematical neuroscience looks at the fully developed CNS, as we do here, but
there is a growing interest in the developmental stages. The book, [112], on develop-
mental models gives a comprehensive overview of the biology and models of different
stages of development. This book covers very early development, gene networks and
the growth of the neural tube (which becomes the brain and spinal cord in the adult
vertebrate system), the growth of neurites (the precursor to dendrites and axons),
network organisation and refinement. A more specific neurite review is set out in
[36] where the authors review the mathematical models of neurite initiation, growth
and the formation of branching patterns, and compare the models to experimental

results. Attempts to model realistic dendritic trees have involved various simplifica-
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tions, for example, a reconstruction of passive Purkinjie cells in [92] and the inclusion
of single active gating variable to these reconstructed cells in the same paper. Sim-
ilarly, active properties were uniformly distributed throughout a fully reconstructed
morphology in [115], and modelled using two, sodium and potassium, active gating
channels. Both [92] and [115] models are implemented using NEURON simulation
environment. Others have focused on improving the computational efficiency of al-
gorithms that describe the behaviour of action potentials in branched structures. In
[11] the authors find an algorithm which uses Green’s function, Section 2.2.3, over
the reconstructed dendritic tree to find the response to current injected at different
points on the tree. They use a sum over trips approach, with an imposed maximum
trip length, to construct the voltage spread through the tree. This maximum trip
length means that in some simulations the contribution from distal branches in the
tree will be neglected, in favour of shorter computation times. Another example of
improving computational efficiency is given in [43] where the author simulates the
voltage evolution in an arbitrarily branched tree with Hodgkin-Huxley dynamics for
each cable using a Crank-Nicholson method. By the correct labelling of the nodes
in the tree the resultant coefficient matrix for the tree structure lends itself to upper
triangularisation and so eliminates any off diagonal elements which then allows the
efficient solving of the equations describing the branched, active tree. The paper also
evaluates the HH membrane conductances in such a way that the O(A#?) is main-
tained with no extra steps and constructs a table of values for the coefficients that
appear in some of the integrals such that these values can be looked up rather than
computed at each time step and so increase the computational efficiency. These three
improvements increases the speed of computation without losing the O(At?) accuracy
of the numerical method. A different class of model for investigating the function of
dendpritic trees is the equivalent cylinder or more recently the equivalent cable model.
The main idea behind this type of construction is to reduce the whole branching
structure to one simple, electrically equivalent unbranched structure. The first to do
this was [87], see [48], [84] and [98] for an overview of Rall’s work, with his equivalent
cylinder model. Rall’s model makes four major assumptions and therefore is only a
realistic representation for a small class of dendritic trees. The first assumption is the
% power law which comes from impedance matching at the branch point i.e. minimis-
ing the reflection at the branch point. To do so the characteristic conductance seen
on entering and leaving the branch point must be equal. When the system is at rest
the characteristic conductance Gy = \/QTT? , where ¢, is the shunt conductance and
r is the series resistance. Since ¢,es x d and r d%, (here d is the diameter of the
branch), then

Go x d? . (2.1)

10
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Therefore if we have a length of dendrite, labelled 1, which branches into two daughter
dendrites, labelled 11 and 12 respectively, the diameters must satisfy:

3 3 3
A =d3 + d2, . (2.2)

The second assumption is that each path from the soma end of the dendrite to the
distal terminal of the tree is of equivalent electronic length. If we start with the same
branching structure as before and each of the daughter dendrites branch into two more
branches each, labelled 111, 112, 121 and 122 respectively, then the length of each

segment is [; and electronic space constant is \? = TT—T with ¢ = {1,11,...,122}. We
can then express the second assumption as:
[ l l l l l l [ l l [ l
Aol woyg e e e h £+121__1+£+122'(2'3)

= — 4+ — = = =
)\1 )\11 )\111 )\1 )\11 )\112 )\1 )\12 )\121 )\1 )\12 )\122

The third requirement that the dendritic tree must satisfy is that the cytoplasmic
resistivity and the specific membrane conductivity are the same throughout the tree.
Finally the boundary conditions on the original structure and the new equivalent
structure must be the same. If the electronic time constant 7 = ¢,,r,, is the same
throughout the whole tree then the previous assumptions hold for a tree with time de-
pendent voltage and current and so the voltage measured at one end of the equivalent
cylinder is the response to an injected current at the other. This voltage/current rela-
tionship holds due to the reciprocity theorem from linear network theory. There is a
slightly more general % power law which exists for a non-uniform membrane resistance,
shown in [48], yet due to the other assumptions this equivalent cylinder approach is
still restrictive in its application to the wide range of real dendritic trees. An improve-
ment on the equivalent cylinder, the exponentially tapering cylinder was introduced
by Rall [87] and developed in Goldstein and Rall [35]. This paper also investigated the
speed and maximum height of the action potential travelling in, not only the tapered
cable, but in cables with varicosities and those with sealed end boundary conditions.
They show that the speed of the action potential is proportional to the changing space
constant and derived a formula to predict how the proportionality constant depends
on the taper of the cylinder. The class of dendrites which can be described by a ta-
pered equivalent cable was extended in [85]. In this paper the conditions on number
of branches and on the radii of these branches are given as well as a set of exactly solv-
able geometries e.g. sine hyperbolic, exponential, quadratic and sinusoidal. Therefore
the voltage evolution for these specific classes of dendrites is known exactly and so can
be represented by an equivalent cable. This may increase the size of class of dendritic
trees that is described but still there is no direct mapping between the input on the
dendritic tree and a point on the equivalent cable. A method to map exactly from

the dendritic tree to a certain point on the equivalent cable, which has a non-uniform

11
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diameter, was first developed by Whitehead and Rosenberg in 1993 and is described
in [79] in more detail with an example of the application of the Lanczos method to
reduce a simple tree to an equivalent cable. The equivalent cylinder developed here
is effectively many small cylinders appropriately joined together, depending on the
branching conditions, with each cylinder having different diameters. Each cylinder is
modelled by the passive cable equation and the conditions for joining the sections to-
gether are Kirchoff’s current conservation laws, and appropriate boundary conditions
at the terminal branches. With appropriate numbering the nodes on the tree the dis-
cretised voltage produces a matrix representation of the dendritic tree. The rest of the
method follows the Lanczos procedure, which involves three matrix transformations
that result in an equivalent cable. The new matrix still has entries corresponding to
coefficients for the node voltages, but this time related to nodes on the equivalent ca-
ble. There is also a separate matrix which is a result of the method that describes the
mapping from the nodes on the tree to the nodes on the cylinder. The above method
for the reduction to an equivalent cable is improved in [68] and is used to reconstruct
real neurons: the cholinergic interneurons in Laminae III and IV of dorsal horn of
the spinal cord. Each synaptic contact in the real tree was mapped to the nearest
node of the discretised equivalent cable and so the response of the whole tree to any
synaptic input could be predicted from the new equivalent cable. The difference in
the two methods is in the matrix transformation from the tree matrix to the cable
matrix; instead of the Lanczos method Lindsay uses the Householder method.
Another aspect of dendritic function which has been studied experimentally but
not fully explored mathematically is the concept of dendritic democracy. Since den-
drites are effectively leaky electrical cables any input which has to travel a long dis-
tance (e.g. from end of distal dendrite, through tree to soma) will be much attenuated
at long distances from its source. This is not observed in vitro and a distal input has
similar efficacy at the soma as a proximal input; [39] is a brief review. The author of
[39] suggests three possible mechanisms for the democracy seen experimentally: (1)
distal input is amplified by voltage gated channels, (2) the strength of the synapse
is increased by more neurotransmitter release/post-synaptic receptor sites or (3) dis-
tal synaptic contacts could be more active, i.e. receive more input. Experimental
evidence ruled out the first option but showed that it is possible that an increase in
the synaptic conductance is responsible. Paper [108] investigates mathematically how
the conductance could be scaled on a dendritic branch to create dendritic democracy.
The authors derive analytical expressions for the conductance as a function of its
position relative to the soma, which ensure that e.g. the peak voltage response and
width of response pulse at the soma is the same for distal and proximal inputs. These
analytical solutions agree with full simulation of the model. Close to the soma the

scaling is linear, then it becomes faster than linear as the distance increases until a
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critical distance after which no scaling can create democracy. Clearly increasing con-
ductance alone cannot account for dendritic democracy and the authors suggest that
a possible [Ca2+] current, introduction of subthreshold dynamics or a tapered cable
could help. The question of how a synapse knows its position in the dendritic tree is
addressed in [103] for a model of CA1 neurons. They suggest that perhaps some sort
of concentration gradient exists that tells the synapse where it is but they show that

all that is needed to maintain democracy is a back propagating action potential.

2.2.1 Passive cable theory

Cable theory was first developed, in the mid-18th century by Lord Kelvin, to describe
the spread of electric potential along the telegraph cable which linked the U.K. and
the U.S.A. (See [56] for some historical background.) This theory was later used to
describe the current flow in nerve fibres such as the axon and dendrites (see [57] for a
brief historical description), where the charge carriers are sodium and potassium ions
instead of, in the case of a wire, electrons.

However the general long, thin nature of individual dendrites allows the use of linear
passive cable theory to give a nice simplification of their behaviour. This is perhaps
the most simple model of the axon/dendrite and it can be (and has been) further
developed to introduce ever more complex dynamics. As discussed in Section 2.2
there are many considerations in reproducing a realistic tree structure and its active
properties and this poses a difficult mathematical problem which many have tried to
simplify. We however consider a general single length of dendrite (or a very simple
branched structure with one branch point and three branches), not a real dendrite,
and so can use a general model, the passive cable equation. We subsequently add
complexities onto the basic cable by introducing active spines, by BR and SDS models,
and noise to the system.

This section gives a derivation of a straight and a tapered passive cable equation
using Ohm’s Laws and Kirchoff’s Laws. In the case of a straight cable the equation
derived allows the analytical derivation of a Green’s function as the solution to the
cable equation with a Dirac delta input. The Green’s function is a convenient and
useful way to construct the response of the cable to any other input without having
to solve the whole system again with the new input. To do this Green’s function is
convolved with the new input to find the new output. The tapered cable, however,
has nonlinear membrane properties, such as resistance and capacitance, which gives

rise to a nonlinear cable equation and therefore no analytical solution is possible.
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2.2.2 Deriving the passive cable equation

We first derive the passive cable equation for a general cable where the radius is
dependent on z, the axial distance, z € [0, L], L is the length of the cable. Then the
associated Green’s function for a straight cable. The derivation of the passive cable
equation can be found in much of the literature [98], [56], [33], [48]. From the circuit

Figure 2.1: Circuit diagram for a section of cable describing a passive dendrite, with
length dx. It also shows the associated resistances, capacitances and currents.

diagram in Figure 2.1, the longitudinal resistance, R,(z), and the transmembrane
capacitance and resistance, C,(z) and R,,(z) respectively will all change with the
diameter of the cable and so are functions of x. They can all be expressed in terms
of quantities per unit length, dz: R, = r.(x)dx, C,, = ¢n(z)dr and R, = 1, (z)dx
where 7, is called the intracellular resistance, ¢, is called the specific capacitance, r,,
is called the passive membrane resistivity and I.,;(z) is the external current. See the
list of parameters for a further description and a range of biologically realistic values
for these variables.

The following steps make use of Ohm’s law, V' = IR, and Kirchhoft’s laws for
current at a node in a circuit. These are fundamental laws used commonly in circuit

theory and can be found in many physics texts, for example [38] is a good basic text.
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Using Ohm’s law across the resistor R,(x) gives the following expression:
V(z+dx,t) — V(e t) = I(x,t)r,(z)dz . (2.4)

Here V' (z,t) is the voltage at point (z,t) and [ is the axial current. Next dividing by
dz and letting dz — 0 gives:

ov

= I(x,t)r,(z) . (2.5)

Using Kirchoff’s law for currents at a node, “The sum of currents entering a node is

equal to the sum of currents leaving the node”, we obtain:

I(zx+dx,t) — I(z,t) = cm(x)aa—‘;dx + . 1237)

dx — Iy (z)de | (2.6)

again dividing by dz and letting dx — 0 gives:

oI ov V

% = Cm(x)g + m - ]ea:t(x) : (27)

Take the derivative of Equation (2.5) with respect to x to get:

0*V ol Ory(z)

A R 2.
axg Ta(x) aa,/_ + (x7 t) ax ( 8)
Substituting for % gives the passive cable equation for a tapered cable:
0*V IV ru(x) Orq(z)
Frole cm(x)ra(a:)a (@) V(z) —ro(x)lege() + I(2,1) e (2.9)

Finally by multiplying the equation by the electronic scale length \? = :’:—((j)), and

introducing the membrane time constant 7 = ¢,,(z)r,,(z), we obtain the following
form of the cable equation:

O*V(t, x) oV (t,x)

220 2D ) Dy 0y @) + 221, ) 2

ox

, (2.10)

for x € [0, L]. If we want to consider a straight cable, as we do, then the equation

reduces to:

0?V (x,t) oV (z,t)
2 ) o )
N T

The term 7,,(2)iee(x) changes to R, 1., since the resistance and external currents

+ V() = Ryleat - (2.11)

are no longer space dependent. We can use the capitalised version to indicate that

these quantities are constant.
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2.2.3 Green’s function for the straight passive cable equation

Green’s function is an integral kernel which allows one to solve inhomogeneous dif-
ferential equation with some associated boundary conditions. For a general inhomo-
geneous equation L(z)u(z) = f(x), where L(z) is a differential operator (linear and
self-adjoint), u(x) the unknown solution to the equation and f(x) is the known inho-
mogeneous term, we can write the Green’s function, G(z), satisfies: L(z)G(z,2") =
d(z — 2’). We can find Green’s function here by looking for the solution to a linear
partial differential equation with a Dirac delta function as its input current, I.,;. Then
the solution for any input can be constructed using Green’s functions. [33] shows a
derivation of Green’s function for the passive cable equation which we reproduce here.
First we rescale the cable equation to obtain a dimensionless form, then derive Green’s
function by solving the dimensionless cable equation with the Dirac delta function as
the input current. To solve the PDE we make use of Fourier transforms to convert
the PDE to an ODE and find a solution to the simpler equation.

Rescaling Equation (2.11), to obtain a dimensionless form of the cable equation,

*

with the following new variables: x* = $, t* = f and I}, = R, I..:. This gives a unit

X e
free version of Equation (2.11) that looks like:

WV (x,t)  PV(xt)
ot Ox?

+V(x,t) = L(x,t) (2.12)

where the stars have been dropped from the new variables simply to make the notation
neater. Next replace I.(x,t) by a Dirac delta function at t = 2 = 0, i.e. 6(¢)d(z), to
give:
oV (x,t)  0*V(x,t)
ot 0x?

Using a Fourier transform, see [59], with respect to the spatial variable reduces Equa-

+ V(x,t) =0(t)d(x) . (2.13)

tion (2.13) to an ODE. The transform, F', is performed on given functions of x € R
to give a new function of a new variable k € C, as shown in Equation (2.14). When
applied to the PDE the hope is that the resulting transformed equation can be easily

solved. The Fourier transform is given by Equation (2.14):
A 1 o0 .
Fif(z)] = f(k) = — r)e *dy 2.14
@) = ) = == [ stw) (2.14)
Similarly the inverse Fourier transform is defined in Equation (2.15):
A 1 e .
Flk:;w}—/ k)e™*dk . 2.15
F0) = f0) = = [ 1 .15

When the Fourier transform is applied to the first and second differential of f(z) we
obtain F[%] — ikf(k) and F]EL2] = —k2 f(k). When this is applied to Equation

dx?
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(2.13) we find the resulting ODE, Equation (2.16).

dV(k’,t) + k‘QV(k,t) =+ V(k,t) — Eg( ) (2.16)

where V(k,t) is the Fourier transform of the original voltage V/(z,t). This ODE,

Equation (2.16), can be solved using an integrating factor, e(IHk)E, Using this and

the fact that the integral of a Dirac delta function is the Heaviside function, denoted
by ©(t), the solution to Equation (2.16) is:

V)= e (2.17)

We must next perform an inverse Fourier transform to obtain an equation for the

potential in terms of x and ¢.

—t 00
V(ZL‘ t / zlmdk _ @(t>e / e(ikx—th)dk )
\/ 27 .

Completing the square for the exponential gives:

O(t)e™t [ i x?
V(z,t) = 5 /OO exp[—(kVt — 7) - E]dk (2.18)
Let Int = [ exp[—(kv/t — ) Jdk and m = k\/t — ZZ.. Taking the square of Int
gives:
, 1 o
[Int]* = p e " dm e "dn . (2.19)

Next, changing to polar coordinates and changing the integration limits accordingly

[Int]? / / “rdrdd . (2.20)

Finally integrating this and taking the square root gives Int = \/? , SO on substituting

gives:

this into Equation (2.18) and simplifying, we have the following expression for V' (z,t):

O(t) 22
Ve, t) = —Le '@ . 2.21
(@t) = 2:21)
This expression for V(z,t) is the solution for the infinite passive cable equation with
a Dirac delta function as its input, therefore this is also Green’s function. When the

original variables are replaced (z* = { and t* = f) we have the following Green’s

function:

Gool(x,t) = e T At (2.22)
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where D = )‘72 This form of the Green’s function will be used in Chapter 7, to

construct a solution for the voltage evolution in a length of spiny dendrite modelled
by the SDS model, Section 2.8. Since the solution of the passive cable equation with
any input current, I.,;, can be obtained using the convolution of the Green’s function
with the input of interest we can use this to find the voltage evolution when the input

comes from action potentials generated in the spines.

2.3 Hodgkin Huxley model

The Hodgkin Huxley (HH) model was developed in 1952 to describe the ionic mecha-
nisms which drive the initiation and propagation of action potentials in the squid giant
axon. The model uses experimentally obtained data to describe the evolution of an
action potential in a membrane with active potassium and sodium channels. Hodgkin
and Huxley used voltage and space clamp techniques to control the potential difference
across the membrane of a squid giant axon, and so were able to observe ionic currents
flowing across the membrane in response to voltage and ionic concentration changes.
In doing this, Hodgkin and Huxley found the maximum membrane conductances as-
sociated with sodium and potassium ions and the voltages at which the sodium and
potassium currents are zero. They were also able to model the dynamics of the sodium
and potassium conductances, which change in order to depolarise/hyperpolarise the
membrane potential at the appropriate times of action potential generation. For a
more detailed description of the experiments see the original paper [44] and a brief
description in [98]. This model is important in neuroscience (descriptions of the HH
model can be found throughout the literature, e.g. [98], [48], [56], [83]); providing
the basis for many single cell neural models. The HH model is also important due
to the way in which it combines experimental work with mathematical modelling to

describe the role of ionic currents in action potential generation.

2.3.1 The Hodgkin Huxley equations

The HH model is a system of four ODEs describing the time evolution of the mem-
brane voltage, U(t) and the conductance variables m, n, h which are probabilities
relating to the sodium and potassium ionic gates that lend the HH model its active
properties. By ’active’” we mean that the membrane is capable of generating its own
action potential through changes in the conductance/resistance by changing the con-

centration of certain ions across the membrane. The following description of the HH
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equations is for a point in space.

Cmd(;—it) = Gnam®*(h(U) (Ve — U) + Ggn*(U) (Vi — U)

+ GV —=U) + Ln(t) , (2.23)

where (), is specific capacitance per unit area, U is the membrane potential, I;y;
is an input current, Gy,, Gx and G are the maximum sodium, potassium and
leakage conductances and Vy,, Vi and V7, are the respective ionic and leakage reversal

potentials. The m, n and h dynamics are described by:

dX(U)
dt

=ax(U)(1—-X)— Bx(U)X, with X € [m,n, hl. (2.24)

The o’s and (§’s are empirically derived formulae given by Equation (2.25) to Equation
(2.30).

0.1(U + 40)

anU) = T i (2.25)
0.01(U + 55)
a(U) = 1 _ ¢ 0.1(U+55) (2.26)
an(U) = 0.07e005U+65) (2.27)
ﬁm(U) _ 46—0.0556(U+65) (228)
Bo(U) = 0.125¢ %0125(U+65) (2.29)
1
O(U) = 7w (2.30)

1 4+ ¢ 0-1({U+35)"

The variable m is the probability of finding one of the sodium activation particles in
its open state, h is the probability of finding one of the sodium inactivation particles
in its non-inactivating state and n is the probability of finding one of the potassium
activation particles in its open state. The ax, X € [m,n,h] is the rate constant
counting the transitions from the closed to open state for each X and Bx, X € [m,n, h]
is the rate constant counting the transitions from the open to closed state for each X.
The parameters Gy,, Gk and G, are the maximum sodium, potassium and leakage
conductances, these have standard values which have been determined experimentally
and Vy., Vkx and V; are the respective ionic and leakage reversal potentials, these
values can be scaled to allow the resting potential of the system to be at zero but
otherwise the resting potential of the system is —65mV. To understand why we need

the variables m, n and h we look at how the ionic concentrations change in the different
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phases of the action potential generation, see Figure 2.2. During the initial resting

. . 1 . .
1000 1500 2000 2500 3000 3500
Time step

Figure 2.2: An Action Potential generated by the HH equations, this shows the different
phases in the evolution of the action potential as governed by the HH equations, labelled
by A, B, C, D and described in the main text. The AP is generated by solving Equation
(2.23) with an input voltage of Vj;,;(0) = 10, Vj,;(t > 0) = 0, temporal discretisation

At = 0.01 and initial conditions V' (0) = —65.

phase (up to label A on Figure 2.2), the membrane voltage is at its resting value
of —65mV. At this stage the sodium m-gate is closed and the h-gate is open so no
sodium ions are flowing while the potassium n-gate is also closed and so no potassium
is flowing through the membrane. Following a stimulus input which happens at a point
just before A the action potential enters the next phase. In the rising or depolarisation
stage (from label A to label B on Figure 2.2) the sodium m-gates open and since there
is a negative potential gradient the sodium ions flow through the membrane and, since
they are positive ions, they start to raise the potential across the membrane. When
the voltage reaches its peak and the falling or depolarisation phase (from label B to
label C on Figure 2.2) occurs the m-gate stays open but the h-gate closes so sodium
ions can no longer flow, and the n-gate opens so that the potassium can escape and
so decrease the potential difference once again. The n-gate stays open longer than is
needed to reach the resting potential and so we observe the undershoot phase (from
label C to label D on Figure 2.2), the m-gate also closes at this point. Finally the
gates revert to the initial resting state (just after label D on Figure 2.2) of m-gate
closed, h-gate open and n-gate closed.

The Hodgkin-Huxley equations can be solved with different types of injected current,
I;n;, and can be shown to give single spike and repetitive spiking responses. If the
input current is constant and high enough (above threshold levels) to induce spiking
the frequency of the output spiking pattern is only limited by the refractory time,
see Figure 2.3. This refractory time arises from the inactivation of sodium channels,

which has a time dependence, i.e. after firing there is a length of time during which
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Figure 2.3: HH equations with constant injected current. The injected current is high
enough to raise the voltage to a high enough level for continuous spiking. This is
generated by solving Equation (2.23) with an input voltage of Vjy,;(t) = 10, temporal
discretisation At = 0.01 and initial conditions V' (0) = —65.

the sodium channels are unable to open and so the depolarisation process cannot
begin. See Chapter 3 for a discussion of the Hodgkin Huxley model with noise, and

which noise induced phenomena have been observed in the HH model.

Fitzhugh-Nagumo model

The Fitzhugh-Nagumo (FHN) model is a reduction of the full HH dynamics to a
two variable model which captures the excitation of the membrane voltage and its
subsequent recovery without the ion channel dynamics m, n and h. The FHN model
is described throughout the literature and books [98] and [33] have small sections
describing derivation and some properties of the model. The reduction is possible due
to the difference in the kinetics of the n and h variables, which are slow, and the m

variable, which is fast. The equations in general, dimensionless, form are:

av

— = V) —-W+1
Mo rw-we
% = a(bV — W),

where V' is the fast variable (voltage), W is the slow variable (m) and a < 1 and b,
c € [0,1] are constants. f(V) = V(V —a)(1 — V) is the usual function used for a
neural model. The FHN model is not used throughout this work but is referred to

when reviewing other work e.g. noisy travelling waves.
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2.4 Integrate and fire model

The integrate and fire model is a very simple firing single neuron model which cap-
tures the behaviour of the HH model without the complicated ionic dependence. We
consider a leaky integrate and fire model and this is the model used throughout this
work. The IF model can however be altered slightly to be either quadratic or expo-
nential, although these are not considered here. This change means the voltage path
up to threshold takes a different form to that of the leaky IF model. To make the IF
model quadratic the —U term in Equation (2.31), below, becomes: (U — U,.cst)(U — h)
where U,.s is the resting potential of the model and h is the firing threshold. For

an exponential form of the model replace the —U term with eV=". Figure 2.4 shows

Figure 2.4: Left: Circuit diagram representation of a spine head, modelled by the IF
model. Right: Schematic of the voltage, U increasing to threshold level, h, spiking and
resetting to zero again. The sharp increases at U = h are the spikes of the system, shown
here as step functions, but they can be chosen to be any function.

the circuit representation of the leaky integrate and fire model which is a resistor 7
in parallel with a capacitor C, driving the overall current I, [33], [98] and [83] all
describe the IF model. We use again Ohm’s law and Kirchhoft’s law along with the
relation between voltage and current through a capacitor I = C% ([38]), which is
simply called an integrator, to obtain the expression, Equation (2.31) for the current

in the circuit representation.

a1 U
—==I() - —. 2.31
O (231)

Term % is the leak term and is representative of a general loss of current from ionic

sources that are not explicitly modelled. Given sufficient input current the voltage
U(t) will increase to a chosen threshold, call it h, and will be said to fire: T} =
{t > T}?{;[U(t) > h}. This equation says that the mth firing time occurs when at
some time after the (m — 1)th firing time when the voltage is greater than or equal
to the chosen threshold. The model does not produce an action potential so at the
time, 77} . one can choose the form of the action potential generated, in Figure 2.4

it is shown as a step function since this is the form used in the Spike Diffuse Spike

22



Chapter 2: Neural Models

model, how it is generated will be shown in Section 2.8. At the threshold crossing the
voltage in the model is reset to a chosen value and the model can start to integrate
again, given sufficient input, increasing the voltage back towards h. The IF model can
be improved by including a refractory time, 7z, during which the model cannot fire
again, this would alter the firing equation thus: 17, = {t > T7" ' + m|U(t) > h}.

2.5 Synchronisation and coupled oscillators

Most single neuron models, e.g. the HH or IF models described above (Section 2.3
and Section 2.4 respectively) can be described as oscillators, that is, with sufficient
input the deterministic model spikes at regular times. In Section 2.7 and Section 2.8
we discuss the Baer-Rinzel and Spike-diffuse-spike models of spiny dendrites which
can be thought of as chains of diffusively coupled oscillators. Each spine is modelled
using either HH or IF dynamics and is coupled to its neighbours through the diffusive,
passive cable. In this section we first look at the properties of single oscillators and
then of a coupled system. The time between spiking events is the period of the neural
system, T, and is due to the solution of the system, & = F(X(t)), being a limit
cycle with an associated phase, ¢. It is convention in neural oscillators to call the
spiking event 0 phase, therefore the spiking times are t; = {0,7,27, 3T, ...}, see the
HH example Figure 2.5 plot (a). If the system is perturbed slightly, by an injection
of extra current say, then the timing of the next spike will change, see Figure 2.5
plot (b). Let the period of the perturbed system be T , then the phase resetting
curve (PRC) is defined to be the change in the spiking times divided by the period:
A(p) = % Note that A(¢) € [0, 1], due to the scaling with respect to the period,
but it is sometimes scaled such that A(¢) € [0,27]. The PRCs have different forms
depending on the type of bifurcation which leads to the oscillatory behaviour of the
system, [22]. We have two classes of neural models: class I come from a saddle-node
bifurcation, an example of this is the quadratic IF model, and the class II is from
a Hopf bifurcation, e.g. HH model. So if we introduce a small perturbation into
a general ODE for the system (where X is the oscillating quantity of interest, e.g.
voltage for neural systems), we obtain:

EL = P(X() +GX(1).1) (2.32)

€ is a small value, F'is the function which describes the oscillating system and G is
the perturbation . This perturbation can be due to some input, noisy or otherwise, or
due to the coupling of the oscillator to another. Following the working from [60], then

introducing a phase variable (), the Equation (2.32) can be reduced to the phase
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Figure 2.5: Plot (a) is an example of the regular spiking in the deterministic Hodgkin
Huxley model. Time between the peaks is the period of the system 7. Plot (b) is an
example of noise induced phase shifting in the Hodgkin Huxley model. Noise is introduced
to the model by using a white noise to drive Equation (2.23), i.e. Iin; = Igeterm + Inoise
with Igeterm the current used for plot (a) and I,4se is a temporal multiplicative white
noise (generation of this type of noise is described in Chapter 3). The deterministic
voltage trace is also shown to compare the period of the deterministic system to that of
the noisy period. It can be seen that the spike time shifts forward and backwards with
respect to the deterministic spike times. These are generated by solving Equation (2.23)
with an input voltage of Vj,,;(t) = 10, temporal discretisation At = 0.01 and initial
conditions V(0) = —65.

24



Chapter 2: Neural Models

model:
0 =1+eA(0)g(0,t) (2.33)

where ¢(6,t) is the component of G which relates to the membrane voltage. If the per-
turbation was due to coupling of oscillators then the function g(é,t) would represent
the coupling. The coupling in neural systems is due to synaptic connections, either
electrical or chemical, and are usually pulse coupling or gap junction coupling(diffusive
coupling). Once coupled Equation (2.33) will become a system of equations, for ex-

ample for two mutually coupled oscillators we will have the equations:

do
d—tl = 14 e8(62)A(6))
do

d—f = 14 €5(61)A(6,).

Once coupled we can look at the behaviour of the coupled system and in turn look
for the synchrony/asynchrony of the system, that is 5 — 6; = 0 in the former case
and 0y — 6, # 0 for the latter. Here we showed the very simple example of two
mutually coupled oscillators but we can consider the case of a network of all-to-all
symmetrically coupled neurons, chains of coupled neurons, rings of coupled neurons
and even randomly connected networks. Geol and Ermentrout, [34], look at waves and
synchrony on coupled chains and rings as well as 2-D arrays of oscillators. The paper
[22] gives a general overview of neural oscillators and weak and strong coupling as
well as briefly discussing the coupling of leaky integrate and fire neurons. It is shown
in [13] that a pair of electrically coupled (gap junction) integrate and fire neurons can
achieve synchrony or asynchrony depending on the coupling strength and the size of
the spikes emitted by the neurons. Similarly in [104] the conditions on the coupling
strength for networks of diffusively coupled HH neurons are derived to show stability
of synchronous solutions. Bressloff and Coombes, [9], consider chains of pulse coupled
integrate and fire neurons and the travelling waves which they support, this is similar
to the SDS model, Section 2.8 which can also support travelling waves, see Section
2.9.

2.6 Synaptic plasticity and motility

In the following sections we discuss a dendrite model with active spines, BR model
Section 2.7 and SDS model Section 2.8, where the spines are modelled by the HH or
IF' equations respectively. We mentioned that spines are important in learning and
memory in Chapter 2, and here we discuss a mechanism by which the brain may learn
and memorise: synaptic plasticity. Although we consider fixed distributions of spines

in this work, the models can be easily altered to have changing spine densities or
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irregular distributions of spines. Synaptic plasticity is a mechanism which allows the
brain to learn and store memories. It is the term given to the changing strengths of
connections between neurons as the brain learns and processes new information. The
spines onto which synaptic connections are made can physically change in size and
shape or the spines can appear or disappear, known as spine motility. This plasticity
has been observed experimentally, [120] is a good review of experimental evidence
for morphological changes in spines of the rodent hippocampus. Some of the earlier
experiments reviewed seem contradictory and that the changes depend very much on
the experimental setup e.g. one study reviewed in this paper showed that LTP caused
shortening of spine stems where as several others showed no change under the same
circumstances. However the advent of two-photon confocal microscopy has allowed
improved observation of the changes in real time and better experimental results.
The changes in spine morphology changes the calcium compartmentalisation in the
dendrite so it is thought that the concentration of calcium ions, [Ca®*] is an important
factor in spine plasticity. The presence of calcium can result in long term potentiation,
LTP, or long term depression, LTD depending on the amount of calcium present in
the spine. LTP gives sufficient conditions for a synapse to grow in strength and is
typically activated by periods of high frequency pre-synaptic stimulation. LTD is the
opposite, where the synapse will decrease in strength and is typically invoked by low
frequency pre-synaptic stimulation, [33] has a description of LTP/LTD. In a further
review, [8], the authors consider spine motility, which can be considered a form of
plasticity since the spines move on the dendritic shaft in response to activity. They
discuss the role of calcium in the movement of spines. For spines to grow they require
actin-cytoskeleton which is activated by calcium in the correct measure as well as other
neurotransmitters. If [Ca®"] is small or large this results in spine death, however if
there is a moderate presence of [Ca®*] then spines can grow. The morphology of the
spine stem is very important in controlling the quantity of [Ca2+] since the length of
the stem directly controls the calcium time constant and so the rate of diffusion in the
spine, which relates back to the growth/death of spines. The growth/death of spines
can facilitate/destroy synaptic connections and so can be related to learning. The role
of spines is discussed in [52] and suggests different roles for different types of spines in
the cerebral cortex; they also review supporting experimental evidence. They suggest
that large headed spines are stable and so have strong synaptic connections so can
therefore be thought of as “memory spines”. Conversely small headed spines are not
stable and have weak connections. Their instability allows them to move or grow
into the large headed variety and so can be labelled “learning spines”. In the paper
[113] the authors suggest a mathematical model for a length of spiny dendritic tissue
that has space and time dependent spine density and spine stem resistance. The

model uses the Baer Rinzel model, Section 2.7, as the spiny dendrite and introduces
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an ODE to describe the activity dependent spine resistance and an expression for
the density which depends on the resistance. As they stimulate the model with a
high level of electrical activity they induce LTP which results in an increase in the
spine density localised around the activity site. The draw back in this model is that
although the density may increase near to activation sites the density elsewhere cannot
decrease below the initial value. This model is extended in [114] by adding a dynamic
calcium concentration to the already space-time dependent density. Therefore this
new model has the BR equations as before, but now has three additional coupled
ODEs modelling density, [Ca®*] and stem resistance respectively. The density and
[Ca®*] both depend on the synaptic input and the stem resistance (which is related
to stem length) depends on calcium concentration, when [Ca*"] is moderate the stem
lengthens and when [Ca*"] is high the stem shortens. The authors consider how the
density and resistance change with activity and how the new configuration of spines
(both passive and active) affects the output of the whole branch. As the activity
increases the spine density also increases, as expected. When the spines are passive,
the increased density makes little difference to the output of the branch whereas the
active spines can induce action potential propagation when the density reaches a
critical value. Also as the frequency of the stimulation increases the [Ca®t] increases
and the stems lengthen. When the spines are active this morphology change allows
the spines to produce action potentials and so the output of the branch is enhanced.
Finally when the [Ca®*] is high spines die and so high stimulation results in no output.

Instead of LTP or LTD as discussed until this point, there is another mechanism
which can result in morphological changes and so learning; it is called spike timing
dependent plasticity (STDP), [19]. As already discussed the frequency of pre-synaptic
stimulation determines if the spine experiences LTP or LTD and therefore if the
synaptic strength increase or decreases. In STDP the increase/decrease in synaptic
strength depends not on the frequency of stimulation but on the time between a pre
and post-synaptic spike, At, although repeated spike pairs does matter. If At is too
large then no change will take place, however as the size of At gets smaller then
the larger the change in synaptic strength; the sign of At determines whether this
change is to make the synapse stronger or weaker i.e. if the order of spiking is pre-
post then the strength will increase and if the order is post-pre then the connection
will become weaker. STDP is also a type of Hebbian learning, that is as a cell is
repetitively stimulated then the connection between the stimulating and stimulated
cell is strengthened. While [19] discusses the experimental evidence of STDP, an
example of a simple mathematical model of STDP can be found in [33]. A model
which shows LTP, LTD and STDP is given in [119]. The authors calculate the changes
in calcium concentration in spines as a result of different stimulation frequencies and

as a function of the pre-post spike timing and they introduce a back propagating
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action potential. The back propagating action potential is shown to alter the pre-post
interactions in such a way as to allow STDP learning, which is not possible without
it. Without the back propagating action potential the model can show changes in
[Ca®*] that are consistent with LTP/LTD, and this allows the investigation of how
the calcium changes affects the length of time that LTP/LTD exists. It appears
from the experimental and mathematical investigations into synaptic plasticity that
calcium plays an important role and that the shape and movement of dendritic spines

does indeed play an important part in learning and memory.

2.7 Baer-Rinzel model

The Baer-Rinzel (BR) model [6] describes the voltage evolution of a spiny dendrite.
The voltage in the spines is modelled using the HH, Section 2.3, equations and they
are coupled, with a certain density, to a uniform passive cable, whose voltage, V, is
modelled by the passive cable equation, by a spine stem resistance.

The density of spines can be any function of space, but the original BR model, of the
three considered in this work, assumes this to be a constant. So combining the HH
and passive cable models by coupling the equations together through the spine stem
resistance r we obtain the equations of the BR model, Equation (2.34). Where U(z,t)
is the voltage in the spines and V(x,t) is the voltage in the cable. The coupling of
the HH model to the spatially extended cable equation is done through the last terms
in both Equation (2.34) and Equation (2.38), so now the original HH equations are
driven by a current from the cable and the cable diffuses the action potential along
the length of the cable.

dU

Cmﬁ = Gnem*(D)h(U) (Vg — U) + Ggn*(U) (Vi — U)
+ GL(V, —U) - v ; v (2.34)
U)o (01— m) — B (U)m (2.35)
it
PO )@~ n) - s (2:36)
) ()1 = n) = Bu(U)n (2.37)
it
0%—‘; - GV -V + ma‘% () L=V (2.38)
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The parameters in Equation (2.34) have the same meaning as before (Section 2.3),
and are listed in the Nomenclature at the start of the thesis. p(x) is the density of the
spines along the cable, the larger p(z) is the stronger the coupling between the spines
and the cable. In the original BR model the density is taken to be a constant. Here
we extend the model to include p(x) as a function of z, we investigate the behaviour
of the system when the spines are attached at discrete points along the cable, as we
will see in the SDS model Section 2.8, and when we have something in between these
two extremes, see Chapter 6.

Although there is now a spatial extension in the HH equations which describe the
spines, they can only interact with each other through the cable.

The BR model has been shown to support travelling waves, solitary, multi-bump and
periodic waves, in the appropriate parameter ranges, see Section 2.9 for a description
of travelling wave solutions to the BR model. One example is shown in Figure 2.6
where the region of existence for a travelling wave is shown as p changes with all other
parameters fixed. There are two regimes shown in the figure, when the density is too
small there is no propagation of a travelling wave but when the density increases to
the limit point and beyond then the system supports travelling wave solutions. This
type of figure could be reproduced for a different set of parameters e.g. we could fix
all the parameters except the resistance and so on. For each value of the density there
are two wave speeds associated with it, except at the limit point, marked on Figure
2.6, where there is only one. The faster speed represents the stable waves which can
be seen in any direct simulation of the BR equations. So for each of the parameters
there would be a different curve showing the existence of the wave for that particular
regime, see Chapter 5. For further details see [70], the analysis in this paper can be

followed in the case of small noise in the system.

2.8 SDS model

The SDS model [15], [16] and [109] describes a length of spiny dendritic cable, as
represented in the schematic in Figure 2.7. This model is similar to the BR model
in its coupling of a passive dendrite and active spines, although the SDS model does
not use the HH equations, the spines are still coupled to the cable through a spine
stem resistance r and a density p(z), which could be any suitable spatially dependent
function we choose. The SDS model, as described in [16], chooses a more physically
realistic function for p(z) that ensures the spines are separate entities along the cable
instead of a constant as in the BR model. Some of the biological detail of action
potential generation is lost by not using the HH equations.

The cable is modelled by the passive cable equation, and the spine head dynamics by

the leaky integrate and fire model with a refractory time 7z. The spines are attached
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Figure 2.6: Bifurcation diagram for the Baer-Rinzel model, showing where in parameter
space, for p, the travelling wave exists, the speed of this wave is shown on the y-axis. This
is the existence for one set of parameter values, with only the density changing. The limit
point shows where the system switches from the regime which supports travelling waves to
one where no travelling waves exist (at small p). This figure was generated using the
bifurcation package AUTO-07P to continue a travelling wave solution of the BR model in
the two parameters p and ¢ to show where in parameter space these travelling waves exist.
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Figure 2.7: Diagram of a length of spiny dendritic tissue showing the circuit diagram
representation of one compartment of the cable.
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at discrete points along the cable by a spine stem with resistance, r. The points at
which the spines are attached can be spaced with any spatial distribution but here
we have chosen equally spaced points.
The membrane potential in the cable, V(x, t), is given by:

ov PV v

E = D@ — ? + -DraIe;Bt . (239)
D = ’\72 is the diffusion coefficient, 7 = r,,¢,, is the membrane time constant, A =
\/ Z’"T’: is the electronic space constant, r, is the intracellular resistance per unit length
and ., is any external current with = € [0, L] and ¢ € [0,77], L is the length of the
cable and T is the end time. If we replace I.,; with the current coming from the

spines, we get:

<>

oV o’V Vv -V
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Where p(z) = >_,cr 6(z — x,) which is the density of spines, attached at discrete

(2.40)

~

points x,, V(x,,t) is the action potential produced by the spine at the point z,, the
form of the action potential is free to be chosen, and r is the spine stem resistance.
The spine head dynamics are modelled by the leaky integrate and fire (IF) model, see

Section 2.4. From the circuit representation of the spine head, Figure 2.8, the leaky

Figure 2.8: Left: Circuit diagram representation of a spine head. Right: Schematic of the
voltage, U increasing to threshold level, h, spiking and resetting to zero again.

IF model takes the following form.

The action potential, U, (), in the nth Spine evolves as:

AU, U, V,—U, -
- _ _n_-n_ —Tm . 2.41
c— S cm%ﬁ@ ) (2.41)

r r

. g

~
Reset

The I(t) in Equation (2.31) has been replaced with the coupling term Y=Y which
attaches the spines to the cable. The m-th firing time of the nth spine, 77", is governed
by the integrate and fire process:

T = inf{t|U,(t) > h,t > T" ' + 75}, (2.42)
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where 75 is the refractory time period, during which the spine is unable to fire. This
refractory time is introduced to mimic the dynamics of the HH model, which has a
natural refractory time. At U, = h an action potential is injected into the cable; the
form of this injected potential can be chosen to be a suitable function, in the SDS

model described here, the function was chosen to be a rectangular pulse, given by:
n(t) = nO(H)O(r, — 1) (2.43)

Where ©(t) is the Heaviside function, 7, is the length of time the pulse lasts for and
1o is the strength (magnitude) of the pulse.

These equations describing the dynamics of spiny dendritic tissue can be solved using
a combination of analytical and numerical techniques. Here we provide a brief descrip-
tion of how this is implemented, see [109] for a fuller description of the methodology.
Explicit solutions can be obtained for both V(x,t) and U(t). V(z,t) has a Neumann
series solution involving the Green’s function for the passive cable, described in Sec-
tion 2.2.1, and up to threshold U(¢) can be solved by directly integrating Equation
(2.41) and substituting for V' (z,t). The firing times, however, have to be numerically
determined using the threshold condition U, (t) = h. After finding the latest firing
time V'(x,t) can be recalculated and so U,(t) recalculated, the threshold condition
checked and so on, building up a complete picture of the cable throughout the time
interval. Although in most instances throughout this work the SDS equations are
solved by a fully numerical technique, we use this method in Chapter 7.

The solution of this problem shows that the SDS model supports the propagation
of saltatory travelling waves along the length of the cable ([16], [109]). The success
or failure of propagation depends on many biological parameters, e.g. spine spacing,
spine stem resistance and membrane properties. The parameter we are particularly
interested in is the spine spacing, since it is easily altered and is a parameter which in
the real biological system varies depending on the type of neuron the dendrite belongs
to; Figure 2.9 shows the area of parameter space where the travelling wave exists for
varying d.

Figure 2.9 is analogous to Figure 2.6 in that it shows the area of existance of a
travelling wave for changing spine spacing d. As the spine spacing increases the speed
of the wave slows and at the limit point the system cannot support travelling waves;
therefore there are two distinct regimes where the wave exists and where it does not.
Figure 2.6 was generated using the continuation software AUTO-07P and thus shows

the stable, faster branch and the slower, unstable branch.
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Figure 2.9: Speed of a travelling wave in the SDS model as a function of spine spacing, d.
Plot (a) shows the direct simulation of the SDS model to find speed as a function of spine
spacing. Plot (b) shows the top, fast branch again obtained from direct simulation and
shows the speed of the stable wave in the SDS model. The bottom, slow branch has been
drawn on to represent the unstable solution, which can not be observed directly. This
figure is a reproduction of a figure in [109] and is given as an illustrative aid to emphasise
that there are two regimes for the deterministic SDS model. All other parameters are as
described in the parameter list at the start of the thesis. We solve Equation (2.40) along
with Equation (2.31) with temporal discretisation At = 0.1, ¢ € [0, 70]and spatial
discretisation Az = 0.08, = € [0,96]. The boundary conditions used are Dirichlet and
initial conditions V' (z,0) =0, U1(0) = U2(0) = 0.04 and U,~2 = 0.

2.9 Travelling waves in neural models

Throughout this work we are concerned with the behaviour of travelling waves under
the influence of noise, primarily how the speed of any travelling wave changes as
the noise intensity increases. A travelling wave is, in general terms, a transference
of energy through the movement of a medium from one point to another e.g. a
water wave or sound wave. The energy and so the signal is transmitted through
the perturbation of water molecules or air particles in the two examples given; each
molecule is perturbed from its initial state by the passing of the wave and so perturbs
its neighbouring molecule and so on. Despite the fact that not one molecule/object
makes the journey from the initial point of the wave to the final point, the energy
has been transported from one point to another, distant point, [38]. In neural models
the signal can be chemical or electrical and we are concerned with the propagation of
action potentials, therefore consider electrical signals which concern the movement of
charged particles, usually electrons.

Travelling waves have been observed by experimentalists in the course of in vivo
or in vitro experiments with either whole cell recordings or axo-dendritic recordings.
Examples include waves associated with epileptic seizure [102], waves seen in sleep

cycles [102] and along axons or dendrites, [99] is a review of theoretical and experi-
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mental action potential propagation in dendrites. An interesting example which is of
particular relevance to the models considered in this work is described in [26] where
the authors grow cultured hippocampal neurons along a 1-D mould to produce a
linear network of neurons. They observe travelling packets of activity as well as syn-
chronous behaviour along the whole length of the sample. They are able to measure
wave speeds of around 100mm/s which is in agreement to an order of magnitude
with measured speeds in slice preparations taken from unmylenated rat hippocampal
axons. The authors also compare their experimental results to a theoretical model
by Osan and Ermentrout [81], which models a linear network of neurons with IF dy-
namics connected synaptically (that support travelling wave solutions) and find good
agreement. As briefly discussed here there are many types of waves in neural systems
and travelling waves are just one of the experimentally and theoretically observed
solutions. As dendritic models go the Baer and Rinzel model was the first to couple
active spines to a passive cable and show travelling wave solutions. The original BR
paper, [6] showed numerically smooth and saltatory travelling waves; saltatory means
that the wave appears to jump from one active spine to the next and this has been ob-
served in the nervous system in dendrites and on an axon where the mylenated sheath
is broken by nodes of Ranvier. A more recent paper, [110], summarises, briefly, this
result and shows how the change in parameters can enhance the propagation or cease
propagation. No analytical results for the travelling waves or their stability in the
BR model have been found and J. Rinzel extended the work on the travelling waves
in the BR model by considering a simplified version using dynamics similar to the
Fitzhugh Nagumo model for the spine heads instead of the HH model, [89]. This new
system has only two free parameters and so makes the solution and stability analysis
available by analytical means. To do this the authors transform the two coupled ODE
system into the travelling wave frame using the standard anzatz and so find existence
of the wave solutions as the parameters change. They use a linear stability analysis to
show that the fast solutions are the stable branch of solutions. A full numerical study
of the travelling wave solutions in the BR model has been carried out in [70] using
the travelling wave frame and a dynamical systems approach. The existence of the
waves in parameter space was explored and further multi-bump solutions were found
to exist as were bursting packets. Using a similar approach, [15], show the existence of
travelling wave solutions and their stability in another simplification of the BR model.
The authors exploit the fast nature of the m-dynamics in the BR model to reduce the
spine head dynamics to an all or nothing response modelled by the IF model. They
again use the standard travelling wave anzatz to convert to a co-moving frame and
can analytically find the travelling wave solutions and their stability; they arrive at an
explicit value for the wave speed depending on the system parameters. The authors

continue to extend their own work in a later paper, [16], to find the existence and
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stability of saltatory waves in a similar SDS model where the spines are no longer
a constant density as in the BR model but are in fact attached at discrete points
physically separated by equal distances. Once again the authors derive an expression
for the waves speed as a function of the system parameters. Travelling wave solutions
have also been explored in a neural network environment; [17] uses a firing rate model
on a spatially extended domain to model a network of synaptically connected neurons.
The integro-differential equation is converted to a PDE and then to a delayed ODE
through the conversion to the travelling wave frame and exact expressions for the
wave speed can be obtained when the firing rate function is a Heaviside function and
if the firing rate threshold is too large then propagation fails. The numerical solution
is obtained for different forms of the synaptic footprint. The model is then extended
to include a passive dendritic tree and for specific firing rate functions the exact form
of the speed of the wave can be determined.

Apart from the travelling wave solution where an action potential propagates with
some speed there are other forms of waves that exist in neural systems. The paper
[65] discusses the existence of rotational waves in a ring of diffusively, symmetrically
coupled oscillators; this type of system is seen in the motor control of animal leg mo-
tion. The dynamics of the oscillator are not explicitly described but the results hold
for a general class of oscillators and the stability of one branch of oscillations is found.
The phase difference between each oscillator is either zero, showing synchronous be-
haviour or at a maximum which shows asynchronous behaviour. All of the analysis
is done using Hopf bifurcation theory. A recent paper [74] shows analysis of spiral
waves in a network of coupled oscillators using a Gaussian kernel which allows the
analytical solution using perturbation theory to find the spiral waves and the speed

of the rotating arms.
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Stochastic forcing and numerical
methods

This chapter is also for background information and covers the concept of 'noise” and
how to introduce it to ordinary and partial differential equations. also investigate how
to correctly interpret the stochastic integral and how to generate different types of
noise, i.e. white or correlated. We then cover the numerical methods used to simulate
the new stochastic differential equations and the techniques devised to measure the

effect of the noise on the dendritic models which were described in Chapter 2.

3.1 Noise

In a broad sense, noise is often considered to be any 'unwanted’, meaningless data, for
example, the crackling noise heard on an untuned radio but not all noise is destructive
and can be, in some cases, useful.

In neural circuitry there are many potential sources of noise: the proximity of other
neurons and axons, synaptic connections from other neurons, the nature of the gating
of ion channels in the cell membrane can give rise to random effects and as with all
physical systems, thermal noise, which arises from random molecular movement due
to thermal energy. There is a comprehensive review of noise sources at all levels of the
central nervous system (CNS) in [24]; the paper also looks at the effects of the noise
and ways in which the CNS compensates for the noise. All sensory information which
the brain receives, from sight, smell etc, is noisy and so is one source of external noise.
Internal noise sources, already mentioned e.g. ion channels, place a limit on the size
of structures within the brain since the smaller the structure (axon/dendrite) then
the bigger the affect of the internal noise. So the size of axons are limited as is the
density of the wiring in the brain to reduce noise from what the authors term ’cross-
talk’ (electrical interference). The CNS can deal with noise by averaging behaviour

e.g. visual input is averaged over photoreceptors which share a visual field, and so
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some of the fluctuations due to noise are smoothed. The presence of noise in real
neurons has been observed in vivo, e.g. [61] reviews synaptic noise and shows large
fluctuations in the membrane voltage of feline cortical networks. [27] also discusses the
presence of noise in in vivo experiments with the rat cortex. The reproduction of these
real fluctuations is often investigated in wvitro using a stochastic conductance model
to simulate the synaptic noise and a dynamics clamp technique to force the prepared
slices of neurons, thereby merging the computational and experimental techniques,
[61], [27] and [50]. The models which force the real neurons, in the papers mentioned,
use a multiplicative white noise to create the fluctuations but the actual intensities
used is not explicitly given. The results are in agreement with in vivo observations; in
[27] the noise allows the cell to detect sub-threshold signals and in [50] the presence
of noise is shown to be necessary to facilitate the behaviour that characterises stellate
neurons.

This section looks at how noise can be described mathematically and how it can be
numerically simulated. Noise can take many forms, correlated in space and/or time or
uncorrelated; we will consider temporally correlated noise as an Ornstein-Uhlenbeck

process and uncorrelated noise as a simple Brownian motion or Wiener process.

3.1.1 Some basic probability theory

We start by briefly looking at some basic probability theory and definitions which
will help us to define the stochastic integral in Equation (3.11) and understand the
solution of an SDE. There are many good introductory texts on probability theory
such as [47] and [49] but several books that use or discuss more general stochastic
problems have very good, concise introductions to probability theory, such as [32],
[80], [5], [31] and [55], all of which deal with SDEs. [62] discusses stochastics in the
neurosciences and gives a brief introduction to some of the probability theory required
and [88] is a text book for physicists and engineers which has a probability section that
discusses the concept of random variables and their associated distribution functions.
First we introduce a probability space, (Q,U, P) in order to define a random variable.
The probability triple includes €2, which is any nonempty set called a sample space,
U is a o-algebra, a collection of events, and P is a probability measure which gives
the probability of an event in the o-algebra happening. If we consider flipping a fair
coin then we can define the triple for this simple experiment: Q = {heads,tails},
U = {0, {heads}, {tails}, {heads, tails}} and P ={0,1,1,1}.

Definition 3.1.1 A o-algebra is a collection, U, of sub-sets of Q0 with the following

properties:

e (), QcU.
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e If A €U then the complement A € U.
o If A1, Ay, ... €U, then U, Ay €U and o, Ax € U.

Definition 3.1.2 P : U — [0,1] is defined as a probability measure if the following
hold:

e P(0) =0, P(U) =1.

If Ay, Ay, ... €U, then P(UZO:1 Ak) < ZZO:I P(Ak)

If Ay, Ay, ... are disjoint sets in U, then P(Ur—, Ax) = > pey P(Ax).

The probability space defined by the triple (Q,U, P) is not observable, so we must

define a quantity which we can observe in the real world R”, this is a random variable.

Definition 3.1.3 X : QQ — R" s called an n-dimensional random variable if for each
B € B we have X 1(B) € U.

Here B is a collection of Borel subsets of R™ which is the smallest o-algebra (of R™)
containing all open sets.
If a random variable, X (¢) is dependent on time we can define a stochastic process

and sample path as follows:

Definition 3.1.4 The collection X (t)|t > 0 is a stochastic process and Yw € Q, t
X(t,w).

Now that we have a definition for a random variable we can continue to define a
few more useful quantities such as the expected value/mean and the variance. We
use the probability density function, which holds all information about its associated
random variable, to find, for example, the expected value, variance or some other
property of interest. A useful example which will be used frequently is the normally
distributed (or Gaussian) random variable, for 1-D case, with mean p and variation

P

Torz€ 2 More generally:

o? has the probability distribution p(z) =
Definition 3.1.5 If X : Q — R"™ has the density function:

1 1 —1
- —z(@—p)C  (z—p)
x e 2 31
p() (2m)™ det C (3.1)

x, 1 € R™ and C is a positive definite, symmetric matriz, then X is said to have a

Gaussian (or normal) distribution with mean p and covariance matriz C.
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Figure 3.1: Plot (a) shows the normal distribution A/(0,1) and plot (b) shows an example
of the Poisson distribution, a = 30.

Another useful distribution is the Poisson distribution, since it can be used for spike

rate models for a single neuron, [33]. The Poisson distribution is given by:

p(z) = e ", (32)

where x is the number of events, « is the average rate at which the events occur in a
specified region. Figure 3.1 plot (b) shows an example of a Poisson distribution where
a = 30.

If we have the probability density associated with a random variable, X, then we
can find the probability of X occurring within a certain range = = [a,b] by Pr(X €
la,b]) = f; p(z)dz. The expected value (or mean) of X is the most likely value of X
and is given by Equation (3.3):

pu=EX)= /_OO zp(x)dx . (3.3)

o0

The variance is a measure of how the random variable deviates from its mean value
and is given by 02 = V(X) = E(X?) — (E(X))?. We have shown two of the common
notations for mean (4 and E) and variance (o and V). A similar measure is the co-
variance, which measures how a random variable, X, changes with respect to another
random variable, Y, and is given by F.(X,Y) = E(XY) —E(X)E(Y). We also define
the auto-correlation, Equation (3.4), of a random variable, which is a measure of how

quickly a random variable changes in time.
C(X(1) = E(X (1) X (12)) (3.4)
where t; and ¢y are two points in time.
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3.1.2 Brownian motion

We will require the definition of the random variable W (t), which is considered to
be a standard Brownian motion or standard Wiener process. Brownian motion is
perhaps the most well known stochastic process and was first discovered by R.Brown
in 1826 when he observed the apparently random movement of pollen particles in
water. The process was first mathematically described by T.N.Theile in 1880 and later
consolidated by a paper by A.Einstein in 1905. The derivation of Brownian motion
using a random walk argument, i.e. a particle moving on a 2 dimensional lattice and

implementing the Laplace-De Moivre theorem, gives the normal distribution, [23].

Definition 3.1.6 A one dimensional Wiener process, W (t), defined on the time in-
terval [0, T] depends continuously on t € [0,T]. To be classified as a Wiener process
W (t) must satisfy the following conditions ([62], [41], [86]):

e W(t=0)=0, with probability 1.

o for 0 < s <t < T, a Brownian increment W (t) — W(s) ~ v/t —sN(0,1),
where N(0,1) is a normally distributed random variable with zero mean and

unit variance.

e For0<s<t<u<ov<T, W(t)—W(s) and W(v) — W(u) are independent
paths.

We now have enough information to generate a Brownian path on a time interval
[0, 7] and using N increments of At such that NA¢ = T". The independent Brownian
increments AW can be generated using Definition (3.1.6), starting at W (t = 0) = 0
we can find the next point W(At) = W(At) — W(0) ~ N(0,At) then W (2At) =
W(2At) — W(At) ~ N(0,At) and so on until W(T) = W(T) — W((N — 1)At).
Therefore each step can be generated using a normally distributed random variable,
scaled correctly by the time step, which can be easily generated in Matlab. Figure

3.2 shows an example of a Brownian path generated by this method.

Definition 3.1.7 A function f : [0,T] — R is termed uniformly Holder continuous
with exponent v > 0 if there is a constant K such that |f(t) — f(s)| < K|t — s|7.

A Brownian motion is termed "nowhere differentiable” since it is not Holder contin-

uous for exponents greater than %

Theorem 3.1.1 For all £ <~ <1, ¢t — W(t,w) is nowhere Hélder continuous for

exponent vy, is nowhere differentiable and is of infinite variation on each subinterval.
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Figure 3.2: An example of a Brownian path generated in Matlab.

The proof of this theorem, by Dvoretzky, Erdos, Kakutani, is outlined in [23].

We can think of dvgt(t) = £(t) as a white noise path although formally a continuous

time random process, X (), is only termed white noise if:
e The mean is equal to zero, i.e. E[X(¢)] =0
e The autocorrelation function satisfies: E[X (t1)X (t2)] = 025(t; — t2),

where o2 is the variance as before.

3.1.3 Stochastic integrals

In this subsection we briefly review how to understand and evaluate a stochastic
integral. We also look at the definition of an It6 and Stratonovich integral and how
we can convert between an SDE evaluated in the It6 sense and in the Stratonovich
sense. There are many books that cover this topic, [55], [5] are two examples and [23] is
a good set of lecture notes that defines the Ito6 integral and discusses the Stratonovich

integral. So we consider the integral form of our standard SDE Equation (3.11).

Definition 3.1.8 A partition of [0,T] is a finite collection of points P = {0 =ty <
ty < -+ <tpm =T} with step size |P| = maxo<p<m-—1 [ter1 — il

Recall the Riemann approximation for a general deterministic integral fab f(z)dz,
where f(z) : R — R and a,b € R. As defined above, the interval [a,b] can be
split into the partition {a = 2o < ... < x,, = b} which can then be used to define
the Riemann sum: S = > . 1™ f(y;)(z; — x;—1), where z;,_; < y; < x;. The smaller
the increment z; — x;_; then the more accurate the approximation will be and the

arbitrary choice of y; will not affect the outcome of the sum.
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We consider, as an example, the integral fOT WdW with W a 1-dimensional Brow-
nian motion, as defined in Section 3.1.2. Although a Brownian motion is nowhere
differentiable, we will follow a Riemann sum type approximation of the integral and
then pass appropriate limits. If we set 7, = (1 — ¢)tx + Ptpy1, with ¢ € [0, 1] we can

then define the Riemann type approximation for the stochastic integral:

m—1

T
/ WdW ~ Ry =Y W(m)(W(ten) — W(t)) - (3.5)

0 k=0
It can be shown that given a sequence of partitions P, (where ¢ is the mth point
in the nth partition and (¢ — " _,) — 0 as n — o0), [23], [80], that for R, =

m—1

T W) (W (t,) — W () and with the limit in L?(Q):

T2
limRn:W( )

n—oo 2

+ (- %)T | (3.6)

The limit obviously depends on the choice of ¢. If ¢ = 0 we have the Ito definition of
the stochastic integral, where the integrand is evaluated at the left hand end point and
¢ = % gives the Stratonovich definition, where we evaluate at the midpoint. These
two cases clearly differ and can give rise to different values of the stochastic integral.
It is clear that in the It0 sense the integral does not follow the normal rules of calculus
since for this case lim,,_,., R, = W(2T >

not appear under the normal rules of calculus. The Stratonovich integral does follow

_ w(1)?
2

future knowledge of the process to evaluate at the midpoint. The It6 and Stratonovich

— % which has an extra term, —%, that would

the normal rules since, lim,, ., R, when ¢ = %, however this requires some
definitions of the stochastic integral are the most famous and widely used but there
are infinitely many approximations for the integral since ¢ € [0, 1] will give rise to a
different approximation with each choice of ¢. In order to make it clear which of the
stochastic integrals is being used, we employ the following notation: [ WdW denotes
the Ito interpretation and [ W o dW denotes that the Stratonovich interpretation is
being used.

We now consider the integral fOT G(t)dW for some non-anticipating functions G(t).
A function is non-anticipating if it is F measurable, with F a filtration. This means
that the function GG only depends on prior information. We now define a filtration
but first we need W(t) = U(W(s)|0 < s < t), the o-algebra known as the history
of the Brownian motion up to time ¢ and the future of the Brownian motion is the
o-algebra W (t) = U(W (s) — W (t)|s > t).

Definition 3.1.9 F C U is a family of o-algebras called non-anticipating if:
e F(t) D F(s)Vt>s>0

e F)DW({)V >0
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e F(t) is independent of WT(t) Vt > 0.

We will approximate the function G' by a step-process, define the Riemann sum

and then pass limits which will then define the It6 integral.

Definition 3.1.10 A process is called a step-process if for a partition P = {0 =ty <
t1 <<ty =T} then G(t) = Gy, fort, <t <tpy, k=0,...,m—1.

Then we can define the It6 integral of G (a step-process) as:

/ " Gaw — mz_ Cr(W (tn) — W (1) = mz_ GLATV,, (3.7)
0 k=0 k=0

with the increment AW,,. If we have a general function G' € 2|0, T then there exists a
sequence of bounded step-processes G € L?[0, T such that E ( fOT |G — G”Pdt) — 0,
see [23]. IL? is the set of square integrable functions, or .2 functions, it is the set of
all measurable functions whose absolute values squared have a finite integral with
respect to some measure p: || f]|, :== ([ ]f\Qdu)% < 00. It can then be shown that for

the step processes G":

E{(/OTG”—GCZW)Q} :EUOT(G"—G)%] —0asn — 00 . (3.8)

Therefore in this mean square limit, as the partition mesh gets smaller, the step-
process approximates the general function G and as such we can define the It6 integral

as: T T
/ GdW = lim [ G"dW . (3.9)
0

n—oo 0

And so Equation (3.7) is a valid approximation of the integral: fOT GdW , and we have
the following properties for the It6 integral, [80], [23]:

o E(fOT GdW) = 0 is the Martingale property

. E((fOT GdW)?) = E(fOT G?dt) is called the Ito6 isometry.

3.1.4 Stochastic differential equations

A deterministic system is one which can be described by Ordinary Differential Equa-
tions (ODEs) or Partial Differential Equations (PDEs) which contain all information
of how properties of the system evolve in time and/or space. Given the set of equa-
tions and the initial conditions of a system the future state of the system can be
determined without any ambiguity in the final outcome, i.e. given the same initial
conditions the final outcome will always be the same, (provided the description of the

system is correct and the method used to solve the system is correctly chosen and
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implemented).

Stochastic Differential Equations (SDEs) describe the evolution of a system which has
a degree of randomness associated with it, e.g. the stock market fluctuations. This
randomness is time dependent rather than any random initial conditions or random
parameters in the differential equation. In this case, given a set of SDEs describing
the system and the initial state of the system, there is not any one outcome for the
future state of the system, there is instead a probability distribution associated with
the outcome.

In an SDE, one or more of the terms is a stochastic process which can also be described
as a random function defined over a time interval or space region. Here we look in
more detail at SDEs. There are many books describing SDEs and probability theory,
but [23] is a good set of lecture notes available on the Internet, [80] is an introduction
to SDEs and [32] is geared towards applications of SDEs.

If we think of adding a white noise to a deterministic ODE then we could write:
4X = F(X(t)) + g(X(t))&(t), where £(t) is white noise. We cannot directly deal with
this white noise £(¢) mathematically since it is not continuous but we can think of
£(t) = WU (or dW = £dt). Then we can rewrite the our "noisy’ ODE as a general

dt
1to SDE of the form:

AX () = FOX()dE + g(X (1) AW () (3.10)
which can be more easily and properly understood in integral form:
T T
X(T) = Xo +/ F(X(¢))dt —1—/ g(X(t)dW (t) (3.11)
0 0

here f(X(t)) and ¢g(X(t)) are functions, which have specific properties, of the random
variable X (t) and W (t) is a Wiener process which is integrated in the It6 sense. Since
we have just discussed in Section 3.1.3, the It integral we can then attempt to find
a solution to this SDE. In the following section we give sufficient conditions on f(X)
and ¢g(X) such that there exists a solution to Equation (3.10), X (¢).

3.1.5 Existence of solutions to an Ito SDE
For the general SDE given before:
dX(1) = FX(8)dt+ g(X(E)dW (1) (3.12)

X(0) = X, (3.13)
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where we have the unique solution X € R" given certain conditions on f : R" X
0,7] — R™ and g : R" x [0, T] — M™*", see [23], [86], [55] and [5]. If the functions
f and g satisfy the following Lipschitz conditions then we will have a solution to the
SDE Equation (3.12):

f(z,t) — f(@,8)| < Llx—2|VO<t< T,z & cR"

lg(x,t) —g(2,t)| < Lle — 2| VO <t <T,z, 2 €R"

[f(z, )] LA+ |z) VO<t <T,z€R"
o gz, )] < L1+ [z) VO<t<T,zeR"

with L some constant. Also let X, be any R™ valued random variable such that
E(|Xo|*) < oo and X is independent of W*(0) (the future of the Brownian path).
The solution of an SDE can be found exactly if the SDE is linear. An SDE is linear
if the coefficients f(X(¢)) and g(X (¢)) satisfy the following:

X)) = a(t)+BOX (3.14)
g(X(1)) = c(t)+ D)X (3.15)

for a : [0,7] — R", B : [0,T] — M"™™ ¢ :[0,T7] — M™™ and D : [0,T] —
L(R™ M"*™) the space of bounded linear mappings from R" to M"*™.

The exact solutions to many standard SDEs can be easily found in the literature, for
example see [55] and [23]. The solution to Equation (3.12) with the linear coefficients
given by Equation (3.14) and Equation (3.15) is given by:

X(t) = eloBE=3D*@)dst[gDe)aW o

t
[ Xo+ / (a(s) — c(s)D(s))e Jo (BEI=3D*()dr=Jy DIW g
0

t
+ / (c(s)e™ Jo BEI=3 D>(m)dr=J5 D)W qry] (3.16)
0

As an example, consider the SDE that describes geometric Brownian motion dX =
puXdt+oXdW, with initial condition X (0) = X,. We use Equation (3.16) to find the
exact solution for geometric Brownian motion, so by equating coefficients: B(t) = p,

D(t) = o and substituting into Equation (3.16) we obtain:
X(t) = Xoel 27 )toW. (3.17)

Solutions can also be obtained using numerical algorithms described in Section 3.3.
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3.1.6 Ito and Stratonovich SDEs

The above section on the existence of solutions to SDEs has been shown for the Ito
interpretation of the stochastic integral. It can also be shown for the Stratonovich
interpretation but here we are only going to show how to convert an SDE of one
type to the other. The Ito integral is denoted fo s)dW (s), and the Stratonovich
fo ) o dW (s), this notation is to distinguish between the two interpretations. One
difference between the two integrals is the value of the mean and so this can be
exploited in converting from one calculus to the other: E ( fo s)dW (s )) = 0 and

( fo )odW ( )) # 0, when the drift term is adjusted to convert a Stratonovich
1ntegra1 to an It integral it is simply adjusting the mean such that it will now be

Zero.

dX (t) = ( F(X) - %g(t)g'(t)) dt + g(t) o dW (1) . (3.18)

Equation (3.18) is equivalent to the familiar 1t6 SDE dX (t) = f(X)dt + g(t)dW (¢),
and the extra term in the drift is called the drift correction or noise induced drift.
Similarly dX (t) = f(X)dt + g(t) o dW(t) is the same as the corrected It6 version:
dX(t) = (f(X) + 39(t)g'(t)) dt + g(t)dW (t).

In this way we can switch between the two interpretations and compare the effect of
evaluating the SDE at different points in the interval. The Stratonovich interpretation
is often used in cases where the noise is fluctuating on a much faster scale than the
system dynamics since the mid-point interpretation can be thought of as averaging
this fast behaviour in some way. However if the time-scales are much closer and the
system responds to the noise on a similar time-scale then the Ito interpretation is

more appropriate since it is non-anticipating, evaluating at the left hand end point.

3.1.7 Temporally correlated noise

A stochastic differential equation can also be forced by a non-white noise, i.e. the
dW (t) term does not have to be a Brownian motion. Here we consider noise that is
temporally correlated.

To generate a temporally correlated noise we use an Ornstein-Uhlenbeck process

(sometimes called a mean-reverting process) which is given by the following SDE:

dK(t) = (0 — K(t))dt + odW (t) , (3.19)

where K(t) is a stochastic process called the Ornstein-Uhlenbeck process, (3 is a
parameter which can adjust the time scale of the correlation, called the mean reversion
rate,  is the mean to which the process will revert to if given enough time, o is another

parameter which is called the volatility and W is a Brownian motion, as before. The
variance of the solution is given by V(K) = %
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Unlike the Wiener process, increments of the OU process are not independent
although it is still a Gaussian process. If the mean is zero, § = 0, then we write the
OU process as:

dK(t) = =K (t)dt +dW(t) , (3.20)

I and so can be related to a

here (3 is called the reversion rate, and has units of s~
time by taking the reciprocal % The OU process is an example of a Gaussian process
which means that if we take a linear combination of the variables K(t) then that
combination will be normally distributed. The fact that it is a mean-reverting model
means that in the long term (how long depends upon the parameter 3), K(t) will
revert to the mean #. We can then introduce this process, with zero mean, to our

SDE, in the form of Equation (3.20):
dX(t) = f(X(t))dt + g(X (t))dK(t) . (3.21)

Now there are two coupled SDEs, Equation (3.20) and Equation (3.21) which can be

solved simultaneously to give the random variable X (¢).

3.1.8 Stochastic partial differential equations

We consider a parabolic stochastic differential equation of the form:

0X  9°X

0xX OW (z,t)
ot Ox?

ot '’

+ f(X) +9(X) (3.22)

with initial condition X (0) = X, and x € [0, L], t € [0,7].The process W (z,t) is a
Q-Wiener process, we will go on to define what this is. We saw in Section 2.2.1, that
the passive cable equation is a parabolic PDE and so when extended to the noisy cable
equation will be a parabolic SPDE. [14], [86], [18] and [30] deal with the solution and
existence of SPDEs.

Hilbert spaces, covariance operators and Q-Wiener processes.

We require there to be a separable Hilbert space H, with the appropriate inner-
product and norm, on which a covariance operator, ), will act. This operator is
analogous to the covariance matrix we saw in the finite dimensional Brownian motion
case, Section 3.1.2. Briefly, a Hilbert space, H, is a vector space with an inner product
(f,9), f,g € H such that the norm can be defined as |f| = \/W Now we look at

the definition of a covariance operator.

Definition 3.1.11 If an operator Q) : H — H is a covariance operator it satisfies the

following properties:

e () is non-negative,
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e () is symmetric.

This covariance operator can be likened to the covarian