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COLLISION AVOIDANCE AS A ROBUST REACHABILITY
PROBLEM UNDER MODEL UNCERTAINTY

Massimiliano Vasile∗, Chiara Tardioli†, Annalisa Riccardi‡

and Hiroshi Yamakawa§

The paper presents an approach to the design of an optimal collision avoidance
maneuver under model uncertainty. The dynamical model is assumed to be only
partially known and the missing components are modeled with a polynomial ex-
pansion whose coefficients are recovered from sparse observations. The resulting
optimal control problem is then translated into a robust reachability problem in
which a controlled object has to avoid the region of possible collisions, in a given
time, with a given target. The paper will present a solution for a circular orbit in
the case in which the reachable set is given by the level set of an artificial potential
function.

INTRODUCTION

In this work, the problem of avoiding the collision of a controlled object with an uncontrolled

target object is translated into a robust reachability problem. The dynamics of the controlled object

is assumed to be affected by uncertainty in the dynamic model itself. In orbit determination, a

commonly used approach to capture unmodelled accelerations is to introduce so called empirical

accelerations as additional components to the dynamics. The value of these empirical accelerations

can be defined in a number of different ways exploiting the available measurements.

It is customary to use time series expansions in polynomial or trigonometric form whose coeffi-

cients need to be found by matching the predication of the model with the observations.1 Another

approach is to treat empirical accelerations as stochastic processes that can be reconstructed by an

approach using a Kalman type of sequential filtering.2

All these techniques generally work satisfactorily and allow one to work with a reduced dynamics

without the need for extremely high fidelity models. On the other hand, they do not immediately

furnish a functional representation of the missing components. Even using time series expansions,

which are valid within the interval in which the measurements are available, to extrapolate the

behavior of the dynamical system does not always lead to the desired results. Furthermore, time

series do not provide information on the dependency of the empirical accelerations on any of the

state variables.
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For this reason in this paper it is proposed to use polynomial expansions of the state variables

instead. The approach proposed in this paper is reminiscent of the approach used in multifidelity

modeling to capture model uncertainty via discrepancy functions. As an example in Ng and El-

dred,3 the discrepancy is modeled with a polynomial chaos expansion under the assumption that the

missing component is a stochastic process. Under the same assumption of stochastic unmodelled

component, Gaussian mixtures were proposed to capture the distribution of the propagated states.4

In this paper, instead, the missing component in the model is considered to be due to a deterministic

process that is only partially observable, or it is observable with some uncertainty.

Once the uncertainty in the dynamic model is quantified, the design of an optimal collision ma-

neuver is translated into a robust reachability problem5 in which the controlled object has to avoid

the region of possible collisions, in a given time, with an uncontrolled target. This problem is

translated into a min-max problem and solved with a memetic algorithm.6

As an illustrative example, the paper presents the case of an object moving on a circular low-Earth

orbit and subject to a significant unmodelled acceleration component proportional to the square of

the velocity.

QUANTIFICATION OF MODEL UNCERTAINTY

Let f : S × P × [t0 : t0 + T ] −→ R
n and ν : S × B × [t0 : t0 + T ] −→ R

n be two vectorial

functions with S ⊆ R
n, B ⊂ R

m′
b and B ⊂ R

mb , n,m′
b,mb ∈ N

+. Consider the following initial

value problem
{

ṡ = f(s, b′, t) + ν(s, b, t)
s(t0) = s0

(1)

where s is the state vector, the map ν(s, b, t) represents some unknown function of the states that

is capturing all unmodelled components, b′ ∈ P ⊆ R
m′

b is a set of uncertain model parameters,

b ∈ B ⊆ R
mb is some unknown parameter vector of the unmodelled components, and t is the time

coordinate. In this paper, let us restrict ourselves to the case in which the unmodelled components

are not a function of time (the case with time dependence is easily obtained from the time inde-

pendent formulation). Furthermore, let us consider the special case in which the function ν can be

expressed as

νph(s, b) = 0 , νqh(s, b) = Qh = ∇phU(s, b) +∇qhU(s, b) (2)

for h = 1, . . . , N , where s = (p, q)T ∈ R
2N is the action and moment vector, Q : S × B −→ R

N ,

and U is a continuous and differentiable scalar uncertainty function that can be expanded in the

following hierarchical form:

U(s, b) ≃ a(b)0 +
2N
∑

i

a(b)iξi(si)

+

2N
∑

i

2N
∑

j

a(b)ijξij(si, sj) +

2N
∑

i

2N
∑

j

2N
∑

k

a(b)ijkξijk(si, sj , sk) + . . . (3)

with a(b)0, a(b)i, a(b)ij , . . . polynomials in the components of b only. If Eq. (1) describes the time

evolution of a dynamical system, then Q can be seen as a generalised force whose hth-component
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is:

Qh(s, b) =
∂U

∂sh
≃

2N
∑

i

a(b)i +

2N
∑

i

ζi(si)

+
2N
∑

i

2N
∑

j

ζij(si, sj) +

2N
∑

i

2N
∑

j

2N
∑

k

ζijk(si, sj , sk) + . . . (4)

with ζi = a(b)ih∂ξih/∂sh + a(b)hi∂ξhi/∂sh, for i = 1, . . . , 2N , and so on. If ξ are monomial

bases, then the generalised force reads:

Qh(s, b) ≃ c0 +

2N
∑

i

c(b)i∆si

+
2N
∑

i

2N
∑

j

c(b)ij∆si∆sj +
2N
∑

i

2N
∑

j

2N
∑

k

c(b)ijk∆si∆sj∆sk + . . . (5)

with c0 =
∑2N

i a(b)i and c(b)i, c(b)ij , . . . polynomials in b. Let us indicate with l ∈ N
+ the

dimension of the vector c = (c0, c(b)1, . . . , c(b)2N , c(b)11, . . .)
T .

Problem Statement

Given Q and a set of observations, one can obtain an approximated representation of the unmod-

elled components by finding the value of c that best fits the measurements. Then, the value of the

coefficients of expansion (4) can be obtained as the solution of an optimisation problem. The na-

ture of the optimisation problem slightly differs depending on the integration scheme used to solve

Eq. (1). If No exact and distinct measurements are available then one needs to solve the set of

constraints

s(ti, c)− so(ti) = 0 , i = 1, . . . , No , (6)

where s(ti, c) is the propagated state at time ti and so(ti) is the observed state at time ti. If the

number of observationsNo is equal to l, the number of coefficients in expansion (4), one could argue

that the solution of problem (6) provides the exact values of all the components of c. Constraint

equations (6) can be solved in a least square sense by solving:

min
c

[s(t, c)− so(t)]
T [s(t, c)− so(t)] (7)

Alternatively, if No < l, a suitable smoothing function can be introduced and the following

problem needs to be solved:

min
c

J(s, c)

s.t. s(ti, c)− so(ti) = 0 , i = 1, . . . , No ,
(8)

where J : S × C −→ R is a real function of states s ∈ S ⊂ R
n and coefficients c ∈ C ⊂ R

l. Note

that, in general, problem (8) can have more than one solution for c, even when No = l.
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Treatment of Stochastic Observations

The interest in this paper is to reconstruct the missing components from a small set of sparse

observations over possibly long arcs. In the case of observations affected by an error, one cannot

obtain a prediction of the exact value of the parameters c. In this case, it is reasonable to assume that

the initial conditions are also uncertain as they come from previous observations. If the expected

values of the state vector, coming from observations, are enforced as hard constraints the result

might not capture the actual missing components as the trajectory is forced to satisfy constraints

that do not come from the natural dynamics but are dependent on the errors in the observations.

One option is to consider the most probable value for each observation and a cost function that

maximises the likelihood of correct identification. The other option is to quantify the uncertainty in

the observations and initial conditions as confidence intervals on the observed states. More formally,

consider the uncertainty space (Γ,L,M), with Γ a non empty set, L a σ-algebra over Γ, and M
an uncertainty measure. Then the observed state is an uncertainty variable so : (Γ,L,M) −→ R

n.

If the distribution of so is available, one can draw Np samples and solve problem (8) Np times to

derive a distribution of the coefficients c. Alternatively, if no distribution is available for so, but Σ is

the collection of all the confidence intervals for all the observations, including the initial conditions,

such that

Pr(so ∈ Σ) > ε , (9)

with ε > 0, then one can formulate the following optimisation problem:

min
c∈C

J(s, c)

s.t. s(ti) ∈ Σ , i = 0, . . . , No .
(10)

The main advantage of this formulation is that no statistical moments are required, and no exact

distribution needs to be known a priori. Note that the initial conditions s(t0) are treated as an

observed state.

The objective function in Eq. (10) can be interpreted as a distance in the metric vector space C of

the parameters c. In this space, the origin represents the solution with no model uncertainty and any

point at distance
√
cT c from the origin has uncertainty vector Q and uncertainty distance:

du =

∫

QTQ dt . (11)

MODEL UNCERTAINTY IN ORBITAL DYNAMICS

As an example, we take the case of a spacecraft in low-Earth orbit. The gravity component of

the model is fully known, but the observations show an additional component that is not modeled.

The real dynamics is governed by the following system of differential equations written in Hill’s

variables:7

ṙ = vr

u̇ = G/r2 − r cos I sinuFn/(G sin I)

ḣ = r sinuFn/(G sin I) (12)

v̇r = G2/r3 − µ/r2 + Fr

Ġ = rFu

Ḣ = r cos IFu − r sin I cosuFn

4



where Fr, Fu, Fn are the component of the non-gravitational forces in the radial, transversal, and

out-of-plane reference frame.

The Hill variables {r, u, h, vr, G,H} are canonical variables introduced into satellite orbit theory

by Izsak7 in 1963. They represent, respectively, the radial distance, the argument of pericentre, the

longitude of the ascending node, the radial velocity, the absolute value of the angular momentum,

and the z-component of the angular momentum. The elements are illustrate in Figure 1.
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Figure 1: Reference frame (er, eu, en)

The governing equations (12) can be re-written in the following form that explicitly introduces

the transversal velocity vu, with vu = G/r:

ṙ = vr

u̇ = vu/r − r cos I sinuFn/(rvu sin I)

ḣ = r sinuFn/(rvu sin I) (13)

v̇r = v2u/r − µ/r2 + Fr

v̇u = Fu − vrvu/r

Ḣ = r cos IFu − r sin I cosuFn

In our example, the non-gravitational force is F = −Cd|v|v, with |v|2 = v2r + v2u, and vn = 0. We

assume a constant value for Cd = 0.5 · 10−6 km−1 so that an appreciable variation of the orbit is

obtained already after one orbit. Furthermore, we assume that the measured variation is with respect

to a nominal circular orbit with vr(t = 0) = vr0 = 0 and vu(t = 0) = vt0 . The orbital period,

without unmodelled force, is T = 2π
√

r3/µ. Substituting the expression of F in Eqs. (13), the

vectorial field becomes

ṙ = vr

u̇ = vu/r

ḣ = 0 (14)

v̇r = v2u/r − µ/r2 − Cd|v|vr
v̇u = −Cd|v|vu − vrvu/r

Ḣ = −r cos I Cd|v|vu
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In order to capture the unmodelled dynamics, we consider an expansion of Q of the following form

Qr = c1 + c3r + c5r
2 + c7ru+ c9vr + c11v

2
r + c13vrvu

Qu = c2 + c4u+ c6u
2 + c8ru+ c10vu + c12v

2
u + c14vrvu (15)

Qn = 0

where Qn is zero because it is assumed that the unmodelled component acts only in-plane, and

ci ∈ R, i = 1, . . . , 14. Equation (15) is an incomplete expansion of (5) when the generalised

potential U in (3) is truncated at the third order. The vectorial field (14) is then expanded as

ṙ = vr

u̇ = vu/r

ḣ = 0 (16)

v̇r = v2u/r − µ/r2 + c1 + c3r + c5r
2 + c7ru+ c9vr + c11v

2
r + c13vrvu

v̇u = c2 + c4u+ c6u
2 + c8ru+ c10vu + c12v

2
u + c14vrvu − vrvu/r

Ḣ = r cos I(c2 + c4u+ c6u
2 + c8ru+ c10vu + c12v

2
u + c14vrvu)

If the linear effects in Eq. (14) are dominant over a given time span ∆t, and there is no out-of-plane

component, then the prediction given by Eq. (16) should be of the form:

ṙ = vr

u̇ = vu/r

ḣ = 0 (17)

v̇r = v2u/r − µ/r2 + c13vrvu

v̇u = −vuvr/r + c12v
2
u

Ḣ = r cos I c12v
2
u

We can now introduce observations at time t = T and t = T/2, for a total of 8 constraint

equations and 14 parameters. If measurements are affected by an error, problem (10) needs to

be solved under some assumptions on the initial conditions. The assumption in this paper is that

the initial conditions are taken over a given interval. The size of the confidence on each state

variable for the initial conditions and for each observation is r ∈ [r̄ − 0.01, r̄ + 0.01] km, u ∈
[ū − 10−5, ū + 10−5] rad, h ∈ [h̄ − 10−5, h̄ + 10−5] rad, vr ∈ [v̄r − 10−5, v̄r + 10−5] km/s,

vu ∈ [v̄u − 10−5, v̄u + 10−5] km/s, H ∈ [H̄ − 10−5, H̄ + 10−5] km2/s, which is consistent with a

good orbit determination process, where r̄, ū, h̄, v̄r, v̄u, H̄ are the exact values.

The estimated c parameters are represented in Figure 2 together with their associated confidence

intervals. As one can see, the expected value is close to the expected true solution. One thing that

has to be taken into consideration is that the dynamics that are simulated and measured are the true

dynamics, not the approximated equations (14). Therefore, some components that are not in the

approximated model (14) might be different from zero.

Note that the values of all the coefficients in the figures are normalised by 0.5 ·10−6. The C space

in this case has boundaries [−10−5, 10−5] for all the coefficients. As one can see, even if a linear

model is assumed, the prediction of the coefficient is very good with some relevant uncertainty on

coefficient c1, c2, c4, c9, c10, c13, c14. Given the predicted values of the coefficients one can now

6
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Figure 2: Example of reconstructed gravity-drag dynamics with confidence intervals

predict the future evolution of the orbit over another period. The resulting trajectory over two orbits

is shown in Figures 3.

The match between the predicted and the true trajectory is very good although a 2 km error in

radius accumulated by the end of the second orbit. Once a first estimation of the coefficient is

available, one can iterate the process progressively removing the coefficients that fall below a given

threshold. Given the result in Figure 2, one can take all the coefficients with an absolute mean value

higher than 0.1 and solve problem (10) once again. From Figure 2 coefficients c9, c12 and c13 can

be retained, and Eqs. (16) becomes:

ṙ = vr

u̇ = vu/r

ḣ = 0 (18)

v̇r = v2u/r − µ/r2 + c9vr + c13vrvu

v̇u = c12v
2
u − vrvu/r

Ḣ = r cos I c12v
2
u

After solving problem (10) only with three coefficients, the result is represented in Figure 4. Even

in this case after predicting the dynamics over one orbit, one can study the evolution over a second

orbit. The absolute error between predicted and true trajectory can be seen in Figure 5.

A REACHABILITY PROBLEM

Once the reachable sets of the controlled and uncontrolled objects are available, a collision avoid-

ance maneuver is calculated solving the following min-max optimal control problem:

min
w∈A

max
c∈Ξ

ψ(s(tf ), w, c, tf )

s.t ṡ = f(s, p) + ν(s, b) + g(s, w)
s(t0) ∈ Σ0

(19)

where ψ is a real function, Σ0 is the set of possible initial conditions, Ξ is the set in which the com-

ponents of the coefficient vector c are defined, ν is an approximation of the unmodelled components

7
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Figure 3: Comparison between the true and predicted estimates.

in the dynamics given by Eqs. (2)–(3), g is the control function, and A is the space of admissible

controls. The function ψ(s(tf ), w, c, tf ) defines whether the terminal state is admissible or not. In

other words the reachable set is defined by a level set of ψ.

Artificial potential

Since the interest is to avoid a collision the desired reachable set is the space outside the uncon-

trolled target. Thus the function ψ has to be negative or null when a collision occurs and strictly

positive otherwise. We started from a tessellation of the region describing the object. A tessellation

is a tiling of the space using one or more geometrical shapes, called tiles, with no overlaps and no

gaps. An example is a tiling with cubes. Let U be the region to cover andD1, . . . , Dm the polyhedra

used as tiles. Let n be the dimension of the space and q > n + 1 be the number of facets of the

polyhedron. We are assuming that the polyhedra in the tessellation are of the same type, however,

our dissertation can be extended to the case of a tessellation with different polyhedra.

Each facet can be represented by an hyperplane of equation A
(j)
k · (x − xj) = b

(j)
k , with A

(j)
k ∈

R
q, b

(j)
k ∈ R

q, and xj ∈ R
n is the center of the j-th polyhedron. The sign of A

(j)
k , b

(j)
k are such that
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Figure 4: Prediction of the coefficients for the reduced model

the semi-plane A
(j)
k · (x− xj) ≤ b

(j)
k contains the center xj for each k, j. Indicating with Kj the set

{k : A
(j)
k · (x− xj)− b

(j)
k > 0}, the function

φj(x) =















− 1

1 + ||x− xj ||3
, if Kj = ∅ ,

∑

k∈Kj

(A
(j)
k (x− xj)− b

(j)
k ) , otherwise ,

(20)

is such that φj(x) > 0 if x is outside every semi-plane, that is outside Dj , and it is φj(x) ≤ 0 if x
is inside or on the border of Dj . We note that function (20) is discontinuous on the border of Dj ,

however, continuity is not a requirement for our study. We call φj artificial potential of Dj . An

example is shown in Figure 6.

Using the tessellation, the set U is approximated with the union of disjoint setsDj , j = 1, . . . ,m,

and the artificial potential on this set is defined as

Φ(x) =



























−
m
∑

j=1

1

1 + ||x− xj ||3
, if Kj = ∅ for some j

m
∑

j=1

∑

k∈Kj

(A
(j)
k (x− xj)− b

(j)
k ) , otherwise

(21)

and satisfies the requirement:

Φ(x) =

{

≤ 0 , if x ∈ D1 ∪ . . . ∪Dm ,
> 0 , otherwise .

(22)

Superquadratic functions can be used as an alternative to the use of hyperplanes:

ϕj :
∥

∥x1 − x
(j)
1

∥

∥

r1 + . . .+
∥

∥xn − x(j)n

∥

∥

rn − 1 , (23)

where xj = (x
(j)
1 , . . . , x

(j)
n ) is the center of Dj , and r1, . . . , rn are positive real numbers. For

ri = 1, i = 1, . . . ,m, the superquadratic represents an hypercube. Or, in a three-dimensional space,

9
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Figure 5: Difference between the true and predicted estimates.

one could use the superellipsoid

ϕ′
j :

(

∥

∥x1 − x
(j)
1

∥

∥

r
+

∥

∥x2 − x
(j)
2

∥

∥

r
)t/r

+
∥

∥x3 − x
(j)
3

∥

∥

t − 1 , (24)

with r, t real numbers that depends on xj . Then, we set

Φ(x) =



















−
∑

j=1,...,m

1

1 + ||x− xj ||3
, if ϕj ◦ τj(x) ≤ 0 for some j

∑

j=1,...,m

ϕj(x) , otherwise ,
(25)

and the condition (22) is still satisfied. The transformation τj in Eq. (21) represents the change

of coordinates that rotates and scales the basic shape of the polyhedron Dj into a superquadratic

equation of the form (23). The function ψ is taken as the artificial potential Φ.
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Figure 6: Level curves of the pesudo potential on the cube [−1, 1]2 (a) and the corresponding values

along the x-axis

Solution Approach

The algorithm proposed in this paper to solve min-max problem (19) is a combination of the one

proposed in Vasile6 and Marzat et al.8 In Marzat,8 the generic unconstrained min-max problem:

min
d∈D

max
ξ∈U

f(d, ξ)

is computed by solving iteratively the following two problems, one after the other:

ξa = argmaxξ∈Uf(dmin, ξ) (26)

dmin = argmind∈D
{

max
ξa∈Aξ

f(d, ξa)
}

(27)

where the archive Aξ is a collection of all the ξa generated by the solution of problem (26) for each

new dmin generated by the solution of problem (27). Problem (26) can be seen as a restoration of

the maximum condition on U , therefore the whole process can be considered as a minimisation-

restoration loop.

It is important, at this point, to observe that, if a population-based method is used to solve prob-

lem (27), subproblem maxξa∈Aξ
f(d, ξa) can be interpreted as a cross-check of the ξ associated to

a population P of d values as in Vasile.6 For each d, in fact, problem (27) requires selecting the

ξa,max that maximizes f among all the ξa found thus far. This principle is equivalent to the Nash

ascendancy relationship in game theory used in Dumitrescu et al.,9 as it corresponds to selecting

the best strategy, among all the ones that the players in the population P can play. In the scheme

proposed by Marzat,8 however, the minimisation over D is performed assuming that the elements in

the archive are not updated while f is minimised over D. The main consequence is that convergence

can be achieved if the archive Au contains a sufficient number of elements. In Vasile6 instead the

solutions were recalculated either running a global or a local optimisation as d was changing. The

main reason for the latter strategy is that a variation of d, seen from the space U , can correspond

to a change in the location of the maxima. When this occurs the solution of problem (27) can lead

to values of dmin such that the maximum of f over Aξ is very far even from a local optimum.

11



The whole process, therefore, might iterate for a long time between minimization and restoration

without converging. This is what can be called red queen effect.

Here, it is proposed to solve both problems (26) and (27) with Inflationary Differential Evo-

lution Algorithm (IDEA)10 and to allow the algorithm to compute for each d a local maximum

ξ∗a,max starting from each element in Aξ. The value dmin with associated local maximum ξ∗a,max =
argmaxξ∗a∈Uf(dmin, ξ

∗
a), are then saved in the archive Ad and the elements in the archive Ad are

cross-checked to maximise the change to identify the global maximum in U . The overall strategy is

presented in Algorithms 1, 2, and 3.

Algorithm 1 IDEAminmax

Initialize d̄ at random and run ξa = argmaxξ∈Uf(d̄, ξ)
Aξ = Aξ

⋃{ξa}
while nfeval < nfeval,max do

Run dmin = argmind∈D{maxξ∗a∈A∗
ξ
f(d, ξ∗a)}

Run ξa = argmaxξ∈Uf(dmin, ξ)
if f(dmin, ξ

∗
a,max) < f(dmin, ξa) then

Aξ = Aξ
⋃{ξa}, Ad = Ad

⋃{dmin, ξa}
else

Aξ = Aξ
⋃{ξ∗a,max}, Ad = Ad

⋃{dmin, ξ
∗
a,max}

end if

end while

Run Cross Check Algorithm 3 over the archive Ad

Algorithm 2 maxξ∗a∈A∗
ξ
f(d, ξ∗a)

for all the elements in Aξ do

Run local search from ξa ∈ Aξ and compute ξ∗a = argmaxξ∈Uf(dmin, ξ)
Add local maximum to the set of local maxima A∗

ξ = A∗
ξ

⋃{ξ∗a}
end for

ξ∗a,max = argmaxξ∗a∈A∗
ξ
f(dmin, ξ

∗
a)

Algorithm 3 Cross Check

Initialize ∆, ε > 0
while ∆ > ε do

for all the elements in Ad do

Compute local maximum f(di, ξ
∗
j ) from ξj ∈ Ad

∆ = f(di, ξ
∗
j )− f(di, ξi)

if ∆ > ε then

ξi = ξ∗j
end if

end for

end while

12



Numerical Examples

For the sake of illustrating the approach proposed in the previous sections, we consider the case

in which after the identification of the missing component, a manoeuvre is required to avoid the col-

lision with a known, though uncontrolled object. We say that a collision occurs when the artificial

potential in Eq. (21) is non-positive. For this exercise we consider the position of the two objects

projected onto the b-plane at the expected time of impact. The impact occurs almost one orbit af-

ter the last measurement is acquired. A low-thrust manoeuvre is then applied to avoid the collision.

Since a negative artificial potential corresponds to a collision and a positive artificial potential corre-

sponds to no collision, the problem translates into finding the optimal control profile that maximises

the artificial potential (21). At the same time, given the uncertainty on the coefficients c, an optimal

and robust control policy has to account for the worst-case value of c.

The reachability problem then reads:

min
w∈W

max
c∈Ξ

ψ(r, u, h, vr, vu, H,w, c, ti, tf )

s.t. ṙ = vr
u̇ = vt/r − cos I sinu wn/(vu sin I)

ḣ = sinuwn/(vu sin I)

v̇r = v2u/r − µ/r2 + c1vr + c3vrvu + wr

v̇u = c2v
2
u − vrvu/r + wu

Ḣ = r cos I(c2v
2
u + wu)− r sin I cosuwn

s(t0) ∈ Σ0

(28)

where (r, u, h, vr, vu, H)T are the Hill variables, w = (wr, wu, wn) is the control acceleration,

c = (c1, c2, c3) are the unknown coefficients in the dynamics, and ti, tf are a generic instant of time

and the final time, respectively. The control acceleration is the decision vector w described in the

previous section, and the c is the uncertain vector ξ. Each component of the control acceleration

is modeled as a fourth order polynomial, collocated at five points in time along the trajectory. The

differential equations in (28) are integrated forward in time with a Runge-Kutta 4/5 order scheme

with variable step size.

Figure 7 shows the uncertainty region of the controlled object due to the uncertainty on the co-

efficients c1, c2, c3 and initial conditions. Before the manoeuvre, the projection of the uncontrolled

object on the target plane is in the origin of axis, and the level curves of the artificial potential are

shown in Figure 8. We considered two cases, one in which the admissible control space W is a

box with edge [−10−5, 10−5] m/s2, the other in which the edge is [−4× 10−6, 4× 10−6] m/s2. The

propagation of the position is given in Figure 9, where we also observe that the low-trust (thick solid

line) is on for half period, and it has the effect to lower the radial distance.

FINAL REMARKS

We proposed a method to derive a robust control policy to avoid a collision between a controlled

object and an uncontrolled target when the dynamics of the controlled object is affected by model

uncertainty. The missing components of the dynamics are approximated with a polynomial expan-

sion. The upper and lower bounds for the coefficients of the polynomial expansion are determined

using sparse observations. Once the uncertainty model is quantified, an optimal low-thrust control

policy that maximises the minimum possible distance between the controlled object and the target,

is computed solving a min-max optimal control problem.

13
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Figure 7: Uncertainty region on the b-plane: (a) no manoeuvre (b) post-manoeuvre with maximum

acceleration along each component of 10−5 m/s2 (c) post-manoeuvre with maximum acceleration

along each component of 4× 10−6 m/s2

The use of polynomial expansions is reminiscent of the use of polynomial chaos expansions in

multifidelity modeling to represent discrepancies in the model. This form of polynomial representa-

tion was demonstrated to well capture the missing part of the dynamics in the case of a circular orbit

and a force component proportional to the square of the orbital velocity. Note that exact distribution

needs to be known a priori on boundary conditions and observed states.

Besides, once the predicted dynamics is available, the reachable set of an uncontrolled object at

different times t ∈ [to, tf ] can be approximated with one of the techniques proposed in Ricciardi et

al.,11 starting from the level set of an artificial potential. Likewise, the reachable set of a controlled

object can be computed for the same time interval to assess the probability of a collision. In this

way, the computation time is drastically reduced, especially in the optimisation part.
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Figure 8: Level curves of the pesudo potential for: (a) a cross built with cubes projected on the

b-plane (b) a cross built with super-ellipses projected on the b-plane

number L15548.

REFERENCES

[1] E. M. Alessi, S. Cicalo, and A. Milani, “Accelerometer Data Handling for the BepiColombo Orbit
Determination,” Advances in the Astronautical Sciences, Vol. 145, 2012, pp. 121–129.

[2] O. Montenbruck, T. Helleputte, R. Kroes, and E. Gill, “Reduced dynamic orbit determination using
GPS code and carrier measurements,” Aerospace Science and Technology, Vol. 9, 2005, pp. 261–271.

[3] L. W. T. Ng and M. S. Eldred, “Multifidelity Uncertainty Quantification Using Non-Intrusive Polyno-
mial Chaos and Stochastic Collocation,” Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, 23-26 April 2012. AIAA
2012-1852.

[4] D. Giza, P. Singla, and M. Jah, “An Approach for Nonlinear Uncertainty Propagation: Application
to Orbital Mechanics,” AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, USA,
10-13 August 2009 2009.

[5] I. Hwang, D. Stipanovic, and C. Tomlin, “Polytopic Approximations of Reachable Sets Applied to
Linear Dynamic Games and a Class of Nonlinear Systems,” Advances in Control, Communication Net-
works, and Transportation Systems, 2005, pp. 3–19.

[6] M. Vasile, “On the solution of min-max problems in robust optimization,” The EVOLVE 2014 Interna-
tional Conference, A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computing,
Beijing, July 2014.

[7] I. G. Izsak, “A Note on Perturbation Theory,” Astron. J., Vol. 68, Oct. 1963, pp. 559–561,
10.1086/109180.

[8] J. Marzat, E. Walter, and H. Piet-Lahanier, “A new strategy for worst-case design from costly numerical
simulations,” American Control Conference (ACC), 2013, June 2013, pp. 3991–3996.

[9] D. D. Dumitrescu, R. I. Lung, and T. D. Mihoc, “Meta-Rationality in Normal Form Games,” Interna-
tional Journal of Computers Communications & Control, Vol. 5, No. 5, 2010.

[10] M. Vasile, E. Minisci, and M. Locatelli, “An inflationary differential evolution algorithm for space
trajectory optimization,” IEEE Transactions on Evolutionary Computation, 2011.

[11] A. Riccardi, C. Tardioli, and M. Vasile, “An intrusive approach to uncertainty propagation in orbital
mechanics based on Tchebycheff polynomial algebra,” AAS Astrodynamics Specialists Conference, Vail,
Colorado, USA, August 9–13, 2015. AAS 15-544.

15



1

y [km]
×10

4
0-1

-0.5

0

×10
4

z 
[k

m
]

0.5

-1

×10
4

x [km]

1

0 -11 0 2000 4000 6000

Time [s]

6900

7000

7100

7200

7300

r 
[k

m
]

thrust

coast

-0.15 -0.1 -0.05 0 0.05

v
r
 [m/s]

7.35

7.4

7.45

7.5

7.55

7.6

v
u
 [

k
m

/s
]

0 2000 4000 6000

Time [s]

6

8

10

12

14

u
 [

ra
d

]

Figure 9: Evolution of the second orbit
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