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Stationary and traveling solitons via local dissipations

in Bose-Einstein condensates in ring optical lattices

Russell Campbell and Gian-Luca Oppo
SUPA and Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, Scotland, UK∗

A model of a Bose-Einstein condensate in a ring optical lattice with atomic dissipations applied at a stationary

or at a moving location on the ring is presented. The localized dissipation is shown to generate and stabilize

both stationary and traveling lattice solitons. Among many localized solutions, we have generated spatially

stationary quasiperiodic lattice soltions and a family of traveling lattice solitons with two intensity peaks per

potential well with no counterpart in the discrete case. Collisions between traveling and stationary lattice solitons

as well as between two traveling lattice solitons display a critical dependence from the lattice depth. Stable

counterpropagating solitons in ring lattices can find applications in gyroscope interferometers with ultra-cold

gases.

PACS numbers: 03.75.Lm, 03.75.Kk, 05.45.Yv, 67.85.De

I. INTRODUCTION

Bose-Einstein condensates (BEC) trapped in an optical lat-

tice have attracted a major scientific interest and can provide

an interesting analogue to solid-state systems [1, 2]. An ad-

vantage here is that there is almost complete control of the

parameters that regulate the lattice. This has led to studies

of solid-state phenomena such as quantum phase transitions

[3], transport [4], Anderson localization [5] and macroscopic

Zeno effect [6]. In the superfluid phase of the BEC, a lot of

attention has been devoted to discrete breathers in the discrete

nonlinear Schrödinger equation (DNLSE) [7] and to lattice

solitons in the Gross-Pitaevskii equation (GPE) [8]. The opti-

cal lattice allows solitons and discrete breathers to exist with

repulsive BEC where they have been observed experimentally

[9]. Methods for the generation of discrete breathers include

the evolution from Gaussian wavepackets [10, 11] and the re-

laxation from random phase states via localized losses [12].

Stabilization of discrete breathers in the DNLSE via localized

losses can be acheived by either the progressive lowering of

the fluctuating background [7, 12] or by producing sudden

atomic avalanches [13]. Moving discrete breathers have also

been obtained with these techniques in accurate numerical

simulations. An interesting application of moving breathers

is in atom interferometry [14]. Without a lattice, methods of

soliton interferometry have been implemented experimentally

in [15] while techniques for generating counterpropagating

solitons by using a splitting potential barrier in a ring trap have

been proposed and discussed in [16–18]. The aim of our work

is to demonstrate that stationary and moving lattice solitons

in continuous models of BEC in ring lattices can be generated

and stabilized via localized losses. In particular we show that

higher order lattice solitons that have no counterpart in the

discrete case can be effectively stabilized by these techniques.

Bright and dark lattice solitons were generated via dissipation

for attractive BEC in [19]. Here we focus instead on repulsive

BEC.

∗Electronic address: russell.campbell@strath.ac.uk

We consider a ring trap [20] with a toroidal optical lattice

as realized for example in [21–24] (see Fig. 1 (a)). Experi-

mentally, a BEC in a ring trap with an azimuthal optical lat-

tice can be achieved by either using counter-propagating laser

beams in a circular wave-guide or by illuminating transver-

sally a ring trap with two counter-rotating orbital angular mo-

mentum laser beams with optical axis along the centre of the

ring trap and perpendicular to the trap.

It is important to outline that the equations used in this pa-

per for the case of a BEC in an optical lattice also describe

light traveling through arrays of optical waveguides. Since the

theoretical and experimental pioneering work of [25], lattice

solitons, also known as gap solitons, have been predicted and

observed in a variety of purely optical configurations [26]. In

nonlinear optics, the ring lattice described above for a BEC,

corresponds to a cylindrical array of optical waveguides (see

Fig. 1 (b)). All the results presented here can then be extended

to this purely optical case. Lattice solitons in optical ring con-

figurations have been investigated in [27] where the effects

of self-interacting soliton tails have been studied in details.

Here, we consider a number of optical waveguides that is large

enough to make these effects negligible.

Another method of supporting solitons in nonlinear media

is that of localized gain (for a review, see [28]). There is

also great interest in parity-time symmetric systems [29], for

which, when applied to a BEC, localized gain and dissipations

are balanced (for recent reviews about nonlinear systems, see

[30]). In our model, we believe that it would be possible to

implement this technique too with the gain being provided by

an atom laser [31]. Indeed, such a setup is described in [32]

for a ring-trap without a lattice. In this paper, however, we

focus on the effects of dissipation alone where hermitian or

non-hermitian hamiltonians cannot be applied.

Since the GPE and the DNLSE have been obtained under

the mean-field approximation which is valid in the limit of

large numbers of atoms, we do not consider here purely quan-

tum effects arising from atom-atom correlation such as the

collapse and revival of the matter wave field [33] or many-

particle entanglement [34, 35]. A detailed investigation of

these effects is beyond the scope of this paper, although recent

studies concerning localization of a BEC in an optical lattice
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FIG. 1: (Color online) (a) BEC lattice soliton in an optical lattice

ring-trap. The arrow identifies the position where localized losses are

applied. (b) An array of optical waveguides in a ring configuration.

The dark cylinder represents an output coupler capable of removing

light from the array.

in the presence of localized dissipations and beyond the mean-

field approximation can be found in [35–37]. All these simu-

lations confirm that the fundamental result of self-localization

via localized losses, originally obtained in [12], survives in

the quantum regimes beyond the mean-field approximation.

Model equations for a BEC in an ring optical lattice are in-

troduced in Section II. These are the continuous counterpart

of the DNLSE with the addition of localised dissipations. In

order to differentiate and compare the solutions of the contin-

uous model of Section II with those of the DNLSE, we refer

to continuous soliton solutions in the annular periodic poten-

tial as lattice instead of discrete solitons. Lattice solitons are

also known as ’gap solitons’ in the literature. In Section III

we discuss the generation of symmetric and asymmetric lat-

tice solitons via the effect of stationary localized losses and

compare them succesfully to those found by other numerical

methods in [38]. Traveling lattice solitons (TLS) in the ring

trap are generated and investigated in Section IV. Two kind of

TLS are found: with one peak per lattice well and with two

peaks per lattice well. It is important to note that the dou-

ble peak TLS has no counterpart in the discrete NLS. Finally,

collisions between traveling and stationary lattice solitons in

a ring trap are investigated in Section V, while collisions be-

tween two traveling lattice solitons are studied in Section VI.

In the DNLSE, collisions of discrete breathers were studied

in [39] where their dependence on the velocity, amplitude and

phase difference of the breathers was investigated. Here, we

investigate the dependence of the collision of continuos lattice

solitons on potential depth V0. Possible applications to atom

interferometry are discussed in the conclusions.

II. THE MODEL EQUATIONS

We consider the Gross-Pitaevskii equation for a one dimen-

sional BEC in an optical lattice given by [38, 40]:

i~
∂Ψ(x,T )

∂T
=

(

− ~
2m

∂2

∂x2
+ E0sin2

(

πx

L

)

+ g1D|Ψ|2
)

Ψ , (1)

where ~ is the reduced Planck’s constant, E0 is the potential

depth (usually measured with respect to the recoil energy),

L = λ/2 is the lattice period, λ the laser or spatial wave-

length used for the optical lattice and m the atomic mass. The

one-dimensional atom-atom interaction parameter is given by

g1D = 2~ω⊥as, where ω⊥ is the transverse trapping frequency

and as the scattering length of the BEC.

To describe the BEC trapped in the ring we use Eq. (1)

provided with periodic boundary conditions. For convenience,

dimensionless variables are used. First we rewrite Eq. (1) by

normalizing u =
√

L/2NΨ, t = T/T0 and V0 = E0/Er, where

T0 = mL2/4~, Er = 4~2/mL2 is the recoil energy and N is

the number of atoms [38]. The length scale x is then changed

into the ring angle θ = 2πx/ML ranging from 0 to 2π radians,

where M is the number of potential wells in the ring along the

azymuthal direction. The resulting equation is:

i
∂u(θ, t)

∂t
=

(

−
π2

2M2

∂2

∂θ2
+ V0sin2

(

Mθ

2

)

+ β|u|2 − iρ(θ, t)

)

u .

(2)

The nonlinear parameter β = Nω⊥asmL/~ is positive for re-

pulsive condensates and negative for attractive ones. In order

to describe localized losses of the atomic population along the

ring at certain times t, we have added the term −iρ(θ, t)u in

Eq. (2). Extremely precise methods for removing atoms in a

particular position of a BEC in optical lattices have been im-

plemented with the use of narrow electron beams [41]. The

intensity of such electron beams can control the number of

atoms that are removed from one or more potential wells of

the optical lattice. In our examples here, localized losses are

applied at the furthest point in the ring (i.e. at an angular dis-

tance of π radians) from the peak of the stationary or moving

lattice soliton. For example, with the stationary lattice solitons

that are usually generated at θ = π, the dissipation is applied

at θ = 0 = 2π.
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Equation 2 is normalized so that at t = 0, before any atoms

are lost due to dissipation,

∫

u(t = 0) dθ = 1 . (3)

In this paper, we use only repulsive BEC (i.e. β > 0) and in-

vestigate the generation of bright lattice solitons via localized

dissipations. We note that in [19] both bright and dark solitons

have been generated via dissipation for attractive BEC and at

moderate lattice depths. We have not observed generation of

dark solitons in our simulations but this does not exclude that

they can be stabilized after a transient application of the dissi-

pation.

III. STATIONARY LOCALIZED DISSIPATIONS

Stationary and moving breathers can be formed in the

DNLS starting from initial Gaussian wavepackets [7, 10, 11].

For our continuous variable model, we use the general form:

u(t = 0) =
M2

γ1/2π9/4
exp

(

−
(θ − θc)2

2γ2

)

(4)

with θc being the position of the centre of the wave-packet

and γ the width. With the nonlinear coefficient fixed at β = 1,

the initial width was changed and several localized solutions

were found in the case of zero losses (i.e. the conservative

case).

Typically, the Gaussian wavepacket would reshape into

a solitonic profile. The atomic mass expelled from the

wavepacket, however, forms a noisy backround. The peak

fluctuates in height as it keeps interacting with the back-

ground. As the width of the initial wave-packet is increased,

the background becomes noisier and sometimes smaller am-

plitude peaks appear close to the main one. The small ampli-

tude peaks, however, do not survive in the long term. When

the width of the initial Gaussian condition is too large, no peak

is formed and the condensate disperses onto the background.

Similarly, if the width is too small (smaller than a single po-

tential well), there is no self-localization either.

When dissipation is applied to the above configuration, we

obtain less noisy backgrounds since the mass expelled from

the initial wavepacket escapes at the location of the losses. In

all the examples in this section, the dissipation acts on around

4 potential wells with the maximum loss of 0.5 at θ = 0 = 2π.

For a Gaussian of unit width (γ = 1) we routinely recover sta-

ble lattice soliton solutions via localized dissipation (see, for

example Fig. 2). These solutions are very close to those shown

in [38] and obtained with very different numerical methods.

The effect of dissipation on the soliton and background can

be seen clearly in Fig. 3, which shows the decay of the noisy

backround leading to exponential tails associated with lattice

solitons. In the larger lattice, this effect is less obvious, due to

the distance from the lattice soliton to the place where the dis-

sipation is applied (Fig. 3 (b)). Making the dissipation broader

so that it acts on most of the potential wells in the lattice (in

FIG. 2: Stationary lattice soliton formed from applying dissipation to

an initial Gaussian wavepacket (4). The shape of the lattice soliton is

very similar to those presented in [38]. The dotted line is the lattice

V , see the scale on the right, with V0 = 10.

FIG. 3: (Color online) Intensity distribution of stationary lattice soli-

tons obtained from initial Gaussian wavepackets with localized dis-

sipation in a lattice of 20 potential wells (a) and 160 potential wells

(b). In (a), the curves correspond to t=0 (black, upper), t=20000 (red,

middle), and t=100000 (blue, lower), with time t=0 corresponding

to the moment dissipation is turned on. In (b), we also show t=0

(black, upper) and t=100000 (blue, lower), along with the intensity

distribution after increasing the number of potential wells where the

dissipation acts on from ∼ 4 to ∼ 150 at t = 100000 and then running

the simulation for another 100000 time units (green, lower).

this case ∼ 150 out of 160) can help to reveal the tails faster

(see green, lower line in Fig. 3 (b)).

We find that the final shape and frequency of the lattice

soliton is affected by changing the initial width of the Gaus-

sian γ: the wider is the Gaussian, the more atoms are lost

due to dissipation and the lower is the final peak amplitude

of the lattice soliton. The frequency of the oscillations of the

real/imaginary parts of the solitons, along with the gradient of

the exponential tails of the soliton, is larger if the number of

atoms (i.e. the peak amplitude) is larger. This can be seen in

Table I where the peak intensity, gradient and the frequency

of the final lattice soliton are displayed versus the Gaussian

width.

Localized dissipations allow one to generate a broad vari-

ety of lattice solitons from Eq. (2). For example for γ = 1.3

and γ = 1.8, the result is that of asymmetric lattice solitons

with two high-peaks next to each other (see Fig. 4). The os-

cillation of this asymmeteric solution is quasiperiodic. The

values of peak intensity, frequency and gradient of the tails
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TABLE I: Values of parameters used in the simulations

γ Peak Intensity Gradient of tails Frequency Nature of Solution

0.5 1.258 0.420 4.05 SLS

0.7 1.167 0.410 3.97 SLS

0.9 1.012 0.398 3.89 SLS

1.0 0.923 0.392 3.83 SLS

1.2 0.765 0.367 3.72 SLS

1.3 0.651 0.355 3.62 QS

1.6 0.539 0.332 3.55 SLS

1.8 0.377 0.289 3.46 QS

2.0 0.362 0.287 3.43 SLS

FIG. 4: (Color online) (a) Quasiperiodic solution generated by ap-

plying dissipation to an initial Gaussian with width γ = 1.3. (b)

Variation in time of intensity of peak of larger amplitiude (black, up-

per line) and smaller amplitude (red, lower line).

of the quasiperiodic solutions (QS) in Table I are those as-

sociated with the highest peak in each case. Note that there

are quasiperiodic discrete breather counterparts in the DNLSE

(see [42]).

FIG. 5: (Color online) A higher-order stationary soliton solution with

two-peaks formed from applying dissipation to an initial Gaussian

wavepacket (4) centered between two potential wells.

Another type of solution, shown in Fig. 5, is symmetric

with two main peaks (as in [40]). The two peaks are in-phase

with each other and oscillate at the same frequency, as op-

posed to the previous quasiperiodic example in Fig. 4. This

lattice soliton has been found by using localized dissipations

and by shifting the initial wavepacket by L/2 (half a poten-

tial well). The same effect can be obtained with a potential

of V = V0cos2(Mθ/2) rather than V = V0sin2(Mθ/2), so that

the initial Gaussian wavepacket is centered between two po-

tential wells. The nonlinearity is set to the value of β = 10,

corresponding to a higher number of initial atoms or a larger

scattering length. With β = 1, the double peak relaxes to the

single peak solution quickly.

FIG. 6: (Color online) Space-time evolution of atomic density u(x, t)

with β = 50 in the presence of localized dissipations. The initial con-

dition is that of a ”flat” equal amplitude wavefunction with random

phases.

FIG. 7: (Color online) Intensity distribution of localized solution ob-

tained from applying dissipation to an initially flat wavefunction at

t = 10000 (a) and t = 100000 (b).

For completeness we show that localized structures can

also be obtained via localized dissipations by starting from

a homogeneous distribution of atoms across the optical lat-

tice with random phases in analogy with what has been done

in the DNLSE [7, 12]. In the example here, we first run a

transient without dissipations for 1000 time-steps. After this,

dissipation is turned on as shown in Fig. 6. There is a first

localization to two peaks, (see Fig. 7(a)). The amplitudes of

the peaks fluctuate and eventually, at long time scales (around

t = 35000), the peaks move closer to each other so that only

one potential well separates them (see Fig. 7(b)). To observe

this behavior the nonlinearity has been increased to β = 50.

IV. TRAVELING LOCALIZED DISSIPATIONS

By using an initial Gaussian wavepacket with an additional

momentum, traveling breathers can be formed in the DNLSE
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[7, 10, 11]. In order to simulate this procedure in the contin-

uous case and stabilise a traveling lattice soliton (TLS), we

have used an initial distribution made of a ”Gaussian of Gaus-

sians” (see Fig. 8 (a)). In the DNLSE where each potential

well corresponds to a single lattice point, our distribution re-

duces to a normal Gaussian shape (see dashed line in Fig. 8

(a)). With the addition of an initial momentum p (here set to

cos(p) = −0.95), a traveling peak is formed in the continuous

model. We then apply dissipation in the angular position op-

posite to this peak in a way similar to what is described in [7]

for the DNLSE. Since the atomic density peak is traveling, the

point at which dissipation is applied also moves.

FIG. 8: (Color online) (a) Initial condition for the formation of a

TLS. Note that this distribution would be an ordinary Gaussian shape

in the DNLSE (blue dashed line) (b) Space-time evolution of atomic

density u(x, t) of the TLS with Λ = 1 and dissipations ρ = 0.5.

In the example shown in Figures 8 and 9, we consider

β = 1.0, V0 = 10, and cos(p) = −0.95 and dissipations given

by ρ = 0.5 over 4 lattice wells. At the begining of the simu-

lation, a certain amount of atoms remains stationary after the

traveling peak is formed. This can be seen in Fig. 8 (b), with

the high amplitude stationary part of the wavefunction visi-

ble until t ≈ 100, when these atoms are removed from the

lattice by the moving dissipation beam. At long time scales,

the peak shapes into a TLS that travels at a constant speed

(shown in Fig. 9(a)). It is important to note that without dis-

sipations, the atoms that do not travel with the moving peak

eventually spread across the lattice, giving rise to a large back-

ground noise. As the moving peak travels and interacts with

the background, its amplitude reduces since it loses atoms to

the background. By t ≈ 1600, the height has decreased by half

and by t ≈ 3000 the conservative traveling peak has disap-

peared. In contrast in the presence of the moving dissipation,

the TLS survives on much longer time scales, maintaining the

same height after t ≈ 40000. The fact that dissipation helps

instead of hinder the formation of a TLS is even more sur-

prising since, at difference with the stationary lattice solitons,

TLS require the presence of a background in order to over-

come the unavoidable Peierls-Nabarro barriers [7, 43]. The

presence of the localized dissipation is then twofold: on one

side it removes enough stationary background noise to help

with the localization of the TLS and on the other it moves

with the traveling background thus maintaining it to the level

necessary for the motion and stability of the TLS.

It is important to note that the TLS of Fig. 9(a) formed

via the localized dissipation is a ’higher-order’ TLS with two

atomic density peaks per potential well (see Fig. 9(b)). Due

to its shape, this TLS has no counterpart in the DNLSE. We

FIG. 9: (Color online) (a) Intensity distribution of a TLS at t = 10150

(black, left), t = 10220 (blue, middle) and t = 10290(green, right)

(b) Close-up of intensity distribution at t = 10150 (black, thin)

with the periodic potential (red, thick), showing the two peaks-per-

potential well.

have determined an approximate form of the amplitude of the

TLS displayed in Fig. 9 that can be used as initial conition at

time t = 0 and given by

u(θ) = −7.66 A exp

[

i
pM(θ − π)

2π

]

sin [M(θ − π)] sech [AM(θ − π)] (5)

where A is a parameter that depends on the width of the TLS.

For A = 1/(7.5π) and p = −0.4 we obtain a fit of the TLS

in Fig. 9 as accurate as few percents. Having determined the

approximate TLS shape in Eq. (5), one can use it as an ini-

tial condition for the formation of the double peak TLS in

the presence or absence of dissipations. With dissipations

ρ = 0.5, we have verified that the TLS of Fig. 9 forms much

faster when using the wavepacket (5) as intial condition in-

stead of the Gaussian wavepacket. Figure 10 (a) shows that

this TLS survives for extremely long time scales with an ex-

tremely small loss of atomic density or energy. The steady

loss due to dissipation is so small that after one million time

units, the atomic density only decreases by 0.21%. This is

similar to what happens to the stationary lattice solitons in

Section III when boundary losses approached irrelevance at

the tails of the lattice soliton.

FIG. 10: (Color online) Temporal evolution of the intensity distri-

bution of the TLS initiated via (5) for the case with localized dis-

sipations (ρ = −0.4) (a) and without localized dissipations (ρ = 0)

(b). Note that TLS is traveling along the ring but each distribution

has been shifted so to have the TLS maximum at the same angular

location).



6

Without localized dissipations, a traveling peak starting

from (5) survives for a long time (see Fig. 10 (b)). However,

in the absence of dissipations, the background noise eventu-

ally grows and absorbs the peak as shown in the last stages of

Fig. 10(b). These features demonstrate that localized dissipa-

tions are necessary for both the formation and the stability of

the double peak TLS when starting from wavepacket distrib-

tuions of atoms in the lattice with a given momentum.

We have also applied localized traveling dissipation to TLS

with one peak per potential well by using the analytical ap-

proximation of [44]

u(θ) = 8.11 A exp

[

i
pM(θ − π)

2π

]

cos

[

M(θ − π)
2

]

sech [AM(θ − π)] (6)

with A and p being the amplitude and the momentum of the

TLS respectively. In Fig. 11 (a) and (b) we set to A = 0.3/(2π)

and p = −0.5 and show the amplitude of the initial condition

(6) and its temporal evolution in the ring, respectively. It is

important to note that with or without dissipation, the inital

condition (6) quickly develops a noisy background on which

the TLS travels while remaining well approximated by (6) in

the potential wells where atomic localization takes place. The

dissipation clears up stationary noise, but does not destroy the

TLS with one peak per potential well. The atomic density is

only slightly affected by the dissipation, which decreases by

∼ 0.12% after one million time units, even slower than the

higher-order TLS.

FIG. 11: (Color online) TLS with one-peak stabilized by loclaized

dissipations.

V. COLLISION OF A TRAVELING AND A STATIONARY

LATTICE SOLITON

In this section we investigate the collision of the TLS with

two peaks per potential well (previously stabilized by the lo-

calized dissipations) and a stationary lattice soliton generated

with the same method discussed in Section III. The height of

the stationary soliton is varied by changing the width of the

initial Gaussian wavepacket via a modification of the γ pa-

rameter.

In Fig. 12 the temporal evolution of the atomic density of

both lattice solitons at successive collisions in the ring is dis-

played for zero dissipations. The TLS and the SLS are ini-

tially as far apart in the ring from each other as possible. The

amount of atomic density that passes through the stationary

lattice soliton at each collision is determined by its height.

The higher the stationary lattice soliton, the less atomic den-

sity passes through, as shown in the examples of Fig. 12. For

example, when the amplitude of the SLS is low (see Fig. 12

(a)), the majority of the atomic density in the TLS passes

through the stationary one at the point of collision with only a

small amount being reflected. After each collision, the atomic

density that has been reflected interferes with and scatters the

atomic density of the TLS that has been transmitted by the

SLS. This makes the TLS weaker and weaker as time goes

on.

When the amplitude of the SLS is high (≈ 0.95 in Fig. 12

(b)), the majority of the atoms in the TLS reflects off of the

stationary one while only a small amount manages to tun-

nel through. The small amount of atomic density that tunnels

through appears to have no major effect on the reflected TLS,

which manages to survive longer than in the previous exam-

ple.

FIG. 12: (Color online) A TLS colliding with a SLS of amplitude

≈ 0.45 (a) and ≈ 0.95 (b).

VI. COLLISIONS OF TWO TRAVELING LATTICE

SOLITONS

For completeness, we examine the collisions of two TBS

circling in the ring. In the first example, in Fig. 13, we use the

TBS with two peaks per potential well as described in Sec-

tion IV and with β = 1 and V0 = 10. We first position two

identical TSB at opposite sides of the ring (≈ π radians apart),

make them traveling in the opposite directions (p = 0.5 and

p = −0.5, respectively) and then make them collide. Since

dissipations would interfere with the process of collisons, we

set ρ = 0 for both TLS. As demonstrated in Fig. 10 (b),

the TLS with no dissipations survives for a long time during

which more than a hundred collisions can take place. We fo-

cus here on the first couple of collisions to establish the nature

of the interaction of the TLS at short distances and for inter-

ferometric properties. The collision from the two TLS results

in two seemingly identical TLS at the output (see Fig. 13 (a)).

We have verified that both atomic density and energy have not

changed in each of the output TLS with respect to the input.
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TABLE II: Percentage of atomic density reflected and transmitted in

collisions between 2 higher-order TLS

V0 reflection transmission

7.0 11.8 88.4

7.5 12.6 87.4

8.0 13.7 86.3

8.5 15.1 85.0

9.0 16.8 83.2

9.5 18.6 81.5

10.0 20.4 79.6

In order to find out if the TLS have gone through one an-

other or have reflected each other, we have split the wavefunc-

tion in two by substituting u = u1 + u2, where u1 represents

the atoms of one TLS and u2 in the other, into Eq. (2) to get:

i
∂u1(θ, t)

∂t
=

(

−
π2

2M2

∂2

∂θ2
+ V0sin2

(

Mθ

2

)

+ β|u1 + u2|2
)

u1

i
∂u2(θ, t)

∂t
=

(

−
π2

2M2

∂2

∂θ2
+ V0sin2

(

Mθ

2

)

+ β|u1 + u2|2
)

u2 (7)

We find that, when the TLS collide, some of the atomic den-

sity from each TLS pass through the other while the remaining

part is reflected. When this happens, the reflected atomic den-

sity of each TLS merges with the transmitted part of the other

one. This happens in such a way that the two TLS that result

from the collision have approximately the same shape as the

original ones, despite containing a mixture of the atomic den-

sity from each of them. We have verified that the results of

the numerical simulations of Eqs. (7) reproduce exaclty those

of the simulations of Eq. (2) when cosidering u = u1 + u2. In

this particular example, ∼ 79.5% of the atomic density of each

TLS passes through the other one at each collision. The evo-

lution of the atomic density distributions of each initial TLS

are plotted in Fig. 13 (b) and (c) respectively, showing how

each TLS splits at each collision. The transmitted/reflected

fractions of atomic density of the two TLS in the collisions

does not change when starting the collision process from a

different intial lcoation of the TLS. However, we have mea-

sured that these fractions change with the depth of the lattice

potential as reported in Table II.

Similar results of collisons occurs with the TLS with just

one peak per potential well. In Fig. 14, we show collisions of

these TLS for V0 = 10 and β = 0.041. Again, the TLS “swap”

atomic density at each collision, with the shape of the result-

ing TLS largely unchanged. Here, ∼ 77.0% of the atomic

density in each TLS stay with the “original” one at each col-

lision, while the rest join the other ones. In Table III we

show the dependence of the transmitted/reflected fractions of

atomic density in the collisions of TLS with a single peak per

potential well when changing the depth of the optical lattice.

TABLE III: Percentage of atomic density reflected and transmitted in

collisions between 2 TLS

V0 reflection transmission

9.0 14.7 85.3

9.5 18.3 81.7

10.0 23.0 77.0

10.5 29.5 70.5

11.0 38.2 61.8

VII. CONCLUSIONS

We have analyzed the effect of local dissipation on BEC in

a ring lattice. We found that the dissipation can both gener-

ate and stabilize stationary and traveling lattice sollitons (SLS

and TLS, respectively). A TLS with two intensity peaks per

potential well was introduced that does not have a counter-

part in the discrete NLS. This can be generated, via an initial

Gaussian wavepacket (as in the discrete model) with dissipa-

tion. This does not survive without losses in the long term.

We then investigated the collisions of this TLS with different

SLSs and found that the interaction and survival of the TLS

depends on the amplitude of the SLS. We also analyzed the

collisions of two TLS in the ring. We found that some of the

atoms in each TLS merge with the colliding one while some

are reflected in such a way that the shape of the resulting TLS’

intensities stays the same. This collisional property depends

on the potential depth of the lattice. The amount of atoms

that are transmitted (reflected) during the collision is smaller

(larger) in deeper lattices and larger (smaller) in shallower lat-

tices.

A possible application of the TLS in a ring lattice is inter-

ferometry. The TLS can collide with extra potential barriers

added to the lattice. This has been proposed for attractive BEC

without a lattice in [16–18]. With an optical lattice, there is

the possiblilty of the interferometric features, such as Sagnac

effects, to work with a repulsive BEC and with higher order

TLS.

The SLS and TLS solutions obtained via localized dissipa-

tions are robust determinisitc features to small fluctuations. It

should also be noted that although the model and equations of

this paper have been used to describe the situation of BEC in

a ring lattice, they can also be generalized to light propagating

in cylindrical arrays of waveguides.
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FIG. 13: (Color online) Collision of two TLS with two peaks per potential well. The total atomic density profile of the collisions is shown in

(a) while the atomic density profile from each initial TLS is plotted in (b) and (c).

FIG. 14: (Color online) Collision of two TLS with a single peak per potential well. The total atomic density profile of the collisions is shown

in (a) while the atomic density profile from each initial TLS is plotted in (b) and (c).
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