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Wideband 2-Dimensional scanning planar subarray
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Abstract—Achieving frequency invariance in antenna array
requires linear-phase system to maintain frequency independent
time lag. For example True Time Delay or tapped delay line.
In this paper, the array elements are divided into subarrays.
Then all subarrays are steered towards the desired azimuth
direction, while the wideband property is preserved by exploiting
the subarray two-dimensional structure as a sensor delay line.
Each subarray pattern is then individually rotated around the
desired elevation direction. Eventually superposition of subarrays
is maximally constructive towards the desired direction and par-
tially constructive or destructive everywhere else. Two frequency
invariant beamformers are used. These are inverse DFT and
Least squares. Results are compared with wideband wideband
one-dimensional pattern syntheses of the same design methods
in power concentration.

Keywords: sensor delay line, wideband beamforming, sub-

array

I. INTRODUCTION

Sensor delay line is one of the most flexible approaches to

antenna array spatial and frequency coverage. A planar array

can be narrowband with two dimensional pattern control or

wideband one dimensional pattern. The versatility of sensor

delay line allow changing the response bandwidth and pattern

without changing the antenna architecture. In applications

where the signal of interest is broadband and elevation angle

is fixed, the sensors parallel to incidence direction can sample

the signal in time with a delay proportional to sin θ. This

function is similar to that of the tapped delay line only with

no dependency on angle θ.
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Fig. 1. Planar array model consisting of elements distributed evenly on x and
y axis. Each element have an attached weight.

However the full sacrifice of elevation angle for the sake

bandwidth can be avoided by introducing a compromise

between the two through subarray structure. If the array is

divided into smaller groups, each subarray can be given a

wideband pattern. When superimposed together the overall

response will have the common features of the individual

subarrays.

II. ARRAY ANALYSIS

the time spent for a signal to travel to any point in the

antenna structure compared to the reference point is

τ =
kr

ω

where k =
ω

c





sin θ cosφ
sin θ sinφ

cos θ



 (1)

(2)

Where ω is the angular frequency. θ and φ are the elevation and

azimuth angles respectively. The kr represents the projection

of sensor location vector r onto the propagation unit vector k.

When divided by speed of sound, c the projection indicate

time delay τ . Notice that any element distribution can be

represented in equation (1). the The radiation pattern of an

antenna is the resultant of the current excitation I(r) as

follows:

H(ω, θ, φ) =

∫

r∈R

I(r)e−iωτdr (3)

Where R is the set of elements locations. For antenna array

with discrete number of identical elements N with frequency

and angle response D(ω, θ, φ). The array pattern is the sum

of products of the element steering vector elements weights.

The above equation the reduces to its discrete form.

H(ω, θ, φ) =

N
∑

n=1

D(ω, θ, φ)cne
−iωτn (4)

cn is the weighting attached each antenna element with index

n. The following analysis will assume isotropic elements

hence D is omitted.Alternatively for non-isotropic elements

the resultant weighting should divided by the element re-

sponse. ĉn = cn

D where ĉn is the effective weighting to

be applied to the element of index n. To use vector format

then the steering vector need to be defined as the set of lag

experience with respect to zero lag τṅ corresponding to the



reference point rṅ.

s =













e−iωτ1

. . .

e−iωτṅ

. . .

e−iωτN













(5)

The vector form of array response then becomes

H =

{

c
TS if D = 1

ĉ
TS otherwise

(6)

1) Inverse Discrete Fourier Transform: two dimensional

Inverse Discrete Fourier Transform IDFT has been used with

rectangular, uniform spacing array to synthesis wideband

beamformer. For planar array, if sensor location r is distributed

evenly on x and y with spacings dx and dy . For IDFT case,

the element indexing will be separated to the x and y axis

to n and m respectively. Not to be confused with previous n

index. The radiation pattern now reduces to

H =

N
2

∑

n=−
N
2

M
2

∑

m=−
M
2

cnme
−iω

c
sin θ(ndx cosφ+mdy sinφ) (7)

Where dx and dy are x and y elements spacings respec-

tively and cnm is the weight attached to the element located

at [ndx,mdy, 0]
T . From the above equation , two spatio-

temporal variables ωx and ωy can be defined as follows

ωx =
ω

c
dx sin θ cosφ

ωy =
ω

c
dy sin θ sinφ (8)

Hence the radiation pattern in terms of newly defined frequen-

cies is.

H(ωx, ωy) =

N
2

∑

n=−
N
2

M
2

∑

m=−
M
2

cnme
−i(nωx+mωy) (9)

Equations (9) above fits the definition of tow dimensional

Discrete Fourier transform. It is often desirable to obtain an

array response over the frequency band of interest to imitate a

specific pattern, say the desired waveform Pd(ω, θ, φ). Desired

pattern is real if array weights are real and can be complex

valued if weights are complex. To obtain the required weights

for a given desired response, the inverse transformation is

applied:

cnm =

π
∑

ωx=−π

π
∑

ωy=−π

Pd(ωx, ωy)e
i(nωx+mωy) (10)

Notice that similarity with circular symmetric weighting in [8,

p. 259]. Comparing equation (10) with two dimensional DFT

approach in [2], [3], [6] reveal that the former is more general

and applicable to non uniform and arbitrary shape.

2) Least Squares: Recalll from equation 6 that the array

response can be represented in vector format as the product

of weights and the steering vector as follows.

H = c
T
s(ω, θ, φ) (11)

The error quantity can be defined as the squared deviation of

the desired pattern Pd from the array response H .

e = Pd(ω, θ, φ)−H(ω, θ, φ) = Pd − c
T
s

Least square approach minimizes the squared error. Complex

matrices are spared by multiplying the matrix buy it is conju-

gate transpose. Hence the squared error (SE) becomes:

SE = [Pd − c
T
s][Pd − c

T
s]H

= (Pd − c
T
s)(PH

d − s
H
c
∗)

= P 2
d − 2cTPds+ c

T (ssH)c

The term Pd s is the correlation vector d and the ss
H is

the covariance matrix R. This error is calculated at specific

frequency and angle. To obtain the mean error over the

operating frequency and space, SE is integrated over the

frequency and angles.

MSE =

∫

ω

∫

θ

∫

φ

P 2
d − 2cTd+ c

TRc

= 1− 2cT d̂+ c
T R̂c

apparently squared error is a quadratic function of c. The

least point can be found by differentiating w.r.t c then finding

the null space of the result [8].

∂

∂cT
1− 2cT d̂+ c

T R̂c

= 0− d̂− 0− R̂c

Hence the set of weights that achieves the least squared error

is

c = R̂−1
d̂ (12)

where R̂ is the integration of the square NxN covariance

matrix over space and frequency. d is Nx1 column vector as

follows:

R̂ =

∫

ω

∫

θ

∫

φ

R(ω, θ, φ) dωdθdφ

d̂ =

∫

ω

∫

θ

∫

φ

Pds(ω, θ, φ) dωdθdφ (13)

III. EFFECT OF ASSUMING FIXED ELEVATION ANGLE

Many analysis of 2-dimensional array using sensor delay

line assumed fixed elevation angle [5], [1]. Most have cho-

sen 90 degrees elevation which corresponds to incident or

transmitted waves parallel to the array geometric plane. Such

assumption is valid for wideband signal if the beamformer

response to any other elevation direction is irrelevant. Eleva-

tion angle has the same effect to that steering vector as the

signal frequency. To illustrate that lets reconsider equation (7).



Notice that the term ω
c sin θ is dependent on both frequency

and elevation angle. When defining any desired pattern it is

not possible to discriminate between frequency and elevation

angle. both parameters can vary according to the following

relationship and still produce the same array response.

ω

c
sin θ = constant (14)

Near broadside direction the response is less sensitive to angle.

This is desirable area for wider frequency band.

IV. ROTATED ELEVATION CONSTRAINT

The phase of array response in (4) depend on both frequency

and elevation angle. When defining any desired pattern it is

not possible to discriminate between frequency and elevation

angle. Both parameters can vary according to the following

relationship and still produce the same array response. To

resolve the elevation angle ambiguity, Subarrays can be steered

to the desired azimuth angle, and then individually rotated

around the desired elevation angle. Recall equation (10) used

to calculate array weights. Azimuth angle φ instead of being

constant can be a function of the elevation angle.

φ̂m = φ− αm(θ − θ0) (15)

where m = 0, . . . ,M

the effect φ̂m has on the pattern is to twist the pattern as

elevation angle changes. However, at the desired elevation

angle (θ − θ0) the subarrays align with others. In order to

minimize the total array response in the sidelobe region, the

pattern should be symmetric around φ0. When this balance

is maintained the subarrays cancels each other as long as the

beamwidth is smaller than φ̂ − φ0. twist is inflected on the

wavenumber vector k and its components u and v it will then

be as follows.

c

ω
k(θ, ˆφm) =

[

û

v̂

]

=

[

sin θ cos φ̂

sin θ sin φ̂

]

(16)

To illustrate the effect on the steering matrix lets substitute

equation (15) in(16)

k(θ, φm) =

[

sin θ cosφ sinβ + sin θ sinφ sinβ
sin θ sinφ sinβ + sin θ cosφ sinβ

]

(17)

where β = α(θ − θ0)

Here, β represents the product of subarray slope α and

elevation deviation.

k(θ, φ̂m) =

[

u cosβ + v sinβ
u sinβ + v cosβ

]

(18)

Hence the transformation matrix from the rotated elevation

wavenumber to array wavenumber is
[

û

v̂

]

=

[

cosβ sinβ
sinβ cosβ

]

(19)

Equation (19) indicates that as the angle α increases, û moves

away u. Hence, the uv coordinates rotates with angle α.

Fig. 2. Desired pattern of least square approach at center frequency 0.66π

In rotated elevation constraint approach, the constraint is

applied to the elevation angle θ. Recall from equation (1) that

sin θ is common term in both u and v. An incident signal

from elevation angle θ1 and frequency f1 can produce the

same response as another signal from elevation angle θ2 a

and f2 given that they satisfy the following equation:

f1

f2
=

sin θ2
sin θ1

(20)

Resulting in beam squint that relates to frequency deviation as

θ = sin−1(sin θ0
f0

f
) (21)

V. POWER CONCENTRATION MEASUREMENTS

Array ability to concentrate power in the desired direction is

introduced in [4] as the ratio between power concentration to

the total dissipated power into the upper far field hemisphere.

The power dissipated over

ψ(ω, θ, φ) =

∫

ω

∫

θ

∫

φ

|H(ω, θ, φ)|2dωdθdφ (22)

The concentrate power can be rewritten as follows.

ρ(ω, θ, φ) =
ψ(ω, θ, φ)

∫ π/2

−π/2

∫ π

−π
ψ(ω, θ, φ)dθdφ

(23)

Substituting ψ in equation (7) results in

ψ(ω, θ, φ) =
c
T R̂c

cT c
(24)

Where R̂ is the average sensor covariance matrix calculated

from (13).

VI. SIMULATIONS AND RESULTS

Concentrated power measurements in this example it is a

cone with 15◦ radius around the reference angle. The wide

cone is required to compensate for squinting effect over

frequency which is noticeable in rotated elevation. Power

concentration is presented here for the array excitations are

calculated using IDFT and least squares approaches. Results

are compared to conventional 1-D wideband sensor delay

line approach described in [2], [3], [7], [1]. In 1-D case the

planar array is used as one dimensional array treated without

division to subarrays. While the other dimension is used for

temporal filtering. All elements are used in the synthesis of



one-dimensional azimuth pattern. The elevation is fixed at the

desired elevation angle of 35◦. The array is constructed by 3x3

hexagonal subarrays containing 44 elements each. The look

angle is 0◦ azimuth and 35◦ elevation. The desired response

is a Taylor window with -90 sildeobe level. Rotation slope

between azimuth and elevation varies between -1.5 and 1.5.

Fig. 3. 3x3 hexagonal subarray used for simulation. Element spacing is 30

cm corresponding to λ

2

A. 2-D Invers Descrete Fourier Transform

Individual subarrays pattern is shown below. Each subarray

is steered individually by its unique slope. Notice how all

subarrays illuminate the desired direction but have different

response elsewhere.
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Fig. 4. Individual subarray pattern for the 3x3 array being simulated in uv

coordinated described above.

IDFT method produced the cleanest mainlobe and relatively

low grating lobes over the frequency band.

Fig. 5. 3D normalized magnitude pattern of rotated elevation constraint using
IDFT method

rotated elevation method show relatively flat gain over

frequency band compared to conventional 1-D approach. This

means that grating lobes are small or are from the look direc-

tion since they cause sudden change in gain over frequency.
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Fig. 6. Power concentration comparison between conventional 1-D pattern
IDFT synthesis and one using proposed rotated elevation constraint method

B. Least squares

Grating lobes are close in magnitude to the main lobe.

Grating lobes numbers and locations vary with frequency and

their effect can be seen in the gain graph.

Fig. 7. 3D pattern at 400 MHz center frequency obtained by the proposed
rotated elevation constraint method using least squares approach

When grating lobe move into the look angle cone around

330 MHz the power concentration increases drastically.
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Fig. 8. Concentrated power comparison between conventional 1-D pattern
synthesis and the proposed rotated elevation constraint method using least
squares approach

VII. CONCLUSION

Rotated elevation method provides a compromise for planar

arrays between narrowband 2-dimensional space steering and

wideband sensor delay line with 1-dimensional steering in

azimuth only. This is achieved by dividing the array into

subarrays and steer them toward the desired azimuth angle.

Then individually rotate each subaarry using a unique slope

around the desired elevation angle. Results indicate acceptable

gain flatness and power concentration but introduced high

grating lobes close to the look direction. Superposition of

multiple 1-D smaller arrays caused movement of grating lobes

around the mainlobe.
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