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Abstract: Investigation of the underlying structural characteristics and network properties of biological 

networks is crucial to understanding the system-level regulatory mechanism of network behaviors. A 

Dynamic Bayesian Network (DBN) identification method is developed based on the Minimum 

Description Length (MDL) to identify and locate functional connections among Pulsed Neural Networks 

(PNN), which are typical in synthetic biological networks. A score of MDL is evaluated for each 

candidate network structure which includes two factors: i) the complexity of the network; and ii) the 

likelihood of the network structure based on network dynamic response data. These two factors are 

combined together to determine the network structure. The DBN is then used to analyze the time-series 

data from the PNNs, thereby discerning causal connections which collectively show the network 

structures. Numerical studies on PNN with different number of nodes illustrate the effectiveness of the 

proposed strategy in network structure identification. 

Keywords: Pulsed Neural Networks (PNN); Dynamic Bayesian Network (DBN); Minimum Description 

Length (MDL); causal connection; synthetic biological networks. 


1. INTRODUCTION 

The molecular regulatory mechanisms in neuronal systems 

have been studied intensively, and the basic processes of 

information handling by neurons have been well understood 

(Bliss and Collingridge, 1993; Schuldiner et al., 1995; 

Trimble et al., 1991). However, little is known about the 

organization and function of complex biological neural 

networks (NNs) due to inadequate non-invasive measurement 

means or lack of effectiveness in data analysis methods. 

Experimental methods can simultaneously monitor electrical 

activities of a large number of neurons in real time thus 

providing multi-channel neural spike training data with 

sufficient temporal and spatial resolution. This was achieved 

by multiple single neuron recordings (Kruger, 1983), voltage 

sensitive dyes (Parsons et al., 1991), or multi-electrode array 

(Erickson, 2008; Kang et al., 2009; Spira and Hai, 2013). 

Experimental data with several quantities simultaneously 

recorded produce multivariable datasets. Such multichannel 

recordings are intended to deliver more causal information 

about the investigated biological networks. Therefore, data-

based identification of connective structures and further 

examination of the underlying regulation mechanisms are 

central themes in neural science and computational biology 

research. A number of modelling methods on describing 

biological network structures have been reported, such as 

Boolean network (Shmulevich et al., 2002), differential 

equation modelling (Kim et al., 2007), the likelihood ratio 

test method (Caines and Chan, 1975), and Granger causality 

(Blinowska et al., 2004; Doerfler et al., 2013). These methods 

have been applied in modelling of the causal dependency 

among genetic regulatory networks, protein-protein 

networks, and metabolite networks, etc. Nevertheless, there 

are fundamental limitations in applying these methods to 

biological NNs since most methods require detailed a priori 

knowledge on the system order and structure which could be 

difficult to obtain. Also biological NNs are normally complex 

and nonlinear, but many modelling methods are focused on 

simplified or linearized NN systems. 

Bayesian networks (BN) can represent static dependency 

among involved variables in a natural way and are 

intensively applied to multivariable biological network data 

analysis (Jansen et al., 2003; Yu et al., 2004). Somewhat less 

established, but perhaps of equal or more importance, are the 

Dynamic Bayesian Networks (DBNs), which can be used to 

model stochastic evolution of a set of random variables over 

time horizon (Hanks and Madigan, 2005; Perrin et al., 2003; 

Zou and Conzen, 2005), thus being more suitable for 

dynamical causality analysis of multivariable datasets. The 

DBN method is essentially a multivariable time-series 

analysis method with the use of the so-called Minimum 

Description Length (MDL), and it can simultaneously take 

into account all dynamical couplings in network causality 

analysis. DBNs have significant advantages over competing 

representations such as Granger causality test, which is 

essentially a linear system analysis method, Kalman filters, 

which handle only unimodal posterior distributions with 

linear models, and hidden Markov models (HMMs) (Smyth 

et al., 1997), whose parameterization grows exponentially 

with increasing number of state variables.  
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In this paper, the DBN identification method is investigated 

to identify underlying dependent structures in multivariable 

dynamic systems through network structure sorting. The 

remaining of the paper is organized as follows. The DBN 

structure identification method is presented in Section 2. 

Numerical studies are conducted in Section 3. Conclusions 

and discussions are made in Section 4. 

2. DBN STRUCTURE IDENTIFICATION METHOD 

2.1  Stage Dynamic Bayesian Networks 

Consider a biological network with n nodes that can be 

represented as a discrete variable set  1 2, , , nX X XX . 

Each state variable (or node), iX  ( 1, ,i n ), has is  

possible values: 1 2, ,  
ii i isw w w . The parent set of iX  is 

denoted as  Pa iX , which contains iq  nodes and assumes a 

total number of ip  possible unique instantiations, i.e., 

 P ai i

i i

X X

p s


                                    (1) 

Using ijv  ( 1,2, , ij p ) to represent the j-th unique 

instantiation in  Pa iX , the conditional probability mass 

function,    , ,P Pai ik i ij i j kX w X v    , denotes the 

possibility of iX  taking the k-th value ( 1,2, , ik s ) when 

 Pa iX  presents its j-th unique instantiation. Clearly for any 

i and j, there is , ,1
1

is

i j kk



 . All values of , ,i j k  compose the 

conditional probability table (CPT) for the network. 

A BN is defined as a directed acyclic graph (DAG) with a 

joint probability distribution over a variable set X , denoting 

formally as ( , )BN G  . The vertices of a DAG correspond 

to the network variables,  1 2, , , nX X X ;   is composed of 

all entries in the CPT given the network structure of G . It is 

reasonable to assume that each node iX  is independent of its 

non-descendants given its parent nodes. Following the chain 

rule, the joint probability of a BN is the product of the 

conditional probabilities specified for each variable, i.e. 

  1 2 1
P( ) P( , ,..., ) P Pa

n

n i ii
X X X X X


 X          (2) 

While a BN is used to describe the probability distribution of 

a biological network over a static data set, a DBN extends 

this representation to modelling of dynamical processes. In 

the formulation of a DBN, the joint probability distribution 

over the time series, 0,1, ,t T , can be written as: 

     
1

P (0), (1), , ( ) P (0) P ( ) ( 1)
T

t
T t t


  X X X X X X  (3) 

where (0)X  represents the initial states of the prior network. 

With the first -order Markov assumption, the state transition 

probability can be calculated by means of a DAG as follows: 

    
1

P ( ) ( 1) P ( ) Pa ( )
n

DB DB i i

i

t t X t X t


 X X              (4) 

2.2  Minimum Description Length Criteria 

There are various methods to evaluate the so-called “loss 

function” of BNs or DBNs with respect to a certain network 

data set, among which typically used criteria include 

Expectation Maximization (EM) (Friedman, 1998), Bayesian 

Information Criterion (BIC) score (Schwarz, 1978), BDe 

score (Heckerman et al., 1995), and Minimum Description 

Length (MDL) score. The MDL algorithm was originally 

proposed from studies on universal coding (Rissanen, 1978). 

In order to save/restore a group of given instance data 

into/from computer memory, a model is usually used to 

compress the coded data. Thus, the required data length, i.e., 

the total description length, is equal to the summation of the 

data length for saving the model parameters and the length of 

the compressed network response data. The best model is the 

model with an MDL. This method was later on applied to 

BNs’ structure learning (Lam and Bacchus, 1994).  

According to MDL criterion, the optimal BN structure is the 

network with a minimum summation of the network 

parameter length and the network response data length. This 

means that a balance needs to be achieved between the 

network complexity and the matching degree of the network 

with the response data. For this purpose, a score of MDL 

consists of the following two parts: 

(i) The network parameter data length 

For an n-nodes BN, it requires data with a length of 2log ( )n  

to code the indexes for each node (using binary coding). The 

i-th node can be coded by 2log ( )iq n  bits. Therefore, to store 

a structure of BN, the required binary data length is  

2

1

( ) log ( )
n

struct i

i

DL BN n q


                               (5) 

In the storage of a CPT, each variable iX  has ( 1)i ip s   

parameters. Since , ,1
1

is

i j kk



  for any i and j in the network, 

only ( 1)is   independent parameters (instead of is ) are 

required in each column of the CPT. To save each parameter, 

it requires 1
22

log ( )m  bits, where m is the number of data 

instance of X. For a DBN, the number of m is taken as the 

length of time series, i.e., 1m T  . Thus, the total length 

required for saving a full CPT of the DBN is 

 2

1

1
( ) log ( 1) 1

2

n

tab i i

i

DL BN T p s


                   (6) 

(ii) The compressed length of the response data 

Suppose all data instances are independent and the data set 

(D) is complete, then the binary length of all instance data is  

    
 

2

2 1

2

1 1 1

( | ) log P( | )

log P (0) P ( ) ( 1)

log
i i

ijk

data

T

t

p sn
N

ijk ij

i j k

DL D BN D BN

t t

N N



  

 

   

 





X X X
 (7) 

where ijkN  counts the number of instances when i ikX w  

under the cause of  Pa i ijX v , ijN  is the total number of 
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instances when  Pa i ijX v  for all values of iX , i.e., 

1

is

ij ijkk
N N


 . Taking into account the three data length 

measures in (5)-(7), a total MDL score of a structured BN 

depending on all data instance is  

 

 

2 2

1 1

2

1 1 1

( : )

( ) ( ) ( | )

1
log ( ) log ( 1) 1

2

log
i i

ijk

MDL

struct tab data

n n

i i i

i i

p sn
N

ijk ij

i j k

Score BN D

DL BN DL BN DL D BN

n q T p s

N N

 

  

  

      



 



          (8) 

By the MDL criteria, the optimal model structure is selected 

as the one with the MDL. 

2.3  Genetic Algorithm for Network Structure Optimization 

Use of efficient searching algorithms is crucial in identifying 

the optimal structure with the lowest loss function. Currently, 

the greedy searching or the best first searching are commonly 

used for BN structure optimization because of their 

computational simplicity. However, these two algorithms 

lead to local optimum solutions that are dependent on the 

initial structure. Alternatively, the simulated annealing 

method, a global optimization algorithm, can be used, but this 

algorithm is normally difficult to converge and consumes a 

large computational time. In this work, we propose to employ 

another global optimization algorithm, Genetic Algorithm 

(GA), in structure identification of DBN. Details of a 

classical GA can be found in (Holland, 1975; Whitley, 2014). 

2.4  Pulsed Neural Networks 

To test the effectiveness of the DBN identification method 

for network structure sorting, we construct synthetic NNs 

using Pulsed Neural Networks (PNN) and calculate their 

network response data. The PNNs, also called as the third 

generation of artificial NN, are based on spiking neurons, or 

“integrate and fire” neurons (Maass and Bishop, 1999). These 

neurons utilize recent insights from neurophysiology, 

specifically the use of temporal coding to pass information 

between neurons (Buracas et al., 1998; Kasabov, 2014; 

Mainen and Sejnowski, 1995; Riehle et al., 1997; Thorpe et 

al., 1996; Vaadia et al., 1995), which can closely mimic 

realistic communications between neurons. Therefore, PNNs 

are widely applied to study the properties of NNs.  

For a spiking neuron i , denoted by iX , the membrane 

voltage can be denoted by ix . The neuron is fired once ix  

reaches a threshold level of  . The moment of the i-th 

neuron crosses the threshold is recorded by a firing time 
f

it . 

The set of all firing time instances, called spike train, is 

described by the following set 

  ,  1,2,... ( 1,2, , )f f

i i i it x t f i n           (9) 

where the superscript f  is the index for the firing time. 

There are two main processes that contribute to the value of 

iX . The first one is a negative-valued function  f

i it t   

indicating an immediate “reset” after each firing time in i , 

where 
f

it  is the most recent spike time before the current 

time t . In the biological context, ( )i  , also called the 

refractoriness function, is used to describe the neuronal 

refractoriness after a fired spike. The second contribution is 

from the i-th neuron’s pre-synaptic neurons, i.e.,  Pa iX .  

In the following we use notation l to represent the l-th pre-

synaptic neuron in the parent set, where 1, , il q  for 

 Pa iX . A spike in the pre-synaptic node at time 
f

lt  

increases (or decreases) iX  of post-synaptic neuron i  for 
f

lt t  by adding a sum of weighted kernel functions, denoted 

by ( ).f

il il lt t    The sign of il  is used to indicate the 

synaptic efficacy, 0il   represents excitatory synapses and 

0il   for inhibitory synapses. The kernel function ( )il  , 

also called the postsynaptic potential (PSP) function, 

describes the response of the i-th neuron due to a pre-synaptic 

potential at 
f

lt . The term ( )il   can also be regarded as a 

measure of the combined effect of axon transmission 

property and membrane transmission property of neurons. 

Therefore, the value of the i-th neuron at current time t  is 

given by a linear superposition of the two contributions, 

 
1

( ) ( )
i

f f
i li l

qf f

i i i il il ll
t t

x t t t t t 


 

                (10) 

The model in (9)-(10) is referred as the Spike Response 

Model (SRM) (Maass and Bishop, 1999). These two 

equations, together with the connectivity topology of NNs, 

form a simple mechanism for simulation of biological NNs. 

The noise term can be introduced into the SRM by adding a 

term of stochastic current  noise

iI t . Then (10) is changed to 

 
1

0

( ) ( )

( ) ( )d

i

f f
i li l

qf f

i i i il il ll
t t

noise

i i

x t t t t t

e s I t s s

 


 



     

 

  


      (11) 

Here ( )ie   is the membrane dynamics function, representing 

the dynamics from the local noise current stimulation to the 

membrane voltage of the i-th neuron.  

In numerical studies, several typical mathematical 

formulations can be used to describe the refractoriness 

function, ( )i  , the PSP function, ( )il  , and the membrane 

dynamics function, ( )ie  . As an example, the following PSP 

function can be used 

 
1

( ) exp exp
1 /

( )

ax ax
il

s m m s

ax

t t
t

t


   

       
            
  

  (12) 
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where s  and m  are time constants describing axon 

transmission dynamics and membrane dynamics, respectively; 

ax  is the axonal transmission delay. ( )axt   is the 

Heaviside step function which vanishes for axt    and takes 

a value of 1 for axt   .  

 

(a) PNN functions 

1
i
t

2
i
t

3
i
t

4
i
t

 
(b) Membrane voltage of the i-th neuron 

Fig. 1 Illustration of neuron behaviour with PNN modelling 

A typical refractoriness function is  

 exp for 
( )

for 

i

refractory

i
i

refractory

t t T
t

t T

 
  

  
 

                      (13) 

where 
i

refractoryT  is the absolute refractory period of the i-th 

neuron and   is the time constant describing refractoriness 

dynamics. During such a refractory period, a neuron is not 

fired even if its membrane voltage value goes above the 

threshold  . Only when the interval between two successive 

spikes is greater than 
i

refractoryT , the firing activity will be 

triggered. This well mimics the realistic biological neuron 

firing mechanism with a refractory period. For the membrane 

dynamical function, an exponentially damping function is 

often used to model the first-order inertia dynamics: 

1
( ) exp ( )i

m m

t
e t t

 
 

   
 

                            (14) 

Figure 1 illustrates the time profiles of the three functions 

used in PNN and the time response of ix . The kernel ( )il   

describes the response of ix  caused by a pre-synaptic spike 

at 0t  ; the function ( )i   reflects the refractoriness after a 

spike emitted at 0t  ; the the membrane dynamics function 

( )ie t  represents the dynamics from the local current 

stimulation to the membrane voltage of a neuron. The 

parameters are set as follows: 30msax  , 4mss  , 

8msm  , 0.2  , and 40ms  . It can be seen that the 

membrane voltage ( )ix t  firing at time 
f

it  when it reaches the 

threshold voltage. After the firing action, it is reset by the 

function ( )i   and then re-accumulated by the pre-synaptic 

spike input  f

il il lt t   .  

3. RESULTS 

In the following numerical studies, the DBN identification 

method is applied to PNNs with 2, 3, and 4 nodes, 

respectively. Details are discussed using a two-node PNN 

with the following topologies: 

(i) A feedback loop, one excitatory connection from 

neuron 1 to neuron 2 and another reverse excitatory 

connection of identical strength from neuron 2 to 

neuron 1 (e.g., 21 12 0.8   , Fig. 2 row (i)); 

(ii) An unidirectional connection from neuron 1 to neuron 

2 (e.g., 21 0.8   and 12 0  , see Fig. 2 row (ii)); 

(iii) An unidirectional connection from neuron 2 to neuron 

1 (e.g., 12 0.8   and 21 0  , see Fig. 2 row (iii)); 

(iv) No physical connection between neuron 1 and neuron 

2, Fig. 2 row (iv). 

For the above four topologies, the identical parameter values 

 3.5ms,8ms,50ms,40ms,2ms,0.2  was assigned to 

 , , , , ,i

s m ax refractoryT     for each neuron. Using the DBN 

model in (11), each neuron is driven by a stochastic noise 

current   , ( 1,2)noise

iI t i  . We assumed that the noise follows 

a normal distribution (0,1)N  and the noise sources were 

independent from one another. The spike trains of each 

network are displayed at a length of 1 second, extracted from 

a 5s-long simulation (Fig. 2(ii)). During the simulation, the 

absolute refractory period was set to 2ms. Consequently, all 

the spike intervals are larger than this refractory period in the 

raster plot. We binned two spike recordings in a small time 

interval, 10 mst  , and then counted the number of spikes 

in each interval. If the number of the spikes in one interval is 

equal or greater than 1, let the sample value be “1”. 

Otherwise, if there are not any spikes in the interval, it is 

valued as “0”. The spike trains are sampled according to their 

differential increments in each time bin t , which has the 

same effect as adding a low-pass filter to the original 

multivariate time series data. Therefore the high frequency 

dynamics can be alleviated by applying the moving time 

window for sampling data. The detailed description of this 

sampling process can be found in an earlier work (Willie, 

1982). With regard to the network sorting, the GA algorithm 

is employed to search for the optimal structure based on the 

simulation multivariate time series. The major parameters for 

GA are selected as follows: the population size is 100, the 

elite size is 10, the crossover fraction level is 0.8, and the 

mutation rate is 0.02. The chromosome string is constructed 

by a binary vector, whose elements come from the adjacent 

matrix corresponding to the network topology. 
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Fig. 2. Simulation of two-node PNNs of different topologies 

(i)-(iv). Column (a): network topology. The numerical value 

on each arrow represents the strength of each synaptic 

interaction. Column (b): the raster plots of two neurons’ 

recordings (the total simulation period is 5s and only 1s is 

shown here). Column (c): sampled time-series obtained from 

the two spike trains after binning at 10ms intervals. 

Table 1. BDN identification results for 2, 3, and 4-node PNN 

Network

Scale
# of Structure

# of Connections

& Disconnections

Correct

Ratio

False Plositve

Ratio

False Negative

Ratio

2-node 100 200 0.8953 0 0.1047

3-node 100 600 0.9695 0.0047 0.0258

4-node 100 1200 0.9413 0.0104 0.0483

 

The sampled time series data of the two neurons in each 

network were created through binning two spike recordings 

in 10 mst  and binarizing the number of spikes in each 

interval as shown in Fig. 2, column (c). Based on these time-

series data, the DBN identification method was applied to the 

four networks (i)-(iv), respectively. As a result (see Table 1, 

the causal connections can be successfully identified in all 2-

node network topologies.  

The DBN identification method is also applied to 3-node and 

4-node PNN structures. We randomly construct 100 network 

structures for each network scale and conduct similar 

simulations as to the 2-node networks. The self-connections 

of every node are prohibited, thus the total number of 

connections and disconnections is ( -1)n n . Key features such 

as the correct identification ratio, the false positive 

identification ratio, and the false negative identification ratio 

are calculated according to the total number of connections 

and disconnections, and the identification results are also 

listed in Table 1. It can be seen that a high level of correct 

ratio has been achieved for all cases. The false positive ratio 

is low and it increases slightly when the network node 

number is increased. It is worthwhile noting that the false 

negative ratio is always greater than the false positive ratio. 

This fact suggests that the DBN identification method has a 

stronger tendency of missing existing connections than non-

existing connections.  

4. CONCLUSIONS AND DISCUSSIONS 

In this work, a DBN identification method is developed to 

investigate biological PNN structure. Benefited from MDL 

and GA, the DBN identification method is able to rapidly 

identify and locate causal connections without a priori 

knowledge on the synthetic biological NN architectures. The 

simulation shows that this method is robust to high levels of 

measurement noises, and is efficient for nonlinear neuronal 

dynamics. In addition, the proposed method requires only the 

measurement of dynamic expression profiles of network 

nodes. With the advances in high throughput measurement 

methods, such as multiple single neuron recordings, voltage 

sensitive dyes or multi-electrode array technology, this 

modelling technique may soon become applicable in 

describing large scale in vitro or in vivo NNs and improve the 

understanding of relationship between biological dynamics 

and network topologies.  

Other than identifying the functional connections, the DBN 

identification method also retrieves plenty of connective 

strength information which is contained in the CPTs. It is 

observed that a larger value of , ,i j k  in CPT indeed indicates 

a more significant regulation to the i-th node from its parent 

node, likewise a smaller coefficient corresponds to a weaker 

regulation. The quantitative combination in iX  and  Pa iX  

reflects whether the i-th neuron is up-regulated or down-

regulated by its parent node, i.e. the property of causal 

connections. Therefore, such implicit information provides a 

possibility to deduce more detailed intracellular interaction 

architectures by collecting the information of the distribution 

of causality saved in CPTs.  

The DBN identification method postulates all neurons 

accessible for direct measurements. This requirement is, 

however, not always fulfilled in vivo. To overcome this 

disadvantage, experiments can be designed among those 

detectable network nodes. This means only partial 

observations of the network are accessible. The proposed 

DBN identification method needs to be extended for partial 

observation neural networks.  
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