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Abstract—A conventional method to inspect the varietal purity
of rice seeds is based on evaluating human visual inspection
where a random sample is drawn from a batch. This is a
tedious, laborious, time consuming and extremely inefficient
task. This paper presents an automatic rice seed inspection
method using Hyperspectral imaging and machine learning, to
automatically detect unwanted seeds from other varieties which
may be contained in a batch. Hyperspectral image data from
Near-infrared (NIR) and Visible cameras are acquired for six
common rice seed varieties. The results of applying two classifiers
are presented, a Support Vector Machine (SVM) and a Random
Forest (RF), where each consists of six one-versus-rest binary
classifiers. The results show that combining spectral and shape-
based features derived from the rice seeds, increase precision of
the multi-label classification to 84% compared 74% when only
visual features are used.

I. INTRODUCTION

Ensuring rice seed quality is a significant challenge for

the large rice export nations such as India, Thailand, US

and Vietnam. Rice seed impurities can impact on the yield

by introducing weeds and off-types into the crop making it

susceptible to disease. The consequences are not limited to a

decrease in yield but also to the grade and price of the produce.

A responsibility lies with rice seed producers to ensure high

quality seed and a critical procedure is the batch screening and

inspection. Conventional methods to inspect seeds, as shown in

Fig.1(a), rely on extracting a sample from a batch and human

visual inspection. The inspection of the sample is performed

visually to assess the grain properties, such as shape, length,

width and size. This task is tedious, laborious, time consuming

and requires trained and experienced personnel.

Recently, the cost and size of Hyperspectral Imaging

(HSI) Systems has reduced significantly. This technology has

emerged as a useful tool in food sciences and applications.

Such systems provide spatial and textural information like

other traditional cameras with the added advantage that they

offer high resolution spectral signatures for each pixel in the

image data acquired. In this paper, we investigate the benefits

of analyzing the extracted features taken from a HSI system to

solve issues of rice seed varietal purity inspection. We deploy

(a)
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Fig. 1. (a) A conventional way (human visual) to inspect purity of rice seed
samples. (b) Six common rice seed varieties examined in this study.

an automatic inspection method which combines hyperspectral

imaging and tools from machine learning to automatically

detect seeds which are erroneously contained within a batch

when they actually belong to a completely different species.

In this study, the purity of six common rice seed varieties, as

shown in Fig.1(b), are examined.

Automatic rice seed inspection systems that employ ma-

chine vision addressing this challenge have been shown in pre-

vious works [1]–[3]. Commonly, shape descriptors of the seed

samples are extracted through image processing and vision-

based approaches [1], [3], [4]. The challenge in comparing

and quantifying performance between these approaches, is that

each one has been evaluated on different rice seed varieties.

It is therefore unclear if the differences in performance come

from better feature descriptors or if this is due to varying inter-

class/intra-class among the examined species. In this study,

a HSI system provides both spatial and spectral information

about the seed samples. Therefore, the inspection techniques

that utilize both types of feature should be investigated. We

formulate the purity inspection problem as six one-versus-rest

binary classifiers. In this work, the binary classifiers are built

using a SVM and a RF, and both approaches are compared.

While the spatial features measure physical properties of rice

seed, the mean spectrum of all pixels in a seed sample can

be used to infer chemical properties of the species. Thanks

to discriminant analysis techniques, the combinations of both

features show significant benefits and potential in hyperspec-

tral imaging, particularly, to develop a machine vision system

for rice seed quality assessments.

The remainder of paper is organized as follows. Section

II briefly describes related techniques for rice and rice seed978-1-5090-4134-3/16/$31.00 c© 2016 IEEE



quality assessments using vision-based/HSI systems. Section

III describes the device setup, data acquisitions and correc-

tion procedures. Section IV presents the feature extraction

approach. Section V analyzes inter-and intra-class variations

of the examined species. Section VI reports the classification

results. Finally, Section VII concludes the work and suggests

further research directions.

II. RELATED WORK

There are many machine vision systems for food quality

evaluation. A good survey can be found in Da-Wen Sun’s

textbook [5]. In Chapter 16 of this textbook, Y. Ogawa com-

prehensively surveys rice grain quality evaluation techniques

using computer vision technology which analyzes features

such as physical property measurements and compound con-

tent and distribution. Deploying such vision-based systems

has been widely investigated. Lai et al. [6] applied an in-

teractive image analysis method for determining the physical

dimensions and classifying the variety of grains. In [7], the

authors measured physical dimensions such as grain contour,

size, color variance and distribution, and damage. Sakai et al.

[8] demonstrated the use of two-dimensional image analysis

for the determination of the shape of brown and polished

rice grains of four varieties. Z.Lui et al. [1] implemented a

method of identification based on neural networks to classify

rice variety using color and shape features. Guzman et al.

[9] investigated grain features extracted from each sample

image. They then utilized multilayer artificial neural network

models for automatic identification of 52 rice grains. More

recent works [1]–[3] focused on rice seed variety classification.

Commonly, shape descriptors of the seed samples are ex-

tracted, then the classifiers such as Random Forests [3], Neural

Networks [1] or Cubic B-Splines shape model [4] are trained.

An automatic machine-vision system includes several stages,

in which the most important steps are image data collection,

feature extraction (such as shape, size, color, and orientation

etc.), and feature representations via models using pattern

recognition algorithms or multivariate analysis techniques.

Recently, HSI systems have been widely used in food and

agriculture engineering. The authors in [10] give a broad range

of HSI applications for beef, pork, fruits, and plant products

quality evaluations. For the rice grain quality inspection, [11]

used a range of VIS/NIR spectral (400-1000 nm) information

for discriminating three rice varieties. By using Principle

Component Analysis (PCA) and Back Propagation Neural

Network (BPNN), they achieved a classification accuracy of

89.18 and 89.91 % for PCA and BPNN model, respectively.

The authors in [12] find out that a combination of the Least

squares support vector machine (LS-SVM) regression method

and Vis/NIR spectroscopy at range 325-1075 nm provides a re-

alizable technique to monitor the nitrogen status in rice. More

recently, a HSI system has been used in [13] for identifying

four rice seed cultivars. By utilizing the full spectral range

1,039-1,612 nm, they achieved very promising results, that is

up to 100% accuracy with a Random Forest (RF) classifier.

However, four cultivars in [13] were hybridized from other

(a) (b)

Fig. 2. Experimental setup of the data acquisition. (a) A schematic view .
(b) A Photo of the real HSI system

species, therefore, it is unclear how the inter/intra class varies

among them. In this paper, we extract and combine both spatial

and spectral features from the hyperspectral datacube acquired

by a HSI system with range of NIR spectral. We argue that the

combination of features increases classification performance.

III. RICE SEED SAMPLE DATA COLLECTIONS USING A

HYPERSPECTRAL IMAGING SYSTEM

A. Hyperspectral Imaging System Setup

The experimental setup of the data acquisition system is

shown in Fig.2(a). The NIR HSI system used to capture

the data was the Inno-SpecTM Redeye 1.7 model (Inno-Spec

GmbH, Germany) capturing 256 wavelengths from 950.73 -

1759.4 nm. The HSI device operates using a line scan where

the spectral info from an entire row of pixels is captured at

any given time. For this purpose, a conveyor platform (the

stage) was positioned underneath the imager to allow HSI

scanning. Two halogen bulbs were used to illuminate the scene

and the bulbs were positioned to create balanced illumination

across the scan line. To ensure repeatable data acquisitions, the

halogen bulbs were switched on and allowed to reach stable

operating temperature before the data were acquired in a dark

room to minimise illumination variability between captures. To

properly collect the data, three parameters in the HSI system

needed to be adjusted:

• The exposure time of the camera (e.g., 500 ms) versus the

speed of movement of the stage (5 mm/s), which should

be calibrated in order to avoid spatial distortions;

• A trade-off between the exposure time and the aperture

of camera (f=1/8) to ensure a suitable light intensity;

• The height between the lens and the stage which is

adjusted so that whole seed samples area are in field-

of-view of the camera. A photo of the real HSI system

is shown in Fig. 2(b).

B. Rice seed dataset acquisition

Six rice seed varieties (as shown in Fig.1(b)) were obtained

from a seed production company in Vietnam: BC15, BT07,

Khang dan 18 (shortly named KD18), N97, Nep Lang Lieu

(LL), and Q5. The selected varieties are the most frequently

planted in North Vietnam. The producer screened the samples

using experienced technical staff to ensure that each sample



(a) At 1109.3 nm (b) At 1267.78 nm (c) At 1424.61 nm (d) Normalized wavelengths 

Fig. 3. Data correction results. (a) - (c) Normalized images at specific wavelengths. (d) Profiles of the normalized wavelengths

population only contained seeds of the corresponding species.

The sample population of each variety consisted of 108 seeds

with 648 seeds across all varieties. The 108 samples from

each species was then divided to 3 batches with 36 samples

each. The 36 seeds were positioned on a white sheet of paper

constructing a 6 × 6 matrix (e.g., as shown in Fig.3(a)-(c)),

that was placed on a conveyor platform for imaging by the

NIR camera. This resulted in 3 hyperspectral datacubes per

variety resulting in 36 total number of the datacubes.

C. Data correction

Let y denote a datacube consisting of reflectance values λ

as a two-parameter set:

yλ(x), x ∈ X, λ ∈ Λ (1)

where λ represents a wavelength belonging to Λ, that is a set of

the wavelengths at NIR (Near-Infrared) range 950.73-1759.4

nm and x represents a pixel in X where X is 2-D coordinate

by row m and column n. For each specific wavelength,

the array of reflectance values can be regarded as an image

where spatial relationships between the pixel reflectance values

have meanings. For example, Fig. 3 represents three images

acquired by the device at specific wavelengths of 1109.3 nm,

1267.78 nm, and 1424.61 nm. It is noticed that at each x,

the raw reflectance value could vary due to different lighting

conditions. To reduce the variation in the acquired reflectance

values among acquisition data and scale the data relative to

known max reflectance value, we normalize the raw data as

below:

yλ(x) :=
yraw,λ(x) − b(n, λ)

w(n, λ) − b(λ, λ)
, λ ∈ Λ (2)

where b(n, λ) and w(n, λ) are the reflectance values of ref-

erence dark and white objects. The dark object is setup by

covering the lens-cap and the white object is a white spectralon

tile which is a highly reflective Lambertian scatter commonly

used to calibrate HSI systems. For each λ, b(n) and w(n) are

averaged on reflectance values at column n along the white

tile’s height dimension. The images shown in Fig.3(a)-(c) have

been normalized. Corresponding wavelength profiles of the

rice seeds are shown in Fig. 3(b).

(a) Difference Image 
diff

I (b) Segmented seeds

Fig. 4. The procedures separating rice seeds from background

IV. SPATIAL AND SPECTRAL FEATURE EXTRACTIONS

A. Separating seed samples from background

In the proposed system, rice seed samples need to be

separated from background regions in order to allow the

extraction of the physical properties of the grain as well

as spectral features. However, seed segmentation is not a

straightforward procedure because of artefacts such as shadow

and lighting conditions. This task also suffered due low spatial

resolution of the hypercubes data. Thus, we deploy a series of

image processing techniques to overcome these difficulties.

Firstly, we consider the difference of low-band and high-

band images, as shown in Fig.3(a) and Fig.3(c), respectively,

to boost contrast. This difference image Idiff differentiates

between background regions and foreground ones (e.g., rice

seed regions). A morphological opening operator is then

applied on the difference image, named background image

Ibg . As inherited from a Top-hat transform, the foreground

image Ifg = |Idiff − Ibg| making by subtraction Idiff and

Ibg . An example of Ifg is shown in Fig. 4(a). Comparing with

original image at a specific wavelength (e.g., Fig. 3(a)-(c),

the shadow and artifacts in Ifg are eliminated. Consequently,

a thresholding operator using Otsu’s threshold is applied on

Ifg . The extracted seeds are marked by the red boundary in

Fig.4(b).

B. Spatial Feature extractions

Given an individual rice seed from batch samples, we

measures spatial/morphological features. These features are se-
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Fig. 5. Spatial feature extraction (a) on hyperspectral datacube; (b) on CCD
camera. (c) Photo of a seed sample for reference

lected because of their effectiveness for discriminating among

species, as shown in recent works such as [3] and [1].

A morphological feature descriptor f with 6 dimensions is

calculated as follows:

• f1: is the number of pixels inside a seed sample

• f2, f3: are MajorAxisLength and MinorAxisLength that

specify the length (in pixels) of the major/minor axis of

the ellipse that covers the boundary of the sample seeds.

• f4 = MinorAxisLength
MajorAxisLength

and

• f5 = Perimeter
Area

, where Perimeter is number of pixels

along the seed boundary; and Area is f1 feature.

• f6 = FociDistance
MajorAxisLength

is eccentricity specified by

FociDistance which is the distance between two foci

of the ellipse, and the major axis length.

These features are illustrated in Fig. 5(a). Note that different

from [3], the HSI camera gives a low resolution spatial image

of each seed (e.g., 40 x 50 pixels) versus seed samples

collected from high resolution CCD camera [3] (e.g., 630 x

900 pixels, as shown in Fig. 5(b)-(c)). This difference degrades

the discrimination ability between the rice species when using

only spatial features.

C. Spectral feature extractions

A hyperspectral datacube consists of spectral information

from every pixel of the seed regions. The mean spectrum

of all pixels in such regions is used as spectral features.

In this paper, for each seed, spectral profiles of one rice

seed species are shown in Fig. 3(d). As denoted in (2), a

raw spectral feature vector of a rice seed sample is a set

of yλ in which λ is one of 256 bands belonging a range

Λ = 950.73 − 1759.4nm. Fig 7(a)-(b) shows the spectral

features of two seed samples. The mean spectrum over seed

regions are shown in the corresponding profiles in right panels.
Dimensionally reduction is widely applied in spectral data

analysis due to the redundancy and co-linearity of spectral

data. This also facilitates the construction of simple, stable and

practical classification models. To do so, Principal Component

Analysis (PCA) has been widely used with large datasets like

the collected datacube. PCA helps to transform the original

data into a small number of uncorrelated variables. A PCA

transformation is applied on the spectrum profile of the whole

collected data:

(a) (b)

Fig. 6. PCA reconstruction using the first ten components. (a) Overlapping
the original wavelength and the reconstructed profiles of a seed sample. (b)
A closed-up version. Blue line is original data; red line is reconstructed data
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Results of PCA provide a mean µΘ and eigenvectors νΘ.

Given the normalized datacube yΛ, the projected data in a

PCA space is defined by:

yΛ → fpc1,pc2,..,pc10 : νT
Θ(cλ − µΘ) (3)

The first few principal components (PCs) can be used

to explain most of the sample data, which results in the

data dimension reduction. In our dataset, the first ten PCs

(fpc1, .., fpc10) can reconstruct 99% original data. The con-

sistency of the reconstructed data using first ten PCs versus

all of the original data is illustrated in Fig. 6. Therefore, the

first ten PCA-based features rather than entire spectral data

are utilized as spectral features for each seed sample to build

and apply classification models.

V. DISCRIMINANT ANALYSIS AND CLASSIFICATION

A. Species discrimination using spectral features

Many relevant works [1]–[3] have evaluated shape-based

properties for identifying/separating rice seed species. How-

ever, these measurements strongly depend on the grain’s

positioning on the captured surface. For example, Fig. 7(a)-

right panel shows an illustration of two seeds of the same

species. The shape-based properties of these seeds such as

perimeter, MinorlengthAxis should not be same in this case.

Conversely, the spatial appearance of two different species

may be very similar, e.g. two seeds shown in Fig. 7(b)-

right panel. The benefit of the HSI system is that it can

measure hidden information inside the seeds. As expected,

the wavelength profiles of two seeds in Fig. 7(a) are very

similar. In the same way, the wavelength profiles of the seed

samples from two different species in Fig. 7(b) are separable.

Statistically speaking, the wavelength profiles of each species

is averaged based on a hyperspectral datacube collected from

108 seed samples. Pair comparisons between one species with

others are shown in Fig. 8(a)-(e).
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Fig. 7. Discriminant analysis examples. (a) Two seeds of same species. (b). Two seeds from different species. On (a)-(b) Left panel: detailed wavelength
profiles; Right panel: Averaged wavelength profiles. Photos of the rice seed samples for references
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Fig. 8. Comparison wavelength profiles of a species (Q5) with others. The analysis utilized the hyperspectral datacubes of six examined rice seed species

B. Building Classifiers

Utilizing the spatial, and spectral features, as well as their

combination, we build classifiers that come from two different

classification methods.

Random Forest is a machine learning algorithm combining

a ’bagging’ idea and a "random subspace method". A RF

classifier contains many decision trees, and each tree is grown

from a bootstrap sample of the response variable. The best

split is selected from a random subset of variables at each node

of the tree, and then the tree grows to the maximum extent

without pruning. Prediction can be made from new data by

aggregating the outputs of all trees. RF is a fast and effective

algorithm for dealing with a large amount of data. RF has

shown the advantages that it reduces variance and achieves

comparable classification accuracy. In this study, number of

the decision trees is equal 500.

Support Vector Machine is a widely used supervised sta-

tistical learning algorithm. SVM shows advantages in dealing

with small sample, non-linear and high dimensional data. SVM

is based on the structural risk minimum (SRM) and SVM has

high generalization capacity and could provide a flexible and

easy-to-compute solution. Selection of the kernel function in

SVM models has a significant influence in model performance,

and in this study, the commonly used Radial Bias Function

(RBF) is employed as kernel function.

VI. EXPERIMENTAL RESULTS

We evaluate the performance of each set of features (spatial,

spectral individually, and their combination) on the collected

dataset, as described in Section III-B . The feature extraction

procedures were implemented using Matlab on a PC Core

i5 3.10GHz CPU, 4GB RAM. The LibSVM library [14]

and a Random Forest Library [15] were adopted to build

classifier models. To validate the proposed method, leave-p-

out-cross-validation was utilized. For each classifier, 50 seed

samples were collected randomly as positive samples, the

negative samples were collected from all other species so

that total negative samples are equal 50 (in other words, 10

from each other species). To evaluate the performance, two

criteria measures are defined in (4). The performance criteria

are calculated by averaging over 10 runs.

Precision(P ) =
tp

tp + fp
, and Recall(R) =

tp

tp + fn
(4)

where tp is the number of true positive, fp is the number of

the false positive, tn is the number of true negative and fn is

the number of false negative.

The performance of the classifiers using only the spatial

features (f = f1, .., f6) is given in Table I. As shown, the

RF classifier is slightly better than the SVM and the best

performance is achieved with the LL species. Utilizing only

the raw spectral data, Table II shows higher performances for

BT07, KD18, LL, N97 than that using only spatial features.

By combining the spatial and the spectral features together, a

feature vector consists of 256+6 dimensions. Results utilizing

the combination of features are shown in Table III. Obviously,

the performance increases from 77-78% precisions by using

only spatial or spectral features to 81% when combined.

Finally, by using 10 principal components (to reduce the

dimensionality of the spectral data) and spatial features, over-

fitting issues are eliminated. This results in higher performance

and the techniques achieved the precision at 84%. These

evaluations confirm the benefits of the features extracted from

a HSI system.



TABLE I
SPATIAL FEATURE PERFORMANCES

Speices
SVM RF

P Recall F-Measure P Recall F-Measure
BC15 0.77 0.71 0.74 0.8 0.8 0.8
BT07 0.73 0.73 0.73 0.78 0.74 0.76
KD18 0.7 0.75 0.72 0.71 0.7 0.7

LL 0.81 0.71 0.76 0.89 0.81 0.85
N97 0.68 0.55 0.61 0.72 0.62 0.67
Q5 0.61 0.56 0.59 0.7 0.71 0.7

Average 0.72 0.67 0.69 0.77 0.73 0.75

TABLE II
SPECTRAL FEATURE PERFORMANCES

Speices
SVM RF

P Recall F-Measure P Recall F-Measure
BC15 0.75 0.27 0.39 0.67 0.66 0.66
BT07 0.98 0.53 0.69 0.86 0.83 0.84
KD18 0.91 0.6 0.72 0.82 0.85 0.83

LL 0.69 0.91 0.78 0.82 0.82 0.82
N97 0.78 0.58 0.67 0.8 0.79 0.79
Q5 0.65 0.43 0.52 0.73 0.74 0.74

Average 0.79 0.55 0.63 0.78 0.78 0.78

VII. CONCLUSION AND DISCUSSION

Conclusion: This paper describes a HSI system supporting

rice seed varietal purity inspection. The proposed system

combines a hardware camera setup and a tool for extracting

features from the collected hyperspectral datacubes. We have

confirmed that by taking advantage of a HSI system on both

spatial and spectral features, we achieve very promising results

on eliminating impurity species from large seed samples.

Discussion: Utilizing similar spatial features, [3] reported

90% precision on using a RF classifier. That results are higher

than that shown in Table I. However, the imaging acquisition

used in [3] is a high resolution camera. As shown in Fig

5(b), the shape properties of the segmented seeds therefore

are described more precisely in [3] than the seed samples

collected by our HSI system. This observation suggests us

a new imaging modality in the future. Going forward, we will

combine data from registered high resolution images from a

CCD camera with spectral images from HSI sensor to improve

upon work of [3].

A map of the spatial distribution of the chemical con-

stituents in a rice seed sample can be generated from spectral

data. There are evidences given in [16] in which intuitive

chemical components in wheat kernels is observable by a HSI

system. Therefore, we believe that utilizing the spectral data

at each pixel rather than mean spectrum on all of the pixels of

the seed regions can be useful to investigate internal features

of a seed. Consequently, visually discriminating two different

species will be better.
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TABLE III
SPATIAL AND FULL BANK SPECTRAL FEATURE COMBINATIONS

Speices
SVM RF

P Recall F-Measure P Recall F-Measure
BC15 0.75 0.47 0.58 0.71 0.72 0.71
BT07 0.81 0.66 0.73 0.87 0.85 0.86
KD18 0.76 0.73 0.74 0.86 0.87 0.86

LL 0.71 0.56 0.63 0.88 0.84 0.86
N97 0.81 0.48 0.6 0.8 0.81 0.8
Q5 0.65 0.51 0.57 0.76 0.79 0.77

Average 0.75 0.57 0.64 0.81 0.81 0.81

TABLE IV
SPATIAL AND 10 PCA-BASED FEATURES COMBINATIONS

Speices
SVM RF

P Recall F-Measure P Recall F-Measure
BC15 0.73 0.69 0.71 0.78 0.83 0.81
BT07 0.8 0.69 0.74 0.87 0.89 0.88
KD18 0.77 0.72 0.74 0.92 0.89 0.9

LL 0.8 0.73 0.76 0.89 0.87 0.88
N97 0.73 0.53 0.61 0.81 0.82 0.82
Q5 0.62 0.55 0.58 0.74 0.75 0.75

Average 0.74 0.65 0.69 0.84 0.84 0.84
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