
Lue, Leo (2016) Variational perturbation theory for electrolyte solutions. 

In: Variational Methods in Molecular Modeling. Molecular Modeling and 

Simulation . Springer, pp. 137-154. ISBN 9789811025006 , 

http://dx.doi.org/10.1007/978-981-10-2502-0_5

This version is available at https://strathprints.strath.ac.uk/58335/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/77034537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Variational perturbation theory for electrolyte

solutions

Leo Lue

1 Introduction

In typical treatments of the statistical mechanics of electrolyte solutions, the focus is

on the particles (ions) in the system. The state of the system is labeled by the particle

positions and orientations, and the partition function of the system is given by an

integral over all these degrees of freedom. Another approach, which we pursue and

present here, is to focus on the interaction potential generated by the particles, rather

than on the particles themselves. We illustrate this approach by examining systems

of particles interacting through electrostatic forces; however, these techniques can

be used for a broad range of interaction potentials.

The remainder of the work is organized as follows. First we describe the repre-

sentation of the partition function of an electrolyte system in terms of a functional

integral over shapes of an interaction potential, rather than the positions and ori-

entations of the ions in the system. As part of this, we will review electrostatics,

and in particular, we will discuss the Green’s function, which describes the propa-

gation of the electric potential from a charge and plays a central role in the theory.

The use and limitations of the mean field approximation to evaluate the functional

integral are discussed. In the following section, we present the variational perturba-

tion approximation, which is a method that overcomes some of the limitations of the

mean-field approximation. Some general aspects of this approach are discussed. The

resulting theory is then illustrated in Sec. 4 by applying it to the point charge model.

The first order variational perturbation theory is compared to the Poisson-Boltzmann

theory, and various features of the model, which are not captured within the classic

Poisson-Boltzmann theory, are discussed, including the influence of image-charge

or polarization interactions due to dielectric interfaces. Finally, the main points of
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this work is are summarized in Sec. 5, along with other applications and extensions

of the theory.

2 Development of the field theory

We consider a multicomponent mixture of charged particles at fixed temperature

T , volume V , and species chemical potentials µα . Associated with each particle of

type α is a rigid charge density, given by Q(r,ΩΩΩ), where ΩΩΩ represents its orienta-

tion. These particles are embedded in a medium with a spatially varying dielectric

constant ε(r). In addition, there could be fixed charge distribution Σ(r) through the

system, for example, due to a charged boundary.

2.1 Electrostatics

The total charge density Q(r) in the system is composed of a contribution from

the mobile particles and a contribution from a fixed charge density Σ(r) and can be

written as

Q(r) = ∑
kα

Q(r−Rkα ,ΩΩΩ kα)+Σ(r) (1)

where Rkα is the position of the kth particle of type α , and ΩΩΩ kα denotes its orienta-

tion.

Charges are sources for the electrostatic potential φ(r). These two quantities are

related by the Poisson equation [1]:

− 1

4π
∇ · [ε(r)∇φ(r)] = Q(r). (2)

Key to the description of electrostatic interactions is the Green’s function G0 of the

Poisson equation, which is defined through [1]

− 1

4π
∇ · [ε(r)∇G0(r,r

′)] = δ d(r− r′), (3)

The Green’s function G0(r,r
′) gives the electrostatic potential φ(r) generated at

position r due to a point charge located at r′.In the specific case where the dielectric

constant has a uniform value ε through the entire system, the explicit form of the

Green’s function, denoted by Gfree, is

Gfree(r,r
′) =

1

ε|r− r′| . (4)

The form of the Green’s function is affected by the variations in the dielectric con-

stant ε(r) through the system, which reflects the polarizability of the background.
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The manner in which the potential emanates from a general charge distribution

and propagates through the system is characterized by the Green’s function:

φ(r) =
∫

dr′G0(r,r
′)Q(r′) (5)

which is simply another manner to write the Poisson equation.

The total electrostatic energy Eelec of the system can be written as the product of

the charge density in the system and the electrostatic potential [1]:

Eelec =
1

2

∫

drQ(r)φ(r). (6)

Substituting the expression for the electrostatic potential in terms of the charge den-

sity, as given in Eq. (5), the energy of the electrostatic field can be written in a more

familiar form:

Eelec =
1

2

∫

drdr′Q(r)G0(r,r
′)Q(r′) (7)

This expression for the energy generalizes Coulomb’s law (where G0 is replaced

with Gfree) for the situation where the dielectric constant is not spatially uniform

dielectric constant.

The expression for the electrostatic energy given in Eq. (7) contains contributions

from the interaction of the charge of a particle with the electrostatic potential that it

generates — the self energy of the particle. The electrostatic self energy of a particle

of type α is given by

ese
α (R,ΩΩΩ) =

1

2

∫

drdr′Qα(r−R,ΩΩΩ)Gfree(r,r
′)Qα(r

′−R,ΩΩΩ) (8)

The self energy is the interaction of a particle’s charge distribution with the elec-

trostatic potential it generates in the absence of spatial variations of the background

dielectric constant. The introduction of inhomogeneities in the dielectric constant,

such as polarizable bodies or dielectric interfaces will lead to a shift of the self

energy.

Removing this self energy contribution (which is potentially infinite, such as for

a point charge), the electrostatic interaction energy between particles is given by

Eelec =
1

2

∫

drdr′Q(r)G0(r,r
′)Q(r′)−∑

kα

ese
α (Rkα ,ΩΩΩ kα). (9)

2.2 Partition function

All the equilibrium static properties (e.g., structural and thermodynamic) of an open

system of fixed volume V , temperature T , and species chemical potential µα can be

determined from knowledge of the grand partition function ZG. The grand partition
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function of this system is given by [2]

ZG[γ,Σ ] =
∞

∑
N1=0

· · ·
∞

∑
NM=0

∏
ν

1

Nν !Λ dNν
ν

×
∫

∏
tτ

dRtτ dΩΩΩ tτ e−βEelec−βEref+∑kα γα (Rkα ,ΩΩΩ kα )

(10)

where β = 1/(kBT ), kB is the Boltzmann constant, Λα is the de Broglie wavelength

of particles of type α , γα(Rkα ,ΩΩΩ kα) = β µα −βu
(1)
α (Rkα ,ΩΩΩ kα) is a dimensionless

chemical potential which includes the effect of an applied one-body potential u
(1)
α ,

and Eref is the interaction energy between particles that is not due to electrostatics

(e.g., excluded volume).

In order to transform the partition function from a sum over particle positions and

orientations to a sum over shapes of a fluctuating field, we introduce the Hubbard-

Stratonovich transformation [3, 4] in order to rewrite the grand partition function of

the system as a functional integral. In terms of the electrolyte systems, this approach

has been used by many researchers [5, 6, 7, 8]. This transformation allows us to

represent the electrostatic interaction energy Eelec of the charge distribution in the

system in terms of the following average

exp

(

− 1

2β

∫

drdr′Q(r)G0(r,r
′)Q(r′)

)

=
〈

e−
∫

drQ(r)iψ(r)
〉

0
(11)

where

〈(· · ·)〉0 =
1

N0

∫

Dψ(·)(· · ·)e−H0[ψ], (12)

the Hamiltonian H0 is given by

H0[ψ] =
1

2β

∫

drdr′ψ(r)G−1
0 (r,r′)ψ(r′), (13)

and N0 is a normalization constant which is given by

N0 =
∫

Dψ(·)e−H0[ψ] ∝ (detG−1
0 )1/2 (14)

Consequently, we find that the grand partition function can be written as

ZG[γ,Σ ] =

〈

Zref
G [γ −Qiψ +βese]exp

[

−
∫

drΣ(r)iψ(r)

]〉

0

(15)

where Zref
G [γ] is the grand partition function of a system where there are no electro-

static interactions between the particles.

The main physical interpretation of this mathematical transformation of the par-

tition function is that the grand partition function of a system with electrostatic

interactions is identical to a system without electrostatic interactions, but with each
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particle interacting with a “randomly” fluctuating external field. The strength of the

coupling of each particle to this field is proportional to its charge:

γα(R,ΩΩΩ)→ γα(R,ΩΩΩ)−
∫

drQα(r−R,ΩΩΩ)iψ(r)+βese
α (R,ΩΩΩ).

The field ψ is not entirely randomly distributed but, rather, is spatially correlated

to itself. It is actually distributed according to a Gaussian probability distribution

function with a zero mean. The correlation of a fluctuation of ψ at a position r and a

fluctuation at a position r′ is given by the Green’s function of the Poisson equation

(i.e. 〈ψ(r)ψ(r′)〉 = βG0(r,r
′)). The Hubbard-Stratonovich transformation is not

limited to electrostatic interactions, but it can also be performed on any general

pairwise additive interaction. The two-point correlation of the fluctuating field is

proportional to the pairwise interaction potential of the system.

2.3 Dispersion interactions

Before we discuss methods to evaluate the grand partition function, there are a cou-

ple of nice features that should be mentioned about the functional integral formu-

lation. First, the “fluctuations” of the electric potential in the system were assumed

to be due to the thermal motion of the ions in the system. However, we can con-

sider the partition function for a system without any charged particles. The partition

function essentially becomes the determinant of the Green’s function of the Pois-

son equation. Changes in the arrangement of dielectric bodies in the system will

alter the function εr), and, consequently, will affect the Green’s function G0(r,r)
of the Poisson equation. This will lead to differences in the normalization constant

N of the functional integral, which are essentially related to the determinant of the

Green’s function

βF =− ln
N0

Nfree

=
1

2
Tr ln

G0

Gfree

. (16)

Interestingly, in this case, the functional integral formulation reduces to the Lifshitz

theory of dispersion interaction [9]. The theory is able to nicely couple dispersion

(aka van der Waals) forces and electrostatic interactions within a single framework

[10].

The difference in this determinant in the situation where there are dielectric bod-

ies versus the absence of dielectric bodies (the free state), leads to an effective inter-

action between the bodies due to shift in the normal modes available to the electric

potential. So one nice thing about this transformation is that it allows us to natu-

rally couple the thermal motion of the charged particles in the system to the zero

frequency dispersion interactions. For example, we naturally get screening of the

dispersion interaction [7, 11, 12, 13].
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2.4 Mean-field approximation

The functional integral formulation of the partition function is exact. Unfortunately,

it is not possible to analytically evaluate the functional integral due to the nonlinear

dependence of the reference partition function lnZref on the one-body potentials

γα(R,ΩΩΩ). As with all exact truths, we really can not do anything useful until we

make some sort of approximation or simplifying assumption.

One of the simplest approximations is to neglect the fluctuations in the field alto-

gether and simply choose the value of the field which has the “largest” contribution

to the free energy — the largest value of the integrand. That is, we approximate the

average of a quantity of a functional A[ψ] as

〈

eA[ψ]
〉

0
≈ eA[ψ̄] (17)

where ψ̄ is the form of the function ψ which makes the functional eA[ψ] stationary:

δA[ψ̄]

δψ(r)
= 0 (18)

This is known as the mean field approximation.

Applying this to the evaluation of the grand partition function, we find

lnZG[γ,Σ ]≈ 1

2β

∫

drdr′iψ̄(r)G−1
0 (r,r′)iψ̄(r)−

∫

drΣ(r)iψ̄(r)

+ lnZref
G [γ −Qiψ̄]

(19)

The final term is the grand potential of the reference system, where the chemical

potential (or one-body potential) of the particles has been shifted by a coupling of

the particle by its charge to the mean field ψ̄:

γα(R,ΩΩΩ)→ γα(R,ΩΩΩ)−
∫

drQα(r−R,ΩΩΩ)iψ̄(r). (20)

In the mean field approximation, contributions of configurations of the system that

deviate from the representative value ψ̄ are entirely neglected.

The value of ψ̄ is determined by the stationary condition

δ lnZG[γ,Σ ]

δψ̄(r)
= 0. (21)

This leads to the Poisson equation:

− 1

4πβ
∇ · ε(r)∇iψ̄(r) = ∑

α

∫

dRdΩΩΩQα(r−R,ΩΩΩ)ρα(R,ΩΩΩ)+Σ(r) (22)



Variational perturbation theory for electrolyte solutions 7

where ρα(R,ΩΩΩ) density of particles of type α in the system. From this, we find that

the field iψ̄ can be directly related to the average electrostatic potential in the system

as iψ̄(r) = βφ(r).
The particle density is given by

ρα(R,ΩΩΩ) = ρ ref
α (R,ΩΩΩ ;γ −Qiψ̄). (23)

Within the mean-field approximation, we see that the particle density is the same as

for the reference system (which does not include electrostatic interactions) but with

an additional one-body interaction given by the coupling of the particle charge to

the average electrostatic potential [14].

This is a good approximation when the charge of the particles and the magnitude

of any fixed charges are relatively small. However, if either of these become signif-

icant (e.g., multivalent ion or surfaces with a high charge density), then fluctuations

make an important contribution to the properties of the system. There are also situ-

ations where even though the fluctuations in a system may be small, they can lead

to qualitative differences in the predictions of the theory. One such example is the

depletion of ions in aqueous solution from an air-water interface, thereby increasing

the interfacial tension.

One manner to incorporate fluctuations in the evaluation of the functional in-

tegral is to expand the Hamiltonian in terms of fluctuations in the field around

the mean field value. This is known as the loop approximation. When truncated

at quadratic order, this is the one-loop approximation. This type of approach has

been performed analytically [7, 11, 15] and numerically (e.g., lattice field theory

methods [6, 16, 17]). by many authors. One difficulty with the loop expansion is

that it leads to divergences, which must be dealt with by careful renormalization of

the theory. In the following section, we will present another approach, known as the

variational perturbation approximation, that is free of this issue and has many other

nice features.

3 Variational perturbation approximation

In the previous section, we mentioned mean field theory, where the functional inte-

gral is approximated by only one representative distribution of the field ψ̄ . So long

as the contributions of other shapes of the field are much smaller, then the mean

field approximation should be good. In this section, we discuss the variational per-

turbation approximation [18], a method to systematically include fluctuation contri-

butions to the partition function to increasing orders of accuracy.

In this approach, the integrand in the partition function (see Eq. (15)) is approxi-

mated with a Gaussian function:

HK [ψ] =
1

2β

∫

drdr′[ψ(r)− ψ̄(r)]G−1
K
(r,r′)[ψ(r′)− ψ̄(r′)] (24)
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where GK is a renormalized Green’s function, defined as

G−1
K
(r,r′) = G−1

0 (r,r′)+K (r,r′). (25)

The grand partition function is then rewritten in terms of averages with respect

to the variational Hamiltonian HK as

lnZG[γ,Σ ] =
〈

elnZref
G [γ−iQψ+βese]−(H[ψ]−HK [ψ])

〉

K

NK

N0

(26)

where 〈(· · ·)〉K denotes an average with respect to the Hamiltonian HK , and NK

is the associated normalization constant. The ratio which follows the average is the

change of normalization constant due to the change of the average from using H0 to

using HK .

The average of the exponential term in Eq. (26) can be evaluated using a cumulant

expansion:

ln
〈

eA[ψ]
〉

≈ 〈A[ψ]〉(c)+ 1

2!

〈

A2[ψ]
〉(c)

+
1

3!

〈

A3[ψ]
〉(c)

+ · · ·

where 〈An[ψ]〉(c) denotes the nth cumulant of the distribution. Truncating this ex-

pansion to first order, we find the following inequality

lnZG[γ,Σ ]≥
∫

drdr′iψ̄(r)G−1
0 (r,r′)iψ̄(r′)−

∫

drΣ(r)iψ̄(r)

+
〈

lnZref
G [γ − iQψ +βese]

〉

K
+

1

2
TrK GK + ln

NK

N0

(27)

The true value of the grand partition function will be larger than estimate of the first

order cumulant approximation for any choice of ψ̄ and K .

In the exact theory, the predictions for the properties of the system are indepen-

dent of the choice of ψ̄ and K ; however, by making approximations, the resulting

theory will have a dependence on these quantities. In order to minimize this effect,

select these values such that the free energy is stationary with respect to variations

in these quantities. This leads to the following variation conditions:

δF

δψ̄(r)
= 0 (28)

δF

δK (r,r′)
= 0. (29)

These conditions can be used to determine the “optimal” values of the quantities ψ̄
and K .

Equation (28) leads to the Poisson equation

− 1

4πβ
∇ · ε(r)∇iψ̄(r) = ∑

α

∫

dRdΩΩΩQα(r−R,ΩΩΩ)ρα(R,ΩΩΩ)+Σ(r) (30)
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where ρα(R,ΩΩΩ) is the density of particles of type α and is given by

ρα(R,ΩΩΩ) =
〈

ρ ref
α (R,ΩΩΩ ;γ −Qiψ +βese)

〉

K
. (31)

From this relation, we see that ψ̄(r) = βφ(r) can be identified with the average of

the electrostatic potential, as in the mean-field approximation.

The variational relation with respect to the screening function K (see Eq. (29))

leads to

K (r,r′) =
〈

ψ(r)ψ(r′) lnZref
G [γ −Qiψ +βese]

〉

K

−GK (r,r′)
〈

lnZref
G [γ −Qiψ +βese]

〉

K
.

(32)

One of the key challenges to applying this theory is the ability to solve this equation.

In particular, it is typically quite difficult to determine a closed, analytical form for

GK (r,r′). One approximation strategy is to find some simple variational form for

K (r,r′) where the Green’s function is known, and then vary the parameters of this

function to minimize the free energy.

The Helmholtz free energy functional can be determined by performing a Leg-

endre transform:

F [ρ,Σ ] = ∑
α

∫

dRdΩΩΩρα(R,ΩΩΩ)γα(R,ΩΩΩ)− lnZG[γ,Σ ]. (33)

The resulting expression for the free energy is:

F [ρ,Σ ] = ∑
α

∫

dRdΩΩΩρα(R,ΩΩΩ)[lnρα(R,ΩΩΩ)Λ d
α −1]

− 1

2β

∫

drdr′iψ̄(r)G−1
0 (r,r′)iψ̄(r′)

+
∫

dr

[

∫

dRdΩΩΩρα(R,ΩΩΩ)Qα(r−R,ΩΩΩ)+Σ(r)

]

iψ̄(r)

− ln
NK

N0
− 1

2
TrK G0.

(34)

From the free energy functional, we can derive all static equilibrium properties of

the system.

The use of the variational approximation assumes that the fluctuations of the

field are weak and can be represented by a Gaussian distribution. While this is a

good approximation for fluctuations over large length scales, at short wavelengths it

breaks down.
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4 Point charge model

To concretely illustrate the application of this theoretical framework, we consider

a system of point charges. This model is commonly used to describe electrolyte

systems. The charge density for a point charge is given by

Qα(r,ΩΩΩ) = qα δ d(r) (35)

Half of the particles are cations (denoted by +) with charge q, and the other half are

anions (denoted by −) with charge −q.

There are no other interactions in the system apart from electrostatic interactions.

The reference system is, therefore, an ideal gas, which has a grand partition function

given by

ZG[γ] = ∑
α

Λα

∫

dRdΩΩΩeγα (R,ΩΩΩ). (36)

A key length scale for this system is the Bjerrum length lB = βq2/ε , which is the

distance at which the electrostatic interaction energy between two charges equals

their thermal energy kBT .

4.1 Mean-field approximation

We first examine the mean-field approximation for the point charge system. The

grand partition function for the point charge model in the mean field approximation

is given by

lnZG[γ,Σ ]≈ 1

2β

∫

drdr′iψ̄(r)G−1
0 (r,r′)iψ̄(r′)−

∫

drΣ(r)iψ̄(r)

+∑
α

Λ d
α

∫

dReγα (R)−qα iψ̄(R).
(37)

The value of the mean field is determined from the stationary condition, given in

− 1

4πβ
∇ · ε(r)∇iψ̄(r) = ∑

α

qα ρα(r)+Σ(r) (38)

where ρα(r) is the density of particles of type α .

From the grand partition function, we can derive all static equilibrium properties

of the system. In particular, the density of particles of type α is give by:

ρα(R) = Λ d
α eγα (R)−qα iψ̄(R). (39)

Therefore, we see that the mean field approximation leads to the Poisson-Boltzmann

theory.
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The corresponding expression for the Helmholz free energy is

F [ρ,Σ ]≈− 1

2β

∫

drdr′iψ̄(r)G−1
0 (r,r′)iψ̄(r)+

∫

dr

[

∑
α

qα ρα(r)+Σ(r)

]

iψ̄(r)

+∑
α

∫

dRρα(R)[lnρα(R)Λ d
α −1].

(40)

4.2 Debye-Hückel theory

Now we apply the variational perturbation theory at first order to the point charge

model. First we consider a uniform system. In a uniform system, ψ̄(r) = 0 due

to symmetry. Using this fact, combined with the expression for the renormalized

Green’s function, the grand partition function is determined to be

1

V
lnZG[γ]≥ ∑

α

zα e
κlB

2 − κ3

24π
(41)

where V is the system volume, and zα = Λ d
α eγα is the fugacity of ions of type α .

Due to electroneutrality, the fugacity of the cations and anions must be equal; we

denote this common value by z±.

From the variational condition (see Eq. (29)), the renormalized Green’s function

is

GK (r,r′) =
e−κ|r−r′|

ε|r− r′| . (42)

where κ is inverse Debye screening length

κ2 =
4πβ

ε ∑
α

q2
α ρα = 8πρ± (43)

where ρ± is the electrolyte concentration. Accounting for the fluctuations of the

electrostatic potential due to the thermal motion of the point charges leads to an

exponential decay of the Green’s function. Physically, this corresponds to screening

of charge.

The Helmholtz free energy is

F [ρ,Σ ]≈+V ∑
α

ρα(lnραΛ d
α −1)−V

κ3

24π
. (44)

The chemical potential of species α is given by

β µα = lnραΛ d
α − βq2

α κ

2ε
. (45)
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The first order variational perturbation approximation for point charges leads to the

Debye-Hückel theory of electrolyte solutions.

For a nonuniform systems, the Helmholtz free energy is:

F [ρ,Σ ]≈− 1

2β

∫

drdr′iψ̄(r)G−1
0 (r,r′)iψ̄(r′)+

∫

dr

[

∑
α

qα ρα(r)+Σ(r)

]

iψ̄(r)

+∑
α

∫

dRρα(R)[lnρα(R)Λ d
α −1]− ln

NK

N0
− 1

2
TrK G0.

(46)

In this case the screening function becomes local

K (r,r′) = δ d(r− r′)∑
α

q2
α ρα(r) (47)

We can identify K with the inverse Debye screening length κ , which varies with

the local density

κ2(r) =
4πβ

ε ∑
α

q2
α ρα(r) (48)

For a uniform system, this becomes a constant.

Before, we mentioned that there is a “self-energy” of the particles, due to the

interaction of each charge with the electrical potential that it generates itself. This

seemingly irrelevant term, which is infinite for point charges, was subtracted out.

However, interestingly, it reappears again in the theory. Due to the screening of

charge by the response of the other charged particles in the system, the electric

potential that a point charge generates is altered. This shifts the self-energy of the

point charge. What we find is that the difference in the self-energy of the point

charge in the presence and in the absence of other mobile charges actually is the

excess chemical potential of the particle. We can see this term in the expression for

the particle density

ρα(R) = Λ d
α eγα (R)−qα iψ̄(R)− βq2

2 ∆GK(R,R). (49)

where ∆GK = GK −∆Gfree is the shift in the Green’s function due to the presence

of fluctuations. The self energy term changes propensity of a particle to remain at

a location due to fluctuations in the local environment caused by thermal motion of

charge.

4.3 Stability of the point charge model

In the previous section, we demonstrated that the first order variational perturbation

approximation leads to the Debye-Hückel theory for electrolyte solutions. In the

variational perturbation approximation, the value of the inverse screening length is
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Fig. 1 Stability of the point charge model. (a) Variation of the grand potential with with the

inverse screening length κ for a fugacity: (i) z±l3
B = 0.07 (black), (ii) z±l3

B = 0.08 (red), and (iii)

z±l3
B = 0.09 (green). (iv) z±l3

B = 0.12 (green). The solid lines represent the situation without a

cutoff, and the dashed lines are for a cutoff of Λ lB = 20.

determined by maximizing the grand partition function, and this leads to the stan-

dard relationship between the inverse screening length and the ionic strength of the

system. The astute reader, however, may have noticed that the expression for the

grand partition function (see Eq. (41) actually diverges as κ → ∞. From a physical

perspective, this is a consequence of the fact that the point charge model is inher-

ently unstable. The positive and negative point charges will collapse with each other,

resulting in a situation where there are an infinite number of ions in the system. So

then what is the relevance of the Debye-Hückel expression for κ?

To investigate this point, we show the variation of the grand partition function

with κ , given by the solid lines in Fig. 1, for several different values of the elec-

trolyte fugacity z±. For all fugacities, lnZG is maximized when κ → ∞, indicating

that the point charge system wants to collapse. At high fugacities, lnZG increases

monotonically with increasing κ . However, for sufficiently low values of z±, which

corresponds to low ion densities, the grand partition function has a local maximum.

This corresponds to the Debye-Hückel theory for the point charge model.

For real electrolytes, excluded volume interactions prevent the collapse of the

system. These interactions suppress the fluctuations at a short length scales. Properly

accounting for their effect on the grand partition function is quite difficult, however,

we can get a qualitative understanding of their influence by introduction a cutoff

wavevector Λ . Fluctuations of length scales less than 2π/Λ are neglected. The re-

sulting expression for the grand partition function is



14 Leo Lue

1

V
lnZG[γ]≥ ∑

α

zα exp

[

κlB

2

2

π
arctan

Λ

κ

]

− κ3

24π

2

π

[

arctan
Λ

κ
− Λ

κ
+

(

Λ

κ

)3

ln

(

1+
( κ

Λ

)2
)

] (50)

This is plotted as the dashed lines in Fig. 1.

Suppressing the short wavelength fluctuations stabilizes the model. The maxi-

mum of lnZG no longer occurs for κ → ∞; it now occurs for finite values of the

inverse screening length for all values of the fugacity. At high electrolyte fugacities,

the maximum in the grand partition function is no longer related to the Debye-

Hückel value. In this situation, the system depends sensitively on the value of Λ . Its

properties are controlled by the physics at short wavelengths. At these conditions,

the point charge model is irrelevant and not applicable.

At low electrolyte fugacities, the maximum is close to the Debye-Hückel value,

although it is slightly shifted; the lower the fugacity (ion concentration), the nearer

this peak is to the Debye-Hückel value. For these conditions, the system is relatively

insensitive to the precise value of the cutoff Λ . In this case, the short wavelength

physics are irrelevant, and the point charge model is relevant.

It is also interesting to note that multiple peaks can appear in the dependence of

the grand partition function on the inverse screening length. Each peak correspond

to a distinct phase of the system. Phase coexistence occurs when the height of the

peaks are the same. Consequently, we see that this approach is able to predict the

vapor-liquid transition of the electrolyte system [19]. Note, however, the quantitative

features of this transition (e.g., critical temperature and density) will depend the

details of short length scale physics of the system.

4.4 Dielectric interfaces

Variations in the dielectric constant of the background medium will affect the man-

ner in which the electrostatic potential propagates from a charge. Here, we examine

the influence of a dielectric interface on the properties of the point charge elec-

trolyte. An electrolyte is immersed in a medium with dielectric constant ε and con-

fined to remain in the half-space defined by z > 0. For z < 0, there is a planar body

with dielectric constant ε ′. A schematic diagram of the system is shown in Fig. 3.

When a charge of magnitude q is place near a planar dielectric discontinuity,

the difference in the polarizabilities of the two media leads to an induced charge

distribution on the interface. The potential generated by this induced charge can

be mathematically represented by a point charge of magnitude q(ε − ε ′)/(ε + ε ′),
located within the dielectric body (see Fig. 2 the same distance from the interface as

the original charge. This is known as an image charge.

Consequently, charges are repelled from a low dielectric surface (i.e. ε ′ < ε),

regardless of the sign of the charge. This leads to a electrostatic depletion effect
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Fig. 2 Schematic diagram of a charge located a distance z from a dielectric interface.

in the case of the low dielectric bodies [20, 13, 21]. Charges are attracted to high

dielectric bodies (i.e. ε ′ > ε), such as metals.

In this planar geometry, the presence of the dielectric interface shifts the Green’s

function [1]

G0(r,r
′) =

1

ε|r− r′| +
ε − ε ′

ε + ε ′
1

ε
√

(x− x′)2 +(y− y′)2 +(z+ z′)2
. (51)

The first term on the right of the equation is the Green’s function in a uniform

dielectric (i.e. Gfree). The second term is the influence of the dielectric interface and

can be interpreted as the potential that eminates from the image charge.

The renormalized Green’s function GK of this system can be determined by

solving the variational condition given in Eq. (29). It can be written as the Green’s

function for the uniform bulk system, where the inverse screening length is equal to

κ , plus a term due to the presence of the dielectric interface:

GK (r,r′) =
e−κ|r−r′|

ε|r− r′| +δGK (r,r′) (52)

where δGK (r,r′) is shift in the Green’s function [20, 22, 23].

If we make the simplifying assumption that the inverse screening length is ap-

proximately constant for z > 0, we find that [20]

δGK (r,r) =−
(

η −1

η +1

)

e−2κz

2εz

− 2η

η +1

κ

ε

∫ ∞

1
dx

√
x2 −1− x

η
√

x2 −1+ x
e−2xκz.

(53)
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Fig. 3 (a) Ion density profile for an electrolyte solution of concentration ρ±l3
B = 0.1 near a dielec-

tric interface with (i) ε ′/ε = 0 (black), (ii) ε ′/ε = 0.5 (red), (iii) ε ′/ε = 1 (green), and (iv) ε ′/ε = 2

(blue). (b) Incremental interfacial tension.

The resulting density profiles for the cations ρ+(r) and the anions ρ−(r) are

given by

ρ+(r) = ρ−(r) = ρ± exp

[

−βq2

2
δGK (r,r)

]

, (54)

where ρ± is the ion concentration far from the dielectric interface (i.e. z → ∞). This

is plotted in Fig. 3(a) for a system with an electrolyte concentration ρ±l3
B = 0.1

near planar interfaces of various dielectric constants. When the dielectric constant

of the interface is larger that that of the solvent (i.e. ε ′ > ε), the ions absorb to the

interface. When ε ′ < ε , such as for electrolytes near an air-water interface, the ions

desorb from the interface. Even in the case where there is no dielectric discontinuity

(i.e. ε ′ = ε), there is a slight desorption of ions from the interface. This is due to the

exclusion of particles from z < 0 and the preference of charged particles to be fully

surrounded by other charged particles.

Adsorption of molecules on an interface will lead to a decrease in the interfacial

tension. On the other hand, desorption of solutes from an interface will increase the

interfacial tension. This effect is what leads to the increase of the surface tension

of water with the addition of electrolytes. For the planar geometry within constant

screening approximation, the interfacial tension is given by

βσ =− κ2

32π

(

η −1

η +1

)

−2ρ±

∫

dz
[

e−(βq2/2)δGK (z,z)−1
]

. (55)
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where ρ± is the bulk electrolyte concentration. The dependence of the interfacial

tension with the bulk electrolyte concentration is presented in Fig. 3(b).

5 Conclusions

We have described a field theory approach to the description of electrolyte systems.

The evaluation of this theory using the variational perturbation approximation has

been discussed. The theory has been developed for particles with a rigid charge dis-

tribution. The point charge model is used to illustrate the application of the method.

In this case, it was found that the mean field approximation for this system leads to

the Poisson-Boltzman theory and the first order variational perturbation approxima-

tion leads to the Debye-Hückel theory.

The theoretical framework presented here is quite flexible and applicable to a

wide variety of systems and geometries. For example, it has been applied to particles

with nonspherically symmetric charge distributions, such as lines [24] and disks [8].

In these cases, the system can form liquid crystalline phases, where the orientations

of the molecules are ordered, although the translational degrees of freedom are not.

It has also been applied to examine ions confined within pores [13, 22, 23].

When truncated at first order, the variational perturbation approximation is able

to go beyond the Poisson-Boltzmann theory, allowing it to capture phenomena like

the influence of dielectric interfaces and the coupling between dispersion and elec-

trostatic interactions (i.e. screening of the dispersion). However, it is only accurate

for systems where the electrostatic interactions are relatively weak (e.g., low sur-

face charge densities, low ion valencies, and high temperatures). This is due to the

assumption that the fluctuations in a system can be well represented by a Gaussian

probability distribution, which is good for long wavelength fluctuations but breaks

down at short wavelengths. As a consequence, it cannot capture effects that occur at

high charge densities, such as overcharging. In principle, the approximation can be

extended to higher orders to increase its range of applicability to higher electrostatic

coupling strengths; however, the rate of improvement of this expansion is relatively

slow.

Another approach to improving the theory is to divide the long and short wave-

length fluctuations and treat each with a separate approximation scheme: the vari-

ational perturbation approximation for long wavelengths and a virial expansion,

for example, for the short wavelength fluctuations. This splitting strategy has been

found to be successful in describing electrolyte systems over a broad range of con-

ditions [25, 26], from the weak to the intermediate and including the strong electro-

static coupling regime. This “splitting” approach is able to quantitatively describe

phenomena such as charge inversion and like-charge attraction.
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