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Abstract

The dendritic tree provides the surface area for synaptic connections between the

100 billion neurons in the brain. 90% of excitatory synapses are made onto dendritic

spines which are constantly changing shape and strength. This adaptation is believed

to be an important factor in learning, memory and computations within the dendritic

tree. The environment in which the neuron sits is inherently noisy due to the activity

in nearby neurons and the stochastic nature of synaptic gating. Therefore the effects

of noise is a very important aspect in any realistic model.

This work provides a comprehensive study of two spiny dendrite models driven

by different forms of noise in the spine dynamics or in the membrane voltage. We

investigate the effect of the noise on signal propagation along the dendrite and how

any correlation in the noise may affect this behaviour. We discover a difference in

the results of the two models which suggests that the form of spine connectivity is

important. We also show that both models have the capacity to act as a robust filter

and that a branched structure can perform logic computations.
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Abbreviations

BC Boundary Conditions

BR Baer and Rinzel model

CNS Central Nervous System

CR Coherence Resonance

FHN Fitzhugh Nagumo model

HH Hodgkin Huxley equations

IF Integrate and Fire

LTD Long Term Depression

LTP Long Term Potentiation

ODE Ordinary Differential Equation

OU Ornstein Uhlenbeck process

PDE Partial Differential Equation

PRC Phase Resetting Curve

SDE Stochastic Differential Equation

SDS Spike Diffuse Spike Model

SNR Signal to Noise Ratio

SPDE Stochastic Partial Differential Equation

SR Stochastic Resonance

STDP Spike Time Dependent Plasticity



Parameter List

This page gives the parameter values used throughout the thesis and their respective

units. The values are biologically realistic, where appropriate, and the bracketed

values are the non-dimensional values used, for example in the Spike diffuse spike

model Section 2.8 and Chapter 4.

Symbol Name Value Unit

V Cable Voltage - mV

U Spine head Voltage - mV

Rm Transmembrane Resistance 2500 (1) Ωcm2

Ra Intracellular Resistance 70 (1) Ωcm

Cm Transmembrane Capacitance 1 (1) µFcm−2

Ĉ Transmembrane Capacitance of Spine head 1 (1) µFcm−2

r̂ Transmemrane Resistance of Spine head 2500 (1) Ωcm2

µ Strength of additive noise - -

ν Strength of multiplicative noise - -

a Dendritic Diameter 0.36 (1) µm

λ =
√
aRm4Ra Electronic Length Scale (1) -

τ = RmCm Electonic time constant (1) -

D = λ2

τ
Diffusion Coefficient (1) -

τR Refractory time - -

L Length of dendrite 1-2 mm

Nspines Number of spines in SDS model 81 or 37 -

τs Length of time pulse lasts in SDS model - -

h Voltage threshold in spine head for SDS model 0.04 -

m Sodium activation particle - -

h Sodium inactivation particle - -

n Potassium activation particle - -

GNa Maximum sodium conductance 120 mScm−2

GK Maximum potassium conductance 36 mScm−2

GL Maximum leakage conductance 0.3 mScm−2

VNa Sodium reversal potential 50 mV

VK Potassium reversal potential -77 mV

VL Leakage reversal potential -54.402 mV

ρ Spine density - -

d Spine spacing (0.8 or 1) µm

η0 Strength of action potential pulse in SDS model - -
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Chapter 1

Introduction

The neuron, or nerve cell, is the building block of the mammalian nervous system; it

sends, receives and processes information that ultimately controls functions as fun-

damental as our breathing and as complex as human consciousness. The brain is

so densely populated by neurons that it was long believed that the brain was not a

collection of individual cells but one single mass. In the late 19th century Camillo

Golgi discovered a stain that highlighted only certain neurons within a sample of brain

tissue and this allowed the study of the structure of the individual neuron. It was,

however, Ramón y Cajal that used this stain to carry out extensive studies of the

structure and interconnections of neurons in many parts of the brain. He produced

many detailed and beautiful drawings of neurons, [118], see Figure 1.1 for an example

of his work. Through his studies Ramón y Cajal discovered the existence of the axon,

dendrite and even dendritic spines. Although there are around 100 billion individual

neurons in the human brain [117], [107], with a variety of morphologies, they share a

basic structure. As shown in Figure 1.2, the neuron consists of the main cell body,

or soma, the axon along which information travels to the synaptic terminals to be

transferred onto several other connecting neurons through their dendritic trees. The

dendritic tree allows a greater surface area for synaptic connections to be made and

around 90% of excitatory synapses in the brain are made onto dendritic spines. Neu-

rons can range in size, anywhere from a couple of millimeters to a meter in length

whereas dendrites are typically 1-2 mm long. The dendritic spines are small bulbous

protrusions along the length of the dendrite and are usually 1-2 µm long. Spiny

dendrites occur in many regions of the brain e.g. CA1 and CA3 pyramidal neurons

in the hippocampus (important in long term memory), basal ganglia (used in motor

control and learning) and spiny stellate neurons in the cerebral cortex (important in

memory, thought and human consciousness) [107], [111], [3]. The density of spines

varies depending on the type of neuron and there can be up to 20 spines to each

10µm of dendrite. The spines are thought to be an important component in signal

propagation and computations along the dendrite and spine motility and morphology,
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Chapter 1: Introduction

Figure 1.1: An example of the diagrams produced by Ramón y Cajal. This figure shows
the structure of several types of neuron. Picture from www.nature.com

Figure 1.2: Diagram of the basic structure of a neuron, showing the cell body (or soma),
axon and dendritic tree with dendritic spines. Picture from www.training.seer.cancer.gov
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Chapter 1: Introduction

called spine plasticity, is thought to be an important process in learning and memory.

It has been shown that abnormalities in dendritic spines can cause learning difficulties

and mental retardation [53].

Measurement of signal propagation in neurons and axons has been possible for

some time with a voltage clamp technique, developed in the 1940’s, and patch-clamp

technique, 1970’s. The most famous example is perhaps the Hodgkin and Huxley

experiments, [44], which measured voltage changes in the squid giant axon. Due

to the small size of the typical dendrite these techniques were not applicable to the

measurement of dendritic membrane voltage since the intracellular electrodes used in

the measurements are too large, in relation to the dendrite, and damage the sample

before any measurements can be made. The advent of the confocal and two-photon

microscopy used to image the membrane in dendrites led to the measurement of

action potentials in dendrites and proved that action potentials can be generated in

dendrites themselves, see Figure 1.3 for an example of an action potential produced

by the Hodgkin Huxley model. These new microscopy methods use the fluorescence of

Figure 1.3: Example of an action potential generated by the Hodgkin Huxley equations
developed to describe the voltage changes in the squid giant axon. The voltage starts at
its resting value of −65V and rises rapidly to a peak before falling below the resting value
and eventually settling back at the resting potential. The whole pulse is called an action
potential.

voltage sensitive dyes to highlight activity and the microscope measures these changes

in the fluorescence as the sample neurons are stimulated. These techniques make

it possible to compare experimental, [40], [121], and theoretical results, [115], [95],

that predict how voltage will spread throughout a length of dendrite, or a branched

dendritic structure, also see review [99]. We consider voltage spread throughout a

length of spiny dendrite as a wave propagating from the spines at the distal end,

through the main body of the dendrite to the soma without including the effect of

the soma. This is an interesting problem as much information processing seems to
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Chapter 1: Introduction

happen prior to the action of the soma. We use two dendritic models that describe

voltage evolution in a length of spiny dendrite: the Baer-Rinzel (BR) model, Section

2.7, [6], and the Spike-Diffuse-Spike (SDS) model, Section 2.8, [15], [16]. Both these

models consist of coupled partial and ordinary differential equations describing the

evolution of the voltage in the main cable of the dendrite and the evolution of voltage

in the spine heads.

We consider the effect of random fluctuations, or noise, in the BR and SDS models

of spiny dendritic tissue. There are two types of noise in a neural system, intrinsic and

extrinsic noise, [33], [73]. Intrinsic noise is a source of noise which is always present

in the system and is called thermal noise or Johnson noise. Thermal noise arises from

the thermal agitation of electric charge carriers, which are of course present in neural

systems in the form of electrons and ions. This noise which is present in dendrites

can result in voltage fluctuations which can affect the response of the dendrite to a

given input. Another source of intrinsic noise, which may be considered particularly

Figure 1.4: Diagram of the basic structure of a synaptic connection, showing the
pre-synaptic vesicles of neurotransmitter and post-synaptic receptors on the spine head.

relevant in spiny dendrites, is the process of synaptic gating, see Figure 1.4. When a

chemical synapse transmits a signal across the synaptic cleft to the receiving dendrite’s

spine, tiny vesicles (of which there is a finite number) in the pre-synaptic terminal

open in response to sufficient voltage changes. The opening of the vesicles releases a

transmitter substance (neurotransmitter) across the synaptic cleft to be absorbed by

the spine, which in turn causes a change in voltage and possibly the generation of an

action potential in the post-synaptic dendrite. The release of the neurotransmitter

4



Chapter 1: Introduction

is a stochastic or noisy process; the number of molecules of transmitter released may

change from event to event and the arrival of the transmitter at the post-synaptic

terminal depends on its diffusion across the synaptic cleft and so may not follow the

same path each time. Also due to the finite number of these vesicles, if the potential

of the post-synaptic membrane is close to threshold then the opening (or not) of

some of the vesicles causes tiny voltage fluctuations which may (or may not) push

the membrane voltage above threshold. This creates a stochastic membrane voltage.

For more detailed information on synapses see [56], [107]. The second type of noise,

extrinsic, emanates from out with the cell itself and one source is other nearby neurons.

Any electrically charged object emits an electromagnetic field, [38], and as neurons

conduct a current they too emit an electromagnetic field. This field can interfere

with any neighbouring neurons and so cause a random effect. As all neurons are part

of, usually complex, networks they can be affected by the firing of other neurons in

the network that are not necessarily direct neighbours. We include noise into the

dendritic models by the formulation of stochastic differential and stochastic partial

differential equations (SDE and SPDE’s) with different types of noise to describe the

stochastic nature of the voltage in the spines and the voltage fluctuations in the cable

of the dendrite. We consider the effects of spatio-temporal white noise, temporally

correlated noise and spatially correlated noise.

The thesis is structured as follows: first there are two background chapters, Chap-

ter 2 and Chapter 3, which serve as a foundation for the rest of this body of work. It

is in these chapters that we introduce the models that are investigated throughout the

work including the passive cable equation, Hodgkin Huxley model, leaky integrate and

fire model, Baer and Rinzel model and the spike-diffuse-spike model. We include their

mathematical formulation and a brief description of their deterministic behaviour. We

then discuss the concept of ’noise’ and how stochastic behaviour can be mathemati-

cally represented in the form of SDE and SPDE’s. Then we describe how to evaluate

a stochastic integral in the Itô framework and what it means to have a solution to

SDE and SPDE’s. We briefly consider the differences between Itô and Stratonovich

calculus and how to convert between the two interpretations. The construction of a

temporally correlated noise as an Ornstein-Uhlenbeck process is discussed as is the

construction of a short-ranged spatially correlated noise. There is a section outlining

the numerical methods employed throughout the subsequent chapters to solve both

deterministic and stochastic systems. The numerical algorithms are given in a gen-

eral form here and the full algorithm is given in each chapter for the exact equations

being solved. Finally Chapter 3 gives an overview of various stochastic phenomena

observed in neural systems throughout the literature; this includes coherence and

stochastic resonance and synchronised/coupled oscillators.

We consider the numerical solution of the equations related to the spike-diffuse-

5



Chapter 1: Introduction

spike model of the dendrite in Chapter 4. Here we consider the effect of different types

of noise, white, temporally and spatially correlated, included in either the equations

governing spine or cable voltage evolution. We measure the effect in two ways, the

speed of a propagating wave and the distance travelled along the length of the cable

as the noise intensity increases. In the case of a correlated noise we also investigate

the effect of the correlation scale of the noise. We show that in general large noise is

destructive to the propagation of a wave but that the system is robust to small levels

of noise, albeit the wave travels with a reduced speed. We treat the Baer and Rinzel

model in the same way in Chapter 5, where we consider the model driven by white,

temporally and spatially correlated noise in the spine heads and in the cable. We also

use a small noise expansion to derive a deterministic equation which is altered by a

term arising from the drift correction that occurs when changing from a Stratonovich

to an Itô interpretation. This new system of deterministic equations describing the

BR model under the influence of small spatially correlated noise, is transformed into

the travelling wave frame to investigate the effect of the noise on the existence of trav-

elling waves in parameter space. This is carried out using the continuation software

AUTO-07P which allows the user to search for bifurcations, limit points and to choose

the system parameters of interest for continuation of existing solutions. Chapter 6

investigates the behaviour of the BR model with a spatially dependent spine density

that can, in the limiting cases, be thought of as the original BR model and the SDS

model with HH dynamics in place of the IF process. Here we consider these two

limiting cases under the influence of noise and also the behaviour of the system as the

parameter, which controls the shape of the spine density, changes from one limit to

the other. We look to this model to reconcile some conflicting results which we obtain

when looking at the behaviour of the SDS and BR model. In order to investigate the

behaviour of the dendrite models when forced by noise then we must simulate the

system a number of times to get a mean behaviour and this can be costly in terms

of computing time so in Chapter 7 we look at a probabilistic representation of the

SDS model in the hope of capturing the behaviour of the system without the time

constraints of simulating the full model. We show that information about the speed

of waves in the SDS model with noise in the spine heads can be captured using a re-

duced simulation of the SDS model. Finally Chapter 8 investigates some of the signal

processing capabilities of the SDS model and its robustness to noisy input signals as

well as its ability to function with intrinsic noise but a clean signal. We consider the

SDS model’s ability to act as a low pass filter and how much noise may be present in

the signal or the system before this capability breaks down. We also briefly show how

the SDS model of a length of spiny dendrite can, with the correctly chosen param-

eter values, act as a high pass filter and how the branched SDS structure described

in Chapter 4 can be used as either an OR or AND logic gate. The BR model with

6
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spatially dependent spine density also shows the ability to act as a low pass filter.
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Chapter 2

Neural Models

2.1 Introduction

This chapter, and the following Chapter 3, serves to provide background informa-

tion required in all subsequent chapters. We outline the basic features of each of the

models we study and give the full set of differential equations in each case. We also

discuss the importance of noise in neural systems and how to mathematically describe

a noisy system. We start in Section 2.2.1 with a general discussion of the difficulties

of modelling a realistic dendritic tree and then outline in detail the simplest descrip-

tion of the dendrite, the passive cable equation, see [33] and [98] for derivations. The

passive cable equation describes the evolution of the membrane potential of the cable

which diffuses, in space and time. Passive refers to the membrane resistance being

independent of the potential in the cable.

In Section 2.3 we consider a model of nerve membrane with active properties, the

Hodgkin Huxley (HH) model. This set of four ordinary differential equations, along

with experimentally derived constants and parameters, introduces the active proper-

ties of a nerve membrane through a series of ionic channels. The production of action

potentials in model neurons, using the basic ionic mechanisms, was made possible by

Hodgkin and Huxley [44] through their observations and measurements during exper-

iments using the squid giant axon.

A much simplified model capturing aspects of the HH model without the need for

empirical data is the leaky integrate and fire model (IF), explained in Section 2.4.

The model is described by one ordinary differential equation and allows the voltage

to increase to a chosen threshold at which point the model neuron is said to fire,

although an action potential is not explicitly described. After this ’firing event’ the

voltage is reset to a chosen start value and a refractory time can be imposed before

the neuron can start to increase the voltage again, through the mechanism of the IF

equation. Both the IF and HH models are employed to describe the voltage dynamics

in the spine heads of the dendrite models we consider throughout this work.

8



Chapter 2: Neural Models

We then discuss the Baer-Rinzel model, Section 2.7, for a spiny dendrite [6]. This

model combines the passive cable and the HH model to provide a description of a

length of dendrite with active spines. The spines are attached to the cable with a

chosen density, which was taken to be a constant in the original paper by Baer and

Rinzel, [6]. We also outline the Spike-Diffuse-Spike (SDS) model in Section 2.8 ([15],

[16]) which also describes a length of spiny dendrite. The SDS model again uses the

passive cable equation to model the dendrite, but the spines are described by the leaky

Integrate and Fire (IF) model. The IF model captures the basic properties of the HH

equations without the details of the ionic currents. The spine density is no longer

a constant but modelled more realistically by considering spines attached at discrete

points along the cable with spine stems of a chosen resistance. Finally we look at

a combination of the SDS and BR models where we use the full HH dynamics as a

description of the spine head but now have a spine density with spatial dependence.

2.2 Dendritic trees

The structure of individual axons and dendrites is very complex and the membrane

properties are active, meaning that the membrane resistance can be changed by volt-

age sensitive ionic channels to generate action potentials. The dendritic tree as a

whole is even more complex and can display a wide range of morphologies from the

relatively simple structure of the apical dendrites in the pyramidal cell to the intri-

cate and dense branching patterns observed in Purkinjie neurons. As a consequence

of this complex branching patterns, it is very difficult to mathematically model a real

dendritic tree, even with passive properties on the branches. Each branch may have

different biological parameters such as membrane resistance, capacitance and diam-

eter, and the diameter may not be constant on any one branch due to tapering and

varicosities. The structure and properties of each neuron depends on its role in the

central nervous system (CNS) and is determined during development. A lot of work

in mathematical neuroscience looks at the fully developed CNS, as we do here, but

there is a growing interest in the developmental stages. The book, [112], on develop-

mental models gives a comprehensive overview of the biology and models of different

stages of development. This book covers very early development, gene networks and

the growth of the neural tube (which becomes the brain and spinal cord in the adult

vertebrate system), the growth of neurites (the precursor to dendrites and axons),

network organisation and refinement. A more specific neurite review is set out in

[36] where the authors review the mathematical models of neurite initiation, growth

and the formation of branching patterns, and compare the models to experimental

results. Attempts to model realistic dendritic trees have involved various simplifica-

9



Chapter 2: Neural Models

tions, for example, a reconstruction of passive Purkinjie cells in [92] and the inclusion

of single active gating variable to these reconstructed cells in the same paper. Sim-

ilarly, active properties were uniformly distributed throughout a fully reconstructed

morphology in [115], and modelled using two, sodium and potassium, active gating

channels. Both [92] and [115] models are implemented using NEURON simulation

environment. Others have focused on improving the computational efficiency of al-

gorithms that describe the behaviour of action potentials in branched structures. In

[11] the authors find an algorithm which uses Green’s function, Section 2.2.3, over

the reconstructed dendritic tree to find the response to current injected at different

points on the tree. They use a sum over trips approach, with an imposed maximum

trip length, to construct the voltage spread through the tree. This maximum trip

length means that in some simulations the contribution from distal branches in the

tree will be neglected, in favour of shorter computation times. Another example of

improving computational efficiency is given in [43] where the author simulates the

voltage evolution in an arbitrarily branched tree with Hodgkin-Huxley dynamics for

each cable using a Crank-Nicholson method. By the correct labelling of the nodes

in the tree the resultant coefficient matrix for the tree structure lends itself to upper

triangularisation and so eliminates any off diagonal elements which then allows the

efficient solving of the equations describing the branched, active tree. The paper also

evaluates the HH membrane conductances in such a way that the O(∆t2) is main-

tained with no extra steps and constructs a table of values for the coefficients that

appear in some of the integrals such that these values can be looked up rather than

computed at each time step and so increase the computational efficiency. These three

improvements increases the speed of computation without losing the O(∆t2) accuracy

of the numerical method. A different class of model for investigating the function of

dendritic trees is the equivalent cylinder or more recently the equivalent cable model.

The main idea behind this type of construction is to reduce the whole branching

structure to one simple, electrically equivalent unbranched structure. The first to do

this was [87], see [48], [84] and [98] for an overview of Rall’s work, with his equivalent

cylinder model. Rall’s model makes four major assumptions and therefore is only a

realistic representation for a small class of dendritic trees. The first assumption is the
3
2

power law which comes from impedance matching at the branch point i.e. minimis-

ing the reflection at the branch point. To do so the characteristic conductance seen

on entering and leaving the branch point must be equal. When the system is at rest

the characteristic conductance G0 ≡
√

grest

r
, where grest is the shunt conductance and

r is the series resistance. Since grest ∝ d and r ∝ 1
d2 , (here d is the diameter of the

branch), then

G0 ∝ d
3
2 . (2.1)

10
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Therefore if we have a length of dendrite, labelled 1, which branches into two daughter

dendrites, labelled 11 and 12 respectively, the diameters must satisfy:

d
3
2
1 = d

3
2
11 + d

3
2
12 . (2.2)

The second assumption is that each path from the soma end of the dendrite to the

distal terminal of the tree is of equivalent electronic length. If we start with the same

branching structure as before and each of the daughter dendrites branch into two more

branches each, labelled 111, 112, 121 and 122 respectively, then the length of each

segment is li and electronic space constant is λ2
i =

rmi
di

4rai

with i = {1, 11, . . . , 122}. We

can then express the second assumption as:

Λ =
l1
λ1

+
l11
λ11

+
l111
λ111

=
l1
λ1

+
l11
λ11

+
l112
λ112

=
l1
λ1

+
l12
λ12

+
l121
λ121

=
l1
λ1

+
l12
λ12

+
l122
λ122

. (2.3)

The third requirement that the dendritic tree must satisfy is that the cytoplasmic

resistivity and the specific membrane conductivity are the same throughout the tree.

Finally the boundary conditions on the original structure and the new equivalent

structure must be the same. If the electronic time constant τ = cmrm is the same

throughout the whole tree then the previous assumptions hold for a tree with time de-

pendent voltage and current and so the voltage measured at one end of the equivalent

cylinder is the response to an injected current at the other. This voltage/current rela-

tionship holds due to the reciprocity theorem from linear network theory. There is a

slightly more general 3
2

power law which exists for a non-uniform membrane resistance,

shown in [48], yet due to the other assumptions this equivalent cylinder approach is

still restrictive in its application to the wide range of real dendritic trees. An improve-

ment on the equivalent cylinder, the exponentially tapering cylinder was introduced

by Rall [87] and developed in Goldstein and Rall [35]. This paper also investigated the

speed and maximum height of the action potential travelling in, not only the tapered

cable, but in cables with varicosities and those with sealed end boundary conditions.

They show that the speed of the action potential is proportional to the changing space

constant and derived a formula to predict how the proportionality constant depends

on the taper of the cylinder. The class of dendrites which can be described by a ta-

pered equivalent cable was extended in [85]. In this paper the conditions on number

of branches and on the radii of these branches are given as well as a set of exactly solv-

able geometries e.g. sine hyperbolic, exponential, quadratic and sinusoidal. Therefore

the voltage evolution for these specific classes of dendrites is known exactly and so can

be represented by an equivalent cable. This may increase the size of class of dendritic

trees that is described but still there is no direct mapping between the input on the

dendritic tree and a point on the equivalent cable. A method to map exactly from

the dendritic tree to a certain point on the equivalent cable, which has a non-uniform

11
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diameter, was first developed by Whitehead and Rosenberg in 1993 and is described

in [79] in more detail with an example of the application of the Lanczos method to

reduce a simple tree to an equivalent cable. The equivalent cylinder developed here

is effectively many small cylinders appropriately joined together, depending on the

branching conditions, with each cylinder having different diameters. Each cylinder is

modelled by the passive cable equation and the conditions for joining the sections to-

gether are Kirchoff’s current conservation laws, and appropriate boundary conditions

at the terminal branches. With appropriate numbering the nodes on the tree the dis-

cretised voltage produces a matrix representation of the dendritic tree. The rest of the

method follows the Lanczos procedure, which involves three matrix transformations

that result in an equivalent cable. The new matrix still has entries corresponding to

coefficients for the node voltages, but this time related to nodes on the equivalent ca-

ble. There is also a separate matrix which is a result of the method that describes the

mapping from the nodes on the tree to the nodes on the cylinder. The above method

for the reduction to an equivalent cable is improved in [68] and is used to reconstruct

real neurons: the cholinergic interneurons in Laminae III and IV of dorsal horn of

the spinal cord. Each synaptic contact in the real tree was mapped to the nearest

node of the discretised equivalent cable and so the response of the whole tree to any

synaptic input could be predicted from the new equivalent cable. The difference in

the two methods is in the matrix transformation from the tree matrix to the cable

matrix; instead of the Lanczos method Lindsay uses the Householder method.

Another aspect of dendritic function which has been studied experimentally but

not fully explored mathematically is the concept of dendritic democracy. Since den-

drites are effectively leaky electrical cables any input which has to travel a long dis-

tance (e.g. from end of distal dendrite, through tree to soma) will be much attenuated

at long distances from its source. This is not observed in vitro and a distal input has

similar efficacy at the soma as a proximal input; [39] is a brief review. The author of

[39] suggests three possible mechanisms for the democracy seen experimentally: (1)

distal input is amplified by voltage gated channels, (2) the strength of the synapse

is increased by more neurotransmitter release/post-synaptic receptor sites or (3) dis-

tal synaptic contacts could be more active, i.e. receive more input. Experimental

evidence ruled out the first option but showed that it is possible that an increase in

the synaptic conductance is responsible. Paper [108] investigates mathematically how

the conductance could be scaled on a dendritic branch to create dendritic democracy.

The authors derive analytical expressions for the conductance as a function of its

position relative to the soma, which ensure that e.g. the peak voltage response and

width of response pulse at the soma is the same for distal and proximal inputs. These

analytical solutions agree with full simulation of the model. Close to the soma the

scaling is linear, then it becomes faster than linear as the distance increases until a

12
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critical distance after which no scaling can create democracy. Clearly increasing con-

ductance alone cannot account for dendritic democracy and the authors suggest that

a possible [Ca2+] current, introduction of subthreshold dynamics or a tapered cable

could help. The question of how a synapse knows its position in the dendritic tree is

addressed in [103] for a model of CA1 neurons. They suggest that perhaps some sort

of concentration gradient exists that tells the synapse where it is but they show that

all that is needed to maintain democracy is a back propagating action potential.

2.2.1 Passive cable theory

Cable theory was first developed, in the mid-18th century by Lord Kelvin, to describe

the spread of electric potential along the telegraph cable which linked the U.K. and

the U.S.A. (See [56] for some historical background.) This theory was later used to

describe the current flow in nerve fibres such as the axon and dendrites (see [57] for a

brief historical description), where the charge carriers are sodium and potassium ions

instead of, in the case of a wire, electrons.

However the general long, thin nature of individual dendrites allows the use of linear

passive cable theory to give a nice simplification of their behaviour. This is perhaps

the most simple model of the axon/dendrite and it can be (and has been) further

developed to introduce ever more complex dynamics. As discussed in Section 2.2

there are many considerations in reproducing a realistic tree structure and its active

properties and this poses a difficult mathematical problem which many have tried to

simplify. We however consider a general single length of dendrite (or a very simple

branched structure with one branch point and three branches), not a real dendrite,

and so can use a general model, the passive cable equation. We subsequently add

complexities onto the basic cable by introducing active spines, by BR and SDS models,

and noise to the system.

This section gives a derivation of a straight and a tapered passive cable equation

using Ohm’s Laws and Kirchoff’s Laws. In the case of a straight cable the equation

derived allows the analytical derivation of a Green’s function as the solution to the

cable equation with a Dirac delta input. The Green’s function is a convenient and

useful way to construct the response of the cable to any other input without having

to solve the whole system again with the new input. To do this Green’s function is

convolved with the new input to find the new output. The tapered cable, however,

has nonlinear membrane properties, such as resistance and capacitance, which gives

rise to a nonlinear cable equation and therefore no analytical solution is possible.

13



Chapter 2: Neural Models

2.2.2 Deriving the passive cable equation

We first derive the passive cable equation for a general cable where the radius is

dependent on x, the axial distance, x ∈ [0, L], L is the length of the cable. Then the

associated Green’s function for a straight cable. The derivation of the passive cable

equation can be found in much of the literature [98], [56], [33], [48]. From the circuit

Figure 2.1: Circuit diagram for a section of cable describing a passive dendrite, with
length dx. It also shows the associated resistances, capacitances and currents.

diagram in Figure 2.1, the longitudinal resistance, Ra(x), and the transmembrane

capacitance and resistance, Cm(x) and Rm(x) respectively will all change with the

diameter of the cable and so are functions of x. They can all be expressed in terms

of quantities per unit length, dx: Ra = ra(x)dx, Cm = cm(x)dx and Rm = rm(x)dx

where ra is called the intracellular resistance, cm is called the specific capacitance, rm

is called the passive membrane resistivity and Iext(x) is the external current. See the

list of parameters for a further description and a range of biologically realistic values

for these variables.

The following steps make use of Ohm’s law, V = IR, and Kirchhoff’s laws for

current at a node in a circuit. These are fundamental laws used commonly in circuit

theory and can be found in many physics texts, for example [38] is a good basic text.
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Using Ohm’s law across the resistor Ra(x) gives the following expression:

V (x+ dx, t) − V (x, t) = I(x, t)ra(x)dx . (2.4)

Here V (x, t) is the voltage at point (x, t) and I is the axial current. Next dividing by

dx and letting dx→ 0 gives:

∂V

∂x
= I(x, t)ra(x) . (2.5)

Using Kirchoff’s law for currents at a node, “The sum of currents entering a node is

equal to the sum of currents leaving the node”, we obtain:

I(x+ dx, t) − I(x, t) = cm(x)
∂V

∂t
dx+

V

rm(x)
dx− Iext(x)dx , (2.6)

again dividing by dx and letting dx→ 0 gives:

∂I

∂x
= cm(x)

∂V

∂t
+

V

rm(x)
− Iext(x) . (2.7)

Take the derivative of Equation (2.5) with respect to x to get:

∂2V

∂x2
= ra(x)

∂I

∂x
+ I(x, t)

∂ra(x)

∂x
. (2.8)

Substituting for ∂I
∂x

gives the passive cable equation for a tapered cable:

∂2V

∂x2
= cm(x)ra(x)

∂V

∂t
+
ra(x)

rm(x)
V (x) − ra(x)Iext(x) + I(x, t)

∂ra(x)

∂x
. (2.9)

Finally by multiplying the equation by the electronic scale length λ2 = rm(x)
ra(x)

, and

introducing the membrane time constant τ = cm(x)rm(x), we obtain the following

form of the cable equation:

λ2(x)
∂2V (t, x)

∂x2
= τ(x)

∂V (t, x)

∂t
+V (t, x)−rm(x)iext(x)+λ2(x)I(x, t)

∂ra(x)

∂x
, (2.10)

for x ∈ [0, L]. If we want to consider a straight cable, as we do, then the equation

reduces to:

λ2∂
2V (x, t)

∂x2
= τ

∂V (x, t)

∂t
+ V (x, t) − RmIext . (2.11)

The term rm(x)iext(x) changes to RmIext since the resistance and external currents

are no longer space dependent. We can use the capitalised version to indicate that

these quantities are constant.
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2.2.3 Green’s function for the straight passive cable equation

Green’s function is an integral kernel which allows one to solve inhomogeneous dif-

ferential equation with some associated boundary conditions. For a general inhomo-

geneous equation L(x)u(x) = f(x), where L(x) is a differential operator (linear and

self-adjoint), u(x) the unknown solution to the equation and f(x) is the known inho-

mogeneous term, we can write the Green’s function, G(x), satisfies: L(x)G(x, x′) =

δ(x − x′). We can find Green’s function here by looking for the solution to a linear

partial differential equation with a Dirac delta function as its input current, Iext. Then

the solution for any input can be constructed using Green’s functions. [33] shows a

derivation of Green’s function for the passive cable equation which we reproduce here.

First we rescale the cable equation to obtain a dimensionless form, then derive Green’s

function by solving the dimensionless cable equation with the Dirac delta function as

the input current. To solve the PDE we make use of Fourier transforms to convert

the PDE to an ODE and find a solution to the simpler equation.

Rescaling Equation (2.11), to obtain a dimensionless form of the cable equation,

with the following new variables: x∗ = x
λ
, t∗ = t

τ
and I∗ext = RmIext. This gives a unit

free version of Equation (2.11) that looks like:

∂V (x, t)

∂t
− ∂2V (x, t)

∂x2
+ V (x, t) = Iext(x, t) , (2.12)

where the stars have been dropped from the new variables simply to make the notation

neater. Next replace Iext(x, t) by a Dirac delta function at t = x = 0, i.e. δ(t)δ(x), to

give:
∂V (x, t)

∂t
− ∂2V (x, t)

∂x2
+ V (x, t) = δ(t)δ(x) . (2.13)

Using a Fourier transform, see [59], with respect to the spatial variable reduces Equa-

tion (2.13) to an ODE. The transform, F , is performed on given functions of x ∈ R

to give a new function of a new variable k ∈ C, as shown in Equation (2.14). When

applied to the PDE the hope is that the resulting transformed equation can be easily

solved. The Fourier transform is given by Equation (2.14):

F [f(x)] = f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx . (2.14)

Similarly the inverse Fourier transform is defined in Equation (2.15):

F−1[f̂(k)] = f(x) =
1√
2π

∫ ∞

−∞
f(k)eikxdk . (2.15)

When the Fourier transform is applied to the first and second differential of f(x) we

obtain F [df(x)
dx

] = ikf̂(k) and F [d2f(x)
dx2 ] = −k2f̂(k). When this is applied to Equation
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(2.13) we find the resulting ODE, Equation (2.16).

dV̂ (k, t)

dt
+ k2V̂ (k, t) + V̂ (k, t) =

1√
2π
δ(t) , (2.16)

where V̂ (k, t) is the Fourier transform of the original voltage V (x, t). This ODE,

Equation (2.16), can be solved using an integrating factor, e(1+k2)t. Using this and

the fact that the integral of a Dirac delta function is the Heaviside function, denoted

by Θ(t), the solution to Equation (2.16) is:

V̂ (k, t) =
Θ(t)√

2π
e−(1+k2)t . (2.17)

We must next perform an inverse Fourier transform to obtain an equation for the

potential in terms of x and t.

V (x, t) =
1√
2π

∫ ∞

−∞
V̂ (k, t)eikxdk =

Θ(t)e−t

2π

∫ ∞

−∞
e(ikx−k2t)dk .

Completing the square for the exponential gives:

V (x, t) =
Θ(t)e−t

2π

∫ ∞

−∞
exp[−(k

√
t− ix

2
√
t
)2 − x2

4t
]dk. (2.18)

Let Int =
∫∞
−∞ exp[−(k

√
t − ix

2
√

t
)2]dk and m = k

√
t − ix

2
√

t
. Taking the square of Int

gives:

[Int]2 =
1

t

∫ ∞

−∞
e−m2

dm

∫ ∞

−∞
e−n2

dn . (2.19)

Next, changing to polar coordinates and changing the integration limits accordingly

gives:

[Int]2 =
1

t

∫ 2π

0

∫ ∞

0

e−r2

rdrdθ . (2.20)

Finally integrating this and taking the square root gives Int =
√

π
t
, so on substituting

this into Equation (2.18) and simplifying, we have the following expression for V (x, t):

V (x, t) =
Θ(t)√
4πt

e−t−x2

4t . (2.21)

This expression for V (x, t) is the solution for the infinite passive cable equation with

a Dirac delta function as its input, therefore this is also Green’s function. When the

original variables are replaced (x∗ = x
λ

and t∗ = t
τ
) we have the following Green’s

function:

G∞(x, t) =
Θ(t)
√

4π t
τ

e−
t
τ
− x2

4Dt , (2.22)

17



Chapter 2: Neural Models

where D = λ2

τ
. This form of the Green’s function will be used in Chapter 7, to

construct a solution for the voltage evolution in a length of spiny dendrite modelled

by the SDS model, Section 2.8. Since the solution of the passive cable equation with

any input current, Iext, can be obtained using the convolution of the Green’s function

with the input of interest we can use this to find the voltage evolution when the input

comes from action potentials generated in the spines.

2.3 Hodgkin Huxley model

The Hodgkin Huxley (HH) model was developed in 1952 to describe the ionic mecha-

nisms which drive the initiation and propagation of action potentials in the squid giant

axon. The model uses experimentally obtained data to describe the evolution of an

action potential in a membrane with active potassium and sodium channels. Hodgkin

and Huxley used voltage and space clamp techniques to control the potential difference

across the membrane of a squid giant axon, and so were able to observe ionic currents

flowing across the membrane in response to voltage and ionic concentration changes.

In doing this, Hodgkin and Huxley found the maximum membrane conductances as-

sociated with sodium and potassium ions and the voltages at which the sodium and

potassium currents are zero. They were also able to model the dynamics of the sodium

and potassium conductances, which change in order to depolarise/hyperpolarise the

membrane potential at the appropriate times of action potential generation. For a

more detailed description of the experiments see the original paper [44] and a brief

description in [98]. This model is important in neuroscience (descriptions of the HH

model can be found throughout the literature, e.g. [98], [48], [56], [83]); providing

the basis for many single cell neural models. The HH model is also important due

to the way in which it combines experimental work with mathematical modelling to

describe the role of ionic currents in action potential generation.

2.3.1 The Hodgkin Huxley equations

The HH model is a system of four ODEs describing the time evolution of the mem-

brane voltage, U(t) and the conductance variables m, n, h which are probabilities

relating to the sodium and potassium ionic gates that lend the HH model its active

properties. By ’active’ we mean that the membrane is capable of generating its own

action potential through changes in the conductance/resistance by changing the con-

centration of certain ions across the membrane. The following description of the HH

18



Chapter 2: Neural Models

equations is for a point in space.

Cm

dU(t)

dt
= GNam

3(U)h(U)(VNa − U) +GKn
4(U)(VK − U)

+ GL(VL − U) + Iinj(t) , (2.23)

where Cm is specific capacitance per unit area, U is the membrane potential, Iinj

is an input current, GNa, GK and GL are the maximum sodium, potassium and

leakage conductances and VNa, VK and VL are the respective ionic and leakage reversal

potentials. The m, n and h dynamics are described by:

dX(U)

dt
= αX(U)(1 −X) − βX(U)X, with X ∈ [m,n, h]. (2.24)

The α’s and β’s are empirically derived formulae given by Equation (2.25) to Equation

(2.30).

αm(U) =
0.1(U + 40)

1 − e−0.1(U+40)
(2.25)

αn(U) =
0.01(U + 55)

1 − e−0.1(U+55)
(2.26)

αh(U) = 0.07e−0.05(U+65) (2.27)

βm(U) = 4e−0.0556(U+65) (2.28)

βn(U) = 0.125e−0.0125(U+65) (2.29)

βh(U) =
1

1 + e−0.1(U+35)
. (2.30)

The variable m is the probability of finding one of the sodium activation particles in

its open state, h is the probability of finding one of the sodium inactivation particles

in its non-inactivating state and n is the probability of finding one of the potassium

activation particles in its open state. The αX , X ∈ [m,n, h] is the rate constant

counting the transitions from the closed to open state for eachX and βX , X ∈ [m,n, h]

is the rate constant counting the transitions from the open to closed state for each X.

The parameters GNa, GK and GL are the maximum sodium, potassium and leakage

conductances, these have standard values which have been determined experimentally

and VNa, VK and VL are the respective ionic and leakage reversal potentials, these

values can be scaled to allow the resting potential of the system to be at zero but

otherwise the resting potential of the system is −65mV. To understand why we need

the variablesm, n and h we look at how the ionic concentrations change in the different
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phases of the action potential generation, see Figure 2.2. During the initial resting

Figure 2.2: An Action Potential generated by the HH equations, this shows the different
phases in the evolution of the action potential as governed by the HH equations, labelled
by A, B, C, D and described in the main text. The AP is generated by solving Equation
(2.23) with an input voltage of Vinj(0) = 10, Vinj(t > 0) = 0, temporal discretisation
∆t = 0.01 and initial conditions V (0) = −65.

phase (up to label A on Figure 2.2), the membrane voltage is at its resting value

of −65mV. At this stage the sodium m-gate is closed and the h-gate is open so no

sodium ions are flowing while the potassium n-gate is also closed and so no potassium

is flowing through the membrane. Following a stimulus input which happens at a point

just before A the action potential enters the next phase. In the rising or depolarisation

stage (from label A to label B on Figure 2.2) the sodium m-gates open and since there

is a negative potential gradient the sodium ions flow through the membrane and, since

they are positive ions, they start to raise the potential across the membrane. When

the voltage reaches its peak and the falling or depolarisation phase (from label B to

label C on Figure 2.2) occurs the m-gate stays open but the h-gate closes so sodium

ions can no longer flow, and the n-gate opens so that the potassium can escape and

so decrease the potential difference once again. The n-gate stays open longer than is

needed to reach the resting potential and so we observe the undershoot phase (from

label C to label D on Figure 2.2), the m-gate also closes at this point. Finally the

gates revert to the initial resting state (just after label D on Figure 2.2) of m-gate

closed, h-gate open and n-gate closed.

The Hodgkin-Huxley equations can be solved with different types of injected current,

Iinj, and can be shown to give single spike and repetitive spiking responses. If the

input current is constant and high enough (above threshold levels) to induce spiking

the frequency of the output spiking pattern is only limited by the refractory time,

see Figure 2.3. This refractory time arises from the inactivation of sodium channels,

which has a time dependence, i.e. after firing there is a length of time during which
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Figure 2.3: HH equations with constant injected current. The injected current is high
enough to raise the voltage to a high enough level for continuous spiking. This is
generated by solving Equation (2.23) with an input voltage of Vinj(t) = 10, temporal
discretisation ∆t = 0.01 and initial conditions V (0) = −65.

the sodium channels are unable to open and so the depolarisation process cannot

begin. See Chapter 3 for a discussion of the Hodgkin Huxley model with noise, and

which noise induced phenomena have been observed in the HH model.

Fitzhugh-Nagumo model

The Fitzhugh-Nagumo (FHN) model is a reduction of the full HH dynamics to a

two variable model which captures the excitation of the membrane voltage and its

subsequent recovery without the ion channel dynamics m, n and h. The FHN model

is described throughout the literature and books [98] and [33] have small sections

describing derivation and some properties of the model. The reduction is possible due

to the difference in the kinetics of the n and h variables, which are slow, and the m

variable, which is fast. The equations in general, dimensionless, form are:

dV

dt
= f(V ) −W + I

dW

dt
= a(bV − cW ),

where V is the fast variable (voltage), W is the slow variable (m) and a ≪ 1 and b,

c ∈ [0, 1] are constants. f(V ) = V (V − a)(1 − V ) is the usual function used for a

neural model. The FHN model is not used throughout this work but is referred to

when reviewing other work e.g. noisy travelling waves.
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2.4 Integrate and fire model

The integrate and fire model is a very simple firing single neuron model which cap-

tures the behaviour of the HH model without the complicated ionic dependence. We

consider a leaky integrate and fire model and this is the model used throughout this

work. The IF model can however be altered slightly to be either quadratic or expo-

nential, although these are not considered here. This change means the voltage path

up to threshold takes a different form to that of the leaky IF model. To make the IF

model quadratic the −U term in Equation (2.31), below, becomes: (U −Urest)(U −h)
where Urest is the resting potential of the model and h is the firing threshold. For

an exponential form of the model replace the −U term with eU−h. Figure 2.4 shows

threshold

0

Figure 2.4: Left: Circuit diagram representation of a spine head, modelled by the IF
model. Right: Schematic of the voltage, U increasing to threshold level, h, spiking and
resetting to zero again. The sharp increases at U = h are the spikes of the system, shown
here as step functions, but they can be chosen to be any function.

the circuit representation of the leaky integrate and fire model which is a resistor r̂

in parallel with a capacitor Ĉ, driving the overall current I, [33], [98] and [83] all

describe the IF model. We use again Ohm’s law and Kirchhoff’s law along with the

relation between voltage and current through a capacitor IC = C dU
dt

([38]), which is

simply called an integrator, to obtain the expression, Equation (2.31) for the current

in the circuit representation.

dU

dt
=

1

Ĉ
I(t) − U

r̂Ĉ
. (2.31)

Term U
r̂

is the leak term and is representative of a general loss of current from ionic

sources that are not explicitly modelled. Given sufficient input current the voltage

U(t) will increase to a chosen threshold, call it h, and will be said to fire: Tm
fire =

{t > Tm−1
fire |U(t) ≥ h}. This equation says that the mth firing time occurs when at

some time after the (m − 1)th firing time when the voltage is greater than or equal

to the chosen threshold. The model does not produce an action potential so at the

time, Tm
fire one can choose the form of the action potential generated, in Figure 2.4

it is shown as a step function since this is the form used in the Spike Diffuse Spike
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model, how it is generated will be shown in Section 2.8. At the threshold crossing the

voltage in the model is reset to a chosen value and the model can start to integrate

again, given sufficient input, increasing the voltage back towards h. The IF model can

be improved by including a refractory time, τR, during which the model cannot fire

again, this would alter the firing equation thus: Tm
fire = {t > Tm−1

fire + τR|U(t) ≥ h}.

2.5 Synchronisation and coupled oscillators

Most single neuron models, e.g. the HH or IF models described above (Section 2.3

and Section 2.4 respectively) can be described as oscillators, that is, with sufficient

input the deterministic model spikes at regular times. In Section 2.7 and Section 2.8

we discuss the Baer-Rinzel and Spike-diffuse-spike models of spiny dendrites which

can be thought of as chains of diffusively coupled oscillators. Each spine is modelled

using either HH or IF dynamics and is coupled to its neighbours through the diffusive,

passive cable. In this section we first look at the properties of single oscillators and

then of a coupled system. The time between spiking events is the period of the neural

system, T , and is due to the solution of the system, dX
dt

= F (X(t)), being a limit

cycle with an associated phase, φ. It is convention in neural oscillators to call the

spiking event 0 phase, therefore the spiking times are ts = {0, T, 2T, 3T, . . .}, see the

HH example Figure 2.5 plot (a). If the system is perturbed slightly, by an injection

of extra current say, then the timing of the next spike will change, see Figure 2.5

plot (b). Let the period of the perturbed system be T̂ , then the phase resetting

curve (PRC) is defined to be the change in the spiking times divided by the period:

∆(φ) = T−T̂
T

. Note that ∆(φ) ∈ [0, 1], due to the scaling with respect to the period,

but it is sometimes scaled such that ∆(φ) ∈ [0, 2π]. The PRCs have different forms

depending on the type of bifurcation which leads to the oscillatory behaviour of the

system, [22]. We have two classes of neural models: class I come from a saddle-node

bifurcation, an example of this is the quadratic IF model, and the class II is from

a Hopf bifurcation, e.g. HH model. So if we introduce a small perturbation into

a general ODE for the system (where X is the oscillating quantity of interest, e.g.

voltage for neural systems), we obtain:

dX

dt
= F (X(t)) + ǫG(X(t), t) , (2.32)

ǫ is a small value, F is the function which describes the oscillating system and G is

the perturbation . This perturbation can be due to some input, noisy or otherwise, or

due to the coupling of the oscillator to another. Following the working from [60], then

introducing a phase variable θ(t), the Equation (2.32) can be reduced to the phase
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Figure 2.5: Plot (a) is an example of the regular spiking in the deterministic Hodgkin
Huxley model. Time between the peaks is the period of the system T . Plot (b) is an
example of noise induced phase shifting in the Hodgkin Huxley model. Noise is introduced
to the model by using a white noise to drive Equation (2.23), i.e. Iinj = Ideterm + Inoise

with Ideterm the current used for plot (a) and Inoise is a temporal multiplicative white
noise (generation of this type of noise is described in Chapter 3). The deterministic
voltage trace is also shown to compare the period of the deterministic system to that of
the noisy period. It can be seen that the spike time shifts forward and backwards with
respect to the deterministic spike times. These are generated by solving Equation (2.23)
with an input voltage of Vinj(t) = 10, temporal discretisation ∆t = 0.01 and initial
conditions V (0) = −65.
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model:

θ′ = 1 + ǫ∆(θ)g(θ, t) (2.33)

where g(θ, t) is the component of G which relates to the membrane voltage. If the per-

turbation was due to coupling of oscillators then the function g(θ, t) would represent

the coupling. The coupling in neural systems is due to synaptic connections, either

electrical or chemical, and are usually pulse coupling or gap junction coupling(diffusive

coupling). Once coupled Equation (2.33) will become a system of equations, for ex-

ample for two mutually coupled oscillators we will have the equations:

dθ1
dt

= 1 + ǫδ(θ2)∆(θ1)

dθ2
dt

= 1 + ǫδ(θ1)∆(θ2).

Once coupled we can look at the behaviour of the coupled system and in turn look

for the synchrony/asynchrony of the system, that is θ2 − θ1 = 0 in the former case

and θ2 − θ1 6= 0 for the latter. Here we showed the very simple example of two

mutually coupled oscillators but we can consider the case of a network of all-to-all

symmetrically coupled neurons, chains of coupled neurons, rings of coupled neurons

and even randomly connected networks. Geol and Ermentrout, [34], look at waves and

synchrony on coupled chains and rings as well as 2-D arrays of oscillators. The paper

[22] gives a general overview of neural oscillators and weak and strong coupling as

well as briefly discussing the coupling of leaky integrate and fire neurons. It is shown

in [13] that a pair of electrically coupled (gap junction) integrate and fire neurons can

achieve synchrony or asynchrony depending on the coupling strength and the size of

the spikes emitted by the neurons. Similarly in [104] the conditions on the coupling

strength for networks of diffusively coupled HH neurons are derived to show stability

of synchronous solutions. Bressloff and Coombes, [9], consider chains of pulse coupled

integrate and fire neurons and the travelling waves which they support, this is similar

to the SDS model, Section 2.8 which can also support travelling waves, see Section

2.9.

2.6 Synaptic plasticity and motility

In the following sections we discuss a dendrite model with active spines, BR model

Section 2.7 and SDS model Section 2.8, where the spines are modelled by the HH or

IF equations respectively. We mentioned that spines are important in learning and

memory in Chapter 2, and here we discuss a mechanism by which the brain may learn

and memorise: synaptic plasticity. Although we consider fixed distributions of spines

in this work, the models can be easily altered to have changing spine densities or

25



Chapter 2: Neural Models

irregular distributions of spines. Synaptic plasticity is a mechanism which allows the

brain to learn and store memories. It is the term given to the changing strengths of

connections between neurons as the brain learns and processes new information. The

spines onto which synaptic connections are made can physically change in size and

shape or the spines can appear or disappear, known as spine motility. This plasticity

has been observed experimentally, [120] is a good review of experimental evidence

for morphological changes in spines of the rodent hippocampus. Some of the earlier

experiments reviewed seem contradictory and that the changes depend very much on

the experimental setup e.g. one study reviewed in this paper showed that LTP caused

shortening of spine stems where as several others showed no change under the same

circumstances. However the advent of two-photon confocal microscopy has allowed

improved observation of the changes in real time and better experimental results.

The changes in spine morphology changes the calcium compartmentalisation in the

dendrite so it is thought that the concentration of calcium ions, [Ca2+] is an important

factor in spine plasticity. The presence of calcium can result in long term potentiation,

LTP, or long term depression, LTD depending on the amount of calcium present in

the spine. LTP gives sufficient conditions for a synapse to grow in strength and is

typically activated by periods of high frequency pre-synaptic stimulation. LTD is the

opposite, where the synapse will decrease in strength and is typically invoked by low

frequency pre-synaptic stimulation, [33] has a description of LTP/LTD. In a further

review, [8], the authors consider spine motility, which can be considered a form of

plasticity since the spines move on the dendritic shaft in response to activity. They

discuss the role of calcium in the movement of spines. For spines to grow they require

actin-cytoskeleton which is activated by calcium in the correct measure as well as other

neurotransmitters. If [Ca2+] is small or large this results in spine death, however if

there is a moderate presence of [Ca2+] then spines can grow. The morphology of the

spine stem is very important in controlling the quantity of [Ca2+] since the length of

the stem directly controls the calcium time constant and so the rate of diffusion in the

spine, which relates back to the growth/death of spines. The growth/death of spines

can facilitate/destroy synaptic connections and so can be related to learning. The role

of spines is discussed in [52] and suggests different roles for different types of spines in

the cerebral cortex; they also review supporting experimental evidence. They suggest

that large headed spines are stable and so have strong synaptic connections so can

therefore be thought of as “memory spines”. Conversely small headed spines are not

stable and have weak connections. Their instability allows them to move or grow

into the large headed variety and so can be labelled “learning spines”. In the paper

[113] the authors suggest a mathematical model for a length of spiny dendritic tissue

that has space and time dependent spine density and spine stem resistance. The

model uses the Baer Rinzel model, Section 2.7, as the spiny dendrite and introduces
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an ODE to describe the activity dependent spine resistance and an expression for

the density which depends on the resistance. As they stimulate the model with a

high level of electrical activity they induce LTP which results in an increase in the

spine density localised around the activity site. The draw back in this model is that

although the density may increase near to activation sites the density elsewhere cannot

decrease below the initial value. This model is extended in [114] by adding a dynamic

calcium concentration to the already space-time dependent density. Therefore this

new model has the BR equations as before, but now has three additional coupled

ODEs modelling density, [Ca2+] and stem resistance respectively. The density and

[Ca2+] both depend on the synaptic input and the stem resistance (which is related

to stem length) depends on calcium concentration, when [Ca2+] is moderate the stem

lengthens and when [Ca2+] is high the stem shortens. The authors consider how the

density and resistance change with activity and how the new configuration of spines

(both passive and active) affects the output of the whole branch. As the activity

increases the spine density also increases, as expected. When the spines are passive,

the increased density makes little difference to the output of the branch whereas the

active spines can induce action potential propagation when the density reaches a

critical value. Also as the frequency of the stimulation increases the [Ca2+] increases

and the stems lengthen. When the spines are active this morphology change allows

the spines to produce action potentials and so the output of the branch is enhanced.

Finally when the [Ca2+] is high spines die and so high stimulation results in no output.

Instead of LTP or LTD as discussed until this point, there is another mechanism

which can result in morphological changes and so learning; it is called spike timing

dependent plasticity (STDP), [19]. As already discussed the frequency of pre-synaptic

stimulation determines if the spine experiences LTP or LTD and therefore if the

synaptic strength increase or decreases. In STDP the increase/decrease in synaptic

strength depends not on the frequency of stimulation but on the time between a pre

and post-synaptic spike, ∆t, although repeated spike pairs does matter. If ∆t is too

large then no change will take place, however as the size of ∆t gets smaller then

the larger the change in synaptic strength; the sign of ∆t determines whether this

change is to make the synapse stronger or weaker i.e. if the order of spiking is pre-

post then the strength will increase and if the order is post-pre then the connection

will become weaker. STDP is also a type of Hebbian learning, that is as a cell is

repetitively stimulated then the connection between the stimulating and stimulated

cell is strengthened. While [19] discusses the experimental evidence of STDP, an

example of a simple mathematical model of STDP can be found in [33]. A model

which shows LTP, LTD and STDP is given in [119]. The authors calculate the changes

in calcium concentration in spines as a result of different stimulation frequencies and

as a function of the pre-post spike timing and they introduce a back propagating
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action potential. The back propagating action potential is shown to alter the pre-post

interactions in such a way as to allow STDP learning, which is not possible without

it. Without the back propagating action potential the model can show changes in

[Ca2+] that are consistent with LTP/LTD, and this allows the investigation of how

the calcium changes affects the length of time that LTP/LTD exists. It appears

from the experimental and mathematical investigations into synaptic plasticity that

calcium plays an important role and that the shape and movement of dendritic spines

does indeed play an important part in learning and memory.

2.7 Baer-Rinzel model

The Baer-Rinzel (BR) model [6] describes the voltage evolution of a spiny dendrite.

The voltage in the spines is modelled using the HH, Section 2.3, equations and they

are coupled, with a certain density, to a uniform passive cable, whose voltage, V , is

modelled by the passive cable equation, by a spine stem resistance.

The density of spines can be any function of space, but the original BR model, of the

three considered in this work, assumes this to be a constant. So combining the HH

and passive cable models by coupling the equations together through the spine stem

resistance r we obtain the equations of the BR model, Equation (2.34). Where U(x, t)

is the voltage in the spines and V (x, t) is the voltage in the cable. The coupling of

the HH model to the spatially extended cable equation is done through the last terms

in both Equation (2.34) and Equation (2.38), so now the original HH equations are

driven by a current from the cable and the cable diffuses the action potential along

the length of the cable.

Cm

dU

dt
= GNam

3(U)h(U)(VNa − U) +GKn
4(U)(VK − U)

+ GL(VL − U) − U − V

r
(2.34)

dm(U)

dt
= αm(U)(1 −m) − βm(U)m (2.35)

dh(U)

dt
= αh(U)(1 − h) − βh(U)h (2.36)

dn(U)

dt
= αn(U)(1 − n) − βn(U)n (2.37)

C
∂V

∂t
= −GL(V − VL) +

1

raπa

∂2V

∂x2
+ ρ(x)

U − V

r
. (2.38)
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The parameters in Equation (2.34) have the same meaning as before (Section 2.3),

and are listed in the Nomenclature at the start of the thesis. ρ(x) is the density of the

spines along the cable, the larger ρ(x) is the stronger the coupling between the spines

and the cable. In the original BR model the density is taken to be a constant. Here

we extend the model to include ρ(x) as a function of x, we investigate the behaviour

of the system when the spines are attached at discrete points along the cable, as we

will see in the SDS model Section 2.8, and when we have something in between these

two extremes, see Chapter 6.

Although there is now a spatial extension in the HH equations which describe the

spines, they can only interact with each other through the cable.

The BR model has been shown to support travelling waves, solitary, multi-bump and

periodic waves, in the appropriate parameter ranges, see Section 2.9 for a description

of travelling wave solutions to the BR model. One example is shown in Figure 2.6

where the region of existence for a travelling wave is shown as ρ changes with all other

parameters fixed. There are two regimes shown in the figure, when the density is too

small there is no propagation of a travelling wave but when the density increases to

the limit point and beyond then the system supports travelling wave solutions. This

type of figure could be reproduced for a different set of parameters e.g. we could fix

all the parameters except the resistance and so on. For each value of the density there

are two wave speeds associated with it, except at the limit point, marked on Figure

2.6, where there is only one. The faster speed represents the stable waves which can

be seen in any direct simulation of the BR equations. So for each of the parameters

there would be a different curve showing the existence of the wave for that particular

regime, see Chapter 5. For further details see [70], the analysis in this paper can be

followed in the case of small noise in the system.

2.8 SDS model

The SDS model [15], [16] and [109] describes a length of spiny dendritic cable, as

represented in the schematic in Figure 2.7. This model is similar to the BR model

in its coupling of a passive dendrite and active spines, although the SDS model does

not use the HH equations, the spines are still coupled to the cable through a spine

stem resistance r and a density ρ(x), which could be any suitable spatially dependent

function we choose. The SDS model, as described in [16], chooses a more physically

realistic function for ρ(x) that ensures the spines are separate entities along the cable

instead of a constant as in the BR model. Some of the biological detail of action

potential generation is lost by not using the HH equations.

The cable is modelled by the passive cable equation, and the spine head dynamics by

the leaky integrate and fire model with a refractory time τR. The spines are attached
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Figure 2.6: Bifurcation diagram for the Baer-Rinzel model, showing where in parameter
space, for ρ, the travelling wave exists, the speed of this wave is shown on the y-axis. This
is the existence for one set of parameter values, with only the density changing. The limit
point shows where the system switches from the regime which supports travelling waves to
one where no travelling waves exist (at small ρ). This figure was generated using the
bifurcation package AUTO-07P to continue a travelling wave solution of the BR model in
the two parameters ρ and c to show where in parameter space these travelling waves exist.

Dendritic cable

Spines

Figure 2.7: Diagram of a length of spiny dendritic tissue showing the circuit diagram
representation of one compartment of the cable.
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at discrete points along the cable by a spine stem with resistance, r. The points at

which the spines are attached can be spaced with any spatial distribution but here

we have chosen equally spaced points.

The membrane potential in the cable, V(x, t), is given by:

∂V

∂t
= D

∂2V

∂x2
− V

τ
+DraIext . (2.39)

D = λ2

τ
is the diffusion coefficient, τ = rmcm is the membrane time constant, λ =

√
drm

4ra
is the electronic space constant, ra is the intracellular resistance per unit length

and Iext is any external current with x ∈ [0, L] and t ∈ [0, T ], L is the length of the

cable and T is the end time. If we replace Iext with the current coming from the

spines, we get:
∂V

∂t
= D

∂2V

∂x2
− V

τ
+Draρ(x)

V̂ − V

r
. (2.40)

Where ρ(x) =
∑

n∈Γ δ(x − xn) which is the density of spines, attached at discrete

points xn, V̂ (xn, t) is the action potential produced by the spine at the point xn, the

form of the action potential is free to be chosen, and r is the spine stem resistance.

The spine head dynamics are modelled by the leaky integrate and fire (IF) model, see

Section 2.4. From the circuit representation of the spine head, Figure 2.8, the leaky

threshold

0

Figure 2.8: Left: Circuit diagram representation of a spine head. Right: Schematic of the
voltage, U increasing to threshold level, h, spiking and resetting to zero again.

IF model takes the following form.

The action potential, Un(t), in the nth Spine evolves as:

Ĉ
dUn

dt
= −Un

r̂
+
Vn − Un

r
− Ĉh

∑

m

δ(t− Tm
n )

︸ ︷︷ ︸

Reset

. (2.41)

The I(t) in Equation (2.31) has been replaced with the coupling term Vn−Un

r
, which

attaches the spines to the cable. The m-th firing time of the nth spine, Tm
n , is governed

by the integrate and fire process:

Tm
n = inf{t|Un(t) ≥ h, t > Tm−1

n + τR} , (2.42)
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where τR is the refractory time period, during which the spine is unable to fire. This

refractory time is introduced to mimic the dynamics of the HH model, which has a

natural refractory time. At Un = h an action potential is injected into the cable; the

form of this injected potential can be chosen to be a suitable function, in the SDS

model described here, the function was chosen to be a rectangular pulse, given by:

η(t) = η0Θ(t)Θ(τs − t) (2.43)

Where Θ(t) is the Heaviside function, τs is the length of time the pulse lasts for and

η0 is the strength (magnitude) of the pulse.

These equations describing the dynamics of spiny dendritic tissue can be solved using

a combination of analytical and numerical techniques. Here we provide a brief descrip-

tion of how this is implemented, see [109] for a fuller description of the methodology.

Explicit solutions can be obtained for both V (x, t) and U(t). V (x, t) has a Neumann

series solution involving the Green’s function for the passive cable, described in Sec-

tion 2.2.1, and up to threshold U(t) can be solved by directly integrating Equation

(2.41) and substituting for V (x, t). The firing times, however, have to be numerically

determined using the threshold condition Un(t) = h. After finding the latest firing

time V (x, t) can be recalculated and so Un(t) recalculated, the threshold condition

checked and so on, building up a complete picture of the cable throughout the time

interval. Although in most instances throughout this work the SDS equations are

solved by a fully numerical technique, we use this method in Chapter 7.

The solution of this problem shows that the SDS model supports the propagation

of saltatory travelling waves along the length of the cable ([16], [109]). The success

or failure of propagation depends on many biological parameters, e.g. spine spacing,

spine stem resistance and membrane properties. The parameter we are particularly

interested in is the spine spacing, since it is easily altered and is a parameter which in

the real biological system varies depending on the type of neuron the dendrite belongs

to; Figure 2.9 shows the area of parameter space where the travelling wave exists for

varying d.

Figure 2.9 is analogous to Figure 2.6 in that it shows the area of existance of a

travelling wave for changing spine spacing d. As the spine spacing increases the speed

of the wave slows and at the limit point the system cannot support travelling waves;

therefore there are two distinct regimes where the wave exists and where it does not.

Figure 2.6 was generated using the continuation software AUTO-07P and thus shows

the stable, faster branch and the slower, unstable branch.
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Figure 2.9: Speed of a travelling wave in the SDS model as a function of spine spacing, d.
Plot (a) shows the direct simulation of the SDS model to find speed as a function of spine
spacing. Plot (b) shows the top, fast branch again obtained from direct simulation and
shows the speed of the stable wave in the SDS model. The bottom, slow branch has been
drawn on to represent the unstable solution, which can not be observed directly. This
figure is a reproduction of a figure in [109] and is given as an illustrative aid to emphasise
that there are two regimes for the deterministic SDS model. All other parameters are as
described in the parameter list at the start of the thesis. We solve Equation (2.40) along
with Equation (2.31) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and spatial
discretisation ∆x = 0.08, x ∈ [0, 96]. The boundary conditions used are Dirichlet and
initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

2.9 Travelling waves in neural models

Throughout this work we are concerned with the behaviour of travelling waves under

the influence of noise, primarily how the speed of any travelling wave changes as

the noise intensity increases. A travelling wave is, in general terms, a transference

of energy through the movement of a medium from one point to another e.g. a

water wave or sound wave. The energy and so the signal is transmitted through

the perturbation of water molecules or air particles in the two examples given; each

molecule is perturbed from its initial state by the passing of the wave and so perturbs

its neighbouring molecule and so on. Despite the fact that not one molecule/object

makes the journey from the initial point of the wave to the final point, the energy

has been transported from one point to another, distant point, [38]. In neural models

the signal can be chemical or electrical and we are concerned with the propagation of

action potentials, therefore consider electrical signals which concern the movement of

charged particles, usually electrons.

Travelling waves have been observed by experimentalists in the course of in vivo

or in vitro experiments with either whole cell recordings or axo-dendritic recordings.

Examples include waves associated with epileptic seizure [102], waves seen in sleep

cycles [102] and along axons or dendrites, [99] is a review of theoretical and experi-
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mental action potential propagation in dendrites. An interesting example which is of

particular relevance to the models considered in this work is described in [26] where

the authors grow cultured hippocampal neurons along a 1-D mould to produce a

linear network of neurons. They observe travelling packets of activity as well as syn-

chronous behaviour along the whole length of the sample. They are able to measure

wave speeds of around 100mm/s which is in agreement to an order of magnitude

with measured speeds in slice preparations taken from unmylenated rat hippocampal

axons. The authors also compare their experimental results to a theoretical model

by Osan and Ermentrout [81], which models a linear network of neurons with IF dy-

namics connected synaptically (that support travelling wave solutions) and find good

agreement. As briefly discussed here there are many types of waves in neural systems

and travelling waves are just one of the experimentally and theoretically observed

solutions. As dendritic models go the Baer and Rinzel model was the first to couple

active spines to a passive cable and show travelling wave solutions. The original BR

paper, [6] showed numerically smooth and saltatory travelling waves; saltatory means

that the wave appears to jump from one active spine to the next and this has been ob-

served in the nervous system in dendrites and on an axon where the mylenated sheath

is broken by nodes of Ranvier. A more recent paper, [110], summarises, briefly, this

result and shows how the change in parameters can enhance the propagation or cease

propagation. No analytical results for the travelling waves or their stability in the

BR model have been found and J. Rinzel extended the work on the travelling waves

in the BR model by considering a simplified version using dynamics similar to the

Fitzhugh Nagumo model for the spine heads instead of the HH model, [89]. This new

system has only two free parameters and so makes the solution and stability analysis

available by analytical means. To do this the authors transform the two coupled ODE

system into the travelling wave frame using the standard anzatz and so find existence

of the wave solutions as the parameters change. They use a linear stability analysis to

show that the fast solutions are the stable branch of solutions. A full numerical study

of the travelling wave solutions in the BR model has been carried out in [70] using

the travelling wave frame and a dynamical systems approach. The existence of the

waves in parameter space was explored and further multi-bump solutions were found

to exist as were bursting packets. Using a similar approach, [15], show the existence of

travelling wave solutions and their stability in another simplification of the BR model.

The authors exploit the fast nature of the m-dynamics in the BR model to reduce the

spine head dynamics to an all or nothing response modelled by the IF model. They

again use the standard travelling wave anzatz to convert to a co-moving frame and

can analytically find the travelling wave solutions and their stability; they arrive at an

explicit value for the wave speed depending on the system parameters. The authors

continue to extend their own work in a later paper, [16], to find the existence and
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stability of saltatory waves in a similar SDS model where the spines are no longer

a constant density as in the BR model but are in fact attached at discrete points

physically separated by equal distances. Once again the authors derive an expression

for the waves speed as a function of the system parameters. Travelling wave solutions

have also been explored in a neural network environment; [17] uses a firing rate model

on a spatially extended domain to model a network of synaptically connected neurons.

The integro-differential equation is converted to a PDE and then to a delayed ODE

through the conversion to the travelling wave frame and exact expressions for the

wave speed can be obtained when the firing rate function is a Heaviside function and

if the firing rate threshold is too large then propagation fails. The numerical solution

is obtained for different forms of the synaptic footprint. The model is then extended

to include a passive dendritic tree and for specific firing rate functions the exact form

of the speed of the wave can be determined.

Apart from the travelling wave solution where an action potential propagates with

some speed there are other forms of waves that exist in neural systems. The paper

[65] discusses the existence of rotational waves in a ring of diffusively, symmetrically

coupled oscillators; this type of system is seen in the motor control of animal leg mo-

tion. The dynamics of the oscillator are not explicitly described but the results hold

for a general class of oscillators and the stability of one branch of oscillations is found.

The phase difference between each oscillator is either zero, showing synchronous be-

haviour or at a maximum which shows asynchronous behaviour. All of the analysis

is done using Hopf bifurcation theory. A recent paper [74] shows analysis of spiral

waves in a network of coupled oscillators using a Gaussian kernel which allows the

analytical solution using perturbation theory to find the spiral waves and the speed

of the rotating arms.
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Stochastic forcing and numerical

methods

This chapter is also for background information and covers the concept of ’noise’ and

how to introduce it to ordinary and partial differential equations. also investigate how

to correctly interpret the stochastic integral and how to generate different types of

noise, i.e. white or correlated. We then cover the numerical methods used to simulate

the new stochastic differential equations and the techniques devised to measure the

effect of the noise on the dendritic models which were described in Chapter 2.

3.1 Noise

In a broad sense, noise is often considered to be any ’unwanted’, meaningless data, for

example, the crackling noise heard on an untuned radio but not all noise is destructive

and can be, in some cases, useful.

In neural circuitry there are many potential sources of noise: the proximity of other

neurons and axons, synaptic connections from other neurons, the nature of the gating

of ion channels in the cell membrane can give rise to random effects and as with all

physical systems, thermal noise, which arises from random molecular movement due

to thermal energy. There is a comprehensive review of noise sources at all levels of the

central nervous system (CNS) in [24]; the paper also looks at the effects of the noise

and ways in which the CNS compensates for the noise. All sensory information which

the brain receives, from sight, smell etc, is noisy and so is one source of external noise.

Internal noise sources, already mentioned e.g. ion channels, place a limit on the size

of structures within the brain since the smaller the structure (axon/dendrite) then

the bigger the affect of the internal noise. So the size of axons are limited as is the

density of the wiring in the brain to reduce noise from what the authors term ’cross-

talk’ (electrical interference). The CNS can deal with noise by averaging behaviour

e.g. visual input is averaged over photoreceptors which share a visual field, and so
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some of the fluctuations due to noise are smoothed. The presence of noise in real

neurons has been observed in vivo, e.g. [61] reviews synaptic noise and shows large

fluctuations in the membrane voltage of feline cortical networks. [27] also discusses the

presence of noise in in vivo experiments with the rat cortex. The reproduction of these

real fluctuations is often investigated in vitro using a stochastic conductance model

to simulate the synaptic noise and a dynamics clamp technique to force the prepared

slices of neurons, thereby merging the computational and experimental techniques,

[61], [27] and [50]. The models which force the real neurons, in the papers mentioned,

use a multiplicative white noise to create the fluctuations but the actual intensities

used is not explicitly given. The results are in agreement with in vivo observations; in

[27] the noise allows the cell to detect sub-threshold signals and in [50] the presence

of noise is shown to be necessary to facilitate the behaviour that characterises stellate

neurons.

This section looks at how noise can be described mathematically and how it can be

numerically simulated. Noise can take many forms, correlated in space and/or time or

uncorrelated; we will consider temporally correlated noise as an Ornstein-Uhlenbeck

process and uncorrelated noise as a simple Brownian motion or Wiener process.

3.1.1 Some basic probability theory

We start by briefly looking at some basic probability theory and definitions which

will help us to define the stochastic integral in Equation (3.11) and understand the

solution of an SDE. There are many good introductory texts on probability theory

such as [47] and [49] but several books that use or discuss more general stochastic

problems have very good, concise introductions to probability theory, such as [32],

[80], [5], [31] and [55], all of which deal with SDEs. [62] discusses stochastics in the

neurosciences and gives a brief introduction to some of the probability theory required

and [88] is a text book for physicists and engineers which has a probability section that

discusses the concept of random variables and their associated distribution functions.

First we introduce a probability space, (Ω,U , P ) in order to define a random variable.

The probability triple includes Ω, which is any nonempty set called a sample space,

U is a σ-algebra, a collection of events, and P is a probability measure which gives

the probability of an event in the σ-algebra happening. If we consider flipping a fair

coin then we can define the triple for this simple experiment: Ω = {heads, tails},
U = {∅, {heads}, {tails}, {heads, tails}} and P = {0, 1

2
, 1

2
, 1}.

Definition 3.1.1 A σ-algebra is a collection, U , of sub-sets of Ω with the following

properties:� ∅, Ω ∈ U .
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Chapter 3: Stochastic forcing and numerical methods� If A ∈ U then the complement AC ∈ U .� If A1, A2, . . . ∈ U , then
⋃∞

k=1Ak ∈ U and
⋂∞

k=1Ak ∈ U .

Definition 3.1.2 P : U → [0, 1] is defined as a probability measure if the following

hold:� P (∅) = 0, P (U) = 1.� If A1, A2, . . . ∈ U , then P (
⋃∞

k=1Ak) ≤
∑∞

k=1 P (Ak).� If A1, A2, . . . are disjoint sets in U , then P (
⋃∞

k=1Ak) =
∑∞

k=1 P (Ak).

The probability space defined by the triple (Ω,U , P ) is not observable, so we must

define a quantity which we can observe in the real world R
n, this is a random variable.

Definition 3.1.3 X : Ω → Rn is called an n-dimensional random variable if for each

B ∈ B we have X−1(B) ∈ U .

Here B is a collection of Borel subsets of R
n which is the smallest σ-algebra (of R

n)

containing all open sets.

If a random variable, X(t) is dependent on time we can define a stochastic process

and sample path as follows:

Definition 3.1.4 The collection X(t)|t ≥ 0 is a stochastic process and ∀ω ∈ Ω, t 7→
X(t, ω).

Now that we have a definition for a random variable we can continue to define a

few more useful quantities such as the expected value/mean and the variance. We

use the probability density function, which holds all information about its associated

random variable, to find, for example, the expected value, variance or some other

property of interest. A useful example which will be used frequently is the normally

distributed (or Gaussian) random variable, for 1-D case, with mean µ and variation

σ2 has the probability distribution p(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 . More generally:

Definition 3.1.5 If X : Ω → Rn has the density function:

p(x) =
1

√

(2π)n detC
e−

1
2
(x−µ)C−1(x−µ) (3.1)

x, µ ∈ Rn and C is a positive definite, symmetric matrix, then X is said to have a

Gaussian (or normal) distribution with mean µ and covariance matrix C.
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Figure 3.1: Plot (a) shows the normal distribution N (0, 1) and plot (b) shows an example
of the Poisson distribution, α = 30.

Another useful distribution is the Poisson distribution, since it can be used for spike

rate models for a single neuron, [33]. The Poisson distribution is given by:

p(x) =
(x)α

α!
e−x , (3.2)

where x is the number of events, α is the average rate at which the events occur in a

specified region. Figure 3.1 plot (b) shows an example of a Poisson distribution where

α = 30.

If we have the probability density associated with a random variable, X, then we

can find the probability of X occurring within a certain range x = [a, b] by Pr(X ∈
[a, b]) =

∫ b

a
p(x)dx. The expected value (or mean) of X is the most likely value of X

and is given by Equation (3.3):

µ = E(X) =

∫ ∞

−∞
xp(x)dx . (3.3)

The variance is a measure of how the random variable deviates from its mean value

and is given by σ2 = V(X) = E(X2) − (E(X))2. We have shown two of the common

notations for mean (µ and E) and variance (σ2 and V). A similar measure is the co-

variance, which measures how a random variable, X, changes with respect to another

random variable, Y , and is given by Fc(X, Y ) = E(XY )−E(X)E(Y ). We also define

the auto-correlation, Equation (3.4), of a random variable, which is a measure of how

quickly a random variable changes in time.

C(X(t)) = E(X(t1)X(t2)) , (3.4)

where t1 and t2 are two points in time.
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3.1.2 Brownian motion

We will require the definition of the random variable W (t), which is considered to

be a standard Brownian motion or standard Wiener process. Brownian motion is

perhaps the most well known stochastic process and was first discovered by R.Brown

in 1826 when he observed the apparently random movement of pollen particles in

water. The process was first mathematically described by T.N.Theile in 1880 and later

consolidated by a paper by A.Einstein in 1905. The derivation of Brownian motion

using a random walk argument, i.e. a particle moving on a 2 dimensional lattice and

implementing the Laplace-De Moivre theorem, gives the normal distribution, [23].

Definition 3.1.6 A one dimensional Wiener process, W (t), defined on the time in-

terval [0, T ] depends continuously on t ∈ [0, T ]. To be classified as a Wiener process

W (t) must satisfy the following conditions ([62], [41], [86]):� W (t = 0) = 0, with probability 1.� For 0 ≤ s < t ≤ T , a Brownian increment W (t) − W (s) ∼ √
t− sN(0, 1),

where N (0, 1) is a normally distributed random variable with zero mean and

unit variance.� For 0 ≤ s < t < u < v ≤ T , W (t) −W (s) and W (v) −W (u) are independent

paths.

We now have enough information to generate a Brownian path on a time interval

[0, T ] and using N increments of ∆t such that N∆t = T . The independent Brownian

increments ∆W can be generated using Definition (3.1.6), starting at W (t = 0) = 0

we can find the next point W (∆t) = W (∆t) − W (0) ∼ N (0,∆t) then W (2∆t) =

W (2∆t) − W (∆t) ∼ N (0,∆t) and so on until W (T ) = W (T ) − W ((N − 1)∆t).

Therefore each step can be generated using a normally distributed random variable,

scaled correctly by the time step, which can be easily generated in Matlab. Figure

3.2 shows an example of a Brownian path generated by this method.

Definition 3.1.7 A function f : [0, T ] 7→ R is termed uniformly Hölder continuous

with exponent γ > 0 if there is a constant K such that |f(t) − f(s)| ≤ K|t− s|γ.

A Brownian motion is termed ”nowhere differentiable” since it is not Hölder contin-

uous for exponents greater than 1
2
.

Theorem 3.1.1 For all 1
2
< γ ≤ 1, t 7→ W (t, ω) is nowhere Hölder continuous for

exponent γ, is nowhere differentiable and is of infinite variation on each subinterval.
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Figure 3.2: An example of a Brownian path generated in Matlab.

The proof of this theorem, by Dvoretzky, Erdös, Kakutani, is outlined in [23].

We can think of dW (t)
dt

= ξ(t) as a white noise path although formally a continuous

time random process, X(t), is only termed white noise if:� The mean is equal to zero, i.e. E[X(t)] = 0� The autocorrelation function satisfies: E[X(t1)X(t2)] = σ2δ(t1 − t2),

where σ2 is the variance as before.

3.1.3 Stochastic integrals

In this subsection we briefly review how to understand and evaluate a stochastic

integral. We also look at the definition of an Itô and Stratonovich integral and how

we can convert between an SDE evaluated in the Itô sense and in the Stratonovich

sense. There are many books that cover this topic, [55], [5] are two examples and [23] is

a good set of lecture notes that defines the Itô integral and discusses the Stratonovich

integral. So we consider the integral form of our standard SDE Equation (3.11).

Definition 3.1.8 A partition of [0, T ] is a finite collection of points P = {0 = t0 <

t1 < · · · < tm = T} with step size |P | = max0≤k≤m−1 |tk+1 − tk|.

Recall the Riemann approximation for a general deterministic integral
∫ b

a
f(x)dx,

where f(x) : R → R and a, b ∈ R. As defined above, the interval [a, b] can be

split into the partition {a = x0 < . . . < xm = b} which can then be used to define

the Riemann sum: S =
∑

i 1
mf(yi)(xi − xi−1), where xi−1 ≤ yi ≤ xi. The smaller

the increment xi − xi−1 then the more accurate the approximation will be and the

arbitrary choice of yi will not affect the outcome of the sum.
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We consider, as an example, the integral
∫ T

0
WdW with W a 1-dimensional Brow-

nian motion, as defined in Section 3.1.2. Although a Brownian motion is nowhere

differentiable, we will follow a Riemann sum type approximation of the integral and

then pass appropriate limits. If we set τk = (1 − φ)tk + φtk+1, with φ ∈ [0, 1] we can

then define the Riemann type approximation for the stochastic integral:

∫ T

0

WdW ≈ Rm =

m−1∑

k=0

W (τk)(W (tk+1) −W (tk)) . (3.5)

It can be shown that given a sequence of partitions Pn (where tnm is the mth point

in the nth partition and (tnm − tnm−1) → 0 as n → ∞), [23], [80], that for Rn =
∑mn−1

k=0 W (τn
k )(W (tnk+1) −W (tnk)) and with the limit in L2(Ω):

lim
n→∞

Rn =
W (T )2

2
+ (φ− 1

2
)T . (3.6)

The limit obviously depends on the choice of φ. If φ = 0 we have the Itô definition of

the stochastic integral, where the integrand is evaluated at the left hand end point and

φ = 1
2

gives the Stratonovich definition, where we evaluate at the midpoint. These

two cases clearly differ and can give rise to different values of the stochastic integral.

It is clear that in the Itô sense the integral does not follow the normal rules of calculus

since for this case limn→∞Rn = W (T )2

2
− T

2
which has an extra term, −T

2
, that would

not appear under the normal rules of calculus. The Stratonovich integral does follow

the normal rules since, limn→∞Rn = W (T )2

2
when φ = 1

2
, however this requires some

future knowledge of the process to evaluate at the midpoint. The Itô and Stratonovich

definitions of the stochastic integral are the most famous and widely used but there

are infinitely many approximations for the integral since φ ∈ [0, 1] will give rise to a

different approximation with each choice of φ. In order to make it clear which of the

stochastic integrals is being used, we employ the following notation:
∫
WdW denotes

the Itô interpretation and
∫
W ◦ dW denotes that the Stratonovich interpretation is

being used.

We now consider the integral
∫ T

0
G(t)dW for some non-anticipating functions G(t).

A function is non-anticipating if it is F measurable, with F a filtration. This means

that the function G only depends on prior information. We now define a filtration

but first we need W(t) = U(W (s)|0 ≤ s ≤ t), the σ-algebra known as the history

of the Brownian motion up to time t and the future of the Brownian motion is the

σ-algebra W+(t) = U(W (s) −W (t)|s ≥ t).

Definition 3.1.9 F ⊆ U is a family of σ-algebras called non-anticipating if:� F(t) ⊇ F(s) ∀ t ≥ s ≥ 0� F(t) ⊇ W(t) ∀ t ≥ 0
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We will approximate the function G by a step-process, define the Riemann sum

and then pass limits which will then define the Itô integral.

Definition 3.1.10 A process is called a step-process if for a partition P = {0 = t0 ≤
t1 ≤ · · · ≤ tm = T} then G(t) ≡ Gk for tk ≤ t < tk+1, k = 0, . . . , m− 1.

Then we can define the Itô integral of G (a step-process) as:

∫ T

0

GdW =
m−1∑

k=0

Gk(W (tk+1) −W (tk)) =
m−1∑

k=0

Gk∆Wk, (3.7)

with the increment ∆Wk. If we have a general functionG ∈ L2[0, T ] then there exists a

sequence of bounded step-processes Gn ∈ L2[0, T ] such that E

(∫ T

0
|G−Gn|2dt

)

→ 0,

see [23]. L
2 is the set of square integrable functions, or L2 functions, it is the set of

all measurable functions whose absolute values squared have a finite integral with

respect to some measure µ: ||f ||p :=
(∫

|f |2dµ
) 1

2 <∞. It can then be shown that for

the step processes Gn:

E

[

(

∫ T

0

Gn −GdW )2

]

= E

[∫ T

0

(Gn −G)2dt

]

→ 0 as n→ ∞ . (3.8)

Therefore in this mean square limit, as the partition mesh gets smaller, the step-

process approximates the general function G and as such we can define the Itô integral

as: ∫ T

0

GdW = lim
n→∞

∫ T

0

GndW . (3.9)

And so Equation (3.7) is a valid approximation of the integral:
∫ T

0
GdW , and we have

the following properties for the Itô integral, [80], [23]:� E(
∫ T

0
GdW ) = 0 is the Martingale property� E((

∫ T

0
GdW )2) = E(

∫ T

0
G2dt) is called the Itô isometry.

3.1.4 Stochastic differential equations

A deterministic system is one which can be described by Ordinary Differential Equa-

tions (ODEs) or Partial Differential Equations (PDEs) which contain all information

of how properties of the system evolve in time and/or space. Given the set of equa-

tions and the initial conditions of a system the future state of the system can be

determined without any ambiguity in the final outcome, i.e. given the same initial

conditions the final outcome will always be the same, (provided the description of the

system is correct and the method used to solve the system is correctly chosen and
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implemented).

Stochastic Differential Equations (SDEs) describe the evolution of a system which has

a degree of randomness associated with it, e.g. the stock market fluctuations. This

randomness is time dependent rather than any random initial conditions or random

parameters in the differential equation. In this case, given a set of SDEs describing

the system and the initial state of the system, there is not any one outcome for the

future state of the system, there is instead a probability distribution associated with

the outcome.

In an SDE, one or more of the terms is a stochastic process which can also be described

as a random function defined over a time interval or space region. Here we look in

more detail at SDEs. There are many books describing SDEs and probability theory,

but [23] is a good set of lecture notes available on the Internet, [80] is an introduction

to SDEs and [32] is geared towards applications of SDEs.

If we think of adding a white noise to a deterministic ODE then we could write:
dX
dt

= f(X(t)) + g(X(t))ξ(t), where ξ(t) is white noise. We cannot directly deal with

this white noise ξ(t) mathematically since it is not continuous but we can think of

ξ(t) = dW (t)
dt

(or dW = ξdt). Then we can rewrite the our ’noisy’ ODE as a general

Itô SDE of the form:

dX(t) = f(X(t))dt+ g(X(t))dW (t) , (3.10)

which can be more easily and properly understood in integral form:

X(T ) = X0 +

∫ T

0

f(X(t))dt+

∫ T

0

g(X(t))dW (t) (3.11)

here f(X(t)) and g(X(t)) are functions, which have specific properties, of the random

variable X(t) and W (t) is a Wiener process which is integrated in the Itô sense. Since

we have just discussed in Section 3.1.3, the Itô integral we can then attempt to find

a solution to this SDE. In the following section we give sufficient conditions on f(X)

and g(X) such that there exists a solution to Equation (3.10), X(t).

3.1.5 Existence of solutions to an Itô SDE

For the general SDE given before:

dX(t) = f(X(t))dt+ g(X(t))dW (t) (3.12)

X(0) = X0 , (3.13)
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where we have the unique solution X ∈ Rn given certain conditions on f : Rn ×
[0, T ] → Rn and g : Rn × [0, T ] → Mm×n, see [23], [86], [55] and [5]. If the functions

f and g satisfy the following Lipschitz conditions then we will have a solution to the

SDE Equation (3.12):� |f(x, t) − f(x̂, t)| ≤ L|x− x̂| ∀ 0 ≤ t ≤ T , x, x̂ ∈ Rn� |g(x, t) − g(x̂, t)| ≤ L|x− x̂| ∀ 0 ≤ t ≤ T , x, x̂ ∈ Rn� |f(x, t)| ≤ L(1 + |x|) ∀ 0 ≤ t ≤ T , x ∈ Rn� |g(x, t)| ≤ L(1 + |x|) ∀ 0 ≤ t ≤ T , x ∈ Rn

with L some constant. Also let X0 be any Rn valued random variable such that

E(|X0|2) < ∞ and X0 is independent of W+(0) (the future of the Brownian path).

The solution of an SDE can be found exactly if the SDE is linear. An SDE is linear

if the coefficients f(X(t)) and g(X(t)) satisfy the following:

f(X(t)) = a(t) +B(t)X (3.14)

g(X(t)) = c(t) +D(t)X (3.15)

for a : [0, T ] → Rn, B : [0, T ] → Mn×m, c : [0, T ] → Mn×m and D : [0, T ] →
L(Rn,Mn×m), the space of bounded linear mappings from Rn to Mn×m.

The exact solutions to many standard SDEs can be easily found in the literature, for

example see [55] and [23]. The solution to Equation (3.12) with the linear coefficients

given by Equation (3.14) and Equation (3.15) is given by:

X(t) = e
R t

0 (B(s)− 1
2
D2(s))ds+

R t

0 D(s)dW ×

[ X0 +

∫ t

0

(a(s) − c(s)D(s))e−
R s

0
(B(r)− 1

2
D2(r))dr−

R s

0
D(r)dWds

+

∫ t

0

(c(s)e−
R s

0 (B(r)− 1
2
D2(r))dr−

R s

0 D(r)dW )dW ] . (3.16)

As an example, consider the SDE that describes geometric Brownian motion dX =

µXdt+σXdW , with initial condition X(0) = X0. We use Equation (3.16) to find the

exact solution for geometric Brownian motion, so by equating coefficients: B(t) = µ,

D(t) = σ and substituting into Equation (3.16) we obtain:

X(t) = X0e
(µ− 1

2
σ2)t+σW . (3.17)

Solutions can also be obtained using numerical algorithms described in Section 3.3.
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3.1.6 Itô and Stratonovich SDEs

The above section on the existence of solutions to SDEs has been shown for the Itô

interpretation of the stochastic integral. It can also be shown for the Stratonovich

interpretation but here we are only going to show how to convert an SDE of one

type to the other. The Itô integral is denoted
∫ t

0
g(s)dW (s), and the Stratonovich

∫ t

0
g(s) ◦ dW (s), this notation is to distinguish between the two interpretations. One

difference between the two integrals is the value of the mean and so this can be

exploited in converting from one calculus to the other: E

(∫ t

0
g(s)dW (s)

)

= 0 and

E

(∫ t

0
g(s) ◦ dW (s)

)

6= 0, when the drift term is adjusted to convert a Stratonovich

integral to an Itô integral it is simply adjusting the mean such that it will now be

zero.

dX(t) =

(

f(X) − 1

2
g(t)g′(t)

)

dt+ g(t) ◦ dW (t) . (3.18)

Equation (3.18) is equivalent to the familiar Itô SDE dX(t) = f(X)dt + g(t)dW (t),

and the extra term in the drift is called the drift correction or noise induced drift.

Similarly dX(t) = f(X)dt + g(t) ◦ dW (t) is the same as the corrected Itô version:

dX(t) =
(
f(X) + 1

2
g(t)g′(t)

)
dt+ g(t)dW (t).

In this way we can switch between the two interpretations and compare the effect of

evaluating the SDE at different points in the interval. The Stratonovich interpretation

is often used in cases where the noise is fluctuating on a much faster scale than the

system dynamics since the mid-point interpretation can be thought of as averaging

this fast behaviour in some way. However if the time-scales are much closer and the

system responds to the noise on a similar time-scale then the Itô interpretation is

more appropriate since it is non-anticipating, evaluating at the left hand end point.

3.1.7 Temporally correlated noise

A stochastic differential equation can also be forced by a non-white noise, i.e. the

dW (t) term does not have to be a Brownian motion. Here we consider noise that is

temporally correlated.

To generate a temporally correlated noise we use an Ornstein-Uhlenbeck process

(sometimes called a mean-reverting process) which is given by the following SDE:

dK(t) = β(θ −K(t))dt+ σdW (t) , (3.19)

where K(t) is a stochastic process called the Ornstein-Uhlenbeck process, β is a

parameter which can adjust the time scale of the correlation, called the mean reversion

rate, θ is the mean to which the process will revert to if given enough time, σ is another

parameter which is called the volatility and W is a Brownian motion, as before. The

variance of the solution is given by V(K) = σ2

2β
.
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Unlike the Wiener process, increments of the OU process are not independent

although it is still a Gaussian process. If the mean is zero, θ = 0, then we write the

OU process as:

dK(t) = −βK(t)dt+ dW (t) , (3.20)

here β is called the reversion rate, and has units of s−1 and so can be related to a

time by taking the reciprocal 1
β
. The OU process is an example of a Gaussian process

which means that if we take a linear combination of the variables K(t) then that

combination will be normally distributed. The fact that it is a mean-reverting model

means that in the long term (how long depends upon the parameter β), K(t) will

revert to the mean θ. We can then introduce this process, with zero mean, to our

SDE, in the form of Equation (3.20):

dX(t) = f(X(t))dt+ g(X(t))dK(t) . (3.21)

Now there are two coupled SDEs, Equation (3.20) and Equation (3.21) which can be

solved simultaneously to give the random variable X(t).

3.1.8 Stochastic partial differential equations

We consider a parabolic stochastic differential equation of the form:

∂X

∂t
=
∂2X

∂x2
+ f(X) + g(X)

∂W (x, t)

∂t
, (3.22)

with initial condition X(0) = X0 and x ∈ [0, L], t ∈ [0, T ].The process W (x, t) is a

Q-Wiener process, we will go on to define what this is. We saw in Section 2.2.1, that

the passive cable equation is a parabolic PDE and so when extended to the noisy cable

equation will be a parabolic SPDE. [14], [86], [18] and [30] deal with the solution and

existence of SPDEs.

Hilbert spaces, covariance operators and Q-Wiener processes.

We require there to be a separable Hilbert space H , with the appropriate inner-

product and norm, on which a covariance operator, Q, will act. This operator is

analogous to the covariance matrix we saw in the finite dimensional Brownian motion

case, Section 3.1.2. Briefly, a Hilbert space, H , is a vector space with an inner product

〈f, g〉, f, g ∈ H such that the norm can be defined as |f | =
√

〈f, f〉. Now we look at

the definition of a covariance operator.

Definition 3.1.11 If an operator Q : H → H is a covariance operator it satisfies the

following properties:� Q is non-negative,
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This covariance operator can be likened to the covariance we saw in Section 3.1.2, for

a finite dimensional Brownian motion: Cov(W (s)W (t)) = min{s, t}.
We can consider Q to be trace class: trQ =

∑∞
j=1〈Qej , ej〉 <∞, where ej are the

eigenfunctions of the operator Q. If Q is in trace class then it can be shown by the

Hilbert-Schmidt theorem (see [86]):

Qej = λjej, λ ≥ 0, j ∈ N (3.23)

i.e. there is a complete orthonormal basis for the space H , ej are eigenvectors with

corresponding eigenvalues λj . Assuming that we have an appropriate operator Q, and

the orthonormal basis ej for the Hilbert space H then we can define, as shown in [18]

and [86]:

Definition 3.1.12 The Q-Wiener process can be represented by the sum:

W (x, t) =
∞∑

j=1

λ
1
2
j (x)ej(x)bj(t) (3.24)

with λj are the eigenvalues of Q : H → H and bj(t) are standard Brownian motions.

We can liken Equation (3.24) to a Fourier series, and the choice of the coefficients λj

will determine the correlation of the noise path in space. Since Q is trace class it is

easier to show that the Q-Wiener process defined in Equation (3.24) has the correct

expectation (E(W ) = 0), covariance and has independent increments (just as for a

1-D Wiener process in Section 3.1.2) and so it is a Gaussian process in H .

When we have Q = I, the identity matrix, which is not trace class, then W is

white noise since λj = 1, ∀ j. Incidentally this is the reason white noise has its name,

as all the frequencies are equally weighted as in white light all the colours (and so

light frequencies) are equal. In this case the sum reduces to W (x, t) =
∑∞

j=1 ej(x)bj(t)

and the process is termed a cylindrical Wiener process.

Stochastic integral in infinite dimensions

We are now in a position to define the stochastic integral with respect to the Q-Wiener

process, described above: I(t) =
∫ t

0
g(s)dW (s). It can be shown that the sum of the

finite dimensional stochastic integrals in the limit defines the infinite dimensional case,

[86], [18], [14].

J∑

j=1

λ
1
2
j

(∫ t

0

ej(x)g(s)dbj(s)

)

→
∫ t

0

g(s)dW (s) , as J → ∞ . (3.25)
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This limit holds for Q being trace class and for the following condition on the function

g(s): E

[∫ T

0
supx∈D |g(x, t)|2dt

]

< ∞. Similarly the infinite dimension Stratonovich

integral is given by ([14]):

J∑

j=1

λ
1
2
j

1

2

(∫ t

0

ej(x)(gj + gj−1)dbj(s)

)

→
∫ t

0

g(s) ◦ dW (s) , as J → ∞ . (3.26)

Existence of solutions to an SPDE

We can look at three types of solution to our general parabolic SPDE, Equation (3.22);

strong, weak and mild solutions.� X(t) is a strong solution if:

X(t) = X(0) +

∫ t

0

(∆X(s) + f(X(s)))ds+

∫ t

0

g(X(s))dW (s).� X(t) is a weak solution if:

〈X(t), ψ〉 = 〈X(0), ψ〉+
∫ t

0

〈∆X(s), ψ〉+〈f(X(s)), ψ〉ds+
∫ t

0

〈ψ, g(X(s))dW (s)〉.� X(t) is a mild solution if:

X(t) = et∆X(0) +

∫ t

0

e(t−s)∆f(X(s))ds+

∫ t

0

e(t−s)∆g(X(s))dW (s).

Here all the integrals are well defined. There are then conditions on the combination of

eigenvalues of ∆ andQ that define a strong solution, and conditions on the smoothness

of solutions that define a weak and mild solution, see [18].

3.1.9 Itô and Stratonovich interpretation of SPDEs

Just as we had for the SDE case, we can choose the way in which we interpret the

stochastic integral. Here we give the Itô /Stratonovich drift conversion for SPDEs:

∂X

∂t
=
∂2X

∂x2
+ f(X) + g(X)

∂W (x, t)

∂t
, X0 = X(x, 0), (3.27)

is the same as the Stratonovich interpretation:

∂X

∂t
=
∂2X

∂x2
+ f(X)− 1

2
Fc(0)g(X)

∂g(X)

∂x
+ g(X) ◦ ∂W (x, t)

∂t
, X0 = X(x, 0), (3.28)

where Fc(0) is the covariance of the noise term, [14].
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3.1.10 Spatially correlated noise

A spatial correlation can also be introduced by exploiting the form of the sum Equa-

tion (3.24). As described previously, when the coefficients λj = 1 then the process

W (x, t) is a white noise process, therefore the correct choice of λj (eigenvalues of the

operator Q in trace class) will impart a correlation to the process W (x, t). In the

numerical section Section 3.3.4 we use the eigenfunctions of the Laplacian to derive a

set of coefficients that satisfy a specific form of correlation.

3.2 Noise induced phenomena

When a neural model includes some source of noise one might expect a destructive

effect since noise, in a very general sense, is an unwanted signal but this is not always

the case. This section describes some noise induced phenomena which enhance the

response of a neural model to a given input, e.g. stochastic resonance (SR), Section

3.2.2, occurs in a regime where deterministically the neuron model shows no spiking

response but the inclusion of noise elicits firing events. In addition to SR we look

at coherence resonance (CR) and noise induced synchronisation, in which noise can

synchronise coupled and un-coupled neural oscillators.

3.2.1 Coherence Resonance (CR)

In a neural context coherence resonance (CR) is the improvement of the regularity

of firing due to the presence of noise. This response of the neuron tends to be an

inherent oscillation of the system and can be related to periodic limit cycles in some

neural models. Noise can kick a system near bifurcation from a fixed point onto a

limit cycle thereby displaying enhanced firing. CR has been shown in several neuronal

models e.g. FitzHugh-Nagumo, Quadratic Integrate and Fire [63], Leaky Integrate

and Fire [67], [82] and the Hodgkin-Huxley model [71], [66]. CR has also been shown

in experimental set-ups [72]. There are two ways in which to measure the CR in a

system, first by looking at the coefficient of variation (CV), which is the ratio of the

variation in the interspike interval (ISI), the time between firing events, and the mean

of the ISI. CR minimises this ratio for some optimal value of noise intensity.

CV =

√

〈ISI2〉 − 〈ISI〉2
〈ISI〉 (3.29)

where ISI is the time between firing events. The second way to measure the CR is

using the power spectral density, [82], [67], which uses the Fourier transform of the

autocorrelation function of the spike train, x(t) =
∑

ti
= δ(t − ti), where ti are the
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times of the spikes. Then the power spectral density is given by:

S(ω) =

∫ ∞

−∞
〈x(t)x(t+ τ)〉eiωτdτ . (3.30)

The degree of coherence can also be measured using the power spectral density as

defined by:

B =
S(ωmax)

∆ω/ωmax

, (3.31)

where ωmax is the frequency of the first peak and ∆ω is the difference in frequency

between the peak and a point at which its height has decreased by a chosen amount.

In [67] the authors derive an exact expression for the power spectral density for the

leaky integrate and fire model driven by additive white Gaussian noise. This is of

interest to us since in the SDS model we consider the spine head dynamics to be

modelled by the leaky integrate and fire dynamics, albeit diffusively coupled by the

cable.

3.2.2 Stochastic Resonance (SR)

Stochastic resonance (SR) occurs when noise enhances a subthreshold signal to induce

a neural response, i.e. create a spike/firing event. In the deterministic regime of a

neural model a subthreshold signal is one which will not illicit a response from the

cell, no firing, therefore any temporally encoded information in this subthreshold

signal will be lost. The SR phenomena induces spikes from the system and does so

at an optimal level of the noise. SR can be seen in many applications and has been

studied in neural models. SR has been observed in the FitzHugh-Nagumo model

([63], [106], [66]), Quadratic integrate and fire and the leaky integrate and fire model,

[63], [66], [29]. The optimal noise value is usually obtained by finding the peak in the

signal to noise ratio (SNR) as the noise intensity changes, a typical input would be:

Iin = A sin(Ωt) + µξ(t), where A is the amplitude of the input, Ω is the frequency, µ

is the strength of the noise and ξ is a Gaussian noise. This uses the power spectral

density that we saw in the measurement of CR Equation (3.30), evaluated at the

input frequency, SS(Ω), scaled by the power spectral density, SN , of the equivalent

Poisson process, i.e. the Poisson process that matches the output spike train. This

definition of SNR is from [33]:

SNR =
SS(Ω)

SN

. (3.32)

There are other similar definitions given by [29], [101] but all are of the basic form

which is SNR = signal power
noise power

. There is another form of SR which can be observed when

the input signal is suprathreshold, suprathreshold stochastic resonance (SSR). SSR
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was first reported in multithreshold networks, [105], where each device in the summing

network was subjected to the same input signal but independent Gaussian noise, and

they are represented by a Heaviside function. Therefore their output is one if the

input plus noise is above some threshold. It is shown that even when the input signal

is above threshold the output of the network can be maximised by an optimal amount

of noise. This result was extended to a network of Fitzhugh-Nagumo models, [106].

In the paper [94] SR was shown to exist in a spatially extended neural model, i.e. one

where the spatial extent of the dendritic tree is modelled by the cable equation and

the action potentials were generated by the Hodgkin Huxley model. In this type of

model the noise sources can be distributed throughout the tree and induce a classical

SR type response.

3.2.3 Noise induced synchrony

Noise can be shown to induce synchrony in coupled and non-coupled oscillators. Two

oscillators which are driven with a common noise, but not coupled, show a synchro-

nised response when the noise input strength is sufficient. Paper [37] shows this

phenomenon in four different systems and [60], [122] and [1] show examples of neural

systems with common noise induced synchronisation. The paper [122] also considers

weakly coupled non-identical thermally sensitive Hodgkin-Huxley neurons and shows

that noise induces synchronisation in this case, although there is an interplay between

the coupling strength and the noise intensity and only the right combination of these

two variables will result in synchronisation. [122] also shows that this behaviour is

not particular to the HH model but that in general a system with a saddle-node bi-

furcation can exhibit noise induced synchrony. Noise induced synchronisation is also

observed in [116], where the Hodgkin-Huxley neurons are not thermally sensitive and

are strongly coupled. Again the synchronisation relies on the correct combination

of coupling strength and noise intensity. In both these examples the noise used is

temporally correlated although there is no comment on the effect of the correlation

time-scale on the existence of the synchrony and only one value of the correlation time

is given in each paper. Conversely asynchrony can be induced by noise and [46] shows

the use of noise induced asynchrony to optimise performance in the vestibulo-ocular

reflex (where the eyes respond to a head movement). Mid levels of noise in the model

system optimises the response which is observed in vivo experiments with monkeys.

3.2.4 Noisy travelling waves

When noise is present in a system which supports travelling waves, in the determinis-

tic case, then the effect of the noise can be harmful or helpful. The type of noise, noise

intensity and properties of the model all play a part in determining the behaviour of
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the system under the influence of noise e.g. a change in the speed of propagation

and stability of travelling waves where there are none in the deterministic case. A

computational study of the spatially extended Hodgkin-Huxley model, in [45], inves-

tigates the effect of additive white noise on the propagation of spikes. Although the

noise can kill propagation of spikes this paper investigates the effect of smaller noise

intensities, in the membrane current, where there are successful travelling spikes. The

spike timing experiences large variation with noise intensity and the variation grows

with distance along the cable. The paper also shows that noise in the ion channels

can induce random or noise induced spiking. In a more general setting the effect of

noise on propagating fronts is investigated in models which appear in, not only neural

dynamics, but non-linear physics and chemistry. Paper [4] investigates the effect of

spatially correlated, white in time noise on a 1-D model of front propagation. The

noise term in the SPDE is interpreted in the Stratonovich sense and so has non-zero

mean; the authors exploit this fact to rescale the equation to give a new zero mean

noise term. Then a small noise approximation is used to obtain an altered deter-

ministic equation which has a term dependent on properties of the noise but with no

explicit noise term. It is shown that the presence of noise can stabilise fronts which

are not observed in the deterministic case and that when the noise is multiplicative

the speed of the fronts increases, whereas additive noise does not affect the speed.

[91] also investigates propagating fronts, under the influence of noise. This paper does

not investigate the speed of the fronts but rather how the noise changes the diffusion

coefficient. The noise is once again spatially correlated, white in time and again the

SPDE is rescaled to give a non-zero mean noise term. Then the noisy front is decom-

posed into a mean profile with fluctuations. The effective diffusion is dependent on

the properties of the noise e.g. noise intensity, but not the noise itself. Another paper

which investigates the effects of noise on propagating fronts with the noise rescaling

is [96]. A reaction diffusion system was subjected to noise which is correlated in both

space and time and after the rescaling of the noise term a deterministic expression

was obtained for the speed of the wave fronts. The speed reduces as the temporal

correlation scale increases and the speed increases with increasing spatial correlation

length.

The method of rescaling the noise term to have zero mean and using a small noise

approximation is a popular way of extracting information about the effect of small

noise on travelling waves. Papers [2] and [7] employ this approach to investigate the

wave propagation in excitable media. The theory in [2] applies to a general type

of Fitzhugh-Nagumo model (Section 2.3) and numerically investigates one particular

case, called the Barkley model. The authors show that when the noise is white the

model supports noise induced waves which increase in speed as the noise intensity

increases. The noise can also support spiral waves which are not present in the
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deterministic case. For correlated noise both the temporal and spatial correlation

scales reduce the speed as the scale increases. Similarly [66] investigates the Barkley

model and also shows an increase in wave speed as the noise intensity increases. It

also shows that additive noise does not change the speed of a travelling wave but

it does induce pulse propagation where there are none in the deterministic case. [7]

shows a speed decrease as noise intensity increases in a chemical reaction model but

also shows that the noise can support waves not present in the deterministic model.

In the same chemical model, [51], shows that noise can enhance weak signals upto an

optimal value of the intensity (SR), before the noise then overwhelms the signal and

destroys the wave.

Although the models investigated in the papers discussed in this section have

different forms, the treatment of the noise follows the same method. To give any

analytical results the noise term must be rescaled to have zero mean and then the

noise intensity taken to be small in order to obtain some expressions for the speed of

waves. It seems that in all cases the inclusion of noise also helps to promote travelling

waves which do not appear in the deterministic regime and multiplicative noise will

change the speed of any travelling wave/front.

3.3 Overview of numerical methods

Here we outline the algorithms that we will use throughout the rest of this body

of work. These methods were chosen because they were simple, but effective and

relatively quick to simulate using Matlab, [75] ([42] is a good book on the use of

Matlab). We also show how a spatially correlated noise can be constructed using a

fast Fourier transform to satisfy a correlation function chosen to suit our requirements.

There are references given for each subsection, but [58] discusses numerical methods of

neural models and also covers (albeit briefly) solution to ODEs/PDEs and branching

structures.

3.3.1 Solving ODEs

For the following work we use an Euler algorithm for solving any ODEs encountered.

In most cases we use a semi-implicit Euler method, but the exact numerical algorithm

is written out for each case throughout. There are many standard texts on ODEs and

numerical methods e.g. [90] for an introduction to ODEs, [59] and [88] are texts geared

towards engineers which have sections on ODEs and a small section on numerical

methods and [97] and [10] are two numerical analysis texts which cover numerical

solutions to ODEs. Here we aim to describe both the explicit and implicit Euler

algorithms for the ODE:
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dX(t)

dt
= f(X(t)) , X(0) = X0 . (3.33)

We also assume that f(X(t)) is sufficiently smooth. We can derive the Euler algorithm

by looking at the Taylor series expansion of X(t+ ∆t):

X(t+ ∆t) = X(t) + ∆t
dX(t)

dt
+

∆t2

2!

d2X(t)

dt2
+ . . . , (3.34)

where ∆t is a small increment of time. If we truncate the series after the O(∆t) term

and rearrange we get the approximation:

dX(t)

dt
≈ X(t+ ∆t) −X(t)

∆t
. (3.35)

Due to the truncation of this expansion we can say that the remaining terms form

the error in this approximation and is of order O(∆t). If we want to find our solution

X(t) for t ∈ [0, T ], we can split our domain into N small steps of size ∆t such that

tn = n∆t, n = 0, 1, 2, . . ., t0 = 0 and tN = N∆t = T , and using the Equation (3.35)

we can find the solution to dX(tn)
dt

= f(X(tn)) as:

X(tn+1) = Xn+1 ≃ X(tn) + ∆tf(X(tn)). (3.36)

We can then build up a solution for all time t ∈ [0, T ] by repeated application of

Equation (3.36). To obtain the implicit Euler method we can simply use a backwards

step when deriving the approximation to the derivative from the Taylor series to get:

dX(t)

dt
≈ X(t) −X(t− ∆t)

∆t
, (3.37)

and so using the same discretisation of the time interval:

X(tn+1) ≃ Xn+1 = X(tn) + ∆tf(Xn+1) . (3.38)

We can combine the explicit and implicit methods to obtain a semi-implicit method,

by evaluating some of the terms that make up f(X(t)) at time step n and some at

step n+ 1. The implicit or semi-implicit method tends to be chosen over the explicit

method since it is more stable, with respect to the step size chosen, and so if a larger

step size is used then the computation time is reduced while there is little trade off

with the error (as with the explicit method).
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3.3.2 Solving PDEs

There are many texts covering the subject of PDEs, again [59] and [88] contain chap-

ters on PDEs and a bit on their numerical solution, and the numerical analysis text

[10] has numerical schemes for the solution of PDEs. Consider a simple PDE of form:

∂X(x, t)

∂t
=
∂2X(x, t)

∂x2
+ f(X(x, t)) , (3.39)

with initial conditions X(x, 0) = X0, x ∈ [0, L] and appropriate boundary conditions

(either Dirichlet or Neumann). The temporal solution of the PDE is simple, we can

use any of the Euler methods outlined in the previous section, we use a semi-implicit

version. Before we apply the temporal integration however we must take care of the

spatial differential ∂2X(x,t)
∂x2 . To do this we also use a finite differences approximation.

Here we look at the central difference approximation which is a combination of the

forward and backward approximations we have seen so far:

X(x± ∆x, t) = X(x, t) ± ∆x
X(x, t)

dx
+

∆x2

2!

d2X(x, t)

dx2
± ∆x3

3!

d3X(x, t)

dx3
+ . . .

Then subtracting the backwards difference series from the forward difference series:

X(x+ ∆x, t) −X(x− ∆x, t) = 2∆x
dX(x, t)

dx
+ 2

∆x3

3!

d3X(x, t)

dx3
+ . . .

Truncating the series at the ∆x2 term gives:

dX(x, t)

dx
≈ X(x+ ∆x, t) −X(x− ∆x, t)

2∆x
. (3.40)

This only gives us the approximation to the first derivative but we can apply the same

steps again to get an approximation for the second order derivative (of order O(∆x2))

as:
d2X(x, t)

dx2
≈ X(x+ ∆x, t) − 2X(x, t) +X(x− ∆x, t)

∆x2
. (3.41)

Using the second-order central difference method and writing in a neater notation i.e.

we writeX as a vector with components xj i.e. X(t) =









X0

X1

...

XJ









, whereXj = X(xj , t).

We have used the spatial mesh x0, x1, . . . , xJ with step size ∆x, i.e. j = 1, 2, . . . , J ,

J = L
∆x

, where x ∈ [0, L]. So here the subscript j’s correspond to the value of the
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function X(x, t) at spatial point xj .

∂2X(x, t)

∂x2
|xj

≈ Xj+1(t) − 2Xj(t) +Xj−1(t)

∆x2
+ f(Xj(t)) (3.42)

≈ A

∆x2
X(t) + b . (3.43)

The matrix A is given by:












−2 1 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 1 −2












.

The vector, b, is used to incorporate Dirichlet boundary conditions (BCs), if chosen,

and Neumann boundary conditions can be incorporated into the matrix A itself.

Dirichlet BCs enforce chosen values of the solution on the boundary; therefore we

have X(0, t) = α1 and X(L, t) = α2, where α1 and α2 are the values chosen at either

end of the spatial domain. Neumann boundary conditions enforce a chosen value of

the normal derivative of the solution on the boundary. We have:

∂X

∂n̂
(0, t) = ∇X · n̂(0, t) =

∂X

∂x
· n̂(0, t) = γ1, (3.44)

n̂ is the normal direction at either end of the domain x ∈ [0, L], which is an outwards

direction. There is also an equation like Equation (3.44) for x = L, enforcing a value

of the derivative there. If we choose the derivative to be of unit value, in an outward

direction then the following entries of A must be changed: a11 from −2 to a11 = −1

and the very last, aJJ from −2 to aJJ = −1.

After applying the second order central difference approximation we have effec-

tively obtained a set of j ODEs which are expressed together by the use of the vector

notation and the use of matrix A. If we then apply the explicit Euler method, we

could equally choose the implicit, for the temporal integration we can write, for one

spatial point j, one line of the algorithm as:

Xn+1
j = Xn

j + ∆t

(
Xn

j+1 − 2Xn
j +Xn

j−1

∆x2
+ f(Xn

j )

)

. (3.45)

The discretisation can be written in matrix form as:

Xn+1 = Xn + ∆t

(
A

∆x2
Xn + F (Xn)

)

, (3.46)
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and for the implicit method:

(

I + ∆t(
A

∆x2
+ F )

)

Xn+1 = Xn, (3.47)

and finally for a semi-implicit method:

(

I +
∆t

∆x2
A)

)

Xn+1 = Xn + F (Xn). (3.48)

These discretisations will be used in the simulation of the voltage in the passive cable

as used in the SDS and BR models in subsequent chapters.

3.3.3 Numerically simulating a branched passive cable struc-

ture

Figure 3.3: Diagram of the branched SDS model. The straight lines resemble the cable
(modelled by the passive cable equation) and the protruding structures represent the
discretely attached spines on each branch. Each individual branch is modelled by the
standard SDS model as in Section 2.8.

We now show how to numerically solve the problem of a branched structure. A

branch point is the intersection of 3 lengths of electric cable, here the cable is modelled

using the passive cable equation see Section 2.2.1. We consider a branched structure

in Chapter 8 when we consider how the voltage spreads throughout a 3 branched SDS

model, Figure 3.3. Each of the branches can be solved with the numerical methods

described in Section 3.3, up to the penultimate discretisation point before the branch

point, which is itself a discretisation point. We will develop this algorithm, by follow-

ing [93] using a notation that can be applied to any point on any of the branches. We

now label the points in space: xj−1 + ∆x = xj = xj+1 −∆x, with ∆x as before is the

spatial step size. In the final algorithm we will number the nodes, after deriving the

necessary approximations at the branch point.
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We use this notation and central finite differences to approximate the spatial deriva-

tives of the voltage in the cable V (x, t), Equation (3.49).

∂Vj

∂xj

=
Vj+1 − Vj−1

2∆x
+

∆x2

6

∂3Vj

∂x3
j

+O(∆x2) (3.49)

∂2Vj

∂x2
j

=
Vj+1 − 2Vj + Vj−1

∆x2
+

∆x2

12

∂4Vj

∂x4
j

+O(∆x2) (3.50)

When we consider the branch point, point 6 in Figure 3.4, we need to solve each of

the branches at the final point before branching, and this leads us to the problem that

either one of xj−1 or xj+1, depending on which side of the branch point you are on,

will be missing. We can use the identity: V (x, t) − Vj(t) =
∫ x

xj

∂V (s,t)
∂s

ds and repeated

integration by parts to get:

V (x, t) = Vj +
∞∑

k=1

(x− xj)
k

k!

∂kVj

∂xk
(3.51)

If we use x = xj+∆x and x = xj−∆x and rearrange Equation (3.51) for an expression

to O(∆x2) accuracy we obtain, for a branch to the left (Equation (3.52)) of the branch

point and a branch to the right (Equation (3.53)) of the branch point respectively:

∂2Vj

∂x2
j

=
8Vj+1 − Vj+2 − 7Vj

2∆x2
− 3

∆x

∂Vj

∂xj

+O(∆x2) (3.52)

∂2Vj

∂x2
j

=
3

∆x

∂Vj

∂xj

− 7Vj − 8Vj−1 + Vj−2

2∆x2
+O(∆x2) . (3.53)

If we re-write the cable equation, Equation (2.12): ∂V
∂t

= D ∂2V
∂x2 − I, with I =

V
τ
− Draρ

r
(V̂ − V ), so at a point away from the ends of the branches we can use the

same discretisation as before Equation (3.45). However when we are at the branch

point we must use a boundary condition that incorporates all the contributions from

all the branches. If we consider a branch point which has one branch to the left and

2 branches to the right then we can obtain the voltage evolution by using Kirchoff’s

current at a node law: Ij−1 +
∑2

k=1 I
k
j+1 = 0. Using all our discretisation so far we

get expressions for:

Ij−1 =
∂Vj

∂t
+ Ij −

D

2∆x2
(8Vj+1 − 7Vj − Vj+2) (3.54)

and

Ij =
∂Vj

∂t
+ Ij −

D

2∆x2
(7Vj − 8Vj−1 + Vj−2) . (3.55)

Using this form of the discretisation we obtain a new matrix of discretisation A, as in
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Equation (3.43). As an example, consider the branched structure in Figure 3.4 which

has 3 nodes on each branch. The resulting matrix for this structure is:

Figure 3.4: Diagram of a branched cable structure with one parent, which is obviously to
the right of the branch point, and two daughter branches each to the left of the branch
point. Each of the branches has three nodes and a shared node at the branch point.
























−D1/2 D1 −D1/2 0 0 0 0 0 0 0

D1 −2D1 D1 0 0 0 0 0 0 0

0 D1 −2D1 0 0 0 D1 0 0 0

0 0 0 −D2/2 D2 −D2/2 0 0 0 0

0 0 0 D2 −2D2 D2 0 0 0 0

0 0 0 0 D2 −2D2 D2 0 0 0

0 −D1/3 8D1/3 0 −D2/3 8D2/3 B −8Dp/3 Dp/3 0

0 0 0 0 0 0 Dp −2Dp Dp 0

0 0 0 0 0 0 0 Dp −2Dp Dp

0 0 0 0 0 0 0 −Dp/2 Dp −Dp/2
























,

where D1, D2 and Dp are the diffusion constants for the 1st daughter, 2nd daughter

and parent branches respectively and B = 7Dp/3− 7D1/3− 7D2/3. It can been seen

that the 1, -2, 1 structure is still there on the lines of the matrix that represent the

parts of the cable away from any sort of boundary, terminal or branching.

3.3.4 Solving stochastic systems

Here we outline the numerical schemes implemented to solve the SDEs and SPDEs

that we obtain when looking at the stochastic versions of the dendrite models. We

make simple extensions of the numerical schemes used for the ODEs and PDEs, [41],

[30].
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Euler-Maruyama method

The Euler-Maruyama method is a simple numerical method for solving SDEs that is

an extension of the Euler method for ODEs Section 3.3.1. When the noise is white

then the EM method is of O(∆t
1
2 ). We consider a general Itô SDE of the form:

dX(t) = f(X(t))dt+ g(X(t))dW (t)

X(t) = X0 +

∫ T

0

f(X(t))dt+

∫ T

0

g(X(t))dW (t)

Just as the Euler method uses the truncated Taylor expansion the EM algorithm also

uses this for the deterministic part of the SDE and uses the definition of the stochastic

integral for the stochastic part. It can be implemented as follows:

Xn+1 = Xn + f(Xn)∆t+ g(Xn)∆W n. (3.56)

With discretised interval:∆t = T/N and ∆W n = W (tn+1) − W (tn) is a random

variable with mean = 0, and variance = tn+1−tn = ∆t. The first two terms on the right

hand side of the approximation are clearly the same as for the standard Euler method

Equation (3.36) and the last term is the stochastic integral and is approximated by

the Riemann type step as was described in Section 3.1.3, since we have shown that the

sum
∑∞

n=0 g(X
n)(W n+1 −W n) is the definition of the Itô stochastic integral. When

the Brownian increment (W (tn+1)−W (tn)) is simulated in Matlab we use the inbuilt

pseudo-random number generator function ’randn’ and in order to ensure the correct

variance of the increment we scale the numbers produced by ’randn’ by
√

∆t since

’randn’ produces numbers from a normal distribution N (0, 1).

Stochastic Heun method

The Heun algorithm is a second order Runge-Kutta method and uses the Euler al-

gorithm as a predictor step, and therefore is sometimes called the improved Euler

method. The traditional Heun method can be easily extended to solve a Stratonovich

SDE to O(∆t) (for white noise). Consider the simple SDE:

dX(t) = f(X(t))dt+ g(X(t)) ◦ dW (t) (3.57)

Where the variables are as before and the integral this time is obviously interpreted

in the Stratonovich sense, i.e. we need to evaluate the integral at the mid point of

the interval tj − tj−1. First we need the predictor step given simply by the Euler-
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Maruyama method above:

X̃n+1 = Xn + f(Xn)∆t+ g(Xn)∆W n , (3.58)

this gives us the solution to dX(t) = f(X(t))dt + g(X(t))dW (t) in the Itô sense,

which can then be used to find the Stratonovich integral, since it requires some prior

knowledge of the functions f(X) and g(X).

And so the solution is given by:

Xn+1 = Xn +
∆t

2
(f(Xn) + f(X̃n)) +

1

2
(g(Xn) + g(X̃n))∆W n. (3.59)

This clearly relates back to the definition of the Stratonovich integral, where the

midpoint (of the time interval) is used to evaluate the function g(X), instead of the

left hand end point as in the Itô case. The Equation (3.6) shows that the point

chosen will effect the outcome of the integral and for the Stratonovich integral we

have g(X(t))+g(X(t+∆t))
2

. Again the Brownian increment is generated using Matlab’s

’randn’ function and the scaling
√

∆t to ensure the correct variance.

Solving SPDEs

When we come to solve an SPDE, then we use a combination of the methods seen so

far. We first use part of the method described in Section 3.3.2, which uses the central

finite difference method to approximate the spatial derivative and gives us a set of

coupled ODEs (one for each spatial point). These ODEs can be solved using one of

the methods for stochastic temporal integration described above, either EM or Heun.

We use the second-order central difference method, as before, and write X as a vector

with components xj i.e. X(t) =









X0

X1

...

XJ









, where Xj = X(xj , t). We have used the

spatial mesh x0, x1, . . . , xJ with step size ∆x, i.e. j = 1, 2, . . . , J , J = L
∆x

. We can

again write the spatial differential term as: ∂2X
∂x2 ≈ A

∆x2X, where A is the following

matrix: 










−2 1 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 1 −2












.
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Choosing Neumann boundary conditions enforces a chosen value of the normal deriva-

tive of the solution on the boundary. We have:

∂X

∂n̂
(0, t) = ∇X · n̂(0, t) =

∂X

∂x
· n̂(0, t) = β1, (3.60)

n̂ is the normal direction at either end of the domain x ∈ [0, L], which is an outwards

direction. There is also an equation like Equation (3.60) for x = L, enforcing a value

of the derivative there. If we choose the derivative to be of unit value, in an outward

direction then the following entries of A must be changed: a11 from −2 to a11 = −1

and the very last, aJJ from −2 to aJJ = −1. Therefore we have in matrix form the

set of J coupled ordinary differential equations (in Itô integral form):

X ≈ X0 +

∫ T

0

(
A

∆x2
X + f(X)

)

+

∫ T

0

g(X)dW . (3.61)

Next we must approximate the temporal integration with either the EM method (or

the Heun method if using the Stratonovich interpretation):

Xn+1
j = Xn

j + ∆t

(
Xn

j+1 − 2Xn
j +Xn

j−1

∆x2
+ f(Xn

j )

)

+ g(Xn
j )∆W n

j , (3.62)

where we have shown the temporal integration for one point in space and used the

temporal mesh: t ∈ [0, T ], split into N small steps of size ∆t such that tn = n∆t,

n = 0, 1, 2, . . ., t0 = 0 and tN = N∆t = T . ∆W n
j = Wj(t

n+1) −Wj(t
n) is a Wiener

increment and its form depends on the type of noise we consider. If the noise we are

considering is white in space and time then again we can use the ’randn’ function in

Matlab but the scaling of the variance will be slightly different, we must use
√

∆t
∆x

,

[30]. To generate a noise which is temporally correlated but white in space then we

use the OU process at each point in space:

dKj(t) = −βKj(t)dt+ dWj(t) . (3.63)

In Equation (3.62) ∆W n
j is replaced by ∆Kj = Kn+1

j −Kn
j = −∆tβKj +∆W n

j . Again

the Wiener increment is generated (for each point in space) by the ’randn’ function

in Matlab and scaled by
√

∆t
∆x

.

The generation of a spatial correlated noise is slightly more complicated and is

introduced by a process described in e.g. [100], [30]. This form of the spatially

correlated noise is constructed such that it is easy to simulate and so that it satisfies

chosen properties of the correlation length and the following working follows [100]. If
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we recall that when we defined a Q-Wiener process, Equation (3.24) we had the sum:

W (x, t) =
∑

j≥0

λ
1
2
j (x)ej(x)bj(t) . (3.64)

Assuming that Q has the same eigenfunctions as the Laplacian (and assuming Neu-

mann boundary conditions), ∆, ej(x) =
√

2
L

cos(πjx

L
) where j = 1, 2, 3, . . . and

e0(x) =
√

1
L

are orthonormal eigenfunctions of the Laplacian on [0, L], bj(t) are

standard Brownian motions and λj are coefficients chosen to satisfy a form of spatial

correlation. We choose a correlation such that the noise is white in time and with a

short range correlation in space, correlation length ζ . The covariance and correlation

function are given by Equation (3.65) and Equation (3.66):

E(W (x, t)W (x′, t′)) = Fc(x− x′) min{t, t′} (3.65)

Fc(x) =
1

2ζ
exp(−πx

2

4ζ2
) . (3.66)

Fc(x) is the correlation function, and has been chosen to have an exponential form to

satisfy the short range condition, [100]. Note that the correlation function can take

any form required. We now show how to compute the coefficients. We start with the

covariance Equation (3.65), which can also be written as:

E (W (x, t)W (x′, t′)) = min{t, t′}
∑

j≥0

λjej(x)ej(x
′) (3.67)

Setting x′ = 0, t = t′, substituting, Equation (3.66) and equating, Equation (3.65)

and Equation (3.67) become:

t
1

2ζ
exp(−πx

2

4ζ2
) = t

∑

j≥0

λjej(x)ej(0) = t
1√
L

∑

j≥0

λjej

Then multiplying both sides by ej =
√

2
L

cos(πjx

L
), and integrating over x we obtain:

1

2ζ

∫ ∞

−∞
ej exp(−πx

2

4ζ2
)dx =

√
Lλj

∫ ∞

−∞
ejejdx, (3.68)

using the orthonormal properties of the eigenfunctions:

1

2ζ

√

2

L

∫ ∞

−∞
cos(

πjx

L
) exp(−πx

2

4ζ2
)dx =

1√
L
λj . (3.69)

Finally using the fact that
∫∞
−∞ exp(−ax2) cos(bx)dx =

√
π
a

exp(− b2

4a
) we can rearrange
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to obtain:

λj = exp(−πj
2ζ2

2L2
) , (3.70)

for the coefficients. Now that we have computed the coefficients then we can use

this noise in Equation (3.62) and take the increment, as a vector in space, ∆W =
∑N

j=1 λ
1
2
j (x)ej(x)(bj(t

n+1) − bj(t
n)). The sum is truncated to the number of spatial

points N . This can implemented in Matlab by generating the Brownian increments

as before with the ’randn’ function and then using a discrete cosine transform, ’idct’,

to generate the full sum with the correct basis functions.

And so we can write the general discretised Itô SPDE in vector form as:

Xn+1 = Xn + ∆t

(
A

∆x2
Xn + f(Xn)

)

+ g(Xn)∆W n, (3.71)

where ∆W can be chosen according to the type of noise required.

If we wish to consider a Stratonovich integral then we can implement the Heun

method for the temporal integration as for SDEs. So using, as the predictor step (in

vector notation):

X̃
n+1

= Xn + ∆t

(
A

∆x2
Xn + f(Xn)

)

+ g(Xn)∆W n, (3.72)

we can then apply the Heun step, to get the following discretised Stratonovich SPDE:

Xn+1 = Xn +
∆t

2

(
A

∆x2
Xn + f(Xn) +

A

∆x2
X̃n + f(X̃n)

)

+
(

g(Xn) + g(X̃n)
)

∆W n. (3.73)

3.4 Measuring the effect of the noise on travelling

waves in a dendrite model

We now look at ways in which to investigate how the presence of noise effects the

model of a spiny dendrite. We look at how the different types of noise effect the

travelling wave in the SDS and BR models in Chapter 4 and Chapter 5/Chapter 6 but

here we discuss the methods used to measure the effect of the noise on the travelling

wave in general. When we simulate the models of the dendrites, with some noise, we

initiate a wave at one end of the cable and record the voltage in the cable, V (x, t)

and in the spines U(x, t) for all points in space and time defined by our discretisation.

We therefore have two matrices V ∈ RJ×N and U, one each for V (x, t) and U(x, t)

which will be of the size J ×N , where J is the number of spatial points and N is the

number of temporal points. In the case of the SDS model we only record U(xn, t) at
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the position of the spines xn, n spines, since the matrix would be zero at points in

between the spines. In the SDS case the matrix U, J will be the number of spines

rather that of all spatial points.

3.4.1 Mean voltage plots

Using the voltage matrix V for the voltage in the cable at all points in space and time

of our chosen domain. This means that we have a matrix, V ∈ RJ×N , where J is the

length of space vector and N is the length of time vector, so the entry at Vjn is the

voltage in the cable at xj at time tn. For any given strength of noise the simulation

is repeated many times, to give a large number of realisations, Nsample, and for each

realisation the matrix voltage V is saved. The mean voltage is then simply given by

E(V) =
P

Nsample
i=1 Vi

Nsample
, where Nsample is the total number of realisations considered.

3.4.2 Distance travelled by a stochastic wave in the SDS

model

One measure of the effect of the noise in the system is the distance travelled along the

cable by a wave. In the deterministic case we have two simple regimes which depend

on the system parameters either any wave initiated will travel along to the end of

the cable or any wave initiated will fail to travel the full length of the cable. As an

example, see Figure 2.9, which shows the range of spine spacing d for which the SDS

system supports a travelling wave. When we include noise in the system we no longer

have these two simple cases. Instead, for a chosen parameter, when there is noise

present we have a certain probability that the wave will travel the full length of the

cable, will fail to propagate at all and a certain probability that it will fail somewhere

in between these two extremes.

To measure the distance travelled we do not need to look directly at the voltage

in the cable, for the SDS model. We can simply consider the firing times of the spines

since it is the sequential firing that will determine if the wave has failed at any point.

During the simulation of a single realisation we can record the firing times of each

spine as a matrix of size ’number of spines × time steps’ and so can easily see at which

spine the propagation fails. The matrix of firing times, call it F ∈ RM×N , where M

is the number of spines and N the number of time steps. Each entry is either tn if

the spine is firing at that time or 0 if not. We sum the matrix, F, along each row to

obtain a new vector, of the same size as the number of spines, and so each entry is

associated with one spine. If any of these entries in the new vector are zero then the

corresponding spine has not fired and the propagation has failed. From this we can

determine the distance travelled (measured in spine number). As for the mean voltage

we save this distance for each realisation and then average over the number of samples
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to obtain an expected extent of propagation for a given level of noise intensity. We

can also check if the spines are firing sequentially by looking at the first time recorded

for each spine in F. If these times are increasing as the spine number increases then

the spines are firing in order.

3.4.3 Speed of propagation of stochastic wave

We determine the speed of propagation in two ways. The first is to use the simple

definition of speed: c = d
t
, where c is the speed, d is the distance travelled and t

the time taken to travel distance d. This method gives only the average speed over

the time t. The second method introduces an instantaneous speed as well as a time

averaged speed. This second method uses a scaled convection term added to the cable

equation to measure the movement of the saltatory travelling wave with respect to

a fixed template function, at each time step. This method follows the work in [69],

which uses a template function to freeze a stochastic travelling wave and so measure

its speed. In this work the wave is not actually frozen but allowed to travel whilst

still measuring the instantaneous speed by the same template comparison method as

[69].

For all measures of speed the final computed values, for all levels of noise, are scaled

by the deterministic speed, cdet. This rescaling allows comparison of the different

models which have different absolute values for the speed; it also makes it easy to see

in the graphs if the wave is speeding up (c > 1) or slowing down (c < 1), with respect

to the deterministic wave.

Measuring speed by equation of motion

In order to find the speed of any wave propagating on the cable we simply find the

times, t1 and t2, at which the wave crosses two points, x1 and x2, along the cable and

use:

c =
x2 − x1

t2 − t1
. (3.74)

The way in which we define ’crossing’ a point is outlined below. To use this equation

for speed we must first choose the two points x1 and x2; the further apart these two

points are, the more accurate the average speed will be. Note that the speed will be an

average over the distance travelled, x2 −x1, and not an instantaneous speed. We take

our two points, x1, x2, to be close to the point at which the wave is initiated x = 0

and end of the cable, x = L respectively. If the wave fails to reach x2 then we say

that the wave has failed to propagate. Failure is determined by the size of the voltage

in the cable at point x2; if V (x2, t) ≥ θ, θ is a threshold value chosen from the voltage

values in the deterministic case, then it is still propagating. The threshold value must

be large enough that the voltage will only reach this level if the voltage is close to that
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of the deterministic system and so we avoid the case where the propagation is noise

induced, i.e. we are not measuring small fluctuations induced by noise only but we do

see the underlying signal too. To determine the time at which the wave crosses point

Figure 3.5: Schematic of voltage, V (t) at a point in space, xj for all time above threshold
with interpolation points shown.

xj , j ∈ [1, 2], we first find all the points in time where the voltage is above threshold,

see Figure 3.5. We then find the first point at which V (xj , t) = θ, point A and the

last point at which V (xj , t) = θ, point B. We then take the point in the middle (as

defined below), point C, as our time, tn that the ’wave’ crosses point xj.

A = min{t|V (xj , t) = θ} (3.75)

B = max{t|V (xj , t) = θ} . (3.76)

We need to find the times corresponding to points A and B before we can find the time

corresponding to point C. Unfortunately the voltage will rarely be exactly θ therefore

we cannot get A and B directly from our saved matrix of voltage data, so we need to

interpolate to find points A and B. To do this we need to find the last point at which

the voltage is known before A or B and the first point at which the voltage is known

after A or B. We will call these four new points V (A−), V (A+), V (B−) and V (B+).

A− = sup{t|V (xj , t) ≤ θ, t < A} (3.77)

A+ = inf{t|V (xj , t) ≥ θ, A < t < B} (3.78)

B− = sup{t|V (xj , t) ≥ θ, A < t < B} (3.79)

B+ = inf{t|V (xj , t) ≤ θ, t > B} (3.80)
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Note that t(A−) ≤ t(A+) ≤ t(B−) ≤ t(B+). If t(A−) = t(A+), t(B−) = t(B+), then

we have already found the time tn that the wave passes point xj . If they are not

equal then the differences t(A+)− t(A−) = t(B+)− t(B−) = ∆t and we can find these

points using the ’find’ command in Matlab. Since our points t(A−), t(A+), t(B−) and

t(B+) are only ∆t apart we use interpolation to find the times t(A) and t(B). We use

linear interpolation to create a straight line between our sets of known points V (A−)

and V (A+) with t(A−) and t(A+) and V (B−) and V (B+) with t(B−) and t(B+) e.g.

V − V (A+) = V (A+)−V (A−)
t(A+)−t(A−)

(t− t(A+)). Now that we have an equation for the line, we

can use it to find the time at which V = θ. To implement this interpolation technique

we use the Matlab function ’interp1’ which uses a linear interpolation to find t(A)

and t(B). For each of the points we either have a time that the ’wave’ reaches that

point or no data if the ’wave’ fails before the point. We then use the two points to

evaluate the speed:

c =
x2 − x1

t2 − t1
. (3.81)

Again the final step is to find the speed over a number of realisations at each level of

noise intensity then find the average value.

Measuring speed by template comparison

In this method we assume we can measure the speed of the pulse at each point in

time. For a general PDE of the form:

∂V

∂t
= B

∂2V

∂x2
+ f(V ) , (3.82)

we can use a travelling wave anzatz: ξ = x+γ(t), where γ(t) is the unknown position

of the wave at each point in time (note that γ = ct, when the speed, c, of the wave is

known and constant).

Inserting this anzatz to the PDE (and replacing ξ by x) we obtain:

∂V

∂t
= B

∂2V

∂x2
+ f(V ) + λ(t)

∂V

∂x
(3.83)

where λ(t) = ∂γ

∂t
. We must also introduce a phase fixing condition to compensate for

the extra variable λ(t): ψ(V, λ) = 0. We choose to match the travelling wave with a

template function, Ṽ : R → R, to satisfy the phase condition. To do this we choose to

minimise the L2 norm: ||V − Ṽ ||L2, with respect to the distance between the solution,

V and the template, Ṽ :

〈dṼ
dx

, V − Ṽ 〉 = 0 . (3.84)

The function Ṽ can be chosen to be a range of different shapes, and this choice will

effect the value of speed obtained, but not the behaviour of the system. We can use a
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Gaussian function that is similar in amplitude and width to the voltage profile V (t) at

one point in space xj , and we position this template at the start of a cable before the

spines begin. (Note that the travelling pulse changes profile depending on its position

along the cable). Alternatively we can run a simulation of the deterministic SDS

model on the domain we are interested in to obtain Vdeterm(x, t) then use this as the

template solution, i.e. at each time step we compare the stochastic travelling wave to

the deterministic wave at the same time step, only the deterministic wave is shifted

backwards so that it ’runs’ behind the stochastic wave. This means that, especially for

small noise when the difference in speed of the deterministic and stochastic waves is

small, the template and the travelling wave both change profile at approximately the

same time. We can use Equation (3.84) along with our chosen Ṽ and the discretised

solution:

V n+1
j = V n

j + ∆t
V n

j+1 − 2V n
j + V n

j−1

∆x2
+
Draρ

r
(V̂ n − V n+1

j ) − V n+1
j

τ

+ λn
V n

j+1 − V n
j−1

2∆x
) (3.85)

to obtain a value for the speed, λ at each time step of the simulation.

The difference we have to that of the examples in [69] is that we do not actually freeze

the travelling wave. So while we use Equation (3.85) to measure the speed we use

Equation (4.6) to evolve the dynamics ahead at each time step. In doing this the

wave is free to travel the length of the cable but we obtain a vector of speeds at the

end of the simulation. If we say λ(t) = (λ(t0), λ(t1), . . . , λ(tN)), then we can get a

time averaged speed for the wave:

Λ =
1

T

∫ T

0

λ(t)dt . (3.86)

In order to obtain an average wave speed when we consider noise in the system, we

apply the above method to measure a time averaged speed for each realisation of the

noise and take an average over the number of realisations and so obtain an expected

value of the speed for a certain value of the noise strength.
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Noise in the Spike diffuse spike

model

4.1 Introduction

The motivation for looking at this model with noise comes from the paper [109] by

Timofeeva, Lord and Coombes, which builds on earlier work by Coombes and Bresslof

[15], [16]. The neuron’s environment is inherently noisy, and so it is important to

consider noise in any realistic model of the neuron and the paper [109] briefly looks

at some of the effects of noise in the spine head dynamics of the SDS model for spiny

dendritic tissue. The aim of this chapter is to investigate more fully the SDS model

with noise included in various forms. The noise is added to the spine head dynamics

and to the cable equation to represent the different sources of stochastic behaviour in

a real neuron. The noise in the spine head can be thought to arise from the stochastic

nature of the synaptic gating process. In a real dendrite the cable is not passive and

the inclusion of noise in the cable can again arise from the stochastic gating in ion

channels. We also consider the type of the noise used; it may be simply space/time

white noise or a noise with either a spatial or temporal correlation. In this chapter

we first state the stochastic equations required to describe the noisy SDS model, in

Section 4.2, and give the fully discretised version of these equations in Section 4.3. We

continue with the outline of the algorithm used to solve these equations numerically

and build up the solution for the spine head and cable voltage over the whole space

and time domain. We also look at the ways in which we measure the effect of the

noise; through mean voltage plots, average distance travelled along the cable and

the speed of propagation, Section 3.4. Finally we look at the results, Section 4.4,

of the simulation of the SDS model with the different types of noise and how the

voltage, distance and speed measures change as the noise intensity and correlation

scale changes.
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4.2 Constructing a stochastic SDS model

Here we set out the full system of stochastic differential equations and stochastic par-

tial differential equations that describe the noisy spiny dendrite, for white, temporally

and spatially correlated noise. All the basic deterministic equations from which we

construct the SDEs and SPDEs from are outlined fully in Chapter 2.

4.2.1 Noise in the spine heads

We first introduce noise to the spine heads by the addition of temporal white noise

to the IF model, Equation (2.31). This noise can be thought of arising from the

stochastic gating process at the synapse. To do this we have to construct an SDE

from the ODE, by adding a noise term, that describes the IF process. We rearrange

Equation (2.41) in a neater form and added the noise term to get, for spine n:

dUn(t) =

(
Vn(t)

Ĉr
− ǫUn(t)

)

dt+ (µ+ νg(Un(t)))dWn(t)

−
(

h
∑

m

δ(t− Tm
n )

)

dt . (4.1)

The parameters are the same as in Chapter 2, with the addition of ǫ = 1
Ĉ

(1
r̂

+ 1
r
), µ

is the strength of additive noise, ν the strength of multiplicative noise and Wn(t) is a

Wiener process, as before, for the nth spine. From here on we will not explicitly write

out the reset term in any IF equation to make reading easier. Also the reset term

is not necessary for the consideration of the noisy path to threshold. The function

g(Un(t)) is a function of the voltage, and the form of this function will be specified for

each case considered in all subsequent sections of this chapter. If ν = 0, µ 6= 0 then the

noise is purely additive, but ν 6= 0, µ = 0 then the noise is said to be multiplicative.

For multiplicative noise it is assumed that the amount of noise in the system is related

to the amount of activity in the system since if there is more activity then there will

be more synaptic events and so more channel noise. Both additive and multiplicative

noise could be considered together since the additive could be considered a general

’background’ noise, arising from surrounding neurons, and the multiplicative a specific

activity related noise originating, for example, in the stochastic nature of the ion

channels at the synapse of the neuron in question.

We may also consider the noise in the spine heads to be temporally correlated with

the Ornstein-Uhlenbeck process, Section 3.1.7 in Chapter 3, describing this type of
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correlation. This gives the following system:

dUn(t) =

(
Vn(t)

Ĉr
− ǫUn(t)

)

dt+ (µ+ νg(Un(t)))dKn(t) (4.2)

dKn(t) = −βKn(t)dt+ dWn(t) .

The variables here are the same as for Equation (4.1) with the following additions:

Kn(t) and β are the same parameters described in Section 3.1.7, and as β increases

it should be noted that the temporal correlation scale gets shorter.

Finally we consider spatially correlated noise in the spine heads where the noise is

white in time but there is some correlation between the noise received by each spine

(at any particular moment in time), which depends on the correlation scale chosen

and the distance between the spines. As outlined in Section 3.1.10 we have chosen a

form of spatially correlated noise which has a short range and so nearby spines will

experience a more strongly correlated noise than spines which are further apart on

the cable. Now the SDE describing the spine head dynamics is:

dUn(t) =

(
Vn(t)

Ĉr
− ǫUn(t)

)

dt+ (µ+ νg(Un(t)))dWn(xn, t) , (4.3)

where Wn(xn, t) is the spatially correlated noise given by Equation (3.64) and Equa-

tion (3.70) and evaluated at point xn which is the position of the nth spine. Note

that this noise is white in time and that the correlation is between points in space

which, in the deterministic case, are diffusively coupled through the cable.

4.2.2 Noise in the cable

We can introduce noise into the system in the form of a space-time white noise in the

cable Equation (2.40) to obtain a stochastic partial differential equation (SPDE):

∂V

∂t
= D

∂2V

∂x2
− V

τ
+Draρ(x)

V̂ − V

r
+ (µ+ νg(V ))

∂W (x, t)

∂t
. (4.4)

The parameters are as in Equation (2.40), with µ, ν the strength of additive and

multiplicative noise respectively and g(V ) is a function specified in each subsequent

section. W (x, t) is a space-time Wiener process, see Section 3.1, which can be white or

correlated in time or space. The noise in the cable may also be temporally correlated,

as in the spine heads, using the OU process to generate the temporal correlation but
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maintain the white property in space. The cable equation then becomes:

∂V =

(

D
∂2V

∂x2
− V

τ
+Draρ(x)

V̂ − V

r

)

∂t+ (µ+ νg(V ))∂K(x, t) (4.5)

dK(x, t) = −βK(x, t)dt+ dW (x, t) .

Finally in the cable we also consider a noise which is white in time but correlated

in space, as outlined in Section 3.1.10, where W (x, t) is constructed as before in

Equation (3.64).

4.3 Solving the stochastic SDS model

Here we implement the numerical methods set out in Section 3.3 in Chapter 3 for the

equations describing the stochastic SDS model. We conclude by using the discretised

equations in a loop that solves the stochastic SDS model over the whole space and

time domain chosen. We will write out explicitly the discretised equations used in the

simulations, the parameters used and the boundary conditions employed.

4.3.1 The discretised SDS model

All stochastic integrals in this chapter are considered in the Itô sense and the equa-

tions, for the SDS model, are evaluated on the domain, x ∈ [0, L] and t ∈ [0, T ],

where L is the length of the cable and T the time over which the system is solved.

We employ the same discretisation as in Chapter 3: xj is a point on the spatial mesh

x0, x1, . . . , xJ with step size ∆x, i.e. j = 1, 2, . . . , J J = L
∆x

and tn is a point on

the temporal mesh t0, t1, . . . tN of step size ∆t, n = [1, 2, . . . , N ], and N = T
∆t

, so for

example V n+1
j = V (xj, tn+1).

The stochastic cable equation, given by Equation (4.4), is solved with a central

finite difference method, Equation (3.43), to approximate the second derivative of

V (x, t) and with a semi-implicit Euler-Maruyama method, Equation (3.56), to inte-

grate over time.

V n+1
j = V n

j + ∆t

(

V n
j+1 − 2V n

j + V n
j−1

∆x2
+
Draρ

r
(V̂ n − V n+1

j ) − V n+1
j

τ

)

+ (µc + νcg(V
n
j ))∆W n

j (4.6)

The Wiener process, W (x, t) can be a spatio-temporal white noise or the spatially

correlated, white in time noise given by Equation (3.64), and ∆W n
j = (W n

j −W n−1
j ).

If the noise is generated using an OU process then the final discretisation has an extra
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term:

V n+1
j = V n

j + ∆t

(

V n
j+1 − 2V n

j + V n
j−1

∆x2
+
Draρ

r
(V̂ n − V n+1

j ) −
V n+1

j

τ

)

− βKn
j (µ+ νg(V n

j )))∆t+ (µ+ νg(V n
j ))∆W n

j . (4.7)

We obtain Kn
j by solving the OU SDE with an explicit Euler-Maruyama method, the

noise is white in space since the Brownian increment is generated independently for

all points in space (i.e. there is a different OU path for each point in space):

Kn+1
j = Kn

j − ∆t(βKn
j ) + ∆W n

j . (4.8)

We must also solve the spine head dynamics up to threshold (h), Equation (4.1)

and we do so using an explicit Euler, see Section 3.3.1 ,or Euler-Maruyama method,

Equation (3.56), for the deterministic and stochastic cases respectively. So for the

mth spine, with temporal white noise, or spatially correlated noise, the discretised IF

equation is:

Un+1
m = Un

m + ∆t

(
V n

m

Ĉr
− ǫUn

m

)

+ (µ+ νg(Un
m))∆W n

m. (4.9)

Here V n
m is the voltage in the cable evaluated at the position of the mth spine, and Wm

is the Wiener process for the mth spine. Each Wm are independent Brownian paths

if the noise is white but are correlated according to Equation (3.64) if we consider

a spatially correlated noise. In the case of temporally correlated noise we have the

extra term from the OU dynamics:

Un+1
m = Un

m + ∆t

(
V n

m

Ĉr
− ǫUn

m) − (βKn
m(µ+ νg(Un

m))

)

+ (µ+ νg(Un
m))∆W n

m , (4.10)

where again we have independent Wm’s and where Kn
m is obtained using Equation

(4.8).

When considering an SDE with white noise we can find an exact solution to

Equation (4.1), as outlined in Section 3.1.5. As long as we choose the function g(U)

to satisfy the linear conditions, Equation (3.14) and Equation (3.15), which we can

do with the simple function g(U) = U . We can equate from Equation (4.1) the

appropriate terms, a(t) = V

Ĉr
, B(t) = −ǫ, c(t) = µ and D(t) = ν, and obtain the
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following solutions for a purely additive or purely multiplicative noise respectively:

Um(t) = e−ǫt

[

Um(0) +
1

Ĉr

∫ t

0

(Vm(s)eǫs)ds+ µ

∫ t

0

eǫsdWm(s)

]

, (4.11)

Um(t) = e−(ǫ+ 1
2
ν2)t+νWm(t)

[

Um(0) +
1

Ĉr

∫ t

0

V (s)e(ǫ+
1
2
ν2)s−νWm(s)ds

]

. (4.12)

Observe that in Equation (4.11) there remains a stochastic integral to evaluate and so

it may be of no computational advantage to use the exact solution as opposed to the

original discretised SDE, Equation (4.9). However in the case of purely multiplicative

noise the exact solution negates the need for a stochastic integral to be evaluated and

so may help the computational efficiency.

Now that we have a numerical framework for solving for the voltage in both the

cable and the spine heads we must combine them to get a solution for the full system.

We run a loop in time, solving for all points in space at each time step, to do this we

follow this set of steps:

1 Set all parameters of the system;

2 Initial conditions, V (x, t0) = 0, U1(xSpine1, t
0) = U2(xSpine2, t

0) = h + 0.01,

where h is the threshold for firing, i.e. set the first two spines above threshold

to initiate a wave;

3 Evolve all spine head dynamics forward one step by Equation (4.9) or Equation

(4.10);

4 Check which spines are above threshold and out with the refractory time, to

determine which spines can fire Um(tn) ≥ h, tn > T n−1
m + τR, where T n−1

m is the

last firing time of the mth spine. Also need to check which spines have already

fired and are still firing i.e. tn < T n−1
m + τs, τs is length of time the spine is

firing;

5 Keep track of the firing spines, in a firing matrix, of zeros and ones for not firing

and firing respectively, F of size: no. spines M×N no.time steps;

6 Construct the injected voltage, V̂ (x, tn), this will be η0 (strength of injected

pulse) at xm corresponding to a firing spine, the mth spine, and zero everywhere

else;

7 Now evolve cable voltage forward one time step, using Equation (4.6);

8 Save U(tn) and V (x, tn) in matrices;

9 Go back to step 3 and repeat until tn = tN = T ;
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Finally we have a full picture of the voltage in the cable and spine heads at each

point in space and time saved in the two matrices U and V, size M ×N and J × N

respectively, we also have all the firing times saved in the matrix F. For each noise

intensity we choose, we can simulate the stochastic SDS model many times, Nsample,

and obtain an average value for the voltages. We may also measure the effect of the

noise on the distance travelled and speed of propagation of any travelling waves, by

the methods explained in Section 3.4. The reliability of this scheme was checked by

looking at the convergence of the solution of the spine head voltage U and can show

strong convergence as the step size decreases. Since we can find an exact solution to

the stochastic integrate and fire model, as outlined in Chapter 3, we can use this as

our true solution and look for convergence to this true solution as the step size used

in the EM method reduces. To this end we found that the EM method does converge

with strong order 1
2
, the condition for strong convergence is: E|Un−U(n∆t)| ≤ C∆t

1
2

(C is some constant) and weak order 1: |Ep(Un) − Ep(U(n∆t))| ≤ C∆t1, again C is

some constant and p is a set of functions which satisfy some conditions of smoothness.

4.4 Results

In this section we look at the results of our simulations as measured by the methods

outlined in Section 3.4, distance travelled by waves, speed of propagation and the

mean voltage in the cable. Throughout this section the parameters of the system

stay the same with the exception of the spine spacing d and all of the noise intensity

parameters µ and ν which we change to observe the effect of noise intensity on the

behaviour of the system, we also alter the correlation scale, β for the OU noise and

ζ for the spatially correlated noise. The spacing d is either d = 0.8 or d = 1 and

these values are chosen since they represent two different regimes in the deterministic

system, as can be shown in Figure 4.2: d = 0.8 allows a wave to propagate and d = 1

cannot support a travelling wave. Although the results here are only for two values of

d, all other values in the two regimes show the same behaviour i.e. d < 0.8 supports

travelling waves which show the same behaviour under the influence of noise and for

all regimes with d > 1 never supports travelling waves. Figure 4.2 was computed by

simulating the deterministic SDS model, Equation (4.4), for spine spacing d ∈ [0, 1].

Figure 4.1 shows an example of the voltage in the cable for the two spine spacings:

plot (a) shows d = 0.8 and plot (b) d = 1.

Unless otherwise stated, each result that follows is computed by taking 100 real-

isations of the stochastic SDS model to compute average values. We scale the mean

speeds and distances by the deterministic values for ease of comparison and show the

variation by means of error bars on all plots which represent the standard deviation,

±S.D.(X) =
√

E(X2) − (E(X))2. We show that for all forms of multiplicative noise
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(a) (b)

Figure 4.1: This figure shows the, mean voltage in the cable for the two regimes considered
(spine spacing d = 0.8 and d = 1), the colour bar shows the scale for the voltage. Plot (a)
has spine spacing d = 0.8 shows a saltatory travelling wave. The dark blue background is
the resting state of the system 0 volts and as the colour changes through green, to yellow
and to a strong red, the voltage is increasing; the bright horizontal red patch seen at
approximately (16, 0) is the voltage produced from the first two spines firing together due
to the initial condition that they both start with a voltage slightly above the firing
threshold h. The wave then moves in a saltatory fashion from one spine to the next,
bringing each one successively to threshold and that results in a pulse being injected to the
cable which is seen on the plot as a bright red ’dot’. Each ’dot’ is slightly further ahead in
space, centred on the position of the spines, and in time since there is a delay as the wave
diffuses along the cable to the next spine. The final result is a chain of ’dots’ sloping
upwards on the plot; the steeper the gradient the slower speed of the wave, likewise the
shallower the gradient the faster the speed of the wave. Plot (b) has d = 1 and shows the
initial conditions (first two spines above threshold) by two bright patches at t = 0. The
larger value of the spine spacing cannot support a travelling wave therefore there are no
other bright spots of voltage. All other parameters are as described in the parameter list
at the start of the thesis. We solve Equation (2.40) along with Equation (2.31) with
temporal discretisation ∆t = 0.1, t ∈ [0, 70] and spatial discretisation ∆x = 0.08,
x ∈ [0, 96] (measured in non-dimensional electronic length units) with 81 spines attached
along this length. The boundary conditions used are Dirichlet and initial conditions
V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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in either the spine heads or in the cable, the speed of propagation is reduced (from

the speed of a deterministic wave) as the noise intensity is increased. As the level

of noise in the system increases the number of out of order waves increases i.e. the

spines start to fire non-sequentially and so defy our condition for travelling waves to

be present, therefore the waves are robust to only low levels of noise intensity. In the

case of additive noise the spines not only fire out of order but as the noise intensity

increases we see synchronised firing of the spines along the full length of the cable.

This effect can be reversed to some extent by introducing a spatially correlated noise

to the spine heads, where a longer correlation length will, for the same noise intensity,

promote sequential firing once again.

Figure 4.2: Speed of a travelling wave in the SDS model as a function of spine spacing, d.
The top, fast branch of this diagram is obtained from direct simulation and shows the
speed of the stable wave in the SDS model. The bottom, slow branch has been drawn on
to represent the unstable solution, which can not be observed directly. This figure is a
reproduction of a figure in [109] and is given as an illustrative aid to emphasise that there
are two regimes for the deterministic SDS model. All other parameters are as described in
the parameter list at the start of the thesis. We solve Equation (2.40) along with Equation
(2.31) with temporal discretisation ∆t = 0.1, t ∈ [0, 70] and spatial discretisation
∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic length units) with 81 spines
attached along this length. The boundary conditions used are Dirichlet and initial
conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

4.4.1 Noise in the spine head dynamics

White multiplicative noise

We first look at the effects of multiplicative white noise in the spine heads. There

is a choice over what form the noise will take; g(U(t)) can be any function we wish.

We consider four forms of the function g(U) and we discover that the form of the

multiplicative noise term has little effect on the behaviour of the system with respect

to noise. The forms of the multiplicative term investigated are: the simplest linear
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form g(U) = U , the positive definite g(U) = U2, g(U) =
√
U and a form chosen to

preserve the range of the voltage in the spine heads, g(U) = U(1−U) while U ∈ [0, 1]

and zero otherwise. This final form is taken from [21] and requires that the noise is

’switched off’ in the simulation while U /∈ [0, 1]. We implement this by checking the

voltage in each of the spine heads at each time step in the numerical algorithm and

if any Un /∈ [0, 1] then the noise intensity at that spine is set to zero, νn = 0, until

the voltage returns to the correct range, then the noise is switched back on. Figure

4.3 shows the speed of a travelling wave over a small range of noise intensities for the

three forms of g(U). The small noise range for each form is chosen to show only the

successful waves, i.e. those that travel to the end of the cable and by sequential firing

of the spines. It is clear that although the ranges of ν are different, the behaviour of

the system is the same in each case, the higher the noise intensity the slower the wave,

therefore the noise is in some way destructive to the travelling wave. At small levels

of noise the error bars are small and so the variation from trial to trial is small but

as the noise intensity increases so does the uncertainty/variation in the mean value.

The most realistic of these forms of noise is g(U) = U(1 − U) since it preserves

the range of U ∈ [0, 1], also the ’switching on/off’ of the noise means that the voltage

does not blow up to huge values like it can for the other forms of multiplicative noise

terms. We see the effect of the voltage ’blow up’ in Figure 4.4, where it seems that high

intensities of noise promote travelling waves. Figure 4.4 shows the distance travelled

along the cable, measured by spine number as the noise intensity for multiplicative

white noise increases. We can see, in Figure 4.4, that for plots (a) and (b), where

g(U) = U2 and there are 37 spines, there seems to be three ’levels’ of noise that

each have a different behaviour. At low levels of noise intensity, the system behaves

as it would in the deterministic case, in the mid-range noise seems only to stifle the

propagation, and at high levels the noise can promote or induce (in the d = 1 case plot

(b)) some propagation. At these high levels of noise intensity the voltage in the spine

heads has become un-realistically large (U > 1) and only increases further as the noise

intensity increases to the point where all spines are always above threshold and can

fire without real propagation (i.e. no sequential firing). Plots (c) and (d) of Figure

4.4, where g(U) = U(1 − U) and there are 81 spines, shows that as noise intensity

increases the propagation is killed by the noise and cannot recover as intensity is

increased further. In the case of d = 1, plot(d) there is a slight increase in the

distance travelled along the cable, from 2 spines (which always fire due to the initial

conditions) to approximately 8 spines distance but the error bars grow since there is

some random firing associated with higher noise levels which will increase the variation

in the measured distance.

Since g(U) = U(1 − U) is the most realistic form of the noise it is the form that

was used in obtaining most of the following results. If another form is used it will
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Figure 4.3: This figure shows the similarity in the response of the speed of a wave in the
SDS model to different forms of the multiplicative temporal white noise in the spine heads.
(a) shows g(U) = U2, (b) is g(U) = U , (c) has g(U) =

√
U and (d) is g(U) = U(1 − U)

while U ∈ [0, 1] and zero otherwise. All other parameters are as described in the parameter
list at the start of the thesis. We solve Equation (4.4) along with Equation (4.1) with
temporal discretisation ∆t = 0.1, t ∈ [0, 70] and spatial discretisation ∆x = 0.08,
x ∈ [0, 96] (measured in non-dimensional electronic length units) with 81 spines attached
along this length. The boundary conditions used are Dirichlet and initial conditions
V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 4.4: Mean distance travelled along the cable as a function of the noise intensity.
Noise is multiplicative and white in the spine heads for all plots. In (a) g(U) = U2 and the
cable has 37 spines with spine spacing d = 0.8. At low noise intensity any wave still
reaches the end of the cable, as the intensity increases the wave is suppressed and fails to
propagate very far until at high noise intensities the voltage is pushed much higher than is
realistic and all spines fire so it seems the wave reaches the end of the cable. (b) also has
g(U) = U2 and 37 spines, with spine spacing d = 1. Here, as the noise intensity increases,
the voltage again increases beyond realistic values and induces firing along the cable. (c)
and (d) have g(U) = U(1 − U), 81 spines spaced d = 0.8 and d = 1 respectively. Due to
the form of the noise the voltage is contained in the correct range U ∈ [0, 1] and although
at small noise intensities the deterministic behaviour is observed for all higher intensities
propagation is killed. The inset plots show a close up of the main plot and also show the
error bars. All other parameters are as described in the parameter list at the start of the
thesis. We solve Equation (4.4) along with Equation (2.31) with temporal discretisation
∆t = 0.1, t ∈ [0, 70] spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in
non-dimensional electronic length units) with 81 spines attached along this length. The
boundary conditions used are Dirichlet and initial conditions V (x, 0) = 0,
U1(0) = U2(0) = 0.04 and Un>2 = 0.
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be clearly stated in the text and in the figure captions. We now look at the range of

noise intensities for which we have sequential travelling waves, we do this by simply

checking the firing times are always increasing as the spines get further along the

cable. Figure 4.5, plot (a), shows a close up of plot (c) in Figure 4.4 and plot (b)

show the number of waves, in the 100 realisations, that had spines fire out of order

somewhere along the cable, as the noise intensity increases. We can see that only a

small range of noise intensities, ν ∈ [0, 0.1], support sequential travelling waves and

that the waves travel most of the length of the cable.

(a) (b)

0 0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

ν

D
is

ta
nc

e

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

ν
N

o.
 n

on
−

se
qu

en
tia

l w
av

es

Figure 4.5: This figure shows the close up, of Figure 4.4 plot (c), and shows distance
travelled along the length of the cable, in spine number, and the number of non-sequential
waves, as the noise intensity increases. The form of the noise is g(U) = U(1 − U), d = 0.8
and there are 81 spines all with multiplicative white noise in the dynamics. Plot (a) shows
the distance travelled and plot (b) shows the number of non-sequential waves. All other
parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (2.31) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]
and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic
length units) with 81 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

We now look again at the speed of the travelling waves for a small range of multi-

plicative noise values. As seen in Figure 4.3, plot(d) the speed of the wave reduces as

the noise intensity increases. We look at the speed measured in two different lengths

of cable to show that the physical size of the model dendrite does not affect this be-

haviour. The short cable is 48 units long and has 37 spines and the long cable is 96

units long with 81 spines and as can be seen in Figure 4.6 there is no difference in the

behaviour. The error bars in the short cable case are larger that in the long cable,

since the longer the structure the less it is affected by noise, [24].

Finally in the white noise in the spine heads section we look at the speed recorded

for different noise intensities when the voltage in the spine heads is calculated with

the exact solution given in Equation (4.12) instead of a purely numerical solution
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Figure 4.6: Speed of propagation, measured by level set method, as a function of
multiplicative white noise strength in the spines for two cables of different length. Plot (a)
shows the long cable is 96 units long and has 81 spines along its length and Plot (b) shows
the short cable has length 48 units and has 37 spines along its length. It is clear that the
length of the cable makes little difference in the behaviour of the travelling waves and the
values of the normalised speed are very similar. The long cable however does reduce the
variance as can be seen by the length of the error bars, the bars on plot (a) are shorter
than those in plot (b). All other parameters are as described in the parameter list at the
start of the thesis. We solve Equation (4.4) along with Equation (4.1) with temporal
discretisation ∆t = 0.1, t ∈ [0, 70] and spatial discretisation ∆x = 0.08. The boundary
conditions used are Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and
Un>2 = 0.
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given by the EM method employed thus far. We can see that again the behaviour

of the speed reducing from the deterministic value as the noise intensity increases is

the same as for all other forms of the noise. The exact solution may be desirable

since we do not have to compute a stochastic integral for this purely multiplicative

case but the form that the noise must take, g(U) = U , to allow the exact solution to

be computed is not ideal. The figure, Figure 4.7, does show, however, that the EM

method is a suitable method for computing the SDE that describes the stochastic IF

dynamics.
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Figure 4.7: Speed of propagation, measured by level set method, as a function of
multiplicative white noise strength in the spines when g(U) = U and the SDE describing
the stochastic IF dynamics is solved with the exact form. It is clear that this agrees with
the behaviour observed in previous simulations with a purely numerical method, therefore
we can conclude that the EM method is a suitable method for solving the SDE. All other
parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.12) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]
and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic
length units) with 81 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

We also use the template comparison method to measure the speed of the waves,

described in Section 3.4.3. Figure 4.8 shows the speed as measured by the two different

methods, plot (a) is the level set method and plot (b) is the template comparison

method. The difference in the actual number recorded for the speed is due to the

difference in the methods and in fact the numbers for the template comparison speed

will differ for different template functions. The difference in speed measured arises

from a slight difference in the level set method used in each case. The increase in

speed shown here in Figure 4.8 occurs due to the boundary conditions and so is an

artificial artifact of the computation. If the first point in the level set method is at

the start of the cable (around the 3rd spine) then the boundary effects the speed

measures, however if the speed is measured over the middle portion of the cable when

the wave is established and away from the boundary, then we get results as in all the
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Figure 4.8: Both these figures show the speed of a travelling wave in the SDS model with
multiplicative white noise of the form: g(U(t)) = U2, as a function of the noise intensity,
d = 0.8. (a): Speed measured by the level set method as function of noise intensity. (b):
Speed measured by the template comparison method. All other parameters are as
described in the parameter list at the start of the thesis. We solve Equation (4.4) along
with Equation (4.1) with temporal discretisation ∆t = 0.1, t ∈ [0, 70] and spatial
discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic length units)
with 81 spines attached along this length. The boundary conditions used are Dirichlet and
initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

previous figures. The reason that we must use the first section of the cable here is

to give an accurate comparison between the level set and the template comparison

methods, since the template comparison method uses the instantaneous speed over

the whole length of the cable for all time, making it difficult to neglect this false effect

from boundary. Consequently in all level set simulations except the one relating to

Figure 4.8 the first point used in the level set method is some distance away from the

end of the cable. The template comparison method also requires significantly longer

computing time than the level set method, since the speed must be calculated at each

step in time, unlike the level set method which requires only one calculation of the

speed. Therefore we used the level set method since it is in agreement with the more

sophisticated template comparison method but requires less computing time.

Multiplicative temporally correlated noise

We look at the effect of temporally correlated noise in the spine heads. Here we have

an extra variable to investigate, β, which controls the correlation time scale of the

noise. We expect to obtain some different results from the white noise case since we

can choose the value of β to be close to the natural timescale in the system which is

the refractory time τR.

We look at the distance travelled by a wave as the noise intensity increases and we

fix a value of ν for different values of β, to investigate the effect of the correlation
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scale. We once again use the form g(U) = U(1 − U) for the multiplicative noise and

we conclude that the system behaves in much the same way as it did when the noise

was white, therefore the temporal correlation is of no major significance.

First we look at the distance travelled along the cable, measured in spine number,

for a large range of noise intensities, the spine spacing is d = 0.8 and the form of the

noise is again g(U) = U(1 − U) and β = 2. We see in Figure 4.9, plot (a) that as

noise intensity increases the propagation is suppressed and plot (b) that the number

of non-sequential firing waves rapidly increases with the noise intensity.
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Figure 4.9: Plot (a) shows the distance travelled, measured in spine number, as the noise
intensity increases for temporally correlated, β = 2, multiplicative noise in the cable.
There are 81 spines along the length of the cable. Plot (b) shows how many of the 100
realisations, for each noise intensity, did not have the spines firing in order. All other
parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.2) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]
and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic
length units) with 81 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

We now look at the speed of the waves over the small range of noise intensities

ν ∈ [0, 1], where the waves are sequential. We see, in Figure 4.10, that the temporally

correlated noise also reduces the wave speed with respect to the deterministic speed

as the noise intensity increases. We now look at the effect of the correlation scale

β on the speed of the wave to see if there may be a ’special’ value that drastically

changes the behaviour observed so far. Figure 4.11 shows the speed of the wave as a

function of the correlation scale, for a fixed value of ν. As β increases the speed also

increases slightly, although the increase is so small that the waves are still slower than

the deterministic speed. Therefore we can conclude that there is no ’special’ value of

β.
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Figure 4.10: Speed of propagation as a function of multiplicative temporally correlated
noise strength, β = 2, d = 0.8. The speed decreases with respect to the deterministic wave
speed as the noise intensity increases. All other parameters are as described in the
parameter list at the start of the thesis. We solve Equation (4.4) along with Equation
(4.2) with temporal discretisation ∆t = 0.1, t ∈ [0, 70] and spatial discretisation
∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic length units) with 81 spines
attached along this length. The boundary conditions used are Dirichlet and initial
conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 4.11: Speed of propagation as a function of the temporal correlation scale. The
speed increases as the β increases but is still smaller than the deterministic wave speed. All
other parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.2) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]
and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic
length units) with 81 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Multiplicative spatially correlated noise

We generate spatially correlated noise, white in time, and include this in the spine-

head dynamics as in Equation (4.1), replacing the white noise with the spatially

correlated noise. The spatial correlation scale was chosen such that it equated to a

distance of approximately three spines. The distance and speed of the travelling waves

under the influence of this spatial noise behaves just as the white noise case as shown

in Figure 4.12. The speed of the waves, plot (b) in Figure 4.12, start to slow down

at a higher noise intensity than for the white noise case, therefore the system is more

robust to this spatially correlated noise than the white noise. As the correlation scale,
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Figure 4.12: Plot (a) shows the distance travelled, measured in spine number, as the noise
intensity increases for spatially correlated, ζ = 1.25, multiplicative noise in the spine
heads. There are 81 spines along the length of the cable. Plot (b) shows the speed of the
waves travelling with spatially correlated noise in the spine heads, the waves start to slow
down at a slightly higher level of noise intensity as compared to the white noise. All other
parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.3) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]
and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic
length units) with 81 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

ζ , of the noise is increased the distance travelled by the wave for a set value of the noise

intensity also increases. Figure 4.13 plot (a) shows the distance as the correlation scale

increases for noise intensity ν = 0.2 and plot (b) shows the number of non-sequential

waves as the noise intensity increases. The distance travelled increases as the noise

increases and also the number of non-sequential waves decreases. Therefore the longer

correlation scale appears to help the travelling waves.
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Figure 4.13: Plot (a) shows the distance travelled, measured in spine number, for noise
intensity, ν = 0.2, as the correlation length, ζ increases, for multiplicative spatially
correlated noise in the spine heads. There are 81 spines along the length of the cable. Plot
(b) shows the number of non-sequential waves as a function of the correlation scale. All
other parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.3) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]
and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic
length units) with 81 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

Additive noise in the spine heads

Here we consider additive noise in the spine heads; white, temporally and spatially

correlated. We find for all forms of the additive noise, when very small, the system

behaves like the deterministic case but as we increase the additive noise intensity

the resulting wave defies our definition of a sequential travelling wave and we see

simultaneous firing of all the spines which is reminiscent of noise induced synchrony.

We look at the mean voltage of the stochastic SDS model, with additive noise, in

two regimes; first where waves travel in the deterministic case (spine spacing d = 0.8)

and secondly where waves do not travel in the deterministic system (spine spacing

d = 1). In Figure 4.14 noise is additive, white and added to the spine head dynamics.

Each of the plots shows the average voltage for 100 realisations in space and time

for a cable of length 48 units studded with 37 spines, plot (a) has d = 0.8 and noise

intensity µ = 0.001, plot (b) d = 0.8, µ = 0.01, plot (c) d = 0.8, µ = 0.1 and plot

(d) d = 1 and µ = 0.1. The x-axis shows the space domain, the y-axis the time

domain and the colour of the plot shows how strong the voltage is at each point in

time and space. The dark blue background is the resting state of the system 0 volts

and as the colour changes through green, to yellow and to a strong red, the voltage is

increasing; for example in plot (a) of Figure 4.14 the bright horizontal red patch seen

at approximately (2, 0) is the voltage produced from the first two spines firing together

90



Chapter 4: Noise in the Spike diffuse spike model

due to the initial condition that they both start with a voltage slightly above the firing

threshold h. The wave then moves in a saltatory fashion from one spine to the next,

bringing each one successively to threshold and that results in a pulse being injected

to the cable which is seen on the plot as a bright red ’dot’. Each ’dot’ is slightly further

ahead in space, centred on the position of the spines, and in time since there is a delay

as the wave diffuses along the cable to the next spine. The final result is a chain of

’dots’ sloping upwards on the plot; the steeper the gradient the slower speed of the

wave, likewise the shallower the gradient the faster the speed of the wave. As can be

seen in the plot (a) of Figure 4.14, a small intensity of additive noise (µ = 0.001) does

not change the behaviour, to the eye, from that of the deterministic case, we still get

full propagation of the travelling waves. As we increase the noise as in in plot (b),

µ = 0.01, we see that the mean voltage at the end of the cable is lower than plot (a),

as shown by the colour bar, and so we can deduce that fewer than all 100 waves are

successful, i.e. some of the realisations do not reach the end of the cable. Therefore

the increase in noise halts the propagation of the travelling wave. Increasing the noise

to µ = 0.1, as in plot (c), only leads to the spines firing simultaneously, shown by

the near horizontal ’wave’ and now the average ’wave’ shown holds no meaning, i.e.

the propagation becomes instantaneous and so the spines at the end of the cable are

not reacting to the input (the firing is noise induced). This defies our definition of a

propagating wave which requires sequential firing. Finally plot (d) shows the mean

voltage in the regime which has no propagation in the deterministic case, and we see

purely noise induced phenomena where again the ’wave’ travels instantly. In Figure

4.14 the simultaneous firing in plot (c) and (d) can be thought of as noise induced

synchronisation since the noise brings the spine to threshold simultaneously, see [77]

and [76] which shows the same effect, also called synchronisation, in a network of

IF neurons. Although we do not investigate this behaviour here, it is an interesting

effect.

For a small range of noise intensities, µ ∈ [0, 0.01], we look at the speed of the

waves, see Figure 4.15. We look only at this small range since at higher values of µ

the noise induces synchrony in the spine head firing. The speed obtained may be very

large c→ ∞, or negative if the spines near the end of the cable fire before the spines at

the beginning of the cable, which is possible at higher noise intensities when the firing

is purely noise induced. Figure 4.15 shows that as the noise intensity increases the

waves slow down but that they travel non-sequentially for a noise intensity µ ≥ 0.0016.

There is only a small range of noise intensities, for white additive noise, over which

travelling waves exist, so it seems that this type of noise is detrimental to the waves

in the SDS model.

The behaviour of the SDS model with additive temporally correlated noise in the

spine heads is the same as for the white noise case. The sequential travelling waves
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(a) (b)

(c) (d)

Figure 4.14: This figure shows the, mean voltage in the cable for different strengths of
white additive noise in the spine heads, the colour bar shows the scale for the voltage. Plot
(a) has spine spacing d = 0.8, noise intensity µ = 0.001 and shows a strong travelling wave.
Plot (b) has d = 0.8, µ = 0.01 and the colour (and so the voltage) is weaker towards the
end of the cable which means that not all of the 100 waves travel to the end of the cable,
the noise inhibits propagation. Plot (c) has spine spacing d = 0.8, µ = 0.1 and the wave is
now showing simultaneous firing of all the spines or noise induced synchronisation. Plot
(d) has spine spacing d = 1 and µ = 0.1 and again the spines fire simultaneously, but here
the phenomena is entirely noise induced since without the noise no wave exists. This
shows that when the additive noise intensity increases, the voltage in all the spines
simultaneously reach threshold and fire almost instantly, giving the impression that the
wave speed is infinite.All other parameters are as described in the parameter list at the
start of the thesis. We solve Equation (4.4) along with Equation (4.1) with temporal
discretisation ∆t = 0.1, t ∈ [0, 70] and spatial discretisation ∆x = 0.08, x ∈ [0, 48]
(measured in non-dimensional electronic length units) with 37 spines attached along this
length. The boundary conditions used are Dirichlet and initial conditions V (x, 0) = 0,
U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 4.15: Plot (a): Speed of successful waves measured using the level-set method with
white additive noise in the spine heads, d = 0.8. Plot (b): Number of waves that fail, i.e.
number of waves where the spines fire out of order. It can been seen that the noise slows
the wave and that very small levels of noise intensities lead to non-sequential waves. All
other parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.1) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]
and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic
length units) with 81 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

only exist over a short range of noise intensities since the noise induces synchrony

and the speed is reduced, just as in the white noise case. When the noise is spatially

correlated the speed also decreases with increasing noise intensity but the correlation

scale can promote sequential firing at a noise intensity where the spines fire out of

order under the influence of white or temporally correlated noise. Figure 4.16 shows

the voltage in the cable when there is spatially correlated noise in the spine heads at

the same level of noise intensity, µ = 0.02, but two different correlation lengths. Plot

(a) has a correlation scale of ζ = 0.01 and shows disordered firing of the spines since

there is no coherent travelling wave. The higher voltage at the top of the plot is purely

noise induced since there is no further external input, after the initial condition of the

first two spines being above threshold. Plot (b) has a correlation scale of ζ = 3 and

shows a travelling wave with sequentially firing spines, it would seem that the longer

correlation scale helps the system support travelling waves at higher noise levels then

can be supported when the noise in the system is white. The spatially correlated noise

has a positive effect on the stochastic SDS model, restoring sequential firing at a noise

intensity where the white noise destroys the travelling wave. As the noise intensity

continues to increases, no increase in correlation scale can restore the sequential firing

and the synchronously firing behaviour dominates.
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(a) (b)

Figure 4.16: The plots above show the voltage in the cable for a spatially correlated noise
in the spine heads with intensity of µ = 0.02. Plot (a) has a correlation scale of ζ = 0.01
and shows disordered waves with the spines firing out of order. Plot (b) has a correlation
scale of ζ = 3 and shows a travelling wave that has sequential spine firing. The longer
correlation scale restores the sequential firing that the higher noise intensity destroys. All
other parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.3) with temporal discretisation ∆t = 0.1, t ∈ [0, 70]
and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic
length units) with 81 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

4.4.2 Noise in the cable equation

As in Section 4.4.1 we look at the distance travelled and speed of travelling waves in

the SDS model but now we will consider noise in the cable equation and deterministic

integrate and fire dynamics in the spine heads. We find that the behaviour of the

system under the influence of noise in the cable has the same behaviour as the system

with noise in the spine heads. We see the decrease in wave speed with an increase in

multiplicative noise strength and random firing of the spines when the noise is additive.

The only difference to the cases where the noise is in the spine heads is that there seems

to be no noise induced synchrony, as the additive noise intensity increases the voltage

seems to have no pattern, i.e. no synchronised firing, only random fluctuations as the

intensity becomes large enough to overcome the deterministic behaviour. The type of

noise (white, temporally/spatially correlated) has no effect on the overall behaviour

observed, although the correlation scales in the temporally and spatially correlated

noise can affect the exact value of the speed of the waves .

Multiplicative noise

The voltage in the cable should be in the range V ∈ [0, 1], as for the spine head

voltage, so once again we use the form of the multiplicative noise which will preserve

94



Chapter 4: Noise in the Spike diffuse spike model

this range of values, g(V ) = V (1−V ) when V ∈ [0, 1] and zero otherwise. We can see

from Figure 4.17 that as the intensity of white noise in the cable increases the distance

travelled along the cable (measured in spine number) decreases. The type of noise
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Figure 4.17: This figure shows the distance travelled, measured in spine number, as the
noise intensity increases for white multiplicative noise in the cable. There are 81 spines
along the length of the cable. All other parameters are as described in the parameter list
at the start of the thesis. We solve Equation (4.4) along with Equation (4.1) with
temporal discretisation ∆t = 0.1, t ∈ [0, 70] and spatial discretisation ∆x = 0.08,
x ∈ [0, 96] (measured in non-dimensional electronic length units) with 81 spines attached
along this length. The boundary conditions used are Dirichlet and initial conditions
V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

does not effect this behaviour, see Figure 4.18 which shows that as noise intensity

increases the distance travelled by the wave decreases for both temporally correlated,

plot (a), and spatially correlated, plot (b), noise. The error bars on these plots are

large at mid range noise since there is a large trial-to-trial variability in the distance

travelled but at higher noise levels the variation is smaller since the higher noise kills

nearly all propagation. The speed of the travelling waves that exist when there is a

small amount of noise in the cable slow down as the noise intensity increases. Again

this happens for all types of noise, as can be seen in Figure 4.19; plot (a) shows the

speed as a function of noise intensity for space time white noise, plot (b) shows the

speed of the waves for temporally correlated noise and finally plot (c) shows the speed

as a function of the noise intensity of spatially correlated noise. In plot (c) the range

of noise intensities is larger since the spatially correlated noise, at the correlation

scale chosen, ζ = 1.25, sustains sequential travelling waves for a larger intensity than

the white noise case. We look at the speed of the waves for a fixed level of noise

but with a changing correlation scale, in both the temporally and spatially correlated

cases. When the cable is effected by the temporally correlated noise we chose the

noise intensity to be ν = 0.4 and varied the correlation time scale, β ∈ [0, 10]. As β

increases the speed of the wave increases just as was observed when the noise was in
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Figure 4.18: Plot (a) shows the distance travelled, measured in spine number, as the noise
intensity increases for temporally correlated, β = 2, multiplicative noise in the spine heads
and plot (b) shows the mean distance travelled by a wave when the noise is spatially
correlated, ζ = 1.25. All other parameters are as described in the parameter list at the
start of the thesis. We solve Equation (4.4) along with Equation (4.2) (plot (a)) and
Equation (4.3) (plot(b)) with temporal discretisation ∆t = 0.1, t ∈ [0, 70] and spatial
discretisation ∆x = 0.08, x ∈ [0, 96] (measured in non-dimensional electronic length units)
with 81 spines attached along this length. The boundary conditions used are Dirichlet and
initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.

the spine heads, see plot (a) in Figure 4.20. Plot (b) of Figure 4.20 shows that the

speed of the wave stays almost constant as the spatial correlation increases, although

the increase in correlation scale does reduce the variability.

4.5 Conclusions

We have considered the effects of different types of noise on the propagation of a

saltatory travelling wave along a length of spiny dendritic tissue modelled by the

SDS model. To compare the effects of the white, temporally correlated and spatially

correlated noise we looked at the distance that a wave travels along the cable, the

speed of any travelling wave and the number of non-sequential firing of the spines at

different levels of noise intensity. We find that the SDS model of dendrites is robust

to small levels of noise.

We have shown that in the regime where the deterministic system supports trav-

elling waves, spine spacing d = 0.8, all multiplicative noise, in either the spine heads

or the cable, reduces the speed of any travelling wave: Figure 4.3 shows the speed

with white noise in the spine heads, Figure 4.10 temporally correlated noise in spine

heads, Figure 4.12 plot (b) shows speed with spatially correlated noise in spine heads

and Figure 4.19 shows all types of noise in the cable. In addition the form of the mul-

tiplicative noise does not affect this behaviour, we used four forms of g(U) which all
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Figure 4.19: Plot (a) shows the mean speed of a wave travelling in the cable with white
noise present, as the noise intensity increases the speed reduces. Plot (b) shows the speed
of the wave decreasing as the noise intensity increases for temporally correlated noise with
β = 2 and finally plot (c) shows the wave speed decreasing as the intensity of the spatially
correlated noise increases, ζ = 1.25. All other parameters are as described in the
parameter list at the start of the thesis. We solve Equation (4.4) along with Equation
(4.1) (plot (a)), Equation (4.2) (plot (b)), and Equation (4.3) (plot (c)) with temporal
discretisation ∆t = 0.1, t ∈ [0, 70] and spatial discretisation ∆x = 0.08, x ∈ [0, 96]
(measured in non-dimensional electronic length units) with 81 spines attached along this
length. The boundary conditions used are Dirichlet and initial conditions V (x, 0) = 0,
U1(0) = U2(0) = 0.04 and Un>2 = 0.

97



Chapter 4: Noise in the Spike diffuse spike model

(a) (b)

0 2 4 6 8 10

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

1.0004

1.0006

β

S
pe

ed

0 2 4 6 8 10

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

ζ

S
pe

ed

Figure 4.20: Plot (a) shows the mean speed of a wave travelling in the cable as the
temporal correlation scale increases, this slows the wave down. Plot (b) shows the speed of
the wave is constant as the spatial correlation length increases. All other parameters are
as described in the parameter list at the start of the thesis. We solve Equation (4.4) along
with Equation (4.2) (plot (a)) and Equation (4.3) (plot (b)) with temporal discretisation
∆t = 0.1, t ∈ [0, 70] and spatial discretisation ∆x = 0.08, x ∈ [0, 96] (measured in
non-dimensional electronic length units) with 81 spines attached along this length. The
boundary conditions used are Dirichlet and initial conditions V (x, 0) = 0,
U1(0) = U2(0) = 0.04 and Un>2 = 0.

reduced the speed of the travelling wave as the intensity of the noise increased. Figure

4.3 plot (a) shows the speed for g(U) = U2, plot (b) g(U) = U , plot (c) g(U) =
√
U

and plot (d) g(u) = U(1 − U) when U ∈ [0, 1] and zero otherwise. All of these plots

show the decrease in speed as intensity increases albeit over slightly different ranges

of intensities. The correlation scales of the OU noise and the spatially correlated noise

have little effect on the behaviour of the speed of the travelling wave. We expected

’special’ values of the the temporal scale β and spatial scale ζ since the system has

natural scales in the refractory time, τR, and the spine spacing d. We find however

that there is no one value of either β or ζ that stands out. In the spine heads as

the temporal correlation scale, Figure 4.11, increases the speed of the wave, for a

fixed level of noise intensity, also increases although the speed levels off as β increases

but never reaches the value of the deterministic wave speed. The spatial correlation

ζ makes no difference to the speed of the waves. In the cable (Figure 4.20), as β

increases the speed again increases and the increase in spatial correlation ζ , makes

little difference to the speed of the wave.

The spatial correlation has a very interesting affect on the behaviour of the noisy

SDS model when the noise is additive in the spine heads. Although there is not one

’special’ value it does seem that longer correlation lengths do produce some special

behaviour. Figure 4.16 shows two plots of the voltage in cable of the SDS model under

the influence of spatially correlated additive noise in the spine heads with the same
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intensity. Plot (a) shows that at a short correlation length ζ = 0.1 the spines fire in

a random fashion but as the correlation scale increases in plot (b) ζ = 3 the wave

is restored. This effect of increasing the correlation scale will only restore the wave

for certain levels of noise, at a certain point the strength of the noise will overcome

the effect of the correlation scale and the spines will once again fire randomly. This

effect could be of interest in dendritic democracy since the noise can be thought of

as a correlated input to the spines and as the correlation scale increases the signal

which starts at the distal end of the dendrite is successful in reaching the proximal

end; when the correlation scale is small or non-existent (white noise) then input at a

distal spine does not reach the proximal end.

All additive noise in the system in the spines can induce synchrony (see [77] and

[76] for other examples of this phenomena in IF neurons). At very small levels of

additive noise the spines fire sequentially and the speed of the wave decreases with

the increase in intensity, Figure 4.15 plot (a) shows the speed as the intensity increases

and plot (b) shows the number of waves that have spines firing out of order. Figure

4.14 shows the voltage in the cable which indicates that the spines fire simultaneously

as the additive noise intensity increases. This behaviour occurs in both the regime

where a deterministic wave travels d = 0.8 and when the deterministic system does not

support waves d = 1, in this case the system is showing some noise induced synchrony.

The distance travelled by the waves decreases as the noise intensity increases; Figure

4.4 shows that the noise kills propagation as multiplicative noise intensity increases.

Plots (a) and (b) shows the distance travelled for noise of the form g(U) = U2 in

d = 0.8 and d = 1 regimes respectively, for this form of the noise mid levels of noise

kill the propagation and high levels of noise appear to induce propagation again.

At high levels however these ’waves’ are really synchronous firing so the distance

measured is that of full propagation. Plots (c) and (d) are for g(U) = U(1−U) again

in the two regimes d = 0.8 and d = 1, here noise kills the propagation for d = 0.8

and again appears to induce some firing in the d = 1 case, although this firing is

random. Figure 4.5 shows the distance travelled over a small range of multiplicative

white noise intensities ν ∈ [0, 0.5] and shows that waves are only sequential over a

small range ν ∈ [0, 0.1] and by ν = 0.5 almost all the waves are out of order. This is

also the case for the different forms of noise.

The SDS model is robust to small ranges of both additive and multiplicative

noise intensities of all forms. In this small range of noise intensities the waves that

travel along the model dendrite make it to the end of the cable and they do so by

sequential firing of all the spines. As the intensity of the noise increases the speed of

the waves decreases. As the noise intensity increases beyond this small range the spines

start to fire out of order and eventually fire synchronously. Correlated noise makes

no difference to this overall behaviour except in the case of small additive spatially
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correlated noise where the correlation scale can restore sequential firing where white

noise produces random behaviour.
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Chapter 5

Noise in the Baer and Rinzel model

5.1 Introduction

The Baer and Rinzel model of spiny dendritic tissue couples an active continuum

of spines to a diffusive cable as described in Equation (2.34) to Equation (2.38) in

Section 2.7. The spine dynamics are modelled by the Hodgkin-Huxley equations and

the diffusive cable by the passive cable equation, both described in Chapter 2. In

this chapter we investigate the inclusion of noise to the system and how it effects the

propagation of travelling waves; we do this by looking at the distance travelled by the

travelling wave, the number of failed waves and at the speed of propagation. In direct

simulation of the system we use both the Itô and Stratonovich interpretations of the

stochastic integral and investigate the differences in the observed dynamics that these

two interpretations bring about. In the Stratonovich interpretation the multiplicative

noise term gives rise to an extra contribution to the systematic dynamics of the model

(due to the non zero mean) and so in the small noise limit gives behaviour which differs

from the deterministic behaviour. In this small noise case we use AUTO-07P, [20], to

explore the existence of travelling waves in parameter space and see how noise changes

the regions of parameter space where these waves exist.

5.2 The stochastic model

To introduce the noise in the BR model we can look at adding a noise term into the

HH current equation, the m, n, h evolution equations or into the cable equation. This

noise term can the be additive or multiplicative and the noise itself may be white in

time and space or correlated temporally or spatially (as we saw in the SDS model,

Chapter 4). We add noise to the basic BR equations, Equation (2.34) to Equation
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(2.38), to obtain the stochastic BR equations as follows:

C
∂V

∂t
= −gL(V − VL) +

1

raπd

∂2V

∂x2
+ ρ

U − V

r
+ (µc + νcgc(V ))

∂W (x, t)

∂t
(5.1)

Ĉ
∂U

∂t
= gKn

4(VK − U) + gNahm
3(VNa − U)

+ gL(vL − U) − U − V

r
+ (µH + νHgH(U))

dW (x, t)

dt
(5.2)

dX

dt
= αX(1 −X) − βXX + (µX + νXgX(X))

dW (x, t)

dt
, (5.3)

where X ∈ [m,n, h], the µ’s give the strength of additive noise and the ν’s the strength

of the multiplicative noise and W is a Wiener process chosen to satisfy the form of

noise we require, i.e. white or correlated. Note that the equations for X ∈ [m,n, h]

and U are coupled together, at each point in space, by the cable or by the noise if it is

spatially correlated. If we choose to have multiplicative noise the form of the function

g, in each of the equations must be chosen properly to ensure the fluctuations are

added correctly to the resting state of V , U and X ,X ∈ [m,n, h]. The functions, gc

and gH , for both the voltage in the cable and in the HH current equation, preserve

the resting voltage and so gc(V ) and gH(U) are chosen such that the fluctuations are

around the rest state of −65 V. As for the m, n, h equations we need to ensure the

values remain in the range [0, 1] since they are probabilities. With these considerations

in mind we choose the functions of the multiplicative noise to be:

gc(V ) = −(65 + V )

gH(U) = −(65 + U)

gX(X) = X(1 −X) .

We can consider dW (x, t) as either white, temporally correlated (through the OU

process) or spatially correlated as in Section 3.1. We also need to decide if we wish

to interpret the stochastic integral in the Itô or Stratonovich fashion. After choosing

our form of noise we need to then numerically solve the resulting stochastic system

using either the Euler-Maruyama or Heun algorithms, see Section 3.3, to give us the

results of Itô and Stratonovich calculus respectively.

5.2.1 Small noise in the BR model

We can use a small noise expansion of the stochastic BR model, Equation (5.1) to

Equation (5.3), to evaluate the behaviour of the system without having to simulate
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or solve any stochastic integrals. This approach follows the working of [30] and [32].

The expansion is a standard perturbation approach, using Taylor’s theorem; consider

the working for a simple SDE:

dx = a(x)dt+ ǫb(x)dW . (5.4)

We will assume that the solution can be written as follows:

x(t) = x0(t) + ǫx1(t) + ǫ2x2(t) + ...

= x0(t) +

∞∑

m=1

ǫmxm .

We also can write the coefficients:

a(x) = a0(x0) + ǫa1(x0, x1) + ǫ2a2(x0, x1, x2) + ...

= a

(

x0(t) +
∞∑

m=1

ǫmxm

)

using Taylor’s expansion,

=
∞∑

p=0

1

p!

dpa(x0)

dxp
0

(
∞∑

m=1

ǫmxm)p

= a(x0) +
da(x0)

dx0
(

∞∑

m=1

ǫmxm) +
1

2

d2a(x0)

dx2
0

(
∞∑

m=1

ǫmxm)2 + ... .

We do the same for b(x), then substitute all these expansions into the original SDE,

Equation (5.4), and equate terms with like powers of ǫ, to get to the zeroth order

approximation of the SDE:

dx0 = a(x0)dt ,

and to the first order:

dx1 = −da(x0)

dx0
x1dt+ b(x0)dW .

Clearly the zeroth order gives us the deterministic part of Equation (5.4) and the first

order gives us another SDE and so it would be just as easy to numerically solve the

original SDE if this new SDE is no simpler. This expansion is only valid if b(x) is a

constant, i.e. additive noise, since the mean of an additive noise term is zero. This

expansion is consistent with results we found in the SDS model Section 4.4, where a

small amount of additive noise proved to have no/little effect and therefore the model

behaved as the deterministic model. Likewise later in this chapter we will see that

103



Chapter 5: Noise in the Baer and Rinzel model

small additive noise in the system does not change the behaviour from that of the

deterministic BR model.

In the Stratonovich interpretation, for multiplicative noise we have a non-zero

mean and so need to adjust the mean of the noise term before we can apply a similar

approach. In the case of a noise which is multiplicative, white in time and correlated

in space, we can evaluate the mean of the noise term and re-write the SPDE with a

zero-mean noise term. For the following, general Stratonovich SPDE (as in Section

3.1):

∂X =

(
∂2X

∂x2
+ f(X)

)

∂t+ νg(X) ◦ dW , (5.5)

we can evaluate the mean of the noise term using Novikov’s theorem ([78]) and follow

the working set out is [30] to get: 〈g(X)dW (x, t)〉 = νFc(0)〈g(X)g′(X)〉. Where Fc(0)

is the correlation function (see Section 3.1.1) evaluated at 0, (Fc is used here since

the symbol C is already in use for the capacitance). We can then use this mean to

re-write Equation (5.5) thus:

∂X =

(
∂2X

∂x2
+ f(X) + νS

)

∂t+ ν(g(X) ◦ dW (x, t) − S∂t) ,

where, S = νFc(0)g′(X)g(X). Now we can apply the perturbation expansion as above

to get the zeroth order approximation:

∂X0

∂t
=
∂2X0

∂x2
+ f(X0) + ν2Fc(0)g′(X)g(X) .

In this instance instead of obtaining the deterministic equation we retrieve an altered

equation, of the zeroth order, which has no stochastic term in it but which has some

dependence on the noise strength and correlation function, [30]. Using these tech-

niques on the BR equations, Equation (5.1), with the form of multiplicative noise

given we can find the following zeroth order approximations:

C
∂V

∂t
= −gL(V − VL) +

1

raπa

∂2V

∂x2
+ ρ

U − V

r
− ν2

cFc(0)(65 + V ) , (5.6)

Ĉ
∂U

∂t
= gKn

4(VK − U) + gNahm
3(VNa − U) + gL(VL − U) − U − V

r

− ν2
HFc(0)(65 + U) , (5.7)

dX

dt
= αX(1 −X) − βXX + ν2

XFc(0)X(1 − 3X + 2X2) . (5.8)

The use of Novikov’s theorem to adjust the mean of the Stratonovich SPDE can be

described as a drift correction which results in an Itô SPDE, where the mean is zero,
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and the small noise expansion yields the mean behaviour in X0.

5.3 Simulation

This section looks at the simulations carried out on either the full system, in Matlab, or

on the reduced small noise system, in AUTO-07P. We describe here how the simulation

was carried out and how we measured the effects of the noise.

5.3.1 Discretisation in space and time for stochastic BR model

We follow the numerical methods in Chapter 3, to simulate the stochastic BR model in

both the Itô and Stratonovich interpretations of the stochastic integral. Here we give

the discretised versions of Equation (5.1) to Equation (5.3). Implementing a semi-

implicit Euler-Maruyama scheme we get the following equations for the discretised

BR model. Here the subscript j’s correspond to the value of the voltages, V , U and

m, n, h variables at spatial point xj if there is a spatial mesh x0, x1, . . . , xJ with step

size ∆x, i.e. j = 1, 2, . . . , J J = L
∆x

, where L is the length of the cable. Also the

superscript n relates to V , U and m, n, h variables being evaluated at time tn with a

temporal mesh t0, t1, . . . tN of step size ∆t, n = [1, 2, . . . , N ], T is the final time and

N = N
∆t

, so V n+1
j = V (xj , tn+1). First the cable equation:

V n+1
j = V n

j + ∆tf(V n
j ) + (µc + νcg(V

n
j ))∆W n

j (5.9)

f(V n
j ) =

1

C

(
V n

j+1 − 2V n
j + V n

j−1

raπa∆x2
+
ρ

r
(Un+1

j − V n+1
j ) + (GL(VL − V n+1

j )))

)

.

The discretised m, n, h equations, with X ∈ [m,n, h]:

Xn+1
j = Xn

j + ∆t
(
αX(Un

j ) − αX(Un
j )Xn+1

j − βX(Un
j )Xn+1

j

)

+ (µX + νXg(X
n
j ))∆W n

j . (5.10)

And finally the discretised equation for the voltage in the spine heads:

Un+1
j = Un

j +
∆t

Ĉ
(GK(nn+1

j )4(VK − Un+1
j ) +GNah

n+1
j (mn+1

j )3(VNa − Un+1
j )

+ GL(VL − Un+1
j )) +

V n
j − Un+1

j

r
) + (µH + νHg(U

n
j ))∆W n

j . (5.11)

When we use the Heun method to evaluate the voltage in the cable, we must have an

extra discretised equation. In the Heun method we have a predictor step, for which

we can use Equation (5.9). Therefore we call this step Ṽ n+1
j and for ease of reading
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call f(V n
j ) =

(
V n

j+1−2V n
j +V n

j−1

∆x2 + ρ

Cr
(Un+1

j − V n+1
j + 1

c
(GL(VL − V n+1

j )))
)

and use it in

the Heun step of the numerical integration as such:

V n+1
j = V n

j +
∆t

2

(

f(V n
j ) + f(Ṽ n

j )
)

+ µcdW
n
j +

1

2
(νcg(V

n
j ) + νcg(Ṽ

n
j ))∆W n

j . (5.12)

Equation (5.12) is one of the Heun steps and there will be one for each of X,

X ∈ [m,n, h] and U with Equation (5.10) and Equation (5.11) as the predictor steps

respectively. We now have a discretised system which can be used to evaluate the

voltage in the cable, the spines and the values of the m, n, h variables, for all of our

space and time domains and we can choose the method of evaluating the noisy term.

The voltage can then be used as outlined in Chapter 3 to measure the speed using

the level set method, of a travelling wave and get an average speed, over a number

of realisations, of stochastic waves. The only difference in using the level-set method

here, compared with the SDS case, is that the ’level’ that the wave must cross has a

different value since the voltage is on a different scale. We then investigate how the

noise intensity and noise type effect the value of the speed of any propagating waves.

5.3.2 Zeroth order approximation of stochastic BR model in

the travelling wave frame

As well as the simulation of the full system we can look at the behaviour of the

reduced, small noise system. We wish to look at the existence of the travelling waves

and so we convert Equation (5.6) to Equation (5.8), into the travelling wave frame,

using the standard anzatz ξ = ct − x, where c is the wave speed. The resulting

equations are:

Vξ = Ŵ (5.13)

CcVξ = −gL(V − VL) +
1

raπd
Vξ + ρ

U − V

r
− ν2

cFc(0)(65 + V ) (5.14)

cĈUξ = gKn
4(VK − U) + gNahm

3(VNa − U) + gL(VL − U) − U − V

r

− ν2
HFc(0)(65 + U) (5.15)

cXξ = αX(1 −X) − βXX + ν2
XFc(0)X(1 − 3X + 2X2), (5.16)

where X ∈ [m,n, h].

We now have six coupled ODEs, instead of a PDE and four ODEs, and we have

new parameters, wave speed c and noise intensity ν. We now want to investigate how

these parameters effect the travelling wave and also how the speed changes with noise
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intensity, to allow a comparison with the full system.

The continuation package AUTO-07P was used to investigate the ’new’ system of

equations in the travelling wave frame, similar to the work in [70] for the deterministic

BR model. We use the fixed point, or resting state, of the deterministic system as a

starting point for the numerical continuations and search for a Hopf bifurcation (HB)

in one of the many parameters in the deterministic system (for the time being the

noise parameters are kept at zero). A Hopf bifurcation would lead us to a family

of periodic solutions of the system. After some investigation of the parameters of

the system we found a HB whilst varying the value of VL, although this was at an

unrealistic value for VL. From this point we used a two parameter continuation with

VL and the period T of the new orbit, to track back to the correct biological value

for VL. We now have a periodic orbit for our system and the correct value of all

the parameters. We can follow this new point, in ρ and T , to large period periodic

orbit which is a good approximation for a homoclinic orbit. This homoclinic orbit

corresponds to some of the travelling wave solutions of our original problem.

5.4 Results

Here we look at the results of the measuring the speed of the waves in the noisy BR

model. First we look at the direct simulation results for all types of noise in the

m-dynamics and in the cable equation. We then proceed to look at the small noise

results obtained from the AUTO-07P package simulations for spatially correlated

noise in the m-dynamics and the cable. We do not look at noise in the n-dynamics

or the h-dynamics since the system does not seem to be very robust to noise in these

equations i.e. for very small quantities of noise the BR model exhibits noise induced

behaviour and random firing of the spines along the length of cable. During AUTO-

07P simulation of the BR model with small noise the package was unable to perform

a continuation when one of the continuation parameter was either νn or νh, even

for a very small step size. Direct simulation of the system with noise in the n or

h-dynamics resulted in broken, or out of order waves. Figure 5.1 shows the results

of direct simulation in the n and h-dynamics and it can be seen that for a small

intensity of noise the wave is out of order and eventually will fire simultaneously as

the noise intensity increases. In the h-dynamics the level of noise is higher but the

wave is broken up and it was also observed that no matter how strong the noise in

the h-dynamics there was never any noise induced synchronous firing, or repetitive

firing.
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(a) (b)

Figure 5.1: Shown here are the voltages for the cable when there is white multiplicative
noise in the n dynamics, νn = 0.03 (plot (a)) and h-dynamics νh = 0.1(plot (b)). The
waves in plot (a) show the out of order firing of the spines and plot (b) shows the broken
wave. All other parameters are as described in the parameter list at the start of the thesis.
We solve Equation (5.1) to Equation (5.3) with temporal discretisation ∆t = 0.01,
t ∈ [0, 80] and spatial discretisation ∆x = 0.05, x ∈ [0, 15]. The boundary conditions used
are Dirichlet and initial conditions V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n,
h are initially at their rest values.

5.4.1 Direct simulation

We show the results of measuring the speed of travelling waves as the noise intensity

increases, with the different types of noise considered i.e. white, temporally correlated

and spatially correlated. The noise in the spines was added to the m-dynamics only

since trying to use continuation of the noise parameters in AUTO-07P with noise in

n, and h dynamics was unsuccessful, as mentioned. We also consider noise in the

cable equation. All the simulations were generated using the Itô interpretation of the

stochastic integral and so the EM method was employed, unless otherwise stated. As

for the SDS model, we scale the mean speeds by the deterministic value for ease of

comparison and show the variation by means of error bars on all plots which represent

the standard deviation, ±S.D.(X) =
√

E(X2) − (E(X))2.

The Figure 5.2 shows the behaviour of the speed of a travelling wave affected by

white noise either in the cable or the spines. The white additive noise in the top left

of the figure shows an increase in speed over a small range of noise intensities. As the

noise intensity increases above µm = 0.04 the spines start to fire randomly and out

of spatial order, eventually all synchronising and so firing simultaneously. When this

occurs the measured wave can approach infinite speed, or travel with negative speed

if a section of spines at the end of the cable fire before the beginning of the cable. An

example of this out of order firing is shown in Figure 5.3. The same effect is observed

in the multiplicative case at a higher level of noise intensity. The wave begins to travel

108



Chapter 5: Noise in the Baer and Rinzel model

(a) (b)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

µ

S
pe

ed

0 0.01 0.02 0.03 0.04 0.05
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

ν

S
pe

ed

(c) (d)

0 1 2 3 4 5

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

µ

S
pe

ed

0 0.1 0.2 0.3 0.4 0.5

0.96

0.97

0.98

0.99

1

1.01

1.02

ν

S
pe

ed

Figure 5.2: This figure shows the speed of the travelling wave in the BR model with white
noise in the m-dynamicsl. Plot (a) shows that additive white noise in the spines increases
the speed of the wave over a very small range of noise intensities. The sharp increase
occurs as the system becomes synchronised. Plot (b) shows that multiplicative white noise
in the spines also increases the speed of the wave, but over a more substantial range of
noise intensities. Plot (c) shows the speed variation with additive white noise in the cable
and shows very little change in the speed of the wave. Plot (d) shows multiplicative white
noise in the cable and the speed stays almost constant as intensity increases. All other
parameters are as described in the parameter list at the start of the thesis. We solve
Equation (5.1) to Equation (5.3) with temporal discretisation ∆t = 0.01, t ∈ [0, 80] and
spatial discretisation ∆x = 0.05, x ∈ [0, 15]. The boundary conditions used are Dirichlet
and initial conditions V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n, h are initially
at their rest values.
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out of order and so can no longer be classified as a travelling wave, by our definition.

The multiplicative noise in the spine heads also increases the speed of the wave as

the noise intensity increases and the noise in the cable makes little difference to the

speed of the waves. For all plots as the noise intensity increases so does the variation

and so the size of the error bars. Next we look at the travelling waves as they are

Figure 5.3: Sample of the voltage in the cable as the additive white noise in the spines
increases. The spines fire in a random fashion and so defy our definition of a travelling
wave, sequential firing in the spines. Here the ’wave’ travels out of order and almost
horizontally which implies that the speed if it were to be measured would be infinite. The
presence of multiple waves is due to the natural refractory time and the random firing
allowing spines to fire repetitively. The noise intensity is µ = 0.1. All other parameters are
as described in the parameter list at the start of the thesis. We solve Equation (5.1) to
Equation (5.3) with temporal discretisation ∆t = 0.01, t ∈ [0, 80] and spatial discretisation
∆x = 0.05, x ∈ [0, 15]. The boundary conditions used are Dirichlet and initial conditions
V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n, h are initially at their rest values.

affected by temporally correlated noise. We can see in Figure 5.4 that the presence of

temporally correlated noise does make a difference to the behaviour when the noise is

multiplicative in the cable; the speed decreases while the error bars continue to grow.

The temporally correlated noise in the m-dynamics helps to stabilise waves which

were out of order in the white noise case. Figure 5.5 plots (a) and (b) show the

voltage in the cable with additive noise in the m-dynamics, µ = 0.01, for white and

temporally correlated noise respectively. It is clear that the temporal correlation of

β = 2 promotes a travelling wave; it could do this by matching some internal time

scale in the BR model. Plots (c) and (d) show the voltage in the cable when the noise

is multiplicative in the m-dynamics, ν = 0.1, for white and β = 2 correlated noise;

again the correlation promotes a sequential travelling wave.

Finally in this section we look at the effect of spatially correlated noise in the BR

model, again we look at the noise added to the m-dynamics and in the cable voltage

dynamics. Figure 5.6 shows that the spatially correlated multiplicative noise in the
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Figure 5.4: This figure shows the speed of the travelling wave in the BR model with
temporally correlated noise in the spines and in the cable as the noise intensity increases.
Plot (a): additive temporally correlated noise in the spines. Plot (b): multiplicative
temporally correlated noise in the spines. Plot (c): additive temporally correlated noise in
the cable. Plot (d): multiplicative temporally correlated noise in the cable. It can be seen
from these figures that there is little difference from the white noise cases. All other
parameters are as described in the parameter list at the start of the thesis. We solve
Equation (5.1) to Equation (5.3) with temporal discretisation ∆t = 0.01, t ∈ [0, 80] and
spatial discretisation ∆x = 0.05, x ∈ [0, 15]. The boundary conditions used are Dirichlet
and initial conditions V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n, h are initially
at their rest values.
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(a) (b)

(c) (d)

Figure 5.5: This figure shows a sample of the voltage in the cable when there is noise
present in the spine head m-dynamics. Plot (a) has additive white noise of strength
µ = 0.01, plot (b) has additive OU noise strength µ = 0.01 and β = 2, plot (c) has
multiplicative white noise of strength ν = 0.1 and plot (d) has multiplicative OU noise of
strength ν = 0.1 and β = 2. It can be seen that the waves travel out of order when the
noise is white but when a temporal correlation is added the waves regain their sequential
travel. All other parameters are as described in the parameter list at the start of the
thesis. We solve Equation (5.1) to Equation (5.3) with temporal discretisation ∆t = 0.01,
t ∈ [0, 80] and spatial discretisation ∆x = 0.05, x ∈ [0, 15]. The boundary conditions used
are Dirichlet and initial conditions V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n,
h are initially at their rest values.
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BR model, in both the spines and the cable, increases the speed of the travelling

wave. We have used both an Itô and Stratonovich interpretation since we require

the Stratonovich interpretation to compare with the small noise analysis and contin-

uation results. It is clear that there is a difference between the two interpretations;

noise in the Itô sense does not alter the speed as the intensity increases whereas the

Stratonovich case shows a clear increase in speed.
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Figure 5.6: This figure shows the speed of the travelling wave in the BR model with
spatially correlated multiplicative noise in the cable, ζ = 1.25. Plot (a) and (b) shows the
speed when the noise is in the spine heads, m-dynamics, in the Itô and Stratonovich cases
respectively. Plot (c) and (d) shows the speed when the noise is in the cable, in the Itô
and Stratonovich cases respectively. The Itô interpretation does not alter the speed of the
wave but the Stratonovich interpretation increases the speed as noise intensity increases.
All other parameters are as described in the parameter list at the start of the thesis. We
solve Equation (5.1) to Equation (5.3) with temporal discretisation ∆t = 0.01, t ∈ [0, 80]
and spatial discretisation ∆x = 0.05, x ∈ [0, 15]. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n, h

are initially at their rest values.

Figure 5.6 shows in plots (b) and (d) that the speed of the wave increases as the

noise intensity increases, this is in agreement with our small noise approximation and
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results from AUTO-07P, see Section 5.4.2.

5.4.2 Continuation results

With the large period fixed, we can then continue in various combinations of param-

eters to find the regions of the parameter space where the travelling waves exist. We

are interested in ρ the spine density, r the spine stem resistance, and c the wave

speed. To find limits for existence we investigate the effect of the noise intensity. In

Figure 5.8 we show the areas of existence of the travelling wave in the ρ-r parameter

space, plot (a), and the limit point diagram for ρ and the speed of the waves c in plot

(b); finally plot (c) shows the existence of travelling waves in r, c parameter space.

The fast branch of this figure (plot (b)) is the stable branch and shows the waves we

observe in the direct simulations. From the point on the fast branch of plot (b) which

corresponds to the ρ used in the direct simulations we can look at the solution of the

cable voltage V , and see, in Figure 5.7, that the profile qualitatively agrees with that

of the direct simulations; plot (a) is the AUTO-07P result and plot (b) is a voltage

profile from direct simulation.
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Figure 5.7: This figure shows the voltage profile in the cable as obtained from the
AUTO-07P simulation of the BR system in the travelling wave frame, plot (a) and plot (b)
also shows the voltage profile as obtained from the direct simulation of the BR model.

In Figure 5.8 the type of line in each plot corresponds to different levels of noise in

the system, the solid line corresponds to νm = 0, the deterministic case, dot-dashed

line depicts νm = 0.1 and νm = 0.5 is represented by the dashed line. In all three

plots the area in which the waves exist in parameter space increases as the noise

intensity increases. The solutions exist on the lines plotted, i.e. for fixed values of all

other parameters a solution exists at each corresponding set of values on the line. For

example in plot (a), solid line, of Figure 5.8 for the particular fixed value of the speed

there exists a solution at approximately (ρ, r) = (1, 0.4) and (20, 0.4) so for each fixed
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value of speed there is a line similar to the one plotted in Figure 5.8 and the lines

shown are taken at arbitrary fixed values to show as examples.
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Figure 5.8: Examples of limit point diagrams for the deterministic and small noise case. In
all plots the solid line is ν = 0, dot dashed line ν = 0.1 and dashed line ν = 0.5. Plot (a) is
the spine density against the spine stem resistance, plot (b) shows spine density against
the speed of the wave and plot (c) shows the spine stem resistance against the speed of the
wave. Each plot show an increase in the area of existence in parameter space for the
travelling waves as the noise intensity increases. Plot (d) shows the voltage in the cable
profile when there is a small amount of noise in the cable-dynamics; the plot does not
show any fluctuations since there is not actually any explicit noise term in the rescaled
equations, only some of the noise properties.

To see the effect of the noise on the existence of these waves in parameter space,

we choose a point on the fast branch of the deterministic ρ-c curve and continue

from there in two parameters, for example νm (spatially correlated noise intensity in

the m-dynamics) and c. We choose ρ equal to that used in the Matlab simulations

to provide a comparison. We can then see how the wave speed changes as noise is

added into the equations, Figure 5.9. This figure, plot (a), shows the speed of the

wave increasing as the noise intensity in the m-dynamics is increased. We fix a noise

intensity by choosing a point on this new curve, and from this point we can repeat
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the two parameter continuations to get the plots in Figure 5.8. Figure 5.9 shows that

as the intensity of the spatially correlated noise in the cable increases the speed also

increases, although it is a small increase for both the noise in the m-dynamics and in

the cable equation, plot (b).
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Figure 5.9: Speed of propagation as a function of noise strength, from AUTO-07P
simulation of the noisy BR system. The speed increases with noise intensity of the
spatially correlated noise in the m-dynamics, plot (a) and when the noise is in the cable
equation, plot (b).

From the original homoclinic orbit we can look for period doubling (PD) bifurca-

tions to find 2 pulse solutions of the BR model. We can repeat the preceding steps

to get existence of the 2 pulse solutions in the parameter space for the deterministic

and noisy cases. As for the single pulse solutions as the noise intensity increases so

does the area of existence of the 2 pulse solutions. From the 2 pulse branch from the

PD bifurcation we can look for another PD bifurcation to get 4 pulse solutions and

so on. We show the cable voltage solution of the 2 pulse wave in Figure 5.10 and can

show how the parameter regions for existence of a travelling 2 pulse solution exist as

noise increases in Figure 5.11, plot (a). Plot (b) of Figure 5.11 shows how the speed

increases with noise intensity.

5.5 Conclusions

In this chapter we investigated the effects of different types of noise on the behaviour

of the BR model of spiny dendrites and found some interesting results which conflict

with the results we found in the SDS model. We looked at the speed of travelling

waves in the BR model as the noise intensity increases over a small range. When the

noise is multiplicative in the spine head m-dynamics, of any form (white, temporally

or spatially correlated), the speed of the wave increases as the noise intensity increases.
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Figure 5.10: This figure shows the voltage profile obtained by AUTO-07P simulation for a
2 pulse solution to the BR model without noise.
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Figure 5.11: This figure shows the existence of 2 pulse solutions in parameter space and
the speed of the w pulse solution as a function of noise intensity. Plot (a) shows how the
area in parameter space for the parameters ρ and c increase as the noise intensity
increases. The solid line is ν = 0, dot dashed line ν = 0.1 and ν = 0.5 for the dashed line.
As the noise increases the fast, stable branch gets faster and the slow unstable branch gets
slower. Plot (b) shows the increase in speed as the noise intensity increases.

When the noise is in the cable dynamics the speed decreases if the noise is white or

temporally correlated but increases in the spatially correlated case. In the SDS model

it was simple to check if the wave was travelling along the cable by sequential firing of

the spines by checking the times at which the spines fired; the BR model however uses

the HH dynamics in the spine heads and so has no threshold condition to check firing

making it harder to record firing times. The waves measured in the BR model appear

to be sequential for noise levels up to approximately ν = 0.1, and as the intensity

continues to increase beyond this level the system starts to fire synchronously, and so

the wave speed continues to increase further. So although the increase is small, the
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waves definitely increase in speed over the range ν ∈ [0, 0.1]. The effect of a temporal

correlation is very interesting and an increase in the correlation time scale acts to

stabilise the travelling waves and encourages sequential travel in a regime where the

white noise induces an out of order wave.

Due to this behaviour at small levels of noise we looked at a small noise expan-

sion of the noisy BR model with spatially correlated noise in the m-dynamics and

the cable equation. We derived a deterministic approximation of the noisy system

which included an extra, deterministic, term which included the noise intensity and

correlation function of the noise but not the noise itself. These modified deterministic

equations were transformed in to the travelling wave frame and the parameter space

was searched for existence of the travelling waves using the AUTO-07P package. We

included the noise intensity as a continuation parameter so that we could investigate

how the speed of the waves was altered by increasing noise intensity. Figure 5.9 shows

the speed of the waves as the noise intensity increases as obtained by the AUTO-07P

simulations and it is clear that this agrees with the direct simulations as the speed in-

creases over a small range of increasing noise intensities. This method is a very quick

way to explore the behaviour as a function of different parameters and showed that as

the noise intensity increases the travelling waves exist over larger areas of parameter

space. We showed in Figure 5.8, that this was the case for three different pairs of

important parameters: spine density ρ, spine stem resistance r and the wave speed c.

So not only is the BR model robust to small levels of noise, the noise actually helps the

model to support waves in parameter regimes where the deterministic system cannot.

We could also use the AUTO-07P package to search for more complicated travelling

solutions, such as 2-pulse waves. We found that repeating the continuations in noise

for the 2-pulse solution also increases the region of existence in parameter space and

that the 2-pulse solution also travelled faster with an increase in noise intensity.
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Chapter 6

Baer Rinzel model - Non-constant

spine density

6.1 Introduction

We have produced results in Chapter 4 and Chapter 5 that are conflicting i.e. the

speed of travelling waves in each of these spiny dendrite models behaves differently

in the presence of noise. In the case of the SDS model, when noise is introduced to

either the spine head or cable dynamics the speed of any resulting wave is reduced,

contrary to the results of the BR model, where the speed increases in the presence

of noise in the spine heads, and spatially correlated noise in the cable. In a bid to

reconcile these differences we introduce a modified Spike-Diffuse-Spike model in the

hope that it will shed some light on the inconsistencies.

Although both the SDS and the BR models represent a length of spiny dendrite

there are two main differences between; that is the spine head dynamics are repre-

sented by two different models and the way in which the spines are coupled to the

cable is different. In the SDS model, Section 2.8, the spines are attached at dis-

crete, equally space points along the cable and the dynamics are modelled by the IF

model. In the BR model, Section 2.7, the spines are a continuum and the dynamics

are modelled by the HH model. The BR model has more realistic dynamics than

the SDS model but the SDS model has a more realistic physical representation of

the spine stem morphology. This chapter will examine the Baer Rinzel model with a

non-constant spine density, ρ(x), that can be chosen to give spines that have an area

of attachment to the cable, rather that either a continuum or a discrete stem. The

model can also behave like the traditional BR model or like the SDS model, i.e. dis-

crete spine attachment, with HH dynamics. This model has the BR model equations,

Equation (2.34), but with a spatially dependent density of spines, ρ(x).
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6.2 The modified dendrite model

6.2.1 The model equations

We introduce the stochastic BR model with non-constant spine density. The only

difference to the stochastic BR equations, Equation (5.1), is the introduction of the

spatially dependent density of the spines ρ(x).

C
∂V

∂t
= −gL(V − VL) +

1

raπd

∂2V

∂x2
+ ρ(x)

V̂ − V

r
+ (µc + νcgc(V ))

∂W

∂t
(6.1)

Ĉ
∂V̂

∂t
= gKn

4(VK − V̂ ) + gNahm
3(VNa − V̂ )

+ gL(vL − V̂ ) − V̂ − V

r
+ (µH + νHgH(V̂ ))

dW

dt
(6.2)

dX

dt
= αX(1 −X) − βXX + +(µX + νXgX(X))

dW

dt
. (6.3)

All the parameters are as before with the exception of ρ(x), which we now choose to

be either a linear sum of delta functions, such that the spines are attached at discrete

points, as in the SDS model, or we choose a function which gives us a density some-

where between the discrete and continuous cases. We can use the following function,

Equation (6.4), as the new spatially dependent density, which has a parameter to

control the area of the spine stem attached to the cable:

ρ(x) =
∑

n

ρmaxξn exp(−κ(x− xn)2) . (6.4)

Here we have ρmax is the maximum value of the density, taken to be the value used

for the original BR model, and

ξn =

{

1 if xn − d
2
< x ≤ xn + d

2

0 otherwise,

where d is the spine spacing (as before) and κ ∈ R+ controls the width of the spine

stem. As κ → 0, ρ(x) → ρmax and as κ → ∞, ρ(x) →∑

n ρmaxδ(x − xn). Therefore

at the κ→ 0 limit the model resembles the BR model and at κ→ ∞ limit the model

resembles the SDS model with HH dynamics (instead of IF) in the spine heads.

6.2.2 Simulation

The discretisation of the new model is exactly the same for the BR model, since the

governing equations are exactly the same and the only difference occurs in the value of
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ρ(x) at each point but since ρ(x) does not change in time we can simply generate ρ(x)

before the time loop in the simulation and run the algorithm as before, Section 5.3.1.

If xj is a point on the spatial mesh x0, x1, . . . , xJ with step size ∆x, i.e. j = 1, 2, . . . , J

J = L
∆x

, then the density can be discretised thus:

ρj = ρmax

∑

n

exp(−κ(xj − xn)2) .
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Figure 6.1: Examples of the space dependent density as κ changes with d = 0.8 the spine
spacing (distance between peaks). Plot (a) BR limit, plot (b) κ = 2, plot (c) κ = 600 and
plot (d) κ = 10000. All other parameters are as described in the parameter list at the start
of the thesis. We solve Equation (6.1) and Equation (6.4) with temporal discretisation
∆t = 0.01, t ∈ [0, 80] and spatial discretisation ∆x = 0.05, x ∈ [0, 20]. The boundary
conditions used are Dirichlet and initial conditions V (x, 0) = −65, U(x1, 0) = 10,
U(xn>1, 0) = −65, m, n and h are initially at their rest values.

Figure 6.1 is an example of ρ(x) with various values of κ and a spine spacing of

d = 0.8. As the value of κ increases from plot (a) to plot (d) the model is moving

from the BR limit to the SDS-HH limit.
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The discretised BR equations are as before:

V n+1
j = V n

j + ∆t

(
V n

j+1 − 2V n
j + V n

j−1

∆x2
+

ρj

Cr
(Un+1

j − V n+1
j +

1

c
(GL(VL − V n+1

j )))

)

+ (µc + νcg(V
n
j ))∆W n

j ) .

The discretised m, n, h equations, with X ∈ [m,n, h]:

Xn+1
j = Xn

j + ∆t
(
αX(Un

j ) − αX(Un
j )Xn+1

j − βX(Un
j )Xn+1

j

)

+ (µX + νXg(X
n
j ))∆W n

j . (6.5)

And finally the discretised equation for the voltage in the spine heads:

Un+1
j = Un

j +
∆t

Ĉ
(GK(nn+1

j )4(VK − Un+1
j ) +GNah

n+1
j (mn+1

j )3(VNa − Un+1
j )

+ GL(VL − Un+1
j )) +

V n
j − Un+1

j

r
) + (µH + νHg(U

n
j ))∆W n

j .

Again we want to know the effect of noise on the system and so use the level set method

to measure the speed of the travelling waves in the stochastic system to compare to

the results obtained for both the original SDS and original BR models. We then

wanted to investigate the behaviour of the stochastic system when we changed the

size of the spine stem, i.e. changes the value of κ in Equation (6.4), we can therefore

compare the original BR, the SDS-HH model in the two limits and cases in between

the two extremes.

6.3 Results

The SDS model with HH dynamics behaves as the SDS model with IF dynamics;

the speed of the waves in the system decrease as noise increases. Shown in Figure

6.2 are a few examples of the speed as a function of the noise intensity. As in the

original SDS model the speed of the waves decreases as the noise intensity increases.

The results of these simulations, Figure 6.2, tell us that the type of dynamics used

in the spiny dendritic model have not caused the discrepancies between the models

since using the HH dynamics instead of the IF in the SDS model does not change the

overall behaviour of the speed of the travelling wave as noise intensity increases.

We look to the spine density function ρ(x) for an explanation. First we look at

some voltage plots for different values of κ to see how the cable voltage looks as the

width of the spine stem changes. Each plot in Figure 6.3 shows the voltage strength

(indicated by colour) in the whole space-time domain. The value of the voltage is in
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the same range as the original BR model since the basic equations are the same and

only the form of the density ρ(x) changes. The top left figure is the BR-SDS model

in the BR limit κ = 0, the top right is the voltage plot when κ = 2, bottom left is for

κ = 600 and finally the bottom right is the SDS limit when κ = 10000.

We now look at the speed of a noisy wave as the parameter κ changes, and so

as the spine stem width changes. From the behaviour we have observed so far we

expect as κ increases and so the model changes from a BR type, κ = 0, to an SDS

type, κ = 1000, then the plot of the noisy wave speed should cross the plot of the

deterministic wave speed, since the BR model speeds up with the inclusion of noise

and the SDS-HH slows down, just as the SDS model, with the inclusion of noise.

Figure 6.4 shows the speed of a deterministic wave in the modified BR model as κ

changes and so the spine stem changes from a continuum like the original BR model

to a discrete distribution of spines as in the SDS-HH model. There is an optimal

value of κ which maximises the deterministic wave speed, this occurs at κ = 670. The

spatial discretisation used will have an impact on the accuracy of the density, ρ(x),

when κ is large, and this will in turn effect the measured value of the speed. The size

of the spatial step, ∆x, does not have such an impact where κ is small and at large

values of κ the speed of the measured wave will converge as the step size decreases.

Figure 6.5 shows that at small κ the speed of the wave with different step sizes is very

close but as ∆x increases there is a small difference in the measured speed; although

the exact value of the speed differs slightly the overall qualitative behaviour is the

same.

It is difficult to see in Figure 6.6 the point at which the curves cross and the values

of the three curves at the limiting cases κ = 0 and κ = 1000. The best fit lines in

Figure 6.6 are found using a least squares method which minimises the sum of the

squares of the errors between each data point and the fitted line. We implement this

by using the MATLAB function ’dtrend’. Since the changes in the speed are small

and we look at the table shown below, Figure 6.7, the values of the speed at each end

of the noisy curves is shown for the three types of noise in the spines.

6.4 Conclusion

In this chapter we have tried to reconcile the difference in the behaviour of the speed

of waves in the SDS and BR models when noise is present. As previously discussed,

in Chapter 4 we showed that as noise intensity increases the speed of the travelling

waves in the SDS model decreases but in Chapter 5 the BR shows an increase in speed

of travelling waves under the influence of small noise intensities. We first looked at

the SDS model with HH dynamics in the spine heads instead of the IF dynamics.
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We did this using the modified BR model with spatially dependent spine density in

the limit where the spines are attached at discrete points, as in the original SDS

model. We included noise in this SDS-HH model in the m-dynamics and in the

cable equation, as before, and found that the model behaved just as the original

SDS model did under the influence of noise. Figure 6.2 shows a few examples of the

wave speed as noise intensity increases: plot (a) shows multiplicative white noise in

the cable, plot (b) is additive temporally correlated noise in the spine heads, plot

(c) has multiplicative temporally correlated noise in the spine heads and plot (d)

shows multiplicative spatially correlated noise in the spine heads. In each of these

plots the speed of the wave decreases, so it seems that the type of dynamics (and

so the form of the pulse injected to the cable from the spine) does not account for

the difference in behaviour from the SDS to the BR models. This is interesting since

the more realistic dynamics included in the SDS-HH model do not provide any extra

information or influence the behaviour of the model dendrite but it does vastly increase

the computing time and so proves to be an inefficient complication. We looked at the

spine stem resistance as a function of space in between the two extremes of the SDS-

HH model and the original BR model; so a Gaussian type function was chosen with a

parameter, κ, included that could change the density from one limit to the other. In

the deterministic case the value of κ can maximise the speed of the wave so it seems

that the extent of spine stem attachment to the cable is important and can alter the

speed of the wave without the influence of noise. When we include noise in the system

we expect, from the BR model and the SDS-HH models, that the wave speed should

increase as noise is included at the κ = 0 limit and decrease at the opposite extreme

κ→ ∞. Figure 6.6 shows this for the white noise in the m-dynamics case; the changes

in speed are very small and so we plotted the difference between the deterministic

speed and the ’noisy’ speed as a function of κ. Although the plots fluctuate, the mean

trend of the dotted lines in both plot (a), where ν = 0.02 and plot (b) where ν = 0.15

is to cross the y = 0 line which indicates that the noisy wave is slowing down, with

respect to the deterministic wave, as κ increases. The values of the noise at each limit

of the modified model for different types of noise in the m-dynamics and cable were

shown in the table, Figure 6.7, it agrees with the plots in Figure 6.6, and it shows

that the waves speeds at the limits do speed up and slow down in agreement with

previous results. Therefore it seems that the extent of the spine stem is an important

factor in determining the behaviour of the model with respect to noise.
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Figure 6.2: This figure shows the speed of the travelling wave in the SDS-HH model with
different types of noise as the noise intensity increases, in each case the noise slows the
wave speed. For each plot κ = 10000 and d = 0.8. Plot (a) shows the effect of
multiplicative white noise in the cable. Plot (b) shows the effect of multiplicative OU noise
in the cable. Plot (c) is multiplicative OU noise in the spines. Plot (d) shows
multiplicative spatially correlated noise in the cable. All other parameters are as described
in the parameter list at the start of the thesis. We solve Equation (6.1) and Equation (6.4)
with temporal discretisation ∆t = 0.01, t ∈ [0, 80] and spatial discretisation ∆x = 0.05,
x ∈ [0, 20]. The boundary conditions used are Dirichlet and initial conditions
V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n and h are initially at their rest
values.
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(a) (b)

(c) (d)

Figure 6.3: Voltage in the cable is indicated by the colour bar on each plot over the
space-time (x/y axis) domain. Plot (a) shows the cable voltage for the SDS-HH model in
the BR limit κ = 0, plot (b) shows the cable voltage when κ = 2. Plot (c) is the cable
voltage for the SDS-HH model when κ = 600 and plot (d) shows cable voltage for the
SDS-HH model with κ = 10000. All other parameters are as described in the parameter
list at the start of the thesis. We solve Equation (6.1) and Equation (6.4) with temporal
discretisation ∆t = 0.01, t ∈ [0, 80] and spatial discretisation ∆x = 0.05, x ∈ [0, 20]. The
boundary conditions used are Dirichlet and initial conditions V (x, 0) = −65,
U(x1, 0) = 10, U(xn>1, 0) = −65, m, n and h are initially at their rest values.
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Figure 6.4: This figure shows the deterministic speed of waves in the modified BR model
as the parameter κ increases from the BR limit to the SDS limit. There is an optimal
value of κ which maximises the speed of the wave, this occurs at κ = 670. All other
parameters are as described in the parameter list at the start of the thesis. We solve
Equation (6.1) and Equation (6.4) with temporal discretisation ∆t = 0.01, t ∈ [0, 80] and
spatial discretisation ∆x = 0.05, x ∈ [0, 20]. The boundary conditions used are Dirichlet
and initial conditions V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n and h are
initially at their rest values.
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Figure 6.5: This figure shows the deterministic speed of waves in the modified BR model
as the parameter κ increases from the BR limit to the SDS limit. The different lines show
three values of dx. All other parameters are as described in the parameter list at the start
of the thesis. We solve Equation (6.1) and Equation (6.4) with temporal discretisation
∆t = 0.01, t ∈ [0, 80] and spatial discretisation as in the legend, x ∈ [0, 20]. The boundary
conditions used are Dirichlet and initial conditions V (x, 0) = −65, U(x1, 0) = 10,
U(xn>1, 0) = −65, m, n and h are initially at their rest values.
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Figure 6.6: This figure shows the difference between the deterministic speed and the speed
of the noisy wave as κ increases. Plot (a) shows cdeterm − cnoisy, as κ increases, where the
noise intensity is ν = 0.02 and plot (b) has noise intensity ν = 0.15. The dotted lines show
the difference in the speed, starting negative as the noisy speed is faster than the
deterministic wave speed and becoming positive as the noisy wave becomes slower than
the deterministic wave. In plot (a) the difference in wave speed is very small but as the
noise intensity increases, plot (b), the difference increases and the dotted line is above the
line y = 0 for a larger range of κ. The best fit line is found by using a least square fit. All
other parameters are as described in the parameter list at the start of the thesis. We solve
Equation (6.1) and Equation (6.4) with temporal discretisation ∆t = 0.01, t ∈ [0, 80] and
spatial discretisation ∆x = 0.05, x ∈ [0, 20]. The boundary conditions used are Dirichlet
and initial conditions V (x, 0) = −65, U(x1, 0) = 10, U(xn>1, 0) = −65, m, n and h are
initially at their rest values.

White OU Spatial
ν SDS lim BR lim SDS lim BR lim SDS lim BR lim

0.02 0.9988 1.0005 1.0000 1.0000 1.0000 1.0005
0.15 0.9884 1.0046 0.9995 1.0023 1.0007 1.0005
0.3 0.9855 1.0059 0.9865 1.0037 0.9819 1.0096

Figure 6.7: This table shows the speed of the travelling wave, scaled by the deterministic
speed, for three levels of noise intensity ν in the BR model with spatially dependent spine
density ρ(x) at the two limits. The SDS limit has κ → ∞ and the BR limit has κ = 0. It
can be seen that as the noise increases the speed in the SDS limit for each type of noise
slows and in the BR limit the speed increases.
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Chapter 7

Probabilistic representation of SDS

model

This chapter aims to provide a probabilistic description of the SDS model in an at-

tempt to give a quick method of simulating the noisy SDS model and so predict

behaviour of the system under the influence of multiplicative noise in the spine head

dynamics. Following the analysis in the paper by Keener, [54], for a model which

describes calcium waves, we aim to predict the extent and speed of propagation of

the saltatory travelling wave in the stochastic SDS model. Initially we show that the

probabilistic model proposed in [54] is suitable for capturing the behaviour of the

stochastic SDS model. To do this we use the expected values of, e.g. voltage in the

cable and spine heads, and firing times of all spines, that were obtained using the sim-

ulation method described in Section 3.4 of Chapter 3. We then use the methodology

in [54] to extract, for different levels of noise, the probability density functions for each

spine, expected firing times of each spine and the extent of propagation of a wave from

the simulated data. Although the expected firing times etc can be directly obtained

from the data we are using this to check that the probabilistic model is accurate for

the SDS model. We then show a quick method of obtaining the general behaviour of

the system e.g. the probability of wave failure and speed of successful waves without

having to simulate the full system of equations for the SDS model many times, thus

saving computing time.

7.1 Probabilistic analysis of SDS model

The subsequent analysis is done following the paper by Keener, [54]. We look at

the probability of each spine firing given the occurrence of previous firing events and

at the expected time of firing for each spine, again depending on the previous firing

events. In summary we construct a probability density function (PDF) for each spine,

dependent on the voltage in the cable at each spine and the voltage in each spine head.
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We can then extract from the PDF, the cumulative probability of firing for each spine

and then expected firing time and speed of propagation. This is repeated for different

combinations of noise intensity, ν, and input strength, η0.

7.1.1 Cumulative probability and probability density func-

tions

The process of reaching threshold in a stochastic integrate and fire regime can be

described as a random process and therefore the time of firing for the nth spine, Tn,

is a random variable. We can then define the associated, cumulative probability of

firing as:

Pn(t) = P (t > Tn) . (7.1)

So P is the probability that the spine located at xn, fired at time Tn before time t,

given in short as Pn(t).

We need the equation describing the change of probability to take a form that reflects

the way in which we expect the spine to react to voltage in the cable, V , and the

spine head, U . As either the voltage in the cable, at the spine, or in the spine heads

increases so Pn should approach 1 as the spine is likely to fire; just as observed in

Chapter 4, if the voltage is high enough the spines fire. Due to this nature of the

system, we can write:

dPn

dt
= k(V (xn, t))(1 − Pn) , Pn(0) = 0 . (7.2)

Here k(V (xn, t)) is a rate parameter, and is chosen as a function of the local voltage

in the cable:

k(V (xn, t)) =
kmaxV

N

θN + V N
. (7.3)

Here kmax = 200 and is chosen to fit the system behaviour, and θ = −U(xn,t)
0.044

+ 1, is

the threshold that the voltage in the cable must reach for the spine at that point to

fire. Figure 7.1 was obtained by setting the voltage in a spine head in the SDS model

and increasing the voltage in the cable until the spine fired on the next time step of

the simulation. This was done for Un ∈ [0, h], recall h is the firing threshold for the

spine head voltage in the IF process, to obtain the straight line equation for θ. Since

we consider only one firing event in each spine, the spine head voltage will never be

larger than threshold (Un ≤ 0.04) therefore θ > 0. This form of k(V ) arises from the

following properties of the integrate and fire dynamics in the spine heads. When the

voltage in the cable at the position of the spine is small we expect that the probability

of firing is also small and so k(V ), should be small. When the voltage in the cable is

high we expect the probability of firing to be high and so k(V ) should also be high.
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Figure 7.1: Threshold voltage in the cable as a function of, U , the voltage in the spine
head, we require both Un and Vn to determine the threshold θ in Equation (7.3).

Also if the voltage is high in the cable but the spine has yet to fire then the probability

that it will fire at some later time will increase, this agrees with our intuition about

the system and what is observed in direct simulation. The rate parameter cannot be

a function of V solely since if we think of two spines, n and m say, both with the

same large voltage in the cable at points xn and xm but Un < Um then the probability

of firing will be higher for spine m than for spine n and the function k must reflect

this. The function given above (Equation (7.3)), the Hill function, satisfies these

assumptions. This form of the function k is the same as in [54] but we have a time

dependent threshold θ(t) instead of a constant value.

By definition we have that the probability distribution function associated with

the random variable Tn given by:

pn(t) =
dPn

dt
. (7.4)

First note that from Equation (7.2), we can integrate to find an expression for Pn:

∫ t

0

dPn

(1 − Pn)
=

∫ t

0

k(V (s))ds

− ln(1 − Pn) =

∫ t

0

k(V (s))ds

Hence Pn = 1 − e−
R t

0 k(V (s))ds ,

and so we have an explicit expression for the probability distribution:

pn(t) = k(V ) exp

(

−
∫ t

0

k(V (xn, s))ds

)

. (7.5)
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However we cannot say that Equation (7.5) is a true probability distribution function

since there is some small chance that a spine may never fire, i.e.
∫∞
0
pn(t)dt = P∞

n ≤ 1.

7.1.2 Expected firing times

Now that we have an expression for the probability distribution function, PDF, of the

firing times at a given site, xn, we can work out some other properties of the system

that are of interest. The expected firing time of each spine is of interest since we can

then determine if there is a travelling wave present and at what speed this wave is

travelling. First we can define the probability distribution of firing times for site n on

the assumption that a firing event does occur at the nth site, denoted (t|n). Starting

from the standard equation for conditional probability density function:

pn(t|n) =
pn(t) ∩ pn(tn)

pn(tn)
=
pn(t)

P∞
n

,

and so the expected time of firing can be given by:

E(Tn) =
1

P∞
n

∫ ∞

0

tpn(t)dt. (7.6)

This is the expected (or mean) time of firing for site n given that the spine at this site

will fire at some point in the future. We can use the definition of the moments; mk =
∫∞
0
tkpn(t)dt, with k = 0, 1, 2, are the zeroth, first and second moments respectively

for the nth spine, to give:

E(Tn) =
m1

m0
, (7.7)

and for the variance of the firing times:

Var = V(Tn) =
m2

m0
− (

m1

m0
)2. (7.8)

7.1.3 Probability of sequential or non-sequential firing

We are interested in propagation of a signal from one end of the dendrite to the other

by means of sequential firing of spines as discussed previously in Section 3.4. This is

our condition that must be satisfied for a travelling wave to be present. Therefore we

need to consider the probability of a spine firing given that its neighbour has fired

previously. We can also look at the probability of firing out of order as a measure of

this propagation. If the probability of firing out of order is low then this means we

are more likely to see successful propagation of the wave. To assess whether we have

sequential firing or not we simulated the system for 100 realisations and recorded the

number of times each spine fired at each time step. This gives a numerical estimate of

the probability of firing at each moment in time and since the spine fires for a length
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of time τS then the probability of firing in the deterministic or low noise case is one

for a length of time τS. Therefore each point on the curve is the probability that the

spine is firing at that point in time. We can visualise the probability of sequential

firing by plotting the probability curves for the neighbouring spines of interest, if the

curves overlap then there exists a certain probability that the spines will fire out of

sequence, see Figure 7.2 to Figure 7.4 for some examples of these plots. Plot (a) in

each of these figures shows an overlap which is due to the discretisation of the system

and not to an out of order firing event.

The subsequent figures are for a short cable studded with 37 spines and an input

strength of η0 = 1, which was the value used in Chapter 4 where we looked at the

effect of noise on the SDS model, and for different values of noise intensity ν. Figure

7.2 and Figure 7.3 show, for selected pairs of spines, the probability of firing as a

function in time and for different levels of multiplicative white noise intensity, the

form of the multiplicative noise is g(U) = U2.

Figure 7.2 shows the probability of firing at each time step for spine 3, solid line,

and spine 4, dashed line, and the noise intensity increases in each plot. As expected,

as the noise level increases there is more probability of firing out of sequence, but

there is also less probability that the spines will fire at all. This can also be seen in

Figure 7.3 and Figure 7.4 for pairs of spines 17, 18 and 35, 36 respectively, where

as the noise increases the probability profile becomes so small that there is little

probability of firing at the end of the cable. This is apparent where the amplitude

of the peaks decrease as the noise intensity increases, and the probability of firing

plots for neighbouring spines starts to overlap more as the noise intensity increases,

e.g. consider the plots for spines 3 and 4 which overlap a little when ν = 0.1 but

clearly overlap considerably when ν = 10. This agrees with the previous results, in

Section 4.4.1, of low-level noise having little effect on the propagation and mid-level

noise killing propagation.

We can look at the conditional probability that spine 3, for example, fires before

a later site n given that spine 3 does fire, i.e.:

P (t3 < tn|spine 3 fires) =
1

P∞
3

∫ ∞

0

P3(tn)pn(tn)dtn + 1 − P∞
n . (7.9)

Equation (7.9) is constructed with the following terms:� 1 − P∞
n = the probability that spine n does not fire, since we need to take into

consideration that spine n may never reach threshold,� P3(tn)
P∞

3
=
∫ tn

0
p3(t3)
P∞

3
dt: is the probability that spine 3 fires in the interval [0, tn]

given that it does fire at some time in [0,∞),� ∫∞
0
pn(tn)dtn: the probability that spine n fires at some time in [0,∞).
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We can also consider the probability that there is a firing event at spine n and not at

spine 3: P∞
n (1−P∞

3 ), is unlikely to occur since P∞
3 is almost always 1 for the value of

η0 used in the SDS model. When we consider, P (t3 < t4|spine 3 fires) we find that at

low noise sequential firing is very nearly guaranteed. However at higher noise levels

we cannot say that the firing will be sequential. Also as η0 increases the probability

of sequential firing decreases, but the probability of spine four firing but not spine 3,

in all cases, is zero or very close to zero.

7.1.4 Extent of propagation

We can also consider the extent of propagation (Ne, the number of the last spine to

fire before propagation fails) along the cable. The point at which the wave fails to

propagate is when all spines up to the final spine, n say, fire but the spine immediately

following it does not, i.e. spine (n+1) fails to fire, so again this agrees with our earlier

definition of a successful travelling wave in Chapter 4. The probability that a wave

reaches, at least, spine n is the same as the probability that spine n fires:

P (Ne ≥ n) = P∞
n , (7.10)

and the probability that the wave reaches spine n but not spine (n + 1) is P (Ne =

n) = P∞
n − P∞

n+1 = mn
0 (1 −m0). So the expected extent of propagation is given by:

E(Ne) =
∑

n

(P∞
n − P∞

n+1). (7.11)

Now that we have the extent of propagation and the expected firing times for certain

parameter values, we can use them to calculate a speed for the wave. If, for example,

the wave is expected to reach spine, n > 3, then we can use:

c =
xn − x3

E(tn) − E(t3)
(7.12)

as an estimate of the wave speed.

7.2 Simulation of SDS model and data collecting

In order to check that the analysis in Section 7.1 agrees with the behaviour of the

SDS model observed in Chapter 4 we collect the expected/mean values of the voltage

in the cable and the voltage in the spine heads. We can then proceed to the results of

the analysis, e.g. probability of firing and expected extent of propagation, after using

the mean voltages in the equations of Section 7.1. The SDS model was simulated

as previously described in Chapter 3 and Chapter 4, then the data was collected,
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E(V (x, t)), E(Un(t)), and a distribution of firing times, E(Tn), for a range of values of

ν, the strength of the multiplicative white noise in the spine heads, and for a range of

values of input strength (of injected pulse), η0, see Section 2.8 in Chapter 2. For each

combination of ν and η0 a total of 100 realisations were simulated and the average

values recorded. Therefore the data, e.g. V , at a point x along the cable consists

of contributions from all previous firing events at spines with xn ≤ x. Using these

voltages we can apply the equations described in Section 7.1 to get the results laid

out in the results Section 7.2.1.

7.2.1 Results

Figure 7.5 to Figure 7.7 show the probability distributions for a range of η0, ν and at

different spines.

As is expected the peaks of the distributions occur at greater times the further one

looks along the cable, this is only natural since if propagation occurs we expect it to

happen with some finite speed. For example in Figure 7.5, spine 3, the top left plot

for η0 = 1 (dashed line) peaks at approximately 0.9 and in Figure 7.6, spine 18, the

top left plot for η0 = 1 (dashed line) peaks at approximately 13.

The level of noise in the system also greatly effects the probability distributions. The

noise can stop propagation, since the graphs show a long delay, or require a large

input before a sizable peak is seen, e.g at ν = 1 spine 3, Figure 7.5, has quite a strong

peak, but at spine 18, Figure 7.7 you require a greater input to see a peak, and at 18

this peak is very small.

The figures indicate that there are two regions of noise that give different behaviours;

at lower noise intensities the wave behaves close to the deterministic behaviour and

at higher levels the noise terminates wave propagation.

Figure 7.8 shows the probability of spines 3, 18, 36, firing in infinite time. It

can be seen that, at all levels of noise, P∞
n = 1 can be achieved if there is a strong

enough input pulse, η0. Again the three regions of noise give different results: low

noise requires little input to get firing, mid range requires the larger inputs to achieve

firing further along the cable and at high noise the input required decreases again.

For η0 = 1 we can see the behaviour observed in Chapter 4, i.e. at mid levels of noise

P∞ < 1, see Figure 7.8.

The mean firing time, of a spine n, decreases as the strength of the input pulse

η0 increases, see Figure 7.9. This is as expected since in the absence of any active

properties or noise in the system, a larger input will have more of an impact along

the cable due to the diffusive properties of the cable equation. As noise in the system

increases there is an increase in the expected firing time, E(Tn).

This expected time difference suggests that there is a maximum delay for each level of

noise and input level. This property could be used to determine whether a firing event
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is due to the input/previous firing event or if it is purely noise induced. The results we

found using this methodology were in agreement with the full simulation of the system,

as expected since we had to start with the full simulation to get the voltages required

for this analysis. It is encouraging to know that the probabilistic representation can

extract the correct information but it does not save any computing time, in fact it

requires more, and we may as well interpret the data from the simulations directly.

We show in the subsequent Section 7.2.2 that we can use Equation (7.2), Equation

(7.6) etc, along with a reduced simulation to extract the overall behaviour of the

system and save vast computing time.

Using Equation (7.12) and the expected firing times as shown in Figure 7.9 we can

calculate the expected speed of the wave with different strengths of noise in the spine

heads. We look at Figure 7.10 where we deal with noise intensity values that are small

and do not pose any problems with voltage values leaving the range of [0, 1]. We can

see that the speed increases as ν increases, this is in agreement with previous results

shown in Chapter 4 as measured by the level set method and the freezing method in

Figure 4.8. Here the expected firing time of the third spine, E(T3), is used to calculate

the speed and poses the same problem as discussed in the level set method in Section

4.4.1 (shown in Figure 4.8): where the first point used in the level set method is taken

close to the start of the cable then we get an artificial effect, seen as small hump in

speed plot, from the initial conditions on U . However the plot here, Figure 7.10 agrees

with Figure 4.8, so we know that using expected firing times to calculate speed is a

valid method.

7.2.2 Speed measured using reduced cable dynamics

This section shows how we can use the voltage evolution at one spine, with noisy IF

dynamics, to capture the overall behaviour of the SDS model under the influence of

white noise in the spine heads.

We look at the voltage in the cable at one spine, spine n, at xn under the as-

sumption that the previous two spines, at xn−1 and xn−2 have fired. To construct the

voltage in the cable given these firing events we use the series solution given in [109]

instead of a direct numerical simulation.

Using Equation (2.22) we can obtain the voltage in the cable by multiplying the

input to the cable, which is the voltage from the spine firing Dra

r
(V̂ (xn, t)−V (xn, t)),

by Green’s function derived for the cable as in Section 2.2.3 and integrating over the

time interval of interest. Here n is the spine number and so we sum over all the spines

(it will be two here) to ensure the firing event from each spine contributes to the
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voltage in the cable, Equation (7.14).

V (x, t) =
Dra

r

∑

n

∫ t

0

G(x− xn, t− s)[V̂ (xn, s) − V (xn, s)]ds, (7.13)

can be simplified under the assumption that Dra

r
is small, see [109] for detailed de-

scription, and we obtain:

V (x, t) =
∑

n

H(x− xn, t− Tn), (7.14)

where xn is the position of the nth spine, and Tn is the firing time of the nth spine.

H(x, t) = Aǫ(x, t− min(t, τs)) − Aǫ(x, t) , (7.15)

where τs is the length of the pulse injected into the cable when a spine fires and

Aǫ(x, t) =
η0

4

√

1

ǫD
exp(−|x|

√
ǫ

D
)erfc(

−|x|√
4Dt

+
√
ǫt)

+ exp(|x|
√

ǫ

D
)erfc(

|x|√
4Dt

+
√
ǫt). (7.16)

which ǫ = 1
τ
, τ is the time constant of the cable and D is the diffusion coefficient.

We use the sum, Equation (7.14), to evaluate the voltage at the spine of interest

given that the previous two spines have fired, i.e. spines at xn − xn−1 = d and

xn − xn−2 = 2d. We then use the stochastic integrate and fire dynamics to evaluate

the voltage in the spine, therefore we can apply the previous methodology to obtain

the probability of firing and the expected time of firing. The speed of the wave is now

c = d/E(T ).

Figure 7.11 shows the same behaviour as seen in the full SDS model Chapter 4,

with the speed of the wave reducing as the noise intensity increases and the dynamics

of the full cable have been greatly reduced to those of just one spine and 2 firing

events.

7.3 Conclusions

We started this chapter by using the mean voltages, U and V, obtained from full sim-

ulation of the SDS model with multiplicative white noise in the spine head dynamics,

to check that the probabilistic model proposed for calcium dynamics, in [54], is a

suitable representation of the noisy SDS model. We discovered that this probabilistic

model, with a modified threshold condition Equation (7.3) to capture the relevance of
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both spine head and cable voltage in firing times, is a good representation of the SDS

model and agrees with the behaviour observed in the direct simulations of Chapter

4. From Figure 7.2 - Figure 7.4 we observed that for spines at different points along

the cable the probability of firing out of order increases as the noise increases, in

agreement with the full simulations of Chapter 4. These figures also showed that as

the noise increased the probability of firing at all decreases which again agrees with

the results that higher levels of noise kills all propagation in the SDS model. We used

the probability density for spines at different points along the cable to calculate the

speed of the waves as the noise intensity increased. To do this the probability density

was used to find the mean firing times E(Tn), which in turn was used to calculate the

speed. This was found to agree with the speed in the full model: as the noise intensity

increased the speed decreased. The agreement of the probabilistic model and the full

model was encouraging and suggested that there may be a way to capture the mean

behaviour of the noisy system without the full set of equations being solved many

times. We used the series sum solution of the SDS model, Equation (7.14), to reduce

the dynamics from the whole cable to just two previous, neighbouring firing events in

an attempt to discover the mean firing time of a third spine and so find the speed of

a wave on the whole cable. This method was very quick to simulate and did show the

reduced speed as the intensity of the noise increased but the value of the speed was

different to that of the full simulation and the change in speed was much smaller over

the same range of noise intensities than in the full model. This suggests that while

the overall behaviour can be captured by only two previous firing events, the details

of the behaviour requires the information from all firing events. Similarly for the

branching structure there appears to be no quick method of simulating the behaviour

by using a probabilistic model despite the fact that the probability of a wave crossing

the branching point and bringing the first spine on the post branch point dendrite to

threshold to fire can be written explicitly in terms of the firing events of the two pre

branch point spines. The analysis above can be extended to consider the probability

of spines firing on a branched structure. On each of the branches the analysis will be

exactly as previously described for the unbranched dendrite, with minor differences in

the parameters, e.g. resistance, capacitance, spine input strength etc since they may

change from branch to branch. These parameter differences and the contributions

from all branches at the branch point will affect the structure of the rate constant

k(V ).

We have a simple branching morphology with 3 branches, one parent branch and

two daughter branches, which we label b1 and b2, respectively. If each daughter branch

has m spines then the probability of the first spine on the parent branch firing is given
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by:

p1(t) =

∫ t

0

∫ t

0

p1(t|Tb1m, Tb2m)pb1m(Tb1m)pb2m(Tb2m)dtb1mdtb2m

+ (1 − Pb2m(t))

∫ t

0

p1(t|Tb1m, Tb2m)pb1m(Tb1m)dtb1m

+ (1 − Pb1m(t))

∫ t

0

p1(t|Tb1m, Tb2m)pb2m(Tb2m)dtb2m (7.17)

The three terms of this equation relate to different permutations of firing events which

could effect the probability of the wave crossing the branch point and raising the first

spine on the parent branch to threshold and so leading it to fire. The first term is

the probability density of spine 1 firing given that the last spines on each branch

fire, term two is the probability that the last spine on branch one fires but the last

spine on branch 2 does not and the final term is the probability density of spine 1

firing conditional on the last spine in branch 2 firing but not the last spine on branch

one. To simulate this system, the SDS model as it is outlined in section 3 can be

used for the individual branches in this structure but there will be different boundary

conditions on the terminal points of branches 1 and 2 and on the starting point of

the main branch, i.e. at the branch point. The conditions that need to be satisfied

at the branching point are simply those imposed by Kirchhoff’s voltage and current

laws, see Chapter 2 for the numerical method used to simulate a branched structure

such as this. We simulate the branched structure with noise in the spine heads 100

times to create a mean value for the cable voltage, spine head voltage and to obtain

the probability of firing as a function of time; to do this we simply record the firing

time of each spine for each time step. We know how each branch behaves individually

since it is simply a section of straight cable as treated previously in this chapter, but

we would like to know how the branch point behaves. The terms of Equation (7.17)

cannot be obtained without full simulation of the system, so unlike the single cable

case there appears to be no quick method of simulating the whole branched structure.
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Figure 7.2: This figure shows the probability that the spine is firing, at each point in time,
near the start of the cable: spine 3, solid line, and spine 4, dashed line, as the noise
intensity increases. The values for the intensity are ν = 0.1 (plot (a)), ν = 1 (plot (b)),
ν = 5 (plot (c)) and ν = 10 (plot (d)). Since each spine fires for a length of time τS then
the probability of firing at low levels of noise (e.g. plot (a)) is one for each point in time
for a length of time τS . As the noise intensity increases the neighbouring spines have an
increased probability of firing out of order, as seen in the overlapping of the curves, and a
lower probability of firing at all, as seen in the reduced amplitude of the curves. Note that
the overlap in plot (a) is due to the temporal discretisation and not due to an out of order
firing event. All other parameters are as described in the parameter list at the start of the
thesis. We solve Equation (4.4) along with Equation (4.1), to collect mean values of
V (x, t) and U(x, t), with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and spatial
discretisation ∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional electronic length units)
with 37 spines attached along this length. The boundary conditions used are Dirichlet and
initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 7.3: This figure shows the probability of firing for mid cable spines 17, solid line,
and 18, dashed line, as the noise intensity increases. The values for the intensity are
ν = 0.1 (plot (a)), ν = 1 (plot (b)), ν = 5 (plot (c)) and ν = 10 (plot (d)). As the noise
intensity increases the neighbouring spines have an increased probability of firing out of
order, as seen in the overlapping of the curves, and a lower probability of firing at all, as
seen in the reduced amplitude of the curves. All other parameters are as described in the
parameter list at the start of the thesis. We solve Equation (4.4) along with Equation
(4.1), to collect mean values of V (x, t) and U(x, t), with temporal discretisation ∆t = 0.1,
t ∈ [0, 70]and spatial discretisation ∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional
electronic length units) with 37 spines attached along this length. The boundary
conditions used are Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and
Un>2 = 0.
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Figure 7.4: This figure shows the probability of firing for mid cable spines 35, solid line,
and 36, dashed line, as the noise intensity increases. The values for the intensity are
ν = 0.1 (plot (a)), ν = 1 (plot (b)), ν = 5 (plot (c)) and ν = 10 (plot (d)). As the noise
intensity increases the neighbouring spines have an increased probability of firing out of
order, as seen in the overlapping of the curves, and a lower probability of firing at all, as
seen in the reduced amplitude of the curves. All other parameters are as described in the
parameter list at the start of the thesis. We solve Equation (4.4) along with Equation
(4.1), to collect mean values of V (x, t) and U(x, t), with temporal discretisation ∆t = 0.1,
t ∈ [0, 70]and spatial discretisation ∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional
electronic length units) with 37 spines attached along this length. The boundary
conditions used are Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and
Un>2 = 0.
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Figure 7.5: Probability distribution for spine 3, p3(t) for different values of η0, the strength
of the injected voltage, and ν, the strength of the multiplicative noise. Solid line η0 = 0.7,
dashed line η0 = 1 and dot dashed line η0 = 2. Plot (a) ν = 0.1, plot (b) ν = 1, plot (c)
ν = 5 and plot (d) ν = 10. As the noise intensity increases from plot to plot the curves
move further along in time which indicates that the noise is slowing the time to fire. The
injected current also affects the time to fire and so shifts the plots backwards in time as
the input pulse strength increases. All other parameters are as described in the parameter
list at the start of the thesis. We solve Equation (4.4) along with Equation (4.1), to collect
mean values of V (x, t) and U(x, t), with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and

spatial discretisation ∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional electronic length
units) with 37 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 7.6: Probability distribution for spine 18, p18(t) for different values of η0, the
strength of the injected voltage, and ν, the strength of the multiplicative noise. Solid line
η0 = 0.7, dashed line η0 = 1 and dot dashed line η0 = 2. Plot (a) ν = 0.1, plot (b) ν = 1,
plot (c) ν = 5 and plot (d) ν = 10. As the noise intensity increases from plot to plot the
curves become much smaller in amplitude and so suggest that there is less probability of
this spine firing. The curve for η0 = 0.7 cannot be seen in this figure since it is not strong
enough to support a travelling wave with this parameter configuration and as the noise
intensity increases the η0 = 1 curve also disappears suggesting again that this pulse is not
strong enough to produce a wave which reaches spine 18 when higher levels of noise are
present. All other parameters are as described in the parameter list at the start of the
thesis. We solve Equation (4.4) along with Equation (4.1), to collect mean values of
V (x, t) and U(x, t), with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and spatial
discretisation ∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional electronic length units)
with 37 spines attached along this length. The boundary conditions used are Dirichlet and
initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 7.7: Probability distribution for spine 36, p36(t) for different values of η0, the
strength of the injected voltage, and ν, the strength of the multiplicative noise. Solid line
η0 = 0.7, dashed line η0 = 1 and dot dashed line η0 = 2. Plot (a): ν = 0.1, plot (b): ν = 1,
plot (c): ν = 5 and plot (d): ν = 10. As the noise intensity increases from plot to plot the
curves become much smaller in amplitude and so suggest that there is less probability of
this spine firing. The curve for η0 = 0.7 cannot be seen in this figure since it is not strong
enough to support a travelling wave with this parameter configuration and as the noise
intensity increases the η0 = 1 curve also disappears suggesting again that this pulse is not
strong enough to produce a wave which reaches spine 36 when higher levels of noise are
present. All other parameters are as described in the parameter list at the start of the
thesis. We solve Equation (4.4) along with Equation (4.1), to collect mean values of
V (x, t) and U(x, t), with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and spatial
discretisation ∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional electronic length units)
with 37 spines attached along this length. The boundary conditions used are Dirichlet and
initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 7.8: Probability of firing in infinite time, P∞
n , n = 3, 18, 36. Spine 3 solid line, spine

18 dashed line and spine 36 dot dashed line. This shows that if the input pulse is strong
enough, the spines will always fire at some point in time, even when there is noise in the
system. The noise intensity for each plot is: plot (a) ν = 0.1, plot (b) ν = 1, plot (c) ν = 5
and plot (d) ν = 10. All other parameters are as described in the parameter list at the
start of the thesis. We solve Equation (4.4) along with Equation (4.1), to collect mean
values of V (x, t) and U(x, t), with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and spatial
discretisation ∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional electronic length units)
with 37 spines attached along this length. The boundary conditions used are Dirichlet and
initial conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 7.9: This figure shows the mean firing time of spines 3, solid line, 18, dashed line
and 36, dot dashed line, as a function of the input pulse strength, η0, and as the noise
intensity increases. As the noise intensity increases the firing time of spines 18 and 36
clearly reduce, this arises from the random, noise induced behaviour at higher noise
levels.All other parameters are as described in the parameter list at the start of the thesis.
We solve Equation (4.4) along with Equation (4.1), to collect mean values of V (x, t) and
U(x, t), with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and spatial discretisation
∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional electronic length units) with 37 spines
attached along this length. The boundary conditions used are Dirichlet and initial
conditions V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 7.10: Speed of wave calculated using expected firing times, over range of small
values of multiplicative noise intensity and input pulse strength η0 = 1. All other
parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.1), to collect mean values of V (x, t) and U(x, t),
with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and spatial discretisation ∆x = 0.08,
x ∈ [0, 48] (measured in non-dimensional electronic length units) with 37 spines attached
along this length. The boundary conditions used are Dirichlet and initial conditions
V (x, 0) = 0, U1(0) = U2(0) = 0.04 and Un>2 = 0.
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Figure 7.11: Speed of stochastic wave measured using only the expected firing time of one
spine given that 2 previous spines have fired.

148



Chapter 7: Probabilistic representation of SDS model

Figure 7.12: Diagram showing the branched structure we are considering, with one parent
and two daughter branches.
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Chapter 8

Signal processing in the SDS and

BR model

8.1 Introduction

A question which must be asked is whether the propagation of travelling waves in

the SDS or BR model with noise, contains any useful information, e.g. can it help to

carry an input pattern from one end of the cable to the other? It has been shown in

the experimental work of Fortune and Rose [28] that the spiny dendrites in the dorsal

torus semicircularis of the fish Eigenmannia, have low-pass filtering properties. The

SDS model was also shown to have low-pass filtering properties, see [109] that were

consistent with those observed experimentally by Rose and Fortune. We now look at

the filtering properties with noise in the system and with a noisy input signal. We

show that the system is robust to noise in these circumstances i.e. it still supports

the low-pass filtering properties when the system is noisy and can recover the mean

input frequency when the signal is corrupt. The timing of action potentials is also

important in the filtering behaviour since if there is variation in the spike arriving at

the end of the cable then the system may not be able to pick out the input frequency,

[64] talks of the importance of action potential timing in the neuron in perception and

movement of invertebrates. We can also, in a small range of parameters, show that

the SDS model for the spiny dendrite can act like a high-pass filter. This allows high

frequency input signals to propagate to the end of the cable, the output frequency will

be determined by the refractory time of the system and low frequency input signals

will not induce travelling waves, therefore no output.

The branched SDS model also shows some processing properties when in the cor-

rect parameter ranges. We can show that a single branch point can act as a simple

logic gate. In the parameter ranges used throughout most of the previous work the

branch point acts as an OR gate, but can behave, with the correct parameters, as

an AND gate. The following tables are the truth tables for the AND and OR gate
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Input A Input B Output
0 0 0
0 1 0
1 0 0
1 1 1

Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 1

Figure 8.1: The truth tables for: left table is the AND logic gate and the right table is the
OR logic gate. The AND gate requires 2 inputs to give an output whereas the OR gate
only requires one input to give an output.

respectively, where A and B are the input from each branch, i.e. if the last spine on

branch A fires the input is 1 (0 if it does not fire), and the output column represents

the firing of the first spines after the branch point.

8.2 Measuring the filtering properties of the SDS

model

To look at the filtering properties we want to input a train of pulses, of period T , into

one end of a length of spiny dendrite, modelled by the SDS model, and measure the

period, Tout, at the other end of the cable. Here we use a step function to model the

pulses, which are on for the same length of time as a firing spine, τs, have strength A

and the time between them is our input period T :
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Figure 8.2: Schematic of input pulse train which is injected to the beginning of the cable
at the same position as spine one, showing the amplitude of the input pulses, A, and the
length of time the pulse is on for, τs. T is the period between the pulses.

When we add this injected current to the cable equation we simply get one extra

term to solve in Equation (8.1). We choose this form of the input since it is the same as

the input (action potential) from a firing spine therefore it is a realistic representation
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of an input spike train for the SDS model.

∂V (x, t)

∂t
= D

∂2V (x, t)

∂x2
− V (x, t)

τ
+Draρ(x)

V̂ (x, t) − V (x, t)

r
+ Vinj(xinj, t) (8.1)

Parameters in Equation (8.1) are the same as before and Vinj(xinj, t) is given by:

Vinj(xinj , t) =

{

A tkon ≤ t ≤ (tkon + τs)

0 (tkon + τs) ≤ t ≤ tk+1
on ,

where tkon’s are a sequence of times that the pulse begins and t1on = 0, tkon = t1on+k(τs+
T
∆t

), T is the period of the input signal and ∆t is the time step used in the simulation

of the the SDS model. The whole system can still be solved as in Chapter 4, with

white noise in the spine heads. When we have the full solution for the system with the

new injected voltage we need to determine the output frequency/period. To do this

we look at the firing times, Tm
n is the mth firing time of spine n, which we choose to

be near the end of the cable over all time. When we do this we will get m times which

corresponds to each firing event. To get Tout, the period of the output signal, we need

to find the times between firing events or simply for each m, tout = Tm
n −Tm−1

n . When

this is done for each m we get a value for Tout by taking the average of all the tout

values.

8.2.1 Noisy input signal

When considering the case where the input signal has some variation in T we choose

the input period from a normal distribution of times. We generate an input train of

pulses with Tin = T +ση(t), where η(t) ∈ N (0, 1). We generate the N (0, 1) in Matlab

using the ’randn’ function which has a mean of zero and a variance of one. We use

σ to alter the variance and so our Tin ∈ N (T, σ), i.e. mean T and variance σ. The

input mean is chosen to be a variety of values to correspond with a range of low and

high frequencies. We then measure the output as outlined in the previous subsection,

by looking at the firing times of the final spine and again take the average values to

be the final output frequency.

8.3 Results

We first look at the response of the deterministic system to a deterministic input, we

have plotted the ’frequency in’ (fin) vs ’frequency out’ (fout), on a log scale, rather

than the period T . Frequency is given by f = 1
T
. It can be seen in Figure 8.3 that

the system responds with the same output frequency to the input frequency for low

frequency. Then when the system gets close to the refractory time of the spines τR = 7,
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Figure 8.3: Deterministic response of the SDS model, as a low-pass filter, to input spike
train with various frequencies, refractory time τR = 7. All other parameters are as
described in the parameter list at the start of the thesis. We solve Equation (4.4) along
with Equation (4.1), to collect mean values of V (x, t) and U(x, t), with temporal
discretisation ∆t = 0.1, t ∈ [0, 70]and spatial discretisation ∆x = 0.08, x ∈ [0, 48]
(measured in non-dimensional electronic length units) with 37 spines attached along this
length. The boundary conditions used are Dirichlet and initial conditions V (x, 0) = 0,
U(x, 0) = 0.

in this case, there is a bit of fluctuation caused by the interplay of the input frequency

and the natural frequency caused by the refractory time. When the input frequency

becomes faster than the natural frequency then the system can only respond at the

frequency determined by τR i.e. fR = 1
τR

and the graph levels out. We first look

at the response of the system to Vinj, described by Equation (8.2), with temporal

white noise in the spine heads as described by the discretised Equation (4.10), with

g(U) = U(1 − U). Figure 8.4 shows how the low-pass filtering properties start to

break down as the noise in the spine heads increases, the higher noise does not allow

the SDS dendrite to transmit the input signal. The linear response in the lower part

of the graph, low frequencies, is lost and when fin crosses the natural frequency the

response is not always that of the refractory time. The overall trend of the noise

is to smooth the graph and remove the fluctuations from the interplay of the input

frequency and the natural frequency of the system. The system is, however, robust

to low levels of noise.

Figure 8.5 shows that the SDS system is robust to noisy input signals. The system

responds with approximately the same frequency as the mean of the input signal up to

the refractory time, τR, just as the deterministic case, Figure 8.3. After the refractory

time has been passed by the mean input frequency, the system again responds roughly

at the frequency of the refractory time 1
τR

as in the deterministic case. The interplay

between the refractory time and the input frequency, seen as the fluctuations in Figure

8.3, smooths as the noise in the signal increases. So again the system is able to sort

153



Chapter 8: Signal processing in the SDS and BR model

out the underlying frequency from a noisy signal.

We now briefly look at the SDS model in a high-pass filter configuration. Figure

8.6 shows that the system can also be configured in such a way that it acts like a

high-pass filter. For low input frequencies there is no response at the other end of the

cable and so fout = 0. As the input frequency increases the system does respond albeit

only at the natural frequency of the system. This high-pass property is an interplay

between the voltage threshold for firing h and the amplitude of the input pulse when a

spine fires η0. The first spine will receive more input from a faster frequency, since the

voltage will build up before it can diffuse along the cable, but with a slower frequency

the voltage has no opportunity to build up since it is diffusing faster than the input

is being received. However if the input amplitude is large then one input alone is

enough to bring the first spine to threshold, and fire, so the high-pass property is lost,

therefore this phenomenon is only seen when the amplitude and threshold are in the

right balance.

8.3.1 Filtering with the BR model

In the BR model there is no way to control the natural refractory scale of the sys-

tem, or the size of the action potential and so we can only observe the low-pass

filtering behaviour. The system also reacts with a frequecy of multiples of the input

frequency, e.g. fout = 1
2
fin, making a filtering graph, like Figure 8.3, difficult to plot

and understand.

8.4 Branched SDS model as a logic gate

Figure 8.7 shows the branched configuration of 3 lengths of SDS cable that can carry

out some simple logic computations. It does this by acting like a logic gate, the

AND or OR gates. As such it can take input from the two branches, A and B, and

then ’decide’ if the signal will proceed any further by either allowing the spine on

the parent branch to fire or not; see the truth tables, Figure 8.1. An example of this

type of logic behaviour in nature can be found in the developing retina of the mouse

([12]). This paper shows that in early development all pre-synaptic neurons must fire

to generate activity on the post-synaptic side of the system, like an AND gate. Later

in development this all or nothing set up changes so that the post-synaptic neurons

do not require all pre-synaptic neurons to fire to illicit a response, behaviour akin to

an OR gate.
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8.4.1 Simulating the discretised branched SDS model

The numerical algorithm follows exactly the same steps as for the non-branched SDS

model, the only difference is that we have to keep track of the spines firing on sep-

arate branches and we use the the method described in Section 3.3.3 to modify the

discretisation matrix to include the branch point. The wave is initiated in both the

daughter branches, as for the single branch SDS model, and the firing of the spines on

both of these branches is stored and contributes to the cable voltage as in the single

SDS cable. We keep track of the firing on each branch and observe the spines on the

parent branch to see if the signal passes the branch point. We simulate this system

when one or other or both of the daughter branches is initially set above threshold

to simulate the different configurations of logic inputs, as in Figure 8.1. If the parent

branch fires in response to any input then it is an OR gate, but if the parent branch

requires both daughter branches to fire to initiate a wave then it is and AND gate.

Figure 8.8 shows a wave travelling down the daughter branches to the branch point

and inducing a wave in the parent branch. The first two waves on the figure show the

voltage on the daughter branches and are both attached to the branch point. Figure

8.8, shows the branched structure in the AND gate configuration and if either one

of the daughter branches does not support a wave then the signal will not pass the

branch point. To switch to an OR gate situation then we need to change some of the

system parameters. The AND gate shown above has the standard parameter values

for each branch that have been used in the SDS model throughout this body of work,

and we can switch to an OR gate by changing only one of these many parameters.

If the threshold for firing in the IF dynamics for the spines of the parent branch is

reduced slightly then we can show that if only one of the daughter branches has a

travelling wave then the wave will still pass through the branch point and induce a

wave in the parent branch. We can also change the value of λ (the space constant)

which effectively changes the diffusion constant of the branch, and achieve the same

effect of turning the structure from the AND gate to the OR gate. Figure 8.9 show

the SDS branching structure acting as an OR gate.

8.5 Conclusion

The aim of this chapter was to investigate how robust the dendrite models were to

noise by showing how they process some information which has been very simply

encoded as a chain of input pulses with an associated frequency. We started with

the SDS model with a configuration of parameters which means the system acts as a

low-pass filter, i.e. only signals with low input frequencies can pass along the cable

and be observed as a spike train at the opposite end. In the deterministic case the

system responds, at low input frequencies, at the same frequency until it nears the
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refractory time of the system when there is an interplay between the input and refrac-

tory frequencies resulting in a non-linear response until the input frequency exceeds

the refractory time when the system responds with a constant output frequency close

to the refractory time. When noise is added to the spine heads and the system is

again stimulated with a periodic input, we obtained the average response for different

levels of noise. Figure 8.4 shows the results of these noisy filters, and the SDS model

is very robust to low levels of noise since there is little difference in the response of

the deterministic system and plots (a) and (b) of Figure 8.4. Plots (a) and (b) have

noise intensities ν = 0.01 and ν = 0.1, both of which support sequential firing and full

propagation, as seen in Chapter 4, so it is expected that they will respond accurately

to the input frequency. The surprising result is that even at levels of noise where the

waves in the SDS model are not always sequential, as in plot (c) ν = 0.8 and plot

(d) ν = 1 of Figure 8.4, the system still responds at frequencies very close to the

input frequency when fin is below the refractory time. The accuracy is lost as the

input frequency exceeds the refractory time and the system no longer responds with a

constant frequency of 1
τR

. When the deterministic SDS model is subjected to a noisy

input again it shows a remarkable ability to determine the underlying mean frequency.

At low levels of noise in the input signal the SDS model responds with the mean fre-

quency up to the refractory time where it responds with a constant frequency, just

like a low pass filter. As the noise increases the system loses some accuracy but still

remains close to the input frequency. Interestingly the noisier input signals smooth

out the response when the input frequency is close to the refractory time, but the

system never reaches the refractory time response. We also briefly showed that the

SDS model can act as a high pass filter if the parameters of the system are chosen

properly, although there is only a small range of parameters where this occurs, sug-

gesting that the natural arrangement for a dendrite (modelled by the SDS model) is

that of a low-pass filter. The branched SDS model showed more versatility in the

processing capabilities of the SDS model. When arranged such that there are three

lengths of SDS dendrite meeting at a single branch point and the distal ends of the two

daughter branches are thought of as input sites and the proximal end of the parent

branch as the output site, this structure can be used as a logic gate. A simple change

in the parameters of each branch can switch the behaviour of the branched SDS model

from an AND gate to an OR gate. If each of the branches has the parameters used

throughout this work so far then the branched structure acts like an AND gate.
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Figure 8.4: These figure show the mean response, nsample = 100, of the SDS model with
white noise in the spine heads to different frequencies of input signal. The input signal is
injected to the cable as a train of voltage steps. Plot (a): shows fin vs fout with τR = 7
and the intensity of the noise in the spine heads is ν = 0.01, plot (b): shows fin vs fout

with τR = 7 and the intensity of the noise in the spine heads is ν = 0.1, plot (c): shows fin

vs fout with τR = 7 and the intensity of the noise in the spine heads is ν = 0.8, plot (d):
shows fin vs fout with τR = 7 and the intensity of the noise in the spine heads is ν = 1. All
other parameters are as described in the parameter list at the start of the thesis. We solve
Equation (4.4) along with Equation (4.1), to collect mean values of V (x, t) and U(x, t),
with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and spatial discretisation ∆x = 0.08,
x ∈ [0, 48] (measured in non-dimensional electronic length units) with 37 spines attached
along this length. The boundary conditions used are Dirichlet and initial conditions
V (x, 0) = 0, U(x, 0) = 0.
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Figure 8.5: This figure shows the SDS model response, fout, to a periodic input, E(fin),
that is corrupted with noise. Plot (a) has σ = 0.5, plot (b) σ = 1, plot (c) σ = 2 and plot
(d) σ = 5. As the variation around the mean frequency increases the output frequency
smooths out the variation which occurs just before refractory time, τR, is reached. Also
the frequency stays below the refractory time, which is different to the case where the
noise is intrinsic to the system. All other parameters are as described in the parameter list
at the start of the thesis. We solve Equation (4.4) along with Equation (4.1), to collect
mean values of V (x, t) and U(x, t), with temporal discretisation ∆t = 0.1, t ∈ [0, 70]and

spatial discretisation ∆x = 0.08, x ∈ [0, 48] (measured in non-dimensional electronic length
units) with 37 spines attached along this length. The boundary conditions used are
Dirichlet and initial conditions V (x, 0) = 0, U(x, 0) = 0.
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Figure 8.6: This figure shows the response of the SDS model in a high-pass filtering
regime. The parameters are arranged such that only high frequency signals can pass to the
end of the cable, low frequencies are blocked out.

Figure 8.7: Diagram showing how the spatial steps are labelled for use in the spatial
discretisation matrix A.
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Figure 8.8: Voltage in the branched deterministic SDS model. The first two waves show
the voltage in the daughter branches and the third (starting at a later time) is the wave in
the parent branch. The first 2 spines on each daughter branch are set above threshold to
induce a travelling wave. When these waves reach the branch point the voltage passes
across the branch point and raises the voltage in the parent branch to induce firing in the
spines here.

Figure 8.9: The left figure shows the branching structure acting as an OR gate when the
first daughter branch has the first two spines set above threshold to induce a travelling
wave which crosses the branch point. The right figure also shows the OR gate
configuration when the other daughter branch is used to initiate a wave.
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Discussion

We set out to investigate the effects of different types of noise on models of spiny

dendrites and have provided a comprehensive comparison of white, temporally and

spatially correlated noise in two such models. We investigated the stochastic spike-

diffuse-spike model and the stochastic Baer and Rinzel model driven by noise in the

spine head and cable dynamics.

When the noise is in the SDS model the speed of any travelling wave decreases

as the noise intensity increases but when the noise is in the BR model the speed of

travelling waves increases as the noise intensity increases, when the noise is in the

spines or spatially correlated in the cable. The main differences between the two

models are the dynamics used to describe the evolution of the spine head voltage

(integrate and fire dynamics in the SDS model and the Hodgkin Huxley equations

in the BR model) and the spine density, ρ(x) (discretely attached equally spaced

spines in the SDS model and a constant in the BR model). This difference could be

used to decide which model is a more accurate description of the real dendrite if an

experiment could be devised in which the speed of an injected pulse travels the length

of a dendrite with noise present. In an attempt to discover which of the differences in

the models produced the difference in behaviour we investigated the BR model with

a spatially dependent density. The form of the density was chosen such that it could

be either a constant value or a series of discrete points just as in the BR and SDS

models respectively. In the SDS limit where the spines are attached discretely the

model can be thought to be the SDS model with HH dynamics in the spine heads and

this model does act like the SDS model when we add noise to the system. Therefore

we can conclude that the type of spine dynamics is not the reason for the difference

in behaviour between the SDS and BR models and we investigate the affect of the

spine density and so the spine stem. As we change the spine density from one limit to

the other the cases in between are like looking at spines attached to the cable with a

spine stem that has an area of attachment to the cable. The speed of the wave in the

deterministic version of this model increases from the BR limit to the SDS limit and
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there is an optimal value for the spine attachment that gives a maximum value of the

speed. When there is noise in the system and we are changing the parameter from BR

to SDS limits, the average speed of the wave starts faster than the deterministic wave

speed and decreases below the deterministic speed at the SDS limit, in agreement with

the previous results from the original SDS and BR models. Although this spatially

dependent spine density gives some insight to the importance of the spine stem the

model could be improved by a more realistic physical description of the way the spine

stems are attached to the cable and perhaps by introducing some random distribution

of the spines to investigate how this affects the behaviour. To take this a step further

there could even be a simple learning rule introduced which could move the spines in

relation to the levels of activity and give a time dependent spine distribution; [114]

looks at a simple activity dependent spine plasticity in the BR model, so perhaps

this could be extended to include noise. When the noise in the BR or SDS model

is correlated, either in time or space, the correlation scale makes little difference to

the behaviour of the system e.g. the speed of the stochastic waves in the SDS model

as the strength of correlated noise increases decreases just as for white noise. When

the noise is temporally correlated in the spine heads of the SDS model or spatially

correlated in the cable of the SDS model, for a fixed level of noise intensity, the wave

speed increases as the correlation scale increases. However the speed never increases

beyond the speed of the deterministic wave. The temporally correlated noise in the

spines of the BR model, may not affect the speed of the wave much but it does serve

to stabilise waves which were out of order in the white noise case; thereby making the

model robust to higher levels of noise.

Additive noise in both the dendrite models can induce synchronous behaviour in

the spines. For very small levels of noise the systems are fairly robust to the noise;

all waves fully propagate and are only subject to a small change in the speed. As the

strength of additive noise increases the spines in the models begin to fire out of order

and seemingly in a random fashion until a synchronous behaviour takes over and they

all fire simultaneously, similarly observed in [77] and [76]. When the noise in the SDS

model is additive and spatially correlated in the spine heads then the correlation scale

can play a role in restoring sequential firing that has been destroyed by the noise, e.g.

when the noise intensity is fixed a short correlation scale displays the out of order

firing but as the correlation scale is increased the wave travels in a sequential fashion.

The synchrony, [60], [122], [77], is an interesting phenomena that we observe in this

work but have not investigated, and would be a clear place to extend the work by

looking at this behaviour in the context of neural networks rather than as a model of a

single dendrite or it could be used as means to dendritic democracy since an increase

in the correlation scale encourages distal inputs to travel to the proximal end, [108],

[39].
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We investigated the possibility of representing the SDS model by a probabilistic

model in an attempt to find a quick way to simulate the stochastic system. The

model investigated, [54], did fit the behaviour of the stochastic SDS model very well

as it captured the correct expected firing times, probability of firing out of order

and the speed of the wave decreasing as noise intensity increased. Unfortunately

this still required full simulation of the SDS model before the probabilistic model

equations could be applied. One problem in trying to use this model to find a quick

method of simulation is the lack of system parameters explicitly expressed in the

model equations. The dynamics were all reduced to a threshold condition in the

probability equation and so if we wish to investigate the role of the noise intensity or

one of the system parameters, e.g. spine stem resistance r or spine density ρ, then we

need to re-simulate the full system to fit the threshold condition again. This problem

was complicated when we looked briefly at a branched structure since we now have

three sets of parameters to consider. A reduced method would be very useful in this

case in particular since the simulation time for a branched structure is considerably

longer than that of the single dendrite.

When we looked at the signal processing capabilities of the SDS model we found

that it was very versatile and could act as a low or high pass filter and as either an

AND or OR logic gate in the branched configuration. The filtering properties are in

agreement with previous results and experiments, see [109] and [28], and we showed

in this work that not only does the system act as a filter but that this capability is

robust to small noise. When the noise is intrinsic to the system the filtering properties

remain as the noise intensity increases and even when the noise is high enough to

produce out of order firing in the system some of the linear response remains, i.e. the

model still responds with an output frequency close to the input frequency although

it loses the limiting response of the refractory time when the input frequency is high.

Alternatively we looked at a deterministic SDS model processing noisy signals; the

input had a mean frequency that was corrupted by different levels of noise. When the

noise in the signal is small again the system is robust to these variations and responds

with the mean frequency and as the noise increases the system’s response loses a

bit of accuracy. This result is encouraging since we would expect that real neurons

in the brain would have to cope with a lot of surrounding noise and yet signals are

still successfully processed by the brain in performing even primitive tasks such as

breathing. When the SDS dendrite is used as a three branch structure we can alter

the parameters in each branch to change the system from working as an AND gate

to an OR gate. We did not look at this configuration of the system with noise and

it would be good to know how robust it was to noise. It would also be interesting to

investigate if combinations of AND and OR units could be combined in such a way as

to produce more complicated logic gate operations. There is experimental evidence
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of living neurons working as logic gates, the paper [12] for example shows the same

neural circuit working as both an AND gate and an OR gate at different stages of

development and [25] used real hippocampal neurons grown on a patterned template

to develop AND gates. A possible way to extend our work is to look at the BR model

as a logic gate and perhaps add a soma to the SDS model dendrite to see how this

affects the processing capabilities and further a series of these units could be coupled

together in an attempt to reproduce the results of [25] for example.

We have shown that the SDS and BR models are robust to low levels of noise and

that they can be used in a variety of configurations to show some signal processing

capabilities. The SDS model is a simple model and it is exciting to see that it can

be used in a variety of ways that reflect the real behaviour of neurons. Even when

the noise exceeds the levels where clean signals and sequential firing of the spines

occur the system displays some interesting behaviour; the noise induced synchrony

of diffusively coupled IF units or HH units. There is much more that could be done

and we have discussed a few possibilities in this chapter; even without adding in the

complications of learning models or somas the basic SDS and BR models can still

have more applications. Depending on one’s interest the models can be extended to

investigate spine motility and plasticity, network properties including noise induced

synchrony and signal processing in the form of filters or logic gates. These models

are truly versatile and relatively simple to use and simulate, even when stochastic as

shown through this work by using simple numerical methods.
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