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Circuit for clamping bridge overvoltages in
voltage-fed quasi-Z-source converter

J. Kitson and N. McNeill✉

Unlike the voltage source converter, the Z-source converter can boost

as well as buck the input voltage. However, the presence of physically

large components in the impedance network introduces large parasitic

inductances into power device commutation paths. This leads to con-

sequent overvoltages at power device turn-off. A simple circuit for

addressing this is presented. Practical results are given for a voltage-

fed quasi-Z-source inverter with discontinuous input current.

Introduction: Unlike the traditional voltage source converter, the

Z-source converter [1] can boost, as well as buck, the input voltage.

This can be useful in automotive [2] and renewable energy [3] appli-

cations. Fig. 1 shows a voltage-fed quasi-Z-source inverter with discon-

tinuous input current (or ‘Series’ Z-source inverter) [4].
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Fig. 1 Voltage-fed quasi-Z-source inverter with discontinuous input current

Device turn-off: At device turn-off, it is desirable that the self-

inductance of the loop highlighted in Fig. 2 is minimised. If it is not,

a high turn-off voltage occurs at point ‘X’ at the bridge voltage potential,

vbri, as the current flowing into that node is commutated. However,

because of the likely large volume of the passive components, minimis-

ing stray inductances is difficult. Although stray inductance in series

with L1 and L2 is not in itself problematic, the physical size of these

components causes the loop area to be large.

C 1

L1

CdcVdc Vbri

L 2 X

C 2

0 V

S 1

S 2

D 7

– +

– +

Fig. 2 Critical path with loop inductance in quasi-Z-source network

The power switch turn-off action may be made slower to reduce the

voltage overshoot, but this increases turn-off losses. Alternatively, snub-

bers may be used [5]. Fig. 3 shows two variants. A disadvantage of the

resistor capacitor diode (RCD) snubber is that its capacitance is charged

and discharged once per cycle with losses. The soft clamp snubber does

not discharge its capacitance to zero volts and also allows some recovery

of energy. However, a difficulty with it in the Z-source converter is that

the bridge voltage, vbri, fluctuates continuously between zero and its

peak value and as such is not suitable as a soft clamp for DC voltages.

Snubber applications in related topologies such as the voltage-fed DC–

AC Z-source inverter are addressed in [6, 7], and in a quasi-Z-source

DC–DC converter in [8]. This Letter investigates an alternative approach

for the Z-source inverter in Fig. 1.

Proposed arrangement: The components in the critical loop are repli-

cated as shown in Fig. 4; referred to as a ‘local replicated network’

(‘LRN’) in this Letter. Auxiliary capacitances C1aux and C2aux are

lower than C1 and C2 by a factor of 50,000 and Cdcaux
lower than Cdc

by 30,000; their consequent small physical sizes means the loop is phys-

ically smaller. This provides a low-inductance route for current to divert

into. Three low-current connections are made to nodes A–C. The

absorption of overvoltage peaks charges the auxiliary capacitors. They

then discharge directly into their larger equivalent capacitor: C1aux dis-

charges into C1, and similarly with C2aux/C2 and Cdcaux
/Cdc, respect-

ively. Two or three diodes (D1aux–D3aux) are connected in series to

present a higher aggregate voltage drop across them than D7, the

main Z-source network diode. Consequently, steady-state current prefer-

entially flows through D7 to avoid excess losses in the LRN circuit.
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Fig. 3 Conventional snubber networks [5]
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Fig. 4 Quasi-Z-source inverter with proposed snubber

Experimental setup: The rig in Fig. 5 is a Z-source inverter (ZSI) cor-

responding to the circuit in Fig. 1. S1–6 are IKW20N60T co-packaged

insulated gate bipolar transistors (IGBTs) and antiparallel diodes. D7 is

a SCS220AEC silicon carbide Schottky diode. L1 = L2 = 460 μH. C1 =

C2 = 235 μF and each was formed with film capacitors in parallel. Cdc =

140 μF, also being formed with film capacitors in parallel. D7 is at a

physical distance of ∼166 mm from the main bridge components, S1–

6. Normally, this is problematic due to a corollary being the introduction

of a high parasitic inductance into the loop highlighted in Fig. 2.
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Fig. 5 Experimental quasi-Z-source converter. (Two of capacitors forming
C2 are mounted on underside of PCB.)

The proposed LRN snubber, Fig. 4, was compared with an RCD

snubber, Fig. 3. In each case, the converter was operated with a continu-

ous output power of ∼1.5 kW, an input voltage, Vdc, of 200 V and at a

constant shoot-through duty cycle (Ds) command of 0.1. The bridge

IGBTs and diodes (and thereby indirectly the snubbers) were force air

cooled. The relevant snubber was fitted physically close to the bridge

on the underside of the printed circuit board (PCB). Fig. 6 shows the

LRN and RCD snubber components. Details for the LRN snubber are:

C1aux =C2aux =Cdcaux
= 4.7 nF, 1 kV, ceramic; D1aux =D2aux =D3aux
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= IXYSDSE130-06A. Details for the RCD snubber are: R = 203.5 Ω, C

= 4.7 nF, 1 kV, ceramic; D = IXYSDSE130-06A. The overshoot on

turn-off with both snubbers is shown in Fig. 7. It is measured at 18

and 15% with the LRN and RCD types, respectively. Fig. 8 shows

snubber thermal operation. The root mean square (RMS) voltage

measured across the resistance in the RCD snubber at 1.565 kW input

power was 51.51 V, which gives a loss of 13 W in it. For a similar over-

shoot voltage, the RCD snubber circuit is highly dissipative in compari-

son with the proposed snubber. It will also be noted that the RCD

snubber gives a higher bridge input voltage than the LRN snubber for

the same shoot-through and output power, consistent with the findings

in [6]. This also makes the RCD circuit less desirable as it increases

the maximum voltage stress on the bridge devices.

Fig. 6 Views of snubber components on underside of converter PCB: left:
LRN snubber, right: RCD snubber
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Fig. 7 Transient vbri at turn-off using: top: RCD snubber, bottom: proposed
LRN snubber
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Fig. 8 Thermal images of bridge devices (top) and snubber components: left:
RCD snubber, right: LRN snubber

Optimisation of the LRN snubber component values has not been

attempted, but practical measurements have been presented. Further

analysis of the snubber operation including a study of energy stored in

the stray inductances in the connections made between the LRN com-

ponents and the nodes A–C in the main impedance network, Fig. 4,

forms future work in this area.

Conclusion: A snubber circuit has been presented for the voltage-fed

quasi-Z-source inverter with discontinuous input current. The proposed

arrangement provides overshoot suppression similar to the conventional

RCD snubber, but with the advantages of much lower-power dissipation

and without an increase in the peak bridge input voltage associated with

RCD snubbers.
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