Seath, Ciaran P. and Wilson, Kirsty L. and Campbell, Angus and Mowat, Jenna M. and Watson, Allan J. B. (2016) Synthesis of 2-BMIDA 6,5bicyclic heterocycles by $\mathrm{Cu}(\mathrm{I}) / \mathrm{Pd}(0) / \mathrm{Cu}(11)$ cascade catalysis of 2iodoaniline/phenols. Chemical Communications (56). pp. 8703-8706. ISSN 1359-7345, http://dx.doi.org/10.1039/C6CC04554E

This version is available at https://strathprints.strath.ac.uk/57919/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.ukl) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.
Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

Journal Name

Synthesis of 2-BMIDA 6,5-bicyclic heterocycles by $\mathrm{Cu}(\mathrm{I}) / \mathrm{Pd}(0) / \mathrm{Cu}(\mathrm{II})$ cascade catalysis of 2-iodoaniline/phenols

Received 00th January 20xx, Accepted 00th January 20xx

Ciaran P. Seath, Kirsty L. Wilson, Angus Campbell, Jenna M. Mowat, and Allan J. B. Watson*

DOI: 10.1039/x0xx00000x
www.rsc.org/
subsequent chemoselective cross-coupling processes as well as their application as precursors toward the formation of oxindoles and benzofuranones.
a) Previous work: Direct borylation of heterocycle i) Lithiation
ii) Transition metal-catalysis

b) Previous work: Condensation reactions using alkyl- and acyl-BMIDA (Yudin)
i) Furans and pyrroles

ii) Fused aza-heterocycles

c) This work: Synthesis of borylated fused heterocycles via cascade catalysis

Scheme 1 Approaches towards borylated heterocycles.
The formation of indoles and benzofurans via the Sonogashira reaction of 2-haloanilines and phenols with alkynes, followed by in situ Cacchi-type intramolecular cyclization has been thoroughly investigated. ${ }^{10}$ We identified that the use of a suitable borylated alkyne could enable the same annulation but generate products that are borylated in the 2-position. Acetylynic BMIDA reagents have been used under Rh- and Au-catalysis to effect similar annulation processes. ${ }^{11-13}$ Accordingly, our study commenced with the reaction of N-tosyl 2-iodoaniline (1) with ethynyl BMIDA (3). Initial experiments based on literature reaction conditions ${ }^{10}$ led to good conversion to the Sonogashira product intermediate (not shown); ${ }^{14}$ however, the subsequent cyclization event was inefficient, providing the desired product $\mathbf{4 a}$ in only 19% yield (entry 1). Increasing the quantity of CuI led only to a small increase in conversion to $4 \mathbf{a}$ (entry 2). $\mathrm{Cu}(\mathrm{OAc})_{2}$ is known to facilitate similar 5-endo-dig cyclizations ${ }^{15}$ and while addition of 50 mol
$\% \mathrm{Cu}(\mathrm{OAc})_{2}$ delivered a significant increase in conversion to 4a, we noted a considerable quantity of Glaser-Hay homocoupling of $\mathbf{3}$ (entry 3). ${ }^{16}$ However, following a survey of reaction conditions including catalyst loading, base, and temperature, alkyne homocoupling could be mitigated, delivering an efficient set of reaction conditions that produced 4a in 83% yield (entry 4 - see Electronic Supporting Information (ESI) for full details). The balance of base and temperature was particularly crucial to avoid premature hydrolysis of the generated heterocyclic BMIDA residue and subsequent protodeboronation of the resulting heterocyclic boronic acid. In addition, control reactions demonstrated the requirement of all three catalysts - removal of either CuI or $\mathrm{Cu}(\mathrm{OAc})_{2}$ led to diminished yields (entries 5 and 6). Removal of $\mathrm{Cu}(\mathrm{OAc})_{2}$ gave effective Sonogashira cross-coupling but ineffective ring closure, providing 4 a in only 22% yield (entry 5). Removal of CuI was found to hinder the Sonogashira step; however, 4 a was obtained in a moderate 63% yield. We believe this was due to adventitious $\mathrm{Cu}(\mathrm{I})$ arising from either trace levels in the unpurified $\mathrm{Cu}(\mathrm{OAc})_{2}$ or disproportionation of $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I}) .{ }^{17}$

Table 1 Reaction development. ${ }^{a}$

${ }^{a} \mathbf{1 / 2}$ (1 equiv, $0.25 \mathrm{mmol}, 0.125 \mathrm{M}$), $\mathbf{3}$ (1.2 equiv, 0.3 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{~mol} \%), \mathrm{Cu}$ cat. (see Table), base (see Table), DMF, temp. (see Table), $\mathrm{N}_{2} .{ }^{b}$ Determined by HPLC analysis using an internal standard.

With effective conditions for substrate 1 established, we turned our attention to the analogous benzofuran formation from 2iodophenol, 2. However, the preferred conditions for indole formation delivered only 32% yield of $\mathbf{5 a}$, with the mass balance consisting of unreacted starting material and homocoupled alkyne (entry 7). Alteration of the temperature profile improved conversion but Glaser-Hay coupling remained problematic (entry 8). Modification of the base to $\mathrm{K}_{2} \mathrm{CO}_{3}$
provided an additional increase (entry 9) while lowering the loading of Cu -catalysts provided the most significant improvements to deliver 87% yield of $\mathbf{5 a}$ with minimal alkyne homocoupling (Table 1, entry 10).

With effective reaction conditions in place, we assessed the generality of the process (Scheme 2).

Scheme 2 Scope of the annulation process.
The developed process was found to be generally high yielding for indole ($\mathbf{4 a - m}$) and benzofuran (5a-e) substrates, including various aza-derivatives ($\mathbf{4 k}, \mathbf{4 1}, \mathbf{4 m}, \mathbf{5 e}$). Due to the mild reaction conditions, a wide range of standard functional groups was tolerated, including esters ($\mathbf{4 e}, \mathbf{4 j}$), ethers $(\mathbf{4 h}, \mathbf{5 c})$, halides $(\mathbf{4 c}, \mathbf{4 d}, 4 \mathrm{e}, \mathbf{4 g}, 5 \mathrm{~b})$, nitriles ($\mathbf{4 f}$), and nitro groups ($\mathbf{4 i}, \mathbf{4 m}, \mathbf{5 d}$). In addition, the process was also found to be amenable on preparatively useful (mmol) scale (Figure 1) and chromatographic purification was often not required - products could be isolated cleanly following aqueous work-up and subsequent precipitation/filtration. ${ }^{18}$

4a, 81\% (750 mg)

4g, 89\% (900 mg)

4m, 99\% (700 mg)

Figure 1 Annulation reactions on $1.5-2.0 \mathrm{mmol}$ scale. Values in parentheses are isolated masses of material.

Electrophile-chemoselective Sonogashira cross-coupling allowed use of dihalide starting materials to furnish Br - and $\mathrm{Cl}-$ bearing products $(\mathbf{4} \mathbf{c}, \mathbf{4} \mathbf{e}, \mathbf{4} \mathbf{g})$, providing a handle for further functionalisation via cross-coupling processes. For example, $\mathbf{4 g}$ participates in chemoselective Suzuki-Miyaura cross-coupling
with retention of the BMIDA unit (Scheme 3a). ${ }^{11,19}$ The robust BMIDA protecting group allows hydrogenation of nitro azaindole $\mathbf{4 m}$ to give the corresponding amino aza-indole 7 , which can undergo chemoselective Chan-Evans-Lam coupling to generate products such as $\mathbf{8}$ in excellent yield (Scheme 3b). As 7 -aza-indoles are valuable kinase hinge-binders, ${ }^{20}$ the developed method therefore provides expedient access to desirable multi-functional intermediates that can be used for exploration of this chemotype in kinase drug discovery.

Scheme 3 Product utility with retention of BMIDA.
Importantly, the BMIDA unit of the products was amenable to manipulation. Suzuki-Miyaura cross-coupling was effective under our previously developed, mild reaction conditions (Scheme 4a); ${ }^{19,21}$ increased temperatures or imbalance in the base $/ \mathrm{H}_{2} \mathrm{O}$ stoichiometry led to considerable levels of protodeboronation. Lastly, oxidation of the BMIDA unit of both indole $4 \mathbf{a}$ and benzofuran $5 \mathbf{a}$ could be achieved using Oxone ${ }^{\circledR}$, via in situ preparation of the $\mathrm{BF}_{3} \mathrm{~K}$ derivative, ${ }^{22,23}$ to deliver oxindole 10 and benzofuranone 11 (Scheme 4b). Oxindoles are also an important kinase hinge-binding motif; the developed process allows access to intermediates that can be diverted to two different chemotypes and therefore gives a new approach to diversity-oriented synthesis within kinase drug discovery. ${ }^{24}$

Scheme 4 Manipulation of the BMIDA unit.
In summary, we have developed a one-pot tandem reaction for the synthesis of borylated heterocycles from simple and readily available starting materials. Synthetically valuable functionalized 2-BMIDA-substituted indoles and benzofurans, as well as aza-derivatives, are generated using the described chemoselective $\mathrm{Cu}(\mathrm{I}) / \mathrm{Pd}(0) / \mathrm{Cu}(\mathrm{II})$ catalysis method. Based on the utility of the BMIDA unit, the products can be manipulated in several ways to allow access to functionalised heterocyclic
scaffolds that have significant potential for application, particularly within drug discovery.
We thank the Carnegie Trust for a PhD studentship (CPS) and the EPSRC UK National Mass Spectrometry Facility at Swansea University for analyses.

Notes and references

1 J. A. Joule and K. Mills, Heterocyclic Chemistry, 5th ed., WileyBlackwell, Chichester, 2010.
2 For selected reviews, see: (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457-2483; (b) A. J. J. Lennox and G. C. Lloyd-Jones, Angew. Chem. Int. Ed., 2013, 52, 7362-7370; (c) A. J. J. Lennox and G. C. Lloyd-Jones, Chem. Soc. Rev., 2014, 43, 412-443.

3 (a) D. M. T. Chan, K. L. Monaco, R.-P. Wang and M. P. Winters, Tetrahedron Lett., 1998, 39, 2933-2936; (b) D. A. Evans, J. L. Katz and T. R. West, Tetrahedron Lett., 1998, 39, 2937-2940; (c) P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D. M. T. Chan and A. Combs, Tetrahedron Lett., 1998, 39, 2941-2944.
4 Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, ed. D. G. Hall, Wiley-VCH, Weinheim, 2011.

5 T. Ishiyama, M. Murata and N. Miyaura, J. Org. Chem., 1995, 60, 7508-7510.
6 J. F. Hartwig, Acc. Chem. Res., 2012, 45, 864-873.
7 (a) P. Trinchera, V. B. Corless and A. K. Yudin, Angew. Chem. Int. Ed., 2015, 54, 9038-9041; (b) S. Adachi, S. K. Liew, C. F. Lee, A. Lough, Z. He, J. D. St. Denis, G. Poda and A. K. Yudin, Org. Lett., 2015, 17, 5594-5597; (c) J. D. St. Denis, C. F. Lee and A. K. Yudin, Org. Lett., 2015, 17, 5764-5767; (d) J. D. St. Denis, Z. He and A. K. Yudin, ACS Catal., 2015, 5, 5373-5379; (e) J. D. St. Denis, A. Zajdlik, J. Tan, P. Trinchera, C. F. Lee, Z. He, S. Adachi and A. K. Yudin, J. Am. Chem. Soc., 2014, 136, 17669-17673. For additional examples of cyclisation to deliver heterocyclic organoboron species, see: (f) A.-L. Auvinet and J. P A Harrity, Angew. Chem. Int. Ed., 2011, 50, 2769-2772; (g) J. E. Grob, J. Nunez, M. A. Dechantsreiter and L. G. Hamann, J. Org. Chem., 2011, 76, 10241-10248.
8 For selected reviews of cascade, synergistic, and tandem catalysis, see: (a) T. L. Lohr, and T. J. Marks, Nat. Chem., 2015, 7, 477-482; (b) C. S. Schindler and E. N. Jacobsen, Science, 2013, 340, 1052-1053; (c) A. E. Allen and D. W. C. MacMillan, Chem. Sci., 2012, 3, 633-658.
9 For selected examples, see: (a) K. J. Schwarz, J. L. Amos, J. C. Klein, D. T. Do and T. N. Snaddon, J. Am. Chem. Soc., 2016, 138, 5214-5217; (b) J. B. Metternich and R. Gilmour, J. Am. Chem. Soc., 2016, 138, 1040-1045; (c) S. Krautwald, M. A. Schafroth, D. Sarlah and E. M. Carreira, J. Am. Chem. Soc., 2014, 136, 3020-3023; (d) S. Krautwald, D. Sarlah, M. A. Schafroth and E. M. Carreira, Science, 2013, 340, 1065-1068; (e) N. T. Jui, E. C. Y. Lee and D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 10015-10017; (f) Y. Huang, A. M. Walji, C. H. Larsen and D. W. C. MacMillan, J. Am. Chem. Soc., 2005, 127, 15051-15053; (g) J. F. Austin, S. G. Kim, C. J. Sinz, W. J. Xiao and D. W. C. MacMillan, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5482-5487.

10 For initial reports, see (a) T. Sakamoto, Y. Kondo, S. Iwashita, T. Nagano and H. Yamanaka, Chem. Pharm. Bull., 1988, 36, 1305 1308; (b) C. E. Castro, E. J. Gaughan and D. C. Owsley, J. Org. Chem., 1966, 31, 4071-4078. For selected reviews, see: (c) S. Cacchi and G. Fabrizi, Chem. Rev., 2011, 111, PR215-PR283; (d) G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106, 2875-2911.
11 (a) J. Li, A. S. Grillo and M. D. Burke, Acc. Chem. Res., 2015, 48, 2297-2307; (b) E. P. Gillis and M. D. Burke, Aldrichim. Acta, 2009, 42, 17-27.
12 H. Wang, C. Grohmann, C. Nimphius and F. Glorius, J. Am. Chem. Soc., 2012, 134, 19592-19595.
13 J. M. W. Chan, G. W. Amarante and F. D. Toste, Tetrahedron, 2011, 67, 4306-4312.

14 J. R. Struble, S. J. Lee and M. D. Burke, Tetrahedron, 2010, 66, 4710-4718.
15 (a) Y. Oda, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2012, 14, 664-667; (b) K. Hiroya, S. Itoh and T. Sakamoto, J. Org. Chem., 2004, 69, 1126-1136; (c) K. Hiroya, S. Itoh, M. Ozawa, Y. Kanamori and T. Sakamoto, Tetrahedron Lett., 2002, 43, 1277-1280.
16 (a) A. Hay, J. Org. Chem., 1960, 25, 1275-1276; (b) C. Glaser, Ber. Dtsch. Chem. Ges., 1869, 34, 2174-2185.
17 For example, see: B. Cheng, H. Yi, C. He, C. Liu and A. Lei, Organometallics, 2015, 34, 206-211 and references therein.
18 S. G. Ballmer and E. P. Gillis, M. D. Burke, Org. Synth., 2009, 86, 344-359.
19 J. W. B. Fyfe, E. Valverde, C. P. Seath, A. R. Kennedy, N. A. Anderson, J. M. Redmond and A. J. B. Watson, Chem. Eur. J., 2015, 21, 8951-8964.
20 For example, see: (a) T. Heinrich, J. Seenisamy, L. Emmanuvel, S. S. Kulkarni, J. Bomke, F. Rohdich, H. Greiner, C. Esdar, M. Krier, U. Grädler and D. Musil, J. Med. Chem., 2013, 56, 1160-1170; (b) S. Hong, J. Kim, J. H. Seo, K. H. Jung, S.-S. Hong and S. Hong, J. Med. Chem., 2012, 55, 5337-5349; (c) S. Hong, S. Lee, B. Kim, H. Lee, S.-S. Hong and S. Hong, Bioorg. Med. Chem. Lett., 2010, 20, 72127215; (d) J. Tang, T. Hamajima, M. Nakano, H. Sato, S. H. Dickerson and K. E. Lackey, Bioorg. Med. Chem. Lett., 2008, 18, 4610-4614.
21 (a) C. P. Seath, J. W. B. Fyfe, J. J. Molloy and A. J. B. Watson, Angew. Chem. Int. Ed., 2015, 54, 9976-9979; (b) J. J. Molloy, R. P. Law, J. W. B. Fyfe, C. P. Seath, D. J. Hirst and A. J. B. Watson, Org. Biomol. Chem., 2015, 13, 3093-3102; (c) J. W. B. Fyfe, C. P. Seath and A. J. B. Watson, Angew. Chem. Int. Ed., 2014, 53, 12077-12080.
22 G. A. Molander and L. N. Cavalcanti, J. Org. Chem., 2011, 76, 623630.

23 Q. I. Churches, J. F. Hooper and C. A. Hutton, J. Org. Chem., 2011, 80, 5428-5435.
24 For example, see: J. Zhang, P. L. Yang and N. S. Gray, Nat. Rev. Cancer, 2009, 9, 28-39.

Synthesis of 2-BMIDA 6,5-bicyclic heterocycles by cycle-specific $\mathbf{C u (I)} / \mathbf{P d}(0) / \mathbf{C u}(I I)$ cascade catalysis

Ciaran P. Seath, Kirsty L. Wilson, Angus Campbell, Jenna M. Mowat, and Allan J. B. Watson*

Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK.

Contents

1. General
2. General Experimental Procedures
3.Reaction Optimization Data
3.1 Variation of the Pd catalyst
3.2 Variation of the Cu loading (indole)
3.3 Variation of the Base
3.4 Variation of the Cu loading (benzofuran)
3. Compound Characterization Data
4.1 Intermediates
4.2 Products from Scheme 2
4.3 Products from Scheme 3
4.4 Products from Schemes 4 and 5
4. References
5. NMR spectra for intermediates and products

1. General

All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated. Purification was carried out according to standard laboratory methods. ${ }^{1}$

1.1 Purification of Solvents

DMF was dried by heating to reflux over previously activated $4 \AA$ molecular sieves and distilling under vacuum before being purged with, and stored under N_{2} in a septum-sealed oven-dried flask over previously activated $4 \AA$ molecular sieves. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{EtOAc}, \mathrm{MeCN}$, and petroleum ether 40-60 for purification purposes were used as obtained from suppliers without further purification.

1.2 Drying of Inorganic Bases

Inorganic bases were dried in a Heraeus Vacutherm oven at $60^{\circ} \mathrm{C}$ under vacuum for a minimum of 24 hours before use.

1.3 Experimental Details

Reactions were carried out using conventional glassware (preparation of intermediates) or in capped 5 mL microwave vials (optimization reactions and reactions for Schemes 2, 4, and 5). The glassware was oven-dried $\left(150^{\circ} \mathrm{C}\right)$ and purged with N_{2} before use. Purging refers to a vacuum/nitrogen-refilling procedure. Room temperature was generally ca. $18{ }^{\circ} \mathrm{C}$. Reactions were carried out at elevated temperatures using a temperature-regulated hotplate/stirrer.
NOTE: (1) Sand baths were used for health and safety reasons - oil baths were avoided where possible. (2) Microwave vials were used for convenience; however, these are not necessary. Reactions can be competently completed in standard laboratory glassware.

1.4 Purification of Products

Thin layer chromatography was carried out using Merck silica plates coated with fluorescent indicator UV254. These were analyzed under 254 nm UV light or developed using potassium permanganate solution. Normal phase flash chromatography was carried out using ZEOprep 60 HYD 40-63 $\mu \mathrm{m}$ silica gel. Reverse phase flash chromatography was carried out using IST Isolute C18 cartridges.

1.5 Analysis of Products

Fourier Transformed Infra-Red (FTIR) spectra were obtained on a Shimadzu IRAffinity-1 machine. ${ }^{19}$ F NMR spectra were obtained on a Bruker AV 400 spectrometer at $376 \mathrm{MHz} .{ }^{11} \mathrm{~B}$ NMR spectra were obtained on a Bruker AV 400 spectrometer at $128 \mathrm{MHz} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on either a Bruker AV 400 at 400 MHz and 125 MHz , respectively, or Bruker DRX 500 at 500 MHz and 126 MHz , respectively. Chemical shifts are reported in ppm and coupling constants are reported in Hz with CDCl_{3} referenced at $7.26\left({ }^{1} \mathrm{H}\right)$ and $77.0 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$ and DMSO- d_{6} referenced at $2.50\left({ }^{1} \mathrm{H}\right)$ and $39.5\left({ }^{13} \mathrm{C}\right)$. High-resolution mass spectra were obtained through analysis at the EPSRC UK National Mass Spectrometry Facility at Swansea University. Reversed phase HPLC data was obtained on an Agilent 1200 series HPLC using a Machery-Nagel Nucleodur C18 column. Analysis was performed using a gradient method, eluting with $5-80 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ over 16 minutes at a flow rate of $2 \mathrm{~mL} / \mathrm{min}$. Samples for HPLC analysis were prepared through the addition of 2 mL of caffeine standard in MeCN to the completed reaction mixture. The resulting solution was then stirred before the removal of a $200 \mu \mathrm{~L}$ aliquot. The aliquot was diluted to 1 mL with MeCN . A $200 \mu \mathrm{~L}$ aliquot of the diluted solution was then filtered through cotton wool and further diluted with $800 \mu \mathrm{~L} \mathrm{MeCN}$ and 500 $\mu \mathrm{L} \mathrm{H}_{2} \mathrm{O}$ for HPLC analysis against established conversion factors.

2. General Experimental Procedures

General Procedure A: Optimized reaction (indoles)

For example, synthesis of (1-tosyl-1H-indol-2-yl)boronic acid, MIDA ester, 4a.

To an oven dried 5 mL microwave vessel was added N-(2-iodophenyl)-4-methylbenzenesulfonamide ($93 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6$ $\mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). The vessel was then capped and purged with N_{2} before addition of DMF $(2 \mathrm{~mL}, 0.125 \mathrm{M})$. The reaction mixture was then heated to 30 ${ }^{\circ} \mathrm{C}$ in a sand bath for 4 h before being heated to $55^{\circ} \mathrm{C}$ for a further 14 h . The vessel was allowed to cool to room temperature, vented, and decapped. The solution was then concentrated under reduced pressure before being diluted with EtOAc $(10 \mathrm{~mL})$ and washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times$ 20 mL). The organics were then dried and concentrated under reduced pressure to give a yellow oil, which was purified by flash chromatography (silica gel, 40-70\% EtOAc/petroleum ether) to afford the title compound as a white solid ($87 \mathrm{mg}, 0.21 \mathrm{mmol}, 82 \%$).

General Procedure B: Optimized reaction (benzofurans)

For example, synthesis of benzofuran-2-ylboronic acid, MIDA ester, 5a.

To an oven dried 5 mL microwave vessel was added 2-iodophenol ($55 \mathrm{mg}, 0.25 \mathrm{mmol}$, 1 equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2$ $\mathrm{mol} \%$), $\mathrm{CuI}(2.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 6 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($52 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv). The vessel was then capped and purged with N_{2} before addition of DMF ($2 \mathrm{~mL}, 0.125 \mathrm{M}$). The reaction mixture was then stirred at room temperature in a sand bath for 4 h before being heated to $60^{\circ} \mathrm{C}$ for a further 14 h . The vessel was allowed to cool to room temperature, vented, and decapped. The solution was then concentrated under reduced pressure before being diluted with EtOAc $(10 \mathrm{~mL})$ and washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$. The organics were then dried and concentrated under reduced pressure to give a yellow oil, which was purified by flash chromatography (silica gel, $40-80 \% \mathrm{EtOAc} /$ Petroleum ether) to afford the title compound as a white solid ($57 \mathrm{mg}, 0.21 \mathrm{mmol}, 83 \%$).

General Procedure C: Mmol scale reactions

For example, synthesis of (1-tosyl-1H-indol-2-yl)boronic acid, MIDA ester, 4a.

To an oven dried 50 mL round bottomed flask was added N-(2-iodophenyl)-4methylbenzenesulfonamide ($750 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (436 mg , $2.4 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(28 \mathrm{mg}, 0.04 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(38 \mathrm{mg}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{OAc})_{2}(109 \mathrm{mg}, 0.6 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(426 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv). The vessel was then sealed with a rubber septum and purged with N_{2} before addition of DMF ($16 \mathrm{~mL}, 0.125 \mathrm{M}$). The reaction mixture was then heated to $30^{\circ} \mathrm{C}$ in a sand bath for 4 h before being heated to $55^{\circ} \mathrm{C}$ for a further 14 h . The vessel was allowed to cool to room temperature before the solution was then
concentrated under reduced pressure, diluted with EtOAc (200 mL) and washed with water (2×100 $\mathrm{mL})$ and brine ($2 \times 100 \mathrm{~mL}$). The organics were then dried and concentrated under reduced pressure to give a yellow oil, which was purified by flash chromatography (silica gel, 40-70\% $\mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($694 \mathrm{mg}, 1.62 \mathrm{mmol}, 81 \%$).

General procedure D: Tosylations of anilines using TsCl

To a round bottomed flask charged with aniline (1 equiv) was added a solution of 1:1 pyridine/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.7 \mathrm{M})$ and cooled to $0^{\circ} \mathrm{C}$. 4-Methylbenzenesulfonyl chloride (1 equiv) was added portion wise, and the reaction mixture was allowed to slowly warm to room temperature and then stirred for 24 h . Upon completion of the reaction, water $(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added and the reaction mixture was separated. The organics washed with $1 \mathrm{~N} \mathrm{NaOH}(2 \times 10 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$, and brine ($2 \times$ 10 mL). The organics were then dried and concentrated under reduced pressure to give a crude residue, which was purified by flash chromatography to afford the title compound.

General procedure E: Tosylations of anilines using $\mathrm{Ts}_{2} \mathbf{O}$ and DMAP

To a round bottomed flask charged with aniline (1 equiv) and DMAP (0.1 equiv) was added a solution of 1:1 pyridine/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{M})$ and cooled to $0{ }^{\circ} \mathrm{C}$. 4-Methylbenzenesulfonic anhydride (1.1 equiv) was added portion wise, and the reaction mixture was allowed to slowly warm to room temperature and was stirred for 24 h . Upon completion of the reaction, water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added and the reaction mixture was separated and the organics washed with $1 \mathrm{~N} \mathrm{NaOH}(2 \times 10 \mathrm{~mL}), 1$ $\mathrm{N} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$, and brine $(2 \times 10 \mathrm{~mL})$. The organics were then dried and concentrated under reduced pressure to give a crude residue, which was purified by flash chromatography to afford the title compound.

3. Reaction optimization data

3.1 Variation of the Pd catalyst

Reactions were carried out according to General Procedure A using N-(2-iodophenyl)-4methylbenzenesulfonamide ($93 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv), Pd catalyst ($\mathbf{X ~ m g}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%$) Ligand ($\mathbf{X} \mathrm{mg}, 0.01 \mathrm{mmol}, 4 \mathrm{~mol} \%$), $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{Et}_{3} \mathrm{~N}(105 \mu \mathrm{~L}$, $0.25 \mathrm{mmol}, 3$ equiv).

Entry	Catalyst (mass)	Ligand (mass)	Conversion
$\mathbf{1}$	$\operatorname{PdCl}_{2}\left(\mathrm{PPl}_{3}\right)_{2}(3.5 \mathrm{mg})$	-	74%
$\mathbf{2}$	$\operatorname{PdCl}_{2}(\mathrm{dppf})(4.1 \mathrm{mg})$	-	70%
$\mathbf{3}$	$\operatorname{PdCl}_{2}(\mathrm{MeCN})_{2}(1.3 \mathrm{mg})$	-	72%
$\mathbf{4}$	$\operatorname{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg})$	$\operatorname{PPh}_{3}(2.6 \mathrm{mg})$	65%
$\mathbf{5}$	$\operatorname{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg})$	SPhos $(4.1 \mathrm{mg})$	71%
$\mathbf{6}$	$\operatorname{Pd}_{2}(\mathrm{dba})_{2}(4.6 \mathrm{mg})$	-	46%

3.2 Variation of the copper loading (indole)

Reactions were carried out according to General Procedure A using N-(2-iodophenyl)-4methylbenzenesulfonamide ($93 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathbf{C u I}(\mathbf{X ~ m g}, \mathbf{X ~ m m o l}, \mathbf{X ~ m o l} \%$), $\mathbf{C u}(\mathbf{O A c})_{2}(\mathbf{X ~ m g}, \mathbf{X} \mathrm{mmol}, \mathbf{X}$ mol\%$)$, and $\mathrm{Et}_{3} \mathrm{~N}(105 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 3$ equiv).

Entry	CuI (mass, equiv)	Cu(OAc) $\mathbf{2}_{\mathbf{2}}(\mathrm{mass}$, equiv)	Conversion
$\mathbf{1}$	$(2.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$	$(9.1 \mathrm{mg}, 20 \mathrm{~mol} \%)$	55%
$\mathbf{2}$	$(2.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$	$(13.6 \mathrm{mg}, 30 \mathrm{~mol} \%)$	63%
$\mathbf{3}$	$(2.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$	$(18.1 \mathrm{mg}, 40 \mathrm{~mol} \%)$	75%
$\mathbf{4}$	$(4.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$	$(9.1 \mathrm{mg}, 20 \mathrm{~mol} \%)$	83%
$\mathbf{5}$	$(4.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$	$(13.6 \mathrm{mg}, 30 \mathrm{~mol} \%)$	84%
$\mathbf{6}$	$(4.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$	$(18.1 \mathrm{mg}, 40 \mathrm{~mol} \%)$	68%
$\mathbf{7}$	$(9.6 \mathrm{mg}, 20 \mathrm{~mol} \%)$	$(9.1 \mathrm{mg}, 20 \mathrm{~mol} \%)$	61%
$\mathbf{8}$	$(9.6 \mathrm{mg}, 20 \mathrm{~mol} \%)$	$(13.6 \mathrm{mg}, 30 \mathrm{~mol} \%)$	65%
$\mathbf{9}$	$(9.6 \mathrm{mg}, 20 \mathrm{~mol} \%)$	$(18.1 \mathrm{mg}, 40 \mathrm{~mol} \%)$	71%
$\mathbf{1 0}$	$(9.6 \mathrm{mg}, 20 \mathrm{~mol} \%)$	$(22.6 \mathrm{mg}, 50 \mathrm{~mol} \%)$	67%

3.3 Variation of the base

Reactions were carried out according to General Procedure A using N-(2-iodophenyl)-4methylbenzenesulfonamide ($93 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and Base ($\mathbf{X ~ m g}, \mathbf{X ~ m m o l}$, \mathbf{X} equiv).

Entry	Base (mass)	Equiv	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Conversion
$\mathbf{1}$	$\mathrm{Et}_{3} \mathrm{~N}(105 \mu \mathrm{~L})$	3	$30-70$	30%
$\mathbf{2}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}(159 \mathrm{mg})$	3	$30-70$	27%
$\mathbf{3}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}(103 \mathrm{mg})$	3	$30-70$	21%
$\mathbf{4}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(243 \mathrm{mg})$	3	$30-70$	19%
$\mathbf{5}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg})$	1	$30-60$	81%
$\mathbf{6}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}(106 \mathrm{mg})$	2	$30-60$	83%
$\mathbf{7}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}(159 \mathrm{mg})$	3	$30-60$	67%
$\mathbf{8}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg})$	1	$30-50$	85%
$\mathbf{9}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}(106 \mathrm{mg})$	2	$30-50$	74%
$\mathbf{1 0}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}(159 \mathrm{mg})$	3	$30-50$	67%

3.4 Variation of the copper loading (benzofuran)

Reactions were carried out according to General Procedure B using 2-iodophenol ($55 \mathrm{mg}, 0.25 \mathrm{mmol}$, 1 equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}$, $0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathbf{C u I}\left(\mathbf{X ~ m g}, \mathbf{X} \mathrm{mmol}, \mathbf{X ~ m o l} \%\right.$), $\mathbf{C u}(\mathbf{O A c})_{2}(\mathbf{X ~ m g}, \mathbf{X ~ m m o l}, \mathbf{X} \operatorname{mol} \%$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($52 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv).

Entry	CuI (mass, equiv)	$\mathbf{C u (O A c)}$ (mass, equiv)	Conversion
$\mathbf{1}$	$(1.9 \mathrm{mg}, 4 \mathrm{~mol} \%)$	$(4.5 \mathrm{mg}, 10 \mathrm{~mol} \%)$	88%
$\mathbf{2}$	$(2.9 \mathrm{mg}, 6 \mathrm{~mol} \%)$	$(4.5 \mathrm{mg}, 10 \mathrm{~mol} \%)$	91%
$\mathbf{3}$	$(1.9 \mathrm{mg}, 4 \mathrm{~mol} \%)$	$(6.8 \mathrm{mg}, 15 \mathrm{~mol} \%)$	87%
$\mathbf{4}$	$(2.9 \mathrm{mg}, 6 \mathrm{~mol} \%)$	$(6.8 \mathrm{mg}, 15 \mathrm{~mol} \%)$	69%
$\mathbf{5}$	$(1.9 \mathrm{mg}, 4 \mathrm{~mol} \%)$	$(9.0 \mathrm{mg}, 20 \mathrm{~mol} \%)$	66%
$\mathbf{6}$	$(2.9 \mathrm{mg}, 6 \mathrm{~mol} \%)$	$(9.0 \mathrm{mg}, 20 \mathrm{~mol} \%)$	68%

4. Compound characterization data

4.1 Preparation of intermediates

S1: N-(2-Iodo-4-(trifluoromethyl)phenyl)-4-methylbenzenesulfonamide

Prepared according to General Procedure E using 2-iodo-4-(trifluoromethyl)aniline ($500 \mathrm{mg}, 1.75$ mmol, 1 equiv), 4-methylbenzenesulfonic anhydride ($567 \mathrm{mg}, 1.75 \mathrm{mmol}, 1$ equiv), and DMAP (17.6 $\mathrm{mg}, 0.175 \mathrm{mmol}, 0.1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $0-8 \% \mathrm{EtOAc} /$ Petroleum Ether) to afford the title compound as a yellow solid ($662 \mathrm{mg}, 1.51 \mathrm{mmol}, 86 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 144.8,140.8,136.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 130.0,128.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=33.4\right.$ $\mathrm{Hz}), 127.4,126.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right), 122.7\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.3 \mathrm{~Hz}\right), 120.3,90.2$, 21.6.
${ }^{19}$ F NMR (DMSO-d ${ }_{6}, 471 \mathrm{MHz}$): $\delta-62.35$.

S2: N-(5-Chloro-2-iodophenyl)-4-methylbenzenesulfonamide

Prepared according to General Procedure D using 5-chloro-2-iodoaniline ($1 \mathrm{~g}, 3.95 \mathrm{mmol}$, 1 equiv) and 4 -methylbenzenesulfonyl chloride ($750 \mathrm{mg}, 3.95 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, 0-12\% $\mathrm{EtOAc} /$ petroleum ether) to afford the title compound as an off white solid ($890 \mathrm{mg}, 2.11 \mathrm{mmol}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta 7.72-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 144.1,139.1,138.1,135.1,135.1,129.4,127.0,126.4,121.4,88.3$, 21.2.

S3: Methyl 5-chloro-3-iodo-2-((4-methylphenyl)sulfonamido)benzoate

Prepared according to General Procedure E using methyl 2-amino-5-chloro-3-iodobenzoate (810 mg , 2.6 mmol , 1 equiv), 4-methylbenzenesulfonic anhydride ($849 \mathrm{mg}, 2.6 \mathrm{mmol}, 1$ equiv), and DMAP (32 $\mathrm{mg}, 0.26 \mathrm{mmol}, 0.1$ equiv). The reaction was heated to $80^{\circ} \mathrm{C}$ for 24 h . After 24 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, 0-20\% $\mathrm{EtOAc} /$ petroleum ether) to afford the title compound as an orange solid ($263 \mathrm{mg}, 0.57 \mathrm{mmol}, 22 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.08-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 164.7,143.7,143.1,136.6,135.3,133.1,130.1,129.1,128.2,127.4$, 101.0, 52.25, 21.0.

S4: N-(4-Cyano-2-iodophenyl)-4-methylbenzenesulfonamide

Prepared via two steps from 4-amino-3-iodobenzonitrile:

Step 1: To a 10 mL round bottomed flask charged with 4 -amino-3-iodobenzonitrile ($500 \mathrm{mg}, 2 \mathrm{mmol}$, 1 equiv), was added a solution of $1: 1$ pyridine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 0.7 \mathrm{M})$ and cooled to $0{ }^{\circ} \mathrm{C}$. 4Methylbenzenesulfonyl chloride ($389 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv) was added portion wise and was heated to $40{ }^{\circ} \mathrm{C}$ for 24 h . Upon completion, the reaction mixture was allowed to cool to room temperature before the subsequent addition of water $(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was separated and the organics were washed with $1 \mathrm{~N} \mathrm{NaOH}(2 \times 10 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$. The organics were then dried and concentrated under reduced pressure to give a residue, which was purified by flash chromatography (silica gel, $0-12 \% \mathrm{EtOAc} /$ petroleum ether) to afford N -(4-cyano-2-iodophenyl)di-4-methylbenzenesulfonamide.

Step 2: To a 10 mL round bottomed flask charged with N-(4-cyano-2-iodophenyl)di-4methylbenzenesulfonamide ($200 \mathrm{mg}, 0.36 \mathrm{mmol}, 1$ equiv) and tetrabutylammonium fluoride (1 M in THF, $725 \mu \mathrm{~L}, 0.72 \mathrm{mmol}, 2$ equiv), was added THF ($3.6 \mathrm{~mL}, 0.1 \mathrm{M}$). The reaction mixture was then heated to $80^{\circ} \mathrm{C}$ and stirred for 16 h . Upon completion, the reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, $0-15 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as an off white solid ($65 \mathrm{mg}, 0.36 \mathrm{mmol}, 18 \%$ yield over two steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.86(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 143.7,141.9,141.4,134.9,132.1,128.9,126.3,118.6,115.9,107.7$, 89.2, 20.6.

S5: N-(2-Iodo-4-nitrophenyl)-4-methylbenzenesulfonamide

Prepared according to General Procedure D using 2-iodo-4-nitroaniline ($500 \mathrm{mg}, 1.89 \mathrm{mmol}$, 1 equiv) and 4-methylbenzenesulfonyl chloride ($359 \mathrm{mg}, 1.89 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $0-8 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a yellow solid ($660 \mathrm{mg}, 1.57 \mathrm{mmol}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=9.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.68(\mathrm{~m}$, $3 \mathrm{H}), 7.30(\mathrm{dd}, J=8.5,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 145.3,143.9,143.3,135.3,134.6,130.1,127.4,124.9,118.5,88.5$, 21.6.

S6: Methyl 3-iodo-4-((4-methylphenyl)sulfonamido)benzoate

Prepared according to General Procedure D using methyl 4-amino-3-iodobenzoate ($500 \mathrm{mg}, 1.8$ mmol, 1 equiv) and 4-methylbenzenesulfonyl chloride ($342 \mathrm{mg}, 1.8 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, 10$25 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a yellow waxy solid ($683 \mathrm{mg}, 1.58$ mmol, 88\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 165.0,144.7,141.5,140.6,135.6,130.8,129.9,127.7,127.4,119.5$, 89.9, 52.4, 21.6.

S7: N-(4-Iodopyridin-3-yl)-4-methylbenzenesulfonamide

Prepared according to General Procedure E using 2-iodo-4-(trifluoromethyl)aniline ($250 \mathrm{mg}, 1.14$ mmol, 1 equiv), 4-methylbenzenesulfonic anhydride ($370 \mathrm{mg}, 1.14 \mathrm{mmol}, 1$ equiv), and DMAP (13.9 $\mathrm{mg}, 0.11 \mathrm{mmol}, 0.1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $0-30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the title compound as an offwhite solid ($176 \mathrm{mg}, 0.47 \mathrm{mmol}, 41 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 146.6,144.7,143.8,135.7,135.2,133.8,129.9,127.5,103.7,21.6$.

S8: 4-(((tert-Butyldimethylsilyl)oxy)methyl)-2-iodophenol

To a solution of 4-(hydroxymethyl)-2-iodophenol ($200 \mathrm{mg}, 0.8 \mathrm{mmol}, 1$ equiv) in DMF (6.4 mL , 0.125 M) at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($49 \mu \mathrm{~L}, 0.88 \mathrm{mmol}, 1.1$ equiv) and tert-butyldimethylsilyl (121 $\mathrm{mg}, 0.8 \mathrm{mmol}, 1$ equiv). The reaction mixture was slowly warmed to room temperature and stirred in a sandbath for 16 h . The reaction mixture was concentrated under reduced pressure to give a residue, which was diluted with EtOAc $(10 \mathrm{~mL})$ and washed with a saturated solution of sodium bicarbonate $(2 \times 20 \mathrm{~mL})$, water ($2 \times 20 \mathrm{~mL}$) and brine ($2 \times 20 \mathrm{~mL}$). The organics were dried and concentrated under reduced pressure to give a crude residue, which was purified by flash chromatography (silica gel, $0-20 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a clear oil ($84 \mathrm{mg}, 0.23 \mathrm{mmol}$, 29\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{~s}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 153.7,143.4,136.9,119.1,111.6,82.2,63.1,24.9,17.4,-6.3$.

S9: N-(2-Iodo-4-(trifluoromethoxy)phenyl)-4-methylbenzenesulfonamide

Prepared according to General Procedure D using 2-iodo-4-(trifluoromethoxy)aniline ($500 \mathrm{mg}, 1.65$ mmol, 1 equiv) and 4-methylbenzenesulfonyl chloride ($567 \mathrm{mg}, 1.65 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, 0-12\% $\mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colorless wax ($510 \mathrm{mg}, 1.12 \mathrm{mmol}, 68 \%$).
$v_{\max }$ (solid): $3257,3084,3045,1597,1485,1387,1338,1216 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=9.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 145.5,144.1,136.0,135.1,130.9,129.3,126.9,122.4,121.6,91.3$, 21.1. Carbon bearing fluorine not observed.
${ }^{19}$ F NMR (DMSO-d ${ }_{6}, 471 \mathrm{MHz}$): $\delta-58.15$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{SINa}\right)$ requires $m / z 479.9349$, found m / z 479.9335.

S10: N-(3-Iodopyridin-2-yl)-4-methylbenzenesulfonamide

Prepared according to General Procedure E using 3-iodopyridin-2-amine ($250 \mathrm{mg}, 1.14 \mathrm{mmol}, 1$ equiv), 4-methylbenzenesulfonic anhydride ($179 \mathrm{mg}, 1.14 \mathrm{mmol}, 1$ equiv) and DMAP ($13.9 \mathrm{mg}, 0.11$ $\mathrm{mmol}, 0.1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $0-30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the title compound as an off white solid ($248 \mathrm{mg}, 0.66 \mathrm{mmol}, 58 \%$).
$v_{\max }$ (solid): $3188,3118,1617,1580,1502,1431,1368,1322 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 150.3,147.7,147.5,144.2,136.6,129.3,128.7,119.7,80.7,21.6$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{SNa}\right)$ requires $\mathrm{m} / \mathrm{z} 396.9476$, found m / z 396.9476.

S11: N-(3-Iodo-5-nitropyridin-2-yl)-4-methylbenzenesulfonamide

Prepared via two steps from 3-iodo-5-nitropyridin-2-amine:
Step 1: To a 25 mL three-necked flask charged with 5 -nitropyridin-2-amine ($1 \mathrm{~g}, 7.1 \mathrm{mmol}, 1$ equiv), was added concentrated sulfuric acid $(12 \mathrm{~mL}, 0.6 \mathrm{M})$. The reaction mixture was stirred at room temperature and potassium iodate ($653 \mathrm{mg}, 2.8 \mathrm{mmol}, 0.4$ equiv) was added portion wise before subsequent heating to $200^{\circ} \mathrm{C}$. Potassium iodide ($1.18 \mathrm{~g}, 7.1 \mathrm{mmol}$, 1 equiv) was added dropwise as an aqueous solution (4 mL) and the reaction mixture was stirred at $200^{\circ} \mathrm{C}$. Upon completion, the reaction mixture was allowed to cool to room temperature before the slow addition of saturated sodium bicarbonate solution $(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$. The reaction mixture was separated and the organics were washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 30 \mathrm{~mL})$. The organics were then dried and concentrated under reduced pressure to give a yellow solid, 3-iodo-5-nitropyridin-2-amine, which was used without further purification.

Step 2: To a 100 mL round bottom flask charged with 3-iodo-5-nitropyridin-2-amine (1.29 g, 4.86 $\mathrm{mmol}, 1$ equiv), was added THF ($40 \mathrm{~mL}, 0.13 \mathrm{M}$) and cooled to $0^{\circ} \mathrm{C}$. Sodium hydride ($224 \mathrm{mg}, 9.72$ $\mathrm{mmol}, 2$ equiv) was added portion wise and the reaction mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes. 4methylbenzenesulfonyl chloride ($1.09 \mathrm{~g}, 4.86 \mathrm{mmol}, 1$ equiv) was added portion wise, and the reaction mixture was allowed to slowly warm to room temperature and was stirred for 18 h . Upon completion of the reaction, water $(50 \mathrm{~mL})$ and $\mathrm{DCM}(50 \mathrm{~mL})$ were added and the reaction mixture was separated and the organics washed with $1 \mathrm{~N} \mathrm{NaOH}(2 \times 50 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$ and brine (2 $\times 50 \mathrm{~mL}$). The organics were dried and concentrated under reduced pressure to give a crude residue, which was purified by flash chromatography (silica gel, $0-30 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a yellow solid ($1.43 \mathrm{~g}, 4.33 \mathrm{mmol}, 61 \%$ yield over two steps).
$v_{\max }$ (solid): $3581,3268,3064,2919,1571,1444,1320 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.66(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.1$
$\mathrm{Hz}, 2 \mathrm{H}$), 7.21 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 126 \mathrm{MHz}$): $\delta 161.9,145.0,142.3,140.9,140.7,134.7,128.9,127.4,86.7,21.4$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IN}_{3} \mathrm{O}_{4} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 419.9509$, found m / z 419.9510.

4.2 Products from Scheme 2

4a: (1-Tosyl-1H-indol-2-yl)boronic acid, MIDA ester ${ }^{2}$

Prepared according to General Procedure A using N-(2-iodophenyl)-4-methylbenzenesulfonamide (93 $\mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6$ $\mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}$, 1 equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, 40-70\% $\mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($87 \mathrm{mg}, 0.21 \mathrm{mmol}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): \delta 8.12(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}$, $J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 126 \mathrm{MHz}$): δ 172.0, 140.7, 140.2, 139.7, 139.6, 133.1, 129.7, 128.8, 127.5, 127.4, 127.4, 127.2, 127.0, 52.1, 40.9. Carbon bearing boron not observed.

4b: (1-Tosyl-5-(trifluoromethyl)-1H-indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(2-iodo-4-(trifluoromethyl)phenyl)-4methylbenzenesulfonamide ($110 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-90 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($107 \mathrm{mg}, 0.22$ mmol, 87\%).
$v_{\max }$ (solid): 2922, 2852, 1759, 1597, 1448, 1335, 1294, $1271 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta 8.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(1,1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{dd}, J=8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}) 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26$ (d, $J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 126 \mathrm{MHz}$): $\delta 169.6,146.2,140.6,135.1,130.6,130.0,127.2,125.1\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $271.8 \mathrm{~Hz}), 124.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.8 \mathrm{~Hz}\right), 122.1,119.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 115.6,64.8,49.9,21.5$. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.32$.
${ }^{19}$ F NMR (DMSO-d ${ }_{6}, 471 \mathrm{MHz}$): $\delta-59.63$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BF}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}\right)$ requires $m / z 517.0827$, found m / z 517.0806.

4c: (5-Chloro-1-tosyl-1H-indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(4-chloro-2-iodophenyl)-4methylbenzenesulfonamide ($102 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica
gel, $40-80 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($105 \mathrm{mg}, 0.23$ mmol, 91\%).
$\mathrm{U}_{\text {max }}$ (solid): 2921, 1766, 1742, 1599, 1455, $1303 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta 8.11$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.90 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (d, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, 2 H), 4.23 (d, $J=17.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.94 ($\mathrm{s}, 3 \mathrm{H}$), 2.35 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 101 \mathrm{MHz}$): $\delta 169.1,145.6,138.8,134.7,130.1,129.9,128.4,126.5,123.9$, 122.9, 121.4, 113.9, 64.2, 49.4, 21.0. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.17$.
HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{BClSN}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 459.0598$, found m / z 459.0585.

4d: (5-Fluoro-1-tosyl-1 H -indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(4-fluoro-2-iodophenyl)-4methylbenzenesulfonamide ($98 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ ($13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-80 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($90 \mathrm{mg}, 0.20 \mathrm{mmol}$, 81\%).
$v_{\text {max }}$ (solid): 2922, 1757, 1744, 1599, 1526, $1452 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$): $\delta 8.12$ (dd, $J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.90 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (dd, J $=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{td}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.24 (d, $J=17.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.96 (s, 3H), 2.33 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6,}, 126 \mathrm{MHz}$): $\delta 169.6,159.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=238.4 \mathrm{~Hz}\right.$), 145.9, 135.4, 135.3, $131.2(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 130.4,127.1,121.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 116.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.4 \mathrm{~Hz}\right), 113.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ $25.5 \mathrm{~Hz}), 107.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.5 \mathrm{~Hz}\right), 64.8,49.9$, 21.5. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}$, 128 MHz): $\delta 10.44$.
${ }^{19} \mathrm{~F}$ NMR (DMSO-d $\mathrm{d}_{6}, 471 \mathrm{MHz}$): $\delta-120.01$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BFN}_{2} \mathrm{O}_{6} \mathrm{SNa}\right)$ requires $m / z 477.0859$, found m / z 477.0854.

4e: (5-Chloro-7-(methoxycarbonyl)-1-tosyl-1 H -indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using methyl 5-chloro-3-iodo-2-((4methylphenyl)sulfonamido)benzoate ($116 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025$ $\mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-90 \%$ EtOAc/petroleum ether) to afford a mixture of the title compound and the uncyclised product ($124 \mathrm{mg}, 96 \%$ conversion, $4 / 1$ title compound/uncyclized intermediate).

A portion of the mixture ($26 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv) was treated with $\mathrm{Cu}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.025$ $\mathrm{mmol}, 50 \mathrm{~mol} \%)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{mg}, 0.01 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in DMF $(0.4 \mathrm{~mL}, 0.125 \mathrm{M})$ at $60^{\circ} \mathrm{C}$ for 16 h . The resulting mixture was filtered through celite, diluted with EtOAc, and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organics were then dried through a hydrophobic frit and concentrated under reduced pressure to give the title compound as an off white solid ($25 \mathrm{mg}, 0.24 \mathrm{mmol}, 96 \%$).
$v_{\max }$ (solid): 2950, 2921, 2850, 1764, 1731, 1597, 1433, 1164, $1033 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta 7.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27$ (m, $4 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.32$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 101 \mathrm{MHz}$): δ 168.7, 166.6, 144.1, 135.6, 134.7, 134.0, 129.3, 128.8, 126.0, $125.5,124.4,124.2,123.9,63.6,52.13,48.9,21.0$. Carbon bearing boron not observed.
${ }^{11} \mathrm{~B}$ NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 9.32$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BClN}_{2} \mathrm{O}_{9} \mathrm{SNa}\right)$ requires $m / z 541.0618$, found m / z 541.0603.
(5-Cyano-1-tosyl-1H-indol-2-yl)boronic acid, MIDA ester, $\mathbf{4 f}$

Prepared according to General Procedure A using N-(4-cyano-2-iodophenyl)-4methylbenzenesulfonamide ($60 \mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (32 mg , $0.225 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2.1 \mathrm{mg}, 0.003 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(2.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}\left(8.1 \mathrm{mg}, 0.045 \mathrm{mmol}, 30 \mathrm{~mol} \%\right.$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(32 \mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv). After 18 h, the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-80 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($62 \mathrm{mg}, 0.14 \mathrm{mmol}$, 93\%).
$v_{\max }$ (solid): 2922, 2854, 2223, 1768, 1747, 1597, 1532, $1455 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6} 500 \mathrm{MHz}\right): \delta 8.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=8.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 126 \mathrm{MHz}$): δ 169.6, 146.4, 140.6, 135.0, 130.6, 130.2, 128.5, 127.2, 127.1, 121.6, 119.6, 115.8, 106.5, 64.8, 50.0, 21.5. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.17$.
HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BN}_{3} \mathrm{O}_{6} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 450.0937$, found m / z 450.0930.

4g: (5-Bromo-1-tosyl-1 H-indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(4-bromo-2-iodophenyl)-4methylbenzenesulfonamide ($113 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-80 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($115 \mathrm{mg}, 0.23$ mmol, 91\%).
$v_{\max }$ (solid): $3015,2958,1768,1749,1597,1524,1444 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta 8.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 126 \mathrm{MHz}$): $\delta 169.6,146.0,137.8,135.2,132.1,130.5,128.2,127.1,124.3$, 121.4, 116.7, 116.6, 64.8, 49.9, 21.5. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.05$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BBrN}_{2} \mathrm{SO}_{6}\right)$ requires $m / z 505.0238$, found m / z 505.0238.

4h: (1-Tosyl-5-(trifluoromethoxy)-1H-indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(2-iodo-4-(trifluoromethoxy)phenyl)-4methylbenzenesulfonamide ($114 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv $), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-90 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($102 \mathrm{mg}, 0.20$ mmol, 80%).
$v_{\max }$ (solid): 2953, 2924, 2854, 1747, 1766, 1599, 1532, $1452 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta 8.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H})$, $7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=9.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.24$ $(\mathrm{d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 126 \mathrm{MHz}$): $\delta 169.6,146.1,144.9,137.2,135.2,135.2,130.5,127.2,121.8$, $120.7\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=255.9 \mathrm{~Hz}\right), 118.9,116.1,114.2,64.8,49.9,21.5$. Carbon bearing boron not observed.
${ }^{11} \mathrm{~B}$ NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.14$.
${ }^{19} \mathrm{~F}$ NMR (DMSO-d ${ }_{6}, 471 \mathrm{MHz}$): $\delta-57.00$.
HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BF}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}\right)$ requires m / z 509.0811, found m / z 509.0803.

4i: (5-Nitro-1-tosyl-1 H-indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(2-iodo-4-nitrophenyl)-4methylbenzenesulfonamide ($38 \mathrm{mg}, 0.09 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (19 mg , $0.11 \mathrm{mmol}, 1.2$ equiv $), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.3 \mathrm{mg}, 0.002 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CuI}(1.7 \mathrm{mg}, 0.009 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.027 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(19 \mathrm{mg}, 0.09 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-80 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($41 \mathrm{mg}, 0.09 \mathrm{mmol}$, 97\%).
$v_{\max }$ (solid): $2956,2922,2854,1766,1747,1597,1517,1455,1338 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta 8.70(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=9.3$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.32(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 126 \mathrm{MHz}$): $\delta 169.6,146.5,144.2,141.8,134.9,130.7,130.2,127.3,122.5$, $120.5,118.2,115.4,64.9,50.0,21.5$. Carbon bearing boron not observed.
${ }^{11} \mathrm{~B}$ NMR (DMSO-d $\left.{ }_{6}, 128 \mathrm{MHz}\right): \delta 9.90$.
HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BN}_{3} \mathrm{O}_{8} \mathrm{~S}\right)$ requires $m / z 470.0839$, found m / z 470.0829.

4j: (5-(Methoxycarbonyl)-1-tosyl-1 H-indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using methyl 3-iodo-4-((4methylphenyl)sulfonamido)benzoate ($107 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, CuI ($4.8 \mathrm{mg}, 0.025$ $\mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-90 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($98 \mathrm{mg}, 0.20 \mathrm{mmol}, 81 \%$).
$v_{\max }$ (solid): $2952,2917,2848,1764,1745,1712,1697,1612,1597,1454,1442,1368 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{\mathrm{d}}^{6}, 400 \mathrm{MHz}\right): \delta 8.29(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.91(\mathrm{~m}$, $3 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ (s, 3H) 2.97 ($\mathrm{s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 126 \mathrm{MHz}$): $\delta 169.1,166.2,145.6,140.9,134.7,130.0,129.6,126.7,125.8$, $124.9,123.3,121.9,114.4,64.3,52.1,49.5,21.0$. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d $\left.{ }_{6}, 128 \mathrm{MHz}\right): \delta 10.04$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BN}_{2} \mathrm{O}_{8} \mathrm{SNa}\right)$ requires $\mathrm{m} / \mathrm{z} 507.1008$, found m / z 507.0956.

4k: (1-Tosyl-1H-pyrrolo[2,3-b]pyridin-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(3-iodopyridin-2-yl)-4methylbenzenesulfonamide ($94 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv $), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-100 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($84 \mathrm{mg}, 0.20$ mmol, 79\%).
$v_{\max }$ (solid): 3051, 3003, 2950, 1759, 1747, 1597, 1451, 1349, $1299 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta 8.42(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.29(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 126 \mathrm{MHz}$): $\delta 169.8,150.7,145.8,145.4,135.9,130.3,130.2,128.2,121.7$, 119.7, 118.3, 65.2, 50.2, 21.5. Carbon bearing boron not observed.
${ }^{11} \mathrm{~B}$ NMR (DMSO-d $6,128 \mathrm{MHz}$): $\delta 10.33$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BN}_{3} \mathrm{O}_{6} \mathrm{SNa}\right)$ requires $\mathrm{m} / \mathrm{z} 450.0902$, found m / z 450.0888.

41: (1-Tosyl-1H-pyrrolo[2,3-c]pyridin-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(3-iodopyridin-2-yl)-4methylbenzenesulfonamide ($94 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (54 mg , $0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-100 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a yellow solid ($71 \mathrm{mg}, 0.17$ mmol, 67\%).
$v_{\max }$ (solid): $3029,2958,1764,1595,1450,1372,1292,1175 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.68(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=$ $17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 126 \mathrm{MHz}$): $\delta 169.6,146.3,142.8,136.5,135.3,135.1,130.6,127.3,120.8$, 116.3, 108.9, 64.8, 49.9, 21.5. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.77$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BN}_{3} \mathrm{O}_{6} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 428.1083$, found m / z 428.1091.

4m: (5-Nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridin-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure A using N-(3-iodo-5-nitropyridin-2-yl)-4methylbenzenesulfonamide ($104 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (45 mg , $0.3 \mathrm{mmol}, 1$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the vessel was allowed to cool to room temperature, vented, and decapped. The solution was then concentrated under reduced pressure before being diluted with EtOAc (10 mL) and washed with water (2 x 20 mL) and brine (2 x 20 mL). The organics were then dried and concentrated under reduced pressure to give a yellow solid, which was triturated with cold $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ followed by cold $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ to afford the title product as a pale yellow solid ($112 \mathrm{mg}, 0.24 \mathrm{mmol}, 95 \%$). $v_{\max }$ (solid): 2956, 2924, 1747, 1587, 1521, 1455, 1376, $1340 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 9.23(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 101 \mathrm{MHz}$): δ 169.2, 151.7, 146.1, 141.1, 140.5, 134.6, 129.9, 127.9, 126.0, 120.9, 118.4, 64.8, 49.7, 21.1. Carbon bearing boron not observed.
${ }^{11} \mathrm{~B}$ NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 7.76$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BN}_{4} \mathrm{O}_{8}\right)$ requires m / z 473.0936, found m / z 473.0933.

5a: Benzofuran-2-ylboronic acid, MIDA ester ${ }^{3}$

Prepared according to General Procedure B using 2-iodophenol ($55 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathrm{CuI}(2.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 6 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(52 \mathrm{mg}$, $0.375 \mathrm{mmol}, 1.5$ equiv). The vessel was then capped and purged with N_{2} before addition of DMF (2 $\mathrm{mL}, 0.125 \mathrm{M}$). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-80 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($57 \mathrm{mg}, 0.21 \mathrm{mmol}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.69-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 1 \mathrm{H})$, 7.23 (td, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=0.9,1 \mathrm{H}), 4.44(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, 2 H), $2.71(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): $\delta 169.0,156.7,127.8,124.5,122.5,121.3,114.5,111.2,61.6,47.3$. Carbon bearing boron not observed.

5b: (5-Fluorobenzofuran-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure B using 4-fluoro-2-iodophenol ($59 \mathrm{mg}, 0.25 \mathrm{mmol}$, 1 equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005$ $\mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathrm{CuI}(2.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 6 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(52 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5\right.$ equiv). The vessel was then capped and purged with N_{2} before addition of DMF ($2 \mathrm{~mL}, 0.125 \mathrm{M}$). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $40-90 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a white solid ($65 \mathrm{mg}, 0.22 \mathrm{mmol}, 89 \%$).
$\mathrm{v}_{\text {max }}$ (solid): $3015,2958,2924,1760,1563,1470,1448 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$): $\delta 7.60$ (dd, $J=9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dd, $J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (td, $J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 126 \mathrm{MHz}$): $\delta 169.4,158.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=235.4 \mathrm{~Hz}\right.$), $153.6,129.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=11.0\right.$ $\mathrm{Hz}), 115.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 112.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.9 \mathrm{~Hz}\right), 112.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.5 \mathrm{~Hz}\right), 107.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.8\right.$ Hz), 62.1, 47.8. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}$, 128 MHz): $\delta 8.81$.
${ }^{19} \mathrm{~F}$ NMR (DMSO- $\mathrm{d}_{6}, 471 \mathrm{MHz}$): $\delta-121.45$.
HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BFNO}_{5}\right)$ requires m / z 290.0642, found $m / z 290.0638$.
5c: (5-(((tert-Butyldimethylsilyl)oxy)methyl)benzofuran-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure B using 4-(((tert-butyldimethylsilyl)oxy)methyl)-2iodophenol ($36 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester ($18 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.4 \mathrm{mg}, 0.002 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(1.1 \mathrm{mg}, 0.006 \mathrm{mmol}, 6 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ ($1.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(21 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv). The vessel was then capped and purged with N_{2} before addition of DMF ($2 \mathrm{~mL}, 0.125 \mathrm{M}$). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $30-60 \%$ $\mathrm{EtOAc} /$ Petroleum Ether) to afford the title compound as an off-white solid ($34 \mathrm{mg}, 0.08 \mathrm{mmol}, 82 \%$). $\mathrm{U}_{\text {max }}$ (solid) 2937, 2854, 1745, 1561, 1461, 1454, 1297, $1251 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.70$ $(\mathrm{s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 101 \mathrm{MHz}$): $\delta 169.0,156.9,138.2,126.6,120.9,114.4,108.6,64.3,61.6,47.3$, 25.8, 18.0, -5.3. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d $6,128 \mathrm{MHz}$): $\delta 9.34$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BNO}_{6} \mathrm{SiNa}\right)$ requires $m / z 440.1671$, found m / z 440.1662.

5d: (4-Nitrobenzofuran-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure B using 2-iodo-3-nitrophenol ($66 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2$ $\mathrm{mol} \%$), $\mathrm{CuI}(2.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 6 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}\left(4.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(52 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5\right.$ equiv). The vessel was then capped and purged with N_{2} before addition of DMF ($2 \mathrm{~mL}, 0.125 \mathrm{M}$). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, $50-100 \% \mathrm{EtOAc} /$ Petroleum Ether) to afford the title compound as a yellow solid ($70 \mathrm{mg}, 0.22 \mathrm{mmol}, 88 \%$).
$v_{\max }$ (solid) 2919, 2850, 1773, 1757, 1524,, 1457, 1335, $1141 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 8.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 101 \mathrm{MHz}$): $\delta 168.9,157.9,139.9,124.6,122.9,119.4,118.6,113.7,61.9,47.5$. Carbon bearing boron not observed.
${ }^{11} \mathrm{~B}$ NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 9.02$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BN}_{2} \mathrm{O}_{7}\right)$ requires $\mathrm{m} / \mathrm{z} 319.0732$, found m / z 319.0736.

5e: Furo[3,2-b]pyridin-2-ylboronic acid, MIDA ester

Prepared according to General Procedure B using 2-iodopyridin-3-ol ($55 \mathrm{mg}, 0.25 \mathrm{mmol}$, 1 equiv), ethynyl boronic acid, MIDA ester ($54 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 2$ $\mathrm{mol} \%$), $\mathrm{CuI}(2.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 6 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}\left(4.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($52 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv). The vessel was then capped and purged with N_{2} before addition of DMF ($2 \mathrm{~mL}, 0.125 \mathrm{M}$). After 18 h , the vessel was allowed to cool to room temperature, vented, and decapped. The solution was then concentrated under reduced pressure before being diluted with EtOAc (10 mL) and washed with water (2 x 20 mL) and brine ($2 \times 20 \mathrm{~mL}$). The organics were then dried and concentrated under reduced pressure to give a yellow solid, which was triturated with cold $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ to afford the title compound as a white solid ($62 \mathrm{mg}, 0.23 \mathrm{mmol}, 91 \%$).
$v_{\max }$ (solid): $3093,3004,2948,1777,1686,1411,1279,1147 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta 8.56$ (br. s, 1 H), $8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.23$ (s, 1H), $4.46(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 101 \mathrm{MHz}$): δ 168.9, 147.7, 145.6, 119.4, 118.4, 115.2, 61.7, 47.3. Carbon bearing boron not observed.
${ }^{11} \mathrm{~B}$ NMR (DMSO-d $6,128 \mathrm{MHz}$): $\delta 8.94$.

HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BN}_{2} \mathrm{O}_{5}\right)$ requires m / z 273.0688, found $m / z 273.0688$.

4.3 Products from scheme 3, scale up reactions

4a: (1-Tosyl-1H-indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure C using N-(2-iodophenyl)-4-methylbenzenesulfonamide ($750 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester ($436 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(28 \mathrm{mg}, 0.04 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CuI}(38 \mathrm{mg}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(109 \mathrm{mg}, 0.6$ $\mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(426 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, 40-70\% EtOAc/petroleum ether) to afford the title compound as a white solid ($694 \mathrm{mg}, 1.62 \mathrm{mmol}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): \delta 8.12(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}$, $J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 126 \mathrm{MHz}$): δ 172.0, 140.7, 140.2, 139.7, 139.6, 133.1, 129.7, 128.8, 127.5, 127.4, 127.4, 127.2, 127.0, 52.1, 40.9.
$\mathbf{4 g}$: (5-Bromo-1-tosyl-1 H-indol-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure C using N-(4-bromo-2-iodophenyl)-4methylbenzenesulfonamide ($904 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (436 mg , $2.4 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(28 \mathrm{mg}, 0.04 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(38 \mathrm{mg}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{OAc})_{2}(109 \mathrm{mg}, 0.6 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(426 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv). After 18 h , the reaction mixture was subjected to the purification outlined in the General Procedure (silica gel, 40$80 \% \mathrm{EtOAc} /$ Petroleum Ether) to afford the title compound as a white solid ($900 \mathrm{mg}, 1.82 \mathrm{mmol}$, 91\%).
$v_{\text {max }}$ (solid): $3015,2958,1768,1749,1597,1524,1444 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta 8.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 126 \mathrm{MHz}$): $\delta 169.6,146.0,137.8,135.2,132.1,130.5,128.2,127.1,124.3$, 121.4, 116.7, 116.6, 64.8, 49.9, 21.5. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.05$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BBrN}_{2} \mathrm{SO}_{6}\right)$ requires $\mathrm{m} / \mathrm{z} 505.0238$, found m / z 505.0238.

4m: (5-Nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridin-2-yl)boronic acid, MIDA ester

Prepared according to General Procedure C using N-(3-iodo-5-nitropyridin-2-yl)-4methylbenzenesulfonamide ($628 \mathrm{mg}, 1.5 \mathrm{mmol}, 1$ equiv), ethynyl boronic acid, MIDA ester (299 mg , $1.65 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(21 \mathrm{mg}, 0.03 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{CuI}(28.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(13.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(53 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). After 18 h , the vessel was allowed to cool to room temperature, vented, and decapped. The solution was
then concentrated under reduced pressure before being diluted with EtOAc and washed with water and brine. The organics were dried through a hydrophobic frit and concentrated under reduced pressure. The resulting yellow solid was then triturated with cold $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ followed by cold $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ to afford the title compound as a pale yellow solid ($700 \mathrm{mg}, 1.49 \mathrm{mmol}, 99 \%$).
$\mathrm{v}_{\text {max }}$ (solid): 2956, 2924, 1747, 1587, 1521, 1455, 1376, $1340 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta 9.23$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.97 (d, $\left.J=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.18(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.07 (s, 3H), 2.35 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 101 \mathrm{MHz}$): $\delta 169.2,151.7,146.1,141.1,140.5,134.6,129.9,127.9,126.0$, 120.9, 118.4, 64.8, 49.7, 21.1. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 7.76$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BN}_{4} \mathrm{O}_{8}\right)$ requires $m / z 473.0936$, found m / z 473.0933.

4.4 Products from schemes 4 and 5

6: (5-(3,6-Dihydro-2H-pyran-4-yl)-1-tosyl-1 H-indol-2-yl)boronic acid

To an oven-dried 5 mL microwave vial was added (5-bromo-1-tosyl-1 H -indol-2-yl)boronic acid, MIDA ester ($126 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), 2-(3,6-dihydro- 2 H -pyran-4-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($68 \mathrm{mg}, 0.325 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 4 \mathrm{~mol} \%$), and $\mathrm{K}_{3} \mathrm{PO}_{4}\left(159 \mathrm{mg}, 0.75 \mathrm{mmol}, 3\right.$ equiv). The vial was then capped and purged with N_{2} before addition of THF ($1 \mathrm{~mL}, 0.25 \mathrm{M}$) and $\mathrm{H}_{2} \mathrm{O}(22.5 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5$ equiv). The reaction mixture was stirred at room temperature for 24 h in a sandbath. Upon completion of the reaction the mixture was filtered through a pad of celite and concentrated at reduced pressure. The crude residue was diluted with EtOAc $(10 \mathrm{~mL})$ and washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$. The organics were dried and concentrated under reduced pressure to give a yellow oil that was purified by flash chromatography (silica gel, $40-90 \%$ EtOAc/petroleum ether) to afford the title compound as a white solid ($108 \mathrm{mg}, 0.21 \mathrm{mmol}, 85 \%$).
$\mathrm{U}_{\text {max }}$ (solid): 2954, 2921, 2850, 1766, 1597, 1532, 1455, 1338, $1294 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta 8.08$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (d, $J=1.7$
$\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.27-6.21(\mathrm{~m}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}), 2.33$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 101 \mathrm{MHz}\right): \delta 169.1,145.2,137.7,135.4,135.0,133.0,129.9,129.8,126.5$, $122.5,122.2,122.0,117.1,114.1,65.1,64.2,63.6,49.4,26.7,21.0$. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.70$.
HRMS: exact mass calculated for $[M+N a]^{+}\left(\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BN}_{2} \mathrm{O}_{7} \mathrm{SNa}\right)$ requires m / z 531.1372, found m / z 531.1382.

7: (5-Amino-1-tosyl-1 H-pyrrolo[2,3-b]pyridin-2-yl)boronic acid, MIDA ester

An oven dried 15 mL flask was charged with (5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridin-2-yl)boronic acid, MIDA ester ($100 \mathrm{mg}, 0.211 \mathrm{mmol}, 1$ equiv) and $10 \% \mathrm{Pd} / \mathrm{C}(45 \mathrm{mg}, 0.021 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The flask was purged with N_{2} before the addition of 2.1 mL of $4: 1 \mathrm{MeOH}: E t O A c(0.1 \mathrm{M})$. The flask was then purged three times with H_{2} before being left to stir at room temperature for 16 h under an atmosphere of hydrogen (balloon pressure). Upon completion of the reaction, the flask was purged with N_{2} and the contents were filtered through a pad of celite and concentrated under reduced pressure to afford the title compound as a yellow solid ($85 \mathrm{mg}, 0.19 \mathrm{mmol}, 91 \%$).
$v_{\max }$ (solid): 3496, 3348, 2954, 2921, 1745, 1666, 1597, 1524, 1403, $1338 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.05(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 101 \mathrm{MHz}$): $\delta 169.2,144.8,143.4,141.8,135.7,133.8,129.5,127.4,121.9$, 117.6, 111.6, 64.7, 49.6, 21.0. Carbon bearing boron not observed.
${ }^{11}$ B NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 10.68$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BN}_{4} \mathrm{O}_{6} \mathrm{~S}\right)$ requires $m / z 443.1192$, found m / z 443.1176.

8: (5-((3-Fluoro-4-methoxyphenyl)amino)-1-tosyl-1H-pyrrolo[2,3-b]pyridin-2-yl)boronic acid, MIDA ester

A 5 mL oven dried flask was charged with (5-amino-1-tosyl-1H-pyrrolo[2,3-b]pyridin-2-yl)boronic acid, MIDA ester ($50 \mathrm{mg}, 0.11 \mathrm{mmol}, 1$ equiv), (3-fluoro-4-methoxyphenyl)boronic acid ($37 \mathrm{mg}, 0.21$ mmol, 2 equiv), and $\mathrm{Cu}(\mathrm{OAc})_{2}$. To this, $\mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 2$ equiv $)$ and $\mathrm{MeCN}(0.4 \mathrm{~mL}, 0.25$ M) were added and the reaction was left to stir at room temperature for 16 h . Upon completion of the reaction, the mixture was filtered through a pad of celite and concentrated under reduced pressure. The crude residue was diluted with EtOAc (10 mL) and washed with water $(2 \times 20 \mathrm{~mL}$) and brine (2 $\times 20 \mathrm{~mL}$). The organics were dried and concentrated under reduced pressure to give a purple solid that was purified by flash chromatography (silica gel, 40-80\% EtOAc/petroleum ether) to afford the title compound as an off-white solid ($61 \mathrm{mg}, 0.11 \mathrm{mmol}, 100 \%$).
$v_{\max }$ (solid): 3361, 2952, 2951, 2850, 1759, 1745, 1597, 1513, $1338 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.10(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=13.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}) 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 101 \mathrm{MHz}\right): \delta 169.3,152.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=243.1 \mathrm{~Hz}\right), 145.1,140.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=11.0\right.$ $\mathrm{Hz}), 137.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.5 \mathrm{~Hz}\right), 137.0,136.9,135.5,129.6,127.5,121.7,117.8,115.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=15.5\right.$ $\mathrm{Hz}), 115.3,112.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 105.3,105.1,64.7,56.5,49.6,21.0$. Carbon bearing boron not observed.
${ }^{11} \mathrm{~B}$ NMR (DMSO-d ${ }_{6}, 128 \mathrm{MHz}$): $\delta 11.14$.
${ }^{19}$ F NMR (DMSO-d ${ }_{6}, 471 \mathrm{MHz}$): $\delta-133.35$.
HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BFN}_{4} \mathrm{O}_{7} \mathrm{SNa}\right)$ requires $m / z 589.1340$, found m / z 589.1340.

9: Methyl 2-(4-(1-tosyl-1H-indol-2-yl)phenyl)acetate

To an oven-dried 5 mL microwave vial was added methyl 2-(4-bromophenyl)acetate ($57 \mathrm{mg}, 0.25$ mmol, 1 equiv), (1 -tosyl- 1 H -indol-2-yl)boronic acid, MIDA ester ($149 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.4$ equiv), $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(159 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv). The vial was then capped and purged with N_{2} before addition of THF ($1 \mathrm{~mL}, 0.25 \mathrm{M}$) and $\mathrm{H}_{2} \mathrm{O}(22.5 \mu \mathrm{~L}$, 1.25 mmol , 5 equiv). The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 24 h in a sandbath. Upon completion of the reaction, the mixture was filtered through a pad of celite and concentrated at reduced pressure. The crude residue was diluted with EtOAc (10 mL) and washed with water (2×20 $\mathrm{mL})$ and brine $(2 \times 20 \mathrm{~mL})$. The organics were dried and concentrated under reduced pressure to give a brown oil that was purified by flash chromatography (silica gel, 10-20\% EtOAc/petroleum ether) to afford the title compound as an off white solid ($77 \mathrm{mg}, 0.19 \mathrm{mmol}, 74 \%$).
$\mathrm{v}_{\text {max }}$ (solid): $2950,2919,2848,1723,1597,1506,1439,1370,1167 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74$ ($\mathrm{s}, 2 \mathrm{H}$), $2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 101 \mathrm{MHz}$): $\delta 171.4,144.1,141.3,137.8,134.1,134.0,130.8,130.1,130.0$, 128.7, 128.0, 126.3, 124.3, 123.9, 120.2, 116.2, 113.2, 51.7, 40.5, 21.0.

HRMS: exact mass calculated for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{1}\right)$ requires $\mathrm{m} / \mathrm{z} 437.1530$, found m / z 437.1523.

10: 1-Tosylindolin-2-one ${ }^{4}$

To an oven-dried 5 mL microwave vial charged with (1-tosyl-1 H -indol-2-yl)boronic acid, MIDA ester ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1 equiv) was added $\mathrm{MeOH}\left(0.8 \mathrm{~mL}\right.$) and KHF_{2} solution (4.5 M in $\mathrm{H}_{2} \mathrm{O}, 125$ $\mu \mathrm{L}, 0.6 \mathrm{mmol}, 3$ equiv) and the reaction was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The reaction was cooled to room temperature before being concentrated at reduced pressure. The resulting white solid was dissolved in hot acetone (1 mL) and transferred to a 10 mL round bottomed flask. Oxone ${ }^{\circledR}$ (68 mg in $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, $0.2 \mathrm{mmol}, 1$ equiv) was added and the reaction mixture was left to stir for 16 h at room temperature. The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were filtered through a pad of silica and washed through with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organics were concentrated at reduced pressure to afford the desired product as an off white solid ($45 \mathrm{mg}, 0.16 \mathrm{mmol}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.91$ (d, $\left.J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 3 \mathrm{H})$, 7.13 (d, $J=7.4,1 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 172.3,145.2,139.9,134.8,129.3,128.1,127.5,124.2,124.1,122.7$, 113.2, 35.6, 21.2.

11: Benzofuran-2(3H)-one ${ }^{5}$

To an oven-dried 5 mL microwave vial charged with benzofuran-2-ylboronic acid, MIDA ester (55 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) was added $\mathrm{MeOH}(0.8 \mathrm{~mL})$ and KHF_{2} solution (4.5 M in $\mathrm{H}_{2} \mathrm{O}, 125 \mu \mathrm{~L}, 0.6$ mmol, 3 equiv) and the reaction was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The reaction was cooled to room temperature before the addition of Oxone ${ }^{\circledR}$ (68 mg in $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 0.2 \mathrm{mmol}$, 1 equiv), and the reaction mixture was left to stir for a further 10 min at room temperature. The reaction was quenched with 1 N $\mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were filtered through a
pad of silica and washed through with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organics were concentrated at reduced pressure to afford the desired product as colourless solid ($24 \mathrm{mg}, 0.18 \mathrm{mmol}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.66 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 101 \mathrm{MHz}$): $\delta 173.6,154.2,128.4,124.1,123.6,122.6,110.3,32.5$.

5. References

1. W. L. F. Armarego, C. Chai, Purification of Laboratory Chemicals, $7^{\text {th }}$ ed., Elsevier, Oxford, 2013.
2. J. M. Chan, G. W. Amarante, and F. D. Toste, Tetrahedron, 2011, 67, 4306.
3. D. M. Knapp, E. P. Gillis and M. D. Burke, J. Am. Chem. Soc., 2009, 131, 6961.
4. L.-Q. Yang, K.-B. Wang and C.-Y. Li, Eur. J. Org. Chem., 2013, 2775.
5. G. A. Molander and L. N. Cavalcanti, J. Org. Chem., 2011, 76, 623.
6. NMR and HRMS spectra for intermediates and products ${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 1}$

${ }^{19}$ F NMR of S1

${ }^{1} \mathrm{H}$ NMR of S 2

${ }^{13}$ C NMR of S2

${ }^{1} H$ NMR of S3
(

${ }^{13}$ C NMR of S3

${ }^{1} \mathrm{H}$ NMR of S4

${ }^{13}$ C NMR of S4

${ }^{1} \mathrm{H}$ NMR of S 5

${ }^{13}$ C NMR of $\mathbf{S 5}$

${ }^{1} \mathrm{H}$ NMR of S6

${ }^{13}$ C NMR of S6

${ }^{\mathbf{1}} \mathrm{H}$ NMR of S7

${ }^{13}$ C NMR of S7

${ }^{1} H$ NMR of S8

${ }^{13}$ C NMR of S8

${ }^{1} \mathrm{H}$ NMR of S 9

${ }^{13}$ C NMR of S 9

${ }^{19}$ F NMR of S9

${ }^{1} \mathrm{H}$ NMR of S10

${ }^{13} \mathrm{C}$ NMR of S10

${ }^{1} \mathrm{H}$ NMR of S11

${ }^{13} \mathrm{C}$ NMR of S11

${ }^{1} H$ NMR of 4a

${ }^{13}$ C NMR of 4a

${ }^{\mathbf{1}} \mathrm{H}$ NMR of 4b

${ }^{13}$ C NMR of 4b

${ }^{19}$ F NMR of 4b

4b

${ }^{1} H$ NMR of 4c

${ }^{1} \mathrm{H}$ NMR of 4 d

${ }^{1} H$ NMR of $4 e$

${ }^{13}$ C NMR of 4e

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 f}$

${ }^{13}$ C NMR of $4 f$

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{4 g}$

${ }^{13}$ C NMR of $\mathbf{4 g}$

8	\%			
-	守			
\|				
\\|l	V			

-7500

$4 g$

${ }^{\mathbf{1}} \mathbf{H}$ NMR of $\mathbf{4 h}$

${ }^{13} \mathrm{C}$ NMR of 4 h

${ }^{19}$ F NMR of 4h

${ }^{1} \mathbf{H}$ NMR of 4i

${ }^{1} \mathrm{H}$ NMR of 4 j

Abstract

${ }^{13}$ C NMR of $\mathbf{4 j}$

4j

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{4 k}$

${ }^{1} \mathrm{H}$ NMR of 41

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{4 m}$

Abstract

${ }^{13}$ C NMR of $4 m$ ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{5 a}$ (

${ }^{13}$ C NMR of 5a

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{5 b}$
(
${ }^{13}$ C NMR of 5b

${ }^{19}$ F NMR of 5b
(1000
${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 c}$

${ }^{13}$ C NMR of 5c

5c

${ }^{1} H$ NMR of 5 d

${ }^{13}$ C NMR of 5d

5d

${ }^{1} \mathrm{H}$ NMR of 5e

${ }^{13} \mathrm{C}$ NMR of 5e

${ }^{1} \mathrm{H}$ NMR of 6

${ }^{13}$ C NMR of 6

${ }^{\mathbf{1}} \mathrm{H}$ NMR of 7

${ }^{13} \mathrm{C}$ NMR of 7

${ }^{1} \mathrm{H}$ NMR of 8

${ }^{13}$ C NMR of 8

${ }^{19}$ F NMR of 8

${ }^{1} \mathrm{H}$ NMR of 9

${ }^{\mathbf{1}} \mathrm{H}$ NMR of 10

${ }^{13}$ C NMR of 10

${ }^{1} \mathrm{H}$ NMR of 11

