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COMPARISON OF NON-INTRUSIVE APPROACHES TO
UNCERTAINTY PROPAGATION IN ORBITAL MECHANICS

Chiara Tardioli∗, Martin Kubicek∗, Massimiliano Vasile†, Edmondo Minisci ‡,

Annalisa Riccardi§

The paper presents four different non-intrusive approaches to the propagation of
uncertainty in orbital dynamics with particular application to space debris orbit
analysis. Intrusive approaches are generally understood as those methods that re-
quire a modification of the original problem by introducing a new algebra or by
directly embedding high-order polynomial expansions of the uncertain quantities
in the governing equations. Non-intrusive approaches are instead based on a poly-
nomial representations built on sparse samples of the system response to the uncer-
tain quantities. The paper will present a standard Polynomial Chaos Expansion, an
Uncertain Quantification-High Dimensional Model Representation, a Generalised
Kriging model and an expansion with Tchebycheff polynomials on sparse grids.
The work will assess the computational cost and the suitability of these methods
to propagate different type of orbits.

INTRODUCTION

Uncertainty propagation in orbital mechanics is a key enabling technology that is at the basis

of all orbit determination, state estimation, guidance, navigation and control, impact and collision

prediction processes. In particular, in the case of space debris orbit analysis, uncertainty propagation

is required to predict possible collisions or to describe the evolution of a cloud of particles. The

latter, in fact, can be seen as the evolution of an uncertainty region over which one can define a

distribution function. The evolution of an uncertainty region can be described through a linear

model by multiplying the variation of the uncertain variables by the state transition matrix of the

linearized dynamics. It can be shown that this approach is not suitable to correctly represent the

evolution of an uncertainty region even over a short period of time. For this reason, in recent times,

authors have proposed higher order methods either intrusive or non-intrusive. In the latter category

one can find the work of Jones et al.1 on the use of non-intrusive Polynomial Chaos Expansions

to predict the collision of two objects or the work of Garmier et al.2 and of De Mars et al.3 on

the use of Gaussian mixture models. Among the intrusive approaches one can find the work of

Morselli et al.4 on the use of Taylor models and the work of Park and Scheers5 on the use of high

order Taylor expansions. The approach proposed by Park and Scheeres has the main drawback
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that the construction of the polynomial representation of the uncertainty region of the end states

requires the propagation of the partial derivatives of the Taylor expansion of the dynamics. As the

dimension of the uncertain space and the order of the expansion increase, the number of required

propagations grow faster than the number of coefficients of the Taylor expansion and becomes more

expensive than a Monte Carlo sampling. The use of a dedicated algebra to manipulate the Taylor

expansions reduces this problem as the operations are performed only on the required coefficients

up to the desired order. Even in this case, however, the number of terms in the expansion grows as

(d+ n)!/(d!n!) with n the number of dimensions and d the degree of the polynomial.

The main advantage of non-intrusive methods is in the ability to work with generic models, also

in the form of black-boxes, and with little requirements on the coding of the models or on their

regularity. This advantage is interesting when a set is propagated through a complex system model

that cannot be expressed in a simple analytical form.

This paper will present an assessment of the accuracy and computational cost of four different

non-intrusive approaches to propagate an uncertainty region in orbital mechanics, and to build a

high order nonlinear representation of the quantity of interest. The approaches are: a Polynomial

Chaos Expansion (PCE), an Uncertainty Quantification-High Dimensional Model Representation

(UQ-HDMR) a Generalised Kriging model and an expansion with Tchebycheff polynomials on

sparse grids. Unlike previous works in which the PCE was used to build a spectral representation

of the distribution of the quantity of interest, in this paper we use each approach to build a model

representation of the propagated uncertainty region. All the four approaches are compared to a

Monte Carlo sampling on four different scenarios with objects orbiting around Earth in different

regimes.

The paper is organized as follows. We start with a brief description of the four non-intrusive

polynomial approaches. Then we present the test cases and the dynamical model used in the exper-

iments. Finally, we show the results of the comparison.

NON-INTRUSIVE METHODS

Monte Carlo methods are the most popular methods in many mathematical and physical prob-

lems that may involve optimization, numerical integration and random sampling from a probability

distribution. To construct the shape of the probability distribution of the output state variables of a

dynamical system, a Monte Carlo method works in the following way:

1. Define the domain of the input variables (both state variables and dynamical parameters) of

the dynamical systems.

2. Generate a random sample of the inputs according to their probability distribution.

3. Evaluate the dynamical system with initial condition on each random point to obtain the

corresponding final state. This is a deterministic computation.

4. Estimate the expectation of the final state.

Although Monte Carlo methods use the dynamical model as a black-box and do not require any

assumption on its regularity, drawing samples from their known probability distribution is a chal-

lenging problem, especially in high-dimensional spaces.
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An alternative to Monte Carlo sampling is represented by the construction of a surrogate model.

The development of the response of a dynamical system to parameter and model uncertainty can

be captured by a degree d polynomial in n dimensions. Then the sampling can be done using the

polynomial approximation, provided that the result of the surrogate model and the true values of

the dynamics is accurate enough. This process is still of computational complexity of order of the

number of samples but each computation is fast.

In this paper we compare four different polynomial approximations. The first uses Legendre

polynomials and the polynomial basis contains all terms up to the maximum degree of expansion.

The second uses Tchebycheff polynomials but discarded some terms of degree smaller than the

maximum degree. The third one uses a mixture of kernel functions, e.g., Gaussian kernels, and treat

the response as a combination of a deterministic and a stochastic process. Such a model is normally

referred to as Generalized Kriging model. The last one uses high-dimensional model representation

that allows for a reduction of the number of terms in the expansion combined with sparse grids.

Polynomial Chaos Expansion

Polynomial Chaos Expansion considers orthonormal polynomials as basis functions. Since we

are assuming uniform random variables, Legendre polynomials are the used. A multidimensional

basis of orthonormal polynomial is given by the product of unidimensional terms:

Lα(x) =

d
∏

i=1

Lαi
(xi) , α = (α1, . . . , αn) , (1)

where n is the dimension of x and α is a multi-index array.

We want to find the linear combination of multivariate Legendre polynomials of degree up to d
in n variables such that:

X̂(x) =
∑

α∈∆d,n

cαLα(x) , (2)

where, in our case, X is the response of the dynamical system, x a random sampling from the

distribution of the initial uncertainty variables, cα are the unknown coefficients to be determined,

and

∆d,n = {α ∈ N
n : |α| ≤ d} ,

with |α| = α1 + . . .+ αn.

The unknown coefficients can be found by least square method on sample points. We choose

samples random from a hypercube and at least equal in number to the number of terms in the

multivariate basis, that is (d + n)!/d!n!, the cardinality of ∆d,n. This approach is traditionally

referred as the Total Order Expansion. Although this number is far lower than the one required

for a full Monte Carlo analysis, the number of samples still grows significantly with the number of

dimensions.

We can summarized the PCE approximation as follows:

1. Define the domain of the input variables (both state variables and dynamical parameters) of

the dynamical systems as hypercube.

2. The Legendre basis consists of all the polynomials with degree less or equal than d in n
variables.
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3. Select M random sample points from the domain.

4. Evaluate the dynamical system with initial conditions the M points.

5. Compute the unknown coefficients such that the error between the true response and its ap-

proximation is minimized at the sample points.

High Dimensional Model Representation

A major drawback of using non-intrusive uncertain quantification (UQ) methods is the curse

of dimensionality, that is the number of samples grows exponential with the number of uncertain

variables. This limits the usage of non-intrusive techniques to a low number of random variables,

i.e. less than five. The High Dimensional Model Representation (HDMR) can handle the curse of

dimensionality by decoupling the stochastic space into sub-domains and interpolate only the low

order sub-domains. Each sub-domain is sampled with a different number of samples, which allows

to use the optimal number of samples for each sub-domain, thus reducing the number of function

evaluations. Moreover, it is also interpolated with an independent technique and the final model

is then constructed as sum of these models. However, this approach requires a special sampling

strategy, so random sampling cannot be used. A simplified UQ-HDMR scheme is the following:

1. Sample the first order increment functions

dFi(xi) =

∫ xi

xc
i

∂F (x∗)

∂ξi
dξi = F (x∗)− F (xc) , i = 1, . . . , n

where n is the number of variables, xci is the anchor point in the i-variable needed to start the

ANOVA expansion, x∗ = (cx1, . . . , xi, · · · ,
c xn) and cx = (cx1, . . . ,

cxn).

2. Select the maximum order of interactions, e.g. 2 or 3. In many works, it was proven that low

order interactions well describe the problem of interest and in Kubicek et al.6 is explained

why this phenomena is happening. In this work, the maximum order is restricted to 3.

3. Sample the higher order interactions according to the following equation:

N = n
−1/k
j d−k ,

where nj is the number of samples in one-dimension quadrature in the given direction, d is the

order of increment function and k is the coefficient growth, which is prescribed by user. The

N represents the number of samples in given direction for given order of increment function.

The position of the new samples is given by a position of samples from the lower domains.

4. Create the surrogate model of the given increment function, e.g. using a Lagrange interpola-

tion with the 1-D Clenshaw-Curtis sampling strategy.

It is well known that the HDMR accuracy is sensitive to the selection of the central point (see

Zhongqiang et al.7). Various methods have been proposed to overcome this problem. However, all

these methods require a pre-sampling strategy approach, which leads to unaffordable computational

burden. On the other hand, if all increment functions are included in the final model, the influence of

the central point completely disappear. Therefore, if all important increment functions are selected,
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the influence of the central point diminish and this leads to an accurate model regardless of the

central point. The central point is selected as a mean value of the input distribution.

For a detailed explanation of the method see Kubicek and Minisci8 where the tested approach has

been compared to PCE and Monte Carlo sampling on three benchmark problems.

In this paper, two approaches are tested. The first approach represents the isotropic grow in

number, where all the random variables are treated equally. The second one is the anisotropic

approach. This approach allows to use various number of samples for each direction and thus

obtain the best accuracy for a low number of samples.

Generalized Kriging

Kriging is a commonly used method of interpolation (prediction) for spatial data. The data are a

set of observations of some variables of interest, with some spatial correlation present. Usually, the

result of Kriging is the expected value and variance computed for every point within a region.

Interpolation with Kriging has some advantages. It compensates for the effects of data clustering

by assigning to individual points within a cluster less weight points. It also gives the estimate

of the error (kriging variance), along with the estimate of the variable itself. Moreover, it can

improve the accuracy locally. Its major drawback is the need of a fine enough grid, especially in

high dimensonality.

There are many variants of Kriging estimators. However, all of them can be considered mixture

of Gaussian process. In our comparison we use the open source Matlab toolbox DACE9 to create the

Kriging surrogate with Gaussian correlation and a polynomial regression of order 2 as regression

model.

Tchebycheff polynomial approximation

Univariate Tchebycheff polynomials are an orthogonal basis over the space C∞[−1, 1] and the

truncate Tchebycheff series are close to the best uniform polynomial approximation for a given

continuous function.10, 11

The approximation algorithm with Tchebycheff series works as the PCE by substituting multi-

variate Legendre polynomial basis with multivariate Tchebycheff polynomial basis. The curse of

dimensionality in high dimensional uncertainty space is tackled by choosing points on a sparse grid.

The most popular sampling methods use Smolyak sparse grids,12 where the number of samples

grows polynomially with the degree d, instead of exponentially. The number of elements to be

included is controlled by a parameter µ, called level of approximation, which has the same role as

the order of expansion in the Taylor series. In this work sparse grids are generated using extrema of

unidimensional Tchebycheff polynomials as described in Judd et al.13

The reduced number of points allow also to reduce the number of terms in the Tchebycheff

polynomial basis, and so the number of unknown coefficients. The basis functions are chosen from

all the polynomials up to degree d in n variables according to the level of approximation. They tend

to exclude cross products terms under the assumption that higher order correlations are generically

negligible.

Using the same notation as in the PCE section, we want to find the linear combination of mul-

tivariate Tchebycheff polynomials of level of approximation µ (and maximum degree 2µ) in n
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variables:

X̂(x) =
∑

α∈Hn,µ

cαTα(x) , (3)

where

Hn,µ = {α ∈ N
n : α satisfies the Smolyak rule at level µ} .

The unknown coefficients are computed via a Lagrange interpolation at the Tchebycheff nodes given

by the sparse grid of level µ. For more details see Riccardi et al.14

NUMERICAL EXPERIMENTS

We propose four different scenarios to compare the non-intrusive methods described in the pre-

vious section to a standard Monte Carlo sampling:

1. Low-Earth orbit with 6 uncertain parameters (LEO6): the components of position and veloc-

ity at the initial states.

2. Low-Earth orbit with 10 uncertain parameters (LEO10): the components of position and

velocity at the initial states, plus two uncertain model parameters.

3. Highly elliptical orbit with 6 uncertain parameters (HEO6): the components of position and

velocity at the initial states.

4. Highly elliptical orbit with 10 uncertain parameters (HEO10): the components of position

and velocity at the initial states, plus two uncertain model parameters.

The computational cost is measured using the number of sample points.

Dynamical model

To compare the approximation provided by the four methods we use a dynamical model contain-

ing the main perturbations acting on a satellite of negligible mass orbiting in low-Earth orbit. The

main gravitational perturbation is due to the non-spherical shape of the Earth: the most relevant

effect is due to the J2 coefficient in the development of the Earth’s potential in spherical harmon-

ics. Among the non-gravitational perturbations there are the solar radiation pressure (SRP) and the

atmospheric drag.

In an equatorial reference frame, the dynamical equations can be written as

ṙ = v (4)

v̇ = FJ2 + FSRP + Fdrag ,

where r,v are the position and velocity vectors, r0 = r(t0),v0 = v(t0) are the initial conditions at

the initial time t0, and (see, e.g., Milani et al.,15 Sharaf and Selim16)

FJ2 = −
µ

r3
r + 3

µJ2R
2
e

2

r

r5

(

r+ 2 z −
5z2

r2

)

, (5)

FSRP =
φ⊙

c
CR

A

m
Ŝ , (6)

Fdrag = −
1

2
CD

A

m
ρv2v̂ , (7)
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where µ is the gravitational parameter, Re is the mean Earth’s equatorial radius, (x, y, z) and r are,

respectively, the components and the modulus of r, φ⊙ is the solar radiation flux, c is the velocity

of light, CR is the reflectivity coefficient, A/m is the area-to-mass ratio, Ŝ is the direction of the

Sun, CD is the drag coefficient, and ρ is the density of the air atmosphere given by the NRLSISE-00

athmospheric model.17

Uncertainty space

The uncertainty space is assumed to be a hypercube. The PCE-Legendre and Kriging use a

random sampling from a latin hypercube, the Tchebycheff and UQ-HDMR use sparse grids with

Clenshaw-Curtis points. However, UQ-HDMR uses various numbers of samples for each order and

direction thus leading to a low number of samples for a high accuracy.

The uncertainty variables are the components of the position and velocity vectors r,v and/or

four dynamical parameters A/m,CR, CD and F10.7. The last one represents the daily solar flux for

previous days, and it is varied here to model the uncertainty on the air density. The bounds for the

dynamical parameters are reported in Table 1.

Table 1: Uncertainty bounds for the dynamical parameters.

A/m CR CD F10.7

Lower bound 0.001 1.0 1.5 100

Upper bound 0.1 2.0 3.0 200

As initial conditions for the state vector, a LEO and HEO orbit have been chosen from the TLE

orbit catalog available from the space-track website.18 The values are reported in Table 2. The

uncertainty bounds are set in the Cartesian coordinate space and are assumed to be 10−5 · r0 and

10−5 · v0, where r0 and v0 are the magnitude of the initial position and velocity vector expressed in

km and km/s, respectively.

Table 2: Keplerian orbital elements of the LEO and HEO orbit as of May 26, 2015.

ID a [km] e i [deg] Ω [deg] ω [deg] ℓ [deg]

40650 7006.96 0.0008315 98.1533 165.9974 100.2845 259.5405
40618 24204.56 0.7278988 25.4766 31.5897 179.4183 182.5857

The propagation time span is set to 40P , where P is the period of the unperturbed orbit. It

is to about 4 days for the LEO orbit and 60 days for the HEO orbit. All simulations have been

implemented in MATLAB and run on an Intel i7 3.40 GHz.

Experimental set up

The approximated polynomial computed by each of the four non-intrusive method is evaluated in

M = 1000 × n points, where n is the number of uncertainty variables. The points are distributed

according to the Latin Hypercube sampling approach. The result is then compared with the true state

given by the forward propagation through the dynamics of the Monte Carlo points. The estimation
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of the error between the approximation X̂ and the true value X is given by the root mean square

error

RMSE =

√

√

√

√

1

M

M
∑

i=1

(X̂j(xi)−Xj(xi))2 , j = 1, . . . , 6 , (8)

where xi represents a single Monte Carlo point vector.

Figure 1 shows the uncertainty regions in the 3D space for each scenarios. The effect of the

dynamical parameters is to enlarge the uncertainty region for the LEO orbit and stretch it along

the trajectory for the HEO. As result, the dependence of the final state with respect to the initial

conditions is highly non-linear.

z
 [

k
m

]

-380

-370

-360

-350

-340

-330

x [km]
-6783.7-6783.6-6783.5-6783.4-6783.3-6783.2

(a) Scenario 1: LEO6.
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Figure 1: Uncertainty region of the final state.

The convergence of the polynomial approximation is presented in Figure 3, Figure 4, Figure 5

and Figure 6. The estimation of the accuracy is given by the RMSE of each component of the final
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state x1, . . . , x6 with respect to the Monte Carlo outcomes as a function of the number of sample

points used to build the polynomial approximation. We use the same legend for all figures, that is

reported in Figure 2.

Tchebycheff

PCE-Legendre [degree=1]

PCE-Legendre [degree=2]

PCE-Legendre [degree=3]

PCE-Legendre [degree=4]

Kriging

UQ-HDMR [order=1]

UQ-HDMR [order=2]

UQ-HDMR [order=3]

UQ-HDMR [anisotropic]

Figure 2: Legend of the Figures 3, 4, 5 and 6.

In all the examples, Kriging exhibits the slowest convergence, meaning that for a fixed number

of sample points it has the highest value for the RMSE.

The uncertainty region of scenario 1 (LEO6) can be approximated with less than 100 sample

points and a maximum RMSE of 10−5 km by all methods with the exception of Kriging. The best

accuracy is reached with a PCE-Legendre of degree 3. Tchebycheff and UQ-HDMR anisotropic

show equal behavior. (Figure 3). However, the UQ-HDMR approach exhibits bigger flexibility in

terms on number of samples over the Tchebycheff.

By adding the uncertainties on four dynamical parameters (scenario 2), the dependencies become

highly non-linear and to obtain an accuracy of order 10−3 km a PCE-Legendre of degree less or

equal than 4 or a Tchebycheff sparse basis of level less or equal 3 needs to be used (see Figure 4).

The results for scenario 3 (HEO6) are shown in Figure 5. A PCE-Legendre of degree 1 dominates

higher order PCE-Legendre and all the Tchebycheff approximations and Kriging. However, the

best approximation is given by the UQ-HDMR, both for the isotropic and anisotropic approach.

Moreover, the UQ-HDMR performs the best in terms of sampling.

Figure 6 presents the analysis for scenario 4 (HEO10). As for scenario 2, the dependencies are

highly non-linear. Tchebycheff and UQ-HDMR with the anisotropic approach show comparable

results. Again, the UQ-HDMR is slightly better and more flexible over the Tchebycheff in terms of

sampling.

Finally, for each test case we fixed the accuracy σ and we find the minimum number of sample

points such that max(RMSE) < σ, where the maximum is taken over the components of the final

state vector (see Tables 3, 4, 5 and 6). The values of UQ-HDMR correspond to the anisotropic

approach. The accuracy has been fixed to 4D · 10−4, where D is the diameter of the projection of

the uncertainty region of the final state on the (x, z)-plane.
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Figure 3: The RMSE as a function of the number of the sample points for scenario 1 using 6 000
Monte Carlo points.
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Figure 4: The same as Figure 3 applied to scenario 2 with 10 000 Monte Carlo test points.
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Figure 5: The same as Figure 3 applied to the HEO orbit in scenario 3 with 6 000 Monte Carlo

points.
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Figure 6: The same as Figure 4 applied to the HEO orbit in scenario 4 with 10 000 Monte Carlo

points.
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Table 3: Summary of the comparison for scenario 1 with a reference accuracy of 0.229 km.

Method No. of sample points max(RMSE)

Tchebycheff 13 0.00833
PCE-Legendre 28 0.01262

UQ-HDMR 19 0.00833
Kriging 144 0.16753

Table 4: Summary of the comparison for scenario 2 with a reference accuracy of 0.235 km.

Method No. of sample points max(RMSE)

Tchebycheff 21 0.21433
PCE-Legendre 66 0.22553

UQ-HDMR 23 0.21437
Kriging 652 0.18307

Table 5: Summary of the comparison for scenario 3 with a reference accuracy of 0.209 km.

Method No. of sample points max(RMSE)

Tchebycheff 13 0.16224
PCE-Legendre 28 0.16147

UQ-HDMR 15 0.15068
Kriging 286 0.19265

Table 6: Summary of the comparison for scenario 4 with a reference accuracy of 51.317 km.

Method No. of sample points max(RMSE)

Tchebycheff 221 41.970
PCE-Legendre 359 26.658

UQ-HDMR 233 41.976
Kriging 2703 41.044
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CONCLUSIONS

We compare four different non-intrusive approaches applied to the propagation of uncertainty in

orbital dynamics under different orbit regime and uncertainty both on the orbital parameters and

dynamical models. If only the uncertainties on the orbital elements are taken into account, a low

order polynomial of degree at most 2 is enough to represent the uncertainty region of the final states

as a function of the initial uncertain parameters. When also the uncertainty on the dynamical pa-

rameters are considered, the region becomes highly non linear and higher order polynomials are

needed. In order to reduce the number of sample points in high dimensional problem, sparse grids

and Tchebycheff polynomial expansions were shown to give reliable results at a reduced computa-

tional cost. In this sense the use of PCE-Legendre gave mixed results. On the other hand the use of

sparse grids and sparsity promoting techniques like compressive sampling are expected to reduce

the computational cost.

UQ-HDMR provided comparatively good results on all test functions at a computational cost

comparable to the Tchebycheff approximation on sparse grids. In scenario 3, it is the most afforad-

able and accurate technique of all four. In scenraio 2, the anisotropic case is able to achieve the

best accuracy in 4 tested cases. In scenario 4, it achieve the same accuracy as the PCE and the

Tchebysheff, yet for a lower number of samples.

The generalized Kriging was shown to require a high number of sample points and to provide the

worst approximation of the final states. Note that the hyperparameters were optimized in all cases

to maximize the likelihood. Different correlation and regression functions are indeed possible and

might improve the performance of the Kriging approximation. Note that the Kriging approximation

allows adding sample points where the estimated variance is high without following any particular

pattern. This feature is of considerable importance when the surrogate is used within an optimization

process. In this sense the other methods, using a structured grid, need a dedicated treatment if a local

improvement is required.
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