

Strathprints Institutional Repository

McCluskey, Andrew and Sindt, Julien and Young, Andrew and Sommerdijk, Nico A.J.M. and Murray, Paul and Camp, Philip J. and Nudelman, Fabio (2016) Self-assembly of collagen molecules into fibrils in solution. In: Gordon Conference on Biomineralisation, 2016-08-14 -2016-10-19.

This version is available at http://strathprints.strath.ac.uk/58451/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (<u>http://strathprints.strath.ac.uk/</u>) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: strathprints@strath.ac.uk

Self-Assembly of Collagen Molecules into Fibrils in Solution

Andrew McCluskey¹, Julien Sindt¹, Andrew Young², Nico A. J. M. Sommerdijk³, Paul Murray², Philip J. Camp¹ and Fabio Nudelman¹

¹ – EaStCHEM, School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK

²- Dept. of Electronic and Electric Engineering, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK

³- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Introduction

Type I collagen is a major constituent of many biological tissues, including skin, bone, tendon and cartilages. Its main functions are to shape extracellular matrices, promote cell attachment and provide tissues with strength, flexibility and elasticity¹. At the core these functions is its remarkable ability of collagen to form highly organized fibrils through the self-assembly of the molecules^{2,3}. The fibrilogenesis involves the lateral association of collagen triple helices into staggered parallel arrays that give rise to the characteristic D-band periodicity of 67 nm⁴. Currently, the mechanisms of collagen self-assembly are poorly understood Here, we combine the nanometer-scale resolution of cryo-transmission electron microscopy (cryoTEM)⁵ with molecular dynamics⁶ to investigate the self-assembly of

Self-assembly

A. CryoTEM image of the collagen molecules prior to the self-assembly. The molecules are not visible due to low contrast. The self-assembly was triggered by diluting type I collagen at pH 2 into tris-buffered saline at pH 7.4 at 37 °C and monitored by UV-Vis at 440 nm (**B**). Samples were collected after different reaction times (red arrows), plunge-frozen in liquid ethane and analysed using cryoTEM. CryoTEM image and schematic representation of a collagen fibril after self-assembly, with the characteristic D-banding of 67 nm.

Time-resolved CryoTEM

0.04

A.U.

5 min: Molecular aggregates

7 min: Disordered strands

10 min: Disorganized, loosely packed fibrils; development of the D-banding

20 min: Well-organized fibrils

45 min: Mature fibrils

—10 mir

Image analysis of a single Dbanding repeat over time, showing the development of the gap and overlap regions and the decrease of the spacing from 70 nm to 66 nm.

Molecular Dynamics Simulations

Initial (A, B) and final (C, D) configurations of the simulation run. Fibrils have clearly formed, and the collagen particles are ordered with an offset between them. Some fibrils branch off to form other fibrils in Y-junctions, but this is a result of the model used. Reducing the strength of the attractive Lennard-Jones potential should results in these Y-junctions disappearing and in only a single stable fibril forming.

Collagen self-assembly occurs by:

- Formation of molecular aggregates;
- Assembly of the strands into disordered, loosely packed structures;
- Further organization into compact, ordered fibrils with the development of the D-banding;
- As the fibril matures, the spacing of the D-banding decreases from 70 to 66 nm. This indicates the self-organization of the molecules within the fibrils during the self-assembly.

E-mail: fabio.nudelman@ed.ac.uk

Kaur, P. J. et al., et al. (2015), *J. Biol. Chem.*, 290, 9251-9261.
 Gelman, R. A., et al. (2007) *J. Biol. Chem*, 254, 180-186.
 Comper, W. D. and Veis, A. (1977) Biopolymers, 16, 2113-2131.

4) Orgel, J.P., et al. (2006), *Proc Natl Acad Sci U S A* 103, 9001-5.
5) Nudelman, F., et al., (2010) *Nat. Mater.* 9, 1004-1009.
6) Narayanan, B. et al., (2014), *Langmuir*, 30, 1343-1350.