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The Nurse Rostering Problem (NRP) is defined as assigning a number of nurses to different shifts

during a specified planning period, considering some regulations and preferences. This is often

very difficult to solve in practice particularly by applying a sole approach. In this paper, we

propose a novel hybrid algorithm combining the strengths of Integer Programming (IP) and Variable

Neighbourhood Search (VNS) algorithms to design a hybrid method for solving the NRP. After

generating the initial solution using a greedy heuristic, the solution is further improved by employing

a Variable Neighbourhood Descent algorithm. Then IP, deeply embedded in the VNS algorithm,

is employed within a ruin-and-recreate framework to assist the search process. Finally, IP is called

again to further refine the solution during the remaining time. We utilize the strength of IP not

only to diversify the search process, but also to intensify the search efforts. To identify the quality

of the current solution, we use a new generic scoring scheme to mark the low-penalty parts of the

solution. Based on the computational tests with 24 instances recently introduced in the literature,

we obtain better results with our proposed algorithm, where the hybrid algorithm outperforms

two state-of-the-art algorithms and Gurobi in most of the instances. Furthermore, we introduce

11 randomly generated instances to further evaluate the efficiency of the hybrid algorithm, and

we make these computationally challenging instances publicly available to other researchers for

benchmarking purposes.

Key words: Timetabling; Nurse Rostering; Hybrid Algorithm; Integer Programming; Variable

Neighbourhood Search.

1. Introduction

Nurse Rostering (also referred to as Nurse Scheduling) is the process of creating a schedule by

assigning some nurses to different shift types, e.g. day, and night, during a predetermined planning

horizon, where many limitations such as hospital regulations and employee contracts as well as

1



management and individual preferences are taken into account. The output of this process is a

roster of working shifts for all the involved nurses, which is expected to result in an increase of job

satisfaction and staff utilization while reducing stress and outsourcing cost [8, 17, 16]. Real-world

nurse rostering problems are very difficult to solve and comprise many challenges for the people

involved in the preparation process, e.g. personnel managers, and head nurses [16].

Many studies have been accomplished for the Nurse Rostering Problem (NRP) over the last

few decades, with a variety of methods and algorithms applied to solve this problem in real-world

settings. The proposed approaches are mainly based on meta-heuristic algorithms [3, 37, 18],

which are straightforward and effective for many practical problems. These range from Variable

Neighbourhood Search [14, 36] and Tabu Search [5] to Genetic Algorithms [1] and tailor-made

heuristics [38, 29]. However, meta-heuristic algorithms are not as efficient for problem instances

where the structure of the problem is very complex, making it challenging to find a good-quality

(or even a feasible) solution in a reasonable runtime. On the other hand, there is also some research

employing exact approaches such as Integer Programming (IP) [2, 15] and Constraint Programming

(CP) [4, 11], which are very powerful at dealing with complex structures. Nevertheless, they are

not efficient enough for solving many medium- to large-scale problem instances in practice, even

though there are some very powerful and mature commercial solvers applying these methods such

as Gurobi [19] and IBM CP Optimizer [26]. Having said that, in recent years, some researchers

have focused on combining these two approaches to utilize their complementary strengths in order

to solve highly-constrained real-world NRPs efficiently [33, 36, 9, 31].

In this paper, we propose a novel hybrid Integer Programming and Variable Neighbourhood

Search (VNS) algorithm to solve the Nurse Rostering Problem in modern hospital environments.

We employ IP not only to diversify the search process, but also to improve the quality of the

obtained solutions from the VNS algorithm in a creative way. First, a greedy heuristic is used

to generate an initial solution, and then the generated solution is further improved using a VNS

algorithm until a stopping criterion is met. To further enhance the efficiency of the VNS algorithm,

IP is employed iteratively during the running of the algorithm as a neighbourhood structure to

improve the quality of the incumbent solution using a ruin-and-recreate framework [36]. In this

framework, the high-penalty components of the solution are destroyed according to a generic scoring

scheme, and then they are created again by an IP solver. Finally, IP is applied once more to the

best-found solution to improve it globally as much as possible until the overall time limit is reached.

The proposed algorithm is designed to perform efficiently when only short computational times are

available, so that many practical problems can be tackled.
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The novelty of our approach is to embed IP as a neighbourhood structure through a ruin-

and-recreate framework in the VNS algorithm to improve the quality of the obtained solution and

diversify the search process at the same time. Our method of hybridization is entirely different from

the similar algorithms reported in the literature [31, 9, 36]. In fact, there are various hybridization

schemes in order to combine different approaches together [35]. For example, [31] applied CP

to generate an initial solution by decomposing the problem to various sub-problems, and then

applying VNS to improve the generated solution. [36] applied an Iterated Local Search framework

for generating an initial solution and employed VNS and CP in order to improve the solution and

diversify the search process, respectively. [9] employed IP to generate a solution satisfying all hard

constraints, and then improve it using VNS to satisfy the remaining soft constraints. In most of

the mentioned approaches, IP or CP is used to generate a solution satisfying some constraints of

the problem (or parts of the problem), and then a meta-heuristic algorithm is applied to further

improve the generated solution. However, in our approach, we employ VNS as the main local

search framework and then embed IP as a neighbourhood structure to intensify and diversify the

search process in an iterative manner considering all the constraints. Indeed, we use IP through a

ruin-and-recreate strategy to escape from local optima and at the same time, improve the quality

of the obtained solution. Having said that, incorporating IP in our hybrid algorithm, we also allow

the search process to traverse the infeasible space by allowing all the constraints to be violated in

order to find out the latent feasible solutions. Moreover, we hybridize IP through VNS in a lower

level compared with the approaches reported in the literature [37] and therefore we exploit the

complementary strengths of both methods in a more sophisticated and effective way. In addition,

we have applied a scoring scheme to evaluate the quality of the obtained solution according to the

associated underlying elements such as nurses or days, which empower the hybrid algorithm to

focus on parts of the solution having the most likelihood of gaining a better solution. The proposed

algorithm also works with a pre-determined time limit in which the algorithm tries to generate the

best solution.

The rest of this paper is organized as follows. We first describe the studied Nurse Rostering

Problem and present the relevant IP formulation in Section 2. Next, we elaborate on the solution

method and different components of the proposed hybrid algorithm in Section 3. Finally, in Section

4 and 5, we present our computational results, and draw some conclusions and potential future

research directions, respectively.
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2. Problem Description and IP Formulation

In this section, we provide a brief description of the studied problem and the relevant constraints,

and present a mathematical formulation. For further information regarding the problem, we refer

interested readers to [12], where the detailed description of the problem as well as some instances

are presented.

The NRP is defined as assigning a number of nurses to different shifts (e.g. early, late) during

a specified planning period, where some regulations (e.g. employee contracts) and preferences (e.g.

individual requested days off) are taken into account. Most NRPs including the studied problem are

NP-hard [10, 30] and computationally challenging, and have a very complex structure even when

the problem size is relatively small. Tackling this problem in real-world settings, the constraints of

the problem are often classified as hard and soft constraints. Hard constraints are necessary to be

satisfied under any circumstances, and therefore, make a problem feasible when they are met. Soft

constraints, on the other hand, are those we would prefer to be met (but are not crucial), and define

the quality of a generated roster according to the degree to which they are satisfied. Therefore,

the objective is to reduce the number of violations associated with the soft constraints as much as

possible, i.e. increase the quality of the roster. In the following, the hard and soft constraints of

the problem (denoted by prefixes HC and SC, respectively) are explained:

• HC1 : nurses cannot be assigned more than one shift on a day.

• HC2 [Shift rotations]: the shift assignment of nurses on two consecutive days must comply

with the pre-defined set of shift patterns (rotations). The shift patterns prevent forbidden

shift sequences.

• HC3 [Maximum number of shifts]: the maximum number of shift types that can be assigned

to each nurse within the planning period.

• HC4 [Maximum total minutes]: the maximum amount of total time in minutes that can be

assigned to each nurse within the planning period.

• HC5 [Minimum total minutes]: the minimum amount of total time in minutes that can be

allocated to each nurse within the planning period.

• HC6 [Maximum consecutive shifts]: the maximum number of consecutive shifts, which are

allowed to be worked within the planning period.
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• HC7 [Minimum consecutive shifts]: the minimum number of consecutive shifts, which are

allowed to be worked within the planning period.

• HC8 [Minimum consecutive days off]: the minimum number of consecutive days off, which

are allowed to be assigned within the planning period.

• HC9 [Maximum number of weekends]: the maximum number of worked weekends (a weekend

is defined as being worked if there is a shift on Saturday or Sunday) within the planning

period.

• HC10 [Requested days off]: shifts must not be assigned to a specified nurse on some specified

days.

• SC1 [Shift on/off requests]: a shift assignment to a specific nurse should comply with a pre-

defined set of preferences. The penalty associated with this constraint is equal to the total

number of all violated assignments multiplied by the specified relevant weight defined in the

problem data.

• SC2 [Coverage]: the required number of nurses assigned to a specified day for a specified

shift should be within a particular range. The penalty associated with this constraint is

equal to the total amount of violated coverage multiplied by the specified relevant under- or

over-weight defined in the problem data.

For constraints HC2 and HC6, it is assumed that the last day of the previous planning period

and the first day of the next planning horizon are days off. Furthermore, for constraint HC7,

it is assumed that there are an infinite number of consecutive shifts assigned at the end of the

previous planning period and at the start of the next planning period. For constraint HC8, a

similar arrangement applies with days off.

Based on the problem definition, we will present the associated IP formulation, in a similar

fashion to the formulation given in [12], which will be crucial for the IP components of our proposed

hybrid algorithm. This IP model helps us to facilitate the search process with an IP solver in order

to have better exploration and exploitation. Next, we present our notations before presenting the

formulation.

Sets and parameters:

D set of days in the planning horizon.
W set of weekends in the planning horizon.
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I set of nurses.
T set of shift types.
Rt set of shift types that cannot be assigned immediately after shift type t ∈ T .
Ni set of days that nurse i ∈ I cannot be assigned a shift on.
lt length of shift type t ∈ T in minutes.
mmax

it maximum number of shifts of type t ∈ T that can be assigned to nurse i ∈ I.
bmin

i , bmax
i minimum and maximum number of minutes that nurse i ∈ I must be assigned.

cmin
i , cmax

i minimum and maximum number of consecutive shifts that nurse i ∈ I must
work. c is the index of possible number of consecutive shifts.

omin
i minimum number of consecutive days off that nurse i ∈ I can be assigned. b is

the index of possible number of consecutive days off.
amax

i maximum number of weekends that nurse i ∈ I can work.
qidt the incurred penalty if shift type t ∈ T is not assigned to nurse i ∈ I on day

d ∈ D.
pidt the incurred penalty if shift type t ∈ T is assigned to nurse i ∈ I on day d ∈ D.
udt preferred total number of nurses to whom is assigned shift type t ∈ T on day

d ∈ D.
wmin

dt , wmax
dt under-weight and over-weight relevant to the total coverage of shift type t ∈ T

on day d ∈ D.

Decision variables:

xidt = 1 if nurse i ∈ I is assigned to shift type t ∈ T on day d ∈ D, = 0 otherwise.
kiw = 1 if nurse i ∈ I works on weekend w ∈W , = 0 otherwise.
ydt total number of nurses below the preferred coverage for shift type t ∈ T on

day d ∈ D.
zdt total number of nurses above the preferred coverage for shift type t ∈ T on

day d ∈ D.
vidt total incurred penalty relevant to shift on/off requests of nurse i ∈ I for shift

type t ∈ T on day d ∈ D.

Constraints:

∑

t∈T

xidt ≤ 1, ∀i ∈ I, d ∈ D (HC1)

xidt + xi(d+1)u ≤ 1, ∀i ∈ I, d ∈ {1 . . . |D| − 1}, t ∈ T, u ∈ Rt (HC2)

∑

d∈D

xidt ≤ mmax
it , ∀i ∈ I, t ∈ T (HC3)

bmin
i ≤

∑

d∈D

∑

t∈T

ltxidt ≤ bmax
i , ∀i ∈ I (HC4, HC5)

d+cmax

i
∑

j=d

∑

t∈T

xijt ≤ cmax
i , ∀i ∈ I, d ∈ {1 . . . |D| − cmax

i } (HC6)
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∑

t∈T

xijt +



c− 1−
d+c
∑

j=d+1

∑

t∈T

xijt



+
∑

t∈T

xi(d+c+1)t ≥ 0, (HC7)

∀i ∈ I, c ∈ {1 . . . cmin
i − 1}, d ∈ {1 . . . |D| − (c + 1)}

(

1−
∑

t∈T

xijt

)

+
d+b
∑

j=d+1

∑

t∈T

xijt +
∑

t∈T

xi(d+b+1)t ≥ 0, (HC8)

∀i ∈ I, b ∈ {1 . . . omin
i − 1}, d ∈ {1 . . . |D| − (b + 1)}

kiw ≤
∑

t∈T

xi(7w−1)t +
∑

t∈T

xi(7w)t ≤ 2kiw, ∀i ∈ I, w ∈W, (HC9)

∑

w∈W

kiw ≤ amax
i , ∀i ∈ I

xint = 0, ∀i ∈ I, n ∈ Ni, t ∈ T (HC10)

qidt(1− xidt) + pidtxidt = vidt, ∀i ∈ I, d ∈ D, t ∈ T (SC1)

∑

i∈I

xidt − zdt + ydt = udt, ∀d ∈ D, t ∈ T (SC2)

xidt, kiw ∈ {0, 1}, ydt, zdt, vidt ∈ Z, ∀i ∈ I, d ∈ D, t ∈ T, w ∈W

Objective function:

min
∑

i∈I

∑

d∈D

∑

t∈T

vidt +
∑

d∈D

∑

t∈T

wmin
dt ydt +

∑

d∈D

∑

t∈T

wmax
dt zdt

It is also assumed that all weeks start on Monday and the planning horizon consists of a whole

number of weeks. We will discuss some statistics relevant to the studied instances based on the

presented IP model in Section 4.
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3. Hybrid Approach

In this section, we describe a hybrid method combining Variable Neighbourhood Search and In-

teger Programming techniques (aka. a pseudo-exact or matheuristic [34]) to solve modern Nurse

Rostering Problems. The schematic overview of the proposed hybrid algorithm is demonstrated in

Algorithm 1. After generating an initial solution using a greedy heuristic (GreedyHeuristic()), a

Variable Neighbourhood Descent (VND) algorithm (VNDSearch()) using a set of distinct neighbour-

hoods tries to improve the generated initial solution until no more improvements can be obtained by

cycling through all the neighbourhoods. Then the best solution obtained from the VND algorithm

is employed by an IP solver by fixing low-penalty parts of the solution, where it tries to generate

a better-quality (exploitation) and a different-structured (exploration) solution. In fact, in this

step, the best solution obtained so far is partially destroyed and again recreated aiming to have a

higher-quality, and at the same time, a different solution in terms of the underpinning structure (a

ruin-and-recreate strategy). In other words, the IP solver is applied as a shaking neighbourhood

within the VNS, aiming to change the structure and at the same time to improve the quality of the

obtained solution. All this process is accomplished in the IPRuinAndRecreate() block. To ensure a

sufficient diversification through the search process, and therefore, not being stuck in local optima,

some low-penalty parts of the solution might also be destroyed and recreated randomly (e.g. within

the random configuration, which will be explained later). The final obtained solution is again im-

ported to the VND search algorithm and this process continues until some stopping criteria are

met. Ultimately, the attained solution is further improved by applying IP to the whole problem

instance to ensure a global search until the overall time limit is reached (IPImprove()).

x∗ ← x← GreadyHeuristic();
repeat

x← V NDSearch(x);
x← IPRuinAndRecreate(x);
if x < x∗ then

x∗ ← x;
end

until some stopping criteria are met;
x∗ ← IPImprove(x∗);
return [x∗]

Algorithm 1: The overall pseudo code of the hybrid algorithm

Next, we elaborate on each of the main components of the hybrid algorithm, i.e. initial solution

construction in GreedyHeuristic() block, VND search algorithm in VNDSearch() block, and IP
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ruin-and-recreate framework in IPRuinAndRecreate() block.

3.1 Initial Solution Construction

In this block, a greedy heuristic search is employed to generate an initial solution for the VND

algorithm. Empirically, we have observed that having a high-quality initial solution reduces the

efficiency of the VNS algorithm subsequently. For the same reason, a random initialization often

results in poor performance due to the very low-quality of the generated solution. Therefore,

we decide to apply a simple greedy heuristic algorithm. The pseudo-code of this algorithm is

depicted in Algorithm 2. After pre-processing of the problem data and creating required data

structures, an empty solution (roster) is created. Starting from a randomly selected nurse, at the

first step, we set all the pre-defined days off for the current nurse in SetDaysOff() block. In the

next step, we randomly mark all the working days to which a specific shift needs to be assigned

later (AssignWorkDays()), and then we assign a randomly selected shift to those days accordingly

(AssignShifts()). Assigning shifts to the nurses within two different levels, i.e. first assigning

working and non-working days, and then assigning shifts to the working days, helps us to only

check the constraints related to each level independently, and hence, reducing the complexity of the

constraint conflict resolution process. Having said that, in the first level, only the maximum number

of working days, and the minimum and maximum number of consecutive shift types including day

off shifts are checked. Therefore, in the next level, we only need to check the maximum number of

shift types and avoid assigning shifts where a forbidden pattern is matched.

Finally, to ensure satisfying the remaining constraints, i.e. the maximum number of worked

weekends, and the minimum and maximum total times of assigned shifts, we calculate the asso-

ciated incurred penalties (indicated as p1 and p2, computed within the EvaluateWeekend() and

EvaluateWorkload() blocks, respectively). If there is any associated penalty, we destroy the current

schedule for the current nurse by unassigning all the allocated shifts using the Destroy() block, and

repeat the process until a feasible solution is obtained. This process is iterated for all the nurses

until all the required shifts are assigned to all the days within a schedule, while satisfying all the

hard constraints. According to our experiments, the greedy heuristic is able to produce a feasible

solution for all the problem instances in up to 100 cycles per nurse. Finally, the generated feasible

solution is returned to the VND algorithm for further improvement.
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Pre-process problem data;
Create an empty solution x = {xi, i ∈ I};
foreach i ∈ I do

while xi is not feasible do

xi ← SetDaysOff(xi);
xi ← AssignWorkDays(xi);
xi ← AssignShifts(xi);
p1 = EvaluateWorkload(xi);
p2 = EvaluateWeekend(xi);
if p1 + p2 > 0 then

xi ← Destroy(xi);
end

end

end

return [x]
Algorithm 2: The pseudo code of the greedy heuristic algorithm to generate an initial solution

3.2 Variable Neighbourhood Descent

When there is an initial solution, either generated using the greedy heuristic algorithm in the

GreedyHeuristic() block or passed from the previous cycle of the hybrid algorithm to the current

one (in Algorithm 1), the Variable Neighbourhood Descent (VND) algorithm is applied to refine the

solution locally according to a set of distinct neighbourhoods [21]. In the VND search algorithm, a

best-improvement descent local search algorithm is applied through cycling a set of neighbourhoods

until no improvement can be found in all the neighbourhood structures, or when the total number

of iterations is reached a certain maximum value. The reason to choose VND is that it is capable

of exploring a variety of different-structured solutions throughout the search space due to applying

a set of different neighbourhoods, which makes it a very suitable candidate for solving highly-

constrained problems such as NRPs. Apart from the successful implementation of VND in the

relevant literature [9, 36], it is very easy to incorporate sophisticated neighbourhood structures

such as our ruin-and-recreate framework, which is needed to successfully implement the hybrid

algorithm.

VNS as a generalized VND approach is a relatively recent meta-heuristic approach based on

the simple idea of systematically changing neighbourhoods both to escape from the areas which

contain local optima and within a local search to identify better local optima [20, 21]. It has been

applied to many NP-hard problems including NRPs [9, 36]. In a simple VNS scheme, a local

search is applied to the incumbent solution using a neighbourhood structure until certain criteria

such as the total number of iterations are met. Then the local search is restarted using a different
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neighbourhood structure, trying to improve the best solution obtained from the previous iterations.

This process continues until there is no more improvement gained from any of the neighbourhood

structures. The neighbourhood structures in a VNS are often selected to drive the search process

towards different desired objectives, or to investigate different structures of the obtained solution

in order to diversify the search process, and therefore, to avoid being stuck in local optima. In

Algorithm 3, the pseudo code of the applied VND algorithm is presented.

Define a set of neighbourhood structures Nk, k = 1, . . . , kmax;
Create an initial solution x;
Set k ← 1;
while k < kmax do

Explore the neighbourhood Nk of x;
Find the best solution x′ in Nk;
if x′ < x then

Set x← x′;
Set k ← 1;

else

Set k ← k + 1;
end

end

return [the best solution found]
Algorithm 3: The pseudo code of the VND algorithm

The following neighbourhoods are applied to the VND block of the hybrid algorithm (VND-

Search()):

1. 2-Exchange: this neighbourhood consists of all moves, where two shifts are swapped between

two different nurses on the same day.

2. 3-Exchange: it includes all moves, where three (or more) shifts are exchanged between three

(or more) different nurses on the same day.

3. Double-Exchange: it includes all moves that swap two shifts between two different nurses

on two different days. In fact, this neighbourhood is made from two different 2-Exchange

neighbourhoods applying on two consecutive days.

4. Multi-Exchange: this neighbourhood is very similar to Double-Exchange but three (or

more) shifts are swapped between two different nurses on three (or more) different days. In-

deed, this neighbourhood is made from three (or more) different 2-Exchange neighbourhoods,

which are not necessarily applied on consecutive days.

11



5. Block-Exchange: this neighbourhood includes all moves where a specific number of consec-

utive shifts is swapped between two different nurses within the planning period.

Apart from Multi-Exchange neighbourhood, which is our new neighbourhood structure, the rest of

the defined neighbourhoods are used in many local search algorithms in the literature [9, 36]. The

Multi-Exchange neighbourhood is defined to overcome the complex structure of the problem, and

therefore, to overcome the potential complicated local optima by applying some simple 2-Exchange

moves simultaneously. In fact, on the one hand, this neighbourhood helps to break complicated

structures for a number of constraints such as HC7 and HC8. On the other hand, it is helpful to

move good shift patterns from one nurse to another. Experimentally speaking, this neighbourhood

structure gives better performance rather than a simple 2-Exchange or Double-Exchange. The

defined neighbourhoods are illustrated on a weekly roster for five nurses in Figure 1, where E,

L, and N indicate early, late, and night shifts, respectively, and all blank shifts are days off. In

this figure, the swaps of shifts between nurses 1 and 3 are examples of 2-Exchange (Tue), Multi-

Exchange (Tue, Sat, and Sun), and Double-Exchange (Sat and Sun) neighbourhoods. As an example

of 3-Exchange neighbourhood, the three shifts between nurses 1, 4, and 5 on Wednesday can be

sequentially swapped. Moreover, swapping the blocks of shifts from Friday to Sunday between

nurses 4 and 5 can be an instance of a Block-Exchange neighbourhood.

3.3 IP Ruin-and-Recreate Framework

If the VND search algorithm could not find any better solutions by cycling through the set of

neighbourhoods or reaches a maximum number of iterations, the incumbent solution is passed to

an Integer Programming solver as a perturbation neighbourhood structure within the VNS. The IP

solver searches for a better alternative solution based on the IP model of the problem introduced in

Section 2, by fixing the low-penalty parts of the solution and exploring all the remaining possibilities

to find a higher-quality solution in an iterative manner (ruin-and-recreate framework). Throughout

this process, two possible outcomes may happen: 1) the IP solver can find a better solution, which

can be a different solution in terms of the underlying structure in comparison with the last one. In

this case, the IP solver helps the VND algorithm both in terms of intensification and diversification.

2) the IP solver cannot produce a better-quality solution (and in some cases, even produce a worse-

quality solution) due to the timeout criterion or due to the non-existence of a better alternative. In

this case, the IP solver may produce a solution with a different structure, and hence, helps the search

process only in terms of diversification. In either case, the role of the embedded IP component in the

hybrid algorithm is essential, where solving the problem only using a pure heuristic approach often
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Figure 1: Examples of 3-Exchange (Nurses 1, 4, & 5 on Wed), Block-Exchange (Nurses 4 & 5 from
Fri to Sun), Multi-Exchange (Nurses 1 & 3 on Tue, Sat, and Sun), 2-Exchange (Nurses 1 & 3 on
Tue), and Double-Exchange (Nurses 1 & 3 on Sat and Sun) neighbourhoods applied in the VND
algorithm

results in poor performance. It is noteworthy to mention that by destroying parts of the solution

and repairing it again, there is no guarantee of the quality and structure of the new solution. In

terms of diversification, generating a solution with a different structure is crucial. The structure of

the solution is different, if it cannot be obtained by searching through the defined neighbourhoods

of the current solution and some nearby solutions. Indeed, a solution is different from the other

solutions in terms of the underlying structure, if we cannot generate it by iteratively applying the

defined neighbourhoods for a sufficient number of iterations. In the literature, a ruin-and-recreate

strategy either by IP or CP is mostly employed in order to diversify the search process and to

perturb the obtained solution. For example, [36] have applied this strategy by destroying parts of

the solution and then using CP to rebuild it. [27] have also used this strategy by the evolutionary

elimination of parts of the solution and subsequently repairing it by using a greedy heuristic. A

more advanced ruin-and-recreate based algorithm is also reported in [28], where the authors applied

a stochastic modelling and Markov chain analysis. Nonetheless, in the proposed hybrid algorithm,

we apply this strategy not only for the diversification purpose but also for improving the quality of
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the obtained solution, i.e. intensification. This is the main reason that we select IP for ruin-and-

recreate framework compared with CP and other heuristics, which is able to improve the current

solution, and at the same time, investigate many areas within the search space. Moreover, we have

empirically observed that destroying parts of the solution is more effective than using sophisticated

neighbourhoods or similar techniques.

Another novel aspect of our ruin-and-recreate framework is due to applying a flexible generic

scoring scheme to evaluate different parts of the solution, which allows us to adaptively focus on

those areas of the solution, which has a higher probability to generate a better solution, if they

are changed. In order to fix some parts of the solution, we apply a scoring scheme by assigning a

value to each cell within the roster, where each cell is an intersection of one particular day and one

particular nurse. In fact, using the scoring scheme, the total penalty associated with the current

solution can be broken down to the fundamental elements of the problem. It means a shift can be

assigned to each cell and if so, there is an associated penalty according to the objective function

and the constraints that are involved. In other words, each cell can be designated by a value, which

is the proportion of (an assignment to) that cell of the total number of violations respecting to the

current solution. We call this estimated value as cell penalty. Cell penalties can be easily aggregated

to different dimensions, therefore providing an insightful tool to analyse and discriminate different

parts of the solution. For example, in Random configuration which we explain later in this section,

this value is used as a weight in a simple linear weighted random function, where a random cell is

selected in order to be destroyed later.

Next, we demonstrate how to calculate a cell penalty, which is calculated based on the total

incurred violations of the constraints involved defined in Section 2. It should be noted that although

this calculation is not accurate in general, it is sufficient for our purpose. Here, we consider all the

constraints either hard or soft, which might be violated throughout the search process using the

hybrid algorithm, and hence, we also define the violations associated with hard constraints. To

determine the relevant weights of hard constraints, a significant value (here, 1000 for constraints

HC4 and HC5 and 10,000 for the remaining hard constraints) is selected to ensure that the final

solution is feasible by directing the algorithm to feasible regions. Table 1 shows for each constraint

the assigned weight (wc), the relevant violation of the constraint, cell share, i.e. the relevant

proportion of the constraint violation for all the affected cells (sc), and the affected cells associated

with the violation, respectively. In this table, |D|, |V |, |W | and |I| denote the total number of

days within the planning period, the total number of violations relevant to a constraint, the total

number of weekends, and the total number of nurses, respectively. All the other parameters are
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already defined in Section 2.

To calculate the cell penalty (pcell) for a particular cell, we need to multiply the amount of cell

share (sc) with the relevant weight (wc) for each constraint (c ∈ C) for a particular day and nurse.

Hence, the total penalty allocated to each cell can be calculated using the following equation:

pcell =
∑

c∈C

scwc

For example, for constraint HC2, assuming that we have only one violated rotation for a specific

nurse occurred on Tuesday and Wednesday in the first week of a roster, the calculated penalty for

each of the two cells involved in the violated rotation is equal to 5000. It should be noted that for

constraint SC2, because the minimum and maximum number of shifts per day are given, we need

to sum up the total number of violations for all shifts (t ∈ T ) in order to calculate the cell penalty.

It is noteworthy to mention that the penalty evaluation is quite fast since it is done using a delta

function (i.e., we only calculate the difference of total penalties between two solutions according to

the violated constraints) and highly optimized data structures.

Table 1: The required information to calculate cell penalties for all the constraints

Ct. Weight
(wc)

Violation Cell Share (sc) Affected Cells

HC2 10, 000 number of forbidden shift rotations 1/2|V | all the involved cells
HC3 10, 000 number of shifts more than the

maximum value

1/|D| all cells

HC4 1000 number of minutes more than the
maximum value

1/|D| all cells

HC5 1000 number of minutes less that the
minimum value

1/|D| all cells

HC6 10, 000 number of shifts more than the
maximum value in an isolated
sequence of shifts

|V |/cmax

i
+|V | all the involved cells

HC7 10, 000 number of shifts less than the
minimum value in an isolated sequence
of shifts

|V |/cmin

i
+|V | all the cells on two sides of

the isolated sequence of shifts

HC8 10, 000 number of days off less than the
minimum value in an isolated sequence
of shifts

|V |/omin

i
+|V | all the cells on two sides of

the isolated sequence of days
off

HC9 10, 000 number of weekends more than the
maximum value

|V |/2|W | all the involved cells

HC10 10, 000 one assigned shift 1 the involved cell
SC1 1 one shift (un-)assignment 1 the involved cell
SC2 wmin

dt
,wmax

dt
number of deviations from the
minimum and maximum values

∑

t∈T
|V |/|I| all the involved cells (for all

nurses)
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Calculating and estimating cell penalties in a schedule, we are also able to accumulate them

over different dimensions such as nurses and days in the schedule. In fact, by accumulating the

cell penalties, we can elicit more information, which gives us more insights into the destroying

and recreating processes. Having said that, we use the following aggregation settings to configure

the IP solver in order to fix different parts of the solution during the search process. In Section

4, we will test the hybrid algorithm by combining the following settings together within different

configurations in order to identify the best efficient one.

1. Nurses: by accumulating cell penalties within the planning horizon for each nurse, we are

able to identify the contribution of each nurse in the total penalty respecting to the current

solution. Therefore, we can recognize nurses who have the most contributed penalties among

the others.

2. Days: in this setting, cell penalties are accumulated for all the nurses within each day.

Therefore, similar to Nurses setting, we can identify the days with the most contributed

penalties.

3. Weeks: analogous to the other settings, here cell penalties are accumulated for all nurses

and all days within each week.

4. Random: in this setting, there is no accumulation indeed. Instead, cells are selected ran-

domly according to their relevant contributed penalty. For this purpose, a simple linear

weighted random function is used, where cells with a higher penalty have more chance to be

selected.

For illustration purposes, Figure 2 shows the first week of a roster, in which the cell penalties

are calculated for all the involved constraints. It can be seen that for some cells, there are not

any associated penalties (blank cells), which means they are not contributed to the total incurred

penalty of the current solution. For the cell at the intersection of Monday and Nurse5, the calculated

cell penalty is 150, which is the highest value among all the cells. Therefore, in the Random

aggregation setting, this cell is very likely to be selected and unassigned afterwards. If we aggregate

the cell penalties for all the nurses and days as calculated in the last column and row of the

weekly roster, it is realized that Monday and Nurse2 (shown as underlined style) have the greatest

contributions to the total penalty associated with the roster. Therefore, using the Nurses and Days

aggregation settings, Monday and Nurse2 are selected for being destroyed. Consequently, it can be
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Figure 2: The associated cell penalties calculated for the first week of a roster

seen that much useful information can be extracted from a solution after calculating the relevant

cell penalties.

When the candidate cells required to be fixed (or to be destroyed) are identified, the IP solver

solves the problem using the incumbent solution, where the integer variables associated with the

fixed cells (xidt) are set before starting the search process. Next, considering all constraints as

soft except HC1, the IP solver produces another solution which can be different from the current

solution in terms of quality and the underlying structure. In either case, the generated solution

is passed to the next iteration of the VND algorithm as an initial solution. It is noteworthy to

mention that because a significant number of variables in the IP model is fixed, particularly those

which are involved in more constraints, the IP solver can easily solve the problem even when the

scale of the problem instance is relatively large. Therefore, according to our experiments, in most

cases, the IP solver can produce a solution even in a very short timeout condition.

Ultimately, after running the VND search algorithm and the IP ruin-and-recreate blocks in order

to find a better solution, there is still a chance of being stuck in a local optimum. In fact, due to not

having any global picture throughout the search space, there can be another solution close to the

current local optimum, but not detectable due to the complex structure of the problem. To resolve

this issue, another IP solver improves the best-found solution at the end of the hybrid algorithm to

solve the problem in the remaining time, and then the final solution is reported to the user. This

IP solver employs the same IP model introduced in Section 2 including all the constraints, but it

starts from the best-found solution thus far. To configure the IP solver to start from the current

best solution rather than a randomly generated roster, the appropriate parameter (e.g. MIPFocus

parameter in Gurobi) is set before starting the search process. It should be noted that the final IP

solver is also useful to provide some insights to the optimality of the current solution, which makes
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Table 2: The characteristics of the first set of benchmark instances

Instance Days Nurses Shift Types Day off
Requests

Shift On/Off
Requests

Instance01 14 8 1 8 26
Instance02 14 14 2 14 62
Instance03 14 20 3 20 64
Instance04 28 10 2 20 71
Instance05 28 16 2 32 106
Instance06 28 18 3 36 135
Instance07 28 20 3 40 168
Instance08 28 30 4 60 225
Instance09 28 36 4 72 232
Instance10 28 40 5 80 284
Instance11 28 50 6 100 336
Instance12 28 60 10 120 422
Instance13 28 120 18 240 841
Instance14 42 32 4 128 359
Instance15 42 45 6 180 490
Instance16 56 20 3 120 280
Instance17 56 32 4 160 480
Instance18 84 22 3 176 414
Instance19 84 40 5 320 834
Instance20 182 50 6 900 2318
Instance21 182 100 8 1800 4702
Instance22 364 50 10 1800 4638
Instance23 364 100 16 3600 9410
Instance24 364 150 32 5400 13,809

the hybrid algorithm a pseudo-exact method.

4. Computational Results

We tested the proposed hybrid algorithm on 24 instances that have been recently introduced by

[12], and then on 12 randomly public generated instances introduced in this paper [32], which will

be explained later. Table 2 summarizes the characteristics of the first set of benchmark instances.

Despite other extensively studied instances in the literature [7], which are based on models and as-

sumptions that are different than ours, and are mostly easy to solve, these instances are emphasized

to be challenging for the state-of-the-art algorithms. Moreover, these instances are varied in terms

of complexity and size, which makes them an appropriate benchmark for the proposed algorithm.
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The variety of the benchmark instances with different characteristics and structures allows us to

test the hybrid algorithm thoroughly. Generally speaking, moving from Instance01 to Instance24,

the computational difficulty of the problem instances increases, which often requires spending more

time and computer memory. In particular, the last five instances are computationally challenging

due to their huge sizes. Having said that, the number of days off and shift on/off requests (columns

5 and 6 in Table 2) can be appropriate indicators for the difficulty of the problem instances. In

general, according to our experiments, the more the number of requests, the more difficult to deal

with a problem instance both in IP and heuristic algorithms.

We conducted our tests on a PC (Intel Core-i5 3.4 GHz with 4 GB RAM) running Windows 7.

We implemented the hybrid algorithm in Java 1.7 and employed Gurobi [19] 5.6 as the IP solver. We

also made a concerted effort to optimize the implemented code using the latest software technologies

and code optimization practices. For example, we used efficient hash algorithms and appropriate

data structures similar to the ones available in Boost C++ libraries, and generic programming to

minimize performance overheads. In all the experiments, the algorithm was run three times and

the best-obtained solution is reported. Moreover, we run all our experiments on one CPU core to

have a fairer and more accurate comparison. After extensive testing of the algorithm using different

settings, the following parameters were set. We dedicate 70% of the total allowed runtime to the

VNS algorithm (VND and IP ruin-and-recreate components), and the rest, to the final IP block.

For VND stopping criteria, we set the maximum number of iteration to 50,000 and the maximum

number of non-improvement iterations to 5. We also employed the neighbourhoods 2-Exchange,

Double-Exchange, Multi-Exchange with the length of 3, Block-Exchange with the length of 4, and

3-Exchange with the length of 3 in order.

Three experiments were carried out to test the proposed algorithm: first, we investigate different

aggregation settings through the ruin-and-recreate framework to understand how they affect the

performance of the algorithm, and then we analyse the performance of different components of the

hybrid algorithm. Second, we compare the hybrid algorithm with two state-of-the-art algorithms,

which currently generate the best results for the studied instances and most existing instances in

the literature, and the Gurobi IP solver. Third, due to the unavailability of a benchmark dataset in

the literature which would have allowed us to compare the hybrid algorithm with another similar

method [9], we create 11 randomly generated instances to further benchmark the hybrid algorithm

against.

In the first experiment, in order to examine the best combination of aggregation settings defined

in Section 3 for the IP ruin-and-recreate component, we ran the algorithm with a variety of com-
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binations. For each combination, we define a selection range, i.e. the total percentage of available

candidates in each aggregation setting which is selected in decreasing order to be destroyed and

recreated. According to our non-exhaustive preliminary tests on a variety of combinations using the

benchmark instances in Table 2, in the following, we present the best three identified configurations

and the relevant selection ranges:

• [Config1]: Use only Nurses aggregation setting with the selection range of at least 20%.

• [Config2]: Apply Nurses, Days, and Weeks aggregation settings in order, with the selection

ranges of at least 20%, 50%, and 60%, respectively.

• [Config3]: Apply Nurses, Days, Weeks, and Random aggregation settings in order, within the

selection ranges of [10%, 30%], [10%, 40%], [10%, 50%], and [30%, 50%], respectively. For

each setting, the minimum value in the relevant range is increased by 10% (the increment

rate) after each VNS iteration (e.g. [10%, 30%] is changed to [20%, 30%]).

Table 3 shows the results of the benchmarked configurations for instances 8 to 24, where the

algorithm is run for 10 minutes. We do not report the results for the first seven instances, since

they are not very complicated for the proposed hybrid algorithm, and hence, it returns the same

results for all the mentioned configurations. In this table, the objective function value and its

difference to the best-known lower bound in percentage (denoted as Gap (%)) according to [12]

are shown for each configuration and instance. One can see that running the algorithm with the

third configuration generally results in better solutions in average. The reason for the superiority

of the third configuration is due to the comprehensive investigation of the solution space by using

different ruin-and-recreate strategies, and as a result, facilitating the hybrid algorithm to escape

from a variety of local optima. In fact, in this configuration, we re-evaluate the current solution

through four different dimensions after being stuck in each local optimum. Moreover, changing the

selection ranges incrementally, equips the hybrid algorithm to behave adaptively during the search

progress. It means, the more the hybrid algorithm advances within the search process, the more

parts of the solution are selected to be changed, i.e. the diversification rate is being increased.

Using the third configuration (i.e. Config3), we run the algorithm for all the benchmark in-

stances for 10 minutes computational time. The detailed results of this test are shown in Table

4, where the initial solution generated by the greedy heuristic algorithm, the improved solution

by the VNS, and the final solution further improved by the IP solver are reported in average,

respectively. In this table, ∆iv%, and ∆vo% denote the percentage of improvement achieved using
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Table 3: Results of the hybrid algorithm by applying different configurations of aggregation settings

Instance
Config1 Config2 Config3

Obj. Gap (%) Obj. Gap (%) Obj. Gap (%)

Instance08 1958 33.76 1695 23.48 1364 4.91
Instance09 439 7.52 439 7.52 439 7.52
Instance10 4631 0.00 4631 0.00 4631 0.00
Instance11 3443 0.00 3443 0.00 3443 0.00
Instance12 4045 0.12 4045 0.12 4042 0.05
Instance13 3109 56.71 3109 56.71 3109 56.71
Instance14 1361 6.17 1342 4.84 1281 0.31
Instance15 4463 14.72 4588 17.04 4144 8.16
Instance16 3384 4.73 3306 2.48 3306 2.48
Instance17 5956 3.86 6043 5.25 5760 0.59
Instance18 5158 15.65 5158 15.65 5049 13.82
Instance19 4365 32.53 4145 28.95 3974 25.89
Instance20 5451 12.99 5603 15.35 5242 9.52
Instance21 27,281 23.51 28,356 26.41 24,977 16.45
Instance22 176,652 86.38 173,371 86.12 130,107 81.50
Instance23 57,210 95.17 97,893 97.18 40,543 93.18
Instance24 3,173,810 97.74 3,160,760 97.73 2,829,680 97.46

Average 28.91 28.51 24.62
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the VNS component and the final IP block, respectively. Furthermore, the number of cycles and

the average improvement obtained throughout each cycle (denoted as ∆
C

%) are reported in the last

two columns of Table 4. As it can be seen, the VNS algorithm is able to improve the generated

initial solution by the greedy heuristic by 97%, which then is further optimized by the final IP

block by 10% in average. Moreover, it is observed that the final IP solver is not able to improve

the generated solution for a number of instances. For example, for Instance02, the IP solver is only

employed to prove the optimality of the obtained solution by the VNS algorithm. However, for

some instances such as Instance23, the IP solver does not manage to produce any better solutions

due to the limited computational time. Nevertheless, the role of the final IP solver as the last

component of the hybrid algorithm in order to improve the output of the VNS algorithm is crucial,

where the attained improvement can be even reached more than 30% for some instances.

In the second experiment, in order to benchmark the efficiency of the proposed algorithm with

the current state-of-the-art algorithms, we compared it with the results published in [12], where

the authors report the results of two algorithms from [6], i.e. a branch-and-price and an ejection

chain heuristic. All the published benchmark results were run on Intel Core2 Duo 3.16 GHz with

8 GB RAM. Unfortunately, we could not find any other benchmark results, and to the best of our

knowledge, at this time the two benchmark algorithms produce the best results [6] for the studied

problem instances and most existing instances in the relevant literature. To have a fair comparison,

the algorithm is run only on one core of CPU and employs the same version of Gurobi solver. All our

experiments are given a computational time of 10 minutes, since the hybrid algorithm is particularly

designed to perform well in short computational times, and also it is common to use short times,

as seen in the relevant literature and the nurse rostering competition [22]. However, to have a

comprehensive comparison with the available results and the benchmark algorithms, we also run

the proposed algorithm for a longer time, i.e. 60 minutes. Table 5 presents the best results from

the ejection chain method, Gurobi IP solver with default settings, and our hybrid algorithm using

the third configuration (Config3 in Table 3) running for the limited computational time of 10 and

60 minutes, respectively. The results for the branch-and-price (B&P) algorithm without any time

limits are also presented. In this table, “-” indicates that the algorithm does not generate any

feasible solutions within the allocated time limit.

As we can see in Table 5, within the 10 minutes computational time, from the total of 24 in-

stances, the hybrid algorithm outperforms the ejection chain method for 23 instances, and produces

the same results for Instance01. In comparison with the Gurobi IP solver, the algorithm performs

better in 14 instances and generates the same results for the remaining 10 instances, where 9 of
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Table 4: Detailed results of the hybrid algorithm by applying the third configuration for 10 minutes

Instance Initial ∆iv% VNS ∆vo% Obj. Cycle ∆
C

%

Instance01 11,525 94.73 607 0.00 607 18 5.26
Instance02 14,827 94.42 828 0.00 828 30 3.15
Instance03 22,480 95.55 1001 0.00 1001 16 5.97
Instance04 20,775 91.74 1716 0.00 1716 56 1.64
Instance05 31,947 96.41 1147 0.35 1143 48 2.01
Instance06 30,944 93.40 2041 4.46 1950 52 1.80
Instance07 42,625 97.49 1070 1.31 1056 52 1.88
Instance08 63,153 95.98 2538 46.26 1364 81 1.21
Instance09 55,320 99.21 439 0.00 439 42 2.36
Instance10 102,073 94.97 5133 9.78 4631 19 5.02
Instance11 120,287 97.13 3450 0.20 3443 25 3.89
Instance12 146,970 96.05 5801 30.32 4042 77 1.26
Instance13 289,121 98.88 3231 3.78 3109 49 2.02
Instance14 117,166 98.19 2116 39.46 1281 79 1.25
Instance15 144,631 96.37 5245 20.99 4144 60 1.62
Instance16 105,714 95.40 4861 31.99 3306 81 1.20
Instance17 174,308 95.99 6986 17.55 5760 67 1.44
Instance18 181,068 96.79 5815 13.17 5049 50 1.94
Instance19 322,730 98.59 4564 12.93 3974 47 2.10
Instance20 910,083 99.42 5242 0.00 5242 36 2.76
Instance21 197,130,000 99.99 26,989 0.04 26,977 44 2.27
Instance22 168,433,000 99.92 130,107 0.00 130,107 42 2.38
Instance23 15,542,000 99.74 40,543 0.00 40,543 45 2.22
Instance24 201,119,000 98.55 2,925,411 3.27 2,829,680 17 5.80

Average 96.87 9.83 2.60
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Table 5: The benchmark results for the hybrid algorithm in comparison with the best current
algorithms including branch-and-price and ejection chain heuristic [6], and Gurobi IP solver [19]
running for 10 and 60 minutes

Instance
Hybrid
Algorithm

Ejection
Chain

Gurobi Hybrid
Algorithm

Ejection
Chain

Gurobi
B&P

10 min 60 min

Instance01 607 607 607 607 607 607 607
Instance02 828 923 828 828 837 828 828
Instance03 1001 1003 1001 1001 1003 1001 1001
Instance04 1716 1719 1716 1716 1718 1716 1716
Instance05 1143 1439 1143 1143 1358 1143 1160
Instance06 1950 2344 1950 1950 2258 1950 1952
Instance07 1056 1284 1056 1056 1269 1056 1058
Instance08 1364 2529 8995 1344 2260 1323 1308
Instance09 439 474 439 439 463 439 439
Instance10 4631 4999 4631 4631 4797 4631 4631
Instance11 3443 3967 3443 3443 3661 3443 3443
Instance12 4042 5611 4045 4040 5211 4040 4046
Instance13 3109 8707 500,410 1905 3037 3109 -
Instance14 1281 2542 1482 1279 1847 1280 -
Instance15 4144 6049 78,144 3928 5935 4964 -
Instance16 3306 4343 3521 3225 4048 3233 3323
Instance17 5760 7835 6149 5750 7835 5851 -
Instance18 5049 6404 7950 4662 6404 4760 -
Instance19 3974 6522 29,968 3224 5531 5420 -
Instance20 5242 23,531 - 4913 9750 - -
Instance21 26,977 38,294 - 23,191 36,688 - -
Instance22 130,107 - - 32,126 516,686 - -
Instance23 40,543 - - 3794 54,384 - -
Instance24 2,829,680 - - 2,281,440 156,858 - -
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them are optimal solutions (shown as underlined style). In overall, the proposed algorithm out-

performs the ejection chain method and Gurobi IP solver within 10 minutes computational time

for 14 instances (shown as bold style), and produces the same or better results for the rest of the

instances. It should be noted that the ejection chain method and Gurobi IP solver could not solve

the last 3 and 5 instances, respectively. Having said that, obtaining the reported solutions for these

instances, which are very hard to solve and huge in size, make the hybrid algorithm an appropriate

candidate to tackle such instances even in a very short runtime.

Running our benchmarks for the longer runtime of 60 minutes, the hybrid algorithm outperforms

the ejection chain method for 22 instances and does not generate a better result only for Instance24.

The reason of obtaining a poor-quality solution for Instance24 might be the inherent nature of the

hybrid algorithm as a pseudo-exact method (matheuristic). Since this instance is huge in size,

it is a challenge for the algorithm to solve it in comparison with a meta-heuristic approach like

ejection chain method. Moreover, it might have a particular structure which cannot be exploited

using the current setting of the proposed algorithm, but easy to be identified by the ejection chain

method. Similarly, in comparison with Gurobi IP solver, the hybrid algorithm is able to generate

better results for 13 instances and obtains the same results for the remaining 10 instances. For

Instance08, the IP solver outperforms the hybrid algorithm for only a slight difference. In overall,

the hybrid algorithm attains better solutions for half of the instances (shown as bold style), which

makes it a successful candidate even for longer computational times.

Comparing with branch-and-price (B&P) algorithm without any time limit, the hybrid algo-

rithm is outperformed only for Instance08, where B&P takes more than 197 minutes to generate

the solution. Apart from the 11 instances, for which B&P cannot produce any results, the hybrid

algorithm beats B&P for 5 instances and achieves the same results for the rest of the instances.

In the third experiment, we try to compare the hybrid algorithm with a similar approach re-

ported in [9], in which IP and VNS are hybridized in a pipeline fashion, i.e. running sequentially.

The authors also developed a decomposition technique for handling constraints, and evaluated their

hybrid VNS using the studied decomposition. Unfortunately, after making inquiries from the rel-

evant authors, it is found out that the benchmarked dataset including 12 instances is lost except

one of them, i.e. the first instance for January. Being unsuccessful in obtaining the benchmarked

instances and willing to further evaluate the efficiency of the hybrid algorithm, we randomly gen-

erated 11 instances (instead of the 11 extinct ones) attempting to make them similar to the sole

existing instance we already have. These instances are made publicly available [32] to facilitate

other researchers to benchmark their algorithms. The problem description regarding the remain-
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ing available instance called ORTEC01 is accessible in [7], and the associated IP formulation is

reported in [33]. As we tried to generate instances resembling the only available instance as closely

as possible, we made the following assumptions:

1. Since the lost instances belong to a yearly dataset extracted from a real hospital over 12

months, we assumed that all the staff contracts are not changed and fixed during the planning

year.

2. Considering the yearly nature of the dataset, we assumed that there is not any change in the

hospital regulations, number of shifts, and number of nurses (i.e. no hiring or firing occurs).

3. Considering the yearly nature of the dataset, we assumed that there should not be any major

changes in the coverage and shift on/off requests.

4. We assumed that the coverage data for the weekend days follow a similar pattern to the

coverage data of the available instance.

Based on these assumptions, we only generate random instances by changing the coverage and shift

on/off requests constraints. For generating coverage data, for all the weekdays and for all the shifts

except night, we use a weighted uniform random function within the range of [2, 4], by considering

the associated weights of 0.25, 0.5, 0.25 for the included numbers within the range. For night shifts,

we use a uniform random function to generate the coverage data within the range of [1, 2]. To have

similar coverage data compared with the available data, we also try to keep the difference between

the total sum of all the coverages during the planning horizon less than 40 for generated instances

and the available instance. Thus, we ensure that the generated coverage data are similar to the

available instance with only very slight perturbation.

For generating shift on/off requests, first, we use a uniform random function to generate some

request data including the involved employees, the requested shifts consist of days off, the requested

days, and the associated weights, while considering ranges of [0, total number of employees], [0, total

number of shifts + 1], [0, total number of days], and the set of {100, 1000, 10,000}, respectively.

Then we use a uniform random function again to generate the required number of shift on/off

requests within the range of [0, 5] independently. Finally, knowing the total number of shift on/off

requests, first we pick the number of shift on requests and then the number of shift off requests

from the generated request data, if any.

We use an identical random seed for the whole generation of the instances, and we repeat the

process until we obtain a feasible problem instance. It is noteworthy to mention that although
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Table 6: The characteristics of the generated random instances (second set of benchmark instances)
and results of standard Gurobi IP solver for 10 minutes

Instance
IP Statistics Gurobi

Constraints Variables RR Iterations Obj. LB Gap (%)

ORTEC01 20,611 21,954 7280 1410 145 89.72
ORTEC02 20,581 21,924 7426 15,500 570 96.32
ORTEC03 20,580 21,923 10,732 31,741 200 99.37
ORTEC04 20,586 21,929 9354 15,510 122 99.21
ORTEC05 20,582 21,925 9904 25,495 1300 94.90
ORTEC06 20,582 21,925 10,598 14,855 211 98.58
ORTEC07 20,581 21,924 9804 2911 138 95.26
ORTEC08 20,583 21,926 8358 5660 141 97.51
ORTEC09 20,581 21,924 7526 385 201 47.79
ORTEC10 20,577 21,920 8715 14,940 1130 92.44
ORTEC11 20,583 21,926 10,105 22,863 310 98.64
ORTEC12 20,580 21,923 9265 37,698 110 99.71

we try to generate the instances very similar to the one in hand, due to the complexity of the

constraints and the importance of the coverage and shift on/off requests in the structure of the

problem, the generated instances are different in terms of computational complexity and even more

challenging than the available one as we see next. Table 6 summarizes the characteristics of the

generated random instances and the obtained results from the standard Gurobi IP solver for 10

minutes runtime. In the first part of this table, some statistics regarding the IP formulation of

the generated instances including the number of constraints, variables, and simplex iterations to

solve the root relaxation of the problem instances are presented, respectively. In the second part,

the objective function value, lower bound, and the optimality gap resulting from running the IP

solver for 10 minutes timeout condition are shown, respectively. The optimality gap is defined

as the discrepancy between the value of the current feasible solution (for the primal problem)

and the value of the lower bound (feasible for the dual problem). When the optimality gap is

zero, the current feasible solution is an optimal solution. It should be noted that in Table 6, the

instance ORTEC01 is the instance we had available (shown in italic style), and the rest indicates

the instances we generated.

As one can see in Table 6, by observing the results obtained from the IP solver for 10 minutes

runtime, all the generated instances are solved to a gap greater than 90% except instance ORTEC09
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with the gap of 48%. Therefore, it can be seen that apart from the instance ORTEC09, all the

other instances are even more difficult to solve rather than ORTEC01. As a result, we can argue

that the randomly generated instances are difficult to solve and they can be a suitable benchmark

dataset for evaluating the performance of the hybrid algorithm.

We run the hybrid algorithm for 10 minutes using the three configurations introduced in the

first experiment. The results are reported in Table 7, where the absolute objective value and

the associated normalized percentage (denoted as ∆%) are shown, respectively. Similar to the

first experiment, we observe that running the algorithm with the third configuration results in a

better solution for all the instances. In order to analyse the performance of the main components

of the hybrid algorithm, we run it using the generated new benchmark instances for 10 minutes

computational time. The detailed average results are reported in Table 8, where the VNS algorithm

improves the initial solution by 94%, which is further enhanced by the final IP block by 14% in

average. It should be noted that for generating the initial solution, a similar IP solver is run for

20 seconds, since employing a greedy heuristic similar to the one explained in Section 3.1 often

results in infeasible solutions. To compare the performance of the hybrid algorithm with Gurobi IP

solver and the hybrid VNS algorithm reported in [9], we run our hybrid algorithm using the third

configuration and report the results in Table 9, where the hybrid algorithm and IP solver are run

for 10 and 60 minutes, and the hybrid VNS (shown as IPVNS) is run for 60 minutes computational

time.

To have a fairer and more accurate comparison, we simulate the computational environment of

IPVNS algorithm (Pentium 2.0 GHz PC) by running the hybrid algorithm on a different PC with an

Intel Core-i7 1.6 GHz CPU but only using one core of the CPU. Having said that, the first reported

value for instance ORTEC01 is the one similar to the other instances by running on our regular

benchmark PC, and the second one is relevant to the less-powerful PC used only for comparing

with IPVNS algorithm. As we can see in Table 9, compared with the results obtained by the IP

solver, the hybrid algorithm finds better solutions for all the instances. In particular, for instance

ORTEC01, when we compare the results with IPVNS, the algorithm reaches the objective value

of 315, which is 31% better than the one obtained by IPVNS, i.e. 460 on a similar computational

environment. Running the algorithm on our regular benchmark PC, the objective value is slightly

improved and reaches the value of 270 known as the optimal solution, which might be due to using

a more powerful PC.

Considering instance ORTEC01, we also benchmark the algorithm against the winner of Person-

nel Scheduling track of CHeSC hyper-heuristic competition [25, 23], where the authors developed a
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Table 7: Results of the hybrid algorithm by applying different configurations of aggregation settings
for the second set of benchmark instances

Instance
Config1 Config2 Config3

Obj. ∆% Obj. ∆% Obj. ∆%

ORTEC01 465 58.06 380 71.05 270 100.00
ORTEC02 7770 98.97 8800 87.39 7690 100.00
ORTEC03 9900 99.00 9880 99.20 9801 100.00
ORTEC04 6510 97.39 7370 86.02 6340 100.00
ORTEC05 4090 98.29 4870 82.55 4020 100.00
ORTEC06 9507 99.40 9499 99.48 9450 100.00
ORTEC07 2396 99.33 2491 95.54 2380 100.00
ORTEC08 4390 76.99 4470 75.62 3380 100.00
ORTEC09 282 90.78 295 86.78 256 100.00
ORTEC10 4660 76.39 3670 97.00 3560 100.00
ORTEC11 8850 99.66 9030 97.67 8820 100.00
ORTEC12 3481 99.11 3451 99.97 3450 100.00

Average 91.12 89.86 100.00

Table 8: Detailed results of the hybrid algorithm by applying the third configuration for 10 minutes
for the second set of benchmark instances

Instance Initial ∆iv% VNS ∆vo% Obj. Cycle ∆
C

%

ORTEC01 74611 98.27 1291 79.09 270 55 1.81
ORTEC02 70863 89.12 7711 0.27 7690 50 1.78
ORTEC03 76169 87.02 9886 0.86 9801 50 1.74
ORTEC04 127870 95.01 6380 0.63 6340 41 2.32
ORTEC05 87018 95.35 4050 0.74 4020 53 1.80
ORTEC06 89815 89.35 9561 1.16 9450 53 1.69
ORTEC07 67417 96.44 2401 0.87 2380 54 1.79
ORTEC08 91082 96.23 3431 1.49 3380 58 1.66
ORTEC09 70700 98.07 1368 81.29 256 33 3.02
ORTEC10 82975 95.63 3625 1.79 3560 63 1.52
ORTEC11 111571 92.08 8840 0.23 8820 51 1.81
ORTEC12 88373 96.04 3501 1.46 3450 57 1.69

Average 94.05 14.16 1.89

29



Table 9: The benchmark results for the hybrid algorithm in comparison with Gurobi IP solver [19]
and the hybrid VNS algorithm (IPVNS) reported in [9] for the second set of benchmark instances

Instance
Hybrid Algorithm Gurobi IPVNS

10 min 60 min 10 min 60 min 60 min

ORTEC01 270, 315 270 1410 405 460
ORTEC02 7690 7620 15,500 11,162 -
ORTEC03 9801 9638 31,741 12,850 -
ORTEC04 6340 5230 15,510 8553 -
ORTEC05 4020 3700 25,495 13,385 -
ORTEC06 9450 9400 14,855 14,855 -
ORTEC07 2380 2320 2911 2521 -
ORTEC08 3380 3220 5660 5301 -
ORTEC09 256 230 385 241 -
ORTEC10 3560 3360 14,940 5880 -
ORTEC11 8820 8530 22,863 22,551 -
ORTEC12 3450 3290 37,698 5828 -

VNS-based hyper-heuristic (VNS-TW) consisting of two steps, i.e. shaking and local search, which

is able to dynamically adjust to various problems using different techniques. Running the hybrid

algorithm within the standardized time limit using the benchmark tool provided by the competition

organizers, it obtains the objective value of 270 in comparison with the result of 320 obtained by

VNS-TW.

Comparing our hybrid algorithm and Gurobi IP solver for a longer runtime of 60 minutes, the

hybrid algorithm obtains better results, though it is not designed to be run for such a relatively

long computational time. It is worth noting that the results generated by the hybrid algorithm for

10 minutes even outperform the solutions produced by the Gurobi IP solver for 60 minutes except

for instance ORTEC09, where there is only a slight difference.

5. Conclusion

We have presented a hybrid algorithm employing a Variable Neighbourhood Search algorithm and

Integer Programming to make the search process more efficient. At the first step, after generating

an initial solution using a greedy heuristic, the solution is improved using a Variable Neighbourhood

Descent algorithm. To increase the exploitation and exploration in the VNS, Integer Programming

within a ruin-and-recreate framework is employed, where parts of the solution are kept fixed by
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applying a new scoring scheme. In order to ensure the investigation of the search space globally,

IP again is applied to improve the obtained solution in the remaining time.

We evaluated the proposed algorithm using 24 instances introduced in the recent literature, and

12 randomly generated instances presented in this paper. The benchmark results showed better

performance for most of the instances in comparison with two state-of-the-art algorithms in the

literature and a standard Gurobi IP solver. The algorithmic concepts of the proposed algorithm

are general enough to be applied to other similar Timetabling and Resource Allocation problems.

Moreover, incorporating an IP approach into a meta-heuristic algorithm confirms the applicability

of exact methods for practical instances in a hybrid setting. We also proposed a general scoring

scheme to break down the total penalty associated with a solution into the fundamental elements

of the problem, which is able to guide the search process adaptively towards high-potential parts

of the solution.

Future research involves investigating the structure of the studied problem to accommodate

other heuristic algorithms such as population-based meta-heuristics and Constraint Programming

techniques to the current developed hybrid framework. We also aim to apply other Integer Program-

ming techniques such as column generation in order to enhance the efficiency of the IP component.

Another interesting research direction is to investigate more sophisticated neighbourhood struc-

tures in order to improve the efficiency of the VNS algorithm. Moreover, it would be interesting to

employ a parameter tuning tool (e.g. [24]) to precisely select best configurations for the proposed

ruin-and-recreate framework.
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