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Abstract—A key component of software testing is deciding
whether a test case has passed or failed: an expensive and error-
prone manual activity. We present an approach to automatically
classify passing and failing executions using semi-supervised
learning on dynamic execution data (test inputs/outputs and
execution traces). A small proportion of the test data is labelled
as passing or failing and used to build a classifier which is
then capable of labelling the remaining outputs (classify them
as passing or failing tests). A range of learning algorithms are
investigated using several faulty versions of three systems along
with varying types of data (inputs/outputs alone, or in combina-
tion with execution traces) and different labelling strategies (both
failing and passing tests, and passing tests alone). The results show
that in many cases labelling just a small proportion of the test
cases as low as 10% is sufficient to build a classifier that is able
to correctly categorise the large majority of the remaining test
cases. This has important practical potential: when checking the
test results from a system a developer need only examine a small
proportion of these and use this information to train a learning
algorithm to automatically classify the remainder.

I. INTRODUCTION

Software testing plays a key role in software development
life-cycle and significant research effort has focused on au-
tomating many aspects of this activity; for instance, it is now
possible to automatically generate and execute huge sets of
test cases for an arbitrary system that achieves a remarkably
high level of coverage (for example, the work of Fraser and
Arcuri [1]). However, the correctness of the outputs computed
by the system under test must still be verified. Whether this
is done at the time that tests are created (in the form of
n-Unit output assertions for example) or later in the form
of a manual check, the expected output from each test still
has to be specified and this is an expensive, labour intensive
and time-consuming process. The alternative is to defer the
responsibility for checking the results to a test oracle - an
automated mechanism for judging the (in)correctness of an
output associated with an input. While this may sound like
a perfect solution, creating such an oracle for a system is
particularly difficult and a significant software engineering
challenge.

Existing approaches to generating test oracles range from
the effective but very costly to the inexpensive but less
effective. At one end of the scale specified oracles can be
generated from a formal specification [2] and are effective in
identifying failures (e.g., the work of Doong and Frankl [3]),
but defining and maintaining such specifications is expensive
and also comparatively rare in practice. At the other end,

implicit oracles are easy to obtain at practically no cost but are
limited in their scope as they are not able to identify semantic
and complex failures, revealing only general errors like system
crashes or unhandled exceptions [2] (e.g., the work of Pacheco
and Ernst [4]). The aim of our research is to use the principles
of machine learning to develop an approach which improves
the cost and effectiveness trade-off by producing oracles that
can combine the effectiveness of a specified oracle with the
cost of an implicit one.

This paper presents the results of an experimental inves-
tigation into the use of semi-supervised learning techniques
to automatically classify passing and failing tests. A small
proportion of the test data is labelled by the developer as
as passing or failing and the learning algorithms use this to
build a classifier which is then used to label each remaining
element (i.e. classify it as being either a passing or failing test).
A range of learning algorithms are investigated using several
faulty versions of three systems along with varying types of
data (initially just input/output pairs and then input/output
pairs with their corresponding execution traces) and different
labelling strategies (both failing and passing tests, and just
passing tests alone).

The results are mixed but show that in some cases labelling
just a small proportion of the test cases – as low as 10%
– is sufficient to build a classifier that is able to correctly
categorise the large majority of the remaining test cases. In
other cirumstances, typically when the data is very fragmented
(i.e. there is a very large combination of inputs, outputs and
execution traces) then a higher proportion - between 30%
and 50% - needs to be labelled before a decent level of
accuracy is obtained. The best performance is obtained from
using the input/output pairs combined with execution traces as
data, and even though labelling both passing and failing cases
yielded the most accurate results, the performance achieved
from labelling just the passing test cases was not far behind.
This has important implications for the practical potential of
this technique: when checking the test results from a system
a developer may need only examine a small proportion of
these and use this information to train a learning algorithm
to automatically classify the remainder.

II. BACKGROUND AND RELATED WORK

Three extensive reviews of test oracles exist: by Baresi
and Young [5], by Pezzè and Zhang [6], and by Barr et al.
[2] who classified the existing literature on test oracles into



three broad categories:- specified oracles; implicit oracles; and
derived oracles.

Specified oracles are obtained from a formal specification
of the system behaviour. The ASTOOT tool, for instance,
generates test suites along with test oracles from algebraic
specifications [3]. Specified oracles are effective in finding
failures but their success depends heavily on the availability
of a formal specification: a limiting factor for most systems.

Implicit oracles are generated without reference to any
domain knowledge or specification and are widely applicable.
For example, the fuzzing approach proposed by Miller et al. [7]
generates random inputs to a system with the aim of exposing
weaknesses such as security vulnerabilities in the form of
buffer overflows and memory leaks. Another example is the
work of Pacheco and Ernst [4].

Derived oracles are created from properties of the system,
artefacts other than the specification (e.g. documentation or
execution information), or other versions of the system under
test. For instance, metamorphic testing has been used to test
search engines such as Google and Yahoo [8]. Our work is
rooted in the area of oracles derived from system executions
but by using machine learning techniques on dynamic execu-
tion data such as input/output pairs and execution traces.

A number of other researchers have investigated the use
of machine learning strategies to build oracles (or oracle-
like information) and this work can be classified in to three
main categories of learning technique: unsupervised, semi-
supervised and supervised:

Unsupervised Learning Techniques do not require training
data, and thus are most widely applicable. The earliest and
most comprehensive examples of such work is that of Dick-
inson, Leon and Podgurski who demonstrated the advantage
of automated clustering of function caller/callee execution
profiles over random selection for identifying failures [9],
[10]. This area has also been explored by the authors who
explored both input-output pairs and input-outputs combined
with execution traces and demonstrated that failing executions
can be effectively isolated into small clusters for efficient
failure identification [11]. Yoo et al. also used a clustering
approach to the problem of regression test optimisation [12]
where test cases were clustered based on their dynamic runtime
behaviour (execution traces).

Semi-Supervised Learning Techniques assume that training
data has labelled instances for only the normal class (i.e. a
subset of passing test cases needs to be identified). A model
is built for the class that corresponds to normal behaviour
which is then used to identify anomalies in the subsequent
data. Examples include the work of Podgurski et al. on bug
clustering for the purposes of fault localisation [13] which
demonstrated how with a limited amount of user input profiles
of failed executions could be grouped together and used to
identify failures with similar causes (and is a strong influence
on the work presented in this paper), and also of Bowring
and colleagues on using incremental active learning to support
the construction of Markov models of program behaviour to
support reverse engineering [14].

Supervised Learning Techniques assume the availability of
a training data set which has labelled instances for normal as

well as abnormal or anomaly classes and is therefore the least
generally applicable. This has been employed in regression
testing where a reference version of the software which makes
for accurate data labelling [15] and explored in the image
processing domain [16]. Closest to the work presented in this
paper is that of Lo et al. [17] who investigate the use of support
vector machines, trained with passing and failing executions to
classify unknown executions, and Yilmaz et al. [18] who use
hybrid program spectra to train a decision tree classifier (J48
algorithm) to do the same. Shahamiri et al. trained artificial
neural networks (ANNs) model using system’s input/output
pairs to build an automated test oracle [19]. These approaches
require a set of passing and failing executions to train the
classifiers whereas ours is extended to consider using just
passing executions.

A number of inference-based approaches have been devel-
oped which essentially have machine learning at their core.
These include the creation of finite state machines [20], data
invariants which pose constraints on software variables at
specific program locations [21], and temporal invariants which
guard the occurrence of events during the execution of the
system under test according to specific pattern [22]. However,
those approaches suffer from high rate of false positive and to
reduce such rate, they require a large and complete test suite
for the system under test to train the oracle [23].

III. METHODOLOGY

A. Semi-Supervised Learning

The principle of semi-supervised learning is that the learn-
ing algorithm is fed a labelled subset of the data - instances
for which the correct classification is known - and from this
builds a model which is then used to classify the remaining
(unlabelled) data. There is a clear trade-off between the accu-
racy of the classifier and the volume of data used in training,
and the challenge is to build the most effective classifier from
the smallest amount of data. For techniques that operate in
semi-supervised mode there are two possible scenarios [24].
The first scenario is that the training data has a small set of
labelled instances from both the abnormal/anomaly class and
the normal class [25] [26], and the second is that the training
data has labelled instances for only the normal class.

At first sight it may appear unusual to try and employ the
first scenario to try and identify software failures. After all, if
we are able to label a failure then why bother looking for it?
However, there are several scenarios where this approach could
be employed. For example, failures may be available from a
previous version of the software, or there may be many faults
in the system and an initial subset which was been observed
and classified may then be used to build a model to detect
the remainder, or the failures may be artificially created by
seeding the software under tests with faults in much the same
way as mutation testing.

For the second scenario the training data has labelled
instances for only the normal class - this would correspond
to a subset of passing test cases in our work. Since such
techniques do not require labels for the abnormal class they
are therefore more widely applicable. This approach has been
successfully used to detect faults in space craft [27]. In this
work, an abnormal class would signify an accident which is



not easy to model. Therefore, the model was built for the class
corresponding to normal behaviour only and used the model
to identify anomalies in the test data.

There are two types of semi-supervised learning cate-
gorised according to the prediction goal: inductive learning
where the goal is to predict unseen data; and transductive
learning where the goal is to predict the unlabelled data. In this
instance we are interested in transductive learning – trying to
predict whether unlabelled data item corresponds to a passing
or failing output.

B. Semi-Supervised Learning Algorithms

Three approaches to semi-supervised learning are explored
in this paper: self-training, co-training and co-EM (expectation
maximisation).

1) Self-Training: The basic principle behind self-training is
firstly to train a classifier on the small set of available labelled
data and then use this to classify the large remaining set of
unlabelled ones. This process may be performed iteratively
as outlined in Algorithm 1 - at each stage the classifier
that has been bootstrapped with the labelled data (training
set) labels the remaining data and adds those in which it
has the most confidence to the training set. This updated
training set is then used to build a new classifier which is
then applied to the remaining unlabelled data, and so on...
The self-training algorithm can be thought of as a wrapper
algorithm, as it itself takes an algorithm as a parameter which
it uses to build the classifier at each stage. A popular and
robust approach (which has shown to perform well in the
domain of document classification for example [28]) is to
combine the Naı̈ve Bayes and EM (expectation-maximization)
algorithms: the initial classifier is build using Naı̈ve Bayes
and the extension to the unlabelled data at each stage of the
iteration is handled by EM.

Algorithm 1 Pseudo code for the self-training algorithm

Input: labelled data DL, unlabelled data DU , and a
supervised learning algorithm A.

Step 1: Train a classifier c using labelled data DL with A.
Step 2: Label unlabelled data DU with c.
Step 3: For each class C, select an example which c labels
as C with high confidence, and add it to the labelled data
DL.
Step 4: Repeat 1–3 until it converges or no more unlabelled
data DU left.

Output: c

2) Co-Training and co-EM: Approaches based on co-
training assume that the features describing the object can be
divided in two independent subsets: perspectives that individ-
ually are sufficient to train a good classifier. Two classifiers
- one for each perspective - are created using the initial set
of labelled data and then iteratively trained as described by
Algorithm 2. At every iteration each classifier contributes the
newly labelled data with the associated highest confidence to
the labelled set which is then used as training data for the
next iteration. In this way the two classifiers teach each other

with a respective subset of unlabelled data and their highest
confidence predictions [29].

Co-EM also operates with two perspectives but takes a
different approach at each stage of the iteration. The first
classifier is trained on the labelled data and then used to
probabilistically label all the unlabelled data (not just the those
elements in which it has the highest confidence). The second
classifier is trained on both labelled data and the unlabelled
data which has been tentatively labelled by the first classifier,
and it in turn probabilistically relabels all the data for the
first classifier to use. The process iterates until the classifiers
converge [30].

In this work two implementations of the co-training algo-
rithm were explored: one using Naı̈ve Bayes and the other
a Support Vector Machine with Radial Basis Function (RBF)
kernel. One instance of the co-EM algorithm was used which
also employed the Support Vector Machine with RBF kernel.

Algorithm 2 Pseudo code for the co-training algorithm

Input: labelled data DL, unlabelled data DU , and a
supervised learning algorithm A.

Step 1: Train a classifier cF using the feature set F of each
example with A.
Step 2: Train classifier cE using the feature set E of each
example with A.
Step 3: For each class C, pick the unlabelled data DU which
classifier cF labels as class C with highest confidence, and
add it to labelled data DL.
Step 4: For each class C, pick the unlabelled data DU which
classifier cE labels as class C with highest confidence, and
add it to the collection of labelled data DL.
Step 5: Repeat 1–4 until it converges or no more unlabelled
data DU left.

Output: Two classifiers, cF and cE

Co-training has been shown to perform well if the two
assumptions about the splitting of the feature set are true [29]:
each feature should be sufficient by itself to build a good
classifier and the two features are conditionally independent of
each other. These two assumptions often may not be satisfied in
real world application but it has been demonstrated empirically
[30], [31] that co-training can still be effective in such a case
if the feature set is split randomly (although not as effective
as if independent perspectives are employed). In this paper
the data in the second phase of experiments is a combination
of input-output pairings and method execution traces which
could be regarded as distinct perspectives. However, there
are questions about their independence (the path taken by a
program is a function of its input) so instead we chose to split
them randomly into two subsets for both co-training and co-
EM, which also allows for a more direct comparison between
experiments. The use of the input-output and execution trace
perspectives will be explored in future work.

As mentioned earlier, both self-training and co-training
make use of the confidence of prediction as selection criterion
during the labelling process to decide which of the unlabelled
samples should move to the labelled set. However, as well at
the prediction confidence this step should also make use of



the class distribution - the split between positive and negative
examples (passing and failing outputs in our case), and try
and maintain this proportion during the selection process. For
instance, if the positive to negative ratio in the labelled data set
is 3:1 then at each iteration the three positive and one negative
examples with the highest predicted posterior probabilities are
selected from the unlabelled data.

IV. EXPERIMENT DESIGN

A series of experiments was conducted to assess the
effectiveness of the algorithms and scenarios presented in
the previous section in terms of accuracy of classification of
unlabelled tests. Two different studies were performed with
two different types of execution data: in the first study a set
of input/output pairs was used as input to classifiers; in the
second study input/output pairs were augmented with their
associated execution traces. Along with this the two common
scenarios employed by semi-supervised learning algorithms
was explored: labelling both normal and abnormal data, and
labelling normal data alone. For both these scenarios different
proportions of labelled data were investigated. This section
describes the framework used to design this experiments.

A. Subject Programs

Versions of three subject programs were used in this
study: the NanoXML XML parser system, the Siena system
(Scalable Internet Event Notification Architecture), and the
Sed stream editor. All three are available from the Software
Infrastructure Repository (SIR)1, are non-trivial systems, have
several versions with well-documented faults, and also come
with test suites – an important factor as having sets of
good with representative coverage of operation profile, but
comprehensive and also independently created, tests is vital
for this experiment.

1) NanoXML: NanoXML is a non-GUI based XML parser
written in Java. NanoXML contains of component library, an
application and JXML2SQL. JXML2SQL takes as input a
XML file and either transforms it into a html file and showing
the contents in tabular form or into SQL file. NanoXML has 24
classes, 5 versions (although the fourth version was excluded
as it contains no faults), each containing multiple faults – 7 in
each of versions 1-3 and 8 in version 5 – and 214 test cases.
The error rates in all faulty versions ranged from 31% to 39%
(the error rate is the proportion of the supplied test cases which
will fail due to the seeded faults).

2) Siena: Siena (Scalable Internet Event Notification Ar-
chitecture) is an Internet-scale event notification middleware
for distributed event-based applications deployed over wide-
area networks. Siena is responsible for selecting notifications
that are of interest to clients (as expressed in client subscrip-
tions) and then delivering those notification to the clients via
access points. Siena contains 26 classes (9 in its core and 17
which constitute an application), 567 test cases and 7 faulty
versions: 3 with single, and 4 with multiple ones. Versions with
multiple faults (V1,V3,V5 and V7) have been excluded from
this experiment for the time being because of the absence of a
fault matrix (a simple way of establishing which test cases are
responsible for revealing which fault). Therefore, only V2, V4

1http://sir.unl.edu/portal/index.php

and V6 are included in the experiment, each having a single
fault and an error rate of 17% and the results from just V2 are
reported as the others are similar.

3) Sed: Sed (stream editor) is a Unix utility obtained
that parses and transforms text by using a simple compact
programming language. Sed takes a set of commands and a
text file input, performs some operation (or set of operations)
on the file, and outputs the modified text. Sed is typically
used for extracting part of a file using pattern matching or
substituting multiple occurrences of a string within a file. Sed
is written in C and has 225 functions, 370 test cases and 7
versions with multiple faults. Only one version was included
in the experiment: version 5, with 4 faults and an error rate of
18%.

B. Experiment Set-up

The main components of the experiments were: a set of
programs with known failures, a set of test inputs for each
program, a way to determine whether an execution of each
test was successful or not (passed or failed), and a mechanism
for recording the execution trace taken through the program
by each test. Each of these steps is described in more detail
below.

1) Input/Output Pair Collection: All subject programs
come with Test Specification Language (TSL) test suits and
tools to run these automatically (details are available from the
SIR repository and the article by Do, Elbaum and Rothermel
[32]). Test cases which failed to produce any output were
discarded. Failure to produce an output occurred in a very
small number of cases where the input file was missing from
the test suite, and consequently no output file was produced
(7 out of 214 for NanoXML, 73 out of 567 for Siena, and 7
out of 370 for Sed giving final test case numbers of 207, 494
and 363).

2) Execution Trace Collection: Daikon2 [21] was used
to instrument the subject programs in order to collect the
execution traces. For both subject programs, we execute each
test case along with its input to produce one trace with one
output. Daikon allows programs to be monitored and traced at
varying levels of granularity, but for this work we extracted
sequences of method invocations (entry points) and method
exits in the order they occured during test execution.

3) Identification of Failures: The NanoXML and Sed sys-
tems come with matrices which map test cases to failures
corresponding to faults and makes the identification of faults
effectively automatic. Siena has no such fault matrix so the
test outputs of the original version was compared with that of
the faulty ones to find the failing tests.

4) Data Transformation: To be acceptable to the various
machine learning algorithms, the data requires processing
before it can be analysed. The processing procedures differ
from one data type to another – for instance numeric data
sometimes requires normalisation. All systems used in this
experiment work with textual input and produce textual output.
Very often there is little semantic information in such data and
a lot of noise, so to minimise the content (and redundancy)
but still retain any uniqueness, the data (input/output pairs)

2http://plse.cs.washington.edu/daikon/



TABLE I. EXAMPLE CODING OF INPUT/OUTPUT PAIRS

Input Output

Nanoxml Flower colour=”Red”

smell=”Sweet” name=”Rose”

season=”Spring”

xml element name is:

Flower

Encoding FCRSSNRSS F

Siena Filter senp{x=0}filter{x=20

y=30 z=10} Event

senp{x=0}event{x=20}
senp{x=0}event{y=30 z=10}

subscribing for filter{x=20

y=30 z=10}publishing for

event{x=20}publishing

for event {y=30 z=10}

Encoding F111E1E11 SF111PE1PE11

Sed sed -e ’s/dog/cat/’ ../in-

puts/default.in

the modified text file

(change and add operations)

Encoding sed-es/dog/cat/< 1 > 114a36c34c29c26c3—4c0a

was transformed by a simple process of tokenisation. The
tokenisation method is widely used in the area of text mining
to produce a suitable set of attribute vectors to build a
classification model (a problem not dissimilar to the one we are
dealing with), and is also suggested by Witten and Frank [33].
Several transformation methods such as hash coding, Huffman
coding strategies and others were examined, but tokenisation
turned out to be the most suitable one, and also performed well
with clustering algorithms for similar problem [11]. Table I
shows an example of this for both NanoXML and Siena. Notice
that the parameters for Siena commands were all encoded as
”1” as they remained unchanged between input and output.

The Sed test data (input/output pairs) consists of a com-
mand line which contains 2 main parts: the parameters iden-
tifying the operations to be performed and a text file that
needs to be modified which therefore forms both part of the
input and output. Therefore, the data was transformed in a
slightly different way compared to NanoXML and Siena: all
input components remained unchanged except the filename
(e.g. “../inputs/default.in”) was encoded as the token “<1>”
as the file itself contains only the text to be modified. Trying
to tokenise the file to be modified (and its modified version)
failed to reduce the size of the output sufficiently and so for
output part the diff utility (a data comparison tool) was
used to calculate the differences between the input text file
and its modified form (this process reports how to change
the first file to make it match the second file with specific
operation that needs to be performed such as “a” for add and
“c” for change). The magnitude of the compression achieved
by this method is hard to quantify, depending as it does on
the file and the modifications, but it typically yielded a much
smaller representation of the output data. Table I shows an
example of this coding strategy. Each input/output pair was
augmented with their associated execution traces in the second
study. Sequence traces are often very long, and each entry in
a sequence is often a full Java method signature including
package name, class name, method name, and parameters
(along with their respective long signatures). This required
more compression than could be provided by simple tokenisa-
tion so the trace compression algorithm developed by Nguyen
et al. [23] was used. The algorithm replaces the collections of
method sequence entry and exit values with their hash keys,
consisting usually of just 1 or 2 characters. It takes into account
the occurrence frequency to assign shorter hash keys for entries
that are most frequent. Table II shows a sample of sequences
for one of collected traces and their hash key values (for space
reasons, just 3 sequences are included rather than all sequences

of that trace). The obtained trace from the example in this table
is 0LA37.

Finally all the data items were used in two different studies.
In the first study, the input to the classifier was input/output
pairs only as a set of vector. This vector is built from two
components: input and output. The NanoXML example from
Table I was used in the first study and the set of vector
was:<FCRSSNRSS, F>. In the second study, the set of
vector was extended by adding execution trace. Here the vector
is built from three components: input, output and execution
trace. So if the NanoXML example from Table I above
generated the trace shown in Table II, then the vector would
be: <FCRSSNRSS, F, 0LA37>.

TABLE II. EXAMPLE CODING OF SEQUENCE TRACES

Sequence Traces Hash Keys Values

net.n3.nanoxml.XMLElement.

getFullName():::EXIT283

0L

net.n3.nanoxml.XMLUtil.skipWhitespace

(net.n3.nanoxml.IXMLReader,char,

java.lang.StringBuffer,

boolean[]):::ENTER

A

net.n3.nanoxml.StdXMLReader.

getEncoding(java.lang.String):::ENTER

37

.

.

.

.

.

.

5) Selection of Labelled and Unlabelled Data: Cross vali-
dation was used during the selection of labelled (DL) and un-
labelled (DU ) data to avoid bias in the choice of data. Different
values were set for the size of (DL) in the experiments ranging
from 10% to 50% of data (based on a percentage of the number
of subject program test cases). The process was repeated so
that every input/output pair will appear once in (DL) during
training process. Two semi-supervised learning scenarios are
explored in this paper: the first is where labels are drawn from
both the normal and abnormal classes (i.e. passing and failing
tests) and is termed Scenario 1, the second is where labels are
drawn from just the normal (passing) class (Scenario 2). To
try and avoid biasing the results and also to maintain a more
realistic scenario, the set of labelled failing cases for scenario
1 was kept deliberately small. Table III shows the labelled data
size and class distribution used in all studies for this scenario
for all versions of the subject programs.

In practice, it is often difficult to obtain a training data
set which covers every possible abnormal behaviour class that
can occur in the data so the subset of 5 failing executions was
randomly chosen these in turn may appear quite distinct, as
one fault may transform the output in may different ways de-
pending on the input). The failures to which these correspond
for the different versions of NanoXML and Sed are shown in
Table IV, and this same abnormal labelled set was used as the
size of the normal labelled set grew. For Siena there is just
one failure (which again has different manifestations) so all
7 abnormal labels related to this. As mentioned earlier, there
may be other ways of obtaining abnormal data such as from
previous versions of the software or via seeded faults, and this
is something we intend to explore in the future.

Also of particular interest in this study is the way the data
separates into distinct groups based on input, output and trace
combinations, which may have an impact on the effectiveness



of the machine learning algorithms employed. Table V shows
for each system3 the number of test cases followed by the
number of distinct inputs, outputs, input-output combinations,
traces, and input-output-trace information. We will return to
this table in the discussion of the results.

TABLE III. LABELLED TRAINING DATA SET SIZES AND CLASS

DISTRIBUTION FOR ALL SYSTEMS FOR SCENARIO 1

Labelled size % Normal data Abnormal data Unlabelled data

NanoXML

10% (25 labelled instances) 20 5 182

20% (45 labelled instances) 40 5 162

30% (65 labelled instances) 60 5 142

40% (85 labelled instances) 80 5 122

50% (103 labelled instances) 98 5 104

Siena

10% (50 labelled instances) 43 7 444

20% (100 labelled instances) 93 7 394

30% (153 labelled instances) 146 7 341

40% (200 labelled instances) 193 7 294

50% (247 labelled instances) 240 7 247

Sed

10% (39 labeled instances) 34 5 331

20% (69 labeled instances) 64 5 301

30% (104 labeled instances) 99 5 266

40% (141 labeled instances) 136 5 229

50% (180 labeled instances) 175 5 190

TABLE IV. ABNORMALLY LABELLED DATA FOR FOR SCENARIO 1

Version No. Labelled Failures (number of instances)

NanoXML

Version 1 F1 (5)

Version 2 F6 (3) and F7 (2)

version 3 F6 (3) and F7 (2)

Version 5 F1 (2) and F2 (3)

Siena

Version 2, 4 and 6 Single Failure (7)

Sed

Version 5 F3 (5)

C. Evaluation

To evaluate the performance of semi-supervised learning
algorithms we use the F-measure – a combination measure
of Precision and Recall (widely used measures in information
science domain). These measures in turn rely on the concepts
of true positives (TP), false positives (FP) and false negatives
(FN) which are defined in this context as follows:

TP: A failing test result classified as failing test
FP: A passing test result classified as failing test
FN: A failing test result classified as passing test

Precision is defined as the ratio of correctly classified failures
to the total number of true positive (correctly classified fail-
ures) and false positive (incorrectly classified passing tests):

Precision(PR) =
(TP )

(TP + FP )
(1)

Recall is the ratio of correctly classified failures to the total
number of true positive (correctly classified failures) and false
negative (incorrectly classified failing tests):

Recall(RE) =
(TP )

(TP + FN)
(2)

3Versions 2, 3 and 5 of NanoXML are broadly similar in this respect and
have been grouped together

The F-measure - the harmonic mean of precision and recall -
combines these two as follows:

F −measure = 2
(PR×RE)

(PR+RE)
(3)

In all cases these values are calculated purely on the
unlabelled data instances - (DU ) in the section above.

D. Tools and Configuration

A collective classification package (release 2015.2.27)4 for
semi-supervised learning in WEKA5 (release 3-6-12) was used
in the experiments. The maximum number of iterations in self-
training and co-training is set to 80, and to 30 for co-EM in
the experiments (as used in [31]). Default values for all other
parameters (except the iteration parameter) were used as given
in their implementation. The Daikon configuration employed
was the most recent version and the same as that used in other
experiments [21], [23].

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the results obtained from using semi-
supervised learning classifiers (self-training, co-training and
co-EM) on the three subject programs described in Section IV
are presented. Two separate studies were performed using two
kinds of execution data: firstly just input/output pairs, and
secondly input/output pairs augmented with execution traces
and in addition the two semi-supervised labelling scenarios
were explored (section III-A).

A. Study 1: Test Result Classification Based on Input/Output
Pairs

1) Scenario 1: Labelling subsets of both passing (normal)
and failing (abnormal) tests: For the first study the classifiers
were built using just the input and output of the test cases that
were provided with the three systems. In this scenario the clas-
sifiers were trained on a small set of labelled instances of the
normal behaviour class (in this case, passing executions) and a
few instances for abnormal behaviour (failing executions). The
rest of the data were unlabelled instances of input output pairs
which the classifiers iteratively categorised during the learning
process.

Tables VI and VII show, for NanoXML and for Siena and
Sed respectively, the results of applying semi-supervised learn-
ing with increasing numbers of labelled samples. The figures
reported are the average values obtained from employing cross
validation to reduce the potential bias created by the choice of
the labelled data items (see section IV-B5). The first column
(size) defines the number of labelled data items in the training
sets as a percentage of the total number of test cases. The
subsequent columns identify the version number of the subject
programs with (P, R, F) referring to the average values of
Precision, Recall and F-measure (see sectionIV-C) with the
best results in each column highlighted in bold.

For NanoXML the self-training method (Naı̈ve Bayes with
EM) performed well over all versions, achieving an average

4https://github.com/fracpete/collective-classification-weka-package/releases
5http://www.cs.waikato.ac.nz/ml/weka/downloading.html



TABLE V. DOMAIN SIZE FOR THE THREE SYSTEMS

Total Distinct Distinct Distinct I/O Distinct Distinct I/O/Trace

System No. Tests Inputs Outputs Combinations Traces Combinations

NanoXML (v1) 207 57 70 120 105 120

NanoXML (v2, v3 and v5) 207 57 70 120 2 120

Siena 494 37 60 104 2 104

Sed 363 206 179 287 295 341

F-measure of 0.5 when only 10% of the data (just 25 items)
was labelled. However, to achieve the better results it would
be necessary to label between 30-50% of the data. Co-training
using Naı̈ve Bayes performed far less well, and more notably
didn’t really improve as the size of the labelled training set
increased. Even more disappointing are the results for co-EM
and co-training with SVM: the performance for version 1 of
NanoXML is identical for both algorithms but let down by
poor recall values, but for versions 2, 3 and 5 the recall was
zero most of the time as no failures were detected (indicated
by a ‘-’ n the results tables) and something that needs to be
explored further).

The performance of Naı̈ve Bayes with EM on NanoXML is
encouraging, particularly considering the number of input and
output combinations that need to be classified (see Table V).
Given that there are 120 distinct input-output pairs it is also to
be expected that the performance improves when the 30-50%
bracket is reached – at this point between 60-100 data items
will have been labelled and chances are that this will have
covered the majority of the distinct combinations. It might be
expected that as more cases get labelled so the accuracy would
increase but this is not always the case, especially for some
of the other algorithms. Looking at these cases it appears that
initially many results were classified as fail (some correctly,
some not). As more data gets labelled several of these fail
results were turned into passes - some correctly but some not
- due to the influence of one label (they may match a labelled
passing input for example). This impacts on precision and
recall as the FP value will drop as will the TP value which
means that precision increases (negatively impacted by FP)
but recall decreases (negatively impacted by TP). By adding
in more data in the form of traces it is anticipated that this
undue influence from one component will diminish.

A similar pattern of results can be seen from the data
for Siena – the semi-supervised learning techniques did not
perform well in all versions. Remember that the versions of
Siena contain just the one fault, so all failures correspond to the
same fault (but which will have different manifestations). As
with NanoXML the best F-measure values are achieved with
self-training (Naı̈ve Bayes with EM) but unlike NanoXML
there was no increase in performance as the proportion of
labelled data increased. This feature is something of a surprise
as in comparison to NanoXML the number of input-output
combinations for Siena is relatively small (104 - see TableV).
With nearly 500 test cases for the system the expectation would
be for the majority of these combinations would be included
by the time that 30% of the data was labelled but this seemed
to have no impact. This may be down to the either the choice
of abnormal cases or the fact that the increase in the number
of tests means the data becomes very imbalanced. The results
for the other approaches are generally poor, and when not zero
are too low to be considered usable.

The results for Sed in some ways also reflect those for the
other two systems. The best results are achieved using Naı̈ve
Bayes with EM but at the low level of labelling these are
quite weak. It is only when around 30% of the data is labelled
that these begin to become acceptable. This is perhaps to be
expected as Sed had the most fragmented input-output profile
of all the systems (287 in total - see TableV).

2) Scenario 2: Labelling subsets of only passing (normal)
tests: In the second scenario classifiers were trained on a
small set of labelled instances for normal behaviour class
(passing executions) alone, with the remaining data being
unlabelled instances (an unknown class for the classifier during
the training process). The same set of learning strategies were
explored but none of approaches performed well enough to
warrant reporting in more detail. The majority of the time
the trained classifiers were able to classify passing (normal)
execution data correctly but miss-classified failing (abnormal)
execution data, labelling it as normal data instead.

B. Study 2: Test Result Classification Based on Input/Output
Pairs Augmented with Execution Traces

1) Scenario 1: Labelling subsets of both passing (normal)
and failing (abnormal) tests: For this second study the input
data for the semi-supervised learning strategies consisted of
the input/output pairs used in the first study augmented with
their execution traces. In both cases the data are encoded as
described in section IV-B4 to reduce them to a manageable
size (the trace data in particular). This change aside, all
other aspects - semi-supervised learning algorithms, subject
programs, proportions of labelled data explored - are identical
to the first study.

The results of this study for all versions of the subject
programs are shown in Tables VIII and IX which have the
same format as Table VI. The data shows that for versions
2,3 and 5 of NanoXML the self-training method (Naı̈ve Bayes
with EM) has performed dramtically well, producing an F-
measure of 1 (in other words, correctly classifying all passing
and failing executions) based on labelling only 10% of the
data items. The reason for this is both encouraging and also
slightly disappointing. The trace data (there are only two
distinct traces - see Table V) perfectly separates the results:
all passing tests follow one route through the program and
all failing ones follow another route. This demonstrates the
useful information that execution trace information can bring
but is also not a scenario that is likely to be observed that
frequently. Performance on version 1 of NanoXML is not as
strong but becomes acceptable when around 30% of the data
has been labelled. This may be a consequence of the faults that
lie within version 1, or due to having just the one abnormal
case labelled (see Table IV), or the fact that its profile is very
different to the other versions having 105 distinct traces. What
is notable is that once around 30% of the data is labelled then



TABLE VI. AVERAGE PRECISION (P), RECALL (R) AND F-MEASURE (F) RESULTS FOR NANOXML USING SEMI-SUPERVISED LEARNING ON

INPUT/OUTPUT PAIRS AND TRAINED ON NORMAL AND ABNORMAL CASES

Self-training (EM-Naı̈ve):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (0.47, 0.40, 0.43) (0.57, 0.46, 0.51) (0.65, 0.60, 0.62) (0.42, 0.46, 0.44)

20% (0.57, 0.40, 0.47) (0.74, 0.53, 0.62) (0.72, 0.45, 0.56) (0.52, 0.40, 0.45)

30% (0.74, 0.46, 0.56) (0.83, 0.63, 0.72) (0.86, 0.71, 0.78) (0.52, 0.40, 0.45)

40% (0.80, 0.80, 0.80) (0.83, 0.63, 0.72) (0.85, 0.78, 0.82) (0.68, 0.66, 0.67)

50% (0.77, 0.80, 0.78) (0.83, 0.63, 0.72) (0.79, 0.78, 0.79) (0.73, 0.76, 0.75)

Co-training (Co-Naı̈ve):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (0.52, 0.29, 0.37) (0.65, 0.18, 0.28) (0.63, 0.17, 0.27) (1, 0.21, 0.35)

20% (0.48, 0.49, 0.48) (1, 0.08, 0.15) (1, 0.08, 0.15) (1, 0.21, 0.35)

30% (0.90, 0.23, 0.37) (1, 0.08, 0.15) (1, 0.08, 0.15) (1, 0.21, 0.35)

40% (1, 0.16, 0.27) (1, 0.08, 0.15) (1, 0.08, 0.15) (1, 0.06, 0.11)

50% (1, 0.16, 0.27) (1, 0.08, 0.15) (1, 0.08, 0.15) (1, 0.06, 0.11)

Co-EM (EM-SVM):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (0.55, 0.23, 0.33) (-, -, -) (-, -, -) (-, -, -)

20% (0.55, 0.23, 0.33) (-, -, -) (-, -, -) (-, -, -)

30% (0.82, 0.23, 0.36) (-, -, -) (-, -, -) (-, -, -)

40% (1, 0.16, 0.27) (-, -, -) (-, -, -) (-, -, -)

50% (1, 0.16, 0.27) (-, -, -) (-, -, -) (-, -, -)

Co-training (Co-SVM):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (0.55, 0.23, 0.33) (-, -, -) (-, -, -) (-, -, -)

20% (0.55, 0.23, 0.33) (-, -, -) (-, -, -) (-, -, -)

30% (0.82, 0.23, 0.36) (-, -, -) (-, -, -) (-, -, -)

40% (1, 0.16, 0.27) (-, -, -) (-, -, -) (-, -, -)

50% (1, 0.16, 0.27) (-, -, -) (-, -, -) (-, -, -)

the performance is notably better than the results achieved from
classifying the input-output data alone without the execution
trace information.

Co-training using Naı̈ve Bayes displays a very similar
pattern although the improvement observable in version 1 for
self-training is absent. Co-training with SVM did not perform
well on any versions with the exception of version 3 (it is
unclear why similar results should be have been achieved for
versions 2 and 5). The results for co-EM were particularly
poor and have been omitted from the table.

The results for Siena for all techniques (with the exception
again of co-EM) are universally good, accurately classifying
the passing and failing executions with 100% accuracy based
on just the smallest labelling proportion. Again, this is for
exactly the same reasons as versions 2,3 and 5 of NanoXML
– the passing and failing executions are perfectly separable
based on the execution traces alone. This trace pattern was
entirely unknown at the time the two systems were selected
and not something that was either expected or planned for.

Sed displays a very similar pattern of results to those
achieved using input-output pairs alone. Indeed the inclusion
of execution traces appears to have practically no impact on
the results. It has already been observed that Sed has the
most fragmented input-output combination, and combined with
its 295 distinct traces gives a 341 distinct input-output-trace
combinations. For cases such as this it is clear that other
information needs to be introduced to the classifier algorithms

such as execution time or summary information relating to
traces (e.g. number of unique methods, nesting pattern etc.)
and is something we intend to explore in future.

2) Scenario 2: Labelling subsets of only passing (normal)
tests: For this part of the study the data used was as for the first
scenario - input/output pairs augmented with their execution
traces - but only a normal (passing execution) subset of the data
was labelled. The results are shown in Tables X and XI and
display a similar, but slightly less effective, pattern to scenario
1.

Again self-training (Naı̈ve Bayes with EM) has performed
well and has correctly classified almost all the data for versions
2, 3 and 5 of NanoXML when only a small proportion of the
data is labelled. For version 1, very much like in scenario
1, the results are not as impressive and even though they
improve as the proportion of labelled data increases, the overall
performance as indicated by the F-measure is held back by
the low recall. The reasons for this can be explained by the
trace information in much the same way as for the previous
scenario. Co-training using Naı̈ve Bayes also shows a similar
trend, performing well on versions 2 and 3 and also on version
5 except at the lowest level of labelling. For version 1 though
co-training failed to distinguish between the passing and failing
executions, producing recall values of 0 most of the time. Co-
training with SVM and co-EM both produced results that were
close to zero the majority of the time and have been omitted
from the results.



TABLE VII. AVERAGE PRECISION (P), RECALL (R) AND F-MEASURE

(F) RESULTS FOR SIENA AND SED USING SEMI-SUPERVISED LEARNING

ON INPUT/OUTPUT PAIRS AND TRAINED ON NORMAL AND ABNORMAL

CASES

Self-training (EM-Naı̈ve):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (0.19, 0.60, 0.28) 10% (1, 0.10, 0.19)

20% (0.10, 0.23, 0.13) 20% (1, 0.10, 0.19)

30% (0.09, 0.20, 0.12) 30% (0.39, 0.86, 0.54)

40% (0.09, 0.20, 0.12) 40% (0.39, 0.86, 0.54)

50% (0.09, 0.20, 0.12) 50% (0.39, 0.86, 0.54)

Co-training (Co-Naı̈ve):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (0.09, 0.21, 0.13) 10% (1, 0.04, 0.08)

20% (0.37, 0.10, 0.16) 20% (1, 0.04, 0.08)

30% (0.16, 0.03, 0.05) 30% (1, 0.04, 0.08)

40% (0.10, 0.23, 0.14) 40% (0.85, 0.36, 0.51)

50% (0.09, 0.21, 0.13) 50% (0.85, 0.36, 0.51)

Co-training (Co-SVM):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (0.11, 0.15, 0.13) 10% (-, -, -)

20% (-, -, -) 20% (-, -, -)

30% (-, -, -) 30% (-, -, -)

40% (-, -, -) 40% (-, -, -)

50% (-, -, -) 50% (-, -, -)

TABLE VIII. AVERAGE PRECISION (P), RECALL (R) AND F-MEASURE

(F) RESULTS FOR NANOXML USING SEMI-SUPERVISED LEARNING ON

INPUT/OUTPUT PAIRS AUGMENTED WITH EXECUTION TRACES AND

TRAINED ON NORMAL AND ABNORMAL CASES

Self-training (EM-Naı̈ve):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (0.50, 0.41, 0.45) (1, 1, 1) (1, 1, 1) (1, 1, 1)

20% (0.47, 0.47, 0.47) (1, 1, 1) (1, 1, 1) (1, 1, 1)

30% (0.70, 0.94, 0.80) (1, 1, 1) (1, 1, 1) (1, 1, 1)

40% (0.86, 0.94, 0.90) (1, 1, 1) (1, 1, 1) (1, 1, 1)

50% (0.94, 0.94, 0.94) (1, 1, 1) (1, 1, 1) (1, 1, 1)

Co-training (Co-Naı̈ve):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (0.50, 0.40, 0.44) (1, 1, 1) (1, 1, 1) (1, 1, 1)

20% (0.50, 0.40, 0.44) (1, 1, 1) (1, 0.98, 0.99) (1, 1, 1)

30% (0.83, 0.28, 0.42) (1, 1, 1) (1, 0.98, 0.99) (1, 1, 1)

40% (0.90, 0.28, 0.43) (1, 1, 1) (1, 1, 1) (1, 1, 1)

50% (0.90, 0.28, 0.43) (1, 1, 1) (1, 1, 1) (1, 1, 1)

Co-training (Co-SVM):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)

20% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)

30% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)

40% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)

50% (-, -, -) (-, -, -) (1, 1, 1) (-, -, -)

The results for Siena (table X) show that both self-training
(Naı̈ve Bayes with EM) and co-training (Naı̈ve Bayes) methods
have extremely performed well, again due to the very infor-
mative execution traces. Self-training was able to detect all
failures with all labelled sample sizes on all versions and co-
training produced a similar set of results with the exception
of the smallest (10%) labelling proportion . Co-training with
SVM and co-EM again did not perform well for Siena either

TABLE IX. AVERAGE PRECISION (P), RECALL (R) AND F-MEASURE

(F) RESULTS FOR SIENA AND SED USING SEMI-SUPERVISED LEARNING

ON INPUT/OUTPUT PAIRS AUGMENTED WITH EXECUTION TRACES AND

TRAINED ON NORMAL AND ABNORMAL CASES

Self-training (EM-Naı̈ve):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (1, 1, 1) 10% (1, 0.10, 0.19)

20% (1, 1, 1) 20% (1, 0.10, 0.19)

30% (1, 1, 1) 30% (0.39, 0.86, 0.54)

40% (1, 1, 1) 40% (0.39, 0.86, 0.54)

50% (1, 1, 1) 50% (0.39, 0.86, 0.54)

Co-training (Co-Naı̈ve):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (1, 1, 1) 10% (1, 0.07, 0.14)

20% (1, 1, 1) 20% (1, 0.07, 0.14)

30% (1, 1, 1) 30% (1, 0.07, 0.14)

40% (1, 1, 1) 40% (0.39, 0.84, 0.53)

50% (1, 1, 1) 50% (0.39, 0.84, 0.53)

Co-training (Co-SVM):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (1, 1, 1) 10% (-, -, -)

20% (1, 1, 1) 20% (-, -, -)

30% (1, 1, 1) 30% (-, -, -)

40% (1, 1, 1) 40% (-, -, -)

50% (1, 1, 1) 50% (-, -, -)

Co-EM (EM-SVM):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (-, -, -) 10% (1, 0.07, 0.14)

20% (-, -, -) 20% (1, 0.07, 0.14)

30% (-, -, -) 30% (1, 0.07, 0.14)

40% (-, -, -) 40% (1, 0.07, 0.14)

50% (-, -, -) 50% (1, 0.07, 0.14)

and the results for these have been omitted.

Again Sed proved to be the most challenging system and
for Naı̈ve Bayes with EM did not display any acceptable results
until at least 30% of the data was labelled (again attributable
to the fragmentation). Co-training (Naı̈ve Bayes) displayed a
similar performance but was able to produce results even with
the smallest level of labelling. Even though the results for
this approach are not as accurate as the previous scenario, the
absence of any labelled failing inputs makes this an interesting
outcome.

VI. THREATS TO VALIDITY

The clear issue concerning the external validity of this
work is the generalizability of our results: the findings so far
are limited to three subject programs which cannot be said
to form a representative set, even though they are non-trivial
real-world Java and C systems of a reasonable size containing
real faults. The failure rates for both systems may also not be
representative, as may be the test cases (although these were
created independently via collaboration between the SIR and
the subject systems’ developers).

A potential construct validity for this work lies on our use
of the coding scheme for both input/output pairs and execution
traces. However, for the input/output pairs, this was created
by examining a subset of inputs and outputs in ignorance of
whether they are passing or failing pairs, and then applied



TABLE X. AVERAGE PRECISION (P), RECALL (R) AND F-MEASURE

(F) RESULTS FOR NANOXML USING SEMI-SUPERVISED LEARNING ON

INPUT/OUTPUT PAIRS AUGMENTED WITH EXECUTION TRACES AND

TRAINED ON NORMAL CASES ALONE

Self-training (EM-Naı̈ve):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (0.45, 0.12, 0.20) (1, 0.96, 0.98) (1, 0.89, 0.94) (1, 0.92, 0.96)

20% (0.37, 0.12, 0.19) (1, 0.96, 0.98) (1, 0.97, 0.98) (1, 0.92, 0.96)

30% (0.40, 0.15, 0.22) (1, 0.96, 0.98) (1, 0.97, 0.98) (1, 0.92, 0.96)

40% (0.66, 0.20, 0.30) (1, 1, 1) (1, 0.97, 0.98) (1, 0.96, 0.98)

50% (0.89, 0.24, 0.38) (1, 1, 1) (1, 0.97, 0.98) (1, 1, 1)

Co-training (Co-Naı̈ve):

NanoXML Version

Labeled Data V1 V2 V3 V5

Size (P, R, F) (P, R, F) (P, R, F) (P, R, F)

10% (-, -, -) (1, 0.96, 0.98) (1, 1, 1) (0, 0, 0)

20% (-, -, -) (1, 0.80, 0.88) (1, 0.81, 0.89) (1, 0.63, 0.74)

30% (-, -, -) (1, 0.80, 0.88) (1, 0.81, 0.89) (1, 0.63, 0.74)

40% (-, -, -) (1, 0.80, 0.88) (1, 0.81, 0.89) (1, 0.64, 0.78)

50% (-, -, -) (1, 0.80, 0.88) (1, 0.81, 0.89) (1, 0.64, 0.78)

TABLE XI. AVERAGE PRECISION (P), RECALL (R) AND F-MEASURE

(F) RESULTS FOR SIENA AND SED USING SEMI-SUPERVISED LEARNING

ON INPUT/OUTPUT PAIRS AUGMENTED WITH EXECUTION TRACES AND

TRAINED ON NORMAL CASES ALONE

Self-training (EM-Naı̈ve):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (1, 1, 1) 10% (-, -, -)

20% (1, 1, 1) 20% (-, -, -)

30% (1, 1, 1) 30% (0.39, 0.45, 0.42)

40% (1, 1, 1) 40% (0.33, 0.56, 0.42)

50% (1, 1, 1) 50% (0.41, 0.68, 0.51)

Co-training (Co-Naı̈ve):

Siena Version Sed Version

Labeled Data V2 Labeled Data V5

Size (P, R, F) Size (P, R, F)

10% (1, 0.81, 0.89) 10% (0.38, 0.28, 0.33)

20% (1, 1, 1) 20% (0.36, 0.25, 0.30)

30% (1, 1, 1) 30% (0.43, 0.39, 0.41)

40% (1, 1, 1) 40% (0.40, 0.45, 0.42)

50% (1, 1, 1) 50% (0.42, 0.48, 0.45)

automatically in the reminder of the data set. The coding
scheme for execution traces was the same algorithm used by
[23] and also has no information about whether a trace is
associated with a passing or failing execution.

VII. SUMMARY, CONCLUSIONS AND FUTURE WORK

In this paper we present an empirical study, which demon-
strates the potential of semi-supervised learning techniques to
support the construction of automated test oracles by classi-
fying passing and failing outputs. We perform three different
studies and also examine two different scenarios associated
with semi-supervised learning techniques: labelling both nor-
mal (passing) and abnormal (failing) tests, and labelling normal
(passing) tests alone. Just input/output pairs were used as
input to the learning algorithms in the first study, and then
augmented with execution traces in the second.

The main findings from this study may be summarised as
follows:

• From the algorithms investigated Naı̈ve Bayes with
EM and co-training using Naı̈ve Bayes proved to
be the most consistent performers. These approaches
have been shown to perform well in the area of
document classification where all of the data sets are
textual (as in this study) which may go some way
towards explaining the reason for their performance
in relation to the much poorer one of Support Vector
Machines with the co-EM and co-training methods.

• Considering just input-output pairs with positive labels
(passing cases) alone yielded very poor results and is
not worth exploring further.

• The results for input-output pairs with positive and
negative labels (a subset of passing cases and a small
number of failing ones) were variable: encouraging
for NanoXML, acceptable for Sed but disappointing
for Siena. This result was a surprise given that the
profile of the system is far less fragmented than Sed,
but could be attributable to a data imbalance problem
- something that needs explored in the future.

• Adding in execution trace data can help enormously.
This is not really unexpected given that more informa-
tion is being supplied to the algorithm, but even when
very fragmented they improve the accuracy once a fair
proportion of the data is labelled. In extreme cases
the impact is dramatic (leading to a perfect classifier
on from a very small subset of labelled data) but we
assume that these are relatively rare instances.

• Using input-output pairs and execution traces with just
positive labels worked well when the number of traces
is small) but otherwise didn’t perform as well as when
a small number of failing inputs are provided.

Even though these results are preliminary we believe the
findings from this study have important implications for the
practical use of this technique: when checking the test results
from a system a developer need only examine a relatively small
proportion of these and use this information to train a learning
algorithm to classify the remainder. This has the potential
to improve the efficiency and reduce the cost and tedium
of manually checking large volumes of test results. Future
research will be devoted to further empirical investigation of
the effectiveness of our approach corroborate the findings and
to increase their external validity, particularly by exploring a
wider range of programs and faults.

All the data for the study is available at
http://personal.strath.ac.uk/rafig.almaghairbe/
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