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In this paper, we demonstrate that using a pressure corrected three-dimensional reference interaction site
model (3D-RISM/PC+) one can accurately predict salting-out (Setschenow's) constants for a wide range of
organic compounds in aqueous solutions of NaCl . The approach, based on classical molecular force �elds,
o�ers an alternative to more heavily parametrized methods.

I. INTRODUCTION

Addition of ions to water a�ects solubilities, activi-
ties, and other thermodynamic parameters of solutes1�4.
The environmental fate of compounds and their distri-
bution between biological tissues are in�uenced by the
salt content of solutions as well5�8. Techniques such as
puri�cation, polymorph control, and yield improvement,
all utilize salt related e�ects9�11. Finally, interactions
of ions with proteins are directly responsible for protein
stability, with the strength of the e�ect conveniently de-
scribed by Hofmeister series12. Despite that, there are
only few theory-based approaches that can be applied to
arbitrary molecules13,14.
In this paper we demonstrate that a pressure corrected

three-dimensional reference interaction site model (3D-
RISM/PC+)15�17 can be used to quantitatively describe
NaCl e�ects on a solute, provided that suitable force �eld
parameters are used. At the same time, the method re-
quires only minimal computational resources. We �nish
by examining situations in which the proposed theory
breaks down and discuss possible further improvements.

II. THEORY

Setschenow's constant. The e�ects of salt on par-
tition coe�cient can be quanti�ed using Setschenow's
equation14:

log10

(

K1/water

K1/salt water

)

= kSC, (1)

where C is the molar concentration of salt in solution, kS
is the Setschenow's (or salting out) constant, and K is a
partition coe�cient of a compound between two phases,
given by:

K1/water = [solute]
water

/ [solute]
1

(2)
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in which square brackets denote equilibrium concentra-
tions. Setting phase 1 to a dilute gas, we can express the
above equation in terms of corresponding solvation free
energies18 to get:

∆GC = ∆G0 + kSRTC ln(10) (3)

where ∆G stands for solvation free energy, subscripts C
and 0 denote salt concentrations in water, R is the uni-
versal gas constant, and T is temperature.
kS is largely determined by molecular size. In sodium

chloride solutions, the surface tension of water increases
proportionally to the salt concentration19, and thus, pro-
vides positive contribution to the solvation free energy of
a molecule. However, this is not the only factor con-
tributing to the Setschenow's constant20. Polar regions
of molecules interact strongly with salts and this can
provide negative contributions to ∆G21. Thus, to ac-
curately predict kS , one has to take into account the
change of solvent surface tension, favourable interactions
between solute and salts, and correlations between anions
and cations.
3D-RISM. The theory behind 3D-RISM has been de-

scribed in many previous publications22�24. Here we only
brie�y summarize it, focusing on the idea behind pressure
corrections.
The solvation free energy predicted by 3D-RISM is

strongly overestimated23,25. Sergiievskyi et al. have
shown that this is mainly caused by a huge solvent pres-
sure, which leads to an overestimated solute insertion
work15. The pressure corrected (PC) 3D-RISM solvation
free energy is given by:

∆GPC = ∆G3DRISM − P∆V, (4)

where ∆V is the solute partial molar volume, and P is
the 3D-RISM bulk solvent pressure, given by:

P =
kT

2

N
∑

i=1

ρi −
1

2χT
, (5)

where N is the total number of sites (atoms) in solvent,
k is the Boltzmann constant, ρi is the density of site i
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and χT is the isothermal compressibility of the solvent,
computed with 1D-RISM.
While equation 4 greatly improves accuracy of 3D-

RISM solvation free energy predictions, it still system-
atically underestimates experimental solvation free en-
ergies by a few kcal/mol15. In several recent articles,
the bene�ts of a similar correction, called advanced
pressure correction PC+ (previously ISc), have been
demonstrated16,17,26�28:

∆GPC+ = ∆G3DRISM − P∆V + Pid∆V, (6)

where Pid is an ideal gas pressure of the solvent, given by
Pid = ρkT , in which ρ is the total density of all species
in the solvent. Although, from a theoretical point of
view the reason why PC+ performs well is not completely
understood15, it results in much better predictions of sol-
vation free energy (at least for small molecules), com-
parable to those given by molecular dynamics17,26. For
Setschenow's constants we do not expect the correction
to be as signi�cant since Pid∆V term is relatively unaf-
fected by the change in concentration, but the absolute
values of solvation free energies in salt solution would be
more accurate in PC+ and thus, we focus primarily on
this approach.
For completeness, we note that recently a number

of authors have proposed other ways of improving 3D-
RISM results, which can provide alternative to PC/PC+
models29�33. Additionally, there are other studies inves-
tigating e�ects of salts on solutes using RISM approach,
but they were mostly concerned with quantitative de-
scription of the problem34�37

III. METHODS

There are quite a few proposed NaCl force �elds38�41.
In this study we decided to limit our attention to those
�ve sodium chloride models that were compatible with
SPC/E water42 and developed with Lorentz-Bertholet
combination rules43 in mind (table I). In all models,
Na+ and Cl� had +1 and −1 charges and di�ered only in
Lennard-Jones parameters. The Dang's NaCl force-�eld
parameters (da) were developed by �tting interaction en-
ergy, �rst peak of radial distribution function, and coor-
dination number44. Joung and Cheatham's model (jc)
is based on �tting the experimental hydration free ener-
gies of ions, as well as lattice constants and energies45.
Deublein and co-workers (de) adjusted NaCl Lennard-
Jones parameters to reproduce experimental density at
a range of concentrations. Finally, Horinek et al. de-
veloped multiple force �elds, by taking Dang's Cl� ion
parameters and adjusting Na+ parameters to match the
solvation free energy of the ion pair. Since this approach
does not lead to a unique pair of ǫ and σ, the authors
proposed models based on small ǫ (we couldn't converge
this model in 1D-RISM), large ǫ (hoa), and medium ǫ
values (hob).

Abbreviation σNa ǫNa σCl ǫCl Ref.

da 2.584 0.100 4.401 0.100 44
jc 2.160 0.353 4.830 0.013 45
de 1.890 0.199 4.410 0.199 46
hoa 2.130 1.540 4.400 0.100 47
hob 2.230 0.650 4.400 0.100 47

Table I. Lennard-Jones parameters of NaCl models used in
this study. The values of σ are in Angstroms and ǫ in
kcal/mol.

The experimental values for Setschenow's constants
were taken from the article by Endo et al.14. This dataset
consisted of 42 measurements made for environmentally
relevant compounds, such as chlorinated alkanes/arenes,
phtalates, and pharmaceuticals. Accurate measurement
of Setschenow's constants ideally requires a vanishingly
low concentration of solute in the water phase to prevent
self-association from a�ecting the result. The authors
used a headspace method and a microextraction tech-
nique to dissolve small amounts of solute in water and to
ensure that the system reached equilibrium; their subse-
quent analyses found these techniques to be more reliable
than a number of previous measurements. For this reason
we used only data measured by Endo et al. to evaluate
the accuracy of 3D-RISM based approach. Additionally,
to directly compare predictions of 3D-RISM models with
results from the article by Li et al.13, we also used com-
pounds utilized in their study.
The initial geometry guess for each molecule was cre-

ated using the OpenBabel software package48,49. After-
wards, the geometry of each molecule was optimized us-
ing the M06-2X functional50, and the MG3S basis set51

as implemented in Gaussian 09, Revision D.0152. Sol-
vent was represented using the SMD model53. Opti-
mized solutes were assigned OPLS-200554 Lennard-Jones
parameters and Charge Model 5 partial charges (CM5).
Force-�eld parameters were determined automatically us-
ing Maestro55. Charges were extracted from Gaussian
output �les using the CM5PAC program56,57.
Susceptibility functions for NaCl solutions were gener-

ated using dielectrically consistent 1D-RISM (DRISM)58

implemented in the AmberTools 15 package. We used
concentrations of 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5M. Di-
electric constant was set to 78.4, density of water varied
depending on NaCl concentration with data obtained us-
ing equation 1 from Ref 59. The DRISM equations were
solved with tolerance set to 1× 10−12 and grid spacing to
0.025Å. To avoid numerical problems, we initially con-
verged 1D-RISM solutions with KH closure, followed by
PSE-3 and HNC60. In all calculations we used a modi�ed
SPC/E water model, taken from Ref. 61.
3D-RISM calculations were performed using

the rism3d.snglpnt program from AmberTools 15
package61�63. The grid spacing was set to 0.5Å, the
bu�er to 25Å, tolerance to 1× 10−5. The equations
were solved with PSE-3 closure. Using PC+ model,
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Na+ Cl-

Na+ Cl-

Figure 1. The 2D slices of spatial distribution of sodium ions
(left) and chlorine ions (right) around a dipole (top) and p-
nitrophenol (bottom). The yellowish colour corresponds to
lower and blue to higher local density of ions. The concentra-
tion of NaCl was set to 0.5M.

we evaluated solvation free energy of each solute at
each salt concentration, and then used equation 3 to
determine Setschenow's constant. The results of all
calculations, script for generating susceptibility �les, as
well as optimized molecular geometries and topologies
can be found in the Supplementary material.

IV. RESULTS AND DISCUSSION

We started by visualizing spatial distributions of ions
around solutes, predicted by 3D-RISM. It is well known
that chloride, due to its lower polarity compared to Na+,
approaches both interfaces and non-polar molecular sur-
faces; the sodium, on the other hand, is usually found
only near negatively charged regions of molecules64�67.
On �gure 1 one can see slices of volumetric distribu-
tions from 3D-RISM around a hypothetical dipole and
p-nitrophenol. As you can see, 3D-RISM predicts that
compared to sodium, chloride is distributed more evenly
around molecular surfaces: in line with previous studies.
Additionally, near dipole one can also see considerable
amount of overscreening68�70.
Table II compares accuracies of Setschenow's constant

predictions by di�erent salt models. The results by poly-
parameter linear free energy relationship (pp-LFER),

Table II. Accuracies of di�erent models for predicting
Setschenow's constant. The units are l/mol.

Model RMSE SDE bias r
2

da 0.029 0.028 0.009 0.853
hob 0.034 0.029 -0.018 0.839
jc 0.053 0.034 0.041 0.808
hoa 0.056 0.029 -0.047 0.831
de 0.083 0.037 -0.075 0.731

pp-LFER 0.028 0.028 -0.002 0.844
SEA a 0.051 0.035 0.037 0.706
MD/TIP3P a 0.120 0.029 0.116 0.848
COSMO-RS 0.315 0.114 0.293 0.670

a The accuracy of model was evaluated on a di�erent
dataset.

semi-explicit assembly (SEA), molecular dynamics sim-
ulations with TIP3P water and Joung-Cheetham ions
(MD/TIP3P), and COSMO-RS71 are taken from pre-
vious studies13,14. In the literature, one can also �nd
a few more chemoinformatics methods for Setschenow's
constant prediction based on other descriptors or vari-
ous machine learning methods72�75, however the accu-
racy of these models did not signi�cantly exceed the ac-
curacy of pp-LFER approach. We found that predic-
tions made with the Dang's salt force �eld (da) had the
best agreement with experimental data among the stud-
ied 3D-RISM models, both in terms of its accuracy and
the correlation. RISM calculations based on other salt
models had similarly low random error, but larger biases.
The results from PC+ with the Dang's salt model are

similar to the pp-LFER model that was �t on Endo's
dataset using 6 adjustable descriptors. It outperforms
both SEA and COSMO-RS models, which are both par-
tially based on the idea that summing surface elements
of a solute is a useful strategy for predicting solvation
free energies. 3D-RISM, on the other hand, takes into
account correlations between densities of solvent at the
surface of solute, which most likely contributes to its bet-
ter accuracy. Note that good estimates were obtained
only with pressure corrected models, uncorrected 3D-
RISM showed quite poor accuracy (the table with the
results is included in the supporting information). It is
also worth mentioning that accuracies of both SEA and
MD/TIP3P models are evaluated on a di�erent dataset
for which 3D-RISM/PC+ with Dang's NaCl force �eld
has RMSE = 0.038 l/mol, SDE = 0.029 l/mol, bias =
−0.025 l/mol, and r2 = 0.798; the results for other mod-
els can be found in the Supplementary material. The
slight decrease of accuracy is likely explained by less re-
liable experimental data.
Molecular dynamics based predictions of Setschenow's

constant, despite achieving impressive correlation with
experimental data (r2 = 0.848), have a large positive
bias. We believe that the origin of this bias is likely re-
lated to the chosen salt model (jc) and force �elds: GAFF
with TIP3P water. It is likely that combination of Dang
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Figure 2. Setschenow's constants by 3D-RISM/PC+ with
Dang salt model (y-axis) compared to experimental measure-
ments by Endo et al. (x-axis). The units are in l/mol.

salt model and SPC/E water would reduce the bias in
the prediction and make molecular dynamics simulations
one of the most accurate ways of predicting Setschenow's
constant, although, quite time consuming.
On �gure 2 you can see comparison between

Setschenow's constants predicted by 3D-RISM with
Dang's NaCl model and those from experimental mea-
surements (similar �gures for other models can be found
in the Supplementary material. One major outlier is
bisphenol A. 3D-RISM overestimates its kS by 0.13 l/mol:
more than four times greater than the average prediction
error for Dang's model. This molecule was also an outlier
in 3D-RISM calculations with other salt models. While
potentially this might be the result of measurement er-
ror, we believe that the reason for this lies in the fact
that Bisphenol A binds relatively strongly to sodium ion
via π-cation interactions. We performed electronic den-
sity functional theory calculations to test this hypothesis.
The optimization was done using the same level of theory
and software as for initial molecule preparation (M06-
2X/MG3S, with solvent approximated via SMD model).
Optimized geometries for bisphenol A with and with-
out sodium atoms, shown on �gure 3, indicate signi�cant
structural rearrangement as well as considerable bonding
between Na+ and both phenol rings. These type of in-
teractions are di�cult to characterize using conventional
force �elds76, and would require a quantum mechanics
approach to dispersion interactions. Additionally, con-
ventional 3D-RISM operates with rigid solutes and does
not capture salt-induced changes in solute conformation.
To conclude, we have found that the 3D-RISM/PC+

model, combined with the Dang's NaCl parameters can
be used to accurately predict Setschenow's constants for
a wide range of molecules, without prior parametrization.
The model has RMSE=0.03 l/mol and r2 = 0.85 on an
accurate set of measurements produced by Endo et al.
The approach in principle can be extended to other so-

Figure 3. The optimized geometries of bisphenol A with and
without Na+ ion. The distances, shown in Angstroms, are
measured between the centres of benzene rings and the ion.

lutions, although such developments will require further
research and will be a subject of our future work.

SUPPLEMENTARY MATERIAL

See supplementary material for more detailed infor-
mation on performance of 3D-RISM models as well as
calculation input �les.
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