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Abstract: Mao [10] recently initiated the study of the mean-square exponential stabilisation of

continuous-time hybrid stochastic differential equations (SDEs) by the feedback controls based

on the discrete-time observations of the state. However, the feedback controls still depend on

the continuous-time observations of the mode. Of course this is perfectly fine if the mode of the

system is obvious (i.e. fully observable at no cost). However, it could often be the case where the

mode is not obvious and it costs to identify the current mode of the system. To reduce the control

cost, it is reasonable we identify the mode at the discrete times when we make observations for the

state. Hence the feedback control should be designed based on the discrete-time observations of

both state and mode. The aim of this paper is to show how to design such a feedback control to

stabilise a given hybrid SDE.

Keywords: stabilisation, feedback control, discrete-time observations, hybrid stochastic differen-

tial equations, Brownian motion.

1. Introduction

Mao [10] recently initiated the study of the mean-square exponential stabilisation of continuous-

time hybrid stochastic differential equations (SDEs) (also known as SDEs with Markovian switch-

ing [14]) by feedback controls based on the discrete-time observations of the state. To make it

clear why we need to further study this stabilisation problem, let us make a quick review on the

problem studied in [10].

Throughout this paper, unless otherwise specified, we will use the same notation as in [10].

Consider a hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dw(t) (1)

on t ≥ t0(≥ 0), where f : Rn × S × R+ → Rn, g : Rn × S × R+ → Rn×m, w(t) =
(w1(t), · · · , wm(t))

T is an m-dimensional Brownian motion and r(t) is a Markov chain with its

state space S = {1, 2, · · · , N} and the generator Γ = (γij)N×N . Moreover, x(t) ∈ Rn is known
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as the state while r(t) as the mode of the system (see e.g. [8, 14]). The hybrid SDEs have been

used to model real-world systems where they may experience abrupt changes in their structure

and parameters in addition to uncertainties. For example, consider the well-known Black-Scholes

SDE model in finance dx(t) = µx(t)dt + σx(t)dw(t) (known as the geometric Brownian motion

too, see e.g. [7]), where Black and Scholes assumed that the rate of return µ and the volatility σ
are constants. However, it has been proved by many authors that both of them are random pro-

cesses in many situations. There is a strong evidence to indicate that the rate µ is a Markov jump

process which can be modelled by a Markov chain as it depends very much on the interest rate.

Of course, when the rate jumps, the volatility will jump accordingly. Taking these jumps into ac-

count, the Black-Scholes SDE model has recently be generalised to form a new financial model

dx(t) = µ(r(t))x(t)dt + σ(r(t))x(t)dw(t). Another typical example is the hybrid SDE model in

power systems (see e.g. [18]). For further references on hybrid SDEs, we mention, for example,

[5, 12, 15, 17, 20]). In particular, [8] is one of most cited papers (more than 550 Google citations)

while [14] is the first book in this area (more than 800 Google citations).

Suppose that the given hybrid SDE (1) is unstable. Instead of using a classical continuous-

time feedback control u(x(t), r(t), t) which requires continuous observations of the state x(t) for

all time t ≥ 0 (see e.g. [5, 11, 13, 19, 20]), Mao proposed in [10] to design a feedback control

u(x(δ(t, t0, τ)), r(t), t) based on the discrete-time observations of the state in order to make the

controlled system

dx(t) =
(

f(x(t), r(t), t) + u(x(δ(t, t0, τ)), r(t), t)
)

dt+ g(x(t), r(t), t)dw(t) (2)

become exponentially stable in mean square. Here τ > 0 and

δ(t, t0, τ) = t0 + [(t− t0)/τ ]τ, (3)

in which [(t − t0)/τ ] is the integer part of (t − t0)/τ . The advantage of such a discrete-time

feedback control requires only state observations x(t0+kτ) at discrete times t0, t0+ τ, t0+2τ, · · ·
and hence it will cost much less than a continuous-time feedback control. As pointed out in [10],

although the corresponding problem for the deterministic differential equations has been studied

by several authors (see e.g. [1, 3, 4]), Mao [10] is the first paper that addresses the stabilisation

problem by discrete-time feedback controls for hybrid SDEs.

We are now in the position to explain why we need this paper to continue the study initiated

by [10]. Observe that the discrete-time feedback control in the controlled SDE (2) is based on

the discrete-time observations of the state, x(t0 + kτ) (k = 0, 1, 2 · · · ) but it still depends on the

continuous-time observations of the mode, r(t) on t ≥ t0. Of course this is perfectly fine if the

mode of the system is obvious (i.e. fully observable at no cost), for example, in a financial system

where the mode represents the interest rate (see e.g. [21, 22]). However, it could often be the case

where the mode is not obvious and it costs to identify the current mode of the system (see e.g.

[6, 15]). To reduce the control cost, it is reasonable that we identify the mode at the same discrete

times t0 + kτ (k ≥ 0) when we make observations for the state. It is in this spirit that we write this

paper to consider an n-dimensional controlled hybrid SDE

dz(t) =
[

f(z(t), r(t), t) + u(z(δ(t, t0, τ)), r(δ(t, t0, τ)), t)
]

dt

+ g(z(t), r(t), t)dw(t) (4)

on t ≥ t0, where our new feedback control is based on the discrete-time observations of both

state z(t0 + kτ) and mode r(t0 + kτ). We will compare the discrete-time controlled SDE (4)
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with the continuous-time controlled SDE (10). We will show that if the SDE (10) is mean-square

exponentially stable, then so is the SDE (4) provided τ is sufficiently small. We will form our main

result in Section 2. We will then present several lemmas in Section 3 in order to prove Theorem 1

in Section 4. We will also present some case studies in Section 5 and conclude our paper in Section

6.

Before we develop our new theory, we should emphasise that the mathematical analysis in this

paper is much more complicated than that in [10] due to the difficulties arisen from the discrete-

time observations r(t0 + kτ) of the mode. We will point out these difficulties in detail later when

we perform the proofs of our theory. In other words, this paper is not a simple generalisation of

Mao [10] but needs new techniques.

2. Statement of Main Result

To study the stability of the discrete-time controlled system (4), we impose a standing hypothesis

for this paper.

Assumption 1. Assume that the coefficients of the system and the control function

f, u :Rn × S ×R+ → Rn,

g :Rn × S ×R+ → Rn×m

are Borel measurable. Assume also that there are positive constants K1, K2, K3 such that

|f(x, i, t)− f(y, i, t)| ≤ K1|x− y|,

|u(x, i, t)− u(y, i, t)| ≤ K2|x− y|, (5)

|g(x, i, t)− g(x, i, t)| ≤ K3|x− y|

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+. Moreover,

f(0, i, t) = 0, u(0, i, t) = 0, g(0, i, t) = 0 (6)

for all (i, t) ∈ S ×R+.

It should be pointed out that condition (6) is for the stability purpose of this paper and condition

(5) is for the existence and uniqueness of the solution (see e.g.[7, 14, 16]). We also see that these

conditions imply the following linear growth condition

|f(x, i, t)| ≤ K1|x|, |u(x, i, t)| ≤ K2|x|,

|g(x, i, t)| ≤ K3|x| (7)

for all (x, i, t) ∈ Rn × S ×R+.

We claim that under Assumption 1, for any initial data z(t0) = z0 ∈ L2
Ft0

(Rn) and r(t0) =

r0 ∈ MFt0
(S) at time t0 ≥ 0, equation (4) has a unique solution z(t) such that E|z(t)|2 < ∞ for

all t ≥ t0. In fact, it is known (see e.g. [14, page 112]) that {r(δ(t, t0, τ))}t≥t0 = {r(t0 + kτ)}k≥0

is a discrete-time Markov chain with the one-step transition probability matrix eτΓ. Moreover, for

t ∈ [t0, t0 + τ ], equation (4) becomes a hybrid SDE

dz(t) =
[

f(z(t), r(t), t) + u(z(t0), r(t0), t)
]

dt

+ g(z(t), r(t), t)dw(t). (8)
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It is hence known (see e.g. [14, Theorem 3.8 on page 81]) that this SDE has a unique solution z(t)
on [t0, t0+τ ] such that E|z(t)|2 < ∞. Repeating this procedure on time intervals [t0+kτ, (k+1)τ ]
for k ≥ 1, we see what we have claimed.

To emphasise the role of the initial data, we will denote the solution by z(t; z0, r0, t0) and the

Markov chain by r(t; r0, t0). The arguments in the last paragraph shows that the process has the

following property at the discrete times t0 + kτ (k ≥ 0)

(z(t; z0, r0, t0), r(t; r0, t0)) = (z(t; z(t0 + kτ), r(t0 + kτ), t0 + kτ),

r(t; r(t0 + kτ), t0 + kτ)), (9)

for all t ≥ t0 + kτ , where z(t0 + kτ) = z(t0 + kτ ; z0, r0, t0) and r(t0 + kτ) = r(t0 + kτ ; r0, t0).
We will relate our discrete-time controlled system (4) with the corresponding continuous-time

controlled system

dy(t) =
(

f(y(t), r(t), t) + u(y(t), r(t), t)
)

dt

+ g(y(t), r(t), t)dw(t) (10)

on t ≥ t0 with initial data y(t0) = z0 ∈ L2
Ft0

(Rn) and r(t0) = r0 ∈ MFt0
(S) at time t0 ≥ 0. It

is known (see e.g. [14, Theorem 3.8 on page 81]) that under Assumption 1, equation (10) has a

unique solution, denoted by y(t; z0, r0, t0) such that E|y(t; z0, r0, t0)|
2 < ∞ for all t ≥ t0. Our aim

here is to show that if system (10) is mean-square exponentially stable, then so is the discrete-time

controlled system (4) provided τ is sufficiently small. In other words, our new theory enables us

to transfer the discrete-time controlled problem (4) into the classical continuous-time controlled

problem (10).

In section 5, we will present some case studies to demonstrate how to design the control function

u : Rn×S×R+ → Rn for system (10) to be mean-square exponentially stable. But in this section,

we simply impose the following assumption.

Assumption 2. Assume that there is a pair of positive constants M and γ such that the solution of

the continuous-time controlled SDE (10) satisfies

E|y(t; z0, r0, t0)|
2 ≤ ME|z0|

2e−γ(t−t0) ∀t ≥ t0 (11)

for all t0 ≥ 0, z0 ∈ L2
Ft0

(Rn) and r0 ∈ MFt0
(S).

The following theorem shows that this same control function also makes the discrete-time con-

trolled system (4) to be mean-square exponentially stable as long as τ is sufficiently small (namely

we make observations on both state and mode frequently enough).

Theorem 1. Let Assumptions 1 and 2 hold. Let ε ∈ (0, 1) be a free parameter. Let τ̄ > 0 be the

unique root to the equation

H̄(τ̄ , ε) = 0.5(1− ε), (12)

where

H̄(τ, ε) =
τK2[4τ(K

2
1 +K2

2) + 2K2
3 ] + 4K2(1− e−γ̂τ )

2K1 + 2K2 +K2
3

× e(2K1+4K2+K2
3
)(τ+log(2M/ε)/γ)

×
[

e(2K1+2K2+K2
3
)(τ+log(2M/ε)/γ) − 1

]

, (13)
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in which

γ̂ = max
i∈S

(−γii). (14)

If τ < τ̄ , then there is a pair of positive constants M̄ and λ such that the solution of the controlled

hybrid SDE (4) satisfies

E|z(t; z0, r0, t0)|
2 ≤ M̄E|z0|

2e−λ(t−t0) ∀t ≥ t0 (15)

for all t0 ≥ 0, z0 ∈ L2
Ft0

(Rn) and r0 ∈ MFt0
(S). That is, the controlled hybrid SDE (4) is

mean-square exponentially stable.

Please note that ε is a free parameter in (0, 1). By choosing different parameter ε, it is possible

to get better τ̄ . This is different from [10]. Unfortunately, we still do not know how to choose ε in

order to maximise τ̄ .

3. Lemmas

To prove Theorem 1, we present a number of lemmas in this section. We first recall that r(t)
is a right-continuous Markov chain with the state space S = {1, 2, · · · , N} and the generator

Γ = (γij)N×N . In particular, we recall that −γii =
∑

j 6=i γij > 0. It is known that almost all

sample paths of r(t) are step-functions (or piecewise-constant functions) with a finite number of

simple jumps in any finite subinterval of R+. The following lemma estimates the probability of

jumps.

Lemma 1. For any t ≥ 0, v > 0 and i ∈ S,

P(r(s) 6= i for some s ∈ [t, t+ v]
∣

∣r(t) = i) ≤ 1− e−γ̂v, (16)

where γ̂ has been defined by (14) in the statement of Theorem 1.

Proof. Given r(t) = i, define the stopping time

ρi = inf{s ≥ t : r(s) 6= i},

where and throughout this paper we set inf ∅ = ∞ (in which ∅ denotes the empty set as usual). It

is well known (see e.g. [2]) that ρi− t has the exponential distribution with parameter −γii. Hence

P(r(s) 6= i for some s ∈ [t, t+ v]|r(t) = i)

=P(ρi − t ≤ v|r(t) = i) =

∫ v

0

1

−γii
eγiisds

=1− eγiiv ≤ 1− e−γ̂v (17)

as desired. 2

In the following lemmas, we will write z(t; z0, r0, t0) = z(t), y(t; z0, r0, t0) = y(t) and δ(t, t0, τ) =
δt for convenience.

Lemma 2. Let Assumption 1 hold. Then for any initial data z0, r0, t0, the solution of equation (4)

satisfies

E|z(t)|2 ≤ E|z0|
2e(2K1+2K2+K2

3
)(t−t0) (18)
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and

E|z(t)− z(δt)|
2 ≤ E|z0|

2τ [4τ(K2
1 +K2

2) + 2K2
3 ]

× e(2K1+2K2+K2
3
)(t−t0), (19)

for all t ≥ t0.

The proof of this lemma is standard (see e.g. [10]) so is omitted. The following lemma will

play a central role in the proof of Theorem 1. The proof of this lemma is very technical and shows

clearly the difficulty due to the discrete-time observations on the mode.

Lemma 3. Let Assumption 1 hold. Then for any initial data z0, r0, t0,

E|z(t)− y(t)|2

≤ E|z0|
2H(τ)e(2K1+4K2+K2

3
)(t−t0)

×
[

e(2K1+2K2+K2
3
)(t−t0) − 1

]

, (20)

for all t ≥ t0, where

H(τ) =
τK2[4τ(K

2
1 +K2

2) + 2K2
3 ] + 4K2(1− e−γ̂τ )

2K1 + 2K2 +K2
3

.

Proof. The Itô formula shows that for t ≥ t0,

E|z(t)− y(t)|2

= E

∫ t

t0

[

2(z(s)− y(s))T

×
(

f(z(s), r(s), s)− f(y(s), r(s), s)

+u(z(δs), r(δs), s)− u(y(s), r(s), s)
)

+|g(z(s), r(s), s)− g(y(s), r(s), s)|2
]

ds.

By Assumption 1, we then have

E|z(t)− y(t)|2 ≤ E

∫ t

t0

(2K1 +K2
3)|z(s)− y(s)|2ds+ J(t), (21)

where

J(t) = E

∫ t

t0

2(z(s)− y(s))T

×[u(z(δs), r(δs), s)− u(y(s), r(s), s)]ds

= E

∫ t

t0

2(z(s)− y(s))T

×
(

[u(z(δs), r(δs), s)− u(z(δs), r(s), s)]

+[u(z(δs), r(s), s)− u(z(s), r(s), s)]

+[u(z(s), r(s), s)− u(y(s), r(s), s)]
)

ds.
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Using Assumption 1, we get

J(t) ≤ K2E

∫ t

t0

[

4|z(s)− y(s)|2 + |z(δs)− z(s)|2
]

ds

+K−1
2 J1(t), (22)

where

J1(t) = E

∫ t

t0

|u(z(δs), r(δs), s)− u(z(δs), r(s), s)|
2ds.

Substituting (22) into (21) yields

E|z(t)− y(t)|2

≤ (2K1 + 4K2 +K2
3)

∫ t

t0

E|z(s)− y(s)|2ds

+ K2

∫ t

t0

E|z(δs)− z(s)|2ds+K−1
2 J1(t). (23)

But, by Lemma 2, we have

∫ t

t0

E|z(δs)− z(s)|2ds ≤
τ [4τ(K2

1 +K2
2) + 2K2

3 ]

2K1 + 2K2 +K2
3

× E|z0|
2
[

e(2K1+2K2+K2
3
)(t−t0) − 1

]

. (24)

To estimate J1(t), let h = h(t) be the integer part of (t − t0)/τ and define tk = t0 + kτ for

k = 0, 1, 2, · · · . Then, by the well-known Fubini theorem, we have

J1(t) =
h

∑

k=0

∫ t∧tk+1

tk

E|u(z(tk), r(tk), s)

− u(z(tk), r(s), s)|
2ds. (25)

By Assumption 1 , we can derive that, for tk ≤ s ≤ t ∧ tk+1,

E|u(z(tk), r(tk), s)− u(z(tk), r(s), s)|
2

= E

[

E

(

|u(z(tk), r(tk), s)− u(z(tk), r(s), s)|
2
∣

∣

∣
Ftk

)]

≤ E

[

4K2
2 |z(tk)|

2
E

(

I{r(s) 6=r(tk)}

∣

∣

∣
Ftk

)]

= E

[

4K2
2 |z(tk)|

2
E

(

∑

i∈S

I{r(tk)=i}I{r(s) 6=i}

∣

∣

∣
Ftk

)]

= E

[

4K2
2 |z(tk)|

2
∑

i∈S

I{r(tk)=i}

×P(r(s) 6= i
∣

∣r(tk) = i
)

]

. (26)
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But, by Lemma 1,

P(r(s) 6= i
∣

∣r(tk) = i
)

≤P(r(s̄) 6= i for some s̄ ∈ [tk, t ∧ tk+1

∣

∣r(tk) = i
)

≤1− e−γ̂τ .

Hence

E|u(z(tk), r(tk), s)− u(z(tk), r(s), s)|
2

≤E

[

4K2
2 |z(tk)|

2(1− e−γ̂τ )
]

=4K2
2(1− e−γ̂τ )E|z(tk)|

2. (27)

Substituting this into (25), we get

J1(t) ≤ 4K2
2(1− e−γ̂τ )

h
∑

k=0

∫ t∧tk+1

tk

E|z(tk)|
2ds. (28)

But, by Lemma 2, we then have

h
∑

k=0

∫ t∧tk+1

tk

E|z(tk)|
2ds

≤
h

∑

k=0

∫ t∧tk+1

tk

E|z0|
2e(2K1+2K2+K2

3
)(tk−t0)ds

≤
h

∑

k=0

∫ t∧tk+1

tk

E|z0|
2e(2K1+2K2+K2

3
)(s−t0)ds

=E|z0|
2

∫ t

t0

e(2K1+2K2+K2
3
)(s−t0)ds

=
E|z0|

2

2K1 + 2K2 +K2
3

[

e(2K1+2K2+K2
3
)(t−t0) − 1

]

.

Putting this into (28) gives

J1(t) ≤
4K2

2(1− e−γ̂τ )

2K1 + 2K2 +K2
3

E|z0|
2

×
[

e(2K1+2K2+K2
3
)(t−t0) − 1

]

. (29)

Substituting (24) and (29) into (23), we get

E|z(t)− y(t)|2

≤(2K1 + 4K2 +K2
3)

∫ t

t0

E|z(s)− y(s)|2ds

+H(τ)E|x0|
2
[

e(2K1+2K2+K2
3
)(t−t0) − 1

]

. (30)

Finally, the well-known Gronwall inequality implies the desired assertion (20). 2.
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4. Proof of Theorem 1

Let us now begin to prove our main Theorem 1. We first observe that for any fixed ε ∈ (0, 1),
H̄(τ, ε) is an increasing function of τ ≥ 0 with H̄(0, ε) = 0 and H̄(τ, ε) → ∞ as τ → ∞. So

there must be a unique root τ̄ > 0 to equation (12). Fix initial data z0, r0, t0 arbitrarily and write

z(t; z0, r0, t0) = z(t) and r(t; r0, t0) = r(t) simply. For k = 0, 1, 2, · · · , we write t0 + kτ = tk,

z(t0 + kτ) = zk and z(t0 + kτ) = rk. Recalling property (9), we see that

z(t) = z(t; zk, rk, tk) ∀t ≥ tk. (31)

In other words, when t ≥ tk, we may regard z(t) as the solution of equation(4) with initial data

z(tk) = zk and r(tk) = rk at time tk.

Let us choose a positive integer k̄ such that

log(2M/ε)

γτ
≤ k̄ <

log(2M/ε)

γτ
+ 1. (32)

So

2Me−γk̄τ ≤ ε. (33)

For i = 0, 1, 2, · · · , let y(i+1)k̄ = y((i+ 1)k̄; zik̄, rik̄, tik̄). Clearly, we have

E|z(i+1)k̄|
2 ≤ 2E|y(i+1)k̄|

2 + 2E|z(i+1)k̄ − y(i+1)k̄|
2. (34)

But, by Assumption 2 and (33), we have

E|y(i+1)k̄|
2 ≤ Me−γk̄τ

E|xik̄|
2 ≤ 0.5εE|xik̄|

2. (35)

By (31), we have z(i+1)k̄ = z((i+ 1)k̄; zik̄, rik̄, tik̄). Hence, by Lemma 3 and inequality (32),

E|z(i+1)k̄ − y(i+1)k̄|
2

≤E|zik̄|
2H(τ)e(2K1+4K2+K2

3
)k̄τ

×
[

e(2K1+2K2+K2
3
)k̄τ − 1

]

≤E|zik̄|
2H(τ)e(2K1+4K2+K2

3
)(τ+log(2M/ε)/γ)

×
[

e(2K1+2K2+K2
3
)(τ+log(2M/ε)/γ) − 1

]

. (36)

Recalling the definition of H̄(ε, τ) (i.e. (13) ) along with the definition of H(τ) in the statement of

Lemma 3, we see that

E|z(i+1)k̄ − y(i+1)k̄|
2 ≤ E|zik̄|

2H̄(τ, ε). (37)

Substituting (35) and (37) into (34) yields

E|z(i+1)k̄|
2 ≤ (ε+ 2H̄(τ, ε))E|zik̄|

2. (38)

Since τ < τ̄ and H̄(τ, ε) is an increasing function of τ , we see from (12) that

ε+ 2H̄(τ, ε) < 1.
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We may hence write

ε+ 2H̄(τ, ε) = e−λk̄τ

for some λ > 0. It then follows from (38) that

E|z(i+1)k̄|
2 ≤ E|zik̄|

2e−λk̄τ . (39)

This implies immediately that

E|zik̄|
2 ≤ E|z0|

2e−λik̄τ , ∀i = 0, 1, 2, · · · . (40)

Now, for any t ≥ t0, there is a unique i ≥ 0 such that t0 + ik̄τ ≤ t < t0 + (i+ 1)k̄τ . By (31), we

have

z(t) = z(t; zik̄, rik̄, tik̄).

Hence, by Lemma 2 and (40),

E|z(t)|2 ≤ E|zik̄|
2e(2K1+2K2+K2

3
)k̄τ

≤ E|z0|
2e−λik̄τ+(2K1+2K2+K2

3
)k̄τ

≤ M̄E|z0|
2e−λ(t−t0),

where M̄ = eλτ+(2K1+2K2+K2
3
)k̄τ . But this is the required assertion (15). We have therefore proved

that the controlled system(4) is mean-square exponentially stable. The proof is complete.

5. Case Studies

The new theory established above enables us to transfer the stabilisation problem (4) by a discrete-

time feedback control to the stabilisation problem (10) by a continuous-time feedback control. To

use our new theory, we need to know how to design the control function u : Rn × S × R+ →
Rn such that the hybrid SDE (10) is mean-square exponentially stable, namely Assumption 2 is

satisfied. There is an intensive literature in the area of stability of hybrid SDEs, for example,

[5, 11, 13, 19, 20]. For the convenience of the reader, we state a lemma which follows easily from

[14, Thereom 4.5 on page 166].

Lemma 4. Assume that there are symmetric positive-definite matrices Qi, i ∈ S, as well as a

positive number γ, such that

LQ(y, i, t) ≤ −γyTQiy (41)

for all (y, i, t) ∈ Rn × S ×R+, where the function LQ : Rn × S ×R+ → R is defined by

LQ(y, i, t) := 2yTQi[f(y, t, i) + u(y, t, i)]

+ trace[gT (y, i, t)Qig(y, i, t)] +
N
∑

j=1

γijy
TQjy.

Then the solution of the SDE (10) satisfies

E|y(t; z0, r0, t)|
2 ≤ ME|z0|

2e−γ(t−t0), ∀t ≥ t0 (42)

for all t0 ≥ 0, z0 ∈ L2
Ft0

(Rn) and r0 ∈ MFt0
(S), where

M =
maxi∈S λmax(Qi)

mini∈S λmin(Qi)
. (43)

We now apply this lemma to establish a couple of useful results on the design of the control

function u : Rn × S ×R+ → Rn.
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5.1. Linear hybrid SDEs

Suppose that we are given an n-dimensional linear hybrid SDE

dx(t) = A(r(t))x(t)dt+
m
∑

k=1

Bk(r(t))x(t)dwk(t) (44)

on t ≥ t0. Here A, Bk are mappings from S → Rn×n and we will write A(i) = Ai and Bk(i) =
Bki. The linear hybrid SDEs of form (44) appear frequently in many branches of science and

industry, for example, finance [7, 21, 22] and engineering [6, 15, 18]. It is often that a given hybrid

SDE is unstable and we are required to design a feedback control function, in the structure form of

u(x, i) = F (i)G(i)x in the drift part, so that the controlled SDE

dx(t) = [A(r(t))x(t) + F (r(δt))G(r(δt))x(δt)]dt

+
m
∑

k=1

Bk(r(t))x(t)dwk(t), (45)

will be mean-square exponentially stable. Here δt = δ(t, t0, τ), F and G are mappings from S
to Rn×l and Rl×n, respectively, and in general l < n. The advantage of the feedback control

F (r(δt))G(r(δt))x(δt) based on the discrete-time observations of state x(δt) and mode r(δt) has

been explained in Section 1, in comparison with the continuous-time feedback control F (r(t))G(r(t))x(t).
We here use the structure control of the form F (r(δt))G(r(δt))x(δt) instead of the general form

u(x(δt), r(δt), t) is because that such type of controls is one of the most popular feedback controls

for linear systems (see e.g. [1, 4, 5, 11, 15]).

We will write F (i) = Fi and G(i) = Gi. We only consider the case where Gi’s are given

but Fi’s are to be designed. This is the situation where we can observe the output y(δt) :=
G(r(δt))x(δt) and the mode r(δt) at the discrete time δt while we know the output matrices Gi

but we cannot observe the state x(δt). Making use of the output and the mode, we need to design

matrices Fi to form the structure feedback control F (r(δt))G(r(δt))x(δt) in order to stabilise the

system. The following corollary describes how Fi’s can be designed.

Corollary 1. Assume that for some number γ > 0, there is a set of solutions Qi ∈ Rn×n and

Yi ∈ Rn×l (i ∈ S), with Qi = QT
i > 0, to following linear matrix inequalities (LMIs)

QiAi + YiGi + AT
i Qi +GT

i Y
T
i

+
m
∑

k=1

BT
kiQiBki +

N
∑

j=1

γijQj + γQi ≤ 0. (46)

Let M be defined by (43) and set

K1 =max
i∈S

‖Ai‖, K2 = max
i∈S

‖Q−1
i YiGi‖,

K3 = max
i∈S

√

∑

m
k=1‖Bki‖2. (47)

Choose a free parameter ε ∈ (0, 1) and let τ̄ > 0 be the unique root to equation (12). If we set

Fi = Q−1
i Yi (i ∈ S) and make sure that τ < τ̄ , then the controlled hybrid SDE (45) is mean-square

exponentially stable.
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Proof. To apply Theorem 1, we consider the corresponding controlled hybrid SDE based on the

continuous-time observations of both state and mode in the form

dy(t) = [A(r(t)) + F (r(t))G(r(t))]y(t)dt

+
m
∑

k=1

Bk(r(t))y(t)dwk(t) (48)

on t ≥ t0 with the initial data y(t0) = z0 ∈ L2
Ft0

(Rn) and r(t0) = r0 ∈ MFt0
(S). Noting that

Fi = Q−1
i Yi, we can easily verify that

LQ(y, i, t) = yT
[

QiAi + YiGi + AT
i Qi +GT

i Y
T
i

+
m
∑

k=1

BT
kiQiBki +

N
∑

j=1

γijQj

]

y.

Using condition (46), we then obtain that

LQ(y, i, t) ≤ −γyTQiy.

By Lemma 4, we see that the solution of equation (48) satisfies

E|y(t; z0, r0, t)|
2 ≤ ME|z0|

2e−γ(t−t0), ∀t ≥ t0. (49)

That is, Assumption 2 is fulfilled. Moreover, Assumption 1 is clearly fulfilled with K1, K2, K3

defined by (47). The corollary therefore follows from Theorem 1 immediately. 2.

5.2. Nonlinear Hybrid SDEs

Let us now consider another special case of the controlled hybrid SDE (4) where we will use a

linear structure feedback control of the form u(x, i) = F (i)G(i)x. That is, the controlled hybrid

SDE (4) reduces to

dx(t) = [f(x(t), r(t), t) + F (r(δt))G(r(δt))x(δt)]dt

+ g(x(t), r(t), t)dw(t). (50)

Here δt = δ(t, t0, τ), F and G are the same as in Section 5.1. We once again only consider the case

where Gi’s are given but Fi’s are to be designed. Of course, we need to keep the global Lipschitz

condition on the coefficients f and g (corresponding to Assumption 1). More precisely, we impose

the following assumption.

Assumption 3. Assume that there are positive constants K1, K3 such that

|f(x, i, t)− f(y, i, t)| ≤ K1|x− y|

|g(x, i, t)− g(x, i, t)| ≤ K3|x− y| (51)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+. Moreover,

f(0, i, t) = 0, g(0, i, t) = 0 (52)

for all (i, t) ∈ S ×R+.

12



We will need another assumption.

Assumption 4. For each i ∈ S, there is a pair of symmetric n × n-matrices Qi and Q̄i with

Qi = QT
i > 0 such that

2xTQif(x, i, t) + trace[gT (x, i, t)Qig(x, i, t)]

≤ xT Q̄ix (53)

for all (x, i, t) ∈ Rn × S ×R+.

The following corollary describes how the state feedback control u(x, i) = FiGix can be de-

signed by designing Fi’s when Gi’s are given.

Corollary 2. Let Assumptions 4 and 3 hold. Assume that for some number γ > 0, there is a set of

solutions Yi ∈ Rn×l (i ∈ S) to the following LMIs

Q̄i + YiGi +GT
i Y

T
i +

N
∑

j=1

γijQj + γQi ≤ 0. (54)

Define M by (43) and set

K2 = max
i∈S

‖Q−1
i YiGi‖. (55)

Let τ̄ > 0 be the unique root to equation (12). If we set Fi = Q−1
i Yi (i ∈ S) and make sure that

τ < τ̄ , then the controlled hybrid SDE (50) is mean-square exponentially stable.

Proof. Once again, to apply Theorem 1, we consider the corresponding controlled hybrid SDE

based on the continuous-time observations of both state and mode in the form

dy(t) = [f(y(t), r(t), t) + F (r(t))G(r(t))y(t)]dt

+ g(y(t), r(t), t)dw(t) (56)

on t ≥ t0 with initial data y(t0) = z0 ∈ L2
Ft0

(Rn) and r(t0) = r0 ∈ MFt0
(S). Using Fi = Q−1

i Yi,

Assumption 4 and condition (54), we can derive that

LQ(y, i, t) = 2yTQi[f(y, i, t) + FiGiy]

+ trace[gT (y, i, t)Qi(g(y, i, t)] +
N
∑

j=1

γijy
TQjy

≤ yT [Q̄i + YiGi +GT
i Y

T
i +

N
∑

j=1

γijQj]y

≤ −γyTQiy.

By Lemma 4, we see that the solution of equation (56) satisfies

E|y(t; z0, r0, t)|
2 ≤ ME|z0|

2e−γ(t−t0), ∀t ≥ t0 (57)

That is, Assumption 2 is fulfilled. By Assumption 3 as well as the form of the feedback control,

we also see that Assumption 1 is fulfilled with K1 and K3 being specified in Assumption 3 and K2

being defined by (55). Consequently, the corollary follows from Theorem 1 directly. 2
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6. Conclusion and Further Comments

In this paper we have shown clearly that unstable hybrid SDEs can be stabilised by the feedback

controls based on the discrete-time observations of state and mode. We have also presented two

case studies to demonstrate how the state feedback control functions can be designed to stabilise

the given unstable hybrid SDEs.

The key condition imposed in this paper is the global Lipschtiz condition. Although this condi-

tion covers some important hybrid SDEs including the linear ones as we discussed in the previous

section, it is somehow restrictive as there are other nonlinear hybrid SDEs in real world whose

coefficients are only locally Lipschitz continuous e.g. the population dynamical systems [7]. On

the other hand, the technique and method used in this paper could not easily be modified to cope

with the local Lipschitz case. New techniques and methods will be needed. We should also point

out that to make our theory more understandable as well as to avoid complicated notations, we

have only considered the controlled hybrid SDE (4), where the discrete-time control is designed

in the drift part. It is useful and interesting to consider the case where the discrete-time control is

designed in the diffusion part, or different discrete-time controls are designed in the drift and dif-

fusion parts. Furthermore, we have assumed in this paper that all the components of the state x(t)
are observable at the discrete times. However, it is often the case where only partial components of

the state are observable. It is therefore interesting and useful to design the feedback control based

on the partially observed state. However, due to the page limit here, we will report these results

elsewhere.
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